
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

December 2012

A new algorithm for de novo genome assembly
Md. Bahlul Haider
The University of Western Ontario

Supervisor
Dr. Lucian Ilie
The University of Western Ontario

Joint Supervisor
Dr. Roberto Solis-Oba
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Md. Bahlul Haider 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Computer Sciences Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Haider, Md. Bahlul, "A new algorithm for de novo genome assembly" (2012). Electronic Thesis and Dissertation Repository. 1041.
https://ir.lib.uwo.ca/etd/1041

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F1041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1041&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F1041&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1041?utm_source=ir.lib.uwo.ca%2Fetd%2F1041&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

A NEW ALGORITHM FOR DE NOVO GENOME ASSEMBLY

(Spine title: A new algorithm for de novo genome assembly)

(Thesis format: Monograph)

by

Md. Bahlul Haider

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Md. Bahlul Haider 2012

THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor 1:

. .
Dr. Lucian Ilie

Supervisor 2:

. .
Dr. Roberto Solis-Oba

Examiners:

. .
Dr. Bin Ma

. .
Dr. Jagath Samarabandu

. .
Dr. Kamran Sedig

. .
Dr. Kaizhong Zhang

The thesis by

Md. Bahlul Haider

entitled:

A new algorithm for de novo genome assembly

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

. .
Date

. .
Chair of the Thesis Examination Board

ii

Abstract

The enormous amount of short reads produced by next generation sequencing (NGS)

techniques such as Roche/454, Illumina/Solexa and SOLiD sequencing opened the possi-

bility of de novo genome assembly. Some of the de novo genome assemblers (e.g., Edena,

SGA) use an overlap graph approach to assemble a genome, while others (e.g., ABySS

and SOAPdenovo) use a de Bruijn graph approach. Currently, the approaches based on

the de Bruijn graph are the most successful, yet their performance is far from being able

to assemble entire genomic sequences. We developed a new overlap graph based genome

assembler called Paired-End Genome ASsembly Using Short-sequences (PEGASUS) for

paired-end short reads produced by NGS techniques. PEGASUS uses a minimum cost

network flow approach to predict the copy count of the input reads more precisely than

other algorithms. With the help of accurate copy count and mate pair support, PEGA-

SUS can accurately unscramble the paths in the overlap graph that correspond to DNA

sequences. PEGASUS exhibits comparable and in many cases better performance than

the leading genome assemblers.

Keywords: genome assembly, DNA, next generation sequencing, overlap graph,

mate pair.

iii

Acknowledgements

I would like to express my sincere gratitude to everyone involved in the completion of

this dissertation. First of all, I would like to express my deep and sincere gratitude to

my supervisors Dr. Lucian Ilie and Dr. Roberto Solis-Oba for introducing me to the

beautiful research field on Bioinformatics. Their continuous support helped me do my

research in Bioinformatics, which was a new field for me when I started my graduate

studies at The University of Western Ontario. I really appreciate their extraordinary

patience in reading and correcting my drafts including research proposals, presentation

slides, scholarship applications and finally this dissertation. I owe to my supervisors for

the valuable time they spent to listen to my ideas and guide me to find the right way.

I am also thankful to The University of Western Ontario for awarding me with the

Western Graduate Research Scholarship (WGRS) and to the Department of Computer

Science, at The University of Western Ontario for supporting me. I am also grateful to

the Ministry of Training, Colleges and Universities (Ontario) for awarding me an Ontario

Graduate Scholarship (OGS).

I am also thankful to my examiners Dr. Bin Ma, Dr. Jagath Samarabandu, Dr.

Kamran Sedig and Dr. Kaizhong Zhang. I am thankful to Mike Molnar, who helped

me to run some of the experiments. I would like to thank all my colleagues, friends and

family members, especially my wife Saina Sharmin for making the difficult task easier by

giving me advice, suggestion and inspiration.

iv

Contents

Title Page i

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables x

List of Figures xi

List of Algorithms xiv

List of Acronyms xvi

1 Introduction 1

1.1 Sequencing Techniques . 2

1.2 Applications of DNA Sequencing . 2

1.3 Genome Assemblers . 3

1.4 PEGASUS . 4

1.4.1 Challenges . 5

1.4.2 Contributions . 5

1.5 Thesis Overview . 6

v

2 DNA Sequencing 8

2.1 DNA . 9

2.2 Sanger Sequencing . 11

Template Preparation . 12

Chain Terminating Reaction . 13

Sequencing . 14

2.2.1 Applications . 15

2.2.2 Disadvantages . 15

2.3 Next Generation Sequencing (NGS) . 16

2.3.1 Roche/454 Sequencing . 16

Library Preparation . 17

Pyrosequencing . 18

2.3.2 Illumina/Solexa Sequencing . 18

Amplification . 18

Sequencing by Synthesis . 20

2.3.3 SOLiD Sequencing . 20

Library Preparation . 22

Sequencing by Ligation . 22

2.3.4 Applications . 23

Variant Discovery . 24

De novo Genome Assembly . 24

2.3.5 Advantages . 25

2.3.6 Disadvantages . 26

3 NGS de novo Genome Assembly 27

3.1 Problem Description . 27

3.1.1 Reads . 28

3.1.2 Reverse Complement . 29

vi

3.1.3 Mate Pairs and Insert Size . 30

3.1.4 Repeats and Copy Counts . 30

3.1.5 Coverage . 31

3.2 Overlap Graph . 32

3.2.1 Overlap Length . 34

3.2.2 Minimum Overlap Length . 35

3.2.3 Simple and Composite Edges . 35

3.2.4 Types of Overlaps . 36

Forward-Forward Overlap . 37

Reverse-Forward Overlap . 37

Forward-Reverse Overlap . 38

3.2.5 Transitive Edges . 38

3.3 De Bruijn Graph . 39

3.4 File Formats . 41

3.4.1 FASTA File Format . 41

3.4.2 FASTQ File Format . 41

3.5 Existing Genome Assemblers . 42

3.5.1 Edena . 44

Overlapping Step . 45

Assembly Step . 45

3.5.2 Eulerian Path Assembly . 46

3.5.3 Velvet . 47

3.5.4 ALLPATHS . 48

3.5.5 ABySS . 49

3.5.6 SOAPdenovo . 50

3.5.7 SGA . 52

4 PEGASUS 54

vii

4.1 Overview of PEGASUS . 55

4.2 Error Correction . 55

4.3 Overlap Graph Construction . 55

4.3.1 Hash Table . 56

4.3.2 Inserting Edges in the Overlap Graph 56

4.3.3 Transitive Reduction . 58

4.4 Contracting Composite Paths . 64

4.5 Error Removal . 66

4.5.1 Dead-End Removal . 67

4.5.2 Bubble Removal . 69

4.6 Genome Size Estimation . 71

4.7 Estimating the Distribution of Insert Sizes 72

4.8 Copy Count Estimation . 74

4.8.1 Minimum Cost Flow . 76

4.8.2 Cost Function . 77

4.8.3 A-Statistics . 79

4.8.4 Accurate Copy Count . 81

4.9 In-tree and Out-tree Reductions . 85

4.10 Loop Reductions . 88

4.11 Resolving Nodes by Mate Pairs . 89

4.12 Contig Extraction . 92

4.13 The Algorithm . 93

5 Experiments 96

5.1 Datasets . 96

5.2 Experimental Settings . 98

5.3 Definitions . 98

5.3.1 Gaps . 98

viii

5.3.2 Mismatches . 98

5.3.3 Contigs . 99

5.3.4 Scaffolds . 99

5.3.5 N50 . 100

5.4 Discussion . 101

5.4.1 Running Time and Memory Usage Comparison 106

6 Conclusions and Future Research 109

6.1 Future Research . 111

A PEGASUS Software Manual 113

A.1 Running PEGASUS . 113

A.1.1 Output Files . 113

A.2 External Function . 114

Bibliography 120

Index 121

Curriculum Vitae 123

ix

List of Tables

3.1 Comparisons of existing genome assemblers. 43

5.1 Datasets downloaded from the Short Read Archive (SRA) Database. . . . 97

5.2 Assembly results of the first 8 datasets. 104

5.3 Assembly results of the next 8 datasets. 105

5.4 Summary of the assembly results. 106

5.5 Running time comparison in minutes. 107

5.6 Memory usage comparison in megabytes. 108

x

List of Figures

2.1 DNA inside a cell nucleus. 9

2.2 Double helix structure of DNA. 10

2.3 Sanger sequencing technique. 12

2.4 An example of potential fragments that are produced in the A tube. . . . 13

2.5 Library preparation of Roche/454 sequencing. 17

2.6 Pyrosequencing of Roche/454. 19

2.7 Library preparation of Illumina sequencing. 20

2.8 Sequencing by synthesis in Illumina sequencing. 21

2.9 Sequence by ligation. 23

2.10 Next generation sequencing cost in US dollars per Mbp. 25

3.1 Concatenation of the reads. 28

3.2 Shortest superstring of the reads. 28

3.3 Reads, mate pair, and insert size. 29

3.4 Reverse complement r̄ of a read r. 30

3.5 Repeats and copy counts. 31

3.6 Single nucleotide polymorphisms in the genome G 31

3.7 A tandem repeat in the genome G . 31

3.8 Set of given input reads. 33

3.9 Overlapping reads. 33

3.10 Overlap graph with 10 reads. 33

3.11 False branching in overlap graph caused by repeated sequences. 34

xi

3.12 Self overlapping repetitive sequence from a tandem repeat GTCT. 34

3.13 Overlap length, overlapLength(u, v) = 30. 35

3.14 Simple edges (r1, r2) and (r2, r3) in the overlap graph. 36

3.15 Composite edge (r1, r3) in the overlap graph. 36

3.16 Forward-forward overlap between two reads. 37

3.17 Reverse-forward overlap between two reads. 38

3.18 Forward-reverse overlap between two reads. 38

3.19 Edge e = (r1, r2) is a transitive edge in both triangles. 39

3.20 A simple 2-dimensional de Bruijn graph over the binary alphabet Σ = {0, 1}. 39

3.21 De Bruijn graph for the 3-mers of the reads in Figure 3.8. 40

3.22 The first few lines of a FASTA file. 42

3.23 The first few lines of a FASTQ file. 43

3.24 Basic steps of genome assembly. 44

3.25 Unipaths in a unipath graph shown in different colors. 49

4.1 Hash string of the reads. 57

4.2 Substring match using hash table. 58

4.3 Set of given input reads. 61

4.4 Overlapping reads. 64

4.5 Overlap graph with 10 reads. 64

4.6 Overlap graph after transitive edge reduction. 65

4.7 Overlap graph resulting after composite path contraction. 66

4.8 A dead-end in the overlap graph caused by erroneous reads. 69

4.9 A bubble in the overlap graph caused by erroneous reads. 70

4.10 Overlap graph after removing the bubble in Figure 4.9. 70

4.11 Convex cost function cr(dr). 80

4.12 Putting costs in the composite edges using Equations 4.5c, 4.6c and 4.7c. 84

4.13 Bidirected edge to directed edges conversion. 85

xii

4.14 In-tree simplification. 87

4.15 Out-tree simplification. 87

4.16 Reducing loop in the overlap graph. 88

4.17 Ambiguous node resolved in the overlap graph by using mate pairs. . . . 90

5.1 A gap in sequence s2 relative to sequence s1. 98

5.2 A mismatch between sequences s1 and s2. 99

5.3 A pair of contigs supported by mate pairs to form a scaffold. 100

xiii

List of Algorithms

1 buildHashTable(R,minOverlap): Building the hash table. 57

2 Linear time transitive edge reduction. 60

3 exploreRead(G = (V,E),minOverlap, hashTable, r): Insert in the over-

lap graph all edges incident on r . 61

4 markTransitiveEdges(G = (V,E), r): Mark transitive edges incident

on read r. 62

5 removeTransitiveEdges(G = (V,E), r): Remove from the overlap graph

G = (V,E) transitive edges incident on read r 62

6 buildOverlapGraph(R,minOvelap): Build the overlap graph G = (V,E). 63

7 contractCompositePaths(G = (V,E)): Composite path contraction. . 66

8 mergeEdges(G = (V,E), e1, e2): Merge pair of edges. 66

9 removeDeadEnds(G = (V,E)): Dead-end removal from the overlap graph. 68

10 removeBubbles(G = (V,E)): Bubble removal from the overlap graph. . 70

11 genomeSizeEstimation(G = (V,E), n): Genome size estimation. . . . 73

12 meanSdEstimation(G = (V,E),R): Estimation of mean µ and standard

deviation σ of the insert size. 75

13 convertGraph(G = (V,E)): Convert a bidirected graph G = (V,E) into

a directed graph G′ = (V ′, E ′). 85

14 computeMinCostFlow(G = (V,E)): Minimum cost flow computation

of the overlap graph G = (V,E). 86

xiv

15 reduceTrees(G = (V,E)): In-tree and out-tree reduction. 88

16 reduceLoops(G = (V,E)): Reduce loops in the overlap graph. 89

17 resolveNodes(G = (V,E), R, µ, σ): Resolve nodes by mate pairs. 91

18 mergeContigs(G = (V,E), R, µ, σ): Merge contigs using mate pairs. . . 93

19 PEGASUS(R,minOvelap): Paired-End Genome ASsembly Using Short-

sequences. 95

xv

List of Acronyms

bp Base pair

DNA Deoxyribonucleic acid

emPCR Emulsion PCR

HGP Human Genome Project

kbp Kilo base pairs

Mbp Mega base pairs

NGS Next Generation Sequencing

PCR Polymerase Chain Reaction

SA Suffix Array

SNP Single Nucleotide Polymorphism

WGS Whole Genome Shotgun

xvi

Chapter 1

Introduction

It has long been known that the biological properties of an individual are inherited from

its parents, though the mechanism through which this is done was unknown until the late

20th century. We now know that the biological features of an individual are inherited

from its parents when the chromosomes from both parents are fused together in an egg

cell during fertilization. After fertilization, the cell multiplies at an exponential rate and

each of the new cells gets an identical copy of the chromosomes. The chromosomes in a

cell nucleolus contain sequences of nucleotides called DNA (Deoxyribonucleic acid) and

the entire DNA contained in all the chromosomes is called a genome.

The DNA in the chromosomes contains the genetic code of an organism. Three

consecutive nucleotides in the DNA strand act as a unit of genetic code called a codon and

this is the building block of proteins. The sequence of nucleotides in a codon determines

which amino acid is to be added during the protein synthesis process: This process is

similar to the process of reading instructions from a sequential file by a computer and

performing specific tasks based on the instructions. Proteins are sequences of amino

acids and the order of the amino acids in protein synthesis is responsible for all biological

features of an organism. Since an offspring inherits chromosomes from two individuals,

it inherits genetic code from both of its parents.

1

Chapter 1. Introduction 2

1.1 Sequencing Techniques

The process of determining the sequence of nucleotides in a DNA fragment is called se-

quencing . It is not possible to read the entire sequence of a genome at once by using

current technology, which can only sequence small DNA fragments consisting of a few

hundred nucleotides. The sequencing process of a genome starts by first breaking multiple

copies of the target genome into many small manageable pieces called reads . These short

fragments are then individually sequenced by DNA sequencing machines. Sequencing

techniques are broadly divided into two categories: Sanger sequencing and Next Gen-

eration Sequencing (NGS). The Sanger sequencing was the first sequencing technique,

which produces relatively long reads. The Sanger method has low throughput and is an

expensive process. On the other hand, inexpensive NGS techniques produce an enormous

amount of short reads faster than the Sanger method; however, reads produced by NGS

are shorter than the Sanger reads. All the NGS techniques achieve high throughput by

simultaneously sequencing many DNA fragments.

1.2 Applications of DNA Sequencing

Knowing the DNA sequence of an organism has a large number of applications in fields

as diverse as forensic science, medicine and agriculture. Identifying an individual by

analyzing a DNA sample is called DNA fingerprinting . Nowadays it is common to identify

criminals by matching DNA samples from blood, hair or anything that contains DNA

collected from a crime scene. Recent improvements on DNA analysis have helped to

solve old unsolved criminal cases, some going back several decades. DNA analysis is also

used to identify paternity of children through parental testing and to identify health risks

associated with an individual. Scientists are able to genetically modify plants to increase

productivity and resistance against insects. These increasing numbers of applications

have created a necessity for inexpensive technologies for DNA sequencing.

Chapter 1. Introduction 3

1.3 Genome Assemblers

A computer program called a genome assembler is used to try to find the original DNA

sequence from the set of DNA fragments produced by the sequencing techniques. There

are several computational challenges that need to be solved in genome assembly. First,

DNA sequences might contain identical or nearly identical subsequences of nucleotides

which are hard to assemble, in the same way that nearly identical pieces in a jigsaw

puzzle make the problem of solving the puzzle harder. Second, sequencing techniques are

never perfect; errors are introduced when the reads are sequenced. Third, the enormous

number of reads typically produced by sequencing techniques makes the problem more

complicated in the same way in which solving a jigsaw puzzle with many pieces is harder

than solving a puzzle with few pieces.

Over the past decade several genome assemblers have been designed to discover the

DNA sequence of an organism. Celera assembler [36] and Arachne [2] are two assemblers

designed for assembling long reads. Edena [14], Velvet [53], ABySS [46], SOAPden-

ovo [22], ALLPATHS [4] and SGA [45] are genome assemblers specifically designed to

deal with short reads produced by NGS. All existing NGS genome assemblers face the

following challenges in genome assembly.

Error Handling: NGS datasets contain more errors than datasets produced by the

Sanger method. Each one of the existing assemblers has its own way of detecting

and correcting errors. However, it is usually not possible to correct all the errors

from the datasets.

Memory: All the genome assemblers use some kind of overlapping technique to build a

graph to represent the overlapping fragments of a genome. The underlying graph

used by the assemblers is the data structure that typically requires the largest

amount of memory in these programs.

Time: A significant amount of time in genome assembly is spent building the graph

Chapter 1. Introduction 4

to model the reads and their overlaps. Moreover, genome assemblers need to find

paths in this graph that represent DNA subsequences. As the graph can be very

dense, finding these paths is the most time consuming step for genome assembly.

Quality: Because of the time limitation, most genome assemblers use some heuristics to

reduce the number of paths to be searched in the graph. Quality of assembled se-

quences of the assembler is affected by this. Moreover, estimating the multiplicities

of the reads in the genome from which the reads were sequenced has a significant

effect on the quality of sequences produced by the assemblers. Better estimation

of the multiplicities of the reads can result in better and longer subsequences.

1.4 PEGASUS

To deal with the challenges of genome assembly, we have designed a genome assembler

called Paired-End Genome ASsembler Using Short-sequences (PEGASUS). PEGASUS

uses a correction program called RACER (Rapid and Accurate Correction of Errors in

Reads) [17], which accurately corrects a significant fraction of the errors in the NGS

datasets. PEGASUS uses several new techniques to reduce the size of the overlap graph,

which in turn reduces the amount of memory used. Unlike other genome assemblers,

PEGASUS reduces the overlap graph while building it which is memory efficient. PE-

GASUS estimates the multiplicities of the reads by computing a minimum cost flow in

the overlap graph, where the flow through an edge corresponds to the multiplicity of the

reads represented by the edge; we use a statistical analysis to determine the cost of the

flow on the edges that reflect the likelihood of the reads represented by the edges appear-

ing a certain number of times in the genome. Accurate estimates of the multiplicities

of the edges help further reduce the overlap graph and produce longer subsequences of

the genome. Mate pairs (set of pairs of reads) with known distance between them in the

genome are used to merge subsequences into longer ones.

Chapter 1. Introduction 5

1.4.1 Challenges

During the development of PEGASUS we faced several challenges. In the first implemen-

tation of PEGASUS we found out that it was using too much memory, which prevented

it from assembling large datasets. This was because we were building the whole overlap

graph first and then removed redundant information from the graph to reduce its size.

This approach worked well for small datasets, however, for large datasets the overlap

graph used too much memory. We had to modify PEGASUS in such a way that it could

remove the redundant information from the overlap graph as the graph was being built.

To save even more space we had to modify the data structures that we used to store the

overlap graph.

At first we were using a suffix array [23, 24] to find all the overlapping reads to insert

edges in the graph. We found that a suffix array is not memory efficient for large datasets.

To reduce the amount of memory used, we implemented an algorithm for computing read

overlaps that uses a hash table. This saved a considerable amount of space.

1.4.2 Contributions

DNA assembly is a very active area of research and every year new assemblers are de-

veloped. PEGASUS is a new assembler; many of the ideas used in PEGASUS have been

proposed by other researchers. But, we also have introduced some novel ideas:

• PEGASUS uses a new technique to reduce the overlap graph while building it. This

saves memory as there is no need to ever store the entire overlap graph.

• PEGASUS uses a new technique to estimate the number of times that a read

appears in the genome by combining a minimum cost network flow computation

and an elaborated statistical analysis.

• PEGASUS performs additional graph reductions based on the above flow.

Chapter 1. Introduction 6

• PEGASUS explores all paths in the overlap graph to try to determine how pairs of

reads are assembled in the genome.

1.5 Thesis Overview

In Chapter 2, we discuss different DNA sequencing techniques. Two generations of

sequencing techniques are discussed: Sanger sequencing and next generation sequencing

(NGS). Sequencing techniques first break the target DNA into a large number of short

fragments. To determine the order of the nucleotides in each one of the fragments, every

fragment is converted to some order of signals (e.g., color) by chemical reactions that

reveal the order of nucleotides in the sequence and the order of the signals is recorded by

a computer. Next generation sequencing techniques can simultaneously record the signals

from millions of fragments, thus increasing the throughput. Applications, advantages and

disadvantages of existing sequencing techniques are also discussed in this chapter.

Chapter 3 focuses on genome assembly for NGS datasets. Basic genome assembly

terminology is explained in this chapter. Genome assemblers use graphs such as overlap

graphs or de Bruijn graphs to assemble genomes. These graphs are explained in this

chapter. We also discuss some of the techniques used by existing genome assemblers.

PEGASUS is explained in Chapter 4. We describe in details the algorithms im-

plemented in PEGASUS. First the input dataset is corrected with RACER and then

PEGASUS builds an overlap graph with the help of a hash table. The use of a hash

table reduces the running time for discovering overlapping reads and thus for building

the overlap graph. Most of the edges of the overlap graph are redundant, so PEGASUS

removes these redundant edges while building the overlap graph to reduce the memory us-

age. We also explain the statistical analysis used in our minimum cost flow computation

for estimating the multiplicities of the reads in the graph.

We have tested PEGASUS on several NGS datasets. In Chapter 5, we present the

Chapter 1. Introduction 7

results of these tests and compare them with the results from ABySS [46] and SOAPden-

ovo [22]. Assemblers are compared based on some parameters such as the longest contig,

N80, N50, and N20. At the end of this chapter we also compare the running time and

memory usage of the assemblers.

In Chapter 6, we conclude the thesis and give few future directions of PEGASUS.

Genome assemblers are never perfect. There are always rooms for improvements. We

propose some of the possible improvements that can be made to increase the performance

of PEGASUS.

The software manual for PEGASUS can be found in Appendix A.

Chapter 2

DNA Sequencing

Since the discovery of the double helix (i.e., spiral structure of two strands of molecules)

model for DNA by James D. Watson and Francis Crick [50] in 1953, scientists have been

trying to understand the information stored in DNA. Genetic information in DNA is

stored as a sequence of molecules called nucleotides. The process by which scientists

determine the order of nucleotides in DNA fragments is called sequencing.

In 1977, for the first time a full DNA was sequenced [43]. This remarkable achievement

was attained by Frederick Sanger and his team, who sequenced the DNA of bacteriophage

ΦX174, which is about 5 kb (kilo bases) in size. The DNA of several organisms was

sequenced in the late 1970s. Frederick Sanger [43], and Allan Maxam and Walter

Gilbert [27] proposed DNA sequencing techniques independently and as a result of their

DNA sequencing research Frederick Sanger and Walter Gilbert received the Nobel Prize

in Chemistry in 1980. Recent technological improvements on sequencing technique allow

scientists to sequence more complex DNA; for example, the first draft of human genome

was sequenced in 2000 [20, 48]. Different sequencing techniques are discussed in this

chapter.

8

Chapter 2. DNA Sequencing 9

2.1 DNA

The genetic information of a living organism is stored within the chemical structure

of its DNA (Deoxyribonucleic acid). A molecule of DNA consists of four nucleotides:

adenine, cytosine, guanine and thymine, or in short A, C, G and T, respectively. These

nucleotides in the DNA molecule are also known as bases . The order in which these four

bases appear in a DNA molecule provides the instructions for making proteins. This

order spells the genetic code and controls all biological functions of a living organism. It

is very important to know the sequence or order of the bases in the DNA of an organism

because it helps scientists understand the biological properties of the organism. For

example, scientists can use the DNA sequence of an organism to identify and predict

health risks. Hence, knowing the DNA sequence of an individual could help discover

diseases long before they might be identified otherwise.

Cell

Chromosome

A

A

A

AC

CG

G

T

TT

T

Nucleus

Figure 2.1: DNA inside a cell nucleus.

Almost all cells, except red blood cells, in an organism contain the same DNA, which

is located in the chromosomes in the cell’s nucleus as shown in Figure 2.1. The set of

all chromosomes of an organism is called its genome. The human genome consists of 23

pairs of chromosomes and over 3 billion bases; more than 99% of these bases are ordered

Chapter 2. DNA Sequencing 10

in the exact same manner in all humans. The remaining 1% difference, which is about

30 million bases, makes an individual different from another.

The nucleotides in a DNA molecule are arranged in two long strands that form a spiral

structure called a double helix as shown in Figure 2.2. Nucleotides from one strand pair

up with nucleotides in the opposite strand. Adenine (A) pairs up with thymine (T) and

cytosine (C) pairs up with guanine (G) to form a unit called a base pair , or in short bp.

Nucleotides in a base pair are connected by hydrogen bonds. Adenine (A) and thymine

(T) are connected by two hydrogen bonds, whereas cytosine (C) and guanine (G) are

connected by three hydrogen bonds. The sequence of nucleotides in one strand is called

the complementary of the other strand.

Adenine Thymine

Cytosine Guanine

Base pair

Base pair

Figure 2.2: Double helix structure of DNA.

The backbone of a DNA strand is made from alternating phosphate and five-carbon

sugar molecules. The third carbon atom of a sugar ring in the DNA backbone is connected

to the fifth carbon atom of the next sugar ring by phosphate bonds between them. Since

the bonds are asymmetric, there is a unique direction for the nucleotides in each strand

of DNA. The direction of the nucleotides in one strand is opposite to the direction in the

Chapter 2. DNA Sequencing 11

other strand. The two ends of a DNA strand are called the 5′ (five prime) and 3′ (three

prime) ends. The ends are named after the position of the carbon atoms in the bonds

of the DNA backbone. The 5′-end of the DNA strand has the fifth carbon in the sugar

ring, whereas the 3′-end of the DNA strand has the third carbon in the sugar ring.

Current DNA sequencing technology cannot sequence whole genomes, but only short

DNA sequences (about 35 to 1000 base pairs) called reads. Often reads are generated

in pairs, with known approximate distance (insert size) between them; one such a pair

of reads is called a mate pair or paired-end reads . A set of reads sequenced from a

DNA is called a library . A library containing paired-end reads is called a paired-end

library . If the reads in a library are sequenced without any mate pairs then the library

is called a single-end library (also called a fragment library) and the reads are called

single-end reads . There are two, so called, generations of DNA sequencing techniques.

In the first generation techniques, the sequencing was dominated by the Sanger method.

The second generation of sequencing techniques, commonly known as next generation

sequencing (NGS), use more sophisticated approaches to increase the throughput and

reduce the cost of sequencing. DNA sequencing techniques are discussed in the following

sections.

2.2 Sanger Sequencing

In 1975 Frederick Sanger developed a sequencing technology [43] known as Sanger se-

quencing. While this technology has been continuously improved over the past 30 years,

it can only sequence about 500 to 1000 base pairs of DNA at a time. The process of

producing reads by the Sanger method is very slow and expensive. The Sanger method

dominated the world of genome sequencing for over two decades and led to a number of ac-

complishments, including the completion of the sequencing of the human genome [20, 48].

Sanger sequencing is usually known as the first generation sequencing technique. To se-

Chapter 2. DNA Sequencing 12

quence a genome, DNA is first broken into manageable pieces. Then the fragments

are multiplied through a process called cloning , and finally individual fragments are se-

quenced. In the end, a library of DNA subsequences is generated. Figure 2.3 shows the

basic steps of the Sanger sequencing technique; these steps are discussed below.

+
ddATP
dNTP

polymerase
enzymes

+
ddCTP
dNTP

polymerase
enzymes

+
ddGTP
dNTP

polymerase
enzymes

+
ddTTP
dNTP

polymerase
enzymes

A tube C tube G tube T tube

A
A

A

C

C

G

G
T

T

T

C

A

G

T

C

Gel Electrophoresis Analysis

Chain Terminating Reaction

Figure 2.3: Sanger sequencing technique.

Template Preparation

First, the target DNA sequence is broken into manageable pieces and then DNA frag-

ments are heated to denature the double strands. DNA denaturation, also known as

DNA melting , is the process of unwinding the two strands of DNA and separating them

by applying heat. Heat separates the hydrogen bonds between the bases of the opposite

strands. One of the strands is discarded and the other strand is used as a template. A

new DNA strand is synthesized using the template strand. Then, a primer is attached

Chapter 2. DNA Sequencing 13

to the template strand of the DNA; a primer is a short strand of nucleotides that acts as

a starting point in DNA synthesis. DNA polymerase, an enzyme that acts as a catalyst

to add DNA bases (deoxynucleotides) into an existing DNA strand, can add free floating

nucleotides at the 3′-end of the primers to synthesize the complementary strand of the

template strand. The temperature is then lowered to bind the primer sequence to its

complementary sequence in the template strand. The primer is constructed in such a

way that the 3′-end of the primer is located next to the target DNA sequence as shown

in Figure 2.4; the primer is shown in blue.

Fragment 1 5′-CTTGCTTGCCA-3′

Fragment 2 5′-CTTGCTTGCCATTCGTTA-3′

Fragment 3 5′-CTTGCTTGCCATTCGTTAGCTTA-3′

Fragment 4 5′-CTTGCTTGCCATTCGTTAGCTTAGCTCCGA-3′

Fragment 5 5′-CTTGCTTGCCATTCGTTAGCTTAGCTCCGATTTA-3′

Template strand 3′-GAACGAACGGTAAGCAATCGAATCGAGGCTAAATGCA-5′

Figure 2.4: An example of potential fragments that are produced in the A tube.

Chain Terminating Reaction

After attaching the primers to multiple copies of a DNA fragment, the solution contain-

ing the fragments is divided into four different tubes, as shown in Figure 2.3, one for each

of the nucleotides A, C, G and T; each tube is marked by the nucleotide’s name. Sanger

sequencing relies on base-specific chain terminations (i.e., sequences terminating at every

position of a specific nucleotide) of four separate reactions (A, C, G and T) corresponding

to the four different nucleotides in the DNA sequence. Four 2′-deoxynucleotide triphos-

phates (dNTPs), free floating nucleotides, and DNA polymerase are added to each of

the tubes. Dideoxynucleotide adenine triphosphates (ddATPs) are added to the A tube,

dideoxynucleotide cytosine triphosphates (ddCTPs) are added to the C tube, dideoxynu-

cleotide guanine triphosphates (ddGTPs) are added to the G tube and dideoxynucleotide

thymine triphosphates (ddTTPs) are added to the T tube.

As the complementary strand of the template strand is synthesized, deoxynucleotides

Chapter 2. DNA Sequencing 14

(dNTPs) are added to the growing chain by the DNA polymerase. This synthesized

sequence is the complementary strand of the template strand. However, on occasions a

dideoxynucleotide (ddNTP) instead of a deoxynucleotide is added to the chain, which

stops the synthesis. Because of the chemical properties of dideoxynucleotides, no free

floating nucleotides can be added after the dideoxynucleotide has been added to the

synthesized sequence. Dideoxynucleotides stop the synthesis at the particular position

where they are added. The strands can be terminated at any position resulting in a

collection of DNA strands of different lengths. For example, the A tube contains segments

of the template ending at every possible location of adenine, as shown in Figure 2.4.

Similarly, DNA strands of different lengths ending at specific nucleotides are produced

in each of the tubes. Heat is applied again to denature the double strands.

Sequencing

Combining all the sequences in the four tubes creates a collection of DNA strands ending

at every possible position of the template. The strands are then transferred to a device

called a capillary electrophoresis tube for gel electrophoresis analysis , a method to separate

protein molecules according to their size/length using electric charge. DNA molecules

in the capillary electrophoresis tube migrate from the negative pole of the tube to the

positive pole as current passes through the gel. The synthesized sequences in the gel are

separated according to their lengths, as the shortest molecules move the furthest. If all of

the molecules from the four tubes are combined in one gel, the actual DNA sequences in

the 5′-end to 3′-end direction can be determined by reading the patterns from the bottom

to the top of the gel. The patterns in the gel reveal which of the bases end in each position

of the template. Smaller fragments are produced when the ddNTP is added closer to the

primer because then the chains are smaller and migrate further across the gel. Hence,

sequences can be read from the gel base by base in order of length; this reveals the order

of the bases in the synthesized sequence. Figure 2.4 shows the mixture of fragments in

Chapter 2. DNA Sequencing 15

the A tube where the primers are shown in blue. All the primers start sequencing from

the same nucleotide and end in a specific base (e.g., adenine (A) in Figure 2.4) depending

on the ddNTP used in the solution. The strands produced in the gel are complementary

strands of the template strand.

2.2.1 Applications

The Human Genome Project (HGP) was an international research project that started in

1990. The goal of HGP was to sequence the complete human genome. The first draft of

human genome was published in 2000 [20, 48]. The project was finished in 2003, when the

first complete human genome was published [7]. About one third of the sequences of the

HGP project were obtained using the Sanger sequencing method [8]. Sanger sequencing

also played a major role in obtaining the DNA sequence of mice.

2.2.2 Disadvantages

The Sanger sequencing technique has a few disadvantages. The major one is that it is

a costly and time consuming process. At about $1 per kbp (kilo base pairs), it would

cost about $30,000,000 to sequence a complete human genome with 10x coverage (for

an explanation of the notion coverage, see Section 3.1.5). In 2005, it was estimated

that it would cost about $12,000,000 to sequence a mammalian genome using the Sanger

method [32]. The coverage of Sanger sequencing is usually low, making it impossible to

sequence many parts of a genome using single-end reads, because it is not possible to

sequence parts of a genome which are not sampled. Moreover, it is not possible to clone

some parts of a chromosome with the Sanger method because the cloning method used

is biologically biased. In gel electrophoresis analysis, numerous strands may pile up in

the gel when current is passed. These band pile-ups may introduce sequencing errors,

because the machine used to read the sequence is unable to differentiate the bases if they

are very close to one another in the gel.

Chapter 2. DNA Sequencing 16

2.3 Next Generation Sequencing (NGS)

Despite the many technological improvements to the Sanger method, the limitations of

Sanger sequencing showed the need for new and improved genome sequencing technolo-

gies. Scientists have recently developed several techniques such as Roche/454, Illumina/-

Solexa and SOLiD sequencing, generally referred to under the name of next generation

sequencing (NGS), to overcome the limitations of the Sanger method. Next generation

sequencing techniques produce fairly short reads (about 30 to 300 base pairs), but they

are much cheaper to produce and they are produced much faster than with the Sanger

method [49]. The cost of DNA sequencing using next generation sequencing techniques

keeps falling rapidly [47]. However, NGS reads have more errors than the reads produced

by the Sanger method. Next generation sequencing techniques consist of two major steps.

In the first step, random fragments from the DNA known as templates are collected and

cloned. In the second step, each of the cloned templates is sequenced and the sequencing

information is read by a computer. Some of the main NGS sequencing techniques are

discussed below.

2.3.1 Roche/454 Sequencing

454 sequencing was the first next generation sequencing technique introduced by 454

Life Sciences (www.454.com) in 2004. In 2007, 454 Life Sciences was acquired by Roche

Applied Science (www.roche-applied-science.com). Roche/454 sequencing has higher

throughput than Sanger sequencing and achieves this by using a large scale parallel

pyrosequencing system capable of sequencing 400 to 600 Mbp (million base pairs) per 10

hour run [26]. The two major steps in the Roche/454 sequencing are discussed below.

www.454.com
www.roche-applied-science.com

Chapter 2. DNA Sequencing 17

Library Preparation

Roche/454 sequencing prepares a library by breaking the DNA into double-stranded

fragments of 400 to 600 base pairs. Then, adapter oligonucleotides are attached on both

ends of the DNA fragments. An adapter is a short double stranded DNA molecule,

which is chemically synthesized to join the ends of two other double stranded DNA

molecules. These adapters act as a starting point for both cloning and sequencing. The

DNA library fragments are put onto micron-sized capture beads by emulsion-based clonal

amplification. The amplification (i.e., multiplying each fragment) of the DNA fragments

helps to easily detect the signals produced in the sequencing step. The amplification

process in Roche/454 sequencing takes about eight hours, whereas the cloning process of

Sanger sequencing takes several weeks.

The fragments are mixed with capture beads, enzyme reagents and synthetic oil in

a cylindrical plastic container. The solution is then vigorously shaken to form droplets

around the beads known as emulsions . Each of the emulsions contains only one DNA

fragment. The enzyme in the emulsion amplifies the DNA fragments into approximately

ten million identical copies. This reaction is called polymerase chain reaction (PCR) [52].

The fragments in each bead are double stranded, so they are denatured using heat to

release one of the strands. This creates a library known as a single-stranded template DNA

(sstDNA) library; sstDNA libraries with fewer templates than normal (≈ 10 millions) are

discarded. Figure 2.5 shows the library preparation procedure of Roche/454 sequencing.

Figure 2.5: Library preparation of Roche/454 sequencing [33]. Reprinted with permission
from Macmillan Publishers Ltd: Natural Reviews Genetics. Copyright 2009.

Chapter 2. DNA Sequencing 18

Pyrosequencing

A PicoTiterPlate (PTP) is used to sequence the DNA-capture beads. A PicoTiterPlate

is a flat plate containing about 1.6 million wells in one side that act as small test tubes.

Only one capture bead fits into a PTP well. The PTP spins and the centrifugal force

deposits the beads into the wells. A device called Genome Sequencer FLX is then used

to read the sequences from the PTP. Four free floating nucleotides (dNTPs) are added

in the PTP in a fixed order. When a complementary nucleotide is added in the PTP, the

DNA polymerase adds one or more of the nucleotides at the end of the adapter chain.

When one or more of the nucleotides are added at the end of the chain, they emit a

light signal which is recorded by the FLX system using a camera. This process is called

pyrosequencing [42]. The order of the signals spells the sequence of bases in the template.

Figure 2.6 shows the pyrosequencing process used in Roche/454 sequencing.

2.3.2 Illumina/Solexa Sequencing

Illumina sequencing, originally named Solexa sequencing, developed by Illumina Inc.

(www.illumina.com) is capable of sequencing over a billion high quality bases per run.

Illumina sequences DNA based on reversible dye-terminators as explained below. The

reads produced by Illumina are shorter than Roche/454 sequencer. However, it has higher

throughput than Roche/454 sequencer.

Amplification

First, the DNA is randomly fragmented into smaller pieces and adapters are ligated

to the ends of the fragments. Adapter ligated DNA fragments are then put onto the

surface of the flow cell channels. A flow cell is a microscope slide with eight channels,

each channel holding the samples for sequencing. Free floating nucleotides and enzymes

are added to the flow cell channels to initiate amplification. DNA fragments bend over

to find complementary primer on the surface of the flow cell as shown in Figure 2.7.

www.illumina.com

Chapter 2. DNA Sequencing 19

Figure 2.6: Pyrosequencing of Roche/454 sequencing [33]. Reprinted with permission
from Macmillan Publishers Ltd: Natural Reviews Genetics. Copyright 2009.

The enzymes help the free floating nucleotides to build double-stranded sequence. The

complementary strand is synthesized from the primer on the surface of the DNA. Then

the strands are denatured and the replication process is repeated to synthesize more

copies of each fragment. The identical copies of a DNA fragment create a dense cluster

on the surface of the flow cell. Each of the channels in the flow cell contains several

million such clusters.

Chapter 2. DNA Sequencing 20

Figure 2.7: Library preparation of Illumina sequencing [33]. Reprinted with permission
from Macmillan Publishers Ltd: Natural Reviews Genetics. Copyright 2009.

Sequencing by Synthesis

Primers, DNA polymerase enzyme, and four dye-labeled reversible terminators (colored

nucleotides) are added to the flow cells. The enzyme helps to synthesize colored nu-

cleotides. A laser is used to glow the color coded nucleotides and the color is read by a

computer. The Illumina sequencer reads the sequences of all the clusters simultaneously,

storing each color as a new base in the sequence. The sequence of colors in each cluster

reveals the order of nucleotides in the fragments of that cluster. Figure 2.8 shows the

synthesis process of Illumina.

2.3.3 SOLiD Sequencing

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) sequencing was devel-

oped by Applied Biosystems (www.appliedbiosystems.com). This high throughput next

generation sequencing technology can produce hundreds of millions to billions of short

www.appliedbiosystems.com

Chapter 2. DNA Sequencing 21

Figure 2.8: Sequencing by synthesis in Illumina sequencing [33]. Reprinted with permis-
sion from Macmillan Publishers Ltd: Natural Reviews Genetics. Copyright 2009.

reads at one time [25]. The robustness and flexibility of the SOLiD system enables a wide

variety of applications including whole genome sequencing, and targeted re-sequencing

(i.e., sequencing a particular region of interest of a DNA). The major steps in SOLiD

sequencing are discussed below.

Chapter 2. DNA Sequencing 22

Library Preparation

Library preparation is the first step in the SOLiD sequencing. There are different methods

for different types of libraries (i.e., single-end library, paired-end library, etc.). For a

single-end library, the DNA is sheared into very small fragments of length 130 to 180

bp. For a paired-end library the DNA is fragmented into 600 bp to 6 kbp size fragments.

In both libraries, targeted DNA is sheared into specific size fragments and adapters are

ligated to the ends of the fragments. Paired-end libraries contain two pieces of DNA

that are of approximately known distance apart in the target DNA. Each molecule is

amplified onto beads in an emulsion PCR (emPCR), where individual molecules are

isolated. Beads are then attached to a glass slide. The open slide format of SOLiD

sequencing gives the flexibility of analyzing 1, 4, or 8 samples per slide. Then clone

bead populations are prepared using microreactors (very small scale reactors) containing

template, PCR reaction components, beads and primers. Each magnetic bead contains

multiple copies of the same fragment. The SOLiD system is scalable; it can accommodate

increasing densities of beads per slide to increase its throughput.

Sequencing by Ligation

Universal sequencing primer, ligates and di-base probes are added to the template beads

as shown in Figure 2.9. The di-base probes are fluorescently labeled with four colors

and each color represents four of sixteen possible di-base sequences. The complementary

probe hybridizes to the template sequence and is ligated. After the color of the di-base

probe is measured, the dye is cleaved off leaving a 5′ phosphate group available for further

reactions. This synthesis process is repeated for several cycles (two bases are sequenced in

a cycle). Additional cycles can be added to extend the read length. Then the synthesized

strand is removed from the fragment and a new primer is hybridized offset by one base

(i.e., sequencing starts again from the next base pair in the template) and the ligation

cycles are repeated. This primer reset process is repeated for several rounds, providing

Chapter 2. DNA Sequencing 23

multiple measurements of each base, which increases the sequencing accuracy.

Figure 2.9: Sequence by ligation [33]. Reprinted with permission from Macmillan Pub-
lishers Ltd: Natural Reviews Genetics. Copyright 2009.

2.3.4 Applications

The low cost and high throughput of NGS make it useful for many applications. These

include variant discovery and de novo assembly of bacterial and lower eukaryotic genomes.

Chapter 2. DNA Sequencing 24

Variant Discovery

NGS reads can be used to discover structural variants (i.e., difference between two

genomes) by mapping a set of reads to a known reference genome. Since genomes of

individuals of a species vary in only about 1%, the NGS reads of an individual can be

mapped to a reference genome of that species to discover structural variants. For exam-

ple, consider that a pair of reads r1 and r2 is 1 kbp apart in a given NGS dataset. After

mapping them to a reference genome, if the distance between r1 and r2 is more than 1

kbp, it indicates that the NGS dataset has a structural variant called deletion relative

to the reference genome. Similarly, if the distance between r1 and r2 is smaller than

1 kbp in the reference genome, then the NGS dataset has an insertion relative to the

reference genome. Of course only one pair of reads is not enough to say that there are

deletions or insertions in the genome of the dataset. Several mate pairs must agree on

the insertions and deletions to accurately detect them. Since NGS reads are short and

have high coverage, it is feasible to use them for discovering structural variants. Short

reads in NGS are easy to map to the reference genome and high coverage allows more

mate pairs to discover structural variants.

De novo Genome Assembly

One of the main applications of NGS is de novo genome assembly. Assembling subse-

quences of an unknown genome is called de novo genome assembly. Since NGS techniques

produce high coverage reads from a genome, it is feasible to assemble the genome with-

out any prior knowledge of it. Shorter reads and high coverage of NGS reads play an

important role in de novo genome assembly. Details on de novo genome assembly are

discussed in Chapter 3.

Chapter 2. DNA Sequencing 25

2.3.5 Advantages

The major advantage of NGS is that it can produce an enormous volume of DNA se-

quences faster than the Sanger method. For example, Roche/454 is capable of sequencing

400 to 600 million base pairs per 10 hour run. Library preparation in NGS can be done

in few hours, whereas the same process in the Sanger method takes several weeks. Next

generation sequencing is also cheaper than the Sanger sequencing. Currently it costs

about $0.1 per Mbp (million base pairs) [51] and the cost is halving every two years.

Figure 2.10 shows the cost of next generation sequencing in US dollars per Mbp over the

last few years (y axis in logarithmic scale).

S
ep

-2
00

1
M

ar
-2

00
2

S
ep

-2
00

2
M

ar
-2

00
3

O
ct

-2
00

3
J
an

-2
00

4
A

p
r-

20
04

J
u

l-
20

04
O

ct
-2

00
4

J
an

-2
00

5
A

p
r-

2
00

5
J
u

l-
20

05
O

ct
-2

00
5

J
an

-2
00

6
A

p
r-

20
06

J
u

l-
20

06
O

ct
-2

00
6

J
an

-2
00

7
A

p
r-

20
07

J
u

l-
20

07
O

ct
-2

00
7

J
an

-2
00

8
A

p
r-

20
08

J
u

l-
20

08
O

ct
-2

00
8

J
an

-2
00

9
A

p
r-

20
09

J
u

l-
20

09
O

ct
-2

00
9

J
an

-2
01

0
A

p
r-

20
10

J
u

l-
20

10
O

ct
-2

01
0

J
an

-2
01

1
A

p
r-

20
11

J
u

l-
20

11
O

ct
-2

01
1

J
an

-2
01

2

0.1

1

10

100

1,000

U
S

d
ol

la
rs

p
er

M
b

p

Figure 2.10: Next generation sequencing cost in US dollars per Mbp [51].

Scientists hope that in the near future whole human genomes can be sequenced using

NGS for about $1000. Several companies have managed to reduce the cost of sequencing

the human genome dramatically in the past decade. The human genome sequencing cost

of Illumina sequencing was reduced from $100,000 in 2008 to $50,000 in 2010. Stanford

university professor Stephen Quake sequenced his own genome for $48,000 in 2009 [41].

All these dramatic reductions of sequencing cost are possible because of the next gener-

ation sequencing techniques.

Chapter 2. DNA Sequencing 26

2.3.6 Disadvantages

Next generation sequencing techniques have some disadvantages. The reads produced by

NGS contain more errors per base pair than the reads produced by the Sanger method.

All genome assemblers use some overlapping technique to determine the order in which

the reads appear in the genome. Errors in the reads make the process of reconstructing

the genome from the reads harder because the overlapping technique used in the process

is unable to find overlaps if the reads contain errors. Assemblers need a good error

correction technique to correct the errors before using the reads.

Reads produced by NGS are short. Genomes might contain repeated subsequences of

bases and with short reads it may not always be possible to detect repeated sequences

that are longer than the reads. If the reads are very short, then it is more likely that

they will be present in multiple locations in the genome from where they were taken and

this might introduce false overlaps between reads (see Section 3.2). Thus longer reads

are more desirable than short ones for genome assembly.

Chapter 3

NGS de novo Genome Assembly

As mentioned in the previous chapter, the enormous number of short reads produced by

next generation sequencing techniques such as Roche/454, Illumina/Solexa and SOLiD

sequencing opened the possibility of de novo genome assembly. The high coverage at

low cost of next generation sequencing makes it possible to assemble complex genomes

without any prior information about them. Some of the statistical analyses used for de

novo genome assembly require high coverage, which is only possible with next generation

sequencing techniques.

3.1 Problem Description

Whole genome shotgun (WGS) sequencing is a process in which the genome of an or-

ganism is fragmented into reads, which are then put together to reconstruct the genome.

Genome assembly is the process of WGS in which the fragments are combined to recon-

struct the original genome. Reads of a DNA fragment can be represented by strings over

the alphabet Σ = {A, C, G, T}, which represents the four nucleotides present in a DNA

fragment. Given a set of reads obtained from a genome G , the genome assembly problem

is to assemble the reads to reconstruct the original genome G .

Formally, given a setR = {r1, r2, ..., rn} of n reads over the alphabet Σ = {A, C, G, T},

27

Chapter 3. NGS de novo Genome Assembly 28

where the length of the reads is |ri| = l, so ri ∈ Σl where Σl is the set of all strings of

length l found by the symbols in Σ. The goal is to determine the string G such that

all reads ri ∈ R are substrings of G , each read appears in G a pre-specified number of

times, and |G | is minimum. Some substrings of G may appear multiple times in it. The

pre-specified number of times that a read ri appears in G is called the copy count of ri.

Example

Consider the set R ={ACG, CGA, CGC, CGT, GAC, GCG, GTA, TCG} of n = 8 reads of

length l = 3, each read has multiplicity 1. Concatenating all the reads in R produces the

string of length 24 shown in Figure 3.1. Note that, this is not the shortest possible string

for which each read ri ∈ R is a substring of it. Figure 3.2 shows the shortest possible

such string that has all reads as substrings.

ACGCGACGCCGTGACGCGGTATCG

012345678901234567890123

Figure 3.1: Concatenation of the reads.

TCGACGCGTA

0123456789

Figure 3.2: Shortest superstring of the reads.

3.1.1 Reads

Genome sequencing techniques cannot read a whole genome at one time. They can

only read short fragments. DNA fragments, or reads, are always sequenced in the same

direction, from the 5′-end to the 3′-end as explained in Section 2.1. However, it is not

possible to know from which of the two strands a read was taken. Figure 3.3 shows two

reads r1 and r2 of length 20 bp that were sequenced from a DNA fragment of length 61

bp.

Chapter 3. NGS de novo Genome Assembly 29

Genome G

Insert Ii

Insert size 61 bp

5′−ACTTACGATCGGCTAAGTTACACCGTTACATTGCCGATTACGCCGATACGACTAAAGCTAT−3′

|||

3′−TGAATGCTAGCCGATTCAATGTGGCAATGTAACGGCTAATGCGGCTATGCTGATTTCGATA−5′

Read r1: 5′−ACTTACGATCGGCTAAGTTA−3′

Read r2: 5′−ATAGCTTTAGTCGTATCGGC−3′

Insert size: 61 bp

Read length l: 20 bp

Figure 3.3: Reads, mate pair, and insert size.

3.1.2 Reverse Complement

Complementarity is a property of double-stranded nucleotide sequences such as DNA.

Each nucleotide from one strand of a DNA molecule is connected to a nucleotide in the

opposite strand via either two hydrogen bonds or three hydrogen bonds. Since each base

in one stand has one complementary base in the opposite strand in a DNA sequence,

then if the sequence of bases in a strand is known, the sequence of bases in the opposite

strand can be easily reconstructed. DNA strands are always read from the 5′-end to the

3′-end, so for a given strand the sequence of bases in the opposite strand is read in the

reverse order. This is why the strands in a DNA fragment are said to be the reverse

complement of each other. The reverse complement of a DNA sequence s is denoted by

s̄. In Figure 3.3, the first read r1 is taken from the 5′-end of the forward strand and

the second read r2 is taken from the 5′-end of the reverse strand. Figure 3.4 shows an

example of a read r and its reverse complement r̄.

Chapter 3. NGS de novo Genome Assembly 30

5′−AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC−3′

|||||||||||||||||||||||||||||||||||

3′−TCGATTCGTAAATGCTATCGGCTATCGATTTAATG−5′

Read r: 5′−AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC−3′

Read r̄: 5′−GTAATTTAGCTATCGGCTATCGTAAATGCTTAGCT−3′

Figure 3.4: Reverse complement r̄ of a read r.

3.1.3 Mate Pairs and Insert Size

Sometimes DNA sequencing techniques sequence reads in pairs, one from each strand of a

DNA fragment, with approximately known distance between the reads. Paired-end reads

are helpful for genome assembly [9]. To sequence reads in pairs, sequencing techniques

first break the genome G into a set I = {I1, I2, ..., Ik} of small double-stranded fragments

known as inserts . Then each insert Ii ∈ I is sequenced from the 5′-end of each of the

strands. The approximate length |Ii| of each insert Ii is known and it is called the insert

size. A pair of reads with known insert size is called a mate pair. In Figure 3.3, an insert

Ii of length 61 bp from the genome G is sequenced from the 5′-end of each of the strands.

The read r1 is sequenced from the 5′-end of the forward strand of Ii, while the read r2 is

sequenced from the 5′-end of the reverse strand of Ii.

3.1.4 Repeats and Copy Counts

Repeats are multiple copies of the same sequence of bases in a DNA fragment. The

number of times that a subsequence appears in a genome is called its copy count. In

Figure 3.5, the sequence S1 (ATGCA) appears in three different locations in genome G ,

hence the copy count of S1 is 3. Similarly the string S2 (TAGTT) appears twice in G , so the

copy count of S2 is 2. Multiple copies of the same sequence in the genome make genome

assembly harder, because the reads taken from the positions close to the endpoints of a

repeated sequence overlap with more than one part of the genome, which makes it more

difficult to reconstruct the genome from the reads (see Section 3.2).

Chapter 3. NGS de novo Genome Assembly 31

S1 S1 S1S2 S2

ATGCA ATGCA ATGCATAGTT TAGTT
Genome G

Figure 3.5: Repeats and copy counts.

Sometimes a sequence in the genome is repeated, except for a single base in the

repeated sequence is altered. These, “almost” repeats are known as single nucleotide poly-

morphisms (SNP). For example, in Figure 3.6 the sequences AGATTACGGGA and AGATTGCGGGA

in the genome G differ by only a single nucleotide, so they are referred to as SNPs. These

SNPs create bubble-like structures in the overlap graph as discussed in Section 4.5.2.

...AGATTACGGGA.........AGATTGCGGGA...

Figure 3.6: Single nucleotide polymorphisms in the genome G .

When repeated sequences appear in consecutive positions of the genome they are

called tandem repeats . Tandem repeats are generally associated with non-coding DNA

fragments. Non-coding DNA fragments are segments of DNA that are not encoded for

protein synthesis. Figure 3.7 shows a tandem repeat in a genome where the string ACGT

is repeated three times.

...GACGTACGTACGTT...

Figure 3.7: A tandem repeat in the genome G .

3.1.5 Coverage

Coverage is defined as the average number of times that each base pair in a genome is

sequenced. Given a dataset of n reads of length l from a genome of length L, then

Coverage =
n× l
L

(3.1)

The quality of an assembled genome depends on the coverage of the dataset. If the

Chapter 3. NGS de novo Genome Assembly 32

coverage is low then the dataset might not have enough reads from some parts of the

genome to reconstruct it accurately. Note that it is impossible to assemble the parts of

the genome that are not sampled. High coverage increases the probability that every

base pair in the genome is sampled. High coverage (about 50x to 400x) datasets are used

in the experiments mentioned in Chapter 5.

3.2 Overlap Graph

An overlap graph G = (V,E) is a bidirected graph in which each node v ∈ V represents

a read from a given collection R of reads and each edge e = (u, v) ∈ E represents an

overlap between reads u and v. Each edge e in the overlap graph has two arrowheads;

one at each endpoint. The orientations of the arrowheads are used to denote the different

ways in which the two reads at the ends of an edge can overlap. Since the DNA is double

stranded, bidirected edges are used to represent the double stranded structure of DNA

sequences. The bidirected graph representation for DNA sequences was proposed by

Kececioglue [19]. Details on bidirected edges can be found in Section 3.2.4.

In a bidirected overlap graph, the string representing read r should be considered

for computing overlaps when entering the node representing r through an in-edge (or

when exiting the node through an out-edge) and the reverse complement r̄ of the string

representing r should be considered when entering the node representing r through an

out-edge (or when exiting the node through an in-edge). Consider the set of reads R in

Figure 3.8. Overlaps among the reads in R are shown in Figure 3.9 and the correspond-

ing overlap graph is shown in Figure 3.10. Overlap graphs are used in several genome

assemblers such as Edena [14] and SGA [45].

Repeats in a DNA sequence can introduce false overlapping edges in an overlap graph.

In Figure 3.11, the sequence GCATTTACGATAGC is repeated twice in the DNA sequence.

This repeated sequence introduced false overlapping edges in the overlap graph as shown

Chapter 3. NGS de novo Genome Assembly 33

Read r1 : AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2 : CGTAATTTAGCTATCGGCTATCGTAAATGCTTAGC

Read r3 : AACGTAATTTAGCTATCGGCTATCGTAAATGCTTA

Read r4 : GCATTTACGATAGCCGATAGCTAAATTACGTTATA

Read r5 : GTATAACGTAATTTAGCTATCGGCTATCGTAAATG

Read r6 : ATTTACGATAGCCGATAGCTAAATTACGTTATACT

Read r7 : TTTACGATAGCCGATAGCTAAATTACGTTATACTC

Read r8 : ATATAACGTAATTTAGCTATCGGCTATCGTAAATG

Read r9 : ATTTACGATAGCCGATAGCTAAATTACGTTATATA

Read r10 : CTATATAACGTAATTTAGCTATCGGCTATCGTAAA

Figure 3.8: Set of given input reads.

Read r1 : AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r̄2 : GCTAAGCATTTACGATAGCCGATAGCTAAATTACG

Read r̄3 : TAAGCATTTACGATAGCCGATAGCTAAATTACGTT

Read r4 : GCATTTACGATAGCCGATAGCTAAATTACGTTATA

Read r̄5 : CATTTACGATAGCCGATAGCTAAATTACGTTATAC

Read r6 : ATTTACGATAGCCGATAGCTAAATTACGTTATACT

Read r7 : TTTACGATAGCCGATAGCTAAATTACGTTATACTC

Read r̄8 : CATTTACGATAGCCGATAGCTAAATTACGTTATAT

Read r9 : ATTTACGATAGCCGATAGCTAAATTACGTTATATA

Read r̄10 : TTTACGATAGCCGATAGCTAAATTACGTTATATAG

Read Length l : 35 base pairs
minOverlap : 32 base pairs

Figure 3.9: Overlapping reads.

r1 r2 r3 r4

r5

r6

r7

r8

r9

r10

Figure 3.10: Overlap graph with 10 reads.

Chapter 3. NGS de novo Genome Assembly 34

in dashed lines in Figure 3.11.

...CTAAGCATTTACGATAGCCGAT......ATCTGCATTTACGATAGCTTCA

r1

CTAAGCATTTACGATAGC

r2

GCATTTACGATAGCCGAT

r3

ATCTGCATTTACGATAGC

r4

GCATTTACGATAGCTTCA

Figure 3.11: False branching in overlap graph caused by repeated sequences.

A read taken from the part of a genome where a tandem repeat appears overlaps in

both directions with itself and all other reads taken from nearby positions, because the

read has a long enough proper prefix which is also present as a proper suffix of the read.

Figure 3.12 shows a read u containing a tandem repeat GTCT, this tandem repeat has

period (i.e., length of the repeated pattern) four. The read u overlaps with itself and

another read v from the repeat in both directions.

...CTTAGGTCTGTCTGTCTGTCTGTCTGTCTGTCTGTCTGTCTATATG...

Read u: GTCTGTCTGTCTGTCTGTCTGTCTGTCT

Read v: TCTGTCTGTCTGTCTGTCTGTCTGTCTG

Read u: GTCTGTCTGTCTGTCTGTCTGTCTGTCT

Read v: TCTGTCTGTCTGTCTGTCTGTCTGTCTG

Read u: GTCTGTCTGTCTGTCTGTCTGTCTGTCT

Figure 3.12: Self overlapping repetitive sequence from a tandem repeat GTCT.

3.2.1 Overlap Length

The overlap length between two strings s1 and s2 is defined as the length of the longest

overlapping suffix of s1 and prefix of s2 (or suffix of s2 and prefix of s1). In Figure 3.13,

the last 30 base pairs of read u are the same as the first 30 base pairs of read v, meaning

that they overlap by 30 base pairs. The overlap length of two reads u and v is de-

noted by overlapLength(u, v). For the two reads in Figure 3.13, the corresponding edge

Chapter 3. NGS de novo Genome Assembly 35

e = (u, v) has overlap length overlapLength(e) = 30; this edge e represents the string

AGCTAAGCATTTACGATAGCCGATAGCTAAATTACGTTAT which is found by overlapping the reads

in e.

Read u: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read v: AGCATTTACGATAGCCGATAGCTAAATTACGTTAT

Figure 3.13: Overlap length, overlapLength(u, v) = 30.

3.2.2 Minimum Overlap Length

The minimum overlap length, denoted as minOverlap, is a parameter of the overlap

graph specifying the minimum number of base pairs by which two reads u, v ∈ R must

overlap to insert an edge e = (u, v) between them in the overlap graph. If, for example,

the minimum overlap length for an overlap graph is 32, then no edge between the reads

u and v of Figure 3.13 would be inserted since overlapLength(u, v) < minOverlap. If,

on the other hand, the minimum overlap length is 28, then the edge e = (u, v) would be

inserted in the overlap graph because then overlapLength(u, v) ≥ minOverlap.

3.2.3 Simple and Composite Edges

If a read r1 overlaps with another read r2 then the edge e = (r1, r2) denoting the overlap

is called a simple edge. In Figure 3.14, edges (r1, r2) and (r2, r3) are simple edges. A path

formed by nodes of degree 2 (nodes with only 2 incident edges; one is an in-edge and the

other is an out-edge) in the overlap graph can be simplified to a single edge to reduce

the size of the graph. When one such path is simplified to an edge, the resulting edge

is called a composite edge. A composite edge stores information about the overlapping

reads in the original path. In Figure 3.14, the path {r1, r2, r3} can be simplified to an

edge (r1, r3), because node r2 has degree 2; Figure 3.15 shows the composite edge (r1, r3).

We say that a simple edge (r1, r2) spells the string obtained by overlapping the reads

r1 and r2 as shown in Figure 3.14. When talking about overlaps between reads we always

Chapter 3. NGS de novo Genome Assembly 36

Read r1: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2: GCTAAGCATTTACGATAGCCGATAGCTAAATTACG

Read r3: TAAGCATTTACGATAGCCGATAGCTAAATTACGTT

string(r1, r2) : AGCTAAGCATTTACGATAGCCGATAGCTAAATTACG

string(r2, r3) : GCTAAGCATTTACGATAGCCGATAGCTAAATTACGTT

r1 r2 r3

Figure 3.14: Simple edges (r1, r2) and (r2, r3) in the overlap graph.

mean the maximum overlap between them. Similarly, the string spelled by a path p is

found by overlapping, in order, the reads in p. Note that, nodes in a valid path have

one in-edge and one out-edge in the path. Since, composite edges store the ordered list

of reads in the path that they represent, the string spelled by a composite edge can be

found by overlapping the ordered reads stored in the edge including the reads in the nodes

connected by the edge as shown in Figure 3.15. Length of an edge e = (u, v) is defined as

the index of the last read v in the string spelled by the edge e. For example, in Figure 3.15,

the string spelled by the edge e = (r1, r3) is AGCTAAGCATTTACGATAGCCGATAGCTAAATTACGTT

and the location of the read r3 on the edge e is 3. Therefore, the length of the edge

e = (r1, r3) is 3 bp.

Read r1: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2: GCTAAGCATTTACGATAGCCGATAGCTAAATTACG

Read r3: TAAGCATTTACGATAGCCGATAGCTAAATTACGTT

string(r1, r3) : AGCTAAGCATTTACGATAGCCGATAGCTAAATTACGTT

r1 r3
{r2}

Figure 3.15: Composite edge (r1, r3) in the overlap graph.

3.2.4 Types of Overlaps

The use of bidirected edges to represent double stranded DNA sequences was first pro-

Chapter 3. NGS de novo Genome Assembly 37

posed by Kececioglue [19]. We use a similar bidirected arrow notation to represent the

overlap between two double stranded sequences in the overlap graph. Since each node in

the overlap graph represents a read r and its reverse complement r̄, either the read r or

its reverse complement r̄ can overlap with other reads. There are three different ways in

which two reads r1 and r2 can overlap, which we call forward-forward, reverse-forward

and forward-reverse overlap.

Forward-Forward Overlap

When a suffix of a read r1 overlaps with a prefix of a second read r2, the overlap is called

a forward-forward overlap. This means that most likely both r1 and r2 are from the

same strand of the DNA from which the reads were taken. A forward-forward overlap

is represented with the bidirected edge shown in Figure 3.16. The edge (r1, r2) is an

out-edge for node r1 and an in-edge for node r2. Note that when two reads r1 and r2

have a forward-forward overlap between them, as shown in Figure 3.16, their reverse

complements r̄1 and r̄2 also overlap. The overlap between r̄1 and r̄2 is called a reverse-

reverse overlap.

Read r1: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2: CTAAGCATTTACGATAGCCGATAGCTAAATTACAT

r1 r2

Figure 3.16: Forward-forward overlap between two reads.

Reverse-Forward Overlap

When a suffix of the reverse complement r̄1 of a read r1 overlaps with a prefix of a second

read r2, the overlap is called a reverse-forward overlap. This means that most likely

r1 and r2 are from opposite strands of the DNA from which the reads were taken. A

reverse-forward overlap is represented with the bidirected edge shown in Figure 3.17.

Chapter 3. NGS de novo Genome Assembly 38

Read r1: GTAATTTAGCTATCGGCTATCGTAAATGCTTAGCT

Read r2: CTAAGCATTTACGATAGCCGATAGCTAAATTACAT

Read r̄1: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2: CTAAGCATTTACGATAGCCGATAGCTAAATTACAT

r1 r2

Figure 3.17: Reverse-forward overlap between two reads.

Forward-Reverse Overlap

When a suffix of a read r1 overlaps with a prefix of the reverse complement r̄2 of a second

read r2, the overlap is called a forward-reverse overlap. This means that most likely r1

and r2 are taken from the opposite strands of the DNA sequence. Figure 3.18 shows a

forward-reverse overlap between the reads r1 and r2.

Read r1: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2: ATGTAATTTAGCTATCGGCTATCGTAAATGCTTAG

Read r1: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r̄2: CTAAGCATTTACGATAGCCGATAGCTAAATTACAT

r1 r2

Figure 3.18: Forward-reverse overlap between two reads.

3.2.5 Transitive Edges

If the overlap graph has a triangle ∆r1r2r3, (i.e., there are edges between r1 and r2, r2

and r3, and r1 and r3) and the string spelled by one of the edges is the same as the

string spelled by the path through the other two edges, then the first edge is called a

transitive edge and the triangle is called a transitive triangle. A transitive edge contains

redundant information since the information represented by such an edge can be found

by traversing the other two edges in the transitive triangle. Hence, transitive edges are

Chapter 3. NGS de novo Genome Assembly 39

r1

ATGATCGATT

r2

GATCGATTCG

r3

TGATCGATTC

ATGATCGATTCG

AT
GATCGATTCG

r1

ATGATCGATT

r2

GATCGATTCG

r3

GAATCGATCA

ATGATCGATTCG

AT
GATCGATTCG

Figure 3.19: Edge e = (r1, r2) is a transitive edge in both triangles.

removed to reduce the size of the graph. Figure 3.19 shows two such transitive triangles

in the overlap graph. There are several efficient algorithms [1, 35] to remove transitive

edges from a bidirected graph.

3.3 De Bruijn Graph

The k-th dimension de Bruijn graph G = (V,E), proposed by Pevzner et al. [40], over an

alphabet Σ is a directed graph in which every node represents a string of length k from

Σk and a directed edge is added from node u to node v if the suffix of length k − 1 of u

and the prefix of length k−1 of v are the same. Figure 3.20 shows a simple 2-dimensional

de Bruijn graph over the binary alphabet Σ = {0, 1}.

00

01

10

11

Figure 3.20: A simple 2-dimensional de Bruijn graph over the binary alphabet Σ = {0, 1}.

Idury and Waterman [16] introduced the sequence graph to represent the different

ways of assembling a set of reads. Their idea was to generate a graph from all k nucleotide

subsequences detected from a genome; these subsequences are known as k-mers. The

sequence graph is simply a k-th dimensional de Bruijn graph whose nodes correspond

Chapter 3. NGS de novo Genome Assembly 40

to the k-mers and edges represent k − 1 base pairs overlap between the k-mers. Their

algorithm produced contigs from the series of overlapping k-mers from the graph; where

a contig is a continuous subsequence of bases from a DNA molecule that was constructed

by overlapping reads.

Pevzner and Tang [40] then generalized the de Bruijn graph approach, where all

possible substrings of length k from the set of reads are considered and the nodes in

the graph represent overlapping k-mers in the graph and the edges represent k − 1 base

pairs overlap between the k-mer at one of the endpoints of the nodes. Several genome

assemblers use de Bruijn graph approaches, such as EULER [5, 6, 38, 40], Velvet [53],

ABySS [46] and SOAPdenovo [22]. Contigs are represented as the strings spelled by

the unambiguous paths in the de Bruijn graph; here, an unambiguous path are paths

formed by nodes of degree 2 (e.g., path {k1, k2,, k9} in Figure 3.21). Figure 3.21 shows

the de Bruijn graph for all the 3-mers of the reads in Figure 3.8. Note that the path

{k1, k2,, k9} will be merged to a single node representing the string GACCTACAAGT. The

string GACCTACAAGT is a contig as it is found by overlapping the k-mers in an unambiguous

path.

k1

GAC

k2

ACC

k3

CCT

k4

CTA

k5

TAC

k6

ACA

k7

CAA

k8

AAG

k9

AGT
k10

GTT
k11

TTA
k12

TAG

k13

GTC

k14

TCC

k15

CCG

Figure 3.21: De Bruijn graph for the 3-mers of the reads in Figure 3.8.

Chapter 3. NGS de novo Genome Assembly 41

3.4 File Formats

There are different text-based file formats for storing sequences of nucleotides from a

genome. The most widely used are the FASTA and FASTQ formats. In both formats a

sequence of nucleotides is stored as a string over the characters A, C, G and T; sometimes

N is also used in a string to represent an unknown base.

3.4.1 FASTA File Format

A FASTA file can contain several DNA sequences in it. Each of the sequences in a FASTA

file is represented in two lines. The first line contains a description of the sequence

and the second line contains the sequence itself. The description of a sequence always

starts with the symbol ">". Figure 3.22 shows the first few lines of the FASTA file

of a dataset downloaded from the short read archive (SRA) database (www.ncbi.nlm.

nih.gov/sra). In Figure 3.22, the first line contains some information about the first

read such as accession number (a unique ID of the sequence) and mate pair information.

In Figure 3.22, the first line contains the accession number (ERR021957), mate pair

information (.1 after the accession number. Each read in a mate pair has same unique

number after the accession number), sequencing technique used (IL meaning Illumina)

and read length (37 bp). These sequence descriptions are stored when the reads are

sequenced by the machine.

3.4.2 FASTQ File Format

Sometimes while sequencing reads a score value is associated with the base pairs to denote

the degree of confidence on their correctness. To specify these scores, the Wellcome Trust

Sanger Institute (www.sanger.ac.uk) defined a FASTQ file format by combining FASTA

sequences and their quality scores. Unlike the FASTA file format, FASTQ files use four

lines to represent a sequence. The first line starts with a "@" symbol followed by a

www.ncbi.nlm.nih.gov/sra
www.ncbi.nlm.nih.gov/sra
www.sanger.ac.uk

Chapter 3. NGS de novo Genome Assembly 42

>ERR021957.1 IL32_2532:2:1:0:489 length=37

NGCAGAGGATGCTGTTGCATACGCCACTGCTTTTGTA

>ERR021957.1 IL32_2532:2:1:0:489 length=37

NAACTATTCACCTCGCCCCGGATCGAACCTTCTTCCC

>ERR021957.2 IL32_2532:2:1:0:943 length=37

NTAATAGTCATGTTAAGCTCAGTCAGAGCTTCTTCTA

>ERR021957.2 IL32_2532:2:1:0:943 length=37

NCACGGTCTCCCTTGGGGACATAGTATTCCGCACGAA

>ERR021957.3 IL32_2532:2:1:0:74 length=37

NGATGCGATGAACAGTTTGCAAACAGCGTCCTTCCTA

>ERR021957.3 IL32_2532:2:1:0:74 length=37

NCTTAAAAGGGATTGCAGCTTGTCGTCCTGCTTGAGC

>ERR021957.4 IL32_2532:2:1:0:778 length=37

NAAATCGATCTCATTATGAATATCTCACCACACTCTA

>ERR021957.4 IL32_2532:2:1:0:778 length=37

NGTCTAGAGAATGCCGCTATTGAGGTAAGCTATTTCT

Figure 3.22: The first few lines of a FASTA file.

sequence identifier and an optional description of the sequence like the FASTA files. The

second line contains the sequence of nucleotides. The third line starts with a "+" symbol

followed by an optional identifier and description which is similar to that in the first

line, but sometimes it stores additional information about the sequence. The fourth line

contains quality scores of each one of the bases in the sequence. Each character in the

fourth line represents the quality score Q of the corresponding base in the second line.

The quality score Q is the integer mapping of the probability p for the corresponding

base to be incorrect. Corresponding ASCII value of Q is stored to represent the quality

score. Figure 3.23 shows the first few lines of the FASTQ file of a dataset downloaded

from the short read archive (SRA) database (www.ncbi.nlm.nih.gov/sra).

3.5 Existing Genome Assemblers

Several algorithms exist for de novo genome assembly. Figure 3.24 shows the basic steps

in genome assembly. First, the genome of an organism is cloned to produce multiple copies

of it (Figure 3.24a), and then they are sheared into a large number of small fragments

www.ncbi.nlm.nih.gov/sra

Chapter 3. NGS de novo Genome Assembly 43

@SRR400550.1 717:7:1:1:1189 length=36

NATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCG

+SRR400550.1 717:7:1:1:1189 length=36

%-6556313446444544444553231463234444

@SRR400550.2 717:7:1:1:1655 length=36

NATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCG

+SRR400550.2 717:7:1:1:1655 length=36

%.5665134554465555555354114444335543

@SRR400550.3 717:7:1:1:1385 length=36

NAGGCTTTGAAAACTAAACAGTGTAAGAGATTGAAC

+SRR400550.3 717:7:1:1:1385 length=36

%099<<<<758659<9757;;;:99969:9::759<

@SRR400550.4 717:7:1:1:1413 length=36

NACATAGTTGTTTTCTTGAACAAGTGTGATATGGTA

+SRR400550.4 717:7:1:1:1413 length=36

%070777::::::::::9988656778868699974

Figure 3.23: The first few lines of a FASTQ file.

(Figure 3.24b). The ends of “long” fragments are sequenced using the Sanger method or

next generation sequencing (Figure 3.24c), and then the resulting sequences are joined

together by a genome assembler to form contigs (Figure 3.24d). Finally, an ordered set of

continuous contigs known as scaffolds is produced (Figure 3.24e). Scaffolds are produced

when the order, orientation and approximate distance between a set of continuous contigs

is known with the help of mate pairs. A comparison of several of the existing genome

assemblers is shown in Table 3.1. Some of the leading genome assemblers such as Edena,

Euler-SR, Velvet, ALLPATHS, ABySS, SOAPdenovo and SGA are discussed below.

Table 3.1: Comparisons of existing genome assemblers.

Genome First Underlying Error Error Mate pair Read
assembler release graph correction removal support type

Edena 2008 Overlap graph No Yes No Short
Euler 2001 De Bruijn graph Yes Yes Yes Short/Long
Velvet 2008 De Bruijn graph No Yes Yes Short
ALLPATHS 2008 Unipath graph No Yes Yes Short
ABySS 2009 De Bruijn graph No Yes Yes Short
SOAPdenovo 2010 De Bruijn graph Yes Yes Yes Short
SGA 2011 String Graph Yes Yes Yes Short

Chapter 3. NGS de novo Genome Assembly 44

(a) Multiple copies of the same genome

(b) Chemically broken into random fragments

(c) Only long fragments are considered

(d) Contigs

(e) Scaffolds

Figure 3.24: Basic steps of genome assembly [18]. Reconstructed with kind permission
from Prof. Shinichi Morishita.

3.5.1 Edena

Edena stands for Exact DE Novo Assembler. It was developed by David Hernandez

et al. [14] from the Genomic Research Laboratory at the University of Geneva Hospitals.

Edena is a simple assembly algorithm that uses overlap graphs. It is based on an overlap

layout assembly framework that uses exact matching (i.e., suffix of a read and prefix of

another read have exactly the same sequence of base pairs) for overlaps. It supports read

lengths of up to 128 base pairs; however its performance is better for small read lengths.

Edena requires all reads to be of the same length. If the reads are of different lengths, it

Chapter 3. NGS de novo Genome Assembly 45

trims the reads so that they are all of the same length. Edena is capable of assembling

small bacterial genomes. Earlier versions of Edena support only single-end reads and

ignore mate pair information. However, the current version (Version 3) supports paired-

end reads and is still under development. Edena has two main steps for genome assembly;

overlapping and assembly.

Overlapping Step

At first, duplicated reads are removed from the dataset to reduce memory usage. In

the overlapping step, Edena generates a bidirected overlap graph from the input set of

reads. A suffix array is used to find all overlapping pairs of reads in the dataset. A Suffix

array [23, 24] is a data structure that stores sorted suffixes of a string. By default, half of

the read length is used as minimum overlap length, but users can specify the minimum

overlap length for building the overlap graph. Edena stores the overlap graph in a file

(.ovl), which is used in the next step.

Assembly Step

The same overlap graph generated in the previous step can be used for different assembly

parameters. The assembly step of Edena takes the .ovl file and other assembly param-

eters, such as overlap cutoff m as input from the user. The edges in the original overlap

graph built in the previous step having at least m overlapping base pairs are considered

to build the overlap graph for minimum cutoff m. The selection of the overlap cutoff

is determinant for the success of the Edena assembly. A small overlap cutoff increases

the possibility of false overlaps between the reads. On the other hand, a large overlap

cutoff increases the number of reads that do not overlap with other reads due to sparsity

of coverage (i.e., pairs of reads might not have a long enough common string between

them). Transitive edges are then removed from the overlap graph to simplify it. Then

some simple cleaning techniques, such as dead-end and bubble removal are used, to re-

Chapter 3. NGS de novo Genome Assembly 46

duce the size of the graph. Dead-ends are short paths in the overlap graph that end at

a node of degree 1. Bubbles are formed in the graph when two paths start and end at

the same pair of nodes and spell similar sequences. Such bubbles are created by either

errors or natural variations in the DNA, such as SNPs. Bubbles and dead-ends are often

caused by errors in the reads and are easily detected by using statistical analyses. This

step produces contigs from the edges of the overlap graph and stores them in a file. The

same .ovl file can be used to assemble the genome for different parameters. For example,

users can specify different overlap cutoff values and use the same graph in the .ovl file

for assembly.

3.5.2 Eulerian Path Assembly

Eulerian path genome assembly was proposed by Pevzner et al. [37, 38, 39, 40] using a de

Bruijn graph approach. In this approach, the goal is to find an Eulerian path in the de

Bruijn graph built from the set of input reads. An Eulerian path of a graph G = (V,E) is

a path that uses every edge e ∈ E exactly once. There are several variations of Eulerian

path approaches. For example, Euler-SR [6] uses the Eulerian approach on short reads

(SR) of length about 100 bp, whereas Euler-USR [5] uses the same approach on ultra

short reads (USR) of length 20 to 40 bp. De Bruijn graphs are simpler than overlap

graphs in repeated regions of the genome, as the number of edges incident on a node in a

de Bruijn graph is constant whereas the number of edges incident to a node in an overlap

graph can be arbitrarily large.

Eulerian assemblers first break the reads into k-mers and most of them correct errors

in the k-mers. If the average number of errors per read d is known, then the number of

unique k-mers from the input set can be reduced, by correcting at most d base pairs from

each read. The main idea of the correction technique is that an error in a read produces

at most 2k erroneous k-mers and thus, correcting one base pair reduces the number of

unique k-mers.

Chapter 3. NGS de novo Genome Assembly 47

After correcting the k-mers, the assembler builds the de Bruijn graph. The assembler

first finds a set of unambiguous paths P that represent contigs in the de Bruijn graph.

The paths p ∈ P are then used to find an Eulerian path in the de Bruijn graph.

3.5.3 Velvet

Velvet was developed by Daniel Robert Zerbino and Ewan Birney [53] at the European

Bioinformatics Institute. Like the Eulerian assembler, Velvet is a de Bruijn graph-based

sequence assembler that uses very short paired-end reads of length 25 to 50 bp. It builds

a de Bruijn graph from the input reads by breaking the reads into small k-mers. After

building the initial de Bruijn graph, it simplifies the graph by merging unambiguous

paths to reduce the size of the graph without any loss of information.

Unlike the Eulerian approach, Velvet removes errors after building the de Bruijn

graph. First, it removes dead-ends from the de Bruijn graph that are shorter than 2k

base pairs. Then it removes bubbles with the so-called tour bus algorithm, which uses

coverage and length thresholds to remove one of the paths in each bubble.

After the unambiguous paths in the de Bruijn graph are simplified, each node stores

a string that represent the overlapping k-mers. Nodes in a de Bruijn graph that are

near repeated regions in the genome are not possible to contract, as they are not on

an unambiguous path, by using short reads. Velvet uses a procedure called breadcrumb

algorithm to merge strings in the nodes near repeated regions in the graph. A node

containing a string of length longer than all the insert sizes is defined as a long node. The

breadcrumb algorithm first pairs up long nodes in the graph using mate pair information.

Two nodes u and v are paired up if there is a mate pair such that one of the reads in

the mate pair is in u and the other read is in v. As the nodes in de Bruijn graph

represent strings, the nodes have two sides representing the two endpoints of the strings.

If a long node pairs up with only one long node in one side, then these two nodes are

called unambiguous long nodes. Breadcrumb flags all short nodes that pair up with the

Chapter 3. NGS de novo Genome Assembly 48

unambiguous long nodes. Then it extends the unambiguous long nodes by traversing as

far as possible through the flagged nodes until there is no or more than one options. In

best case, a simple path can be found between two unambiguous long nodes through the

flagged short nodes, and the path is merged to a single node. Velvet repeats this process

until there is no pair of unambiguous long nodes to merge. Finally, the strings in the

long nodes are reported as contigs.

3.5.4 ALLPATHS

ALLPATHS [4] is a unipath graph-based algorithm that uses paired-end reads. A unipath

is an unambiguous path in a de Bruijn graph. Figure 3.25 shows an example of a unipath

graph. Node r5 has two incoming edges and r8 has two outgoing edges representing

branches in the unipath graph. The graph has five unipaths shown in different colors.

A unipath graph is a graph whose edges are unipaths. Unipaths are found by traversing

the nodes until a branching is found. One end of a unipath is arbitrarily named as the

left side and the other end is named as the right side. For each unipath in the graph,

ALLPATHS finds its neighbors on the left side and also on the right side. If the distance

between the left neighbors and the right neighbors is less than a threshold (4 kbp) then

the unipath is removed. The remaining unipaths in the graph are seed unipaths .

ALLPATHS starts assembly from low copy count seed unipaths called ideal seeds . For

each ideal seed unipath, ALLPATHS defines its neighborhood based on the distance on

each side (10 kb) and constructs two sets of read clouds : the primary read cloud consists

of the reads whose true genomic locations are most likely near the seed unipath (reads on

other ideal seed unipaths in the neighbourhood) and the secondary read cloud consists

of all other short-fragments in the neighbourhood. The reads in the neighborhood of

an ideal seed unipath define a local unipath. Local unipaths are joined iteratively using

mate pairs in the primary cloud, which in the end yield a sequence graph representing

the genome. Then, ALLPATHS simplifies dead-ends, bubbles and loops (edges (u, u) in

Chapter 3. NGS de novo Genome Assembly 49

the graph that have only one way of traversing) to further simplify the graph.

r1

r2

r3

r4

r5 r6 r7 r8

r9

r10

r11

r12

Figure 3.25: Unipaths in a unipath graph shown in different colors.

3.5.5 ABySS

ABySS stands for Assembly By Short Sequences. It was developed by Jared T. Simpson

et al. [46] from the Genome Science Center, British Columbia Cancer Agency. ABySS is

a parallel assembler for paired-end short reads that uses a de Bruijn graph. It has two

major steps. In the first step, all possible k-mers from the input dataset are extracted

and the de Bruijn graph is built in a distributed environment. In the second step, mate

pair information is used to contract contigs in the de Bruijn graph.

The main idea of the distributed de Bruijn graph representation is that the overlap-

ping k-mers do not need to be physically located on the same processor; rather they

can be distributed over different processors. ABySS uses a hash function h to distribute

the k-mers over a set of processors P = {P1, P2, ..., Pp}. A numerical value {0, 1, 2, 3}

is assigned to the bases {A,C,G,T} to calculate the base-4 representation x of a k-mer.

For example, if values 0,1,2 and 3 are assigned to A, C, G and T, respectively, then

the sequence TACTG is represented as x = 301324. A hash function is then used on x to

index the k-mer. If there are p processors, then the k-mer is assigned to the processor

Ph(x)=x mod p. Since each k-mer can have at most eight possible neighbors in the de Bruijn

graph, ABySS uses an 8-bit vector to represent the eight possible neighbors.

Chapter 3. NGS de novo Genome Assembly 50

Each processor Pi checks for the possible neighbouring k-mers for each of the k-mers

assigned to it to build the graph. The dead-ends and bubbles are then removed from the

de Bruijn graph and unambiguous paths are simplified. Finally, mate pair information

is used to merge ambiguous nodes (i.e., nodes having more than two edges incident on

them). A pair of nodes u and v are supported if there is a path (of length close to the

insert size) in the graph between two reads in a mate pair that goes through u and v

and the nodes are neighbours in the path. If two nodes are supported by m mate pairs

(default value of m is 5), then ABySS merges the nodes into a single node. ABySS uses

heuristics to limit the number of paths to be searched between reads of a mate pair in

the dense parts of a de Bruijn graph. Nodes in the resulting graph represent contigs. For

each contig ci, ABySS generates a set Ci of contigs that are paired with ci by mate pairs

(one read of a mate pair is in ci and the other read is in the contig c ∈ Ci). The graph

is then searched for a single unique path between ci and each contig c ∈ Ci. If there

is only one contig c ∈ Ci having a unique path with ci, then ABySS contracts the path

to a single node. This process is repeated until no contigs are merged and scaffolds are

reported by ordering the contigs.

3.5.6 SOAPdenovo

Short Oligonucleotide Alignment Program de novo (SOAPdenovo) [22] is a short read

assembler that can assemble human-sized genomes. It was specially designed to assemble

Illumina short reads. SOAPdenovo uses a de Bruijn graph approach.

Before building the de Bruijn graph, SOAPdenovo corrects errors based on the fre-

quencies of each of the k-mers in the dataset. This error correction technique is similar

to the error correction technique used in the Eulerian path assembly discussed in Sec-

tion 3.5.2. In high coverage datasets, each k-mer appears multiple times in the reads,

whereas k-mers containing random sequencing errors have very low frequencies. The

frequency information of each of the k-mers is used to correct the input datasets as fol-

Chapter 3. NGS de novo Genome Assembly 51

lows. SOAPdenovo first uses a hash table to store the frequencies of all the k-mers in the

dataset. It then takes the k-mers with high frequencies and checks the frequency of the

eight possible neighbouring k-mers (Four overlapping with the suffix and four overlapping

with the prefix), if exist in the hash table, to find potential erroneous k-mers with low

frequencies. For each potentially erroneous k-mer, it checks the impact of changing the

first/last (depending the location of new base pair added to get the k-mer) base pair of

the k-mer to the other three bases and the changes are made if all k-mers’ frequencies

from that region of the dataset are increased after changing the base. The process of

error correction is done with a parallel algorithm.

A de Bruijn graph is then built from the corrected k-mers and then bubbles and

dead-ends are removed. SOAPdenovo removes dead-ends shorter than 2k base pairs.

Unambiguous paths are merged to nodes that represent the strings in the path. In

SOAPdenovo, a pair of nodes is said to be supported by mate pairs if at least three mate

pairs agree on the order and orientation of the strings in the nodes. A contig linkage

graph is then built where the nodes represent the strings in the nodes (contigs) of the

original de Bruijn graph and edges represent support between a pair of contigs. Assuming

that the insert size of the mate pair library or distance between the reads in a mate pair

is normally distributed, SOAPdenovo tries to estimate the distance between every pair

of supported contigs based on the location of the reads of a mate pair on the edges.

Transitive edges are then removed from the contig linkage graph. Repeat contigs are

discovered by looking at the linkages. Contigs having multiple incoming and outgoing

edges in the contig linkage graph are called repeat contigs . The repeat contigs and their

links are marked. Then the unambiguous paths in the contig linkage graph are joined to

form scaffolds.

SOAPdenovo supports multiple insert libraries, each library with a different insert

size. For multiple insert libraries, it merges the contigs in the graph by first using short

insert size library and then larger insert size libraries. The majority of the gaps in the

Chapter 3. NGS de novo Genome Assembly 52

scaffolds are in the repeat contigs that were marked previously, as there is no unique

path through the repeat contigs. SOAPdenovo tries to fill in the gaps by looking at the

collection of mate pairs that have one read aligned in the contig and the other read in

the repeated region. Then a local assembly for the collected reads is done.

3.5.7 SGA

The String Graph Assembler (SGA) [45] uses memory efficient data structures for genome

assembly. SGA constructs an assembly string graph [35] to represent the reads. A string

graph can be built as follows. First duplicate reads, contained reads (reads that are

substrings of other reads) are removed from the dataset and an overlap graph is built.

Then transitive edges are removed from the overlap graph. Non transitive edges in an

overlap graph are called irreducible edges . A string graph is defined as the subgraph of

the overlap graph that contains only irreducible edges.

The construction of an overlap graph from the set of given reads R is not memory

efficient, since most of the edges in an overlap graph are transitive edges and they will

be removed later. SGA uses a memory efficient way to build the string graph without

building the overlap graph first. It uses an FM-index [11] to directly compute the set of

irreducible edges for a given set of reads [44]. An FM-index is a data structure that stores

compressed sorted suffixes of an input string using the Burrows-Wheeler compression

algorithm [3]. Like a suffix array, an FM-index allows fast substring queries, but uses

less memory than a suffix array. SGA arbitrarily divides the reads in a dataset into

subsets and uses a distributed algorithm to build an FM-index for each subset of reads.

Then the pairs of intermediate FM-indices are repeatedly merged together using the

BWT merging algorithm [10] to get a single FM-index for the dataset. Indexing a subset

of reads in SGA can easily be implemented in a parallel environment. Reads in SGA

are corrected based on the k-mer frequencies and approximate overlap between reads.

When two sequences overlap with insertions, deletions or substitutions, the overlap is

Chapter 3. NGS de novo Genome Assembly 53

called approximate overlap and the edit distance of the overlap is the total number of

mismatches, insertions and deletions. SGA tries to correct the reads to minimize the

sum of edit distances of all overlapping reads in the string graph.

Each read in the string graph is represented by a node. Most of the reads in the string

graph will have only two neighbours, one overlapping with a prefix and the other over-

lapping with a suffix of the read. The majority of the reads in the string graph are simply

connected , meaning that they are on a path of the graph without any branching. Such

unambiguous paths are simplified to single edges to reduce the size of the graph. SGA

locally builds the string graph, starting from an arbitrary read r ∈ R. The irreducible

edges incident on a read r are merged if r has only two neighbours, one in each side of

the string in r. SGA iteratively discovers irreducible edges in the graph and reduces the

nodes that are simply connected. Each edge in the simplified string graph represents a

contig.

Mate pair information is then used to bridge contigs to form scaffolds by a program

called scaffolder. The scaffolder builds a contig linkage graph that represents relationships

between contigs using mate pair support and a statistical analysis is used to estimate

the copy count of the contigs. Information about the support (e.g., number of mate

pairs supporting the contigs, gap size between the contigs) is stored in the edges of the

contig linkage graph. For each contig in the contig linkage graph with more than one link

in a particular direction, it checks whether the contigs have a consistent ordering with

each pairwise distance estimate and no adjacent pair of contigs in the ordering has an

overlap greater than 400 base pairs. The scaffolder then removes ambiguous edges from

the contig linkage graph, where the contigs cannot be ordered consistently. Terminal

vertices (i.e., vertices having only one edge in the graph) are then identified and all paths

between all pairs of terminal vertices in the contig linkage graph are computed and the

path with longest sequence is retained as a scaffold. Experimental results [45] show that

SGA is more memory efficient than other assemblers. However, SGA is not time efficient.

Chapter 4

PEGASUS

In this chapter we give a detailed description of our assembler, Paired-End Genome

ASsembler Using Short-sequences (PEGASUS). Some of the existing algorithms [14, 34,

45] for genome assembly use an overlap graph-based approach. Some of these algorithms

first generate a huge overlap graph from the entire collection of reads and then simplify

it to reduce its size.

PEGASUS has three major improvements over other existing algorithms for genome

assembly. First, it does not create a huge overlap graph for the reads; instead, it directly

generates a simplified graph by reducing transitive edges while building the overlap graph.

This greatly reduces the amount of memory needed. Second, we use a new technique to

accurately estimate the copy counts of the reads by combining a log odds ratio analysis

with a convex minimum cost flow computation on the overlap graph, as described in

Section 4.8. Third, current algorithms for genome assembly [14, 46, 53] use very simple

transformations to simplify the overlap graph and reduce its size. We noticed that we can

perform further simplifications of the overlap graph that go beyond what other assemblers

do. These reductions have a dramatic effect on the final size of the overlap graph. In the

final step of PEGASUS, we use mate pair information and the copy counts of the reads

to unscramble long paths in the overlap graph. We give more details about each of the

54

Chapter 4. PEGASUS 55

steps of PEGASUS in the following sections.

4.1 Overview of PEGASUS

Input reads are first corrected with RACER (Rapid and Accurate Correction of Errors in

Reads) [17]. Then, a bidirected overlap graph is built from the input dataset using a hash

table. While building the overlap graph, transitive edges are removed to reduce the size

of the overlap graph. We then contract simple paths and remove dead-ends and bubbles.

A convex cost function and log odds ratio analysis is used to compute the parameters

for a minimum cost flow problem on the overlap graph, which is solved to estimate the

copy counts of the reads. We also use the flow computed in the previous step to further

simplify the overlap graph. At the end, we use mate pair information to try to build

longer contigs. Some of the above steps are repeated several times.

4.2 Error Correction

Real datasets contain errors that are difficult to handle by genome assemblers. Many

genome assemblers have a separate preprocessing step where the errors are corrected.

PEGASUS uses RACER to correct the reads before using them for assembly. All the

datasets used to test PEGASUS were corrected with RACER.

4.3 Overlap Graph Construction

To build the overlap graph from the input dataset, we need to find all the pairs of reads

that overlap with each other. PEGASUS takes a parameter minOverlap as input which

denotes the minimum number of bases that must match for adding an edge between two

overlapping reads. If there are n unique reads in the input dataset then we need to

compare O(n2) pairs of reads to find all overlapping pairs of reads, which is not practical.

Chapter 4. PEGASUS 56

To reduce the number of pairs of reads to compare, PEGASUS uses a hash table where

prefixes and suffixes of each read r and its reverse complement r̄ are stored. Observe that

if two reads r1 and r2 overlap by at least minOverlap base pairs, then there is a suffix or

a prefix of r1 of length at least minOverlap base pairs that matches with a prefix or a

suffix of r2. Therefore, we store a prefix and a suffix of length h = min{minOverlap, 64}

bases of each read and its reverse complement into the hash table. Strings of length at

most 64 base pairs are stored in the hash table because string of length 64 base pairs

can be stored in two 64-bit numbers (each base is represented by 2 bits). Storing strings

of length more than 64 base pairs increases the complexity of the hash function and

decreases the performance of storing and searching strings in the hash table.

4.3.1 Hash Table

For each read r in the dataset R, we store in the hash table a prefix and a suffix of r

and its reverse complement r̄, so if there are n reads in R then we store 4n suffixes and

prefixes. The hash table size is set to a prime number p such that p > 8n to reduce the

number of hash misses in the hash table. For efficiency we store each read as an array

of 8-bit integers. Each base pair is represented by two bits in the array (A=00, C=01,

G=10, T=11). Representing the base pairs in this way helps to compare strings efficiently

by comparing numbers: A comparison of 4 base pairs is done by comparing two 8-bit

numbers. Similarly, comparing 64 base pairs is done by comparing two pairs of 64-bit

numbers. This bit representation reduces the memory usage and it is efficient to hash

the reads by using their corresponding numerical values. The hash table construction is

shown in Algorithm 1.

4.3.2 Inserting Edges in the Overlap Graph

Let l be the length of each read. For each read r in R, we take all its substrings

Sr
1, Sr

2, ..., Sr
l−h of length h bases and search for them in the hash table. This re-

Chapter 4. PEGASUS 57

Algorithm 1 buildHashTable(R,minOverlap): Building the hash table.

1: Input: Set R = {r1, r2, ..., rn} of reads and minimum overlap length minOverlap
2: Output: Hash table hashTable
3: Create an empty hashTable
4: h← min{64,minOverlap} . Length of the strings to hash
5: for each read r ∈ R do
6: pr ← first h symbols of r
7: sr ← last h symbols of r
8: pr̄ ← first h symbols of r̄
9: sr̄ ← last h symbols of r̄

10: Store pr, sr, pr̄ and sr̄ in the hastTable

11: return hashTable

turns a set S of reads that contains the substrings Sr
i as prefixes or suffixes of the reads

or their reverse complements. We only need to check reads in S to find all reads that

overlap with r and, hence, to determine how many edges will be incident on the node of

the overlap graph representing r. For each read ri ∈ S, we know that r and ri have a

common substring of length at least h. To add an edge between the nodes representing r

and ri, we need to verify that the overlap between the reads extends to the end or to the

beginning of r. Consider the reads in Figure 4.1 and minimum overlap length of 10 bp.

The prefixes and suffixes of u and v (shown in blue) of length 10 bp are stored in the hash

table. To determine whether we need to add an edge between the nodes representing u

and v, we take each substring of u of length 10 bp and search it in the hash table. For

the substring AGCATTTACG of u, the search returns the read v as v has AGCATTTACG as a

prefix. Therefore, we know that the substring for length 10 bp of u starting at position

6 is a prefix of v as shown in Figure 4.2. For an edge to be added between u and v we

need to compare the remaining parts of u and v (shown in green in Figure 4.2) to verify

that they match. Note that the same overlap is discovered again when we search for the

substrings of v in the hash table, but only one edge is added between u and v.

Read u: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read v: AGCATTTACGATAGCCGATAGCTAAATTACGTTAT

Figure 4.1: Hash string of the reads.

Chapter 4. PEGASUS 58

Read u: AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read v: AGCATTTACGATAGCCGATAGCTAAATTACGTTAT

Figure 4.2: Substring match using hash table.

For each pair of reads u, v in R, we insert an edge (u, v) in the overlap graph G, if

either u and v, u and v̄, or ū and v overlap by at least minOverlap base pairs. Our

overlap graph construction algorithm inserts the edges in the graph in such a way that

we can remove the transitive edges incident on the current read r after inserting all the

edges incident on r, as explained in the next section. The overlap graph for the set of

reads in Figure 4.3 is shown in Figure 4.5. The overlap graph is bidirected, which means

that arrowheads at the endpoints of an edge e = (r1, r2) represent the orientations of the

overlapping reads represented by the nodes r1 and r2. For example, consider reads r1

and r2 in Figure 4.3 and assume that minOverlap = 32. Since the last 34 base pairs of

r1 are identical to the first 34 base pairs of r̄2 then a forward-reverse bidirected edge is

added from the node representing r1 to the node representing r2. Since r1 and r2, and

r̄1 and r2 do not overlap in at least minOverlap base pairs, no other edges are added

between these nodes. Note that, two reads can overlap in more than one way and hence

there can be multiple edges between the nodes representing them in the overlap graph.

4.3.3 Transitive Reduction

Recall our discussion on transitive edges in 3.2.5. If there are three overlapping edges

e1 = (u, v), e2 = (u,w) and e3 = (w, v) in the overlap graph that form a triangle ∆uvw

and the string spelled by the edge e1 and the string spelled by the path p = {e2, e3} are

the same, then we call e1 a transitive edge. For example, in Figure 4.5 the string spelled

by the edge (r1, r3) is AGCTAAGCATTTACGATAGCCGATAGCTAAATTACGTT and this is equal to

the string spelled by the path {r1, r2, r3}. So, the edge (r1, r3) is a transitive edge. Note

that, any of the three edges in a triangle as above can be a transitive edge, depending on

the orientation of the edges. As explained above, information stored in a transitive edge

Chapter 4. PEGASUS 59

(u, v) is redundant, since the string spelled by the transitive edge is also stored in the

path of length two between u and v. Therefore, transitive edges can be removed from

the overlap graph without losing any information.

Unlike other genome assemblers that first build the entire graph and then remove

the transitive edges, we remove transitive edges while building the overlap graph. A

linear time algorithm for removing transitive edges was proposed by Gene Myers [35],

but it requires the whole graph to be built. Myers algorithm for exact overlaps in the

graph is shown in Algorithm 2. To remove transitive edges incident on a node v, Myers

algorithm first marks all the neighbours of v as inplay. Then for each of the neighbours

w of v in increasing order of the length of the string spelled by the edge (v, w), it marks

every neighbour of w as eliminated that was already marked as inplay. At the end

all edges (v, x) are marked for removal, for each node x that is marked as eliminated.

Transitive edges are removed from the graph only after all the nodes in the graph have

been processed.

We use a similar algorithm as Myers; however, we modified it so it can remove transi-

tive edges as the overlap graph is being built. The algorithm is described in Algorithm 6.

Transitive edges incident on a read r are removed (Algorithm 5) after marking the tran-

sitive edges incident on r and on its neighbours (Algorithm 4). Therefore, to remove

all transitive edges incident on a node r we need to build that part Gr of the transitive

graph that includes all nodes at distance at most 3 from r. Then we can use Meyers

algorithm on Gr to remove all the transitive edges incident on r. Observe that we need to

mark the transitive edges incident on the neighbours of r before removing the transitive

edges incident on r. Because the transitive edges incident on the current node r might

be required to discover some of the transitive edges incident on its neighbours; it is not

possible to discover some of the transitive edges incident on the neighbours of r once all

the transitive edges incident on r are removed.

PEGASUS uses queue to store reads that have not yet been processed. We first

Chapter 4. PEGASUS 60

Algorithm 2 Linear time transitive edge reduction [35].

1: Input: Overlap graph G = (V,E)
2: Output: Transitively reduced overlap graph
3: for each v ∈ V do
4: mark[v]← vacant
5: for each (v, w) ∈ E do
6: reduce[(v, w)]← false

7: for each v ∈ V do
8: for each (v, w) ∈ E do
9: mark[w]← inplay

10: for each (v, w) ∈ E in increasing order of length of the string spelled do
11: if mark[w] = inplay then
12: for each (w, x) ∈ E in increasing order of length of the string spelled do
13: if mark[x] = inplay then
14: mark[x]← eliminated

15: for each (v, w) ∈ E do
16: if mark[w] = eliminated then
17: reduce[(v, w)]← true . Mark for transitive reduction

18: mark[w]← vacant

19: for each edge e ∈ E do
20: if reduce[e] = true then
21: Remove e from E . Remove the transitive edge e

22: return G

Chapter 4. PEGASUS 61

explore an arbitrary read r (i.e., insert in the overlap graph the node corresponding to

r and all edges incident on this node) and put its neighbours in the queue. Then we

explore the neighbours of r and the neighbours’ neighbours, if not explored already. We

next mark the transitive edges incident on r and on its neighbours (Algorithm 4), but

remove only the transitive edges incident on r (Algorithm 5). To avoid exploring the

same node multiple times we label each node as unexplored, explored or marked. When

we are done with the current node, we pick the next read from the queue. If the queue

is empty, then we pick another unexplored read from the dataset and repeat the above

steps until all reads in R are processed. The algorithm for constructing the overlap graph

is shown in Algorithm 6.

Algorithm 3 exploreRead(G = (V,E),minOverlap, hashTable, r): Insert in the over-
lap graph all edges incident on r .

1: Input: Overlap graph G = (V,E), hashTable, minOverlap and a read r
2: Output: Overlap graph G = (V,E) after inserting all edges incident on r
3: h← min{64,minOverlap}
4: for each read r ∈ R do
5: for each substring s of length h of r do
6: list← hashTable.get(s) . hashTable.get() returns the list of reads
7: for each read r′ ∈ list do
8: if flag[r′] = unexplored and overlapLength(r, r′) ≥ minOverlap then
9: Add (r, r′) to G

10: return G

Read r1 : AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r2 : CGTAATTTAGCTATCGGCTATCGTAAATGCTTAGC

Read r3 : AACGTAATTTAGCTATCGGCTATCGTAAATGCTTA

Read r4 : GCATTTACGATAGCCGATAGCTAAATTACGTTATA

Read r5 : GTATAACGTAATTTAGCTATCGGCTATCGTAAATG

Read r6 : ATTTACGATAGCCGATAGCTAAATTACGTTATACT

Read r7 : TTTACGATAGCCGATAGCTAAATTACGTTATACTC

Read r8 : ATATAACGTAATTTAGCTATCGGCTATCGTAAATG

Read r9 : ATTTACGATAGCCGATAGCTAAATTACGTTATATA

Read r10 : CTATATAACGTAATTTAGCTATCGGCTATCGTAAA

Figure 4.3: Set of given input reads.

Chapter 4. PEGASUS 62

Algorithm 4 markTransitiveEdges(G = (V,E), r): Mark transitive edges incident
on read r.

1: Input: Overlap graph G = (V,E) and a node r ∈ V
2: Output: Overlap graph G = (V,E) after marking the transitive edges incident on r
3: for each neighbour n of r do
4: mark[n]← inplay

5: for each neighbour n of r in increasing order of length of string spelled by (r, n) do
6: if mark[n] = inplay then . For each inplay neighbour
7: for each neighbour nn of n do
8: if edges (r, n) and (n, nn) have opposite orientations in node n then
9: if mark[nn] = inplay then

10: mark[nn]← eliminated

11: for each neighbour n of r do
12: if mark[n] = eliminated then
13: Mark edge (r, n) as transitive

14: return G

Algorithm 5 removeTransitiveEdges(G = (V,E), r): Remove from the overlap
graph G = (V,E) transitive edges incident on read r

1: Input: Overlap graph G = (V,E) and a node r ∈ V
2: Output: Overlap graph G = (V,E) after removing transitive edges incident on r
3: for each neighbour n of r do
4: if edge (r, n) is marked as transitive then
5: Remove (r, n) from G

6: return G

Chapter 4. PEGASUS 63

Algorithm 6 buildOverlapGraph(R,minOvelap): Build the overlap graph G =
(V,E).

1: Input: Set R = {r1, r2, ..., rn} of reads, minOverlap
2: Output: Overlap graph G = (V,E)
3: hashTable← buildHashTable(R,minOverlap)
4: V ← ∅ . Set of vertices
5: E ← ∅ . Set of edges
6: for each read r ∈ R do
7: flag[r]← unexplored . All reads marked as unexplored

8: queue← ∅
9: for each read r ∈ R do

10: if flag[r] = unexplored then
11: exploreRead(G,minOverlap, hashTable, r) . Insert edges incident on r
12: flag[r]← explored
13: enqueue(r) . Put r in the queue
14: while queue 6= ∅ do . This explores a connected component in the graph
15: r ← dequeue()
16: if flag[r] = explored then
17: for each unexplored neighbour u of r do . Explore all neighbours
18: exploreRead(G, hashTable,minOverlap, u) . Edges incident on u
19: flag[u]← explored
20: enqueue(u)

21: markTransitiveEdges(G, r) . Mark transitive edges incident on r
22: flag[r]← marked

23: if flag[r] = marked then
24: for each explored neighbour u of r do
25: for each unexplored neighbour v of u do . Explore v
26: exploreRead(G, hashTable,minOverlap, v)
27: flag[v]← explored
28: enqueue(v)

29: markTransitiveEdges(G, u) . Mark transitive edges incident on u
30: flag[u]← marked
31: removeTransitiveEdges(G, r) . Transitive edges incident on r

32: return G

Chapter 4. PEGASUS 64

Read r1 : AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

Read r̄2 : GCTAAGCATTTACGATAGCCGATAGCTAAATTACG

Read r̄3 : TAAGCATTTACGATAGCCGATAGCTAAATTACGTT

Read r4 : GCATTTACGATAGCCGATAGCTAAATTACGTTATA

Read r̄5 : CATTTACGATAGCCGATAGCTAAATTACGTTATAC

Read r6 : ATTTACGATAGCCGATAGCTAAATTACGTTATACT

Read r7 : TTTACGATAGCCGATAGCTAAATTACGTTATACTC

Read r̄8 : CATTTACGATAGCCGATAGCTAAATTACGTTATAT

Read r9 : ATTTACGATAGCCGATAGCTAAATTACGTTATATA

Read r̄10 : TTTACGATAGCCGATAGCTAAATTACGTTATATAG

Read Length l : 35 base pairs
minOverlap : 32 base pairs

Figure 4.4: Overlapping reads.

r1 r2 r3 r4

r5

r6

r7

r8

r9

r10

Figure 4.5: Overlap graph with 10 reads.

4.4 Contracting Composite Paths

Since most of the reads appear only once in the genome, in the transitively-reduced

overlap graph most of the nodes have only two neighbours; for each of these nodes, one

of the incident edges is an in-edge and the other one is an out-edge. However, some

nodes in the overlap graph can have more than two neighbouring nodes. These nodes

either correspond to reads located at the ends of repeated regions of the genome (see

Section 3.1.4) or to reads that contain errors. In Figure 4.6, nodes r2, r3, r5, r6, r8

and r9 have one in-edge and one out-edge. For each node v ∈ V in the overlap graph

Chapter 4. PEGASUS 65

r1 r2 r3 r4

r5

r6

r7

r8

r9

r10

Figure 4.6: Overlap graph after transitive edge reduction.

with only one in-edge e1 = (u, v) and one out-edge e2 = (v, w), we remove node v and

the edges e1 and e2 and insert an edge e3 = (u,w) in the overlap graph. The edge

e3 stores the information formerly stored in node v and edges e1 and e2. We repeatedly

remove these nodes of degree two from the overlap graph until there are no more of them.

This procedure is called composite path contraction in PEGASUS. Figure 4.7 shows the

overlap graph after contracting composite paths in the overlap graph of Figure 4.6. Path

p = {r1, r2, r3, r4} in Figure 4.6 is contracted into a single edge (r1, r4). Note that, in the

path p, the reads r2 and r3 are entered through an out-edge, hence, we store the reverse

complements r̄2 and r̄3 of the reads r2 and r3 in the composite edge (r1, r4) to represent

the orientations of the overlapping reads in p. The pseudocode for the algorithm for

performing composite path contraction is shown in Algorithm 7.

Algorithm 8 shows the procedure for merging two edges in the overlap graph. Note

that the orientations of the reads v and w on the resulting edge e = (u, x) depend on the

orientations of the edges e1 = (u, v) and e2 = (w, x).

Chapter 4. PEGASUS 66

r1 r4

r7

r10

{r̄2, r̄3}

{r̄ 5
, r

6
}

{r̄
8 , r

9 }

Figure 4.7: Overlap graph resulting after composite path contraction.

Algorithm 7 contractCompositePaths(G = (V,E)): Composite path contraction.

1: Input: Overlap graph G = (V,E)
2: Output: Overlap graph after contracting composite paths
3: for each node v ∈ V do
4: if v has exactly one in-edge e1 = (u, v) and one out-edge e2 = (v, w) then
5: mergeEdges(G, e1, e2)

6: return G

4.5 Error Removal

The error correction programs used to correct reads are never perfect, so the corrected

datasets may still contain errors. After building the simplified graph, PEGASUS detects

and removes erroneous reads by looking at the topology of the overlap graph. Most of

the erroneous reads do not overlap with any other reads, and so are not added to the

overlap graph since we insert new nodes in the overlap graph only if there is at least one

Algorithm 8 mergeEdges(G = (V,E), e1, e2): Merge pair of edges.

1: Input: Overlap graph G = (V,E) and two edges e1 = (u, v) and e2 = (w, x)
2: Output: Merge the edges e1 and e2 into a single edge e
3: Add edge e = (u, x) to G
4: Put the ordered reads of e1 and e2 in e
5: Remove e1 and e2 from G
6: return G

Chapter 4. PEGASUS 67

edge incident on them. However, sometimes by chance the erroneous reads overlap with

other reads. We use simple techniques such as bubble and dead-end removal to identify

and discard erroneous reads from the overlap graph. Dead-end and bubble removal

techniques are also used by other genome assemblers such as Edena [14], ABySS [46],

and SOAPdenovo [22].

4.5.1 Dead-End Removal

Most of the erroneous reads that overlap with other reads in the dataset create dead-

ends, short paths in the overlap graph that end at a node of degree one. Dead-ends are

short because it is very unlikely that reads with errors in them form a long path in the

overlap graph. Figure 4.8 shows an example of a dead-end in the overlap graph caused

by erroneous reads r11 and r12 (before contracting composite paths). We can remove the

edges (r5, r11) and (r11, r12) and delete the nodes r11 and r12 to get rid of the erroneous

reads from the overlap graph. Dead-end removal of PEGASUS is shown in Algorithm 9.

Note that, composite paths are contracted before dead-end removal, hence, each dead-end

is simplified to a single composite edge.

A composite edge containing more than 5 reads is not considered as a dead-end.

Assuming uniform distribution of the reads, if a composite edge e has 5 reads in it,

then the probability that all the reads in e have an error in exactly the same position is(
p
3
(1− p)l−1

)5
, where the probability that a base pair is wrong in a read is p and the

read length is l . Note that the erroneous base pair must be the same for all the reads in

order to overlap. Error rate of Illumina (www.illumina.com) is about 1%, meaning that

the probability of an error in a base pair is .01. So, the probability of 5 erroneous reads

to overlap is very close to 0.

www.illumina.com

Chapter 4. PEGASUS 68

Algorithm 9 removeDeadEnds(G = (V,E)): Dead-end removal from the overlap
graph.

1: Input: Overlap graph G = (V,E)
2: Output: Overlap graph after removing dead-ends
3: for each node u ∈ V do
4: inDegree← 0 . Number of in-edges
5: outDegree← 0 . Number of out-edges
6: for each neighbour v of u do
7: if (u, v) has more than 5 reads in it then . Unlikely to have > 5 reads
8: with errors forming a path
9: inDegree← 0

10: outDegree← 0
11: break
12: if edge (u, v) is an in-edge of u then
13: inDegree← inDegree+ 1
14: else
15: outDegree← outDegree+ 1

16: if inDegree = 0 and outDegree > 0 then
17: Remove u and all its edges from G

18: if inDegree > 0 and outDegree = 0 then
19: Remove u and all its edges from G

20: return G

Chapter 4. PEGASUS 69

Subsequence in G :

...ACGCGTATCCGGTATC...

r1

ACGCGTA

r2

CGCGTAT

r3

GCGTATC

r4

CGTATCC

r5

GTATCCG

r6

TATCCGG

r7

ATCCGGT

r8

TCCGGTA

r9

CCGGTAT

r10

CGGTATC

r11 TATCCGT

r12 ATCCGTT

Q

Figure 4.8: A dead-end in the overlap graph caused by erroneous reads.

4.5.2 Bubble Removal

Occasionally errors appear in certain positions of the reads creating short paths that

overlap at both ends with other parts of the overlap graph. Such erroneous paths are

called bubbles (see Figure 4.9 for an example). An erroneous path in a bubble will have

fewer reads in it than the other correct path. We can detect and remove erroneous paths

in the bubbles from the overlap graph, by comparing the number of reads in the two

paths of the bubbles. For the example in Figure 4.9, the string ACGCGTAGCCGGT spelled

by the path p1 = {r1, r11, r12, r9} is 13 bp long and the string ACGCGTATCCGGT spelled by

the path p2 = {r1, r2, r3, r4, r5, r6, r7, r8, r9} is also 13 bp long, but they differ in only one

base pair. There are only two reads in path p1 and seven reads in path p2. In general, the

number of reads in one of the paths in a bubble cause by erroneous reads is significantly

smaller than the number of reads in the other path. If the two paths in a bubble have

similar strings (more than 90% similar) and one of the paths has fewer reads (at most

half of the reads in the other path), then the path with fewer reads is removed from

the bubble. We choose 90% similarities between the stings, because if they are less than

90% similar then it is more likely that the path is not because of errors; reads with more

errors are less likely to form a path in the graph that overlaps in both ends with other

correct reads.

Bubble-like structures can also be present in the overlap graph due to single nucleotide

Chapter 4. PEGASUS 70

Subsequence in G :

...ACGCGTATCCGGTATC...

r1

ACGCGTA

r2

CGCGTAT

r3

GCGTATC

r4

CGTATCC

r5

GTATCCG

r6

TATCCGG

r7

ATCCGGT

r8

TCCGGTA

r9

CCGGTAT

r10

CGGTATC

r11

CGTAGCC

r12

AGCCGGT

Q S

Figure 4.9: A bubble in the overlap graph caused by erroneous reads.

polymorphism (SNP). In case of SNPs, both paths in the bubble have a similar number

of reads in them. To differentiate between the bubbles caused by SNPs and the bubbles

caused by errors, we compare the number of reads in both the paths of the bubbles.

Bubbles caused by errors appear less frequently in the overlap graph than dead-ends, as

the erroneous reads have to overlap in both directions. The algorithm for bubble removal

is shown in Algorithm 10. Note that before bubble removal, the two paths in a bubble

are simplified to composite edges after contracting composite paths. Figure 4.10 shows

the overlap graph after removing one of the paths in the bubble in Figure 4.9.

r1

ACGCGTA

r2

CGCGTAT

r3

GCGTATC

r4

CGTATCC

r5

GTATCCG

r6

TATCCGG

r7

ATCCGGT

r8

TCCGGTA

r9

CCGGTAT

r10

CGGTATC

Figure 4.10: Overlap graph after removing the bubble in Figure 4.9.

Algorithm 10 removeBubbles(G = (V,E)): Bubble removal from the overlap graph.

1: Input: Overlap graph G = (V,E)
2: Output: Overlap graph after removing bubbles
3: for each pair of edge e = (u, v) and e′ = (u, v) ∈ G with the same endpoints do
4: if string spelled by e ≈ string spelled by e′ then . More than 90% similar
5: if number of reads in e ≤ 1

2
number of reads in e′ then

6: Remove e from G
7: else if number of reads in e′ ≤ 1

2
number of reads in e then

8: Remove e′ from G
9: return G

Chapter 4. PEGASUS 71

4.6 Genome Size Estimation

In de novo genome assembly, the size of the genome from which the reads were sam-

pled is unknown. We estimate the genome size by using a technique proposed by Gene

Myers [35]. If the length of the genome is L, there are n reads in the dataset and the

read length is l, then assuming that the reads were sampled uniformly from the genome,

each position of the genome is sampled on average nl
L

times. Similarly, if k reads were

sampled from the part of the genome representing an edge e in the overlap graph and the

length of the string spelled by e is d, then assuming that the edge represents a sequence

that appears only once in the genome, each position of the sequence represented by e is

sampled on average kl
d

times. If d is long enough, the above two average sampling rates

will be very similar, i.e.,

nl

L
≈ kl

d

∴ L ≈ dn

k
(4.1)

To estimate the value of L we first compute the sum of the lengths of all the long

edges (edges spelling strings of length at least 1000 bp) and the total number of the reads

sampled from the part of the genome represented by these edges. Under the assumption

that all sequences represented by the long edges appear once, a good estimation of the

genome size can be computed by using Equation 4.1. We choose the length at least 1000

bp as a long edge because significantly more subsequences of length longer than 1000 bp

are in unique regions of the genome than in repeated regions.

Note that this estimation of L could be wrong, because some of the sequences rep-

resented by the long edges considered in the previous step could appear multiple times

in the genome. To identify these edges we compute for every long edge e the ratio of

the probability that the sequence represented by e appears once in the genome and the

probability that it appears twice in the genome. If this ratio is very large, then most

Chapter 4. PEGASUS 72

likely the sequence represented by e appears only once in the genome. These probabilities

are computed as follows. The probability that the reads in an edge e appear only once

in the genome is approximately
(dn

L)
k

k!
e−

dn
L (for details see Section 4.8.3), where L is the

length of the genome (approximated in the previous step), n is the number of reads in

the dataset, k is the number of reads sampled from the sequence spelled by the string

in e and d is the length of the string spelled by e. Similarly the probability that the

reads in the edge e is present twice in the genome is approximately
(2dn

L)
k

k!
e−

2dn
L . If the

probability of the reads in e appearing once in the genome is at least t times greater than

the probability of the reads in e appearing twice in the genome, then we conclude that

the reads in e are present only once in the genome. We carefully choose the value of t to

be 20. Setting a large value for t increases the confidence that the reads in edge e appear

only once in the genome. However, strings spelled by many edges will not be detected

as single copy in the genome, even though they are, if the value of t is large.

To get a better estimation of L, we compute the set E of all the edges representing

sequences that with high probability appear only once in the genome by using the above

mentioned analysis and use this set in Equation 4.1. The above process is repeated until

there is no change in the set of edges E . Algorithm 11 shows the pseudocode for genome

size estimation. In all our experiments at most 5 iterations of the above process were

required to compute a stable set E .

4.7 Estimating the Distribution of Insert Sizes

In some cases, input datasets may not contain information about the distribution of the

insert sizes or the distance between the two reads in a mate pair. This information is

needed to find paths between the reads in a mate pair in the overlap graph. If we know

the mean µ and the standard deviation σ of the distribution, then we can use a depth-

limited search in the overlap graph to find paths between the reads in a mate pair. The

Chapter 4. PEGASUS 73

Algorithm 11 genomeSizeEstimation(G = (V,E), n): Genome size estimation.

1: Input: Overlap graph G = (V,E) and number of reads n
2: Output: Estimated size of the genome
3: E ← ∅ . Set of edges to consider
4: for each edge e ∈ E spelling a string longer than 1000 bp do
5: Add e to E
6: d←

∑
e∈E length of the string spelled by e

7: k ←
∑

e∈E number of reads sampled from part of genome represented by e
8: genomeSize← nd

k
. First estimation of genomeSize by Equation 4.1

9: stepCount← 0
10: while stepCount ≤ 10 do . To avoid an infinite loop
11: E ← ∅ . Set of edges considered
12: for each edge e ∈ E spelling a string longer than 1000 bp do
13: if with high probability the string spelled by e appears once then
14: Add e to E
15: d←

∑
e∈E length of string spelled by e

16: k ←
∑

e∈E number of reads sampled from part of genome represented by e
17: genomeSize← nd

k

18: if genomeSize is the same as in the previous step then
19: break
20: stepCount← stepCount+ 1

21: return genomeSize

Chapter 4. PEGASUS 74

minimum and maximum lengths considered by the depth-limited search are µ− 3σ and

µ + 3σ, respectively, as for most of the mate pairs the insert size falls within the above

range.

When µ and σ are unknown for a given dataset, we estimate them as follows. After

building the overlap graph, we find those mate pairs for which both of its reads map to

the same composite edge of the overlap graph. For each such mate pair, we compute the

distance between the reads of the mate pair on the edge that contains them. Usually

there are many mate pairs in the dataset whose reads map to the same composite edge in

the overlap graph. We compute their mean µ and standard deviation σ of the distances

between the reads of mate pairs on the same edge.

This is our first approximation for the values of µ and σ, which is usually very close

to the actual values because there usually are many long composite edges in the overlap

graph. We note that, due to errors, some distances between the reads in a mate pair

could be very large. These errors are introduced when mate pairs are sequenced from very

large fragments than the expected insert size, or when they are sampled from multiple

locations in the genome having structural variants. These erroneous distances are not

considered in the subsequent steps, for which we only consider those distances d ≤ 3µ,

where µ is the estimation of mean from the previous step. From experimental study, we

found that all the correct mate pairs are within the distance 3µ in the long edges. We

repeat this process until the value of µ converges. Algorithm 12 shows details about the

estimation of µ and σ. In all our experiments at most 5 iterations of the above process

were required for µ to converge.

4.8 Copy Count Estimation

To accurately assemble a genome we need to estimate the number of times that each read

r appears in the genome. The number of times a read is present in a genome is called

Chapter 4. PEGASUS 75

Algorithm 12 meanSdEstimation(G = (V,E),R): Estimation of mean µ and stan-
dard deviation σ of the insert size.

1: Input: Overlap graph G = (V,E) and set R = {r1, r2,, rn} of reads
2: Output: Estimate value of µ and σ
3: S ← ∅ . Set of distances
4: for each edge e = (u, v) ∈ E do
5: for each mate pair (r1, r2) ∈ e do . Consider all mate pairs on same edge
6: d← distance between r1 and r2 on e . Distance between r1, r2 on e
7: S ← S ∪ {d} . Add d to S

8: µ← mean of S . First estimation of µ
9: σ ← standard deviation of S . First estimation of σ

10: stepCount← 0
11: while stepCount ≤ 10 do . To avoid an infinite loop
12: S ← ∅
13: for each edge e = (u, v) ∈ E do
14: for each mate pair (r1, r2) ∈ e do
15: d← distance between r1 and r2 on e
16: if d ≤ 3µ then . Only reasonable distances
17: S ← S ∪ {d}
18: if µ ≈ mean of S then . Less than 1% different from previous value of µ
19: µ← mean of S
20: σ ← standard deviation of S
21: break . When µ converges
22: else
23: µ← mean for S . Update µ
24: σ ← standard deviation of S . Update σ

25: stepCount← stepCount+ 1

26: return µ and σ

Chapter 4. PEGASUS 76

its copy count. To accurately estimate the copy count of each read in the dataset, we

use the combination of a statistical analysis and a minimum cost flow with a convex cost

function ce for each edge e in the overlap graph which corresponds to the likelihood of

the sequence represented by e appearing k times in the genome, for every value k ≥ 1 .

We also set lower bounds for the flow on each edge of the overlap graph based on a log

odds ratio analysis as explained in Section 4.8.3.

4.8.1 Minimum Cost Flow

To estimate the copy counts of the reads in the dataset, PEGASUS converts the overlap

graph into a flow network and solves the minimum cost flow problem on this flow network.

The amount of flow through an edge represents the number of times that the reads on

the corresponding edge appear in the reference genome. A generalized minimum cost

flow problem on a flow network is defined as follows.

Consider flow network G = (V,E) with source s ∈ V and t ∈ V , in which every edge

(u, v) ∈ E has an upper bound of flow flowUpperBound(u, v) > 0, a flow f(u, v) ≥ 0, and

a cost c(u, v) ≥ 0, the cost of sending flow f(u, v) through edge (u, v) is f(u, v)c(u, v).

Given a flow network G = (V,E) and a value d, the minimum cost flow problem is

to minimize the total cost of the flow
∑

(u,v)∈E f(u, v)c(u, v) subject to the following

constraints.

Capacity constraint

f(u, v) ≤ flowUpperBound(u, v)

Skew symmetry

f(u, v) = −f(v, u)

Flow conservation∑
w∈V f(u,w) = 0 for all u 6= s, t and

Required flow∑
w∈V f(s, w) = d and

∑
w∈V f(w, t) = d

Chapter 4. PEGASUS 77

The flow network used by PEGASUS has some additional constraints. For example,

each of the edges in the flow network also has a flow lower bound.

4.8.2 Cost Function

The maximum likelihood genome assembler proposed by Medvedev et al. [28, 29, 30, 31]

uses a bidirected network flow to model the double-stranded nature of DNA for genome

assembly. Most genome assemblers try to minimize the length of the assembled genome.

The problem with minimizing the length of the assembled genome G ′ is that the actual

genome G may contain repeated subsequences, which will not appear multiple times in

the assembled genome G ′.

The idea of maximum likelihood genome assembly is not to minimize the assembled

genome size, but rather to assemble a genome that is the most likely source for the given

set R of reads. If a subsequence is present multiple times in the genome, the reads

from that subsequence are likely to be sampled more often than the reads from unique

subsequences of the genome. Maximum likelihood genome assembly is designed to deal

with high coverage datasets produced by NGS. This method uses a bidirected network

flow-based algorithm to estimate the copy counts of the reads; these copy counts are then

used to assemble the genome.

Experiments conducted on simulated dataset (i.e., randomly sampled reads from a

reference genome by a computer program) from Escherichia coli show that the maximum

likelihood genome assembly can very accurately (more than 99%) compute the copy

counts of reads [29]. Maximum likelihood genome assembly uses a bidirected de Bruijn

graph to model the input set of reads. This bidirected graph is converted into a directed

graph by using an algorithm of Hochbaum [15]. A convex min-cost function ce : N→ R,

is associated with every edge e reflecting the likelihood that the sequence represented by

e appears k times in the genome for each k ≥ 1. The goal is to compute a flow function

f that minimizes
∑

e ce(f(e)), where the flow through edge e is f(e).

Chapter 4. PEGASUS 78

We use flow network to compute copy counts of reads in the reference genome by

setting cost in the edges that resembles the number of time the reads in the edges are

present in the genome, given the number of times they are present in the dataset. Con-

sider a set R of n reads from a genome G of length L. Let read r ∈ R be present xr times

in the dataset R and dr times in the genome G . Then, if n reads are sampled uniformly

from G , the probability that r is sampled xr times is

Prob (Freq(r) = xr) =

(
n

xr

)(
dr
L

)xr
(

1− dr
L

)n−xr

(4.2)

Here, Freq(r) denotes the number of times read r appears in the dataset R. Equa-

tion 4.2 is a complex function on xr that represents the probability that read r appears

xr times in the dataset. We use this function to model the cost of pushing flow through

the read r by taking the negative log of Equation 4.2.

− log(Prob (Freq(r) = xr)) =− log

(
n

xr

)
− log

(
dr
L

)xr

− log

(
1− dr

L

)n−xr

=− log

(
n

xr

)
− xr log dr + xr logL

− (n− xr) log(L− dr) + (n− xr) logL

=− log

(
n

xr

)
+ n logL− xr log dr

− (n− xr) log(L− dr)

=K + cr(dr)

where,

K =− log

(
n

xr

)
+ n logL

Chapter 4. PEGASUS 79

and

cr(dr) =− xr log dr − (n− xr) log(L− dr) (4.3)

Note that K does not depend on the number of times that read r appears in the

genome, so for our purposes we assume that K is constant. We use cr(dr) from Equa-

tion 4.3 as a convex cost function in our program to calculate the cost of pushing dr units

of flow through read r. In Equation 4.3 the cost function maximizes the probability that

the read r is present xr times in the dataset. To efficiently calculate a minimum cost flow

we first approximate the convex cost function cr(dr) with a piecewise linear cost function

with 3 linear segments as shown in Figure 4.11. The first segment gives the cost for flow

values between 1 and 3, the second linear segment gives the cost for flow values between

3 and 5 and the last one is for flow larger than 5. We choose these intervals by observing

that most of the copy counts of the reads are within the range between 1 and 5.

4.8.3 A-Statistics

To set the lower bounds of flow on the edges of the overlap graph, we approximate the

minimum number of times each edge should be present in the genome based on the

frequencies of the reads present in the edge. This approximation in done by a statistical

analysis called A-statistics [35].

The odds ratio z of two events, event1 and event2, is the ratio of the probability

event1 divided by the probability of event2.

z =
Prob(event1)

Prob(event2)
.

If z = 1, this means that the two events are equally likely to occur, whereas z > 1

means that event1 is z times more likely to occur than event2. The log odds ratio, or

Chapter 4. PEGASUS 80

0 2 4 6 8 10 12 14

0

10

20

30

40

50

60

dr

c r
(d

r
)

Convex cost function
Cost of first interval
Cost of second interval
Cost of third interval

Figure 4.11: Convex cost function cr(dr).

A-Statistics, is the natural logarithm of this odds ratio. In the overlap graph, we compute

the log odds ratio of the string spelled by an edge appearing i times versus the string

appearing i + 1 times in the genome. Let the size of a given genome be L, the number

of reads in the dataset for this genome be n. Consider the overlap graph for the dataset

and an edge x of the overlap graph, let the length of the string spelled by edge x be d

and let k be the number of reads from the dataset, including repeated reads, represented

by x. Then by Equation 4.2 the probability that the string spelled by edge x appears

only once in the genome is

Chapter 4. PEGASUS 81

Prob(copyCount(x) = 1) =

(
n

k

)(
d

L

)k (
L− d
L

)n−k

≈
(
dn
L

)k
k!

e−
dn
L when L is large [35]

Similarly, the probability of the string spelled by edge x appearing twice in the genome

is

Prob(copyCount(x) = 2) ≈
(
2dn
L

)k
k!

e−
2dn
L

The log odds ratio of the probabilities of copyCount(x) = 1 and copyCount(x) = 2 is

aStat1,2(x) = ln
Prob(copyCount(x) = 1)

Prob(copyCount(x) = 2)

=
dn

L
− k ln 2

Similarly, the log odds ratio of the probabilities of copyCount(x) = i and copyCount(x) =

i+ 1 is

aStati,i+1(x) = ln
Prob(copyCount(x) = i)

Prob(copyCount(x) = i+ 1)

=
dn

L
− k ln

i+ 1

i
(4.4)

We use Equation 4.4 to help us estimate the number of times that string represented

by every edge appears in the genome.

4.8.4 Accurate Copy Count

Based on the log odds ratio discussed in the previous section, we set lower bounds and

upper bounds for the flow on each long composite edge x (longer than 1000 bp) in the

Chapter 4. PEGASUS 82

overlap graph. We choose a threshold t and if aStat1,2(x) ≥ t, then the probability that

copyCount(x) = 1 is et times the probability that copyCount(x) = 2. We performed

several experiments and found that by setting t = 3, whenever aStat1,2(x) ≥ t then

in most cases the string spelled by x appeared only once in the genome. Hence, if

aStat1,2(x) ≥ t we set a lower bound and upper bound on the capacity of the edge

representing x to 1, thus forcing the flow on that edge to have value 1. However, if

aStat1,2(x) < t we find the first value i such that aStati−1,i(x) ≤ −t and aStati,i+1(x) ≥ t

and set the lower bound of flow on edge x to i and the upper bound of flow to 1000.

We choose the upper bound of flow to be 1000 because it is highly unlikely that any

read appears in 1000 different positions in the genome. Note that if aStati−1,i(x) ≤ −t

and aStati,i+1(x) ≥ t, this means that the probability that the string spelled by edge x

appears i times in the genome is at least et times higher that the probability that this

string appears i− 1 or i + 1 times. We only consider composite edges longer than 1000

base pairs for this log odds ratio calculation because we can only rely on this statistical

analysis for edges representing large set of reads. For composite edges smaller than 1000

base pairs, or if the log odds ratio is unable to assign bounds for the flow as explained

above, we set the lower bound for flow to 0 (if the edge represents a set of fewer than 30

reads) or to 1 (if the edge represents a set of more than 30 reads); for these edges we set

an upper bound 1000 for the maximum flow that they can carry. By experimental study

we found that setting lower bound of flow to 1 in the edges with fewer than 30 reads

causes problem in the copy count estimation.

A similar statistical analysis was used by Gene Myers [35]. However, he only used

the A-statistics values to find edges that are likely to appear exactly once in the genome.

He did not use the A-statistics values to predict copy counts larger than 1. We obtained

very accurate copy count results by using the above mentioned approach.

There are several algorithms for solving the minimum cost flow problem for directed

graphs. In order to use the existing algorithms to compute a minimum cost flow in the

Chapter 4. PEGASUS 83

overlap graph, we have to first convert the overlap graph, which is a bidirected graph,

into a directed graph [12]. To convert a bidirected graph G = (V,E) into a directed graph

G′ = (V ′, E ′), for each node v ∈ V , we add two nodes v1 and v2 to V ′; V ′ also includes a

“super” source s′ and a “super” sink t′. For each bidirected edge e = (u, v) ∈ V , we add

two directed edges in G′ depending on the orientation of e as show in Figure 4.13 [28].

Then we duplicate each node u ∈ G′, by adding two nodes uin and uout to G′ and

connecting all incoming edges of u to uin and all outgoing edges to uout. We also add

an edge (uin, uout), an edge (s′, uin) from the super source s′ and an edge (uout, t
′) to the

super sink t′. We add an edge (t′, s′) connecting the super sink and super source. For

completeness sake we present the pseudocode of converting G to G′ in Algorithm 13. We

use CS2 [13] to compute a minimum cost flow for G′.

Algorithm 14 shows how we computed the flow in the overlap graph. If the A-statistics

suggest that the string spelled by an edge is present a > 1 times in the genome, then we

make three copies e1, e2 and e3 of the edge in the directed overlap graph to represent the

three line segments of our convex cost function. Flow bounds and costs of the edges e1,

e2 and e3 are shown below.

flowLowerBound(e1)← max{a, 3} (4.5a)

flowUpperBound(e1)← 3 (4.5b)

cost(e1)←
1

3

∑
r∈e

{cr(3)− cr(1)} (4.5c)

Chapter 4. PEGASUS 84

Similarly

flowLowerBound(e2)← max{0,min{a, 5} − 3} (4.6a)

flowUpperBound(e2)← 2 (4.6b)

cost(e2)←
1

2

∑
r∈e

{cr(5)− cr(3)} (4.6c)

And, finally

flowLowerBound(e3)← max{0,min{a, 1000} − 5} (4.7a)

flowUpperBound(e3)← 995 (4.7b)

cost(e3)←
1

995

∑
r∈e

{cr(1000)− cr(5)} (4.7c)

u v
e = (u, v)

(a) Composite edge in the directed overlap graph.

u v
(3,5] units of flow at cost cost(e2)

[1,3] units of flow at cost cost(e1)

(5,1000] units of flow at cost cost(e3)

(b) Composite edges for three step convex cost function.

Figure 4.12: Putting costs in the composite edges using Equations 4.5c, 4.6c and 4.7c.

The convex cost function and the three liner segments of the piecewise linear approx-

imation are shown in Figure 4.11. The three liner segments of the cost functions are

modeled as shown in Figure 4.12.

Chapter 4. PEGASUS 85

Algorithm 13 convertGraph(G = (V,E)): Convert a bidirected graph G = (V,E)
into a directed graph G′ = (V ′, E ′).

1: Input: Bidirected overlap graph G = (V,E)
2: Output: Directed overlap graph G′ = (V ′, E ′)
3: V ′ ← {s′, t′} . Add super-source s′ and super-sink t′

4: E ′ ← {(t′, s′)} . Add edge from super-sink t to super-source s
5: for each read v ∈ V do
6: V ′ ← V ′ ∪ {v1in , v1out , v2in , v2out}
7: E ′ ← E ′ ∪ {(v1in , v1out), (v2in , v2out)} . Edge connections representing nodes in G
8: E ′ ← E ′ ∪ {(s′, v1in), (s′, v2in)} . Add edges from super-source s′

9: E ′ ← E ′ ∪ {(v1out , t′), (v2out , t′)} . Add edges to super-sink t′

10: for each edge e = (u, v) ∈ E do . Edge connections representing edges in G
11: if e is a forward-forward edge then . Figure 4.13a and 4.13b
12: E ′ ← E ′ ∪ {(u1out , v1in), (v2out , u2in)}
13: else if e is a reverse-forward edge then . Figure 4.13c and 4.13d
14: E ′ ← E ′ ∪ {(u2out , v1in), (v2out , u1in)}
15: else if e is a forward-reverse edge then . Figure 4.13e and 4.13f
16: E ′ ← E ′ ∪ {(u1out , v2in), (v1out , u2in)}
17: return G′

u v

(a) Bidirected forward-forward edge.

u1

u2 v1

v2

(b) Directed edges for forward-forward edge.

u v

(c) Bidirected reverse-forward edge.

u1

u2 v1

v2

(d) Directed edges for reverse-forward edge.

u v

(e) Bidirected forward-reverse edge.

u1

u2 v1

v2

(f) Directed edges for forward-forward edge.

Figure 4.13: Bidirected edge to directed edges conversion.

4.9 In-tree and Out-tree Reductions

A node in the overlap graph that has only one outgoing edge and more than one incoming

edges is called an in-node (an example is node r2 in Figure 4.14a) and the subgraph formed

Chapter 4. PEGASUS 86

Algorithm 14 computeMinCostFlow(G = (V,E)): Minimum cost flow computation
of the overlap graph G = (V,E).

1: Input: Overlap graph G = (V,E)
2: Output: Flow on each edge e ∈ V
3: call convertGraph(G)
4: Set cost of flow in (t′, s′) to ∞
5: Set lower bound of flow in (t′, s′) to 1
6: Set upper bound of flow in (t′, s′) to ∞
7: for each read v ∈ V ′ do . Costs and bounds of edges in G′ representing nodes in G
8: Set cost of flow in (v1in , v1out) to 1
9: Set lower bound of flow in f(v1in , v1out) to 0

10: Set upper bound of flow in (v1in , v1out) to 1000
11: Set cost of flow in (v2in , v2out) to 1
12: Set lower bound of flow in (v2in , v2out) to 0
13: Set upper bound of flow in (v2in , v2out) to 1000

14: for each edge e = (u, v) ∈ E ′ do
15: if e is a composite edge then
16: if length of the string spelled by e ≥ 1000 then
17: if aStat1,2(e) > 3 then . Edges used exactly once
18: Set cost of flow in e to 0
19: Set lower bound of flow in e to 1
20: Set upper bound of flow in e to 1
21: else
22: E ′ ← E ′ − {e}
23: E ′ ← E ′ ∪ {e1 = (u, v), e2 = (u, v), e3 = (u, v)}
24: Set cost and bounds according to Equations 4.5, 4.6 and 4.7

25: else
26: E ′ ← E ′ − {e}
27: E ′ ← E ′ ∪ {e1 = (u, v), e2 = (u, v), e3 = (u, v)}
28: if e has at least 30 reads then
29: Set lower bound of flow in e1 to 1
30: else
31: Set lower bound of flow in e1 to 0

32: Set cost and bounds according to Equations 4.5, 4.6 and 4.7

33: else . Simple edges or when A-statistics is unable to find copyCount
34: Set cost of flow in e to 0
35: Set lower bound of flow in e to 0
36: Set upper bound of flow in e to 1000

37: call CS2(G′) . Minimum cost flow implementation of CS2 [13]
38: Convert the flows from G′ to G . Sum of average flow of duplicated edges

Chapter 4. PEGASUS 87

by an in-node and all its neighbours is called an in-tree. Similarly, a node with only one

incoming edge and more than one outgoing edges is called an out-node (an example is

node r2 in Figure 4.15a) and the subgraph formed by an out-node and all its neighbours

is called an out-tree.

r1 r2

r3

r4

f(e1) = 2
f(
e 2

) =
1

f(e
3) =

1

(a) In-tree before simplification.

r1

r3

r4

f(e4)
= 1

f(e5) = 1

(b) In-tree after simplification.

Figure 4.14: In-tree simplification.

In the in-tree in Figure 4.14, the flow values in the edges are f(e1 = (r1, r2)) = 2,

f(e2 = (r2, r3)) = 1 and f(e3 = (r2, r4)) = 1. Node r2 has only one outgoing edge and

two incoming edges. Edges e1 and e2 in Figure 4.14a can be merged into a single edge and

also edges e1 and e3 can be merged into a single edge. Hence, the in-tree in Figure 4.14a

can be simplified as shown in Figure 4.14b. Similarly, an out-tree can be simplified as

shown in Figure 4.15. In-tree and out-tree simplifications are described in Algorithm 15.

r1 r2

r3

r4

f(e1) = 2
f(
e 2

) =
1

f(e
3) =

1

(a) Out-tree before simplification.

r1

r3

r4

f(e4)
= 1

f(e5) = 1

(b) Out-tree after simplification.

Figure 4.15: Out-tree simplification.

Chapter 4. PEGASUS 88

Algorithm 15 reduceTrees(G = (V,E)): In-tree and out-tree reduction.

1: Input: Overlap graph G = (V,E)
2: Output: Tree reduced overlap graph
3: for each node u ∈ V do
4: inDegree← number of incoming edges incident on u
5: outDegree← number of outgoing edges incident of u
6: if inDegree = 1 and outDegree > 1 then . Out-tree
7: for each out-edge e1 = (u, uiout) do
8: mergeEdges(G, e = (uin, u), e1)

9: else if inDegree > 1 and outDegree = 1 then . In-tree
10: for each in-edge e2 = (uiin , u) do
11: mergeEdges(G, e2, e = (u, uout))

12: return G

4.10 Loop Reductions

An edge in the overlap graph of the form (u, u) is called a loop. Consider the loop of

the overlap graph in Figure 4.16a. There is only one valid way in which the flow can

travel through these edges: through the path p = {r1, e1, r2, e2, r2, e3, r3}. Hence, we

can remove the path p and replace it by an edge e = (r1, r3) as shown in Figure 4.16b.

We copy the information that was stored in p into the edge e. Algorithm 16 shows the

procedure for loop path reduction.

r1

r2

r3

f(
e 1

) =
1 f(e

3) =
1

f(e2) = 1

(a) Before reducing loop.

r1 r3
f(e) = 1

(b) After reducing loop.

Figure 4.16: Reducing loop in the overlap graph.

Chapter 4. PEGASUS 89

Algorithm 16 reduceLoops(G = (V,E)): Reduce loops in the overlap graph.

1: Input: Overlap graph G = (V,E)
2: Output: Loop-reduced overlap graph
3: for each loop (u, u) in G do
4: if u has only two edges (x, u) and (u, y) incident on it then
5: if there is only one possible path p = {x, u, u, y} for the flow then
6: Remove p from G
7: Add (x, y) to G and copy information stored in p into (x, y)

8: return G

4.11 Resolving Nodes by Mate Pairs

In the overlap graph, there might be many “ambiguous nodes” where the edges could be

merged in more than one way to reconstruct a longer part of the genome. Mate pairs

might be very helpful to resolve ambiguity in these nodes. Consider for example, node

r3 in Figure 4.17a, which has two units of incoming flow and two units of outgoing flow.

Only considering the flow, we are unable to reconstruct the parts of the genome around

node r3, since the incoming flow through edge e1 = (r1, r3) can go through any of the two

outgoing edges e3 = (r3, r4) or e4 = (r3, r5). Similarly the incoming flow through edge

e2 = (r2, r3) can go through any of the outgoing edges e3 or e4, and hence the node r3

is an ambiguous node. If there are enough mate pairs supporting a pair of edges e1 and

e3, then we merge the edges e1 and e3. Similarly we merge the edges e2 and e4, if they

are supported by enough mate pairs. Figure 4.17b shows the overlap graph after node r3

is resolved by using mate pair support, assuming that e1 and e3 are supported by mate

pairs or e2 and e4 are supported by mate pairs.

After building and simplifying the overlap graph as explained in the previous sections,

we calculate the support of all pairs of the adjacent edges in the graph. While building

the overlap graph we keep track of the locations of all the reads in the edges. For each

mate pair, we search for all the paths in the overlap graph between the reads of the mate

pairs having length between µ − 3σ and µ + 3σ, where µ is the mean of the insert size

and σ is the standard deviation of the insert size that we estimated before (Section 4.7).

Chapter 4. PEGASUS 90

r1

r2

r3

r4

r5

f(e
1) =

1

f(
e 2

) =
1

f(
e 3

) =
1

f(e
4) =

1

(a) Ambiguous node r3.

r1

r2

r4

r5

f(e5) = 1

f(e6) = 1

(b) Node r3 is resolved.

Figure 4.17: Ambiguous node resolved in the overlap graph by using mate pairs.

If for the reads of a mate pair, all these paths use an edge e1 = (u, v) followed by an

edge e2 = (v, w), we say that the mate pair supports these adjacent edges (e1, e2) and

increase the support of the edge pair (e1, e2). After finding the supports of all the pairs

of adjacent edges in the overlap graph, we merge the adjacent edges that have enough

support (at least 5). To avoid merging pair of edges supported by erroneous mate pairs

or erroneous paths in the graph, we choose the support threshold to be 5. Resolving

ambiguous nodes by mate pair supports is described in Algorithm 17.

To find support between all pairs of adjacent edges in the overlap graph, we need to

find all paths between the reads of every mate pairs. To reduce the amount of memory

used by PEGASUS, we find paths in the graph starting from a specific node. For a node

u in the overlap graph, we find all paths of length µ + 3σ from u and store them in a

list. Then for each read r in the edges incident on u, we check if the mate pair m of r is

on any of the paths in the list. If such a path exists, we mark the path. Then we check

if there are more paths between the reads in the list of paths. We only mark the pair of

edges that are adjacent on all such paths found. When we finish searching the list, we

have a list of supported pair of edge. For each supported pair of edges (e1, e2), we store

the pair of edges in a hash table. If the pair of edges is stored in the hash table for the

first time then we set the support of the pair of edges to 1, otherwise we increase the

Chapter 4. PEGASUS 91

Algorithm 17 resolveNodes(G = (V,E), R, µ, σ): Resolve nodes by mate pairs.

1: Input: Overlap graph G = (V,E), set R of reads, mean µ and standard deviation
of σ insert size

2: Output: Node resolved overlap graph
3: for each node v ∈ V do
4: Find set P of paths from v of length at most µ+ 3σ
5: for each mate pair (r1, r2) ∈ R and r1 in on edge incident on u do
6: for each path p ∈ P from r1 to r2 of length ≥ µ− 3σ and ≤ µ+ 3σ do
7: if p is the first path then
8: p′ ← p
9: Mark all pair of adjacent edges in p′ as supported

10: else
11: for each adjacent pair of edges (e1, e2) ∈ p′ do
12: if (e1, e2) is not adjacent in p then
13: Mark (e1, e2) in p′ as unsupported

14: if no adjacent pair of edges in p′ are supported then
15: break
16: for each adjacent supported pair of edges (e1, e2) ∈ p′ do
17: Store (e1, e2) in a hash table . Hash table stores the support count

18: Sort the supported pairs of edges in the hash table
19: for each pair of supported edges (e1, e2) in the hash table do
20: if support count of the pair (e1, e2) ≥ 5 then . Default support threshold is 5
21: mergeEdges(G, e1, e2)

22: return G

Chapter 4. PEGASUS 92

support of the pair of edges in the hash table. We do these steps for all the reads that

are on the edges incident to u. When we are done processing the nodes u, we free the

memory used to store the paths. Then we go to another node in the overlap graph and

do the same steps until all the nodes in the graph are processed.

Storing only the paths starting from the current node reduces the amount of memory

used by the program. Moreover, we sort the list of paths from the current node to

efficiently do binary search to find desired paths from the list. This reduces the running

time to search paths in the overlap graph.

4.12 Contig Extraction

In the previous section, we explained how to compute the support between pairs of

adjacent edges by finding paths between the reads of a mate pair. However due to lack of

coverage, there may not be a path in the graph between the two reads of some mate pairs.

Even in these cases we might still use mate pairs to further simplify the overlap graph as

follows. For each pair of non adjacent edges e1 and e2, if there is a mate pair (r1, r2) such

that r1 is in e1 and r2 is in e2, and distanceOnEdge(←−e1 , r1) + distanceOnEdge(e2, r2) ≤

µ + 3σ, then we increase the support for the edge pair (e1, e2). Here, ←−e1 = (v, u) is the

reverse of the edge e1 = (u, v) and distanceOnEdge(e = (u, v), r) is the position of the

read r in the string spelled by the edge e = (u, v). After finding the support for all

such pairs of edges, we combine each pair of edges according to their support: First we

calculate the approximate distance between the strings spelled by the edges in a pair. We

know that the average distance between the reads in a mate pair is µ. So if the average

distance between the reads in the mate pairs on the pair of edges (e1, e2) is d, then the

size of the gap is approximately µ− d.

If there are n contigs in the overlap graph, then we need to check O(n2) pair of contigs

to find supports. To reduce the number of pairs of contigs to check, we only consider

Chapter 4. PEGASUS 93

pair of contigs that share mate pairs. For each contigs, we first find the contigs which

share mate pair with the current contigs. Then we search for the distances on the contigs

for reads in mate pairs. Any spaces between the strings spelled by two edges are filled

with N’s. Algorithm 18 shows details of the contig extraction procedure. Note that, to be

considered as a contig the edge e must have flow > 0 or the length of the string spelled

by e should be at least 100 base pairs. These constraints are used to avoid false supports

among contigs.

Algorithm 18 mergeContigs(G = (V,E), R, µ, σ): Merge contigs using mate pairs.

1: Input: Overlap graph G = (V,E), set R of reads, mean µ and standard deviation σ
of insert size

2: Output: Overlap graph after merging contigs
3: for each pair of composite edge e1 = (u, v), e2 = (w, x) ∈ E either having nonzero

flow or length at least 100 bp do
4: for each pair (r1, r2) ∈ R of reads in a mate pair do
5: if r1 ∈ e1 and r2 ∈ e2 then
6: if distanceOnEdge(←−e1 , r1) + distanceOnEdge(e2, r2) ≤ µ+ 3σ then
7: Increase support of the pair of edges (e1, e2)

8: Sort the supported pairs of edges according to their support
9: for each pair of supported edges (e1, e2) do

10: if support count of the pair (e1, e2) ≥ 5 then . Default support threshold is 5
11: d← average distance between the mate pairs in (e1, e2)
12: g ← µ− d
13: Merge the edges (e1, e2) with a gap g filled with N’s

14: return G

4.13 The Algorithm

In this section we give high a level description of the whole algorithm used by PEGASUS

to assemble a genome. First we correct the reads using RACER, sort the unique corrected

reads and store the frequency of each one of them. The unique reads are stored in an

array called readsForward. For each unique read r ∈ R, we only store either r or

r̄ in readsForward, whichever is lexicographically smaller. The index of each read in

the sorted list readsForward is assigned as the read’s ID. We compute the reverse

Chapter 4. PEGASUS 94

complement of all reads in the array readsForward and store them in another array,

readsReverse. We also store the reads of each mate pair in a linked list.

PEGASUS stores in the hash table the prefixes and suffixes of each read r ∈ R and

its reverse complement r̄ of length h = min{minOverlap, 64} bases to minimize the

number of pairs of reads to compare for overlaps as explained in Section 4.3.1. For each

pair of reads u and v that overlaps by at least minOverlap base pairs, we insert an edge

e = (u, v) in the overlap graph. While inserting the edge e in the overlap graph, we always

check for any transitive edges in the overlap graph introduced by the newly inserted edge

e. We remove all transitive edges while inserting edges in the overlap graph.

After building the overlap graph, we contract composite paths as explained in Sec-

tion 4.4. Dead-ends and bubbles caused by erroneous reads are then removed from the

overlap graph. We estimate the genome size and distribution of the insert size and then

compute a minimum cost flow in the overlap graph using CS2 [13] to estimate the copy

counts of the reads in the dataset. In-trees and out-trees are reduced and we compute

the support for all pairs of adjacent edges, merging those pairs of edges that have enough

support.

In the final step of PEGASUS, we compute the support between all pairs of nearby,

but not adjacent edges. Because of the lack of coverage, sometimes adjacent contigs from

the genome can be disconnected in the overlap graph, but they can still be merged if

there is enough mate pair support between them. Finally we output the strings in all long

composite edges in the overlap graph and save them in a FASTA file. This file contains

the final output of our program. Algorithm 19 shows the pseudocode for PEGASUS.

Chapter 4. PEGASUS 95

Algorithm 19 PEGASUS(R,minOvelap): Paired-End Genome ASsembly Using
Short-sequences.

1: Input: Set R = {r1, r2,, rn} of reads, minimum overlap length minOverlap
2: Output: Set C = {c1, c2, ..., ck} of contigs
3: C ← ∅
4: call RACER(R) . Read correction using RACER
5: call buildOverlapGraph(R,minOverlap)
6: repeat
7: call contractCompositePaths(G) . Contract composite paths
8: call removeDeadEnds(G) . Remove dead-ends
9: call removeBubbles(G) . Remove bubbles

10: until no edge is removed from G
11: L← genomeSizeEstimation(G, n)
12: call meanSdEstimation(G,R) . Estimate µ and σ
13: call computeMinCostF low(G,L)
14: repeat
15: call reduceTrees(G) . Reduce in-trees and out-trees
16: call reduceLoops(G) . Remove loops
17: until no edge is removed from G
18: repeat
19: call resolveNodes(G,R, µ, σ) . Resolve ambiguous nodes using mate pairs
20: until no edge is removed from G
21: repeat
22: call mergeContigs(G,R, µ, σ) . Resolve disconnected contigs using mate pairs
23: until no edge is removed from G
24: for each edge e ∈ E do
25: if length of e ≥ 100 bp then
26: C ← C∪ {string spelled by e}
27: Output C in a FASTA file

Chapter 5

Experiments

In this chapter, we show our experimental results and compare the output produced by

PEGASUS with that of two of the top assemblers, ABySS [46] and SOAPdenovo [22]. The

contigs produced by the assemblers do not always perfectly align to the reference genomes

(i.e., sequence of base pairs assembled as a representative example of an organism).

This happens mainly because of misassemblies by the assemblers, errors in the datasets,

under-sampled parts of the genome and differences between the reference genome and

the source genome for the dataset. To check the quality of the assembled contigs, we

align (approximate string matching) the contigs to the corresponding reference genome.

Sometimes contigs produced by assemblers are broken into smaller contigs after aligning

them to the reference genome. We align the original contigs produced by the assemblers to

the reference genome by using BWA-SW [21] allowing for a few base pairs mismatches,

insertions and deletions. If there are many mismatches, insertions and deletions in a

contig, the contig is broken into smaller contigs.

5.1 Datasets

To compare the performance of PEGASUS with that of other genome assemblers, we

have used 16 datasets obtained from 14 different organisms. The lengths of the reference

96

Chapter 5. Experiments 97

genomes of the datasets vary from about 1 Mbp to 102 Mbp. The read lengths of the

datasets vary from 36 bp to 101 bp. The datasets used in the experiments are from

bacterial genomes, except for the dataset SRR065390 which is from a worm C.elegans.

The datasets were downloaded from short read archive (SRA) database (www.ncbi.nlm.

nih.gov/sra). Table 5.1 shows details (accession number, read length, number of reads,

reference genome, organism name and size of the genome) about the datasets used in

out tests. An accession number is the unique ID of a dataset. The SRA database

stores datasets in .sra files, which contain compressed representations of the reads.

The downloaded .sra files were converted to FASTA/FASTQ file formats by using the

sratoolkit (www.ncbi.nlm.nih.gov/books/NBK56560/) provided in the SRA website.

For each of the datasets, sratoolkit produces one file containing all the paired-end

reads. The reads in the files are arranged in such a way that the reads in a mate pair are

consecutive.

Table 5.1: Datasets downloaded from the Short Read Archive (SRA) Database.

Accession Read Number Reference Organism Genome
Number Length of Reads Genome Name Size

(bp) (Mbp)

SRR065390 100 67,617,092 Build WS222 C.elegans 102
DRR000852 75 3,519,504 NC 000964.3 B.subtilis 4.2
SRR387785 100 5,211,082 NC 015291.1 S.oralis1 1.96
SRR446554 100 8,735,304 NC 015291.1 S.oralis2 1.96
SRR402006 101 8,169,824 NC 014256.1 H.pylori 1.6
SRR413299 100 9,497,946 NC 002950.2 P.gingivalis 2.34
SRR387784 100 4,407,248 NC 015875.1 S.pseudopneumonie 2.19
SRR387794 100 4,932,870 NC 015964.1 H.parainfluenzae 2.09
SRR397962 100 7,127,250 NC 005823.1 L.interrogans 4.2
SRR072099 36 30,355,432 NC 000913.2 E.coli 4.6
SRR387776 100 4,925,280 NC 013853.1 S.mitis 2.15
SRR400550 36 31,994,160 NC 009012.1 C.thermocellum 3.84
ERR021957 37 7,825,944 NC 000117.1 C.trachomatis1 1.04
ERR021958 37 11,504,594 NC 000117.1 C.trachomatis2 1.04
SRR063416 101 6,907,220 NC 006570.2 F.tularemia 1.89
SRR387738 100 4,997,274 NC 015678.1 S.parasanguinis 2.15

www.ncbi.nlm.nih.gov/sra
www.ncbi.nlm.nih.gov/sra
www.ncbi.nlm.nih.gov/books/NBK56560/

Chapter 5. Experiments 98

5.2 Experimental Settings

All the three assemblers were executed in the SHARCNET (www.sharcnet.ca) cluster

redfin. The cluster redfin has 98 GB of memory and 552 processors running Cen-

tOS 5.4. The three assemblers were executed in serial mode. Running time and memory

usage for each of the assemblers for each of the datasets were reported by redfin. Both

ABySS and SOAPdenovo can be executed in parallel mode. However, we compared the

running time and memory usage in serial mode as PEGASUS runs in serial mode only.

5.3 Definitions

In this section, we discuss some of the evaluation parameters used to analyze and compare

the results of the different genome assemblers.

5.3.1 Gaps

A gap is a space introduced into an aligned sequence for a deletion relative to the reference

sequence. Figure 5.1 shows a gap in sequence s2 relative to sequence s1. This gap is called

a deletion for s2 relative to s1 and an insertion for s1 relative to s2. Assembled sequences

might contain gaps relative to the reference genome. Gaps are introduced due to errors

in the dataset, lack of coverage in the dataset or assembly errors.

s1 : AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

||||||||||||||| |||||||||||||||||||

s2 : AGCTAAGCATTTACG-TAGCCGATAGCTAAATTAC

Figure 5.1: A gap in sequence s2 relative to sequence s1.

5.3.2 Mismatches

When two sequences are aligned they sometimes do not match perfectly. Some of the

bases in the sequences may differ while others align. The positions of the bases where

www.sharcnet.ca

Chapter 5. Experiments 99

the two sequences differ are called mismatches . Figure 5.2 shows a mismatch between

two sequences s1 and s2, where both the sequence s1 and s2 align perfectly except for

one base pair. Mismatches are introduced due to errors in the datasets or biological

variations in the genome such as SNPs. The mismatch rate is a parameter to evaluate

the quality of assembled contigs. The mismatch rate of a set C of contigs relative to a

reference genome G is the ratio of the total number of mismatches in all the contigs when

aligned to G to the sum of the lengths of all the contigs in C.

s1 : AGCTAAGCATTTACGATAGCCGATAGCTAAATTAC

||||||||||||||| |||||||||||||||||||

s2 : AGCTAAGCATTTACGCTAGCCGATAGCTAAATTAC

Figure 5.2: A mismatch between sequences s1 and s2.

5.3.3 Contigs

A contig is a continuous subsequence of a DNA molecule. Due to the complex structure

of DNA, sequencing errors, and lack of coverage in certain parts of the DNA, genome

assemblers are many times unable to reconstruct the entire DNA sequence of the genome.

However, they can assemble long subsequences or contigs. For example, the string spelled

by each edge of the overlap graph represents a subsequence of the genome, so each one of

the strings represents a contig. Similarly, the string represented by a node of a de Bruijn

graph is a contig. The goal of the genome assemblers is to produce contigs that are as

long as possible and that reconstruct the largest possible part of the genome.

5.3.4 Scaffolds

Sometimes genome assemblers can determine the order and orientation of the contigs

based on mate pair information; such ordered contigs are called scaffolds. There can

be gaps between the consecutive contigs in the scaffolds; however, the lengths of the

gaps are usually smaller than the insert size of the dataset from which the scaffolds were

Chapter 5. Experiments 100

produced. In other words, a scaffold is a set of contigs that are in the right order but not

necessarily connected in one continuous stretch of a DNA sequence. Sometimes, genome

assemblers are unable to connect contigs because of lack of coverage between a pair of

contigs. However, when a pair of contigs is supported by mate pairs, their order and

orientation can be determined in the scaffolds. In Figure 5.3, there are two contigs c1

and c2 that were generated by overlapping several reads from the dataset. These two

contigs are not connected by overlapping reads, because there is no overlapping reads

from the genome that was sampled between the two contigs. However, the contigs c1 and

c2 are supported by mate pairs. From the mate pair support, we know the order and

orientation of the contigs c1 and c2 in the reference genome. Hence, c1 and c2 are merged

together to form a scaffold. However, we do not know the bases between c1 and c2 in

the scaffold as there is no read present from that region of the genome. When merging

two contigs with known gap length between them, genome assemblers usually inset Ns

between them to represent the unknown base pairs. The terms contig and scaffold are

often used interchangeably to denote a subsequence of the genome.

Contig c1
Contig c2

mate pairs

Figure 5.3: A pair of contigs supported by mate pairs to form a scaffold.

5.3.5 N50

N50 is the main parameter for comparing assembly results. Assuming that an assembler

produces a set C = {c1, c2, ..., ck} of contigs, where the length of the contig ci is li. If

the sum of the lengths of all of the contigs is L =
∑k

i=0 li, then the N50 of the set C

Chapter 5. Experiments 101

is N50(C) = maxl

∑
li≥l li ≥

1
2
L. In other words, the N50 is defined as the maximum

length l for which at least 50% of all bases in C are in contigs of length ≥ l. Similarly,

the N80 is defined as the maximum length l for which at least 80% of all bases in C are

in contigs of length ≥ l and the N20 is defined as the maximum length l for which at

least 20% of all bases in C are in contigs of length ≥ l.

5.4 Discussion

In this section, we compare the assembly results for all the 16 datasets mentioned in Ta-

ble 5.1 produced by PEGASUS, ABySS 1.3.4 [46], and SOAPdenovo 1.0.5 [22]. Different

overlap lengths for PEGASUS and k-mer sizes for ABySS and SOAPdenovo were used

to run the programs on each of the datasets. For each of the datasets, the best results

for the three assemblers are reported in Table 5.2 and Table 5.3.

To test the quality of assembly, the assembled contigs were aligned to their corre-

sponding reference genomes by using BWA-SW [21]. Default parameters of BWA-SW

were used to align the contigs to the reference genome. In the tables of this section, n de-

notes the total number of contigs, n:N50 denotes the number of contigs of length at least

N50, max denotes the length of the longest contig, sum denotes the sum of the lengths of

all the contigs in Mbp. Finally, MMR denotes the average number of mismatches per 1000

base pairs. For some of the datasets, the reference genomes seem to be rather different

from the genomes from which the datasets were obtained. For this reason parts of the

contigs did not align properly to the reference genome. For mismatch rate calculation,

we consider only the contigs having less than 1% mismatch rate as usually reported in

the literature.

The results reported in the tables for each of the datasets are calculated using the

abyss-fac tool provided by ABySS 1.3.4. The tool abyss-fac assumes the genome size

to be the sum of the lengths of all the contigs and calculate N80, N50, and N20 accord-

Chapter 5. Experiments 102

ingly. The row labelled Orig. in the tables represents the results for the original output

files reported by the assemblers and the row labelled BWA denotes the same results after

aligning the contigs to their corresponding reference genomes using BWA-SW. BWA-SW

breaks the contigs from the original contig files if there are certain number of insertions,

deletions or mismatches. The best results in Table 5.2 and Table 5.3 are shown in bold.

The dataset (SRR065390) of C.elegans is the largest of all the datasets that we have

tested. This is also the most important dataset as it is used for many of the genome

assemblers to test the performance of their assembly results. The size of the input file

is about 22 GB. The contigs produced by PEGASUS for this dataset are the best, both

before and after aligning to the reference genome (build WS222, www.wormbase.org).

The assembly results did not change much (compared to the other datasets) after aligning

the contigs to the reference genome. This means that the dataset was likely sequenced

from a very similar genome of the reference genome (build WS222). PEGASUS and

ABySS produced similar longest contigs (about 384 kbp). However, after aligning the

contigs to the reference genome the longest contig of ABySS is broken into smaller pieces

than the longest contig of PEGASUS. For this dataset PEGASUS performs the best in

all the evaluation parameters used. PEGASUS also performs the best for mismatch rate

(0.385 mismatches per 1000 base pairs) for this dataset.

For the B.subtilis dataset, the assembly results of PEGASUS are better than those of

ABySS and SOAPdenovo, both before and after BWA alignment. PEGASUS has only

2 contigs of length at least N50 both before and after BWA alignment. On the other

hand, ABySS and SOAPdenovo both have 3 contigs of length at least N50. For this

dataset, PEGASUS also performs better than the other two assemblers when comparing

N80, N20 and max, both before and after BWA alignment. Similarly contigs produced

by PEGASUS are better that the contigs of ABySS and SOAPdenovo for the datasets of

S.oralis, H.pylori, P.gingivalis, S.pseudopneumonie and H.parainfluenzae in terms of N80,

N50, N20 and max. In all of these datasets PEGASUS contigs are better than the contigs

www.wormbase.org

Chapter 5. Experiments 103

produced by ABySS and SOAPdenovo after BWA alignment in terms of N50. All the

assemblers produced nearly identical results for S.oralis2 dataset after BWA alignment.

For the datasets of L.interrogans, E.coli and S.mitis contigs produced by PEGASUS

are the best in terms of N50 after aligning the contigs to the reference genome. The N20s

of PEGASUS after BWA alignment are better than those of ABySS and SOAPdenovo

for E.coli and S.mitis datasets. For C.thermocellum dataset the max of PEGASUS is

the best both before and after BWA alignment; however N80, N50 and N20 are not

as good as the other assemblers. For C.tracomatis1 dataset PEGASUS produces very

good contigs. But after BWA alignment the contigs are broken into smaller pieces. For

tracomatis1 dataset N20 and max of PEGASUS is the best after BWA alignment and

the other evaluation parameters are comparable. For the C.tracomatis2 dataset ABySS

produces by far the best contigs. ABySS also produced the best assembly results for the

datasets of F.tularemia and S.parasanguinis datasets. However, the results of PEGASUS

after aligning the contigs to the reference genome are comparable.

For many of the datasets we observed that the contigs produced by all the three

assemblers were broken into many smaller contigs. This is because the reference genome

is very different from the genome from which the reads were taken.

Based on the original assembly results for the 16 datasets, the N50 of PEGASUS is

the best in 8 of the datasets, and the N50 of ABySS is the best in 8 of the datasets.

After aligning the contigs to the reference genomes, PEGASUS performs the best in 11

of the datasets in terms of N50, while ABySS performs the best in 7 of the datasets and

SOAPdenovo performs the best in 1 of dataset. Note that, there was a tie in one of the

datasets for the best N50.

Chapter 5. Experiments 104

Table 5.2: Assembly results of the first 8 datasets. For each of the assemblers the
original results and the results after BWA alignments are shown. Best results of each of
the datasets are shown in bold.

n n:N50 N80 N50 N20 max sum MMR

C
.e

le

PEG
Orig. 14663 746 13,181 37,455 82,842 383,317 102.80
BWA 17699 941 9,789 28,007 63,882 360,365 99.19 0.385

ABy
Orig. 56127 1027 9,346 26,012 59,794 384,441 101.50
BWA 59830 1249 6,789 20,964 48,194 213,123 99.70 0.526

SOA
Orig. 35187 798 12,238 33,101 74,486 236,372 99.10
BWA 43084 1217 7,367 21,696 48,946 173,090 98.90 0.813

B
.s

u
b

PEG
Orig. 66 2 440,869 1,046,994 1,193,680 1,193,680 4.18
BWA 74 2 359,408 1,015,697 1,123,279 1,123,279 4.18 0.046

ABy
Orig. 74 3 210,409 897,049 1,046,847 1,046,847 4.19
BWA 71 3 210,409 650,686 976,267 976,267 4.45 0.112

SOA
Orig. 104 3 250,276 918,328 1,015,275 1,015,275 4.16
BWA 112 3 250,276 918,328 1,015,171 1,015,171 4.16 0.061

S
.o

ra
1

PEG
Orig. 26 2 422,338 622,598 738,904 738,904 1.97
BWA 256 35 6,504 16,368 26,714 44,056 1.68 3.963

ABy
Orig. 40 2 260,869 424,811 732,484 732,484 1.99
BWA 257 36 7,670 16,113 26,816 44,056 1.71 7.190

SOA
Orig. 78 2 259,131 371,414 734,867 734,867 1.96
BWA 276 35 6,554 15,756 26,816 44,056 1.67 5.567

S
.o

ra
2

PEG
Orig. 24 1 174,123 1,339,138 1,339,138 1,339,138 2.08
BWA 314 45 4,736 10,321 19,991 52,494 1.57 1.792

ABy
Orig. 41 2 148,666 542,469 883,474 883,474 2.14
BWA 311 45 4,980 10,321 19,991 52,494 1.58 6.987

SOA
Orig. 89 2 78,444 519,053 883,455 883,455 2.04
BWA 343 44 4,784 10,321 19,991 52,494 1.56 3.489

H
.p

y
l

PEG
Orig. 91 9 32,409 66,326 132,391 205,501 1.67
BWA 298 35 5,772 13,670 22,943 66,209 1.58 9.804

ABy
Orig. 87 11 28,276 59,423 82,140 145,043 1.70
BWA 311 36 5,520 13,306 25,409 66,209 1.63 5.102

SOA
Orig. 187 11 26,323 58,234 83,260 113,967 1.65
BWA 384 34 5,516 13,496 30,490 66,209 1.59 7.092

P
.g

in

PEG
Orig. 141 11 25,126 58,241 161,578 186,339 2.30
BWA 178 12 19,224 50,986 161,578 168,386 2.31 0.248

ABy
Orig. 287 14 20,005 48,462 87,408 176,481 2.33
BWA 318 16 16,711 35,564 87,408 172,567 2.34 0.154

SOA
Orig. 481 13 19,982 49,125 142,720 185,001 2.25
BWA 528 15 15,252 35,789 87,448 167,717 2.25 0.149

S
.p

se

PEG
Orig. 165 11 29,542 62,912 152,815 203,490 2.19
BWA 545 44 6,851 14,762 25,919 55,462 2.11 4.344

ABy
Orig. 239 11 22,771 63,534 120,870 203,373 2.17
BWA 612 46 6,399 13,427 25,716 55,462 2.11 3.745

SOA
Orig. 558 11 22,498 59,758 153,195 202,356 2.12
BWA 882 44 6,796 14,220 26,980 53,588 2.05 3.454

H
.p

ar

PEG
Orig. 81 3 183,716 347,776 529,188 529,188 2.14
BWA 232 31 8,360 17,943 33,434 52,260 1.79 4.874

ABy
Orig. 49 3 137,600 346,176 528,624 528,624 2.31
BWA 206 33 8,360 17,943 35,135 52,260 1.93 8.442

SOA
Orig. 117 3 153,303 345,717 528,306 528,306 2.12
BWA 244 31 8,545 17,940 33,662 52,266 1.78 3.799

Chapter 5. Experiments 105

Table 5.3: Assembly results of the next 8 datasets. For each of the assemblers the
original results and the results after BWA alignments are shown. Best results of each of
the datasets are shown in bold.

n n:N50 N80 N50 N20 max sum MMR

L
.i

n
t

PEG
Orig. 124 8 86,549 183,250 350,144 550,958 4.74
BWA 197 14 41,883 103,148 183,250 205,999 4.32 0.131

ABy
Orig. 192 7 63,178 196,390 509,227 529,258 4.82
BWA 280 14 42,240 92,880 196,390 336,051 4.44 0.198

SOA
Orig. 438 10 53,553 133,049 256,391 350,138 4.59
BWA 548 22 35,969 70,972 107,887 195,369 4.52 0.328

E
.c

ol

PEG
Orig. 270 11 57,505 156,402 217,762 326,281 4.48
BWA 371 21 31,716 69,667 98,808 269,676 4.31 0.341

ABy
Orig. 473 10 69,165 176,414 260,541 329,829 4.51
BWA 493 26 30,712 56,914 98,641 245,741 4.64 0.398

SOA
Orig. 159 12 57,623 136,185 178,083 326,225 4.45
BWA 262 22 32,514 63,694 112,265 273,657 4.42 0.137

S
.m

it

PEG
Orig. 87 5 88,557 148,205 252,512 273,544 2.05
BWA 521 76 2,921 6,318 10,812 26,758 1.56 4.644

ABy
Orig. 169 4 86,885 193,795 436,949 436,949 2.07
BWA 530 78 3,044 6,232 10,812 26,758 1.57 6.703

SOA
Orig. 322 5 81,094 146,871 252,370 270,672 2.01
BWA 568 75 2,996 6,233 10,747 26,758 1.52 5.913

C
.t

h
e

PEG
Orig. 402 20 23,922 55,448 103,270 186,731 3.75
BWA 633 25 19,457 43,311 87,921 186,731 3.80 0.554

ABy
Orig. 3219 18 23,858 59,484 136,725 186,547 3.76
BWA 1693 19 23,276 56,326 120,707 186,547 3.76 0.178

SOA
Orig. 332 18 23,398 59,433 102,610 186,442 3.60
BWA 431 20 20,753 52,130 102,610 176,549 3.64 0.159

C
.t

ra
1

PEG
Orig. 27 1 1,010,825 1,010,825 1,010,825 1,010,825 1.06
BWA 46 3 56,438 154,558 245,614 245,614 1.12 6.250

ABy
Orig. 3922 1 213,253 798,261 798,261 798,261 1.05
BWA 318 4 62,806 165,071 178,526 207,913 1.19 6.681

SOA
Orig. 109 5 24,688 84,969 118,975 177,268 1.04
BWA 112 13 10,230 19,628 54,236 89,681 1.05 5.356

C
.t

ra
2

PEG
Orig. 46 2 145,330 223,073 310,060 310,060 1.05
BWA 44 6 29,194 62,513 123,527 168,826 1.14 6.023

ABy
Orig. 5600 1 198,739 688,592 688,592 688,592 1.07
BWA 291 3 59,180 170,857 198,739 223,595 1.15 7.039

SOA
Orig. 99 4 54,168 142,863 168,057 171,997 1.04
BWA 58 8 22,627 37,507 122,229 153,885 1.09 5.858

F
.t

u
l

PEG
Orig. 222 24 13,000 25,457 36,823 87,443 1.80
BWA 341 34 8,009 17,767 33,545 50,708 1.84 4.301

ABy
Orig. 131 24 15,066 27,975 44,111 88,166 1.87
BWA 284 32 8,583 19,329 34,887 56,155 1.90 4.412

SOA
Orig. 310 23 16,053 26,799 43,438 87,411 1.77
BWA 475 37 7,379 16,020 27,293 50,657 1.79 4.256

S
.p

ar

PEG
Orig. 129 5 36,666 158,576 325,943 335,606 2.26
BWA 330 34 6,478 17,002 35,557 63,509 1.94 4.674

ABy
Orig. 47 3 128,047 327,687 447,335 447,335 2.12
BWA 235 29 8,297 20,236 37,795 63,509 1.86 5.756

SOA
Orig. 119 3 121,581 325,452 445,528 445,528 2.11
BWA 280 30 8,095 19,751 35,466 53,085 1.84 5.148

Chapter 5. Experiments 106

To summarize the results, we combined in Table 5.4 all the assembly evaluation

parameters from Table 5.2 and Table 5.3. From Table 5.4, we can see that PEGASUS

performs better for all the evaluation parameters than ABySS and SOAPdonovo for the

16 datasets. The sum of original N50s for PEGASUS is about 12% larger than that of

ABySS and about 38% larger than that of SOAPdenovo. Whereas after BWA alignment

the sum of N50s for PEGASUS is about 16% larger than ABySS and about 18% larger

than SOAPdenovo. Similarly, the sum of original max values for PEGASUS is about 3%

larger than that of ABySS and about 24% larger than that of SOAPdenovo. Whereas

after BWA alignment the sum of max values for PEGASUS is about 0.5% larger than

ABySS and about 11% larger than SOAPdenovo.

Table 5.4: Summary of the assembly results.

n:N50 N80 N50 N20 max sum

PEG
Original 114 2,782,137 5,525,233 6,897,812 7,481,236 37,763,230

BWA 422 606,951 1,614,031 2,232,892 2,779,967 35,576,143

ABy
Original 116 1,626,787 4,850,522 6,803,588 7,221,263 38,033,755

BWA 416 498,187 1,345,205 2,073,239 2,765,584 36,049,870

SOA
Original 113 1,242,115 3,377,250 5,106,530 5,678,908 32,474,325

BWA 416 438,286 1,311,785 1,813,291 2,471,142 32,769,668

5.4.1 Running Time and Memory Usage Comparison

Table 5.5 shows the running time and Table 5.6 shows the memory used by the as-

semblers for assembling different datasets measured in SHARCNET’s cluster redfin. The

running times in minutes and the memory usage in megabytes (MB) were reported by

the job scheduler of redfin. Note that, redfin does not continuously monitor the mem-

ory usage of running programs. It checks the memory usage by a running program in

different intervals. The actual memory usage by a program can vary, though it should

be very close to the reported memory usage. From Table 5.5 and Table 5.6 we can see

that SOAPdenovo is the most time efficient, but it uses the most amount of memory.

Chapter 5. Experiments 107

PEGASUS used the least amount of memory in 6 of the datasets, whereas ABySS used

the least amount of memory in 9 of the datasets.

Table 5.5: Running time comparison in minutes.

Organism PEGASUS ABySS SOAPdenovo

C.elegans 216.0 360.0 558.0
B.subtilis 4.5 13.0 5.0
H.parainfluenzae 5.9 15.0 6.0
H.pylori 6.1 27.0 13.0
F.tularemia 11.0 24.0 10.0
S.mitis 5.7 11.0 4.0
S.parasanguinis 6.6 11.0 4.0
S.oralis 5.5 13.0 4.2
S.pseudopneumonie 5.8 10.0 3.3
S.oralis2 7.0 16.0 6.4
L.interrogans 10.0 19.0 6.5
P.gingivalis 11.0 18.0 6.2
C.trachomatis 12.0 18.0 4.4
C.trachomatis2 20.0 30.0 6.1
E.coli 45.0 51.0 12.0
C.thermocellum 150.0 72.0 16.0

With respect to the N50 and max parameters, we can see that PEGASUS performs

better than ABySS and SOAPdenovo on the majority of the datasets. However, the

running time of SOAPdenovo is better than the running time of ABySS and PEGASUS.

Chapter 5. Experiments 108

Table 5.6: Memory usage comparison in megabytes.

Organism PEGASUS ABySS SOAPdenovo

B.subtilis 687 1,260 5,841
C.trachomatis1 738 2,550 6,398
C.trachomatis2 979 3,822 9,876
F.tularemia 730 750 9,657
H.parainfluenzae 730 785 9,742
H.pylori 753 1246 9,689
C.elegans 16,660 15,082 42,125
E.coli 2,589 1,786 11,663
S.parasanguinis 719 416 6,733
S.mitis 695 448 4,574
S.pseudopneumonie 672 386 4,650
S.oralis1 725 555 6,913
S.oralis2 928 426 6,910
L.interrogans 1,218 736 8,460
C.thermocellum 6,505 1,454 9,330
P.gingivalis 996 589 7,144

Chapter 6

Conclusions and Future Research

As mentioned before DNA assembly plays an important role in a wide variety of fields

such as forensic science, medicine and agriculture. There are increasing demands for

better genome assemblers. Many new genome assemblers have been developed over the

past few years to better assemble the reads produced by next generation sequencing

techniques.

Many research groups worldwide are working on building better genome assemblers.

A group of researchers at the Beijing Genomic Institute (www.genomics.cn) developed

the de Bruijn graph-based genome assembler SOAPdenovo. The Genome Science Center

in Vancouver (www.bcgsc.ca) developed ABySS. These research groups are still working

on improving their assemblers and they periodically release new versions of their assem-

blers. De Bruijn graph-based genome assemblers such as ABySS and SOAPdenovo are

considered to be the best genome assemblers.

Since PEGASUS is an overlap graph based genome assembler, we faced several chal-

lenges when building the overlap graph. Initially we used a suffix array [23] to find all

pairs of overlapping reads in the datasets. This required O(nl) memory, where n in the

number of reads in the dataset and l is the read length. For the C.elegans dataset our

program required about 108 GB of memory just to store the suffix array. When working

109

www.genomics.cn
www.bcgsc.ca

Chapter 6. Conclusions and Future Research 110

with the C.elegans dataset we realized that a suffix array is not a good choice for finding

overlapping pairs of reads. We then implemented a hash table to find overlaps between

reads, which requires only O(n) memory.

Moreover, the number of edges in an overlap graph can be very large. For large

datasets the overlap graph is the bottleneck with respect to memory consumption. The

largest amount of memory in PEGASUS is used by the overlap graph. We did not face

any memory issues for small datasets, however, for the C.elegans dataset PEGASUS was

using more than 100 GB of memory to store the overlap graph. We observed that a

significant portion of the memory in the overlap graph is used to store the edges. Most

of these edges are removed from the overlap graph in the transitive edge removal step.

Earlier implementations of PEGASUS first built the overlap graph without removing

transitive edges while building it. To save memory, we modified the algorithm in such

a way that it removes the transitive edges while building the overlap graph. This way

the number of edges in the graph is reduced, which in turn reduced the memory usage

of PEGASUS.

Better estimation of the copy counts for the reads in the dataset can produce better

contigs. Instead of explicitly computing copy counts of the reads, ABySS and SOAPde-

novo rely on mate pairs to assemble contigs. This approach may perform poorly in case

of lack of coverage in some regions. PEGASUS uses a minimum cost flow network to

overcome this problem.

Each of the existing assemblers has its limitations. For example, experimental results

in Chapter 5 show that SOAPdenovo is the most time efficient. However, SOAPdenovo

requires more space and the assembled contigs are not as good as the other assemblers.

On the other hand, ABySS uses less space, but for some of the datasets the contigs

produced by ABySS are not good.

As mentioned before, the main goal of PEGASUS is to build an assembler that pro-

duces more accurate result in feasible amount of time and memory. Experimental results

Chapter 6. Conclusions and Future Research 111

in Chapter 5 show that the contigs produced by PEGASUS are the best for the majority

of the datasets used in terms of the N50. PEGASUS performs better than ABySS and

SOAPdenovo for the most important dataset of C.elegans in terms of N80, N50, N80 and

max. The running time and memory usage of PEGASUS are also reasonable. PEGASUS

performs better than other top assemblers due to the accurate estimation of the copy

counts and the way in which it searches for paths in the overlap graph.

Some of the algorithms used in PEGASUS (e.g., bubble and dead-end removal) are

also used by other assemblers. However, there are many novel algorithms, for example

the algorithm to build the overlap graph and the algorithm to compute the copy counts

for the reads. These algorithms work together to assemble genomes more efficiently than

other existing genome assemblers.

Contigs assembled by PEGASUS are better than ABySS and SOAPdenovo in most

of the input datasets used for our experiments. The major goal of any assembler is to

produce quality contigs with better N50 using a reasonable amount of time and mem-

ory. Running time and memory used by PEGASUS are comparable with other genome

assemblers.

6.1 Future Research

There are several ways in which PEGASUS could be improved. Since the reads in a

dataset contain errors, the number of edges incident on a node in the overlap graph

could be large. PEGASUS searches for all paths between the two reads of a mate pair to

decide whether some of the contigs could be merged. The running time of PEGASUS is

not good if the underlying graph has densely connected regions. Searching for all paths

in the overlap graph is not always feasible as there can be exponentially many of them.

We could try different heuristics to reduce the number of paths to be searched in the

overlap graph.

Chapter 6. Conclusions and Future Research 112

The current version of PEGASUS works if all the reads in the input dataset have

the same length. Most datasets from the SRA database have the same length for all the

reads, however, read lengths vary from one dataset to another. If we take two datasets of

the same organism from the SRA database that have different lengths, then PEGASUS

will not work. In the future PEGASUS should work with reads of different lengths.

When a pair of contigs are merged leaving a gap between them, assemblers try to infer

the sequence of bases in a gap. ABySS and SOAPdenovo can infer the bases in a gap

better than PEGASUS. Procedures for filling the gaps between the contigs in PEGASUS

can be improved.

To improve the running time of PEGASUS, in the future we plan to implement the

algorithm in parallel mode. Most of the time in PEGASUS is spent in building the

overlap graph and searching for paths in the graph. Both the graph building algorithm

and path searching algorithm in PEGASUS need to be parallelized in the future.

Appendix A

PEGASUS Software Manual

A.1 Running PEGASUS

The command line to run PEGASUS is:

> ./pegasus <numberOfLibraries> <inputFile> ... <dirName> <minOverlap>

Where numberOfLibraries is the number of input datasets followed by the libraries,

inputFile is the FASTA/FASTQ file that contain the reads, dirName is a name given

by the user for output file and folder names. A folder dirName is created in the current

directory, and all the files generated by PEGASUS are stored in the dirName directory.

Finally, the minOverlap is the minimum length two reads must overlap to have an edge

in the overlap graph. Note that minOverlap must be smaller than the read length.

A.1.1 Output Files

PEGASUS produces several output files in the directory dirName. There are many

intermediate files generated by PEGASUS. At the end of each intermediate step, it

outputs the contig files (.fasta) and the overlap graph files (.gdl). Some verbose

output is generated in the dirName/dirName.txt file. Final contig file is produced in

the dirName/dirName-PE.fasta file. The overlap graphs in .gdl files can be viewed in

113

Chapter A. PEGASUS Software Manual 114

freely available software aisee. Aisee can be downloaded from http://www.absint.com/

aisee/.

A.2 External Function

PEGASUS uses external function CS2 [13] for computing minimum cost flow in the over-

lap graph. CS2 was downloaded from http://www.igsystems.com/cs2/ and modified

to fit into PEGASUS.

http://www.absint.com/aisee/
http://www.absint.com/aisee/
http://www.igsystems.com/cs2/

Bibliography

[1] A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed

graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[2] S. Batzoglou, D.B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,

J.P. Mesirov, and E.S. Lander. ARACHNE: a whole-genome shotgun assembler.

Genome research, 12(1):177–189, 2002.

[3] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm.

SRC Research Report, 124, 1994.

[4] J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K. Belmonte, E.S. Lander,

C. Nusbaum, and D.B. Jaffe. ALLPATHS: De novo assembly of whole-genome

shotgun microreads. Genome research, 18(5):810–820, 2008.

[5] M.J. Chaisson, D. Brinza, and P.A. Pevzner. De novo fragment assembly with short

mate-paired reads: Does the read length matter? Genome research, 19(2):336–346,

2009.

[6] M.J. Chaisson and P.A. Pevzner. Short read fragment assembly of bacterial genomes.

Genome research, 18(2):324–330, 2008.

[7] F.S. Collins, E.S. Lander, J. Rogers, R.H. Waterston, and I. Conso. Finishing the

euchromatic sequence of the human genome. Nature, 431(7011):931–945, 2004.

115

BIBLIOGRAPHY 116

[8] F.S. Collins, M. Morgan, and A. Patrinos. The Human Genome Project: lessons

from large-scale biology. Science, 300(5617):286–290, 2003.

[9] A. Edwards, H. Voss, P. Rice, A. Civitello, J. Stegemann, C. Schwager, J. Zimmer-

mann, H. Erfle, C.T. Caskey, and W. Ansorge. Automated DNA sequencing of the

human HPRT locus. Genomics, 6(4):593–608, 1990.

[10] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression

in external memory. Algorithmica, 63(3):707–730, 2012.

[11] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

Proceedings of the 41st Annual Symposium on Foundations of Computer Science,

page 390. IEEE Computer Society, 2000.

[12] H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and

bidirected network flow problems. In Proceedings of the fifteenth annual ACM sym-

posium on Theory of computing, pages 448–456. ACM, 1983.

[13] A.V. Goldberg. An efficient implementation of a scaling minimum-cost flow algo-

rithm. Journal of Algorithms, 22(1):1–29, 1997.

[14] D. Hernandez, P. François, L. Farinelli, M. Øster̊as, and J. Schrenzel. De novo

bacterial genome sequencing: millions of very short reads assembled on a desktop

computer. Genome research, 18(5):802–809, 2008.

[15] D.S. Hochbaum. Monotonizing linear programs with up to two nonzeroes per col-

umn. Operations Research Letters, 32(1):49–58, 2004.

[16] R.M. Idury and M.S. Waterman. A new algorithm for DNA sequence assembly.

Journal of Computational Biology, 2(2):291–306, 1995.

[17] L. Ilie and M. Molnar. RACER: Rapid and Accurate Correction of Errors in Reads.

Submitted 2012.

BIBLIOGRAPHY 117

[18] M. Kasahara and S. Morishita. Large-scale genome sequence processing. Imperial

College Press, 2006.

[19] J.D. Kececioglu. Exact and approximation algorithms for DNA sequence reconstruc-

tion. 1991.

[20] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon,

K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and analysis of the

human genome. Nature, 409(6822):860–921, 2001.

[21] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows–Wheeler

transform. Bioinformatics, 25(14):1754–1760, 2009.

[22] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kris-

tiansen, et al. De novo assembly of human genomes with massively parallel short

read sequencing. Genome research, 20(2):265–272, 2010.

[23] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[24] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction

algorithm. Algorithmica, 40(1):33–50, 2004.

[25] E.R. Mardis. The impact of next-generation sequencing technology on genetics.

Trends in genetics, 24(3):133, 2008.

[26] M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben,

J. Berka, M.S. Braverman, Y.J. Chen, Z. Chen, et al. Genome sequencing in micro-

fabricated high-density picolitre reactors. Nature, 437(7057):376–380, 2005.

[27] A.M. Maxam and W. Gilbert. A new method for sequencing DNA. Proceedings of

the National Academy of Sciences, 74(2):560–564, 1977.

BIBLIOGRAPHY 118

[28] P. Medvedev and M. Brudno. Ab initio whole genome shotgun assembly with mated

short reads. In Research in Computational Molecular Biology, pages 50–64. Springer,

2008.

[29] P. Medvedev and M. Brudno. Maximum likelihood genome assembly. Journal of

computational Biology, 16(8):1101–1116, 2009.

[30] P. Medvedev, M. Fiume, M. Dzamba, T. Smith, and M. Brudno. Detecting copy

number variation with mated short reads. Genome research, 20(11):1613–1622, 2010.

[31] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of models for

sequence assembly. Algorithms in Bioinformatics, pages 289–301, 2007.

[32] M.L. Metzker. Emerging technologies in DNA sequencing. Genome research,

15(12):1767–1776, 2005.

[33] M.L. Metzker. Sequencing technologiesthe next generation. Nature Reviews Genet-

ics, 11(1):31–46, 2009.

[34] E.W. Myers. Toward simplifying and accurately formulating fragment assembly.

Journal of Computational Biology, 2(2):275–290, 1995.

[35] E.W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl 2):ii79–

ii85, 2005.

[36] E.W. Myers, G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, M.J. Flanigan, S.A.

Kravitz, C.M. Mobarry, K.H.J. Reinert, K.A. Remington, et al. A whole-genome

assembly of Drosophila. Science, 287(5461):2196–2204, 2000.

[37] P.A. Pevzner, M.Y. Borodovsky, and A.A. Mironov. Linguistics of nucleotide se-

quences II: stationary words in genetic texts and the zonal structure of DNA. Journal

of Biomolecular Structure and Dynamics, 6(5):1027–1038, 1989.

BIBLIOGRAPHY 119

[38] P.A. Pevzner and H. Tang. Fragment assembly with double-barreled data. Bioin-

formatics, 17(1):S225–S233, 2001.

[39] P.A. Pevzner, H. Tang, and M.S. Waterman. A new approach to fragment assembly

in DNA sequencing. In Proceedings of the fifth annual international conference on

Computational biology, pages 256–267. ACM, 2001.

[40] P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–

9753, 2001.

[41] D. Pushkarev, N.F. Neff, and S.R. Quake. Single-molecule sequencing of an individ-

ual human genome. Nature biotechnology, 27(9):847–850, 2009.

[42] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, P. Nyrén, et al. Real-time

DNA sequencing using detection of pyrophosphate release. Analytical biochemistry,

242(1):84–89, 1996.

[43] F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Sciences, 74(12):5463–5467, 1977.

[44] J.T. Simpson and R. Durbin. Efficient construction of an assembly string graph

using the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

[45] J.T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using

compressed data structures. Genome research, 22(3):549–556, 2012.

[46] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J.M. Jones, and İ. Birol.

ABySS: a parallel assembler for short read sequence data. Genome research,

19(6):1117–1123, 2009.

[47] L.D. Stein. The case for cloud computing in genome informatics. Genome Biology,

11(5):207, 2010.

BIBLIOGRAPHY 120

[48] J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O.

Smith, M. Yandell, C.A. Evans, R.A. Holt, et al. The sequence of the human

genome. Science, 291(5507):1304, 2001.

[49] K.V. Voelkerding, S.A. Dames, and J.D. Durtschi. Next-generation sequencing: from

basic research to diagnostics. Clinical chemistry, 55(4):641–658, 2009.

[50] J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: a structure for

deoxyribose nucleic acid. Nature, 171:737–738, 1953.

[51] K.A. Wetterstrand. DNA Sequencing Costs: Data from the NHGRI Large-Scale

Genome Sequencing Program. Available at: www.genome.gov/sequencingcosts.

Accessed [November 2, 2012].

[52] R. Williams, S.G. Peisajovich, O.J. Miller, S. Magdassi, D.S. Tawfik, and A.D.

Griffiths. Amplification of complex gene libraries by emulsion PCR. Nature methods,

3(7):545–550, 2006.

[53] D.R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome research, 18(5):821–829, 2008.

www.genome.gov/sequencingcosts

Index

2′-deoxynucleotide triphosphate, 13
3′-end, 11
454 sequencing, 16
5′-end, 11

A-statistics, 79
ABySS, 49
accession number, 41, 97
adapter, 17
adenine, 9
ALLPATHS, 48
ambiguous node, 89
approximate overlap, 53

base pair, 10
bases, 9
bp, 10
breadcrumb algorithm, 47
bubble, 46, 51, 67

capillary electrophoresis tube, 14
chain terminating reaction, 13
cloning, 12
codon, 1
complementary, 10
composite edge, 35
composite path contraction, 65
contig, 40, 92, 99
contig linkage graph, 51
convex cost function, 84
copy count, 28, 30, 74, 81
coverage, 31
cytosine, 9

ddATP, 13
ddCTP, 13
ddGTP, 13
ddTTP, 13
de Bruijn graph, 39

dead-end, 46, 51, 67
deletion, 24, 98
de novo genome assembly, 24
Deoxyribonucleic acid, 1
DNA, 1
DNA denaturation, 12
DNA fingerprinting, 2
DNA melting, 12
DNA polymerase, 13
DNA sequencing, 8
dNTP, 13
double helix, 8, 10

Edena, 44
emPCR, 22
emulsion, 17
Eulerian path, 46
Eulerian path assembly, 46

FASTA, 41
FASTQ, 41
first generation sequencing technique, 11
flow cell, 18
FM-index, 52
forward-forward overlap, 37
forward-reverse overlap, 38

gap, 98
gel electrophoresis analysis, 14
genome, 1, 9
genome assembler, 3
genome assembly, 27
Genome Sequencer FLX, 18
genome size, 71
guanine, 9

hash table, 56
human genome project, 15

121

INDEX 122

ideal seed, 48
Illumina sequencing, 18
in-node, 85
in-tree, 85, 87
insert, 30
insert size, 11, 30, 72
insertion, 24, 98
irreducible edge, 52

library, 11
log odds ratio, 79
long node, 47
loop, 88
loop reduction, 88

mate pair, 11, 30, 89
maximum likelihood genome assembly, 77
minimum overlap length, 35
mismatch, 98, 99
mismatch rate, 99

N20, 101
N50, 100
N80, 101
next generation sequencing, 16
NGS, 16
non-coding DNA, 31

odds ratio, 79
oligonucleotides, 17
out-node, 87
out-tree, 85, 87
overlap graph, 32
overlap length, 34

paired-end library, 11
paired-end read, 11
PCR, 17
period, 34
PicoTiterPlate, 18
polymerase chain reaction, 17
primary read cloud, 48
primer, 13
PTP, 18
pyrosequencing, 18

read, 2, 11, 28

read cloud, 48
reference genome, 96
repeat, 30
repeat contig, 51
reverse complement, 29
reverse-forward overlap, 37
reverse-reverse overlap, 37
Roche sequencing, 16

Sanger sequencing, 11
scaffold, 43, 99
secondary read cloud, 48
seed unipath, 48
sequence by ligation, 22
sequence graph, 39
sequencing, 2
sequencing by synthesis, 20
SGA, 52
simple edge, 35
simply connected, 53
single nucleotide polymorphism, 31
single-end library, 11
single-end read, 11
SNP, 31
SOAPdenovo, 50
Solexa sequencing, 18
SOLiD sequencing, 20
sstDNA, 17
string graph, 52
structural variant, 24
suffix array, 45

tandem repeat, 31
template, 12
thymine, 9
tour bus algorithm, 47
transitive edge, 38
transitive triangle, 38

unambiguous path, 40
unipath, 48
unipath graph, 48

variant discovery, 24
Velvet, 47

whole genome shotgun, 27

Curriculum Vitae

Name: Md. Bahlul Haider

Post-Secondary The University of Western Ontario
Education and London, Canada
Degrees: 2009 - 2012 PhD in Computer Science

University of Tokyo
Tokyo, Japan
2006 - 2008 MSc in Mathematical Informatics

Islamic University of Technology
Gazipur, Bangladesh
2000 - 2003 BSc in Computer Science and Information Technology

Honours and Ontario Graduate Scholarship
Awards: 2011-2012

Related Work Teaching Assistant
Experience: Department of Computer Science

The University of Western Ontario
2009 - 2012

123

http://www.uwo.ca/
http://www.u-tokyo.ac.jp/en/
http://www.iutoic-dhaka.edu/

	Western University
	Scholarship@Western
	December 2012

	A new algorithm for de novo genome assembly
	Md. Bahlul Haider
	Recommended Citation

	Title Page
	Certificate of Examination
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms
	Introduction
	Sequencing Techniques
	Applications of DNA Sequencing
	Genome Assemblers
	PEGASUS
	Challenges
	Contributions

	Thesis Overview

	DNA Sequencing
	DNA
	Sanger Sequencing
	Template Preparation
	Chain Terminating Reaction
	Sequencing

	Applications
	Disadvantages

	Next Generation Sequencing (NGS)
	Roche/454 Sequencing
	Library Preparation
	Pyrosequencing

	Illumina/Solexa Sequencing
	Amplification
	Sequencing by Synthesis

	SOLiD Sequencing
	Library Preparation
	Sequencing by Ligation

	Applications
	Variant Discovery
	De novo Genome Assembly

	Advantages
	Disadvantages

	NGS de novo Genome Assembly
	Problem Description
	Reads
	Reverse Complement
	Mate Pairs and Insert Size
	Repeats and Copy Counts
	Coverage

	Overlap Graph
	Overlap Length
	Minimum Overlap Length
	Simple and Composite Edges
	Types of Overlaps
	Forward-Forward Overlap
	Reverse-Forward Overlap
	Forward-Reverse Overlap

	Transitive Edges

	De Bruijn Graph
	File Formats
	FASTA File Format
	FASTQ File Format

	Existing Genome Assemblers
	Edena
	Overlapping Step
	Assembly Step

	Eulerian Path Assembly
	Velvet
	ALLPATHS
	ABySS
	SOAPdenovo
	SGA

	PEGASUS
	Overview of PEGASUS
	Error Correction
	Overlap Graph Construction
	Hash Table
	Inserting Edges in the Overlap Graph
	Transitive Reduction

	Contracting Composite Paths
	Error Removal
	Dead-End Removal
	Bubble Removal

	Genome Size Estimation
	Estimating the Distribution of Insert Sizes
	Copy Count Estimation
	Minimum Cost Flow
	Cost Function
	A-Statistics
	Accurate Copy Count

	In-tree and Out-tree Reductions
	Loop Reductions
	Resolving Nodes by Mate Pairs
	Contig Extraction
	The Algorithm

	Experiments
	Datasets
	Experimental Settings
	Definitions
	Gaps
	Mismatches
	Contigs
	Scaffolds
	N50

	Discussion
	Running Time and Memory Usage Comparison

	Conclusions and Future Research
	Future Research

	PEGASUS Software Manual
	Running PEGASUS
	Output Files

	External Function

	Bibliography
	Index
	Curriculum Vitae

