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Mass spectra contain characteristic information regarding the molecular structure and

properties of compounds. The mass spectra of compounds from the same chemically re-

lated group are similar. Classification is one of the fundamental methodologies for ana-

lyzing mass spectral data. The primary goals of classification are to automatically group

compounds based on their mass spectra, to find correlation between the properties of com-

pounds and their mass spectra, and to provide a positive identification of unknown com-

pounds.

This dissertation presents a new algorithm for the classification of mass spectra, the

most similar neighbor with a probability-based spectrum similarity measure (MSN-PSSM).

Experimental results demonstrate the effectiveness and robustness of the new MSN-PSSM

algorithm. In leave-one-out cross-validation, it outperforms popular techniques for classi-

fication of mass spectra, such as principal component analysis with discriminant function

analysis, soft independent modeling of class analogy, and decision tree learning.

Comprehensive two-dimensional chromatography yields highly informative separation

patterns because of its great practical peak capacity and sensitivity produced by applying

two different separation principles. However, the improvement in information yields com-

plex data requiring comprehensive analyses to interpret the rich information and to extract



useful information for characterizing sample composition.

This dissertation presents a new non-targeted cross-sample classification method to an-

alyze comprehensive two-dimensional chromatograms. Experimental results validate the

effectiveness of the new non-targeted cross-sample classification. The new non-targeted

cross-sample classification is successfully applied to a set of comprehensive two-dimensional

chromatograms of breast cancer tumor samples. The feature vectors generated by the new

non-targeted cross-sample classification are useful for discriminating between breast cancer

tumor samples of different grades and providing information to identify potential biomark-

ers for closer examination.

Keywords: classification, mass spectrometry, comprehensive two-dimensional chro-

matography.
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Chapter 1

Introduction

Classification is fundamental in science uncovering inherent orders, regularities, underly-

ing structure, and natural laws [1]. The development of new analysis and measurement

techniques with high quantification ability (e.g., separation capacity) potentially improves

the accuracy and precision of classification. However, these techniques often generate

information-rich observations that make new mathematical or statistical methods increas-

ingly important both for informatics and classification. Comprehensive two-dimensional

gas chromatography (GC×GC) with mass spectrometry (MS) and time-of-flight secondary

ion mass spectrometry (TOFMS) are analysis techniques generating information-rich data.

An especially important analytical task is to establish new methodologies for comprehen-

sive information analysis and classification of these information-rich data.
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1.1 Mass Spectrometry

Mass spectrometry is an analysis technique that measures the mass-to-charge ratio (m/z)

of molecular and fragmentary ions [2]. The basic principle of mass spectrometry is to

generate ions from compounds, to separate these ions by their m/z, and to measure them

qualitatively and quantitatively by their respective m/z and intensity [3].

1.1.1 Basic Procedure of Mass Spectrometry

There are three essential steps in mass spectrometry:

1. An ionization source (commonly a beam of 70 volt electrons) converts the analyte

molecules into molecular ions (M + e −→M+ + 2e). The excess energy transferred

from the ionization source leads to fragmentation to additional smaller ions.

2. A mass analyzer separates molecular ions and their charged fragments according to

their m/z.

3. A detector measures the intensity of ion currents due to mass-separated ions and

provides a mass spectrum.

Figure 1.1 illustrates the basic procedure of mass spectrometry.
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Figure 1.1: Basic procedure of mass spectrometry [2].

1.1.2 Types of Mass Spectrometers

There are many types of mass spectrometers, of which the quadrupole and the time-of-flight

are the most widely used types.

1. Quadrupole employs a combination of direct-current and radio-frequency potentials

as a mass “filter”. As the name implies, quadrupole consists of four parallel rods

arranged symmetrically to produce hyperbolic fields. Opposite rods are connected

together electrically and to radio-frequency and direct-current voltage generators.

Ions travel down the quadrupole region between the four rods. Only ions of a certain

m/z will reach the detector for a given ratio of voltages. This mechanism allows

scanning a range of m/z values by continuously varying the voltages [4].

2. Time-of-flight uses an electric field to accelerate the ions through the same potential

and measures the times they take to reach the detector. All the ions receive the

same kinetic energy during acceleration, but because they have different masses,

they separate into groups according to velocity (and hence mass). The m/z of an ion

is reflected by its time of arrival at the detector. With the same charge, ions of low

mass reach the detector before those of high mass [4].
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1.1.3 Nature of Mass Spectra

A mass spectrum is an array of pairs of the form (m/z, intensity). The value pairs typically

are listed in ascending order from smallest to largest m/z. In an integer mass spectrum,

the m/z values are integers and the intensity values are integrated to integer m/z. In a

high-resolution mass spectrum, the m/z values are floating point values. A mass spectrum

can be represented as a bar graph, in which each bar represents ions having a specific m/z

and the length of the bar indicates the signal intensity of the ions. The most intense ion is

referred to as the base peak. Typically, the ions formed in a mass spectrometer have a single

charge, so them/z value is equivalent to mass itself [3]. To compare different mass spectra,

intensity values of mass spectra are normalized. Base-peak normalization is a common

normalization method. In base-peak normalization, the intensity values of mass spectra are

normalized to the intensity of the most intense peak (base peak) and multiplied by 999,

then rounded to the closest integer value. After base-peak normalization, the intensity of

the base peak is 999. Often, the largest-mass ion in a spectrum is the molecular ion (when

the molecular ion is present), and smaller-mass ions are fragments from the molecular ion.

For example, the base-peak normalized mass spectrum of methanol and major ions are

shown in Figure 1.2. CH3OH+ (the molecular ion, m/z=32) and fragment ions appear in

this mass spectrum. The x-axis of this bar graph is the m/z. The y-axis is the base-peak

normalized intensity of each ion, which is related to the normalized number of times an ion

of that m/z strikes the detector.

Analyses often are performed on mass spectra far more complex than methanol. In-

terpretation of complex mass spectra is difficult or even impossible as initial fragments

undergo further fragmentation and rearrangements occur.
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Figure 1.2: An integer mass spectrum of methanol represented as a bar graph. The x-axis
is the m/z. The y-axis is the base-peak normalized intensity of each ion, which is related
to the normalized number of times an ion of that m/z strikes the detector. CH3OH+ is the
molecular ion. H2C=OH+, HC≡O+, and H3C+ are fragment ions.

1.2 Comprehensive Two-Dimensional Gas Chromatogra-

phy with Mass Spectrometry

Comprehensive two-dimensional gas chromatography (GC×GC) separates chemical com-

pounds with two capillary columns coupled by a modulator as illustrated in Figure 1.3.

The modulator collects and periodically injects the first column eluent (partially resolved

compounds from the first column carrying out the initial separation) into a second column

of different selectivity, allowing further separation [5]. Often, the first column is volatility

selective and the second column is polarity selective. GC×GC provides a two-dimensional

chemical ordering (by retention times) that is useful for separation of compounds in com-



6

plex samples and recognizing individual chemical compounds [6].

Figure 1.3: GC×GC system separates chemical compounds with two capillary columns
coupled by a modulator.

The eluent of the second column can be input to a mass spectrometer to produce

rich structural information for chemical identification. GC×GC with mass spectrome-

try (GC×GC-MS) provides large separation capability (capable of resolving several thou-

sands of chemical compounds) and large capability for identifying chemical constituents

of highly complex mixtures.

GC×GC-MS output is a three-way data cube (each way is functionally linked, that is,

the output from one way modulates the output of subsequent ways) [7]. The first way is

the elapsed time for the first column separation; the second way is the elapsed time for the

second column separation; and the third way is the mass spectrum.

GC×GC-MS data can be displayed as a two-dimensional total ion count (TIC) image.

In the TIC image, the x-axis is the elapsed time for the first column separation; the y-axis
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is the elapsed time for the second column separation. The value of each pixel of the TIC

image is the summation of all the intensity values of the mass spectrum associated with

the pixel. Figure 1.4 illustrates the GC×GC-MS TIC image of a mixture of compounds

containing paraffins, isoparaffins, aromatics, naphthenes, and olefins (PIANO) obtained

from Supelco, Inc. Each compound produces a two-dimensional peak (represented as a

group of pixels) of adjacent pixels with larger pixel values than the surrounding pixels in

the TIC image.

Figure 1.4: GC×GC-MS TIC image of a PIANO mixture. The x-axis is the elapsed time
for the first column separation; the y-axis is the elapsed time for the second column separa-
tion. The value of each pixel of the TIC image is the summation of all the intensity values
of the mass spectrum associated with the pixel.
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1.3 Time-of-Flight Secondary Ion Mass Spectrometry

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is an analysis technique char-

acterizing the surface and near surface (∼30µm) region of solids and the surface of some

liquids [8]. In ToF-SIMS, the target is placed in an ultra-high vacuum environment where a

beam of energetic (between 0.5 keV and 20 keV) primary ions (e.g., Au+
3 or C+

60) bombards

the target surface and sputters atoms, molecules, and molecular fragments (secondary ions)

from the target surface as Figure 1.5 [9] illustrates. The sputtering process consists of the

implantation of the primary ions into the target and the removal of surface atoms by the

energy loss of the primary ions in the form of a collision cascade [8]. The secondary ions

ejected from the target surface are electrostatically accelerated into a “flight tube” and sep-

arated according to their m/z which is determined by measuring the times at which they

reach the detector (time-of-flight) [10].

The primary ion beam can be finely focused to sweep the target surface in a raster

pattern at a submicrometer lateral resolution to create a two-dimensional ToF-SIMS TIC

image. In the ToF-SIMS TIC image, the value of each pixel is the summation of all the

intensity values of the mass spectrum associated with the pixel. Repeating the raster pattern

to drill into the target can create a three-dimensional ToF-SIMS TIC image. Figure 1.6

illustrates the three-dimensional ToF-SIMS TIC image of a frog oocyte obtained from the

Surface Analysis Research Centre, University of Manchester.
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Figure 1.5: ToF-SIMS system. A beam of energetic (between 0.5 keV and 20 keV) primary
ions (e.g., Au+

3 or C+
60) bombards the target surface and sputters atoms, molecules, and

molecular fragments (secondary ions) from the target surface. The secondary ions ejected
from the target surface are electrostatically accelerated into a “flight tube” and separated
according to their m/z.

1.4 Classification

Classification is fundamental in scientific fields exploring empirical data. Data with similar

characteristics can be grouped together to be better investigated. After developing unifying

models explaining the occurrence of data, unknown data can be characteristically predicted.

There are three main categories of general classification methods: supervised classi-

fication (or simply classification), unsupervised classification (or clustering), and semi-

supervised classification.

1. In supervised classification, a model or classifier is constructed to classify or predict

unknown data into a known set of categories (classes) given data from the known set
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Figure 1.6: Three-dimensional ToF-SIMS TIC image of a frog oocyte. The x-axis, y-axis,
and z-axis represent the location on target. The value of each pixel is the summation of all
the intensity values of the mass spectrum associated with the pixel.

of categories.

2. In unsupervised classification, unknown data are grouped together such that data in

the same group are in some sense more similar or homogeneous with one another

than with data belonging to other groups [11].

3. In semi-supervised classification, a model or classifier is constructed to classify un-

known data based on small amount of known data which may be difficult, expensive,

or time consuming to obtain (e.g., known data may require the efforts of experienced

human annotators), together with large amount of unknown data which are relatively

easy to collect (e.g., unknown data may require less human effort).

This dissertation focuses on supervised classification. Classification in this dissertation

refers to supervised classification.
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1.4.1 Classification of Mass Spectra

Mass spectra contain characteristic information regarding the composition of compounds

and properties of compounds. The mass spectrum of a compound can be used as a chemical

“fingerprint” to characterize the compound [4]. The mass spectra of compounds from the

same chemically related group are similar [12], i.e., they may have similar sets of m/z

values that have significant intensity values, but the intensity values may vary. Therefore,

mass spectra can be used to predict or explain compound properties, such as biological or

chemical properties, based on mass spectral similarity. Mass spectra have been used in

diverse areas, including food and flavor analyses [13–15], studies of drug metabolism [16,

17], biomedical research [18, 19], environmental science [20], etc. As mass spectral data

are used in more and more research areas, mass spectral analysis becomes more important.

Classification is one of the fundamental methodologies for analyzing mass spectral

data. The primary goals of classification are to automatically group compounds based

on their mass spectra, to find correlation between the properties of compounds and their

mass spectra, and to provide a positive identification of unknown compounds.

Classification complements library search [21, 22] which searches a mass spectral li-

brary to identify unknown mass spectra. There are various mass spectral libraries, for

example, the NIST/EPA/NIH Mass Spectral Library 2008 (NIST08) containing 220460

mass spectra. If an unknown compound is fairly common, its mass spectrum may be in

a library, and correct identification of the compound through library search often is possi-

ble. If the unknown compound’s mass spectrum is not present in a library, not only is the

search result not a correct identification of the unknown compound, the search result often

is misleading. For mass spectra that cannot be found in a library, classification can involve
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identification of substructure types or well defined compound classes in order to establish

and confirm structural conjectures or reveal relationships between mass spectra and chemi-

cal structures [23]. Classification also can be useful in cases when only structurally related

compounds need to be retrieved.

Mass spectra are high-dimensional data. Mass spectra of complex mixtures are enor-

mously complex with large mass ranges and many structurally significant peaks combined

with noise peaks (such as contaminants and small or non-diagnostic fragment ions). Within

this high-dimensional complexity, there is a huge amount of information about the iden-

tity of the mixture, e.g., compound composition, molecular orientation, surface order, and

chemical bonding [24]. Establishing new mathematical or statistical methodologies for

comprehensive information analysis and classification has become one of the most impor-

tant tasks in mass spectral analysis.

1.4.2 Cross-Sample Classification of Comprehensive Two-Dimensional

Chromatograms

Comprehensive separation and analysis of complex biological samples is a substantial chal-

lenge because of the presence of thousands of constituent compounds with highly variable

concentrations and ranges and diverse physicochemical properties and detectability [25].

Two-dimensional separation patterns obtained by comprehensive chromatography, in par-

ticular GC×GC, analyze a complex mixture to characterize its composition. GC×GC

is a powerful tool for complex biological sample characterization, differentiation, dis-

crimination, and classification on the basis of the components distribution over the two-

dimensional plane.
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Comprehensive two-dimensional chromatography yields highly informative separation

patterns because of its great practical peak capacity and sensitivity produced by applying

two different separation principles (one for each chromatographic dimension). However,

the improvement in information yields complex data (consisting of two-dimensional reten-

tion data and mass spectra) requiring comprehensive analyses to interpret the rich infor-

mation and to extract useful information on sample characterization [26]. Cross-sample

analysis of complex biological samples, such as sample classification, is even more chal-

lenging because of the difficulty of analyzing and interpreting the massive, complex data

from many samples for relevant biochemical features. The large dimensionality of biologi-

cal data, as well as the size of the dataset, and the possibility that significant chemical char-

acteristics across many samples may be subtle and involve patterns of variations in multiple

constituents, necessitate the investigation and development of new analysis methodologies.

1.5 Summary of Contributions

This dissertation presents a new supervised classification algorithm for classification of

mass spectra, the most similar neighbor with a probability-based spectrum similarity mea-

sure (MSN-PSSM) [27] as described in Chapter 3. The MSN-PSSM algorithm is a multi-

class classification algorithm that can deal with multiple classes directly without converting

a multi-class problem into a set of two-class problems. The MSN-PSSM algorithm models

the intra-class variability and uses a smoothing model in the similarity measure to enhance

the robustness with respect to noise, such as chemical noise and instrument noise. The

MSN-PSSM algorithm characterizes the domain information of labeled data by an array

of probability distribution functions of intensities as a function of m/z. Each probability

in the distribution function is the fraction of spectra in the labeled data having that inten-
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sity value at the given m/z. The MSN-PSSM algorithm considers all m/z that contain

discriminating information to avoid information loss.

Experimental results demonstrate the effectiveness and robustness of the new MSN-

PSSM algorithm [27]. In leave-one-out cross-validation, it outperforms popular classifi-

cation techniques for classification of mass spectra, such as principal component analysis

(PCA) with discriminant function analysis (DFA), soft independent modeling of class anal-

ogy (SIMCA), and decision tree learning.

This dissertation also contributes to a new non-targeted cross-sample classification

method to analyze comprehensive two-dimensional chromatograms [28, 29] as described in

Chapter 5. The non-targeted cross-sample classification systematically and automatically

detects registration peaks of multiple comprehensive two-dimensional chromatograms. Then,

the non-targeted cross-sample classification uses the registration peaks to align (register)

the chromatograms to generate a cumulative chromatogram. The registration peaks and

the retention-time regions of all peaks detected in the cumulative chromatogram are used

to generate a feature template. The registration peaks in the feature template are matched

to the detected peaks in each chromatogram. For each chromatogram, the non-targeted

cross-sample classification creates a feature vector that characterizes the detector response

within the regions of the feature template. Then, the non-targeted cross-sample classifica-

tion uses the feature vectors for the set of comprehensive two-dimensional chromatograms

to perform classification and potential biomarker identification.

The new non-targeted cross-sample classification is successfully applied to a set of

comprehensive two-dimensional chromatograms of breast cancer tumor samples, each from

different individuals, for cancer grades 1 to 3 (as labeled by a cancer pathologist) [28].

Experimental results demonstrate the effectiveness of the new non-targeted cross-sample
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classification. The feature vectors generated by the new non-targeted cross-sample clas-

sification are useful for discriminating between breast cancer tumor samples of different

grades and providing information that can be used to identify potential biomarkers for

closer examination.

1.6 Organization

This chapter briefly introduced the basic procedure of mass spectrometry, types of mass

spectrometers, and nature of mass spectra. Then, this chapter introduced comprehensive

two-dimensional gas chromatography with mass spectrometry and time-of-flight secondary

ion mass spectrometry. Finally, this chapter described classification of mass spectra and

cross-sample classification of comprehensive two-dimensional chromatograms.

Chapter 2 describes several popular supervised classification algorithms for mass spec-

tra classification, including principal component analysis with discriminant function analy-

sis, soft independent modeling of class analogy, and decision tree learning. Chapter 2 also

describes research efforts to develop multivariate analysis techniques aimed at determin-

ing salient features of comprehensive two-dimensional chromatograms and quantitatively

classifying complex samples.

Chapter 3 presents a new supervised classification algorithm, the most similar neigh-

bor with a probability-based spectrum similarity measure. There are seven steps of this

new algorithm: normalization, domain information characterization, intra-class variability

model construction, smoothing model construction, probability-based spectrum similarity

calculation, the most similar mass spectrum selection, and class label prediction.



16

Chapter 4 presents experimental results of the new supervised classification algorithm

compared with popular classification techniques for mass spectra classification. The ex-

perimental results demonstrate the effectiveness and robustness of the new MSN-PSSM

algorithm.

Chapter 5 presents a new non-targeted cross-sample classification method for compre-

hensive two-dimensional chromatograms. There are six steps of this new non-targeted

cross-sample classification: chromatogram processing, registration template construction,

cumulative chromatogram generation, feature template construction, cross-sample feature

vector generation, and classification.

Chapter 6 presents experimental results of the new non-targeted cross-sample classifi-

cation on a set of comprehensive two-dimensional chromatograms of breast cancer tumor

samples. The experimental results demonstrate the effectiveness of the new non-targeted

cross-sample classification.

Chapter 7 contains concluding remarks and ideas for future work.
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Chapter 2

Related Work

This chapter describes several popular supervised classification algorithms for mass spectra

classification. This chapter also describes research efforts to develop multivariate analysis

techniques aimed at determining salient features of comprehensive two-dimensional chro-

matograms and quantitatively classifying complex samples.

2.1 Classification of Mass Spectra

Principal component analysis [30, 31] with discriminant function analysis [32, 33], soft

independent modeling of class analogy [34], and decision tree learning [35] are popular

supervised classification algorithms for classification of mass spectral data from GC×GC-

MS and ToF-SIMS.
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2.1.1 Principal Component Analysis with Discriminant Function

Analysis

Principal component analysis (PCA) with discriminant function analysis (DFA) is a super-

vised classification algorithm that is widely used for multivariate data analysis in compar-

ing, discriminating, and classifying mass spectral data [36–41].

Principal component analysis was designed by Karl Pearson in 1901 [30]. The algo-

rithm was introduced to psychologists in 1933 by Harold Hotelling, hence sometimes it is

called Hotelling’s transform [31]. Nowadays, it is mostly used as a tool in exploratory data

analysis and for predictive modeling [42, 43].

PCA compares multiple mass spectra on the basis of multiple peaks in each mass spec-

trum. The multiple peaks are a large number of interrelated variables. The central idea of

PCA in mass spectral analysis is to reduce the high dimensionality and simplify the mass

spectra by transforming the large set of interrelated variables to a small set of uncorrelated

variables called principal components that describe orthogonal directions of variance in the

multiple mass spectra. The relationships of the multiple mass spectra are more apparent in

the new coordinate system than in the original coordinates.

Given a mass spectral data matrix X with n rows (each row corresponds to a base-peak

normalized mass spectrum) and l columns (each column corresponds to a m/z), PCA uses

singular value decomposition (SVD) to decomposeX into a score matrix Y times a loading

matrix P T plus a residual error matrix E, as Figure 2.1 illustrates:

X = y1p
T
1 + y2p

T
2 + . . .+ ygp

T
g + E = Y P T + E, (2.1)
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where:

• X is the mean centered data matrix;

• g is the dimension of the new space and g ≤ l;

• E is the residual error matrix;

• the column vectors of P {pi | i = 1, 2, . . . , g} are loadings (also called principal

components or eigenvectors) which contain information on how variables relate to

each other, and the {pi} vectors are orthonormal:

pTi pj =


0 i 6= j

1 i = j;

(2.2)

• the column vectors of Y {yi | i = 1, 2, . . . , g} are scores that are the projection of

the mass spectra onto each principal component and contain information on how the

mass spectra in the dataset relate to each other, and the score vector yi is the linear

combination of X defined by pi:

Xpi = yi. (2.3)

Figure 2.1: PCA decomposes a data matrix X into a score matrix Y times a loading matrix
P T plus a residual error matrix E.
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The principal components are ranked in descending order by their eigenvalues. The

eigenvalue is proportional to the amount of variance (information) captured by each eigen-

vector. The first principal component lies in the direction of most variance with subsequent

principal components capturing less variance. The first few principal components retain

most of the variation present in all of the original variables (peak intensities) and usually

are adequate to approximate the original data. Therefore, the values in the remaining com-

ponents may be dropped with minimal loss of information. In this manner, PCA is used

for dimensionality reduction. One method to choose the number of principal components

(g) to approximate the original data is selecting a cumulative percentage of total variation

which one desires that the selected principal components contribute, for example, 80% or

90%. The cumulative percentage of total variation accounted for by the first g principal

components is defined as:

qg =

100
g∑
i=1

si

l∑
i=1

si

, (2.4)

where:

• qg represents the cumulative percentage of total variation accounted for by the first g

ordered principal components;

• si represents the variance of the ith ordered principal component.

The required number of principal components is the smallest value of g for which the

chosen percentage is exceeded. Jolliffe [42] discussed more methods for choosing the

number of principal components.

PCA assumes that the data are linear combinations of the principal components (X =

Y P T ) and the original variables have a multivariate normal distribution (mean and variance
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are sufficient statistics) [43, 44]. PCA also assumes that large variances reflect important

information of the data and low variances reflect noise of the data. However, there is no

guarantee that the directions of maximum variance provide good features for discrimina-

tion. It is widely recognized that the effectiveness of PCA also is dependent on appropriate

data pretreatment, such as scaling, centering, removing contaminant peaks and background

peaks from spectra, and non-linear transformations (for example the logarithm), but no

definitive rules have been established for data pretreatment of PCA [37].

PCA, which is an unsupervised technique, reduces the dimensionality (from l to g) and

simplifies the mass spectral data (from X to Y ) whilst preserving most of the variance of

the original data. Discriminant function analysis (DFA), which is a supervised technique,

establishes classification models in the principal component space based on labeled mass

spectra and uses classification models to classify unknown mass spectra. The inversion

calculation of a covariance matrix in DFA makes it mathematically not applicable to highly

interrelated variables [45]. Therefore, DFA is applied in the principal component space.

Given the score matrix Y (n rows and g columns) which is the projection of the mass

spectral data matrix X in the principal component space, g principal component vari-

ables of the principal component space p1, p2, . . . , pg, and p predefined classes {cj | j =

1, 2, . . . , p}, DFA constructs linear combinations of p1, p2, . . . , pg in such a way that the

differences between the means of the predefined classes are maximized relative to the vari-

ance within classes:

Zi = di1p1 + di2p2 + . . .+ digpg, (2.5)

where:

• Zi represents the ith linear combination of p1, p2, . . . , pg and is referred to as the ith

discriminant function;
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• di1 through dig represent discriminant coefficients of the ith discriminant function

and maximize the difference between the means of the predefined classes;

• p1 through pg represent g principal component variables of the principal component

space and are referred to as discriminant variables in DFA;

• g is the number of discriminant variables.

In a discriminant function, the discriminant variables with the largest discriminant co-

efficients are the ones that contribute most to the prediction of class membership. The value

of a discriminant function resulting from applying the discriminant function to a given case

of data is called the discriminant score of the case on the discriminant function. Figure 2.2

illustrates an example of applying two discriminant functions to one case of data with two

discriminant variables. In Figure 2.2, Z1 and Z2 are discriminant functions, A is one case

of data, p1 and p2 are discriminant variables, and c1 through c7 are seven predefined classes

with class means represented by stars. The two discriminant functions are:

Z1 = d11p1 + d12p2,

Z2 = d21p1 + d22p2.

(2.6)

For case A, the discriminant scores of the two discriminant functions are calculated as:

ZA1 = d11YA1 + d12YA2,

ZA2 = d21YA1 + d22YA2,

(2.7)

where:

• YA1 and YA2 are the scores of case A in the p1 and p2 space (the projection values of

case A onto the p1 and p2 space);
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• ZA1 and ZA2 are the projection values of case A onto the Z1 and Z2 space and are

referred to as the discriminant scores.

Figure 2.2: An example of applying two discriminant functions to one case of data with
two discriminant variables. Z1 and Z2 are discriminant functions, A is one case of data, p1
and p2 are discriminant variables, and c1 through c7 are seven predefined classes with class
means represented by stars.

DFA determines the discriminant coefficients of the discriminant functions by choosing

the discriminant coefficients to maximize the F-ratios [32]:

Fi =
dTi Bdi
dTi Wdi

, (2.8)

where:

• Fi represents the F-ratio of the ith discriminant function;
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• di = [di1 di2 . . . dig]
T represents the discriminant coefficient vector of the ith

discriminant function;

• W represents the within-group covariance matrix and is calculated as:

W =
1

n− p

p∑
j=1

nj∑
i=1

(yji − ȳj)(yji − ȳj)T ; (2.9)

• B represents the between-group covariance matrix and is calculated as:

B =
1

p− 1

p∑
j=1

nj(ȳj − ȳ)(ȳj − ȳ)T . (2.10)

In Equation (2.9) and Equation (2.10),

• n represents the number of data;

• p represents the number of predefined classes;

• nj(j = 1, 2, . . . , p) represents the number of data in each class, and n =
p∑
j=1

nj;

• yji is a column vector and represents the projection of the ith data case of the jth

class onto the principal component space;

• ȳj = 1
nj

nj∑
i=1

yji is a column vector and represents the mean of the yji in the jth class;

• ȳ = 1
n

p∑
j=1

nj∑
i=1

yji is a column vector and represents the mean of the yji in the whole

data set.

The within-group covariance matrix reflects the squared deviations and cross deviations

of each data case from the mean of its class. The between-group covariance matrix re-

flects the squared deviations and cross deviations of each class mean from the mean of
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the class means. The larger the F-ratio, the more differences between classes than within

classes. The number of discriminant functions h is equal to the number of classes minus

one, or the number of discriminant variables in the analysis, whichever is smaller. The first

discriminant function Z1 has the largest F-ratio and provides the most overall discrimina-

tion between classes. The second discriminant function Z2 has the second largest F-ratio

and captures as much as possible of the class differences not captured by Z1. And so on.

Finding the discriminant coefficients that maximize the F-ratio is an eigenvalue problem.

The eigenvalues λ1 > λ2 > . . . > λh > 0 of the matrix W−1B provide the F-ratios

of Z1, Z2, . . . , Zh, and the corresponding eigenvectors provide the discriminant coefficient

vectors of Z1, Z2, . . . , Zh.

To classify unknown data, DFA establishes a classification function for each class given

p predefined classes [46]:

Cj = cj0 + cj1p1 + cj2p2 + . . .+ cjgpg, (2.11)

where:

• Cj represents the classification function of class j, and j = 1, 2, . . . , p;

• p1 through pg represent g discriminant variables;

• g is the number of discriminant variables;

• cj1 through cjg represent the classification coefficients of class j and

[cj1 cj2 . . . cjg]
T = W−1ȳj, (2.12)

where W is the within-group covariance matrix and ȳj (a column vector) is the mean

of class j;
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• cj0 represents a constant, and

cj0 = −1

2
[cj1 cj2 . . . cjg]ȳj. (2.13)

The value of a classification function resulting from applying the classification function to

an unknown case of data is called the classification score of the case on the classification

function. Each unknown case of data has p classification scores, one for each class. An

unknown case of data is classified to the class for which it has the highest classification

score.

DFA assumes that the discriminant variables are not completely redundant. If any one

of the variables is completely redundant with the other variables then the within-group

covariance matrix is ill-conditioned (singular) and cannot be inverted to construct discrim-

inant functions [47, 48]. DFA is applied in the principal component space in this study,

which guarantees that this assumption is satisfied. DFA also assumes that the discriminant

variables are multivariate normally distributed within classes [33]. For the projections of

mass spectra data in the principal space, this assumption is satisfied. Another assumption

of DFA is that the within-group covariance matrix is the same for all classes [33] which is

not necessarily true for the projections of mass spectra data in the principal space. Lind-

man [49] showed that the F-ratio is quite robust against violations of this assumption, and

minor violations of this assumption is usually not fatal [50].

2.1.2 Soft Independent Modeling of Class Analogy

Soft independent modeling of class analogy (SIMCA) is a supervised classification algo-

rithm proposed by Svante Wold and Michael Sjostrom in 1976 [34]. Some modified algo-
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rithms were proposed thereafter [51–54]. SIMCA is another popular multivariate data anal-

ysis technique in comparing, discriminating, and classifying mass spectral data [37, 55–59].

SIMCA describes the multivariate data structure of each predefined class of mass spec-

tra separately in a reduced space using PCA. The unknown mass spectra are classified to

the established class model with the minimum orthogonal distance.

Given p predefined classes of mass spectra, denote each mass spectral class by Xj(j =

1, 2, . . . , p) with nj rows (each row corresponds to a base-peak normalized mass spectrum)

and l columns (each column corresponds to a m/z). A sufficient number of principal

components are retained to account for most of the variation within each class following

Equation (2.1):

Xj = YjP
T
j + Ej, (2.14)

where:

• Pj represents the loading (also called the principal component or eigenvector) matrix

of class j, and each column of Pj represents one principal component;

• Yj represents the score matrix of class j which is the projection of mass spectra onto

each principal component;

• Ej represents the residual error matrix of class j.

The variance explained by the principal component models is called the modeled variance

and the variance not accounted for by the principal component models is called the residual

variance.

After each predefined class is represented by a principal component model, an unknown
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base-peak normalized mass spectrum x = [x1 x2 . . . xl]
T is projected onto each

class’s model to yield a score vector yj of x in each class’s PCA space:

yj = P T
j x. (2.15)

Then, the score yj is back-projected to the original space to yield an estimation x̂j =

[x̂j1 x̂j2 . . . x̂jl]
T of x with residual variance dropped:

x̂j = Pjyj. (2.16)

SIMCA defines the orthogonal distance of the unknown base-peak normalized mass

spectrum x to the PCA space of class j as [45]:

Dj =

√√√√ l∑
i=1

(xi − x̂ji)2. (2.17)

The orthogonal distance measures the deviation of a mass spectrum to a class’s PCA model

and is used as a similarity measure. The smaller the orthogonal distance between a mass

spectrum and the PCA space of a class, the more similar the mass spectrum is to that class.

The unknown mass spectrum is classified to the established class model with the minimum

orthogonal distance.

SIMCA models each class with a separate PCA model, and the assumptions of SIMCA

are the same as the assumptions of PCA. A known problem of SIMCA is the sensitivity

to the quality of the data used to establish the principal component models. SIMCA is

successful if the predefined classes form compact groups.
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2.1.3 Decision Tree Learning

Decision tree learning is a supervised classification algorithm commonly used to compare,

discriminate, and classify mass spectral data [60–66]. Decision tree learning constructs a

classification model represented by a tree based on known data. Each node in the decision

tree specifies a variable test of the known data. A selection measure (e.g., the information

gain measure [67], the gain ratio measure [67], and the Gini index measure [68]) selects the

variable test. Each branch descending from each node corresponds to one of the possible

test results for the variable. A decision tree is learned by splitting the known data into

subsets based on a variable test. This process is repeated on each derived subset in a

recursive manner called recursive partitioning. The recursion is completed when the known

data of a subset at a node are all in the same class. Unknown data are sorted down the

decision tree from the root to one of the leaf nodes, which provides the predicted class. In

each node, a variable test selection measure evaluates how well each variable test splits the

subset into further subsets such that known data generally are in the same class and selects

the best variable test to further split the subset. Information gain, gain ratio, and Gini index

are three commonly used variable test selection measures.

Information gain is based on the concept of entropy from information theory. Given p

predefined classes {cj | j = 1, 2, . . . , p}, a set X of known data, and a variable test t that

splits X to subsets Xi(i = 1, 2, . . . , a), information gain is [67]:

gain(X, t) = info(X)− infot(X), (2.18)

where:

• t represents a variable test;
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• X is a set of known data;

• gain(X, t) is the information that is gained by branching on variable test t;

• info(X) is the information before branching on variable test t;

• infot(X) is the information after branching on variable test t.

In Equation (2.18), info(X) measures the average amount of information needed to identify

the class of a datum in X . The function info(X) is also known as the entropy of X and is

calculated as:

info(X) = −
p∑
j=1

freq(cj, X)

|X|
log2

freq(cj, X)

|X|
, (2.19)

where:

• freq(cj, X) is the number of data items in set X that belong to class cj;

• |X| is the number of data items in set X .

In Equation (2.18), infot(X) measures the information after X has been split to the a

subsets Xi(i = 1, 2, . . . , a) in accordance with variable test t:

infot(X) =
a∑
i=1

|Xi|
|X|

info(Xi), (2.20)

where |Xi| represents the number of data items in set Xi. Information gain measures the

information that is gained by splitting X in accordance with the variable test t. The in-

formation gain measure selects the variable test with maximum information gain in each

node.

Information gain has a natural bias on variables with many values and may generate

broad decision trees of small depth. Gain ratio suppresses this bias by a normalization.
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Gain ratio is defined as [67]:

gain ratio(X, t) =
gain(X, t)

split info(X, t)
, (2.21)

where split info(X, t) represents the potential information generated by splitting X into a

subsets Xi(i = 1, 2, . . . , a), and is defined as:

split info(t) = −
a∑
i=1

|Xi|
|X|

log2

|Xi|
|X|

. (2.22)

In Equation (2.21), gain ratio(X, t) expresses the proportion of information generated by

the split that appears helpful for classification. If the split is near trivial, split information

will be small and this ratio will be unstable. To avoid this, the gain ratio measure selects a

test to maximize the gain ratio, subject to the constraint that the information gain must be

large (at least as great as the average gain over all tests examined). The gain ratio measure

tends to prefer unbalanced splits in which one subset is much smaller than the others.

The Gini index considers a binary split for each node. Given p predefined classes

{cj | j = 1, 2, . . . , p}, a set X of known data, and a binary split on t which splits set X

into subsets X1 and X2, the reduction in impurity that would be incurred by the split on

variable test t is [68]:

reduction(X, t) = Gini(X)−Ginit(X), (2.23)

where:

• t represents a variable test;

• X is a set of known data;
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• reduction(X, t) is the reduction in impurity that would be incurred by the binary

split on variable test t;

• Gini(X) is the Gini index before splitting on variable test t;

• Ginit(X) is the Gini index after splitting on variable test t.

In Equation (2.23), Gini(X) is based on squared probabilities of membership for each

class in the node, and is calculated as:

Gini(X) = 1−
p∑
j=1

(
|Xj|
|X|

)2

, (2.24)

where:

• Gini(X) is the Gini index, which measures the impurity of X;

• |Xj| is the number of data items in set X belonging to class cj;

• |X| is the number of data items in set X .

In Equation (2.23), Ginit(X) measures the Gini index after splitting on variable test t, and

is computed as a weighted sum of the impurity of each resulting subset:

Ginit(X) =
|X1|
|X|

Gini(X1) +
|X2|
|X|

Gini(X2). (2.25)

The reduction in impurity that would be incurred by a binary split reaches its minimum

(zero) when all data in the node fall into a single class. The Gini index selects the vari-

able test with the largest reduction in impurity. The Gini index tends to favor equal sized

splittings.
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Decision tree learning has an intuitive representation and the resulting model is easy

to understand. Moreover, the decision tree provides a nonparametric model, and no in-

tervention is required from the user. Thus, decision tree learning is suited for exploratory

knowledge discovery. One major problem with decision trees is their high volatility [69].

A small change in the data set often can result in a very different series of splits, which

make later interpretation somewhat precarious and difficult.

2.2 Cross-Sample Classification of Comprehensive

Two-Dimensional Chromatograms

Targeted analysis and non-targeted analysis are two general approaches to extract consistent

information and analyze comprehensive two-dimensional chromatograms.

In targeted analysis, only a few specific compounds are identified and compared from

chromatogram to chromatogram or only certain regions of the comprehensive two-dimensional

chromatograms are desired for their representative characterization of chromatograms. In

targeted analysis, analysts are involved in selecting of target compounds or regions. Tar-

geted analysis uses limited information from comprehensive two-dimensional chromatograms,

which could miss important information in the non-selected compounds or regions.

In non-targeted analysis, all compounds of comprehensive two-dimensional chromatograms

are important to provide comprehensive surveys of qualitative and quantitative differences

in the chemical composition between chromatograms, prompting research efforts to de-

velop information extraction methods and multivariate analysis techniques to determine

salient features and construct discriminant models of comprehensive two-dimensional chro-
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matograms.

Researchers have applied varied approaches on non-targeted analysis: visual image

comparisons, data point comparisons, region comparisons, peak comparisons, and peak-

based region comparisons to extract consistent information and discriminate comprehen-

sive two-dimensional chromatograms.

2.2.1 Visual Image Comparisons

Visual image comparisons are primarily qualitative visual comparisons of chromatograms

without benefit of software designed for operating on comprehensive two-dimensional

chromatograms.

Blomberg et al. [70] analyzed and compared GC×GC chromatograms of a distillation

cut of a heavy oil and its hydrogenated product to illustrate the conversion of olefins and

sulphur compounds. Similarly, Gaines et al. [71], Reddy et al. [72], and Reddy et al. [73]

analyzed and compared GC×GC chromatograms of different oil samples.

Perera et al. [74] analyzed GC×GC chromatograms of emissions of volatile organic

compounds from mechanically wounded plants to identify and compare the major chemical

species emitted from plants after mechanical wounding.

Janssen et al. [75] analyzed and compared comprehensive two-dimensional liquid chro-

matography × gas chromatography (LC×GC) chromatograms of edible oils and fats in

triglycerides classification.

Qualitative visualizations do not provide quantitative comparisons and are insufficient
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for recognizing subtle differences.

2.2.2 Data Point Comparisons

In data point comparisons, chromatograms are compared point-by-point (or pixel-by-pixel).

Johnson and Synovec [76] utilized an analysis of variance (ANOVA)-based feature se-

lection to identify chromatographic features and PCA to classify GC×GC chromatograms

of jet fuel mixtures. The chromatographic features were generated by point-by-point ANOVA

calculations, which provided a ratio for each retention time in the chromatograms. The

retention times with a ratio greater than a selected threshold were extracted from chro-

matograms and analyzed by PCA for fuel type classification.

Shellie et al. [77] directly compared comprehensive two-dimensional gas chromatogra-

phy with time-of-flight mass spectrometry (GC×GC-TOFMS) chromatograms of metabo-

lite profiles of mouse tissue extracts using different methods including direct chromatogram

subtraction, averaging routines, weighting factors, and t-test.

Pierce et al. [78] utilized a PCA based method to discover chemical differences in

GC×GC-TOFMS chromatograms of metabolites in plant samples. The GC×GC-TOFMS

produced a three-dimensional array of data for each sample (retention times on two chro-

matographic columns and a complete mass spectrum at every point in the separation space).

This three-dimensional array was reduced to a two-dimensional matrix by using only one

mass channel at a time to produce a m/z chromatogram. Then, PCA was applied to selected

m/z chromatograms to compare the metabolite profiles of a set of different plant samples.

Similarly, Mohler et al. [79] utilized PCA followed by parallel factor analysis (PARAFAC)
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on selected m/z chromatograms to identify chemical differences in GC×GC-TOFMS chro-

matograms of metabolite extracts isolated from yeast cells grown under different condi-

tions.

Pierce et al. [80] utilized a fisher ratio method to discover chemical differences in

GC×GC-TOFMS separations of urine metabolite samples. A set of GC×GC-TOFMS sam-

ple profiles produced a four-dimensional array of data (the fourth dimension was the sample

replicate dimension). This four-dimensional array was reduced to a two-dimensional array

by a novel indexing scheme. The fisher ratio method calculated a fisher ratio at every point

in this two-dimensional array to discover significant chemical differences between complex

samples. Further, Mohler et al. [81] and Mohler et al. [82] combined a statistically-based

fisher ratio method utilizing all mass channels with PARAFAC to compare and analyze

GC×GC-TOFMS chromatograms of yeast metabolites. Similarly, Guo and Lidstrom [83]

applied fisher ratio analysis on selective m/z chromatograms with PARAFAC to identify the

metabolite differences between cells grown on methanol and succinate.

Hollingsworth et al. [84] developed software methods for aligning chromatograms

based on marker peaks and for comparative visualizing the point-by-point differences of

GC×GC by various methods (for example, time-loop flicker and colourization). Subse-

quently, Almstetter et al. [85] developed retention time correction and data alignment tools

to compare GC×GC-TOFMS metabolite profiles of a wild-type and a mutant strain of Es-

cherichia coli.

Data point comparisons require precise chromatographic alignment, which is difficult

over large sample sets.
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2.2.3 Region Comparisons

Regions characterize multiple data points within each chromatogram (e.g., summing the

responses at all data points in each region). In region comparisons, chromatograms are

compared region-by-region.

Mispelaar [86] created a mesh of contiguous hand-drawn polygons to subjectively en-

compass different groups of interest in diesel samples and demonstrated the use of geomet-

ric transformations to better fit different GC×GC chromatograms.

Arey et al. [87] discretized GC×GC chromatograms into low-resolution, two-dimensional

grids of cells to investigate weathered oil samples. Cell boundaries were defined by com-

puted contours of hydrocarbon vapor pressure and aqueous solubility. Cell mass was de-

fined as the sum of all pixel heights assigned to a cell. Mass loss tables were constructed to

depict compositional changes along systematic coordinates of volatility and aqueous solu-

bility. To mitigate the effect of misalignment, trapezoidal weighting functions were used at

the borders between regions.

Rathbun et al. [88] used an enhanced template-based method to compare GC×GC chro-

matograms of complex petroleum samples and to identify chemical compounds. The en-

hanced template-based method constructed a series of contiguous retention-plane regions

(area objects) as features of a chromatogram. To compare the chromatograms, a region

template recording all regions was constructed to match the petroleum chromatograms.

In region comparisons, selectivity is reduced to the extent that peaks of multiple an-

alytes are included in the same region. This is especially problematic if a salient trace

analyte is in the same region as a non-salient predominant analyte.
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2.2.4 Peak Comparisons

In comprehensive two-dimensional chromatograms, each individual chemical compound

forms a two-dimensional cluster of pixels (a peak) with values larger than the background

values (the data values in which no chemical peak is present). In peak comparisons, chro-

matograms are compared peak-by-peak.

Gaines et al. [71] provided an early demonstration of using quantitative characteri-

zations of individual peaks and groups of peaks detected in GC×GC chromatograms to

fingerprint samples of an oil spill and potential sources to identify the source of the spill.

Mispelaar [86, 89] used principal component discriminant analysis on peaks detected

in GC×GC chromatograms to distinguish samples from different oil reservoirs. More than

6000 peaks were detected and filtered by time-based filtering and alignment checks, relative

standard deviations, and a manual selection.

Porter et al. [90] used PARAFAC with alternating least squares and alternating least

squares with flexible constraints on peaks detected in comprehensive two-dimensional liq-

uid chromatography (LC×LC) chromatograms to discriminate mutant and wild-type maize

samples.

Qui et al. [91] utilized PCA on individual peaks detected in GC×GC chromatograms

to classify traditional Chinese medicine volatile oil samples from different geographical

origins.

Oh et al. [92] developed a novel peak sorting algorithm (MSsort) to find metabolite

peaks generated from the same metabolite but detected in different GC×GC-TOFMS chro-
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matograms of human serum samples.

Gaquerel et al. [93] used ANOVA, hierarchical clustering analysis, and PCA on indi-

vidual peaks detected in GC×GC-TOFMS chromatograms to compare volatile bouquets

emitted after insect herbivory.

Li et al. [94] utilized orthogonal signal correction filtered partial least-squares discrim-

inant analysis on peaks detected in GC×GC-TOFMS chromatograms to compare human

plasma from diabetic patients and healthy controls and discover metabolites with a signifi-

cant concentration change in diabetic patients.

Tan et al. [95] used PCA and partial least-square discriminant analysis to characterize

and differentiate GC×GC-TOFMS chromatograms of two Chinese herbs.

Koek et al. [96] assessed the feasibility of using a processing strategy based on com-

mercially available software for the unbiased, non-target automated quantification of as

many metabolites as possible in mouse liver samples measured with GC×GC-MS.

In peak comparisons, peak matching is a critical challenge. Peak detection errors as

well as the inherent ambiguity of matching both contribute to make comprehensive peak

matching (i.e., matching all peaks) across many samples intractable.

2.2.5 Peak-Based Region Comparisons

In peak-based region comparisons, regions are defined for individual peaks and chro-

matograms are compared by peak-based regions.
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Schmarr and Bernhardt [97] described an approach originating from the proteomics

field to compare GC×GC chromatograms of volatile patterns from fruits. GC×GC chro-

matograms were analyzed utilizing a workflow derived from two-dimensional gel-based

proteomics. Run-to-run variations among chromatograms were compensated by warping.

The chromatograms were then merged into a fusion chromatogram yielding a project-wide

peak consensus pattern. Within detected peak boundaries (regions) of this consensus pat-

tern, relative quantities of the volatiles from each chromatogram were calculated. These

profiles were used for multivariate statistical analysis and allowed clustering of compara-

ble sample origins and prediction of unknown samples.

Peak-based region comparisons are more comprehensive than peak comparisons and

are more selective than region comparisons. Alignment is a potential source of errors for

peak-based region comparisons. Peak detection errors, such as unseparated coelutions and

incorrectly split peaks, are another source of errors.
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Chapter 3

The Most Similar Neighbor with a

Probability-Based Spectrum Similarity

Measure

This chapter presents a new supervised classification algorithm, the most similar neighbor

with a probability-based spectrum similarity measure (MSN-PSSM) [27]. Given:

1. n labeled mass spectra {xi | i = 1, 2, . . . , n}, where xi represents the vector of

intensities of mass spectrum i;

2. p predefined classes {cj | j = 1, 2, . . . , p}, where cj represents the class name of

class j;

3. class labels of the n mass spectra {yi | i = 1, 2, . . . , n}, where yi ∈ {cj | j =

1, 2, . . . , p};
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4. a query mass spectrum xq, and xq /∈ {xi | i = 1, 2, . . . , n};

the steps of the MSN-PSSM algorithm are:

1. Normalize the n labeled mass spectra {xi | i = 1, 2, . . . , n} to {x̄i | i = 1, 2, . . . , n}.

2. Express domain characteristics based on the normalized labeled data.

3. Build intra-class variability models for each predefined class cj based on the normal-

ized labeled data and their class labels.

4. Build smoothing models for each predefined class cj based on the domain character-

istics and the intra-class variability model for cj .

5. Calculate the probability-based spectrum similarity between the normalize query

spectrum x̄q and each labeled datum x̄i.

6. Select the most similar datum of the query datum x̄q, i.e., having the highest probability-

based spectrum similarity with x̄q.

7. Predict the class label of the query datum x̄q to be the most similar datum’s class

label.

The MSN-PSSM algorithm is a multi-class classification algorithm, that is, it can deal

with multiple classes directly without converting a multi-class problem into a set of two-

class problems. The MSN-PSSM algorithm models the intra-class variability and uses a

smoothing model in the similarity measure to enhance the robustness with respect to noise,

such as chemical noise and instrument noise. Some popular classification techniques (for

example SIMCA) also consider the variance of each class in class modeling. Some other
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popular classification techniques, such as PCA with DFA and decision tree learning, do

not explicitly include the inter-class variability in their models. The MSN-PSSM algorithm

characterizes the domain information of labeled data by an array of probability distribution

functions of intensities as a function of m/z. Each probability in the distribution function

is the fraction of spectra in the labeled data having that intensity value at the given m/z.

The MSN-PSSM algorithm considers all m/z that contain discriminating information to

avoid information loss. Some popular classification techniques, such as PCA with DFA,

SIMCA, and decision tree learning, are highly selective in choosing the m/z and may lose

useful discriminating information.

Figure 3.1 illustrates the MSN-PSSM algorithm step by step. The following sections

describe the MSN-PSSM algorithm step-by-step in detail.

3.1 Normalization

When comparing mass spectra of different samples, the raw data (the ion intensities of

various m/z peaks) cannot be used directly. The volumes and concentrations of samples

are different due to various physical and chemical factors leading to different ion intensities.

To compensate for the variations in samples, each mass spectrum is normalized. Base-peak

normalization is a common normalization method in mass spectrometry to exclude sample

volume fluctuation.

In base-peak normalization, the intensity of each peak in each labeled mass spectrum

of {xi | i = 1, 2, . . . , n} is normalized to the intensity of the most intense peak in that

spectrum and rounded to the closest integer value, such that the intensity of the base peak
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Figure 3.1: The steps of the MSN-PSSM algorithm.
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is 999:

x̄i[m] = round

(
xi[m]× 999

xi[mb]

)
, (3.1)

where:

• m is the mass-to-charge ratio;

• x̄i[m] is the normalized intensity of mass spectrum xi at mass-to-charge ratio m;

• xi[m] is the original intensity of mass spectrum xi at mass-to-charge ratio m;

• xi[mb] is the original intensity of mass spectrum xi at the base peak base mb, where

∀m, xi[mb] ≥xi[m].

3.2 Domain Characteristics

For the n normalized labeled data {x̄i | i = 1, 2, . . . , n}, the intensity probability distribu-

tion at mass-to-charge ratio m is:

Pm[f ] =
nm[f ]

n
, (3.2)

where:

• f is the intensity, and 0 6 f 6 999;

• n is the number of normalized mass spectra x̄i;

• nm[f ] represents the number of normalized mass spectra x̄i having intensity f at

mass-to-charge ratio m;

• Pm[f ] represents the intensity probability of f at mass-to-charge ratio m.
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The n normalized labeled data {x̄i | i = 1, 2, . . . , n} are characterized by the inten-

sity probability distributions of all intensities f from 0 to 999 at all mass-to-charge ratio

m from mmin to mmax. Each intensity probability in the distribution is the fraction of

mass spectra in the domain having that intensity value at the given m/z. The intensity

probability distributions provide the relation between intensity probabilities and m/z. The

intensity probability distributions also provide the relation between intensity probabilities

and intensities.

To simplify the domain characterization, m/z independence is assumed, that is, for a

spectrum, the intensity value at one m/z is independent of the intensity value at any other

m/z. This assumption is not usually true. Classification performance could be enhanced

by considering inter-m/z dependence as discussed in Chapter 7. Establishing mathemat-

ical models for inter-m/z dependence is a substantial task and beyond the scope of this

research.

3.3 Intra-Class Variability Model

The intra-class variability is modeled by statistically analyzing the data for a class. For the

class cj at mass-to-charge ratio m, the intensities are modeled as a Gaussian distribution:

Nj,m[f ] =

∫ f+ 1
2

f− 1
2

1√
2π σj[m]

exp(
−(x− µj[m])2

2σ2
j [m]

)dx, (3.3)

where:

• µj[m] represents the mean of intensities at mass-to-charge ratio m for class cj;

• σj[m] represents the standard deviation of intensities at mass-to-charge ratio m for
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class cj;

• f is the intensity;

• Nj,m[f ] represents the probability of intensity f at mass-to-charge ratio m for class

cj .

3.3.1 Parameter Estimation

The standard deviation of intensities at mass-to-charge ratio m tends to be intensity depen-

dent, that is, the larger the intensity level at mass-to-charge ratiom, the greater the standard

deviation at mass-to-charge ratiom. For the class cj at mass-to-charge ratiom, the standard

deviation of intensities is modeled as:

σj[m] = aj,mµj[m] + bj,m, (3.4)

where:

• σj[m] is the standard deviation of intensities at mass-to-charge ratio m for class cj;

• µj[m] is the mean of intensities at mass-to-charge ratio m for class cj;

• aj,m and bj,m are linear regression parameters of standard deviations against intensity

levels at mass-to-charge ratio m for class cj .

The relationship between the standard deviation of intensities and the intensity level is

assumed linear. A non-linear relationship may yield better results as discussed in Chapter

7.
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Figure 3.2 illustrates the steps of parameter estimation of standard deviation of the

intra-class variability model.

Figure 3.2: The steps of parameter estimation of standard deviation of the intra-class vari-
ability model.

The first step of parameter estimation is calculating the means and standard deviations

of intensities. For base-peak normalized mass spectra of class cj {(x̄i, yi) | yi = cj}, the
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average intensity of the normalized mass spectra at mass-to-charge ratio m is:

µj[m] =
1

nj

∑
yi=cj

x̄i[m], (3.5)

where:

• µj[m] is the average intensity of the normalized mass spectra of class cj at mass-to-

charge ratio m;

• nj is the number of mass spectra x̄i with class label yi = cj;

• x̄i[m] is the base-peak normalized intensity of mass spectrum xi at mass-to-charge

ratio m.

The standard deviation of intensities from the average intensity of the normalized mass

spectra of class cj at mass-to-charge ratio m is:

σj[m] =

√
1

nj − 1

∑
yi=cj

[x̄i[m]− µj[m]]2, (3.6)

where:

• σj[m] is the standard deviation of intensities of class cj at mass-to-charge ratio m;

• nj is the number of mass spectra x̄i with class label yi = cj;

• x̄i[m] is the base-peak normalized intensity of mass spectrum xi at mass-to-charge

ratio m;

• µj[m] is the average intensity of the normalized mass spectra of class cj at mass-to-

charge ratio m.
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The second step of parameter estimation is establishing the regression model. The

standard deviation of intensities of class cj at mass-to-charge ratio m is modeled to be

proportional to the intensity level at mass-to-charge ratio m of class cj . Linear regression

of the standard deviations over the average intensities of the normalized mass spectra yields

the linear regression parameters as:

aj,m =

d
∑

µj [m]≥f0
µj[m]σj[m]−

∑
µj [m]≥f0

µj[m]
∑

µj [m]≥f0
σj[m]

d
∑

µj [m]≥f0
µ2
j [m]−

( ∑
µj [m]≥f0

µj[m]

)2 , (3.7)

bj,m =

∑
µj [m]≥f0

σj[m]− aj,m
∑

µj [m]≥f0
µj[m]

d
, (3.8)

where:

• aj,m and bj,m are the linear regression parameters (aj,m represents the slope of the

linear regression and bj,m represents the y-intercept of the linear regression);

• f0 is the minimum intensity level considered in the linear regression;

• d is the number of intensities which are greater than or equal to f0;

• µj[m] represents the average intensity of the normalized mass spectra of class cj at

mass-to-charge ratio m;

• σj[m] represents the standard deviation of intensities at mass-to-charge ratio m for

class cj .

There are many small intensities and few large intensities in a mass spectrum. To compen-

sate the imbalance of intensity levels in a mass spectrum and to avoid a biased regression

model, only the intensity values greater than or equal to a certain level f0 (for example 5%
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of the base peak intensity) are considered in the summations of Equation (3.7) and Equation

(3.8).

3.3.2 Normality Assessment

The intensities at mass-to-charge ratio m of the predefined class cj are modeled to follow a

Gaussian distribution. Normality test is performed before further statistical analysis of the

data. The hypothesis that a Gaussian distribution models the data is rejected only if there

is a strong evidence to the contrary.

An informal graphical approach to test normality is to compare a histogram of the

data to a normal probability curve. The actual distribution of the histogram should be

bell-shaped and resemble the normal distribution. A more formal graphical tool is the nor-

mal probability plot, a quantile-quantile plot [98] against the standard normal distribution.

There are normality tests in statistics used to determine whether a dataset is well-modeled

by a normal distribution. The Kolmogorov-Smirnov test [99] compares the cumulative

distribution of the data with the expected cumulative normal distribution, and bases its

p-value on the largest discrepancy. It turns out, however, that it is too simple, and does

not adequately discriminate whether or not the data were sampled from a normal distri-

bution. Other common normality tests include Anderson-Darling test [100], Jarque-Bera

test [101], Shapiro-Wilk test [102], etc. In a thorough review of many available normality

tests, D’Agostino [103] concluded that the most desirable procedure for testing hypothesis

of normality is the D’Agostino-Pearson test [104] which assesses the normality using sym-

metry and kurtosis measures. The D’Agostino-Pearson test [105] is used in this study to

determine whether a set of intensities are well-modeled by a Gaussian distribution.
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D’Agostino-Pearson test

The D’Agostino-Pearson test assesses the normality using symmetry and kurtosis mea-

sures. Given n samples {zi | i = 1, 2, . . . , n} and the mean µ, the third moment about the

mean provides a measure of symmetry of the samples and is defined as:

k3 =

n
n∑
i=1

(zi − µ)3

(n− 1)(n− 2)
. (3.9)

Because taking large or small numbers to their third or fourth powers can lead to serious

rounding errors, computer algorithms may use a machine formula for k3 as [105]:

k3 =

n
n∑
i=1

z3i − 3
n∑
i=1

zi
n∑
i=1

z2i + 2(
n∑
i=1

zi)
3/n

(n− 1)(n− 2)
. (3.10)

The following normalized form is more commonly used as a measure of symmetry of the

samples:

g1 =
k3
σ3
, (3.11)

where σ is the standard deviation.

A value for g1 near 0 indicates that the samples come from a distribution symmetrically

around the mean, one in which the mean and the median are identical and the frequency

polygon to the left of the mean is a mirror image of the frequency polygon to the right of

the mean, as shown in Figure 3.3 (a). A value for g1 significantly less than 0 indicates that

the samples come from a distribution that is skewed to the left, one in which the mean is

less than the median, as shown in Figure 3.3 (b). A value for g1 significantly larger than 0

indicates that the samples come from a distribution that is skewed to the right, one in which
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the mean is larger than the median, as shown in Figure 3.3 (c).

The fourth power of the deviations from the mean provides a measure called kurtosis:

k4 =

n∑
i=1

(zi − µ)4n(n+ 1)(n− 1)− 3[
n∑
i=1

(zi − µ)2]2

(n− 2)(n− 3)
. (3.12)

The machine formula for k4 is [105]:

k4 =
k′4

n(n− 1)(n− 2)(n− 3)
, (3.13)

where

k′4 = (n3 + n2)
n∑
i=1

z4i − 4(n2 + n)
n∑
i=1

z3i

n∑
i=1

zi − 3(n2 − n)(
n∑
i=1

z2i )
2

+ 12n
n∑
i=1

z2i (
n∑
i=1

zi)
2 − 6(

n∑
i=1

zi)
4.

(3.14)

The following normalized form is more commonly used as a measure of kurtosis of the

samples:

g2 =
k4
σ4
. (3.15)

A value for g2 near 0 indicates that the samples come from a mesokurtic distribution, as

shown in Figure 3.4 (a). A value for g2 significantly less than 0 indicates that the samples

come from a platykurtic distribution, as shown in Figure 3.4 (b). A value for g2 significantly

larger than 0 indicates that the samples come from a leptokurtic distribution, as shown in

Figure 3.4 (c).

The sample symmetry g1 and kurtosis g2 are both asymptotically normal. However, the
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Figure 3.3: (a) Symmetrical distribution in which the mean and the median are identical.
(b) Skewed to the left distribution in which the mean is less than the median. (c) Skewed
to the right distribution in which the mean is larger than the median.
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Figure 3.4: (a) Mesokurtic distribution. (b) Platykurtic distribution. (c) Leptokurtic distri-
bution.
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rate of their convergence to the distribution limit is frustratingly slow, especially for g2. In

order to remedy this situation, the D’Agostino-Pearson test uses the transformed symmetry

Zg1 and kurtosis Zg2 which make distributions of g1 and g2 as close to standard normal as

possible. D’Agostino [106] suggested transforming the sample symmetry g1:

A =
(n− 2)g1√
n(n− 1)

√
(n+ 1)(n+ 3)

6(n− 2)
, (3.16)

B =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
, (3.17)

C =
√

2(B − 1)− 1, (3.18)

D =
√
C, (3.19)

E =
1√
lnD

, (3.20)

F =
A
√
C − 1√

2
, (3.21)

Zg1 = E ln(F +
√
F 2 + 1). (3.22)

Zg1 is the statistic testing the null hypothesis of distribution symmetry.

Similarly, Anscombe and Glynn [107] suggested transforming the sample kurtosis g2:

G =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
, (3.23)

H =
(n− 2)(n− 3)|g2|
(n+ 1)(n− 1)

√
G
, (3.24)

J =
6(n2 − 5n+ 2)

(n+ 7)(n+ 9)

√
6(n+ 3)(n+ 5)

n(n− 2)(n− 3)
, (3.25)
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K ′ = 6 +
8

J

(
2

J
+

√
1 +

4

J2

)
, (3.26)

L =
1− 2

K′

1 +H
√

2
K′−4

, (3.27)

Zg2 =
1− 2

9K′ − 3
√
L√

2
9K′

. (3.28)

Zg2 is the statistic testing the null hypothesis of distribution mesokurtosis.

The null hypothesis of distribution normality is tested using the statistic

K = Z2
g1 + Z2

g2. (3.29)

K is a combination of statistics Zg1 and Zg2. This omnibus test is able to detect deviations

from normality due to either symmetry or kurtosis. K is approximately χ2-distributed

with 2 degrees of freedom under the null hypothesis of distribution normality, as the χ2-

distribution with ν degrees of freedom is the distribution of a sum of the squares of ν

independent standard normal random variables. The cumulative distribution function of

the χ2-distribution is:

Fν(K) =
γ(ν

2
, K

2
)

Γ(ν
2
)

= P (
ν

2
,
K

2
), (3.30)

where:

• γ(ν
2
, K

2
) is an incomplete gamma function;

• Γ(ν
2
) is a gamma function;

• P (ν
2
, K

2
) is a regularized gamma function.
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In a special case of ν = 2, this cumulative distribution function has a simple form:

F2(K) = 1− e−
K
2 . (3.31)

In statistical significance testing, the p-value is the probability of obtaining a test statistic

at least as extreme as the one that was actually observed, assuming that the null hypothesis

is true. As the cumulative distribution function of the χ2-distribution for the appropriate

degrees of freedom gives the probability of having obtained a value less extreme than this

point, subtracting the cumulative distribution function value from 1 gives the p-value:

p-value(K) = 1− F2(K) = e−
K
2 . (3.32)

A p-value smaller than a significance level (denoted by α) is regarded as statistically sig-

nificant. The lower the p-value, the less likely the result is if the null hypothesis is true,

and consequently the more significant the result is, in the sense of statistical significance.

The lower the significance level, the stronger the evidence required. Often used signifi-

cance levels are 10% (0.1), 5% (0.05), 1% (0.01), and 0.1% (0.001) in many applications.

A 0.1% (0.001) level of statistical significance implies there is only one chance in a thou-

sand the result could have happened by coincidence. The null hypothesis of distribution

normality cannot be rejected if the p-value is larger than the significance level α (for ex-

ample 10%, 5%, 1%, or 0.1%). The alternative hypothesis (rejecting the null hypothesis)

is accepted if the p-value is less than or equal to the significance level α (10%, 5%, 1%, or

0.1%) corresponding to a α (10%, 5%, 1%, or 0.1% respectively) chance of rejecting the

null hypothesis when it is true (type I error).
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3.4 Smoothing Model

The mean-centered intra-class variability model of class cj at mass-to-charge ratio m:

N̄j,m[f ] =

∫ f+ 1
2

f− 1
2

1√
2π σj[m]

exp(
−x2

2σ2
j [m]

)dx (3.33)

is used as a smoothing function to do a weighted moving average smoothing of the model

expressing domain intensity characteristics at mass-to-charge ratio m. The smoothing

width is from −∞ to∞. The smoothing is defined as:

(Pm ∗ N̄j,m)[f ] =
∞∑

t=−∞

Pm[f − t]N̄j,m[t], (3.34)

where:

• Pm[f ] represents the intensity probability of f at mass-to-charge ratio m;

• N̄j,m[f ] represents the mean-centered intra-class variability model of class cj at mass-

to-charge ratio m;

• Pm ∗ N̄j,m is the convolution of Pm and ¯̄N j,m;

• f is the intensity;

• t is the intensity offset.

The weighted moving average is the integral of the overlapping region of N̄j,m[f ] as it

is shifted over Pm[f ]. In the smoothing, each value of the domain characteristics model
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Pm[f ] is weighted averaged with its neighbors:

(Pm ∗ N̄j,m)[f ] = . . .+ Pm[f + 2]N̄j,m[−2] + Pm[f + 1]N̄j,m[−1]

+ Pm[f ]N̄j,m[0] + Pm[f − 1]N̄j,m[1]

+ Pm[f − 2]N̄j,m[2] + . . . .

(3.35)

In the weighted average, Pm[f ] has the largest significance (largest weighting factor). The

neighbors of Pm[f ], such as Pm[f+1], Pm[f−1], etc., have smaller significance than Pm[f ].

The weighting factors determined byNj,m[f ] are symmetrical around Pm[f ]. Nearer neigh-

bors of Pm[f ] have larger weighting factors and further neighbors have smaller weighting

factors.

3.5 Probability-Based Spectrum Similarity Measure

The probability-based spectrum similarity (PSS) between the query mass spectrum x̄q and

the labeled mass spectrum x̄i (whose class label is yi) is:

PSS[x̄q, x̄i] =
mmax∑

m=mmin

wm log

(
N̄yi,m[x̄q[m]− x̄i[m]]

(Pm ∗ N̄yi,m)[x̄q[m]]

)
, (3.36)

where:

• PSS[x̄q, x̄i] is the probability-based spectrum similarity between base-peak normal-

ized mass spectra x̄q and x̄i;

• mmin is the minimum m/z of the query mass spectrum and the labeled mass spectra,

and mmax is the maximum m/z of the query mass spectrum and the labeled mass

spectra;
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• wm is the weight factor of the mass-to-charge ratiom and is either 1 or 0 as discussed

in more detail later;

• x̄q[m] is the base-peak normalized intensity of the query mass spectrum xq at mass-

to-charge ratio m;

• x̄i[m] is the base-peak normalized intensity of the labeled mass spectrum xi at mass-

to-charge ratio m;

• N̄yi,m[x̄q[m] − x̄i[m]] represents the mean-centered intra-class variability model for

class yi at mass-to-charge ratio m;

• Pm[x̄q[m]] represents the domain characteristics model of labeled data at mass-to-

charge ratio m;

• Pm ∗ N̄yi,m represents the smoothing model for class yi at mass-to-charge ratio m.

The larger the PSS value, the larger probability that two spectra are similar and of the same

class.

The denominator of the probability-based spectrum similarity is the domain charac-

teristics of the labeled data at the query mass spectrum intensity level smoothed by the

mean-centered intra-class variability of class yi. As the domain intensity probability at

the query mass spectrum intensity level increases (the intensity occurring more frequently

in the domain), the probability-based spectrum similarity between two spectra decreases

(because other classes are increasingly likely).

The numerator of the probability-based spectrum similarity is the mean-centered intra-

class variability of class yi at mass-to-charge ratio m used as a mapping function. In the
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numerator, the normalized intensity difference between the query spectrum xq and the la-

beled spectrum xi at mass-to-charge ratio m is mapped to the measure of the similarity

between the two spectra at mass-to-charge ratio m by the mean-centered intra-class vari-

ability model as shown in Figure 3.5. When two intensities are nearly the same, the in-

tensity difference as a distance is near zero, and the numerator has the largest value. As

the difference between the two intensities increases, the numerator decreases, therefore the

probability-based spectrum similarity decreases.

Figure 3.5: The normalized intensity difference between the query spectrum xq and the
labeled spectrum xi is used as an offset in the mean-centered intra-class variability distri-
bution to measure the similarity between two spectra.

In Equation (3.36), the logarithm of the probability at each mass-to-charge ratio m is

summed instead of probability multiplication, because multiplication of small probabilities

leads to mathematical underflow, but addition of logarithm probabilities does not. The

summation includes all m/z from mmin to mmax. Each m/z has a weight factor wm. For

a mass-to-charge ratio m, if all the labeled spectra have the same intensity, this mass-to-

charge ratio m does not contain any information to discriminate classes. In this case, the
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weight factor wm of the mass-to-charge ratio m is set to be zero. And the weight factors

of m/z whose intensity distributions do not pass the D’Agostino-Pearson normality test in

the intra-class variability model are set to be zero. All other m/z have equal significance

with wm = 1. This probability-based spectrum similarity measure considers all m/z that

contain discriminating information to avoid information loss.
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Chapter 4

Experimental Results for the

MSN-PSSM Algorithm

Experimental results demonstrate the effectiveness and robustness of the new MSN-PSSM

algorithm. MSN-PSSM outperforms popular classification techniques for classification of

mass spectra, such as PCA with DFA, SIMCA, and decision tree learning.

4.1 Datasets

The first test dataset for performance evaluation was acquired with a quadrupole GC×GC-

MS instrument by Dr. Edward B. Ledford at Zoex Corp. [108]. Figure 4.1 illustrates the

GC×GC-MS image of the mixture of compounds containing paraffins, isoparaffins, aro-

matics, naphthenes, and olefins (PIANO) with color annotated blobs considered for chem-

ical classification. Paraffins, isoparaffins, aromatics, naphthenes, and olefins are important
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categories of chemicals.

• Paraffins are straight-chain (linear) alkane hydrocarbons with the general formula

CnH2n+2, such as pentane, hexane, etc.

• Isoparaffins are branched-chain alkane hydrocarbons with the general formula CnH2n+2,

such as isopentane, 3-methylpentane, etc.

• Aromatics contain one or more benzene rings, such as benzene, toluene, etc.

• Naphthenes (cycloalkanes) are types of alkane hydrocarbons which have one or more

rings of carbon atoms, such as indane, cyclopentane, etc.

• Olefins (alkenes) are unsaturated chemical compounds containing at least one carbon-

to-carbon double bond, such as ethene, isobutene, etc.

These five categories of chemicals are interlaced in the image, as a result, GC×GC with

only retention times of two columns may not be sufficient to discriminate these chemicals.

GC×GC-MS combines two techniques (GC×GC and MS) providing enhanced capability

for chemical identification. It potentially can discriminate chemicals better than GC×GC.

In Figure 4.1, eight blue blobs are paraffins, thirteen green blobs are isoparaffins, thirty-

three violet blobs are aromatics, twenty red blobs are naphthenes, and eleven yellow blobs

are olefins. Each spectrum is from m/z 45 to 221, and binned to 1 mass intervals from -0.5

to +0.5 of each integer mass. Discrimination of these PIANO chemicals is a challenging

unbalanced multi-class supervised classification task to demonstrate structure discrimina-

tion for chemical compounds.

The second test dataset for performance evaluation was acquired from the NIST/EPA/NIH

Mass Spectral Library 2005 (NIST05) [109]. NIST05 provides a collection of known
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Figure 4.1: GC×GC-MS image of the PIANO mixture. Eight blue blobs are paraffins,
thirteen green blobs are isoparaffins, thirty-three violet blobs are aromatics, twenty red
blobs are naphthenes, and eleven yellow blobs are olefins.
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chemical compounds with their mass spectra. This library is the product of a multi-year,

comprehensive evaluation and expansion of the world’s most widely used mass spectral

reference library. It contains 163198 mass spectra with their compound names, formulas,

chemical structures, and other information. Each mass spectrum of this library is criti-

cally examined by experienced mass spectrometrists. The second test dataset includes five

categories of chemicals: forty mass spectra of parafins, thirty-five isoparaffins, thirty-nine

aromatics, twenty-six naphthenes, and twenty-eight olefins (PIANO). The composition of

each category is based on PIANO calibration standards from Air Liquide American Spe-

cialty Gases LLC [110] and definitions. Each mass spectrum is from m/z 1 to 619, and

binned to 1 mass intervals from -0.5 to +0.5 of each integer mass. Discrimination of these

PIANO chemicals is a challenging unbalanced multi-class supervised classification task to

demonstrate structure discrimination for chemical compounds.

The third test dataset for performance evaluation was acquired by Dr. John C. Vick-

erman’s group with a BioToF-SIMS instrument at the Surface Analysis Research Centre,

University of Manchester. This test dataset includes ToF-SIMS spectra of bacterial sam-

ples which are major causal agents of urinary tract infection (UTI). UTI is a serious health

problem affecting millions of people each year [111]. There is a growing need to identify

the causal agent prior to treatment. This UTI dataset has samples for sixteen strains (cat-

egories) of UTI bacteria. These sixteen strains are five strains of Escherichia coli (Eco),

one strain of Klebsiella oxytoca (Kox), three strains of Klebsiella pneumoniae (Kpn), two

strains of Citrobacter freundii (Cfr), four strains of Enterococcus spp (Esp), and one strain

of Proteus mirabilis (Pmi). Each strain has three biological replicates from three fresh ar-

eas of each bacterial sample. Three ToF-SIMS spectra are generated for each biological

replicate to make three machine replicates. Thus, in total there are nine ToF-SIMS spectra

for each of sixteen strains of UTI bacteria. These strains were previously identified by con-
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ventional biochemical tests. Bacterial sample growth, ToF-SIMS instrumentation, and data

acquisition parameters are described in detail by Fletcher [38]. Each ToF-SIMS spectrum

is from m/z 1 to 1000, and binned to 1 mass intervals from -0.5 to +0.5 of each integer

mass. The mass spectra are highly similar and enormously complex, having many peaks

with varying intensities over mass range 1 to 1000. Many common peaks make visual in-

spection and manual identification of spectra an impossible task. Hence, it is necessary to

develop automatic techniques to analyze these complex data. Discrimination of these UTI

bacteria is a challenging multi-class supervised classification task to demonstrate strain-

level discrimination for the subtly different bacterial samples.

4.2 Pre-processing

The spectra of the UTI dataset are dominated by Na+ (m/z=23) and K+ (m/z=39) ions.

Because this salt contamination is apparent and peaks in the low mass region have little

discrimination ability, m/z from 1 to 50 are pruned from the UTI dataset spectra. Without

any other pruning, each mass spectrum of the three datasets is normalized to the most

intense peak (the base peak) of the spectrum.

4.3 Performance Evaluation

This study uses cross-validation, a popular accuracy estimation technique [112], to assess

prediction accuracy. Given a classification algorithm and a dataset, k-fold cross-validation

splits the data into k approximately equally sized partitions, or folds. The classification
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algorithm is executed k times. Each time, a classifier is trained on k-1 folds and the gen-

erated hypothesis is tested on the unseen fold, which serves as a test set. The estimated

accuracy is computed as the average accuracy over the k test sets.

Leave-one-out cross-validation is almost unbiased [113] and is commonly considered

the preferred method for splitting the dataset. Leave-one-out cross-validation, which is a

commonly used technique in chemometrics, is adopted in this study. Overall supervised

classification accuracy with leave-one-out cross-validation is defined as:

Accuracy =
# of spectra classified correctly

# of spectra in the dataset
. (4.1)

Overall supervised classification accuracy with leave-one-out cross-validation is used to

quantitatively measure the performance of supervised classification algorithms.

4.4 Significance Assessment

Given a supervised classification algorithm, this study uses the binomial test of signifi-

cance [114] and Fleiss kappa statistic [115, 116] to quantitatively measure the significance

of the classification algorithm’s performance. Given two supervised classification algo-

rithms, this study uses paired t-test [117] to quantitatively measure the significance of the

performance difference between the two classification algorithms, that is, how significant

the performance difference is.
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4.4.1 Binomial Test of Significance

Given n data and p predefined classes, random guessing would be able to give a p0 =

1
p

probability of correct prediction for each datum without a priori knowledge of class

distribution. For a classification algorithm which correctly classifies r (r ≤ n) of the n

data, the binomial test of significance tests that how likely the algorithm’s achievement is

relative to random guessing.

The first step of the binomial test of significance is stating the hypotheses. The null

hypothesis states that the classification algorithm does not have any ability to tell the dif-

ference between the p predefined classes, that is, the classification algorithm classifies each

datum purely based on random guessing (without a priori knowledge of class distribution):

H0 : p0 =
1

p
, (4.2)

where p0 is the probability of correct prediction for each datum without a priori knowledge

of the class distribution. The alternative hypothesis is that the classification algorithm does

have the ability to tell the difference between the p predefined classes better than random

guessing:

Ha : p0 >
1

p
, (4.3)

corresponding to a one-tailed binomial test which only examines differences in only one of

two possible directions.

The second step of the binomial test of significance is calculating the test statistic.

The probability of getting a correct classification result for a datum by random guessing

(without a priori knowledge of class distribution) is p0 = 1
p
, and the probability of getting a
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wrong classification result for a datum by a random guessing is p1 = 1− 1
p
. The probability

of getting r correct classification results over n data is:

P (r) = Cr
n p

r
0 p

n−r
1 =

n!

r!(n− r)!
pr0 (1− p0)n−r. (4.4)

The probability of getting r or more than r correct classification results over n data is:

p-value = P (r) + P (r + 1) + . . .+ P (n). (4.5)

When the sample size n is sufficiency large and p0 is not too close to 0 or 1, according

to the central limit theorem [118], the normal distribution with np0 as the mean and np0p1

as the variance is a good approximation to the binomial distribution. How large n needs

to be depends on the value of p0. If p0 is near 0.5, the approximation can be good for

n much less than 20 [105]. However, it is better to be conservative and limit the use of

the normal distribution as an approximation to the binomial distribution when np0p1 ≥

5 [35]. In the normal approximation of the binomial test, a normal curve Z-test is used as

an approximation of the binomial test, using this formula:

Z =
r − n p0√
n p0 p1

=
r − n

p√
n
p
(1− 1

p
)
, (4.6)

where np0 is the mean of the distribution and np0p1 is the variance of the distribution.

The third step of the binomial test of significance is setting a significance level α. The

lower the significance level, the stronger the evidence required. Often used significance

levels are 10% (0.1), 5% (0.05), 1% (0.01), and 0.1% (0.001). A 0.1% (0.001) level of

statistical significance implies there is only one chance in a thousand that the classification
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algorithm correctly classifies r of the n data by coincidence.

The fourth step of the binomial test of significance is making a decision about the null

hypothesis and stating a conclusion. The alternative hypothesis (the classification algorithm

does have the ability to tell the difference between the p predefined classes better than ran-

dom guessing) is accepted if the p-value is less than or equal to the significance level α,

corresponding to a α chance of rejecting the null hypothesis when it is true. The null hy-

pothesis of random guessing cannot be rejected if the p-value is larger than the significance

level α.

In the normal approximation of the binomial test, a critical value (a value that a test

statistic must exceed in order for the null hypothesis to be rejected) can be determined

based on:

Zα(1) = tα,∞, (4.7)

where:

• Zα(1) represents the critical value of the one-tailed Z-test with significance level α;

• tα,∞ represents the critical value of the t-distribution with significance level α and

degree of freedom∞.

The critical value of the one-tailed Z-test with 0.1 significance level is Z0.1(1) = 1.2816

based on the critical value table of the t-distribution [105]. The critical value with 0.05

significance level is Z0.05(1) = 1.645. The critical value with 0.01 significance level is

Z0.01(1) = 2.326. The critical value with 0.001 significance level is Z0.001(1) = 3.090.

The alternative hypothesis (the classification algorithm does have the ability to tell the

difference between the p predefined classes better than random guessing) is accepted if Z
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is greater than or equal to Zα(1). The null hypothesis of random guessing cannot be rejected

if Z is less than Zα(1).

4.4.2 Fleiss Kappa Statistic

The kappa statistic is a widely used method to measure the reliability of agreement between

raters or classifiers [119, 120]. It is a chance-corrected statistical measure which calculates

the reliability of agreement in classification over that which would be expected by chance.

The kappa statistic was first proposed by Cohen [121]. Some extensions were developed

by others, including Cohen [122], Everitt [123], and Fleiss [115].

This study uses Fleiss kappa statistic [116] to measure the agreement between the pre-

dicted class labels from a supervised classification algorithm and the true class labels of

data. Fleiss kappa statistic can be interpreted as expressing the extent to which the ob-

served agreement between the predicted class labels from the classification algorithm and

the true class labels of data exceeds what would be expected if the classification algorithm

made its decision randomly.

Given n data {xi | i = 1, 2, . . . , n} and p predefined mutually exclusive and exhaustive

classes {cj | j = 1, 2, . . . , p}, the Fleiss kappa statistic between the predicted class labels

and the true class labels is [116]:

kappa =
P − Pe
1− Pe

, (4.8)

where:

• kappa is the Fleiss kappa statistic;



74

• the factor 1− Pe measures the reliability of agreement attainable above chance;

• the factor P − Pe measures the reliability of agreement actually achieved above

chance.

To define P and Pe, let fij represent the frequency of datum xi having cj as its label (both

the predicted class label and the true class label). For example, given a case of data x1 and

p predefined classes {cj | j = 1, 2, . . . , p}, if x1’s predicted class label (from a supervised

classification algorithm) is c1 and its true class label is c2, then f11 = f12 = 1 and f13 =

. . . = f1p = 0. For xi,
p∑
j=1

fij = 2, because each case of data has two class labels (one

predicted class label and one true class label). For all n data, the proportion of label cj in

the predicted class labels and the true class labels (2n labels) is:

Qj =
1

2n

n∑
i=1

fij. (4.9)

For xi, the extent to which its predicted class label agrees with its true class label is defined

as:

Pi =
1

2

p∑
j=1

fij(fij − 1)

=
1

2

p∑
j=1

(f 2
ij − fij)

=
1

2

(
p∑
j=1

f 2
ij − 2

)
.

(4.10)
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For all n data, the mean of the Pi is:

P =
1

n

n∑
i=1

Pi

=
1

2n

n∑
i=1

(
p∑
j=1

f 2
ij − 2

)

=
1

2n

(
n∑
i=1

p∑
j=1

f 2
ij − 2n

)
.

(4.11)

And Pe is defined as:

Pe =

p∑
j=1

Q2
j . (4.12)

The kappa result ranges from −1 to 1. A negative kappa value occurs when agreement

is weaker than expected by chance. Higher kappa values mean stronger agreement. A

kappa value of 1 means perfect agreement. Interpretation of the kappa values is based on

Landis’s categories, shown in Table 4.1.

Table 4.1: Interpretation of kappa values [124].

Kappa values Interpretation
< 0 Poor agreement
0.00-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-1.00 Almost perfect agreement
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4.4.3 Paired t-test

Given two paired sets of measured values, the paired t-test determines whether they differ

from each other in a significant way under the assumptions that the differences of the paired

values are independent and normally distributed. This study uses k-fold cross-validated

paired t-test [125] to quantitatively measure the significance of the performance difference

between two supervised classification algorithms.

The first step of the k-fold cross-validated paired t-test is stating the hypothesis. In the

k-fold cross-validation, data are randomly split into k approximately equally sized folds,

and classification algorithms are executed k times. Each time, classifiers are trained on

k − 1 folds and tested on the unseen fold, which serves as a test set. The classification

error rate of a classification algorithm is the number of test data classified wrongly divided

by the number of test data. Given n data and two classification algorithms, the k-fold

cross-validation generates two sets of classification error rates {ei | i = 1, 2, . . . , k} and

{fi | i = 1, 2, . . . , k}, one for each classification algorithm. The difference in error rate on

fold i is:

gi = ei − fi. (4.13)

According to the central limit theorem [118], when k is sufficiency large, both {ei | i =

1, 2, . . . , k} and {fi | i = 1, 2, . . . , k} are approximately normally distributed. Therefore

the difference {gi | i = 1, 2, . . . , k} also is approximately normally distributed. The null

hypothesis is that the two supervised classification algorithms have the same classification

performance (the same error rate), that is, {gi | i = 1, 2, . . . , k} is from a distribution with

zero mean:

H0 : µg = 0, (4.14)
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where µg is the mean of the distribution. The alternative hypothesis is that the two su-

pervised classification algorithms have different classification performance (different error

rate), that is, {gi | i = 1, 2, . . . , k} is from a distribution with non-zero mean:

Ha : µg 6= 0, (4.15)

corresponding to a two-tailed t-test which examines differences in both of the two possible

directions.

The second step of the k-fold cross-validated paired t-test is calculating the test statistic.

If random samples are drawn from a normal distribution, the means of these samples will

conform to a normal distribution. The distribution of means from a non-normal distribution

will tend toward normality as the size of samples increases [105]. Because {gi | i =

1, 2, . . . , k} is approximately normal distributed, the mean of {gi | i = 1, 2, . . . , k} is

drawn from a normal distribution. Define the mean of {gi | i = 1, 2, . . . , k} as:

g =
1

k

k∑
i=1

gi, (4.16)

and

σg =
σ√
k

=

√√√√ 1

k(k − 1)

k∑
i=1

(gi − g)2, (4.17)

where:

• σg is the estimated standard deviation of the distribution of means;

• σ is the standard deviation of {gi | i = 1, 2, . . . , k}:

σ =

√√√√ 1

k − 1

k∑
i=1

(gi − g)2. (4.18)
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The t-distribution is a bell-shaped distribution similar to the normal distribution, but wider

and shorter to reflect the greater variance introduced by using σg to approximate the true

standard deviation. Define ν as the degree of freedom of the t-distribution. The t-distribution

approaches the normal distribution as ν approaches infinity. Under the null hypothesis that

µg = 0, the following statistic is t-distributed with ν = k − 1:

t =
g − µg
σg

=
g

σg
. (4.19)

The third step of the k-fold cross-validated paired t-test is setting a significance level.

The smaller the significance level, the stronger the evidence required. Often used signifi-

cance levels are 10% (0.1), 5% (0.05), 1% (0.01), and 0.1% (0.001). A 0.1% (0.001) level

of statistical significance implies there is only one chance in a thousand the result could

have happened by coincidence.

The fourth step of the k-fold cross-validated paired t-test is making a decision about the

null hypothesis and stating a conclusion. Most statistical textbooks list the critical value

table of the t-distribution. Table 4.2 lists a few selected two-tailed critical values tα(2),ν for

t-distributions with ν degrees of freedom and significance level of α(2). The alternative

hypothesis, the two supervised classification algorithms have different classification per-

formance (different error rate), is accepted if t is greater than or equal to tα(2),k−1. The

null hypothesis, the two supervised classification algorithms have the same classification

performance (the same error rate), can not be rejected if t is less than tα(2),k−1.
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Table 4.2: Selected critical values of the t-distribution.

ν α(2) = 0.1 α(2) = 0.05 α(2) = 0.01 α(2) = 0.001
1 6.314 12.706 63.657 636.619
2 2.920 4.303 9.925 31.599
3 2.353 3.182 5.841 12.924
4 2.132 2.776 4.604 8.610
5 2.015 2.571 4.032 6.869
6 1.943 2.447 3.707 5.959
7 1.895 2.365 3.499 5.408
8 1.860 2.306 3.355 5.041
9 1.833 2.262 3.250 4.781
10 1.812 2.228 3.169 4.587
20 1.725 2.086 2.845 3.850
30 1.697 2.042 2.750 3.646
40 1.684 2.021 2.704 3.551
50 1.676 2.009 2.678 3.496
60 1.671 2.000 2.660 3.460
70 1.667 1.994 2.648 3.435
80 1.664 1.990 2.639 3.416
90 1.662 1.987 2.632 3.402
100 1.660 1.984 2.626 3.390
110 1.659 1.982 2.621 3.381
120 1.658 1.980 2.617 3.373
130 1.657 1.978 2.614 3.367
140 1.656 1.977 2.611 3.361
150 1.655 1.976 2.609 3.357
160 1.654 1.975 2.607 3.352
170 1.654 1.974 2.605 3.349
180 1.653 1.973 2.603 3.345
190 1.653 1.973 2.602 3.342
200 1.653 1.972 2.601 3.340
∞ 1.6449 1.9600 2.5758 3.2905
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4.5 Experimental Results

The five categories of compounds (paraffins, isoparaffins, aromatics, naphthenes, and olefins)

of the PIANO datasets are considered as five classes with class labels Para, Isopara, Arom,

Naph, and Olef. For the first PIANO dataset, Para has eight GC×GC-MS spectra, Isopara

has thirteen spectra, Arom has thirty-three spectra, Naph has twenty spectra, and Olef has

eleven spectra. For the second PIANO dataset, Para has forty mass spectra, Isopara has

thirty-five spectra, Arom has thirty-nine spectra, Naph has twenty-six spectra, and Olef has

twenty-eight spectra.

The sixteen stains of the UTI dataset are considered as sixteen classes with class labels

Cfr1, Cfr2, Eco1, Eco2, Eco3, Eco4, Eco5, Esp1, Esp2, Esp3, Esp4, Kox, Kpn1, Kpn2,

Kpn3, and Pmi. Each class has nine ToF-SIMS spectra.

These datasets are classified by four supervised classification algorithms: PCA with

DFA, SIMCA, decision tree learning, and MSN-PSSM. PCA with DFA is implemented in

Matlab (the MathWorks Inc.). PCA considers above 90% of the variance of the datasets.

The principal components containing significantly small portions of the total variance cap-

ture noise variations, thus are not considered in PCA. SIMCA is implemented in Matlab.

C4.5, designed by Quinlan [67], is employed to build classification trees and the variable

selection measure in each node is gain ratio to avoid broad decision trees of small depth.

4.5.1 The First PIANO Dataset

Table 4.3 shows the overall classification accuracy and Fleiss kappa statistic of each su-

pervised classification algorithm on the first PIANO dataset. The MSN-PSSM algorithm
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outperforms the other three algorithms with the highest overall classification accuracy of

87.06%. SIMCA and decision tree learning have the same overall classification accuracy

of 71.76%. PCA with DFA has 80.00% overall classification accuracy which is better than

SIMCA and decision tree learning. The performance of these four classification algorithms

would be achieved by random guessing (without a priori knowledge of class distribution)

with less than 1.0 × 10−16 probability (greater than 99.9999% significance level) based

on the binomial test of significance. The spectra’s predicted class labels of MSN-PSSM

have almost perfect agreement with the spectra’s true class labels based on Table 4.1. The

spectra’s predicted class labels of the other three supervised classification algorithms hold

only substantial agreement with the spectra’s true class labels based on Table 4.1. The

MSN-PSSM algorithm significantly outperforms the PCA with DFA algorithm at 86.55%

significance level based on the paired t-test. MSN-PSSM significantly outperforms SIMCA

at 99.94% significance level, and significantly outperforms decision tree learning at 99.76%

significance level.

Table 4.4 shows the confusion matrix, the precision of each class, and the recall of each

class for each supervised classification algorithm on the first PIANO dataset. Each row of

the confusion matrix represents the data in the true class label and each column represents

the data in a predicted class label. The diagonal elements show the number of correct

Table 4.3: Performance of classifiers on the first PIANO dataset. Boldface indicates the
best performance.

Classifier Accuracy (%) Kappa
PCA with DFA 80.00 0.73
SIMCA 71.76 0.61
Decision trees 71.76 0.62
MSN-PSSM 87.06 0.82
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classifications made for each class, and the off-diagonal elements show the errors made.

Precision measures the accuracy that a specific class has been predicted. Recall measures

the ability of a classification algorithm to select instances of a certain class from a data set.

Table 4.4 shows MSN-PSSM can successfully discriminate between PIANO categories,

and MSN-PSSM outperforms PCA with DFA, SIMCA, and decision tree learning.

Table 4.5 shows the classification results of the four algorithms on class Para of the

first PIANO dataset. The MSN-PSSM algorithm and the PCA with DFA algorithm classify

most spectra correctly. MSN-PSSM misclassifies two spectra and PCA with DFA misclas-

sifies one spectrum. MSN-PSSM and PCA with DFA are able to successfully discriminate

class Para from other classes. SIMCA and decision tree learning cannot discriminate class

Para from other classes. SIMCA correctly classifies only two spectra and decision tree

learning correctly classifies only three spectra. Most misclassified spectra are classified as

class Isopara, which is consistent with the close structural similarity between class Para

(straight-chain alkane) and class Isopara (branched-chain alkane).

Table 4.6 shows the classification results of the four algorithms on class Isopara of the

first PIANO dataset. The MSN-PSSM algorithm classifies all spectra correctly. MSN-

PSSM is able to perfectly discriminate class Isopara from other classes. PCA with DFA,

SIMCA, and decision tree learning have similar performance. PCA with DFA misclassifies

four spectra, SIMCA misclassifies four spectra, and decision tree learning misclassifies six

spectra. Most misclassified spectra are classified as class Para, which is consistent with the

close structural similarity between class Isopara and class Para.

Table 4.7 shows the classification results of the four algorithms on class Arom of the

first PIANO dataset. The MSN-PSSM algorithm and the PCA with DFA algorithm clas-

sify all spectra correctly. MSN-PSSM and PCA with DFA are able to perfectly discrim-
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Table 4.4: Confusion matrix, precision, and recall of each classification algorithm on the
first PIANO dataset.

Classifier Confusion matrix
Para Isopara Arom Naph Olef error recall

Para 7 1 0 0 0 1 0.88
PCA with Isopara 4 9 0 0 0 4 0.69

DFA Arom 0 0 33 0 0 0 1.00
Naph 0 2 0 11 7 9 0.55
Olef 0 0 0 3 8 3 0.73
error 4 3 0 3 7 17

precision 0.64 0.75 1.00 0.79 0.53
Para Isopara Arom Naph Olef error recall

Para 2 1 0 5 0 6 0.25
Isopara 0 9 0 4 0 4 0.69

SIMCA Arom 0 0 32 1 0 1 0.97
Naph 0 5 0 15 0 5 0.75
Olef 0 7 0 1 3 8 0.27
error 0 13 0 11 0 24

precision 1.00 0.41 1.00 0.58 1.00
Para Isopara Arom Naph Olef error recall

Para 3 5 0 0 0 5 0.38
Decision Isopara 4 7 0 2 0 6 0.54

trees Arom 1 0 32 0 0 1 0.97
Naph 0 2 0 15 3 5 0.75
Olef 0 1 0 6 4 7 0.36
error 5 8 0 8 3 24

precision 0.38 0.47 1.00 0.65 0.57
Para Isopara Arom Naph Olef error recall

Para 6 2 0 0 0 2 0.75
Isopara 0 13 0 0 0 0 1.00

MSN-PSSM Arom 0 0 33 0 0 0 1.00
Naph 0 1 1 18 0 2 0.90
Olef 0 0 0 7 4 7 0.36
error 0 3 1 7 0 11

precision 1.00 0.81 0.97 0.72 1.00
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Table 4.5: Classification results of the four algorithms on class Para of the first PIANO
dataset.

ID PCA with DFA SIMCA Decision trees MSN-PSSM True class label
1 Para Para Para Para Para
2 Para Para Para Para Para
3 Para Naph Para Para Para
4 Para Naph Isopara Para Para
5 Para Naph Isopara Para Para
6 Para Naph Isopara Para Para
7 Para Naph Isopara Isopara Para
8 Isopara Isopara Isopara Isopara Para
correct 7 2 3 6

Table 4.6: Classification results of the four algorithms on class Isopara of the first PIANO
dataset.

ID PCA with DFA SIMCA Decision trees MSN-PSSM True class label
1 Para Naph Para Isopara Isopara
2 Isopara Isopara Isopara Isopara Isopara
3 Isopara Isopara Para Isopara Isopara
4 Isopara Naph Isopara Isopara Isopara
5 Para Isopara Isopara Isopara Isopara
6 Para Isopara Para Isopara Isopara
7 Isopara Isopara Naph Isopara Isopara
8 Isopara Isopara Para Isopara Isopara
9 Para Isopara Isopara Isopara Isopara
10 Isopara Isopara Isopara Isopara Isopara
11 Isopara Naph Isopara Isopara Isopara
12 Isopara Naph Naph Isopara Isopara
13 Isopara Isopara Isopara Isopara Isopara
correct 9 9 7 13
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inate class Arom from other classes. SIMCA and decision tree learning have the same

performance of classifying most spectra correctly with only one misclassified spectrum.

SIMCA and decision tree learning are able to successfully discriminate class Arom from

other classes. The fact that class Arom is easy to discriminate from other classes is consis-

tent with the unique benzene ring structure of class Arom.

Table 4.8 shows the classification results of the four algorithms on class Naph of the

first PIANO dataset. The MSN-PSSM algorithm classifies most spectra correctly with only

two misclassified spectra. MSN-PSSM is able to successfully discriminate class Naph from

other classes. SIMCA and decision tree learning have the same performance of classifying

most spectra correctly with five misclassified spectra. The PCA with DFA algorithm has

the worst performance compared with MSN-PSSM, SIMCA, and decision tree learning.

PCA with DFA correctly classifies only about half of the spectra (11 of the 20).

Table 4.9 shows the classification results of the four algorithms on class Olef of the

first PIANO dataset. The PCA with DFA algorithm has the best performance of correctly

classifying all but three spectra. MSN-PSSM and decision tree learning have the same

performance of correctly classifying four spectra. SIMCA has the worst performance com-

pared with PCA with DFA, MSN-PSSM, and decision tree learning. SIMCA correctly

classifies only three spectra.

4.5.2 The Second PIANO Dataset

Table 4.10 shows the overall classification accuracy and Fleiss kappa statistic of each su-

pervised classification algorithm on the second PIANO dataset. The MSN-PSSM algo-

rithm outperforms the other three algorithms with the highest overall classification accu-



86

Table 4.7: Classification results of the four algorithms on class Arom of the first PIANO
dataset.

ID PCA with DFA SIMCA Decision trees MSN-PSSM True class label
1 Arom Naph Para Arom Arom
2 Arom Arom Arom Arom Arom
3 Arom Arom Arom Arom Arom
4 Arom Arom Arom Arom Arom
5 Arom Arom Arom Arom Arom
6 Arom Arom Arom Arom Arom
7 Arom Arom Arom Arom Arom
8 Arom Arom Arom Arom Arom
9 Arom Arom Arom Arom Arom
10 Arom Arom Arom Arom Arom
11 Arom Arom Arom Arom Arom
12 Arom Arom Arom Arom Arom
13 Arom Arom Arom Arom Arom
14 Arom Arom Arom Arom Arom
15 Arom Arom Arom Arom Arom
16 Arom Arom Arom Arom Arom
17 Arom Arom Arom Arom Arom
18 Arom Arom Arom Arom Arom
19 Arom Arom Arom Arom Arom
20 Arom Arom Arom Arom Arom
21 Arom Arom Arom Arom Arom
22 Arom Arom Arom Arom Arom
23 Arom Arom Arom Arom Arom
24 Arom Arom Arom Arom Arom
25 Arom Arom Arom Arom Arom
26 Arom Arom Arom Arom Arom
27 Arom Arom Arom Arom Arom
28 Arom Arom Arom Arom Arom
29 Arom Arom Arom Arom Arom
30 Arom Arom Arom Arom Arom
31 Arom Arom Arom Arom Arom
32 Arom Arom Arom Arom Arom
33 Arom Arom Arom Arom Arom
correct 33 32 32 33
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Table 4.8: Classification results of the four algorithms on class Naph of the first PIANO
dataset.

ID PCA with DFA SIMCA Decision trees MSN-PSSM True class label
1 Naph Naph Naph Naph Naph
2 Olef Naph Naph Naph Naph
3 Naph Naph Naph Naph Naph
4 Naph Naph Naph Naph Naph
5 Naph Naph Naph Naph Naph
6 Naph Naph Naph Naph Naph
7 Isopara Naph Naph Naph Naph
8 Naph Naph Naph Naph Naph
9 Olef Naph Naph Naph Naph
10 Naph Naph Naph Naph Naph
11 Olef Naph Olef Naph Naph
12 Naph Naph Naph Naph Naph
13 Olef Naph Naph Naph Naph
14 Naph Isopara Naph Naph Naph
15 Naph Naph Olef Naph Naph
16 Naph Isopara Naph Naph Naph
17 Olef Isopara Isopara Naph Naph
18 Olef Isopara Olef Naph Naph
19 Isopara Isopara Isopara Isopara Naph
20 Olef Naph Naph Olef Naph
correct 11 15 15 18
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Table 4.9: Classification results of the four algorithms on class Olef of the first PIANO
dataset.

ID PCA with DFA SIMCA Decision trees MSN-PSSM True class label
1 Olef Olef Naph Olef Olef
2 Olef Olef Naph Olef Olef
3 Olef Olef Olef Olef Olef
4 Olef Naph Naph Naph Olef
5 Olef Isopara Olef Olef Olef
6 Olef Isopara Naph Naph Olef
7 Olef Isopara Olef Naph Olef
8 Naph Isopara Naph Naph Olef
9 Naph Isopara Naph Naph Olef
10 Naph Isopara Olef Naph Olef
11 Olef Isopara Isopara Naph Olef
correct 8 3 4 4

racy of 89.29%. SIMCA and PCA with DFA have similar overall classification accuracies

of 83.93% and 82.74%. Decision tree learning has 73.81% overall classification accu-

racy. The performance of these four classification algorithms would be achieved by ran-

dom guessing (without a priori knowledge of class distribution) with less than 1.0× 10−16

probability (greater than 99.9999% significance level) based on the binomial test of signif-

icance. The spectra’s predicted class labels of MSN-PSSM have almost perfect agreement

with the spectra’s true class labels based on Table 4.1. The spectra’s predicted class labels

of the other three supervised classification algorithms hold only substantial agreement with

the spectra’s true class labels based on Table 4.1. The MSN-PSSM algorithm significantly

outperforms the SIMCA algorithm at 89.38% significance level based on the paired t-test.

MSN-PSSM significantly outperforms PCA with DFA at 97.26% significance level, and

significantly outperforms decision tree learning at 99.99% significance level.

Table 4.11 shows the confusion matrix, the precision of each class, and the recall of each
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class for each supervised classification algorithm on the second PIANO dataset. Table 4.11

shows MSN-PSSM can successfully discriminate between PIANO categories, and MSN-

PSSM outperforms PCA with DFA, SIMCA, and decision tree learning.

For class Para, the MSN-PSSM algorithm successfully classifies most spectra correctly,

with five of forty spectra misclassified. PCA with DFA and decision tree learning have the

same performance of misclassifying ten spectra. SIMCA performs relatively poorly with

seventeen spectra misclassified. Nearly half misclassified spectra are classified as class

Isopara, which is consistent with the close structural similarity between class Para and

class Isopara.

For class Isopara, SIMCA successfully classifies most spectra correctly, with two of

thirty-five spectra misclassified. PCA with DFA and MSN-PSSM have similar perfor-

mance, with five and seven misclassified spectra respectively. Decision tree learning has

the worst performance with eleven misclassified spectra. Most misclassified spectra are

classified as class Para, which is consistent with the close structural similarity between

class Isopara and class Para.

For class Arom, MSN-PSSM and decision tree learning both successfully classify all

thirty-nine data correctly. They are able to perfectly discriminate class Arom from other

Table 4.10: Performance of classifiers on the second PIANO dataset. Boldface indicates
the best performance.

Classifier Accuracy (%) Kappa
PCA with DFA 82.74 0.78
SIMCA 83.93 0.80
Decision trees 73.81 0.67
MSN-PSSM 89.29 0.87
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Table 4.11: Confusion matrix, precision, and recall of each classification algorithm on the
second PIANO dataset.

Classifier Confusion matrix
Para Isopara Arom Naph Olef error recall

Para 30 10 0 0 0 10 0.75
PCA with Isopara 5 30 0 0 0 5 0.86

DFA Arom 0 1 38 0 0 1 0.97
Naph 0 0 0 18 8 8 0.69
Olef 0 1 0 4 23 5 0.82
error 5 12 0 4 8 29

precision 0.86 0.71 1.00 0.82 0.74
Para Isopara Arom Naph Olef error recall

Para 23 16 0 1 0 17 0.58
Isopara 2 33 0 0 0 2 0.94

SIMCA Arom 0 0 38 1 0 1 0.97
Naph 0 3 0 23 0 3 0.88
Olef 0 2 0 2 24 4 0.86
error 2 21 0 4 0 27

precision 0.92 0.61 1.00 0.85 1.00
Para Isopara Arom Naph Olef error recall

Para 30 8 1 1 0 10 0.75
Decision Isopara 9 24 0 1 1 11 0.69

trees Arom 0 0 39 0 0 0 1.00
Naph 0 3 0 10 13 16 0.38
Olef 0 1 0 6 21 7 0.75
error 9 12 1 8 14 44

precision 0.77 0.67 0.98 0.56 0.60
Para Isopara Arom Naph Olef error recall

Para 35 5 0 0 0 5 0.88
Isopara 2 28 0 5 0 7 0.80

MSN-PSSM Arom 0 0 39 0 0 0 1.00
Naph 0 0 0 25 1 1 0.96
Olef 0 0 0 5 23 5 0.82
error 2 5 0 10 1 18

precision 0.95 0.85 1.00 0.71 0.96
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classes. SIMCA and PCA with DFA have only one misclassified spectrum. The fact that

class Arom is easy to discriminate from other classes is consistent with the unique benzene

ring structure of class Arom.

For class Naph, MSN-PSSM and SIMCA have similar performance of successfully

classifying most of the twenty-six spectra correctly. MSN-PSSM has only one misclassified

spectrum. SIMCA has three misclassified spectra. PCA with DFA has worse performance,

with eight misclassified spectra. Decision tree learning has the worst performance, with

sixteen misclassified spectra.

For class Olef, the SIMCA algorithm has the best performance with four misclassified

spectra of twenty-eight spectra. MSN-PSSM and PCA with DFA have the same perfor-

mance of correctly classifying twenty-three spectra and misclassifying five spectra. De-

cision tree learning has the worst performance compared with SIMCA, MSN-PSSM, and

PCA with DFA. Decision tree learning misclassifies seven spectra.

The first PIANO dataset was acquired with a quadrupole GC×GC-MS instrument, and

carries unavoidable instrument noise and chemical noise. The second PIANO dataset was

acquired from the NIST/EPA/NIH Mass Spectral Library 2005 (NIST05), and carries much

less instrument noise and chemical noise. The success of the MSN-PSSM algorithm on

both of these two datasets and the fact that MSN-PSSM consistently outperforms other

algorithms on both of these two datasets show the robustness of the algorithm.
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4.5.3 UTI Dataset

Table 4.12 shows the overall classification accuracy and Fleiss kappa statistic of each su-

pervised classification algorithm on the UTI dataset. The MSN-PSSM algorithm outper-

forms the other three algorithms with the highest overall classification accuracy of 70.14%.

SIMCA and decision tree learning have similar overall classification accuracies of 45.14%

and 47.92%. PCA with DFA has 56.94% overall classification accuracy which is better

than SIMCA and decision tree learning. The performance of these four classification algo-

rithms would be achieved by random guessing (without a priori knowledge of class distri-

bution) with less than 1.0 × 10−16 probability (greater than 99.9999% significance level)

based on the binomial test of significance. The spectra’s predicted class labels of MSN-

PSSM have substantial agreement with the spectra’s true class labels based on Table 4.1.

The spectra’s predicted class labels of the other three supervised classification algorithms

hold only moderate agreement with the spectra’s true class labels based on Table 4.1. The

MSN-PSSM algorithm significantly outperforms the PCA with DFA algorithm at 98.55%

significance level based on the paired t-test. MSN-PSSM significantly outperforms SIMCA

at 99.9999% significance level, and outperforms decision tree learning at 99.9989% signif-

icance level.

Table 4.12: Performance of classifiers on the UTI dataset. Boldface indicates the best
performance.

Classifier Accuracy (%) Kappa
PCA with DFA 56.94 0.54
SIMCA 45.14 0.41
Decision trees 47.92 0.44
MSN-PSSM 70.14 0.68
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Table 4.13 shows the confusion matrix, the precision of each class, and the recall of each

class for the MSN-PSSM algorithm. The MSN-PSSM algorithm successfully classifies all

data of strain Esp3 correctly. It classifies most of the data (6 to 8 of 9) correctly for strains

Cfr1, Cfr2, Eco2, Eco3, Eco5, Esp1, Esp2, Esp4, Kpn3, and Pmi. It classifies about half (4

or 5 of 9) of the data correctly for strains Eco1, Eco4, Kox, Kpn1, and Kpn2. Table 4.13

shows MSN-PSSM can successfully discriminate between bacterial strains.

Table 4.14 shows the confusion matrix, the precision of each class, and the recall of

each class for PCA with DFA on the UTI dataset. PCA with DFA successfully classifies all

data of strain Kpn2 correctly. It classifies most of the data (6 to 8 of 9) correctly for strains

Cfr2, Eco5, Esp1, Esp2, Esp4, and Kpn3. It classifies about half (4 or 5 of 9) of the data

correctly for strains Cfr1, Eco2, Eco4, Esp3, Kox, and Kpn1. It incorrectly classifies most

of the data (6 to 8 of 9) for strains Eco1, Eco3, and Pmi.

Table 4.15 shows the confusion matrix, the precision of each class, and the recall of

each class for SIMCA on the UTI dataset. SIMCA classifies most of the data (6 to 8 of 9)

correctly for strains Cfr2, Esp3, Kpn1, and Kpn3. It classifies about half (4 or 5 of 9) of

the data correctly for strains Cfr1, Eco3, Eco4, Esp2, Kox, Kpn2, and Pmi. It incorrectly

classifies most of the data (6 to 8 of 9) for strains Eco1, Eco2, and Esp1. It misclassifies all

data of strain Eco5 and Esp4.

Table 4.16 shows the confusion matrix, the precision of each class, and the recall of

each class for decision tree learning on the UTI dataset. Decision tree learning successfully

classifies all data of strain Esp1 correctly. It classifies most of the data (6 to 8 of 9) correctly

for strains Cfr2, Esp3, and Kox. It classifies about half (4 or 5 of 9) of the data correctly

for strains Eco2, Eco3, Eco5, Esp2, Kpn1, Kpn2, and Pmi. It incorrectly classifies most of

the data (6 to 8 of 9) for strains Cfr1, Eco1, Eco4, Esp4, and Kpn3.
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4.6 Summary

Experimental results demonstrate the effectiveness of the new MSN-PSSM algorithm. MSN-

PSSM successfully captures the difference between predefined chemical or biological classes

and successfully classifies most of the test data correctly. It significantly outperforms pop-

ular techniques PCA with DFA, SIMCA, and decision tree learning.

Experimental results also demonstrate the robustness of the new MSN-PSSM algo-

rithm. Datasets from mass spectrometers always carry noise, such as chemical noise and

instrument noise. The new MSN-PSSM algorithm models the intra-class variability and

uses a smoothing model in the similarity measure to enhance the robustness of handling

noise. MSN-PSSM successfully applies to GC×GC-MS and ToF-SIMS.
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Chapter 5

Non-Targeted Cross-Sample

Classification

This chapter presents a new non-targeted cross-sample classification method to analyze

comprehensive two-dimensional chromatograms [28, 29].

Given:

1. n labeled comprehensive two-dimensional chromatograms {xi | i = 1, 2, . . . , n};

2. p predefined classes {cj | j = 1, 2, . . . , p}, where cj represents the class name of

class j;

3. class labels of the n labeled chromatograms {yi | i = 1, 2, . . . , n}, where yi ∈ {cj |

j = 1, 2, . . . , p};

4. a query chromatogram xq, and xq /∈ {xi | i = 1, 2, . . . , n};
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the steps of the non-targeted cross-sample classification are:

1. Process the n labeled comprehensive two-dimensional chromatograms {xi | i =

1, 2, . . . , n} to detect all peaks and represent those peaks in n templates {ti | i =

1, 2, . . . , n}.

2. Create a registration template with registration peaks that are correspond (i.e., are

matched) across chromatograms.

3. Create a cumulative chromatogram by aligning (registering) the individual chro-

matograms {xi | i = 1, 2, . . . , n} using the registration template and summing the

aligned chromatograms.

4. Generate a feature template by adding retention-time regions of all peaks detected in

the cumulative chromatogram to the registration template.

5. Create a cross-sample feature vector that characterizes the detector response within

each retention-time region for each chromatogram.

6. Build classification models for predefined classes {cj | j = 1, 2, . . . , p} based on the

cross-sample feature vectors, predict the class label of the query chromatogram xq,

and identify potential biomarkers of predefined classes for closer examination based

on the discriminating features of the classification models.

The non-targeted cross-sample classification comprehensively compares every com-

pound, whether known or unknown, across multiple chromatograms. It provides com-

prehensive surveys of quantitative differences in the chemical compositions among chro-

matograms. This non-targeted cross-sample classification avoids the intractable problem of

comprehensive cross-sample peak matching by using a few registration peaks for alignment
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and peak-based retention-time regions to define comprehensive features. And the registra-

tion peaks that are correspond across chromatograms are automatically and systematically

detected.

Figure 5.1 illustrates the non-targeted cross-sample classification step by step. The

following sections describe the non-targeted cross-sample classification in detail.

5.1 Processing

Comprehensive two-dimensional chromatograms are presented as two-dimensional images

with the x-axis (abscissa) representing the retention time in the first column and the y-

axis (ordinate) representing the retention time in the second column. Each chromatogram

is processed for baseline correction, peak detection, and template construction with GC

Image GC×GC Software R2.1r.

5.1.1 Baseline Correction

In two-dimensional chromatograms, each individual chemical compound forms a two-

dimensional cluster of pixels (a peak) with values larger than the background values (the

data values in which no chemical peak is present). Under controlled conditions, the back-

ground level consists primarily of the sum of two slowly varying components: a relatively

steady-state standing-current offset (characteristic of detectors) and temperature-induced

column-bleed [126]. Accurate peak detection and quantification of the chemical related

peaks requires subtraction of the background level from the signal.
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Figure 5.1: The steps of the non-targeted cross-sample classification.
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Baseline correction is performed with the baseline correction algorithm developed by

Reichenbach et al. [126]. The baseline correction algorithm estimates the baseline values

across the chromatogram based on structural and statistical properties of data and then

subtracts the baseline estimate from the data at each point, producing a chromatogram in

which the peaks rise above a near-zero baseline. First, background regions (regions without

peaks) are identified by locating data points with the smallest values in each second column

chromatogram (or other interval). Then, the local means of the values from data points in

the background regions are taken as first estimates of the baseline, and the variances of

the values are taken as first estimates of the variance of the noise distribution (noise also

is present in the background). Next, signal processing filters are used to reconstruct the

baseline as a function of the local estimates. Finally, the baseline estimate is subtracted

from the signal.

5.1.2 Peak Detection

The chemical peaks are detected in two dimensions using the drain algorithm [127], an

inverted version of the watershed algorithm [128]. The drain algorithm is a greedy dilation

algorithm that proceeds by starting peaks at tops and iteratively adding smaller pixels bor-

dering the peaks until there are no more smaller, positive-valued pixels in the surrounds.

This process can be understood conceptually by picturing the chromatograms as a relief

map with larger values having higher elevation. The surface is placed under enough “water”

to submerge the highest elevation; then, the water is progressively “drained”. As the drain-

ing proceeds, peaks appear as “islands”. As more water drains, peaks expand as lower-lying

pixels around the “shore” are exposed. When the water between two peaks disappears, a

border between peaks is set. This process stops when the water level reaches zero.
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5.1.3 Template Construction

For each chromatogram, a template records the peak pattern of the chromatogram and

captures the information for identifying the same compounds in other chromatograms. For

each peak, the template records the two-dimensional retention times and a rule, expressed

in the Computer Language for Identifying Chemicals (CLIC), which specifies the expected

mass spectrum and the required NIST match factor [129]. The match factor required for

identification is determined by analyzing the match factors with neighboring peaks (so that

a peak among other peaks with similar mass spectra may require a higher match factor than

a peak among other peaks with dissimilar mass spectra) [130].

5.2 Registration Template

A registration template records registration peaks that are correspond across chromatograms.

The registration peaks should include peaks across the retention-time plane for chromato-

graphic alignment.

5.2.1 Template Matching

Each template ti(i ∈ {1, 2, . . . , n}) from each chromatogram xi is matched to all of the

other chromatograms {xj | j = 1, 2, . . . , n and j 6= i}. The matching is performed with the

template matching algorithm developed by Ni and Reichenbach [131]. The template match-

ing algorithm uses retention times and mass spectral matching rules to match a template

peak from one chromatogram to at most one detected peak in each other chromatogram.
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The template matching is performed for each template to each of the other chromatograms.

For n chromatograms, there are n(n− 1) template matchings.

In a graph, the peaks can be represented as vertices and the peak matchings can be rep-

resented as directed edges. A directed edge from one vertex to another indicates a matching

of a template peak from one chromatogram to a detected peak in another chromatogram.

Each peak has at most n − 1 outgoing edges, with at most one edge to each of the other

chromatograms. And, each peak has at most n− 1 incoming edges, with at most one edge

from each of the other chromatograms. Figure 5.2, discussed subsequently in more detail,

illustrates example matchings between a few peaks in three chromatograms x1, x2, and x3.

Figure 5.2: Graph visualization of example peak matching across three chromatograms x1,
x2, and x3.
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5.2.2 Reliably Matched Peaks Detection

If peak a in the template from chromatogram x1 matches peak b detected in chromatogram

x2 and peak b in the template from chromatogram x2 matches peak a detected in chro-

matogram x1, the peaks a and b are said to correspond. In Figure 5.2, peak a of x1 cor-

responds with peak b of x2, peak b of x2 corresponds with peak c of x3, and peak c of x3

corresponds with peak a of x1.

For a set consisting of one peak from each chromatogram, if each pair of peaks cor-

responds in their respective chromatograms, then the peaks are matched reliably across

all chromatograms. In Figure 5.2, peaks a, b, and c are matched reliably across all three

chromatograms. Peak f of x1 corresponds with peak g of x2 and with peak u of x3, but

peak g of x2 and peak u of x3 do not correspond. So these peaks are not matched reliably

across all three chromatograms. Peak s of x1 corresponds peak t of x3, but neither has a

corresponding peak in chromatogram x2, so these peaks are not matched reliably across all

three chromatograms.

In graph theory, the peaks matched reliably across all chromatograms compose a bidi-

rectionally connected clique with n vertices, where n is the number of chromatograms. Fig-

ure 5.3 shows peaks a, b, c, d, . . ., and e are matched reliably across all n chromatograms,

and compose a bidirectionally connected clique of size n.

With the requirement of correspondences across all pairs of chromatograms, the number

of peak matchings required for a set of reliably matched peaks is n(n−1). Given n(n ≥ 2)

chromatograms {xi | i = 1, 2, . . . , n} and n(n− 1) corresponding template matchings, the

steps of detecting the peaks that are matched reliably across all n chromatograms are:
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Figure 5.3: Peaks a, b, c, d, . . ., and e are matched reliably across all n chromatograms,
and compose a bidirectionally connected clique of size n.

1. Initialize i to be 1.

2. If peak a of chromatogram xi matches peak b of chromatogram xi+1, but peak b of

chromatogram xi+1 does not match peak a of chromatogram xi, report “Peaks are

not matched reliably.” and then exit. Otherwise, go to the next step.

3. Set r to be i− 1.

4. If r is greater than 0, go to the next step. Otherwise, go to step 8.

5. If peak b of chromatogram xi+1 matches peak d of chromatogram xr, but peak d of

chromatogram xr does not match peak b of chromatogram xi+1, report “Peaks are

not matched reliably.” and then exit. Otherwise, go to the next step.

6. Decrease r by 1.

7. If r is greater than 0, repeat step 5 and step 6. Otherwise, go to the next step.

8. Increase i by 1.
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9. If i is less than n, repeat steps 2 to 8. Otherwise, report the peaks (one from each

chromatogram) which are matched reliably across all n chromatograms.

Figure 5.4 illustrates the pseudocode implementing the above steps.

Figure 5.4: Pseudocode of detecting the peaks which are matched reliably across all n
chromatograms.

Figure 5.5 illustrates the flow chart of detecting the peaks that are matched reliably

across all n chromatograms. Repeat the above steps to detect all sets of reliably matched

peaks.
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Figure 5.5: Flow chart of detecting the peaks which are matched reliably across all n
chromatograms.
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5.2.3 Registration Template Construction

To represent the peaks that are matched reliably across all n chromatograms, define a regis-

tration peak as the average of peaks that are matched reliably across all n chromatograms.

A registration peak has an average first column retention time, an average second column

retention time, an average mass spectrum, and a CLIC rule with an average NIST match

factor to distinguish that peak from other peaks. For the n chromatograms, a registration

template records all the registration peaks of the n chromatograms.

5.3 Cumulative Chromatogram

Align (register) the individual chromatograms using the registration template and sum

the aligned chromatograms to create a cumulative chromatogram. To align each chro-

matogram, match the registration peaks recorded in the registration template to the detected

peaks in each chromatogram. Then, align each chromatogram with the registration template

using translation in the retention-time plane. This aligning is a reversal of the usual template

matching operation, in which the template is transformed to align with the chromatogram.

As each chromatogram is aligned with the registration template, compute the cumulative

chromatogram as the pointwise sum of the individual registered chromatograms.
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5.4 Feature Template

Process the cumulative chromatogram to correct the baseline and detect all peaks. For each

peak detected in the cumulative chromatogram, a feature region is defined as the footprint

in the retention-time plane occupied by the peak. Create a feature template by adding

feature regions of all peaks detected in the cumulative chromatogram to the registration

template. Figure 5.6 illustrates the feature template for the example in Figure 5.2, with one

registration peak (more than one registration peak would be desired in practice) and four

feature regions.

Figure 5.6: Feature template with one registration peak (filled circle) and four feature re-
gions (open ovals).

5.5 Cross-Sample Feature Vector

For each chromatogram, a cross-sample feature vector characterizes the detector response

within the regions of the feature template. Match the registration peaks of the feature tem-

plate to the detected peaks in each chromatogram. The matching uses both the retention-
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time plane pattern and the mass spectral matching rules of the template’s registration peaks.

Then, for each chromatogram, align the feature template to the chromatogram using trans-

lation and scaling. Applying the translation and scaling to both the registration peaks and

feature regions in the feature template maintains the geometries of the regions relative to

the registration peaks and brings them into proper alignment with the detected peaks in

each chromatogram. For each chromatogram, with each transformed feature, the cross-

sample feature vector value is computed as the total TIC summed over all data points in the

feature region (other characteristics, such as total selected ion count values, could be used).

Then, normalize the feature values for each chromatogram by dividing by the sum of all

the feature values in the chromatogram so that each feature is a fractional response (other

normalization methods, such as normalizing to internal standard or reference peaks, could

be used).

5.6 Classification

A classifier models the predefined classes, predicts the class label of unseen chromatograms

based on the feature vector of each chromatogram, and identifies potential biomarkers of

predefined classes for closer examination based on the discriminating features of the clas-

sifier. The process of building the classifier attempts to determine which features are in-

dicative of the class label and the manner in which they are indicative so that the class label

of an unknown can be predicted.

Leave-one-out cross-validation is a standard accuracy estimation technique to estimate

prediction accuracy. Leave-one-out cross-validation conducts the classification experiment

once for each chromatogram. In each experiment, leave-one-out cross-validation partitions
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the data set into a testing set with just the subject chromatogram without its class label (the

class label of the test is known but not provided to the classifier) and a training set with all of

the other chromatograms with their class labels. Then, leave-one-out cross-validation con-

structs a classifier based on the training set (according to whichever classification method

used) and classifies the testing set by inputting its feature vector into the classifier (which

then predicts its class label). If the predicted class label is the same as the known class

label, then the classifier is credited with a correct classification. Overall classification ac-

curacy, precision of each class, and recall of each class are used to quantitatively measure

the performance of the classifier. The overall accuracy is defined as the number of chro-

matograms that are classified correctly divided by the number of chromatograms that are

classified. The precision measures the accuracy that a specific class has been predicted.

The recall measures the ability of a classification algorithm to select instances of a certain

class from a data set.

This study uses the feature vectors of comprehensive two-dimensional chromatograms

for classification, but other analysis (such as clustering analysis, Fisher ratio analysis, etc.)

also could use these feature vectors as discussed in Chapter 7.
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Chapter 6

Experimental Results for the

Non-Targeted Cross-Sample

Classification

Experimental results demonstrate the effectiveness of the new non-targeted cross-sample

classification. The feature vectors generated by the new non-targeted cross-sample classi-

fication are useful for discriminating between samples of different classes and providing

information that can be used to identify potential biomarkers for closer examination.

6.1 Dataset

The new non-targeted cross-sample classification is demonstrated with an experimental

data set from breast cancer tumor samples provided by Dr. Oliver Fiehn, University of
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California - Davis. The samples were obtained from breast cancer tumors from 18 individ-

uals, six each for grades 1-3, as determined by a cancer pathologist. Extraction protocols

followed Fiehn et al. [132]. Sample preparation was performed at Zoex Corporation (Hous-

ton TX, USA). GC×GC separations were performed by Tofwerk AG (Thun, Switzerland)

on an Agilent 7890 GC and 7693 autosampler and coupled with the Zoex FasTOF time-

of-flight high-resolution mass spectrometry system. Figure 6.1 illustrates the GC×GC-MS

chromatograms of the grade 1 breast cancer tumors; Figure 6.2 illustrates the grade 2 breast

cancer tumors; and Figure 6.3 illustrates the grade 3 breast cancer tumors.

The visualizations of Figure 6.1, Figure 6.2, and Figure 6.3 use pseudocolorization of

the TIC with a cold-to-hot color scale. Chromatographic variations are visible, for example,

the larger detector responses in the first sample of grade 1 (upper left in Figure 6.1) and

the fourth sample of grade 3 (middle right in Figure 6.3), and the larger late-time bleed

in the third sample of grade 1 (middle left in Figure 6.1) and the first sample of grade

2 (upper left in Figure 6.2). In the data for each sample, thousands of compounds are

separated by GC×GC and characterized by high-resolution mass spectrometry, providing

a rich source of chemical information. Comprehensive analyses of large collections of

such samples may yield biochemical features that are indicative of health conditions. Such

biochemical features could indicate potential bases for diagnostic tests, provide insights

into disease processes, help researchers to develop more effective treatments, and give

information about response to treatments.
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Figure 6.1: GC×GC-MS chromatograms of the grade 1 breast cancer tumors.
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Figure 6.2: GC×GC-MS chromatograms of the grade 2 breast cancer tumors.
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Figure 6.3: GC×GC-MS chromatograms of the grade 3 breast cancer tumors.
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6.2 Experimental Results

Figure 6.4 visualizes the feature template overlaid on the cumulative chromatogram for all

the samples in the breast cancer tumor data set. In the feature template, the positions of the

registration peaks in the retention-time plane are annotated by black ovals. There are 13

registration peaks identified. As it can be seen, the ranges of the registration peaks nicely

cover the chromatographic region in which most peaks appear. Most of the registration

peaks are well separated from neighboring peaks and thus can be reliably detected and

recognized across chromatograms. In the feature template, the positions of the feature

regions in the retention-time plane are annotated by red outlines. There are 3408 feature

regions detected.

The three grades of breast cancer indicate the degree of cellular abnormality and pre-

dict how quickly the tumor is likely to grow. The three grades are considered as three

classes with class labels grade1, grade2, and grade3. Each class has six chromatograms.

Without a priori knowledge of the class distribution, a classifier that guessed randomly

has an expected classification accuracy of 33.33%. A classification model is built by the

decision table algorithm [133] (available in the WEKA collection of machine learning algo-

rithms [134]), which builds a table of rules based on an optimal subset of the features with

wraper-based feature selection. In leave-one-out cross-validation, the decision table algo-

rithm successfully classifies 14 chromatograms correctly and achieves a classification accu-

racy of 77.78%, which would be achieved by random guessing (without a priori knowledge

of the class distribution) with less than 0.01% (0.0001) probability. The chromatograms’

class labels generated by the decision table algorithm have substantial agreement (kappa

value of 0.66) with the chromatograms’ true labels according to Table 4.1. Table 6.1 shows

the classification accuracy, Fleiss kappa statistics, the confusion matrix, the precision of
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Figure 6.4: Feature template of the breast cancer data set.
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each class, and the recall of each class for the decision table algorithm.

Table 6.1: Performance of decision table with leave-one-out cross-validation.

Performance Decision table
Accuracy (%) 77.78
Kappa 0.66

grade1 grade2 grade3 error recall
grade1 5 1 0 1 0.83

Confusion matrix grade2 1 5 0 1 0.83
grade3 1 1 4 2 0.67
error 2 2 0 4
precision 0.71 0.71 1.00

Discriminating features identified by the classifier can be used to identify potential

biomarkers for closer examination. Figure 6.5 illustrates the high-resolution mass spectrum

of the region 297 which is a discriminating feature identified by decision table. Examina-

tion of the high-resolution mass spectrum peaks indicates possible elemental composition

of C4H10NOSi+ for the peak at mass-to-charge ratio 116 and C5H11NOSi+ for the peak at

mass-to-charge ratio 129, suggesting the arrangement CHNOSi(CH3)3+ for the 116 frag-

ment ion and CHCHNOSi(CH3)3+ for the 129 fragment ion. Putative structure of the

compound in Region 297 is illustrated in Figure 6.6 [135]. Oxime moiety is supported by

exact mass measurement and elemental composition assignment [135].

6.3 Summary

Experimental results demonstrate the effectiveness of the new non-targeted cross-sample

classification. The feature vectors generated by the new non-targeted cross-sample clas-

sification are useful for discriminating between breast cancer tumor samples of different
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Figure 6.5: The high-resolution mass spectrum of feature 297 from one of the samples.

grades (as labeled by a cancer pathologist) and providing information that can be used to

identify potential biomarkers for closer examination.
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Figure 6.6: Putative structure of the compound in Region 297.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Classification of Mass Spectra

Mass spectrometry is an analysis technique that measures the mass-to-charge ratio (m/z) of

molecular and fragmentary ions. Mass spectra contain characteristic information regarding

the composition of compounds and the properties of compounds. The mass spectra of

compounds from the same chemically related group are similar. Therefore, mass spectra

can be used to predict or explain compound properties, such as biological or chemical

properties, based on mass spectral similarity.

Classification is one of the fundamental methodologies for analyzing mass spectral

data. The primary goals of classification are to automatically group compounds based on
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their mass spectra, to find correlation between the properties of compounds and their mass

spectra, and to provide a positive identification of unknown compounds. Classification

complements library search which searches a mass spectral library to identify unknown

mass spectra. For mass spectra that cannot be found in a library, classification can involve

identification of substructure types or well defined compound classes in order to establish

and confirm structural conjectures or reveal relationships between mass spectra and chem-

ical structures. Classification also can be useful in cases when only structurally related

compounds need to be retrieved.

Mass spectra are high-dimensional data. Mass spectra of complex mixtures are enor-

mously complex with large mass ranges and many structurally significant peaks combined

with noise peaks (such as contaminants and small or non-diagnostic fragment ions). Within

this high-dimensional complexity, there is a huge amount of information about the iden-

tity of the mixture, e.g., compound composition, molecular orientation, surface order, and

chemical bonding. Establishing new mathematical or statistical methodologies for compre-

hensive information analysis and classification has become one of the most important tasks

in mass spectral analysis.

This dissertation presents a new classification algorithm for classification of mass spec-

tra, the most similar neighbor with a probability-based spectrum similarity measure (MSN-

PSSM). The MSN-PSSM algorithm is a multi-class classification algorithm, that can deal

with multiple classes directly without converting a multi-class problem into a set of two-

class problems. The MSN-PSSM algorithm models the intra-class variability and uses a

smoothing model in the similarity measure to enhance the robustness with respect to noise,

such as chemical noise and instrument noise. The MSN-PSSM algorithm characterizes the

domain information of labeled data by an array of probability distribution functions of in-
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tensities as a function of m/z. Each probability in the distribution function is the fraction

of spectra in the labeled data having that intensity value at the givenm/z. The MSN-PSSM

algorithm considers all m/z that contain discriminating information to avoid information

loss.

Experimental results demonstrate the effectiveness and robustness of the new MSN-

PSSM algorithm. In leave-one-out cross-validation, it outperforms popular classification

techniques for classification of mass spectra, such as principal component analysis with

discriminant function analysis, soft independent modeling of class analogy, and decision

tree learning.

7.1.2 Cross-Sample Classification of Comprehensive Two-Dimensional

Chromatograms

Two-dimensional separation patterns obtained by comprehensive chromatography, in par-

ticular comprehensive two-dimensional gas chromatography (GC×GC), analyze a complex

mixture to characterize its composition. GC×GC is a powerful tool for complex biological

sample characterization, differentiation, discrimination, and classification on the basis of

the component distribution over the two-dimensional plane.

Comprehensive two-dimensional chromatography yields highly informative separation

patterns because of its great practical peak capacity and sensitivity produced by applying

two different separation principles (one for each chromatographic dimension). However,

the improvement in information yields complex data (consisting of two-dimensional reten-

tion data and mass spectra) requiring comprehensive analyses to interpret the rich informa-

tion and to extract useful information on sample characterization. Cross-sample analysis
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of complex biological samples, such as sample classification, is even more challenging be-

cause of the difficulty of analyzing and interpreting the massive, complex data from many

samples for relevant biochemical features. The large dimensionality of biological data,

as well as the size of the dataset, and the possibility that significant chemical character-

istics across many samples may be subtle and involve patterns of variations in multiple

constituents, necessitate the investigation and development of new analysis methodologies.

This dissertation presents a new non-targeted cross-sample classification method to ana-

lyze comprehensive two-dimensional chromatograms. The non-targeted cross-sample clas-

sification systematically and automatically detects registration peaks of multiple compre-

hensive two-dimensional chromatograms. Then, the non-targeted cross-sample classifica-

tion uses the registration peaks to align (register) the comprehensive two-dimensional chro-

matograms of samples to generate a cumulative chromatogram. The registration peaks and

the retention-time regions of all peaks detected in the cumulative chromatogram are used

to generate a feature template. The registration peaks in the feature template are matched

to the detected peaks in each chromatogram. For each chromatogram, the non-targeted

cross-sample classification creates a feature vector that characterizes the detector response

within the regions of the feature template. Then, the non-targeted cross-sample classifica-

tion uses the feature vectors for the set of comprehensive two-dimensional chromatograms

to perform classification and potential biomarker identification.

The new non-targeted cross-sample classification is successfully applied to a set of

comprehensive two-dimensional chromatograms of breast cancer tumor samples, each from

different individuals, for cancer grades 1 to 3 (as labeled by a cancer pathologist). Experi-

mental results demonstrate the effectiveness of the new non-targeted cross-sample classifi-

cation. The feature vectors generated by the new non-targeted cross-sample classification
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are useful for discriminating between breast cancer tumor samples of different grades and

providing information that can be used to identify potential biomarkers for closer examina-

tion.

7.2 Future Work

The MSN-PSSM algorithm for classification of mass spectra can be extended in two as-

pects.

1. To simplify the domain characterization, the MSN-PSSM algorithm assumes mass-

to-charge ratio independence, that is, for a spectrum, the intensity value at one mass-

to-charge ratio is independent of the intensity value at any other mass-to-charge ratio.

Mass-to-charge ratio independence is not usually true. The relationships between the

intensities at different mass-to-charge ratios could be considered resulting in higher-

order distribution functions in domain characterization. Higher-order probability dis-

tribution functions could improve the classification performance.

2. To simplify the intra-class variability modeling, the MSN-PSSM algorithm assumes

the relationship between the standard deviation of intensities and the intensity level

is linear. Non-linear relationship (e.g., quadratic relationship) could improve the

classification performance.

The non-targeted cross-sample classification method to analyze comprehensive two-

dimensional chromatograms can be extended in five aspects.

1. In this study, the non-targeted cross-sample classification detects reliably matched
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peaks across all chromatograms. Reliably matching across all chromatograms is

a very strong requirement because of peak detection errors as well as the inherent

ambiguity of matching. Co-eluting constituents may be detected as separate peaks in

some chromatograms but as one peak in other chromatograms. The peaks of different

analytes may be incorrectly matched, especially if constituents differ from sample to

sample. The strong requirement of reliably matching across all chromatograms could

be relaxed to reliably matching across a subset of all chromatograms.

2. In this study, the non-targeted cross-sample classification uses the feature vectors of

comprehensive two-dimensional chromatograms for classification. Other data analy-

sis (such as clustering analysis, Fisher ratio analysis, etc.) can also use these feature

vectors.

3. This study applies the non-targeted cross-sample classification to two-dimensional

gas chromatograms. But this non-targeted cross-sample classification should not be

limited to two-dimensional gas chromatograms. It should be adaptable for use with

a variety of comprehensive two-dimensional chemical separations.

4. In the non-targeted cross-sample classification, each cross-sample feature value is the

total TIC summed over all data points in the feature region. Considering the mass

spectrum of each feature region as the feature value may improve the accuracy of the

non-targeted cross-sample classification.

5. In the non-targeted cross-sample classification, each individual chromatogram is

aligned to the registration template using a global transformation. Although the non-

targeted cross-sample classification uses regions as features and is robust to misalign-

ment between samples, non-global (e.g., piecewise) transformation could decrease

the chance of misalignment and improve the accuracy of cross-sample classification.
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