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Abstract

An instance of the two-dimensional strip packing problem is specified by n rectangular items,

each having a width, 0 < wn ≤ 1, and height, 0 < hn ≤ 1. The objective is to place these

items into a strip of width 1, without rotations, such that they are nonoverlapping and the total

height of the resulting packing is minimized. In this thesis, we consider the version of the two-

dimensional strip packing problem where there is a constant number K of distinct rectangle

sizes and present an OPT +K−1 polynomial-time approximation algorithm for it. This beats a

previous algorithm with a worst case bound of OPT +K; the time complexity of that algorithm

was not known and here we show that it runs in polynomial time.

Keywords: strip packing, approximation algorithm, optimization
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Chapter 1

Introduction

An instance of the two-dimensional strip packing problem (2DSPP) is specified by a set R

of n rectangles, each rectangle ri having width, 0 < wi ≤ 1, and height, 0 < hi ≤ 1. The

objective is to place these rectangles in a strip of width 1 such that they are nonoverlapping

and the total height of the resulting packing is minimized. We assume that rectangles have a

fixed orientation so their sides are parallel to the sides of the strip and they cannot be rotated.

Figure 1.1 shows an instance of the 2DSPP.

The 2DSPP is an optimization problem known to be NP-hard, which means that it is at

least as difficult to solve as any problem in the class NP. NP is the computational complexity

class consisting of problems for which feasibility of their solutions can be verified in polyno-

mial time. Currently, there is no known algorithm for any NP-hard problem that runs in time

polynomial in the size of the input, and it is widely believed that no polynomial time algorithms

exist for these problems. Seminal work of Cook [5] proved that a polynomial time algorithm

for any NP-hard problem can be transformed into a polynomial time algorithm for any other

problem in the class NP-complete, so all these problems are equally “hard” from the point of

view of the existence of polynomial time algorithms for them. The class of NP-hard problems

is larger than the class NP-complete, as every NP-complete problem is NP-hard and belongs

to the class NP. The class P includes those problems which can be solved in polynomial time

1
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using deterministic algorithms. One of the most important questions in computer science is

whether or not P = NP. Assuming that the classes P and NP are not equal, NP-hard problems

cannot be solved in polynomial time by deterministic algorithms. Therefore, approximation

algorithms are widely used to deal with this class of problems as they can find near-optimal

solutions for NP-hard problems in polynomial time. This is not the same as heuristic-based

approaches; approximation algorithms are expected to have provable worst-case runtimes and

solution qualities, while for heuristics there is no guarantee on the quality of the solutions that

they produce and/or on their running times.

Approximation algorithms often approximate solutions within a constant factor of the op-

timum. Problems for which such algorithms exists belong to the complexity class APX. For

some APX problems, their solutions can be approximated within any constant factor greater

than 1 in polynomial time; such algorithms are referred to as polynomial-time approximation

schemes (PTAS). Additionally, there exist problems in APX for which there is no PTAS; that is,

problems that can be approximated within some constant factor, but not every constant factor

larger than 1.

For decades geometric packing problems have been a widely studied field of research.

Many types of packing problems exist, including bin packing, rectangle packing, and strip

packing, among many others. In each of these problems, items with specified sizes and/or

weights need to be placed inside of one or more containers to optimize some objective function.

In this thesis we are interested in a version of the strip packing problem known as the high-

multiplicity strip packing problem, where the number of distinct rectangle sizes, or “types” of

rectangles, is fixed.

1.1 Applications and Related Problems

Packing problems have many real-world and theoretical applications. In this section we men-

tion just a few of these problems. The “simplest” packing problem may be the bin packing
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problem. In the bin packing problem, we are given n items where the ith item has weight

wi ≤ 1. The objective is to place these items inside bins of unit capacity in such a way that as

few bins are used as possible. Bin packing has numerous applications, aside from the obvious

relation to packing actual boxes into containers.

Imagine a tour bus company was servicing many groups of tourists. Group members do

not want to be separated, but the bus company does not want to use more buses than necessary,

to maximize profit. Each bus can be considered a bin of capacity equal to its number of seats

and each group an item of weight equal to the number of tourists in the group. Solving the

corresponding bin packing problem will result in a solution that minimizes the number of buses

used while keeping groups unseparated on buses. Bin packing also has important implications

to 2DSPP. In fact, bin packing is equivalent to 2DSPP if all rectangles have equal height;

therefore, many techniques used in bin packing approximation naturally lend themselves to

strip packing as well.

Multiprocessor scheduling is closely related to packing problems. In the multiprocessor

scheduling problem, an input consists of a set of jobs each with a length or required process-

ing time. The task is to schedule these jobs on a number of machines such that all jobs are

completed in the minimum time. This problem is effectively a bin packing problem where

the number of bins is equal to the number of machines and the objective is to pack all items

into bins of minimum capacity. In 1978, Coffman et al. [3] presented an algorithm based on

bin-packing techniques for the multiprocessor scheduling problem with an approximation ratio

of 1.22. This algorithm improved on the previous best bound of 4
3
. Hochbaum and Shmoys

presented a PTAS for this problem in 1988 [14].

Another famous geometric problem is the rectangle packing problem. In this problem there

is a single rectangular bin into which rectangles are to be placed. The goal is to pack rectangles

in the bin so that some objective function is optimized such as the number of rectangles packed

or their total area. The rectangle packing problem has applications, for example, in the effi-

cient use of a single time-shared resource (the container rectangle). For the rectangle packing
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problem, a PTAS was presented by Fishkin et al. [9] in 2005. This PTAS is based on “dual ap-

proximation” techniques, where “better” infeasible solutions are considered and converted to

suboptimal feasible solutions. In [9], the problem of solving the machine scheduling problem

is reduced to finding a dual approximation algorithm for the bin packing problem.

The strip packing problem is different from the rectangle packing problem in that the height

of the strip is not fixed, but minimized while ensuring that all rectangles are packed. One ap-

plication of the strip packing problem is static scheduling of parallel tasks. Consider a scenario

where there are parallel tasks that must be scheduled, each requiring a number of adjacent

processors and processor time. Each task in this problem corresponds to a rectangle in a strip

packing problem. The width of a rectangle is equal to the number of processors required by the

corresponding task and the height is equal to its required processor time. The width of the strip

is the number of processors available in the system. An optimal solution to this strip packing

problem will give an optimal solution to the original scheduling problem where the height of

the final packing corresponds to the total execution time for the tasks.

The knapsack problem is another class of packing problem. In the knapsack problem,

there is a single “bin” of given capacity, known as the knapsack, and items have weights and

values. The objective is to place items into the knapsack such that their total weight does not

exceed the knapsack’s capacity and the total value of the items in the knapsack is maximized.

Consider the situation where there is a set of tasks that must be completed before a deadline,

each having a time requirement and an expected profit if completed by the deadline. This is a

knapsack problem where a task corresponds to an item with weight and value equal to the time

required and expected profit for the task, respectively. The capacity of the knapsack represents

the deadline by which tasks must be completed. Solving this problem optimally would result

in the set of tasks that maximizes profit and can be completed before the deadline.

In practice the number of distinct rectangle sizes, or types, involved in a packing problem

is often small. When the number of types is constant, the corresponding problem becomes

a special type of packing problem; packing problems with a small number of item types are
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Figure 1.1: An instance of the two-dimensional strip packing problem with 8 rectangles.

called high multiplicity packing problems. In such problems, it is not necessary to specify each

rectangle individually in the input. Rather, for each distinct type of rectangle the input includes

the dimensions of the type, as well as the number of rectangles of that type that must be packed.

At first sight it might seem that these problem may have simpler solutions than instances with

many rectangle types, however the input of such problems is very small and, therefore, it is

more difficult to compute a solution in time bounded by a small function of the size of the

input length.

All of the above packing problems can be generalized to higher dimensions. Rectangles,

bins, and strips may have depths in addition to widths and heights, drastically increasing the

difficulty of the problems.
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1.2 Related Work

The bin packing and two-dimensional strip packing problems have been extensively researched.

Since bin packing is equivalent to a strip packing problem where all items have equal height

and bin packing is NP-hard [6], then strip packing is also NP-hard. For this reason, research

on those problems has focused on approximation algorithms.

Let A(I) be the value of the solution produced by an approximation algorithm A and let

OPT (I) be the value of an optimal solution for an instance I of some optimization problem.

The approximation ratio of A is defined as the ratio
OPT (I)

A(I)
if I is a maximization problem and

A(I)

OPT (I)
if I is a minimization problem. For some problems there are approximation algorithms

that produce solutions of value A(I) satisfying A(I) ≤ C ×OPT (I)+ o(OPT (I)) for some value

C, where the o(OPT (I)) term grows at a much slower rate than OPT (I) as a function of the

length of the input I. The value of C is known as the asymptotic approximation ratio of A.

When C = 1 the approximation algorithm is known as asymptotically exact.

A simple algorithm for two-dimensional strip packing is the first-fit decreasing height

(FFDH) algorithm. In this algorithm, rectangles are first sorted into order of non-increasing

height; the first rectangles packed are the tallest and the last are the shortest. The first rectangle

is placed at the bottom of the strip. This is the first “level” of the packing. Rectangles are

packed on this level until the next rectangle does not fit. At this point, a new level is created on

top of the tallest rectangle in the first level. Rectangles continue to be packed on the first level

where they fit, creating new levels as necessary, until all rectangles are packed. First-fit is one

of several algorithms in the class of “level-oriented” algorithms, which also includes next-fit

(where previous levels are not revisited) and best-fit (where rectangles are packed on the level

where they leave the least amount of empty space). FFDH was shown to have a solution quality

at worst 17
10

OPT (I) + 1 by Coffman et al. [4] Over time, this bound has improved to 5
3
OPT + ǫ

in Harren et al. [13], 4
3
OPT + 7 1

18
in Golan [11], and 5

4
OPT + 53

8
in Baker et al. [1]

Given an instance I of 2DSPP and a positive number ǫ, Kenyon and Rémila designed an

algorithm [19] that produces a solution to I with height at most (1 + ǫ)OPT (I) + O( 1
ǫ2

). The
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time complexity of this algorithm is polynomial in both the number of rectangles and 1
ǫ
. The

algorithm is based on a linear programming relaxation of the problem that defines a fractional

version of 2DSPP, where rectangles can be split into pieces with horizontal cuts. In Kenyon and

Rémila’s algorithm, rectangles are classified by width as being either “thin” or “wide” based

on the value of ǫ. Wide rectangles are partitioned into groups and their widths are rounded

to define a simpler fractional problem which can be solved efficiently. Once this fractional

solution is obtained, any rectangles that are cut in the packing are simply “rounded up” such

that they recover their original size. Thin rectangles are added back into the packing afterwards,

utilizing the empty spaces left by the wide rectangles. Since 2DSPP is NP-hard, an asymptotic

PTAS is the best one can do in polynomial-time assuming P , NP.

1.3 High-Multiplicity Packing Problems

In the high-multiplicity version of the strip packing problem (HMSPP), or K-type problem,

there is a constant number K of rectangle types. Rectangles of the same type have the same

width and height. Note that the input for a high multiplicity packing problem can be represented

in a very compact manner. The input contains, for 1 ≤ i ≤ K: wi, the width of type i; hi, the

height of type i; and ni, the number of items of type i. Hence, the input is specified by 3K

numbers, regardless of how many rectangles need to be packed.

The high-multiplicity bin packing problem has been studied by Filippi and Agnetis [8]

and they presented a polynomial-time, asymptotically exact algorithm. Given an input I, their

algorithm produces outputs requiring at most OPT (I) + K − 2 bins. For the case where K = 2,

an exact solution is obtained in time complexity O(log D) where D is the bin capacity. This

problem is also known as the cutting stock problem, and has been researched extensively. A

PTAS is known for this problem [19]. The best known approximation for the cutting stock

problem for a constant number of object lengths is an OPT + 1 algorithm presented by Jansen

and Solis-Oba [16].
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Clifford and Posner in [2] investigated high-multiplicity parallel machine scheduling. In

that paper, several polynomial time algorithms are presented for such machine scheduling prob-

lems. In addition, they show that NP-complete problems do not change complexity class when

switching from a general encoding to a high-multiplicity encoding.

In Hoque [15], the rectangle packing problem is studied for the case where only two types

of rectangles are packed. Hoque presents a PTAS for this problem and further claims the results

can be generalized to any constant number of rectangle types.

To the best of our knowledge, there is no previously published work on the high-multiplicity

strip packing problem (HMSPP).

1.4 Our Contributions

The 2DSPP is known to be NP-hard for an arbitrary number of distinct rectangle types. How-

ever, in practice there is often only a limited number of rectangle types. In this thesis we

examine a version of the two-dimensional strip packing problem where the number of distinct

rectangle types is constant.

The complexity of the high-multiplicity strip packing problem is unknown even for the case

when the number of rectangle types is 2. We do not even know if HMSPP belongs to the class

NP. Our main contribution is an OPT (I) + K − 1 polynomial-time approximation algorithm

for the high-multiplicity strip packing problem. This improves on a simple algorithm for the

problem which produces packings of height at most OPT (I) + K in the worst case, but which

was not known to run in polynomial time. We show here that such an algorithm does run in

polynomial time. Although this may appear to be a small improvement, it is strong for small

values of K; for example when K = 2 a solution of height at most OPT (I) + 1 is produced.

As we show, moving from a solution of value OPT (I) + K to one of value OPT (I) + K − 1 is

not a trivial one, and it requires a significant amount of work. Furthermore, our bound almost

matches the bound presented in Filippi and Agnetis [8] for high-multiplicity bin packing (i.e.,
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strip packing when all rectangles have equal height), OPT + K − 2. If OPT (I) ≫ K, then the

difference in height between the approximation and the optimum is negligible, so our algorithm

is asymptotically exact.

The reduction of 2DSPP to HMSPP does not make the problem easier to approximate in

polynomial time. Because the problem can be represented using fewer bits, some techniques

that are polynomial-time for 2DSPP are not polynomial-time for HMSPP; for example, we

cannot make an individual decision for each rectangle.

Finally, although not all ideas in this thesis generalize to higher dimensions, several do.

These may be a first step towards better approximations for the high-multiplicity strip packing

problem of dimension d ≥ 3.

In Chapter 2, we discuss our algorithm for HMSPP. This section includes a basic, high-level

overview of the algorithm as well as an explanation of the fractional strip packing problem,

linear programming, and a polynomial time algorithm for solving the fractional strip pack-

ing problem where the number of rectangle types is constant using a modified version of the

Grötschel-Lovász-Schrijver algorithm. We also give a detailed description of our algorithm for

two rectangles types and for any constant number of rectangles types. Chapter 3 consists of

concluding thoughts, as well as open questions and future research.



Chapter 2

Algorithms

The most obvious way to solve HMSPP is, perhaps, to consider all possible packings for the

rectangles and choose the best one. However, if there are many rectangles then the number

of possible packings is very large and thus solving the problem using this method is slow

and impractical. We wish to solve this problem with an algorithm with running time that is

polynomial in the length of the input; i.e. an algorithm that is guaranteed to reach a solution

and terminate in a number of steps that is a polynomial function of the length in bits of its

input. As mentioned above, it is not known if HMSPP is in the complexity class P, or even in

the class NP.

In this chapter we present a polynomial-time approximation algorithm for HMSPP that

produces a solution of height at most OPT (I) + K − 1, where OPT (I) is the height of an

optimal solution and K is the number of rectangle types.

2.1 Algorithm Overview

Solving the fractional relaxation of HMSPP, where rectangles may be cut into pieces using

horizontal cuts, is essential to our algorithm. This is typically solved using linear program-

ming. Since as early as 1961 in Gilmore and Gomory [10], this has been a common strategy.

The solution to the fractional problem is then converted into a solution to HMSPP. A solution

10
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to the fractional problem consists of “configurations” and corresponding heights of each con-

figuration to be packed. A configuration is a set of rectangles that fit together side-by-side in

the strip. In a fractional solution, rectangles conforming to some configurations are packed

upwards (as determined by solving a linear program) to certain heights where these rectangles

are then cut, so that the next configuration used will begin packing at exactly that height; see

Figure 2.1, where two configurations are packed.

In this thesis we use the word “configuration” to denote a set of rectangles of total width

at most 1 and “packed configuration” to denote a section of the strip where rectangles are

packed so that any horizontal line drawn across the section intersects the same multiset of

rectangle types (i.e., a section of the packing where rectangles are packed according to some

configuration).

There are several key ideas on which the main algorithm is built. First, rectangles can

be rearranged horizontally within the same packed configuration (see Figure 2.1); this is a

very useful property. When the number of distinct rectangle types is small relative to the total

number of rectangles, the rectangles will often not need to be cut when switching between

packed configurations in the fractional solution. If any two adjacent packed configurations

contain rectangles of the same type, some of the rectangles in the upper packed configuration

may be placed directly above rectangles of the same type in the lower packed configuration and

this avoids the need to cut them when switching packed configurations. Instead of cutting these

rectangles between the packed configurations, they can simply continue to be packed on top of

one another until reaching a point where the type of rectangle must change (see Figure 2.1 (b)).

As mentioned before, in the fractional relaxation we are allowed to split rectangles into

pieces using horizontal cuts. A simple way to convert a fractional solution of the strip packing

problem into an integral one is to round up every cut rectangle to its original height. This will

always result in trying to pack more rectangles than necessary. Therefore, in some parts of

the fractional packing it is always possible to “round down” the cut rectangles and discard the

fractional portion when the rest of the cut rectangles are “rounded up”. This idea is discussed



12 Chapter 2. Algorithms

(a) (b)

Figure 2.1: Two fractional solutions to the same problem. The horizontal ordering of the

rectangles does not matter, both solutions have the same height. In Figure (b) the rectangle in

bold does not need to be cut between packed configurations.

in detail in Sections 2.4 and 2.5.

Lastly, the change in height and width of the packing when rounding rectangles are in-

versely related. In fact, when combined with the previous assertion than we can “round down”

the heights of rectangles in some circumstances, this allows us to bound the width of rounded

rectangles as a function of the increase in height. Since the total area of the rectangles within

the packing cannot change when converting fractional rectangles to whole rectangles, regions

that contain rectangles that increase in height after becoming whole must become thinner (see

Figure 2.2).

We use these ideas to show that any two packed configurations can be arranged such that,

post-rounding, rectangles do not overlap and the height of the packing increases by at most one

unit. To show how this is done we first consider the case when there are only two rectangle

types and then we consider the more difficult case with a larger number of rectangle types.
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Figure 2.2: Before rounding, the area covered by rectangles intersecting the cutting line is equal

to the area of 1.5 rectangles. If we round down this number, only one rectangle is packed. After

rounding down, the total width of all rectangles intersecting the cutting line must decrease.

2.2 Fractional Strip Packing

Imagine that the requirements of HMSPP are relaxed so that rectangles may be sliced into mul-

tiple pieces with horizontal cuts. A solution to this “fractional” version of the two-dimensional

strip packing problem can be expressed using a vector x of length equal to the total number of

configurations. As indicated above, a configuration is a multiset of rectangles whose widths

sum at most 1 and so they fit together side-by-side in the strip. Each element x j of the vec-

tor is a rational number representing the height of the corresponding configuration within the

solution; that is, each configuration C j is packed to a height of x j (see Figure 2.3).

Recall that ni is the total number of rectangles of type Ti and hi is the height of rectangles

of type Ti. Let αi, j be the number of rectangles of type Ti in configuration C j, and let x j denote

the height to which configuration C j should be packed. The fractional strip packing problem

can be expressed as the following linear program:

Minimize:
∑

j

x j

Subject to:
∑

j

x jαi, j ≥ nihi, for each rectangle type Ti

x j ≥ 0

(2.1)
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1

x1

x2

Figure 2.3: The fractional relaxation of the problem in Figure 1.1. Packed configuration C1

consists of two rectangles of type T1 and zero rectangles of type T2 and packed configuration

C2 consists of one rectangle of type T1 and two rectangles of type T2.

In this section we present the first contribution of this paper, namely, a polynomial time

algorithm for the fraction strip packing problem when the number of rectangle types is constant.

The set of feasible solutions, i.e. solutions that satisfy the constraints 2.1, can be thought of

as a convex polytope of dimension equal to the number of variables in the linear program. A

polytope is a geometric object with flat sides (e.g., a polygon is a two-dimensional polytope).

This polytope is known as the feasible region. Each face of the polytope corresponds to a

constraint. The problem of solving a linear program is equivalent to finding a point within

the feasible region that optimizes the objective function. The vertices of the polytope are

known as basic feasible solutions. If a linear program has an optimal solution, then it has at

least one basic feasible solution that optimizes the objective function. It is known that in any

basic feasible solution, the number of nonzero variables is at most the lesser of the number

of constraints (excluding nonnegativity constraints) and the number of variables [17]. Thus,

the number of nonzero variables in a basic feasible solution to (2.1) is no greater than K, the
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number of constraints. Therefore, the number of configurations used in a basic feasible solution

for (2.1) is at most the number of rectangle types, K.

Recall that OPT (I) is the height of an optimal packing for instance I of HMSPP. Let LIN(I)

denote an optimal solution to the fractional strip packing associated with I and AREA(I) =

∑

r wrhrnr be the total area of all rectangles in I. Then is is not hard to see that

AREA(I) ≤ LIN(I) ≤ OPT (I).

The number of variables in linear program (2.1) is equal to the number of configurations,

which is at most nK, and the number of constraints is determined by the number of rectangle

types. Solving the linear program will yield an optimal solution for the fractional strip packing

problem. However, solving a linear program with many variables can be computationally too

expensive.

2.3 The GLS Algorithm

We wish to solve linear program (2.1) when the number of rectangle types is constant. How-

ever, it is not good enough to solve it in time polynomial in the number of rectangles because

this may be exponential in the number of bits needed to encode an instance of the problem.

In 2DSPP, each rectangle’s width and height are given individually in the input. However, in

HMSPP the input is much more compact; the problem contains only K widths, heights, and

numbers of rectangles.

The fractional strip packing problem is identical to the fractional bin packing problem; in

the latter problem a configuration is a set of items that fit together within a single bin and

the solution to the linear program will give us the fractional number of bins in which each

configuration should be packed. Therefore, we can borrow several techniques from Karmarkar

and Karp [18] to solve (2.1) in polynomial time.

The linear program (2.1) has a constant number of constraints and one variable for ev-
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ery configuration. However, as mentioned above the number of configurations, and therefore

variables, is potentially very large which makes solving the problem difficult. Therefore, we

consider the dual linear program instead. Recall that every linear program has a dual linear

program and both have optimal solutions of the same value [17]. The dual linear program of

2.1 has a number of constraints O(nK), but only a constant number K of variables.

The dual program of (2.1) can be interpreted as having variables v j representing the values

of some items j. The objective of this linear program is to maximize the total value of all items

and it is constrained such that values must be nonnegative and the total value of items within

any configuration must be at most 1. The dual program of (2.1) is the following:

Maximize:
∑

i

vini

Subject to:
∑

i

viαi, j ≤ 1, for each configuration C j

vi ≥ 0

(2.2)

Linear program (2.1) has K constraints and O(nK) variables. The dual (2.2) has K variables

and O(nK) constraints and it can be written in the form

max cT v

s.t. vT A ≤ 1

v ≥ 0

(2.3)

We use the Grötschel-Lovász-Schrijver (GLS) algorithm [12], which is an iterative algo-

rithm based on the ellipsoid method, to solve the dual program (2.3). This algorithm finds a

solution for (2.3) of value LIN(I) + h, where h is an additive tolerance that affects the run-

ning time of the algorithm. One important element of the algorithm is a “separation oracle”

which given a potential solution z within the current iteration of the GLS algorithm determines

whether or not the solution is feasible and, if it is not, returns a constraint that is violated by
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z. For fractional strip packing, this oracle needs to find an optimal solution for the knapsack

problem.

2.3.1 The Separation Oracle

Recall that an instance of the knapsack problem consists of items with weights and values. The

goal is to pack items into a knapsack of fixed capacity such that items in the knapsack do not

exceed the capacity and their total value is maximized. Let s j be the weight of item type j, v j

be the value of item type j, n j be the number of items of type j, and S be the capacity of the

knapsack. The knapsack problem can be expressed as the following integer program where x j

is the number of items of type j to be placed in the knapsack:

Maximize:
∑

j

v jx j

Subject to:
∑

j

s jx j ≤ S

x j ∈
{

0, 1, ..., n j

}

(2.4)

Lenstra [20] proved that integer programming with a fixed number of variables can be

solved in polynomial time. An integer program defined by m constraints involving numbers of

at most b bits can be solved using Eisenbrand’s algorithm [7] in expected time O(m + b log m)

when the number of variables is fixed and in time O(b) when the number of constraints is also

fixed. Not only do knapsack problems have only one constraint, but for knapsack problems

arising from the GLS algorithm for HMSPP they also have at most a constant number K of

variables. Hence, we can solve these instances of the knapsack problem in time O(b).
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2.3.2 Solving the Dual Linear Program

If n ≥ 2 and K ≥ 2, then nK > K. Hence, since the number of variables in (2.3) is K, the

largest set of linearly independent rows of A has K rows. Let B be a K × K matrix formed by

K linearly independent rows of A. Then a solution to the linear program

max cT v

s.t. vT B ≤ 1

v ≥ 0

(2.5)

is also a basic feasible solution (BFS) for (2.3) and in fact every basic feasible solution for (2.3)

is a solution for a linear program of the form (2.5).

By Lemma 2.1 of [22], if x = (x1, x2, . . . , xK) is a BFS for (2.5) then each xi is a rational

number Ni

Di
where the absolute value of Ni and Di is bounded by L = K! βK−1, where β is

the maximum value of any entry of B. Since β ≤ n, then L ≤ K! nK−1 < (nK)K−1 and b ≤

log
(

(nK)K−1
)

.

This means that if we choose the additive tolerance to be h = (nK)−K+1 then a solution

for (2.5) of value at most LIN(I) + h computed by the GLS algorithm must in fact have value

LIN(I), where LIN(I) is the value of an optimal solution for (2.5). Therefore, a basic feasible

solution for (2.3) computed by the GLS algorithm with tolerance (nK)−K+1 must be an optimal

basic feasible solution for (2.3).

We can transform a solution for linear program (2.3) into a basic feasible solution for (2.1)

using the algorithm of Karmarkar and Karp with tolerance h = (nK)−K+1. Let a be the width of

the thinnest rectangle. The complexity of Karmarkar and Karp’s algorithm is

O

(

K8 ln K log2

(

(Kn)K

a

)

+ K2 log K(K log n + K log K)

)

= O

(

K10 log K log2
(

Kn

a

)

+ K3 log K log n

)

.
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For the rest of the paper we assume that a basic feasible solution is known for (2.1) and it

consists of at most K configurations stacked one on top of the other.

A naive algorithm for the high multiplicity strip packing problem would compute a basic

feasible solution for (2.1) and then simply round each fractional packed configuration up such

that any cut rectangles recover their full height. Based on the results of this section, such an

algorithm clearly runs in polynomial time and it computes a solution to HMSPP of height at

most OPT (I) + K.

2.4 The Two-Type Strip Packing Problem

In this section we consider the high-multiplicity strip packing problem for K = 2. A basic

feasible solution to the linear program (2.1) for an instance of the two-type strip packing prob-

lem has a particular structure, as that (fractional) solution packs all rectangles using only two

configurations C1,C2 as shown in Figure 2.4. These packed configurations can be divided into

three distinct sections horizontally. The outer two sections consist of rectangles of the same

type and, hence, they do not need to be cut when switching between configurations. Rectan-

gles in this part of the solution can be packed on top of each other until reaching the top of the

packing. The middle section occurs where there are two different types of rectangles and so the

rectangles in the lower packed configuration might need to be cut at the border of the packed

configurations. All rectangles in the upper packed configuration also might be cut at the top of

the packing.

The rectangles in the outer sections that appear at the top of the packing are simply rounded

up such that they are whole. This rounding increases the height of these outer sections by at

most 1 unit. In the middle section, the type of rectangles in the lower packed configuration is

not the same as the type of rectangles in the upper packed configuration. We cannot simply

round up rectangles at the borders of both packed configurations without increasing the height

of the packing by up to 2 units. Let M j be the set of rectangles in the middle section that
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middle

x1

x2

Figure 2.4: A packing of rectangles of 2 types. Note that there are three distinct sections

horizontally: outer sections which each consist exclusively of rectangles of one type, and a

middle section where the lower packed configuration has rectangles of a different type than the

upper packed configuration.

intersect the cutting line at the top of packed configuration C j for j = 1, 2. Assume without

loss of generality that the rectangles in the middle section of the lower packed configuration,

C1, are of type T1 and the rectangles in the middle section of the upper packed configuration,

C2, are of type T2.

The rectangles within the middle section that are cut in the fractional solution represent

some number, not necessarily integer, of rectangles; e.g. three rectangles cut at half their height

represent 1.5 rectangles of that type. Let this amount be n′j for rectangles in M j. Obviously, we

cannot have fractional rectangles in the final solution to an HMSPP instance. Therefore, we

either round up or round down n′
j

to an integer value and pack that many whole rectangles of

type T j instead of the fractional rectangles in M j. In particular, if we round up rectangles in M j

we pack ⌈n′j⌉ whole rectangles of type T j and if we round them down we pack ⌊n′j⌋.

Lemma 2.4.1 If the number of rectangles in the outer sections are rounded up, then n′
j
can be
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rounded down for both types T j.

Proof Let n′
j
be the number of rectangles represented by the cut rectangles in M j and o′

j
be the

number of rectangles represented by the cut rectangles of type T j in the rest of the packing. We

know n′j + o′j ≥ z, where z is a integer representing the number of whole rectangles needed to

replace all fractional ones. Therefore, ⌊n′
j
⌋ + ⌈o′

j
⌉ ≥ z. �

Rounding down the middle section of both packed configurations allows us to pack the

rounded rectangles into a smaller space than if we were to round either or both up. This is

essential to the algorithm.

Let f jh j be the height of the fractional rectangles of type T j that are cut and lie below the

cutting line located at the top of packed configuration C j. Imagine that the rectangles in M1

were removed from the packing. This would reduce the height of the middle section by f1h1.

Adding these fractional rectangles to the top of the packing (still in the middle section) would

then increase the height of the packing by the same amount. The total height of the section

does not change, the fractional rectangles are simply moved. We show that these fractional

rectangles can be made whole by rounding their heights in such a way that they do not increase

the height of the middle section by more than 1 unit.

We consider 2 cases:

Case 1. f1 + f2 > 1. We round up the heights of the rectangles in M j to h j for both types. This

increases the height of the packing in the middle section by at most

(1 − f1)h1 + (1 − f2)h2 ≤ 1 − f1 + 1 − f2 = 2 − ( f1 + f2) < 1.

Case 2. f1 + f2 ≤ 1. Since the area of the fractional rectangles in M j is at most f jh jW, where

W is the width of the middle section and the number n′
j

was rounded down, the total area of

the rectangles of type T j in M j cannot be more than f jh jW. If the height of these fractional

rectangles is rounded up to h j their total width would be at most f jW. If we put the rounded

rectangles in M1 and M2 side by side, their total width is at most f1W + f2W = ( f1 + f2)W ≤ W
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so they fit in the middle section and this packing of the rounded rectangles increases the height

of the middle section by at most max {h1, h2} ≤ 1.

Summarizing, after finding an optimal fractional packing, we round up the outer sections,

move rectangles cut in the middle section of C1 to the top of the middle section of C2, and

round down rectangles cut in the middle section as described above. Each of these steps can be

performed in constant time. Therefore, the worst-case runtime of this algorithm is dominated

by that of solving the fractional strip packing problem, which is

O

(

K10 log K log2
(

Kn

a

)

+ K3 log K log n

)

,

as described in the previous section.

Theorem 2.4.2 Let OPT (I) be the height of an optimal solution for an instance I of the two-

type strip packing problem. There is a polynomial-time algorithm A which, given I, produces

a packing of I in a strip of width 1 and height A(I) such that:

A(I) ≤ OPT (I) + 1.

2.5 The K-Type Strip Packing Problem

A basic feasible solution for linear program (2.1) for K types of rectangles uses at most K

configurations. As mentioned above, simply rounding each packed configuration up in the

fractional solution such that all rectangles are integral would increase the height of the packing

by at most K. However, this is not the best one can do. In this section we present an algorithm

for the K-type strip packing problem that for any instance I produces a packing for I of height

at most OPT (I) + K − 1.

Let a basic feasible solution for (2.1) with K types use configurations C1,C2, . . . ,CK. Let

us consider a packing S where rectangles are packed according to configurations Ci and these

configurations are stacked one on top of the other in the strip.
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Lemma 2.5.1 Any two adjacent packed configurations Ci,Ci+1 can have their rectangles rear-

ranged horizontally such that there is a contiguous section of the packed configurations where

rectangles of the same type line up between the packed configurations and hence they are not

cut at the boundary between Ci and Ci+1. In the remaining section of the packed configurations,

no type of rectangle will appear in more than one packed configuration.

Proof For each type Tr, let mr be the minimum of the number of rectangles of type Tr across

Ci (i.e., the number of rectangles packed side by side in Ci) and the number of rectangles of

type Tr across Ci+1. In the left-most portion of each packed configuration, which we will call

section S 1, mr rectangles are packed across for each type Tr. The rest of the rectangles are

packed to the right of S 1, in what we call section S 2 (see Figure 2.5). Let tr,q be the total

number of rectangles of type Tr across packed configuration Cq for q = i, i + 1. The number of

rectangles of type Tr packed across section S 2 of packed configuration Cq is tr,q−mr. Note that

for all r, in at least one of the packed configurations Cq the value of tr,q will be zero. Therefore,

no type Tr will appear in section S 2 of both packed configurations. �

Each type of rectangle may be cut several times in a fractional packing. Let ar,q be the

area of the rectangles of type Tr in packed configuration Cq that are cut. Recall that wr and

hr are the width and height of rectangle type Tr, respectively. Then, nr,q =
ar,q

wrhr
is the (poten-

tially fractional) number of rectangles of type Tr that must be packed to cover the area of the

rectangles sliced by the cutting line in packed configuration Cq. Even though this number may

be fractional, the total number of these rectangles in all cuts, nr =
∑K

i=1 nr,i, is integral for any

type Tr. When rectangles cut in packed configuration Cq are rounded up, the cut rectangles are

replaced with ⌈nr,q⌉ whole rectangles. This will increase the height of the packed configuration

because whole rectangles will be taller than those which are cut.

Lemma 2.5.2 Define a segment as a set of rectangles of the same type that intersect the cutting

line within a section S 2 of a packed configuration Cq. For all types Tr, at least one segment

formed by rectangles of type Tr can be rounded down such that ⌊nr,q⌋ rectangles are packed for
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Figure 2.5: An example of an arrangement of three rectangle types in two packed configura-

tions. Rectangles that appear in both are placed to the left in section S 1. In the remaining

section, S 2, no type appears in both packed configurations.

that segment while the number of rectangles of type Tr in the rest of the packing are rounded

up. The total number of rectangles of type Tr in the entire final packing will be nr.

Proof Let n′r,q be the total (fractional) number of rectangles of type Tr cut at all cutting lines

except those cut at the top of section S 2 of some packed configuration Cq. Rounding up the

rectangles of type Tr in all packed configurations except those in section S 2 of Cq will pack

at least ⌈n′r,c⌉ rectangles. If we round down the rectangles of type Tr cut in section S 2 of Cq,

then ⌊nr,q⌋ rectangles are packed in their place. Because n′r,q + nr,q is integer, the amount gained

from rounding rectangles up will always be at least the decrease from rounding down nr,q and

therefore n′r,q + nr,q ≤ ⌈n
′
r,q⌉+ ⌊nr,q⌋ = nr, so the total number of whole rectangles of type Tr that

are packed is nr. �

Lemma 2.5.2 is a generalization of Lemma 2.4.1.

Consider two adjacent packed configurations C1 and C2 where C2 is directly on top of C1

in packing S . All other packed configurations in S are rounded up such that cut rectangles are
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made whole and each increases in height by no more than 1 unit, increasing the total height of

the packing by no more than K−2. The rectangles in the two chosen packed configurations are

arranged as described in Lemma 2.5.1 into sections S 1 and S 2. Rectangles in section S 1 need

not be cut between C1 and C2 and rounding needs to be done only at the top of C2. Additionally,

in the section S 2 where rectangles do not line up between packed configurations, let fr,q be the

fraction of each rectangle cut of type Tr that lies below the cutting line in packed configuration

Cq for q = 1, 2 (so the pieces of rectangles of type Tr that were cut and appear at the top of

packed configuration Cq all have height fr,qhr). Let S ′
2

be the part of S 2 where these fractional

rectangles are packed.

The rectangles in section S 2 of packed configurations C1 and C2 are sorted within that

section by nondecreasing values fr,1 and fr,2, respectively. Following Lemma 2.5.2, the number

of fractional rectangles in S ′
2

may be rounded down since no type appears in both C1 and C2

of section S 2. After this rounding we replace the fractional rectangles with whole ones. After

doing this, in some places within section S 2 the height of the packing may exceed the pre-

rounding fractional height and in some other places it may have decreased (see Figure 2.6).

The portions of the packed configurations that have not increased in height are placed to the

right of section S 2 (see Figure 2.6).

Let ωr,q be the total width of all rectangles of type Tr in section S ′2 of packed configuration

Cq and let ω′r,q be the total width of these rectangles after the rounding. Because the whole

rectangles packed in S ′
2

after performing the rounding have total area less than or equal to

the total area occupied by the fractional rectangles, the total width of these whole rectangles

is at most fr,q times the total width of the fractional rectangles and, therefore, ω′r,q ≤ fr,qωr,q.

Furthermore, replacing fractional rectangles with whole ones will increase the height of the

packing by the difference between their fractional height and the height of rectangles of that

type: hr − fr,qhr ≤ (1 − fr,q)hr.

We argue that for both packed configurations C1 and C2, all whole rectangles that replace

the fractional ones after the rounding will fit within the original packed configurations plus
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S 2

h1 − h1 f1,q
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Figure 2.6: An example of section S 2 of a packed configuration Cq after “rounding down”.

Because f1,q ≤ f2,q, type T1 is packed first. The dotted line represents the original fractional

height of the packed configuration. Portions that do not increase in height are packed in the

far right of the section so that portions of the packed configuration that increase in height are

directly adjacent to one another.

triangular regions directly on top of each packed configuration. These regions are right tri-

angles with bases of width W2 equal to the width of section S 2 and heights of 1 unit formed

by a line that intersects the upper-right corner of a packed configuration and a point one unit

above the left side of section S 2 of the packed configuration (see Figure 2.7). Let us consider

packed configuration C1. Let T1, T2, . . . , TC1
be the types of the rectangles in section S 2 of C1

in nondecreasing order of fr,1 value.

Assuming a coordinate system as shown in Figure 2.7, the equation of the line defining the

hypotenuse of the triangular region is y = 1 − 1
W2

x. If the upper-right corner of a rectangle

ri fits within the triangular region, then the entire rectangle fits. For a type Tr, this point has

an x coordinate xi equal to wr plus the sum of the widths of all rectangles preceding it within

section S 2 and a y coordinate yi equal to its height, hr, minus fr,qhr. Thus, rectangle ri is within

the triangular region if and only if yi +
1

W2
xi ≤ 1. The rounded rectangles of type Tr fit in the
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W2

1

x

y

Figure 2.7: All rectangles will fit in the depicted region after rounding.

triangular region above packed configuration C1 if and only if:

hr(1 − fr,1) +
1

W2

r−1
∑

i=1

ω′i,1 ≤ 1.

Since the height of any rectangle is at most 1, the above condition holds if

1 − fr,1 +
1

W2

r−1
∑

i=1

ω′i,1 ≤ 1.

Since ω′
r,1
≤ fr,1ωr,1, the inequality is satisfied if

1 − fr,1 +
1

W2

r−1
∑

i=1

fi,1ωi,1 ≤ 1.

Because rectangle types are placed in nondecreasing order of fr,1 and if i ≤ r−1, then fi,1 ≤ fr,1,
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the inequality is true if

1 − fr,1 +
1

W2

r−1
∑

i=1

fr,1ωi,1 ≤ 1.

Or equivalently,

1 − fr,1 +
fr,1

W2

r−1
∑

i=1

ωi,1 ≤ 1.

The total width of rectangles within section S 2 cannot exceed the width of section S 2, so

∑r−1
i=1 ωi,1 ≤ W2. Hence, the above inequality holds true because

1 − fr,1 + fr,1 ≤ 1.

Therefore, rectangles of all types will fit within the region when packed in this manner. The

same argument can be applied to C2.

Post-rounding, if one packed configuration is arranged upside down (as if it were turned

180◦) and placed above the other packed configuration, then the triangular regions will not

overlap and the total increase in height will be at most 1 (see Figure 2.8). Section S 1 increases

in height by a most 1 unit and S 2 increases by at most 1, so packed configurations C1 and C2

together increase the height of the packing by at most 1 unit. The rest of the packed configura-

tions were rounded up and together they increase the height of the packing by at most K − 2.

Therefore, the total height of the final packing is at most K − 2 + 1 = K − 1.

Theorem 2.5.3 Let OPT (I) be the height of an optimal solution for an instance I of the K-

type strip packing problem. There is a polynomial-time algorithm A which, given I, produces

a packing of I in a strip of width 1 and height A(I) such that:

A(I) ≤ OPT (I) + K − 1.

Proof The algorithm described above computes a packing of the desired height, so we only

need to show that it runs in polynomial time. The first step of the algorithm is to compute a ba-

sic feasible solution for (2.1) and that can be done using the algorithm described in Section 2.3.
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Recall that a is the width of the thinnest rectangle; the time complexity of this algorithm is

dominated by the solution of the linear program, which requires

O

(

K10 log K log2
(

Kn

a

)

+ K3 log K log n

)

time in the worst case. Once we have solved the linear program, we choose two packed con-

figurations and arrange their rectangles into sections S 1 and S 2 as described in the proof of

Lemma 2.5.1. This is done in constant time. Items in section S 2 are sorted, and because we are

sorting rational numbers, we can use radix sort which runs in O(cN) time where c is the average

number of bits per item and N is the number of items to be sorted. In our algorithm, N ≤ K

which is constant. By Lemma 2.1 of [22] (see also Section 2.3.2), c ≤ K log n+K log K. After

items are sorted, some rearrangement takes place, all in constant time. Therefore, the total

runtime of the algorithm in the worst case is

O

(

K10 log K log2
(

Kn

a

)

+ K3 log K log n

)

.

�
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S 2

1

Figure 2.8: After rounding, section S 2 of packed configuration C2 is turned upside down and

placed above section S 2 of packed configuration C1. Since the triangular regions fit together

nicely, the total increase in height is at most 1 unit.



Chapter 3

Conclusion

In this thesis we considered the high-multiplicity strip packing problem. In this problem, we

are given an input I consisting of the width, height, and number of rectangles for each of K

rectangle types. HMSPP and related packing problems have many applications in diverse fields

including transportation, stock cutting, printing, and scheduling. We present an approximation

algorithm for HMSPP that produces a solution of height at most OPT (I) + K − 1 in time

O
(

K10 log K log2
(

Kn
a

)

+ K3 log K log n
)

, where OPT (I) is the value of an optimal packing for

I, K is the number of rectangle types, n is the total number of rectangles, and a is the width of

the thinnest rectangle.

3.1 Open Questions and Future Work

Our results give way to many new questions. The complexity class for HMSPP is still not

known even for small values of K. It is not even known if HMSPP is in the class NP. Assuming

the problem is not in class P, is OPT (I) + K − 1 the best one can do in polynomial time? The

high-multiplicity bin packing problem is in class P when K = 2 [21]. However, it is not known

if HMSPP can be solved exactly in polynomial time for any small values of K ≥ 2.

High-multiplicity strip packing problems are not strictly limited to two dimensions. Our

algorithm is not trivially generalized to higher dimensions, however some of the key ideas

31
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could be used. Particularly, three-dimensional fractional strip packing problems are not easily

represented as linear programs, a very necessary part of our algorithm.

In our algorithm, only two packed configurations are examined and rearranged after solving

the fractional problem. This is because Lemma 2.5.2 does not allow us to round down more

packed configurations. If the packed configurations were divided into pairs, each pair could be

arranged as described above such that each pair increased in height by only 1 unit assuming

some fractional rectangles were removed from the packed configurations and placed aside. If

there were a way to pack these leftover rectangles in a height less than K
2

then the resulting

algorithm would improve on the OPT (I) + K − 1 algorithm we have presented in this thesis.

However, so far we have not found a way to pack the leftover rectangles in such a space.
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