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Abstract

We introduce a family of coverage criteria, called Multi-Point Stride Coverage (MPSC). MPSC

generalizes branch coverage to coverage of tuples of branches taken from the execution se-

quence of a program. We investigate its potential as a replacement for dataflow coverage, such

as def-use coverage. We find that programs can be instrumented for MPSC easily, that the

instrumentation usually incurs less overhead than that for def-use coverage, and that MPSC is

comparable in usefulness to def-use in predicting test suite effectiveness. We also find that the

space required to collect MPSC can be predicted from the number of branches in the program.

Keywords: Software Testing; Control Flow Coverage; Data Flow Coverage; Partial Exe-

cution Pattern
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Chapter 1

Introduction

Like any product, software needs to be tested to ensure quality. There are different kinds

of testing emphasizing different aspects of software. For instance, functional testing targets

functionality of a program, regression testing ensures that a change in an existing system did

not introduce new faults, and robustness testing checks the software’s robustness when the load

is high.

A test case in software engineering is a set of conditions or variables under which a tester

will determine whether an application or software system is working correctly or not. Every

test case incurs some cost like design cost, configuration cost, execution cost and analysis cost.

Beside finding faults, one of the target in software testing is to create a optimal test suite that

test the software sufficiently and thoroughly.

The purpose of structural testing is to check some aspects (statements, conditions etc.) of

the source code that constitutes the software. The idea behind it is to ensure that the software

under test is checked thoroughly. As an example, if a statement in the source code is not exe-

cuted by a test suite, then the test suite provides no evidence of its correctness or incorrectness,

as it is difficult to measure its impact on the final output without executing that line of code;

this is true even for a moderate-sized program. The strategy in structural testing is to cover

a high percentage of the targeted features of the source code and use this measure to indicate

1



2 Chapter 1. Introduction

testing thoroughness. This measure can be used as a stopping criterion in test case generation

process. In popular terms it is also known as code coverage testing. Over many studies in the

last several decades it has been shown that using code coverage as a catalyst in testing increases

the chance of finding software faults in the testing phase; it also helps localize them.

Structural coverage measures measure how much of a program’s structure a test suite exer-

cises. Some forms of coverage criteria have been used in software testing for decades to judge

whether test suites are thorough enough [65]. In larger software companies (e.g. IBM and Mi-

crosoft) it has become common to show coverage related metrics information while reporting

unit testing [66].

In broad terms, structural coverage criteria can be divided into two different domains:

“Control Flow Coverage” (CFC) and “Data Flow Coverage” (DFC) [54]. CFC includes mea-

sures like branch coverage, which requires that each direction of each branch be taken by some

test case. DFC includes measures like “def-use coverage”, which requires that every def-use

path (path from an assignment of a value to a variable to a use of that assigned value) is taken

by some test case.

1.1 Motivation

In general it is accepted that DFC is superior to CFC in terms of finding and locating faults [38].

There is a tradeoff between them, as DFC is complicated to implement and its measurement

incurs more overhead than CFC, so in practice some form of CFC is accepted and widely

used in the software industry. In our research, we bridge the gap between the measures by

introducing a family of CFC criteria which we call “Multi-Point Stride Coverage” (MPSC).

Informally, instrumentation for MPSC with gap g and p points records the coverage of tuples

(b1, . . . , bp) of branches taken, where each branch in the tuple is the one taken g branches

after the previous one1. We believe that MPSC could be less costly than DFC but could be as

1A detail description of MPSC is given in chapter 2
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effective as DFC.

Collecting coverage data is a key aspect of structural testing; it is used to generate relevant

statistics, e.g. percentage of coverage by individual test cases or test suites. Coverage data

can be collected with or without preserving the sequence as a trace. For our experiments, we

have developed a tool that can collect branch coverage in three different languages (C, C++

and Java). It also preserves execution sequence which is a key aspect to our proposed coverage

criterion. This is important if we want to understand the pattern of execution that may represent

the logic behind the code in more detail than traditional coverage criteria. Heimdahl et al. [48]

suggests test cases that technically provide the right coverage for traditional code coverage

criteria, still may not exercise the logic of the software. One of the important aspects of DFC

criteria is that they inherently capture aspects of the execution pattern; with MPSC, we devise

a mechanism to capture different forms of patterns by adjusting parameters g (i.e. length of the

gap between two execution points) and p (i.e. number of execution points considered).

The main difference between CFC and DFC is the use of data containers (i.e. variables); to

check any DFC criterion there is a need for a backward referencing mechanism (i.e. to know

where the variables are defined or last modified). In CFC this is not an issue, as those defined

criteria (statements, branches etc) can be collected by just following the flow of execution. The

situation becomes more complex for DFC if the data containers are indirect (i.e. pointers) or

have a complex structure (e.g. a C, C++ or Java class or structure). So DFC implementation is

complex, and the processing overhead is very high compared to CFC. On the other hand, DFC

inherently covers two highly related arbitrarily distant points in an execution path, which makes

it a stronger candidate to reveal implementation flaws and bugs of a program. In MPSC we

try to capture the good part of both domains. MPSC captures multiple points in an execution

path according to their execution sequence, but at the same time it reduces the complexity of

backward referencing. Like CFC, just following an execution flow with a length N buffer (i.e.

to store the last N executions) we can capture MPSC of different varieties.



4 Chapter 1. Introduction

1.2 Research Questions

We believe that MPSC could be a coverage criterion which is as effective as def-use coverage,

but easier to instrument and more efficient to collect. To investigate whether this is the case,

we designed and performed experiments. In this section we give a brief description of four

research questions that are necessary to understand MPSC and its effectiveness. Our research

addresses four main research questions:

• RQ1. How many MPSC tuples typically need to be collected for a program, and how is

that number related to other program metrics?

• RQ2. What is the relationship between MPSC and DFC criteria such as def-use?

• RQ3. Does MPSC lead to a more accurate assessment of test suite effectiveness than

def-use?

• RQ4. What is the performance overhead of collecting MPSC, compared to the uninstru-

mented program and to DFC?

1.3 Key Findings

We addressed these questions by experimentation on 15 programs of various sizes in three

commonly-used programming languages (C, C++ and Java). Our main findings on these pro-

grams are summarized below.

• Every program is associated with a constant C which allows us to accurately predict how

much storage to allocate for MPSC data collection, given the number of branches in the

program.

• The def-use coverage of test suites is strongly correlated with their branch coverage, rais-

ing questions about how distinct def-use coverage is from branch coverage in practical

settings.
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• MPSC allows us to predict the effectiveness of a test suite with a similar or higher level

of accuracy than def-use.

• The instrumentation for MPSC is usually more efficient than that for def-use coverage.

• The simplest member of the MPSC family of criteria is often the most useful member.

However, the family as a whole provides the user with a wide choice of useful coverage

criteria.

1.4 Thesis Structure

We organize the chapters as follows. In Chapter 2, we give some basic definitions. In Chapter

3, we discuss related work. In Chapter 4, we describe the design and results of our empirical

study of the basic properties of MPSC (RQ1). In Chapter 5, we describe the design and results

of experiments to determine the relationships between MPSC and def-use coverage (RQ2 and

RQ3). In Chapter 6, we describe the design and results of experiments we did to measure

the performance overhead of MPSC compared to def-use (RQ4). In Chapter 7, we present an

overall discussion of the results. In Chapter 8, we conclude and suggest future work.



Chapter 2

Definitions

In order to facilitate later discussion, we will revisit some traditional coverage criteria which

we consider in our research; then we will discuss briefly the benefit of considering sequence

while collecting a program’s structural features. Finally, we will give a formal definition of

MPSC (Multi Point Stride Coverage), followed by more related definitions.

2.1 Branch, Def-use and its variations

A branch in a program is one direction of an if, for or while decision, or one case of a

switch statement1. The branch coverage of a test suite (a set of test cases) is the proportion

of branches that are executed by at least one test case [65].

A statement is a definition or def of a variable x if it assigns x a new value. A statement is

a use of a variable x if it contains a reference to the current value of x. Two statements s1 and

s2 constitute a def-use pair for x if s1 is a def of x, s2 is a use of x, and there is a path π from s1

to s2 that does not pass through any other defs of x [79]. The def-use coverage of a test suite is

the proportion of def-use pair paths π that are executed by at least one test case.

There are also two common forms of data flow coverage known as “C-use” (computation

use) and “P-use” (predicate use). In C-use, a pair is created by a definition of a variable and

1We restrict our attention to C, C++ and Java. The concepts can be easily extended to other languages.

6



2.2. Considering Sequence while collecting program features 7

Use in predicate

void main() {

  int x, y = 10;

  x = y*y;

  if (x%2 != 0) {

    printf("\n X %d is odd", x);

  } else {

    printf("\n X %d is even", x);

  }

}

C−Use pair for y

Branch

P−Use pair for x

Use in computation

Definition

Definition

#include <stdio.h>

Figure 2.1: A sample C code with some examples of different kinds of code coverages

its use in computational statements (for example, y= x * 2) whereas P-use considers the use

in predicates (for example, if (x == 2). . . ). We do not discuss in detail here issues such as

the treatment of function parameters and the distinction between P-use and C-use, nor do we

discuss the problem of infeasibility [26] in detail; the reader is referred to Rapps and Weyuker

[79] and Horgan and London [49] for more detail. In Figure 2.1, we show these coverage

criteria in a simple C program.

2.2 Considering Sequence while collecting program features

Researchers and software professionals collect features that include control flow, variable val-

ues, addresses, and dependencies to create a program profile [9]. These collected features

are generally known as program-execution traces or logs. Using these traces, it is possible

to identify program characteristics that are useful for improving aspects of program behavior

including performance and correctness.

Feature collection and analysis can be performed intraprocedural or interprocedural. In

intraprocedural analysis, features are considered within a specific procedure, whereas in in-
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terprocedural analysis the entire program is considered. Features such as data-flow coverage

can be analyzed intraprocedurally by covering over all paths only; interprocedural data-flow

coverage has to meet all valid paths [80]. Due to its scope, interprocedural analysis is more

precise but much more complex than intraprocedural analysis. In our research, we define and

collect our proposed feature (MPSC) interprocedurally.

A systematic collection of features can show the dynamic behavior of the program in de-

tail, but it has a price to pay in performance overhead and memory allocation [18]. One of the

ways to solve the resource-constraint problem is by reducing the output information; one ex-

ample would be to report the covered branches only instead of the whole sequence of branches

traversed in a program execution process. However, this approach reduces the scope and ca-

pability of the execution traces to their minimum, thus making this approach unsuitable for

deeper analysis. A balance may be struck by preserving the sequence partially as a form of

partial-execution pattern while reporting any structural features such as a branch or a state-

ment. Thus, the length of the sequence can be manipulated in accord with needs and resource

availability.

Furthermore, let us assume an arbitrary tool is able to record branch coverage information

of a program where each branch is identified with a unique ID2. In Row One of Figure 2.2

we show examples of three traces for three different test cases. Each line reports the branch

traversed, and the consecutive lines suggest the sequence of execution. Now if we just consider

the branch coverage information, these three test cases look similar (as in Row Two, contain

same set of branches), but if we slightly change the feature-collection mechanism to consider

two consecutive branches as a pair, then the first two look similar but the third one looks

different (as in Row Three). Finally, if we go a little bit further by considering a pair of

branches with a gap of one branch between them, then all three test cases look much different

(as in Row Three, contain different set of tuples). Here, the last two rows represent partial-

2In our research we develop a tool named as JQXZ where we identify each branch of a program by a unique
ID consisting of four parts: a unique file number; a line number; the position of the first character of the branch;
and a True or False direction which will be ignored for switch-case structure as there is only one direction in that
structure.
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Figure 2.2: Capturing variation of test cases through pairing, an example of structural coverage
manipulation
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execution patterns; they not only cover the static structural features such as branches but also

reveal execution patterns.

There is always a logic behind a program code. When a programmer writes a program

he intentionally puts statements or decisions (i.e. codes) in a sequence that aligns with that

logic. Therefore, sequence plays a crucial role in structuring a program. However, ignoring

the sequence while collecting and reporting traditional structural coverage information can

misrepresent both the variation and the thoroughness of the testing process. On the other

hand, collecting all possible sequences (i.e. full path coverage) is infeasible even for a small

program. There is a well-known strategy for faster performance commonly known as “Locality

of Reference” [30] which suggests that in most cases program code refers to other code near

its location. One of the applications of this approach is in the microprocessor design related

to cache usage [41] or virtual memory [29]. This approach suggests that a program code is

not simply a monolithic structure; rather, each chunk has its own concentrated meaning and

purpose. Therefore, when it may not be feasible to record all possible path coverages, partial

sequences may be used to represent the program instead. Our proposed coverage criteria allow

one to partially observe the execution pattern of software. This may reveal the variation and

thoroughness of the structural testing in a more succinct way.

2.3 Multi Point Stride Coverage(MPSC) and related defini-

tions

We propose a family of coverage criteria which is a generalization of branch coverage. If b1 and

b2 are branches, we say that a test case executes gap-g branch stride (b1, b2) if it executes b1,

and then when g branches later (interprocedurally) it executes b2. We define the gap-g branch

stride coverage of a test suite as the proportion of gap-g branch strides that are executed by at

least one test case.

We generalize this to multi-point stride coverage (MPSC) by extending the pair (b1, b2) to a
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sequence of p points (b1, b2, . . . , bp), each separated from the next by g branches (interprocedu-

rally). We refer to the sequence of p points as an MPSC tuple. In order to handle the beginning

and end of the execution sequence, we assume a sequence of begin pseudo-branches at the be-

ginning of the sequence, and end pseudo-branches at the end. For instance, if a small program

executes only the four branches b1, b2, b3, and b4 in that order, then there are six MPSC tuples

with gap 1 and 3 points executed by the program: (begin, begin, b1), (begin, b1, b2), (b1, b2, b3),

(b2, b3, b4), (b3, b4, end), and (b4, end, end).

MPSC is thus a family of coverage criteria, one for each value of gap size g and number

of points p in a tuple. If p = 1, then MPSC is the same as branch coverage; if g = 0, then

MPSC is equivalent to branch coverage, since all the points in an MPSC tuple with g = 0

are the same. MPSC can be extended to other kinds of coverage features (e.g., statements or

conditions); the key consideration is that those features must be collected according to their

execution sequence. In this thesis, we concentrate on MPSC based on branch coverage, since

branch coverage is a moderately strong and commonly-used coverage measure.

We use covset(S , t, g, p) to mean the set of unique MPSC tuples covered by test case t for

program S when using gap g and p points. We define ncov(S , t, g, p) = |covset(S , t, g, p)|. We

extend this to test suites, i.e. sets T of test cases, by defining covset(S ,T, g, p) as the union of

all the sets covset(S , t, g, p) for all t ∈ T , and ncov(S ,T, g, p) = |covset(S ,T, g, p)|.

We use maxcov(S , g, p) to mean the maximum value that ncov(S ,T, g, p) can be for any test

suite T . The precise value of maxcov(S , g, p) cannot be determined in general, since whether a

given branch in program S can be taken is undecidable. An obvious upper bound is N p, where

N is the number of branches in the program. Static analysis (analysis of source, executable or

intermediate code) could provide a tighter upper bound, and dynamic analysis (execution of

test cases) can provide a lower bound. In this thesis, we approximate maxcov(S , g, p) by the

size of the union of all the sets covset(S , t, g, p) for all test cases t in a test pool for the program

S .

We use pcov(S , t, g, p) to mean 100 * ncov(S , t, g, p)/maxcov(S , g, p). This is the percentage
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of feasible tuples covered by the test case.

We use averagencov to mean
∑

t∈T ncov(S , t, g, p)/|T |. Here |T | suggest total number of test

cases in a suite. This is the average number of tuples per test case.

We use maxcovratio(S , g, p) to mean the ratio maxcov(S , g, p)/maxcov(S , 0, 2). We can

think of this as the memory multiplication factor needed to collect MPSC coverage at gap g

and p points, which is one of the cost factors for MPSC measurement.

A program can be instrumented for MPSC coverage more easily than for DU coverage

since the coverage points are simply decisions. The natural data structure for the coverage

data is a hash table; the optimal number of entries for the hash table can be determined from

maxcovratio.



Chapter 3

Background and Related Work

Software testing helps develop higher quality software [16] through some specific and standard

practices. In recent times, development cost has been going down due to the use of such

mechanisms as software-product-line methods while testing cost has increased [35]. Testing

effort takes 50 to 75 percent of total development cost [43], which indicates an enormous

challenge and expense. Proper testing can save significant effort, increase product quality and

reduce maintenance costs so as to ultimately increase customer satisfaction [2].

The idea of achieving software correctness [40, 67] through testing may look attractive, but

a more realistic goal is to have a reliable testing strategy [51]. Testing can effectively find bugs

but doesn’t ensure their absence [31].

As early as 1963, Miller and Maloney suggested that the origins of mistakes in software

are those portions of the program which were not tested properly [63]. The question is how

to define a portion of the program. In a low-level sense, we can say a program is a collection

of statements; on the other hand, we can consider the logical sequence behind those state-

ments that binds them and makes them cohesive, ultimately giving them the capability to do

meaningful tasks.

According to Ntafos [67], testing strategies can be classified into three different categories:

• Structural Strategy: This is also known as white-box testing [72]. One of the early

13
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models that has been used to understand the program is the flow graph, which is the

basis of structural testing [79]. In general, the goal of structural testing is to cover the

control structure of a program to some degree of thoroughness.

• Black-box Strategy: Here the program (or its component) is considered as a black box.

Inputs and correctness of the corresponding outputs are the main concern. Knowledge

related to the internal structure of a program is not essential; rather understanding of the

purpose of the software (or its component) is necessary [74]. Examples of black-box

testing include System [99], Functional [52] and Acceptance [53] testing.

• Error-driven Strategy: Based on known errors, this approach generates test cases

which can capture them; mutation testing [28, 58] is a common example of this approach.

Our proposed coverage criteria (MPSC) falls into the category of structural testing (or

white-box testing); we also use mutation as a validation method in our research. Detailed

discussion is in section 3.8.

3.1 Code Coverage Measures

As open-ended testing is too vague to be viable, a major concern of software testing is to

establish the thoroughness criterion of a test suite [40]. Structural code coverage measures,

such as branch coverage, have long been studied as a means for evaluating the thoroughness of

a test suite [65]. Tools that automatically evaluate given code coverage measures on a test suite

are now commonly used in the industry [17, 105]. They are now increasing in importance,

since they are used not only in test case construction by humans, but also in automatic test

input generation [73, 8, 22, 25], test suite minimization and prioritization [81, 89, 32], and

fault localization [59, 3].

Many coverage measures have been proposed; Zhu et al. [109] conducted a comprehen-

sive survey on this topic. According to them, coverage measures can be grouped into the two
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broad classes of controlflow-based and dataflow-based measures. The former focuses on the

flow of control from one statement to another, such as the “branch coverage” mentioned above.

Dataflow-based measures, in contrast, focus on the flow of data from “definition” (“def”) state-

ments, which assign a value to a variable, to statements where that value of the variable is used.

For instance, the statement x = y is a def for variable x. If that statement is on line 15 of a

program, and line 25 of the program is “if (x > 100)”, and it is possible for control to flow

from line 15 to line 25 without executing any other defs of x, then the statements on line 15

and 25 form a “def-use pair”, the dataflow equivalent of a branch of branch coverage. If line

15 and line 25 are in different conditional blocks, then 100% def-use coverage would require

that the def-free path be executed, while 100% branch coverage might not require this.

We say that coverage measure A subsumes coverage measure B if every test suite that

achieves A must necessarily achieve B. Frankl and Weyuker [37] proved subsumption and

similar relations among a wide variety of coverage measures, including the fact that def-use

coverage subsumes branch coverage. Ammann and Offutt extended this to many other cov-

erage measures [5]. Ball showed that Predicate-Complete Test Coverage subsumes statement,

branch, multiple condition and predicate coverage [10]. Note that for some particular cases a

test suite which satisfies less rigorous coverage may still perform better (in terms of finding

faults) than some suites which may satisfy more rigorous coverage[44]; Weyuker called them

“misleading test[s]”[98]. Overall, subsuming coverage criteria guarantee better fault detection

capability [108]. To increase effectiveness and efficiency, some researchers proposed combin-

ing multiple coverage criteria; Santelices et al. [85], showed that the cost of fault localization

using combinations of coverage is less than using any individual coverage type, as different

coverage features are good for different types of faults.

The use of coverage measures is based on the belief that a test suite that achieves higher

coverage, or a stronger coverage measure, is more effective at exposing faults in the software

under test. Some research [54] and real-world case studies [17] have borne out this belief.

However, a large number of different test coverage measures have been proposed, and research
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is needed to study which are most effective.

Achieving a higher coverage after a certain level is very difficult except for some trivial

programs due to cost overhead; to reduce the burden, some novel techniques like residual test-

ing [75] and efficient path profiling [11] were introduced. There are some trade-off algorithms

also proposed to minimize the use of resources (memory space and time) with a proportionally

smaller decrease in fault detection [96]. Tikir et al. [93] proposed that instead of using static

instrumentation, they would instead dynamically insert and remove instrumentation code, thus

reducing the overall execution time for long-running program.

3.2 Instrumentation

Generally, software doesn’t automatically produce coverage information; software needs to be

instrumented to produce coverage-related data. Instrumented software can produce aggregated

information, traces, or real-time feedback. It is worthwhile to mention that any kind of instru-

mentation imposes some form of performance and resource penalty. There are several ways to

instrument software to get the coverage information [33] that include the following:

• Source Code Instrumentation: The original source code is annotated to provide cover-

age information without compromising the code’s functional ability. One advantage of

source-code instrumentation is that it has few problems with portability across different

compilers of the same language. In our research we applied source code instrumentation;

we developed tools that can instrument source code for C, C++ and Java to report branch

coverage information. Please check Appendix A for more details.

• Binary Instrumentation: It is possible to instrument object or executable binary codes,

especially important for situations where source code is not easily accessible [21]. The

original source code or the language has little impact in this process.
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• Dynamic Instrumentation: Without instrumenting the whole source or binary code of a

program, Dynamic Instrumentation instruments a patch of code that needs to be observed

while the program is running [19]. It reduces the burden of recompiling, linking and

rerunning the whole process for large, time-consuming software.

There are two kinds of code coverage tools commonly used in the software industry: source

code instrumentation such as IBM Rational Test RealTime, LDRA Testbed, IPL AdaTest or

BullseyeCoverage and object code instrumentation such as VeroCel VeroCode or GreenHills

GCover [27]. The reason for using object code instrumentation is that after compilation there

may be some portion of object codes introduced that are not traceable from the source code. A

typical example would be an array bounds checker which may be added during the compilation

process and depends on the design of the compiler itself (that is, different versions or vendors).

It is an extra measure so that safety critical software would not miss coverage information for

introduced code.

3.3 Test coverage criteria in the software industry

Coverage measures boost confidence in a program’s correctness [94], some form of structural

testing is increasingly recommended to get a better understanding of testing thoroughness and

its reliability. This is especially important for unit testing, which is by its nature a structural

or white-box test [82]. Williams et al. [100] suggest in their study of Microsoft that a metric

like percentage-of-code coverage (class, function, block and others) is a more reliable indicator

than just mentioning the number of test cases.

There are some investigations related to test coverage effectiveness based on contemporary

large industrial software. Mockus et al. [64] did some empirical analysis in two significantly

large projects: Windows Vista, with its more than 40 million lines of code and a project at

Avaya, with one million lines of code. They concluded that with the increase of test coverage,

filed reported problems (that is, post-verification defects) decrease; but there is trade-off, as test
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effort increases exponentially with test coverage though reduction in field problems increases

linearly with test coverage.

Rajan et al. [78] reported extensive use of some form of structural coverage criteria in

avionics and other critical-system domains to measure the adequacy of test suites. They also

reported some negative aspects of Modified Condition and Decision Coverage (MC/DC) [23],

a widely used coverage criterion in those domains (in avionics MC/DC is considered as the

standard [1, 45]); in their experiment, the MC/DC metric was highly sensitive to the struc-

ture of the implementation. Beside civil avionics, coverage analysis is also explicitly required

for software in space systems (ECSS-40 standard) and nuclear systems (IEC-880) [27]. It is

worthwhile to mention that none of those standards required any kind of data flow coverage.

Jay et al. [95] report that the National Aeronautics and Space Administration (NASA) is us-

ing code coverage measures in their Mission Control Technologies (MCT) project. Matteo et

al. describe a tool named Couverture that is currently used at AdaCore and Thales Aerospace

(an avionics manufacturer which provides Air Data Inertial Reference Units (ADIRU) for the

Airbus) [27].

The emergence of Agile as a mainstream software development method [95] which encour-

ages the integration of development and testing [90] also ensures an extensive use of coverage

measures at large software companies, including IBM and Microsoft [15]. Though a steady in-

crease of structural coverage use in software industries has been reported, Smith and Williams

report that there are some skeptics in the development community [88]; Runeson also reported

the same in an earlier study [82].

3.4 Effectiveness and Coverage Measures

If coverage measure A subsumes coverage measure B, then a test suite that achieves 100% A

coverage also achieves 100% B coverage. However, achieving the stronger coverage measure

often involves more effort. If, when applied to actual programs, achieving 100% of A does not
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result in a test suite that is more effective (exposes more faults) than achieving 100% of B, then

the effort of achieving 100% of A is not worth it.

Hutchins et al. [54] showed that test suites that achieved higher coverage were more effec-

tive, and that test suites that achieved high def-use coverage were more effective than those that

achieved high branch coverage. To compare effectiveness, they hand-seeded faults into seven

subject programs (the “Siemens programs”) and measured the effectiveness of a test suite as

the percentage of faulty versions that the test suite exposed. An earlier experiment by Frankl

and Weiss [38, 36] also showed that “all-uses” (a form of DU) was significantly more effective

than “all-edges” (Branch coverage) for five of their subject programs in terms of bug detection.

These results raised the possibility that the effort of achieving measures stronger than branch

coverage could pay off.

Hutchins et al.’s research left open the question of whether the test suites that achieved

higher coverage or subsuming coverage measures were more effective because of some in-

trinsic quality of the coverage measure, or simply because the test suites they required were

bigger (contained more test cases). Siami Namin and Andrews [87] found that both size of a

test suite (number of test cases) and coverage were good predictors of effectiveness. They also

found that a linear combination of log(size) and coverage yielded a good numerical prediction

of effectiveness. They did not, however, compare coverage measures against each other.

Heimdahl et [47, 46] found that randomly generated test suites surprisingly perform better

than those suites which were guided to achieve some structural certain kind coverage crite-

rion(like decision coverage). They also found that in test suite reduction process test suite

with similar level of coverage but less number of test cases drastically affects the fault finding

capability.
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3.5 Implementation of Def-Use Coverage

Hutchins et al.’s research suggests that def-use coverage is useful. Unfortunately, the practical

implementation of def-use coverage poses several difficulties. The first is that it is apparently

non-trivial to build a tool set for correctly recording and reporting def-use coverage. We were

able to find only one working, compilable tool set that implemented def-use coverage for C, one

for Java, and none for C++. The C tool (ATAC [49]) did not manage to successfully instrument

and record coverage for two of the large C utility programs that we used as subjects. Recently

Yang et al. reported on the coverage criteria measured by a wide range of commercial tools

[105]; none of the tools surveyed implemented any form of def-use coverage. Although the

source code analysis needed for def-use coverage instrumentation does not seem to be very

complex, the above evidence suggests that its complexity is deceptive, and/or is high enough

to discourage tool vendors from implementing it.

A second difficulty associated with def-use coverage is that the needed instrumentation

slows down the system under test more than the instrumentation for controlflow-based cov-

erage. For some systems this may make testing infeasible, and/or introduce timing bugs that

do not appear in the uninstrumented system. Santelices and Harrold addressed this concern in

their study of more efficient ways of implementing def-use coverage [83], but concluded that

more work was needed to further improve the efficiency of def-use coverage.

A final difficulty concerns arrays. When the program under test contains arrays, the def-use

tool implementor must decide whether to consider the whole array as one variable, or each

array entry as a separate variable. If the whole array is considered one variable, then a def-use

pair for the variable can be measured as executed even if one entry is assigned in the def and

a different entry is used in the use. If each array entry is considered a separate variable, then

the number of def-use pairs is greatly multiplied. In our research, 20 test cases for one of the

subject programs (jtopas), when instrumented for def-use coverage, yielded bytecode files

that were too big to be executed on the JVM; cutting down the size of an array in the code

cured the problem, but resulted in tests that did not do the same thing.
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3.6 MPSC

In response to the above issues, researchers seek coverage measures that are more predictive of

test suite quality than branch coverage, but not as difficult or expensive to instrument or collect

as def-use coverage. The candidate measures that we explore in this thesis are the “Multi-Point

Stride Coverage”, or MPSC, measures defined above.

We had four main motivations for considering MPSC as a candidate coverage measure.

First, it generalizes branch coverage, as noted above.

Second, because MPSC tracks sequences of branches, it may capture some of the same

information that def-use coverage captures. Some def-use pairs connect statements in distant

branches, similar to MPSC tuples with g > 1. It is easy to show that MPSC with a given

value of g and p is not comparable to (neither subsumes nor is subsumed by) def-use coverage.

However, the more practical question is whether, when applied to actual programs, MPSC is

as predictive of high test suite quality as def-use coverage is. We address this question through

experimentation, which we report on here.

Third, MPSC is relatively easy to instrument for, in widely-used procedural languages like

C, C++ and Java. We built a simple source code transformation package, called JQXZ, that

searches for if, while, for and switch statement constructs, and instruments the associated

decisions and cases. We believe that similar simple transformations could be done on other

source languages, and on bytecode and native code.

Fourth, we believed that the instrumentation for collecting MPSC data could be made ef-

ficient, by storing the data in a hash table of appropriate size and using an appropriate hash

function. Our performance experiments, reported on in this thesis, bore out this belief.

Why did we not consider other established measures shown to subsume branch cover-

age, such as condition/decision, multi-condition, or Modified Condition/Decision Coverage

(MC/DC)? The problem here is the surprising and important results of Rajan et al. [78], who

showed that it is possible to subvert the intent of such coverage measures by restructuring pro-

grams. Rajan et al. showed that programmers can restructure a program into one which does
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the same thing, but whose 100% MC/DC coverage test suites are not as effective in exposing

bugs. The same analysis holds for all three of the coverage measures mentioned above. We be-

lieve that MPSC will not be as vulnerable to source code transformation as MC/DC and related

measures, because it is an interprocedural coverage measure defined in terms of dynamically-

executed sequences of branches rather than the static structure of decisions. Studying this belief

in more detail, however, is a subject for future work.

3.7 Antecedents to MPSC

We have not been able to find any mentions of measures equivalent to MPSC with g > 1 and

p > 1. However, we do not claim any novelty for MPSC with g = 1. Measures similar to

MPSC with g = 1 and p > 1 have appeared in the literature in the past, although curiously

there has not been much research on them in recent years, and we believe that we are the first

to investigate such measures empirically.

Pimont and Rault [77] defined a hierarchy of coverage measures equivalent to MPSC with

g = 1. Chow [24] extended their work to coverage of state machine abstractions of programs by

test cases, in particular “switch cover”, which is similar to MPSC with g = 1 and p = 2. Wood-

ward et al. [103] defined the notion of LCSAJ, or Linear Code Sequence and Jump, as a “body

of code through which the flow of control may proceed sequentially and which is terminated by

a jump”. They also defined an infinite hierarchy of coverage criteria TERi, for which TERn+2

where n ≥ 1 is coverage of distinct subpaths of length n LCSAJs. There is no discussion of

whether the criterion is meant to be inter- or intraprocedural. Over 20 years later, Woodward

and Hennell [104] showed that a coverage criterion equivalent to all (intraprocedural) LCSAJ

sequences subsumes MC/DC under certain assumptions about program structure.

“Path coverage” is usually taken to mean coverage of all possible paths through a program.

Even at the intraprocedural level, it has long been recognized that the number of such paths

can be infinite [65] which is known as the path-explosion problem [84].
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Zhu et al. [109] defined a simple path as one that does not repeat edges, while Ammann

and Offutt [5] defined a simple path as one that does not repeat nodes, except that the first

node can be the last (a refinement of Zhu et al.’s notion of “elementary path”). Simple path

coverage under either definition does not subsume MPSC, since an MPSC tuple can contain a

given branch an arbitrary number of times. However, MPSC with g = 1 and a high enough p

does subsume simple path coverage.

Finally, Ntafos [67] defined required k-tuples coverage as coverage of all possible linked

chains of k def-use pairs. In such a chain, a decision may be followed by another decision that

is not the next to be executed, as in MPSC tuples with g > 1. The required k-tuples criterion

presumably has the same implementation and efficiency problems as def-use coverage, which

is a special case of it.

3.8 Mutation for software testing

Mutation testing is an error driven testing methodology, first introduced by Lipton as early

as 1971 [58]. After four decades, mutation testing is still not very popular in the industry.

According to a survey in 2000 done by Offutt and Untch [71], three reasons hinder the industrial

adoption process: Industry assumes that mutation testing is stringent but not economically

viable; there is a lack of enthusiasm towards integrating unit testing (though it has changed

dramatically in last the decade); and there is a lack of automation to support mutation analysis

and testing. There are some techniques proposed to get some control on cost that include

Mutant Reduction and Execution Cost Reduction [58]:

• Mutant Reduction: Mutant reduction aims to reduce the number of mutants with a

minimal decrease in effectiveness. As each mutant incurs a significant cost for analysis

and execution, reduction strategies that include sampling [102], clustering [56], ordering

[57] and selective mutation [70] can help create a smaller set of mutants with equivalent

effectiveness. In our work we use a form of sampling technique to reduce the number of
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mutants.

• Execution Cost Reduction: It is possible to reduce mutant-execution cost through some

optimization process. One such approach is to use weak mutation instead of strong mu-

tation. In a strong mutation, the fate of a mutant is decided after the complete execution

and comparison of outputs; in a weak mutation, any change of execution in the mutated

block is considered as capturing the mutant. Empirical studies suggest weak mutation is

less computationally expensive than strong mutation [39, 62]. There is also some discus-

sion of using advanced computers to distribute computation load into multiple processors

[69].

Though industrial adoption of mutation testing is not yet widespread, the field has become

more mature in the last decade. A significant amount of research has been done to make it cost

effective and economically viable [58].

We used mutation analysis to compare our proposed coverage criteria (MPSC) to data flow

coverage criteria. In the following sections, we will discuss some general concepts related to

mutation. Finally, we will discuss with the aid of a flow chart how we use mutation analysis in

our research.

3.8.1 Important concepts related to mutation

A mutant of a program is generated through some induced faults applied to the original pro-

gram. The mutation generation process creates many versions of a program, each containing a

single fault [71]. Here are some important concepts related to mutation:

• Mutation Operator: This consists of rules that, applied to a program, would change

it and create mutants. Some common mutant operators include sign replacement in a

statement and changing values assigned to a variable. In Table 3.1 we show the mutation

operators [7] we used in our experiment.



3.8. Mutation for software testing 25

Table 3.1: List of Mutant Operators we used in our research

1 Replace an integer constant C by 0, 1, -1, ((C) +1), or ((C) - 1).
2 Replace an arithmetic, relational, logical, bitwise logical, increment/decrement, or

arithmetic-assignment operator by another operator from the same class.
3 Negate the decision in an if or while statement.
4 Delete a statement.

• Mutant Killing: A mutant is considered killed or captured when it produces a different

output than the original program for at least a single test case.

• Equivalent Mutant: When a mutant produces the same output as the original program

for any test, it is considered an equivalent mutant. It is an undecidable problem to prove

mutant equivalency; in general, a mutant is considered equivalent after executing all

given tests successfully without getting any output difference.

• Infeasible Mutant: There are some mutants which take too much time to execute or

produce any results. We considered them as infeasible mutants, and they were discarded

from mutant pools.

Figure 3.1 depicts a generic mutation testing approach. This approach tries to divide mu-

tants into two classes: killed mutants and equivalent mutants. After analyzing equivalent mu-

tants, the test suite can be improved to a certain degree and the process restarted.

3.8.2 Why it is acceptable

There are two hypotheses behind mutation that allow us to claim it as a viable testing strategy.

They are as follows:

• Competent Programmer Hypothesis: DeMillo et al. [28] first introduced this concept.

It assumes that programmers are competent, so they know what they are developing and

their software would be almost correct. There is still a chance of having faults in the

program but they would not be major ones and some syntactical changes would correct

those faults. A detailed theoretical discussion can be found in Budd et al. [20].
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Figure 3.1: Mutation analysis model [71]
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• Coupling effect: DeMillo also proposed coupling effects in the same paper [28]. If a

test suite is sensitive enough to detect simple errors (induced faults) then it should able

to capture the more complex errors. In a more formal way Offutt [68] describes the

hypothesis as follows : “Complex faults are coupled to simple faults in such a way that

a test data set that detects all simple faults in a program will detect a high percentage of

the complex faults”.

Empirical research has shown that mutation testing is valid for software testing. Andrews

et al. [6] suggest that mutants are similar to real-life faults but may not very similar to hard

hand seeded faults which are sometimes used in testing research.

3.8.3 How we use it

In our research, we follow Hutchins et al.’s general experimental design, using mutation [6, 7]

to generate faulty versions automatically. We then compare MPSC to def-use coverage in order

to measure how well each predicts the effectiveness of a test suite, when test suite size is taken

into account.

We used “mutgen” developed by Andrews et al. [6] to generate mutants. It was designed to

work with any C, C++ or Java program, and it was written in Prolog.

We have created a database for each subject program under test containing all possible

mutants generated by mutant operators described in Table 3.1 using mutgen. We chose mutants

randomly from the database, ensuring that a single mutant was chosen only one time. If the

mutant was killed after running the entire test suite, that mutant was accepted for the purposes

of comparison. We also recorded related test case information for comparative analysis. If a

mutant takes a much longer time to execute than the original, we discarded it as infeasible.

Then we did the same process until we had 100 mutants for each subject program.

We show our mutation analysis process in a flow graph in Figure 3.2.



28 Chapter 3. Background and RelatedWork

 

Yes No 

No 

No 

Y
es 

Y
es 

Original source code 

Generate mutants and store them in database 

Randomly choose a new mutant from the database 

Run all test cases 

Record all test cases which killed the mutant 

Mutant 

killed? 

100 Mutants? 

Start comparative analysis 

Infeasible 

Mutant? 

Figure 3.2: Comparative mutation analysis for RQ3



Chapter 4

Basic Properties of MPSC

Our first research question (RQ1 in chapter 1) deals with the basic properties of MPSC: “How

many MPSC tuples typically need to be collected for a program, and how is that number related

to other program metrics?”

Data structures for collecting MPSC data, for instance hash tables, can be made more effi-

cient if we can approximate how many entries will be needed. The upper bound for this number

is the measure defined in chapter 2, maxcov(S , g, p) for subject program S , gap g and number

of points p, since this is the size of the set of all (g, p)-tuples that can possibly be collected for

S .

Because MPSC with g = 0 or p = 1 is equivalent to branch coverage, an upper bound

for maxcov(S , 0, p) for any p can be determined statically, by simply counting the number

of branches in the program. We therefore wanted to see if there is a relationship between

maxcov(S , 0, p) and maxcov(S , g, p) for general g and p. Because maxcov(S , 0, p) is the same

for any p, and p = 2 was the smallest p for which we collected data, we use maxcov(S , 0, 2) in

this thesis.

We use maxcovratio(S , g, p) to mean the ratio maxcov(S , g, p)/maxcov(S , 0, 2). We can

think of this as the memory multiplication factor needed to collect MPSC coverage at gap g

and p points.

29
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Table 4.1: List of subject programs.

# Test
Program Type Lang. SLOC Cases

1 concordance Text processor C++ 1492 372
2 flex Lexer generator C 10459 567
3 gzip Data compression C 5680 211
4 grep String matching C 10068 809
5 sed Stream editor C 14427 370
6 printtokens Lexical Analyzer C 726 4130
7 printtokens2 Lexical Analyzer C 570 4115
8 replace Pattern matcher C 564 5542
9 schedule Data structure C 412 2650
10 schedule2 Data structure C 374 2710
11 tcas Hardware control C 173 1608
12 totinfo Information measure C 565 1051
13 jtopas Tokenizer library Java 5400 207
14 nanoxml XML parser Java 7646 216
15 xml-security Security library Java 16800 84

4.1 Subject Programs

We addressed our research questions, and in particular RQ1, by collecting data on 15 subject

programs in three languages (C, C++ and Java). We obtained the subject programs and corre-

sponding test pools from SIR, the Software-artifact Infrastructure Repository

(http://sir.unl.edu/), except concordance, which was converted to a subject program

at our university [4]. There are eleven C, three Java and one C++ programs used in our re-

search. We chose these programs as they are used in similar research and accepted as standard.

In Table 4.1 we give the subject programs’ names and relevant information collected from SIR

(detail description of those programs given in Appendix B).

We included the small Siemens programs in our research (programs 6-12) because of the

thoroughness and size of their pools of test cases. In Table 4.2, we quantify the benefits this

thoroughness and size give us. The column “Branch Cov” gives the source branch coverage

achieved by the entire test pool of each subject program. The Siemens program test pools are

the ones with the highest coverage; in addition, Rothermel et al. [81] state that the pools cover
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Table 4.2: Additional information of the subject programs. Branch Cov: branch coverage of
whole test pool. TSD: test suite diversity measure. PEPC: partial execution pattern constant.
ALR: Ratio of average ncov per test case and SLOC

Branch TSD(50) PEPC ALR(1,2) ALR(10,5)
Program Cov (%) (%) (C)

1 concordance 84.4 86.6 1.41 0.0509 0.6734
2 flex 73.3 91.2 1.26 0.0942 0.9873
3 gzip 48.3 76.3 1.46 0.0676 13.0052
4 grep 44.6 93.8 1.43 0.0455 0.9266
5 sed 34.9 86.5 1.13 0.0462 0.2039
6 printtokens 91.5 98.8 1.46 0.0879 0.5023
7 printtokens2 95.8 98.8 1.07 0.1732 0.7321
8 replace 97.6 99.1 1.85 0.1219 0.4533
9 schedule 94.6 98.1 2.34 0.1414 0.9433

10 schedule2 91.8 98.2 2.04 0.2106 2.1069
11 tcas 86.7 96.9 0.53 0.0384 0.1574
12 totinfo 87.5 95.2 1.50 0.1002 0.5676
13 jtopas 71.3 75.8 1.21 0.0376 0.3907
14 nanoxml 69.1 76.9 0.98 0.0302 0.1592
15 xml-security 36.8 40.5 1.16 0.0179 0.1627

every feasible branch at least 30 times.

Larger test pools allow experimenters to select experimental test suites that differ more

from each other (are more diverse). Larger test suite diversity allows us to take a more repre-

sentative sample from the space of possible test suites for the program. To quantify this test

suite diversity, we define TSD(x) as the expected fraction of the test cases of one randomly-

chosen test suite of size x that would not appear in another randomly-chosen test suite of size

x. (This is equivalent to 1 − (x/n), where n is the size of the test pool.) In Table 4.2 we give

the value of TSD(50) for each program, since the largest random test suites that we generated

were of size 50. Again the Siemens programs show the highest values of test suite diversity. 1

Despite the lower coverage and/or lower test suite diversity of the other subject programs,

we retained them in our set of subject programs because they are larger and represent realistic

situations in which the available test suites achieve lower than maximal feasible coverage.

1Next column PEPC will be discussed in Section 4.3.2
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Another factor that may affect the effectiveness of a test suite is the average coverage of the

test cases in the test pool. We calculated the average ncov for test cases for each program and

for for g = 1, p = 2 and g = 10, p = 5. Different sizes of programs will have test cases with

different average ncov, so we scale the average ncov by dividing it by the numbers of source

lines of code (SLOC) in the program. We call the result ALR for “Average ncov/ Lines of code

Ratio”; it is shown in the last two columns of table 4.2. There is no noticeable pattern to the

values of ALR, indicating that this unlikely to affect our results.

4.2 Procedure

We performed the entire experiment in the UNIX environment. We instrumented the programs

using our instrumentation tool (JQXZ) so that they recorded to a disk file the full sequence of

branches followed. In Figure 4.1, we show the process of using JQXZ to collect traces. Key

steps are as follows:

• Instrumentation: A non-instrumented version of the subject program was modified by

JQXZ to make it ready to provide branch traversal information in the execution phase.

It modified branch statements only, by inserting a function call and adding related refer-

ences at the beginning of the source file (for example, import JQXZ class in Java). We

also had to modify test-drivers for two of our Java programs jtopas and xml-security

to ensure that individual test cases produce separate trace files.

• Test script generation: SIR provided a standard test database for each of the subject

programs. To get the test script from the database we used a tool named MTS (“Make

Test Script”), also available from SIR.

• Trace Collection: After compilation of the instrumented source code, the software was

ready to generate branch execution traces. We ran the test script and collected trace files

for each of the test cases.
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Figure 4.1: Procedure to collect MPSC using JQXZ
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• MPSC Collection: We then processed the individual trace files to extract all the MPSC

tuples executed by each test case, for g = 0 to 10 and for p = 2 to 5. We chose this

range of values based on what we expected would be feasible to record. We computed

the value of maxcov(S , g, p) for each subject program S and each value of g and p.

We then illustrated the results using graphs and investigated the relationships between g, p,

and maxcov using linear regression. We will describe in detail the presentation and analysis of

MPSC in the next sections.

4.3 Results and Analysis

We observed the behavior of MPSC using some representational graphs which revealed some

intrinsic relationship between independent variables g, p and dependent variables such as

maxcov. Encouraged by our preliminary observations, we applied regression to get a linear

model which can characterize MPSC and help to get the upper bound of the number of MPSC

tuples. In the following sections we will describe our analysis.

4.3.1 Early Observations

First we try to understand the nature of MPSC for individual test cases. In Figure 4.2 and 4.3

we show the ncov of individual test cases in a box-and-whisker plot. There is no distinguish-

able pattern for different g and p across different subject programs or languages. There are

many outliers, and the median slowly increases with the increment of g and p. These develop-

ments were expected; as individual test cases are very different from each other, so too is their

coverage information. Generally we can see a clearer pattern if we consider the data in a more

accumulative form such as the total coverage information of a test suite, in our case maxcov.

Figure 4.4 and 4.6 show the relationship between g, p, and maxcov, for the subject programs

replace(C), concordance(C++) and nanoxml(Java). As expected, maxcov increases with

increasing g and p. For other programs irrespective of the languages, the lines are straighter
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Figure 4.2: Box and Whisker plot (g vs ncov) for individual test cases, 2 Points MPSC, subject
program grep

Note: The thick horizontal line inside the box indicates the median of all the points in the
column. 25% of the points are below the bottom of the box and 25% of the points are above
the top of the box. The distance between top and bottom of the box is called the interquartile
distance. The small circles are outliers. Outliers are points that are more than 1.5 times the
interquartile distance from the top or bottom of the box. The whiskers extended above and
below the box to the last non-outliers data point.
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Figure 4.3: Box and Whisker plot (g vs ncov) for individual test cases, 5 Points MPSC, subject
program grep

or concave-down rather than concave-up, but the relationships between the lines are similar.

We can observe similar kinds of patterns if we replace maxcov with averagencov, as shown in

Figure 4.7.

Patterns are different for the program tcas. For instance, maxcov increases with increasing

g and p only for points with g ≤ 5 (See Figure 4.5). It is a very small program (the smallest

program in our experiment) and contains no loop structure. There are only a small number

of unique paths possible in tcas, and each of the paths is short, producing anomalous results

when g > 5. So for tcas we omit all points with g > 5 for further analysis.

Our early observations suggested that there may be a relationship among independent vari-

ables g and p and dependent variables such as averagencov and maxcov for each of the pro-

grams. So we tried to fit lines (linear, quadratic and cubic) to the points, using the process

called regression, which finds a line that fits the points best. Some early results (see Figure

4.8 and 4.9) also suggested that it is possible to get mathematical models for different combi-

nations of g and p, but we were looking for a generic model that combines all g and p. For

further observation we needed to stabilize the data [55], so we applied log on g, p and maxcov
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Figure 4.8: Regression maxcov vs g where p = 4, for subject program grep

and then combined the two independent variables g, p through multiplication. Because g can

be 0, so we added 1 to g before taking the log. In Figure 4.10 we show the resulting data for

apache-xml-security in a scatter plot2; it is obvious from the figure that a linear model may

exist to reveal their relationship3. The results for the other programs are similar.

4.3.2 A mathematical model of MPSC

Using the statistical package R [97], we searched for linear relationships between g, p, and

maxcov. We find that the following linear model can be used to describe MPSC for a subject

program:

log(maxcovratio(S , g, p)) = C ∗ log(g + 1) ∗ log(p) (4.1)

2In all scatter plots, the straight green line shows the best linear fit, and the curved line shows the LOWESS
(locally-weighted best fit) smoothing line.

3We ignore averagencov for further analysis as its behavior is similar to maxcov: basically, averagencov is a
scaled-down version of maxcov.
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where C is a constant for the subject program S , which we call the “partial execution pattern

constant”. We find that this model works for all of our subject programs with high accuracy4.

Here we use macovratio over maxcov, as through regression analysis we found that maxcov of

g = 0 was a constant. It also suggests that there is a direct relationship between higher orders

of MPSC and basic MPSC or branch coverage.

Interestingly, each program has its own partial execution pattern constant C. The value of C

for each program is given in the last column of Table 4.2. This constant does not seem closely

related to any other program metrics.

4.3.3 Searching for a comprehensive model

We attempted to find a model for C that worked for all of our subject programs, taking into

account source lines of code (SLOC) and number of modules (NOM). In Table 4.3 we show the

result; column 2 contains different formulas and column 3 contains the corresponding adjusted

R2 value5. Before applying those formulas, we combined MPSC data from all subject programs

with the corresponding LOC and NOM values of each program; after that we applied linear

regression using each of the formulas. Table 4.3 shows that none of those formulas worked.

SLOC and number of modules did not have a statistically significant relationship to C. For

instance, the smallest programs (the Siemens programs, which also have the highest test pool

coverage) include the program with the highest value of C and the program with the lowest

value of C. So our quest for a universal C value that may work across different programs was

not fulfilled. This may indicate the complex nature of any program, where similar structural

metrics do not produce similar execution patterns.

In Figure 4.11, we show the actual value of log(maxcovratio) compared to the value pre-

dicted by the model, for all values of g and p and all subject programs, where each program’s

4The adjusted R2 value, a measure of the predictive accuracy of a linear model, is greater than 0.96 for all
programs and greater than 0.99 for most. The predicted coefficients have high statistical significance, with p <
0.001 for all programs.

5Here X ∼ A * B means we are looking for linear model of the form X =̃ C1 + C2 * A + C3 * B.
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Figure 4.11: Actual vs. Predicted values of log(maxcovratio) for all programs.
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Figure 4.12: Residual plot of Actual vs. Predicted values of log(maxcovratio) for all programs.
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Table 4.3: List of Generic Equations

Tested Formulas Adjusted R-squared
1 log(maxcovratio(S, g, p)) ∼ log (g+1) * log (p) 0.7715
2 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) * log(LOC) 0.5183
3 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) * log(NOM) 0.4166
4 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) * log(LOC) *

log(NOM)
0.2331

5 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) + log(LOC) 0.1174
6 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) + log(NOM) 0.2449
7 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) + log(LOC) *

log(NOM)
0.003763

8 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) + (log(LOC) /

log(NOM))
0.4847

9 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) / (log(LOC) *
log(NOM))

0.5205

10 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) / log(LOC) 0.8548
11 log(maxcovratio(S, g, p)) ∼ log(g) * log(p) / log(NOM) 0.5361

predicted value is based on its own partial execution pattern constant C. Figure 4.12 shows the

residual vs. fitted plot of the model: the randomness of residual values suggests the soundness

[34] of the model.

4.3.4 Practical approach to predict MPSC

There are practical uses to knowing the maximum number of probable MPSC tuples, such as

memory management in the testing process. In most cases path or sub-path count is infeasible

due to the path-explosion problem, which may produce an infinite number of paths even for a

small program. With MPSC it is possible through rigorous static analysis of the source code to

get the number of tuples for specific g and p, but the complexity and overhead discourage it.

An alternative approach would be to simplify equation 4.1 to predict the value of maxcov

as follows:

maxcov(S , g, p) � maxcov(S , 0, 2) ∗ p(C∗log(g+1)) (4.2)

Using the above equations, we can estimate the number of MPSC tuples that typically
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need to be collected for a program. As noted in chapter 2, maxcov(S , 0, 2) is equivalent to the

number of branches in the program, which can be determined by simple static analysis 6. To

estimate C, we can use the highest value of C observed so far for any program, which is 2.34.

A hypothetical MPSC tool could obtain an upper bound for maxcov(S , 0, 2) using source code

analysis and then use equation 4.1 to find an upper bound for C.

4.4 Summary

• Collecting different types of MPSC is straight-forward. We developed a simple tool

JQXZ for that, but any commercial tool that preserves the sequence during the trace-

collection process can also be used.

• MPSC showed some interesting properties, such as the size of the MPSC sets follows a

mathematical pattern.

• We found a new metric, the “partial execution pattern constant”, which is unique for each

program and seems unrelated to other traditional software metrics.

• We did not find a universal model to generalize the calculation of maxcov across all sub-

ject programs, which may suggest the uniqueness of the execution pattern of individual

programs.

• It is possible to predict the size (upper bound) of the MPSC set using its characteristic

equation, which is convenient compared to rigorous static analysis.

6Counting the number of loops and conditional statements is straight-forward.



Chapter 5

MPSC and Def-Use

Research questions RQ2 and RQ3 have to do with the relationship between MPSC and def-use

coverage. RQ2 asks whether MPSC with some value of g and p is similar to def-use, in order

to answer the direct question of whether MPSC can be used in place of def-use. RQ3 asks a

question which is more relevant to software engineers considering the use of coverage criteria:

whether MPSC is as predictive as def-use of the quality of a test suite.

5.1 Data Collection

We instrumented as many of our subject programs as possible with tools that measured def-use

coverage. We used ATAC [49, 50] to instrument the C programs; all seven of the Siemens pro-

grams and two of the large Unix utilities (flex and grep) could be instrumented successfully.

ATAC could not successfully instrument the C++ program (concordance) or the remaining

two Unix utilities (gzip and sed). We modified ATAC slightly in order to print unique identi-

fiers for each of the def-use pairs covered by the program. We obtained Santelices’ tool DUAF

[83] and instrumented our three Java subject programs with it.

We then ran each test case on each of the instrumented programs, and recorded which def-

use pairs were covered by which test cases; this supplemented the information we collected

earlier (see chapter 4) on which MPSC tuples were covered by which test cases. We were not

47
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Figure 5.1: MPSC vs. DU analysis process
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able to run 20 of the test cases for jtopas, due to the problem with arrays and DUAF noted in

section 3.5.

Using Andrews’ tool mutgen [6], we generated a full set of mutant descriptions for each

of the source programs. We then randomly selected mutant descriptions, generated the mutant

program, compiled it, and ran the full suite of test cases on the mutated program until we

obtained 100 non-equivalent mutants for each subject program 1. We recorded which test cases

killed which mutants. A detailed description of the mutant collection process was given in

section 3.8.3.

Finally, we generated 20 randomly-chosen test suites for each size of test suite from 3 to

50 test cases, for a total of 960 test cases per subject program. Using the information about

which test cases killed which mutants, we computed the effectiveness of each test suite as the

percentage of mutants killed by the test suite. We also computed the cumulative MPSC or (for

each collected g and p) and def-use coverage of each test suite based on the sets of MPSC

tuples and def-use pairs covered by each test case. In Figure 5.1 we show the analysis process

in a flow graph.

5.2 Relationship Between the Criteria

In Figure 5.2 we show a scatter plot of def-use vs MPSC for the subject program xml-security,

where gap size g = 0 and number of points p = 2 (equivalent to branch coverage)2; each point

in the plot represents one test case. Other programs showed the same strongly linear relation-

ship.

We measured the Pearson correlation of MPSC coverage and def-use coverage for all pro-

grams, finding that it was greater than 0.87 for all programs. Correlation seems to be better for

1An equivalent mutant is one which is not killed (detected) by any test case. Equivalence of mutants is
undecidable in theory and often difficult in practice. Here, we follow standard practice and approximate by
considering every mutant not killed by any test case in the test pool as equivalent.

2In all scatter plots, the straight line shows the best linear fit, and the curved line shows the LOWESS (locally-
weighted best fit) smoothing line. We use number of def-use pairs and/or MPSC tuples covered, rather than
percentages, because we are interested in relationships which do not depend on the scales of the axes.
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Figure 5.2: MPSC vs. DU for g = 0 and p = 2, subject program Xml-security.
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Figure 5.3: MPSC vs. DU for g = 10 and p = 5, subject program Xml-security.
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larger programs. We also specifically analyzed the relationship between branch and DU cov-

erage. Table 5.1 shows the result. Here, column 3 represents the correlation between Branch

and DU, Column 4 represents the values of g and p that best correlate to DU, and the values

of those correlations in column 5. This result indicates that even simple branch coverage is

very strongly correlated with def-use coverage. We discuss the implications of this in chapter

7. Higher correlation of MPSC and DU suggests that the MPSC of a subject program is a good

predictor of the DU of that subject program.

Spearman correlation (see Table 5.2) suggests that if MPSC of a test suite is less than

another suite then it is more likely that DU of that suite will also be smaller. Finally in Table

5.3 we also present Kendall correlation measure; it implies MPSC and DU are not independent

with each other.

We also analyzed the relationship between MPSC and other variations of data flow coverage

like C-use and P-Use3. In Table 5.4 we present the correlation data. It is obvious from the table

that P-use has a stronger relationship with MPSC than to C-use. In the last column we indicate

the best data flow coverage based on correlation metrics: in most programs DU is best related

to MPSC, but for some programs P-use narrowly exceeds DU.

As we increase the value of g and p, the linear relationship between MPSC and def-use

coverage deteriorates. Figure 5.3 shows a similar scatter plot to Figure 5.2, but for g = 10 and

p = 5. We note that MPSC distinguishes between test suites (assigns different coverage values)

more than def-use does at these levels.

5.3 Predicting Effectiveness

We first visualized the effectiveness of the 960 test suites that we ran for each program. Fig-

ure 5.4 shows a typical such visualization: each point is one test suite, the X axis shows the

cumulative number of MPSC tuples covered for g = 9 and p = 2, and the Y axis shows the

3Unlike ATAC, DuaF doesn’t show C-use and P-Use coverage information but only provides Def-use cover-
age. Therefore, we weren’t able to check the Pearson correlation for C-use and P-Use for Java programs.
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Table 5.1: Pearson correlation for DU vs. Branch, and DU vs. MPSC.

Branch Best MPSC
Program vs. DU (g,p) vs. DU

1 flex 0.9875 (1,2) 0.9925
2 grep 0.9949 (1,2) 0.9959
3 printtokens 0.9676 (0,2) 0.9676
4 printtokens2 0.9874 (0,2) 0.9874
5 replace 0.9810 (0,2) 0.9810
6 schedule 0.8718 (0,2) 0.8718
7 schedule2 0.9293 (0,2) 0.9293
8 tcas 0.8902 (5,5) 0.9056
9 totinfo 0.9750 (0,2) 0.9750

10 jtopas 0.9322 (1,4) 0.9464
11 nanoxml 0.9736 (1,3) 0.9877
12 xml-security 0.9888 (2,2) 0.9936

Table 5.2: Spearman correlation for DU vs. Branch, and DU vs. MPSC.

Branch Best MPSC
Program vs. DU (g,p) vs. DU

1 flex 0.9882 (1,2) 0.9914
2 grep 0.99 (1,2) 0.9924
3 printtokens 0.9546 (0,2) 0.9546
4 printtokens2 0.8837 (6,2) 0.9141
5 replace 0.9457 (2,2) 0.9516
6 schedule 0.8433 (0,2) 0.8433
7 schedule2 0.9089 (0,2) 0.9089
8 tcas 0.8182 (4,3) 0.8378
9 totinfo 0.8991 (0,2) 0.8991

10 jtopas 0.9262 (1,3) 0.9329
11 nanoxml 0.9714 (1,3) 0.9868
12 xml-security 0.9892 (1,2) 0.9924
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Table 5.3: Kendall correlation for DU vs. Branch, and DU vs. MPSC.

Branch Best MPSC
Program vs. DU (g,p) vs. DU

1 flex 0.9158 (1,2) 0.9270
2 grep 0.9194 (1,2) 0.9304
3 printtokens 0.8529 (0,2) 0.8529
4 printtokens2 0.7733 (0,2) 0.7733
5 replace 0.828 (0,2) 0.828
6 schedule 0.7511 (0,2) 0.7511
7 schedule2 0.8204 (0,2) 0.8204
8 tcas 0.7387 (5,2) 0.7478
9 totinfo 0.8519 (0,2) 0.8519

10 jtopas 0.7772 (1,3) 0.7878
11 nanoxml 0.8624 (1,3) 0.9060
12 xml-security 0.9162 (1,2) 0.9293

Table 5.4: Pearson correlation for C-use vs. Branch, and C-use vs. MPSC. DF: Data-Flow
coverages (DU, P-use, C-Use)

Branch Best MPSC Branch Best MPSC Best DF
Program vs. C-use (g,p) vs. C-use vs. P-use (g,p) vs. P-use vs. MPSC

1 flex 0.9776 (4,2) 0.9832 0.9890 (1,2) 0.9938 P-use
2 grep 0.9911 (1,2) 0.9916 0.9945 (1,2) 0.9957 DU
3 printtokens 0.8597 (0,2) 0.8597 0.9793 (3,2) 0.9817 P-use
4 printtokens2 0.9508 (0,2) 0.9508 0.9864 (0,2) 0.9864 DU
5 replace 0.9394 (0,2) 0.9394 0.9843 (0,2) 0.9843 P-use
6 schedule 0.4715 (1,3) 0.4847 0.8797 (0,2) 0.8797 P-use
7 schedule2 0.5389 (2,2) 0.5655 0.9258 (0,2) 0.9258 DU
8 tcas 0.8435 (5,2) 0.8438 0.8791 (5,5) 0.8999 DU
9 totinfo 0.8849 (0,2) 0.8849 0.9645 (0,2) 0.9645 DU
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Figure 5.4: MPSC vs. number of mutants detected for g = 9 and p = 2, subject program flex.
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Figure 5.5: DU vs. number of mutants detected, subject program flex.
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number of mutants killed. Similar graphs were also produced for DU (see Figure 5.5). In both

of the graphs, effectiveness increases with coverage, and for many of the subject programs the

relationship follows a linear pattern. So we applied a simple linear regression model as follows

-

AM = c1 + c2 · coverage (5.1)

where AM (Adequacy on Mutants), is the percentage of mutants killed by the test suite, and

coverage is the coverage of the test suite, in MPSC tuples or def-use pairs. We did this for

each value of g and p and for def-use. We measured the accuracy of the resulting models by

the adjusted R2 measure. The results are summarized in Table 5.5. Column 4 gives the setting

of g and p that resulted in the most accurate linear model for MPSC. Columns 3, 5 and 6 show

the adjusted R2 value of the models from branch coverage (g = 0, p = 2), from the best setting,

and from def-use coverage. The boldface number in each row is the adjusted R2 of the most

accurate model.

For 11 of the 15 subjects, the accuracy of all models ranked as “high” or “very high”

(> 0.70) on the standard Guilford scale [42]. For two subjects, the accuracy of all models

ranked as “low” or “moderate” (between 0.40 and 0.70) and for the last two subjects, the

accuracy of all models ranked as “moderate” or “high”.

When a test case is added to a test suite, it cannot decrease the suite’s effectiveness; on

average, it increases it by a given nonzero amount. In equation 5.1 we did not consider size of

a test suite, so the effectiveness model is not complete.

Siami Namin and Andrews [87] found that both size and coverage contributed to an ac-

curate prediction of test suite effectiveness. We therefore refine RQ3 to the following: “Does

using the size of a test suite and MPSC lead to a more accurate model of test suite effectiveness

than using the size of the test suite and def-use coverage?” This formulation of the question

accounts for the confounding factor of size in test suite effectiveness.

In Figure 5.6 we try to visualize the relationship between test suite size and number of
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Table 5.5: Accuracy of effectiveness models according to Equation 5.1. “n/a”: not available
due to ATAC limitations.

Branch Best Best DU
Program Adj R2 (g,p) Adj R2 Adj R2

1 concordance 0.8831 (1,2) 0.9005 n/a
2 flex 0.8291 (7,2) 0.9133 0.868
3 gzip 0.7977 (1,2) 0.806 n/a
4 grep 0.8726 (3,2) 0.8885 0.8834
5 sed 0.9523 (0,2) 0.9523 n/a
6 printtokens 0.9462 (0,2) 0.9462 0.845
7 printtokens2 0.8926 (0,2) 0.8926 0.9013
8 replace 0.8216 (3,2) 0.8341 0.8165
9 schedule 0.5751 (1,2) 0.6095 0.5368

10 schedule2 0.1986 (1,5) 0.4263 0.3042
11 tcas 0.6903 (3,5) 0.7532 0.7447
12 totinfo 0.7446 (0,2) 0.7446 0.7521
13 jtopas 0.6889 (1,2) 0.7036 0.6332
14 nanoxml 0.8934 (4,2) 0.913 0.888
15 xml-security 0.8827 (2,2) 0.8834 0.8867

mutants killed using a scatter plot; we also show the scatter plot for size vs. DU and MPSC

in Figures 5.7 and 5.8 respectively. No direct linear relationship seems to exist between them.

However, a complex, nonlinear relationship exists between the measures of test suite size, test

suite coverage and test suite effectiveness. The nonlinearity is clear from the fact that the points

form a curve rather than a line in those graphs. These relationships are similar to that reported

by Siami Namin and Andrews [87]. There is no obvious difference between MPSC and DU

that can be deduced by just looking at the scatter plots.

The refined RQ3 essentially factors out this coverage-neutral amount of added effective-

ness, allowing us to measure how much additional value we get out of increases in coverage.

To answer the refined question, we used R to fit models of the form 4

AM = c1 + c2 · log(size) + c3 · coverage (5.2)

4Siami Namin and Andrews [87] proposed that model.
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Figure 5.6: Test suite size vs. number of mutants detected, subject program flex.
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to our test suite data, where size is the number of test cases. Like the previous model (shown

in Equation 5.1) we did this for each value of g and p and for def-use. The results are summa-

rized in Table 5.6. We consider only cases in which both factors had a statistically significant

effect on effectiveness (p < 0.05). For all programs the second model has better adjusted R2

values when compared to the first model. For gzip and totinfo, in the branch coverage case,

log(size) did not have a statistically significant effect on effectiveness. For gzip, totinfo and

grep among all the MPSC combinations where size has a significant effect, we can not get one

that is better than the coverage-only model (that is, Equation 5.1). For totinfo size has no

significant effects in coverage & size model (that is, equation 5.2) for DU coverage.

For 7 out of the 15 subjects, the most accurate model was the one yielded by branch cover-

age; for 7 others, it was the one yielded by some other setting of MPSC, and for the remaining

1 it was the one yielded by def-use coverage. However, for 8 out of the 12 (DU instrumented)

subject programs (including the one for which def-use was the most accurate), the accuracy

of the models resulting from branch coverage, from the best setting of MPSC, and from DU

coverage were all within 0.05 of each other, indicating that there was little practical difference

among the criteria (see the Figures 5.9 and 5.10 for the subject program flex). Figure 5.11

shows the model resulting from MPSC (g = 9, p = 2), which represents the best prediction

model for subject program flex.

For 11 of the 15 subjects, the accuracy of all models ranked as “high” or “very high” (>

0.70) on the standard Guilford scale [42]. For the other four subjects, the accuracy of all models

ranked as “low” or “moderate” (between 0.40 and 0.70). In Figure 5.12 and 5.13 we show the

actual AM vs. predicted AM for schedule2 using size and MPSC or DU respectively; they

suggest that the model is good for neither DU nor MPSC. This indicates that for some subjects,

there were confounding factors other than test suite size and coverage that affected test suite

effectiveness.

It is also interesting to observe the patterns of prediction; they look very similar for both

DU and MPSC in Figure 5.12 and 5.13 respectively even when the model does not fit well for
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Figure 5.9: Actual AM vs. predicted AM using MPSC and size for g = 0 and p = 2 (that is,
branch coverage), subject program flex.
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Figure 5.10: Actual AM vs. predicted AM using DU and size, subject program flex.
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Figure 5.11: Actual AM vs. predicted AM using MPSC and size for g = 9 and p = 2, subject
program flex.
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Figure 5.12: Actual AM vs. predicted AM using MPSC and size for g = 1 and p = 5 , subject
program schedule2.
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Figure 5.13: Actual AM vs. predicted AM using DU and size, subject program schedule2.
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Table 5.6: Accuracy of effectiveness model according to Equation 5.2. “n/s”: not statistically
significant. “n/a”: not available due to ATAC limitations.

Branch Best Best DU
Program Adj R2 (g,p) Adj R2 Adj R2

1 concordance 0.9135 (0,2) 0.9135 n/a
2 flex 0.8306 (9,2) 0.9246 0.8687
3 gzip n/s (4,3) 0.6836 n/a
4 grep 0.8759 (3,2) 0.8890 0.8853
5 sed 0.9525 (0,2) 0.9525 n/a
6 printtokens 0.9491 (0,2) 0.9491 0.8768
7 printtokens2 0.9041 (0,2) 0.9041 0.9042
8 replace 0.8649 (0,2) 0.8649 0.8641
9 schedule 0.6095 (0,2) 0.6095 0.5750

10 schedule2 0.3208 (1,5) 0.4400 0.3600
11 tcas 0.8557 (5,5) 0.8678 0.8314
12 totinfo n/s (1,2) 0.6971 n/s
13 jtopas 0.7568 (0,2) 0.7568 0.7515
14 nanoxml 0.9014 (1,5) 0.9066 0.888
15 xml-security 0.888 (0,2) 0.888 0.8869

both of them. This also supports our observation that DU and MPSC are highly correlated.

5.4 Summary

• A high degree of correlation exists between MPSC and data flow coverage.

• Compared to C-use, P-use is highly correlated with MPSC. In our experiment, some

cases showed a slightly higher correlation with MPSC than DU.

• The linear relationship between def-use and MPSC is stronger for lower g and p values

and weaker for higher values.

• MPSC and DU showed a similar trend in mutation score which suggests they are similar

in terms of predicting the fault-detection capability of a test suite.

• Surprisingly, simple branch coverage is as good as DU or higher-order MPSC in predict-

ing the effectiveness of a test suite for most programs.



Chapter 6

Implementation and Performance

The JQXZ utility instruments source code to make calls to a library which collects coverage in-

formation. The implementations of the library used for the experiments above simply recorded

each branch executed in a file. We also developed two other prototype implementations for

Java, a hash set implementation and a bitset implementation, which were intended to be closer

to implementations that could be used in production environments.

In this section, we describe these implementations and give the results of performance ex-

periments we ran to measure the overhead of MPSC collection and compare it to the overhead

of def-use coverage.

6.1 Prototype Implementations

Both prototype implementations of the Java library depended on a hash function for MPSC tu-

ples. We implemented several hash functions, but we found in exploratory performance experi-

ments that the best used a simple algorithm of the same form as that of the java.lang.String

hash function.

The implementations maintain a circular buffer representing the last g(p − 1) + 1 branches

executed. The branches are identified by source file, line and character number, and (for deci-

sions) whether true or false. Each branch causes an element to be added to the circular buffer

69
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and the newly completed MPSC tuple to be recorded as covered.

The hash set implementation stores each covered tuple in a hash set. The initial size of

the hash set can be computed based on the maximum expected number of tuples needed, as

outlined in Section 4.3.2. The advantage of this implementation is that the exact set of tuples

is recorded. The disadvantage (compared to the bitset implementation) is that a larger amount

of storage is needed.

The bitset implementation computes the hash code h of each covered tuple, and stores it by

setting the h-th bit in a java.util.BitSet to 1. The advantage of this implementation over

the hash set is that much less storage is needed. The disadvantages are that it is impossible to

extract which tuples have been covered, and that two or more tuples may hash to the same value,

losing information about precisely how many tuples have been covered. This implementation

might still be useful, for instance for automated test input generation schemes which only have

to compute whether one test case has covered some line of code not covered earlier.

6.2 Procedure

To measure the performance of our implementations and compare it to that of def-use, we chose

our three Java subject programs and added two programs used by Santelices and Harrold [83],

tcas (a Java translation of the Siemens program) and scimark2 (a JVM performance bench-

mark). We ran the test suite for each program on the uninstrumented program, the program

instrumented for def-use coverage by the state-of-the-art tool DUAF developed by Santelices

[83], and the program instrumented for MPSC by our tool. We were not able to successfully

instrument scimark2 for DU coverage with the current version of DUAF.

In Figure 6.1 we show the performance-analysis process. Our two main concerns were - a

performance comparison between MPSC and DU and the investigation of information loss due

to the bitset implementation.

For our tool, we ran the program for every setting of g from 0 to 10 and p from 2 to
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     Un-instrumented source code 

Instrument program for 

MPSC using JQXZ 

Compile uninstrumented 

program and run the entire 

test suite for 10 times  

Instrument program for DU 

using DuaF 

Compile instrumented 

program  

Set Hash-table as default 

data structure and run the 

entire test suite for 10 times 

for each of the MPSC(g= 0 to 

10 and p=2 to 5)  

 

Set Bit-Set as default data 

structure and run the entire 

test suite for 10 times for 

each of the MPSC(g= 0 to 10 

and p=2 to 5)  

 

Compile instrumented 

program and run the entire 

test suite for 10 times  

Analyze Information missing 

due to Bit-set 

implementation  

Analyze performance of 

MPSC(Hash table),  MPSC(Bit-

set) with DU and Non-

instrumented version  

Figure 6.1: Flow graph to show the performance-analysis process.
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Table 6.1: Performance data. Uninst: uninstrumented

Uninst DU overhead (%) MPSC overhead (%)
Subject (CPU sec) SH HA Hashset Bitset
jtopas 0.3117 – 2078 460.2 594.1
nanoxml 0.1862 – 71.60 97.90 70.15
xml-sec 4.487 – 86.90 36.69 31.37
tcas 0.1724 17.91 11.91 5.524 5.376

scimark2 29.31 160.4 – 0.4389 -2.703

5 for both hashtable and bitset implementation. We ran each program 10 times, except for

scimark2, which we ran 100 times because it uses a random number generator to gener-

ate some of its test data. We also followed the same approach for the DU instrumented and

non-instrumented versions. For the purposes of comparison, we used a coverage-reporting

mechanism that was stylistically similar to that used by DuaF 1.

We measured CPU time by the “user” time reported by the Unix time facility in bash. We

then calculated the average time to run one test case or (for scimark2) the average time to run

the program as a whole. We averaged the results for all values of g and p to get a summary

value for MPSC.

For information loss we collected reported tuples for both hashtable and bitset for the entire

test suite and compared them. We will analyze the details in the following sections.

6.3 Performance

Any kind of instrumentation of a source code adds overhead to the original software: in gen-

eral, processing time increases. Performance comparison shows the relative processing time

increase due to instrumentation. In the previous section, we discussed the procedure of our

performance experimentation for DU vs. MPSC. Table 6.1 shows the results of our experimen-

1After a successful run, DuaF reported all covered DU pairs on the standard output, a faster method than
directly storing them to a disk file.



6.3. Performance 73

tation.

Results are reported for the uninstrumented program in CPU seconds, and for the other

columns in percentage overhead (extra time needed) for the instrumentation. The experiments

were run on a Sun UltraSPARC-IIIi with a 1.593GHz processor and 4GB of memory. For

def-use coverage, we give the overhead reported in [83] where it is available (column SH), and

also the overhead we calculated (column HA), since CPUs and JVMs can vary.

Table 6.1 shows that the overhead for our prototype bitset implementation was always less

than that of DuaF, and that the overhead for our prototype hash set implementation was less

than that of DUAF for every program except nanoxml. The overhead for DUAF was greater

than both the average overhead for MPSC across all g and p, and the average overhead for any

individual g and p, except in the case of nanoxml using the hash set implementation.

In the case of scimark2, paradoxically, not only did the MPSC instrumentation have very

little effect, but on average the software instrumented with the bitset implementation took less

time than the uninstrumented version. We attribute this to random noise resulting from the

choice of random seeds by different runs, and possibly to operating system effects due to

amount of memory allocated for a process.

The average run time for each subject program varied with different values of g and p,

but there is no clear pattern across different subjects (see the Figure 6.2 and 6.3). In Jtopas

(Figure 6.2) some kind of pattern may exist, such as an average run-time increase with higher

p, but this is not true for xml-sec (Figure 6.3) or other subject programs. This was probably

due to different rates of hash collisions for different MPSC.

Figures 6.4 shows sample run-time data for DU, MPSC, and non-instrumented versions

of the subject program Jtopas. The test cases are arranged from left to right in ascending

orders of DU coverage. Showing the data in ascending order highlights the difference between

short-run test cases vs. long-run test cases. The graph shows that while neither DU nor MPSC

incur much overhead for short-run test cases, DU performs substantially worse than MPSC in

long-run test cases.
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Figure 6.2: Average running time for instrumented (Def-use and MPSC) and non-instrumented
version, subject program Jtopas.
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Figure 6.3: Average run time for instrumented (Def-use and MPSC) and non-instrumented
version, subject program xml-sec.
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Figure 6.4: A sample run time for Def-Use (DU,) MPSC(g5,p3) and non-instrumented versions
of all test cases in order, subject program Jtopas.



6.4. Accuracy of Bitset Implementation 77

Table 6.2: Percentage of Missing information.

Subject Missing
Program information(%)
jtopas 0.0321
nanoxml 0.067
xml-sec 0.0368
tcas 0.0754

scimark2 0.0558

6.4 Accuracy of Bitset Implementation

As mentioned above, the bitset implementation may lose information about how many tuples

have been covered, due to hash collisions. We therefore studied the question of how much

information was lost.

For each subject program, each setting of g and p, and each test case, we collected the

number of MPSC tuples reported as covered by the hash set and the bitset implementation. For

each subject program, we then calculated the percentage decrease in number of tuples reported

as covered, as an average across all test cases and all settings of g and p.

We found that the average loss of accuracy ranged from 0.0321% to 0.0754% for all pro-

grams (see Table 6.2), or less than 1 out of 1000 tuples lost due to hash collisions. This result

indicates that the bitset implementation could be useful in situations where high accuracy is

not needed.

In Figure 6.5 we show information loss due to bitset implementation for different MPSC

for the subject program Nanoxml. We observed no significant information loss across different

MPSC; no significant pattern seems to exist. Similar graphs that showed random information

loss resulted from other subject programs, suggesting that the rate of hash collisions is unrelated

to g or p.
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Figure 6.5: Information loss for different kinds of MPSC, subject program Nanoxml.
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6.5 Summary

• MPSC usually incurs less overhead than DU.

• Different types of MPSC incur different amounts of overhead. It seems there is no cor-

relation between incurred overhead with its corresponding g or p values.

• Overhead for longer test cases is significantly higher for DU than MPSC.

• We tested both hashtable and bitset implementation of MPSC, and the bitset implemen-

tation consistently showed greater efficiency accompanied by minor information loss.

• In bitset implementation, there is no pattern to the information loss: hash collisions are

unrelated to g or p of MPSC.



Chapter 7

Discussion

Software engineering once lacked sufficient experimentation [92]. Software is developed rather

than produced or manufactured [12], thus making experimentation in software engineering

more challenging. Tichy et al.[91] showed that half of the published works on new design

and models had no quantitative evaluation. In a different study Zelkowitz and Wallace also

concluded the same [106, 107]. Most of the prominent code coverage criteria were proposed

before the 1990’s; there was great detail on how those criteria work but little empirical experi-

mentation to show their effectiveness. In the last two decades, the amount of experimentation

on code coverage increased, but few significant coverage criteria were introduced. In our study

we not only introduce a new criterion, but also conduct several experiments to validate it.

Empirical validation methods can be quantitative or qualitative; experimentations fall into

the quantitative category [60], where some specific procedure is followed to produce numerical

data which are analyzed statistically to get deeper insight. We performed a multi-project [14]

multi-lingual experiment. Basili [13] suggests that introducing a new model should follow a

revolutionary research paradigm; a new model should be analyzed through experimentation to

understand and measure its properties to reveal how and why it might be useful in some certain

circumstances.

Software engineering researchers are often criticized for not explicitly describing their re-

80
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search paradigm [86]. Therefore, we will justify the design of our experiments in the following

sections. We will also discuss some interesting observations about branch coverage which were

a byproduct of our study.

7.1 Experiment structure

Our study had two main research goals: understanding MPSC and checking its relevance in

software testing. We have designed two experiments for this purpose (see Figure 7.1). Fur-

thermore, we have come up with four specific research questions whose answers can fulfill

our research goals. In previous chapters we discussed those research questions and related

experimental parts with result and analysis. Now in the following sections we will discuss the

structure and semantics of these two experiments.

7.1.1 Understanding MPSC

We planned an experiment to understand the characteristics of MPSC. We designed an induc-

tive experiment where we observed different properties of MPSC and created mathematical

models to describe them using empirical analysis. The research question that guided us in this

part of the study is:

• RQ1. How many MPSC tuples typically need to be collected for a program, and how is

that number related to other program metrics?

Beyond creating a clear mathematical definition of MPSC, the major challenge was to find

metrics that were precisely measurable and representative of MPSC. Individually a test case

can behave erratically, so we not only defined metrics that represent a test case, but also some

metrics that represent test suites of different sizes. In chapter 2 we describe them in detail.
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Check effectiveness by 
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tuples typically need to be collected for 
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Figure 7.1: Experiment structure
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Figure 7.2: A sample maxocv graph for larger MPSC, subject program Flex

We have developed some tools to collect those metrics in a feasible way. Variation of MPSC

can be very large and infeasible to collect due to resource constraints 1, so we only collected

data for all MPSC where g <= 10 and p <= 5. Some of our early efforts with larger MPSC

suggest that observable patterns are consistent for higher g and p (see Figure 7.2). We used

statistical procedures to analyze the collected data and extract some models which can represent

MPSC for practical use. Some of those models were necessary for our second experiment.

1A test case traversing N features (i.e. branches) sequentially can create MPSC for g = 0 to N − 1 and
p = 2 to N. For some subject programs like Jtopas, N goes up to three million for some test cases.
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7.1.2 Relevance of MPSC in software testing

After understanding the characteristics of MPSC and creating some models to describe them,

we have to check its relevance in software testing. We checked it in three phases: through

observing statistical correlation, checking effectiveness, and analyzing performance. We pri-

marily use def-use for comparison as we indicate in Chapter 1 that our primary goal was to find

a suitable coverage criterion as effective as DU but less complex to implement and incurring

less overhead.

Check relevance through correlation

We mentioned in chapter 3 that MPSC is not subsumed by def-use, but both of them are col-

lected from the same program using the same test suites. So some form of relationship may

exist if we analyze them statistically. The related research question is as follows:

• RQ2. What is the relationship between MPSC and DFC criteria such as def-use?

We observed different correlations that derived from Pearson, Spearman and Kendall for

DU and MPSC on random sets. It showed a high degree of correlation exists between DU and

MPSC, especially for smaller g and p.

Fault prediction capability

Generally, when code coverage is used as a tool for bench-marking test suites, higher coverage

of a suite should allow for more comprehensive fault-detection capability. We investigated the

fault-detection capability of MPSC and compared it with DU using some empirical models.

The related research question is as follows:

• RQ3. Does MPSC lead to a more accurate assessment of test suite effectiveness than

def-use?

Our experiment using the mutant detection approach suggests MPSC is as good as DU. It

is possible to compare many different types of MPSC with an ease which is intriguing.
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Performance Analysis

Our earlier experiments were encouraging, so we wanted to analyze the performance of dif-

ferent types of MPSC for two distinct implementations. The related research question is as

follows:

• RQ4. What is the performance overhead of collecting MPSC, compared to the uninstru-

mented program and to DFC?

Experience demonstrates that high overhead can make even a very strong coverage crite-

rion impractical. DU did not attract sufficient enthusiasm from industry, possibly because of its

high overhead cost and the complexity of its implementation. We found that MPSC incurs sig-

nificantly less overhead than DU for both hash-table and bit-set implementation; for lengthier

test cases, the difference is especially large.

7.2 Threats to Validity and their Mitigation

Sound empirical experimentation requires us to consider carefully threats to validity as these

threats may influence experimental outcomes and limit our ability to interpret the results and

thus conclude the study. Construct, internal and external validity must be protected from threats

[76]. In the following sections, we will explain how we handle those threats.

7.2.1 Internal validity

We checked and visualized data and the results of statistical analyses in various ways. We

collected data for g = 0 and several values of p to confirm that they were the same, in order

to increase our confidence in our experimental procedures. The use of many randomly-chosen

test suites was intended to increase internal validity.
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7.2.2 Construct validity

Mutation adequacy of randomly constructed test suites has been shown to be a good measure

of effectiveness, but other measures are possible. For subject programs with low-coverage test

suites, we may have judged some mutants to be equivalent which were not; however, as noted

below, our results were consistent across subjects.

7.2.3 External validity

Our results do not extend to other variants of MPSC, such as intraprocedural variants, or vari-

ants based on statement, block, or condition coverage. We hope to study such variants in the

future. The subjects that we used may not be representative of real-world software. Our sub-

jects have complementary strengths and weaknesses: the small Siemens programs have large,

thorough test pools, and the programs with smaller, less thorough test pools are larger in SLOC.

We are not aware of any subject programs that are larger than the Unix utilities we used here

and also have test pools approaching the size and thoroughness of the Siemens programs. Our

results are consistent across program sizes and test pool sizes, and across three related but

distinct programming languages.

7.3 Def-use and Branch Coverage

Our most unexpected result was the high correlation of def-use coverage with branch coverage,

and the lack of benefit of def-use coverage over branch coverage for predicting test suite ef-

fectiveness. The Hutchins et al. study [54] had led us to expect that def-use would distinguish

between test suites more than branch coverage, and that def-use would be a better predictor of

test suite effectiveness.

Our results, however, show that when test suite size is taken into account, def-use coverage

performs very similarly to branch coverage. These results are consistent with those reported by

Siami Namin and Andrews [87]. Together they may indicate that the improved effectiveness of
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high def-use coverage test suites in the Hutchins et al. study is an artefact of the fact that high

def-use coverage test suites need to be bigger than high branch coverage test suites.

We should note that these results do not extend to other problems in software testing. San-

telices et al., for instance, showed that DU coverage, and combinations of DU coverage with

other forms of coverage, yielded more accurate fault localization than branch coverage [85].

More experimentation would be needed to show whether MPSC coverage can replace DU cov-

erage for fault localization.

7.4 MPSC and Branch Coverage

We found that branch coverage was often the most accurate predictor of test suite effectiveness

when combined with test suite size. However, for some subject programs, MPSC with some

value of g > 0 and p > 1 was a better predictor. We also found that our instrumentation for

MPSC was efficient even with g > 0 and p > 1.

These results taken together suggest that users seeking a coverage criterion stronger than

decision coverage can use MPSC with g = 1 and high p. Since this form of coverage subsumes

decision coverage, is usually more efficient to collect than def-use coverage, and sometimes

yields a better prediction of test suite effectiveness than def-use coverage, it may present a

better option than def-use coverage.
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Conclusions and Future Work

Previous research suggests that data flow coverage is better than common control flow cover-

age in terms of predicting faults, but less efficient as it incurs a higher overhead cost. Data

flow coverage inherently captures partial execution sequences, possibly making it more effec-

tive than control flow coverage. Along with structural elements (that is, statements, branches,

conditions and others) a body of code has a sequence which represents logical steps to per-

form a task. Popular control flow coverage measures such as statement or branch coverage do

not consider execution sequence, possibly making them less effective than data flow coverage.

However, a more versatile control flow coverage criterion such as path coverage which captures

execution sequence, is infeasible even for a small program due to its path explosion problem.

We propose control flow coverage criteria that explicitly target the execution sequence as

a part of the coverage definition but solve the explosion problem by limiting the length of the

sequence. We called it Multi Point Stride Coverage (MPSC); we can get different variations of

MPSC just by manipulating some simple parameters such as the number of execution points

and the size of the gaps between them. Our approach suggests an easier and more efficient

implementation with the lower overhead cost of control-flow-coverage criteria and the effec-

tiveness of data-flow-coverage criteria.

In this thesis, we defined and presented the results of empirical studies on MPSC. We
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compared it to def-use coverage, a well-known data flow coverage criterion. In the following

sections we will conclude our study and identify some potential future research areas where

we may introduce MPSC.

8.1 Conclusions

We conducted experiments to understand the characteristics of MPSC and to investigate its

potential for software testing. Our study suggests MPSC is a relevant and competitive coverage

criterion with a high potential. Some important results from our study include the following

points:

• MPSC is predictable: Control flow coverage such as branch or statement coverage is

precisely countable 1 , making it possible to understand and compare the thoroughness

of the test suites. We found that the maximum number of MPSC tuples that need to be

collected is highly predictable, given a constant which is characteristic of a program. The

predictably of MPSC allows for an efficient implementation and resource management

while testing.

• Coverages are statistically correlated: We found that def-use coverage is strongly cor-

related with branch coverage and often does not yield a better prediction of test suite

effectiveness than branch coverage when test suite size is taken into account. It is pos-

sible that dissimilar coverage criteria using the same program to collect defined features

may cause this statistical correlation.

• MPSC may be a better predictor of test effectiveness: We also found that MPSC with

g > 0 and p > 1 sometimes yielded a better prediction of effectiveness than branch

coverage. The potential MPSC variations are huge which gives a wider range of choice;

based on program characteristics one variation may predict more effectively than others.
1The count shows how many loops (i.e. for, while), condition structures (i.e. if, switch/case) or statements

there are in a program. The same is true to some degree for data-flow coverage such as def-use, though it is more
difficult to precisely collect, especially for dynamic memory.
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• MPSC is practical and efficient: We developed prototype implementations of MPSC

data-collection libraries that performed well compared to a state-of-the-art def-use cov-

erage tool. Our experience suggests that even traditional coverage tools which preserve

sequence while collecting features can be used to collect MPSC with relatively minor

effort.

8.2 Future work

Future work includes improving the efficiency of our prototype implementations of MPSC and

exploring variants of MPSC. We are also planning to apply MPSC in other problem domains

in software testing. In the following we will give some brief descriptions of those domains and

how MPSC can play some role:

• Fault localization: Fault localization should reveal the location of bugs in a program’s

code. Code coverage can play a vital role in locating faults. For example, Wong et

al. [101] suggested some heuristics to use coverage information. They suggest that a

portion of code thoroughly covered in a successful run has less chance of having bugs

than rarely visited parts. They use statement coverage where we can use MPSC; the

chance of having unique MPSC pairs (that is, fragments of less-visited paths) in the

event of faults is higher than with simple statements.

• Test suite prioritization: In regression testing, insufficient resources make it impossi-

ble to re-execute all test cases in every new build, a major problem given the common

practice of nightly builds among large software companies. Test case prioritization tech-

niques help in this regard by ordering the test cases to maximize the benefits [61]. Code

coverage plays a guiding role in this process and we can use MPSC for this purpose.

• Test suite augmentation: Through source code analysis it is possible to find all possible

MPSC pairs for a particular variant of MPSC. We can use that information to augment



8.2. Future work 91

test suites. Generated suites guided by MPSC have a better chance of capturing logical

variations of the code than other simple coverage measures.
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Appendix A

JQXZ: A tool to instrument MPSC

coverage

We have developed a tool called JQXZ for instrumenting source code to get MPSC cover-

age information. JQXZ has four main components: Tokenizer, Instrumentation inserter, Un-

tokenizer and JQXZ library. We give a short description of them below:

• Tokenizer: This tool tokenizes any C, C++ or Java code file. It was written in C. The

purpose is to tokenize the original source code file for easier manipulation.

• Instrumentation Inserter: It accepts a tokenized file and modifies it to add instrument

for all branch tokens (i.e. if, while, for and switch case). Basically it inserts a function

call with two parameters, a condition expression and a unique identifier for each branch.

It also inserts some header information (for example an import statement for Java) nec-

essary to use JQXZ’s library. All stabs are inserted in token form. This tool was written

in Java.

• Un-tokenizer: It converts the tokenized file to a plain code file. It was also written in C.

• JQXZ library: We support three languages: C, C++ and Java. So we wrote three

different modules each for C, C++ and Java respectively to record MPSC coverage in-
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formation. They contain definitions for those functions which were inserted in the source

code instrumentation phase. Those modules are called at execution time to report any

branch traversal.

• JQXZ Manager: We wrote some shell scripts to manage different parts of JQXZ. The

scripts search code files, categorize them based on programming language and then sub-

sequently use the above three tools accordingly to instrument them for MPSC. The man-

ager also supports the un-instrumentation process.

• MPSC Analyzer: We also wrote many small tools in UNIX shell, R, C and Java for

extracting data from traces and analyzing them.

In Figure A.1 we show the instrumentation process. The process transforms a simple

source-code file into an instrumented code file. Due to this instrumentation, after compila-

tion and build, the software gains the capability to report MPSC coverage information without

changing its operational behavior.
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Appendix B

Subject Program Biographies

Except concordance all the subject programs we used in our experiments were downloaded

from SIR (Software Infrastructure repository) 1. In their site they provide some biographical

description of those subject programs except “sed”. There is no formal description of sed,

according to summary information in SIR, it’s a “Linux patches contributed by Ben Liblit,

University of Wisconsin”.

The following is taken from SIR, except for “concordance” which is adapted from the

published paper of Siami Namin and Andrews [87]. We only remove those program names

which we did not use in our experiments.

B.1 Biographies of flex, grep, gzip

Flex, grep, gzip are all unix utilities obtained from the Gnu site. We obtained several sequential,

previously-released versions of each of these programs.

For these objects, with the exception of a few “smoke” tests, comprehensive test suites

were not available. To construct test cases representative of those that might be created in

practice for these programs, we used the documentation on the programs, and the parameters

and special effects we determined to be associated with each program, as informal specifica-

1http://sir.unl.edu/portal/

108



B.1. Biographies of flex, grep, gzip 109

tions. We used these informal specifications, together with the category partition method and

an implementation of the TSL tool, to construct a suite of test cases that exercise each param-

eter, special effect, and erroneous condition affecting program behavior. We then augmented

those test suites with additional test cases to increase code coverage (measured at the statement

level). We created these suites for the base versions of the programs; they served as regression

suites for subsequent versions.

We wished to evaluate the performance of testing techniques with respect to detection of

regression faults, that is, faults created in a program version as a result of the modifications

that produced that version. Such faults were not available with our object programs; thus, to

obtain them, we followed a procedure similar to one defined and employed in several previ-

ous studies of testing techniques, as follows. First, we recruited graduate and undergraduate

students in computer science with at least two years of C programming experience. Then, the

students thus recruited were instructed to insert faults that were as realistic as possible based

on their experience, and that involved code deleted from, inserted into, or modified between

the versions. To further direct their efforts, the fault seeders were given a list of types of faults

to consider.

Given ten potential faults seeded in each version of each program, we activated these faults

individually, and executed the test suites for the programs to determine which faults could be

revealed by which test cases. We excluded any potential faults that were not detected by any

test cases: such faults are meaningless to our measures and have no bearing on results. We

also excluded any faults that were detected by more than 25% of the test cases; our assumption

was that such easily detected faults would be detected by engineers during their unit testing of

modifications.
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B.2 Biographies of Siemens subject program

The “Siemens” programs were assembled by Tom Ostrand and colleagues at Siemens Cor-

porate Research for a study of the fault detection capabilities of control-flow and data-flow

coverage criteria [54], and were made available to us by Tom Ostrand. They have since been

partially modified by us for use in further studies.

The Siemens programs perform a variety of tasks: tcas is an aircraft collision avoidance

system, schedule2 and schedule are priority schedulers, totinfo computes statistics given input

data, printtokens and printtokens2 are lexical analyzers, and replace performs pattern matching

and substitution.

The researchers at Siemens sought to study the fault detecting effectiveness of coverage cri-

teria. Therefore, they created faulty versions of the seven base programs by manually seeding

those programs with faults, usually by modifying a single line of code in the program. Their

goal was to introduce faults that were as realistic as possible, based on their experience with

real programs. Ten people performed the fault seeding, working mostly without knowledge

of each other’s work. The result of this effort was between 7 and 41 versions of each base

program, each containing a single fault.

For each base program, the researchers at Siemens created a large test pool containing pos-

sible test cases for the program. To populate these test pools, they first created an initial suite

of black-box test cases according to good testing practices, based on the tester’s understand-

ing of the program’s functionality and knowledge of special values and boundary points that

are easily observable in the code, using the category partition method and the Siemens Test

Specification Language tool. They then augmented this suite with manually-created white-box

test cases to ensure that each executable statement, edge, and definition-use pair in the base

program or its control-flow graph was exercised by at least 30 test cases. To obtain meaningful

results with the seeded versions of the programs, the researchers retained only faults that were

neither too easy nor too hard to detect, which they defined as being detectable by at most 350

and at least 3 test cases in the test pool associated with each program.
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To obtain sample test suites for these programs, we used the test pools for the base pro-

grams and sampling procedures to create suites. We have created several types of suites, some

randomly selected, some coverage adequate. The Siemens CONTENTS files describe the types

of suites.

The Siemens files are described in the original Siemens paper [54].

B.3 Biography of jtopas

JTopas is a Java library used for parsing text data, available at http://jtopas.sourceforge.net/jtopas.

The JTopas classes and interfaces in their current state of development can be used for tokeniz-

ing and basic parsing tasks. A command line parser, a file reader, a IP protocol interpreter, a

partial HTML parser or a tokenizer for JavaCC/JTB may be realized with JTopas. This flexi-

bility is achieved by dynamically configurable classes and strict separation of different tasks.

B.4 Biography of XML-security

XML-security is a component library implementing XML signature and encryption standards,

supplied by the XML subproject of the open source Apache project. It is available at http://xml.apache.org/security.

It currently provides a mature implementation of Digital Signatures for XML, with implemen-

tation of encryption standards in progress.

We obtained several sequential, previously-released versions of XML-security, each pro-

vided with a developer supplied JUnit test suite. In each version, faults were seeded using the

fault seeding procedure described in the Java Fault Seeding Process.

B.5 Biography of nanoxml

NanoXML is a small XML parser for Java, available at http://nanoxml.sourceforge.net/orig.

NanoXML is an easy-to-use, non-GUI based, freely available system, buildable from source
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without using external libraries.

The extensible markup language, XML, is a way to mark up text in a structured document.

It is designed to improve the functionality of the web by providing more flexible and adaptable

information identification.

NanoXML is a component library, so we have also found an application, JXML2SQL,

available with NanoXML, that uses NanoXML. JXML2SQL takes as input an XML file and

either transforms it into an html file, showing the contents in tabular form, or into an SQL file.

Once we had the six versions of NanoXML, and the application that uses it, we created

tests for it using the category partition method. We created these for the externally visible

components of the NanoXML library, and also for the application. We created a first version

of this suite for the base versions, then modified the suite as needed to handle changes in

subsequent versions; this included adding some new tests.

B.6 Biography of concordance

The subject program concordance is a utility for making concordances (word indices) of

documents. The original program was written in C++ by Ralph L. Meyer, and made avail-

able under the GNU General Public Licence on various open-source websites.The source file

consists of 966 net lines of C++ code, comprising five classes and 39 function definitions.

Over the course of several years, Andrews and several classes of fourth-year students of a

testing course at the University of Western Ontario identified 13 separate faults in the program.

The source code was concatenated into one source file, and the faults were eliminated in such

a way that they could be independently re-introduced to produce 13 faulty versions.

Six students in the testing course class of 2005 donated their test suites for concordance.

These test suites were constructed according to guidelines for black-box testing (category-

partition, boundary-value, extreme-value, syntax testing) and white-box testing (all test suites

achieve maximum feasible decision/condition coverage). These test suites were put together to
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form a test pool with a total of 372 test cases.



Curriculum Vitae

Name: Mohammad Mahdi Hassan

Contact: mmmhbd76@gmail.com

Education Ph.D. (Software Engineering)
University of Western Ontario, February 2013
London, ON, Canada

M.Sc. (Computer Science)
King Fahd University of Petroleum and Minerals, April 2007
Dhahran, Saudi Arabia

B.Sc. (Computer Science and Engineering)
Khulna University, December 1999
Khulna, Bangladesh

Honours and Ontario Graduate Scholarship (OGS)
Awards: 2011-2012

Related Work Teaching Assistant
Experience: The University of Western Ontario, 2009 - 2012

Teaching Assistant
King Fahd University of Petroleum and Minerals, 2005 - 2007

Lecturer
King Fahd University of Petroleum and Minerals, 2007 - 2008

Lecturer
Asian University of Bangladesh, 2001

114


	Western University
	Scholarship@Western
	March 2013

	Multi-Point Stride Coverage: A New Genre of Test Coverage Criteria
	Mohammad Mahdi Hassan
	Recommended Citation


	Multi-Point Stride Coverage:  A New Genre of Test Coverage Criteria

