
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Fall 11-25-2009

Classification, Clustering and Data-Mining of
Biological Data
Thomas Triplet
University of Nebraska at Lincoln, thomastriplet@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Bioinformatics Commons, Computer Engineering Commons, and the Computer
Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Triplet, Thomas, "Classification, Clustering and Data-Mining of Biological Data" (2009). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 2.
http://digitalcommons.unl.edu/computerscidiss/2

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/2?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

Classification, Clustering

and Data-Mining

of Biological Data

by

Thomas Triplet

A Dissertation

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

(Bioinformatics)

Under the Supervision of Professor Peter Revesz

Lincoln, Nebraska

November, 2009

http://www.thomastriplet.net
http://www.unl.edu

Classification, Clustering

and Data-Mining of Biological Data

Thomas Triplet, Ph.D.

University of Nebraska, 2009

Advisor: Peter Revesz

The proliferation of biological databases and the easy access enabled by the
Internet is having a beneficial impact on biological sciences and transforming
the way research is conducted. There are currently over 1100 molecular biology
databases dispersed throughout the Internet. However, very few of them inte-
grate data from multiple sources. To assist in the functional and evolutionary
analysis of the abundant number of novel proteins, we introduce the PROFESS
(PROtein Function, Evolution, Structure and Sequence) database that inte-
grates data from various biological sources. PROFESS is freely available at
http://cse.unl.edu/~profess/. Our database is designed to be versatile and
expandable and will not confine analysis to a pre-existing set of data relation-
ships. Using PROFESS, we were able to quantify homologous protein evolution
and determine whether bacterial protein structures are subject to random drift
after divergence from a common ancestor.

After relevant data have been mined, they may be classified or clustered for
further analysis. Data classification is usually achieved using machine-learning
techniques. However, in many problems the raw data are already classified ac-
cording to a set of features but need to be reclassified. Data reclassification
is usually achieved using data integration methods that require the raw data,
which may not be available or sharable because of privacy and legal concerns.
We introduce general classification integration and reclassification methods that
create new classes by combining in a flexible way the existing classes without
requiring access to the raw data. The flexibility is achieved by representing
any linear classification in a constraint database. We also considered temporal
data classification where the input is a temporal database that describes mea-
surements over a period of time in history while the predicted class is expected
to occur in the future. We experimented the proposed classification methods
on five datasets covering the automobile, meteorological and medical areas and
showed significant improvements over existing methods.

http://www.thomastriplet.net
http://www.unl.edu
 http://cse.unl.edu/~profess/

To my loving fiancée Chloë

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Professor Peter

Revesz who first introduced bioinformatics to me. Without his brilliant ideas

and guidance I would not have been able to complete this dissertation. He has

helped me to expand the breadth and depth of my knowledge and research by

providing many insights into my research problems.

I would like to thank Dr. Jitender Deogun, Dr. Mark Griep and Dr. Robert

Powers for serving on my thesis committee. I sincerely appreciate their ines-

timable feedback on my research and their valuable comments on my disserta-

tion. A special thanks to Dr. Jean-Jack Riethoven for giving me the opportunity

to work with him at the Bioinformatics Core Research Facility. I would also like

to thank Matt Shortridge for answering so many of my questions in biology.

I am grateful to the Milton E. Mohr Fellowship at the University of Nebraska-

Lincoln and the Department of Computer Science & Engineering for their finan-

cial support related to this work. I am also especially grateful to Dr. Gregory

Butler from Concordia University (Montreal, QC) for his understanding and his

support while I was finishing my dissertation, in particular during the ADBIS

2009 conference in Riga.

No special thanks to Dell, whose customer service proved to be remarkably

worthless when my laptop burnt three weeks before submitting this dissertation

(for the second time in one year!). The numerous overnight experiments I ran

on my laptop to complete this work must have been too intensive...

Finally, I would like to thank my parents who have provided great support

and encouragement throughout my education. Last, I would like to thank my

adorable fiancée Chloë for her understanding, love, and support throughout all

these years and short nights.

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

2 Background and Related Material 5

2.1 Basic Concepts of Biology . 5

2.1.1 Biomolecules . 6

2.1.1.1 Carbohydrates . 6

2.1.1.2 Lipids . 7

2.1.1.3 Nucleic Acids . 7

2.1.1.4 Proteins . 10

2.1.2 Transcription: from DNA to RNA 11

2.1.3 Translation: from RNA to Proteins using the Genetic Code 12

2.1.4 Protein Structures . 14

2.1.4.1 Primary Structure . 14

2.1.4.2 Secondary Structure . 19

2.1.4.3 Ternary Structure . 23

2.1.4.4 Quaternary Structure . 25

2.2 Review of Bioinformatics Databases and Tools 25

2.2.1 Protein Sequence Alignments . 25

2.2.1.1 Scoring Schema . 26

2.2.1.2 Smith-Waterman Algorithm 28

2.2.1.3 Basic Local Alignment Search Tool: BLAST 30

CONTENTS v

2.2.2 Protein Structure Alignments . 31

2.3 Supervised Machine Learning Algorithms 32

2.3.1 Linear Classifiers . 33

2.3.2 Support Vector Machines . 34

2.3.3 Decision Trees . 37

2.4 Constraint Databases . 39

2.5 Inverse Distance Weighted Interpolation . 40

3 The PROFESS Database 44

3.1 Introduction . 44

3.2 Database Integration Problem . 45

3.3 Overview of PROFESS . 46

3.4 Database Content . 50

3.4.1 Functional Annotation of the Protein Data Bank 50

3.4.2 Functional Level . 51

3.4.3 Phylogenetic Level . 54

3.4.4 Structural Level . 55

3.4.5 Sequence Level . 58

3.5 Local-As-View Data Integration and Database Design 58

3.6 Functional-Style Query System . 61

3.6.1 The PROFESSor . 61

3.6.2 Functional-Style Query System . 62

3.7 Web User Interface . 63

4 Structural Comparison of Functional Orthologs 66

4.1 Introduction . 66

4.2 Functional Annotation of Protein Structures 68

4.3 Pairwise Structure Similarity . 68

4.3.1 Methods . 68

4.3.2 Results . 71

4.4 Phylogenetic Analysis of Functional Orthologs 74

4.4.1 Methods . 74

CONTENTS vi

4.4.2 Results . 75

4.5 Structure Divergence Rates across Phyla . 77

4.6 Fold dependency on Structure Similarity . 79

4.7 Discussion . 80

5 Experimental Datasets 83

5.1 CRCars Database . 84

5.2 Google Flu Trends Dataset . 85

5.3 Heart Disease Databases . 87

5.4 Primary Biliary Cirrhosis Trial . 88

5.5 Texas Commission on Environmental Quality Dataset 90

6 Representation and Querying of Linear Classifiers 93

6.1 Introduction . 93

6.2 Representation and Querying of SVMs . 94

6.3 Representation and Querying of ID3 Decision Trees 96

6.4 Representation and Querying of ID3-Interval

Decision Trees . 97

7 Data and Classifier Integration 99

7.1 Introduction . 99

7.2 The Classification Problem with Multiple Sources 101

7.2.1 Data Integration . 101

7.2.2 Classifier Integration with Constraint Databases 102

7.3 Experimental Evaluation of the Classifier Integration Method 104

7.3.1 Experimental Protocol and Results 104

7.3.2 Discussion . 105

8 Data Reclassification 108

8.1 Introduction . 108

8.2 The Reclassification Problem . 110

8.3 Reclassification with an Oracle . 111

8.4 Reclassification with Constraint Databases 112

CONTENTS vii

8.5 Comparison of Reclassification with an Oracle and Constraint Databases . . 116

8.5.1 Experimental Results with the CRCARS data set 116

8.5.2 Experimental Results with the PBC database and Discussion 116

9 Temporal Classification 122

9.1 Introduction . 122

9.2 Temporal Classifications with Historical Data 125

9.3 Experimental Evaluation of the Temporal Classification Method 126

9.3.1 Experimental Results with TCEQ Data 126

9.3.2 Experimental Results with Reduced TCEQ Data 130

9.4 Comparison of the Temporal Classification Method and the IDW Interpolation130

9.4.1 Experimental Results with Temporal FLU Data 130

9.4.2 Experimental Results with Spatio-Temporal FLU Data 132

9.4.3 Discussion . 134

10 Conclusion 135

References 137

List of Figures

2.1 Hydrolyze of carbohydrate sucrose into monosaccharides glucose and fructose 7

2.2 Double complementary strand structure of DNA 8

2.3 Central dogma of biology . 11

2.4 The four hierarchical levels of protein structures 14

2.5 General structure of an amino-acid in its zwitterionic form 15

2.6 Classification of amino-acids properties using a Venn diagram 15

2.7 Dehydration synthesis of a tripeptide by the formation of two peptide bonds 19

2.8 Planar peptide groups and torsion angles in a polypeptide 20

2.9 Ramachandran plot representing stereochemically allowable torsion angles φ/ψ 21

2.10 3D representation of the multi-helical structure of the myoglobin protein . . 22

2.11 Comparison of parallel β-sheets and anti-parallel β-sheets 22

2.12 Examples of typical protein quaternary structures 24

2.13 Dynamic programming matrix for the Smith-Waterman algorithm 30

2.14 Training set classified without error by multiple suitable hyperplanes 35

2.15 Maximum-margin hyperplane built by an SVM 36

2.16 Mapping input data to a higher dimensional feature space using kernel tricks 37

2.17 Efficient representation of a moving square in a constraint database 40

2.18 Two methods to define the surrounding area around an interpolated point . 41

3.1 Outline of the PROFESS database . 47

3.2 The modules Ligands, Protein Interactions and Functions for COG 329 . . 52

3.3 Module Function Summary of the PROFESS database 54

3.4 The modules Structure and Sequence-based Phylogeny for COG 12 55

LIST OF FIGURES ix

3.5 The modules Structure and Structure Comparisons for COG 329 56

3.6 The modules Sequence and Sequence Similarities for COG 329 57

3.7 Entity-Relationship diagram of the PROFESS database 59

3.8 Comparison of the ETL and the LAV solutions for the data integration problem 60

3.9 The PROFESSor query system . 61

3.10 Overview of PROFESS user interface . 63

4.1 Relationship between structure similarity and sequence identity for 48 COGs 72

4.2 The fractional structure similarity and sequence identity for 48 COGs . . . 72

4.3 Comparison of protein structures for COG 28 between two bacterial phyla . 73

4.4 Protein structure based phylogenetic trees highlighting the split, split+1 and

starburst patterns . 76

4.5 Constant rate of structural drift . 78

4.6 Fold dependency on fractional structure similarity and sequence identity . . 79

5.1 Decision tree for the prediction of ORIGIN using the CRCARS dataset . . 85

5.2 Decision tree for the prediction of EFFICIENCY using the CRCARS dataset 85

5.3 ILI estimates from Flu Trends and the Centers for Disease Control 86

5.4 Decision tree for the prediction of the status of a patient using PBC data . 89

5.5 Decision tree for the prediction of the drug efficiency using PBC data . . . 90

5.6 ID3-Interval decision tree for the prediction of the temperature using TCEQ 91

6.1 ID3 decision tree for the prediction of the temperature using TCEQ 96

7.1 Comparison of data integration and classification integration methods . . . 100

7.2 Comparison of data integration with classification integration using SVMs

without missing values . 106

7.3 Comparison of data integration with classification integration using ID3 de-

cision trees without missing values . 106

7.4 Comparison of data integration and classification integration using SVMs

with missing values . 107

7.5 Comparison of data integration and classification integration using ID3 deci-

sion trees with missing values . 107

LIST OF FIGURES x

8.1 Comparison of the reclassification with an oracle and reclassification with

constraint databases methods . 109

8.2 Comparison of the Reclassification with constraint databases and the original

ID3 decision tree for the prediction of the fuel efficiency of cars 117

8.3 Comparison of the Reclassification with constraint databases and the original

ID3 decision tree for the prediction of the origin of cars 118

8.4 Comparison of the Reclassification with constraint databases and the Reclas-

sification with an oracle using the CRCARS database 118

8.5 Prediction of DISEASE from the PBC data using SVMs 119

8.6 Prediction of DRUG from the PBC data using SVMs 119

8.7 Prediction of DISEASE from the PBC data using ID3 120

8.8 Prediction of DRUG from the PBC data using ID3 120

8.9 Prediction of DISEASE DRUG with the PBC data using SVMs 121

8.10 Prediction of DISEASE DRUG with the PBC data using decision trees . . 121

9.1 Comparison of the standard and the temporal classification methods. 123

9.2 Comparison of regular and temporal classification using 40 features and SVM 128

9.3 Comparison of regular and temporal classification using 40 features and ID3 128

9.4 Comparison of regular and temporal classification using 3 features and SVM 129

9.5 Comparison of regular and temporal classification using 3 features and ID3 129

9.6 ROC analyses of IDW and temporal SVMs/ID3 using temporal data 131

9.7 ROC analyses of IDW and temporal SVM/ID3 using spatio-temporal data . 133

List of Tables

2.1 The genetic code . 13

2.2 Main structural and functional roles of the 20 standard amino-acids 16

2.3 Main parameters of regular secondary structures of proteins 23

2.4 The BLOSUM62 substitution matrix . 27

2.5 Constraint database representation of a moving square 40

3.1 Core databases currently integrated in PROFESS 48

3.2 List of modules available in the user interface of PROFESS 49

4.1 The 48 COG structure families with two Firmicutes and two Proteobacteria

organisms after manual curation . 69

5.1 Usage of the datasets during the experimental evaluations of our methods . 83

5.2 Main characteristics of the experimental data sets 84

6.1 Sample data from the simplified Texas Weather database 94

6.2 Linear constraint relation Texas SVM . 95

6.3 Linear constraint relation Texas ID3 . 96

6.4 Linear constraint relation Texas ID3-Interval 97

7.1 Sample patients from Cleveland and Budapest hospitals 101

7.2 Integrated Budapest-Cleveland Patients data set 102

7.3 New SVM classification derived from the integrated Cleveland-Budapest data 102

7.4 SVM-based Cleveland and Budapest Classifications 103

7.5 Integrated Classification using the Cleveland and Budapest Classifications . 103

LIST OF TABLES xii

8.1 Example of medical records for the status of patients and the efficiency of

penicillamine . 110

8.2 Modification of the Patient Status and Drug Efficiency relations using an oracle112

8.3 Constraint database representation of the Drug Efficiency classification . . 113

8.4 Constraint database representation of the Patient Status classification . . . 114

8.5 First five satisfiable constraint tuples for the reclassification of Drug and Status114

9.1 Remapping of historical data using the Texas Weather History relation . . . 125

Chapter 1

Introduction

“Biological databases have been invaluable for making [protein data] accessible. But,

although they are architecturally similar, so far their integration has proved problematic.”

Stein, 20031

The progress of the techniques in molecular biology, genomics and medicine have en-

abled the scientific community to collect an increasing amount of biological and medical

data. However, the greatest value of the data is in its analysis, which may be challeng-

ing when dealing with huge amounts of data if a data structure is not properly defined.

Bioinformatics is the new interdisciplinary area at the intersection of biological and com-

puter, and information sciences necessary to manage, process, and understand those large

amounts of data, for instance from genome sequencing or from large databases containing

information about plants and animals for use in discovering and developing new drugs.

Current biological databases present many types of problems, from poorly defined user-

interfaces2 to limited and error-prone search options3. A common problem with databases

are the unique, randomly assigned accession numbers (COG number, Pfam number, PDB-

ID, etc) that are the primary means to retrieve data, but are generally extremely difficult

to obtain or decipher. Therefore text-based searches against predefined fields are the major

means for a biologist to retrieve the desired data from databases4,5,6. However, current

implemented text-based queries are fundamentally flawed and routinely return inaccurate

and redundant results3.

1. INTRODUCTION 2

For example, a text search of the Protein Data Bank7 for structures of the Bid apoptosis

protein yielded nine structures, but only three Bid structures are in the PDB. The other six

structures were retrieved by mistake, which included such completely unrelated structures

as a parvovirus-DNA complex (PDB-ID 4DPV) and an actin-inhibtor complex (PDB-ID

2FXU). While this short list can be manually filtered, it clearly identifies a problem with

searches that result in large lists of answers, which cannot be manually edited and are

probably unreliable. Extending a search across multiple databases requires correlating

answers from several different queries; this will simply compound the number of errors. The

query results will probably be meaningless since a majority of the data had been incorrectly

selected. How data can be retrieved, classified and analyzed is greatly restricted. The

remaining of this chapter gives an overview the author’s main contributions.

The PROFESS database

To address the above issues, we first propose in Chapter 3, the PROFESS (PROtein

Function, Evolution, Structure and Sequence) database, a genome biology database sys-

tem to assist in the functional and evolutionary analysis of the abundant number of novel

proteins. To achieve this goal, it is essential for the database structure to be versatile and ex-

pandable and not confine analysis to a pre-existing set of data relationships. A fundamental

component of this approach is based on an intuitive query system that incorporates a variety

of similarity functions capable of generating data relationships not conceived during the cre-

ation of the database. PROFESS is freely available at http://cse.unl.edu/~profess/. It

was presented at the 11th International Congress on Amino Acids, Peptides and Proteins8

and has been submitted for publication in Database9.

Phylum Dependent Divergence

In Chapter 4, we present in details a concrete example of how PROFESS can be utilized

to quantify homologous protein evolution and determine whether bacterial protein struc-

tures are subject to random drift after divergence from a common ancestor. The clusters

of orthologous groups (COG) classification system was used to annotate homologous bac-

terial protein structures in the Protein Data Bank (PDB). The structures and sequences

of proteins within each resulting COG were then compared against each other to establish

http://cse.unl.edu/~profess/

1. INTRODUCTION 3

their relatedness. As expected, the analysis showed there was a sharp structural divergence

between the bacterial phyla Firmicutes and Proteobacteria. Additionally, we showed that

although each COG had a distinct sequence/structure relationship – suggesting that dif-

ferent evolutionary pressures affect the degree of structural divergence – the relative drift

rate between sequence identity and structure divergence remains constant. Our analysis

has been submitted for publication in PLoS ONE10.

Once some relevant data have been retrieved, they may be classified or clustered for

further analysis. Data classification is usually achieved using decision trees11, support vec-

tor machines12 or other machine learning algorithms. Researchers or medical experts may

conduct similar studies, leading to redundant classifications. Intuitively, those studies may

be combined to produce more accurate results. Most data integration methods will fail

because the raw data may not be available for privacy and legal concerns. Integrating the

classification results of the former studies may still be valuable. How can those classifica-

tions be integrated? How does this classification integration compare with standard data

integration methods?

Classification Integration

Chapter 7 introduces classification integration13 as a new method for data integration

from different sources. Classification integration is a new method that represents classifiers

using constraints. The flexibility is achieved by utilizing our novel representation of any

linear classification in a constraint database14,15,16 (Chapter 6). Our method does not

depend on any particular linear classifier nor any specific constraint database system. Our

experiments using support vector machines and decision trees on two medical datasets

show that the proposed classification integration method is significantly more accurate than

current data integration methods when there are many missing values in the data. Beside

these particular cases, our general method is also appropriate for many other application

areas and may yield similar accuracy improvements. Our classification integration method

has been accepted for publication in Artificial Intelligence in Medicine13.

1. INTRODUCTION 4

Classification Reclassification

The classification integration problem is further complicated when two classifiers classify

different characteristics. In many problems the raw data is already classified according to

a variety of features using some linear classification algorithm but needs to be reclassified.

In Chapter 8, we introduce a novel reclassification method17 that creates new classes by

combining in a flexible way the existing classes without requiring access to the raw data.

The flexibility is achieved by representing the results of the linear classifications in a linear

constraint database and using the full query capabilities of a constraint database system.

The method was successfully tested on two datasets that were already classified using sup-

port vector machines and decision trees. Our reclassification method was presented at the

5th Midwest Database Research Symposium18 and was published in the proceedings of the

12th East-European Conference on Advances in Databases and Information Systems17.

Temporal Data Reclassification

The classification integration and reclassification proposed above considered the case

where data was collected at the same time. Chapter 9 describes an extension to those meth-

ods by considering temporal data classification19 where the input is a temporal database

that describes measurements over a period of time in history while the predicted class is

expected to occur in the future. We describe a new temporal classification method that

improves the accuracy of standard classification methods. The benefits of the method are

tested on weather forecasting using the meteorological database from the Texas Commis-

sion on Environmental Quality. We also used the Google Flu Trends data to show that

the proposed method outperforms traditional spatio-temporal interpolation method. Our

temporal data classification method was published in the proceedings of the 13th East-

European Conference on Advances in Databases and Information Systems19 and has been

selected for submission in Information Systems20.

Finally, Chapter 10 concludes this work and and suggests possible future extensions to

solve open problems.

Chapter 2

Background and Related Material

Bioinformatics (noun): The collection, organization and analysis of large amounts of

biological data, using networks of computers and databases.

Biology (from Greek βιoλoγoς - βιoς, ”life”; -λoγoς , -logos, study of) is the science

of living organisms. Biology at a microscopic scale began in 1665 when Robert Hooke

discovered that organisms are composed of small individual units called cells. This discovery

marked an important milestone as it turned biology into a science beyond the reach of the

naked eye. After describing the basic concepts of biology (Section 2.1), we review some of

the major bioinformatics tools (Section 2.2) that have been developed for more than twenty

years to assist biologists. Section 2.3 explains how machines can acquire some knowledge

in a field of interest and automatically build taxonomies to classify items. Section 2.4

introduces constraint databases, which we use to improve machine-learning algorithms.

Finally, Section 2.5 presents spatio-temporal interpolation methods.

2.1 Basic Concepts of Biology

A great diversity of cells exists in nature. Despite those differences, they also share a

great number of common characteristics. Cells are a complex mechanical system. Not only

do all cells store all the information necessary to make a complete replica of itself∗, they
∗Except haploid cells or gametes

2. BACKGROUND AND RELATED MATERIAL 6

also contain the machinery necessary to store energy, manufacture their components, etc...

Despite their complexity, cells also share structural components that are conserved across

most – if not all – organisms.

The remaining of this review of biological principles is organized as follows: section 2.1.1

explains in more details the four classes of biomolecules. Sections 2.1.2 and 2.1.3 gives a

general description of the processes that allow the synthesis of proteins from DNA. Finally,

section 2.1.4 describes in details the four levels of protein structures.

2.1.1 Biomolecules

All known forms of life depends on fours classes of biomolecules∗:

• Carbohydrates or saccharides are the most abundant biomolecules. They play many

roles in cells, from energy storage to structural components.

• Lipids, which are used in cell membranes and as efficient energy source.

• Nucleic acids carry the genetic information of the organism.

• Proteins include enzymes that perform most biochemical reactions for cell regulation.

2.1.1.1 Carbohydrates

Carbohydrates are simple organic compounds that have the empirical formula (CH2O)n.

The simplest carbohydrates are called monosaccharides or sugars. Glucose is the six-carbon

monosaccharide used as a basic source of energy by most heterotrophic organisms, that is,

organisms that use organic carbon for growth. Ribose and deoxyribose are the five-carbon

sugars that serve a structural role in the nucleic acids RNA and DNA respectively. Sucrose

(see Figure 2.1†) is a disaccharide composed of glucose and fructose (an isomer of glucose)

and is the major sugar transported between cells in plants, whereas glucose is the primary

sugar transported in animal cells. Most carbohydrate molecules in nature are composed of

hundreds of sugar units and are referred as polysaccharides.
∗Other types of molecules, which are beyond the scope of this work, also play a critical role in cells.
†From http://www.bio.miami.edu/∼cmallery

2. BACKGROUND AND RELATED MATERIAL 7

Figure 2.1: Carbohydrate sucrose is a disaccharide composed of glucose and fructose. In

presence of water, sucrose can be hydrolyzed by an enzyme called sucrase.

Carbohydrates play several major functions in living organisms. For example, monosac-

charides serve as readily utilizable energy sources. Carbohydrates also performs struc-

ture roles, such as cellulose in plant cell walls and chitin in the exoskeletons of arthro-

pods. Surface carbohydrates often form complexes with proteins known as glycoproteins,

or with lipids. The great potential for structural diversity and thus, specificity, makes these

molecules very useful as cell markers in cellular communication.

2.1.1.2 Lipids

Lipids are small non-polar molecules that are insoluble in water. The most important feature

of lipids is their ability to form sheetlike membranes. Membranes in both prokaryotic and

eukaryotic cells separate the cellular content from the external environment, thus allowing

the cell to function as a unit. Lipids also serve as highly efficient energy storage molecules.

2.1.1.3 Nucleic Acids

Nucleic acids occur in two forms: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).

Both are linear unbranched polymers of subunits called nucleotides. DNA is found in the

nucleus of eukaryotes and the cytoplasm or nucleoid of prokaryotes, and is the molecule

that contains the genetic material of the organism. RNA molecules are synthesized on

DNA templates (see Section 2.1.2) and participate in protein synthesis in the cytoplasm (see

2. BACKGROUND AND RELATED MATERIAL 8

Figure 2.2: DNA is composed of a phosphate group, a deoxyribose sugar (cyan) and four

nitrogen-containing organic bases: adenine (pink), cytosine (purple), guanine (green) and

thymine (yellow). The DNA molecule is composed of two complementary strands, where

adenine bonds to thymine, and cytosine bonds to guanine.

Section 2.1.3). DNA is usually found in the form of a helix composed of two complementary

strands whereas RNA is single-stranded.

Each nucleotide consists of three major parts:

1. A five-carbon carbohydrate (pentose).

2. A negatively charged phosphate group, which gives the polymer its acidic property.

3. A nitrogen-containing organic base.

The sugar β-D-ribose is found in the ribonucleotide monomers of RNA. The pentose in

the deoxyribonucleotide monomers of DNA differ only by the absence of oxygen at the #2

carbon and is thus called 2-deoxy-β-D-ribose. The organic bases are of two types: single-

ringed pyrimidines and double-ringed purines. The purines are adenine (A) and guanine.

The pyrimidines are cytosine (C), thymine (T) and uracil (U). Thymine is primarily found

in DNA, whereas uracil is found in RNA only.

2. BACKGROUND AND RELATED MATERIAL 9

Historically, DNA was first discovered in 1869 when Johann Friedrich Miescher isolated

a substance he called “nuclein” from nuclein of white blood cells. In the early 1900s,

the four organic bases of DNA were known. In the 1920s, nucleic acids were classified

into two classes: DNA and RNA. Interestingly, for nearly eighty years, little attention

if any was given to DNA, because it was thought to be a simple polymer incapable of

encoding sophisticated genetic information as hypothesized by the accepted Schrödinger’s

code script∗. Schrödinger’s theory was proved to be incorrect in 1944 by Oscar et al.

when they demonstrated that genes indeed reside on DNA. In 1950, Chargaff discovered

an exact one-to-one ratio of the adenine/thymine and cytosine/guanine content21. A year

later, Wilkins22 and Franklin23 obtained the first X-ray images of DNA, which suggested a

helical structure. The actual double helical structure the the DNA molecule was determined

in 1953 by James Watson and Francis Crick24.

“It has not escaped our notice that the specific pairing we have postulated

immediately suggests a possible copying mechanism for the genetic material.”

Watson and Crick, 1953

Each type of base on one strand forms a bond with just one type of base on the other

strand (see Figure 2.2). This is called complementary base pairing. Purines form hydrogen

bonds to pyrimidines, with adenine pairing only with thymine, and cytosine only with

guanine. This arrangement of two nucleotides binding together across the double helix is

called a base pair. As hydrogen bonds are not covalent, they can be broken and rejoined

relatively easily. DNA strands start at the 5’-end of the nucleotide chain and terminates

at the 3’-end of the molecule. The sugar-phosphate backbone is on the outside of the helix

where the polar phosphate groups interact with the environment. The nitrogen containing

bases are inside, stacking perpendicular to the helix axis. On the contrary, RNA molecules

are synthesized as single stranded molecules. The single RNA strand may however fold

onto itself and form complementary base pairs to make unique secondary structures. Such
∗Schrödinger suggested that the rules defining life was encrypted in a complex instruction book.

2. BACKGROUND AND RELATED MATERIAL 10

RNA secondary structures proved to be critical in the synthesis of some proteins, such as

selenocysteine-containing proteins25.

As noticed by Watson and Crick24, an important property of DNA is that it can self-

replicate, that is, make copies of itself through a process known as replication∗. Each strand

of DNA in the double helix can serve as a pattern for duplicating the sequence of bases.

This is critical when cells divide because each daughter cell needs to have an exact copy of

the DNA present in the mother cell.

There exists three major types of RNA molecules:

• Messenger RNA (mRNA), the most common type of RNA, are generated from

DNA templates (section 2.1.2), and used to synthesize proteins.

• Ribosomal RNA (rRNA), are a central component of ribosomes, which are used

during RNA translation (section 2.1.3).

• Transfert RNA (tRNA), are small RNA strands (typically less than 100 nucleotides)

that bind individual amino-acids and are used to grow the polypeptide chain.

2.1.1.4 Proteins

Proteins – or polypeptides – are molecular devices, at the atomic scale, where biological

functions are performed. They are the fundamental bricks of cells in our bodies and in all

living organisms. Although the genetic information necessary for life to exist is encoded in

DNA, the actual processes for life maintenance, cell regulation, replication and reproduction

are carried out by proteins.

Proteins are classified at different levels in the Gene Ontology database26. The Molecular

Function level describes the tasks performed by proteins and encompasses twelve categories:

cellular processes, metabolism, DNA replication/modification, transcription/translation, in-

tracellular signaling, cell-cell communication, protein folding/degradation, transport, multi-

functional proteins, cytoskeletal/structural and defense and immunity. Structural proteins

for instance are responsible for the cell physical integrity. The immune system, which is
∗The details of DNA replication are beyond our scope but may be found in numerous textbooks.

2. BACKGROUND AND RELATED MATERIAL 11

Figure 2.3: The central dogma of molecular biology stipulates that the genetic information

in DNA, which can self-replicate, is used to make RNA molecules through a process known

as transcription, and that the information in RNA is used to synthesize proteins which have

a function by a process called translation.

responsible for our body’s defense, is based on specific structure recognition. At a molecu-

lar level, such recognition processes consist of protein-protein interactions on the surface of

immune system’ cells.

Proteins typically contains thousands of atoms, that may be difficult to decipher. In

order to simplify protein description, four structural levels are usually documented. These

hierarchical levels describe increasingly complex protein structure level and are referred as

primary, secondary, tertiary and quaternary structures of proteins. These structure levels

are described in greater details in Section 2.1.4.

2.1.2 Transcription: from DNA to RNA

Shortly after the double helical structure of DNA was discovered, the hypothesis that nu-

cleic DNA functions as the template for mRNA molecules, which subsequently move to the

cytoplasm where they are used to determine the amino-acid sequence of proteins, was ac-

cepted. This pathway for the flow of genetic information was referred by Crick & Watson 27

in 1956 as the central dogma of biology (Figure 2.3). Note that the arrows in this pathway

are unidirectional, meaning that polypeptide templates are never used to synthesize mRNA

strands and mRNA templates are not used to synthesize DNA strands∗. More than 50 years

later, the central dogma remains essentially valid.

The genetic information in DNA – or gene – is used to synthesize mRNA molecules

through a process known as transcription, which is carried out by RNA polymerase enzymes.
∗The synthesis of genetic material from RNA strands may actually occur in rare occasions. Retro-viruses

such as the Human Immunodeficiency Virus are examples of this process, also known as retro-transcription.

2. BACKGROUND AND RELATED MATERIAL 12

The information for synthesizing a specific mRNA strand is located in only one of the two

DNA strands. The strand that actually contains the usable genetic information to make

the mRNA molecule is called the template – or sense – strand. Its complementary strand

is usually called the nonsense strand, because it contains no useful information for the

synthesis of this specific mRNA. Note that DNA templates coding for mRNAs are not all

on the same DNA strand.

Transcription in prokaryotic cells differs from transcription in eukaryotic cells. A major

difference is that the genetic material in eukaryotic cells is located in a well-defined nu-

cleus. Transcription in eukaryotic cells hence occur in the nucleus. mRNA is subsequently

transported to the cytoplasm to be translated.

Another major difference is that eukaryotic genes usually alternate coding sequences

called exons and non-coding sequences called introns. Transcription in eukaryotic cells

hence produces pre-mRNA strands rather than mRNA. After transcription, pre-mRNA

undergoes significant processing before being transported in the cytoplasm. The 5’ end

is capped with a 7-methylguanine, which ensures stability during translation. The 3’ end

is polyadenylated. This addition of a poly-A tail at the 3’ end plays various roles, from

enzymatic degradation protection to transcription termination. Finally, the pre-mRNA is

converted into mRNA by the excision of introns and the splicing of the remaining exons.

2.1.3 Translation: from RNA to Proteins using the Genetic Code

Translation is the production of proteins by decoding mRNA produced during the tran-

scription (Section 2.1.2) of DNA. Translation is performed in the cytoplasm by a complex

biological machinery, which includes in particular large rRNA molecules called ribosomes.

Ribosomes are made of two subunits which surround the messenger RNA (mRNA) and

produce a specific polypeptide according to the rules specified by the genetic code.

The genetic code, which defines the codons coding for a specific amino-acid, was de-

termined experimentally. The problem to solve was the following: given the existence of

twenty amino-acids and only four bases, how to group nucleotides to encode amino-acids?

Pairs of two nucleotides would only specify 16 (= 4 ∗ 4) amino-acids are therefore insuffi-

cient. Hence, as soon as 1954, focus was given to triplets of three nucleotides because they

allows 64 (= 4 ∗ 4 ∗ 4) possible permutations, enough to encode the 20 amino-acids. This

2. BACKGROUND AND RELATED MATERIAL 13

Table 2.1: The genetic code establishes the universal correspondence between codons and

amino-acids. Most amino-acids are encoded by more than one codon. Protein chains always

start with a methionine. Three stop codons may terminate protein chains.

hypothesis was proven in 1961 by Crick et al.28 when they established that groups of three

nucleotides called codons are used to specify individual amino-acids.

The completion of the code in 1966 revealed that 61 codons corresponds to amino-acids,

with most amino-acids being encoded by more than one codon (see Table 2.1). Methionine

(AUG) always starts a polypeptide chain. The three remaining codons – UAA, UAG and

UGA nicknamed ochre, amber and opal respectively – are called as stop codons and serve

as translational stop signals. In very rare cases, UGA can code for selenocysteine and UAG

can code for pyrrolysine depending upon associated signal sequences in the mRNA25,29,30,31.

A recent study32 showed that UAA is unlikely to code for a twenty-third amino-acid.

Surprisingly, the genetic code is universal, that is, the same codons encode the same

amino-acids in all organisms. It should be noted that the genetic code is redundant, but

not ambiguous∗. One benefit of such redundancy is that many changes – or mutations –

in the genetic code will have no effect on the amino-acid composition of the protein. For

example, the codon CUU codes for leucine. It can bee seen from Table 2.1 that any of the

four possible mutations of the third letter of this codon will have no effect on amino-acid

sequence because the codon will be translated in leucine in all four cases.
∗Turanov et al.33 showed that one codon may code for two amino-acids under certain conditions

2. BACKGROUND AND RELATED MATERIAL 14

2.1.4 Protein Structures

To simplify protein description, four structural levels are usually documented (see Fig-

ure 2.4). These hierarchical levels describe increasingly complex protein structure levels

and are referred as primary, secondary, tertiary and quaternary structures of proteins.

Figure 2.4: The four levels of protein structures. Helices are in red, strands in blue.

From Protein Structure and Function34, reproduced with BioMed Central’s authorization.

2.1.4.1 Primary Structure

A polypeptide chain is an organic compound composed of monomeric organic residues called

amino acids or peptide. The first amino-acid, asparagine, was discovered in 1806 by Louis-

Nicolas Vauquelin and Pierre Jean Robiquet35. By the early 1900s, all twenty standard

amino-acids had been discovered and their chemical structure identified.

The amino-acids are arranged as a linear chain and the sequence of the amino acids in

the protein determines the function of that protein. An average polypeptide chain contains

about 300 amino-acids. A large number of amino-acids naturally occur on earth. However,

only twenty different amino-acids are used to synthesize polypeptides∗.

All amino-acids have the same general structure (Figure 2.5). A carbon atom, known as

the α-carbon, lies at the center of each amino-acid. To its left is an amine group (NH+
3).

To the right of the α-carbon, a carboxyl group (COO−). The carbon in the carboxyl group

is referred as the β-carbon. A hydrogen atom forms the third bond of the α-carbon. The

fourth bond connects to a side chain (R) which depends on the amino-acid. Table 2.2
∗Two additional peptides – selenocysteine and pyrrolysine – may be found in proteins, but are very rare.

2. BACKGROUND AND RELATED MATERIAL 15

Figure 2.5: General structure of an amino-acid in its zwitterionic form. Each of the 20

amino-acids is composed of an amine group NH+
3 (left), a carboxylic acid group COO−

(right) and a side chain R (red). The central carbon atom (green) is referred as the α-

carbon. The carbon in the carboxyl group is referred as the β-carbon.

shows the structure of the twenty amino-acids, and summarizes their main structural and

functional role in proteins.

Amino-acids may be classified according to the nature and the chemical properties of

the side chain R. One way to classifiy amino-acids is to draw the Venn diagram (Figure 2.6),

which groups peptides according to their chemical properties36. The Venn diagram assigns

multiple properties to each amino acid. For example, lysine has the property hydrophobic

because of its long side chain as well as the properties polar, positive and charged. Chemical

properties of amino-acids and their representation in a diagram are essential for efficient

sequence alignments37,38,39.

Figure 2.6: Classification of amino-acids properties using a Venn diagram. Shaded areas

highlight sets of properties possessed by none of the common amino acids. Cysteine occurs

at two different positions depending on the oxidation state of the disulphide bridge.

2.
B

A
C

K
G

R
O

U
N

D
A

N
D

R
E

L
A

T
E

D
M

A
T

E
R

IA
L

16

Table 2.2: Main structural and functional roles of the 20 standard amino-acids

Name Abbr. Structure Main structural and functional roles in proteins

Alanine A - Ala
The side chain is very non-reactive, and is thus rarely directly involved in protein
function. However it can play a role in substrate recognition or specificity,
particularly in interactions with other non-reactive atoms such as carbon.

Arginine R - Arg

Arginines frequently play an important role in structure because of their long
amphipathic side chain. Arginines are also frequently involved in salt-bridges,
where they pair with a negatively charged amino acid to create stabilising
hydrogen bonds. They are quite frequent in protein active or binding sites
where their positive charge can interact with anions.

Asparagine N - Asn
Asparagines are quite frequently involved in protein active or binding sites at
the surface of proteins. The polar side-chain is good for interactions with other
polar or charged atoms.

Aspartate D - Asp

Aspartates are quite frequently involved in protein active or binding sites at the
surface of proteins. Their negative charge means that they can interact with
positively charged non-protein atoms, such as cations. When buried within the
protein, aspartates are frequently involved in salt-bridges, where they pair with
a positively charged amino acid to create stabilising hydrogen bonds.

Cysteine C - Cys

The role of cysteines in structure is dependent on the cellular location of the
protein. Within extracellular proteins, cysteines are frequently involved in disul-
phide bonds, where pairs of cysteines are oxidised to form a covalent bond,
which serves mostly to stabilise the protein structure. In the intracellular en-
vironment, cysteines can play a key structural role as their sulfydryl side-chain
is excellent for binding to metals.

Glutamate E - Glu Similar to Aspartate.

Continued on next page. . .

2.
B

A
C

K
G

R
O

U
N

D
A

N
D

R
E

L
A

T
E

D
M

A
T

E
R

IA
L

17

Table 2.2 (continued): Main structural and functional roles of the 20 standard amino-acids

Name Abbr. Structure Main structural and functional roles in proteins

Glutamine Q - Gln Similar to Asparagine.

Glycine G - Gly

Glycine is a unique amino acid because it contains a hydrogen as its side chain
(instead of a carbon). This allows a greater conformational flexibility of the
protein. Glycine can reside in parts of protein structures that are forbidden to
all other amino acids and use its sidechain-less backbone to bind to phosphates.

Histidine H - His
Histidines are the most common amino acids in protein active or binding sites
because it has a pKa near to that of physiological pH. They are very common
in metal binding sites, often acting together with cysteines.

Isoleucine I - Ile
Similar to leucine. In addition, like threonine and valine, isoleucine is C-beta
branched. It is therefore more restricted in the conformations the main-chain
can adopt. It often lies within beta-sheets.

Leucine L - Leu

The hydrophobic leucine is more likely to be buried in protein hydrophobic
cores.The side chain is fairly non-reactive, and is thus rarely directly involved
in protein function, though it can play a role in substrate recognition. In
particular, phenylalanine can be involved in binding/recognition of hydrophobic
ligands such as lipids.

Lysine K - Lys Similar to Arginine

Methionine M - Met

Similar to leucine. Methionine is always the first peptide of a protein. Methio-
nine also contains a sulphur atom, that can be involved in binding to atoms
such as metals. It is however connected to a methyl group making less reactive
than the sulphur in cysteines.

Continued on next page. . .

2.
B

A
C

K
G

R
O

U
N

D
A

N
D

R
E

L
A

T
E

D
M

A
T

E
R

IA
L

18

Table 2.2 (continued): Main structural and functional roles of the 20 standard amino-acids

Name Abbr. Structure Main structural and functional roles in proteins

Phenylalanine F - Phe
Phenylalanines prefer to be buried in protein hydrophobic cores. The aromatic
side chain can also mean that tryptophans are involved in stacking interactions
with other aromatic side-chains.

Proline P - Pro

Proline is unique because its side chain is connected to the protein backbone
twice. This important difference means that proline is unable to occupy many
of the main chain conformations. Hence, proline is often found in very tight
turns in protein structures. It can also function to introduce kinks into alpha
helices, since it is unable to adopt a normal helical conformation.

Serine S - Ser

Serine can reside both within the interior of a protein, or on the protein surface.
Its small size means that it is relatively common within tight turns on the protein
surface, where its side-chain hydroxyl oxygen to form a hydrogen bond with
the protein backbone. The hydroxyl group is fairly reactive, being able to form
hydrogen bonds with a variety of polar substrates.

Threonine T - Thr
Similar to serine. In addition, like valine and isoleucine it is C-beta branched,
which restricts the conformations the protein can adopt.

Tryptophan W - Trp
Similar to phenylalanine. Tryptophans’ nitrogens can play a role in binding to
non-protein atoms, but such instances are rare.

Tyrosine Y - Tyr
Similar to phenylalanine. However, unlike phenylalanine, tyrosine contains a
reactive hydroxyl group, thus making it much more likely to be involved in
interactions with non protein atoms.

Valine V - Val
Similar to leucine. In addition, like isoleucine and threonine it is C-beta
branched, which restricts the conformations the protein can adopt.

2. BACKGROUND AND RELATED MATERIAL 19

Figure 2.7: The dehydration synthesis reaction between three amino-acids. Amine groups

are in blue, carboxyl groups in red. α-carbons are marked in green. The two peptide bonds

linking the three amino-acids are highlighted in orange.

The amino acids are joined together by the peptide bonds between the carboxyl and

amino groups of adjacent amino acid residues. Peptide bonds linking amino-acids are en-

zymatically formed by dehydration synthesis (see Figure 2.7). An oxygen atom is removed

from the carboxyl group of one peptide, together with two hydrogens from the amine of the

second peptide.

2.1.4.2 Secondary Structure

In structural biology, the secondary structure of a segment of polypeptide chain is the local

spatial arrangement of its main-chain atoms without regard to the conformation of its side

chains or to its relationship with other segments40. Secondary structures are defined by

patterns of hydrogen bonds between backbone amide and carboxyl groups.

Polypeptides follow standard stereochemistry rules, which define the possible tridimen-

sional conformations of molecules: all bond lengths and angles are fixed, varying only

minimally around their standard values. Due to the chemical nature of the amide bond,

the peptide linkage between two amino acids is subject to the phenomenon of resonance,

meaning that it acquires the characteristics of a partial double bond. As a consequence,

the C −N distance is shorter than a normal single bond and longer than a normal double

bond and this partial double bond introduces rigidity into the structure as the bond is no

longer freely rotatable. This rigidity forces α-carbons of two adjacent peptides, the carbonyl

2. BACKGROUND AND RELATED MATERIAL 20

Figure 2.8: Short section of polypeptide chain showing the planar peptide groups and

identifying the torsion angles φ and ψ.

and the amine of the peptide group to lie on the same plane (see Figure 2.8∗). Therefore,

the only source of conformational freedom that the polypeptide possesses comes from the

torsional rotation around its single bonds. There are only two remaining single bonds per

residue along the main chain, and from these bonds one may associate the torsion angles φ

and ψ. Not all combinations of φ and ψ are stereochemically possible, since many lead to

steric hindrance. Ramachandran41,42 showed that only about one third of the φ/ψ space

is stereochemically accessible to amino acid residues in a real polypeptide. The φ/ψ space

can be represented in a two-dimensional hyperspace, also known as the Ramachandran plot

(see Figure 2.9), where the two variables φ and ψ may vary between −180 and +180. It

should be noted that glycine side chain is composed of a hydrogen atom. Hence it is less

restrictive. This can be visualized in the Ramachandran plot where the allowable area is

considerably larger when glycine is part of the polypeptide (lighter shade).

Pauling et al.43,44,45,46,47 analysed the geometry and dimensions of the peptide bonds in

the crystal structures of molecules containing either one or a few peptide bonds. Two main

classes of patterns in proteins: α-helices and β-sheets. Any pattern that does not fall in one

of those two classes is called random coil. On average, about 50% of the amino acids are in

a secondary structure, among which 54% are in an α-helix and 46% are in a β structure.

Table 2.3 summarizes the values of the torsion angles for the main secondary structures.
∗From http://www.ncbi.nlm.nih.gov/

2. BACKGROUND AND RELATED MATERIAL 21

Figure 2.9: A Ramachandran plot represents the stereochemically allowable values for φ/ψ.

Light-shaded regions show possible angle formations that include glycine, while darker areas

are for conformations that do not include glycine. Standard secondary protein structures

may be precisely located on the plot: β refers to antiparallel β-sheets, β’ to parallel β-sheets,

αr to right-handed α-helices and αl to the rare left-handed α-helices.

Myoglobin is the first protein whose structure was solved by X-ray crystallography by

Perutz and Kendrew in 1958. Their discovery was rewarded by the Nobel Prize in Chemistry

in 1962. The analysis revealed that this oxygen-carrying enzyme’s structure is made up of

eight helices, which represent about 70% of the amino-acids (see Figure 2.11).

A α-helix is a helical structure where each amino acid corresponds to a 100 ◦ turn in

the helix, that is, the helix has 3.6 residues per turn (a full turn is 360 ◦), and a translation

of 1.5 Å along the helical axis. The pitch of the helix (the vertical distance between two

points on the helix) is 1.5 ∗ 3.6 = 5.4Å. The most important structural characteristic of

α-helices, which may as well define them, is that the N-H group of an amino acid forms a

hydrogen bond with the C=O group of the amino acid four residues earlier. The length of

α-helices ranges from four to forty amino-acids. However, most helices contain around ten

residues, which correspond to about three turns. The 310-helix is a variant of the standard

α-helix, where the N-H group forms a hydrogen bond with the C=O group three residues

earlier. Similarly, the π-helix is a variant where the N-H group forms a hydrogen bond with

the C=O group five residues earlier. However, those two variants occur rarely. Pace &

2. BACKGROUND AND RELATED MATERIAL 22

Figure 2.10: A representation of the 3D structure of the myoglobin protein. The eight

α-helices are shown in color and represent 70% of the protein’s structure.

Scholtz 48 showed that methionine, alanine, leucine, uncharged glutamate, and lysine have

high helix-forming propensities, whereas proline, glycine and negatively charged aspartate

have poor helix-forming propensities. Proline tends to kink – or break – helices because it

has no amide hydrogen to donate. However, proline is often seen as the first residue of a

helix.

A β-strand is a polypeptide segment where the torsion angle ψ is about 120 ◦. As a

result, the sidechains of two neighboring residues in this segment point in the opposite

direction from the backbone. A β-sheet is composed of two or more strands, linked together

by hydrogen bonds between amine groups of one strand and carbonyl groups on the other

strand. If the strands all run in one direction, the sheet is called parallel β-sheet whereas

Figure 2.11: Comparison of parallel β-sheets and anti-parallel β-sheets. Hydrogen bonds

between strands in parallel β-sheets are not straight and thus weaker.

2. BACKGROUND AND RELATED MATERIAL 23

in anti-parallel sheets they all run in opposite directions. In mixed sheets some strands

are parallel and others are anti-parallel. In the classical Pauling-Corey49 models, hydrogen

bonds between strands in parallel β-sheets are not straight and are consequently weaker. It

should however be noted that the backbone hydrogen bonds of α-helices are slightly weaker

than those found in β-sheets, and are thus more likely to be oxidized by ambient water

molecules.

2.1.4.3 Ternary Structure

The tertiary structure of a protein molecule is defined by the Commission on Biochemical

Nomenclature as the arrangement of all its atoms in space, without regard to its relationship

with neighbouring molecules or subunits40. The tertiary structure may be considered as

the final result of the folding process of the polypeptide chain. This folding depends on the

amino acid sequence and on the atomic details of the structure. For soluble proteins this

will usually result in the formation of a hydrophobic core in which apolar residues tend to

cluster their side chains within the protein’s interior, leaving hydrophilic residues exposed

to solvents.

Most protein structures been solved with the experimental technique of X-ray crystal-

lography, which typically provides data of high resolution but provides no time-dependent

information on the protein’s conformational flexibility. A second common way of solving

protein structures uses Protein Nuclear Magnetic Resonance spectroscopy, which provides

lower-resolution data in general and is limited to relatively small proteins, but can provide

time-dependent information about the motion of a protein in solution.

Table 2.3: Main parameters of regular secondary structures. φ and ψ are the torsion angles

in degrees, n the number of residues per helical turn, p the helical pitch in angstroms.

Structure φ ψ n p

α-helix -57 -47 3.6 5.4
310-helix -74 -4 3.0 6.0
π-helix -57 -70 4.4 5.0

Parallel beta strand -119 113 2.0 6.4
Antiparallel beta strand -39 135 2.0 6.8

2. BACKGROUND AND RELATED MATERIAL 24

Figure 2.12: Examples of typical protein quaternary structures. Proteins may be composed

of two (dimers), three (trimers) or more polypeptides, giving the protein its final shape.

From Protein Structure and Function34, reproduced with BioMed Central’s authorization.

2. BACKGROUND AND RELATED MATERIAL 25

Many classifications of protein folds exist. The two most widely used are the Structural

Classification of Proteins50 (SCOP) and the CATH Protein Structure Classification51, both

of which use a hierarchical approach. The Protein Data Bank7 (PDB) is the main reposi-

tory for protein structures. The knowledge of the crystallographic structure of the protein

is a critical piece of data as it may help determining the function of the protein by struc-

tural alignment with proteins whose functions are known. It may also provide valuable

information for drug design52,53.

2.1.4.4 Quaternary Structure

Most proteins are composed of several polypeptide chains or subunits. The quaternary

structure of a protein molecule is defined as the arrangement of its subunits in space and

the ensemble of its intersubunit contacts and interactions, without regard to the internal

geometry of the subunits40. The subunits in a quaternary structure must be in noncovalent

association. The association of these individual polypeptide chains gives the protein its

final shape and thus its function. Figure 2.12 illustrates a few typical protein polymers.

2.2 Review of Bioinformatics Databases and Tools

2.2.1 Protein Sequence Alignments

The central dogma of biology27 stipulates that the function of a protein can be inferred

from the tridimensional structure which can be obtained from its primary structure, that

is, the amino-acid sequences. A corollary of the central dogma is that proteins that have

similar sequences are expected to have similar functions. Hence, analyzing protein sequence

similarities can provide valuable information towards the knowledge of the protein function.

Sequence similarity analyzes are usually performed by sequence alignments where amino-

acids substrings common to both proteins are matched together. Hence, a pairwise sequence

alignment can identify conserved residues and mutations. Then, one needs to decide which

alignments are more likely to have occurred because the sequences are indeed related, or just

by chance. This process, described in Section 2.2.1.1, is usually done by assigning a score

to each individual mutation. Section 2.2.1.2 presents a dynamic programming algorithm

developed by Smith & Waterman 54 which outputs an exact solution, at the cost of a

2. BACKGROUND AND RELATED MATERIAL 26

relatively slow running time. Section 2.2.1.3 presents a very popular heuristic called Basic

Local Alignment Search Tool55 (BLAST) which dramatically increases the throughput.

2.2.1.1 Scoring Schema

When comparing protein sequences, one is looking for evidence that the sequences have

diverged from a common ancestor by a process of mutation/selection. Three basic types

of mutations are considered: substitutions, when a residue is changed for another one,

insertions and deletions, when a residue is added or removed from one of the two sequences.

Insertions and deletions are referred as gaps.

The total score of the alignment is the sum of each of the mutations. As mentioned

in Section 2.1.4.1, some amino-acids substitutions are more likely to occur than others,

based on their chemical properties. For example, both serine and threonine have a reactive

hydroxyl group, which easily forms hydrogen bonds with a variety of polar substrates.

Hence, effective substitutions of serine for threonine are expected to occur quite frequently.

On the contrary, arginine usually interacts with anions whereas aspartate usually interacts

with cations. Hence, such a substitution is not expected to happen often. These substitution

likelihoods are usually represented in the form of a table, called substitution matrix. Each

matrix is twenty-by-twenty (for the twenty standard amino acids); the value in a given cell

represents the probability of a substitution of one amino acid for another.

Point Accepted Mutation (PAM) matrices

Dayhoff et al. 56 developed one of the first substitution matrix referred as the Point Accepted

Mutation (PAM) matrix. The PAM matrices were derived from 1,572 observed mutations in

71 families of closely related proteins. The PAM matrices are normalized so that the PAM1

matrix has one mutation per hundred amino acids, and is appropriate for scoring sequences

which are very similar. PAM matrices for comparing sequences of lower similarity are

calculated from repeated multiplication of the PAM1 matrix by itself. PAM2 is equivalent

to two substitutions per hundred amino acids and is defined by PAM2 = PAM2
1 . PAM30

and PAM70 are commonly used in practice.

2. BACKGROUND AND RELATED MATERIAL 27

BLOcks of Amino Acid SUbstitution (BLOSUM) matrices

Another popular substitution matrices family – BLOcks of Amino Acid SUbstitution – was

introduced by Henikoff & Henikoff 57 , who scanned the BLOCKS database58 for gapless con-

served regions of protein families and then counted the relative frequencies of amino acids

and their substitution probabilities. BLOSUM matrices are based on observed alignments,

without considering closely related proteins like the PAM matrices. Several BLOSUM ma-

trices were built, using different degrees of protein conservation: the conservation percentage

used was appended to the name. For example, BLOSUM80 corresponds to the matrix built

with sequences that were more than 80% identical. Raw substitution probabilities are in

average 1/20. The log-odds score sij for each of the 210 possible substitutions of the twenty

standard amino acids were calculated using Equation 2.1.

sij =
1
λ
log(

pij
qiqj

) (2.1)

where, pij is the probability of two amino acids i and j replacing each other in a homologous

sequence, and qi and qj are the background probabilities of finding the amino acids i and j

Table 2.4: The BLOSUM62 substitution matrix. Highest scores represent most conserva-

tive substitutions. The matrix is symmetric and that higher scores are in the main diagonal.

2. BACKGROUND AND RELATED MATERIAL 28

in any protein sequence at random. The constant λ is a scaling factor, such that the matrix

contains easily computable integer values.

Log-odd ratios are a convenient way to represent small probabilities in a “human-

readable” format. BLOSUM62∗ (see Table 2.4) turned out to give best results in practice.

Note that the matrix is symmetric, meaning that the probability that the amino-acid i

mutates into j is equal to the probability that j mutates into i.

2.2.1.2 Smith-Waterman Algorithm

Given a scoring scheme and two sequences, we need to find the optimal alignment. Assuming

both sequences are composed of n residues, there are†:

(
2n
n

)
=

2n!
n!2
≈ 22n

√
πn

(2.2)

possible alignments between two sequences of length n. The average length of amino-acids

is about 300 residues, leading to 1.4∗10179 alignments to consider. Optimistically assuming

that 1,000,000 alignments can be computed every second, it would take 4.3 ∗ 10165 years

to enumerate all the possible alignments, that is, 3.1 ∗ 10155 times the age of the known

universe. A brute force approach, consisting of enumerating all possible alignments and

then choosing the best one, is clearly not possible. Dynamic programming algorithms must

be used instead.

The first dynamic programming algorithm for global sequence alignment was devised

by Needleman & Wunsch 61 . The algorithm was later improved by Gotoh 62 . However,

protein sequences usually contain a number of irrelevant residues at the extremities of the

polypeptide chain. Hence, Smith & Waterman 54 proposed a local sequence alignment

algorithm, also based on a dynamic programming approach, which compute the best align-

ment of subsequences from both protein. Local alignments are usually favored because they

are more sensitive to capture specific conserved domains. When using global alignment
∗Styczynski et al. 59 showed in 2008 that the BLOSUM62 used as a standard since 1996 is not exactly

accurate according to the algorithm described by Pietrokovski et al. 58 .
†Using Stirling’s approximation of large factorials60

2. BACKGROUND AND RELATED MATERIAL 29

methods, such domains may be more difficult to detect because of noisy mutations in the

remaining of the sequence.

The idea of the algorithm is to build an optimal alignment using previous known optimal

alignments of subsequences. The final alignment is hence computed by (1) solving the

problem for shorter – and easier to compute – subsequences, (2) combining the individual

solutions of the smaller alignments. The alignment is computed by constructing a matrix

D, indexed by i ∈ [1..n] and j ∈ [1..m], one index representing each of the two sequences

of length n and m respectively. Let x1..i be the subsequence of x from the first to the ith

residue. The value D(i, j) represents the best alignment between x1..i and y1..j and can be

computed recursively as shown in Equation 2.3.

D(i, j) = max


0
D(i− 1, j − 1) + s(xi, yj)
D(i− 1, j)− d
D(i, j − 1)− d

(2.3)

where s(xi, yj) is the score for the substitution of residue i from x by residue j of y given by

the scoring substitution matrix and d the linear cost for gaps. The option ′0′ corresponds

to starting a new alignment: if the best alignment becomes negative, it is better to start

a new one instead of extend the old one. The initial conditions for i = 0 or j = 0 are

defined by D(i, j) = 0. Given D, the alignment can then be easily obtained by retrieving

the path in the matrix that was necessary to follow to calculate F (n,m). This process is

called backtracking.

For example, consider x = PAWHEAE and y = HEAGAWGHEE. Using the BLOSUM62 scoring

matrix and a linear gap penalty of 5. The resulting matrix D is shown in Figure 2.13. Using

the matrix D, we can infer the local alignment:

AWGHE

AW-HE

The complexity of the Smith-Waterman is quadratic – O(nm), with n and m, the length

of the two input sequences –, which greatly improves the exponential complexity of the brute

force approach. In addition, this algorithm is “correct” in the sense that it guaranties to

find the optimal alignment given a scoring scheme.

2. BACKGROUND AND RELATED MATERIAL 30

Figure 2.13: Dynamic programming matrix for the Smith-Waterman alignment of se-

quences PAWHEAE and HEAGAWGHEE using the BLOSUM62 scoring matrix and a linear gap

penalty of 5. D(i, j) represents the best alignment between x1..i and y1..j . The backtrack

path used to construct the local alignment is shaded.

Variants of the original pairwise algorithm have been proposed for multiple sequence

alignment, which allows one to align several sequences together. However, the multiple

sequence alignment problem proved to be NP-completed63,64. To reduce the complexity of

the problem, heuristics have been proposed and implemented in ClustalW65,66, which we

used in our structural comparison of functional orthologs (see Chapter 4).

2.2.1.3 Basic Local Alignment Search Tool: BLAST

However, in some cases, the complexity improvement may not be sufficient. In particular,

sequence alignments are typically used to match a sequence of interest with a sequence in a

database of known proteins. Such databases usually contains millions of protein sequences.

In that case, one must perform pairwise alignments between the protein of interest and each

of the proteins within the database. For this reason, there has been many attempts to pro-

duces non-optimal but faster algorithms67,68,69. However, those algorithms did not perform

well when used with standard scoring matrices. Hence, new heuristics were developed, in

particular FAST-All70 and the Basic Local Alignment Search Tool55 (BLAST). The latest

was used to built our PROFESS database (see Chapter 3).

2. BACKGROUND AND RELATED MATERIAL 31

The idea behind the BLAST heuristic is that true alignments are likely to contain short

highly conserved subsequences or identities. BLAST will hence look for such subsequences

– or seeds – which then can be extended. The seeds are normally kept short so that a table

with all possible seeds can be preprocessed and used later as a lookup table. Then, BLAST

will try to extend seeds with a word of given length (3 by default for protein sequences,

11 for nucleic acid sequences) that matches the query sequence with a score higher than

a given threshold. The process is referred as the hit extension. The algorithm terminates

whenever the score drops below a parametrized expectation threshold. The original BLAST

algorithm only found ungapped alignments. However, more recent versions are able to

output gapped alignments71,72,73 and greatly improved performance when querying large

sequence databases74.

2.2.2 Protein Structure Alignments

In addition to aligning protein sequences, there have been a number of attempts to align

the tridimensional structure of proteins. Structural alignment provide valuable additional

information as a single mutation in the amino-acids sequence can dramatically change the

corresponding 3D structure of the protein. For example, leucine is often found in alpha

helices. A mutation of this amino-acid into proline is likely to kink the alpha helix because

of the unique structure of proline.

These algorithms take as input the atomic coordinates of the proteins to align, and

output the superposed atomic coordinates. The algorithms also output the minimal root

mean square deviation (RMSD) between the structures, which measures the structural

divergence of aligned proteins. When aligning structures with very significantly divergent

sequences, most structural alignment methods consider only the backbone atoms included in

the peptide bond. The coplanarity of the peptide bond is used to maximize throughput and

the α-carbon coordinates alone are usually considered for the alignment. The remaining

atoms, in particular the side chains, are used to generate the final alignment only when

the RMSD drops below a given threshold, that is, when protein structures are similar

enough. Like multiple sequence alignments, the multiple structure alignment proved to be

NP-Complete. Hence, approximate polynomial-time solution have been devised by Kolodny

& Linial 75 and Zhu 76 . Ye & Godzik 77 also proposed a solution that utilizes graph theory.

2. BACKGROUND AND RELATED MATERIAL 32

Several pieces of software for structural alignment have been implemented. Most popular

program include Dali78,79, Combinatorial Extension80 (CE), MAtching Molecular Models

Obtained from THeory81 (MAMMOTH) and its multiple alignment extension MAMMOTH-

mult82, and Sequential Structure Alignment Program83 (SSAP) which was used to build the

Class, Architecture, Topology, Homology (CATH) database51. Our PROFESS database was

constructed in part by using Dali and MAMMOTH-mult.

2.3 Supervised Machine Learning Algorithms

In many problems, we need to classify items, that is, we need to predict some characteristic

of an item based on several of its parameters. Each parameter is represented by a variable

which can take a numerical value. Each variable is called a feature and the set of variables

is called the feature space. The number of features is the dimension of the feature space.

The actual characteristic of the item we want to predict is called the label or class of the

item.

To make the predictions, we use classifiers. Each classifier maps a feature space X to

a set of labels Y . Classifiers are built using machine learning algorithms, which are able to

automatically improve by the analysis of data sets, i.e. they learn by experience. Speech

or handwriting recognition are typical applications of machine learning approaches. Also

in computational biology various machine learning techniques have been successfully used,

for example neural networks for detection of signal peptides in proteins84, Hidden Markov

models for protein homology detection85 and stochastic context free grammars for modeling

and prediction of RNA secondary structures25,86.

In this work, we are interested in linear classifiers, that is, a classifier that can be

mathematically defined by a linear equation. We are also assuming that the set of labels

used during the training stage is known a priori, which is also known as supervised learning.

Hence, this work does not consider the variety of unsupervised learning algorithms, which

include in particular clustering and segmentation techniques.

After briefly introducing linear classifiers in section 2.3.1, we describe two linear classi-

fiers: Support Vector Machines in section 2.3.2 and Decision Trees in section 2.3.3.

2. BACKGROUND AND RELATED MATERIAL 33

2.3.1 Linear Classifiers

A linear classifier maps a feature space X to a set of labels Y by a linear function. In other

words, a linear classifier computes the label of an item to classify using a linear function.

In general, a linear classifier f(−→x) can be expressed as follows:

f(−→x) = 〈−→w · −→x 〉+ b =
∑
i

wixi + b (2.4)

where wi ∈ R are the weights of the classifiers and b ∈ R is a constant. The value of f(−→x) for

any item −→x directly determines the predicted label, usually by a simple rule. For example,

in binary classifications, if f(−→x) ≥ 0, then the label is +1 else the label is −1. Note that

the knowledge of the weights wi is necessary and sufficient to define the linear classifier f .

Example 2.1 Suppose that a disease is conditioned by two antibodies A and B. The feature
space isX = {Antibody A,Antibody B} and the set of labels is Y = {Disease,No Disease},
where Disease corresponds to +1 and No Disease corresponds to −1. A linear classifier is:

f({Antibody A,Antibody B}) = w1Antibody A+ w2Antibody B + b

where w1, w2 ∈ R are constant weights and b ∈ R is a constant. We can use the value of
f({Antibody A,Antibody B}) as follows:

• If f({Antibody A,Antibody B}) ≥ 0 then the patient has Disease.

• If f({Antibody A,Antibody B}) < 0 then the patient has No Disease.

The set of linear classification methods includes a number of algorithms, ranging from

generative probabilistic models such as Naive Bayes algorithms, where a model is built using

some data during the training stage, to discriminative models such as Logistic Regression

algorithms, Decision Trees or Support Vector Machines, where the model is obtained by

applying constraints derived from the training data. The methods proposed in this work are

applicable to any linear classifier in general. During our experiments, we used support vector

machines and decisions trees, which are described in sections 2.3.2 and 2.3.3 respectively.

2. BACKGROUND AND RELATED MATERIAL 34

2.3.2 Support Vector Machines

In the past decade, Support Vector Machines (SVM), a new class of learning algorithms,

have become increasingly popular in computational biology because of their attractive fea-

tures:

1. During the training, the algorithm optimizes a convex cost function, avoiding local

maxima issues: given a model, the SVM algorithm computes the optimal solution.

2. SVMs support high dimensional data sets.

3. SVMs performs well on noisy data.

4. The algorithms are computationally efficient and their modular design makes them

easy to implement.

There exists a large body of literature describing Support Vector Machines (SVM) al-

gorithms12,87,88. The remaining of this section briefly describes the theoretical principles of

SVMs, in particular SVMs with a linear kernel.

Suppose that numerical values can be assigned to each of the n features in the feature

space. Let −→xi ∈ Rn with i ∈ [1..l] be a set of l training examples. Each training example −→xi
can be represented as a point in the n-dimensional feature space.

SVMs classify the items by constructing a hyperplane of dimension n− 1 that will split

all items into two sets of classes +1 and -1. As shown in Figure 2.14, several separating

hyperplanes may be suitable to split correctly a set of training examples. In this case,

an SVM will construct the maximum-margin hyperplane, that is, the hyperplane which

maximizes the distance to the closest training examples.

Suppose first that the data is linearly separable, that is, there is a hyperplane that

separates the items of labels +1 and −1. Then, the maximum-margin hyperplane is defined

in Equation 2.5:

f(−→x) = 0 (2.5)

To find the hyperplane with the largest margin, −→w and b can be scaled so that the

closest training examples −→xi to the hyperplane satisfy |f(−→xi)| = 1. In this case, the margin

2. BACKGROUND AND RELATED MATERIAL 35

Figure 2.14: A set of training examples with labels +1 (♦) and −1 (•). This set is

linearly separable because a linear decision function in the form of a hyperplane can be

found that classifies all examples without error. Two possible hyperplanes that both classify

the training set without error are shown (solid and dashed lines). The solid line is expected

to be a better classifier than the dashed line because it has a wider margin, which is the

distance between the closest points and the hyperplane.

equals 2/‖−→w ‖ as shown in Figure 2.15. Maximizing the margin is then equivalent to solving

the following optimization problem:

min−→w ∈Rn,b∈R

1
2
‖−→w ‖2 (2.6)

subject to:

|f(−→xi)| ≥ 1 (2.7)

Equation 2.6 leads to the following solution:

f(−→x) =
l∑

i=1

αiyi〈−→xi · −→x 〉+ b (2.8)

where αi are positive real coefficients and yi ∈ {+1,−1} is the label of −→xi .

However, in practice, data is rarely linearly separable, and Equation 2.8 may not be used.

Vapnik12 combined in 1995 the technique described above with a mathematical method

called the kernel trick introduced in 1964 by Aizerman et al.89. The kernel trick consists in

a mapping function φ (see Figure 2.16) such that data, which is not linearly separable in

the input feature space, may be linearly separable in a higher dimension feature space.

2. BACKGROUND AND RELATED MATERIAL 36

Figure 2.15: Building the optimal – or maximum margin - hyperplane. The points nearest

to the optimal separating hyperplane are called the ”support vectors” (drawn larger than

the other points). When w and b are properly scaled, the margin is 2/‖w‖.

Using the kernel trick, Equation 2.8 can be reformulated as:

f(−→x) =
l∑

i=1

αiyi〈φ(−→xi) · φ(−→x)〉+ b (2.9)

We call the function K(−→a ,−→b) = 〈φ(−→a) · φ(−→b)〉 the kernel of the SVM. The following

standard kernels are commonly used:

• Linear: K(−→a ,−→b) = 〈−→a · −→b 〉

• Polynomial: K(−→a ,−→b) = (γ〈−→a · −→b 〉+ c0)d

• Radial Basis Function: K(−→a ,−→b) = exp(−γ‖−→a −−→b ‖2)

Other kernels may be used to solve a specific problem. Riemannian geometry-based

kernels90 were developed by Amari and Wu to analyze breast cancer data. Xiong et al.

used data-dependent kernel machines to classify microarray data91. Liu applied Gabor-

based kernel to face recognition92. In this work, we are interested in linear classifications.

Hence, we choose a linear kernel defined as in Equation 2.10:

K(−→a ,−→b) = 〈−→a · −→b 〉 =
n∑
j=1

ajbj (2.10)

2. BACKGROUND AND RELATED MATERIAL 37

Figure 2.16: Mapping input data in to a higher dimensional features space. Problems that

are not linearly separable in input space can be linearly separable in feature space.

Let −→x = (x1, x2, ..., xn). Combining Equations 2.9 and 2.10, f(−→x) becomes:

f(−→x) =
l∑

i=1

αiyi n∑
j=1

xijxj

+ b

f(−→x) =
n∑
j=1

(
l∑

i=1

αiyixij

)
xj + b

f(−→x) =
n∑
j=1

wjxj + b (2.11)

with wj =
∑l

i=1 αiyixij .

2.3.3 Decision Trees

Decision trees were frequently used in the nineties by artificial intelligence experts because

they can be easily implemented and they provide an explanation of the result. A decision

tree is a tree with the following properties:

• Each internal node tests an attribute,

• Each branch corresponds to the value of the attribute,

• Each leaf assigns a classification.

2. BACKGROUND AND RELATED MATERIAL 38

The output of decision trees is a set of logical rules in the form of disjunctions of

conjunctions. There exists a number of algorithms to train a decision tree, for example

Quinlan’s Iterative Dichotomiser 311 and C4.593 algorithms or Breiman’s Random forests94.

In our experiments, we used the Iterative Dichotomiser 3 (ID3) algorithm, which is is defined

as follows:

1. The best attribute, A, is chosen for the next node. The best attribute maximizes the

information gain as defined below in Equation 2.12.

gain(S,A) = entropy(S)−
∑

v∈values(A)

|Sv|
|S|

entropy(Sv) (2.12)

where S is a sample of the training examples and A is a partition of the parameters.

Like in thermodynamics, the entropy measures the impurity of S, purer subsets having

a lower entropy:

entropy(S) = −
n∑
i=0

pilog2(pi) (2.13)

where S is a sample of the training examples, pi is the proportion of i-valued examples

in S, and n is the number of attributes.

2. We create a descendant for each possible value of the attribute A.

3. For each non-perfectly classified branch repeat steps (1) and (2).

ID3 is a greedy algorithm, without backtracking. This means that this algorithm is

sensible to local optima. Furthermore, ID3 is inductively biased: the algorithm favors short

trees and high information gain attributes near the root. At the end of the procedure, the

decision tree perfectly suits the training data including noisy data. This leads to complex

trees, which usually lead to problems in classifying new data.

Ockham’s razor stipulates that “entities must not be multiplied beyond necessity”, that

is, if two theories make the same predictions the simplest one should be preferred. Following

this general principle, to avoid over-fitting, complex decision trees are usually pruned after

2. BACKGROUND AND RELATED MATERIAL 39

the training stage by minimizing size(tree) + error rate, where size(tree) is the number

of leaves in the tree, and error rate is the ratio of the number of misclassified instances and

the total number of instances. Finally, accuracy is defined as accuracy = 1− error rate.

“Entia non sunt multiplicanda praeter necessitatem”

William of Ockham (1883)

It is interesting to compare decision trees with SVMs. Unlike decision trees, SVMs are

not subject to local optimal issues because SVMs are guaranted to find the global optimal.

Hence, SVMs are expected to generalize better than other machine learning algorithms

such as decision trees. On the other hand, decision trees have the advantage of providing

an explanation of their classifications, while SVMs do not provide any explanations.

2.4 Constraint Databases

Constraint databases, which were initiated by Kanellakis et al. 14 , have many applications

ranging from spatial databases95,96 through moving objects97,98 to epidemiology99. Geist100

and Johnson et al.101 applied them to classsification problems. In particular, both discussed

the representation of decision trees by constraint databases. However, they did not consider

the case of Support Vector Machines, nor solved the reclassification problem.

Constraint databases14,15,16 form an extension of relational databases102 where the

database can contain variables that are usually constrained by linear or polynomial equa-

tions. Constraint databases are able to represent infinite amounts of data, as long as it

is finitely representable using constraints. For example, spatio-temporal data, which are

common in the medical and geographic areas, typically contains real-valued objects that

change over time. Constraint databases provide an elegant means to represent such objects

and can be queried using both Datalog and SQL queries103,104,105. Constraint database sys-

tems include CCUBE106, DEDALE107, IRIS108, and MLPQ109. We used IRIS and MLPQ

during our experiments.

2. BACKGROUND AND RELATED MATERIAL 40

Figure 2.17: Moving square that may be efficiently represented in a constraint database.

Example 2.2 For example, Figure 2.17 shows a moving square, which at time t = 0 starts
at the first square of the first quadrant of the plane and moves to the northeast with a speed
of one unit per second to the north and one unit per second to the east.

When t = 0, then the constraints are x ≥ 0, x ≤ 1, y ≥ 0, y ≤ 1, which is the unit
square in the first quadrant. We can calculate similarly the position of the square at
any time t > 0 seconds. For example, when t = 5 seconds, then the constraints become
x ≥ 5, x ≤ 6, y ≥ 5, y ≤ 6, which is another square with lower left corner (5, 5) and upper
right corner (6, 6). In general, for any time t, the constraints describing the moving square
in a constraint database can be expressed as in Table 2.5.

2.5 Inverse Distance Weighted Interpolation

Most scientific experiments are based on data collection. A data set thus formed is usually

composed of discrete values obtained after some data sampling method. For example, in

the case of meteorological studies, the temperature may be measured every hour. However,

although this meteorological data set will give accurate values when the temperature was

measured, it does not provide any information about the temperature evolution between

Table 2.5: Constraint database representation of a moving square

X Y T

x y t x ≥ t, x ≤ t+ 1, y ≥ t, y ≤ t+ 1, t ≥ 0

2. BACKGROUND AND RELATED MATERIAL 41

two measurements. In addition, data may be collected only in a few particular locations.

In the case of weather data collection, the temperature is typically measured in weather

stations only. Hence, although the temperature is known at those few locations, there is no

data for other locations.

In order to estimate values between two measurements, a number of regression algo-

rithms have been devised. Regression is a statistical method that aims at building the

continuous curve function r that will fit best the known values. Note that in general, for

any known measure y collected at time t, r(t) 6= y, that is, the known values do not belong

to the best-fit curve. However, the most important characteristic of regression curves is

their ability to estimate values between two measurements. The earliest form of regression

was the method of least squares110, which was used by the French mathematician Legen-

dre in 1805 to estimate orbits of comets whose positions could be measured only at night.

Interpolation is a special case of regression where the known measurement belong to the

best-fit curve. As a result, interpolated curves return exact values when data is known, but

at a cost of a slight increase of the overall error rate.

One way to achieve interpolation is to average all the measured values. This makes good

sense when the measurements are really independent of location. However, a variable defined

Figure 2.18: The surrounding area of an interpolated point may be obtained using a fixed

radius (solid circle), resulting in various number of surrounding points ; or using a fixed

number of surrounding points, resulting in various surroundings radii (dashed circle).

2. BACKGROUND AND RELATED MATERIAL 42

continuously over part of a surface does not normally change wildly from point to point. We

can reasonably expect the values at unmeasured points to be related to the values at nearby

measured points. The interpolated value is then obtained by averaging values of surrounding

points only (see Figure 2.18). The method is called the k-nearest-neighbor interpolation.

Surrounding points may be obtained by defining a fixed radius (solid circles) around the

interpolated value. Therefore, the set of surrounding points may contain different numbers

of points, possibly zero points, in which case, the interpolated value cannot be obtained.

Another method is to consider a fixed number of points to calculate the interpolated value.

In the example of Figure 2.18, 4 points are used to calculate X and Y . As a result, the

radius of the surrounding area around Y must be increased (dashed circle). Using this

method, the interpolated value can always be computed. However, it may not be always

meaningful as surrounding points may be at a large distance.

A natural extension of this simple algorithm is based on the assumption that the inter-

polated values should be mostly influenced by nearby points and less by the more distant

points. Hence, the value of neighboring values can be weighted based on their distance

to the interpolated point. The interpolation algorithm is known as the Inverse Distance

Weighted (IDW) interpolation and is one of the most commonly used techniques for in-

terpolation of scatter points. This method was used during our experiments on temporal

classification in Chapter 9 to compare and evaluate the proposed temporal classification.

The value v of the interpolated point x is the weighted average of the k-nearest points xi

as defined in Equation 2.14, where vi is the value of xi and wi(x) is the weight of xi based

on its distance to x.

v(x) =

k∑
i=0

wi(x)vi

k∑
i=0

wi(x)

(2.14)

The weight function is normally largest at zero distance and decrease as the distance

increases. The most commonly used weighting function (defined in Equation 2.15) is based

on the power function and was introduced by Shepard 111 , where d(x, xi) is the distance

between x and xi and p ∈ R+ is called the power parameter.

2. BACKGROUND AND RELATED MATERIAL 43

wi(x) =
1

d(x, xi)p
(2.15)

Combining Equations 2.14 and 2.15 gives Equation 2.16

v(x) =

k∑
i=0

1
d(x, xi)p

vi

k∑
i=0

1
d(x, xi)p

(2.16)

Let (a, b) ∈ R2 be two real constants. We defined va,b(x) as the value of the interpolated

point x obtained after multiplying the individual values vi by a and adding b. We obtain:

va,b(x) =

k∑
i=0

1
d(x, xi)p

(avi + b)

k∑
i=0

1
d(x, xi)p

va,b(x) =

a
k∑
i=0

1
d(x, xi)p

vi + b
k∑
i=0

1
d(x, xi)p

k∑
i=0

1
d(x, xi)p

va,b(x) = a

k∑
i=0

1
d(x, xi)p

vi

k∑
i=0

1
d(x, xi)p

+ b

va,b(x) = av(x) + b (2.17)

Equation 2.17 proves that the IDW interpolation is linear. The linear property of IDW

interpolation was used by Revesz et al.112,113 to give a constraint database representation of

the interpolator, which was used for spatiotemporal reasoning about epidemiological data99.

In this work, we evaluated our temporal classification (see Chapter 9) by comparing it with

the constraint database representation of IDW.

Chapter 3

PROFESS: PROtein Function,

Evolution, Structure and Sequence

“With our query, you type the query once,

and it will federate the results from all these sources together.”

Lubor Ptacek

3.1 Introduction

Life sciences techniques made significant improvements over the past decades, resulting in

huge amounts of data, collected over the years by the scientific community. In order to

facilitate the organization and the subsequent analyses of this valuable data, databases have

been developed very early. Databases may be broadly defined as organised collections of

data, structured so that data can be automatically retrieved or manipulated. One of the

first biological databases was the ”Atlas of Protein Sequences and Structures” by Margaret

Dayhoff114. It was first published as a book in 1965. It contained the protein sequences

determined at the time, and updated editions of the book were published in the 1970s115.

Its data became the foundation for the Protein Information Resource database116 (PIR).

At that time, databases existed in the form of a set of index cards, each containing the

information for one of the entities. Since then, the development and rapid advances in

3. THE PROFESS DATABASE 45

electronics led to the development of database models that are far more efficient for dealing

with large volumes of information than flat databases. The most notable advance is the

relational model, which was proposed by Codd in 1970102, making databases an efficient

tool to support the research community. Since then, the number of databases has dramat-

ically increased117, and the 2009 Molecular Biology Database Collection118 includes 1,170

databases, each containing thousands, if not millions, of entries. These databases constitute

the extent of our knowledge related to genomics, proteomics, metabolomics and structural

genomics. However, most serve only as data warehouses with simple interfaces for data

retrieval3.

3.2 Database Integration Problem

To address increasingly complex questions, biologists are routinely required to develop new

databases by filtering information from existing databases119. Even though this is extremely

inefficient, there are a growing number of specialized databases designed around single

topics. Unfortunately, this simply propagates the underlying inability to utilize the data

outside the constraints imposed by the database designers120.

As an example, the Protein FAMilies121 (PFAM) database contains large collection of

high quality, manually curated families, which are helpful to identify conserved domains that

occur within proteins and therefore provide insights into the proteins functions. Besides

sequence-based queries using BLAST74, the primary means to mine data is based on a

randomly assigned accession number or keywords. There exist only very limited interactions

with other databases. As a consequence, the set of possible queries available to mine the

data is limited as well. In particular, it is not possible to search PFAM for enzyme classes122

that are common to a specific family for example.

Capitalizing on the potential of biological information requires the development of a

next-generation database that enables biologists to explore biological data in new ways.

The key to solving this problem is to move the design focus from the database structure

to a fluid association that can be adapted to a biologists questions123 without re-designing

the underlying data structure. However, there are barriers to linking individual databases

because of different data formats and structure124,125.

3. THE PROFESS DATABASE 46

Thus, it was essential to this effort to implement a new approach to integrate diverse

biological databases1,126. Satisfying, general and practical solutions are still lacking for

the integration of business or spatio-temporal data127 and are rarely able to handle the

additional complexities of biological data. The most versatile of these solutions is to use a

separate adapter – or wrapper – program around each source database128. The wrappers

provide a simplified view of the source database, presented in a form that is understandable

and easier-to-use than the original source database. In fact, some parts of the source data

may be completely omitted in this repacked presentation, leaving only the parts of the data

that are needed for the user who wants to use it.

The advantage of the “answering queries using views” approach to the database inte-

gration problem is that it reduces the integration problem to the two steps of:

1. Building wrappers of the source databases, thereby providing simple views,

2. Applying standard database queries on the views.

Thus, implementing wrappers will also enable a robust query system that incorporates a

variety of similarity functions capable of generating data relationships not conceived during

the creation of the database, allowing the user-interface to move beyond the simple text-

based queries that dominate existing databases.

3.3 Overview of PROFESS

The PROFESS (PROtein Function, Evolution, Structure and Sequence) database was ini-

tially developed as a resource to measure structure plasticity of orthologous families upon

taxonomic divergence (see Chapter 4). It was containing over 65,000 pairwise protein struc-

ture comparisons generated using DaliLite and more than 1,000 clusters of orthologous pro-

teins129 (COG). To understand the biological significance of structure divergence, fourteen

additional sources of data were added to PROFESS (Table 3.1, see Section 3.4 for details)

using a Local-As-View (LAV) modular approach (Section 3.5).

3. THE PROFESS DATABASE 47

Figure 3.1: Outline of the PROFESS database. A) the relationship of the user interface to

the functional query system (green) to the PROFESS databases; and B) the core databases

integrated in PROFESS. The central COG-PDB linkage is shown in red, double arrows

indicate intensive interactions, blue boxes represent databases available on the Internet,

and purple boxes denote other databases to be integrated in the future. Each additional

data set interacts with the PROFESS core through the use of wrapper programs to make

the query language uniform.

3.
T

H
E

P
R

O
F

E
S

S
D

A
T

A
B

A
S

E
48

Table 3.1: Core databases currently integrated in PROFESS (last update May 2009)

Name Code Level Link Ref.

CATH database CATH Structure http://www.cathdb.info/ 51

Clusters of Orthologous Groups of proteins COG Function http://www.ncbi.nlm.nih.gov/COG/ 129

Enzyme Classification EC Function http://www.chem.qmul.ac.uk/iubmb/enzyme/ 122

Database of Essential Genes DEG Evolution http://www.essentialgene.org/ 130

Database of Interaction Proteins DIP Function http://dip.doe-mbi.ucla.edu/ 131

Functional structure/sequence-based phylogeny Evolution Proposed in Chapter 4

Functional structure similarity comparisons Structure Proposed in Chapter 4

Gene Ontology GO Function http://www.geneontology.org/ 132

GenBank GENBANK Sequence http://www.ncbi.nlm.nih.gov/Genbank/ 133

KEGG Ligands KEGG Function http://www.genome.jp/kegg/ligand.html 134

Protein Data Bank PDB Structure http://www.rcsb.org/ 7

Protein Families database PFAM Function http://pfam.sanger.ac.uk/ 121

Protein/Protein interactions in E. coli PIN Function http://genome.cshlp.org/content/16/5/686 135

Structural Classification of Proteins SCOP Structure http://www.bio.cam.ac.uk/scop/ 50

UniProtKB Taxonomy NEWT All http://www.uniprot.org/taxonomy/ 136

http://www.cathdb.info/
http://www.ncbi.nlm.nih.gov/COG/
http://www.chem.qmul.ac.uk/iubmb/enzyme/
http://www.essentialgene.org/
http://dip.doe-mbi.ucla.edu/
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.genome.jp/kegg/ligand.html
http://www.rcsb.org/
http://pfam.sanger.ac.uk/
http://genome.cshlp.org/content/16/5/686
http://www.bio.cam.ac.uk/scop/
http://www.uniprot.org/taxonomy/

3. THE PROFESS DATABASE 49

PROFESS was designed to assist in the functional and evolutionary analysis of proteins

continually identified from whole-genome sequencing. Hence, a requirement for PROFESS

was to be both versatile and extendable. For these reasons, the PROFESS database was

created using wrappers of a Local-As-View (LAV) approach (Section 3.5). The web interface

was also designed using a modular approach (Section 3.7), each module representing a

unique view of the data.

Figure 3.1 outlines the structure of our system: users interact with PROFESS through

a web interface using a functional-style query language that is translated to SQL for mining

PROFESS (A). The core of PROFESS (B) consists of the COG-PDB relationship (Sec-

tion 3.4.1). Other databases interact with PROFESS core through the use of wrappers. As

a consequence, all integrated databases can be uniformly queried (Section 3.6). The flexible

design of PROFESS coupled with user friendly searching capabilities makes PROFESS par-

ticularly useful for asking a range of questions about the sequence, structure and functional

relationship of orthologous proteins.

PROFESS is freely accessible through the URL http://cse.unl.edu/~profess. Data

can be downloaded as parseable files in Comma Separated Values (CSV) format from the

web-interface or using HTTP GET requests that may be batched in scripts.

Table 3.2: List of modules available in the user interface of PROFESS

Name Level Data sources

Essential genes Evolution COG, DEG, NEWT, PDB

Functions Function COG, EC, GO, KEGG, NEWT, PDB, PFAM

Functions summary Function COG, EC, GO, PDB, PFAM

Ligands Function COG, KEGG, PDB

Protein interactions Function COG, PIN

Sequences Sequence COG, GENBANK, NEWT, PDB

Sequence-based phylogeny Evolution COG, GENBANK, PDB

Sequence similarities Sequence COG, GENBANK, PDB

Structures Structure CATH, COG, NEWT, PDB, SCOP

Structure-based phylogeny Evolution COG, PDB

Structural comparisons Structure COG, NEWT, PDB

http://cse.unl.edu/~profess

3. THE PROFESS DATABASE 50

3.4 Database Content

3.4.1 Functional Annotation of the Protein Data Bank

The core of PROFESS established a relationship between the Protein Data Bank7 (PDB)

and the cluster of orthologous groups129 (COG) databases (Figure 3.1B). The Protein Data

Bank is the main repository for protein structures and contains 55,159 structures∗. The

most recent COG database was created by finding the genome-specific best-hit for each

gene in 66 unicellular genomes (50 bacteria, 13 archaea, and 3 eukaryota). Specifically, the

orthologs present in three or more genomes were detected automatically and then multido-

main proteins were manually split into component domains to eliminate artifactual lumping.

The COG database contains 192,987 sequences distributed among 4,876 COGs, accounting

for 75% of genes in these 66 genomes.

Assignment of each bacterial protein in the PDB to a COG number in the clusters of

orthologous groups database required downloading the complete sequence lists from both

databases. The BLAST algorithm74 implemented with the Protein Mapping and Compar-

ison Tool137 (PROMPT) was used to match sequences in the PDB with COG and KOG

sequences using the BLOSUM62 matrix with a gap penalty of 11, a gap extension penalty

of 1 and a word size of 5 and a BLAST relatively low expectation threshold (E-value) of

10−9. This low E-value was used to unambiguously match genes in the COG database with

proteins in the PDB instead of simply match homologous sequences.

As of April 28, 2009, the BLAST search gave a hit rate of 74.8% of total PDB protein

sequences (41,273 of 55,159 total sequences) matching the COG or KOG databases. Of the

41,273 PDB/COG hits, 54.2% matched with greater than 50% sequence identity with 17%

giving 100% identity. All BLAST hits are displayed in the Sequence Similarities module

of the web interface. The BLAST required 3 days of intensive calculations running on a

2.80 GHz Intel CPU with 1.5 GB of RAM. The output from the BLAST is reformatted

and stored in our database. This functional annotation of the Protein DataBank is also the

core component of our structural comparison of functional orthologs, which is described in

details in Section4.2.
∗As of April 2009

3. THE PROFESS DATABASE 51

3.4.2 Functional Level

The Function level of PROFESS contains three unique modules that describe the primary

biological function of a cluster of orthologs, in addition to a “summary” module which

provides an overview of most relevant classifications.

Module Functions

The module Functions (Figure 3.2a) is a table of various functional annotations for a

protein structure in the Protein DataBank including the PFAM, the Gene Ontology, and

Enzyme Classification. The PFAM database contains large collection of high quality, man-

ually curated families (version 23.0 includes 10,340 families), which are helpful to identify

conserved domains that occur within proteins. Families are described by multiple sequence

alignments in addition to probabilistic models called hidden Markov models. The Gene

Ontology provides an ontology of 27,606 defined terms representing gene properties cover-

ing three domains: cellular components, the parts of a cell or its extracellular environment;

molecular functions, the elemental activities of a gene at the molecular level; and biological

processes, sets of molecular events essential for the functioning of organisms. The En-

zyme Nomenclature defines a hierarchical numerical classification for enzymes, based on

the chemical reactions they catalyze. The current sixth edition contains 3,196 different

classes.

Protein function can also be described by protein interaction partners, therefore two

additional modules (Ligands and Protein Interactions) list the ligands and proteins experi-

mentally shown to interact with members of the COG family.

Module Ligands

In biochemistry, a ligand is a substance that is able to bind to and form a complex with

a biomolecule to serve a biological purpose. For example, it may act as a signal triggering

molecule, binding to a site on a target protein. The Ligands module (Figure 3.2b) displays

details about ligands known to bind a protein based on ligand bound structures from the

Protein DataBank as well as cross-references to the Kyoto Encyclopedia of Genes and

Genomes134 (KEGG). In particular, we provide the list of protein structures within the

orthologous cluster that bind each of the listed ligands. The Protein DataBank provides a

3. THE PROFESS DATABASE 52

(a) Module Functions

(b) Module Ligands

(c) Module Protein/Protein Interactions

Figure 3.2: Three modules (top rows only) from the Function level of the PROFESS

database for Dihydrodipicolinate synthases (COG 329). Moving the cursor over structure

or ligand thumbnails activates a popup with a larger image.

3. THE PROFESS DATABASE 53

similar functionality. However, a major difference with PROFESS is that a search on the

PDB for a specific ligand will return the list of all bound protein structures. PROFESS only

returns those which are orthologous thus expected to have similar functions. To provide

rapid access to biologically relevant data, common buffers, detergents, ions and solvents are

listed separately.

Module Protein/Protein Interactions

The interactions between proteins are critical for most biological functions. For example,

signal transduction is based on interactions between extra-cellular signaling molecules and

membrane proteins, and plays a fundamental role in many biological processes and in many

diseases. The Protein Interactions module (Figure 3.2c) lists protein interactions found in

E. coli. The data was extracted from Arifuzzaman et al. 135 and interactions were correlated

to the corresponding protein structures by matching bait and prey genes to their represen-

tative COG. The Protein Interactions module also integrates the 55,692 manually curated

protein/protein interactions (as of August 2009) in 243 organisms from the Database of

Interacting Proteins131.

Module Functional Summary

The Function level of PROFESS also summarizes the main biological functions of an

orthologous cluster (example of Dihydrodipicolinate synthases (COG 329) shown in Fig-

ure 3.3). For three primary descriptions of protein function – the Protein Families121, the

Enzyme Classification122 and the Gene Ontology132 – , the numbers of proteins within each

class (within the current orthologous cluster) are computed and the distributions are rep-

resented as pie charts. This synthetic view allows the user to quickly differentiate relevant

classes from outliers. Classes are sorted by decreasing number of proteins. The darker the

color in the pie chart, the higher the number of proteins. We implemented PHP scripts to

generate the raw data whereas the pie chart are generated using the Google Chart API∗.

While the webpage displays chart thumbnails, the pie charts can also be downloaded in

high-definition.

∗Documentation available at http://code.google.com/apis/chart/

http://code.google.com/apis/chart/

3. THE PROFESS DATABASE 54

Figure 3.3: The module Function Summary represents the distribution of the proteins in

all PFAM, E.C. and GO classes within the current orthologous cluster.

3.4.3 Phylogenetic Level

Phylogeny is the study of the evolution of organisms and describes how they evolved to-

gether. The evolution and relations between organisms or proteins of interested are usually

represented in an evolution – or phylogenetic – tree. The Evolution level of PROFESS

displays a table of essential genes, and sequence and structure-based phylogenetic trees.

Module Sequence-based Phylogeny

The Sequence Tree (Figure 3.4a) shows the unrooted phylogenetic tree generated using

protein chain sequences from the PDB. First, the sequences were aligned using ClustalW265.

Second, the tree was computed using ClustalW2 using the multiple sequence alignment as

a guide. The final image was generated using DrawTree from the PHYLIP package138.

Module Structure-based Phylogeny

The Structure Tree (Figure 3.4b) module shows the unrooted phylogenetic tree generated

using protein structures from the PDB. To increase throughput, the structures were aligned

using MAMMOTH-mult82, a tool for multiple structure alignments. The tree was computed

by ClustalW2 using the multiple structure alignment as a guide. The final image was

generated using DrawTree. The two phylogenetic trees allow a quick visual comparison of

the divergence between sequences and structures of orthologous proteins. In both cases, the

tree can be downloaded as an ASCII file in PHYLIP format as well as in high-definition

picture.

3. THE PROFESS DATABASE 55

(a) Sequence-Based Phylogeny (b) Structure-Based Phylogeny

Figure 3.4: The modules Structure and Sequence-based Phylogeny for Predicted

GTPase (COG 12).

Module Essential Genes

The Essential Genes module of the Evolution level shows whether the protein in the

orthologous cluster is essential and was obtained from the Database of Essential Genes130

(DEG). As of version 5.2, DEG includes 5,260 essential prokaryotic genes and 4,808 eukary-

otic genes extracted from the literature. Genes are displayed with corresponding protein

structures from the PDB.

3.4.4 Structural Level

Module Structures

The Structure level of PROFESS contains an aggregates table of data from the CATH

Protein Structure Classification51, the Protein Data Bank and the Structural Classification

of Proteins50 (SCOP) databases and was annotated with the source organism using the

UniProtKB taxonomy (Figure 3.5a). The Structure level is particularly useful for finding

other orthologous clusters with a particular structure fold.

The CATH (Class, Architecture, Topology and Homologous superfamily) classification

is a semi-automatic, hierarchical classification of protein domains. The domains are au-

tomatically sorted into classes and clustered on the basis of sequence similarities. These

3. THE PROFESS DATABASE 56

clusters form the H levels of the classification. The topology level is formed by structural

comparisons of the homologous groups, the architecture level is assigned manually based on

particular structural features. The four CATH classes are defined based on the secondary

structures of the proteins: (1) mostly-alpha, (2) mostly-beta, (3) alpha and beta, (4) few

secondary structures.

SCOP also describes four levels of hierarchic structural classification: the class, which

defines eleven general structural architectures of the domain, the fold for similar arrange-

ment of regular secondary structures but without evidence of evolutionary relatedness, the

superfamily where sufficient structural and functional similarity can infer a divergent evo-

lutionary relationship but not necessarily detect sequence homology and the family where

sequence similarities can be detected. Unlike CATH, SCOP is largely a manual classifica-

tion. Note that due to copyright issues, we only provide links to retrieve data from SCOP

(a) Module Structure

(b) Module Structure Comparisons

Figure 3.5: The two modules (top rows only) from the Structure level of the PROFESS

database for Dihydrodipicolinate synthases (COG 329). Moving the cursor over cross-

reference activates tooltips that provide additional information.

3. THE PROFESS DATABASE 57

(a) Module Sequence

(b) Module Sequence Similarities

Figure 3.6: The two modules (top rows only) from the Sequence level of the PROFESS

database for Dihydrodipicolinate synthases (COG 329). Moving the cursor over cross-

reference activates tooltips that provide additional information.

website rather than reproducing SCOP data on our pages.

Module Structure Comparisons

Additionally, the Structure level contains all pairwise structure alignments of an or-

thologous cluster (Figure 3.5b). The pairwise structure comparison tool DaliLite was used

to measure the backbone structure similarity of proteins within each orthologous cluster

defined by the COG database. All-against-all pairwise structural comparisons were carried

out for all COGs that were represented by a minimum of two organisms. The Dali Z-scores

were normalized to calculate a Fractional Structure Similarity (FSS) score:

FSS =
ZAB

max(ZAA, ZAA)
(3.1)

3. THE PROFESS DATABASE 58

where ZAB is the Dali Z-score when protein B is compared to protein A and ZAA is the Z-

score when protein A is compared to itself. Thus, ZAA represents the maximum Z-score that

can be achieved for perfect similarity. FSS provides a simple normalized and quantitative

measure of the distance the two proteins have diverged in their structures.

3.4.5 Sequence Level

The Sequence level of PROFESS lists all protein chain sequences within the orthologous

cluster from the corresponding PDB structure (Figure 3.6a). The sequences provide the

link between the PDB and the COG database as well as cross-references to GenBank133.

The similarity scores from the PDB to COG link (see Section 3.4.1 for details) are shown

in the Sequence Similarities module (Figure 3.6b).

3.5 Local-As-View Data Integration and Database Design

Traditional data integration methods involves data warehousing, where the warehouse

database extracts, transforms and loads (ETL) data from various sources into a single

schema that is easy to query (Figure 3.8a). However ETL methods lack flexibility because

they require the warehouse schema to be tightly coupled with the data sources. As a result,

integrating new data sources requires considerable efforts as the entire warehouse and sub-

sequent queries need to be redefined. The warehouse schema may also have to be redesigned

in case one of the data sources schema changes after an update.

To address the flexibility issues of widely-used ETL methods, the PROFESS database

was designed using a flexible Local-As-View (LAV) method128,139 as shown in Figure 3.8b.

LAV methods involve wrappers that provide a data abstraction layer of the databases to be

integrated. Wrappers are software that translate the data sources and provide an abstract,

simplified view of the integrated data sources. Although there have been prior integration

efforts of structural data and functional data sources, the PROFESS system has a unique

approach because it creates two internal wrappers, one for the integrated functional data

and another for the integrated structural data and then applies novel functions for the

association between these two wrappers. This multi-step integration approach merges the

easier-to-integrate data sources first, and then the harder-to-integrate data sources.

3.
T

H
E

P
R

O
F

E
S

S
D

A
T

A
B

A
S

E
59

Figure 3.7: The Entity-Relationship diagram of the PROFESS database.

3. THE PROFESS DATABASE 60

Figure 3.8: Two solutions for the data integration problem. A) The ETL software extracts,

transforms and loads the data sources into the warehouse. B) The more flexible Local-As-

View (LAV) method defines a virtual database that interacts with data sources through

wrappers, which provide simplified views of the original databases.

Incomplete and incorrect information in the data source is one of the major difficulties

with data integration. By first merging together closely related data sources, our method

increases the likelihood that data from different sources will complete and correct each

other. In this way, PROFESS will help users overcome such problems as incomplete and

misleading data annotations. Structural and functional data are often difficult to integrate

because of different identification numbers, different functional definitions, and the absence

of a direct link between the two data sources. These problems are solved by using sequence

and other related information to link together structural and functional data. Our multi-

level integration approach first links all intermediate information to either the functional

wrapper or to the structural wrapper. This association then makes it easier to find links

between the functional and the structural wrappers using the intermediate information.

The final step to achieve our flexibility and extendibility goals was to normalize our

database structure. Database normalization was introduced by Codd 102 . It is a systematic

process to ensure that a database structure is will not be subject to anomalies after insertion,

update, and deletion, that could lead to a loss of data integrity140. Data normalization is

also useful to reduce the need for restructuring the collection of relations as new types of data

are introduced. There are currently five normal forms∗, numbered from one to five. The
∗There exists a sixth normal form proposed by Date et al. 141 for temporal data

3. THE PROFESS DATABASE 61

higher the normal form, the more robust the database structure is against inconsistencies.

PROFESS was designed using the fifth normal form proposed by Fagin 142 . The resulting

Entity-Relationship diagram is shown in Figure 3.7.

However, selective denormalization was subsequently performed for performance rea-

sons143. In particular, the PROFESSor (see Section 3.6.1) queries data from a unique table

(precalc professor) that includes pre-computed joins between relations. To maintain the

data consist, routines were implemented along with the wrappers to regenerate the table

after data is inserted in PROFESS.

3.6 Functional-Style Query System

3.6.1 The PROFESSor

The primary search tool to query the database is the PROFESSor (Figure 3.6.1), a unified

text field that will assist the user to easily refine complex queries by dynamically suggesting

entries from any integrated database.

The PROFESSor assists the user by correcting for spelling errors using DamerauLeven-

shtein metrics144. The Damerau-Levenshtein distance between two sequences of characters

is the minimum number of basic operations (substitution, insertion, deletion and transpo-

sition) necessary to transform one sequence into the other one. For example, the Damerau-

Figure 3.9: The PROFESSor is a search tool generated from the core databases. It displays

interactive suggestions to help the user to refine complex query. Using the PROFESSor,

users can quickly and accurately find all functional, structure and sequence information

about a particular protein and its relation to other protein functions and folds.

3. THE PROFESS DATABASE 62

Levenshtein distance between “homo sapiens” and “homu spaiens” is 2: u is changed to

o, and p and a need to be switched. This is an effective means to detect spelling errors

as Damerau 145 showed that 80% of misspellings can be corrected with one basic operation

only, which corresponds to a distance of one.

It also provides a user defined focused browsing feature. For instance, upon typing in

the query FAD (Flavin-Adenine Dinucleotide) the PROFESSor returns a drop down list of

protein folds and functions that have known relation with the FAD ligand (Figure 3). If

a user selects the ligand suggestion, PROFESS will return all functional clusters known to

interact with FAD. The PROFESSor searches all other data sources within PROFESS in

the same manner. A user can rapidly identify other protein functions that have the same

fold, bind similar ligands, or identify cellular localizations all in one search. In addition to

the PROFESSor, a traditional search form is also available.

The PROFESSor may also be queried using many keywords from several databases using

boolean logic. Using regular expressions, the general syntax for queries is defined as:

([KEY]0,1 \w∗ ([OR] \w∗)∗)([OR]0,1[KEY]0,1 \w ([OR] \w)∗)∗

KEY depends on the database and may be one of the following (note that this list will

grow with the number of core databases): ALL, COG, EC, GO, LIGAND, PDB, PFAM.

By default, all keywords after a [KEY] are considered as a unique string for the query. This

behavior can be altered by prefixing the keywords with [OR]. The wildcard characters %

(any number n of characters, with n ≥ 0) and (exactly one character) may be used in a

query. A logical AND is performed between different keys.

3.6.2 Functional-Style Query System

A fundamental component of our approach required the development of an intuitive functional-

style query system that incorporated a variety of similarity functions53 capable of generating

data relationships not conceived during the creation of the database. For example, one may

query for a relationship between the PFAM and the COG databases, although this relation

is not explicitly defined in the database. Functional-style queries are composed of a set of

atomic functions provided to the users. Each function takes as input a set of parameters

and gives as output a well-defined value or set of values. A full query is defined as a pipeline

3. THE PROFESS DATABASE 63

of any of the atomic functions, where the output of a function serves as input of the next

function in the pipeline. This is particularly useful to build incremental filters.

In addition to the possibilities offered by the PROFESSor, the user has the possibility

to use BLAST to query our database using a protein sequence. In that case, the BLAST

result is parsed and reformatted, and the function outputs the list of COG clusters that

contain proteins homologous to the input sequence.

3.7 Web User Interface

The primary means for users to interact with PROFESS is through webpages over the Inter-

net. PROFESS was built a flexible and extendable framework for genomics and proteomics

data. Hence, in addition to an adequate underlying database structure (Section 3.4), the

system must offer users a flexible interface that goes beyond simple static web pages.

Instead, the client-side software was designed to be interactive and user friendly. To

achieve our goal, we utilized Asynchronous Javascript and XML (AJAX) web development

techniques, which allows web applications to download data from the server asynchronously

Figure 3.10: Overview of the user interface highlighting the four levels to study proteins.

3. THE PROFESS DATABASE 64

using the XMLHttpRequest object (XHR) in the background without interfering with the dis-

play and general behavior of the existing page. XHR objects enable web pages to effectively

download data on demand from a server and return the data directly to the program for

additional processing. The server’s response is usually return in XML (Extensible Markup

Language) or in JSON (Javascript Object Notation) format. Data in XML format have

the advantage of being self-descriptive, meaning that the structure of the data is contained

within the data, which facilitates interoperability. However, the self-descriptivity property

of XML comes at the cost of a significant data overhead compared to the same data encoded

in JSON format. Hence, because of the large amounts of data, JSON was favored to reduce

latency and keep the system reactive.

XHR requests are the basis of the interactivity of our web interface. The PROFESSor

(see Section 3.6) is the component that benefits the most from this technique: each time a

user types a character in the text field, a XHR request is sent to the server. The server then

queries the database and sends the response back to the client in JSON format. Finally, the

response is processed and formated by the client to populate the drop-down menu which

displays seemingly “live” suggestions to the user based on his input. The suggestions can

help the user to refine his queries and detect typos more easily.

Because of the large amounts of data, the interface could quickly become confusing,

hence diminishing the benefits of PROFESS. To keep the interface simple and user-friendly,

each PROFESS entry has four tabs containing protein information about: Function, Evo-

lution, Structure and Sequence (Figure 3.10). Each level of the PROFESS database mines

pieces of information from all the integrated databases and provide the user with compre-

hensive tables highlighting annotations. The tables are defined as independent modules,

each providing a unique representation of the integrated data. Table 3.2 gives an overview

of available modules and the data sources that were necessary for their development. Each

module can be activated or deactivated, depending on the specific needs of the user. For

example, on Figure 3.10, the modules Summary and Functions are activated whereas Lig-

ands and Protein Interactions are not. The interface also summarized the content of the

current COG cluster using statistics.

3. THE PROFESS DATABASE 65

The front-end user interface was implemented in dynamic HTML (Hyper Text Markup

Language) and in Javascript. We also used the general AJAX frameworks developed by

Yahoo! (YUI v2.7)∗ and ExtJS (v3.0)†. The server back-end program of PROFESS was

implemented in PHP v5.2‡ and relies on the free MySQL database management system§.

To keep the system as open as possible, wrappers were implemented in Java 1.6 and thus

platform independent. PROFESS is running under Open SuSE Linux 11.0 on the SunFire

x4600 server of the Computer Science and Engineering department of the University of

Nebraska, which features 8 AMD quad-core processors (32 cores) and 64 GB of memory.

∗Available at http://developer.yahoo.com/yui/
†Available at http://extjs.com
‡Available at http://www.php.net/
§Available at http://www.mysql.com/

http://developer.yahoo.com/yui/
http://extjs.com
http://www.php.net/
http://www.mysql.com/

Chapter 4

Structural Comparison of

Functional Orthologs

“We are finding that things that once appeared to be

biologically independent are closely connected.”

Peter K. Sorger

4.1 Introduction

Quantifiable models of protein evolution are useful for developing robust tools to identify

suitable drug-binding sites, to predict increases in susceptibility to a human genetic disease,

and to predict and modify organismal niches. Some of the strongest arguments in favor

of biological evolution draw from studies on protein evolution using sequence homology146.

Multiple sequence alignments are routinely used to create phylogenetic relationships147,148,

which highlights sequence variability between organisms. The accepted view of protein

evolution is that changes to the proteins gene sequence are selected and modulated by a

number of factors that includes protein structures149,150.

What is the impact on protein structure as its sequence undergoes genetic drift? Main-

taining the correct protein fold is fundamental to preserving its function151, but evolving

the sequence would also be expected to result in structural changes152,153. The resulting

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 67

paradox is that sequence determines a proteins structure, but the structure is relatively

invariant over a large range of sequences. This paradox is highlighted by the tremendous

difference between the number of known protein structures versus protein folds154. Even

though the Protein Data Bank contains 61,086 protein structures∗, there are only 1,110

unique topologies† and 1,195 unique folds‡ in the CATH and SCOP structure classification

databases, respectively. The significant reduction in the number of protein folds relative to

the number of protein sequences implies a much stronger correlation between structure and

function. Protein structures are generally viewed as more conserved relative to its sequence.

Evolution rates of protein sequences and structures were quantified by Illerg̊ard et al. 155 .

An intuitive explanation is that substitutions of residues with similar chemical proper-

ties are relatively frequent, but that many mutations are silent, that is, they do not lead to

any significant structural modifications. However, the explicit reason for the reduction in

fold space remains unclear although some have suggested that the protein fold space is more

likely to be represented as a continuum instead of a collection of discreet folds156. Using

a continuous representation the fold space, a protein fold should be considered as being

plastic, where sequence changes are accommodated by local perturbations in the structure

while maintaining the general characteristics of a particular fold155,157,158. Correspondingly,

the genetic drift in a proteins sequence may imply a similar gradual divergence in structure

instead of a sudden dramatic transition to a new fold. If this perspective is accurate, then

a comparative analysis of homologous proteins should identify correlated rates of structure

and sequence divergence. Previous studies have looked at homologous structure similarity

before but the datasets did not try to show phylogenetic consequences of structure diver-

gence155,157,158. To help understand how protein plasticity affects organism divergence we

compared 48 sets of homologous protein families annotated in the COG database for two

bacterial phyla, Firmicutes and Proteobacteria.

∗As of October 29, 2009
†As of version 3.2.0 released in August 2008
‡As of version 1.75 released in February 2009

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 68

4.2 Functional Annotation of Protein Structures

Current functional annotation tools available in the PDB include the Gene Ontology132

(GO) and Enzyme Classification122 (EC). Unfortunately, due to potential for convergence

of function, this functional information is not useful for the study of homologous structures.

Among the 20 resources for structural classification of proteins, the clusters of orthologous

groups129 (COGs) scheme is the only one that attempts to identify orthology. Therefore,

each sequence and structure in the PDB was annotated with one COG number. This

was achieved by developing the PROFESS (PROtein Function, Evolution Sequence and

Structure) database which is described in details in Chapter 3.

The two best-represented bacterial phyla, which account for nearly one-fourth of all

structures in the PDB, were selected for annotation. The PDB contains 8,298 Proteobac-

teria protein structures and 3,416 Firmicutes structures. PROFESS contains the PDB to

COG annotations among other biological relevant information. This includes associating

each structure with its taxonomic classification, which allowed for the structures from Fir-

micutes and Proteobacteria to be easily selected. To carry out our comparative study, we

implemented a script to extract only those COGs that contained a minimum of two Firmi-

cutes organisms and two Proteobacteria organisms. This requirement gave 281 unique COGs

with a total of 3,047 bacterial proteins, including 1,066 Firmicutes and 1,981 Proteobacteria.

4.3 Pairwise Structure Similarity

4.3.1 Methods

The pairwise structure comparison tool DaliLite159∗ was used to perform 63,504 pairwise

comparisons between all of the proteins in our dataset. In total, the backbone structure

similarity corresponded to 31,542 Proteobacteria-Proteobacteria comparisons (-/-), 12,674

Firmicutes-Firmicutes comparisons (+/+), and 19,288 Proteobacteria-Firmicutes compar-

isons (-/+). DaliLite was installed on Powers lab† Beowulf cluster, which runs CentrOS 4.4

and features 32 cores (16 dual-core AMD Athlon @2.13 GHz), 1 GB of RAM and 2.25TB

for storage.

∗Available at http://www.ebi.ac.uk/Tools/dalilite/
†Powers lab website: http://bionmr-c1.unl.edu/

http://www.ebi.ac.uk/Tools/dalilite/
http://bionmr-c1.unl.edu/

4.
S

T
R

U
C

T
U

R
A

L
C

O
M

P
A

R
IS

O
N

O
F

F
U

N
C

T
IO

N
A

L
O

R
T

H
O

L
O

G
S

69

Table 4.1: The 48 COG structure families with two Firmicutes and two Proteobacteria organisms after manual curation.

“Split” means the Firmicutes and Proteobacteria proteins were strongly separated, “Starburst” means there was no evidence

for a split according to phyla, and “Split +1” means there was strong evidence for a split with the exception of one protein.

COG Function Tree CATH

28 Thiamine pyrophosphate requiring enzymes Split 3.40.50.970
39 Malate/lactate dehydrogenases Split 3.40.50.720

394 Protein-tyrosine-phosphatase Split 3.40.50.270
446 Uncharacterized NAD (FAD)-dependent dehydrogenases Split 3.30.390.30
604 NADPH:quinone reductase and related Zn-dependent oxidoreductases Split 3.40.50.720
605 Superoxide dismutase Split 3.20.20.80
742 N6-adenine-specific methylase Split 3.40.50.150
813 Purine-nucleoside phosphorylase Split 3.40.50.1580

1012 NAD-dependent aldehyde dehydrogenases Split 3.40.309.10
1057 Nicotinic acid mononucleotide adenylyltransferase Split 3.40.50.620
1075 Predicted acetyltransferases and hydrolases with the alpha/beta hydrolase fold Split 3.40.50.1820
1607 Acyl-CoA hydrolase Split 3.40.0.1820
1940 Transcriptional regulator/sugar kinase Split 3.30.420.40
2124 Cytochrome P450 Split 1.10.630.10
2188 Transcriptional regulators Split 3.40.1410.10
242 N-formylmethionyl-tRNA deformylase Split +1 3.90.45.10

1052 Lactate dehydrogenase and related dehydrogenases Split +1 3.40.50.720

2141
Coenzyme F420-dependent N5,N10-methylene tetrahydromethanopterin
reductase and related flavin-dependent oxidoreductases

Split +1 3.20.20.30

3832 Uncharacterized conserved protein Split +1 3.30.530.20
110 Acetyltransferase (isoleucine patch superfamily) Starburst 2.160.10.10
171 NAD synthase Starburst 3.40.50.620
251 Putative translation initiation inhibitor, yjgF family Starburst 3.30.1330.40
346 Lactoylglutathione lyase and related lyases Starburst 3.10.180.10

Continued on next page. . .

4.
S

T
R

U
C

T
U

R
A

L
C

O
M

P
A

R
IS

O
N

O
F

F
U

N
C

T
IO

N
A

L
O

R
T

H
O

L
O

G
S

70

Table 4.1 (continued): The 48 COG structure Families with two Firmicutes and two Proteobacteria organisms after manual curation

COG Function Tree CATH

366 Glycosidases Starburst 2.60.40.1180
454 Histone acetyltransferase HPA2 and related acetyltransferases Starburst 3.40.630.30
491 Zn-dependent hydrolases, including glyoxylases Starburst 3.60.15.10
500 SAM-dependent methyltransferases Starburst 3.40.50.150
526 Thiol-disulfide isomerase and thioredoxins Starburst 3.40.30.10
590 Cytosine/adenosine deaminases Starburst 3.40.140.10
637 Predicted phosphatase/phosphohexomutase Starburst 1.10.164.10
664 cAMP-binding proteins Starburst 1.10.10.10

745
Response regulators consisting of a CheY-like receiver domain and
a winged-helix DNA-binding domain

Starburst 3.40.50.2300

753 Catalase Starburst 3.30.63.10
778 Nitroreductase Starburst 3.40.109.10
784 FOG: CheY-like receiver Starburst 3.40.50.2300
796 Glutamate racemase Starburst 3.40.50.1860

1028 Dehydrogenases with different specificities Starburst 3.40.50.720
1151 6Fe-6S prismane cluster-containing protein Starburst 1.20.1270.30
1309 Transcriptional regulator Starburst 1.10.357.10
1396 Predicted transcriptional regulators Starburst 1.10.260.40
1404 Subtilisin-like serine proteases Starburst 3.40.50.200
1733 Predicted transcriptional regulators Starburst 1.10.510.10
1846 Transcriptional regulators Starburst 1.10.10.10
2159 Predicted metal-dependent hydrolase of the TIM-barrel fold Starburst 3.20.20.140
2367 Beta-lactamase class A Starburst 3.40.710.10
2730 Endoglucanase Starburst 3.20.20.80
3693 Beta-1,4-xylanase Starburst 3.20.20.80
4948 L-alanine-DL-glutamate epimerase and related enzymes of enolase superfamily Starburst 3.20.20.120

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 71

We designed a C-shell script that matches the PDB files from each Proteobacteria-

Proteobacteria comparison (-/-), Firmicutes-Firmicutes comparison (+/+) and Proteobacteria-

Firmicutes comparison (-/+) and then submits the job to the program DaliLite. Each

structural comparison takes approximately 2-10 min, depending on the relative similarity

of structures. The total time to run all 63,504 comparisons was approximately seven weeks.

The shell script then extracted all structural comparison information reported by DaliLite

(comparison files, rmsd, sequence identity, Z-score) on a per chain basis. A single PDB file

may contain multiple protein chains, where each chain may have a separate COG assign-

ment. These data represent the core of the Structure Comparisons module of our PROFESS

database. The data were then parsed to find the largest Z-score for each pairwise structure

comparison. The largest Z-score represents the best structure comparison for a pair of pro-

teins and was used to calculate the Fractional Structure Similarity score (FSS) defined in

Equation 3.1.

All comparisons were manually filtered within their respective COG to remove all but one

redundantly solved structure, multiple or non-functionally relevant conformations (mutant

protein, non-native experimental conditions, inhibited ligand complex), and the shorter of

two protein structures. The final dataset contained 48 COGs (Table 4.1) with a total of

1,713 structural comparisons among 147 Firmicutes proteins from 58 unique organisms and

176 Proteobacteria proteins from 84 unique organisms.

4.3.2 Results

The resulting Dali Z-scores from the pairwise structure comparisons were plotted against

sequence identity (Figure 4.1) to reveal a saturating relationship as the percent identity

rose to 100%. The lowest observed Z-score was Z = 5.7 with a corresponding 16% sequence

identity. This Z-score was well above the minimum cutoff of 2.0 (dashed line) for matches

that were two standard deviations above a random match. This lowest Z-score came from

the comparison of two Firmicutes proteins in COG0346 (lactoylglutathione lyase and related

lyases): 2QH0 (Clostridium acetobutylicum); and 2QQZ (Bacillus anthracis). The average

Z-score for all comparisons was Z = 27 ± 13, indicating that all structural matches were

very significant even at sequence identities below 20%.

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 72

Figure 4.1: The relationship between structure similarity and sequence identity for 48

COGs. Structure similarity is given as the raw Z-score, which increases as the protein

length increases. The comparisons were for all proteins against all proteins, and include

those for each protein against itself. The dashed line identifies a Dali Z-score of 2, which is

the minimal limit for inferring structural similarity.

Figure 4.2: The fractional structure similarity (FSS) and sequence identity for 48 COGs.

The FSS values were plotted against sequence identity for (A) all the pairwise compar-

isons, (B) only Proteobacteria-Proteobacteria comparisons, (C) only Firmicutes-Firmicutes

comparisons and (D) only Proteobacteria-Firmicutes comparisons.

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 73

Since Z-scores increase as a function of the protein length, we calculated the Fractional

Structure Similarity (FSS) score (see Section 4.3.1). When the pairwise FSS scores were

plotted against sequence identity (Figure 4.2), a hyperbolic curve was obtained with all

FSS values below an upper-limit at each percent identity. In fact, 20% sequence identity

yielded a maximal FSS of 60%. This FSS limit was observed when all of the data were

used (Figure 4.2A), when only the pairwise comparisons within either phyla were used

(Figure 4.2B and C), or when only the pairwise comparisons between the two phyla were

used (Figure 4.2D). The pairwise comparison plot between the two phyla (Figure 4.2D)

showed an abrupt cutoff at 61% sequence identity and a 0.84 FSS score.

Figure 4.3: The protein structures for COG28 (thiamine pyrophosphate requiring enzymes)

show (A) that the two Firmicutes structures have highly overlapping structures and (B) that

the four Proteobacteria structures are very similar to each another. The major structural

differences between the Firmicutes and Proteobacteria are highlighted in red on a represen-

tative Firmicutes (C) structure from L. plantarum (PDB ID: 1POW) and a representative

Proteobacteria structure (D) from P. fluorescens (PDB ID: 2AG0).

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 74

The protein structures in COG 28 (thiamine pyrophosphate requiring enzymes) pro-

vides a useful example of the structural divergence that occurred after the Firmicutes and

Proteobacteria phyla split. The overall fold is conserved between the phyla while there are

discrete localized structural elements that are unique to each phylum. The two Firmicutes

structures (Figure 4.3A) yield a Z-score of 59.6 and an FSS of 0.83, indicating very high

structural conservation. The four Proteobacteria structures (Figure 4.3B) yield an average

Z-score of 37.7±1.6 and an average FSS of 0.58±0.03. Again, the structures share a similar

fold despite the slightly lower scores.

The major structural differences between the Firmicutes and Proteobacteria are high-

lighted in red on a representative Firmicutes (Figure 4.3C) structure from L. plantarum

(PDB ID: 1POW) and a representative Proteobacteria structure (Figure 4.3D) from P. flu-

orescens (PDB ID: 2AG0). The comparison of protein structures between phyla yields an

average Z-score of 34.8± 1.2 and an average FSS of 0.49± 0.02, which is significantly lower

than the comparisons within each phylum. This suggests a divergence in structural details

while conserving the overall fold. A detailed analysis reveals localized differences between

the structures from the two phyla. In the Firmicutes representative structure, there is a con-

tinuous helix compared to helical breaks and loop insertions in the Proteobacteria structure.

This is similar to the C-terminal domain of primase, where a long continuous helix found

in the E. coli structure is broken by a loop region in B. stearothermophilus160,161,162,163.

4.4 Phylogenetic Analysis of Functional Orthologs

4.4.1 Methods

Additionally to pairwise structural alignment, all the protein structures from each COG

were simultaneously aligned using the multiple structure alignment program MAMMOTH-

multi∗ 82. We implemented a script utilizing the resulting aligned structures and the structure-

based sequence alignment to calculate an all-versus-all matrix of per-residue α-Carbon (Cα)

distances. Standard bootstrapping techniques164 were then applied to the all-versus-all ma-

trix of per-residue Cα distances to generate 100 distance-matrices. Columns of structure-

based sequence alignments with the corresponding Cα distances were randomly selected
∗Software available at http://ub.cbm.uam.es/mammoth/mult/

http://ub.cbm.uam.es/mammoth/mult/

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 75

until the total number of columns in the original sequence alignment was reached. The re-

sulting set of Cα distances were then used to calculate a root mean square deviation (rmsd)

between each pair of structures in the matrix. The 100 distance-matrices were imported

into PHYLIP v3.68138 to generate a consensus phylogenetic tree and bootstrap confidence

levels.

Each set of 100 bootstrapped distance-matrices were analyzed by the Fitch-Margoliash

method165 implemented in PHYLIP. Each matrix was jumbled with 100 replicates. This

resulted in 10000 (= 100 ∗ 100) unique and random distance matrices for each COG. The

best tree was identified with the program Consense implemented in PHYLIP using the

extended majority rule conservation. Since the bootstrapped trees do not show distance

relationship, the original distance matrix generated by MAMMOTH-multi was used to

generate a distance based phylogenetic tree. Each original distance matrix was jumbled

with 100 replicates. The distance based phylogenetic tree was drawn using the program

Drawtree implemented in PHYLIP. Each tree was visually inspected and compared with

the DaliLite analysis using the bootstrap values to determine if a tree fit the star, split or

undetermined classification.

4.4.2 Results

Structure based phylogenies were created from root-mean square differences (rmsd) in per

residue Cα positions for optimally aligned protein structures using MAMMOTH-multi (see

Section 2.2.2). A separate phylogenetic tree was generated for each COG, where three

distinct patterns were observed as reported in Table 4.1. Fifteen trees exhibited a strong

split at the phylum level, 29 exhibited a starburst pattern suggesting little to no evidence

for a split according to phyla, and 4 exhibited a strong split at the phylum level but with

the exception of a single structure (split +1).

The fifteen COG phylogenies with strong phylum-splitting patterns had two branches,

one with closely related Firmicutes structures and the other with closely related Proteobac-

teria structures. Figure 4.4a shows COG28 (Thiamine pyrophosphate requiring enzymes)

and COG446 (Uncharacterized NAD(FAD)-dependent dehydrogenases) as examples. The

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 76

(a) Split pattern, illustrated by COG28 and

COG446

(b) Starburst pattern, illustrated by COG491

and COG1309

(c) Split+1 pattern, illustrated by COG242, COG1052, COG2141 and COG3832

Figure 4.4: Protein structure based phylogenetic trees highlighting the split, split+1 and

starburst patterns.

structures for both of these COGs are classified in the CATH system as α/β 3-layer sand-

wiches, but differ in that COG28 proteins have a Rossmann fold topology and COG446

proteins have a FAD/NAD (P)-binding domain topology.

The twenty-nine COGs with phylogenetic starburst patterns (listed in Table 4.1) showed

no evidence for the separation of structures according to phyla. Figure 4.4b shows COG491

(Zn-dependent hydrolases) and COG1309 (Transcriptional regulator) as examples. The

CATH classification for COG491 Bacillus cereus Zinc-dependent beta-lactamase (PDB ID:

1BC2) describes it as an α/β 4-layer sandwich with metallo-beta-lactamase Chain A topol-

ogy. Beta-lactamases constitutes a large collection of enzymes that can be derived from any

one of a group of proteins that bind, synthesize, or degrade peptidoglycans. The protein

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 77

structures assigned to COG491 gave FSS scores with large standard deviations, consistent

with the separated clusters within the Proteobacteria arm of the phylogenetic tree. The

COG1309 structural family falls into one of two CATH topologies, Arc Repressor Mutant

(subunit A) or Tetracycline Repressor (domain 2). Only those structures similar to the

Arc Repressor Mutant topology were used for the pairwise comparison, since it was the

dominant fold in this COG. The protein structures in the COG1309 structure family gave

low FSS scores. However, even with low overall FSS the average absolute Z-score was 13±2

indicating that it has significant overall structure similarity. The high FSS deviations of

COG491 structural family and the low average FSS scores of COG1309 structural fam-

ily both indicate rapid structural divergence following the phyla split, consistent with the

observed starburst phylogenetic patterns.

Four COG structure phylogenetic trees (listed in Table 4.1) showed a strong split pattern

with a single outlier (Figure 4.4c). This result provides further evidence for the observation

of phyla split based on structure similarity. The presence of the outlier in a clear split pattern

suggests a horizontally transferred gene or potential paralog. For all four families, there was

a large and significant average absolute Z-score for all comparisons along with strong BLAST

E-values indicating that the correct match was made between COG and PDB. For COG242,

the Bacillus cereus gene def that encodes the N-formylmethionyl-tRNA deformylase protein

(PDB ID: 1WS0) has been previously identified by Garcia-Vallve et al. 166 as a gene that

has undergone horizontal gene transfer.

4.5 Structure Divergence Rates across Phyla

To quantify the relationship between structure difference and sequence difference, each

phylogenetic tree was assigned a simple score by calculating a structure similarity ratio

θFSS and a sequence identity ratio θSeqID.

The structure similarity ratio θFSS (Equation4.1) was determined for all 48 COGs by cal-

culating an average FSS score for the Proteobacteria-Firmicutes structure comparisons and

dividing by the sum of the average Proteobacteria-Proteobacteria and Firmicutes-Firmicutes

comparisons.

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 78

θFSS =
Avg(FSS+/−)

Avg(FSS+/+)

2 + Avg(FSS−/−)

2

(4.1)

Similarly, the sequence identity ratio θSeqID (Equation4.2) was determined by calcu-

lating an average sequence identity for the Proteobacteria-Firmicutes structure compar-

isons, and dividing by the sum of the average Proteobacteria-Proteobacteria and Firmicutes-

Firmicutes comparisons.

θSeqID =
Avg(SeqID+/−)

Avg(SeqID+/+)

2 + Avg(SeqID−/−)

2

(4.2)

In general, most starburst phylogenetic trees (see Figure 4.4b) had a branch length

between members of different phyla that was much shorter than the branch lengths between

members within the same phyla. That is, a starburst phylogeny was expected to have θFSS

and θSeqID values greater than one. Likewise, most split phylogenies had longer branches

between phyla than within each phyla (see Figure 4.4a) and were expected to yield θFSS

and θSeqID of less than one.

Figure 4.5: The relationship between structure and sequence change was constant regard-

less of the phylogenetic starburst (×) or split (�) pattern. The best-fit line is defined by

θFSS = 0.55θSeqID + 0.45 and yields a correlation factor R2 = 0.7.

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 79

When θFSS and θSeqID for all 48 COGs were plotted versus one another (Figure 4.5), the

starburst phylogenies clustered around unity for both structure and sequence whereas the

split phylogenies clustered around 0.85 for structure and 0.70 for sequence. This indicated

that split phylogenies occur when the structure differences are significantly less than their

sequence differences. In addition, the plot of θFSS versus θSeqID conformed to a linear

relationship regardless of the shape of the phylogenetic tree indicating that all homologous

protein structure differences are constant with respect to homologous protein sequence

differences (θFSS = 0.55θSeqID + 0.45 ; R2 = 0.7). Thus, this curve represents the relative

structural drift rate for each COG structural family between the two phyla. The slope

indicates that structure branch lengths change approximately half as fast as sequence branch

lengths.

4.6 Fold dependency on Structure Similarity

A plot of FSS vs. sequence identity for the two most populated CATH families in our

dataset (Figure 4.6) was used to investigate if particular protein architectures are more

amenable to structural changes. Half of our data set (24 out of 48 COGs), is represented by

CATH 3.40 (α/β, 3-Layer (αβα) sandwich). Within CATH 3.40, 12 of 24 COGs (50%) are

Figure 4.6: Fold dependency on fractional structure similarity (FSS) and sequence com-

parisons for CATH 1.10 (•) and CATH 3.40 (�).

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 80

represented by the starburst phylogenetic tree pattern. The remaining 12 COGs correspond

to 11 splits and 1 split +1 phylogenetic tree patterns.

The second most populous CATH family is CATH 1.10 (mainly α, orthogonal bundle)

with 15% of our COGs belonging to this CATH family. Most (85.7%) of the COGs (6 of 7)

in the CATH 1.10 family are represented by the starburst phylogenetic tree pattern with

only one COG represented by a split pattern. There appears to be a limit in structure

similarity at approximately 0.6 FSS and a corresponding sequence identity limit at 40% for

CATH 1.10 (•). This limit is not observed in the CATH 3.40 family (�). The sequence

and structure similarity limit for CATH 1.10 combined with a larger percentage of COGs

assigned to the starburst family suggests that CATH 1.10 is more susceptible to mutations

that affect the protein structure. The results suggest a faster evolutionary rate leading to

a higher structural divergence relative to other CATH architectures.

4.7 Discussion

The comparison of homologous protein structures with the same function provides quan-

titative evidence that protein structures diverged following the speciation events that cre-

ated the modern bacterial phyla of Firmicutes and Proteobacteria. The abrupt cutoff at

61% sequence identity and 0.84 fractional structure similarity observed between Firmi-

cutes and Proteobacteria proteins was mirrored by an approximate 60% protein sequence

identity between these two phyla observed by 16S rRNA sequence similarity167,168. Thus,

this maximum observed sequence identity imparts limits to the maximum possible struc-

ture similarity between homologus proteins from these two phyla. This is consistent with

prior observations that sequence identity 40-50% sometimes results in significant structural

and functional differences152,153,169. Furthermore, the results imply an inherent allowable

structural plasticity that does not perturb function. Additionally, the random drift af-

ter speciation inexorably leads to non-identical structures despite maintenance of function.

There are a number of cases where FSS was below 0.20 indicating a significant structural

change. Proteins with completely different folds but the same function are extreme ex-

amples of the plasticity of the structure-function relationship and include such proteins as

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 81

peptidyl-tRNA hydrolases170, pantothenate kinase171, polypeptide release factors172 and

lysyl-tRNA synthetases173.

Forty percent of the COGs we examined have evolved slowly enough that it was pos-

sible to generate phylogenetic trees consistent with this ancient split. The other COGs

have either evolved too rapidly or are otherwise subject to few evolutionary constraints

to provide evidence for this split. This distinction between the COGs is clearly apparent

from the comparison of θFSS and θSeqID from Figure 4.5. The linear relationship implies

a fixed relative structure drift rate, where structure changes half as fast as sequence across

phyla. This correlation in the divergence of protein sequences and protein structures has

additional ramifications beyond bacterial evolution. Our analysis implies a continuum of

protein folds that adapt to large sequence changes by incurring local structural modifica-

tions155,156,157,158. This continuum of protein folds makes it challenging to apply protein

structural classification to identify function, as has been previously noted174,175.

Does the nature of the proteins three-dimensional structure play a role in protein struc-

ture divergence? Our analysis demonstrates that some proteins evolve slowly and maintain

high sequence identity (≥80%) and structure similarity (≥0.80 FSS) while other proteins

exhibit rapid evolution rates where the sequence identity is lower than 20% and the FSS

below 0.40. This implies that the underlying architecture of a particular protein may be

more or less amenable to amino-acid substitutions in order to maintain functional activity.

A specific protein fold may have a higher intrinsic plasticity that enables it to readily ac-

commodate sequence changes through local conformational changes without a detrimental

impact on activity. This is exactly what was observed, structural variations were localized

to specific regions as illustrated by the comparison of the COG 28 protein structures see

(Figure 4.3). This is consistent with the observation that there are different structure di-

vergence rates within a protein176,177. Regions of the protein that do not impact biological

activity are expected to yield a higher divergence rate and incur larger local structural

changes152,178. As a result, a fold with a relatively high plasticity would experience an

elevated structural diversity between phyla, where the rate of change may closely parallel

the mutation rate155. Conversely, another fold may be extremely sensitive to amino-acid

substitutions, where minor sequence perturbations may result in a decrease in structural

integrity and a corresponding loss of activity. As a result, the sequence and structure of this

4. STRUCTURAL COMPARISON OF FUNCTIONAL ORTHOLOGS 82

protein class would be relatively conserved. This analysis is consistent with the known range

of protein thermodynamic stabilities179, and the general observation that most mutations

destabilize protein structures180.

Chapter 5

Experimental Datasets

“It is a capital mistake to theorize before one has data.”

Sir Arthur Conan Doyle

In order to experimentally test and evaluate the various classification methods proposed

in Chapters 6, 7, 8 and 9, we used five different data sets, namely CRCARS (Section 5.1),

FLU (Section 5.2), HDD (Section 5.3), PBC (Section 5.4), TCEQ (Section 5.5). Table 5.1

summarizes the utilization of the datasets during the experimental evalution of the proposed

methods. These datasets will also be used through the remaining of this dissertation to

explain the classification methods and illustrate the successive steps of the algorithms.

During our experiments, we used five different data sets: CRCARS (Section 5.1), FLU

(Section 5.2), HDD (Section 5.3), PBC (Section 5.4), TCEQ (Section 5.5). These data sets

are based on real data (non-synthetical) and cover broad knowledge domains, in particular

Table 5.1: Usage of the datasets during the experimental evaluation of the proposed

methods.

Method CRCARS FLU HDD PBC TCEQ

Classification Integration �

Reclassification � �

Temporal Classification � �

5. EXPERIMENTAL DATASETS 84

Table 5.2: Main characteristics of the CRCARS, FLU, HDD, PBC and TCEQ data sets

used during our experiments. The data sets are based on real, non-synthetical, data.

Dataset Domain Records∗ Features∗ Classes∗ Temporal Ref.

CRCars Automobile 406 5 3/3 No 181

Google Flu Trends Medical 15,352 4 2 Yes 182

Heart Disease Diagnostic Medical 720 10 2 No 183

Primary Biliary Cirrhosis Medical 314 17 3/2/4 No 184

TCEQ Ozone Meteorological 2,534 40 2 Yes 185

∗ Datasets were remapped during the experiments. As a result, the number of actual records, features

and classes used during the experiments may vary from the above numbers. See relevant sections for details.

the automobile (CRCARS), the meteorological (TCEQ) and the medical (HDD, FLU and

PBC) fields. Unlike FLU and TCEQ, the CRCARS, PBC and HDD databases contain static

data, that is, data that do no vary over time. It should be noted that the PBC, HDD and

the TCEQ databases contain a relatively large number of features used by the classification

algorithms. The main characteristics of the databases are summarized in Table 5.2.

5.1 CRCars Database

The CRCars database was used during the Second Exposition of Statistical Graphics Tech-

nology organized by the Committee on Statistical Graphics of the American Statistical

Association in 1983. This data set was collected by Donoho et al.181 in 1982. It comprises

406 observations on the following 7 measurements:

• acceleration: from 0 to 60 mph, measured in seconds (between 8 and 24.8 seconds)

• number of cylinders of the engine (between 3 and 8 cylinders),

• engine displacement in cubic inches (between 68 and 455 cubic inches),

• horsepower: power of the engine (between 46 and 230 horsepower),

• vehicle weight, measured in pounds (between 732 and 5140 lbs.),

• mpg: fuel efficiency (between 8.0 and 24.6 miles per gallon),

• origin of car (American, European or Japanese).

5. EXPERIMENTAL DATASETS 85

Figure 5.1: Decision Tree for the prediction of ORIGIN using the CRCARS dataset.

Figure 5.2: Decision Tree for the prediction of EFFICIENCY using the CRCARS dataset.

During our experiments, we used the first five measurements to define the feature space,

and the last two variables as labels for the prediction. Note that in order to better accom-

modate the ID3 algorithm, we discretized the real-valued fuel efficiency in three classes (low,

medium, high), and remapped the values so that each of them was adequately classified.

Two example decision trees built using the ID3 algorithm for the prediction of the origin of

cars and their fuel efficiency are shown in Figures 5.1 and 5.2 respectively.

5.2 Google Flu Trends Dataset

Seasonal influenza is a major public health concern, causing millions of respiratory illnesses

and 250,000 to 500,000 deaths worldwide each year. If a new strain of influenza virus

emerges, a pandemic could ensue with the potential to cause millions of deaths. The ongoing

H1N1 (“swine flu”) pandemic is responsible for the hospitalization of nearly 500,000 people

worldwide, causing the death of over 5,000 patients∗. The United-States alone count over
∗Statistics from http://www.flucount.org/ as of October, 12th 2009.

5. EXPERIMENTAL DATASETS 86

Figure 5.3: The comparison of the historical query-based flu estimates for the United

States from Google Flu Trends (blue) against official influenza surveillance data from the

Centers for Disease Control (orange) reveals a strong correlation, showing that query-based

flu estimates can effectively measure current flu activity around the world in near real-time.

60,000 patients, including 413 cases in Nebraska, and the death of nearly 1,000 of patients∗.

These statistics highlight the need for early disease prediction, which can potentially greatly

reduce the number of people affected by developing vaccines or some other medicine.

As one might expect, there are more flu-related searches during flu seasons. Ginsberg

et al.182 proved that certain search terms are good indicators of flu activity. In particu-

lar, they established a strong correlation between the number of influenza-like illness (ILI)

searches and the data collected by the Centers for Disease Control and Prevention as shown

on Figure 5.3†. Google Flu Trends is a novel service from Google that exploits this corre-

lation and uses aggregated Google search data to estimate current flu activity around the

world in near real-time.

The data set provides weakly ILI measurements since 2003 for each American states as

well as national average measurements‡. The raw values provided by Flu Trends correspond

to the number of ILI cases per 100,000 physician visits. The database describes the following

two variables:

1. t, the date the measurement was recorded,

2. ili, the number of ILI cases per 100,000 physician visits.
∗Statistics from the Centers for Disease Control and Prevention as of October, 16th 2009
†Data Source: Google Flu Trends (http://www.google.org/flutrends)
‡Since October 2009, data for 19 other – mostly European – countries were added to Flu Trends.

5. EXPERIMENTAL DATASETS 87

Because of its historical nature, this data set is particularly suitable for temporal classi-

fication. Hence we used it to evaluate the proposed Temporal linear classification discussed

in Chapter 9.

5.3 Heart Disease Databases

The heart disease diagnosis data set183 describes the medical records of patients regarding

their heart condition and was collected by Robert Detrano, Andras Janosi and William

Steinbrunn from the following three hospitals:

• Cleveland Clinic Foundation, USA (303 patients),

• Institute of Cardiology, Budapest, Hungary (294 patients),

• University Hospital of Zürich, Switzerland (123 patients).

The dataset contains no missing value. Each hospital records the following ten features:

1. age: years

2. gender: (0 = female, 1 = male)

3. cp: chest pain (1=typical angina, 2=atypical, 3=non-anginal, 4=asymptomatic)

4. trestbps: resting blood pressure (in mmHg on admission to the hospital)

5. chol: serum cholestoral in mg/dl

6. restecg: resting electrocardiographic results

7. thalach: maximum heart rate achieved

8. exang: exercise induced angina (0 = no, 1 = yes)

9. oldpeak: ST depression induced by exercise relative to rest

10. disease: presence of heart disease (-1 = not present, 1 = present)

5. EXPERIMENTAL DATASETS 88

We also simulated missing values by generating the three following subsets from the original

data set by removing two features from each source:

• BUDAPEST with features (1, 2, 3, 4, 5, 7, 9, 10)

• CLEVELAND with features (1, 2, 3, 5, 7, 8, 9, 10)

• ZÜRICH with features (1, 2, 3, 5, 6, 7, 9, 10)

In both cases, the class to predict was the tenth measurement, that is, the presence of heart

disease. This classification is binary in the sense that disease may take only two values:

−1 is the patient is in good health, +1 otherwise.

5.4 Primary Biliary Cirrhosis Trial

A study of Primary Biliary Cirrhosis (PBC) of the liver conducted between 1974 and 1984

by the Mayo Clinic. A total of 312 PBC patients, who met eligibility criteria for the

randomized placebo controlled trial of the drug D-penicillamine, participated in the trial.

The database was adapted and formated by Fleming & Harrington 184 and contains the

following twenty features:

1. case number,

2. days between registration and the earliest of death, transplantion, or analysis time,

3. age in days,

4. sex (0=male, 1=female),

5. asictes present (0=no or 1=yes),

6. hepatomegaly present (0=no or 1=yes),

7. spiders present (0=no or 1=yes),

8. edema (0 = none, 0.5 = edema resolved, 1 = edema with diuretics),

9. serum bilirubin in mg/dl,

5. EXPERIMENTAL DATASETS 89

10. serum cholesterol in mg/dl,

11. albumin in mg/dl,

12. urine copper in µg/day,

13. alkaline phosphatase in Units/liter,

14. SGOT in Units/ml,

15. triglicerides in mg/dl,

16. platelets per cubic ml/1000,

17. prothrombin time in seconds,

18. status (0=alive, 1=transplanted, or 2=dead),

19. drug (1=D-penicillamine or 2=placebo), and

20. histologic stage of disease (1, 2, 3, 4).

Figure 5.4: ID3-Interval Decision tree for the prediction of the status of a patient using

Primary Biliary Cirrhosis data.

5. EXPERIMENTAL DATASETS 90

Figure 5.5: ID3-Interval Decision tree for the prediction of the drug efficiency using Primary

Biliary Cirrhosis data.

We generated the following three subsets from the original data set:

• DISEASE with features (3, 4, 5, 7, 8, 9, 10, 13, 14, 16, 17, 20),

• DRUG with features (3, 4, 6, 7, 8, 9, 10, 11, 13, 16, 17, 19), and

• STATUS with features (3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18).

In each subset, we used the first eleven features to predict the the twetfth, that is, the last

feature.

5.5 Texas Commission on Environmental Quality Dataset

Weather forecasting is a challenging task. It is also natural to study because the major

interest is in the prediction of the weather ahead of time instead of describing the current

conditions. We tested our temporal classifier on a meteorological database of the Texas

Comission on Environmental Quality.

The experiments used the Texas Commission on Environmental Quality (TCEQ) database185,

which recorded meteorological data between 1998 and 2004. From the TCEQ database, we

used only the data for Houston, Texas∗.

∗Available from the UCI Machine Learning Repository183.

5. EXPERIMENTAL DATASETS 91

Figure 5.6: ID3-Interval decision tree for the prediction of the temperature using TCEQ.

The database describes the following fourty features and the class to predict:

1-24. sr: hourly solar radiation measurements

25. asr: average solar radiation

26. ozone: ozone pollution (0 = no, 1 = yes)

27. tb: base temperature where net ozone production begins

28-30. dew: dew point (at 850, 700 and 500 hPa)

31-33. ht: geopotential height (at 850, 700 and 500 hPa)

34-36. wind-SN: south-north wind speed component (at 850, 700 and 500 hPa)

37-39. wind-EW: east-west wind speed component (at 850, 700 and 500 hPa)

40. precp: precipitation

41. T: temperature class to predict

For sr, dew, ht, wind-SN, wind-EW we use a subscript to indicate the hour or the

hPa level. Figure 5.6 shows a sample decision tree trained using the ID3-interval algorithm

using six random records from the TCEQ database (see Table 6.1).

The data was normalized by making for each feature the lowest value to be −1 and

5. EXPERIMENTAL DATASETS 92

the highest value to be +1 and proportionally mapped into the interval [−1,+1] all the

other values. This normalization is a precaution against any bias by the classifications. The

normalization also allows a clearer comparison of the SVM weights of the features.

Chapter 6

Representation and Querying of

Linear Classifiers

“The goal is to transform data into information.”

Carly Fiorina

6.1 Introduction

This chapter describes our novel representation of existing linear classifiers which is used as

a first step in the proposed classification integration, reclassification and temporal classifi-

cation methods presented in this dissertation. Although it can be extended to any linear

classifier, we illustrate the main steps of our representation using SVMs in Section 6.2, ID3

decision trees in Section 6.3 and ID3-Interval trees in Section 6.4. In addition, the proposed

constraint database representation is not limited to a specific database system and may be

applied to any linear constraint database system. During our experiments, we used the IRIS

Datalog Interpreter108 and the MLPQ constraint database system109. We also describe a

few typical queries that are useful for classifying new data. Queries are expressed in both

Datalog and SQL languages.

6. REPRESENTATION AND QUERYING OF LINEAR CLASSIFIERS 94

6.2 Representation and Querying of SVMs

We proved in Section 2.3.2 that Support Vector Machines with linear kernels are linear

classifiers, that is, they can be mathematically represented using Equation 2.4. Moreover,

constraint databases, whose principles were described in Section 2.4, are particularly useful

to handle and represent data that can be expressed in terms of linear constraints. Hence,

we would like to take advantage of the advanced query capabilities of constraint databases

to give an efficient and reusable representation of the knowledge within trained SVMs.

To illustrate the main steps of our method, we use the Texas Commission on Environ-

mental Quality (TCEQ) database (see Section 5.5 for details) which contains daily mete-

orological measurements collected for over 7 years. For simplicity, consider the following

smaller version Texas Weather shown in Table 6.1, with only six consecutive days, where

for each day D, the features are: Precipitation P, Solar Radiation R, and Wind Speed

(north-south component) W, and the label is Temperature T, which is ”High” or ”Low”.

Table 6.1: Sample data from the simplified Texas Weather database.

D P R W T

1 1.73 2.47 -1.3 Low

2 0.95 3.13 9.32 High

3 3.57 3.56 4.29 Low

4 0.24 1.84 1.51 Low

5 0.0 1.19 3.77 High

6 0.31 4.72 -0.06 High

To classify the above data, we can use a SVM linear classifier. First, we need to assign

a numerical value to symbolic features because SVMs are unable to handle non-numerical

values. For instance, we assign the value t = −1 whenever t =′ low′ and t = +1 whenever

t =′ high′. Then, we use the popular LibSVM186 library to build a linear classification

using a SVM. Like most other SVM packages, LibSVM does not output the equation of the

maximum-margin separating hyperplane. Instead, it returns the coordinates of the support

vectors in the n-dimensional feature space. Hence, we used Equation 2.11 to implement

6. REPRESENTATION AND QUERYING OF LINEAR CLASSIFIERS 95

routines that calculate the equation of the separating hyperplane given the support vectors.

That would result in a linear classifier, which can be represented by the linear constraint

relation Texas SVM shown in Table 6.2.

Table 6.2: Linear constraint representation Texas SVM of the SVM trained using the

Texas Weather data.

P R W T

p r w t −0.442838p+ 0.476746r + 2.608779w − 0.355809 = t

Given the Texas Weather(d, p, r, w) and the Texas SVM(p, r, w, t) relations, the fol-

lowing Datalog query computes for each day d the distance t to the hyperplane separating

the two temperature classes:

Temp_SVM(d, t) :- Texas_Weather(d, p, r, w), Texas_SVM(p, r, w, t).

Finally, we can use the SVM relation to do the predictions, based on whether we are above

or below the hyperplane.

Predict(d, y) :- Temp_SVM(d, t), ’high’ = y, t >= 0.

Predict(d, y) :- Temp_SVM(d, t), ’low’ = y, t < 0.

Instead of the above Datalog queries, one can use the logically equivalent SQL query:

CREATE VIEW Predict AS

SELECT D.d, "High"

FROM Texas_Weather as D, Texas_SVM as T

WHERE D.p = T.p AND D.r = T.r AND D.w = T.w AND T.t >= 0

UNION

SELECT D.d, "Low"

FROM Texas_Weather as D, Texas_SVM as T

WHERE D.p = T.p AND D.r = T.r AND D.w = T.w AND T.t < 0

6. REPRESENTATION AND QUERYING OF LINEAR CLASSIFIERS 96

6.3 Representation and Querying of ID3 Decision Trees

Figure 6.1 shows the ID3 decision tree for the Texas Weather Data in Section 6.2. Note

that in this ID3 decision tree only the Precipitation feature is used. That is because the

value of Precipitation is sufficient to classify the data for each day in the small database.

For a larger database some precipitation values are repeated and other features need to be

looked at to make a classification.

Figure 6.1: ID3 decision tree for the prediction of the temperature using the weather

dataset.

A straightforward translation from the ID3 decision tree in Figure 6.1 to a linear con-

straint database yields the set of linear constraints Texas ID3 shown in Table 6.3. Given

the Texas Weather(d, p, r, w) and the Texas ID3(p, r, w, t) relations, the following Datalog

query can be used to predict the temperature for each day:

Predict(d, t) :- Texas_Weather(d, p, r, w), Texas_ID3(p, r, w, t).

Table 6.3: Linear constraint representation Texas ID3 of the ID3 decision tree trained using

the Texas Weather data.

P R W T

p r w t p = 1.73, t =′ Low′

p r w t p = 0.95, t =′ High′

p r w t p = 3.57, t =′ Low′

p r w t p = 0.24, t =′ High′

p r w t p = 0.0, t =′ Low′

p r w t p = 0.31, t =′ High′

6. REPRESENTATION AND QUERYING OF LINEAR CLASSIFIERS 97

Instead of Datalog queries, one can use the logically equivalent SQL query:

CREATE VIEW Predict AS

SELECT D.d, T.t

FROM Texas_Weather as D, Texas_ID3 as T

WHERE D.p = T.p AND D.r = T.r AND D.w = T.w

6.4 Representation and Querying of ID3-Interval

Decision Trees

A straightforward translation from the original decision tree to a linear constraint database

does not yield a good result for problems where the attributes can have real number values

instead of only discrete values. Real number values are often used when we measure some

attribute like the wind speed in miles-per-hour or the temperature in degrees Celsius. In

this case, the ID3 algorithm will generate trees with large number of branches to perfectly

fit the training data. The phenomenon, as known as overfitting, prevents the tree from

generalizing well when classifying unforeseen data.

Hence we improve the naive translation by introducing comparison constraints >,<,≥

,≤ to allow continuous values for some attributes. That is, we translate each node of the

decision tree by analyzing all of its children. First, the children of each node are sorted

based on the possible values of the attribute. Then, we define an interval around each

discrete value based on the values of the previous and the following children. The lower

Table 6.4: Linear constraint representation Texas ID3-Interval of the ID3 decision tree

based on inequalities trained using the Texas Weather data.

P R W T

p r w t r < 2, w < 2.64, t =′ Low′

p r w t r < 2, w ≥ 2.64, t =′ High′

p r w t r ≥ 2, r < 4.3, p < 2.51, w < 8.63, t =′ Low′

p r w t r ≥ 2, r < 4.3, p < 2.51, w ≥ 8.63, t =′ High′

p r w t r ≥ 2, r < 4.3, p ≥ 2.51, t =′ Low′

p r w t r ≥ 4.3, t =′ High′

6. REPRESENTATION AND QUERYING OF LINEAR CLASSIFIERS 98

bound of the interval is defined as the median value between the value of the current child

and the value of the previous child. Similarly, the upper bound of the interval is defined

as the median value of the current and the following children. For instance, assume we

have the values {10, 14, 20} for an attribute for the children. This will lead to the intervals

{(−∞, 12], (12, 17], (17,+∞)}.

Figure 5.6, which shows a modified decision tree, based on the above heuristic. Trans-

lating that modified decision tree yields the Texas ID3-Interval constraint relations as

defined in Table 6.4. The querying of ID3-Interval decision tree representations can be

done like the querying of ID3 decision tree representations after replacing Texas ID3 with

Texas ID3− Interval.

Chapter 7

Data and Classifier Integration

“This data has expanded without any significant structure or classification.

While it is secure at basic levels, much needs to be done.”

Mayur Raichura

7.1 Introduction

Classifications are usually done by classifiers such as support vector machines12, decision

trees11,93, or other machine learning algorithms. After being trained on some sample data,

these classifiers can be used to classify new data. However, many challenging applications

require the reuse of the old classifiers to derive a new classifier. This later problem emerges

in various settings, such as, the following.

Figure 7.1 shows several hospitals. Suppose that the hospitals keep the records of

cardiology patients. Further suppose that their analysis of their own patients leads each of

them to their own different classification of cardiology patients for the same characteristic,

in this case, heart disease risk. Intuitively, the three hospitals could get a potentially better

classification of cardiology patients if they could combine their databases. Combining their

databases, called data integration187,188, could be followed by running a new classification

algorithm on the integrated data.

7. DATA AND CLASSIFIER INTEGRATION 100

Figure 7.1: Comparison of data integration and classification integration methods.

However, the above simplistic approach often fails for several reasons. First, it is possible

that the hospitals tested different variables on their own patients. This would yield many

null values in the integrated data set. Most classification algorithms perform poorly when

there are many null values in the data. Second, even in the absence of null values, the

hospitals may be restricted in sharing their data due to privacy and legal concerns.

We propose the following alternative approach as a solution that avoids privacy prob-

lems: Let the hospitals share only their classifiers. Sharing classifiers leads to the new

concept of classification integration, which yields another new classifier that may be better

than any of the individual classifiers.

The rest of the chapter is organized as follows. Section 7.2 describes our novel classi-

fication integration method that relies on constraint databases. Section 7.3 describes some

computer experiments and discusses their significance.

7. DATA AND CLASSIFIER INTEGRATION 101

7.2 The Classification Problem with Multiple Sources

A common problem in classification arises when we have several different sources of data.

For example, the Cleveland Clinic Foundation collected a heart disease data set, which is

described in detail in Section 5.3. For simplicity, in this example, we consider the following

smaller version (Table 7.1a) with only six randomly selected patients, where the features

are: chest pain P, cholesterol C, gender G, and resting blood pressure B, and the label

is disease D, which is ”Yes” or ”No” according to whether a patient has a heart disease.

The Institute of Cardiology in Budapest, Hungary also collected data set for heart disease

patients. From this data set, we may select randomly seven patients as shown on Table 7.1b.

The main problem is how to combine the two data sources and use them together. We

describe two different solutions in the following two sections. In the description of those

two solutions, we assumed that SVMs were used as original classifications. The method is

however applicable to any linear classifier.

7.2.1 Data Integration

To solve the classification problem raised above, we can use data integration187,188. In data

integration, we first take the union of the two data sets, yielding the integrated data set

with thirteen patients shown in Table 7.2.

Table 7.1: Sample Patients from Cleveland and Budapest hospitals from the simplified

Heart Disease database.

(a) Cleveland Patients

P C G B D

1 233 1 145 No

3 250 1 130 Yes

3 275 0 110 No

4 230 1 117 Yes

2 198 0 105 No

4 266 1 124 Yes

(b) Budapest Patients

P C G B D

1 237 0 170 No

2 219 0 100 No

4 270 1 120 Yes

2 198 0 105 No

4 246 0 100 Yes

1 156 1 140 Yes

2 257 1 110 Yes

7. DATA AND CLASSIFIER INTEGRATION 102

Table 7.2: Integrated Budapest-Cleveland Patients data set.

P C G B D

1 233 1 145 No

3 250 1 130 Yes

3 275 0 110 No

4 230 1 117 Yes

2 198 0 105 No

4 266 1 124 Yes

1 237 0 170 No

2 219 0 100 No

4 270 1 120 Yes

2 198 0 105 No

4 246 0 100 Yes

1 156 1 140 Yes

2 257 1 110 Yes

Second, we use the integrated data set from Table 7.2 to build a linear classification

using a SVM. That would result in a linear classifier, which can be represented by the

linear constraint relation defined in Table 7.3. We obtained the constraint relation from the

SVM classification by applying our method described in Section 6.2.

Table 7.3: New SVM classification derived from the integrated Cleveland-Budapest data.

P C G B D

p c g b d 0.8696p− 0.0024c+ 1.7055g + 0.0052b− 3.5154 = d

7.2.2 Classifier Integration with Constraint Databases

Considering the Cleveland Patients table, the Cleveland Clinic Foundation may build the

following linear classifier using a SVM. Using our method described in Section 6.2, the SVM

classifier may be represented in a linear constraint relation as follows in the Table 7.4a.

Similarly, the Institute of Cardiology in Budapest, Hungary may build based on its data

set the linear classification using a SVM (Table 7.4b).

7. DATA AND CLASSIFIER INTEGRATION 103

Table 7.4: SVM-based Cleveland Classification and Budapest Classification trained using

the Cleveland Patients and Budapest Patients data sets respectively.

(a) Cleveland Classification

P C G B D1

p c g b d1 1.1568p− 0.0172c+ 0.4278g + 0.0333b− 3.404 = d1

(b) Budapest Classification

P C G B D2

p c g b d2 1.0213p− 0.0016c+ 1.9091g + 0.015b− 4.2018 = d2

Table 7.5: Integrated Classification of the Cleveland and Budapest SVM Classifications.

(a) Integrated Classification

P C G B D

d = 0.5d1 + 0.5d2,

p c g b d 1.1568p− 0.0172c+ 0.4278g + 0.0333b− 3.404 = d1,

1.0213p− 0.0016c+ 1.9091g + 0.015b− 4.2018 = d2

(b) Integrated Classification after Simplification

P C G B D

p c g b d 1.0891p− 0.0094c+ 1.1685g + 0.0242b− 3.8029 = d

As an alternative to data integration (see Section 7.2.1), we propose the use of classifi-

cation integration by taking the natural join of the two linear constraint relations and then

selecting the value d = 0.5d1 + 0.5d2. That yields the classification described in Table 7.5.

Since the integrated classification is based on two data sets, it can be expected to be better

than either the Cleveland classification or the Budapest classification in itself.

7. DATA AND CLASSIFIER INTEGRATION 104

7.3 Experimental Comparison of the Data Integration and

Classifier Integration Methods

7.3.1 Experimental Protocol and Results

We compare the data integration and the classification integration methods assuming that

both methods use either SVMs or ID3-Interval decision trees as the original linear classifiers.

In our experiments, we used the SVM implementation from the LibSVM186 and our im-

plementation of ID3-Interval as described in Section 6.4. The experiments were conducted

using the Heart Disease Diagnosis data set, which includes the records of 10 features for

720 patients collected in three different hospitals (see Section 5.3 for details). We used the

following protocol, where n is a parameter controlling the size of the training set:

1. Randomly select 60 patients from the three hospitals as a testing set.

2. Randomly select n percent of the remaining patients as a training set.

3. Build a SVM classification f123 on the union of the training data.

4. Build a SVM classification f1, f2, f3 for each training data source.

5. Integrate f1, f2, f3 using classification integration to find fclass integ.

6. Test the accuracy of f123 and fclass integ on the testing set.

Figures 7.2 and 7.3 report the average results of repeating the above procedure ten times

for each n equal to 5%, 15%, 25%, . . . , 95% using SVMs and ID3 decision trees respectively

as original classifiers. The statistical significance of the results was analyzed using Student’s

two-tailed paired T-test189.

We also simulated missing values by generating the three following subsets from the

original data set by removing two features from each source:

• BUDAPEST with features (1, 2, 3, 4, 5, 7, 9, 10)

• CLEVELAND with features (1, 2, 3, 5, 7, 8, 9, 10)

• ZÜRICH with features (1, 2, 3, 5, 6, 7, 9, 10)

7. DATA AND CLASSIFIER INTEGRATION 105

In each subset, we used the first seven features to predict the last one. We used those

three subsets in a similar manner as described in the above procedure. Figures 7.4 and 7.5

reports the average results of repeating the above procedure ten times for each n equal

to 5%, 15%, 25%, . . . , 95% using SVMs and ID3 decision trees respectively as original

classifiers as well as the two-tailed p value of Student’s paired T-test.

The classification integration method was significantly (T-test p = 0.01%) more accurate

than the data integration method when both used SVMs (Figures 7.2 and 7.4). No signif-

icant accuracy improvement (T-test p = 8.81%) was noted when both used decision trees

when no data was missing (Figure 7.3) whereas some improvement (T-test p = 0.35%) was

reported in the case where the dataset is sparse (Figure 7.5). Surprisingly, the improvement

δ obtained using classification integration was more important when the data set contains

missing values (δ = 5.20%) than when considering a complete dataset (δ = 0.45%). That

surprising result seems to be because the classification integration method relies on con-

straint databases, which can perform efficient joins on sparse data. That is another benefit

of classification integration in addition to its simplicity of relying on only the classifiers

instead of the raw data.

7.3.2 Discussion

The experiments suggest that classification integration has an advantage in preserving re-

lationships found by the original classifiers. As a hypothetical example, if chest pain is

strongly related to heart attack, it will be recognized as such in a hospital where the chest

pain of each patient is recorded. However, if the data from that hospital is aggregated with

data from other hospitals that did not measure chest pain, then the relationship of chest

pain and heart attack may be less clear and recognizable. In that case, a classifier used on

the integrated data may miss some of the relationships. That seems to be the reason for the

increase of the relative performance of the classification integration over data integration

when there are missing values. If the amount of missing information is further increased,

then classification integration will likely outperform data integration even with decision

trees.

7. DATA AND CLASSIFIER INTEGRATION 106

Figure 7.2: Comparison of data integration with classification integration using SVMs

without missing values in the training set. T-test p = 0.01%. δ = 4.31%.

Figure 7.3: Comparison of data integration with classification integration using ID3 decision

trees without missing values in the training set. T-test p = 8.81%. δ = −3.40%.

7. DATA AND CLASSIFIER INTEGRATION 107

Figure 7.4: Comparison of data integration and classification integration using SVMs with

missing values in the training set. T-test p = 0.01%. δ = 5.90%.

Figure 7.5: Comparison of data integration and classification integration using ID3 decision

trees with missing values in the training set. T-test p = 0.35%. δ = 4.49%.

Chapter 8

Data Reclassification

“The classification process will also be covered,
because too much information is classified and more should be reclassified [...]

We probably have some overclassification situations of our own.”

Peter Hoekstra

8.1 Introduction

The Classification Integration problem is further complicated when two classifiers classify

different characteristics. For example, suppose that one classifier tests whether patients

have disease A and another classifier tests whether they have disease B. If one wants to

combine these two classifiers, then one would need a classifier for patients who (1) have both

diseases, (2) have only disease A, (3) have only disease B, and (4) have neither disease. In

general, when combining n classifiers, there are 2n combinations to consider. Hence, many

applications would be simplified if a single combined classifier could be found.

For example, Figures 5.4 and 5.5 present two different ID3 decision tree classifiers for

the status of patients and the efficiency of a drug. For simplicity, the status of patients is

classified as alive, dead, or transplanted, and the drug efficiency is classified as penicillamine

and placebo. Analysis of such decision trees is difficult. For instance, just by looking at

8. DATA RECLASSIFICATION 109

Figure 8.1: Comparison of the reclassification with an oracle and reclassification with

constraint databases methods.

these decision trees, it is hard to tell whether any patient died after taking a placebo, or

whether any patient who used the drug is still alive. The problem with the above simple-

looking queries is that no decision tree contains both patient status and drug efficiency.

Finding a single decision tree that contains both patient status and drug efficiency would

provide a convenient solution to the above queries. This chapter introduces a novel con-

straint database-based reclassification method that results in a single classifier and enables

to answer many challenging queries on medical data.

We first review the reclassification problem by giving an example in Section 8.2. Then

we introduce several new reclassification methods. Section 8.3 describes the Reclassification

with an oracle method. While oracle-based methods do not exist in practice, those methods

give a theoretical limit to the best possible practical methods. Section 8.4 describes the

practical Reclassification with constraint databases method. A comparison of these two

methods is given later in Section 8.5.

8. DATA RECLASSIFICATION 110

8.2 The Reclassification Problem

One study found a classifier for the status of patients with primary biliary cirrhosis (see

Section 5.4 for a detailed description of the dataset) using:

X1 = {Cholesterol(C), Gender(G), Hepatomegaly(H), T riglicerides(T)}

and the class for patient status:

S = {Alive,Dead, Transplanted}

where cholesterol is the serum cholesterol in mg/dl, hepatomegaly is ’1’ if the liver is enlarged

and ’0’ otherwise, gender is ’0’ for male and ’1’ for female, and triglicerides level is measured

in mg/dl. Figure 5.4 shows an example decision tree for the status of patients obtained after

training by 50 random examples. A sample training data is shown in Table 8.1a.

Another study found a classifier to distinguish between a real drug and a placebo using:

X2 = {Bilirubin(B), Cholesterol(C), Gender(G), Hepatomegaly(H)}

and the class for drug:

D = {Penicillamine, P lacebo}

where the serum bilirubin of the patient is measured in mg/dl.

Figure 5.5 shows an example of decision tree for the efficiency of a drug obtained after

training by 50 random examples. A sample training data for the second study is shown in

Table 8.1b.

Table 8.1: Example of medical records for the status of patients and the efficiency of

penicillamine.

(a) Patient Status

C G H T S

261 1 1 172 Alive

200 0 0 143 Transplanted

(b) Drug Efficiency

B C G H D

3.6 244 0 0 Placebo

7.4 54 0 0 Penicillamine

8. DATA RECLASSIFICATION 111

Building a new classifier for (X,Y) seems easy, but the problem is that there is no

database for (X,Y). Finding such a database would require a new study with more data

collection, which would take a considerable time. That motivates the need for reclassifica-

tion. As Section 8.3 shows, a classifier for (X,Y) can be built by an efficient reclassification

algorithm that uses only the already existing classifiers for (X1, S) and (X2, D).

Suppose we need to find a classifier for

X = X1 ∪X2 = {Bilirubin, Cholesterol,Gender,Hepatomegaly, T riglicerides}

and

Y = S ×D = {Alive Penicillamine, Alive P lacebo,
Dead Penicillamine, Dead P lacebo,
Transplanted Penicillamine, Transplanted P lacebo}

The next two sections present two different solutions to this problem.

8.3 Reclassification with an Oracle

In theoretical computer science, researchers study the computational complexity of algo-

rithms in the presence of an oracle that tells some extra information that can be used by

the algorithm. The computational complexity results derived using oracles can be useful in

establishing theoretical limits to the computational complexity of the studied algorithms.

Similarly, in this section we study the reclassification problem with a special type of

oracle. The oracle we allow can tell the value of a missing attribute of each record. That

allows us to derive essentially a theoretical upper bound on the best reclassification that can

be achieved. The reclassification with oracle method extends each of the original relations

with the attributes that occur only in the other relation. Then one can take a union of the

extended relations and apply any of the chosen classification algorithms. We illustrate the

idea behind the Reclassification with an oracle method using an extension of the example

described in Section 8.2 and the ID3 algorithm.

First, we add a bilirubin measure and a drug class to each record in the Patient Status

relation using an oracle. Suppose we obtain the relation shown in Table 8.2a. Second,

8. DATA RECLASSIFICATION 112

Table 8.2: Modification of the Patient Status and Drug Efficiency relations using an oracle.

(a) Patient Status

B C G H T S D

14.1 261 1 1 172 Alive Placebo

5.3 200 0 0 143 Transplanted Penicillamine

(b) Drug Efficiency

B C G H T S D

3.6 244 0 0 114 Alive Placebo

7.4 54 0 0 189 Transplanted Penicillamine

we add Triglicerides measurements and a Status class to each record in the Drug Efficiency

relation using an oracle. The resulting relation is shown in the relation shown in Table 8.2b.

After the union of these two relations, we can train an ID3 decision tree to yield a reclas-

sification as needed to complete the example from Section 8.2. The above reclassification

method is not in general a practical method because oracles do not exist.

8.4 Reclassification with Constraint Databases

The Reclassification with Constraint Databases method has two main steps:

1. Translation to Constraint Relations: We translate the original linear classifiers to

a constraint database representation. Our method does not depend on any particular

linear classification method.

2. Join: The linear constraint relations are joined together using a constraint database

join operator15,16.

We give first an example to illustrate the Translation to Constraint Relations. Assume

the following variables in the feature space:

• b, the bilirubin serum,

• c, the cholesterol rate,

8. DATA RECLASSIFICATION 113

• g, the gender of the patients,

• h, the hepatomegaly,

• t, the triglicerides rate.

Suppose we try to predict the drug efficiency d on each patient. Then we use the decision

tree shown in Figure 5.5 to classify the efficiency of the drug. The decision tree may be

translated into linear constraint as shown in Table 8.3. We also try to predict the status

s. Similarly, the decision tree represented in Figure 5.4 is used to generate the constraint

relation in Table 8.4.

The reclassification problem can be solved by a constraint database join of the Drug

and Status relations, expressed in non-recursive Datalog as follows:

Reclass(b,c,g,h,t,d,s) :- Drug(b,c,g,h,d), Status(c,g,h,t,s).

The evaluation of the above query requires a constraint database join, which is explained

in detail, for example in the textbook16. To find the value of the Reclass relation, the

constraint join operator will try to combine every constraint tuple of Drug with every

constraint tuple of Status. If the combination of the two tuples yields an unsatisfiable set

of constraints, then it is discarded. Only those combinations are kept that are satisfiable

Table 8.3: Constraint database representation of the Drug Efficiency classification obtained

using the decision tree shown in Figure 5.5. Each row describes a path from the root to a

leaf in the decision tree.

B C G H D

b c g h d c < 74, g = 1, d = ’Placebo’

b c g h d c < 74, g = 0, b < 13.2, d = ’Penicil.’

b c g h d c < 74, g = 0, b > 13.2, d = ’Placebo’

b c g h d c > 74, c < 218, b < 5.7, d = ’Penicil.’

b c g h d c > 74, c < 218, b > 5.7, d = ’Placebo’

b c g h d c > 218, h = 0, g = 1, d = ’Penicil.’

b c g h d c > 218, h = 0, g = 0, d = ’Placebo’

b c g h d c > 218, h = 1, d = ’Placebo’

8. DATA RECLASSIFICATION 114

Table 8.4: Constraint database representation of the Patient Status classification obtained

using the decision tree shown in Figure 5.4. Each row describes a path from the root to a

leaf in the decision tree.

C G H T S

c g h t s h = 1, c < 106, s =’Alive’

c g h t s h = 1, c > 106, c < 357, g = 1, s =’Alive’

c g h t s h = 1, c > 106, c < 357, g = 0, s =’Transp.’

c g h t s h = 1, c > 357, s =’Dead’

c g h t s h = 0, t < 120, s =’Alive’

c g h t s h = 0, t > 120, t < 231, c < 472, s =’Transp.’

c g h t s h = 0, t > 120, t < 231, c > 472, s =’Dead’

c g h t s h = 0, t > 231, s =’Alive’

Table 8.5: First five satisfiable constraint tuples for the reclassification of the Drug and

Status relation. The complete reclassification leads to 64 possible combinations to consider.

B C G H T D S

b c g h t d s c < 74, g = 1, d = ’Placebo’,

h = 1, c < 106, s =’Alive’

b c g h t d s c < 74, g = 1, d = ’Placebo’

h = 0, t < 120, s =’Alive’

b c g h t d s c < 74, g = 1, d = ’Placebo’

h = 0, t > 120, t < 231, c < 472, s =’Transplanted’

b c g h t d s c < 74, g = 1, d = ’Placebo’

h = 0, t > 231, s =’Alive’

b c g h t d s c < 74, g = 0, b < 13.2, d = ’Penicillamine’

h = 1, c < 106, s =’Alive’
...

for some input values for the features. As there are eight constraint tuples in both Drug

and Status, there are 64 possible combinations to consider. Table 8.5 shows the first five

satisfiable constraint tuples of Reclass.

8. DATA RECLASSIFICATION 115

In the Reclass relation, the first tuple is a combination of the first tuple of Drug with

the first tuple of Status. A constraint database would usually not only check satisfiability

but also simplify the constraints. That would mean deleting unnecessary constraints. For

example, c < 106 is unnecessary because it is already implied by c < 74, which is the first

constraint in the first tuple of Reclass.

Next, the first tuple of Drug and the second tuple of Status are combined. However, that

is unsatisfiable because one contains c < 74 while the other contains c > 106. Hence this

combination is not part of Reclass. Similarly, we also discard the combination of the first

tuple of Drug with the third and fourth tuples of Status. Therefore, the next combination

that is satisfiable is the first tuple of Drug and the fifth tuple of Status. This satisfiable

combination is recorded as the second constraint tuple of Reclass. The other tuples are

determined similarly. With n constraint tuples in both input relations, the overall time

complexity of the constraint join operator is O(n2)16, that is, it is as efficient as a relational

database join operator.

Let Patients(id,b,c,g,h,t) be a relation that records the identification number and the

features of each patient. Then the following non-recursive Datalog query can be used to

predict the drug efficiency and the status for each patient:

Predict(d,s) :- Patients(id,b,c,g,h,t), Reclass(b,c,g,h,t,d,s).

Instead of Datalog queries, one can use the logically equivalent SQL query shown below.

The SQL query is evaluated similarly to the Datalog query. It is largely a stylistic preference

whether one uses SQL or Datalog queries.

CREATE VIEW Predict AS

SELECT R.d, R.s

FROM Patients as P, Reclass as R

WHERE P.b = R.b AND P.c = R.c AND P.g = R.g AND

P.h = R.h AND P.t = R.t

8. DATA RECLASSIFICATION 116

8.5 Comparison of the Reclassification with an Oracle and

Constraint Databases Methods

We tested our methods using both SVMs and decision trees. However, our goal is not to

compare SVMs with decision trees but to show the versatility of our methods. Note that

each method can use either SVMs or decision trees, but comparing a method that uses

SVM with another method that uses decision trees cannot decide which method is better

because the difference may be due only to the differences between SVMs and decision trees.

The experiments were performed using the CRCARS dataset as reported in Section 8.5.1

and with the PBC database in Section 8.5.2. The significance of the observed results was

established using a two-tailed paired T-test.

8.5.1 Experimental Results with the CRCARS data set

In this section, we use the CRCARS data set described in Section 5.1 to evaluate our

Reclassification with Constraint Database method. Our comparison of the accuracies of the

original ID3 classifier with the reclassified individual classifiers for the predictions of the

fuel efficiency (Figure 8.2) and the origin of cars (Figure 8.3) revealed the proposed method

significantly (T-test p = 0.01% and p = 0.07% respectively) improved the reclassification

with an oracle method. Second, we reclassified and combined the two ID3 classifications

using the reclassification with an oracle and the reclassification with constraint database

methods. The result of the experiment is shown in Figure 8.4. No significant difference

between the two reclassification methods was identified (T-test p = 44.56%).

8.5.2 Experimental Results with the PBC database and Discussion

In this section, we compare the reclassification with an oracle and the reclassification with

constraint databases methods. We also compare reclassification with constraint databases

with the original linear classification for the DISEASE and the DRUG classes.

Figures 8.5 and 8.6 show the results of our experiments using SVMs as original classifi-

cations for the prediction of DISEASE and DRUG respectively. The constraints defining the

separating hyperplane of the SVMs can be exactly represented in the constraint database;

hence the accuracies of the original SVMs and their constraint database representation are

8. DATA RECLASSIFICATION 117

Figure 8.2: Comparison of the Reclassification with constraint databases and the original

Classification with a decision tree (ID3) for the prediction of the class MPG efficiency of

the cars. T-test p = 0.01%. δ = 26.04%.

identical. Similarly Figures 8.7 and 8.8 show the results with ID3 decision trees for the pre-

diction of DISEASE and DRUG respectively. Constraint databases provide a more flexible

representation of the original classifications. The experimental results show that constraint

databases may significantly (T-test p = 0.01%) improve the accuracy of the classification

depending on the choice of the original classifier.

Figures 8.9 and 8.10 compares the accuracies of the reclassification with an oracle and

the reclassification with constraint databases for SVMs and decision trees respectively. The

results show that both perform similarly for both SVMs (T-test p = 32.61%) and decision

trees (p = 13.15%). That proves that our practical reclassification with constraint databases

method achieves the theoretical limit represented by the reclassification with an oracle

method. By theoretical limit we mean in this example only the maximum achievable with

the use of the original linear classification algorithm.

8. DATA RECLASSIFICATION 118

Figure 8.3: Comparison of the Reclassification with constraint databases and the original

Classification with a decision tree (ID3) for the prediction of the class ORIGIN of the cars.

T-test p = 0.07%. δ = 8.68%.

Figure 8.4: Comparison of the Reclassification with constraint databases and the Reclas-

sification with an oracle using the CRCARS database. T-test p = 44.56%. δ = 1.54%.

8. DATA RECLASSIFICATION 119

Figure 8.5: Prediction of DISEASE from the primary biliary cirrhosis data using SVMs.

Note that the SVMs and their constraint database representations are identical.

Figure 8.6: Prediction of DRUG from the primary biliary cirrhosis data using SVMs. Note

that the SVMs and their constraint database representations are identical.

8. DATA RECLASSIFICATION 120

Figure 8.7: Prediction of DISEASE from the primary biliary cirrhosis data using ID3 decision

trees. T-test p = 0.01%. δ = 21.48%.

Figure 8.8: Prediction of DRUG from the primary biliary cirrhosis data using ID3. T-test

p = 0.01%. δ = 29.81%.

8. DATA RECLASSIFICATION 121

Figure 8.9: Prediction of DISEASE DRUG with the primary biliary cirrhosis data using

SVMs. T-test p = 32.61%. δ = −0.94%.

Figure 8.10: Prediction of DISEASE DRUG with primary biliary cirrhosis data using deci-

sion trees. T-test p = 13.15%. δ = 2.69%.

Chapter 9

Temporal Classification

“We look at historical data and do some averaging. That number is our best guess.”

John McDowell

9.1 Introduction

Data classifiers, such as SVMs (see Section 2.3.2), decision trees (see Section 2.3.3), or other

machine learning algorithms, are widely used. However, they are used to classify data that

occur in the same time period. For example, a set of cars can be classified according to

their fuel efficiency. That is acceptable because the fuel efficiency of cars is not expected to

change much over time. Similarly, we can classify a set of people according to their current

heart condition. However, people’s heart condition can change over time. Therefore, it

would be more interesting to classify people using the current information according to

whether they are likely to develop serious heart condition some time in the future.

Consider a patient who transfers from one doctor to another. The new doctor may give

the patient a set of tests and use the new results to predict the patient’s prospects. The

question arises whether this prediction could be enhanced if the new doctor would get the

older test results of the patient. Intuitively, there are cases where the old test results could

be useful for the doctor. For example, the blood pressure of a patient may be 130/80, which

9. TEMPORAL CLASSIFICATION 123

Figure 9.1: Comparison of the standard and the temporal classification methods.

may be considered within normal. However, if it was 120/80 last year and 110/80 the year

before, then the doctor may be still concerned about the steady rise of the patient’s blood

pressure. On the other hand, if the patient’s blood pressure used to be around 130/80, then

the doctor may be more confident of predicting the patient to be in good health. Therefore,

the history of the patient is important in distinguishing between these two cases.

Nevertheless, the temporal history of data is usually overlooked in the machine learning

area. There are only a few previous works that combine some kind of spatio-temporal

data and classification algorithms. Seidel et al. 190 used linear regression with historical

meteorological and hydrological data for the reconstruction of historical ood events. Qin &

Obradovic 191 are interested in incrementally maintaining an SVM classifier when new data

is added to a database. Therefore, their method is not useful to predict the future health

of a patient or other classes that one may want to predict for the future. Tseng & Lee 192

classify temporal data using probabilistic induction.

9. TEMPORAL CLASSIFICATION 124

Previous chapters of this work considered only data integration and reclassification by

classifiers when all the data was measured at the same time. In this chapter, we propose

a new temporal classification method that instead of probabilistic induction192 extends

existing linear classifiers to deal with temporal data. Figure 9.1 compares the standard

classifiers and the new temporal classifier method. The standard classifiers take as input

the current (at time t) values of the features in the feature space and the class label some

n time units ahead (at time t + n). The temporal classifiers take as input in addition to

the current features and the class, the history, that is, the old values of the features up to

some i time units back in time (that is, from time t− i to t− 1).

Weather forecasting is a challenging task. It is also natural to study because the major

interest is in the prediction of the weather ahead of time instead of describing the current

conditions. We tested our temporal classifier on a meteorological database of the Texas

Comission on Environmental Quality. At a first glance it would seem useless to look at

the weather history back more than a couple of days. Surprisingly, we discovered that the

history does matter more than expected and the classification can be improved if one looks

back 15 days back in time.

We were also surprised that the history of some features were considerably more useful

than the history of the others. Moreover, the features that are the most important when

looking at only time t are not the same as the features that are important when one looks

at the weather history. That happens because the different the features have different

permanency. For example, wind direction may change greatly form one hour to another.

On the other hand, ozone levels are fairly constant.

Sections 2.3 and 2.4 reviewed classifiers and constraint databases respectively. Chapter 6

described our database representation and querying of linear classifiers. These representa-

tions are used in our implementations. The rest of this chapter is organized as follows.

Section 9.2 presents the new temporal classification method and a corresponding data map-

ping. Section 9.3 describes computer experiments with the TCEQ database and discusses

the results. Section 9.4 compares the proposed temporal classification method with the

IDW interpolation (reviewed in Section 2.5) using the FLU dataset.

9. TEMPORAL CLASSIFICATION 125

9.2 Temporal Classifications with Historical Data

The Texas Weather database described in Section 5.5 is an atypical data for linear classi-

fiers because it involves a temporal dimension. Although one may consider each day as an

independant instance and simply ignore the temporal dimension, as we did earlier, it prob-

ably would not be the best solution. Instead, we propose below a temporal classification

method for dealing with temporal data. The temporal classification method is based on an

alternative representation of the database. As an example, the Texas Weather(d, p, r, w, t)

relation (Table 6.1) can be rewritten into the temporal relation:

Texas Weather History(d, pd−2, rd−2, wd−2, pd−1, rd−1, wd−1, pd, rd, wd, t)

where for any feature f ∈ {p, r, w} the fi indicates the day i when the measurements are

taken.

Note that even though we did not use in Texas Weather any subscript, the implicit

subscript for the features was always d. Now the subscripts go back in time, in this particular

representation two days back to d− 1 and d− 2. The Texas Weather History relation is

shown in Table 9.1.

The Texas Weather History relation uses the same set of feature measures as the

Texas Weather relation because the data in the Pd−2, Rd−2,Wd−2 and the Pd−1, Rd−1,Wd−1

columns are just shifted values of the Pd, Rd,Wd columns. However, when the Texas Weather

History relation is used instead of the Texas Weather relation to generate one of the lin-

ear classifiers, then represented and queried as in Chapter 6, then there is a potential for

improvement because each training data includes a more complete set of features.

Table 9.1: The Texas Weather History relation illustrates how the original temporal data

can be remapped to take advantage of the historical data.

D Pd−2 Rd−2 Wd−2 Pd−1 Rd−1 Wd−1 Pd Rd Wd T

3 1.73 2.47 -1.3 0.95 3.13 9.32 3.57 3.56 4.29 Low

4 0.95 3.13 9.32 3.57 3.56 4.29 0.24 1.84 1.51 Low

5 3.57 3.56 4.29 0.24 1.84 1.51 0.0 1.19 3.77 High

6 0.24 1.84 1.51 0.0 1.19 3.77 0.31 4.72 -0.06 High

9. TEMPORAL CLASSIFICATION 126

For example, if today’s precipitation is a relevant feature in predicting the temperature

a week ahead, then it is likely that yesterday’s and the day before yesterday’s precipitations

are also relevant features in predicting the temperature a week ahead. That seems to be the

case because the precipitation from any particular day tends to stay in the ground and affect

the temperature for many more days. Moreover, since the average precipitation of three

consequtive days varies less than the precipitation on a single day, the former may be more

reliable than the latter for the prediction of the temperature a week ahead. These intuitions

lead us to believe that the alternative representation is advantageous for classifying temporal

data. Although this seems a simple idea, it was not tried yet for decision trees or SVMs.

In general, the alternative representation allows one to go back i number of days and look

ahead n days, as outlined in Figure 9.1. The original representation is a representation that

looks back 0 days and looks ahead the same number n of days. Therefore, the transformation

from a basic to an alternative representation, which we denote by =⇒, can be described as:

Texas Weather0,n =⇒ Texas Weather Historyi,n

where for any relation the first superscript is the days of historical data and the second

superscript is the days predicted in the future.

9.3 Experimental Evaluation of the Temporal Classification

Method

9.3.1 Experimental Results with TCEQ Data

We experimentally compared the regular classification and the temporal classification meth-

ods. In some experiments both the regular and the temporal classification methods used

SVMs and in some other experiments both methods used decision trees. In particular, we

used the SVM implementation from the LibSVM186 library and our implementation of the

ID3-Interval algorithm described in Section 6.4.

The experiments used the Texas Commission on Environmental Quality (TCEQ) database

(described in detail in Section 5.5), which recorded 40 meteorological measurements nearby

Houston, Texas between 1998 and 2004. From the TCEQ database, we used only the data

9. TEMPORAL CLASSIFICATION 127

for Houston, Texas and the following fourty features and the class to predict. We conducted

the experiments using the following procedure to predict the temperature T , where n is a

training set size control parameter:

1. Normalize the dataset.

2. Randomly select 60 records from the dataset as a testing set.

3. Randomly select n percent of the remaining records as a training set.

4. Build a SVM, ID3, or ID3-Interval classification using the training data.

5. Test the accuracy of the classification on the testing set.

In step (1), the data was normalized by making for each feature the lowest value to be −1

and the highest value to be +1 and proportionally mapped into the interval [−1,+1] all the

other values. This normalization was a precaution against any bias by the classifications.

The normalization also allowed a clearer comparison of the SVM weights of the features.

For testing the regular classifiers, we used the above procedure with TCEQ0,2, which

we obtained from the original TCEQ0,0 database by shifting backwards by two days the T

column values. For testing the temporal classifiers, we made the transformation

TCEQ0,2 =⇒ TCEQ15,2

as described in Section 9.2.

Figure 9.2 reports the average results of repeating the above procedure twelve times

for n equal to %5, 15%, 25%, . . . , 95% using the SVM algorithm. Similarly, Figure 9.3

reports the average results using ID3 decision trees. The experiments show that adding

the historical data significantly (T-test p = 0.01% and p = 0.04% respectively) improves

the temperature predictions using both the ID3 and the SVM algorithms. Moreover, the

SVM algorithm performed better than the original ID3 algorithm, although the ID3-Interval

algorithm (not shown) gave some improvements.

9. TEMPORAL CLASSIFICATION 128

Figure 9.2: Comparison of regular and temporal classification using 40 features and SVMs.

T-test p = 0.04%. δ = 4.93%.

Figure 9.3: Comparison of regular and temporal classification using 40 features and ID3.

T-test p = 0.01%. δ = 31.10%.

9. TEMPORAL CLASSIFICATION 129

Figure 9.4: Comparison of regular and temporal classification using 3 features and SVMs.

T-test p = 0.01%. δ = 6.02%.

Figure 9.5: Comparison of regular and temporal classification using 3 features and ID3.

T-test p = 0.01%. δ = 29.17%.

9. TEMPORAL CLASSIFICATION 130

9.3.2 Experimental Results with Reduced TCEQ Data

Databases with a large number of features often include many noisy variables that do not

contribute to the classification. The TCEQ database also appears to include many noisy

variables because the SVM placed small weights on them. Since we normalized the data,

the relative magnitudes of the SVM weights correspond to the relative importance of the

features. In particular, the following numerical features had the highest weights:

25. asr: average solar radiation

35. wind-SN700: south-north wind speed component at 700 hPa

40. precp: precipitation

How accurate classification can be obtained using only these three selected features?

These features have some interesting characteristics that make them better than other

features. For example, wind-SN700, the south-north wind speed component, is intuitively

more important than wind-EW700, the east-west wind speed component, in determining the

temperature in Houston, Texas. In addition, the precipitation can stay in the ground for

some time and affect the temperature a longer period than most of the other features. Hence

our hypothesis was that these three features can already give an accurate classification.

To test this hypothesis, we conducted another set of experiments by applying the exper-

imental procedure described in Section 9.3.1 to the reduced three-feature TCEQ database.

The results of these experiments are shown in Figures 9.4 and 9.5. The accuracies of the

classifiers based on only three features were surprisingly similar to the accuracies of the

classifiers based on all fourty features. In this experiment the temporal classification was

again more accurate (p = 0.01%) than the traditional classification.

9.4 Comparison of the Temporal Classification Method and

the IDW Interpolation

9.4.1 Experimental Results with Temporal FLU Data

Unlike interpolation methods, SVMs and decision trees are not designed to estimate a

value in the future, but assign a label to records. The IDW interpolation and temporal

9. TEMPORAL CLASSIFICATION 131

classification methods thus cannot be compared directly. Hence, we derived a new variable

alert by applying a fixed threshold to ili values. The binary alert variable determines

whether the current flu activity is within normal levels given the ILI value or whether an

alert should be raised. The threshold was arbitrarily choose after analyzing the distribution

of ILI values. The interpolated value could be used to predict one of the two possible alert

states and could therefore be compared against the temporal classification methods using

the following procedure:

1. Normalize the dataset.

2. Randomly select 10% of records from the dataset as a testing set.

3. Build a IDW, SVM or ID3-Interval classifier using the remaining data.

4. Analyze the accuracy of the classifier using the testing set.

Figure 9.6: ROC analysis using temporal data of the IDW interpolation and the temporal

classification method applied to SVMs and decision trees.

9. TEMPORAL CLASSIFICATION 132

As mentioned earlier, the prediction of disease outbreaks is critical to raise an alert

state so that appropriate measures to prevent the disease from spreading may be taken.

On the other hand, the alert should be temporary and raised only when necessary because

maintaining an alert state indefinitely would be meaningless. The analysis of the overall

accuracies of the classifiers is therefore not satisfying and the classifier should be evaluate in

terms of sensitivity and specificity. The sensitivity – or true positive rate – is the probability

that an alert is predicted when there is actually an alert state. The specificity – or false

positive rate – is the probability that the alert state will not be raised when it is not

necessary.

In order to distinguish the two alert states, the predictions of the two methods were

analyzed using a Receiver Operating Characteristic (ROC) curve analysis193,194. A ROC

curve represents the sensitivity as a function of the specificity. The ROC curve analysis is

specially useful when the distribution of the classes to predict is unbalanced as it is the case

with the flu dataset. The overall performance of a specific classifier is defined as the area

under its ROC curve (AUC). This simple value is representative of both the sensitivity and

the specificity of the classifier. The AUC normally ranges from 0.5, which corresponds to a

classifier that randomly classify items, to 1 which corresponds to a perfect classifier.

For testing the three methods, we used the data of the past six weeks to predict the

alert state two weeks ahead of time. Hence, we made the following transformation:

FLU0,0 =⇒ FLU6,2

as described in Section 9.2.

The weight w = 0.3 of the IDW interpolation was empirically chosen to maximize

the performance of the interpolation method. Figure 9.6 shows the ROC curves for the

IDW interpolation algorithm and the temporal classification method applied to SVMs and

decision trees.

9.4.2 Experimental Results with Spatio-Temporal FLU Data

The Google Flu Trends database does not provide spatial data directly. Instead, it gives the

ILI measurement for each American state. We added a spatial dimension to the database

9. TEMPORAL CLASSIFICATION 133

by adding for each state the coordinates (latitude and longitude) of the capital city of the

state being examined. Hence, the database include the following four variables:

1. t, the date the measurement was recorded,

2. x, the longitude of the state capital city,

3. y, the latitude of the state capital city,

4. ili, the number of influenza-like illnesses cases per 100,000 physician visits.

We compared the proposed temporal classification methods using both SVMs and de-

cision trees against the IDW spatio-temporal interpolation method on FLU6,2 (see Sec-

tion 9.2) using the same procedure as in Section 9.4.1. The resulting ROC analysis is show

in Figure 9.7.

Figure 9.7: ROC analysis using spatio-temporal data of the IDW interpolation and the

temporal classification method applied to SVMs and decision trees.

9. TEMPORAL CLASSIFICATION 134

9.4.3 Discussion

The results of the experiments when using temporal data only (Figure 9.6) show that the

temporal classification method applied to decision trees was able to perfectly predict the

alert state. Overall, when applied to SVMs, the temporal classification also improves the

IDW interpolation because AUCSVM is greater than AUCIDW . In the details, the ROC

analysis reveals that the IDW interpolation has a higher sensitivity. In other words, this

algorithm is more suitable when one needs to accurately predict when there is a risk of

influenza pandemic. On the other hand, the temporal classification with SVM has a higher

specificity, which means the temporal SVM classifier is more able to predict when the flu

activity is within acceptable levels.

When considering the spatio-temporal data (Figure 9.7), the feature space has a higher

dimension. In this case, we first notice that all three classifiers have a lower AUC. How-

ever, although the performance of the two temporal classifiers is only slightly lower, the

performance (AUC) of IDW interpolation has significantly diminished from 0.92 to 0.75.

This result confirms the intuition that decision trees and SVMs are more capable of han-

dling highly-dimensional feature spaces. As a result, when considering the spatio-temporal

dataset, our method performs significantly better than the IDW interpolation algorithm.

This result may be explained by the local variability of the flu activity in each state. If

the activity varies frequently, unlike both temporal classifiers, the interpolation algorithm,

which is based on the few past values only, will not able to capture those variations, and

accurately predict future values. At a federal scale, when using the temporal data only, the

local variations are smoothened and the interpolation performs comparably to the temporal

classification.

Chapter 10

Conclusion

“And now, the conclusion...”

Teal’c

The PROFESS database already proved to be useful in its current state. The modular

functionality of PROFESS coupled with user friendly searching capabilities makes PRO-

FESS particularly useful for asking a range of questions about the sequence, structure and

functional relationship of orthologous proteins. However, its development and future ex-

tensions of this long-term project will continue much beyond the scope of this dissertation.

First, data from the integrated databases are increasing on a daily basis. Hence, the first

task to keep PROFESS useful will be to perform data updates on a regular basis, typically,

several times per year.

In addition, the current core databases are of great value. However, they represent only

a fraction of the data made available to the community. Hence, we plan to integrate new

databases as the need will arise. In particular, users feedback will help us to prioritize the

next databases to be integrated with our system. New features will be added as well. For

example, the sketcher MarvinSketch∗ developed by ChemAxon will be integrated soon. It

will enable users to query PROFESS by drawing the chemical structure of ligands instead

of typing its formula or some identification number. The integration of new similarity

functions such as the Comparison of protein active site structure53 is also planned.
∗Available at http://www.chemaxon.com/product/msketch.html

http://www.chemaxon.com/product/msketch.html

10. CONCLUSION 136

Our work on phylum-dependent structure divergence illustrates the inherent value in

solving structures for functionally identical proteins from multiple organisms. A major

challenge in creating our COG-to-PDB dataset was the fundamental requirement to have

structures from at least two Firmicutes organisms and two Proteobacteria organisms. Only

48 (1%) of the 4,876 COGs meet this restrictive condition. The limited number of multiple

homologous structures has partly occurred because structural biology efforts are focused on

obtaining single representative structures for each functional class or protein fold195 and

understandably biased toward therapeutically relevant proteins196. If we are to achieve

a more accurate understanding of the relationship between the evolution of protein fold,

protein sequence, and the organisms in which they function, the fields of bioinformatics and

structural biology must expand their focus to include efforts to obtain a more diverse set of

homologous protein structures.

Our experiments using support vector machines and decision trees on heart disease

diagnosis and primary biliary cirrhosis data show that our classification integration method

is more accurate than existing data integration methods when there are many missing values

in the data. The reclassification problem also can be solved using constraint databases

without requiring access to the raw data. Our experiments on the TCEQ database show

two major results: (1) Significant accuracy improvements are obtained by using histories,

and (2) No accuracy improvement is obtained by using more than three features. The

experiments with the FLU database also proved that the proposed temporal classification

using historical can also greatly improves existing spatio-temporal interpolation methods

such as the Inverse Distance Weighted algorithm.

Beside these particular cases, our general method is also appropriate for many other

application areas and may yield similar accuracy improvements. An interesting question

is whether these results also hold for other databases. There are some other remaining

questions. For example, would non-linear temporal classifiers also be better than regular

non-linear classifiers? Experiments with other data sets and use non-linear classifiers in

addition to SVMs and decision trees may also be be interesting.

References

1. Stein, L. D. Integrating biological databases. Nat Rev Genet 4, 337–45 (2003). 1, 46

2. Goodman, N. A plethora of protein data, a shortage of solutions. Genome Technol.

22, 82–83 (2002). 1

3. Navarro, J. D., Niranjan, V., Peri, S., Jonnalagadda, C. K. & Pandey, A. From

biological databases to platforms for biomedical discovery. Trends Biotechnol 21,

263–268 (2003). 1, 45

4. Lewitter, F. Text-based database searching. Trends Guide to Bioinformatics 3–5

(1998). 1

5. Wang, J., Li, Z., Cai, C. & Chen, Y. Assessment of approximate string matching in

a biomedical text retrieval problem. Computers in Biology and Medicine 35, 717–724

(2005). 1

6. Hull, R., Jenkins, A. & Zweerink, M. Text-based information systems for drug dis-

covery. Current Opinion in Drug Discovery & Development 2(3), 186–196 (1999).

1

7. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,

Shindyalov, I. N. & Bourne, P. E. The Protein Data Bank. Nucleic Acids Res 28,

235–42 (2000). 2, 25, 48, 50

8. Triplet, T., Shortridge, M., Griep, M., Powers, R. & Revesz, P. 11th International

Congress on Amino Acids, Peptides and Proteins. 95 (Vienna, Austria, 2009). 2

REFERENCES 138

9. Triplet, T., Shortridge, M., Griep, M., Stark, J. L., Day, M., Powers, R. & Revesz,

P. PROFESS: A PROtein Function, Evolution, Structure and Sequence database.

Database (submitted) (2009). 2

10. Shortridge, M., Triplet, T., Revesz, P., Griep, M. & Powers, R. Bacterial Protein

Structures Reveal Phylum Dependent Divergence. PLoS ONE (submitted) (2009). 3

11. Quinlan, J. Induction of decision trees. Machine Learning 1, 81–106 (1986). 3, 38, 99

12. Vapnik, V. The Nature of Statistical Learning Theory (Springer-Verlag, 1995). 3, 34,

35, 99

13. Revesz, P. & Triplet, T. Classification Integration and Reclassification using Constraint

Databases. Artificial Intelligence in Medicine (accepted with minor revisions) (2009).

3

14. Kanellakis, P. C., Kuper, G. M. & Revesz, P. Constraint Query Languages. Journal

of Computer and System Sciences 51, 26–52 (1995). 3, 39

15. Kuper, G. M., Libkin, L. & Paredaens, J. Constraint Databases (Springer-Verlag,

2000). 3, 39, 112

16. Revesz, P. Introduction to Constraint Databases (Springer-Verlag, 2002). 3, 39, 112,

113, 115

17. Revesz, P. & Triplet, T. Reclassification of Linearly Classified Data Using Constraint

Databases. In 12th East European Conference on Advances of Databases and Infor-

mation Systems, 231–245 (2008). 4

18. Triplet, T. & Revesz, P. Reclassification of Linear Classifiers. In 5th Midwest Database

Research Symposium (Chicago, USA, 2008). 4

19. Revesz, P. Z. & Triplet, T. Temporal Data Classification Using Linear Classifiers. In

ADBIS (eds. Grundspenkis, J., Morzy, T. & Vossen, G.), vol. 5739 of Lecture Notes

in Computer Science, 347–361 (Springer, 2009). 4

20. Revesz, P. & Triplet, T. Temporal Data Classification Using Linear Classifiers. Infor-

mation Systems (submitted) (2009). 4

REFERENCES 139

21. Chargaff, E., Zamenhof, S. & Green, C. Composition of human desoxypentose nucleic

acid. Nature 165, 756–7 (1950). 9

22. Wilkins, M. H. F., Gosling, R. G. & Seeds, W. E. Physical studies of nucleic acid.

Nature 167, 759–60 (1951). 9

23. Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate.

Nature 171, 740–1 (1953). 9

24. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for

deoxyribose nucleic acid. Nature 171, 737–8 (1953). 9, 10

25. Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigó,

R. & Gladyshev, V. N. Characterization of mammalian selenoproteomes. Science 300,

1439–43 (2003). 10, 13, 32

26. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genetics

25, 25–29 (2000). 10

27. Crick, F. H. & Watson, J. D. Structure of small viruses. Nature 177, 473–5 (1956).

11, 25

28. Crick, F. H., Barnett, L., Brenner, S. E. & Watts-Tobin, R. J. General nature of the

genetic code for proteins. Nature 192, 1227–32 (1961). 13

29. Walczak, R., Westhof, E., Carbon, P. & Krol, A. A novel RNA structural motif in the

selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2, 367–79

(1996). 13

30. Atkins, J. F. & Gesteland, R. Biochemistry. The 22nd amino acid. Science 296,

1409–10 (2002). 13

31. Zhang, Y., Baranov, P. V., Atkins, J. F. & Gladyshev, V. N. Pyrrolysine and se-

lenocysteine use dissimilar decoding strategies. J Biol Chem 280, 20740–51 (2005).

13

32. Lobanov, A. V., Kryukov, G. V., Hatfield, D. L. & Gladyshev, V. N. Is there a twenty

third amino acid in the genetic code? Trends Genet 22, 357–60 (2006). 13

REFERENCES 140

33. Turanov, A. A., Lobanov, A. V., Fomenko, D. E., Morrison, H. G., Sogin, M. L.,

Klobutcher, L. A., Hatfield, D. L. & Gladyshev, V. N. Genetic code supports targeted

insertion of two amino acids by one codon. Science 323, 259–61 (2009). 13

34. Petsko, G. A. & Ringe, D. Protein Structure and Function (New Science Press, Ltd.,

Sunderland, 2008). 14, 24

35. Vauquelin, L.-N. & Robiquet, P. J. The discovery of a new plant principle in Asparagus

sativus. Ann Chim 57, 88–93 (1806). 14

36. Taylor, W. R. The classification of amino acid conservation. J Theor Biol 119, 205–18

(1986). 15

37. Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. Prediction of protein

secondary structure and active sites using the alignment of homologous sequences. J

Mol Biol 195, 957–61 (1987). 15

38. Parry-Smith, D. J. & Attwood, T. K. SOMAP: a novel interactive approach to multiple

protein sequences alignment. Comput Appl Biosci 7, 233–5 (1991). 15

39. Livingstone, C. D. & Barton, G. J. Protein sequence alignments: a strategy for the

hierarchical analysis of residue conservation. Comput Appl Biosci 9, 745–56 (1993).

15

40. IUPAC-IUB. Commission on Biochemical Nomenclature. Abbreviations and symbols

for the description of the conformation of polypeptide chains. J Mol Biol 52, 1–17

(1970). 19, 23, 25

41. Ramachandran, G. N., Venkatachalam, C. M. & Krimm, S. Stereochemical crite-

ria for polypeptide and protein chain conformations. 3. Helical and hydrogen-bonded

polypeptide chains. Biophys J 6, 849–72 (1966). 20

42. Ramakrishnan, C. & Ramachandran, G. N. Stereochemical criteria for polypeptide

and protein chain conformations. II. Allowed conformations for a pair of peptide units.

Biophys J 5, 909–33 (1965). 20

REFERENCES 141

43. Pauling, L. & Corey, R. B. Configuration of polypeptide chains. Nature 168, 550–1

(1951). 20

44. Pauling, L. & Corey, R. B. Atomic coordinates and structure factors for two helical

configurations of polypeptide chains. Proc Natl Acad Sci U S A 37, 235–40 (1951). 20

45. Pauling, L. & Corey, R. B. The structure of synthetic polypeptides. Proc Natl Acad

Sci U S A 37, 241–50 (1951). 20

46. Pauling, L. & Corey, R. B. The pleated sheet, a new layer configuration of polypeptide

chains. Proc Natl Acad Sci U S A 37, 251–6 (1951). 20

47. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins; two hydrogen-

bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37,

205–11 (1951). 20

48. Pace, C. N. & Scholtz, J. M. A helix propensity scale based on experimental studies

of peptides and proteins. Biophys J 75, 422–7 (1998). 22

49. Pauling, L. & Corey, R. B. A Proposed Structure For The Nucleic Acids. Proc Natl

Acad Sci U S A 39, 84–97 (1953). 23

50. Andreeva, A., Howorth, D., Chandonia, J.-M., Brenner, S. E., Hubbard, T. J. P.,

Chothia, C. & Murzin, A. G. Data growth and its impact on the SCOP database:

new developments. Nucleic Acids Res 36, D419–25 (2008). 25, 48, 55

51. Cuff, A. L., Sillitoe, I., Lewis, T., Redfern, O. C., Garratt, R., Thornton, J. & Orengo,

C. A. The CATH classification revisited–architectures reviewed and new ways to

characterize structural divergence in superfamilies. Nucleic Acids Res 37, D310–4

(2009). 25, 32, 48, 55

52. Powers, R., Mercier, K. A. & Copeland, J. C. The application of FAST-NMR for the

identification of novel drug discovery targets. Drug Discov Today 13, 172–179 (2008).

25

REFERENCES 142

53. Powers, R., Copeland, J. C., Germer, K., Mercier, K. A., Ramanathan, V. & Revesz,

P. Comparison of protein active site structures for functional annotation of proteins

and drug design. Proteins 65, 124–35 (2006). 25, 62, 135

54. Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J

Mol Biol 147, 195–7 (1981). 25, 28

55. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local

alignment search tool. J Mol Biol 215, 403–10 (1990). 26, 30

56. Dayhoff, M., Schwartz, R. & Orcutt, B. A model of evolutionary change in proteins.

Atlas of Protein Sequence and Structure 5, 45–352 (1978). 26

57. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks.

Proc Natl Acad Sci U S A 89, 10915–9 (1992). 27

58. Pietrokovski, S., Henikoff, J. G. & Henikoff, S. The Blocks database–a system for

protein classification. Nucleic Acids Res 24, 197–200 (1996). 27, 28

59. Styczynski, M. P., Jensen, K. L., Rigoutsos, I. & Stephanopoulos, G. BLOSUM62

miscalculations improve search performance. Nat Biotechnol 26, 274–5 (2008). 28

60. Stirling, J. Methodus differentialis, sive tractatus de summation et interpolation se-

rierum infinitarium (London, 1730). 28

61. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J Mol Biol 48, 443–53 (1970).

28

62. Gotoh, O. An improved algorithm for matching biological sequences. J Mol Biol 162,

705–8 (1982). 28

63. Lathrop, R. H. The protein threading problem with sequence amino acid interaction

preferences is NP-complete. Protein Eng 7, 1059–68 (1994). 30

64. Wang, L. & Jiang, T. On the complexity of multiple sequence alignment. J Comput

Biol 1, 337–48 (1994). 30

REFERENCES 143

65. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H.,

Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T. & Higgins,

D. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). 30, 54

66. Thompson, J., Higgins, D. & Gibson, T. CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific

gap penalties and weight matrix choice. Nucleic acids research 22, 4673–4680 (1994).

30

67. Wu, S. & Manber, U. Fast Text Searching Allowing Errors. Commun. ACM 35, 83–91

(1992). 30

68. Chang, W. I. & Lawler, E. L. Approximate String Matching in Sublinear Expected

Time. In FOCS, vol. I, 116–124 (IEEE, 1990). 30

69. Myers, E. W. A Sublinear Algorithm for Approximate Keyword Searching. Algorith-

mica 12, 345–374 (1994). 30

70. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison.

Proc Natl Acad Sci U S A 85, 2444–8 (1988). 30

71. Altschul, S. F. & Gish, W. Local alignment statistics. Methods Enzymol 266, 460–80

(1996). 31

72. Gertz, E. M., Yu, Y.-K., Agarwala, R., Schäffer, A. A. & Altschul, S. F. Composition-

based statistics and translated nucleotide searches: improving the TBLASTN module

of BLAST. BMC Biol 4, 41 (2006). 31

73. Altschul, S. F., Gertz, E. M., Agarwala, R., Schäffer, A. A. & Yu, Y.-K. PSI-BLAST

pseudocounts and the minimum description length principle. Nucleic Acids Res 37,

815–24 (2009). 31

74. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. &

Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic Acids Res 25, 3389–402 (1997). 31, 45, 50

REFERENCES 144

75. Kolodny, R. & Linial, N. Approximate protein structural alignment in polynomial

time. Proc Natl Acad Sci U S A 101, 12201–6 (2004). 31

76. Zhu, B. Protein local structure alignment under the discrete Fréchet distance. J

Comput Biol 14, 1343–51 (2007). 31

77. Ye, Y. & Godzik, A. Multiple flexible structure alignment using partial order graphs.

Bioinformatics 21, 2362–2369 (2005). 31

78. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 (1996).

32

79. Holm, L., Kääriäinen, S., Rosenström, P. & Schenkel, A. Searching protein structure

databases with DaliLite v.3. Bioinformatics 24, 2780–1 (2008). 32

80. Shindyalov, I. N. & Bourne, P. E. Protein structure alignment by incremental combi-

natorial extension (CE) of the optimal path. Protein Eng 11, 739–47 (1998). 32

81. Kedem, K., Chew, L. P. & Elber, R. Unit-vector RMS (URMS) as a tool to analyze

molecular dynamics trajectories. Proteins 37, 554–64 (1999). 32

82. Lupyan, D., Leo-Macias, A. & Ortiz, A. R. A new progressive-iterative algorithm for

multiple structure alignment. Bioinformatics 21, 3255–63 (2005). 32, 54, 74

83. Orengo, C. A. & Taylor, W. R. SSAP: sequential structure alignment program for

protein structure comparison. Methods Enzymol 266, 617–35 (1996). 32

84. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of

signal peptides: SignalP 3.0. J Mol Biol 340, 783–95 (2004). 32

85. Karplus, K., Barrett, C. & Hughey, R. Hidden Markov models for detecting remote

protein homologies. Bioinformatics 14, 846–56 (1998). 32

86. Eddy, S. R. & Durbin, R. RNA sequence analysis using covariance models. Nucleic

Acids Res 22, 2079–88 (1994). 32

87. Zhang, T. An Introduction to Support Vector Machines and Other Kernel-Based

Learning Methods. AI Magazine 22, 103–104 (2001). 34

REFERENCES 145

88. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. & Vapnik, V. Feature

Selection for SVMs. In NIPS (eds. Leen, T. K., Dietterich, T. G. & Tresp, V.), 668–674

(MIT Press, 2000). 34

89. Aizerman, M., Braverman, E. & Rozonoer, L. Theoretical foundations of the potential

function method in pattern recognition learning. Automation and Remote Control 25,

821–837 (1964). 35

90. Amari, S. & Wu, S. Improving support vector machine classifiers by modifying kernel

functions. Neural Network 12, 783–789 (1999). 36

91. Xiong, H., Zhang, Y. & Chen, X.-W. Data-Dependent Kernel Machines for Microarray

Data Classification. IEEE/ACM Trans. Comput. Biol. Bioinformatics 4, 583–595

(2007). 36

92. Liu, C. Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face

Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26,

572–581 (2004). 36

93. Quinlan, J. Improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research 4, 77–90 (1996). 38, 99

94. Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). 38

95. Rigaux, P., Scholl, M. & Voisard, A. Introduction to Spatial Databases: Applications

to GIS, 355–396 (Morgan Kaufmann, 2000). 39

96. Chomicki, J., Haesevoets, S., Kuijpers, B. & Revesz, P. Classes of Spatiotemporal Ob-

jects and their Closure Properties. Annals of Mathematics and Artificial Intelligence

39, 431–461 (2003). 39

97. Güting, R. & Schneider, M. Moving Objects Databases (Morgan Kaufmann, 2005). 39

98. Anderson, S. & Revesz, P. Efficient MaxCount and threshold operators of moving

objects. GeoInformatica 13 (2009). 39

99. Revesz, P. & Wu, S. Spatiotemporal Reasoning about Epidemiological Data. Artificial

Intelligence in Medicine 38, 157–70 (2006). 39, 43

REFERENCES 146

100. Geist, I. A Framework for Data Mining and KDD. In Proc. ACM Symposium on

Applied Computing, 508–13 (ACM Press, 2002). 39

101. Johnson, T., Lakshmanan, L. V. & Ng, R. T. The 3W Model and Algebra for Unified

Data Mining. In International Conference on Very Large Data Bases, 21–32 (2000).

39

102. Codd, E. F. A Relational Model for Large Shared Data Banks. Communications of

the ACM 13, 377–87 (1970). 39, 45, 60

103. Abiteboul, S., Hull, R. & Vianu., V. Foundations of Databases (Addison-Wesley,

1995). 39

104. Ramakrishnan, R. Database Management Systems (McGraw-Hill, 1998). 39

105. Ullman, J. D. Principles of Database and Knowledge-Base Systems (Computer Science

Press, 1989). 39

106. Brodsky, A., Segal, V., Chen, J. & Exarkhopoulo, P. The CCUBE Constraint Object-

Oriented Database System. Constraints 2, 245–77 (1997). 39

107. Grumbach, S., Rigaux, P. & Segoufin, L. The DEDALE System for Complex Spatial

Queries. In ACM SIGMOD International Conference on Management of Data, 213–24

(1998). 39

108. Bishop, B., Fischer, F., Keller, U., Steinmetz, N., Fuchs, C. & Pressnig, M. Integrated

Rule Inference System (2008). URL http://www.iris-reasoner.org/. 39, 93

109. Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y. & Wang, Y. The MLPQ/GIS

Constraint Database System. In ACM SIGMOD International Conference on Man-

agement of Data (2000). 39, 93

110. Legendre, A. Nouvelles méthodes pour la détermination des orbites des comètes

(Courcier, Paris, 1805). 41

111. Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In

Proceedings of the 1968 23rd ACM national conference, 517–524 (ACM, New York,

NY, USA, 1968). 42

http://www.iris-reasoner.org/

REFERENCES 147

112. Li, L. & Revesz, P. Interpolation Methods for Spatiotemporal Geographic Data. Com-

puters, Environment, and Urban Systems 28, 201–27 (2004). 43

113. Li, L. & Revesz, P. A Comparison of Spatio-Temporal Interpolation Methods. In

Proc. Second International Conference on Geographic Information Science, vol. 2478

of Lecture Notes in Computer Science, 145–160 (Springer-Verlag, 2002). 43

114. Dayhoff, M. O. Atlas of protein sequence and structure (National Biomedical Research

Foundation, 1965). 44

115. Dayhoff, M. O. Atlas of protein sequence and structure (National Biomedical Research

Foundation, 1973). 44

116. Wu, C. H., Yeh, L.-S. L., Huang, H., Arminski, L., Castro-Alvear, J., Chen, Y., Hu,

Z., Kourtesis, P., Ledley, R. S., Suzek, B. E., Vinayaka, C. R., Zhang, J. & Barker,

W. C. The Protein Information Resource. Nucleic Acids Res 31, 345–7 (2003). 44

117. Babu, P. A., Udyama, J., Kumar, R. K., Boddepalli, R., Mangala, D. S. & Rao, G. N.

DoD2007: 1082 molecular biology databases. Bioinformation 2, 64–67 (2007). 45

118. Galperin, M. Y. & Cochrane, G. R. Nucleic Acids Research annual Database Issue

and the NAR online Molecular Biology Database Collection in 2009. Nucleic Acids

Res 37, D1–4 (2009). 45

119. Stein, L. Creating a bioinformatics nation. Nature 417, 119–120 (2002). URL http:

//dx.doi.org/10.1038/417119a. 45

120. Horn, F., Vriend, G. & Cohen, F. E. Collecting and harvesting biological data:

the GPCRDB and NucleaRDB information systems. Nucleic Acids Res 29, 346–349

(2001). 45

121. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H.-R., Ceric, G.,

Forslund, K., Eddy, S. R., Sonnhammer, E. L. L. & Bateman, A. The Pfam protein

families database. Nucleic Acids Res 36, D281–8 (2008). 45, 48, 53

http://dx.doi.org/10.1038/417119a
http://dx.doi.org/10.1038/417119a

REFERENCES 148

122. Webb, E. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Com-

mittee of the International Union of Biochemistry and Molecular Biology on the No

(Enzyme Nomenclature) (Academic Press, San Diego, 1992). 45, 48, 53, 68

123. Stevens, R., Goble, C., Baker, P. & Brass, A. A classification of tasks in bioinformatics.

Bioinformatics 17, 180–8 (2001). 45

124. Davidson, S. B., Overton, C. & Buneman, P. Challenges in integrating biological data

sources. J Comput Biol 2, 557–572 (1995). 45

125. Wong, L. Technologies for integrating biological data. Brief Bioinform 3, 389–404

(2002). 45

126. Joyce, A. R. & Palsson, B. Ø. The model organism as a system: integrating ’omics’

data sets. Nat Rev Mol Cell Biol 7, 198–210 (2006). 46

127. Chen, Y. & Revesz, P. Querying Spatiotemporal XML Using DataFox. In Proc. IEEE

International Conference on Web Intelligence, 301–9 (IEEE Press, 2003). 46

128. Pottinger, R. & Halevy, A. MiniCon: A scalable algorithm for answering queries using

views. The VLDB Journal 10, 182–198 (2001). 46, 58

129. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes.

BMC Bioinformatics 4, 41 (2003). 46, 48, 50, 68

130. Zhang, R. & Lin, Y. DEG 5.0, a database of essential genes in both prokaryotes and

eukaryotes. Nucleic Acids Res 37, D455–8 (2009). 48, 55

131. Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U. & Eisenberg, D.

The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32, D449–51

(2004). 48, 53

132. Consortium, T. G. O. The Gene Ontology (GO) project in 2006. Nucleic Acids

Research 34, D322–D326 (2006). 48, 53, 68

133. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank.

Nucleic Acids Res 37, D26–31 (2009). 48, 58

REFERENCES 149

134. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama,

T., Kawashima, S., Okuda, S., Tokimatsu, T. & Yamanishi, Y. KEGG for linking

genomes to life and the environment. Nucleic Acids Res 36, D480–4 (2008). 48, 51

135. Arifuzzaman, M. et al. Large-scale identification of protein-protein interaction of Es-

cherichia coli K-12. Genome Research 16, 686–691 (2006). 48, 53

136. UniProt Consortium. The Universal Protein Resource (UniProt) 2009. Nucleic Acids

Res 37, D169–74 (2009). 48

137. Schmidt, T. & Frishman, D. PROMPT: a protein mapping and comparison tool. BMC

Bioinformatics 7, 331 (2006). 50

138. Felsenstein, J. PHYLIP- Phylogeny Inference Package (Version 3.2). Cladistics 5,

164–166 (1989). 54, 75

139. Halevy, A. Answering queries using views: A survey. VLDB Journal 10, 270–294

(2001). 58

140. Codd, E. F. The Relational Model for Database Management, Version 2 (Addison-

Wesley, 1990). 60

141. Date, C., Darwen, H. & Lorentzos, N. Temporal Data and the Relational Model (Mor-

gan Kaufmann, 2002). 60

142. Fagin, R. Normal Forms and Relational Database Operators. In SIGMOD Conference

(ed. Bernstein, P. A.), 153–160 (ACM, 1979). 61

143. Date, C., Darwen, H. & Lorentzos, N. Database in Depth: Relational Theory for

Practitioners (O’Reilly, 2005). 61

144. Levenshtein, V. Binary Codes Capable of Correcting Deletions, Insertions and Rever-

sals. Soviet Physics Doklady 10, 707–710 (1966). 61

145. Damerau, F. A technique for computer detection and correction of spelling errors.

Commun. ACM 7, 171–176 (1964). 62

REFERENCES 150

146. Do, C. B. & Katoh, K. Protein multiple sequence alignment. Methods Mol Biol 484,

379–413 (2008). 66

147. Feng, J.-a. Improving pairwise sequence alignment between distantly related proteins.

Methods Mol Biol 395, 255–68 (2007). 66

148. Chang, G. S., Hong, Y., Ko, K. D., Bhardwaj, G., Holmes, E. C., Patterson, R. L. &

van Rossum, D. B. Phylogenetic profiles reveal evolutionary relationships within the

”twilight zone” of sequence similarity. Proc Natl Acad Sci U S A 105, 13474–9 (2008).

66

149. Pál, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nat Rev

Genet 7, 337–48 (2006). 66

150. Rocha, E. P. C. The quest for the universals of protein evolution. Trends in Genetics

22, 412–416 (2006). 66

151. Forouhar, F. et al. Functional insights from structural genomics. J Struct Funct

Genomics 8, 37–44 (2007). 66

152. Chothia, C. & Lesk, A. M. The relation between the divergence of sequence and

structure in proteins. The EMBO Journal 5, 823–826 (1986). 66, 80, 81

153. Rost, B. Twilight zone of protein sequence alignemnts. Protein Engineering 12, 85–94

(1999). 66, 80

154. Sadreyev, R. I. & Grishin, N. V. Exploring dynamics of protein structure determination

and homology-based prediction to estimate the number of superfamilies and folds.

BMC Structural Biology 6, No pp given (2006). 67

155. Illerg̊ard, K., Ardell, D. H. & Elofsson, A. Structure is three to ten times more

conserved than sequence–a study of structural response in protein cores. Proteins 77,

499–508 (2009). 67, 81

156. Kolodny, R., Petrey, D. & Honig, B. Protein structure comparison: implications for

the nature of ’fold space’, and structure and function prediction. Curr Opin Struct

Biol 16, 393–8 (2006). 67, 81

REFERENCES 151

157. Panchenko, A. R., Wolf, Y. I., Panchenko, L. A. & Madej, T. Evolutionary plasticity

of protein families: coupling between sequence and structure variation. Proteins 61,

535–44 (2005). 67, 81

158. Williams, S. G. & Lovell, S. C. The effect of sequence evolution on protein structural

divergence. Mol Biol Evol 26, 1055–65 (2009). 67, 81

159. Holm, L. & Park, J. DaliLite workbench for protein structure comparision. Bioinfor-

matics 16, 566–567 (2000). 68

160. Bailey, S., Eliason, W. K. & Steitz, T. A. Structure of hexameric DnaB helicase and

its complex with a domain of DnaG primase. Science 318, 459–63 (2007). 74

161. Oakley, A. J., Loscha, K. V., Schaeffer, P. M., Liepinsh, E., Pintacuda, G., Wilce,

M. C. J., Otting, G. & Dixon, N. E. Crystal and Solution Structure of the Helicase-

Binding Domain of Escherichia coli Primase. The Journal of Biological Chemistry

280, 11495–11504 (2005). 74

162. Su, X. C., Schaeffer, P. M., Loscha, K. V., Gan, P. H., Dixon, N. E. & Otting, G.

Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG

primase. Febs J 273, 4997–5009 (2006). 74

163. Syson, K., Thirlway, J., Hounslow, A. M., Soultanas, P. & Waltho, J. P. Solution

Structure of the Helicase-Interaction Domain of the Primase DnaG: A model for He-

licase Activation. Strcuture 13, 609–616 (2005). 74

164. Efron, B., Halloran, E. & Holmes, S. Bootstrap confidence levels for phylogenetic

trees. Proc Natl Acad Sci U S A 93, 13429–34 (1996). 74

165. Fitch, W. M. & Margoliash, E. Construction of phylogenetic trees. Science 155,

279–84 (1967). 75

166. Garcia-Vallve, S., Romeu, A. & Palau, J. Horizontal gene transfer in bacterial and

archaeal complete genomes. Genome Res 10, 1719–25 (2000). 77

167. Konstantinidis, K. T. & Tiedje, J. M. Towards a Genome-Based Taxonomy for

Prokaryotes. Journal of Bacteriology 187, 6258–6264 (2005). 80

REFERENCES 152

168. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species

definition for prokaryotes. Proc Natl Acad Sci U S A 102, 2567–72 (2005). 80

169. Rost, B. Enzyme Function Less Conserved than Anticipated. Journal of Molecular

Biology 318, 595–608 (2002). 80

170. Powers, R., Mirkovic, N., Goldsmith-Fischman, S., Acton, T. B., Chiang, Y., huang,

Y. J., Ma, L., Rajan, P., Cort, J. R., Kennedy, M. A., Liu, J., Rost, B., Honig, B.,

Murray, D. & Montelione, G. T. Solution structure of Archaeglobus fulgidis peptidyl-

tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2

enzymes in archea, bacteria, and eukaryotes. Protein Science 14, 2849–2861 (2005).

81

171. Yang, K., Eyobo, Y., Brand, L. A., Martynowski, D., Tomchick, D., Strauss, E. &

Zhang, H. Crystal structure of a type III pantothenate kinase: insight into the mech-

anism of an essential coenzyme A biosynthetic enzyme universally distributed in bac-

teria. Journal of Bacteriology 188, 5532–5540 (2006). 81

172. Kisselev, L. Polypeptide Release Factors in Prokaryotes and Eukaryotes. Same Func-

tion, Different Structure. Structure (Cambridge, MA, United States) 10, 8–9 (2002).

81

173. Ibba, M., Morgan, S., Curnow, A. W., Pridmore, D. R., Vothknecht, U. C., Gard-

ner, W., Lin, W., Woese, C. R. & Soll, D. A euryarchaeal lysyl-tRNA synthetase:

resemblance to class I synthetases. Science 278, 1119–22 (1997). 81

174. Hadley, C. & Jones, D. T. A systematic comparison of protein structure classifications:

SCOP, CATH and FSSP. Structure 7, 1099–112 (1999). 81

175. Pascual-Garćıa, A., Abia, D., Ortiz, A. R. & Bastolla, U. Cross-over between dis-

crete and continuous protein structure space: insights into automatic classification

and networks of protein structures. PLoS Comput Biol 5, e1000331 (2009). 81

176. Lin, Y.-S., Hsu, W.-L., Hwang, J.-K. & Li, W.-H. Proportion of solvent-exposed amino

acids in a protein and rate of protein evolution. Molecular Biology and Evolution 24,

1005–1011 (2007). 81

REFERENCES 153

177. Chirpich, T. P. Rates of protein evolution. Function of amino acid composition. Science

(Washington, DC, United States) 188, 1022–3 (1975). 81

178. Lesk, A. M. & Chothia, C. How different amino acid sequences determine similar

protein structures: the structure and evolutionary dynamics of the globins. Journal

of Molecular Biology 136, 225–70 (1980). 81

179. Robertson, A. D. & Murphy, K. P. Protein Structure and the Energetics of Protein

Stability. Chem Rev 97, 1251–1268 (1997). 82

180. Sánchez, I. E., Tejero, J., Gómez-Moreno, C., Medina, M. & Serrano, L. Point muta-

tions in protein globular domains: contributions from function, stability and misfold-

ing. J Mol Biol 363, 422–32 (2006). 82

181. Donoho, D. & Ramos, E. The CRCARS dataset. Exposition of Statistical Graphics

Technology (American Statistical Association, Toronto, 1983). 84

182. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S. & Brilliant,

L. Detecting influenza epidemics using search engine query data. Nature 457, 1012–4

(2009). 84, 86

183. Asuncion, A. & Newman, D. UCI Machine Learning Repository (2009). URL http:

//archive.ics.uci.edu/ml/. 84, 87, 90

184. Fleming, T. R. & Harrington, D. P. Counting Processes and Survival Analysis (Wiley,

New York, 1991). 84, 88

185. Kun, Z. & Wei, F. Forecasting skewed biased stochastic ozone days: analyses, solutions

and beyond. Knowledge and Information Systems 14, 299–326 (2008). 84, 90

186. Chang, C. C. & Lin, C. J. LIBSVM: A library for support vector machines (2001).

URL http://www.csie.ntu.edu.tw/~cjlin/libsvm. 94, 104, 126

187. Halevy, A. Y., Ashish, N., Bitton, D., Carey, M. J., Draper, D., Pollock, J., Rosen-

thal, A. & Sikka, V. Enterprise information integration: Successes, challenges and

controversies. In ACM SIGMOD International Conference on Management of Data,

778–787 (2005). 99, 101

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvm

REFERENCES 154

188. Lenzerini, M. Data Integration: A Theoretical Perspective. In ACM Symposium on

Principles of Database Systems, 233–246 (2002). 99, 101

189. Student (W. Gosset). On the probable error of the mean. Biometrika 6, 1–25 (1908).

104

190. Seidel, J., Imbery, F., Dostal, P., Sudhaus, D. & Bürger, K. Potential of historical

meteorological and hydrological data for the reconstruction of historical flood events

– the example of the 1882 flood in southwest Germany. Natural Hazards and Earth

System Sciences 9, 175–183 (2009). 123

191. Qin, Y. & Obradovic, Z. Efficient Learning from Massive Spatial-Temporal Data

Through Selective Support Vector Propagation. In 17th European Conference on Ar-

tificial Intelligence, 526–530 (2006). 123

192. Tseng, V. S. & Lee, C.-H. Effective temporal data classification by integrating sequen-

tial pattern mining and probabilistic induction. Expert Systems with Applications 36,

9524–9532 (2009). 123, 124

193. Metz, C. Basic principles of ROC analysis. Seminars in nuclear medicine 8, 283–298

(1978). 132

194. Zweig, M. & Campbell, G. Receiver-operating characteristic (ROC) plots: a funda-

mental evaluation tool in clinical medicine. Clinical Chemistry 39, 561–577 (1993).

132

195. Chandonia, J.-M. & Brenner, S. E. Implications of structural genomics target selection

strategies: Pfam5000, whole genome, and random approaches. Proteins Structure,

Function, and Bioinformatics 58, 166–179 (2004). 136

196. Mestres, J. Representativity of target families in the Protein Data Bank: impact

for family-directed structure-based drug discovery. Drug Discov Today 10, 1629–37

(2005). 136

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 11-25-2009

	Classification, Clustering and Data-Mining of Biological Data
	Thomas Triplet

	List of Figures
	List of Tables
	1 Introduction
	2 Background and Related Material
	2.1 Basic Concepts of Biology
	2.1.1 Biomolecules
	2.1.1.1 Carbohydrates
	2.1.1.2 Lipids
	2.1.1.3 Nucleic Acids
	2.1.1.4 Proteins

	2.1.2 Transcription: from DNA to RNA
	2.1.3 Translation: from RNA to Proteins using the Genetic Code
	2.1.4 Protein Structures
	2.1.4.1 Primary Structure
	2.1.4.2 Secondary Structure
	2.1.4.3 Ternary Structure
	2.1.4.4 Quaternary Structure

	2.2 Review of Bioinformatics Databases and Tools
	2.2.1 Protein Sequence Alignments
	2.2.1.1 Scoring Schema
	2.2.1.2 Smith-Waterman Algorithm
	2.2.1.3 Basic Local Alignment Search Tool: BLAST

	2.2.2 Protein Structure Alignments

	2.3 Supervised Machine Learning Algorithms
	2.3.1 Linear Classifiers
	2.3.2 Support Vector Machines
	2.3.3 Decision Trees

	2.4 Constraint Databases
	2.5 Inverse Distance Weighted Interpolation

	3 The PROFESS Database
	3.1 Introduction
	3.2 Database Integration Problem
	3.3 Overview of PROFESS
	3.4 Database Content
	3.4.1 Functional Annotation of the Protein Data Bank
	3.4.2 Functional Level
	3.4.3 Phylogenetic Level
	3.4.4 Structural Level
	3.4.5 Sequence Level

	3.5 Local-As-View Data Integration and Database Design
	3.6 Functional-Style Query System
	3.6.1 The PROFESSor
	3.6.2 Functional-Style Query System

	3.7 Web User Interface

	4 Structural Comparison of Functional Orthologs
	4.1 Introduction
	4.2 Functional Annotation of Protein Structures
	4.3 Pairwise Structure Similarity
	4.3.1 Methods
	4.3.2 Results

	4.4 Phylogenetic Analysis of Functional Orthologs
	4.4.1 Methods
	4.4.2 Results

	4.5 Structure Divergence Rates across Phyla
	4.6 Fold dependency on Structure Similarity
	4.7 Discussion

	5 Experimental Datasets
	5.1 CRCars Database
	5.2 Google Flu Trends Dataset
	5.3 Heart Disease Databases
	5.4 Primary Biliary Cirrhosis Trial
	5.5 Texas Commission on Environmental Quality Dataset

	6 Representation and Querying of Linear Classifiers
	6.1 Introduction
	6.2 Representation and Querying of SVMs
	6.3 Representation and Querying of ID3 Decision Trees
	6.4 Representation and Querying of ID3-Interval Decision Trees

	7 Data and Classifier Integration
	7.1 Introduction
	7.2 The Classification Problem with Multiple Sources
	7.2.1 Data Integration
	7.2.2 Classifier Integration with Constraint Databases

	7.3 Experimental Evaluation of the Classifier Integration Method
	7.3.1 Experimental Protocol and Results
	7.3.2 Discussion

	8 Data Reclassification
	8.1 Introduction
	8.2 The Reclassification Problem
	8.3 Reclassification with an Oracle
	8.4 Reclassification with Constraint Databases
	8.5 Comparison of Reclassification with an Oracle and Constraint Databases
	8.5.1 Experimental Results with the CRCARS data set
	8.5.2 Experimental Results with the PBC database and Discussion

	9 Temporal Classification
	9.1 Introduction
	9.2 Temporal Classifications with Historical Data
	9.3 Experimental Evaluation of the Temporal Classification Method
	9.3.1 Experimental Results with TCEQ Data
	9.3.2 Experimental Results with Reduced TCEQ Data

	9.4 Comparison of the Temporal Classification Method and the IDW Interpolation
	9.4.1 Experimental Results with Temporal FLU Data
	9.4.2 Experimental Results with Spatio-Temporal FLU Data
	9.4.3 Discussion

	10 Conclusion
	References

