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ABSTRACT 

 There’s a significant increase in online consumer forums. When customers set out 

to buy a product they use these forums to form an opinion. Our research focuses on 

comparing Brand positioning maps based on consumer reviews. We also analyse the 

impact of advertisements and expert reviews. Our goal is to show that combining consumer 

reviews with ads and electronic media will help us analyze the effectiveness of advertising 

on brand positioning maps. This approach shall also help us in making association graphs 

for a brand using words of perception/opinion associated with that brand/product. Which 

may in turn assist companies in improving the focus of their advertisements to persuade 

the required set of crowd and influence the public perception. 
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CHAPTER 1 

INTRODUCTION 

by vet4 on Sep 3, 2014          

Vehicle: 2014 BMW 3 Series 328d 4dr Sedan (2.0L 4cyl Turbo diesel 8A) 

Have owned it for 3 mos. includes premium package.  Handles very well but would suggest 

getting an extended warranty if you plan to keep it beyond 4 yrs. 

(Source: Edmunds.com) 

The above excerpt of an automobile review from Edmunds.com provides potential 

buyers with useful information. Consumers regularly survey online reviews and ratings of 

the product they want to purchase. Reviews have a lot of information that can be explored. 

Websites and smartphone applications facilitate the spread of the voice of a consumers. 

Internet has also led to bridging the gap between an expert on a product and a common 

user. In this new generation where people make well informed decisions when buying a 

product, consumer reviews gain increased importance. Potential consumers use them for 

making the right choice. Manufacturers use the reivews to influence and estimate the 

behavior of consumers.  

Also the advertisements that we see or hear have an impact on our buying decisions 

and consumer perceptions [Hong-Youl Ha, 2004]. These advertisements help in decision 

making of the consumers [Abernethy and Franke 1996].  

One of our intermediate tasks will involve estimating the public sentiment relating 

to a company/ a brand. This analysis relies on reviews and advertisements. Assmus et. al. 

established that advertisements do affect sales [Gert Assmus et. al. 1984].
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Our goal was to build a tool that measures the affect of advertisements and electronic 

media on Brand Positioning Maps. Our finding will allow companies to use 

advertisements to alter the brand positioning map. It has been observed [Kamakura and 

Moon, 2014] that consumer reviews also account as a factor in the brand positioning 

maps. We will build brnad positioning maps using consumer reviews then using reviews 

with advertisements and other forms of online media. We used car company’s and 

model’s reviews for this research but it applies equally well for any other field. The 

amount of data makes it a Big Data application. Especially if the advertisements are 

analyzed in the real time from media sources. In the thesis executed the following tasks:  

 Task 1 - Scrape through online review web pages from different websites. The web 

scraper then gives all the reviews in a crude format. Similarly, audio and video 

advertisements, expert reviews, blogs are transcribed for a similar analysis as text.  

 Task 2 – Analyze collected data. Stanford Part of Speech tagger [Toutanova et. al. 

2003] is used to mark out all the adjectives and adverbs associated with a car brand. 

Adjectives and adverbs have been used to identify user’s satisfaction with a 

product. Also we used a word dictionary to find objectivity and sentiment 

associated with all the sentences in the text along with the degree of sentiment 

associated.  

 Task 3 – Build a brand positioning map using the data from task 2. This information 

can be used by industries in improved product positioning strategies and modify 

their advertisements in a direction they find themselves lacking. 

The Figure 1.1 below shows the initial position of a product (Honda Accord) on a 

Product Positioning Map. This has been formed after analyzing the consumer reviews. As 
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the map shows, people consider the price of Accord to be affordable and are quite satisfied 

with it as well. 

This is close to being an ideal situation for the consumers when they pay less and get 

more satisfaction. Thus, the ideal position for any product in this map would be on the left-

top corner. Unless the goal of the company is to build a product for the elite class. In which 

case the product will have to be in the right top corner ideally. Advertisements could help 

change this position as: Let’s assume Honda Accord lacks security features. Company can 

add those and advertise, describing how they have added six air bags for added safety. As 

advertising affects sales and consumer opinions [Gert Assmus et. al. 1984] the product 

positioning maps are bound to change. 

The changes in these maps could either be: 

a) Attracting new customers in the masses by making changes and adding features to 

increase satisfaction and reduce price. 

b) For the premium segments, maintaining the customer base even while increasing 

the prices for cars. 

The anticipated transitions in the Map above can be vertically upwards or horizontally 

left/right as per the company’s requirement. Using these maps in our research we were able 

to evaluate the percentage change brought in consumer perception using advertisements, 

expert reviews and other electronic media influences. 
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Figure 1.1 Sample Brand Positioning Map depicting directions which a product may take 

In the remaining of this thesis, in section 2, we have described most of the related 

work in this area, in section 3 the main research problem is posed and a solution is given. 

Section 4 talks about the approach taken for solving this problem. The generated Brand 

Positioning Maps are analyzed in section 5. I have concluded the topic in section 6.
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CHAPTER 2 

RELATED WORK 

Analyzing consumer reviews is not a novel idea. It has been highlighted in many previous 

researches [Harold H. Kassarjian, June 1977]. Kassarjian in Content Analysis of Consumer 

Research analyzed the content for more than just a company’s public image. It was also 

used for objectivity analysis, theme of advertisement, information contained in the 

advertisements etc. This paper also advocated on how content analysis must be objective, 

systematic and quantitative. The sentiment and objectivity analysis tools help us in 

achieving these objectives quite well. Also advertisement analysis has been studied during 

the last decade [Grahame Dowling and Boris Kabanoff 1996, Avery Abernethy, 1996]. 

They analyzed different types of information that is conveyed in advertisements like 

performance, availability, price, safety etc. The author uses Analysis of covariance 

(ANCOVA) to find out correlation between various factors and how do they affect in more 

informative advertisements. While Dowling focused his pioneering research on advertising 

slogans using computer-aided text analysis. The author established that how some slogans 

leave a stronger impression on the masses. That is also a reason why in the current research 

there is a need to include sentiment analysis along with the emphatic weightage of each 

word. There also has been a recent research on making a brand positioning map using 

public reviews. Kamakura and Moon in 2014 built positioning maps for wine and hotel 

industries. 
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Though we’d think that the expert reviews for wines are always very subjective and the 

paper couldn’t handle it well. We found the ontology built for hotel reviews very accurate 

and have tried to incorporate something similar and improved in our research project. 

Considering the big data aspect, there has been research showing that this social 

engineering is part of the future applications in big data. For example in the paper: Critical 

Questions for Big Data, Boyd and Crawford, 2012, it has six provocations which bring the 

issues needing Big Data. Making Big Data a technological, cultural phenomenon that rests 

on the interplay of technology, analysis and clever judgments. In which social analytics 

were highlighted to be one of the key applications of big data. 

On the technical part on the different methods of analysis, there’s also a tool, 

Opinion Finder [Opinion Finder: Source 2003, 2005] which is used to find polarity in 

sentences based on many NLP software packages. It is a system that processes documents 

and automatically identifies subjective sentences and sentiment expressions as being 

positive or negative. 

OpinionFinder goes through the following steps: 

1) Preprocessing 

It also uses Stanford Part of Speech Tagger to sentence split and part-of-speech tag the 

documents. 

2) Feature Finder 

A helper text document for identifying subjective sentences. 
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3) Rule-based Subjectivity Classifier 

   It relies on manually crafted rules to tag sentences in the document as subjective or 

objective with a very high precision and low recall. 

4) Subjectivity Classifier 

The subjectivity classifier tags sentences in the document as subjective or objective based 

on a trained model on the MPQA Corpus. There are various tagging models to choose 

from. 

5) Polarity Classifier 

The polarity classifier tags the words in the document with their contextual polarity based 

on a model trained on the MPQA Corpus. 

6) SGML markup 

The original document is re-written with inline SGML markup with the output of the 

classifiers. 

Indexing of words is crucial in this project. It will be done by using Stanford Part of 

Speech Tagger [Toutanova et. al. 2003] (POS Tagger), which is a software that reads text 

and assigns parts of speech to each word such as noun, verb, adjective, etc. The English 

taggers use the Penn Treebank tag set. POS Tagger helps in the extraction of sentiment 

and other kinds of social meaning, including politeness, bias, friendliness, and flirtation, 

from speech and text. These tools help us keep the overall text-processing objective. 
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CHAPTER 3 

RESEARCH PROBLEMS 

It is commonly observed that a company tries to increase its reputation and participate in a 

more reputed group of companies. For example Acura from the Honda Motor Co. Ltd. 

would make efforts to be better than or seen alongside names like BMW A.G. and 

Mercedes Benz. There’s always a scope to improve the way we present our product to the 

consumer to make it stand above others. The companies are always in competition for 

standing above others. The way they could do this is to gauge from the market what the 

consumers think of them, and then improve the minus points of the product through ads. 

Currently just the analysis of public reviews on online forums has been used to prepare 

brand positioning maps. Which are very informative on how should a product be placed 

and promoted. Though this research is fairly significant, it lacks a wider scope of all-

inclusiveness.  

3.1 The overview of the complete research is as follows: 

1) A web scraper is used to gather public reviews for three segment of cars – lower 

priced, mid-priced, and high-priced cars. These three segments are taken to prevent 

any bias from a particular class of consumers. Example – owners of higher end cars 

might not write reviews as frequently as those in the mid segment cars. Two 

websites have been used for web scraping purposes – Edmunds.com and Cars.com. 

and editorials have been taken from Autocar blog. 
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We could have included more number of websites and even e-newspapers and 

editorials, but the scope of this project precluded it. Also text is transcribed from 

video reviews and advertisements of the car companies. 

2) A word-by-word tagging is done using Part of Speech Tagger on each car’s review. 

Out of these texts, it is observed that people mostly use adjectives or action words 

(adverbs mostly) to express their content or discontent towards a product. For 

example – fuel-efficient, good mileage, quickly, smoothly etc. So a list of all the 

words associated with a car type are extracted. Since individual products are 

responsible for the brand image, results are later aggregated for each company, in 

our case, Honda LLC and Toyota’s Corolla.  

3) The filtered bag of text is scored with a reference dictionary of words and relative 

emphasis they have. Whether it was meant in a positive/ negative/ neutral 

connotation each word gets a score. Also mostly it’s observed that people do not 

post much bad reviews after buying expensive cars. It’s subtle to figure out, but 

possible as observed through the results. Or the defense to this can be that expensive 

car owners do not come as frequently to write reviews. 

4) At the same time Video reviews are also transcribed using Sphinx4, an audio 

transcription library developed by Carnegie Mellon University [Walker et. al. 

2004]. 

5) The results from steps two, three and four are correlated to produce analytic graphs.
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CHAPTER 4 

APPROACH FOR THE TASKS 

It is primarily an implementation based research, in which Computing tools are used to 

derive the best possible marketing insights estimating public opinion at large. The solution 

proposed in this research has four marquee stages. The first stage involves scraping of the 

reviews from various websites. Two websites have been scraped for reviews by product’s 

name and then by the company’s name. In the first case, the reviews were limited to the 

year 2011 to take into account the effect of advertisements on reviews after 2011. The 

sources used were Edmunds.com and Cars.com. The web scraper uses multi-threading to 

reduce the processing time. This parallelization could also be done by using Hadoop to 

further enhance speed if we were to deal with a very large number of reviews like those in 

the electronics industries. This part has mostly been done in Java and the reviews are 

collected together. Figure 4.1 shows the outline of the analysis. 

A web crawler has been implemented taking skeleton code from the web and improvising 

it as per our needs. Please refer the Appendix for details.
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There are two main methods that need to be overridden: 

 shouldVisit – It is used for the crawler to decide whet1her the URL should be 

crawled or not. Which is used to limit the crawler from going to media pages and 

scraping media files. 

 Visit -  This function is called after the content is downloaded from the URL. It can 

be used to manipulate the information just obtained. 

The crawler uses maven library dependency from University of California, Irvine that has 

essential jar files for multithreaded crawler functions. 

The limitation of the crawler is that it does not go through password-protected 

websites. But in our case, both the review websites do not necessarily need a log in to see 

the reviews. All the crawl data is stored in an intermediate folder. We can also vary the 

number of threads initiating the crawl, the depth of crawling in pages and number of pages 

to be visited. Simultaneously audio files are transcribed using the Sphinx4 library and 

merged into the same text file having all the reviews. 

In the next stage of our research we use the Stanford Part of Speech Tagger. It uses 

a tagging model, which is a collection of sentences used to train the Tagger. So that the 

next time it recognizes a word structure it becomes able to qualify a word with a particular 

part of speech. It is a process in which we can always refine our results based on which 

data set we use.
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Figure 4.1: Overview of the Analysis Process 
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Stumbling upon different tagging models for English text, we decided to use bidirectional-

ditsim-wsj-018-tagger because it has a reported accuracy of 97.32% [Robert C Moore, 

2014] in identifying parts of speech, which is slightly better than the other tagger models 

available. Another advantage of using this tagger is that it has language models for English, 

Chinese, Arabic, French and German. Which may improve the scalability of the project if 

extended.  

A sample input to the tagger (from Stanford CoreNLP project’s sampleinput.txt): 

“A passenger plane has crashed shortly after take-off from Kyrgyzstan's capital, Bishkek, 

killing a large number of those on board. The head of Kyrgyzstan's civil aviation authority 

said that out of about 90 passengers and crew, only about 20 people have survived. The 

Itek Air Boeing 737 took off bound for Mashhad, in north-eastern Iran, but turned round 

some 10 minutes later.” 

The output from the Stanford POS tagger is: 

“A_DT passenger_NN plane_NN has_VBZ crashed_VBN shortly_RB after_IN take-

off_NN from_IN Kyrgyzstan_NNP 's_POS capital_NN, _, Bishkek_NNP ,_, killing_VBG 

a_DT large_JJ number_NN of_IN those_DT on_IN board_NN ._. The_DT head_NN 

of_IN Kyrgyzstan_NNP 's_POS civil_JJ aviation_NN authority_NN said_VBD that_IN 

out_IN of_IN about_IN 90_CD passengers_NNS and_CC crew_NN ,_, only_RB about_IN 

20_CD people_NNS have_VBP survived_VBN ._. The_DT Itek_NNP Air_NNP 

Boeing_NNP 737_CD took_VBD off_RP bound_VBN for_IN Mashhad_NNP ,_, in_IN 

north-eastern_JJ Iran_NNP ,_, but_CC turned_VBD round_NN some_DT 10_CD 

minutes_NNS later_RB ._.”  
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After all the words are tagged with part of speech tags, we had selected only the adjective 

and adverb related words (JJ and RB). Since mostly adjectives and adverbs are the parts of 

speech used for expressing views. Out of the list of words, we make the perception network 

graphs using the most frequent words. 

Figure 4.2 shows one of the network association graphs in which significant 

reviews were marked for BMW 3 series and 7 series. To decide significant words 

associated with a product, we’ve extracted the most commonly occurring words easy to 

display from the reviews. As has been explained previously, we have selected adjectives 

and adverbs as parameters for expression. In case of a draw in the frequency of a word, 

which was observed in many cases, we’ve chosen all the words unless we run out of the 

ability to display them clearly. The central Nodes in the graph represent the car names. 

Other nodes represent specific properties/words mentioned in the reviews. A line from 

central node to other represents association of both. From the graph it can be observed that 

powerful, fast, tough, huge, automatic and beautiful are the words that commonly occur 

between these two car types. The only words with negative connotation that were mostly 

found in this graph were boring and annoying. Hence these word choices suggest that when 

a customer sets out to buy a BMW he/she’s looking for something closer to a bond car. 

Similar word network graph is shown for Honda Accord and Fit. From the reviews, it has 

been seen that out of the datasets from Honda, BMW, Kia, Lexus and Nissan’s chosen cars, 

Honda had the most number of reviews and with mostly a positive feedback. 
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Figure 4.2 Network graph for perceptions for BMW 3 and 7 series until year 2011 

The negative adjective that shows up in this graph is again ‘annoying’, well not literally. 

Also it is good to know that a two string word ‘fuel-efficient’ was a common one for both 

the cars. 

Figure 4.4 shows a graph for Acura RLX and TLX. While the common words in a 

similar graph for Acura RLX and TLX were midsize and comfortable, the negative 

connotation words were tedious and not great. It might show less words for Honda and 

Acura because of random words causing the data to be unclean. 
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Figure 4.3. A similar perception network graph for Honda Accord and Honda Fit 

There’s also a network graph made with Kia Soul and Nissan Leaf in Figure 4.5. These 

cars were observed to have comparatively less positive reviews than the other products in 

all the companies considered. Nissan leaf, even after advertising about its eco-friendly all-

electric car, hasn’t been able to compete with cars from a similar segment and is suggested 

in the consumer reviews. In comparison to Kia soul, it was in a better position though. Most 

of the comments for Soul described it as cubic, small and box-shaped which suggests the 

design wasn’t liked by many consumers. Though manually going through the reviews 

showed that some consumers also found it spacious for them.  
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Figure 4.4 Perception Network graph for Acura RLX and Acura TLX 

In Figure 4.6 when we analyze all the cars together we find every consumer agreed to 

their cars being ‘comfortable’. 

Which demonstrates that all the car companies mentioned fulfil at the least this 

basic criterion. So the competing point wouldn’t be about comfort anymore, since a car 

worth $16K as well as one worth $90K car are felt comfortable in these records for 

respective consumers. It is the additional features that amount to greater consumer 

satisfaction. It might also be wrong in a way; to assert the previous statement because 

‘comfortable’ is a very common, subjective and colloquial word unlike cozy or some other 

complicated synonym. Or if the user prefers to write with a negation like ‘not comfortable’. 
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Figure 4.5 Perception network Graph for Kia Soul and Nissan Leaf 
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Figure 4.6 Perception Network Graph of all the cars analyzed
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CHAPTER 5 

BRAND POSITIONING MAPS’ ANALYSIS 

We have chosen a specific case study of Toyota Corolla to support our research. All the 

process described in section 4 is done twice. First taking consumer reviews and data just. 

Then taking the consumer reviews, advertisements, expert reviews until 2014. Since there 

was a huge recall of Toyota cars from 2009 until 2011, the overall sales of Corollas went 

down. Consumers’ confidence in the brand name also took a toll in general since 

Umbrella branding does have an effect on the brand itself [Mary Sullivan, 1990]. In the 

graph it is observed that the sales dipped significantly in 2007, ‘08 and ‘09. [US Toyota 

Corolla Sales, Goodcarbadcar.com]

   

Figure 5.1: Sales of Toyota Corolla over time
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This trend is contradicting to the overall market trends in which sales of all the 

cars in the US increased in the same period from 2009 onwards. The sales dip in Corolla 

can be attributed to mass product recalls for Corolla starting 2009 and less popularity 

before those years. 

 

Figure 5.2: Contribution of Corolla in the overall car sales in US over time 

It is also seen that the sales of Toyota Corolla increased significantly in and after 

2009. There must have been significant improvements introduced or clarifications made 

by Toyota which persuaded more number of consumers to buy their product. Or at least 

consumer perception improved because of some input from the product’s advertisements 

and expert reviews on the newer models.  

The Brand Positioning Map obtained from Toyota Corolla’s reviews are presented 

in Figure 5.3. We had to divide the reviews into three segments to analyze year by year. 

Car brands introduce car models almost every year. It is possible that reviews were 
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improved because of many new features in a model. It is an assumption that when a 

consumer goes through reviews, a review 6 years older than that present time might not be 

as much valuable. So we have year blocks 2006-‘08, 2009 – ’11 and 2012- ‘14. Also for 

the price, average price paid during that period is taken from Edmunds.com. 

 

Figure 5.3: Brand Positioning Map for Toyota’s Corolla over the years 

The number of reviews collected from 2008 and previous years were much more than 

recent models. The reason being reviews for used car models which date back to even 

decades ago. As it was seen, the Brand Positioning Map failed to capture public sentiment 
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and mostly gave a neutral consumer perception when the time interval was increased. The 

perception scorer found almost equal amount of words with a positive and negative 

connotation. This also suggests that if we have more data from more sources, we’ll be 

needing more than just word scores to gauge the overall polarity of the review set.  

Considering the Brand Positioning Map which we have created, it shows Corolla’s 

market position with and without advertisements for the three set of years. The consumer 

satisfaction on the Y axis is based on the perception scores obtained from the dictionary. 

The scores obtained are shown in table 5.1. 

Table 5.1: Perception Scores Table for Toyota Corolla with and without Advertisements 

Year and Type Score from Dictionary Normalization on Y axis 

2006-‘08 w/o ads, reviews 34.155 2.3 

2006-’08 w/ ads, reviews 43.618 3.58 

2009-‘11 w/o ads, reviews 18.788 1.04 

2009-‘11 w/ ads, reviews 30.010 1.97 

2012-‘14 w/o ads, reviews 60.87 4.5 

2012-‘14 w/ ads, reviews 59.728 4.4 

 

Taking the case of the period from 2009-2011, it is seen that Corolla has a place on the 

Brand Positioning Map having the largest gap with and without advertisements and expert 

reviews. Our BPM has a range on X and Y axis from -4.5 to +4.5. When we compare it to 

the position where Corolla stands today, we find that it has risen in price as well as the 

consumer satisfaction has increased. We considered video reviews from experts in the data 
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taken from 2012 to 2014 period as well as during period 2009-2011. Also the map suggests 

the public sentiment falling in general from 2008-10 to 2009-11. It is also the time at which 

there’s highest percentage increase in perception score at a given time. From a score of 

18.788 to 30.010 it’s a 59.72% increase in 2009-11. This change has been brought about 

by the inclusion of social media. To measure this change quantifiably, we also have a Brand 

Position Map for just advertisements and just consumer reviews in Fig. 5.4 and Fig. 5.5. 

 

Figure 5.4: Corolla BPM with independent points for reviews and e media with ads 
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Figure 5.5: Corolla Brand Positioning Map with just the e media and ads’ effects 
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CHAPTER 6 

CONCLUSION 

Social engineering can render deep insights into what’s going on in consumer’s minds, 

what is the purchase pattern of people, their likes and dislikes etc. Consumer reviews have 

been gaining attention lately due to the increase in computing resources and Big Data 

processing capability. Having gone through many journals to gauge the public sentiment, 

we thought that there is a huge potential in analysis if we combine the results from 

consumer reviews and advertisements. With the help of analysis of this text we’d be able 

to observe changes in the Product Positioning Maps for various cars. These maps can be 

very useful for the companies to improve their sales. For Example, if we were concerned 

about sales of Honda Motor Co. Ltd.’s Fit, we’d see that even after being inexpensive, what 

all factors are creating a bad image of the car. Say those were mileage and safety. Then 

Honda can improve upon those factors in their advertisements advocating how have they 

improved upon mileage and introduced more safety measures in the car. But why do this 

research when car companies after launching a car already do the surveys? The reason is 

that in these surveys mostly they use a restricted vocabulary in which they ask a fixed set 

of questions. Hence it becomes more like a closed ended question. While when consumers 

write the reviews themselves, they highlight all the pressing needs in the car and all the 

shiny features it has both, without being strait-jacketed into a set of questions. Thus making 

this research go deeper into the requirements of the consumers. 
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In the direction of the future of this research, I find that print media, blogs, and 

permission based scraping of chats must also be added to utilize most of the intellectual 

input that consumers get. Which can be added later if the research problem further calls 

for.
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APPENDIX A: CODE IMPLEMENTATION 
  

To collect reviews from all the web pages related to a car, a basic web scraper was 

implemented. Firstly using a single threaded synchronous crawler. This class used 

HttpClient package from Apache HttpClient Module to get the content out of the web 

pages. The Java script used and file extenstions were filtered out using the Regular 

Expression: “.*(\\.(css|js|bmp|gif|jpe?g" + "|png|tiff?|mid|mp2|mp3|mp4" 

      + "|wav|avi|mov|mpeg|ram|m4v|pdf" + "|rm|smil|wmv|swf|wma|zip|rar|gz))$” 

All of the HTML tags were stored in hash maps with value being the content of all of the 

tags as strings. These values were then compared to a preset Enum type having all the 

commonly used HTML tags. In case of <href> tags, the links were extracted. In case of 

paragraph elements and body tags all the text was kept as it is. It is also the reason the word 

helpful appears in all the reviews. Because all the reviews ended with an element called 

“helpful” to mark out all the helpful reviews. The text was then curated to remove most of 

such redundant text and garbage.  

The basic flow diagram of the web crawler implementation is shown in Figure 

A.1: The information to be retained is stored in a temporary file. This temporary file gets 

overwritten each time a crawler is run. This kind of web crawler worked very well for 

crawling on a page-by-page basis. But in case of many sub-links in the page, it was stuck 

because of blocking operation of the single threaded application. 
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Figure A.1: Overall process used by web scraper 

The program had to wait until the page was completely loaded. Instead we chose to 

modify the multi-threaded web crawler implemented at UC Irvine using our custom 

classes. This web crawler uses multi-threaded synchronous crawler, which optimizes the 

use of CPU clock cycles as well as the time to load the web pages. The maven 

dependencies download the needed jar files for the crawler classes to be used. In our case 

using only two crawlers fetched good results. The way this multi-threaded crawler is set 

up can be shown by Fig. A2. 
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 Figure A.2: Multithreaded Web Scraper 

The two main classes which were used to change the parameters for scraping are 

BasicCrawlController.java and BasicCrawler.java.  

BasicCrawlController.java: 

import edu.uci.ics.crawler4j.crawler.CrawlConfig; 

import edu.uci.ics.crawler4j.crawler.CrawlController; 

import edu.uci.ics.crawler4j.fetcher.PageFetcher; 

import edu.uci.ics.crawler4j.robotstxt.RobotstxtConfig; 

import edu.uci.ics.crawler4j.robotstxt.RobotstxtServer; 

 

/** 

 * @author Surya Bhatt 

 **/ 

 

public class BasicCrawlController { 

 

  public static void main(String[] args) throws Exception { 

    if (args.length != 2) { 

      System.out.println("Needed parameters: "); 

      System.out.println("\t rootFolder (it will contain intermediate crawl data)"); 

      System.out.println("\t numberOfCralwers (number of concurrent threads)"); 

      return; 

    }  
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    /* 

     * crawlStorageFolder is a folder where intermediate crawl data is 

     * stored. Args[0] gives the directory information where intermediate scraped    *      

data is to be stored. 

     */ 

    String crawlStorageFolder = args[0]; 

 

    /* 

     * numberOfCrawlers shows the number of concurrent threads that should 

     * be initiated for crawling. Args[1] gives the number of crawlers which we                       

*      want to implement, which we have kept as 2. 

     */ 

    int numberOfCrawlers = Integer.parseInt(args[1]); 

 

    CrawlConfig config = new CrawlConfig(); 

 

    config.setCrawlStorageFolder(crawlStorageFolder); 

 

    /* 

     * We must make sure that we don't send more than 1 request per 

     * second due to some websites' IP blocking rules(1000 milliseconds between 

requests). 

     */ 

    config.setPolitenessDelay(1000); 

 

    /* 

     * We can set the maximum crawl depth here. The default value is -1 for 

     * unlimited depth. But we left it at 2 since we didn't want the crawler to run for a long 

time. 

     */ 

    config.setMaxDepthOfCrawling(2); 

 

    /* 

     * We can set the maximum number of pages to crawl. The default value 

     * is -1 for unlimited number of pages. A safe limit for all inclusion is 1000 

     */ 

    config.setMaxPagesToFetch(1000); 

    config.setResumableCrawling(false); 

 

    /* 

     * Instantiate the controller for this crawl.     */ 

    PageFetcher pageFetcher = new PageFetcher(config); 

    RobotstxtConfig robotstxtConfig = new RobotstxtConfig(); 

    RobotstxtServer robotstxtServer = new RobotstxtServer(robotstxtConfig, 

pageFetcher); 
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    CrawlController controller = new CrawlController(config, pageFetcher, 

robotstxtServer); 

 

    /* 

     * For each crawl, we need to add some seed URLs. These are the first 

     * URLs that are fetched and then the crawler starts following links 

     * which are found in these pages. Here we have taken only 1 car model-specific URL 

as our 

     * seed URL to get reviews related to just one model every time. Here, H Civic 

     */ 

    controller.addSeed("http://www.edmunds.com/honda/civic/2013/sedan/consumer-

reviews/"); 

    //controller.addSeed("http://SOME_OTHER_URL.com"); 

 

    /* 

     * Start the crawl. This is a blocking operation, meaning that our code 

     * will reach the line after this only when crawling is finished. 

     */ 

    controller.start(BasicCrawler.class, numberOfCrawlers); 

  } 

} 

 

BasicCrawler.java: 

import edu.uci.ics.crawler4j.crawler.Page; 

import edu.uci.ics.crawler4j.crawler.WebCrawler; 

import edu.uci.ics.crawler4j.parser.HtmlParseData; 

import edu.uci.ics.crawler4j.url.WebURL; 

 

import java.util.List; 

import java.util.Set; 

import java.util.regex.Pattern; 

 

import org.apache.http.Header; 

 

/** 

 * @author Surya Bhatt 

 **/ 

public class BasicCrawler extends WebCrawler { 

  

  //The regex pattern used for filtering all kinds of media files and spammy ad URLs. 

  private final static Pattern FILTERS = Pattern.compile(".*(\\.(css|js|bmp|gif|jpe?g" + 

"|png|tiff?|mid|mp2|mp3|mp4" 

      + "|wav|avi|mov|mpeg|ram|m4v|pdf" + "|rm|smil|wmv|swf|wma|zip|rar|gz))$"); 
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 /** 

   * We should implement this function to specify whether the given URL 

   * should be crawled or not (based on our crawling logic). 

   */ 

  @Override 

  public boolean shouldVisit(WebURL url) { 

    String href = url.getURL().toLowerCase(); 

    //This is an additional filter to keep the scrape only related to the car model's review 

pages. 

    return !FILTERS.matcher(href).matches() && 

href.startsWith("http://www.edmunds.com/honda/civic/2013/sedan/consumer-reviews/"); 

  } 

 

  /** 

   * This function is called when a page is fetched and ready to be processed 

   * by the program. 

   */ 

  @Override 

  public void visit(Page page) { 

    int docid = page.getWebURL().getDocid(); 

    String url = page.getWebURL().getURL(); 

    String domain = page.getWebURL().getDomain(); 

    String path = page.getWebURL().getPath(); 

    String subDomain = page.getWebURL().getSubDomain(); 

    String parentUrl = page.getWebURL().getParentUrl(); 

    String anchor = page.getWebURL().getAnchor(); 

 

    System.out.println("Docid: " + docid); 

    System.out.println("URL: " + url); 

    System.out.println("Domain: '" + domain + "'"); 

    System.out.println("Sub-domain: '" + subDomain + "'"); 

    System.out.println("Path: '" + path + "'"); 

    System.out.println("Parent page: " + parentUrl); 

    System.out.println("Anchor text: " + anchor); 

 

    if (page.getParseData() instanceof HtmlParseData) { 

      HtmlParseData htmlParseData = (HtmlParseData) page.getParseData(); 

      String text = htmlParseData.getText(); 

      String html = htmlParseData.getHtml(); 

      List<WebURL> links = htmlParseData.getOutgoingUrls(); 

 

      System.out.println("This is the content:::"+text); 

      System.out.println("Text length: " + text.length()); 

      System.out.println("Html length: " + html.length()); 

      System.out.println("Number of outgoing links: " + links.size()); 

    } 
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    Header[] responseHeaders = page.getFetchResponseHeaders(); 

    if (responseHeaders != null) { 

      System.out.println("Response headers:"); 

      for (Header header : responseHeaders) { 

        System.out.println("\t" + header.getName() + ": " + header.getValue()); 

      } 

    } 

 

    System.out.println("============="); 

  }} 

 

After the text was scraped from all the required pages, we used Stanford Part of Speech 

Tagger to tag the text according to different parts of speech. We have filtered out the 

words and have only used adjectives, adverbs and their variations for analysis because 

these are the words mostly used for describing things.   

The Tagger class used for the Stanford Part of Speech Tagger: 

import java.io.BufferedReader; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.util.Arrays;  

import edu.stanford.nlp.tagger.maxent.MaxentTagger; 

 

public class TagText { 

 

  

 public static void main(String[] args) throws Exception { 

  //Specify which Tagger training model to use 

  MaxentTagger tagger = new MaxentTagger("taggers/english-left3words-

distsim.tagger"); 

  String sample = ""; 

   

  try{ 

   BufferedReader br; 

   br = new BufferedReader(new FileReader 

("C:/Users/Vaio/Desktop/HondaAllCarsReviews.txt")); 

   while (br.readLine() != null){ 

       sample = sample.concat(br.readLine()); 

   } 

   //rest of the reading code here 
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   br.close(); 

   } catch(Exception e){ 

      System.out.println("Error!"); 

   } 

  

  // The tagged string 

  String tagged = tagger.tagString(sample); 

    

  // Output the result 

  String[] wordList = tagged.split(" "); 

  int count =0; 

  for (int i = 0; i < wordList.length; i++) { 

    

  //Regex in which JJ is for Adjectives and RB for Adverbs filtering 

   if (wordList[i].matches("(.*)_JJ|(.*)_RB")) { 

       System.out.println(wordList[i]); 

       count++; 

   } 

  

  } 

  System.out.println(count);  

 } 

} 

 

After collecting the list of all the relevant words in separate text files, we needed to 

perform sentiment analysis. One of the approaches initially used was OpinionFinder to find 

the sentiment related to each sentence. But it failed to recognize the strength of an adjective. 

Whether it had an extreme or a subtle emphasis. For improving which we had used a 

dictionary by linguistics at Carnegie Mellon University which has 18580 action words and 

adjectives scored according to the strength they have. All of these words were scored 

according to the emphasis in sentiment they had between +1 and -1. -1 for extremely 

negative connoted words and +1 for extremely positive words. For example - hapless has 

a score of -1, while uneasy has -0.625, while epic has a score of 1. These words were saved 

in a map and checked to match the input text files. This gave us a better score of the measure 

of what strong / weak sentiments are floating in the reviews. 
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Here is the code used for which in the class WordScorer.java : 

WordScorer.java 

import java.io.BufferedReader; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.LinkedHashMap; 

import java.util.LinkedList; 

import java.util.List; 

import java.util.Map; 

import java.util.Map.Entry; 

import java.util.Set; 

 

 

public class WordScorer { 

 

 static HashMap <String, Double> wordMap = new HashMap <String, Double>(); 

  

 public static void main(String[] args) throws IOException { 

  // The dictionary is first read from the file path. 

   

  double score; 

  String word; 

  double CustomerSatisfactionScore = 0; 

  BufferedReader br = new BufferedReader(new FileReader 

("C://Users/Vaio/Desktop/sentiwords.txt")); 

  String line; 

  while ((line = br.readLine()) != null) { 

      

   String[] values = line.split("\\t"); 

    

   score = Double.parseDouble(values[0].toString()); 

   word = values[1]; 

   //System.out.println("Not Printing file content:"); 

   wordMap.put(word, score); 

    

  } 

  br.close(); 
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  BufferedReader brText = new BufferedReader(new 

FileReader("C://Users/Vaio/Desktop/CorollaRevAfterRecall.txt")); 

  String textLine; 

  HashMap <String, Double> scoreCounts = new HashMap <String, 

Double>(); 

   

  while ((textLine = brText.readLine()) != null) { 

   String [] words = textLine.split("\\s+"); 

   for (int i = 0; i < words.length; i++){ 

    if (wordMap.get(words[i]) != null){ 

      

     if (scoreCounts.get(words[i]) != null){ 

      scoreCounts.put(words[i], 

(scoreCounts.get(words[i]) + Math.abs(wordMap.get(words[i])))); 

      CustomerSatisfactionScore += 

wordMap.get(words[i]); 

     } else { 

      scoreCounts.put(words[i], 

Math.abs(wordMap.get(words[i]))); 

     

 System.out.println(CustomerSatisfactionScore); 

      CustomerSatisfactionScore += 

wordMap.get(words[i]); 

     } 

    } 

   } 

  } 

   

   

  scoreCounts = sortByComparator(scoreCounts, true); 

  Set keys = scoreCounts.keySet(); 

  for (Iterator i = keys.iterator(); i.hasNext();) { 

         String key = (String) i.next(); 

         Double value = scoreCounts.get(key); 

         System.out.println("Key: "+key + ", Value: " + value); 

         //CustomerSatisfactionScore += value; 

            

  } 

  System.out.println(CustomerSatisfactionScore); 

 } 

  

  private static HashMap<String, Double> sortByComparator(HashMap<String, 

Double> unsortMap, final boolean order) 

     { 
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         List<Entry<String, Double>> list = new LinkedList<Entry<String, 

Double>>(unsortMap.entrySet()); 

 

         // Sorting the list based on values 

         Collections.sort(list, new Comparator<Entry<String, Double>>() 

         { 

             public int compare(Entry<String, Double> o1, Entry<String, Double> o2) 

             { 

                 if (order) 

                 { 

                     return o1.getValue().compareTo(o2.getValue()); 

                 } 

                 else 
                 { 

                     return o2.getValue().compareTo(o1.getValue()); 

 

                 } 

             } 

         }); 

 

         // Maintaining insertion order with the help of LinkedList 

         HashMap<String, Double> sortedMap = new LinkedHashMap<String, 

Double>(); 

         for (Entry<String, Double> entry : list) 

         { 

             sortedMap.put(entry.getKey(), entry.getValue()); 

         } 

         return sortedMap; 

     } 

} 

 

After we had obtained the scores related to all the words, they were used to make 

perception graphs and Brand Positioning Maps. 
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