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Abstract

Cloud computing continues to gain in popularity, with more and more applications being
deployed into public and private clouds. Deploying an application in the cloud allows applica-
tion owners to provision computing resources on-demand, and scale quickly to meet demand.
An Infrastructure as a Service (IaaS) cloud provides low-level resources, in the form of virtual
machines (VMs), to clients on a pay-per-use basis. The cloud provider (owner) can reduce
costs by lowering power consumption. As a typical server can consume 50% or more of its
peak power consumption when idle, this can be accomplished by consolidating client VMs
onto as few hosts (servers) as possible. This, however, can lead to resource contention, and
degraded VM performance. As such, VM placements must be dynamically adapted to meet
changing workload demands. We refer to this process as dynamic management. Clients should
also take advantage of the cloud environment by scaling their applications up and down (adding
and removing VMs) to match current workload demands.

This thesis proposes a number of contributions to the field of dynamic cloud management.
First, we propose a method of dynamically switching between management strategies at run-
time in order to achieve more than one management goal. In order to increase the scalability
of dynamic management algorithms, we introduce a distributed version of our management
algorithm. We then consider deploying applications which consist of multiple VMs, and au-
tomatically scale their deployment to match their workload. We present an integrated man-
agement algorithm which handles both dynamic management and application scaling. When
dealing with multi-VM applications, the placement of communicating VMs within the data
centre topology should be taken into account. To address this consideration, we propose a
topology-aware version of our dynamic management algorithm. Finally, we describe a simula-
tion tool, DCSim, which we have developed to help evaluate dynamic management algorithms
and techniques.

Keywords: data centre management, virtualization, cloud management, energy manage-
ment, SLA management, application scaling.
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Chapter 1

Introduction

The rise of cloud computing has been swift, since it first started appearing almost a decade
ago. While some of its fame can be attributed to pure marketing, it represents a clear shift in
computing paradigm. An increasing number of applications are being deployed in the cloud,
whether they are migrated to it or developed for it explicitly. Cloud-based applications are a
diverse group, ranging from personal web sites, to e-commerce sites, to major online applica-
tions, such as Netflix and Dropbox. The promise of cloud computing is simple: computing
resources, on-demand, billed as a utility. Driven by economies of scale and the maturation of
virtualization technologies, the cloud is delivering on this promise.

As cloud computing is an overly broad term, it can be further sub-divided into a number
of more specific categories. The first classification is whether the cloud is public or private.
A private cloud is owned and utilized by the same organization, while a public cloud offers
its services to all. A public cloud is always multi-tenant, although a private cloud may be as
well (different company divisions, locations, etc.). In this work, we focus on a public cloud
offering, although the algorithms are applicable to any multi-tenant cloud, public or private.
Clouds can be again classified into three additional categories: Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). The SaaS model provides
software online and on-demand, either free or by subscription. Examples include Gmail [4]
and SalesForce [12]. A PaaS cloud provides a specific development platform, or stack, for
developing cloud-based applications. The PaaS cloud handles all deployment details, allowing
the developer to simply build the application and let the PaaS provider (such as Google App
Engine [5]) handle the rest. Finally, an IaaS cloud provides resources with low-level access,
allowing the client to provision complete servers and to control everything from the operating
system level above. The pioneer IaaS cloud was Amazon Web Services [1], released in 2006.
Since then, a multitude of IaaS offerings have been deployed, from Microsoft Azure [9], to
Google Compute Engine [6], to Rackspace Public Cloud [11]. In this work, we focus on

1
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managing an IaaS cloud.

Clouds consist of physical machines combined with a layer of software which provides
access to these resources to users, or clients. The physical machines, or servers, are deployed
within a data centre, which is a facility housing a very large number of servers. In addition to
servers, the data centre must also provide power, cooling, networking, and other infrastructure
requirements. An IaaS cloud is typically virtualized, providing clients with virtual machines
(VMs) rather than full, “bare metal” servers. Virtualization is a technology that allows multiple
virtual machines to run on a single server (called a host), providing the illusion that each has
control over a physical machine. The VMs on a host are managed by the hypervisor, and
each VM contains its own complete operating system. As such, clients can configure and
deploy VMs exactly to their requirements, regardless of the underlying cloud environment.
Furthermore, multiple VMs can be co-located on a single host, with each VM using a portion
of the total physical resources. This helps enable higher server resource utilization within the
data centre.

There are three primary actors in this environment: the provider, the client, and the user.
The cloud provider is the owner of the cloud infrastructure, which is rented to clients. Clients
provision VMs from the provider in order to deploy applications in the cloud, which are ac-
cessed by their users. The provider offers services to the clients, and the clients provide services
to their users.

One of the primary goals of the cloud provider is to minimize costs while continuing to pro-
vide clients with the expected level of service. Towards this goal, cloud providers should take
measures to ensure that their resources are highly utilized. A typical server (host) can consume
50% (or more) of its peak power consumption when idle [2]. As such, an underutilized server
represents a significant expense in terms of wasted power. Furthermore, by achieving high host
utilization, fewer hosts are required to handle a given workload, and more clients can be served
on the same infrastructure. Therefore, proper placement of VMs and allocation of resources is
extremely important in minimizing the costs and maximizing the revenue of an IaaS cloud.

The simplest approach to VM placement is to statically place each VM and allocate it
enough resources to meet the peak demand of the application(s) it is running. The workload
of an application can be highly variable [3], however, and can on average be as low as 30% of
peak load. This leads to a significant underutilization of resources, even with multiple VMs
co-located on a single host. Host utilization could be increased by allocating VMs only enough
resource to meet average demand, but this comes at the cost of application performance degra-
dation should demand rise above average, due to competition between VMs. If the demands
of each VM are well known, or do not vary, then a static placement could be effective. The
placement of VMs is similar to a bin-packing problem [13, 14], and as such, finding an opti-
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mal placement is NP-Hard [7]. Some work uses a linear programming approach to computing
a static VM placement [13]. In this case, however, any change in VM resource demand or
the set of VMs present in the data centre would require the placement to be recomputed from
scratch. Clearly, this is not feasible. Given the high variability of many application workloads
[8], a dynamic approach to VM management is required. For dynamic placement of VMs,
linear programming techniques are too slow to provide the necessary responsiveness and suffer
from limited scalability [10]. For large dynamic systems, first-fit heuristics for the bin packing
problem can be a more effective choice [14].

In order to contend with constantly changing VM resource demands, the VM placement
must be managed and adapted dynamically. By continuously adapting the VM placement
to meet current demands, the cloud provider can achieve high resource utilization without
sacrificing VM performance. The CPU of each cost can be oversubscribed, meaning that the
VMs co-located on a host are promised more CPU than is actually available. In the event
that VM demands begin to stress the host resources, a VM can be moved to another host with
spare capacity. This is accomplished using a VM live migration operation. Live migration
allows a running VM to be moved from one host to another (from a source to a target) without
incurring significant downtime or performance degradation. However, live migrations are not
entirely without cost (e.g. bandwidth and CPU overhead), and should be minimized as much
as possible. Dynamic VM management is a difficult challenge, as it must compute and adapt
VM placement under highly dynamic resource demands. Conflicting goals, such as power
conservation versus performance, further complicate the situation.

The cloud client has similar goals: minimize infrastructure costs while providing expected
service to their clients. This is accomplished by leveraging the on-demand nature of the cloud,
which provides a seemingly infinite pool of resources which can be provisioned at a moments
notice. Clients can use only the resources they require, when they require them. That is, appli-
cations can scale up and down to meet current demands by dynamically adding and removing
resources, in order to pay only for the resources they require to achieve their performance goals.
This can be done automatically, by monitoring the performance of the deployed application and
scaling the number of VMs performing tasks within it. We refer to this process as autoscaling.
As this ability is a key advantage to deploying applications in the cloud, cloud providers should
offer autoscaling as a service, or provide the necessary infrastructure to support it. Ideally, au-
toscaling could be integrated into dynamic VM management, in order to ensure that the goals
of both the cloud provider and client are met.

Evaluating new algorithms for dynamic management can be a challenge, due to the scale
and complexity of the infrastructure on which they are intended to run. Even if a reasonably
sized infrastructure was available for experimentation (which in itself is unlikely to be feasi-
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ble), the implementation and execution of experiments would be difficult and time consuming.
In order to facilitate both rapid development and evaluation of new algorithms for dynamic
management in the cloud, simulation is typically employed.

There remain a number of open challenges in dynamic management in the cloud. While
basic concepts and algorithms have been explored, significant complexity remains in removing
assumptions and adding in the pieces required to build a truly complete and viable solution.
In this thesis, we tackle several of these challenges, advancing the state-of-the-art in dynamic
virtualized cloud management and constructing an ever more thorough solution.

1.1 Contributions

This thesis consists of a set of contributions to several different aspects of dynamic virtualized
cloud (data centre) management. Each chapter deals with a particular sub-problem in the area,
all of which contribute towards the advancement of dynamic virtualized cloud management.
Below is a brief description of the contributions of each chapter.

Chapter 3 - Switching Data Centre Management Strategies at Run-time

A cloud provider (data centre operator/owner) may have several goals they which to achieve,
such as minimizing their power consumption and minimizing the Service Level Agreement

(SLA) violations they incur. An SLA violation occurs when a client VM does not receive
the resources it has requested. Most work focuses on achieving a single primary goal, with
other goals being either ignored or considered secondary. In addition, goals often may be in
conflict with one another. In this chapter, we present a method of pursuing multiple goals
simultaneously.

Chapter 4 - A Distributed Approach to Dynamic VM Management

Most work on dynamic management makes use of a centralized architecture. In this approach,
a single manager must maintain global knowledge of the data centre state, and perform all
management computations. Due to the scale and highly dynamic nature of the problem, a
centralized solution is unlikely to scale well enough. As such, a distributed solution may be
more appropriate. In this chapter, we present a distributed version of a dynamic management
algorithm, to address this issue.
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Chapter 5 - Integrating Cloud Application Autoscaling with Dynamic VM Management

The cloud client (application/VM owner), has its own set of goals, similar to those of the cloud
provider. The client should attempt to minimize their infrastructure costs, while providing
good service to their users. Since a cloud client pays for resource on a per-use basis, this can
be accomplished by automatically scaling an application up and down (by adding and removing
VMs) to match the current workload demand. In this chapter, we examine how running both au-
toscaling and dynamic VM management together affects performance, and propose integrating
the two into a single algorithm. The integrated algorithm is capable of leveraging some control
over autoscaling in order to assist dynamic VM management, resulting in a significant reduc-
tion in required migrations. Reducing the number of migrations performed during dynamic
management is important, as migrations incur both bandwidth and performance overheads.

Chapter 6 - Topology-aware Dynamic VM Management

When an application consisting of multiple VMs is deployed in the cloud, their location within
the network topology can have an effect on application performance. Most work treats the data
centre as a flat, structureless collection of servers. In this chapter, we introduce a topology-
aware dynamic management approach, which attempts to place application VMs near each
other (in terms of network links) to reduce both communication latency, and utilization of
higher level network elements.

Chapter 7 - DCSim: A Data Centre Simulation Tool

Algorithms for dynamic VM management in the cloud are targeted at a very large scale de-
ployment. This poses a challenge to researchers, as experimentation on a representative scale
is simply not feasible. As such, most work turns to simulation in order to evaluate new algo-
rithms and techniques. There is a lack of open-source simulation tools targeted at simulating a
multi-tenant, infrastructure as a service cloud. In this chapter, we present DCSim (Data Centre
Simulator), an extensible simulation tool designed specifically to address these requirements.

1.2 Organization

This thesis is presented in an integrated article format, meaning that each chapter presents a
single piece of work in publication format. Each source paper has been modified for consis-
tency, readability, and to avoid repetition between chapters, where appropriate. Furthermore,
the related work section of each chapter has been modified to present only relevant additional
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literature which was not presented in Chapter 1 or Chapter 2. Each chapter lists references
cited within it in its own bibliography section.

The remainder of the thesis is organized as follows: Chapter 2 presents background work
on dynamic VM management, which provides a framework and base for the subsequent work.
Chapters 3 to 7 present the main contributions of the thesis. Finally, Chapter 8 concludes.
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Chapter 2

Dynamic Virtual Machine Management

2.1 Introduction

Dynamic Virtual Machine (VM) Management is the process of placing a set of VMs into a set
of hosts, and dynamically adapting this placement as VM workloads and resource demands
change over time. These hosts are located in a data centre, which is a large collection of
interconnected physical servers (hosts), contained within a single building (e.g. a warehouse).
The data centre also provides all of the necessary additional infrastructure, such as cooling,
power and networking. As described in Chapter 1, the data centre is owned and operated by
the Cloud Provider, whose goals are to minimize costs while providing the expected service to
its clients. As idle hosts still consume a large portion of their peak power usage, it is necessary
to ensure that hosts are either highly utilized or powered off (or suspended) in order to reduce
power costs. On the other hand, VMs must be given enough resources to meet their demand.
VM performance is encapsulated in a Service Level Agreement (SLA), which in a basic form
defines some thresholds on performance metrics, such as response time. Specifically, we define
two primary objectives:

• Minimize SLA violation

• Minimize power consumption

In order to accomplish both goals, VMs must be placed into as few hosts as possible, and their
placement must be dynamically adapted as their resource demands change.

The problem of dynamic virtual machine management is similar to the bin-packing prob-
lem, with the set of VMs considered as items and hosts as bins. The goal is then to pack VMs
into hosts such that we use the fewest number of hosts possible. Greedy heuristics for the
bin-packing problem can be effective, such as first-fit decreasing [6, 14]. The first-fit decreas-
ing algorithm first sorts items in decreasing order by size, and then places them sequentially

9
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in the first available bin with enough spare capacity. There are other factors, however, which
further complicate the situation. As VM resource demands are highly variable and change over
time, the initial placement must be constantly adapted. The entire placement cannot simply
be recalculated from scratch, as VMs are now placed and running in hosts, and cannot all be
removed to perform a complete new placement. Rather, a few individual VMs must be moved
via VM live migration in order to ensure that all VMs have enough resources to meet their
demand. Live migration, however, incurs some performance and networking costs, and as such
the number of migrations performed should be minimized. We include secondary objectives
related to minimizing the impact of dynamic management:

• Minimize the number of migrations

• Minimize management bandwidth usage

• Ensure management is responsive and scalable

The goals of minimizing SLA violations and reducing power consumption are often in
conflict. Power consumption is best minimized with a tight packing of VMs into hosts, but
this comes at the cost of an increased risk of resource contention and SLA violations. On the
other hand, if additional host resources are left unused to accommodate increased demand from
VMs, more hosts are required and power consumption is increased. The order in which VMs
and hosts are considered in a bin-packing heuristic can have an effect on which migrations
are performed, and whether the heuristic algorithm favours the achievement of one goal or
another. In this chapter, we define the general problem of dynamic VM management, present a
division of the problem into three distinct operations, and examine a set of variations on a first-
fit algorithm presented by Keller et al. [9], which provide a base for the algorithms presented
in subsequent chapters.

The remainder of this section is organized as follows: Section 2.2 presents some related
work, and Section 2.3 formally introduces the problem. Section 2.4 introduces a set of man-
agement operations for dynamic VM management, Section 2.5 proposes algorithms to perform
these operations, and Section 2.6 evaluates the algorithms. Finally, we conclude in Section 2.7.

2.2 Related Work

Initial work in the literature examined computing static VM placements, often based on re-
source demand predictions, which may be periodically recomputed to adjust for changing de-
mands. Bobroff et al. [4] propose a first-fit descreasing heuristic based on the forecasted de-
mand of each VM. The placement is periodically re-computed to adapt to changing demands.
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Best-fit approaches have also been investigated [5]. Speitkamp and Bichler [11] compute a
VM placement using a linear programming based heuristic. Finally, vector bin-packing has
also proven effective, as demonstrated by Stillwell et al. [12]. Since these approaches calculate
a VM placement from scratch, they are not suitable for managing VMs with highly dynamic
demands.

Best-fit and first-fit heuristics have also been adapted to perform dynamic management.
Wood et al. [13] propose Sandpiper, which uses a first-fit heuristic to dynamically adapt VM
placement. Beloglazov and Buyya [3] propose a set of best-fit heuristic algorithms for dynamic
VM management. Khanna et al. [10] propose an optimization model to solve the problem,
as well as a heuristic solution. Their solution sorts VMs by CPU utilization and memory
consumption, and hosts by available capacity, in an attempt to minimize migration costs and
maximize host resource utilization. Such heuristics offer the benefit of quick execution and
scalability while still calculating a good placement. Other techniques have been employed as
well, such as fuzzy logic-based controllers [7].

2.3 Problem Definition

In this section, we present various aspects of the dynamic VM management problem. In its
simplest form, the problem of dynamic VM management is to place a set of VMs, V , into a
set of hosts, H, and to dynamically adapt this placement as the resource demand of each VM
changes. Hosts are located within racks, which are sets of hosts directly connected via a single
switch. Racks are connected to each other through additional layers of networking, the details
of which are not considered for the purpose of this work. We denote a rack as r ∈ R, and the
set of hosts in r as Hr ⊆ H.

We consider two characteristics of a VM (v ∈ V):

• Its CPU usage: denoted ωv(s). It also has a fixed upper limit on CPU usage, ωmax
v . The

CPU utilization of a VM is therefore ωv(s)/ωmax
v . CPU usage is quantified in terms of

CPU units, in which a single unit is equivalent to 1MHz clock speed. For example, a
2.5GHz processor core would have 2500 CPU units.

• Its memory: denoted µv. Memory size is static.

The placement (also called allocation) of a VM, is defined by the following function:

αh,v(s) =

 1 if v is placed on h

0 otherwise
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A VM can only be placed on a single host at a time. Therefore, if there exists a host h1 such
that αh1,v(s) = 1, then ∀h ∈ H \ h1, αh,v(s) = 0.

Each host, h ∈ H, has a total memory capacity Mh. The placement must be such that the
sum of the memory allocations for each VM on a host does not exceed the memory capacity of
the host.

∑
v∈V

µv ∗ αh,v(s) 6 Mh, ∀h ∈ H ∀s ∈ R+

Each host, h, has a total CPU capacity Ωh. The CPU usage of a host, Ω′h(s), is equal to
the sum of the CPU usage of all VMs placed on that host, and cannot exceed the total CPU
capacity of the host. Consequently, for s ∈ R+, we have:

Ω′h(s) =
∑
v∈V

ωV(s) ∗ αh,v(s) 6 Ωh

Note that this is not a rule that must be enforced, but rather is a physical property of the host.

For simplification, we denote the set of VMs on a host h as Vh, Consequently, we have:
v ∈ Vh ⇐⇒ αh,v = 1.

It is important to avoid overloading the CPU of a host, in order to avoid compromising the
performance of VMs placed on it. To this end, we define an upper threshold on CPU utilization,
τ (e.g. 0.9, or 90%). We calculate the amount by which each host, h, exceeds τ. We denote
this as τh(s), and calculate is as follows:

τh(s) =


Ω′h(s)
Ωh

− τ if
Ω′h(s)
Ωh

− τ > 0

0 otherwise

Then, our goal is to minimize this value for all hosts, which gives use the following objec-
tive:

∀s ∈ R+, min
∑
h∈H

τh(s)

A second goal is to reduce power consumption, which, in this work, is accomplished by
minimizing the number of active hosts. An active host contains at least one VM. The number
of VMs on a host is denoted |h|. Formally, a host is active at time s ∈ R+ if the following
function is equal to 1:

active(h, s) =

 1 if |h|(s) > 0
0 if |h|(s) = 0
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By minimizing the number of active hosts, we can ensure that hosts are not underutilized.
Since an idle server can still use 50% of its maximum power consumption [2], higher host
utilization results in better power efficiency in terms of CPU processing per watt. Therefore,
the total number of active hosts should be minimized, giving us the following objective:

∀s ∈ R+, min
∑
h∈H

active(h, s)

2.4 Management Operations

We define three primary operations that are involved in dynamic VM management, as well
as four distinct host states used to classify a host. Hosts are classified based on their CPU
utilization as follows:

• stressed hosts (denoted H!) have a high CPU utilization, and are therefore considered to
be at risk of overloading. In this case, the performance of VMs running on the host would
degrade, violating SLA. It is therefore undesirable for a host to be in the stressed state.
Stressed hosts have a CPU utilization higher than a specified upper threshold, denoted
Ω
τ
;

• partially utilized hosts (denoted H+) have a normal CPU utilization level, representing
a healthy host. This is the ideal state for a host, as it is highly utilized (and therefore
energy efficient), but not stressed. Partially utilized hosts have a CPU utilization below
Ω
τ

and above a lower threshold, denoted Ωτ;

• underutilized hosts (denoted H−), have a low CPU utilization. Since servers are at their
least power efficient under light loads, hosts in this state represent a waste of power
consumption and should be consolidated onto fewer, partially utilized hosts or shut down
entirely. Hosts in the underutilized state have a CPU utilization below Ωτ;

• empty hosts (denoted H∅) are not hosting any VMs, and may be in a lower power state
such as suspended or off to conserve power.

Our approach to dynamic VM management consists of three operations, described in the
remainder of this section.

VM Placement

The VM Placement operation is responsible for the initial placement of a new VM in the data
centre. When a client requests the instantiation of a new VM, the VM Placement operation is
invoked, a target host is selected, and the new VM is instantiated on that host.
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VM Relocation

The VM Relocation operation is responsible for relieving stress situations. A stress situation
refers to one or more hosts being in the stressed state. The VM Relocation operation is respon-
sible for alleviating the stressed hosts by selecting one or more VMs on the stressed host to
migrate away, as well as selecting target hosts on which to place the migrating VMs. The tar-
get host must have enough spare capacity to host the incoming VMs without becoming stressed
itself. Once migrations have been found to eliminate the stress situation, they are executed. The
VM Relocation operation can either be triggered on a periodic interval, or can be triggered in
response to a host becoming stressed.

VM Consolidation

The VM Consolidation operation is responsible for minimizing the number of hosts required to
contain the current set of VMs. It does so by identifying underutilized hosts, and migrating all
VMs on the host away in order to be able to shut down the underutilized host. Similar to the VM
Relocation operation, it searches for migration target hosts for each VM on an underutilized
host, and if successful, performs the migrations and shuts down (or suspends) the underutilized
host. Note that the operation may be unable to migrate all VMs on an underutilized host. In
this case, it may migrate only a subset of the VMs, in the hope that placements can be found
for the remaining VMs in subsequent invocations of the operation. The VM Consolidation
operation is usually triggered on a periodic interval, less frequently than VM Relocation.

2.5 Algorithms

We now present algorithms to perform each of the three management operations. We some-
times refer to a specific implemention of a management operation as a policy (e.g. a VM
Reloction policy). Each of the algorithms is similar, based on a first-fit heuristic. This heuristic
algorithm first sorts the VMs present on a host, then sorts the possible target hosts for migra-
tion, and finally iterates through each VM, choosing the first available target host from the list
with enough capacity to host the VM. Once this process is complete, the migrations are per-
formed. The order in which VMs and target hosts are sorted has an impact on the performance
and characteristics of the algorithm.
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2.5.1 VM Relocation

As mentioned above, a host is considered stressed when its CPU utilization exceeds the upper
threshold, Ω

τ
. The VM Relocation operation is then tasked with relieving the stress situation

through VM migration. The VM Relocation operation is triggered on a regular interval (e.g.
every 10 minutes). Algorithm 1 describes the VM Relocation algorithm. It takes as input the
set of hosts in the data centre (H), and first classifies them into stressed (H!), partially utilized

(H+), underutilized (H−), and empty (H∅) sets (line 1). We use the set of stressed hosts (H!)
as the sources for migration, as we want to move VMs off of these hosts to solve the stress
situations. This set is sorted in line 2. The remaining categories are sorted and then combined
into a single list in line 3. As mentioned previously, the sorting order has an impact on the
algorithm, and will be discussed further in Section 2.5.4. The VMs of each source host (Vh) are
sorted (line 6) and iterated through, searching for a target host (ht) for each v ∈ Vh (lines 7-13).
Once a suitable VM and target has been found, the algorithm performs the migration (line 10)
and moves on to the next source host.

Algorithm 1: VM Relocation
Data: H
H!,H+,H−,H∅ ← classify(H)1

sources← sort(H!)2

targets← combine(sort(H+), sort(H−), sort(H∅))3

for h ∈ sources do4

success← FALSE5

vmCandidates← sort(Vh)6

for v ∈ vmCandidates do7

for ht ∈ targets do8

if hasCapacity(ht, v) then9

migrate(h, v, ht)10

success← TRUE11

break12

if success then break13

2.5.2 VM Consolidation

The VM Consolidation operation is similar in operation to VM Relocation. It is responsible for
migrating VMs off of underutilized hosts, with CPU utilization below the lower threshold, Ωτ.
Algorithm 2 describes the VM Consolidation algorithm. Again, it takes as input the set of hosts
in the data centre (H). Hosts are classified (line 1), and the underutilized (H−) set is sorted used
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as the source set (line 2). The target hosts for migration come from the partially utilized (H+)
and underutilized (H−) hosts (line 3). We initialize the usedTargets and usedS ources sets to
keep track of hosts that have been used as a target or source for migration, in order to avoid
using the same host as both a source and a target for migration (lines 4-5). This is necessary
as underutilized hosts are in both the soure and target sets. Each host in the source set is then
iterated through (line 6), skipping any host that has been used as a target (line 7). All VMs in
the source host are then iterated through (line 8), searching for target hosts to which to migrate
them. If a host is found that has enough spare capacity, is not the same host as the source, and
has not been used previously as a source, then we proceed with a migration (line 10). First, we
update the usedTargets and usedS ources sets (lines 11-12), and finally perform the migration
(line 13).

Algorithm 2: VM Consolidation
Data: H
H!,H+,H−,H∅ ← classify(H)1

sources← sort(H−)2

targets← combine(sort(H+), sort(H−))3

usedTargets← ∅4

usedS ources← ∅5

for h ∈ sources do6

if h ∈ usedTargets then continue7

for v ∈ Vh do8

for ht ∈ targets do9

if hasCapacity(ht, v) ∧ ht , h ∧ ht < usedS ources then10

usedTargets← usedTargets ∪ ht11

usedS ources← usedS ources ∪ h12

migrate(h, v, ht)13

break14

2.5.3 VM Placement

The VM Placement operation is, again, similar to VM Relocation. When a client requests the
creation of a new VM in the data centre, the VM Placement operation is executed to place the
VM on a host. Algorithm 3 describes the VM Placement algorithm. It takes the set of hosts
in the data centre (H), and the new VM to be placed (v) as input. Hosts are classified (line
1), and the target list is built from the partially utilized (H+), underutilized (H−), and empty

(H∅) sets of hosts (line 2). The list of targets is iterated through (line 3), and if the potential
target host has enough capacity (line 4), then the new VM is placed on that host (line 5) and
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the algorithm terminates. Note that it is possible that no suitable target host is found, in which
case the placement fails.

Algorithm 3: VM Placement
Data: H, v
H!,H+,H−,H∅ ← classify(H)1

targets← combine(sort(H+), sort(H−), sort(H∅))2

for ht ∈ targets do3

if hasCapacity(ht, v) then4

place(v, ht)5

break6

2.5.4 Sort Ordering

The algorithms for each of the three management operations include steps to sort both the list
of target hosts, and the list of potential VMs to migrate. For example, in the VM Relocation
algorithm (Algorithm 1), potential target host sets are sorted and then combined in line 3, and
candidate VMs are sorted in line 6. Keller et al. [9] propose varying the order of both target
hosts and candidate VMs to affect the performance and characteristics of the algorithms. Three
options for target host sorting are proposed:

• Increasing: sort partially utilized (H+) and underutilized (H−) hosts in increasing order
by CPU utilization, and combine the sets as H− · H+ · H∅.

• Decreasing: sort partially utilized (H+) and underutilized (H−) hosts in decreasing order
by CPU utilization, and combine the sets as H+ · H− · H∅.

• Mixed: sort partially utilized (H+) in increasing order and underutilized (H−) hosts in
decreasing order by CPU utilization, and combine the sets as H+ · H− · H∅.

These three sorting orders represent three different approaches to host target selection. The
increasing order attempts to place the VM on the most lightly loaded host available which is not
empty (i.e. off or suspended). This approach gives the VM the best chance of having enough
resources to fulfil its current and future needs, but may result in load being spread across more
hosts than necessary. The decreasing sorting order attempts to place VMs on the target host
with the highest utilization which has enough spare capacity to fit the VM. This keeps VMs
tightly packed on fewer hosts, but comes at the risk of causing a new stress situation on the
target host in the near future. Finally, the mixed sorting order attempts to find a balance between
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Policy VM sorting Target sorting
FFDI Decreasing Increasing

FFDD Decreasing Decreasing
FFDM Decreasing Mixed

FFII Increasing Increasing
FFID Increasing Decreasing
FFIM Increasing Mixed

Table 2.1: Dynamic Management Policies

the two by starting its search at the boundary between partially utilized and underutilized, and
prefering partially utilized.

Next, the candidate VMs for migration must be sorted, in one of two ways:

• Increasing: sort VMs in increasing order by CPU utilization (prefer smaller VMs).

• Decreasing: sort VMs in decreasing order by CPU utilization (prefer largers VMs).

By combining the three sorting orders for target hosts with both sorting orders for candidate
VMs, we can construct six different policies for dynamic VM management. Table 2.1 lists all
six policies (sort orders).

2.6 Evaluation

Evaluation of the algorithms for VM Placement, VM Relocation and VM Consolidation was
conducted by Keller et al. [9] through simulation, using the DCSim open-source simulation
tool (see Chapter 7). Each of the policies defined in Section 2.5.4 were evaluated, as well as
a random policy which selected candidate VMs and target hosts at random. Individual VM

Relocation, VM Consolidation and VM Placement policies were created for each overarching
policy (i.e. FFDI, FFDD, etc.). Each policy and configuration was simulated five times, each
with a different randomized workload, and the average results were taken. The simulated data
centre contained 100 hosts, and 400 VMs. Each VM is driven by one of 5 traces: the ClarkNet,
EPA, and SDSC traces [1], and two different job types from the Google Cluster Data trace [8].
The normalized rate of incoming requests, in 100 second intervals, is calculated for each trace.
The request rates are used to define the current workload of each VM, with the CPU resource
requirements of the VM calculated as a linear function of the current rate. Each VM starts its
trace at a randomly selected offset time.
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2.6.1 Metrics

The simulations were evaluated based on the following reported metrics:

Migrations

The total number of migrations performed during the experiment. Since migrations incur both
performance and networking overhead, fewer migrations are preferred.

Active Hosts

The average number of active hosts. An active host is defined as a host in the on state, con-
taining at least one VM. Fewer active hosts typically implies reduced power consumption, and
demonstrates the ability to host a set of VMs with a smaller infrastructure.

Host Utilization

The average CPU utilization of active hosts. Higher host utilization values implies that the
management system is making better use of available resources, which should result in de-
creased power consumption. It may also, however, come at the cost of VM performance.

Power Consumption

The total power consumed during the simulation, in kWh. Lower values are preferred, as this
translates directly into energy cost savings.

SLA Violation

Generally speaking, we consider that an SLA violation occurs when a VM is not given the
resources it requires to perform its task. In this evaluation, SLA violations are recorded as
the percentage of CPU which the VM requires but does not receive due to contention with
other VMs. Note that it is impossible to obtain this value in a real-world environment. It is
assumed that a VM which does not receive the CPU time it requires suffers a degradation in
performance, and therefore is in violation of its SLA. This metric is further explained as CPU

Underprovisioned in Chapter 7.

2.6.2 Results

Table 2.2 shows the results of the experiment. We summarize the important insights gained
from the experiments below. For additional results and details, refer to Keller et al. [9].
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FFDI FFDD FFDM FFII FFID FFIM Random
Migrations 478 737 585 814 2315 826 1015

Active Hosts 88.6 84.7 86.4 82.9 78.0 84.7 93.0
Host Utilization 65.3% 67.5% 66.4% 68.8% 72.5% 67.8% 59.2%

Power Consumption 7879.6 7696.4 7781.8 7610.8 7300.6 7684.2 8397.6
SLA Violation 0.6% 0.8% 0.7% 0.7% 1.7% 0.7% 0.7%

Table 2.2: First-fit Algorithm Comparison

FFDI

The FFDI (decreasing VM sorting, increasing target host sorting) achieved the best SLA per-
formance, while consuming the most power and using the fewest migrations. This policy
attempts to take the largest VM from a stressed host and place it on the least loaded non-empty
host available. Thus, it creates a situation in which the stressed host utilization is significantly
reduced, and the migrated VM is on a machine with a large spare capacity. This reduces the
risk of subsequent stress situations, and therefore improves SLA performance and decreases
the probability that an additional migration will be required. By the same token, VMs become
spread across a larger number of partially utilized or underutilized hosts, thus increasing power
consumption.

FFID

The FFID (increasing VM sorting, decreasing target host sorting) achieved the opposite effect,
providing the best power consumption at the expense of the worst SLA performance and most
triggered migrations. This policy attempts to remove the smallest possible VM to relieve the
stress situation, and place it on the highest utilized host that still has enough spare capacity to
contain it. Thus, while it keeps hosts highly utilized and thus maintains low power consump-
tion, it increases the risk that a new stress situation will be triggered at the target host, and
may even leave the source host in danger of again becoming stressed. This inevitably triggers
additional migrations to deal with the subsequent stress situations, and incurs SLA violation.

Remaining Policies

The remaining variations all fall somewhere in between the two extremes presented by FFDI
and FFID. They do not perform the best at any particular metric, nor do they perform the worst.
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2.7 Conclusions

We have introduced the problem of Dynamic VM Management, and taken a look at some of
the challenges that it brings. Furthermore, we have presented the general approach taken to
address dynamic management throughout the remainder of the work. That is, dynamic VM
management is divided into three primary operations: VM Placement, VM Relocation, and VM

Consolidation. Variations on a first-fit heuristic, proposed by Keller et al. [9], are employed to
carry out these operations. The behaviour of these algorithms can be influenced through the use
of different sorting and concatenation orders for target hosts and candidate VMs for migration,
allowing the algorithms to be tuned towards one goal over another (i.e. SLA versus power
consumption, or vise versa). In fact, there is no single approach that satisfies both primary
goals, but rather there is a spectrum of options to select from in order to match algorithm
behaviour with business goals and priorities.

This basic structure and set of algorithms is used and built upon throughout the remaining
chapters, in order to address ever more complex situations and goals.
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Chapter 3

Switching Data Centre Management
Strategies at Run-time

3.1 Introduction

In Chapter 2, we introduced two primary goals for dynamic VM management:

• Minimize SLA violation

• Minimize power consumption

The operator of the data centre (the cloud provider), may want to conserve power to reduce
costs. This is accomplished by consolidating load onto as few hosts (physical servers) as
possible, and switching remaining hosts into a power saving state (off or suspended). At the
same time, they must provide the level of service that clients expect, in terms of resources
available to VMs. As such, either additional capacity needs to be left in reserve for VMs
when required, or VM placement needs to be dynamically adapted to meet changing resource
demands, or both. If VMs are tightly packed onto hosts to conserve power, they are likely to
contend for resources with co-located VMs and violate their SLA. On the other hand, if VMs
are less tightly packed, they will have fewer SLA violations but consume more power. As such,
the two primary goals are in conflict with one another.

We define a dynamic management strategy to consist of a set of policies, such that there is
a policy that governs each of the defined management operations (i.e. a VM Placement pol-
icy, a VM Relocation policy, and a VM Consolidation policy). The set of policies which form
a management strategy are designed in such a way as they work together as a cohesive unit,
following a common approach to dynamic management. The design of management strategies

This chapter is based on work published in [6]
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often focuses on achieving a single goal, or on prioritizing goals such that a single goal is con-
sidered the primary goal and others are considered secondary, e.g., [4, 11, 13, 14]. Designing a
management strategy to achieve multiple goals is difficult, as improving performance towards
one goal frequently results in degradation of performance towards another. Such is the case
with our primary goals of minimize SLA violation and minimize power consumption.

In order to address the problem of achieving multiple goals simultaneously, we propose
dynamic strategy switching. Dynamic strategy switching involves changing between a set of
strategies at run-time, each of which focuses on a single goal. In this case, one strategy is
designed to minimize SLA violations, and another to minimize power consumption. We hy-
pothesize that depending on the current state of the data centre, one strategy will be more
effective/necessary than the other. By recognizing these situations and switching to the appro-
priate strategy for the given situation, we aim to achieve better performance in attaining both
goals. The main contributions of this work are three novel methods of dynamically switching
between single-goal management strategies, and a method of comparing the performance of
strategies that aim to achieve more than one goal.

The remainder of this chapter is organized as follows: Section 3.2 reviews related work
in this area, Sections 3.3 and 3.4 describe the management strategies and strategy switching
approaches we explored, respectively. Section 3.5 presents experiments and evaluation, and
finally, Section 3.6 concludes and discusses future work.

3.2 Related Work

Research in dynamic management of virtualized data centres focuses on one or more of the
three primary management operations (i.e. VM Placement, VM Relocation or VM Consol-

idation). Most solutions focus on pursuing a single goal, or in the case of multiple goals,
prioritizing one over all others. Wood et al. [14] addressed the VM Relocation problem using
a first-fit decreasing heuristic, with the goal of reducing SLA violations. In the process of at-
taining this goal, it spreads VMs out across hosts, and thus sacrifices power consumption. As
described in Chapter 2, Keller et al. [10] studied variants of a first-fit heuristic to address the
VM Relocation problem, showing that the order in which VMs and hosts are considered for
migration impacts the behaviour of the algorithms. In particular, the algorithm can be tuned to
favour SLA or power related goals, but always at the expense of the other goal.

Some work addresses VM Relocation and VM Consolidation together, in most cases, fo-
cusing primarily on minimizing power consumption. Minimizing SLA violations becomes a
secondary goal. Khanna et al. [11] implemented a first-fit heuristic that migrated the least
loaded VMs (in terms of CPU and memory usage) into the highest loaded hosts. Verma et
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al. [13] relied on a first-fit decreasing heuristic which placed VMs in the most power effi-
cient servers first. Beloglazov and Buyya [3] proposed a best-fit decreasing heuristic which
selected for migration the VMs with the smallest memory footprint and placed them in the
host that provided the least increase in power consumption. Much of the existing work on dy-
namic management uses some form of first-fit heuristics, though occasionally alternatives are
proposed, such as fuzzy logic-based controllers [7].

Unlike the existing work, we focus on achieving multiple goals simultaneously. Neither
goal is considered secondary, and although they may be opposing goals (e.g. minimizing SLA
violations and minimizing power consumption), we attempt to achieve both without prioritizing
one goal over another.

3.3 Management Strategies

As mentioned in Section 3.1, minimizing SLA violations and minimizing power consumption
are commonly studied goals in data centre management. In this section, we will discuss the
design of management strategies to pursue these goals, which are representative of those found
in the literature. We design two single-goal management strategies, Power and SLA, to work
towards achieving a single goal each. Then, we present one Hybrid strategy, which makes a
best effort to achieve both goals simultaneously, still within a single strategy. The strategies
presented assume frequent monitoring. Calculations are performed on monitored values over
a sliding window of time, referred to as the monitoring window.

3.3.1 Terminology

This section presents the terms and metrics used in the description of management strategies.

SLA Violation

An SLA violation, denoted S v, occurs when resources required by a VM are not available to
it, as this situation leads to a degradation in performance. The percentage of required CPU not
available is the SLA violation, as described in Chapter 2.6.

Data Centre Utilization

The overall utilization of the data centre is calculated as the percentage of total CPU capacity
in the data centre that is currently in use.
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Power Efficiency

For a host, h, the power efficiency, ψh, is the amount of processing being performed per watt
of power. This is measured in CPU-shares-per-watt (cpu/watt). Let Ω′h be the CPU utilization
of host h, and Ψh be its power consumption. Power efficiency (ψh) of a single host is then
calculated as follows:

ψh =
Ω′h

Ψh

As an active host machine consumes a significant amount of power even when under little
or no CPU load (i.e. very low power efficiency) increased host utilization corresponds with
increased power efficiency for that host. This metric is used to calculate the power efficiency
for the entire data centre, ψdc, calculated as

ψdc =

∑
h∈H

Ω′h∑
h∈H

Ψh

Maximum Power Efficiency

This metric represents the best power efficiency a host can achieve, calculated as the power
efficiency of the host at maximum CPU utilization, and is denoted ψmax

h .

Optimal Power Efficiency

Optimal Power Efficiency, ψopt
dc , represents the best possible power efficiency achievable at the

data centre level, given the current workload and set of host machines available. The best
power efficiency would be achieved by placing VMs in such a way that each host is 100%
utilized, with the most power efficient hosts being filled first. We first calculate the total CPU-
in-use across the data centre. We order the available hosts by maximum power efficiency, and
allocate the CPU-in-use to hosts such that each host is allocated 100% of its CPU capacity. We
calculate ψopt

dc to be the power efficiency of the data centre given this allocation.

3.3.2 Power and SLA Strategies

The Power and SLA strategies are single-goal strategies, which means that all management de-
cisions are geared towards achieving a single, primary goal. Single-goal strategies may pursue
secondary goals, but always give them lower priority than the primary goal. The presented
strategies are based on the management operations and algorithms presented in Chapter 2.4.
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These strategies have several opportunities to differentiate themselves in order to pursue their
individual goals, and the choices are reflected in the individual policies of each strategy. Strate-
gies can be tailored to a specific goal through the following methods:

• Setting appropriate threshold values for classifying hosts as stressed (the upper threshold,
Ω
τ
) and underutilized (the lower threshold, Ωτ).

• Modifying the sorting order of target hosts in the three management operations.

• Setting the execution frequency of VM Relocation and VM Consolidation operations.

See Chapter 2.4 for details on host classification and management operations.
In the following sections, we describe the specific settings for the policies of each strategy,

and how they work to achieve the goal of the strategy.

Host Classification

Each strategy uses a different value for the upper threshold, Ω
τ
, which controls the point at

which a host is classified as stressed. The power strategy sets Ω
τ

= 95%, allowing hosts to be
very highly utilized before triggering a stress situation and subsequent VM migration. The SLA

strategy set Ω
τ

= 85%, which provides an extra safety margin to handle increases in VM CPU
demand. Both strategies use a lower threshold value of Ωτ = 60%, which defines the point at
which a host is classified as underutilized and is a candidate for VM Consolidation.

VM Placement

The VM Placement operation runs each time a new VM creation request is received, and selects
a host in which to place the new VM. See Algorithm 3 for the general placement algorithm. We
modify the construction of the target host list (line 2) for each strategy. The Power strategy sorts
the partially utilized (H+) and underutilized (H−) sets in decreasing order first by maximum
power efficiency (ψmax

h ), and then by CPU utilization (Ω′h). The empty (H∅) host set is sorted in
decreasing order by power efficiency. Finally, the target list is built as H+ ·H− ·H∅. This sorting
method ensures that the placement focuses on power efficiency over any other considerations.

The SLA strategy constructs its target host list differently. The partially utilized hosts are
sorted in increasing order first by CPU utilization and then by maximum power efficiency, and
the underutilized hosts are sorted in decreasing order first by CPU utilization, and then by max-
imum power efficiency. The sorting order of the empty hosts, as well as the final construction of
the target list, remains the same as in the Power strategy. This sorting method ensures that the
placement focuses on spreading load across the set of hosts, leaving spare resources to handle
spikes in resource demand, at the expense of other goals.
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VM Relocation

The VM Relocation operation responds to stressed hosts by migrating a VM to free additional
capacity and eliminate the stress situation. Both strategies execute the operation every 10
minutes. See Algorithm 1 for the general VM relocation algorithm. We modify the host clas-
sification (line 1) and target host list construction (line 3) for each strategy, and both strategies
sort stressed hosts (line 2) in decreasing order by CPU utilization (Ω′h). During host classifi-
cation, the Power strategy considers a host to be stressed if its CPU utilization has remained
above the Ω

τ
threshold over a specified monitoring window. This helps ensure that a migration

is not triggered due to a transient spike in demand, but also may result in a slow reaction to a
sustained increase. It constructs the target host list in the same manner as described for the VM

Placement operation.
The SLA strategy, on the other hand, considers a host to be stressed if its CPU utilization

exceeds the Ω
τ

threshold in the last recorded monitoring value, or on average over a specified
monitoring window. It constructs the target host list in the same manner as described for the
VM Placement operation.

VM Consolidation

The VM Consolidation operation consolidates VMs onto the fewest number of hosts possible
by migrating VMs off of underutilized hosts and switching them into a power saving mode
(i.e. off or suspended). This operation executes less frequently then VM Relocation. See
Algorithm 2 for the general VM consolidation algorithm. Both strategies construct their target
host lists (line 3) in the same manner as in their respective VM Placement and VM Relocation

policies. Furthermore, the Power strategy executes VM Consolidation relatively frequently,
on a 1 hour interval, in order to aggressively consolidate load. The SLA strategy executes
VM Consolidation only every 4 hours, thereby decreasing the risk of overloading hosts by
consolidation.

3.3.3 Hybrid Strategy

We designed a dual-goal strategy as a combination of the Power and SLA strategies; the Hy-

brid strategy consists of the VM Placement and VM Relocation policies of the SLA strategy and
the VM Consolidation policy of the Power strategy. Furthermore, the stress check performed
by the VM Relocation policy represents a compromise between the checks of SLA and Power:
it determines that a host is stressed only if its average CPU utilization over the last monitor-
ing window exceeds the Ω

τ
threshold. The thresholds Ω

τ
and Ωτ were set to 90% and 60%,

respectively, as a compromise between the values set for the Power and SLA strategies.
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3.4 Dynamic Strategy Switching

Dynamic Strategy Switching (DSS) refers to changing between strategies at run-time in re-
sponse to changing data centre state. DSS periodically performs an evaluation of data centre
metrics monitored between executions to determine if the strategy currently in use (the active

strategy) should be changed. In this section, we present three different DSS meta-strategies.

3.4.1 SP-DSS

The SLA-Power Thresholds (SP-DSS) meta-strategy uses the SLA violation (S v) and power
efficiency ratio (ψ′) metrics to evaluate whether the active strategy should be switched. The
power efficiency ratio is calculated as the ratio of optimal power efficiency (ψopt

dc ) to current
power efficiency (ψdc) over the last hour. A strategy switch is triggered when the metric related
to the goal of the active strategy (i.e., S v for the SLA strategy, ψ′ for the Power strategy) is
below a normal (i.e. acceptable) threshold (S v

norm or ψ′norm), while the metric related to the
inactive strategy exceeds a high threshold (S v

high or ψ′high). See Algorithm 4 for details. The
algorithm requires the current active strategy (strategy), as well as current values for ψ′ and
S v. Switching strategies in this manner allows the data centre to respond to a situation in
which performance in one metric has deteriorated, by activating the strategy that focuses on
optimizing it.

Algorithm 4: SP-DSS Switching Conditions
Data: strategy, ψ′, S v

if strategy = Power then1

if ψ′ < ψ′norm ∧ S v > S v
high then2

switchStrategy(SLA)3

else if strategy = S LA then4

if S v < S v
norm ∧ ψ

′ > ψ′high then5

switchStrategy(Power)6

3.4.2 Goal-DSS

We define two goals, S v = 0% and ψdc = ψ
opt
dc , to evaluate performance with respect to the S v

and ψ metrics. By calculating the distance to these goals, it is possible to determine towards
which goal the system is performing worst and thus switch to the strategy that would improve
achievement of that goal. The Distance to Goals (Goal-DSS) meta-strategy is based on this
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principle. Evaluating whether or not the active strategy should be switched requires the calcu-
lation of two metrics that represent the distance to those goals. Let S v

worst be an operator defined
parameter which indicates the worst acceptable SLA violation percentage. Then we calculate
the SLA distance, denoted S v

δ, as

S v
δ =

S v

S v
worst

Similarily, let ψworst be the worst acceptable power efficiency, and ψ∆ be an operator-defined
parameter which indicates how large of a deviation from the optimal power efficiency is ac-
ceptable. Then, we calculate ψworst as

ψworst = ψ
opt
dc ∗ ψ∆

The power distance, Ψδ, is then calculated as

Ψδ = 1 −
ψdc − ψworst

ψ
opt
dc − ψworst

Calculating the distances in this manner is necessary in order to equate values of S v with
values of ψ, based on the parameters S v

worst and ψ∆. These two values are considered equiva-
lent in terms of distance to their respective goals. At each iteration of the strategy switching
mechanism, the strategy for which the corresponding distance is greater is selected to become
active. The switching algorithm, presented in Algorithm 5, is similar to that of SP-DSS.

Algorithm 5: Goal-DSS Switching Conditions
Data: strategy, S v

δ,Ψδ

if strategy = Power then1

if S v
δ > Ψδ then2

switchStrategy(SLA)3

else if strategy = S LA then4

if Ψδ > S v
δ then5

switchStrategy(Power)6

3.4.3 Util-DSS

Through experimentation, two key situations in which one strategy had an advantage over
the other became apparent. When overall data centre utilization is growing, increasing the
stress on host machines, the SLA strategy is more effective as it places greater emphasis on
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preventing SLA violations. Conversely, when utilization is decreasing or stable, thus increasing
the likelihood of hosts becoming underutilized, the Power strategy is more effective as it can
quickly make changes to conserve power. Data centre utilization is defined as the percentage
of CPU shares in use across the entire data centre.

The Data Centre Utilization Trends (Util-DSS) meta-strategy is designed to exploit this
pattern. It uses the rate of change of overall data centre utilization, m, to determine appropriate
times to switch strategies. Measurements of the overall data centre utilization are taken at reg-
ular intervals. Linear regression over the last n data centre utilization measurements provides
the rate of change, m, over a window of time. The value mS defines a threshold for m over
which a switch is made to the SLA strategy. Similarly, the value mψ defines a threshold for
m under which the Power strategy is set to be active. The switching algorithm is presented in
Algorithm 6.

Algorithm 6: Util-DSS Switching Conditions
Data: strategy,m,mS v ,mψ

if strategy = Power then1

if m > mS then2

switchStrategy(SLA)3

else if strategy = S LA then4

if m < mψ then5

switchStrategy(Power)6

3.5 Experiments

This section presents our experimental approach and results.

3.5.1 Strategy Evaluation and Comparison

In order to evaluate the effectiveness of the strategies, two metrics are used: power efficiency
(ψ) and SLA violation (S v). Comparing strategies based only on the use of these two metrics is
problematic. If one strategy were to perform well with respect to SLA violations at the expense
of power, and another performed well with respect to power at the expense of SLA violations,
it is difficult to conclude which strategy is preferable. The decision depends in part upon the
relative change in each area as well as the importance placed on each metric by the data centre
operators based on their business objectives, the relative costs of power and SLA violations
and the potential for lost revenue due to poor application behaviour.
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In order to determine whether DSS can offer improved results over a single strategy, we
propose a method of evaluating the performance of a strategy based on experimental results.
We use the SLA and Power strategies as benchmarks, with their SLA violation and power
efficiency results serving as baseline measurements with which to evaluate other strategies. The
SLA strategy provides the bounds for the best SLA violation value (S v

best = S sla) and the worst
power efficiency (ψworst = ψsla), while the Power strategy provides the worst SLA violation
(S v

worst = S v
power) and best power efficiency (ψbest = ψpower). Values from a candidate strategy,

i, are then normalized using these bounds to produce the normalized vector, vi, represented by
[S v

norm, ψnorm], where ψnorm is the normalized power efficiency and S v
norm is the normalized SLA

violation. The values S v
norm and ψnorm are calculated as follows:

S v
norm =

(S v
i − S v

best)
(S v

worst − S v
best)

ψnorm =
(ψbest − ψi)

(ψbest − ψworst)
vi = (S v

norm, ψnorm)

Note that ψbest > ψworst, but S v
best < S v

worst, so the normalization equations differ to reflect
this. Once we have the normalized vector, vi, we calculate its L2-norm, |vi|, and use this as an
overall score (scorei) for the candidate strategy.

scorei = |vi| =

√
(S v

norm)2 + (ψnorm)2

where a smaller score is considered better, as it represents a smaller distance to the best bounds
of each metric (defined by S v

best and ψbest). The SLA and Power strategies always achieve a
score of 1 by definition, as they achieve the best score in one metric and the worst in the other.
Scores less than 1 indicate that overall performance of the candidate strategy has improved
relative to the baseline strategies.

Note that this score is only valid for a single experiment in which all factors except for
the active management strategy remain constant. In our work, we vary the workload pattern
experienced by the data centre. As such, the baselines and score must be calculated separately
for each workload pattern. The average final score across all experiments can then be used
to evaluate the strategy. We use this method to evaluate and compare competing management
strategies.

3.5.2 Experimental Setup

We conduct our experimentation by simulation using DCSim [12]. Our simulated data centre
consists of 200 host machines, of which there are an equal number of two types: small and
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large. The small host is modelled after the HP ProLiant DL380G5, with 2 dual-core 3GHz
CPUs and 8 GB of memory. The large host is modelled after the HP ProLiant DL160G5, with
2 quad-core 2.5GHz CPUs and 16GB of memory. Cores in the large host have 2500 CPU
shares, and cores in the small host have 3000 CPU shares. The power consumption of both
hosts is calculated using results from the SPECPower benchmark [5]. The maximum power
efficiency of the large host (85.84 cpu/watt) is roughly double that of the small host (46.51
cpu/watt).

Three VM sizes are created: small requires 1 virtual core with at least 1500 CPU shares and
512MB of memory, medium requires 1 virtual core with at least 2500 CPU shares and 512MB
of memory, and large requires 2 virtual cores with at least 2500 CPU shares each and 1GB of
memory.

Hosts are modelled to use a work-conserving CPU scheduler, as available in major virtu-
alization technologies. That is, any CPU shares not used by a VM can be used by another.
No maximum cap on CPU is set for VMs. In the case of CPU contention, VMs are assigned
shares in a round-robin fashion until all shares have been allocated. No dynamic voltage and
frequency scaling (DVFS) is considered. Memory is statically allocated and not overcommit-
ted.

During a VM migration, an SLA violation of 10% of CPU utilization is added to migrating
VMs, and an additional CPU overhead of 10% of the migrating VMs CPU utilization is added
to both the source and target host [3].

Measurements of metrics used by management policies, such as host CPU utilization and
SLA violation, are drawn from each host every 2 minutes and evaluated by the policy over a
sliding window of 5 measurements.

3.5.3 Workload

A data centre experiences a highly dynamic workload, driven by VM arrivals and departures, as
well as dynamic workloads and resource requirements of VMs. We generate random workload

patterns to evaluate our strategies, where a workload pattern consists of a set of VMs with spe-
cific start and stop times, each with dynamic trace-driven resource requirements. Each VM is
driven by one of 5 individual traces: the ClarkNet, EPA, and SDSC traces [1], and two different
job types from the Google Cluster Data trace [9]. The normalized rate of incoming requests,
in 100 second intervals, is calculated for each trace. The request rates are used to define the
current workload of each VM, with the CPU resource requirements of the VM calculated as a
linear function of the current rate. Each VM starts its trace at a randomly selected offset time.

The number of VMs within the data centre is also varied dynamically to simulate the arrival
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and departure of VMs. A base of 600 VMs is created within the first 40 hours and remain run-
ning throughout the entire experiment, to maintain a reasonable minimum level of load. After
2 simulated days, new VMs begin to arrive at a changing rate, and terminate after about 1 day.
The arrival rates are generated such that on a fixed interval of once per day, the total number of
VMs in the data centre is equal to a randomly generated number uniformly distributed between
600 and 1600. The maximum number of VMs, 1600, was chosen because beyond that point,
the SLA strategy is forced to deny admission of some incoming VMs due to insufficient avail-
able resources. This continues for 10 simulated days at which point the experiment terminates.
Data from the first 2 days of simulation are discarded to allow the simulation to stabilize before
recording results.

3.5.4 Strategy Switching Tuning Parameters

Each DSS strategy has some tuning parameters that must be configured to provide the best
possible results, as described in Section 3.4. The first of these is the frequency with which the
strategy switching algorithm is run. We evaluated the meta-strategies over multiple frequency
values and found 1 hour to be an appropriate frequency for evaluating a strategy switch. Each
DSS strategy looks at a set of data centre metrics sampled by a monitor over a certain window
size: SP-DSS and Goal-DSS sample every 5 minutes and use a window size of 6 samples; Util-
DSS samples every 20 minutes and uses a window size of 6. Util-DSS uses a longer monitoring
frequency and window size in order to ignore minor fluctuations in data centre utilization and
focus on longer term trends. This helps identify periods of real change in overall utilization,
and avoid thrashing between strategies. For the remaining DSS tuning parameters, each com-
bination of values was evaluated over a set of 5 randomly generated workload patterns, and the
values that resulted in the best score were chosen. Table 3.1 contains the values of the best
performing of all parameters defined in Section 3.4.

3.5.5 Results

The results of the experiments are presented in Table 3.2. Each management strategy was
evaluated with the same set of 100 randomly generated workload patterns. Each experiment
was repeated only once per workload pattern, as the simulation is deterministic. Results were
averaged across all workload patterns. We report the following metrics: Average Active Host
Utilization (Host Util) is the average CPU utilization of powered on hosts; # of Migrations
(# of Migs) is the number of VM migrations triggered by the management strategies; Power
consumed (Ψ) is the total power consumed by all hosts in kWh; Power Efficiency is ψdc over the
entire simulation; SLA Violation is S v over the entire simulation; and # of Strategy Switches
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Strategy Param. Value
SP-DSS ψ′norm 0.004
SP-DSS ψ′high 0.006
SP-DSS S v

norm 1.15
SP-DSS S v

high 1.3
Goal-DSS S v

worst 0.01
Goal-DSS ψ∆ 0.83
Util-DSS mS 0.00255
Util-DSS mψ 0.00255

Table 3.1: DSS Tuning Parameters

SLA Power Hybrid SP-DSS Goal-DSS Util-DSS
Host Util 75% 88% 81% 80% 81% 82%
# of Migs 15818 24378 14643 18608 19448 19580
Ψ (kWh) 5488 4384 5049 4840 4821 4778

ψdc 60.6 75.2 65.9 69.7 69.0 69.8
S v 0.033% 0.474% 0.092% 0.198% 0.222% 0.220%

Switches N/A N/A N/A 20 56 30
S v

norm 0.0 1.0 0.135 0.360 0.430 0.425
ψnorm 1.0 0.0 0.636 0.452 0.425 0.373
Score 1.0 1.0 0.651 0.588 0.607 0.576

Table 3.2: Strategy Results

(Switches) is the number of times that the active strategy was changed. We also report the
normalized SLA and power values for each strategy, as well as the score. Figure 3.1 presents a
graphical representation of the scores. The benchmark strategies (SLA and Power) both achieve
a score of 1, by the definition of the score in Section 3.5.1. The angle of the line from the origin
to each point gives an indication of how fairly the strategy behaved towards each goal, with a
45 degree angle representing a perfect balance between SLA and power.

Analysis of Variance was performed on the score results, as well as paired t-tests for each
pair of management strategies. The resulting scores for each management strategy were found
to be significantly different from each other.

3.5.6 Discussion

All three DSS meta-strategies, as well as Hybrid, achieved better scores than the single-goal
SLA and Power strategies. Util-DSS achieved the lowest score, followed by SP-DSS, then
Goal-DSS, and finally Hybrid. The meta-strategies improved the score by about 40% when
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Figure 3.1: Strategy Scores

compared to Power and SLA, and by about 7-12% when compared to Hybrid. Util-DSS and
SP-DSS each slightly favoured one of the goals, with Util-DSS favouring power and SP-DSS
favouring SLA. Goal-DSS behaved fairly towards both goals. Hybrid, on the other hand, was
considerably more skewed towards SLA than power, potentially limiting its usefulness in a
practical application. The improved overall performance, as well as the balanced treatment of
each goal, may therefore favour the selection of DSS over Hybrid. Among the meta-strategies,
Util-DSS showed to be the most effective, though Goal-DSS was the most balanced.

All meta-strategies triggered 31 to 33% more migrations than the Hybrid strategy. While
migration overhead was taken into consideration and reflected in the SLA violation and host
utilization metrics, further work investigating the effect of migrations on networking should be
conducted to determine if this migration count is acceptable. The increase in migration count
from Hybrid to DSS is likely a side-effect of switching between strategies with different stress

(Ω
τ
) thresholds. The Power strategy efficiently pushes the utilization of a large number of hosts

to a high value, just below its Ω
τ

threshold. A switch to the SLA strategy at this point causes
a large number of hosts to be considered stressed, as its Ω

τ
threshold is below the current

utilization achieved by the Power strategy. Thus, a spike in migrations is triggered. This also
causes a spike in SLA violations due to migration overhead. It may be possible to introduce a
mechanism to mitigate this effect and thus lower the DSS meta-strategy migration count. Such
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a mechanism may also result in an overall better score for the meta-strategies.
SP-DSS switched strategies the least number of times, followed by Util-DSS and Goal-

DSS. This may be an indication that Util-DSS and Goal-DSS performed some strategy switches
that did not contribute to improving performance towards the intended goals (possibly exhibit-
ing a thrashing behaviour), and should be investigated.

3.6 Conclusions and Future Work

The development of data centre management strategies that can simultaneously pursue oppos-
ing goals, such as maximizing power efficiency and minimizing SLA violations, is a difficult
task. In this work, we proposed dynamically switching between two strategies, each designed
to achieve a single goal, to better adapt to changing data centre conditions. We developed three
meta-strategies to perform dynamic strategy switching, and evaluated them through simula-
tion. The meta-strategies improve overall performance by about 40% when compared to either
of the single-goal strategies, and by 7-12% when compared to a hybrid strategy designed to
pursue both goals simultaneously.

There are several directions for future work. Regarding DSS, the meta-strategy behaviour
when switching between strategies could be improved, so as to avoid spikes in migrations.
DSS could also be applied separately to subsets of hosts, such as individual racks or clusters.
Finally, threshold values and tuning parameters could be learned rather than fixed.

Networking overhead was not considered in this work. In the future, we intend to develop
networking metrics to be used in our evaluations of management policies and strategies. An-
other topic of interest is the inclusion of constraints and affinity rules to help in determining
the placement of VMs on hosts, as discussed by Gulati et al. [8].

Currently, our work relies only on CPU measurements to determine the level of load of
a host or VM, with other resources used only as a constraint on placement. In the future,
load calculation should take into consideration memory and bandwidth, in addition to CPU
(e.g.,[2]).

Future work could incorporate forecasting of VM resource demands, such as done by Bo-
broff et al. [4]. This would have an effect in the detection of stress situations, and in VM and
host selection for migration.

Finally, this work essentially assumes a central manager for all decision making. Other
architectural models could be explored, such as that presented by Zhu et al. [15].
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Chapter 4

A Distributed Approach to Dynamic VM
Management

4.1 Introduction

Most work thus far on dynamic management employs a centralized architecture, computing the
VM placement for the entire data centre within a single algorithm [2, 8, 10]. In a centralized
approach, a single manager must collect regular monitoring information from a large set of
hosts in order to maintain global knowledge of the data centre state. Furthermore, it must
then compute all management decisions. Given the large scale and highly dynamic nature of
the dynamic VM management problem and its intended environment, a centralized solution
is unlikely to scale to meet realistic demands [4]. A central manager also presents a single
point of failure, and in the event of a network partition, could leave a set of hosts without
management.

In this situation, a distributed approach may be better suited to solve the problem. We
propose a distributed adaptation of a centralized method, using a first-fit heuristic algorithm [5,
8]. The goals of this approach are to achieve similar performance compared to the centralized
approach in terms of SLA and power consumption, while spreading management computation
across all hosts, and reducing bandwidth usage for management. We evaluate our approach
using the DCSim [11] simulation tool.

The remainder of this chapter is organized as follows: Section 4.2 presents an overview of
related work. Section 4.3 introduces Dynamic VM Management, and presents a centralized
algorithm which we use as the starting point for our work. Section 4.4 presents our Distributed
Dynamic VM Management algorithm. The algorithm is evaluated in Section 4.5, and we con-

This chapter is based on work published in [12]
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clude and discuss future work in Section 4.6.

4.2 Related Work

The majority of work in the area focuses on a centralized approach to dynamic VM manage-
ment, especially work targeted specifically at a data centre providing an IaaS cloud. A single,
central manager makes all decisions using global knowledge of the state of every component
of the data centre [2, 8, 6]. Evaluation in this work frequently assumes the presence of an
“oracle”, with perfect knowledge of data centre state. Our proposed distributed approach, as
well as the centralized approaches which we implement and compare against, eliminate this
assumption, and eliminate the need for a single entity to have full knowledge of the data centre
state.

Several distributed approaches to dynamic resource management in the cloud have been
recently proposed. Each of the approaches considers a host to be an autonomous entity, capable
of making management decisions on its own. Yazir et al. [15] propose distributing migration
decisions to each host. If a host detects an over-utilization or under-utilization situation, it
selects a VM to migrate and a target host, and performs the migration. This work assumes,
as with several of the centralized approaches, that each host has complete global knowledge
of the state of every other host, and uses an “oracle” in their evaluation. As mentioned above,
we eliminate this assumption. Furthermore, the work does not consider SLA performance, and
requires a performance model of applications running in the cloud. We treat SLA performance,
as well as power consumption, as a primary goal, and we do not require a performance model
of applications, as this may not be readily available.

Wuhib, Stadler and Spreitzer [13] propose a novel approach to distributed load-balancing
in the cloud using a gossip protocol. Hosts periodically communicate with a random neighbour
and attempt to balance workloads between them. It does so by adjusting load-balancing set-
tings to adjust the amount of incoming requests being sent to each server, as well as by starting
and stopping module (application) instances. The work was extended by Yanggratoke, Wuhib
and Stader [14] who not only perform load balancing, but also to attempt to consolidate work-
load for the purposes of reducing power consumption. The proposed solutions make use of a
demand profiler to estimate resource requirements of modules, as well as control over load-
balancing and the starting/stopping of module instances. The target environment is a Platform
as a Service (PaaS) cloud, although the authors claim that the approach could be adapted to
manage an IaaS cloud, provided that similar control over load-balancing and module instances
are available. In contrast, our approach directly targets an IaaS environment, and does not re-
quire a demand profiler or control over load-balancing and module instances. Rather, we treat
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VMs as a black-box, and assume no control over the operation of client applications.
Feller, Morn and Esnault [4] propose a method of adapting centralized algorithms to run in

a decentralized manner. The set of hosts is divided into a constantly changing set neighbour-
hoods, with each neighbourhood being a subset of hosts of a certain size. Neighbourhoods are
dynamic, unstructured peer-to-peer networks. Hosts periodically trigger a centralized manage-
ment algorithm to consolidate VMs within their neighbourhood. Unlike our work, however,
they do not consider dynamic VM resource requirements, instead simply allocating the full
amount of resources requested by each VM. This leads to resource under-utilization and ex-
cess power consumption.

Finally, Quesnel, Lebre and Sudhold [9] present a decentralized VM scheduler which at-
tempts to build small subsets of hosts to react to management events such as overload or un-
derload. Hosts are arranged in a ring topology overlay network. When an over or underload
situation is detected, the host starts a partition of hosts and adds its next neighbour to this par-
tition. It then attempts to solve the resource allocation problem using only the hosts in the
partition. If it fails, a new host is added and the process is repeated. The work does not con-
sider SLA violations, especially given that a host is not considered overloaded until it reaches
100% utilization. Moreover, their approach is to essentially execute a centralized algorithm
on a smaller subset of hosts, which in their evaluation, leads to performance problems and the
disabling of consolidation with larger host sets.

Our work differs from the current literature in that we propose a distributed, decentralized
approach to dynamic VM management in an IaaS environment. Several works propose dis-
tributed approaches to management in other cloud environments, which do not directly trans-
late to IaaS. Other work does not consider dynamic VM resource requirements, minimizing
SLA violations or minimizing power consumption. Our approach considers all of these as-
pects to the problem.
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4.3 Dynamic VM Management

As described in Chapter 2, we define Dynamic Virtual Machine Management as the dynamic al-
location and re-allocation of VMs within a data centre in response to highly variable workloads
and VM resource requirements. The primary goals and motivation of this form of management
is to consolidate the set of VMs onto as few physical hosts as possible, while still providing the
resources each VM requires to perform up to client expectations. These goals can be expressed
as:

• Minimize SLA Violation

• Minimize power consumption

We define SLA Violation as the percentage of CPU which a VM requires but does not
receive due to contention with other VMs, as described in Chapter 2.6. We assume applications
to be running interactive, request-response workloads. When a VM does not have enough
resources to meet the current rate of incoming requests to the application running within it,
then performance degrades and we consider that the VMs SLA has been violated. This metric
is further explained as CPU Underprovisioned in Chapter 7.

It is also important to minimize the impact of management on the operation of the data
centre. Towards this objective, we include secondary goals:

• Minimize the number of migrations

• Minimize management bandwidth usage

The minimization of migrations is important to reduce bandwidth consumed by migrations
and the performance impact of migration on VMs. We use this set of goals to evaluate the
performance of dynamic VM management methods.

4.3.1 A Centralized Approach

As a representative centralized approach to dynamic VM management, we use the proposed
solution in Chapter 2. More specifically, we make use of the Hybrid management strategy
presented in Chapter 3, which aims to achieve a balance between SLA and power performance,
and implements the three primary management operations, VM Placement, VM Relocation,
and VM Consolidation. We use this as a base for developing and evaluating the distributed
management solution.
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Host Monitoring

Each host monitors its own resource utilization, and sends status data to the central manager at
a specified time interval. We use 5 minutes, but this value can be tuned as desired. The status
data consists of resource utilization for each VM on the host, as well as for the host as a whole.

4.3.2 Periodic versus Reactive

The VM Relocation and VM Consolidation policies are typically triggered on a regular periodic
interval. We refer to this method of triggering relocation and consolidation as Periodic VM

Management. Varying the length of these intervals can affect the performance of the algorithm.
For example, triggering VM Relocation less frequently results in more SLA violations but a
lower number of migrations, while triggering VM Consolidation less frequently results in fewer
SLA violations at the expense of power consumption. In this work, we trigger VM Relocation

every 10 minutes, and VM Consolidation every hour [5].

The VM Relocation operation can also be triggered in a reactive fashion rather than peri-
odic. We implement Reactive VM Management by checking a host for stress each time host
state messages are received, and by triggering VM Relocation immediately upon stress detec-
tion. In this way, we can both respond more quickly to stress situations, and also avoid running
VM Relocation when no hosts are stressed.

4.4 Distributed VM Management

We now present a distributed adaptation of the centralized dynamic VM management approach
described in Section 4.3, and Chapter 2. The goal of developing a distributed approach is to
eliminate the requirement of a single, central manager, and to reduce the network bandwidth
required for management messaging. Furthermore, VM management should be done contin-
uously, rather than on scheduled intervals, to spread migration overhead over time rather than
trigger large bursts of migrations. Decision making is moved into individual hosts, which com-
municate with each other asynchronously with small messages. Management operations are
initiated with a broadcast message, and each host makes a decision as to whether or not it
should participate in the action. The action is then completed with only the set of participating
hosts.
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4.4.1 Architecture

Each host within the system runs an Autonomic Manager, which handles all of the VM man-
agement operations for the host. We will simply use the term host to refer to both the physical
host and its autonomic manager. It performs monitoring, checks for stress or under-utilization
situations, and triggers VM Relocation or VM Consolidation operations as required. New VMs
can be placed within the data centre by triggering the VM Placement operation on any (pow-
ered on) host. Each host is either in the active state, in which it is actively hosting VMs
and participating in management operations, or it is in the inactive state, in which it is in a
power-saving mode such as suspended or off.

4.4.2 Management Operations

The distributed VM management system consists of the following operations:

Monitoring

Hosts monitor their resource utilization on a periodic interval, every 5 minutes. Unlike the
centralized algorithm, however, they do not send this data. Rather, the host manager itself
performs a check for stress or under-utilization based on the threshold values Ω

τ
and Ωτ, in-

troduced in Chapter 2. The average CPU utilization over the last 5 monitoring intervals is
compared against the threshold values, to avoid thrashing. If the host is found to be stressed,
then the monitoring algorithm will trigger the VM Relocation operation to relocate one of its
VMs to a non-stressed host. If it is underutilized, it will trigger the VM Consolidation operation
to attempt to migrate its VMs to other hosts and shut down. Note that this is only performed if
the host is not currently involved in any other operations, and is in the active state.

VM Relocation

When a host is stressed, it must relocate one of its VMs to another host to relieve the situation.
We refer to this process as eviction. Each host performs VM relocation itself, first by locating
potential target hosts for VM migration, and then by selecting a VM to migrate and a specific
target. A host can be in one of three states in relation to VM Relocation: normal, offering,
and evicting. The normal state indicates that the host is not involved in an eviction. The
evicting state indicates that the host is currently attempting to evict a VM. The offering
state indicates that the host is offering to receive a VM from an evicting host. A host must
be in the normal state to perform any other operation.
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The evicting host determines the minimum amount of CPU required to be available on
another host to evict one of its VMs and relieve the stress situation. CPU is measured in CPU

units, as described in Chapter 2. It then broadcasts a Resource Request message to all hosts,
containing this value. To conserve bandwidth when broadcasting Resource Request messages,
we choose to send the minimum required available CPU only as it is a good indication of
overall load, and is highly contentious. Each host determines if it has enough CPU remaining
to accommodate the minimum request, as well as ensuring that its memory is not full. If it
passes these checks, it responds to the evicting host with a Resource Offer. The Resource

Offer message contains the total amount of resource available, for all resources (not just CPU),
which may be higher than the original request. The evicting host waits a specified time
for responses, and then selects a VM and a target host using a first-fit heuristic algorithm. The
algorithm is similar to Algorithm 1, except that each stressed host performs the algorithm itself,
and the target list contains only those offering hosts who responded to the Resource Request.
That is, sources (line 2) contains only the evicting host, and the set of hosts H classified in
line 1, which are used for target hosts, contains only offering hosts. Once a VM and target
have been chosen, notification of the decision is sent to all offering hosts (so they may return
to the normal state), and the migration is performed. The sorting of VMs and targets is done
as specified for the Hybrid strategy in Chapter 3.3.3.

If no hosts respond to the Resource Request, then the evicting host must boot an inactive
host (suspended or off), if available. If no such host exists, the eviction fails. Inactive hosts
are sorted by power efficiency in order to prefer the selection of more power efficient hosts.
Once the host has powered on, a VM is selected and migrated. If, once a VM has been evicted,
the host remains stressed, the process repeats to evict another VM.

In order to reduce thrashing between highly utilized hosts, we implement an relocation

freeze, preventing a host from offering resources for a specified amount of time after the same
host evicts a VM. Similarly, if a host offers resources and is chosen as the target, we again
apply a relocation freeze, this time preventing it from evicting a VM for a specified time period.
This mechanism helps to reduce unnecessary migrations, and tuning the relocation freeze time
parameter enables trading a lower migration count for increased SLA violations. This trade-off

is explored in Section 4.5.4.

VM Consolidation

When a host is underutilized, it is desirable to migrate its VMs to other hosts and shut it
down. However, there may be other hosts that are potentially more beneficial to shut down.
For example, a greater reduction in power consumption is achieved by shutting down two hosts
running at 10% utilization rather than one at 20% utilization. Preference should also be given to
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hosts with poorer power efficiency. Furthermore, selecting the host with the lowest utilization
increases the probability that a host will successfully shut down. We therefore introduce a
Shutdown Selection process to select the most appropriate host for shut down.

When a host detects that it is underutilized, and is not involved in a VM Relocation or
VM Consolidation operation already, it triggers a Shutdown Selection operation. A host in-
volved in VM Consolidation can be in one of three states: coordinating, claiming, or
shutting down. The first host to detect underutilization and begin the process is the coordi-

nator, and changes to the coordinating state. It broadcasts a Shutdown Selection message
to all hosts, containing its current CPU utilization. When a host receives this message, it
checks to see if its current CPU utilization is less or if its power efficiency is worse than the
coordinating host. If so, it responds with a Shutdown Claim event, containing its own CPU
utilization, and changes to the claiming state. The coordinating host waits a specified time
for responses, and then selects a host first by power efficiency, and then by CPU utilization
(favouring lower power efficiency and lower CPU utilization). This host is selected as the
winner, and all hosts are notified of the outcome.

The winner host changes its state to shutting down, indicating that it is attempting to
shut down. It then attempts to find migration targets for all of its hosted VMs by sending a
Resource Request message and collecting Resource Offers, as in the eviction process. Once the
offers have been received, it attempts to place VMs using an algorithm similar to that of the
centralized version (Algorithm 2). The differences are as follows: sources (line 2) set contains
only the winner host, which is running the algorithm; the host set (H) (line 1) contains only
hosts responding to the Resource Request; line 2 is not performed; migrations (line 13) are
recorded but not triggered immediately. The output of the algorithm is a set of migrations
to perform. If this set contains migrations for every VM on the host, then the host performs
the migrations and shuts down. Otherwise, the shut down fails and is cancelled, as migrating
hosts without shutting down will only serve to increase the likelihood of target hosts becoming
stressed without gaining any reduction in power consumption.

In order to control the frequency of host shut downs, we add a shutdown freeze time during
which no host can attempt shut down after a Consolidation operation has taken place. This
shutdown freeze is introduced even if the consolidation fails, as if the host with the lowest uti-
lization failed to shut down then it is highly unlikely that another host will succeed. Controlling
the shutdown freeze time has the effect of trading power consumption for SLA performance,
which is explored in Section 4.5.4. In order to add some intelligence to the shutdown freeze

duration, we allow the shutting down host to determine its length as follows: once a complete
set of migrations has been found, the winner host calculates the amount of remaining resources
in the offering hosts, after the migrations complete. If there is enough resource remaining to
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fit at least the total resources in use on the winner host, then it indicates that a short shut down
shutdown freeze can be used, since a subsequent shut down has a good chance of success.

VM Placement

The VM Placement operation is triggered whenever a new VM arrives at the data centre and
must be placed on a host. It is performed in the same manner as VM Relocation, except that
the result is a new VM instantiation rather than a migration. Any host can perform the VM

Placement operation; no central placement controller is required.

Host Power State Knowledge

Each host maintains a list of other hosts that are known to be inactive (off or suspended),
for use in VM Relocation and VM Placement. When a host shuts down, it broadcasts a Host

Shutting Down message indicating that it is doing so, and each host adds it to their individual
list of inactive hosts. Similarly, when a host boots up, it sends a Host Booting Up message,
instructing each host to remove it from their inactive list. When a host is inactive, how-
ever, it does not receive messages. As such, when it boots up, it will have an outdated copy
of the inactive list. To overcome this issue, when a host instructs another to boot up, it also
forwards its copy of the current inactive list to the newly started host.

4.4.3 Management Bandwidth

One of our goals in developing a distributed dynamic VM management system was to reduce
the amount of bandwidth used for VM management. The centralized system transmits host
state data from each host on a regular interval, regardless of whether or not that data is required
at the time. Each message contains the resource utilization of each hosted VM, which con-
sists of the resource vector (cpu,memory, bandwidth, storage). During our experiments (see
Section 4.5), we found that, on average, each message contains data on 9.2 VMs. We assume
each individual resource value to be 4 bytes in size (the size of an int or float value in Java),
combining for a total of 16 bytes. The distributed system attempts to send data only when re-
quired. Many messages contain no payload data, such as the Host Booting Up message. Others
contain only a single value, such as the Resource Request and Shutdown Selection messages.
Messages that contain full resource data contain only a single vector, thus resulting in reduced
message sizes. In the case of broadcast messages, we total each time the message is received,
rather than simply considering it as equivalent to a single message.
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4.5 Experiments

In this section, we will evaluate our distributed approach through conducting a set of experi-
ments using a simulation tool, DCSim [11]. We first evaluate a set of possible tuning parameter
values for the distributed VM management system. We then compare the distributed approach
with two forms of centralized management, namely, periodic and reactive.

4.5.1 Metrics

Average Active Host Utilization

The average CPU utilization of all hosts (Host Util) that are currently in the On state. The
higher the value, the more efficiently resources are being used.

Number of Migrations

The number of migrations (# Migs) triggered during the simulation. Typically, a lower value is
more desirable, as less bandwidth would be used for VM migrations.

Power Consumption

Power consumption (Ψ) is calculated for each host, and the total kilowatt-hours consumed
during the simulation are reported. Power consumption is calculated using results from the
SPECPower benchmark [3], and is based on CPU utilization.

SLA Violation

An SLA violation, denoted S v, occurs when resources required by a VM are not available to
it, as this situation leads to a degradation in performance. The percentage of required CPU not
available is the SLA violation, as described in Chapter 2.6.

SLA Violation Duration

SLA Violation Duration (S v Duration) is total amount of time that all VMs spent in a state of
SLA violation. For example, if two VMs were each in SLA violation for 5 minutes, the SLA

Violation Duration would be 10 minutes.
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Management Bandwidth Usage

The total amount of bandwidth used for VM management messages. Message sizes are calcu-
lated as defined in Section 4.4.3.

4.5.2 Experimental Setup

Our simulated data centre consists of 200 host machines, with two different types of host: small

and large. The small host is based on the HP ProLiant DL380G5, with 2 dual-core 3GHz CPUs
and 8 GB of memory. The large host is based on the HP ProLiant DL160G5, with 2 quad-core
2.5GHz CPUs and 16GB of memory. Cores in the large host have 2500 CPU shares, and
cores in the small host have 3000 CPU shares. The power efficiency of the large host (85.84
cpu/watt) is roughly double that of the small host (46.51 cpu/watt). An equal number of each
host type is created within the data centre.

We define three different VM sizes: small requires 1 virtual core with a minimum of 1500
CPU shares and 512MB of memory, medium requires 1 virtual core with a minimum of 2500
CPU shares and 512MB of memory, and large requires 2 virtual cores with a minimum of
2500 CPU shares each and 1GB of memory. Note that these are requested, maximum resource
requirements. We initially place VMs based on these values, and attempt to guarantee them
when required, but once VMs are running they are placed and allocated based on their resource
usage, not request. We create an equal number of all three VM types.

Hosts are modelled to use a work-conserving CPU scheduler, as available in major virtual-
ization technologies. As such, CPU shares that are not used by one VM can be used by another.
No maximum cap on CPU is set for VMs. In the event that the CPU is at maximum capacity
and VMs must compete for resources, VMs are assigned CPU shares in a fair-share manner.
Memory is statically allocated and is not overcommitted.

4.5.3 Workload

We model a set of interactive applications running within the data centre, with each VM run-
ning a single application. VMs arrive and depart the system throughout the experiment, and
exhibit dynamic resource requirements driven by real workload traces. Each VM uses a trace
built from one of 5 sources: the ClarkNet, EPA, and SDSC traces [1], and two different job
types from the Google Cluster Data trace [7]. We compute a normalized rate of requests, in
100 second intervals, for each trace. These rates are used to define the current workload of
each VM, with the CPU resource requirements of the VM calculated as a linear function of the
current rate. To ensure that VMs do not exhibit identical behaviour, each VM starts its trace at
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a randomly selected offset time.

A set of 600 VMs is created within the first 40 hours and remain running throughout the
entire experiment, to maintain a minimum level of load. After 2 simulated days, new VMs
begin to arrive at a changing rate, and terminate after about 1 day. The total number of VMs in
the system varies daily, using randomly chosen values uniformly distributed between 600 and
1600. This continues until the conclusion of the experiment. A specific randomly generated
instance of VM arrivals, departures, and trace offset times is referred to as a workload pattern,
and is entirely repeatable through specifying the random seed used to generate it. We use a set
of 10 different workload patterns to evaluate our work, and all presented results are averaged
across experiments using these 10 workload patterns. We discard data from the first 2 days of
simulation to allow the system to stabilize before recording results.

4.5.4 Tuning Parameters

The operation and performance of the distributed VM management system can be fine-tuned
through the manipulation of the relocation freeze and shutdown freeze durations discussed in
Section 4.4. During VM Relocation, once a host has evicted a VM, it must wait a relocation

freeze duration before it can make a resource offer to accept a VM from another host. It may
still evict VMs, it simply cannot accept them. Conversely, once a host has made a resource offer
and has been selected as the target for a migration or VM placement, it must wait the relocation

freeze duration before it can evict one of its own VMs. Adjusting this duration allows us to
control how aggressively VMs are relocated in response to stress situations. We define two
levels of relocation tuning: Normal, in which the relocation freeze is set to 30 minutes; and
Light, in which the relocation freeze is set to 60 minutes. Note that a longer duration results in
a less aggressive algorithm.

During VM Consolidation, once a Shutdown Selection has been performed, hosts must wait
the shutdown freeze duration before triggering another. If, however, the shutting down host
determines that it is likely that there are enough spare resources in the system to shut down
another host (see Section 4.4.2), it can indicate that only the short shutdown freeze duration
should be used. By adjusting these values, we control how aggressively VMs are consolidated
and hosts are shut down to conserve power. We define three levels of consolidation tuning:
Heavy, in which shutdown freeze is set to 15 minutes and short shutdown freeze to 5 minutes;
Normal, in which shutdown freeze is set to 30 minutes and short shutdown freeze to 5 minutes;
and Light, in which shutdown freeze is set to 30 minutes and short shutdown freeze is also set
to 30 minutes.

We evaluated all six combinations of the relocation and consolidation levels. Table 4.1



4.5. Experiments 53

Reloc Consol Host Util # Migs Ψ S v S v Duration Man BW
Normal Heavy 79% 12779 5113kWh 0.069% 17.05 days 12.57GB
Normal Normal 77% 10818 5252kWh 0.056% 14.17 days 12.05GB
Normal Light 76% 9091 5352kWh 0.043% 11.36 days 11.01GB
Light Heavy 79% 11524 5072kWh 0.113% 25.87 days 10.77GB
Light Normal 78% 9980 5123kWh 0.092% 21.72 days 10.17GB
Light Light 77% 8367 5265kWh 0.069% 16.99 days 9.9GB

Table 4.1: Distributed Tuning Parameters

presents the average results over 10 simulations using 10 different workload patterns.

We can see that moving from Normal to Light relocation results in a reduction of the num-
ber of migrations and power consumption, at the expense of increased SLA violation. This is
to be expected, as less frequent VM Relocation means triggering migrations to relieve stress
situations less often, and booting new hosts to accommodate evicted VMs less often as well.
The effect of changing from Heavy, to Normal, to Light consolidation also shows expected re-
sults. As consolidation is performed less aggressively, SLA violations and migrations decrease
at the expense of power consumption.

4.5.5 Distributed versus Centralized

We now compare the performance of distributed VM management with that of the centralized
approach. For the sake of comparison, we have chosen two configurations of the distributed
system, although any results from Table 4.1 are directly comparable to the centralized algo-
rithm results. We compare the centralized algorithms against a distributed configuration with
very good SLA performance (Dist. SLA) and one with very good power performance (Dist.

Power). The Distributed SLA algorithm uses Normal relocation and Light consolidation, while
the Distributed Power algorithm uses Light relocation and Heavy consolidation.

We compare against the Periodic and Reactive versions of the centralized system, as defined
in Section 4.3.2. Table 4.2 presents the average results over 10 simulations using 10 different
workload patterns.

The Reactive centralized management system provides improved SLA performance when
compared to Periodic, at the expense of power and migrations. This is due to the fact that it
responds immediately to stress situations, triggering VM Relocation as soon as one is detected.
Distributed Power achieves similar power consumption and SLA violation performance to Pe-

riodic, at the cost of a slight increase in migrations. It is expected that there should be a
trade-off involved in using a distributed version, as it uses only partial knowledge to perform
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Host Util # Migs Ψ S v S v Duration Man BW
Dist. Power 79% 11524 5072kWh 0.113% 25.87 days 10.77GB

Dist. SLA 76% 9091 5352kWh 0.043% 11.36 days 11.01GB
Periodic 80% 10261 5056kWh 0.109% 26.58 days 38.04GB
Reactive 79% 12508 5121kWh 0.059% 15.42 days 38.08GB

Table 4.2: Distributed vs Centralized Results

management operations. Distributed SLA, on the other hand, achieves reduced SLA violations
when compared to all other systems, as well as a greatly reduced number of migrations. It
does so at the expense of an increase in power consumption though. Both distributed versions
offer about a 71% reduction in management bandwidth usage, falling in line with our goals for
distributed VM management.

4.6 Conclusions and Future Work

Most existing work makes use of a centralized architecture, where a central manager handles
management for the entire data centre. However, given the highly dynamic resource needs of
VMs and the scale at which management must take place, a centralized approach may not be a
realistic solution. Furthermore, centralized management represents a potential single point of
failure for the system.

We present a distributed VM management system, adapted from an existing centralized
system. The goals of the approach were to replicate the SLA and power performance of the
centralized system, while eliminating the central manager and reducing the bandwidth con-
sumed by management. Through evaluation with a simulation tool, we have shown that the
distributed approach can in fact achieve these goals, although there is always a trade-off to be
made between number of migrations, SLA violation and power. Furthermore, the distributed
system can be tuned to favour SLA or power, to suit the requirements of the data centre op-
erator. In all cases, the distributed system provided a reduction in management bandwidth
usage.

There are a number of possible directions for future work. In terms of the distributed sys-
tem, broadcast messaging could be replaced by a different communication method or overlay
network to attempt to further reduce management bandwidth usage. Hosts could be split into
smaller multicast groups, with a new mechanism introduced to communicate between them
only when necessary. Also, we suspect that the effectiveness of the freeze values used for
tuning the management system may be closely tied to data centre size and overall utilization.
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This could provide an opportunity to dynamically and automatically adjust the values to match
current data centre conditions, possibly with a machine learning approach.

Our work considers only variable CPU demand, and static memory requirements of VMs.
This needs to be expanded to consider VM bandwidth and storage requirements. Using pre-
diction methods to predict future resource demand and take proactive action could also be
explored. We could also consider the topology of the data centre, which may drive the design
of algorithms as well as impose constraints on VM placement. Finally, the thermal state of
the data centre, and cooling costs, could also be considered in VM management and drive the
selection of hosts to power on or off.
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Chapter 5

Integrating Cloud Application Autoscaling
with Dynamic VM Management

5.1 Introduction

One of the key advantages to migrating an application into the cloud is the ability to dynami-
cally scale the application to meet current demand. This essentially gives the application owner
an elastic infrastructure, scaling up to meet increasing demand and scaling down when demand
is low and resources are underutilized. For example, typical web applications experience highly
variable loads, with average demands coming in far below peak. If enough resources are pro-
visioned to meet the peak load (and likely more, since it may not be possible to accurately
predict peak resource requirements), then a large amount of the provisioned resources will be
significantly underutilized. This results in increased operating costs, as the client is charged
based on resources provisioned, not by actual utilization. Conversely, if the application is pro-
visioned for average load, then performance can suffer during peak periods, causing potential
loss of customers and business. Therefore, in order to both reduce costs while still meeting
performance requirements, applications must dynamically add and remove resources, in the
form of virtual machines, to match ever-changing demands from users.

As detailed in Chapter 2, the data centre operator (IaaS cloud provider) faces a set of chal-
lenges in order to make the best use of their infrastructure. To accomplish the two goals of
minimizing SLA violations and minimizing power consumption, the cloud provider performs
Dynamic VM Management. Dynamic VM Management involves the placement of VMs within
the data centre, as well as the adaptation of this placement via VM live migration to meet
dynamic VM resource demands.

This chapter is based on work published in [15] as well as content from an extended journal version, currently
under submission
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Many clients do not simply deploy a single VM in the cloud, but rather a set of interacting
VMs, each of which is a component of a larger application providing a service to their users.
For the purposes of this work, we define an application as a set of interacting VMs which pro-
vide a user-facing service. The cloud provider, upon request from a client, places client VMs
within the physical data centre. As was previously discussed, applications should dynamically
scale to match current demands. This process, known as autoscaling, can be accomplished by
adding or removing VMs to and from the application. For example, a web application may
contain a tier of web servers, with incoming requests load balanced between them. When load
increases, an additional instance of the server (VM) could be added to the tier to serve the addi-
tional requests. Conversely, when load decreases and VMs are underutilized, a server instance
(VM) can be removed. Commercial implementations of autoscaling exist, such as Amazon
Web Services’ Auto Scale [1], which allow autoscaling rules to be defined by the client.

While there is significant existing work examining autoscaling and dynamic VM manage-
ment, most work looks at one or the other, in isolation. The goal of this work is to develop a
unified approach to support both operations, and to leverage basic control over autoscaling to
assist in dynamic VM management and fulfil the goals of both the cloud provider and the cloud
client. The goals of the cloud client are to:

• achieve service level agreements (SLA);

• provision the smallest amount of resources possible.

Similarily, the goals of the cloud provider are to:

• reduce infrastructure usage to conserve power;

• ensure client VMs have resources they require;

• avoid affecting application autoscaling decisions (which could unfairly increase client
costs).

Considering this set of goals, we present a new approach to handling application autoscal-
ing and dynamic VM management. Our approach is designed in such as way as to allow
autoscaling decisions to remain under the control of the client, potentially implementing alter-
native rules or autoscaling algorithms customized for their specific application, without mod-
ification to the primary algorithm. Autoscaling decisions are made considering only the best
interests of the application, with the execution of these decisions being handled in a manner
that helps achieve dynamic VM management goals.

The remainder of this chapter is organized as follows: Related work is introduced in Section
5.2. Section 5.3 defines the problem area. We present a method for automatically scaling
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applications in Section 5.4. Section 5.5 presents a new algorithm integrating autoscaling and
dynamic VM allocation, we evaluate our work in Section 5.6, and conclude in Section 5.7.

5.2 Related Work

Some of the literature focuses on scaling resource allocations of a single VM to meet its current
demands, but do not scale applications out to multiple VMs [14]. Ghanbari et al. [9] examine
alternative autoscaling approaches in the literature, classifying them into two categories: con-
trol theory approaches, and rule-based heuristics. They propose a control theory approach to
scaling [8] an application running in a public IaaS cloud, which takes into consideration costs,
constraints, and the characteristics of the IaaS environment. Their work is from the perspec-
tive of the client running applications within the cloud, with autoscaling logic running outside
of the cloud. Our approach runs autoscaling algorithms within the cloud infrastructure itself.
Chieu et al. [3] propose that the automatic scaling of application resources is a critical capa-
bility for clients deploying applications in the cloud. They present an autoscaling algorithm
that falls into the rule-based category, scaling applications up or down based on the number
of active user sessions in deployed web applications. Ferretti et al. [6] autoscale applications
based on SLA achievement. They specify a threshold on response time as their SLA objec-
tive, and attempt to proactively scale the application based on continuous monitoring. Finally,
Amazon Web Services provides an autoscale feature (AWS Auto Scale) [1], allowing clients to
specify conditions under which additional VM instances should be added or removed. These
conditions are rules based on monitored metrics, again falling into the rule-based heuristic
category.

There are a small number of works that examine something similar to combining autoscal-
ing with dynamic VM management. Wuhib, Stadler and Spreitzer [18] propose an approach
to distributed load-balancing in the cloud using a gossip protocol. Hosts balance workloads
between them by adjusting load-balancing settings as well as by starting and stopping mod-
ule (application) instances. The work was extended [19] to also consolidate workload for the
purposes of reducing power consumption. The proposed solutions make use of a demand pro-
filer to estimate resource requirements of modules and targets a Platform as a Service (PaaS)
cloud, although the authors claim that the approach could be adapted to manage an IaaS cloud.
Our approach does not require a demand profiler. Furthermore, their application scaling is
performed with the goal of load balancing, rather than reducing the costs of clients running
applications in the cloud. We focus on letting applications decide how they want to scale, and
providing them with the resources they require. Jung et al. [10] perform application scaling
and dynamic VM management using a layered queueing model of applications to determine
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the utility of configurations. They also require offline experimentation to determine the effects
of configuration adaptation methods, which are later used to estimate effects online. Our ap-
proach does not require detailed models nor prior offline processing. Petrucci et al. [13] use
a mixed integer programming model to optimize application placements. Unlike our work,
they do not allow the client to determine auto-scaling conditions and the scalability of their
approach is not fully evaluated.

Li et al. present CloudOpt [12], a system for deploying applications consisting of multiple
components in a cloud environment. CloudOpt overcomes scalability issues with mixed integer
programming by combining it with a bin-packing heuristic. It makes use of detailed perfor-
mance models of applications, using a layered queueing model, and optimizes for a number
of goals, including Quality of Service, memory, energy, and license costs. The system per-
forms a one-time placement, although the authors state that dynamic management could be
handled by repeated execution of the algorithm. Our work differs from this in that we do not
assume that models of deployed applications are available, nor do we take control over repli-
cation decisions. Our focus is more on allowing application owners to decide what is best for
the application, while making use of these decisions to assist dynamic management. We also
explicitly consider dynamic management.

We focus on combining autoscaling and dynamic VM management into a single algorithm,
capable of scaling applications while also consolidating load for power conservation. Other
work considers only one of these goals, targets a different environment, or makes use of detailed
application models.

5.3 Problem Definition

In this section, we present the various aspects of the problem we are addressing. We build upon
the description of Dynamic VM Management presented in Chapter 2.3, adding a description of
the model we are using for applications running in the cloud, as well as management operations.
Figure 5.1 provides a general overview of the structure of hosts, VMs, and applications, as
described throughout the remainder of this section.

5.3.1 Applications

Every VM that within the data centre is running a component of an application. In this work,
we consider interactive applications, such as a multi-tiered web application, in which a number
of clients interact with the system, waiting for responses before issuing a new request. There
is a single class of requests, entering and exiting the application through a single point.
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Figure 5.1: Data Centre Model

An application, a ∈ A, contains a set of tasks, Ta, where a single task is denoted t ∈ Ta.
Tasks represent different components of the application, such as a web server(s), application
server(s), or database. Tasks are performed by one or more identical task instances, i ∈ It,
where It is the set of task instances in task t. Task instances are the actual deployed software
components that perform the task. For example, a web server task of an application may consist
of a deployed set of replica web servers, with incoming requests load balanced between them.
A VM, vi, is assigned to run a single task instance i. Furthermore, ∀i ∈ It ∃! vi. That is, every
task instance must be running within a single VM.

For any application, at least one instance of each task in the application must exist. That is,
|It| > 0, ∀t ∈ Ta. The number of instances in each task can change over time, as instances are
added or removed dynamically to match current workload demands. Task instances share the
total workload (i.e. requests) of their tasks, and in this work, it is assumed that the workload is
distributed equally.

We consider the Service Level Agreement (SLA) for an application to be defined as an up-
per threshold on application response time. Note that this calculation of SLA is different than
that used in previous chapters, and provides a more realistic and useful measure of SLA per-
formance. The response time of an application a ∈ A, at time s, is denoted ρa(s). Similarly, its
SLA threshold is denoted as ρτa. If the response time of an application falls below its threshold,
then the SLA is said to be achieved. Otherwise, SLA is violated. The SLA achievement of an
application is:

∀s ∈ R+, S a(s) =

 1 if ρa(s) 6 ρτa
0 otherwise
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Conversely, the SLA violation is defined by:

S v
a(s) = 1 − S a(s)

The percentage of time for which SLA is achieved over a time interval [si..s j] is defined as:

S a(si, s j) =

∑s j
si S a(s)
s j − si

Similarly, the percentage of time for which SLA is violated over a time interval [si..s j] is
defined as:

S v
a(si, s j) = 1 − S a(si, s j)

For simplification, we refer to the overall SLA achievement of an application over the entire
time interval under consideration (e.g. the duration of an experiment) simply as S a. Our third
goal consists of minimizing SLA violation:

min
∑
a∈A

S v
a

5.3.2 VM Live Migration

In order to modify the placement of VMs within the data centre, a live migration operation
is performed. This operation consists of transferring the state of a running VM to another
host, and incurs both performance and network overhead. Therefore, an additional goal is
to minimize the number of migrations required to perform dynamic VM management. The
number of migrations that occur between time s − 1 and s is:

α∆(s) =

∑
h∈H, v∈V αh,v(s − 1) ⊕ αh,v(s)

2
Note that since every placement change for a VM results in the modification of αh,v for both

hosts involved in the move, we divide the sum of the placement changes by two.
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Our goal is to minimize the number of migrations that are performed overall, rather than
at a specific point in time. For example, if a larger set of migrations at one point results in a
placement in which far fewer migrations are required in the future, than it may be desirable to
perform these migrations instead of a smaller set which requires additional migrations later on.
Therefore, we introduce the following objective:

∀s ∈ R+, min
sn∑
s1

α∆(s)

5.4 Application Autoscaling

5.4.1 Application Model

Applications are typically deployed with enough spare resources to handle peak traffic and
workload demands. As a result, they spend most of their time significantly overprovisioned,
resulting in and underutilization of resources and increased costs [6]. By dynamically scal-
ing applications to match changing workload demands, the client can use only the resources
it requires, releasing unused resources to save costs. In this work, we examine autoscaling
resources through the addition or removal of VMs (task instances) to and from the application.
We do not look at scaling resource allocations on hosts to individual VMs. We present a rule-
based, heuristic autoscaling algorithm for use in our implementation. It would be possible,
however, to make use of a more complex autoscaling algorithm without modification to our
final, application-aware dynamic allocation algorithm (Section 5.5).

As described in Section 5.3, we consider an interactive application in which a number
of clients interact with the system, waiting for responses before issuing a new request. We
implement a model of such an application in an open source simulator, DCSim [5, 16], for
the purposes of evaluating our approach. Figure 5.2 shows the structure of a basic application
that might be deployed in our evaluation, consisting of two tiers. Each tier has a load balancer
component which evenly divides incoming requests between all task instances in the tier. Both
tiers are able to dynamically add or remove instances (autoscale) to match current workload
demands. The size of a task refers to the number of task instances it contains.

Within the simulation, we model the application as a closed queueing network, and solve
it using Mean Value Analysis (MVA). We make use of some additional information about the
applications and tasks. An application has a specified think time for clients, which defines the
amount of time that clients wait in between receiving a reply from their previous request and
sending another. It also contains a workload component, which defines the current number of
clients using the application. The workload changes at discrete time points in the simulation,
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t1

t2

Load Balancer

Users

Load Balancer

Figure 5.2: Application Example

based on a trace file. The description of a task is expanded to include:

• default and maximum size, which defines the default and maximum number of task in-
stances;

• service time, which defines the time it takes to process a single request;

• visit ratio, which defines the average number of times each request must visit the task;

• and resource size, which defines the expected amount of CPU and memory allocated to
each task instance of the task, as well as the expected CPU speed, in order to achieve the
specified service time.

The actual service time for each task instance may be scaled based on a CPU speed factor, and
in the case of CPU contention (when the CPU becomes overloaded), an additional delay may
be added to it to account for processor queuing.

The performance of a deployed application is evaluated based on its SLA achievement (see
Section 5.3). Note that the SLA is based on the response time seen by the application users,
and defines an agreement between cloud clients and their users, rather than the cloud provider
and client. A lower SLA achievement (higher application response time), indicates that the
application is underprovisioned, either due to a failure of the autoscaling algorithm to scale up
the application, or by contention with other VMs caused by poor VM placement and dynamic
management. By comparing experimental results running only the autoscaling algorithm with
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those running both autoscaling and dynamic VM management, we can then determine how
much SLA violation is attributable to the cloud provider.

5.4.2 Algorithm

We have implemented a basic autoscaling algorithm, which scales applications up and down
based on current SLA achievement and CPU utilization. We make use of a rule-based, heuris-
tic algorithm, as it is light-weight and does not require detailed knowledge or models of the
applications being managed. Furthermore, with such an algorithm, it would be possible for ap-
plication owners (cloud clients) to define their own threshold values and rules for autoscaling,
customized to their own needs and goals.

Each application has a single manager, which monitors the application and executes the
autoscaling algorithm (Algorithm 7) on a fixed interval (e.g. every 5 minutes). Task instances
regularly send monitoring data to the manager. The algorithm requires the following as input:

• the application being scaled (a);

• the time (s);

• the window sizes for sliding average response time (Wρ) and CPU utilization (Wω);

• a Response Time Threshold (ρτ) defining the SLA of the application;

• an SLA Warning value (S warn), specified as a percentage of the SLA response time thresh-
old;

• and a CPU Safe value (ωsa f e).

We calculate the average response time, ρa, over a window Wρ using the function ρa(Wρ) (line
1). Then, ρa is compared against the warning threshold (line 2). If it exceeds this value, a
scale up operation is performed to add additional VMs to the application. The algorithm then
iterates through the tasks that comprise the application (lines 4-7), and calculates the change
in response time (ρ∆

a ) since the last execution of the algorithm. We assume a function ρtask
t (s),

which returns the response time of a task at a specified time. The algorithm chooses the task
with the largest increase in response time, and whose size, |It|, has not reached its maximum
size, |It|

max. A new instance is then added to this task (line 8).
If the response time is below the warning threshold, the algorithm looks for a task on which

to perform a scale down operation. Scaling down is performed based on CPU utilization, rather
than SLA. Function ω(i,window) computes the average CPU utilization of a task instance over
a sliding window. The total CPU utilization of all instances in the task (taskθ), averaged over
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a sliding window of size Wω (line 12), is computed and divided by task size minus one to
estimate the utilization of remaining task instances, should one be removed (line 13). If this
value falls below a specified CPU Safe value (ωsa f e), then the task is a candidate for a scale

down operation. The algorithm chooses the candidate task with the lowest utilization from
which to remove an instance (lines 14-15), and removes an arbitrary instance from the task
(line 16).

The threshold values for SLA Warning and CPU Safe, as well as the metric to evaluate (e.g.
response time, throughput, CPU utilization) could easily be defined by the application owner,
in a similar manner as the rules defined in Amazon Web Services Auto Scale [1]. This gives the
client control over autoscaling decisions and trade-offs between SLA performance and cost.

Algorithm 7: Autoscaling Algorithm
Data: a, s, Wρ, Wω, ρτ, S warn, ωsa f e

ρa ← ρa(Wρ) ; target ← NIL1

if ρa > ρ
τ × S warn then2

target∆ ← 03

for t ∈ Ta do4

ρ∆
a ← ρtask

t (s) − ρtask
t (s − 1)5

if ρ∆
a > target∆ & |It| < |It|

max then6

target∆ ← ρ∆
a ; target ← t7

if target , NIL then addInstance(target)8

else9

targetθ ← ∞10

for t ∈ Ta do11

tθ ←
∑

i∈It
ω(i,Wω)12

if |It| > 1 &
tθ

|It| − 1
6 ωsa f e then

13

if tθ < targetθ then14

targetθ ← tθ ; target ← t15

if target , NIL then removeInstance(target)16

5.5 Integrated Application-aware Algorithm

Dynamic VM management requires the use of VM live migration operations in order to adapt
the allocation to changing workload conditions. This operation, however, is not free. Rather,
it degrades VM performance during migration, and consumes network bandwidth in order to
transfer the running state of the VM. We propose a single algorithm, integrating autoscaling
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(see Section 5.4) with dynamic VM management (see Chapter 2), in order to leverage au-
toscaling operations to assist dynamic VM management and reduce the number of migrations
required. In this approach, each application retains control over deciding to perform scale up

and scale down operations. The choice of which task instances to shut down (in the case of a
scale down operation), and where to place new instances (in the case of a scale up operation),
however, are performed in such a way as to aid VM Relocation and VM Consolidation and
reduce the need for live migrations.

The integrated, application-aware algorithm combines autoscaling operations with VM Re-

location and VM Consolidation into a single algorithm, referred to as the Dynamic Allocation

operation, which is run on a regular time interval. The VM Placement operation is handled
separately, triggered by the arrival of new applications to the data centre. Algorithm 8 presents
a segment of the integrated algorithm, which deals with relieving stressed hosts (i.e. VM Relo-

cation). This is the first piece of the algorithm, the remainder of which continues on to perform
remaining scaling and consolidation operations. The inputs of the algorithm are the set of
hosts in the data centre (H), the set of running applications (A), and a timeout limit on host
stress (Θτ). The algorithm attempts to resolve stress situations through careful execution of
autoscaling operations. Once a host has been stressed for the specified number of algorithm
executions, however, the algorithm triggers a relocation via migration rather than continuing to
wait for autoscaling operations to clear the stress situation.

First, hosts are classified as described in Section 2.4. The number of consecutive times that
the host has been stressed is then recorded in lines 2-3. In line 4, the evaluateScaling() method
executes a modified version of the autoscaling algorithm (Algorithm 7) for each application.
It varies from Algorithm 7 in that rather than performing the autoscaling operations directly, it
returns a list of tasks to be scaled up (T ↑) and scaled down (T ↓). Note that this algorithm could
easily be exchanged for a more complex autoscaling algorithm, or even a different algorithm
for each application, as required by the application owner. It is simply required to return the list
of tasks to scale. For our current implementation, however, the algorithm presented in Section
5.4 is used.

The algorithm then attempts to relieve the stress situation of each stressed host, iterating
through them in line 5. Line 7 calculates the amount by which CPU utilization on the host
exceeds the stress threshold (Ω∆). The first step in relieving this stress is to determine whether
or not the effect of pending scale up operations will relieve the stress without further action
required. Since task instances of each task share incoming work, a scale up operation will
result in a portion of the work from each existing task instance being taken by the new instance.
We calculate the total estimated reduction in CPU utilization for the host (ΩΓ), and determine
if it will be enough to return the host to a non-stressed state (lines 8-12). If the pending scale
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up operation(s) will sufficiently reduce the CPU utilization, no further action is required.
Next, the algorithm looks for pending scale down operations in which the task being scaled

down contains an instance which is running on the stressed host (lines 13-21). If a task is
found, we select for shut down the task instance running on the stressed host (line 18). The
task is then removed from the set of tasks pending scale down operations (line 19). No further
action is taken. If, however, neither of the previous attempts were successful, and the host
has remained stressed for the specified timeout period (Θτ), we perform a relocation via live
migration. Based on an evaluation of multiple possible values, we set the timeout value to 2
algorithm executions. Relocation is then performed in a similar manner to Algorithm 1.

Algorithm 8: Integrated Algorithm - Stress Handling
Data: H, A, Θτ

H!,H+,H−,H∅ ← classify(H)1

for h ∈ H! do θh ← θh + 12

for h ∈ H+ · H− · H∅ do θh ← 03

T ↑,T ↓ ← evaluateScaling(A)4

for h ∈ H! do5

done← FALSE6

Ω∆ ← Ω
′

h −Ω
τ

7

ΩΓ ← 08

for t ∈ T ↑ do9

for i ∈ It do10

if vi ∈ Vh then11

ΩΓ ← ΩΓ + estimateReduction(i)12

if ΩΓ > Ω∆ then done← TRUE13

if done = FALSE then14

for t ∈ T ↓ do15

for i ∈ It do16

if vi ∈ Vh then17

removeInstance(t, i)18

T ↓ ← T ↓ \ {t}19

done← TRUE20

break21

if done then break22

if done = FALSE & θh > Θτ then relocate(h)23

The remainder of the algorithm continues to make use of pending scale up and scale down

operations to avoid migrations. First, we look for scale down operations which can help pre-
vent hosts that are close to becoming stressed from reaching the stressed threshold. Scale
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down operations on tasks that have an instance located on a host with CPU utilization within
a specified distance of the Ω

τ
threshold are performed (e.g. 5%), choosing an instance from

that host for removal. This lowers the probability that the host will become stressed in the
near future. Next, we perform all pending scale up operations, placing new instances first on
partially-utilized hosts, and then on underutilized hosts.

Next, we integrate the VM Consolidation operation into the algorithm in order to consoli-
date load onto fewer hosts. The algorithm proceeds similarly to how the operation is described
in Chapter 2, except that we make use of remaining scale down operations for tasks that have
instances on underutilized hosts. First, we calculate a shutdown cost, which is defined as the
number of VMs that must be migrated in order to empty the host, assuming that any tasks with
pending scale down operations and instances on the candidate host will choose those instances
to remove. We then iterate through the remaining scale down operations, choosing instances on
underutilized hosts with the lowest shutdown cost for removal. If no task instances are located
on an underutilized host, then the task instance on the host with the lowest CPU utilization is
chosen. By targeting hosts in this manner, we are intelligently selecting scale down operations
such that we remove instances from only a small set of hosts, and increase the likelihood of
successfully shutting down an underutilized host with fewer (or zero) migrations required. Fi-
nally, if a host has been underutilized for a specified timeout period, we attempt to remove VMs
from the host via VM live migration and subsequently shut it down. Based on a evaluation of
multiple possible values, we set the timeout to 12 algorithm executions.

5.6 Evaluation

In this section, we find suitable tuning parameter values, and evaluate our approach through
conducting a set of experiments. Due to the scale and complexity of the problem domain,
experimentation on a real system was not feasible. As such, we evaluate our work using a sim-
ulation tool, DCSim [16] [5]. We begin by evaluating our autoscaling algorithm, comparing
it against a static allocation for peak application demand. We look at a number of possible
tuning parameter values, and select a configuration for use in subsequent experiments. We do
not compare the autoscaling algorithm against other existing methods for autoscaling, as the
specific autoscaling algorithm is not the focus of this work. Next, we examine running au-
toscaling alongside an existing dynamic VM management algorithm from our previous work
[11] [7] (see Section 2.5), over a number of parameter values. We then perform a similar eval-
uation of our new, integrated application-aware algorithm, and compare it to running separate
autoscaling and dynamic allocation algorithms.
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5.6.1 Metrics

The following metrics were reported for this evaluation:

Active Hosts (Hosts): The average number of hosts in the On state. The higher the value,
the more physical hosts are being used to run the workload. Note that the peak value may be
considerably higher.

Average Active Host Utilization (Host Util.): The average CPU utilization of all hosts in
the On state. The higher the value, the more efficiently resources are being used.

Power Consumption (Ψ): Power consumption is calculated for each host, and the total
kilowatt-hours consumed during the simulation are reported. Power consumption is calculated
using results from the SPECPower benchmark [4], and is based on CPU utilization.

Application Size (Size): Application Size is the number of VMs belonging to the appli-
cation. We report the average size as a percentage of the maximum size defined for each
application.

SLA Achievement (S): SLA Achievement is the percentage of time in which the SLA con-
ditions are met. See Section 5.3 for details.

Autoscaling Operations (AS Ops): The number of scale up and scale down operations
executed.

Number of Migrations (Migrations): The number of migrations triggered during the sim-
ulation. Typically, a lower value is more desirable, as less bandwidth would be used for VM
migrations.

Total VM-time (VM-t): The combined total amount of VM running time. That is, the sum
of the running time of every VM that existed at some point in the data centre. In a public
IaaS cloud, where clients are charged on a pay-per-use basis (i.e. x dollars per VM per hour),
VM-time translates directly into cost. Reported in days.

VM-time Reduction (VM-t Red.): The percentage by which Total VM-time was reduced
versus a static allocation of peak resource requirements.

5.6.2 Experimental Setup

Our simulated data centre consists of 8 racks of 40 host machines (320 total) based on the HP
ProLiant DL160G5, with 2 quad-core 2.5GHz CPUs and 16GB of memory. Hosts are modelled
to use a work-conserving CPU scheduler, as available in major virtualization technologies. As
such, CPU shares that are not used by one VM can be used by another. No maximum cap
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S warn ωsa f e Hosts Ψ S Size AS Ops VM-t VM-t Red.
Static N/A N/A 157.47 4735kWh 100.0% 100% N/A 5605 days N/A
AS-1 0.9 0.5 73.5 2502kWh 87.6% 46% 5175 2523 days 55%
AS-2 0.9 0.3 85.6 2845kWh 89.5% 51% 3878 2881 days 49%
AS-3 0.8 0.3 87.1 2885kWh 90.8% 52% 4066 2931 days 48%
AS-4 0.6 0.3 90.0 2964kWh 92.8% 54% 4479 3040 days 46%
AS-5 0.3 0.5 85 2826kWh 94.7% 53% 7171 2918 days 48%
AS-6 0.3 0.3 97.6 3168kWh 95.7% 59% 5495 3301 days 41%

Table 5.1: Autoscaling Algorithm (AS)

App. Task Service Time (s) Visit Ratio Default Size
1 1 0.005 1 1

2 0.02 1 4
3 0.01 1 2

2 1 0.005 1 1
2 0.02 1 4

3 1 0.005 1 1
2 0.02 1 4
3 0.01 1 2
4 0.01 0.5 1
5 0.02 0.5 2

4 1 0.01 1 1

Table 5.2: Applications

on CPU is set for VMs. When the CPU is at maximum capacity and VMs must compete for
resources, VMs are assigned CPU shares in a fair-share manner. Memory is statically allocated
and is not overcommitted.

We model a set of interactive applications running within the data centre, as described in
Section 5.3. Task instances run on VMs with 1 virtual core and 1GB of RAM. We defined a
set of 4 artificial applications of varying configurations. Parameter details for the applications
are listed in Table 5.2. The maximum size for each application is calculated as its default size
scaled up by a scale factor of 3-6x, chosen randomly. The user think time for each application
is set at 4 seconds.

The number of active users for each application changes dynamically based on real work-
load traces. Each application uses a trace built from one of 3 sources: ClarkNet, EPA, and
SDSC [2]. We compute a normalized workload level based on request rate, in 100 second
intervals, for each trace. These levels are used to define the current number of users of each
application. The normalized workloads are scaled such that the peak number of clients receive
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a response time of 0.9 seconds (just under the defined SLA threshold) when all application
tasks have their maximum number of instances. To ensure that applications do not exhibit
synchronized behaviour, each applications starts its trace at a randomly selected offset time.

For each experiment, a base load of 10 applications is generated in the first 20 hours (in
simulation time) of the experiment, which remain in the data centre for the duration of the
experiment. Beginning at the 24 hour mark, additional applications dynamically arrive and
depart the system, varying the total number of applications randomly between 10 and 50 every
2 simulated days. These applications have a life span of approximately 2 days, after which
they terminate and depart the data centre. Every application is generated with randomly chosen
configurations and scale factors. We use 10 different randomly generated application sets to
evaluate our work, and all presented results are averaged across experiments using these 10
sets. We run our experiments for 8 simulation days, and we discard data from the first day of
simulation to allow the system to stabilize before recording results (resulting in 1 full week of
recorded simulation time).

5.6.3 Autoscaling

We compared the autoscaling algorithm (Section 7) against a static allocation. The static al-
location creates the maximum number of instances for each application task, places all task
instances (VMs) at the start of the experiment, and does not modify the allocation or number
of instances further. As such, each application is allocated enough resources to meet peak
demand, at all times. In contrast, the autoscaling algorithm attempts to adapt the size of each
application to match fluctuating workload demands. Various values for tuning parameters S warn

and ωsa f e were also evaluated, with the different configurations labelled as AS-1 through AS-6.
Other tuning parameters, such as Wρ, were chosen based on a separate evaluation of potential
values. The autoscaling algorithm is executed every 5 minutes, again based on a evaluation of
a number of possible frequencies. New task instances from scale up operations are placed in
the first available host. During a scale down operation, an arbitrary task instance is chosen, as
the autoscaling algorithm is based on potentially client-defined rules and has no knowledge of
host state.

Table 5.1 presents a portion of the results of the autoscaling parameter evaluation. Results
for other tested parameter values were omitted as they did not add any significant additional
insights. All tested tuning parameter configurations result in a reduction in VM-time and power
consumption. As our goal is to preserve SLA performance while reducing costs, we consider
AS-6 to be the best configuration of the autoscaling algorithm. It provides a 41% reduction
in total VM-time and a 33% reduction in power consumption, while maintaining 95.7% SLA
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> 99% 21.3
> 95% 51.2
> 90% 63.4
< 90% 9.2
Mean 95.6%
StDev 4.9%

Max 99.97%
95th 99.9%
75th 99.1%
50th 97.6%
25th 93.7%
Min 77.8%

Table 5.3: Detailed SLA for AS-6

achievement. As such, we use this configuration in subsequent experiments. Table 5.3 provides
a more detailed look at SLA achievement under algorithm AS-6. Clearly, a few applications
suffer more SLA violations than the majority. This is likely due to the fact that we are applying
the same tuning parameter values to a set of diverse, randomly configured applications, rather
than finding ideal values for each application. In a real deployment, these values would be cho-
sen on a per-application basis, or learned over time, to provide the required SLA performance.

5.6.4 Autoscaling with Dynamic VM Management

We now add an existing dynamic VM management approach, running alongside our autoscal-
ing algorithm. They run independently, with no knowledge of the actions being performed
by the other. The autoscaling algorithm has knowledge only of application metrics, such as
response time and VM CPU utilization, and makes decisions accordingly. The dynamic VM
management algorithm has knowledge of host states, but no knowledge or control over appli-
cation metrics and operations. New task instances created by the autoscaling algorithm are,
however, placed using the VM Placement operation (Chapter 2). We run a set of 12 different
experiments with varying values of Ω

τ
and Ωτ. Tuning parameters for the autoscaling algorithm

are identical to the values used in algorithm AS-6 in Section 5.6.3.

Table 5.4 presents the results of our experiments. Compared to the autoscaling algorithm
alone (Table 5.1), we see a 25-33% savings in power consumption. This, however, comes at
the expense of SLA achievement. While lower Ω

τ
values lead to better SLA achievement, they

also lead to a significant increase in the number of migrations performed. In addition, there
is an increase seen in the number of autoscaling operations, which indicates that consolida-
tion is affecting the behaviour of the autoscaling algorithm. Decreasing Ωτ trades increased
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Ω
τ

Ωτ Hosts Host Util. Ψ S Migrations AS Ops VM-t
90 60 57.7 78.6% 2116kWh 89.0% 9653 7144 3824 days
90 50 58.3 78.3% 2134kWh 89.0% 8750 7167 3841 days
90 40 58.3 77.9% 2132kWh 88.9% 8350 7129 3818 days
85 60 59.5 77.0% 2172kWh 90.2% 16481 7043 3772 days
85 50 59.6 76.8% 2174kWh 90.2% 15356 7037 3770 days
85 40 59.9 76.3% 2181kWh 90.2% 14688 7002 3758 dayss
80 60 61.6 74.8% 2233kWh 91.5% 23734 6886 3698 days
80 50 62.1 74.5% 2245kWh 91.4% 22238 6901 3703 days
80 40 62.6 73.8% 2260kWh 91.6% 21337 6891.7 3703 days
75 60 64.9 72.0% 2326kWh 92.7% 31297 6792 3657 days
75 50 65.4 71.5% 2342kWh 92.6% 29056 6816 3667 days
75 40 65.8 70.9% 2349kWh 92.6% 27886 6779 3648 days

Table 5.4: Separate Autoscaling and Allocation (AS+DVM)

power consumption for improved SLA and migration count. We argue that using Ω
τ

= 80%
and Ωτ = 40% is the best choice of configuration for the separate dynamic VM management
algorithm, as it provides significant power savings while maintaining good SLA achievement
and requiring significantly fewer migrations than with a further reduced Ω

τ
. This, of course, is

valid only for our particular experimental configuration, but serves to show both the importance
of the parameter values as well as the control they provide over the algorithm. In the future,
these values could be determined automatically via a machine learning algorithm. We use this
configuration for further comparison in Section 5.6.6.

5.6.5 Integrated Algorithm

We now evaluate our newly developed integrated autoscaling and dynamic VM management
algorithm. Once again, we run a set of 12 different experiments with varying values of Ω

τ
and

Ωτ. Autoscaling decisions are made in the evaluateScaling() method (see Algorithm 8) using
the same autoscaling tuning parameter values as algorithm AS-6 in Section 5.6.3, to provide a
fair comparison.

Table 5.5 presents the results of our experiments with the integrated algorithm. Compared
with separate autoscaling and dynamic VM allocation algorithms, we can see a notable im-
provement in SLA achievement, reaching nearly that of autoscaling alone. Furthermore, we
note a significant decrease in the number of migrations, falling in line with our goals for the
development of the algorithm, as well as fewer autoscaling operations. Again, we argue that
using Ω

τ
= 80% and Ωτ = 40% is the best choice of configuration for the integrated algorithm,
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Ω
τ

Ωτ Hosts Host Util. Ψ S Migrations AS Ops VM-t
90 60 57.8 78.6% 2122kWh 88.8% 6612 7241 3855 days
90 50 63.8 72.8% 2291kWh 92.4% 4464 6928 3697 days
90 40 70.2 66.9% 2458kWh 93.6% 3471 6646 3600 days
85 60 58.3 78.0% 2136kWh 89.6% 6652 7136 3805 days
85 50 64.2 72.3% 2301kWh 92.8% 4790 6866 3675 days
85 40 70.9 66.7% 2480kWh 93.9% 3924 6634 3604 days
80 60 59.5 77.1% 2172kWh 90.7% 6954 7093 3760 days
80 50 65.3 71.7% 2334kWh 93.1% 5256 6850 3673 days
80 40 70.5 66.6% 2469kWh 94.1% 4346 6573 3573 days
75 60 61.0 75.8% 2220kWh 91.7% 7304 7016 3734 days
75 50 66.0 70.9% 2355kWh 93.4% 5686 6808 3652 days
75 40 71.0 66.1% 2483kWh 94.2% 4815 6520 3563 days

Table 5.5: Integrated Algorithm (INT)

as it provides significant power savings, sacrifices very little in terms of SLA achievement, and
exhibits one of the lowest migration counts. We use this configuration for further comparison
in Section 5.6.6.

5.6.6 Discussion

Figure 5.3 presents a visual comparison between the evaluated algorithms over four different
metrics: STATIC refers to a static allocation of peak resource requirements; AS is the au-
toscaling algorithm running alone; AS+DVM is the autoscaling and dynamic VM management
algorithms running separately; and INT is the integrated application-aware algorithm. Note
that we compare SLA Violation, which is the inverse of SLA achievement, and as such lower
values are better.

The static allocation (STATIC) naturally involved no SLA violation or migrations, but com-
pared to all other algorithms, has the highest VM-time and power consumption. This represents
higher costs for both cloud provider (power costs) and cloud client (VM rental costs). The au-
toscaling algorithm (AS) adds some level of SLA violation, but significantly reduces power
consumption and VM-time compared to static. Further improvements in power consumption
can be made through the use of dynamic VM management in the remaining algorithms. The
AS+DVM algorithm results in the most power savings, but at the expense of the worst SLA
violation and a very large migration count. Finally, the INT algorithm corrects this problem,
offering similar power savings (22% better than AS) while drastically reducing the required
number of migrations. Total VM-time for all experiments featuring dynamic VM management
was slightly higher than for AS, indicating that dynamic VM management caused additional
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Figure 5.3: Algorithm Comparison

scale up operations to be triggered due to CPU contention.

5.7 Conclusions and Future Work

Both cloud providers and clients must strive to make efficient use of their resources in order to
reduce their infrastructure requirements and costs. Cloud providers must consolidate load onto
as few physical machines as possible in order to reduce power consumption and/or serve more
clients with less hardware, while still providing the resources that their clients require. Cloud
clients should provision only the resources they require to meet their current demand and objec-
tives. To this end, application autoscaling dynamically adds and removes resources (VMs) to
and from an application as demand changes. We introduced a rule-based heuristic autoscaling
algorithm to address cloud client needs, and ran it alongside a dynamic VM allocation algo-
rithm from our previous work [11] [7] to perform consolidation. While power consumption
was reduced, it was at the cost of SLA achievement and a large number of VM live migrations.
We developed a new, integrated application-aware algorithm which leverages some control
over autoscaling operations to assist dynamic VM allocation. Through this approach, we were
able to restore much of the lost SLA and greatly reduce the number of migrations required.
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Future work includes investigating methods for reducing the effect of dynamic VM allo-
cation on total VM-time. A more intelligent autoscaling algorithm could also be investigated,
with the potential for each application to make use of a different, custom algorithm. A number
of tuning parameters influence the performance of the autoscaling and dynamic VM allocation
algorithms. Rather than determining values for these parameters experimentally, a machine
learning approach could be developed to automatically discover the best values for each en-
vironment. Finally, we have previously developed a distributed algorithm for dynamic VM
allocation [17], which could be extended to handle both autoscaling and dynamic VM man-
agement.
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Chapter 6

Topology-aware Dynamic VM
Management

6.1 Introduction

When placing VMs within the data centre, most work considers the data centre to be a simple
pool of hosts, without structure. This approach is reasonable when placing individual VMs,
but if we consider placing applications consisting of a set of communicating VMs, this sim-
plification becomes problematic. A data centre is not simply a flat collection of servers, but
rather has a hierarchical networking topology. Hosts are organized into racks, and racks into
clusters, as defined in Chapter 2.3. Thus, the placement of communicating VMs, relative to
each other, can have an effect on both application performance as well as network utilization.
As such, VM placement should consider the data centre network topology when placing sets of
communicating VMs. For example, VMs that communicate frequently with each other would
benefit from being located near each other, ideally in the same rack, to reduce both network
latency and load on higher level networking devices.

The data centre topology should also be considered when performing migrations for dy-

namic VM management. As much as possible, VM migrations should be performed across the
fewest networking links possible (e.g. within a single rack), in order to reduce the utilization of
higher level networking devices. In this work, we present a topology-aware approach to plac-
ing applications. We attempt, whenever possible, to place VMs belonging to an application
within a single rack, and to maintain this constraint during dynamic VM management.

The remainder of the chapter is organized as follows: Section 6.2 presents related work on
topology-aware VM placement. We define the problem in Section 6.3 and propose a topology-

This chapter is based on a journal paper, currently under submission
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aware dynamic VM management algorithm in Section 6.4. The algorithm is evaluated in Sec-
tion 6.5, and we conclude in Section 6.6.

6.2 Related Work

Most work on dynamic VM management does not consider the data centre topology. Rather,
the data centre is treated as a flat collection of hosts (servers), and VMs are placed without
regard for their location within the network topology [1, 5, 6, 9].

Some work considers data centre topology when placing applications. SecondNet [4] han-
dles placement of virtual data centres (VDCs). VDCs not only define a set of VMs, but also
the communication links required between them. SecondNet is capable of providing bandwidth
guarantees between VM pairs, and of modifying the VDC allocation in response to scaling or
server failures. They also perform live migration in order to move VMs in a VDC closer to-
gether (fewer network hops), when possible. Zhani et al. [10] introduce VDCPlanner, which
also focuses on VDC placement, as well as scaling and dynamic consolidation. Finally, Mann
et al. [7] present Remedy, a VM management system which takes data centre networking into
consideration. Remedy monitors bandwidth utilization, and makes use of VM migrations to
shift load and relieve congested network links. Our work differs from existing topology-aware
application placement in that we consider data centre topology while performing dynamic VM
management with overcommitting of resources.

6.3 Problem Definition

In this section, we present the new aspects of the dynamic VM management problem that we
are addressing in this work. We build upon the description of the core problem presented in
Chapter 2.3, as well as the extension to include applications presented in Chapter 5.3. We
present a further extension to consider the placement of applications in a topology-aware man-
ner.

6.3.1 Application Placement

Tasks in an application must communicate with each other in order to process user requests.
We assume that, for the purpose of reducing network latency, it is desirable to place all task
instances of an application within a single rack, when possible. Furthermore, this reduces
network usage of higher level switches (i.e. above rack-level). We define the spread of an
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application, spreada(s), as the number of racks which contain VMs running task instances of
application a ∈ A.

min
∑
a∈A

spreada(s)

There are situations in which it may be desirable to place application components in phys-
ically distinct locations, for a variety of purposes, including fault tolerance. This can mean
placing replicated components in different clusters of a data centre, or more likely, in different
data centre locations entirely. For the purposes of this work, we do not consider this situation.
We believe that this simplification is reasonable, as including such placement considerations
would represent an extension of this work, rather than an invalidation of it.

6.3.2 VM Live Migration

In order to reduce the impact of dynamic VM management on networking, it is desirable to
contain migrations within a single rack as much as possible. That is, the source and target host
in a VM migration should both be located in the same rack. Let λ be a migration operation,
defined as λ = (v, hs, ht), where hs is the source host (the original location of the migrating
VM), and ht is the target host (the destination of the VM). Let the set of all migrations in a
given time period be defined as Λ. We define a basic cost function for migrations as follows:

cost(λ(v, hs, ht)) =

 0 if hs ∈ r1 ∧ ht ∈ r2 ∧ r1 , r2

1 otherwise

Finally, we define an objective to minimize this cost.

min
∑
λ∈Λ

cost(λ)

6.4 Topology-aware Algorithm

When placing and dynamically managing applications, consideration should be taken as to
where in the topology of the data centre individual components of the application (i.e. VMs)
are placed. Individual tasks, and therefore task instances, must communicate with each other
in order to complete user requests. We therefore attempt to place all task instances belonging
to a single application within the same rack, as described in Section 6.3.1. The assumption is
that such a placement will reduce network latency between communicating task instances, as
well as reducing the usage of higher level networking elements. We incorporate the targeting
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of applications to racks into the integrated algorithm presented in Chapter 5.5, to define a
new, topology and application-aware dynamic VM management algorithm. In order to enforce
the placement of applications within a single rack, both the VM Placement operation and the
unified Dynamic Allocation operations must be modified.

6.4.1 VM Placement

The VM Placement operation is modified to make a best effort at placing all VMs of an appli-

cation within the same rack. It does so in a first-fit, greedy manner by first attempting to place
the initial request of VMs into each rack in the data centre, executing the placement as soon
as a suitable candidate rack is found. If none is found, it then attempts to place the application
in two racks, then three, and so on, terminating either when the application is placed or has
failed placement on the set of all available hosts. Note that we do not attempt to move existing
applications to other racks in order to clear space for the newly arriving application, as the
performance overhead of live migrating an entire application is assumed to be unacceptable.
Nevertheless, the feasibility of such an approach should be investigated in future work.

The number of applications placed in each rack, and their size, can have an effect on the
efficiency of dynamic VM management. Too few VMs within a rack can result in a reduction
in the ability of the algorithm to effectively consolidate load, and too many results in task in-
stances of an application being spread across multiple racks as applications scale and workload
changes. Targeting a specific rack utilization (say, in terms of total CPU usage) is challenging,
however, since applications scale up and down with changing workloads, and even individual
VMs consume varying amounts of resource. As such, we simply use the number of active

(powered on) hosts in a rack as a rough measure of rack utilization, and target a specified num-
ber of active hosts (Υh). Racks with fewer than Υh active hosts are sorted in descending order
by number of active hosts for placement of a new application. If no placement is found, then
placement is attempted using racks with more than Υh active hosts.

6.4.2 Dynamic Management

When performing migrations for VM Relocation (relieving a stressed host), VM Consolidation,
or when instantiating a new task instance for a scale up operation, we sort potential target
hosts and greedily choose the first successful match. Since hosts are simply sorted based on
their utilization, as described in Chapter 2.5 and Algorithm 1, this may result in VMs being
migrated into a different rack, thus breaking the single-rack application placement. In order to
correct this situation, we modify the target host sorting. First, we define the majority rack of
an application to be the rack which contains more task instances of the application than any
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other rack. We consider this to be a home rack for the application, and attempt to keep all task
instances (VMs) within this rack.

Next, the target host list is divided into two new categories: those within the majority rack

(H<) and those outside of it (H 6<). Each of these categories is then further subdivided into
the utilization categories described in Chapter 2.4, namely, stressed (H!), partially utilized

(H+), underutilized (H−), and empty (H∅). Finally, we modify the target list construction in
Algorithm 1 (line 3) as follows:

targets← sort(H+ ∩ H<)

· sort(H− ∩ H<)

· sort(H∅ ∩ H<)

· sort(H+ ∩ H 6<)

· sort(H− ∩ H 6<)

· sort(H∅ ∩ H 6<)

This target list ordering favours hosts within an applications majority rack first, and only resorts
to outside hosts when none inside are available. This sorting is performed on a VM-by-VM
basis, since each VM may belong to a different application and therefore have a different ma-

jority rack. This also leaves room for alternate sort orders to be implemented in order to enforce
alternative placement rules (that is, other than single-rack placement).

Despite attempts to contain an application within a single rack, it may be the case that a
migration or a scale up operation results in an application becoming spread across more than
one rack. We add two measures to combat this: 1) carefully choosing task instances to remove
in scale down operations, and 2) correcting placement via migration. Prior to performing VM

Consolidation, in the integrated dynamic allocation algorithm described in Chapter 5.5, we
look for pending scale down operations in which task instances belonging to the task are not
located on the applications majority rack. If such operations are found, the instance located on
a different rack is chosen for removal, thus completing the scale down operation and resolving
the rack placement problem. If there is no such scale down operation pending, and a VM is
located outside of its applications majority rack, then we perform a live migration in order
to move the VM onto it, if such a target host is available. We refer to this as a placement

correction migration.
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6.5 Evaluation

In this section, we evaluate a range of values for the target number of active hosts per rack
(Υh), and the compare the topology-aware algorithm against the integrated autoscaling and
dynamic VM management algorithm proposed in Chapter 5. We conduct our evaluation using
a simulation tool, DCSim [8] [3].

6.5.1 Metrics

The following metrics were reported for this evaluation:

Power Consumption (Ψ): Power consumption is calculated for each host, and the total
kilowatt-hours consumed during the simulation are reported. Power consumption is calculated
using results from the SPECPower benchmark [2], and is based on CPU utilization.

SLA Achievement (S): SLA Achievement is the percentage of time in which the SLA con-
ditions are met. See Section 5.3 for details.

Number of Migrations (Migrations): The number of migrations triggered during the sim-
ulation. Typically, a lower value is more desirable, as less bandwidth would be used for VM
migrations.

Inter-rack Migrations (Inter-rack Migs): The number of migrations in which a VM was
moved into a new rack. A lower value is more desirable, as fewer network elements would be
involved in migrations.

Placement Correction Migrations (P.C. Migs) The number of migrations performed specif-
ically to correct the rack placement of an application.

Spread Penalty (SP): The Spread Penalty is a penalty applied when an application(s) in
the data centre are placed across more than one rack, thus violating the single-rack application
placement objective. It is calculated as the combined total amount of time all applications spent
placed on more than one rack, in hours.

6.5.2 Experimental Setup

For the purposes of this evaluation, we use the same experimental setup as in Chapter 5.6.2.
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Υh Ψ S Migrations Inter-rack Migs P.C. Migs SP
0.1 2465kWh 92.0% 7628 3.2 3.2 0
0.2 2466kWh 92.3% 6620 9 8.7 1.3
0.3 2460kWh 92.6% 6310 17.4 17.4 0.1
0.4 2469kWh 92.7% 5741 60.8 59.4 5.9
0.5 2458kWh 92.9% 5484 149.7 144.1 22.3
0.6 2442kWh 92.8% 5386 286.9 278 33.7
0.7 2435kWh 92.7% 5392 572.3 549.1 79.6
0.8 2411kWh 92.4% 5515 1082.7 1000.6 182.6
0.9 2387kWh 92.3% 5523 1600.4 1422.6 280.5
1.0 2348kWh 91.8% 5714 2397.7 2032.4 486.2

Table 6.1: Topology-aware (INT+TOPO) Rack Target (Υh)
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Figure 6.1: Rack Utilization Target

6.5.3 Topology-aware Algorithm

First, we evaluate a range of potential values for the rack utilization target parameter (Υh). Table
6.1 presents the results of these experiments. We can see that power consumption decreases
slightly with higher rack utilization targets, but not by a large amount. SLA achievement
and migration counts are best in the mid-range values, and inter-rack migrations, placement
correction migrations, and spread penalty all increase with rack utilization target. Figure 6.1
plots migrations and spread penalty as the rack utilization target increases. We use Υh = 0.5
for our final evaluation, as it provides the best SLA, close to the lowest migration count, and
does not exhibit the increase in inter-rack migrations and spread penalty seen in higher values.

Table 6.2 compares the results of the original integrated autoscaling and dynamic VM man-
agement algorithm (INT) with the topology-aware version (INT+TOPO). The topology-aware
algorithm sacrifices a small amount of SLA, and exhibits an increase in total migrations. On
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Alg. Ψ S Migs Inter-rack Migs P.C. Migs SP
INT 2469kWh 94.1% 4346 2601 N/A 3481.7

INT+TOPO 2458kWh 92.9% 5484 149.7 144 22.3

Table 6.2: Topology-aware vs Topology-unaware

the other hand, topology-aware significantly reduces the number of inter-rack migrations and
the application spread penalty, thus demonstrating that it achieves the goal of containing each
application within a single rack.
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Figure 6.2: Algorithm Comparison

6.6 Conclusions and Future Work

Most work models the data centre as a flat pool of hosts (servers), with no structure. When
placing applications consisting of multiple VMs, however, this simplistic view becomes in-
adequate. The network topology should be considered in this situation, as the placement of
communicating VMs can have an effect on application performance (due to network latency)
as well as overall network utilization in the data centre. Furthermore, migrations should be
performed across as few network links as possible, in order to reduce the impact of migration
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bandwidth usage.
We present a topology-aware approach to application and VM placement, as well as dy-

namic VM management. In this work, we make a best effort attempt to place all VMs be-
longing to a single application within the same rack, to reduce network latency between VMs
and to reduce traffic in higher levels of the network. Furthermore, we strive to maintain this
placement during dynamic VM management, and keep as many migrations as possible within a
single rack. In the event that an application becomes spread across more than one rack, we per-
form corrective actions to resolve the issue. Through evaluation by simulation, we showed that
the topology-aware algorithm achieves single-rack placement well, and significantly reduces
the number of migrations which take place across more than one rack.

In the future, more complex placement constraints for application tasks and task instances
should be investigated. For example, different placement rules for fault-tolerance or availability
could be incorporated into the algorithm. The possibility of migrating entire applications to a
different rack in order to improve overall placement or make room for an incoming application
could also be investigated.



Bibliography

[1] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurrency Computat.: Pract. Exper., pages 1–24,
2011.

[2] Standard Performance Evaluation Corporation. Specpower ssj2008 benchmark. http:
//www.spec.org/power\_ssj2008/, July 2014.

[3] Univeristy of Western Ontario DiGS Research Group. Dcsim on github. http:

//github.com/digs-uwo/dcsim, July 2014.

[4] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong, Peng Sun, Wen-
fei Wu, and Yongguang Zhang. Secondnet: a data center network virtualization archi-
tecture with bandwidth guarantees. In Proceedings of the 6th International COnference,
page 15. ACM, 2010.

[5] Gastón Keller, Michael Tighe, Hanan Lutfiyya, and Michael Bauer. An analysis of first
fit heuristics for the virtual machine relocation problem. In SVM Proceedings, 6th Int.

DMTF Academic Alliance Workshop on, October 2012.

[6] Gunjan Khanna, Kirk Beaty, Gautam Kar, and Andrzej Kochut. Application performance
management in virtualized server environments. In NOMS Proceedings, 2006 IEEE/IFIP,
2006.

[7] Vijay Mann, Akanksha Gupta, Partha Dutta, Anilkumar Vishnoi, Parantapa Bhattacharya,
Rishabh Poddar, and Aakash Iyer. Remedy: Network-aware steady state vm management
for data centers. In NETWORKING 2012, pages 190–204. Springer, 2012.

[8] Michael Tighe, Gastón Keller, Michael Bauer, and Hanan Lutfiyya. Towards an improved
data centre simulation with DCSim. In SVM Proceedings, 7th Int. DMTF Academic

Alliance Workshop on, October 2013.

90



BIBLIOGRAPHY 91

[9] Michael Tighe, Gastón Keller, Hanan Lutfiyya, and Michael Bauer. A Distributed Ap-
proach to Dynamic VM Management. In Network and Service Management (CNSM),

2013 9th International Conference on. IEEE, 2013.

[10] Mohamed Faten Zhani, Qi Zhang, Gwendal Simona, and Raouf Boutaba. Vdc plan-
ner: Dynamic migration-aware virtual data center embedding for clouds. In Integrated

Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on, pages
18–25, 2013.



Chapter 7

DCSim

7.1 Introduction

Techniques and algorithms for dynamic resource management in the data centre are intended
for use on a very large scale. Data centres providing cloud services continue to grow in size,
with thousand to tens-of-thousands of servers to manage. This presents a unique challenge
to researchers developing methods and algorithms for management, as the scale of the target
environment precludes the use of a physical testbed. Consequently, simulation is commonly
used for the evaluation of management techniques. Simulation also helps researchers quickly
evaluate and fine-tune algorithms at a speed and scale not possible with a real implementation.
Once a technique has been evaluated and fine-tuned using a simulation, further experimentation
can be performed using a real infrastructure, albeit very likely on a much smaller scale.

There is therefore a need for an easily customizable and extensible simulation tool that
model a virtualized, multi-tenant data centre. Furthermore, the tool must provide an applica-
tion model to simulate the interactions and dependencies between VMs working together as a
single service (e.g. a multi-tiered web application). Even if management algorithms only treat
VMs as ‘black boxes’, with no knowledge of their applications, it is still important to model
these applications within the simulation to drive VM behaviour and resource utilization. That
being said, some IaaS providers (such as Amazon AWS [1]) offer advanced services, such as
auto-scaling and dynamic load balancing, thus presenting an even stronger case for a detailed
application model within the simulation tool.

Other features of virtualization, such as a work conserving CPU scheduler used in modern
hypervisors, resource allocation and VM migration and replication must also be available. Host
power states (on, off, suspended) must be modelled with appropriate transition times between

This chapter is based on work published in [13] and [14]
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states. The tool must also focus on usability, providing structures to allow for rapid proto-
typing and evaluation of management systems and algorithms. We present a new simulator,
DCSim (Data Centre Simulator), designed specifically to address these requirements. DCSim
is an extensible simulation framework designed to study VM management in a data centre pro-
viding an IaaS Cloud. DCSim is flexible, has features to aide in event and message sending,
event callbacks and sequencing, and the creation of autonomic managers and communication
between them. It also provides classes to help streamline the creation of new experiments,
detailed output options and metrics, and a visualization tool to help provide a new perspective
on the behaviour of data centre management methods and systems.

The remainder of this chapter is organized as follows: Section 7.2 presents related work
in data centre and cloud simulation. Section 7.3 describes the architecture, core features and
components. Section 7.4 gives some detail on how to configure and run experiments with
DCSim. Section 7.5 provides an evaluation of the simulator through a demonstration of its use,
and finally, Section 7.6 presents some conclusions and future work.

7.2 Related Work

There are a small set of existing simulation tools available, each with their own strengths,
weaknesses, and target environments. GreenCloud [10] is designed to evaluate the energy
costs of operating a data centre. It is a packet-level simulator built as an extension to Ns-2 [12],
and provides a detailed model of communication hardware and power consumption of each
element of the data centre. It does not, however, include modelling of virtualization. As such,
it is not suitable for virtualized resource management research.

MDCSim [11] is a data centre simulation platform designed to simulate large scale, multi-
tier data centres. It focuses on data centre architecture and cluster configuration, measuring
both performance and power metrics. The simulator models a data centre running a three-
tiered web application (web, application and database tiers), with the ability to modify and
evaluate the configuration of each tier. Again, virtualization is not considered, nor are multiple
tenants of the data centre. Also, it is built using a commercial product and is therefore not
publicly available.

GDCSim (Green Data Centre Simulator) [8] aims to simulate both the management and
physical design of a data centre, examining the interactions and relationships between the
two. The goal is to fine-tune the interactions between management algorithms and the phys-
ical layout of the data centre, such as thermal and cooling interactions with workload place-
ment. Resource management considers HPC (High Performance Computing) job placement
and scheduling, power modes, and cooling settings. Transactional workloads (such as a web
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server) are modelled using a single workload, load-balanced across the data centre. Multiple
tenants of the data centre and virtualization technology are not considered.

CloudSim [5] simulates a virtualized data centre, with multiple clients operating VMs.
However, it implements an HPC-style workload, with Cloudlets (jobs) submitted by users to
VMs for processing. It can be manipulated to simulate an interactive, continuous workload
such as a web server [4], but it lacks a real model of such an application. An extension of
CloudSim, NetworkCloudSim [7], considers communication costs between VMs performing
parallel computations, but again focuses on HPC-style workloads rather than interactive work-
loads. Additionally, our work on DCSim adds data centre organization components such as
racks and clusters not present in CloudSim.

SimWare [15] targets the modelling of data centre cooling and power costs, including the
impact of server fan power consumption as related to the temperature of the data centre, and
air travel time from CRACs to servers. Their simulated client workload is based on traces of
HPC systems, rather than interactive applications.

DCSim differs from GreenCloud, MDCSim, and GDCSim in that it is focused on a virtu-
alized data centre providing IaaS to any multiple tenants, similar to CloudSim. It differs from
CloudSim in that it focuses on transactional, continuous workloads, and models such an ap-
plication using a basic queueing model. As such, DCSim provides the additional capability of
modelling replicated VMs sharing incoming workload as well as dependencies between VMs
that are part of a multi-tiered application. SLA achievement can also be more directly and
easily measured using response time values generated by the model. It also provides metrics to
gauge power consumption, host utilization, and other performance metrics that serve to eval-
uate a data centre management approach or system. Furthermore, DCSim is designed to be
easily extended, implementing new features and functionality.

7.3 DCSim Architecture & Components

DCSim (Data Centre Simulator) is an event-based, extensible data centre simulator imple-
mented in Java, designed to provide an easy framework for developing and experimenting with
data centre management techniques and algorithms. It models a data centre offering IaaS to
multiple clients, focusing on transactional, continuous workloads (such as a web server), but
can be extended to model other workloads as well. Figure 7.1 gives a high-level overview of
the basic data centre model implemented by DCSim. The remainder of this section outlines
the components and underlying mechanisms that drive DCSim, as well as other useful features
and simulation output.
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Figure 7.1: DCSim Overview

7.3.1 VMs, Hosts, Racks & Clusters

DCSim uses a series of abstractions to organize the architecture of a data centre. These ab-
stractions are VM, Host, Rack, Cluster and DataCentre. In DCSim, a data centre consists of
a collection of clusters, each cluster being a collection of racks, and each rack a collection of
hosts. Both Cluster and Rack are designed to be homogeneous collections (in terms of their
composing elements), but DataCentre may be an heterogeneous collection.

VM

A VM in DCSim represents a virtual machine running a single application. The properties and
requirements of a VM are defined in its VMDescription, which is used to create an instance
of the VM. The VMDescription defines the number of virtual cores and the amount of CPU,
memory, bandwidth and storage resources requested. In its present state, DCSim allocates
memory, bandwidth and storage statically to a VM, in the full requested amount (they are not
oversubscribed). CPU resources, however, do not need to be fully allocated, allowing a host
CPU to be oversubscribed. Once a VM is created and started on a host, its CPU requirements
are driven dynamically by the needs of the application it is running (See Section 7.3.5 for
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details on applications in DCSim).

In order to perform dynamic management of VMs in a data centre, VMs must be moved
from one host to another using VM Live Migration. Live migration allows a VM to be moved to
another physical host with minimal downtime. DCSim supports simulating VM live migration,
and calculates the time to migrate a VM based on available bandwidth and VM memory size.
A CPU overhead is added to both the source and target host for the duration of the migration,
which can be configured as desired. Additionally, an SLA penalty is attributed to the migrating
VM.

Host

A host represents a physical machine in the data centre, capable of running VMs. Its physical
properties are defined by the following set of attributes: the number of CPUs; the number of
cores per CPU; core capacity; memory capacity; network capacity; storage capacity; and a
power model. Core capacity is defined in terms of CPU Units, where one CPU unit is equiv-
alent to 1MHz of processor speed (e.g., a 2.4GHz processor has 2400 CPU units). The power
model defines how much power the host consumes at a given CPU utilization level, and is
calculated using results from the SPECPower benchmark [6]. The benchmark provides power
consumption levels of real servers in 10% CPU utilization intervals. We use these values and
calculate intermediary values using linear interpolation. The resource utilization of the host at
any given time is calculated as the sum of the resources in use by the set of VMs it is hosting
(including its privileged domain).

A host can be in one of three primary states: on, off, or suspended, as well as transitional
states between those three. VMs are only given resources to run their applications when the
host is in the on state. The host consumes some small amount of power when in the suspended
state, and no power when off. Transition times between states can be defined in the simulation
configuration file.

Rack

A rack represents a collection of hosts in the data centre. This collection is homogeneous; that
is, all hosts in the rack are of the same type. A rack has a given number of slots that can be filled
with hosts, and this number may vary between racks. A rack counts also with two switches to
which every host in the rack is connected.
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Cluster

A cluster represents a collection of racks in the data centre. As with racks, this collection
is also homogeneous. The number of racks per cluster is not fixed, so different clusters can
have different numbers of composing elements. The cluster also contains two collections of
switches, one for the data network and one for the management network (more information on
networks in the next section).

7.3.2 Data Centre Network

In DCSim, a data centre has two different networks: a data network and a management network.
The first is used to meet the communication needs of the hosted VMs, while the second is used
for the internal management of the data centre. VM migrations make use of the management
network as do status update messages or migration requests exchanged between management
entities.

A network consists of nodes and edges, namely, NetworkElement objects and Link objects.
A Link has a certain bandwidth capacity and it connects two NetworkElement objects. There
are two types of NetworkElement: NetworkCard and Switch.

Every host has two network cards, one for each network. These network cards are con-
nected through links to their corresponding switch in the rack (two switches per rack, one
per network). At cluster-level, two network arrangements are possible: one, every rack in the
cluster is connected to a single switch (per network), which is referred to as main switch and re-
quires as many ports as there are racks in the cluster; and two, there is a two-level hierarchy of
switches (per network), where racks are connected to low-level switches and low-level switches
are connected to a single high-level switch (referred to as main switch). At data centre-level,
there is a central switch (per network) to which each cluster’s main switch is connected.

7.3.3 Simulation Engine

As DCSim is intended to be a simulation platform that can be extended to suit the needs of
a particular area of research, it is useful to take a look at the mechanism by which DCSim
advances through simulated time in order to help gauge the feasibility of possible extensions.
Algorithm 9 outlines a simplified version of the main simulation loop.

The eventQueue contains all future events that must be executed, simTime records the
current simulation time, and duration is the length of the simulation (in simulation time).
The outer loop is responsible for advancing in simulation time to the next scheduled event(s).
Changes to data centre state only occur via events; in-between events, the state of the data cen-
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Algorithm 9: Main Simulation Loop
Data: duration, eventQueue
simTime← 01

while |eventQueue| > 0 ∧ simTime ≤ duration do2

scheduleResources()3

postScheduling()4

e← peek(eventQueue)5

simTime← e.getTime()6

advanceSimulation(simTime)7

updateMetrics()8

performLogging()9

while |eventQueue| > 0∧ peek(eventQueue).getTime() = simTime do10

e← pop(eventQueue)11

handleEvent(e)12

tre is static. The first phase of the loop uses the current data centre state to schedule resources

(line 3), in which an allocation of resources/second for each VM is calculated (see Section
7.3.6). CPU scheduling is based on current application demands, in a fair-share manner up to
the maximum capacity of the host processor.

Next, the post-scheduling hook (line 4) allows data centre components to create new events
or move existing events based on dynamic resource scheduling. This enables the simulation
of operations and processes that exhibit variable runtime based on available resources. This
feature is included primarily for the planned future development of variable VM migration
times (due to changes in available network bandwidth), and batch/HPC type jobs whose run-
time is based on dynamically scheduled CPU. We then check for the simulation time of the
next event (which may have changed based on processing in postScheduling()), and advance

the simulation to the time of the next event using the calculated resource scheduling (lines 6
& 7). Simulation metrics are then updated (see Section 7.4.2) and logging is performed. The
inner loop (lines 10 to 12) executes all events that take place at the current simulation time.
The process is then repeated to advance to the next set of events.

7.3.4 Events

As DCSim is an event-driven simulation, all actions, operations and state changes in the simu-
lation are triggered by an event. Events are also used for communication between data centre
elements and management components. The basic properties of an event are the simulator
component(s) that will receive the event, and the time at which to execute it. Events are or-
dered such that, in the case of multiple events being executed at the same simulation time, they
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are executed in the order in which they were sent. Any component can send an event to another
component, or to itself in order to trigger some functionality at a specific time in the future.
The basic event class (Event) is abstract, with specific event types implementing any behaviour
or storing any data they require.

There are a number of hooks and methods which can be used to add additional functionality
to an event. Pre-execution and post-execution methods can be implemented to perform oper-
ations before and after the event is executed, such as logging event details. An event callback

can also be registered with an event, allowing one or more objects to be notified once an event
has been executed. In some cases, an event can cause several other events to be generated in
order to complete an operation, which may require the post-execution and callback methods to
be triggered only after the complete sequence of events has been executed. To accomplish this,
events can be strung together in a sequence. For example, instructing a host (i.e., a server; see
Section 7.3.1) to boot up involves one event sent to the host, and another event sent by the host
to itself some time later indicating the completion of the operation (hosts take time to boot).
These events are added in sequence together, allowing a management component to receive a
callback only once the full boot up operation has completed.

A special event subclass, MessageEvent, can be used for communication between compo-
nents by extending it with any additional functionality required. MessageEvent automatically
keeps track of the number of messages of each specific subclass that are sent during the simula-
tion. Finally, a special type of event, called the RepeatingEvent, can be used to trigger repeated
executions of the event on a regular interval.

7.3.5 Application Model

The application model in DCSim makes use of a basic queueing network. The target applica-
tion is an interactive application, such as a multi-tiered web application, in which a number of
clients interact with the system, waiting for responses before issuing a new request. Requests
enter and exit the application through a single point, with all components of the application
working together to serve each request. Individual components (tasks) of an application each
run within a VM. These VMs may be co-located on a physical machine with other VMs, and
may compete for CPU resources. This results in a reduction of VM, and therefore application,
performance. Furthermore, each physical machine in DCSim may have a different CPU, which
can also affect application performance.

In the remainder of this section, we describe the implemented model, and discuss its im-
plementation in DCSim.
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Figure 7.2: Application Model

Application Model

An application (a ∈ A) contains a set of tasks Ta, where a single task is denoted t ∈ Ta. Tasks
are performed by one or more identical task instances (i ∈ INS TS ET ), which share incoming
workload via a load balancer component. Each task instance runs within a single VM, and each
VM runs a single task instance. Figure 7.2 provides an overview of the application model.

We model the application as a closed queueing network, and solve it using Mean Value
Analysis (MVA) (or alternatively by Schweitzer’s Approximation of MVA for improved sim-
ulator performance). In Addition to a set of tasks, an application has a specified client think

time (Za), and a workload component. The workload defines the current number of clients (Na)
connected to the application, which can change at discrete points in the simulation based on a
trace file or random number generation. Tasks are defined by the default and maximum number
of instances in the task, the service time of a single request, its visit ratio (νt; the number of
times each request visits the task), and a resource size, which will be discussed later.

Load Balancing

Each task instance i is modelled by a single queue. We assume that load balancing is calculated
in some manner between instances of a task, with φi,

∑
i∈It

φi = 1 denoting the percentage of

requests sent to each instance i. Let νt be the visit ratio for task t, and νi be the visit ratio for
instance i. Then νi = νt ∗ φi. For example, if every incoming request visits t once, and the
load balancer distributes requests to each instance equally, then φi = 1/|It| for every instance.
If there were 4 instances, then νi = 1 ∗ 1/4 = 0.25 for each instance. The visit ratio of the
instances are changed, but the visit ratio of the task remains the same. Instance visit ratios
will change dynamically as new instances are added or removed. Note that we do not presently
model the load balancer as an actual “physical” component running on a server in the simulated
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data centre, but is simply a detached entity that calculates request shares for instances of a task.

Task Resource Requirements

The resource requirements of a task are defined as its resource size. The resource size defines
the expected amount of CPU, memory, bandwidth and storage expected to be available to each
instance of the task. We treat memory, bandwidth and storage as fixed requirements, which
are identical and static for all instances of a task. CPU, on the other hand, does not have to be
completely allocated, and the CPU demand of an instance varies over time based on application
workload. As such, we will focus only on the CPU resource. We define the CPU size of t as
ωsize

t .

Within DCSim, we quantify the CPU capacity of server as a single scalar value, called CPU

units. A single CPU unit is equivalent to a 1MHz clock speed, so a 2.5GHz processor would
have 2500 CPU units. A dual core 2.5GHZ processor would have 5000 CPU units. A VM
(and therefore a task instance) cannot use more CPU units than the number of virtual cores
it has been assigned multiplied by the CPU units per core on its host server. We refer to this
maximum amount of CPU that a VM can use as its CPU max, denoted ωmax

i ). The CPU load
balancing features of modern hypervisors balance load between cores and CPUs sufficiently to
justify treating the entire set of cores as a single value.

CPU size (ωsize
t ) is the total amount of CPU expected by the task, as defined in the task

resource size, and is identical for all instances of the same task. Since the actual CPU needs
of an instance vary over time, CPU demand (ωi) represents the amount of CPU required at
a specific point in time in order to process the current workload. Note that ωi <= ωsize

t . A
task instance may not, however, receive its entire CPU demand, due to contention with other
task instances (VMs) on the same server. Each server has a resource scheduler component,
which fairly divides CPU between task instances (VMs) running on the server, given their
CPU demand. The amount of CPU scheduled for a task instance is denoted ω′i .

Task Instance Service Time

The service time for a single request to a task, σt, is defined assuming that the full CPU size,
ωsize

t , is available to the task instance. This, however, may not always be the case. The service
time σi for each task instance must be adjusted to account for both the case where the server
CPU on which a instance is running has a different CPU core capacity than is specified in the
task resource size, as well as when CPU demand cannot be met due to contention (ω′i < ωi).

First, we will look into accounting for differences in CPU core capacity. Let Ωcore
h be the

CPU core capacity of the physical server running instance i, and ωcoreS ize
t be the defined CPU
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core capacity in the resource size of t. Then we calculate σi = σt×(ωcoreS ize
t /Ωcore

h ), resulting in
a faster service time for instances running on faster cores, and a slower service time for slower
cores.

Next, we calculate the effective service time, σ′i for a instance i, given that ω′i may not
be equal to ωi. If ω′i = ωi, then σi is unchanged. If, however, the ω′i < ωi, then we add an
additional, surrogate delay to account for processor queueing. We therefore calculate σ′i as

σ′i =

 σi if ω′i > ωi

σi ×
ωi
ω′i

if ω′i < ωi

Using our new service time calculations for task instances, their updated visit ratios based
on load balancing, and the application properties Na and Za, we can calculate mean applica-
tion response time and throughput, using the MVA algorithm (or an approximation). This, of
course, depends on the calculation of ωi and ω′i , which we discuss next.

CPU Scheduling

Each time there is a change in the data centre state, (e.g. a change in workload level, a new
VM to place, a VM is migrated, a VM terminates, etc.), we must determine CPU demands for
each task instance and schedule host CPU to each instance. CPU demand can be determined
using utilization values, calculated with the MVA algorithm, for each task instance (denoted
Ui). CPU demand is calculated as the maximum CPU that can be used by a task instance
(ωmax

i ) multiplied by Ui. Once CPU demand has been calculated for all task instances in all
applications, the server resource schedulers can use these values to determine the amount of
CPU to schedule to each instance. Since scheduling may have an effect on instance service
time, we then must run the MVA algorithm once more to determine the new values. In a closed
system, a change in effective service time of one task instance may affect the utilization and
demand of another. Furthermore, since task instances of several applications may be co-located
on a single server, they will interact with each other as well in the form of CPU contention.
Therefore, we must recalculate CPU demand, and repeat the process. This repeats until there
is no longer a change in utilization values, and we have arrived on the correct CPU demand
and scheduled values for each application (and therefore the corresponding response time and
throughput values). Unfortunately, there are some cases where the algorithm enters a cycle
and does not terminate. To deal with this situation, we first use a small threshold value on the
change in utilization (δτ), whereby if the change in utilization is sufficiently small, we stop
the algorithm. Second, in the event that this does not work, we have a hard limit (%τ) on the
number of loop iterations. DCSim reports the number of times that the limit is reached in the
simulation results.



7.3. DCSim Architecture & Components 103

Algorithm 10: VM Scheduling
Data: A,H, δτ, %τ

for i ∈ A do ωi ← ω′i ← ωmax
i1

for a ∈ A do executeMVA(a)2

for i ∈ A do ωi ← ωmax
i × Ui3

∆max ← ∞4

c← 05

while (∆max > δτ) ∧ (c < %τ) do6

for h ∈ H do scheduleResources(h)7

for i ∈ A do U prev
i ← Ui8

for a ∈ A do executeMVA(a)9

∆max ← 010

for i ∈ A do11

Ui ← Xi × σi × νi12

if |U prev
i − Ui| > ∆max then ∆max ← |U prev

i − Ui|13

for i ∈ A do ωi ← ωmax
i × Ui ×

σ′i
σi14

c← c + 115

Algorithm 10 shows the VM scheduling algorithm. We initialize CPU demand and CPU
scheduled for all task instances (line 1) to be equal to the maximum amount of CPU that in-
stance can use (based on the number of virtual cores it has been assigned). We then execute the
MVA algorithm (line 2), and calculate initial CPU demand (line 3). Note that since CPU de-
mand is equal to CPU scheduled, we don’t need to take into account the effective service time,
yet. This gives us the ‘ideal’ CPU demand, assuming no CPU contention. Line 4 initializes the
maximum utilization change value (∆max), and line 5 initializes the iteration counter (c).

Using these initial values, we begin our loop (lines 6-15) to refine the values based on
scheduling. The loop terminates when the maximum change in task instance utilization (∆max)
is less than a threshold value (e.g. 0.02). First, we schedule CPU for all task instances on all
servers, using the current CPU demand values (line 7). We then store the current utilization
value for all task instances (line 8), and execute the MVA algorithm again (line 9). Using the
MVA throughput results (Xi), we calculate utilization values for all instances, and record the
largest change in utilization of any instance (lines 11-13). Note that we use the original instance
service time to calculate utilization, not the effective service time, to prevent scheduling from
having an effect on the CPU demand value. CPU demand is recalculated (line 14), this time
considering the difference between effective service time and normal service time. Finally, we
increment the iteration counter.

Again, this process occurs each time there is a change in the simulated data centre state.
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Notation Definition
a ∈ A An application in the set of all applications
t ∈ Ta Task t of application a
i ∈ It Instance i of task t
Na Number of clients currently using a
Za User think time for a
νt Visit ratio of task t
φi Percentage of requests for task t sent to instance i ∈ It

Ui Utilization of i
Xi Throughput of i
ωsize

t CPU size of task t
ωi CPU demand of i
ω′i CPU scheduled for i
ωmax

i Max CPU of i
σt Service time for task t
σi Service time for instance i
σ′i Effective service time for instance i

h ∈ HOS TS ET Host h in the set of all hosts, H
Ωcore

h CPU core capacity (in CPU units) of physical server h
ωcoreS ize

t CPU core capacity defined in resource size of task t
δτ Threshold on instance utilization change
%τ Threshold on the number of scheduling rounds

Table 7.1: Notation

We record the calculated mean response time and throughput for each time interval throughout
the simulation.

Application Workload Configuration

DCSim workload traces consist of normalized workload level values in the range [0, 1], given
on a fixed time interval (e.g. every 100 seconds). Current traces are based on the number of
incoming requests to web servers from publicly available traces, in 100 second intervals. These
values then must be scaled up to match the size the application, which varies depending on the
application configuration (i.e. number of tasks, task service times, user think time, etc.). In
order to determine the proper value to scale the workload by such that the application exhibits
the desired range of utilization, DCSim includes a helper function which calculates the scaling
factor required in order to achieve either a specified maximum task instance utilization, or
maximum application response time.
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Service Level Agreements

The final piece of the puzzle is the inclusion of a basic Service Level Agreement (SLA) which
can be attached to an application in DCSim. An SLA consists simply of an upper threshold on
either response time or throughput (or both). DCSim records the percentage of time for which
SLA was achieved over the duration of the simulation, for each application. Statistics over the
set of application SLA achievement values are available. It is also possible to define a penalty
value, in terms of penalty-per-second applied during SLA violation. This can be defined per
application, so some applications can have higher penalty values than others.

7.3.6 Resource Managers & Scheduling

Host resources in DCSim are managed by a Resource Manager component on each host. The
resource manager is responsible for allocating and deallocating resources for VMs, keeping
track of the total amount of resource allocated, and deciding whether or not the host is capable
of running a given VM. The resource manager is an abstract class and must be extended to
provide the desired functionality. The default resource manager allocates memory, bandwidth
and storage statically, with no oversubscription. CPU is oversubscribed, allocating to VMs as
much CPU as they request, although they may not actually receive it if the host CPU becomes
overloaded.

While the resource manager handles allocations, the Resource Scheduler handles the schedul-
ing of dynamic resources, such as CPU, based on current demand. At present, the resource
scheduler schedules only CPU, although it could be extended to dynamically calculate usage
of other resources as well, such as bandwidth. Other resources are simply given their full al-
location, as determined by the resource manager. During the schedule resources phase of the
simulation loop (see Section 7.3.3), the resource scheduler for each host calculates the amount
of resources/second that each VM is given. In the case of CPU, this would be the number of
CPU units given to each VM. It does so in an fair-share manner, giving each VM a chance to
receive an equal amount of CPU, up to the total CPU required by its application at the current
time. CPU not used by one VM can be used by another, and any CPU amount required by a VM
over and above the capacity of the host is not scheduled, resulting in application performance
degradation.

7.3.7 Autonomic Managers & Policies

Our development of DCSim is focused on providing tools to support research on virtualized
data centre management. The Autonomic Manager (AM) and related components provide a
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framework to allow quick development of new management systems, while taking care of
some of the messaging and event handling details of DCSim automatically. The AM acts as
a container for a set of Capabilities and Policies. A Capability is simply an object that stores
data and provides methods for use in one or more policies. For example, the HostManager

capability provides a reference to a host that is managed by an AM possessing the capability.
This can be used by a Policy that is designed to manage a host in the data centre. Policies are
installed into AM, and implement the actual management logic. A policy can only be installed
in an AM that possesses the capabilities that the policy requires to function.

Policies can be triggered on a regular interval, or can respond to events sent to the AM by
another policy or component. In order to design a policy that executes on a regular interval, we
simply create a policy class that defines an execute() method, and pass the time interval to
the AM when installing the policy. To trigger a policy on the arrival of a specific event class,
we simply define an execute(ConcreteEvent e) method, and the AM will automatically
detect that the policy accepts these events, and call the policy whenever one is received.

AMs do not need to be attached to any other component, and can simply run detached from
the physical data centre infrastructure. However, they can also be attached to host objects, to
indicate that the AM is running on that Host. When this configuration is used, the AM will
only execute when the host is in the on power state.

Within this framework, it is a quick and simple process to define new policies, capabilities
and events to build a desired management system or test a management algorithm.

7.3.8 Management Actions

Common management operations performed within a simulation can be encapsulated in a Man-

agement Action. DCSim currently features management actions for instantiating a new VM,
migrating a VM, replicating a VM within an application task, and shutting down a host. Ad-
ditional management actions can be created by extending an abstract class. It is possible to
build a set of actions which can be executed either concurrently, in sequence, or in combina-
tions of the two. If a sequence of management actions is executed, the preceding management
actions must complete before subsequent ones can execute. This includes the case where some
management actions, such as VM migration, may take some time to complete.

7.3.9 Metrics

DCSim includes a mechanism for recording metrics of interest in order to evaluate management
systems and algorithms through simulation. All metrics are collected within the Simulation-

Metrics class, which is composed of specific MetricCollection objects responsible for collect-



7.4. Configuring and Using DCSim 107

ing a group of related metrics. For example, the ApplicationMetrics metric collection con-
tains a set of metrics related to the performance of applications deployed in the simulated data
centre, while the HostMetrics collection contains metrics such as host utilization and power
consumption. New metric collections can be defined to keep track of custom metrics of inter-
est to a particular experiment by simply extending the MetricCollection class and adding it to
the simulation metrics. Metric collections can output their set of recorded metrics in printed,
human-readable form or as a list of (name, value) tuples.

7.4 Configuring and Using DCSim

In this section we describe some of what is required to configure and run DCSim.

7.4.1 Workloads

As discussed earlier in Section 7.3.5, the Workload component is responsible for specifying a
dynamic workload level for applications running in the simulated data centre. In our simula-
tions, we use normalized workload traces built from 5 real web server traces: the ClarkNet,
EPA, and SDSC traces [3], and two different job types from the Google Cluster Data trace [9].
To ensure that VMs do not exhibit identical behaviour, we always start the trace for each VM
at a randomly selected offset time.

In a data centre, the set of VMs is not static; VMs continuously arrive and depart the
data centre. To model this, DCSim has a feature which dynamically adds new applications (see
Section 7.3.5) to the data centre, which are submitted by sending a Application Placement event
containing a description of the application to be instantiated in the data centre. Applications
have a lifespan chosen randomly from a specified distribution, after which they terminate. This
helps model not only changes in individual VM resource requirements, but also changes in
overall data centre utilization over the course of a single simulation.

7.4.2 Default Metrics

DCSim provides a number of useful metrics in order to help judge the performance of data
centre management systems and algorithms, including the following:

Average Active Host Utilization

The average CPU utilization of all hosts that are currently in the on state. The higher the value,
the more efficiently resources are being used.
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Max, Min, and Average Active Hosts

The maximum, minimum, and average number of Hosts in the on state at once.

Number of Migrations

The number of migrations triggered during the simulation, by each management component
that triggers migrations. Migrations are also further broken down into migrations within a
rack, across racks, and across clusters.

SLA Achievement

SLA (Service Level Agreement) Achievement is the percentage of time in which the SLA con-
ditions are met (i.e. response time is below the threshold specified in the SLA). By default,
DCSim reports the following regarding SLA achievement: mean and standard deviation; max
and min; 95th, 75th, 50th, and 25th percentiles; the number of application with > 99% achieve-
ment, > 95%, > 90%, and < 90%. Penalties can also be assigned to violating SLA on a per
application basis, and various statistics on penalties are also reported.

CPU Underprovisioning

When a VM has more CPU demand than it is scheduled, we record the difference and report the
total percentage of CPU not scheduled as CPU underprovisioned. This is done by recording
the total CPU demand calculated in the first ‘ideal’ case, and comparing it with the final CPU
scheduled. Note that computing this value would not be possible in a real-world deployment.

Power Consumption

Power consumption is calculated for each host, and the total kilowatt-hours consumed during
the simulation are reported.

Message Counts

The number of message sent, for each subclass of MessageEvent used during the simulation.

Applications

In addition to SLA related metrics, a variety of metrics are reported regarding applications de-
ployed during the simulation. The total number of applications created, placed, and completed
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are reported, as well as the number of applications that could not be placed (due to high data
centre utilization). Response time and throughput values are also recorded.

7.4.3 Performing Experiments with DCSim

In order to make configuring and performing experiments with the simulator as clean and easy
as possible, DCSim contains a set of helper classes for performing simulations. The Simula-

tionTask class encapsulates a single simulation configuration, allowing the user to configure
the simulator by implementing the setup() method, while taking care of the details of running
the simulation automatically. Simulation name, and duration can be specified, as well as a
period of time to wait before recording metrics. Finally, a seed for random number genera-
tion can be passed to the simulation task to be used to generate any random elements, such as
workload configurations. This provides repeatable experiments, which is convenient both for
debugging and for comparing management systems and algorithms. Once the task has been
run, a collection of metrics recorded during the simulation is returned.

In order to run several simulations, either sequentially or concurrently, simulation task
objects can be added to a SimulationExecutor. The simulation executor handles spawning
threads for individual simulation tasks, waiting for all tasks to complete, and returning the
resulting metric collections from each task.

7.4.4 Output & Logging

DCSim uses the logging library Apache log4j [2]. By default, only basic output is printed
to the console, with other options available for more detailed logging (at the expense of pro-
cessing time required for logging I/O). The DCSim configuration file contains several options
specifying different logging output:

Enable Detailed Console

This will cause detailed, human-readable data on the execution of the simulation to be outputted
to the console. This includes data on each Host and VM at every step in simulation, as well as
data on management operations such as VM migration.

Enable Console Log File

Console output will also be written to a log file.
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Enable Simulation Logging

Individual, detailed data on the execution of the simulation (the same data as enabled with the
Enable Detailed Console option), will be written to a separate log file for each simulation task
run, even if several simulation task objects are executed concurrently.

Enable Trace

This will enable a machine-readable version of the detailed simulation data, for use in graphing
or visualizations.

7.4.5 Visualization Tool

When developing and evaluating data centre management techniques, it can be extremely help-
ful to have a tool to visualize what is happening within the simulated data centre. We have
developed a visualization tool that makes use of the machine-readable trace output of DCSim
to provide a set of graphs describing the simulation run in detail. Furthermore, it includes an
animation, allowing the state of hosts and VMs in the data centre to be viewed as the simulation
time progresses. Host and VM resource utilization are presented, and VM migrations and new
instantiations are clearly shown. This allows the researcher to visually see how a management
system or algorithm is operating, and to gain new insight into its behaviour.

7.5 Evaluation

In this section we demonstrate how DCSim can be used to implement and evaluate a manage-
ment system, and use three different (though similar) management systems as working exam-
ples. We first describe the elements of these management systems (such as autonomic manager
capabilities, policies, and events), discuss the changes that were made from one system to the
next, and later compare the systems through simulation.

7.5.1 Data Centre Infrastructure

The target infrastructure consists of a collection of hosts and a DataCentre abstraction that
contains all of the hosts. Each host has an associated Autonomic Manager (AM), as does the
data centre. In the next sections we will discuss the capabilities of these managers and their
associated policies.
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7.5.2 Management Systems - Common Elements

Each host in the data centre has an AM associated with it. This manager possesses a capability,
namely HostManager, that acts as a knowledge base for the manager, storing all relevant man-
agement information that the policies may need to successfully execute. One such policy is
the HostMonitoringPolicy, which upon invocation collects the current status information of the
host (resources in use or allocated, power consumption, number of incoming and outgoing VM
migrations, etc.), packages the information in a HostStatusEvent message, and sends the mes-
sage to the data centre’s AM. The HostMonitoringPolicy requires the HostManager capability,
so as to be able to access the host and collect the necessary status information.

Another policy installed in every host’s AM is the HostOperationsPolicy. This policy de-
fines the behaviour of the manager upon receiving the events InstantiateVmEvent, Migration-

Event and ShutdownVmEvent. These events trigger the allocation of the resources requested
for the VM in the host, start a migration process, and stop and deallocate a VM, respectively.

At installation time, the HostMonitoringPolicy is configured to be triggered every 5 min-
utes. This behaviour is achieved by creating a RepeatingPolicyExecutionEvent with a period-
icity of 5 minutes and specifying the host’s AM as intended target. When the manager receives
the event (once every 5 minutes), it triggers the associated policy.

The data centre’s AM possesses the HostPoolManager capability, which serves to store
information about a collection of hosts (in this case, all the hosts in the data centre). In the
following sections we will discuss the policies that are installed in this AM.

7.5.3 Static Management System

The Static Management System allocates VMs in the data centre according to their expected
peak resource demand, allocating to each incoming VM the total resources requested at cre-
ation time and never modifying that allocation. This is achieved through a single management
policy, which is installed in the data centre’s AM. This policy is a VM Placement policy, which
defines how to perform the placement of incoming VMs onto hosts. Every time a VmPlace-

mentEvent is received, the data centre’s AM invokes the VM Placement policy. This policy
implements a greedy algorithm to place the incoming VM in the first host that has enough re-
sources available to fit the VM without over-committing resources. If one such hosts is found,
then the search is terminated and an InstantiateVmEvent is sent to the host. Otherwise, the VM
Placement fails and the client request is rejected. The policy relies on the manager’s HostPool-

Manager capability to get status information about all the hosts.

Another policy installed in the data centre’s manager is the HostStatusPolicy. This policy
is invoked every time a HostStatusEvent is received. The policy stores the new host status
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information in a data structure in the HostPoolManager capability of the data centre AM.

7.5.4 Dynamic Periodic Management System

The Dynamic Periodic Management System maps VMs into hosts based on their current re-
source needs. Resources such as memory, bandwidth and storage are statically allocated and
never change, but the CPU is oversubscribed, therefore allowing the system to map more VMs
to a host than is possible with the Static Management System.

Like the Static Management System, the VM Placement policy installed in the data centre’s
AM is invoked upon reception of a VmPlacementEvent. This policy is similar to the one used
in the Static Management System, but since this system leverages CPU oversubscription, the
policy does not require the hosts to have unallocated CPU for the incoming VM, but the policy
rather checks how much CPU is actually in use in the host, and if there is enough CPU not in
use, then the VM can be placed on the host. As mentioned before, the system places VMs into
hosts based on the their current resource needs. At creation time, the requested resources are
taken as the current resource needs of the VM.

By oversubscribing resources, the management system can increase the resource utilization
of the hosts, and therefore of the data centre as a whole. However, this strategy increases the
risk of hosts becoming stressed. A stress situation occurs when the combined demand of the
VMs co-located in a host exceeds the resource capacity of the host. When this happens, one
or more VMs have to be migrated to another host, so as to free resources locally to satisfy the
resource demand of the remaining VMs.

The management system uses a VM Relocation policy to determine which VMs to migrate
away from a stressed host and to choose a new host for the migrating VMs. The policy is
configured at installation time to run periodically every 10 minutes. When invoked, the policy
first checks the set of hosts to determine which, if any, are stressed. For each stressed host, the
policy follows a greedy algorithm to select VMs for migration and to find target hosts in which
to place the migrated VMs.

The management system also uses a VM Consolidation policy to periodically consolidate
VMs in the data centre, attempting to minimize the number of physical servers that need to be
powered on to host VMs. This policy is installed in the data centre’s AM and is configured to be
invoked every hour. Upon invocation, the policy uses a greedy algorithm to migrate VMs away
of underutilized hosts and into hosts with higher resource utilization. Hosts that are emptied of
VMs are then suspended or powered off, to conserve power.

The same HostStatusPolicy used in the Static Management System is used here to process
HostStatusEvent messages and maintain up-to-date status information about the hosts in the
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data centre.

7.5.5 Dynamic Reactive Management System

The Dynamic Reactive Management System is very similar to the Dynamic Periodic Manage-
ment System, except that it triggers its VM Relocation policy on demand rather than periodi-
cally. The VM Relocation policy itself is essentially the same, with minor changes implemented
to allow the policy to run as frequently as required rather than periodically.

The Reactive system attempts to detect stress situations and trigger VM migrations as soon
as possible, so as to reduce the SLA violations suffered by VMs co-located in stressed hosts. In
order to achieve this behaviour, a new HostStatusPolicy (i.e. different from the corresponding
policy from the Dynamic Periodic Management System) is necessary. This policy, known
as ReactiveHostStatusPolicy, is still invoked upon receipt of a HostStatusEvent and is still
responsible for updating hosts’ status information. However, once the status information of
the host associated with the event is updated, the policy issues a VmRelocationEvent so as to
invoke the VM Relocation policy.

Upon invocation, the new VM Relocation policy first queries the VmRelocationEvent to
obtain identification information of the host whose status information was recently updated.
The policy then performs a stress check on the host. If the host is stressed, the policy looks for
VMs to migrate away from the host and for target hosts to receive the migrated VMs. If the
host is not stressed, the policy terminates its execution.

7.5.6 Experimental Setup

The simulated data centre for these experiments consists of 200 hosts, divided equally between
two types: small and large. The small host is modelled after the HP ProLiant DL380G5, with 2
dual-core 3GHz CPUs and 8 GB of memory. The large host is modelled after the HP ProLiant
DL160G5, with 2 quad-core 2.5GHz CPUs and 16GB of memory. The different types of host
have different power efficiency, which is calculated as CPU capacity / power consumption at

100% utilization. The power efficiency of the large host is 85.84 cpu/watt, while the power
efficiency of the small host is 46.51 cpu/watt.

We use three types of VMs in these experiments. The small VM requires 1 virtual core
with 1500 CPU units (minimum), plus 512MB of memory. The medium VM requires 1 virtual
core with 2500 CPU units (minimum), plus 512MB of memory. The large VM requires 2
virtual cores with 2500 CPU units each (minimum), plus 1GB of memory. These descriptions
correspond to the resource requirements of the VMs at creation time. Once a VM is running in
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Host Util. # Migs Power CPU Underprovision Failed Placement
Static 46% 0 7221kWh 0.0% 24%

Periodic 80% 10261 5056kWh 0.109% 0%
Reactive 79% 12508 5121kWh 0.059% 0%

Table 7.2: Management Systems Comparison

the data centre, further placement and allocation considerations are made based on the actual
resource usage of the VM. These experiments include an equal number of each type of VM.

The experiments are configured to create 600 VMs in the first 40 hours of simulation. These
VMs remain throughout the entire experiment, so as to maintain a minimum level of load in the
data centre. In the third day of simulation, new VMs begin to arrive; they do so at a changing
rate and last for about a day. The total number of VMs in the data centre changes daily, using
randomly chosen values uniformly distributed between 600 and 1600. This second set of VMs
provides for a dynamic load in the data centre.

We use the term workload pattern to refer to a randomly generated collection of VM in-
stances with arrival, departure, and trace offset times. A workload pattern can be repeated by
providing the random seed with which it was first generated.

7.5.7 Results

We evaluated the three proposed management systems through simulation using DCSim. We
generated 10 different workload patterns and evaluated each management system under each
of these workload patterns. The experiments lasted 10 simulated days, though only the last 8
days of simulation were recorded; the first 2 days were discarded to allow for the system to
stabilize before recording results. Table 7.2 presents the results for each management system,
averaged across the different workload patterns.

We can see that the Static Management System achieved the lowest host utilization by
far, which translated also into the highest power consumption. However, given that VMs are
statically allocated their total resource request (enough to meet their peak demand), the man-
agement system avoids CPU underprovisioning completely. It should be noted, however, that
such a conservative approach to resource allocation resulted in an elevated percentage of failed
placements, while the other management systems were able to accept every VM creation re-
quest.

Both Dynamic Management Systems achieved similar results, with Periodic showing slightly
higher host utilization (and therefore less power consumption) and Reactive lowering CPU un-
derprovisioning by about 40%. However, Reactive’s reduction of CPU underprovisioning was
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achieved by triggering VM migrations as soon as hosts became stressed, which resulted in a
20% increase in the total number of VM migrations issued.

7.6 Conclusions and Future Work

Developing and evaluating data centre management techniques on the scale that they are ul-
timately required to perform at presents a significant challenge. As such, most work turns to
simulation tools for their experimentation. We have presented DCSim (Data Centre Simulator),
an extensible simulation framework for simulating a data centre operating an Infrastructure as
a Service cloud. DCSim allows researchers to quickly and easily develop and evaluate dynamic
resource management techniques. It introduces key new features not found in other simulators,
including an interactive application model which allows the simulation of interactions and de-
pendencies between VMs, VM replication as a tool for handling increasing workload, and the
ability to combine these features with a work conserving CPU scheduler. The simulator can
also be easily extended and customized for specific work in a range of key research topics
in data centre management. Finally, we have presented an example use-case of the simula-
tor, comparing three different VM management systems, to demonstrate the usefulness of the
simulation results.

A number of additional features are planned for DCSim. An HPC/batch style application
model should be included, as data centres typically host both interactive and HPC workloads.
VM migrations are an important aspect to dynamic VM management, and their overhead needs
to be considered in as accurate a manner as possible. We plan to include a more detailed
modelling of migration bandwidth, and the impact of multiple simultaneous migrations on
both migration time and SLA metrics, using our new model of data centre networking. Finally,
the thermal state of the data centre should be considered and used to calculate cooling costs, as
cooling power represents a significant cost for data centre operations.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The owner of a data centre operating an Infrastructure as a Service cloud (the cloud provider),
has two primary goals: reduce costs, and provide service to their customers (the cloud clients).
In this work, we have looked at reducing costs through minimizing power consumption, and
providing service to customers by minimizing SLA (Service Level Agreement) violations. This
basic premise leaves room for a large number of challenges, in both the implementation of these
basic objectives and the addition of secondary goals. More specifically, we examine the use of
a dynamic approach to management, constantly adapting resource allocations to match current
workload demands.

This thesis addressed several challenges in dynamic virtualized cloud management. Each
contribution examined a specific sub-problem, all falling into the scope of dynamic manage-
ment and striving towards developing a more comprehensive set of techniques for cloud man-
agement. In our initial work, we evaluated a set of variations on an algorithm for dynamic
management, and found that there is no single algorithm that can be considered “best”. Rather,
each variation has its strengths and weaknesses, representing trade-offs between different man-
agement goals. In order to address the problem of achieving more than one goal, we then
proposed a method of dynamically switching between different management strategies. We
also noticed that management required a large number of monitoring messages to be sent to a
single central manager, which was responsible for managing the entire data centre. This repre-
sents a potential limitation for scalability. As such, we developed a distributed version of our
dynamic management algorithm, which distributed the decision making among all hosts, and
eliminated the requirement of monitoring messages. Up until this point, we considered appli-
cations running within a single virtual machine (VM). In reality, however, many applications
are deployed in a set of VMs, with each VM running a component of the complete application.
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Furthermore, in order to take advantage of pay-per-use pricing in the cloud, applications typi-
cally scale the number of VMs in use up and down to match their current workload. We looked
at how this operation interacts with our dynamic management algorithms, and developed an in-
tegrated algorithm to handle both application scaling and dynamic management. Finally, once
we examined deploying applications spanning multiple VMs, it became necessary to consider
where in the data centre the components of the application were placed. This lead us to extend
our algorithm to be topology-aware.

Chapter 2 defined the core problem, and presented a basic approach and set of algorithms
for dynamic VM management. We define four states that a host can be in: stressed, when host
CPU utilization is high and hosts VM performance is at risk; partially utilized, when host CPU
utilization is in a normal, desirable range; underutilized, when host CPU utilization is low and
therefore the host is not power efficient; and empty, when the host contains no VMs. Next, we
defined three primary management operations: VM Placement, VM Relocation, and VM Con-

solidation. The VM Placement operation is responsible for the initial placement of a new VM
in the cloud (data centre). The VM Relocation operation relieves stressed hosts, by selecting a
VM from the host to migrate to another host. Finally, the VM Consolidation operation attempts
to remove VMs from underutilized hosts, in order to consolidate load onto fewer hosts. We
presented first-fit heuristic algorithms to perform these operations, with variations to tune their
behaviour to achieve different goals. The remainder of the work presented here is based on
these core concepts.

In Chapter 3, we introduced a method of pursuing more than one goal simultaneously. We
look at two, conflicting goals for the cloud provider: minimizing power consumption, and min-
imizing SLA violation. Most current work focuses on a single goal, with other goals considered
secondary, at best. We developed two management strategies (a set of management operation
policies) designed to pursue a single goal. One focused on SLA and the other on Power. We
then introduced a method of dynamically switching between these strategies, based on the
current data centre state, in order to use the most appropriate strategy at a given time. This
approach was able to improve overall performance when compared to individual strategies.

Most of the work on dynamic virtualized cloud management has implemented a centralized
architecture. In Chapter 4, we presented an alternative, distributed approach to management.
Given the large scale and highly dynamic nature of the cloud environment, a centralized man-
ager with global knowledge is unlikely to be sufficiently scalable. Our distributed algorithm
is capable of replicating the performance of the centralized version, while reducing the net-
working overhead of sending frequent status messages to a central manager and distributing
the management computation load.

In Chapter 5, we looked at integrating the goals and operations of the cloud client into dy-
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namic management. The cloud client deploys applications in the cloud, which are not simply
contained in a single VM, but can consist of a set of communicating VMs. In order to reduce
infrastructure costs in the face of a highly dynamic workload, the application should scale up
and down (by adding and removing VMs) in order to provision only the resources required to
meet demand, as required. This operation is referred to as autoscaling. We examined how ap-
plications performing autoscaling while the data centre performed dynamic VM management
impacted performance. Finally, we presented a novel, integrated autoscaling and dynamic VM
management algorithm, which uses some control over how autoscaling operations are carried
out to assist dynamic management. Through the use of this algorithm, we were able to correct
a drop in SLA performance incurred when running the two separate algorithms, and to signifi-
cantly reduce the number of migrations required for management. Since migrations have a cost
in terms of network bandwidth usage and VM performance overhead, minimizing the number
of migrations performed is an important goal.

Typically, work on dynamic virtualized cloud management treats the data centre as a flat
collection of hosts. When deploying applications consisting of multiple, communicating VMs,
however, the network topology of the data centre becomes important. In Chapter 6, we pro-
posed a topology-aware dynamic VM management algorithm, which takes the network topol-
ogy of the data centre into consideration. The algorithm attempts to place all VMs of a single
application within a single rack of the data centre, and to maintain this constraint through all
dynamic management operations. This reduces the network latency between communicating
VMs, and reduces network traffic in higher level links. Furthermore, it reduces the number of
migrations that are performed between racks, again reducing the load on higher level network
elements.

Finally, in Chapter 7, we presented a simulation tool, DCSim, for simulating a virtualized,
multi-tenant data centre operating an Infrastructure as a Service cloud. Experimentation with
a real system is not feasible, due to the scale and complexity of the target deployment. There-
fore, simulation is used to evaluate algorithms and techniques for dynamic virtualized cloud
management. The development of this tool was in response to a lack of available, open-source
tools designed for this particular target environment. It is available online, as an open-source
project, and we are actively encouraging other research groups to make use of DCSim for their
own research.

Cloud computing is proving to be a huge driving force for change in computing today. Ever
more applications are being deployed in the cloud, where infrastructure can be provisioned
on-demand, in a pay-as-you-go fashion. There remains a good deal of work to perfect this
approach, however. We have presented a number of novel advancements to managing a cloud
data centre, and more still remain. There is no denying, however, that the move into the cloud
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has gained too much momentum to be stopped, and the cloud will continue to dominate in the
near future. That is, until the next thing arrives.

8.2 Threats to Validity

There are several possible threats to the validity of the work and results presented in this thesis.
First, a number of simplifications were made in order to reduce the complexity of the problem
and focus on specific aspects. Namely, we did not consider the networking requirements of
VMs running within the cloud, nor their storage requirements. Considering networking and
storage may have an impact on VM placement decisions and will need to be addressed within
our algorithms. We have also made some assumptions regarding the overhead of performing
VM live migrations. We did not consider the networking costs associated with migration, and
we applied a fixed penalty rate to all VMs and hosts involved in a migration. In reality, the
overhead associated with a migration is dependent on the behaviour and workload patterns of
the VM. This may have an impact on the number of migrations which can feasibly be performed
for dynamic management, as well as how many can be performed concurrently. In this work,
we always considered performing fewer migrations to be a desirable goal, in order to account
for this possibility.

During our evaluation, we considered interactive applications, such as a typical multi-tiered
web application. Other types of applications, such as media streaming, MapReduce, or other
batch processing tasks, can and will also be run in the cloud. The algorithms developed in
Chapters 2, 3 and 4 were developed considering a VM as a black-box, and as such should be
applicable to other types of applications. This, however, was not tested. The algorithms in
Chapters 5 and 6 specifically address management of interactive applications. As such, a dif-
ferent workload mix would have an impact on the performance of the algorithms, especially on
the integrated autoscaling and dynamic management algorithm. This could be mitigated, how-
ever, by placing different application types within subsets of a data centre, under management
algorithms designed specifically for that workload.

Finally, we evaluated our work using simulation. As such, actual values from results (such
as host utilization and power consumption) will vary compared to a real-world implementation.
However, the evaluations were based on comparisons between different approaches, and these
comparisons should hold. Another possible threat to the validity of the results is possible
problems or inaccuracies within the simulation tool, DCSim. The tool is available online, so
that other researchers can make use of the tool and attempt to repeat our results.
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8.3 Future Work

Several challenges remain in the area of dynamic virtualized cloud management, before a com-
plete, comprehensive solution can be achieved. In terms of short term, more immediate addi-
tions to the work presented in this thesis, there are a few logical next steps to be taken:

• consider more advanced placement constraints on VMs, e.g. for fault-tolerance and
availability purposes. This would put additional constraints on dynamic management,
making achieving its goals more challenging;

• provide bandwidth guarantees between communicating VMs;

• learn parameter values via machine learning algorithms, rather than determining values
through time consuming experimentation, which may not remain valid under changes in
workload;

• develop a distributed implementation of the more advanced techniques presented in
Chapters 5 and 6;

• develop a better understanding of migration overhead through experimentation, and de-
velop methods to reduce the number of migrations performed by management.

Stepping a bit further away from immediate goals and into potential medium range future
work, there are a few more avenues to pursue:

• investigate dynamic memory allocation in addition dynamic CPU;

• consider storage, and the location of network storage, in placement decisions;

• incorporate knowledge of the thermal properties of the data centre to consider cooling
costs in decision making.

Finally, the use of multiple data centres and sites should be investigated. Applications de-
ployed in the cloud do not need to live within a single data centre, or even a single geographical
region. In many cases, application components (and the VMs running them) can and should
be placed as close as possible to their users. This entails not only a static placement of ap-
plication components in geographically diverse locations, but also the potential to move these
components as user locations change, for example, due to the day-night cycle.



Curriculum Vitae

Name: Michael Tighe

Post-Secondary University of Windsor
Education and Windsor, ON
Degrees: 2002 - 2007 B.Sc. Computer Science

University of Western Ontario
London, ON
2007 - 2009 M.Sc. Computer Science

University of Western Ontario
London, ON
2009 - 2014 Ph.D. Computer Science

Honours and OGS
Awards: 2011-2014

Related Work Teaching Assistant
Experience: The University of Western Ontario

2007 - 2013

Publications:

Integrating Cloud Application Autoscaling with Dynamic VM Allocation, Michael Tighe
and Michael Bauer, Network Operations and Management Symposium (NOMS), 2014, Krakow,
Poland.

A Hierarchical, Topology-aware Approach to Dynamic Data Centre Management, Gaston
Keller, Michael Tighe, Hanan Lutfiyya and Michael Bauer, Workshop on Management of the

Future Internet (ManFI), 2014, Krakow, Poland.

A Distributed Approach to Dynamic VM Management, Michael Tighe, Gaston Keller,

123



124 Chapter 8. Conclusions and FutureWork

Michael Bauer and Hanan Lutfiyya, International Conference on Network and Service Man-

agement (CNSM), 2013, Zurich, Switzerland.

Towards and Improved Data Centre Simulation with DCSim, Michael Tighe, Gaston Keller,
Michael Bauer and Hanan Lutfiyya, Workshop on Systems and Virtualization Management

(SVM), 2013, Zurich, Switzerland.

The Right Tool for the Job: Switching Data Centre Management Strategies at Runtime,
Graham Foster, Gaston Keller, Michael Tighe, Hanan Lutfiyya and Michael Bauer, Interna-

tional Symposium on Integrated Network Management (IM), 2013, Ghent, Belgium.

DCSim: A Data Centre Simulation Tool for Evaluating Dynamic Virtualized Resource
Management, Michael Tighe, Gaston Keller, Michael Bauer and Hanan Lutfiyya, Workshop

on Systems and Virtualization Management (SVM), 2012, Las Vegas, USA.

An Analysis of First Fit Heuristics for the Virtual Machine Relocation Problem, Gaston
Keller, Michael Tighe, Hanan Lutfiyya and Michael Bauer, Workshop on Systems and Virtual-

ization Management (SVM), 2012, Las Vegas, USA.

Policies and Abductive Logic: An Approach to Diagnosis in Autonomic Management,
Michael Tighe and Michael Bauer, International Journal on Advances in Intelligent Systems,
2010.

Mapping Policies to a Causal Network for Diagnosis, Michael Tighe and Michael Bauer,
International Conference on Autonomic Computing, 2010, Cancun, Mexico.

Other Presentations & Posters:

DCSim: A Data Centre Simulation Tool, Michael Tighe, International Symposium on Inte-

grated Network Management (IM), 2013, Ghent, Belgium. Demo.

A Distributed Approach to Dynamic VM Management, Michael Tighe and Gaston Keller,
Consortium for Software Engineering Research (CSER), 2013. Poster.

DCSim: A data Centre Simulation Tool for Evaluating Dynamic Virtualized Resource
Management, Michael Tighe, Consortium for Software Engineering Research (CSER), 2012.
Presentation.

DCSim: A Data Centre Simulator, Michael Tighe, IBM Canada CAS Research Conference

(CASCON), 2012. Technology Demo.



8.3. FutureWork 125

Academic Involvement:

Technical Program Committee (TPC), Workshop on Systems and Virtualization Management

(SVM), 2013
Editorial Board, International Journal on Advances in Intelligent Systems, 2012
TPC, International Conference on Autonomic and Autonomous Systems, 2011-2012
TPC, International Conference on Adaptive and Self Adaptive Systems, 2010
TPC, International Conference on Cloud Computer, GRIDS, and Virtualization, 2010
Session Chair, International Conference on Autonomic and Autonomous Systems, 2010


	Western University
	Scholarship@Western
	October 2014

	Advances in Dynamic Virtualized Cloud Management
	Michael Tighe
	Recommended Citation


	tmp.1411679601.pdf.Yprhe

