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Synthetic biology is providing novel tools to engineer cells and access the basis
of their molecular information processing, including their communication channels
based on chemical reactions and molecule exchange. Molecular communication is a
discipline in communication engineering that studies these types of communications
and ways to exploit them for novel purposes, such as the development of ubiquitous
and heterogeneous communication networks to interconnect biological cells with nano
and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major
problem in realizing these goals stands in the development of reliable techniques
to control the engineered cells and their behavior from the external environment.
A possible solution may stem from exploiting the natural mechanisms that allow
cells to regulate their metabolism, the complex network of chemical reactions that
underlie their growth and reproduction, as a function of chemical compounds in the
environment.

In this thesis, molecular communication concepts are applied to study the poten-
tial of cell metabolism, and its regulation, to channel information from the outside
environment into the cell as function of chemical compounds in the environment, and
quantify how much information of the internal state of the metabolic network can be

perceived from the outside environment. For this, cell metabolism is characterized in



this work through two abstractions, namely, as a molecular communication encoder
and a modulator, respectively. The former models the cell metabolism as a binary
encoder of the mechanisms underlying the regulation of the cell metabolic network
state in function of the chemical composition of the external environment. The latter
models the metabolic network inside the cell as a digital modulator of metabolite
exchange/growth according to the information contained in its state. Based on these
abstractions, the aforementioned potential of cell metabolism is quantified with the
information theoretic mutual information parameter obtained through the use of a
well-known and computationally efficient metabolic simulation technique.

Numerical results are obtained through simulation of cell metabolism based on
the standard processes of Genome Scale Modeling (GEM) and Flux Balance Anal-
ysis (FBA). These preliminary proof-of-concept results are based on the following
three main cellular species: FEscherichia coli (E. coli), the “standard” organism in
microbiology, and two important human gut microbes studied in our collaborators’
lab, namely, the Bacteroides thetaiotaomicron (B. theta) and the Methanobrevibacter
smithii (M. smithii), which provide a direct connection of this work to future practical

applications.
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Chapter 1

Introduction

Molecular communication is one of the latest frontiers in communication engineer-
ing [1], where tools from computer communications, information theory, signal pro-
cessing, and wireless networking are applied to the domain of chemical reactions
and molecule exchange. Recent results in molecular communication research range
from theoretical studies of the communication channels and the expression of their
communication capacity [36], [14], [43], [4], to the more practical design of suitable
modulation and coding techniques [31], and networking protocols [16].

Synthetic biology is today providing novel tools for the design, realization, and
control of biological processes through the programming of cells’ genetic code [23].
These tools are allowing engineers to study and access the basis of molecular infor-
mation processing in biological cells, which can be potentially utilized for the real-
ization of practical molecular communication systems [35], [29]. The future pervasive
deployment of genetically engineered cells and their interaction with other bio, mi-
cro and nano-technology enabled devices through molecular communication systems
and networks has been recently envisioned as the novel paradigm of the Internet

of Bio-Nano Things [2]. These ubiquitous and heterogeneous communications will



enable advanced applications in many fields, including medicine (e.g., developing bio-
compatible diagnosis and treatment systems), industry (e.g., biologically-controlled
food production), and agriculture (e.g.,, monitoring and control of soil chemical and
microbiological status).

One major problem in synthetic biology stands in the control from the external
environment to the internal functionalities of genetically engineered cells. Various
techniques to realize this control have been explored, such as the use of light, i.e.,
optogenetics [45], magnetic fields, i.e., magnetic nanoparticles [12], and dedicated sig-
naling circuits [28]. A possible solution, may stem from exploiting the natural mech-
anisms involved in the regulation of cell metabolism. Cell metabolism is a complex
network of chemical reactions that underlie the cell’s growth and reproduction, which
consumes and transforms chemical compounds present in its environment. Cells have
mechanisms to regulate and optimize their metabolism (metabolic state) according
to the chemical composition of the surrounding environment.

In order to achieve our goal of gaining more control of the internal cell function-
alities from the external environment, we need a deeper understanding of how the
information flows from the cell’s environment to the metabolic state and how much
information of the internal cell metabolic state can be perceived from the outside en-
vironment. This requires a deeper understanding of cell regulation mechanisms from

beginning to end.
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Figure 1.1: Proposed model structure for interpretation of biological system with
molecular communication system

In this thesis, we apply molecular communication (MC) concepts to study the
potential of cell metabolism, and its regulation, to channel information from the
outside environment into the cell as shown in Figure 1.1. In the view of molecular
communication systems, the potential of cell metabolism and its regulation can be
understood by how much information (in bits) the cell can take from the external
environment and encode into changes in its internal metabolic behavior. For this
end, we abstract the cell metabolism as a cascade of two MC components, namely, i)
as a binary encoder of mechanisms underlying the regulation of cell metabolic state
as function of chemical compounds of the external environment, and ii) as a digital
modulator of metabolite growth/exchange according to the information contained in
the metabolic state of the cell.

Inspired by [39], we apply information theory tools to express the performance



of this binary encoder (Stage I) and digital modulator (Stage IT) in terms of steady-
state mutual information. Subsequently, we define an upper bound to this mutual
information that can easily be quantified in silico through the use of a well-known
and computationally efficient metabolic simulation techniques, namely, Genome Scale
Modeling (GEM) and Flux Balance Analysis (FBA), which relies only on the a priori
knowledge of the cell’s DNA code (genome) and epigenetic regulation.

Next, we present numerical results obtained by analyzing the binary encoder model
of the Escherichia coli (abbreviated as FE. coli) bacterium metabolism and its reg-
ulation with respect to two different input chemical compounds, namely, D-Glucose
and Lactose. We also show the results of FBA in terms of growth rate computed for
different combinations of values of input fluxes of the aforementioned two compounds.
Further, we report the numerical results of Stage I and Stage II proposed for a case
study with human gut microbes metabolism and its regulation named as Bacteroides
thetaiotaomicron (abbreviated as B. theta) and Methanobrevibacter smithii (abbre-
viated as M. smithii) with respect to seven different input chemical compounds.

The rest of this thesis is organized as follows. Chapter 2 covers some necessary
background in microbiology and mathematical relation between transcription factors
and enzymes. Chapter 3 presents the cell metabolism as a molecular communication
system. Here, we examine how cell metabolism is characterized by the two abstrac-
tions, namely, as an MC binary encoder and a digital modulator. Chapter 4 discusses
the information theory to characterize the steady-state mutual information of the
proposed abstractions. Chapter 5 discusses in silico experimentations to generate the
data presented in this thesis. Chapter 6 presents the numerical results for three main
cellular species, E. coli, B. theta and M. smithii, through several simulations and
experiments. The final chapter covers the analysis of our findings, the conclusion,

and details some future avenues.



Chapter 2

Background

2.1 Motivation

A living cell environment is composed of various biochemical compounds. Different
compounds work together to encode a particular information by combining various
biochemical signals [39], [33]. This environmental information is then sensed by the
cell, which regulates its own internal metabolic network state consequently [39]. A
cell is able to extract this information from the environment by means of biochemical
processes present inside the cell. These biological processes are generally composed
of signal transduction and gene regulation [18], [33], [7], which occur along a chain of
chemical reactions known as biological pathways. This extracted information can be
used to alter the gene expression, thereby modifying the cell metabolic network state
[33], [39]. Hence, the final outcome of the modified cell metabolic network state is
correlated to the information that the cell extracts from the environment. However,
during this process there will be some limitation in the amount of information that the
cell can extract from the environment. This is due to the generation of biochemical

noise coming from feedback loops, cross talks, amplification, integration, and a delay



inherent within the aforementioned biological processes [18], [46]. As a result, the
extracted information can be distorted, and the cell may not be successful in precisely
modify its metabolic network accordingly.

In this thesis, we abstract the behavior of the aforementioned biological processes
of a cell as a communication system and analyze them with communication engineer-
ing tools. The goal of our work is to characterize the aforementioned limitations of a
cell in extracting input information from the environment. By stemming from this,
we apply communication engineering concepts in order to characterize the potential
of a cell to represent information from the external environment to the metabolic
state and, subsequently, we quantify how much information of the internal state of
the metabolic network can be perceived from the external environment as a form
of biomass (growth), uptake, and secretion!. In order quantify the limits of this
information flow, inspired by the mathematical model proposed by [39], [46], [15],
we apply Information theory tools. Based on the latter, we develop a mathematical
framework to compute the amount of information flowing from the external environ-
ment through the cell’s metabolic state to the cell growth, uptake, and secretion of
chemical compounds. We envision that the results of this work will enable the future
design of communication engineering techniques to operate a fine-tuned control of the

cell behavior based on information transmission through its metabolism.

2.2 Biological Pathways

In this section, we briefly discuss what a biological pathway is and how the interaction

between different biological pathways vary based on the variations in the chemical

!Biomass is a production of organic materials in the cell which maximize the growth. An uptake
is an absorption of chemical compounds by the cell from the environment to help the chemical
reactions during the cell metabolism process. Secretion is the release of chemical compounds, that
were the products of some chemical reactions and not needed by the cell, into the environment.



compounds present in the environment. A better understanding of the workings of
biological pathways will help us better understand the cell metabolism, which is the

main focus of this study.
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Figure 2.1: Graphical representation of the interconnection of signal transduction,
gene regulation and metabolic pathways.

A biological pathway can be defined as a chain of reactions among chemical com-
pounds in a cell which leads to the production of a certain product, such as protein or
fat molecules. In some cases, a biological pathway can cause a change inside the cell
such as turning a gene expression ON/OFF. In order to carry out their designated
task, the compounds involved in biological pathways interact with each other and
with chemical signals inside the cell. The biological pathways can essentially be cate-
gorized into three kinds: signal transduction pathways, gene regulation pathways, and

cell metabolic pathways (which compose the aforementioned metabolic networks).



Signal transduction pathways transport information from the cell’s environment
to its interior. Cells have proteins on their surface, called receptors to which com-
pounds from the environment bind. After this binding, the information about the
compounds in the environment travels inside the cell where it is transported by spe-
cialized proteins that trigger specific reactions, these reactions are organized into
cascades. This cascade of phosphorylations, which is the addition of a phosphate
group to a molecule. This cascade of phosphorylation dictates the activation of tran-
scription factors. Generally, the output of these reactions is relayed to one or more
gene regulation pathways, detailed next. Figure 2.1 shows the chemical compounds
(small structures outside of the cell) from the cell’s environment and how they bind to
the receptors (yellow cylinder and red cube) located on the surface of the cell mem-
brane. This leads to the activation of the cell’s signaling pathways (interconnected
blue lines). Once these pathways are activated, special proteins (blue pentagons)
transport the signal internally which regulate the gene expression by activating or in-
hibiting transcription factors (purple triangles) which are initially inactive proteins
floats freely in the cytosol.

Gene regulation pathways consist of chemical reactions that govern the genes and
their expression level into proteins. Some of these proteins are enzymes (red stars in
Figure 2.1), that act as catalysts of specific biochemical reactions in metabolic path-
ways. They work by regulating the transcription and translation processes, where
transcription factors interfere with the deoxyribonucleic acid (DNA) copy into mes-
senger ribonucleic acid (mRNA) and the subsequent synthesis of the gene-encoded
proteins [18]. The transcription factors can be either active or inactive based on the
output of the aforementioned signal transduction pathways. Figure 2.1 also shows
how the activated transcription factors interact with the genes (DINA), which then

produce molecules mRNA. These mRNA molecules are subsequently translated into



proteins. The transcription factors, genes, and mRNA form the gene regulatory path-
ways. The newly produced proteins are used for internal cellular mechanisms such
as building cellular components, transporting the information in signal transduction
pathways, and acting as catalysts for the metabolic reactions.

Metabolic pathways are chains of chemical reactions inside the cell that break
down compounds present in the environment, such as sugar, minerals, or vitamins to
obtain energy and materials to expand the cell (biomass). In Figure 2.1 the cofactor
is an energy molecule (e.g. ATP) which drives the chemical reactions. Metabolic
pathways are regulated by the aforementioned enzymes, that control rate of the re-
actions constituting them. As result of enzyme regulation, chemical compounds are
exchanged between the cell and environment via special protein called transporters.

As we can see, the three main types of biological pathways such as signal transduc-
tion, gene regulation and metabolic pathways are tightly interconnected, and cells’
behavior can only be properly understood by studying these three processes together.
In this thesis we will apply on molecular communication concepts in order to study
the potential of cell metabolism, and its regulation, to channel information from the
outside environment into the cell. We also look at how the internal state changes of
cell metabolism are perceived from the outside environment. In the next section, we

detail the cell metabolism and its key aspects.

2.3 Cell Metabolism

Cell metabolism is a complex process comprising of pathways that break down the
chemical compounds to produce energy, synthesize proteins, and produce building
blocks required for the cell growth and reproduction [33]. Some of these compounds

are consumed as inputs for subsequent chemical reactions in the pathways, while the
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remaining metabolites are used to either generate energy or build cell components
(biomass), while consuming energy or otherwise discarded through secretion. Addi-
tionally, these reactions also receive an uptake of chemical compounds from the cell’s
environment in the form of inputs to keep the chain of reactions going [42]. Most of
the chemical reactions that compose the aforementioned metabolic pathways do not
take place spontaneously, but are catalyzed by enzymes, defined above.

Cells have predefined mechanisms to control the activities of enzymes [30], mostly
through the aforementioned signal transduction and gene expression pathways. For
example, the cell can fine tune the rate at which the corresponding catalyzed reactions
occur by controlling the expression of the corresponding enzyme-encoding gene, which
in turn is controlled by the information about the compounds present in the external
environment that signal transduction pathways propagate inside the cell. Among
different adaptation mechanisms, we focus on the regulation of enzyme expression
from their corresponding DNA genes as a function of the input chemical compounds.

As we stated, the metabolic process is regulated by enzymes. The enzyme ex-
pression mechanism should be controlled depending on the required outcome. This is

achieved by regulating the transcription process, as discussed in the previous section.

2.4 The Mathematical Relation Between
Transcription Factors and Enzymes

The process underlying the expression of enzymes can be formalized mathematically.
This formalization is important as it forms the basis of the molecular communication
abstraction covered in the next section. Since the enzymes act as catalysts for most

of the chemical reactions that happen during cell metabolism, the rate at which
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each enzyme is expressed directly influences the rate of the corresponding catalyst
reaction. According to a commonly accepted biological model, given a determinate
concentration of active transcription factors [TF*], the rate R, at which an enzyme
is expressed is given by one of the following two sigmoidal expressions, called Hill’s

functions: [3], [44]:

BIrF "
R, = 2251 if activation, 2.1
Ki+ [TF if activation (2.1)
R, = % if repression ; (2.2)
1+ (BE)

where [ is the maximum expression level of the enzyme, n is the Hill’s coefficient, hav-
ing values between 1 and 4 depending on how many transcription factors cooperatively
interact with the DNA gene and the equilibrium constant, K, [44]. Equation (2.1)
models the situation where a higher concentration of transcription factors increase
the enzyme expression from zero to 8 (activation), while (2.2) models the opposite
(repression). Due to the sigmoidal behavior of the above two expressions with respect
to the active transcription factor concentration [TF*], they can be expressed with a

logical approximation as follows [3]:

R,

12

BH ([TF*] — K,) if activation (2.3)

R,

12

BH (K4 — [TF*]) if repression ;

where H(.) is the Heaviside step function, equal to 1 when the argument is positive,
and 0 wvice versa. This logical approximation makes sense because the sigmoidal
behavior expressed by (2.1) and (2.2) has the curve values close to two distinct states,
namely, zero and maximum expression level 5. According to the approximation in

(2.3), the enzyme expression, and the rate of chemical reaction, can be separated into
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distinct states: ON or OFF, depending on the concentration of active transcription
factors, which in turns depends on the information about the compounds present
in the environment propagated by the cell signal transduction pathways. The ON
state represents the maximum enzyme expression rate and corresponding metabolic
reaction rate, while OFF state represents no enzyme expression and absence of the
corresponding chemical reactions in the cell metabolism. Hence, variations in the
chemical compounds in the environment ultimately cause changes in the metabolic
state by activating or deactivating the chemical reactions. These changes in the
chemical reaction state (ON/OFF) are then reflected as variations in the uptake
and secretion of chemical compounds and the biomass (cell growth), which can be
experimentally measurable parameters when we consider the cell metabolic process

from the perspective of the environment.
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Chapter 3

Cell Metabolism as a Molecular

Communication System

3.1 Molecular Communication Abstraction of

Cell Metabolism

In order to understand how the information flows from the cell’s environment to the
metabolic state, and how much information of the internal cell metabolic state can
be perceived from the outside environment, we need to understand the cell metabolic
regulation mechanism from the beginning to end. For, this, we propose a molecular
communication abstraction, sketched in Figure 3.1.

Part (a) in the below Figure 3.1 shows that the cell takes certain concentrations of
chemical compounds into the cell metabolism, where the variations in these concen-
trations cause state changes in the cell’s metabolic network, represented by dashed
and solid lines connecting dots. The dots represent the chemical compounds involved

in the metabolic reactions, or metabolites, the dashed lines represent the inactive
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reactions, and the black and pink solid lines represent the active reactions, respec-
tively. The pink solid lines represent the active state- changing reactions i.e., the

reactions that change their state as function of variations in the chemical compounds

concentrations.
®Chemical compound1 C %0
# Chemical compound2 @ #% Lc1..n] Biological 0"

2t ®
Cell \.\Ul...

Metabolic
Reactions

®Chemical compound 3 * CYN I
Chemical compound 4

Cq1 Concentration 1 N/ U @ H

C2 Concentration 2

C3 Concentration 3 e e

InplIt ‘\\ - S .{3 ®
. Biomass 91...J6_
. GrowthNo ¢® %
(a) StageI Output #*Growth
< >
<€ 4 >
(b) Stagell

Figure 3.1: Sketch of the proposed molecular communication abstraction of cell
metabolism.

We model Part (a), or Stage I, as the molecular communication binary encoder
abstraction as in the form of expression of enzyme regulation and Part (b), or Stage II,
as the molecular communication digital modulator abstraction. These state changes
are reflected as variations in the uptake and secretion of chemical compounds and the
biomass (cell growth), which can be measured when we consider the cell metabolic
process from the perspective of the environment shown in Part (b) of the figure. The
uptake of compounds are represented by U, while the secretion of compounds are

represented by S,. Hence, variations in the chemical compounds in the environment
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can be modeled as input, whereas variations in the uptake, secretion, and biomass

can be modeled as the output of the whole cell metabolic regulation process.

®Chemical compound 1
#Chemical compound 2
.Chemfcal compound 3 Metabolic
Chemical compound 4
etwork State
Receiver
Environment
Chemical
Composition
Transmitter Enzyme
Expression
==Regulation
Channel
i 1
e 3 e !
€1 CC3+ * *CN Enzyme Expression Regulation Firarys * v
Transmitted Signal Channel Received Signal

Figure 3.2: Sketch of the proposed molecular communication system based on cell
metabolism.

Part (a), molecular communication binary encoder abstraction, also shown in Fig-
ure 3.2, abstracts the system into a Transmitter, a Receiver and a Channel. The goal
of this abstraction is to model the enzyme regulation expression as a binary encoding
of the information contained in the chemical composition of the cell’s environment
“Some of this material appears in [38]”. The transmitter represents the environment
surrounding the cell, where the transmitted signal is the set of chemical compounds
present in the environment that are input of the pathways that compose the cell
metabolic network. The channel represents the mechanisms that regulate the expres-
sion of determinate enzymes in function of the chemical compounds in input, and

the receiver represents the cell metabolism, where the received signal is the result-
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ing aforementioned activity (ON/OFF) of the chemical reactions catalyzed by these

enzymes. This abstraction is more formally expressed as

} Enzyme Expression

{CI,CQ,...CN > {7’1,7"2,...7”]\/[} , (31)

Regulation

where ¢; is the concentration (number of molecules per unit volume) of the chemi-
cal compound 7, N is the number of chemical compounds present in the environment
surrounding the cell and input of the metabolic pathway network, r; is a binary value
equal to 1 if the enzyme-expression-regulated reaction ¢ is ON, and equal to 0 if the
same reaction is OFF, M is the number of enzyme-expression-regulated reactions that
change their state upon variations in the concentrations of input chemical compounds
Ci-

®Chemical compound 1

# Chemical compound 2
®Chemical compound 3
Chemical compound 4

Metabolic Network

Metabolic Reactions
Channel
Biomass
Growth/No

| Growth '.'

Iinr: Iy Metabolic Reactions pl---UT, SpSy, Gr ,

Transmitted Signal Channel Received Signal

Figure 3.3: Sketch of the proposed Metabolic Reaction Abstraction.

In addition to the above abstraction, which lets us study the enzyme regulation

to channel information from the cell’s environment, we also need a model to under-
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stand how much information of the internal cell metabolic state can be perceived
from the outside environment. For this, we propose another abstraction model called
digital modulator abstraction (Part b, Figure 3.1), also shown in Figure 3.3 which
models the metabolic network inside the cell as a digital modulator of metabolite
exchange/growth according to the information contained in the metabolic network
state. In this abstraction, the transmitter represents the cell itself, where the trans-
mitted signal is the metabolic state of the cell, which means the ON/OFF activity of
the state-changing enzyme-regulated reactions. The channel represents mechanisms
involved in the metabolic reactions as a function of the chemical compounds within
the cell’s input. The receiver represents i) the cell’s environment, and ii) the biomass
(as a form of cell growth) where the received signal is the variation in the uptake and

biomass, respectively. This is more formally expressed as

Metabolic

{Ul,...Uk,Sl,....,Sj,GT} y (32)

{7’1, "2, TM} Reactions

The channel model of the above mentioned abstraction is shown in Equation (3.2)
where r; is a binary value equal to 1 if the enzyme-expression-regulated reaction i
is ON, and equal to 0 if the same reaction is OFF, M is the number of enzyme-
expression-regulated reactions. U, is the flux, the velocity of molecule concentration
propagating in space (e.g., from environment to cell), of metabolites uptaken from the
environment, S, is the flux of metabolites excreted by the cell into its environment
and Growth (Gr) represents the flux of added components to the cell in the form of
biomass.

We can conclude that the system shown in Figure 3.1 illustrates that the cell’s
behavior can be modeled as a transceiver. This is because the cell i) acts as a receiver

when its internal metabolic state changes as it takes as input a signal in the form of
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variations of the compounds in its environment, and ii) the cell acts as a transmitter
when the state changes of its metabolic network reactions act as a signal, which is
transmitted into the output changes in chemical compounds uptake and secretion

from/into environment and in the biomass.

3.2 Steady-State Mutual Information

3.2.1 Stagel

We define the steady-state mutual information I of the molecular communication sys-
tem abstraction (explained in Chapter 3) for the aforementioned Stage I as the amount
of information about the chemical composition of the cell’s environment measured in
bits that a cell is able to represent in the binary state of its enzyme-expression-
regulated metabolic reactions at steady state, after any evolution of the enzyme-
expression regulation channel “Some of this material appears in [38]”. According to

information theory [9], the mutual information for Stage I can be defined as follows:

I({ci}isy i {ritity) = H{ediny) — H{ed oy [{ridily) | (3.3)

where the input entropy H({c;}Y,) can be defined as

Bl ) == [P ()l ) o P ((e)l) afally . 69

where the integration [ is performed throughout the possible values that the set of

chemical compound concentrations {¢;},_, can assume. The conditional entropy of
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the input given the output H({c;}~, | {r:}.2,) is then defined as follows:

HeY ) =~ 3 P ([trth] ) (3.5)

/P ({Cz}zNzl [{T’}f\il]/)

tog, P ({ei}Ly |[{nith] ) afeds

respectively, where K is equal to the total number of different sets of binary values
at the output of the system [{n}f\il] . resulting from the all the possible values that
the input chemical compound concentrations {¢;}~, can assume, and P(.) is the
probability distribution of the argument random variable/s. In the aforementioned
definition of mutual information, we are ignoring possible memory in the system, i.e.,
the values in {ri}ij\il could depend on the past trajectory of the values of the input
concentrations {cl}fil This might be the effect of hysteretic behaviors in the gene
regulatory functions, which we currently ignore all the assumptions are in Section 2,
with the justification that many of these mechanisms are even poorly understood in

biology [10].

3.2.2 Stage II

We define the steady-state mutual information I for the aforementioned Stage II
as the amount of information of the internal binary cell metabolic state that can
be perceived from the outside environment through the metabolic-state-modulated

values of the fluxes of uptaken and secreted metabolites, and the biomass (growth).
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According to information theory [9], this can be defined as

I{ritity s AUy ASi Y Gr) = H(({ri}ity) — H{rhs, Uy {85} -, Gr),
(3.6)

where the input entropy H({r;}\",) can be defined as

H({r)M) EK:P({m},-Ml) log, P ({r3,}1,) . (3.7)

k=1

where the summation ) is performed throughout input of the FBA Groups
based on similar binary enzyme-expression-regulated state changing {?"Z} _, within cell
metabolism. The conditional entropy of the input given the output H({Ti}izl | {Ut}t:1
A{S; };‘]:1 ,Gr) is then defined as follows:

Q

HURY GV A8 60 == o P ([0 s 6] ) 69

i p <{7“z'k}?i1 _

k=1

[{Ut}le 7 {Sj}jﬂ ’ GTL)

ot (124 [0 15011 6 )

respectively, where @) is equal to the total number of different sets of flux values at
the output of the system {U; }l S {SiY_,, Growth (Gr) resulting from the enzyme-
expression-regulated reactions {c;}, within cell metabolism, and P(.) is the proba-

bility distribution of the argument random variable/s.
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Chapter 4

In silico Characterization of the
Mutual Information of Cell
Metabolism through Flux Balance

Analysis

4.1 Estimation of Optimal Enzyme Expression
Regulation through Flux Balance Analysis

Flux Balance Analysis (FBA) is a widely used and computationally efficient math-
ematical method to estimate the chemical reactions that might be active in the
metabolic network, a cell metabolic network, given determinate environmental condi-
tions [34], [5]. FBA uses a set of linear equations and applies optimization techniques
to estimate the metabolic network state that results in the maximum growth rate

under given determinate conditions. As a consequence, FBA can be utilized for es-
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timating differences in optimal metabolic network states of a cell corresponding to
different environmental conditions. As detailed in the following, these estimates are
the basis for our in silico mutual information “Some of this material appears in [38]”.

Through FBA we are able to obtain an estimate of the state {rf}ﬁl of the afore-
mentioned enzyme-expression-regulated chemical reactions that results into an overall
maximum biomass production. The FBA-estimated chemical reaction states {r}.,
are those that maximize the growth of the cell given a chemical composition of the
surrounding environment {Ci}z‘]\ip and represent the best regulation of these chemical
reactions that the cell might ever achieve. The aforementioned mechanisms of activa-
tion or repression that might be in place for the regulation of enzyme expression have
been most probably acquired through evolution. Although they tend to reach this
optimal solution, they might just realize a subset of the needed reaction state adapta-
tions [11]. The estimation of the optimal enzyme expression regulation through FBA

can be formalized as follows:

Flux Balance

{017027"'CN} {T{7r;""r}k\4} ) (4]‘)

Analysis

The FBA computation stems from the construction of a GEnome-scale Model
(GEM) for the organism under analysis.The construction of a GEM greatly benefits
from the availability of cell genome information and the latest advances in bioinfor-
matics techniques [5]. In particular, this is realized by searching for known genes
that encode metabolic enzymes, defined in Section 2.2, which are possibly activating
metabolic chemical reactions. These reactions are described in extensively curated
online catalogs. Subsequently, further chemical reactions are included in the GEM
through comparisons with the genomes and the corresponding known metabolic path-

ways of other similar organisms that have been already extensively studied and an-
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notated. Subsequently, further chemical reactions are included in the GEM through
comparisons with the genomes and the corresponding known metabolic pathways of

other similar organisms that have been already extensively studied and annotated.

@etaholic pathways - Bacteroides thetaiotaomicron

Glycolysis / Gluconeogenesis

(c)

= @
Glyoxylate and dicarboxylate metabolism

Figure 4.1: KEGG module of Bacteroides thetaiotaomicron metabolic pathways. (a)
Summary of the biological processes shown in the pathway map of Glycolysis / Glu-
coneogenesis and Glyoxylate and dicarboxylate metabolism (b) Enlarged fine details
of a section of a complete metabolic model, (c) Part of the complete KEGG database
pathway maps of Bacteroides thetaiotaomicron.

Figure 4.1 (c) shows a graphical representation of parts of a GEM (on the right)
for the organisms Bacteroides thetaiotaomicron, also referred to as B. theta, used in
our study, which is obtained from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [26]. The nodes represent compounds that are inputs/outputs to
the reactions, and edges represent the chemical reactions. Inputs from the environ-
ment are taken by the organism are involved in and are involved in the reactions of
metabolic pathways, resulting in the exchange of fluxes with the environment (uptake

and secretion), or in the production of biomass (growth) to in the exchange of fluxes
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with the environment (uptake and secretion), or in the production of biomass.

The set of possible metabolic reactions inside a GEM can be expressed through
a stoichiometric matrix S, where each row represents a chemical compound and each
column represents a possibly active metabolic reaction in cell metabolism. Figure 4.2
shows an example of how a stoichiometric matrix S can be obtained from a metabolic
network. Figure 4.2. (a) shows a conceptual model of a metabolic network where the
internal chemical reactions are represented by R;, and the exchange fluxes with the
environment are represented by E;, as shown in Figure 4.2 (b). The stoichiometric
matrix S in Figure 4.2. (c) is organized in a way that each row corresponds to a
chemical compound in the metabolic network, while each column corresponds the
reaction or flux exchanged with the environment. Each entry of the stoichiometric
matrix S is the stoichiometric coefficient that indicates how many molecules of a
chemical compound, represented by row entry, are consumed (coefficient < 0) or

produced (coefficient > 0) in one of the possible reactions,

Reactions

R1|R2 R3|R41R5 R6|R7|R8|E1|E2|E3|E4| ,§| _ -
2
List of Reactions & \
= bl A [1000000001000O0 Ve
= P— B [0-100000001000
= i ATr oD C (1110000000000 Vs
5 D [001-1000000000 v
z Rt D——>E +3ATP + 2 NADH *
s E (00010-10800 0 0 0 -1 v
8 R5 E--->3F +4ATP RS
g T P g F 00003 00000-100 v
o ————> = R6
. 5 ¢ |looooo1-1100000 % =0
______ > sovass | B G <> 0.8E + 3 NADH S 1o o0 0000030001 Ve
Roiomass RS G+ATP+5NADH<—>3H | Z——— Vio
ou
' by ---> 0.
E3 EL Ao <->0.1A Bt |0 0 0000000 -100 0 Vi
E2 Boue <--->B Fo [0 0 00000000100 Ver
.6 ES F <> Fout Ho |0 0 00000000010 v
——— E3
/\ E4 e H <> Hout ATP [0 0 13 400 -100 00 -5
NADH Reiomass | E+H+5ATP --—->BIOMASS NADH [0 0 02 0 0 3 -50 0 0 0 0 Ves
BIOMASS 0 0 0 0 0 0 0 0 0 0 0 0 1 |Vhiomass
(O Metabolite (cofactor == Reversible <= Irreversible Stoichiometric matrix, S Fluxes, v

E1- E4, BIOMASS - Exchange Flux, R1 - R8 - Internal Reactions
(@) (b) ()

Figure 4.2: From metabolic network to stoichiometric matrix. (a) Conceptual model
of a metabolic network. (b) List of the reactions participating in the metabolic
network. (c) Corresponding stoichiometric matrix.
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The FBA solution is expressed in terms of v* which is a column vector that
contains the optimal flux of each reaction, defined as the number of molecules per unit
volume and unit time that are consumed/produced by that reaction. It is obtained

through a Linear Program (LP), formalized as follows [34]:

maximize a'v
subject to Sv =0

Vmin SV S Vmax

where a is a column vector that contains the weight coefficients of the fluxes
that the FBA optimizes. In our case, the entries of a are equal to 1 only at the
indexes corresponding to the chemical compounds that are considered part of the
aforementioned biomass, produced by the cell and responsible for cell growth, while
the other entries are equal to 0. The column vectors viyjn and vyax constrain the
minimum and maximum flux, respectively, of each corresponding reaction considered
in the FBA, and define the space where the LP searches for the optimal solution.

This constraint based modeling can be explained by the Figure 4.3 [34]:

Vs Vs Vs
® L
00’ e% o0
°® o
° L] L) ° °
O e o] o %o .0
L] °
e ‘0o .00':. °°,
. .: {. & a® e, o Mass-balance constraint -
:. o ®le2e®, ® Sev=0 Maximized biomass Y
.. ... ® o0 V! — Vi — : Vi
L4 n Bounds Allowable UsingLinear ~ = f==—=—e—= v
Solution Space P .
4 e Vmin sv< Vmax rogramming Optimal Solution
L]
VvV, 2.% o L L V. \/
e & o ® ° 2 2
'Y L]
LN ]

@ (b) ()

Figure 4.3: Conceptual model of the FBA LP formulation for finding the optimal
solution.
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When growth /flux constraints are applied by the lower and upper bounds vy, and
Vmax, i addition to the constraints from the aforementioned stoichiometric matrix
S, the entire solution space (shown in (a)) of the metabolic network can be reduced
to a smaller allowable solution space, shown in (b). Then, optimization is applied
on the objective function a'v to identify a single optimal solution, which is a flux
distribution lying on the edge of the allowable solution space as shown in (c).

The values of Viin and vimax are set to reasonable biological limiting values [34],
with the exception of the reaction corresponding to the uptake of the input chemical
compounds present in the surrounding environment {ci}fil for which we are estimat-

ing the chemical reaction states {7}*}5\11 This is expressed as follows:
N .
Uming = Umaz,i = ‘]2 ({Ci}i:1> , 1= 17 ey N (42)

where J; is in general a function of all the input concentrations {ci}f\il that returns the
flux of input chemical compound ¢, and depends on the particular method employed by
cells to uptake this chemical compound (e.g. facilitated diffusion or active transport
through the cell membrane as shown in Figure 2.1). The expression of J; (.) is in
general known from biochemistry literature. As an example, the expressions for the
input glucose J,; and lactose Ji, fluxes considered in part of the numerical examples

of this thesis are as follows [40]:

max

Cql
Jl Cql = u, 4.3
we) = Gh (4.3
S Clac Tax Cyl
Jac Cyly Clac) = —lac 37 1 - <+ — )
: ( 90t ) klac + Clac ( (bgl kgl + Cyql

where the parameter values can be found in Table 3 of [40].

The estimates of the chemical reaction states {r;‘}ij\il are finally computed from the
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optimal flux vector v*, which is obtained by the FBA given the chemical composition

: : N
of the surrounding environment {c;},_,, as follows:

0, ifvr=0
= , (4.4)

1, otherwise

4.2 An Upper Bound Steady-State Mutual

Information of Cell Metabolism

4.2.1 Upper Bound for Stage I

Given the optimal estimates of the chemical reaction states {r} }f‘il obtained through
the FBA from the knowledge of the cell’s genome for all the values that our input
set of chemical compound concentrations {Ci}i]il can assume, we can compute the

following steady-state mutual information “Some of this material appears in [38]”:

]({Ci}i]\il ; {T:}z]\il) = H({Ci}z’]\il) - H<{Ci}i]\il | {T:}ZJ\L) ) (4.5)

where H({c;}X | [{r:}Y,) is computed through Equation (3.5) by substituting the
chemical reaction states {ri}?il resulting from the real regulation of the enzyme ex-
pression with the FBA-estimated chemical reaction states {7} .

In this thesis, we consider the mutual information in Equation (4.5) computed with
the results of the FBA as an upper bound to the real steady-state mutual information

in Equation (3.3) that we would obtain in reality as a result of the enzyme expression

regulation. This is formalized as follows:

I<{Ci}£\i1 ; {T:}i\il) = I<{Ci}£\i1 ; {Tz}f\i1) : (4.6)
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The expression in Equation (4.6) can be proven through the Data Processing
Inequality from information theory [9], which states that the aforementioned inequal-
ity holds true if the steady-state chemical reaction states {r;}11, given a set {&}
of values for the input concentrations can be probabilistically determined from the

sole knowledge of the chemical reaction states {7} }Z.Ail, without the need of having

knowledge of the input concentrations. This is expressed as follows [9]:

P ({Tl}'f\il

e iyl ) = Pt

o) (4.7

Equation (4.7) can be explained by considering that the chemical reaction states
{fl*}f\il are those that underlie the optimally regulated cell metabolism that maxi-
mizes the cell growth rate (or biomass production) given a set of values for the input

N
i=1"

concentrations {¢;} In reality, when subject to the same input concentrations

{&;}7,, a cell reaches the steady-state chemical reaction states {#;}:~,, which might
be in general different from the aforementioned optimal states. If these states are
indeed not optimal, the cell will not grow (produce biomass) and reproduce at the

N

.—1- When considering

maximum rate possible given the input concentrations {¢;}
multiple cells in a population subject to the same input concentrations, if different
cells show different steady-state chemical reaction states (because of cell-cell variabil-
ity), those that have states closer to the optimal states will grow faster, and ultimately
outnumber other cells. As a consequence, cells have evolved gene expression regula-
tion mechanisms, such as those described in Section. 2.3, through which they adapt
their steady-state chemical reaction states as close as possible to optimality given a set
of input concentrations [10]. Given the optimal chemical reaction states {7}, and

the knowledge of the gene expression regulation mechanisms in place in a particular

cell species, we are theoretically able to estimate the probability distribution of the
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steady-state chemical reaction states {’f’i}i]\il, which are those that best approximate
the optimal states. As a consequence, under the aforementioned assumptions, the
conditional probability of the steady-state chemical reaction states {ﬁ}i‘il given the
input concentrations {¢;}~ | and chemical reaction states {7} is equal to the same

probability but only conditioned to the chemical reaction states {7} }i]\il, as expressed

in Equation (4.7).

4.2.2 Upper Bound for Stage II

In order to compute the amount of information of the internal optimal binary metabolic
state that can be perceived from the external environment (update/secretion fluxes,
biomass) of the cell, the calculation of the steady-state mutual information for Stage
II, defined in Section 3.2.2, is performed by considering the optimal chemical reac-
tion states {r7}1", as input, and the optimal values of the fluxes of uptaken {U}},_,
and secreted {Sj* };,]:1 metabolites, and biomass Gr*. The latter values are obtained
from the FBA solution as the values in the aforementioned optimal flux vector v*

corresponding to uptake, secretion, or biomass reactions, respectively. This mutual

information is expressed as

IR UYL {ST) . Gr) = (4.8)
H({r ) = B {0 S G,

J
j=1’

where H({r:}M,) and H({r:}M, [{U;}]_,, {s:} Gr*) are computed through Equa-
tions (3.7) and (3.8) by substituting the chemical reaction states {r}~, and the fluxes
{Ut*}thl, {S;‘ }j: ,» and biomass Gr* in place of those resulting from the real regula-

tion of cell metabolism. In general, the values computed through the expression in

Equation (4.5) might differ from those from Equation 3.6. Nevertheless, since Stage
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IT is in series to Stage I, and the optimal flux vector v* can be deterministically com-
puted from the optimal chemical reaction states {r;‘}?il by LP optimization, we only
need to consider Equation (4.8) to obtain an upper bound to the mutual information
of the overall system.

A detailed description of the computation of Equations (4.5) and (4.8) for the

organisms considered in this work are provided in Chapter 6.
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Chapter 5

Data Generation Workflow

5.1 Data generation

For in silico, we generated simulation data using KBase [25] which is an open source
software and data platform that allows users to upload their data, collaborate by
sharing with other users, perform automated analysis, and publish their results and
conclusions. The simulation being an execution of a static model, allows us to collect
the chemical reactions that occur in the metabolic model, under selected configura-
tions.

We follow a similar data generation process for the three organisms FE. coli, B.
theta and M. smithii. As shown in Figure 5.1, first we build an initial metabolic model
for these organisms. To achieve this, we run the Build Metabolic Model app provided
by KBase, which uses a protein phylogeny database to translate both the organ-
ism’s genome into protein sequences. This initial metabolic model is a genome-scale
metabolic network of biochemical reactions reconstructed from functional protein an-
notations derived from biochemistry literature and similarity with other known pro-

tein sequences. These protein functions are then mapped onto biochemical reactions
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in the KEGG model [26]. This initial model is a draft model and only a starting point
because this metabolic model might be missing some crucial reactions and might have
incorrect protein functional annotations in its network that are required to generate
biomass. A total of 121 initial draft models were created for E. coli, one for each
of the 121 configurations. For B. theta and M. smithii, a total of 128 initial draft
models were created, one for each of the 128 configurations. The details on how these

configurations are created will be discussed in detail in the Sections 5.2 and 5.3.

FBA models/objective
“Growth”
Media, Reaction

database ' @ !

Draft models

L as KBase
) 4 ) 4 PREDICTIVE BIOLOGY

DOE Systems Biology Knowledgebase

Model
SEED

Gapfill Metabolic Model
siIsA[euy dsueeg xn[ uny

Gapfill models

Figure 5.1: KBase Workflow for simulation data.

The next step is the gap filling process [20] where a minimal number of bio-
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chemical reactions and compounds are added to the initial metabolic model with the
goal of making the metabolic network able to synthesize the biomass in a specified
medium. For each of the configurations, gap filled models were produced from their
corresponding initial draft models.

Finally the growth rate of an organism (biomass production rate) in a speci-
fied medium can be obtained by running the FBA. FBA simulates how metabolites
flow through the metabolic network of an organism in a specified medium and uses
constraint-based approach discussed in Section 4.1 a to estimate the steady-state
biomass production rate. The biomass information resulting from the FBA is used to
quantify the mutual information parameter which will be discussed in the following
section.

Compare FBA
Solutions

B«

FBA models /objective
“Growth”

Inputflux concentration

State-Changing Reaction

DOE Systems Biology Knowledgeb

sis[euy aueeg xn[f uny

Annotated Genome/Organism

Media, Reaction ‘ 6)
\ L)
database .

Gapfill models

Gapfill Metabolic Model

Figure 5.2: KBase workflow to generate silico data.

The flow for the process involved in generating the Mutual Information for Stage I
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and IT can be summarized by the figure above. The flow is very similar to the process
explained in Figure 5.1, except that it involves three additional steps at the end. We
now describe these last three steps.

The output of the FBA will be 128 files, for each of the organisms, B. theta
and M. smithii. For E. coli, the output of the FBA will be 121 files. These are FBA
objects that display the growth of the model, reaction fluxes, biomass compounds and
coefficient values, gene IDs, compound fluxes and gene knockout data in a table-based
format. We take these FBA objects and send them to the Compare FBA Solutions
app in KBase to compare flux profiles predicted by the FBA. This app compares
the objective value, flux through each reaction in FBA, uptake, and secretion of
metabolites in each of the FBA outputs. The reaction fluxes inside the FBA outputs
are categorized into “not in model,” “no flux,” “forward flux,” and “reverse flux”

” W

whereas metabolite fluxes are categorized into “not in model,” “no flux,” “uptake,”
and “secretion.”

The results pertaining to reaction fluxes and metabolite fluxes were analyzed
using a script written in MATLAB and python respectively, to generate what we
call a binary state changing matrix. This matrix shows whether the state changing
reactions are ON or OFF for each of the FBAs. Additionally, we also use our binary

state changing matrices to visualize the relation between compounds and reactions,

the details and implications of which will be discussed in the following section.

5.2 In silico experimentation for E. col:

For our study, we initially focused on the E. coli bacterium strain K-12 MG1655,
which is considered one of the golden standard model systems in synthetic biology

labs, and whose genome is completely known [19] “Some of this material appears
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in [38]”. By stemming from this genome, we built the corresponding GEM, and
subsequently performed the FBA by using the KBase (Department of Energy Systems
Biology Knowledgebase) software application suite [25]. To obtain our numerical
results, we developed a model of the external environment containing the known
minimal set of chemical compounds necessary for this F. coli strain to grow, i.e.,
produce biomass, and at the same time allowing the variation of the concentrations
of key compounds that result in changes in the optimal FBA-computed states of
metabolic reactions. In particular, we obtained our numerical results by performing
FBA on every combination of input fluxes of two input compounds D-Glucose and
Lactose ranging from 0 to 100 [mmol/g CDW /hr| with increments of 10 [mmol/g

CDW /hr], for a total of 121 different combinations of input fluxes.

5.3 In silico experimentation for B. theta and

M. smathiz

We also studied two other organisms, namely, the B. theta and the M. smithii, both
found in the human gut, with the goal of understanding their individual metabolic
networks and their interactions with each other and the human body [8], [37].

A set of nutritional compounds such as food, nutrients, toxins which are required
as inputs and products of each organism’s metabolism were identified as Independent
Variables. Seven such compounds were selected to obtain ground truth by running
the entire configuration space in the laboratory. These seven compounds which are
hypothesized to impact whether or not the organisms will grow are Glucose, Hematin,
Formale, H2, Vitamin Bj,, Acetate and Vitamin K. These compounds can either be

present in the solution (ON) or not (OFF). These seven compounds along with the
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base compounds (which should be present always / minimal media) form the input
media for the experimentation. Each of these seven compounds may or may not be
present in the media, giving us a total of 27 = 128 media [37].

The growth of the organisms was studied as the Dependent Variable of the exper-
imentation, which is measured as the biomass dry weight in grams of cells in wvitro

and as the sum of flux through the biomass reactions using an FBA analysis [20].
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Chapter 6

Numerical Results

In this section, we present a proof-of-concept numerical example of both abstractions
(Stage I and Stage IT) and their analysis method proposed in this thesis. In particular,
we report the results of different combinations of values of the input fluxes of D-
Glucose and Lactose in terms of growth rate of the E. coli bacterium. For this, we
based our environment on the K-12 MG1655 minimal media [13], enriched with metal
tracers common to other two standard media, namely, the Lysogeny Broth (LB) and
the Carbon-D-Glucose media [6]. All compound fluxes contained in Viyin and Viax
were set -100 and 100 [mmol per gram cell dry weight per hour] ([mmol/g CDW /hr]),
respectively. On top of the defined media environment, we introduced two other input
compounds, namely, D-Glucose and Lactose, for which we simulated a variation in
their concentration, and consequent corresponding values in vyj, and vi,ay according
to Equation (4.2) and Equation (4.3). Also, we compute the upper bound steady-state
mutual information for Stage I and Stage II for the same organism.

Moreover, we extend our analysis on the two members of human gut microbiota,
the B. theta bacterium, and M. smaithii, which is a methanogenic archaeon. The

genome of both these organisms are completely known [41], [47]. We first built the
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GEM model, and performed the FBA analysis using the KBase [25]. For modeling
the external environment, we have to consider the known minimal set of compounds
necessary for both organisms to grow (i.e. produce biomass) while also allowing the
variation of the concentrations of key compounds that result in changes in the optimal
FBA-computed states of metabolic reactions. For this, we based our environment on
the minimal media [24], enriched with seven compounds, namely Carbon-D-Glucose
(G), Hematin (He), Formate (F), Hs, Vitamin By (B2), Acetate (A), and Vitamin
K (V), to obtain the ground truth for our study. Each of these seven compounds
may or may not be present in the media, giving us a total of 128 media. Along
with these important compounds, there are other compounds that are common in all
media, namely, Calcium, Chloride ion, Carbon dioxide, Cobalt, Copper, Ferrous ion,
Water, H+, Potassium, L-Cysteine, Magnesium, Manganese, Sodium, Ammonium,
Nickel, Phosphate, Sodium bicarbonate, Sulfate, Zinc, and Ferric ion.

All compound fluxes contained in Vi, were set to -100 [mmol per gram cell
dry weight per hour| (jmmol/g CDW /hr|), and vax values varied between a low of
0.0000037 and max of 46166.8875 [mmol per gram cell dry weight per hour] ([mmol/g
CDW /hr|). We generated the numerical results for both abstractions by performing
FBA on every combination of input fluxes for all seven compounds mentioned earlier

for a total of 128 different combinations.

6.1 Stagel

6.1.1 Numerical Results for E. col:

In Figure 6.1 we show the results of the FBA in terms of growth rate, or equivalently,

output flux of produced biomass, as defined in Section 4.1, computed for different
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Figure 6.1: Optimal E.Coli K12 MG1655 growth as a function of the input flux of
D-Glucose and Lactose in the environment.

combinations of values of the input fluxes of D-Glucose and Lactose. In these results,
the variation in optimal growth rate, which is dependent on the optimal metabolic
reaction states, as discussed below, varies from a minimum value of 3.061 [mmol/g
CDW /hr| when the fluxes of D-Glucose and Lactose are absent from the environment,
to a maximum value of 11.67 [mmol/g CDW /hr]. These curves show also a saturation
in the optimal growth rate for D-Glucose fluxes on the higher end of the range, and
the minimal value of D-Glucose flux to obtain this saturation varies as function of the
Lactose flux, from a minimum of 30 [mmol/g CDW/hr| to a maximum of 70 [mmol/g
CDW /hr].

In Figure 6.2, for each of the 121 tested combinations of the input fluxes of D-

Glucose and Lactose, one for each column of the matrix, we show the binary values
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Figure 6.2: FBA-estimated binary chemical reaction states {Tl*}ﬁl for each combina-
tion of D-Glucose and Lactose input fluxes, where white = ON state; black = OFF
state.

of FBA-estimated chemical reaction states {r} }ﬁl as defined in Section 4.1, one for
each column, where the number of metabolic reactions M that show a state change
within the considered combination of input fluxes of D-Glucose and Lactose is equal
to 251.

The computation of the upper bound of the steady-state mutual information is
finally realized by applying the expressions in Equations (4.5), (3.4), and (3.5), tak-
ing into account that the possible combinations of input fluxes of D-Glucose and
Lactose are drawn from a discrete set. For these preliminary results, we make the
assumption that these combinations are equiprobable. As a consequence, the corre-

sponding combinations {ci}i]il = {¢y1, Clac} computed through Equation (4.3) can be
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as well considered equiprobable with probability density P ({cy, Ciac}) = 1/(#of in-
put combinations) = 1/121. The resulting input entropy H ({cl}l 1), where N = 2, is
then computed through Equation (3.4) by substituting the integral with a summation
over the number of input combinations, which results into log,(121) = 6.92 bits. To
compute the conditional entropy of the input given the output H ({cz}fil | {ri}i]\il),

where N = 2 and M = 251, we translated Equation (3.5) into the following formula:

H ({eg, cuac {r7}i0) ZPYzP zly)log, P(zly), (6.1)

where Y and Py correspond to the number of times and the probability, respectively,
that a reaction state combination is found more than once in the data shown in Fig-
ure 6.2, X, is the number of times the reaction state combination y is found in the
data, and P(z|y) is the probability of having a combination of input concentrations
= {Cgiz, Clac,x } given the reaction state y, which we consider as a uniform distribu-
tion in the number of different combinations of input concentrations that have been
found resulting into the same the reaction state y. In our data we found a total of 4
different reaction combinations that are repeated twice, which results in a conditional
entropy of the input given the output H ({cg, Ciac}| {rl*}f\il) = 0.53 bits. Finally, the

following value is found for the upper bound of the steady-state mutual information:

I ({cg, Clact}; {r 15 = 6.39 bits (6.2)
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6.1.2 Numerical Results for B. theta and M. smaithit
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Figure 6.3: FBA-estimated binary chemical reaction states {r} } for each combina-
tion of Glucose, Hematin, Formate, Hy, VitaminBs, Acetate, and Vitamin K input
fluxes, where yellow = ON state; violet = OFF state.
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Figure 6.4: FBA-estimated binary chemical reaction states {r} }f\il for each combina-
tion of Glucose, Hematin, Formate, Hy, VitaminBis, Acetate, and Vitamin K input
fluxes, where yellow = ON state; violet = OFF state.

In Figure 6.3 and 6.4, for each of the 128 tested combinations of the input fluxes of
seven compounds, one for each column of the matrix, we show the binary values of
FBA-estimated chemical reaction states {r; }f\il as defined in Section 4.1. In addition
one for each column, where the number of metabolic reactions M that show a state
change within the considered combination of input fluxes of seven compounds is equal
to 212 and 556 for B. theta and M. smithii, respectively.

The computation of the upper bound of the steady-state mutual information is
finally realized by applying the expressions in Equations (4.5), (3.4), and (3.5), taking
into account that the possible combinations of input fluxes of the seven compounds
are drawn from a discrete set. For these preliminary results, we make the assumption
that these combinations are equiprobable. As a consequence, the corresponding com-
binations {ci}ﬁil = {CGacHe;CFacH27CBlg,cA,cvk} computed through Equation (4.3)

can be as well considered equiprobable with probability density
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P ({Cg,cHe,cF,cHQ,cBlz’cA,ch}> = 1/(#of input combinations) = 1/128. The re-
sulting input entropy H ({ci}f\il), where N = 7, is then computed through Equa-
tion (3.4) by substituting the integral with a summation over the number of input
combinations, which results into log,(128) = 7 bits.

To compute the conditional entropy of the input for both organisms, given the
output H({c;}i, | {r:},), where for B. theta N = 7 and M = 212, and for M.

smithis N =7 and M = 556, we translated Equation (3.5) into the following formula:

Y Xy
H ({CG7 CHe; CFy CHy5 CB1a5 CA, ch}’ {r:}zj\il) - - Z PY Z P(x‘y) 10g2 P('T’y) ) (63)
y=1 =1

where Y and Py correspond to the number of times and the probability, respec-
tively, that a reaction state combination is found more than once in the data shown
in Figure 6.3 and 6.4. X, is the number of times the reaction state combination y
is found in the data, and P(x|y) is the probability of having a combination of input
concentrations = {Cg.u, CHexy CFas CHyzs CBioxs CAzy Cvi, 2} glven the reaction state y,
which we consider as a uniform distribution in the number of different combinations
of input concentrations that have been found resulting into the same reaction state
Y.

The experimental data for B. theta shows that there are a total of 114 different
reaction combinations that are repeated more than once, which results in a conditional
entropy of the input given the output H ({cq, cre, CF, CHys CByys Ca, Cv {rf}f\il) =
3.6933 bits. Finally, the following value is found for the upper bound of the steady-

state mutual information:

I ({cc, e, CryCry, CByys Cas CYL T {Tf}lli?i) = 3.3068 bits (6.4)
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On the other hand, for M. smithi: we found a total of 97 different reaction com-
binations that are repeated more than once, which results in a conditional entropy of
the input given the output H ({cg, Cie, Cr, Cry, CByy, Cas Cv Y {TFH,) = 2.4778 bits,
Finally, the following value is found for the upper bound of the steady-state mutual

information:

I ({ca, e, Cr,CHy, CByys CaLCYL T {rf}g’i) = 4.5222 bits (6.5)

6.2 Stage II
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Figure 6.5: 14 FBA groups of B. theta based on similar FBA-estimated chemical
reaction states for each combination of Glucose, Hematin, Formate, Hy, VitaminBis,
Acetate, and Vitamin K input fluxes.



46

140 T T T T T T T '
0.9
120 -
Nmbor of Groups
=038
[ ) A
e =
100 ° :
L c U
=07
s € °
o F
o G
P
§ IH o6
e 80 s
» K
© L
_E v 0.5
15 N
g 60 [ °H
° 0.4
£ :
5 :
0 - v M 0.3
v
w
X
v 02
2
20 [~ Aa
™
AC 0.1
AD
AE
o I ! ! ! ! ! ! 0
0 20 40 60 80 100 120 140

Input flux combination

Figure 6.6: 31 FBA groups of M. smithii based on similar FBA-estimated chemical
reaction states for each combination of Glucose, Hematin, Formate, Hy, VitaminBis,
Acetate, and Vitamin K input fluxes.

From the matrix shown in Figure 6.5 and 6.6 we grouped the FBAs based on the
similar FBA-estimated chemical reaction states, giving us 14 groups for B. theta and
31 groups for M. smithii. We generate a new matrix, shown in Table 6.1 and 6.2,

where the rows are the groups derived in the previous step and the columns represent

the chemical compounds uptaken, secreted, and the biomass generated during the

metabolism.
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Table 6.1: FBA group matrix of B. theta where the rows are the 14 groups and the
columns represent the chemical compounds uptaken, secreted, and the generation
biomass.
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Table 6.2: FBA group matrix of M. smithit where the rows are the 31 groups and
the columns represent the chemical compounds uptaken, secreted, and the generated
biomass.

6.2.1 Upper bound of steady-state mutual information over
internal metabolic state changing reactions with

respect to biomass only

We computed the upper bound of the steady-state mutual information over the groups
of internal state changing reactions with respect to biomass by applying the ex-
pressions in Equations (4.8), (3.7), and (3.8). The corresponding groups {g;}r, =
{r}‘k, ey er*}iil. Here {gi}fil represents the list of groups, which are 14 for B. theta
and 31 for M. smithii. These groups can be considered equiprobable with probability
density P (4 {g:}1=, }) = 1/(#of input combinations). This value is 1/14 for B. theta
and 1/31 for M. smithii. The resulting input entropy H ({gi}fil), where K = 14 for
B. theta and K = 31 for M. smithii, is then computed through Equation (3.7) by
substituting the integral with a summation over the number of groups, which results
into log,(14) = 3.8074 bits and log,(31) = 4.9542 bits for B. theta and M. smithii
respectively.

To compute the conditional entropy of the input of internal state changing reac-

tions for both organisms B. theta and M. smithii given the output H({g;}=, |Gr),
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where for B. theta K = 14 and M = 8 and for M. smithii K = 31 and M = 15, we
use the same formula shown in Equation 3.8 over only biomass, where M is number
of groups based on similar biomass flux values shown in the tables above. The con-
ditional entropy for B. theta was found to be 1 bit and M. smithii was found to be
1.1455 bits.

The information loss in function of the input state changing reactions within inter-
nal cell metabolism and output biomass is then be calculated as a difference of input

entropy and conditional entropy of the input given the output, which was found to

be 2.8074 bits for B. theta and 3.8087 bits for M. smuithis.

6.2.2 Upper bound of steady-state mutual information over
internal metabolic state changing reactions with
respect to uptake and secretion of compounds and

biomass

We further group the FBA groups based on the similar biomass values. This gave us
8 groups for B. theta and 15 groups for M. smithii. As we described in Sections 3.2.2
and 4.2.2 we use the same equations to compute the upper bound of the steady-
state mutual information with respect to chemical compounds uptaken, secreted and
biomass flux values.

The corresponding groups are {gi}fil = {r{k, s er*}fil. Here {gi}fil represents
the list of groups, which are 14 for B. theta and 31 M. smaithii. The resulting input
entropy H({g:}._,), where K = 14 and 31, is then computed through Equation (3.4)
by substituting the integral with a summation over the number of input combinations,

which results into log,(14) = 3.8074 bits for B. theta and log,(31) = 4.9542 bits for
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M. smithii. To compute the conditional entropy of the input for both organisms B.
theta and M. smithii given the output H({g;}, [ {Us}r,, {Sj};.(:l ,Gr), where for
B. theta K = 14 and M = 13, and for M. smithit K = 31 and M = 16, we use the
same formula shown in Equation 3.8 over uptaken compounds, secreted compounds,
and biomass with the only change that M is number of groups based on similar
compounds secreted, uptaken and biomass flux values shown in the tables above.
The conditional entropy for B. theta was found to be 0.1429 bits and M. smithii was
found to be 1.0810 bits.

The information loss in the function of input chemical compounds and output
as uptaken compounds, secreted compounds, and biomass could be calculated as a
difference of input entropy and the conditional entropy of the input given the output,

which was found to be 3.6645 bits for B. theta and 3.8732 bits for M. smithis.

6.2.3 Upper bound of steady-state mutual information over
seven input compounds with respect to uptake and

secretion of compounds and biomass

We further group the FBA groups based on the similar biomass values. This gave us
8 groups for B. theta and 15 groups for M. smithii. As we described in Sections 3.2.2
and 4.2.2 we use the same equations to compute the upper bound of the steady-state
mutual information over seven input chemical compounds with respect to uptaken,
secreted and biomass flux values.

The corresponding groups are {gi}fil = {r} . ...,TMk*}f;. Here {gi}fil repre-
sents the list of groups, which are 14 for B. theta and 31 M. smithii. The resulting
input entropy H ({gi}fil), where K = 14 and 31, is then computed through Equa-

tion (3.4) by substituting the integral with a summation over the number of input



20

combinations, which results into log,(128) = 7 bits. To compute the conditional
entropy of the input for both organisms B. theta and M. smithii given the output
H{gi Y, U, {Sj}jil , Gr), where for B. theta K = 14 and M = 8, and for M.
smithit K = 31 and M = 15, we use the same formula shown in Equation 3.8 over
uptaken compounds, secreted compounds, and biomass with the only change that M
is number of groups based on similar compounds secreted, uptaken and biomass flux
values shown in the tables above. The conditional entropy for B. theta was found to
be 4.2644 bits and M. smithii was found to be 4.3802 bits.

The information loss in the function of input chemical compounds and output
as uptaken compounds, secreted compounds, and biomass could be calculated as a
difference of input entropy and the conditional entropy of the input given the output,

which was found to be 2.7356 bits for B. theta and 2.6198 bits for M. smithis.
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6.3 Visualization

Group_F

Reactions

Reactants Products

Figure 6.7: A hive plot for the FBA group F is shown in the figure. The reactions
are placed on the 7 axis, the reactants on the X axis and the products on the Y axis.
Further the External compounds are placed higher on the X and Y axes than the
Internal compounds.

Hive plots [27] were utilized to visualize the complex network of reactions taking
place within the cell. In a hive plot the nodes of a network are arranged along a
predetermined number of axes. The hive plot shown is a representation of the FBA

group for M. smithii. We obtained 31 FBA-estimated chemical reaction states groups

and labeled them A-AE as shown in Table 6.2. It was determined that three axes
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were sufficient to represent the entire set of data available. The first axis consists of
all the state changing reactions present across all the FBA groups. The second and
third axes represent the same set of compounds arranged in the same order in both
the axes. However, the second axes represents the compounds which are products of
a reaction while the third axes represents the compounds which are reactants in a
reaction. This differentiation helps to better see the difference between multiple FBA
groups. Also, the compounds that are external (uptaken or secreted) to the cell are
arranged at higher positions on the axes when compared to the internal compounds.

The Software Jhive 3.0 [22] utilized to generate the hive plots. Jhive is imple-
mented in Java and therefore can be used on any operating system that supports
Java. Jhive can also generate differential hive plots which allows the comparison of
two different hive plots with ease. Figures show the comparison of FBA groups F, G
and Z. While group F and G have the same value of production of biomass, group Z

has the least production of biomass.
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Figure 6.8: Shows differential hive plots of F vs G and F vs Z. The groups F and G in
F vs G hive plot has the same biomass whereas, the groups F and Z in F vz Z hive plot
have the least and highest biomass respectively. When a reaction is present in F and
absent in G or Z the reaction is represented along with its links to the compounds.
When a reaction is present in the other groups but absent in group F the reaction is
shown as a node not connected to any other compounds.

The comparison shows that groups F and G differ by a few reactions while F and
Z vary by more reactions. The figure 6.9 represents the same FBA group as the first
figure but as a network diagram instead. The hive plots show clearly that there is still
internal change in the ones with same biomass and much more (but expected) change
when the biomass differs. The software Gephi [17] was used to plot the network di-
agram. The size of a node is proportional to the number of links to that node. The
network nodes represent reactions as well as compounds. It is difficult to represent
the large set of data as a network diagram. Hive plots provide a way to arrange the

nodes based on predetermined classification.

Visualization of cell metabolic network helps in observing the changes due to dif-

ferent combinations of FBAs. By stemming from the aforementioned abstraction, we
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Figure 6.9: Shows the state changing reactions represented as a network diagram.
The size of a node is proportional to the number of links connecting to or from it.

presented an in silico computation of the aforementioned upper bound to the mutual
information by using the FBA metabolic simulation technique based on the knowl-
edge of the genome of three different sample organisms. This allowed to estimate the
information capacity for Stage I and Stage II, and ultimately, the flow of information

measured in bits through cell metabolism.
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Chapter 7

Conclusions and Future Work

In this thesis, we have introduced a method to obtain an upper bound to the steady-
state mutual information of a communication system based on cell metabolism and
its regulation. This upper bound stands as theoretical limit of the ability of a cell
to internally represent the information contained in the chemical composition of the
external environment, and to convey this information to experimentally observable
parameters underlying its interactions with the environment. For this, we introduced
an abstraction of cell metabolism based on the theory of molecular communication
systems. In this abstraction, the cell metabolism is modeled by two subsequent stages.
Stage I models the regulation of the chemical reaction activity in cell metabolism as a
binary encoder of the external concentration of chemical compounds. Stage IT models
the cell metabolic interaction with the external environment as a digital modulator
of the state of the binary metabolic reactions into the metabolite uptake/secretion
and the growth of the cell itself.

The abstraction and analysis method developed in this thesis will contribute to the
characterization of organisms in biology by introducing a novel point of view, based on

communication engineering abstractions, to reason about and quantify how organisms
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process information. In particular, we envision that our in silico computation can be
utilized to understand how organisms can be fine tuned and controlled by properly
varying the chemical composition of their living environment. In the long run, this
approach will potentially help the design of techniques to control functionalities in
cells engineered through genetic circuits [32]. Additionally, we provided a sample
visualization of the metabolic network parameters used to help in computation of the
mutual information based on Hive plots.

Future work will be focused on a thorough modeling and evaluation of this molec-
ular communication system, including models of the noise source and the dynamic
behavior of metabolic regulation using Dynamic Flux balance Analysis [21], includ-
ing the investigation of its information theoretical capacity. We will also focus on
developing a model to study how to extract information from lab data and compare
it to the optimal (upper bound) solution, and set the basis for the design of the afore-
mentioned techniques to operate a fine-tuned control on the cell behavior based on

information transmission through its metabolism.
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