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Abstract

Computational prediction of protein subcellular localization can greatly help to elu-

cidate its functions. Despite the existence of dozens of protein localization prediction

algorithms, the prediction accuracy and coverage are still low. Several ensemble al-

gorithms have been proposed to improve the prediction performance, which usually

include as many as 10 or more individual localization algorithms. However, their per-

formance is still limited by the running complexity and redundancy among individual

prediction algorithms. In the first part of the dissertation, we propose a novel method

for rational design of minimalist ensemble algorithms for practical genome-wide pro-

tein subcellular localization prediction. The algorithm is based on combining a feature

selection based filter and a logistic regression classifier. Using a novel concept of con-

tribution scores, we analyzed issues of algorithm redundancy, consensus mistakes,

and algorithm complementarity in designing ensemble algorithms. We applied the

proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide

datasets of Yeast and Human and compared its performance with current ensemble

algorithms. Experimental results showed that the minimalist ensemble algorithm

can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors

of current ensemble algorithms, which greatly reduces computational complexity and

running time. Compared to the best individual predictor, our ensemble algorithm

improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast

dataset and from 0.628 to 0.646 for the Human dataset.

In the second part of the dissertation, we propose a computational method, SeqNLS,

ii



to predict nuclear localization signal (NLS). The major difficulty of NLS prediction

is that NLSs are known to have diverse patterns, but the knowledge to NLS patterns

is limited and only a portion of NLSs can be covered by the known NLS motifs. In

SeqNLS, on the one hand we propose a sequential-pattern approach to effectively

detect potential NLS segments without constrained by the limited knowledge of NLS

patterns. On the other hand, we introduce a model for NLS prediction which uti-

lizes the fact that NLS is one type of linear motifs. Our experiment results show

that our sequential-pattern approach is effectively in extensively searching potential

NLSs. Our method can consistently find over 50% of NLSs with prediction precision

at least 0.7 in the two independent datasets. The performance of our method can out

perform the-state-of-art NLS prediction methods in terms of F1-score.

The binding affinity between a nuclear localization signal (NLS) and its import recep-

tor is closely related to corresponding nuclear import activity. PTM based modula-

tion of the NLS binding affinity to the import receptor is one of the most understood

mechanisms to regulate nuclear import of proteins. However, identification of such

regulation mechanisms is challenging due to the difficulty of assessing the impact of

the PTM on corresponding nuclear import activities. In the third part of the disserta-

tion we proposed NIpredict, an effective algorithm to predict nuclear import activity

given its NLS, in which molecular interaction energy components (MIECs) were used

to characterize the NLS-import receptor interaction, and the support vector regres-

sion machine (SVR) was used to learn the relationship between the characterized

NLS-import receptor interaction and the corresponding nuclear import activity. Our

experiments showed that nuclear import activity change due to NLS change could be

accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a

systematic framework to identify potential PTM-based nuclear import regulations for

human and yeast nuclear proteins. Application of this approach has uncovered the po-

tential nuclear import regulation mechanisms by phosphorylation and/or acetylation
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of three nuclear proteins including SF1, histone H1, and ORC6.
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Chapter 1

Introduction

1.1 Background

A eukaryotic cell is organized into different membrane surrounded compartments

containing characteristic proteins and performing specialized functions. Functions of

proteins are thus closely associated with their subcellular locations. With enormous

amount of sequences emerged from the genome sequencing projects, it becomes in-

creasingly important to develop practical tools for functional annotation based on

the relevant features from sequences such as localization. Although experimental

high-throughput approaches have been developed and applied to determine proteins

localization [1, 2], they are extremely expensive and time consuming. Fast, accurate

and genome-scale computational methods for predicting subcellular localization of

proteins provide an attractive complement to experimental methods.

On the other hand, most proteins are synthesized in the cytoplasm and are trans-

ported to their target subcellular locations. The translocations of nascent proteins

are usually guided by targeting signals encoded within the amino acid sequences of

proteins. Genome-wide identification and deciphering of those targeting signals are

important for inferring localization of proteins and understanding the transporting

mechanism. Experimentally identifying protein targeting signals is usually done by

mutating a target segment in the sequence and then checking its effect on the deliv-

ered location [3, 4], which is extremely labor-intensive and expensive; computational
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prediction of targeting signals provides a complementary method to assist biologists

to design the experiments.

Computational prediction of sorting signals has substantially reduced time and

cost for biologists to discover sorting signals by focusing their experiments on puta-

tive motifs. However, protein localization is more than an issue of binary outcomes

(either localized or not localized to a target compartment). Localizations of certain

proteins are regulated through interactions of their sorting signals with other proteins

during specific cell cycle(s) [5,6]. Deregulation of such machanisms is associated with

numerous cancers such as breast cancers, prostate cancers, and other diseases [7–10].

1.2 Motivation

In the past ten years, dozens of protein localization algorithms have been proposed

based on different information sources such as amino acid composition, sorting signals,

functional motifs, conserved domains, homology search, and protein-protein interac-

tion [11]. A variety of machine learning techniques, such as SVM and K-nearest

neighbour classifiers, have been used in these prediction algorithms. Although exis-

tent methods have achieved success at different degrees, a comprehensive evaluation

study has shown that many of the reported prediction accuracies are far from be-

ing sufficient for genome wide protein localization prediction [12]. Recently, several

research groups proposed to apply ensemble or integration of algorithms to protein lo-

calization prediction [13–17]. Different ensemble algorithms are used in those studies

such as weighted and adaptive weighted voting [13], protocol-based ensemble algo-

rithm [14], Linear Discriminant Analysis (LDA) [15], J48 decision tree (DT) [16],

and two-layer decision tree [17]. Most of these ensemble algorithms integrated 10

or more standalone prediction methods for localization prediction without consider-

ing their relationships such as redundancy and complementarity. This makes these

ensemble algorithms computationally intensive. Furthermore, incorporation of unnec-
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essary predictors into an ensemble algorithm may overfit the training data and result

in degradation of its prediction performance, which has been reported recently for

ensemble mitochondrion predictors [18]. in the first part of the dissertation, we pro-

posed a systematic work to evaluate 9 standalone localization prediction algorithms

and analyze their bias and relationships in the prediction space of the resulting en-

semble algorithms. We found that ensemble algorithms based on the combination of

several specific predictors achieved comparable prediction performance as using all 9

predictors, suggesting that a high degree of redundancy exists among all individual

predictors. We thus proposed a minimalist ensemble prediction algorithm for subcel-

lular localization prediction and evaluated its performance on two data sets, which

showed high performance and significant reduction of computational complexity and

running time.

On the other hand, compared to DNA regulatory motifs, computational predic-

tion of targeting signals remains challenging due to their low conservation at the

amino acid level. In the case of Nuclear Localization Signal (NLS), several NLS

prediction methods have been developed such as PSORT II [19], PredictNLS [20],

NLStradamus [21], cNLS Mapper [22], and NucImport [23]. PSORT II predicts NLSs

based on sequence patterns implemented as three simple rules according to the clas-

sification of NLSs [24]; the rules are mainly combinations of clusters of basic amino

acids K and R and gaps between clusters. PredictNLS predicts NLSs based on 194

potential NLS motifs, which are derived from 114 experimentally verified NLSs by

applying a silico mutagenesis approach. Nguyen Ba et. al. [21] found that NLSs

tend to have similar residue frequency distributions which are different from that of

background residues. Their NLStradamus algorithm detects NLSs by using a sim-

ple two-state or four-state HMMs to accommodate the frequency variations. cNLS

Mapper estimates classical NLS (cNLS) functionality of a peptide by calculating the

sum of the functional contribution of each residue in the peptide according to the
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activity-based profiles, which are obtained from systematic amino-acid-replacement

analyses in budding yeast. NucImport [23] builds a Bayesian network to predict nu-

clear localization by incorporating various attributes related to nuclear importing. If

a protein is predicted as a nuclear protein, the location of its NLS is predicted as the

segment in the protein with the highest cNLS score in the inferred cNLS class based

on the dependencies with other attributes in the Bayesian network.

These five NLS prediction methods have achieved success at different degrees.

However, their prediction performances are still far from being sufficient to assist

biologists to discover putative NLSs in protein sequences of interest. Each of them

has their own shortcomings. Although a great portion of NLSs can be covered by

the rules used in PSORT II to detect NLS, quite many of the patterns covered by

the rules commonly exist in peptides which do not contain NLSs, leading to a high

false positive rate. The sensitivity of the PredictNLS algorithm depends on the num-

ber of NLS motifs it used, which has been extended by introducing the potential

NLS motifs generated using in-silicon mutagenesis analysis. But they are still too

specific and couldn’t effectively accommodate NLS variability [21]. The performance

of the NLStradamus algorithm strongly depends on its assumption that NLSs have

certain residue distributions. However, many NLS instances in our testing datasets

have shown very different residue frequencies. Both cNLS mapper and NucImport

algorithms are developed based on the characteristics of cNLS. However, approxi-

mately 43% of all nuclear proteins may use other transport mechanisms other than

the classical nuclear import pathway according to Allison Lange et al [25].

All the aforementioned NLS prediction methods heavily rely on sequence features

of NLS to predict NLSs. However, NLSs are known to have diverse sequence patterns

while the knowledge to NLS sequence patterns is limited. In the second part of

the dissertation, we propose a novel algorithm which apply frequent pattern mining

techniques to mine sequence patterns within experimentally verified NLSs which can
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be used to effectively detect potential NLSs. In addition, we introduce a model which

utilizes the fact that NLS is one type of linear motifs. This model can integrate the

mined sequence patterns and the linear motif attributes of NLS to effectively predict

NLS.

In recent years, an increasing number of researches are devoted to studying nuclear

import regulation of proteins. The discovery of the import regulation mechanism for a

particular nuclear protein is of great interest since it implies a potential way to control

the protein’s activity [5]. Moreover, it contributes to uncovering the potential biolog-

ical pathways that regulate the associated biological activities in the nucleus. Nuclear

import activity is mostly regulated through modulating the interactions between nu-

clear proteins and their binding import receptors [8]. In particular, modulating the

NLS binding affinity to its binding receptor by post-translational modification (PTM)

is the best understood mechanism (PTM-based nuclear import regulation) that reg-

ulates the nuclear import of proteins. In previous studies, the most common type of

PTM for nuclear import regulation is phosphorylation [5,6,26–28] while lysine acety-

lation has been found to be another frequent type [29–36]. The reason that nuclear

import can be regulated through the PTM is that nuclear import activity is directly

related to the binding affinity of NLS for its binding import receptor [37–39]. How-

ever, identifying the PTM-based nuclear import regulation is difficult since PTM may

promote, repress or may not have obvious impact on the nuclear import activity [27].

The most commonly used approach to infer the PTM-based nuclear import regu-

lation is the site-directed mutagenic analysis [26, 32, 40–46]. This approach basically

mutates the NLS residue at the PTM site to a residue that either prevents the PTM

or mimics the residue after the PTM. It then evaluates the likelihood that the PTM

regulates the nuclear import of the protein based on the change of the correspond-

ing nuclear import activity. The strategy of mimicking residue after PTM such as

phosphorylation has been performed computationally by cNLS mapper [22], in which
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the position-wise contributions of different amino acids to the nuclear import activity

are approximated in the activity-based profiles. However, the interaction between a

NLS and its binding import receptor is very sensitive to the NLS change. The site-

directed mutagenic analysis is thus not always reliable due to the difference between

the mimicking residues and the residues after PTM. Since the PTM-based nuclear

import regulation is now recognized as a common nuclear import regulation mecha-

nism, there is a need for developing quantitative methods to expand the identification

of more PTM-regulated nuclear proteins [27].

For the PTM-based nuclear import regulation, it is technically true that PTM

regulates the nuclear import of a protein through modification of its NLS residue(s).

However, the induced change on the interaction between the NLS and the import

receptor is the ultimate factor that governs the change on its nuclear import activity.

In other words, the induced change on the NLS-import receptor interaction should

better characterize the change of the nuclear import activity caused by PTM than

the difference of the NLSs. Therefore, in our method we first applied molecular

interaction energy components (MIEC) [47–50], which has been successfully used to

characterize domain-peptide interactions, to characterize the NLS-import receptor

interaction. Next, we used SVR to learn the relationship between the MIEC features

and the corresponding nuclear import activity, which is quantitated as NLS activity

scores [22] in the experimental dataset. The characteristic of our method (NIpredict)

is that it is a machine learning based method based on features calculated from NLS-

import receptor interaction interface, which can thus be applied to assess the impact

of PTM within NLS on the corresponding nuclear import activity.

1.3 Contributions and Significance

The research presented in this work addresses three major problems discussed in the

previous section. In particular, seven major contributions are:
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• Analyzing the existing 9 protein localization predictors systematically, which in

particular addresses issues of algorithm redundancy, consensus mistakes, and

algorithm complementarity in designing ensemble algorithms (in Chapter 2).

• Proposing a novel method for rational design of minimalist ensemble algorithms

for practical genome-wide protein subcellular localization prediction, which can

significantly reduce the number of individual predictors in a given ensemble

algorithm while maintaining comparable performance (in Chapter 2).

• Demonstrating the linear motif attributes of NLS such as disorder, relative

surface area, and relatively local conservation (in Chapter 3).

• Proposing an algorithm (SeqNLS) to predict NLS which outperforms other

state-of-the-art NLS predictors (in Chapter 3).

• Proposing an algorithm (NIpredict) to predict nuclear import activity effectively

based on NLS-import receptor interaction (in Chapter 4).

• Developing a systematic framework to identify potential PTM-based nuclear

import regulations for human and yeast nuclear proteins based on NIpredict (in

Chapter 4).

• Uncovering the potential nuclear import regulation mechanisms by phosphory-

lation and/or acetylation of three nuclear proteins including SF1, histone H1,

and ORC6 (in Chapter 4).

1.4 Organization of the Dissertation

The rest of the dissertation is organized into five chapters:

Chapter 2 analyzed 9 existing protein localization predictors, which in partic-

ular addressed issues of algorithm redundancy, consensus mistakes, and algorithm
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complementarity in designing ensemble algorithms. A framework of designing mini-

malist ensemble algorithms for practical genome-wide protein subcellular localization

prediction was proposed, which could significantly reduce the number of individual

predictors in a given ensemble algorithm while maintaining comparable performance.

The work has been published in BMC Bioinformatics, 2012 [51].

Chapter 3 proposed a NLS prediction algorithm, SeqNLS. The method applied

frequent pattern mining techniques to address the issues of diverse patterns of NLS.

In addition, we demonstrated the linear motif attributes of NLS and designed an

algorithm to incorporate the linear motif features of NLS into our method, which

sucessfully improved the NLS prediction accuracy. The work has been accepted in

PLoS One, 2013 [52].

Chapter 4 proposed a nuclear import activity prediction algorithm, NIpredict.

The prediction is based on characterized NLS-import receptor interaction and can

be used to identify nuclear proteins whose nuclear import is regulated by PTM. We

applied our method in human and yeast genome and uncovered serveral potential

nuclear import regulation mechanisms.

Chapter 5 summarized the main results in the dissertation and presented some

conclusions.
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Chapter 2

Minimalist Ensemble Algorithms for Genome-wide Protein Localization
Prediction

2.1 Background

Functions of proteins are closely correlated with their subcellular locations. For exam-

ple, Assfalg et al. [53] showed that there exists strong correlation between localization

and proteins fold and localization can be utilized to predict structure class of proteins.

It is thus desirable to accurately annotate subcellular location of proteins to elucidate

their functions. In the past ten years, dozens of protein localization algorithms have

been proposed based on different information sources such as amino acid composition,

sorting signals, functional motifs, conserved domains, homology search, and protein-

protein interaction [11]. A variety of machine learning techniques, such as SVM and

K-nearest neighbour classifiers, have been used in these prediction algorithms. Al-

though existent methods have achieved success at different degrees, a comprehensive

evaluation study has shown that many of the reported prediction accuracies are far

from being sufficient for genome wide protein localization prediction [12].

Recently, several research groups proposed to apply ensemble or integration of al-

gorithms to protein localization prediction [13–17]. Liu et al. [13] proposed weighted

and adaptive weighted voting algorithms in which the overall accuracy of a stan-

dalone algorithm is used as the weight. Laurila and Vihinen [14] proposed an inte-

grated method (PROlocalizer ) which combines the predictions of multiple specialized
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binary localization prediction algorithms such as TMHMM and Phobius. Park et

al. [15] developed a Linear Discriminant Analysis (LDA) method (ConLoc ) to assign

LDA optimal weights for weighted voting. Assfalg et al. [16] proposed two ensemble

localization algorithms; one is a scored voting scheme based on the ranks of the pre-

diction accuracy of the predictors; the other chose J48 decision tree (DT) classifier

as the integration scheme. Shen and Burger [17] proposed a two-layer decision tree

method to improve the prediction accuracy of a single subcellular location. Most of

these ensemble algorithms integrated 10 or more standalone prediction methods for

localization prediction without considering their relationships such as redundancy and

complementarity. This makes these ensemble algorithms computationally intensive.

Furthermore, incorporation of unnecessary predictors into an ensemble algorithm may

overfit the training data and result in degradation of its prediction performance, which

has been reported recently for ensemble mitochondrion predictors [18].

In this chapter, we evaluated 9 standalone localization prediction algorithms and

analyzed their bias and relationships in the prediction space of the resulting ensem-

ble algorithms. We found that ensemble algorithms based on the combination of

several specific predictors achieved comparable prediction performance as using all 9

predictors, suggesting that a high degree of redundancy exists among all individual

predictors. We thus proposed a minimalist ensemble prediction algorithm for subcel-

lular localization prediction and evaluated its performance on two data sets, which

showed high performance and significant reduction of computational complexity and

running time.

2.2 Methods

2.2.1 Standalone protein localization predictors

To implement our ensemble localization predictor, we selected 8 published localiza-

tion prediction algorithms provided that the software or web server is publicly avail-

10



Table 2.1: Features used in localization prediction algorithms

Sorting Amino acid *Known Homology Evolutionary PPI
signal composition search information

NetLoc X
YLoc X X X X

MultiLoc2 X X X X
KnowPred X
Subcell X

WoLFPSORT X X X
BaCelLo X X
CELLO X
SubLoc X

*Known domains or motifs

able, and batch submission is supported. These algorithms include YLoc [54], Multi-

Loc2 [55], KnowPred [56], Subcell [57], WoLFPSORT [58], BaCelLo [59], CELLO [60],

SubLoc [61]. We also included NetLoc [62], a protein-protein interaction (PPI) based

prediction method. These prediction methods differ in the features that character-

ize proteins targeting different subcellular locations (Table 2.1) and the prediction

algorithms. These diverse features include sorting signals, amino acid composition,

known motifs or domains, homology search against a known dataset or database

such as SwissProt, evolutionary information such as phylogenetic profiles or sequence

profiles, and protein-protein interaction. The overlap of the used features among lo-

calization predictors suggests that redundant predictions could be made when these

prediction methods are combined to build an ensemble algorithm, which could mis-

lead the prediction behaviour of the resulting ensemble algorithm.

In addition to amino acid sequence information, protein-protein interaction has

been known as external information correlated to protein subcellular localization. A

number of algorithms have been developed to utilize PPI features to predict pro-

tein localization (Hishigaki et al [63], Lee et al [64] and Shin et al [65]). Recently,

our group developed NetLoc [62], a kernel-based logistic regression (KLR) method,

which can effectively extract PPI features to predict protein localization. Considering

that NetLoc simply used PPI as its features, we integrated NetLoc into our ensem-
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ble algorithms to compare the ensemble performances with and without a PPI-based

predictor. In our experiments, PPI data of NetLoc is based on the whole Saccha-

romyces cerevisiae physical PPI dataset obtained from BioGRID database [66]. We

exclude proteins overlapped with our Yeast datasets from the PPI dataset to ensure

independency between the training and testing datasets.

2.2.2 Mapping of subcellular locations

Different localization predictors may have different subcell resolutions. In order to

compare their performances on genome wide datasets, we applied a location map-

ping scheme to map the subcellular locations of standalone predictors to unified 5

locations in the ensemble algorithms, including Cytosol, Mitochondrion, Nucleus,

Secretory (secretory pathway), and Others. Six classes of subcellular locations are

mapped to Secretory according to [55]: extracellular, plasma membrane, endoplasmic

reticulum, golgi apparatus, lysosomal, and vacuolar. Except for Cytosol, Mitochon-

drion, Nucleus, and Secretory, the remaining subcellular locations are categorized as

Others. For example, for CELLO, the following subcellular locations are mapped to

Secretory: extra, plas, er, vacu, golgi, and lyso; chlo, pero, and cytos are mapped

to Others. For WoLFPSORT, E.R., extr, plas, golg, lyso, and vacu are mapped to

Secretory; chlo, cysk, and pero are mapped to Others.

2.2.3 Contribution score

To explore the complementary relationship among the individual predictors used in

an ensemble algorithm, we calculated contribution scores [67] of component stan-

dalone prediction methods. This measure is used to evaluate the contribution of

each individual classifier to the ensemble algorithm, and has been used for pruning

large ensemble set. The main idea of the contribution score is that predictors that

tend to make correct and minority predictions among other predictors will be scored
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higher since they make unique contribution and thus are essential for the ensem-

ble algorithm. On the other hand, predictors with low contribution scores tend to

make incorrect and majority predictions. The contribution score of a predictor in an

ensemble algorithm is calculated as follows: Contribution score of predictor i =

N∑
j=1

(αi j(2v( j)
max − v( j)

pi(protein j)
) + βi jv

( j)
sec + θi j(v

( j)
correct − v( j)

pi(protein j)
− v( j)

max))

where:

αi j =


1 if pi(proteinj)=realj and pi(proteinj) is in the minority group;

0 otherwise.

βi j =


1 if pi(proteinj)=realj and pi(proteinj) is in the majority group;

0 otherwise.

θi j =


1 if pi(proteinj), realj;

0 otherwise.

Symbols in the formula are explained as follows: for a protein j, the prediction

results of nine predictors in the order of predictor 1 to predictor 9 are Cytosol, Nucleus,

Nucleus, Mitochondrion, Nucleus, Cytosol, Nucleus, Nucleus, and Nucleus, while the

real localization of protein j is Cytosol. In this case, the majority votes (predictions)

are for Nucleus, the number of the majority votes is denoted as v( j)
max , which is 6; the

number of the second majority votes is denoted as v( j)
sec , which is 2; the number of the

correct votes is denoted as v( j)
correct, which is 2; the prediction result of predictor i is

denoted as pi(proteinj) ; the number of predictors having the same prediction result

with predictor i is denoted as v( j)
pi(protein j)

. From the formula, we can see that predictor

1 and predictor 6 have the same positive contribution, which is 2*6-2=10; predictor

4 has minor negative contribution, which is -5; predictors 2,3,5,7,8,9 have the most
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negative contribution, which is -10. If the dataset used to learn contribution scores

has N proteins, then the final contribution score of a predictor is summation of its

N contributions. We normalized the final contribution scores (CS) with the formula:

(CS − µ)/σ where µ and σ are mean and standard deviation of contribution scores

among predictors.

2.2.4 Minimalist ensemble prediction algorithm

Existing ensemble algorithms tend to include as many as possible component classi-

fiers for better prediction performance. However, including redundant predictors not

only increases computational complexity and collecting effort, but also may lead to

over-fitting [9]. Moreover, predictors with poor performance could mislead the ensem-

ble algorithms especially those using majority voting schemes. It is thus desirable to

find the minimal subset of predictors for achieving equally good or better prediction

performance. Several strategies can be used to find the minimal set of predictors:

exhaustive search of all possible combinations of component predictors, feature selec-

tion, and selecting top k most accurate predictors. We did an exhaustive search for

all combinations of K individual predictors to build different ensemble algorithms. It

shows that combining 6 out of 9 predictors can achieve the best performance when the

logistic regression classifier was used to integrate the predictions. However, exhaus-

tive search is a time consuming process especially when the set of available predictors

is large. Top-K accuracy selection method is straightforward and fast, but has the

limitation of neglecting the redundancy among individual predictors.

Here we proposed a minimalist ensemble design method to approximate the small-

est set of predictors with the best possible prediction accuracy. The rationale is to

find the smallest subset of predictors whose predictions are highly correlated to the

real locations. The minimalist ensemble design problem is similar to feature selection

when the prediction labels of individual predictors are considered as features. Here,
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we chose the correlation based feature subset evaluator (CfsSubsetEval) [68] as the

attribute evaluator to evaluate correlation between a feature subset and the class.

Greedy-Stepwise method is used to search optimal feature subsets in different size of

K through the space: the starting point of search is set as the set with all available

predictors (assume size N). Each time Greedy-Stepwise algorithm will remove one

feature or predictor from the set which would produce a reduced set with the high-

est possible CfsSubsetEval Score. We continue the process until set size is 1, while

along the way the predictors in the set with size K are recorded as the output of our

minimalist ensemble algorithm. After the K individual predictors are selected based

on the training dataset, their predicted localizations for all proteins in the training

dataset will be used as features, and a machine learning based classifier, such as naive

Bayes, logistic regression, or decision trees is used to train a classifier to predict the

final subcellular localization. This method used to select minimalist set of individual

predictors can also be used for building ensemble algorithms based on weighted voting

or LDA.

2.2.5 Datasets preparation

Two genome-wide protein localization databases are used to build three datasets in

our experiments. The yeast dataset is obtained from Huh et al [1]. We excluded pro-

teins localized to Others (after location mapping) and multi-location proteins from

the yeast dataset. Two versions of the yeast dataset with different resolutions are

prepared; for the low-resolution yeast dataset (Yeast Low-Res), we extracted proteins

in Cytosol, Nucleus, Mitochondrion, Secretory after location mapping. For the high-

resolution yeast dataset (Yeast High-Res), we extracted proteins in Cytosol, Nucleus,

Mitochondrion, ER, Vacuole, Golgi, and Cell Periphery (plasma membrane and ex-

tracellular). The Human dataset is obtained from the LOCATE database [69] by

extracting proteins in 4 locations (Cytoplasmic, Mitochodria, Nuclear, and Extra-
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cellular). Then we removed all multi-location proteins. For both Yeast and Human

datasets, Blastclust with 30% sequence identity was used to remove redundant se-

quences. In addition, proteins overlapped with the training datasets of component

predictors in the corresponding ensemble experiment are removed. It should be noted

that the Yeast High-Res dataset is highly overlapped with the Yeast Low-Res datasets.

The final distribution of proteins in different locations for the three datasets is shown

in Table 2.2.

Table 2.2: The distributions of proteins in different locations for the test datasets

Dataset Cytosol 4Mit Nucleus Sectory Total
1Yeast 498 175 234 315 1222
Human 361 327 159 458 1305

Cytosol 4Mit Nucleus ER 5Vac Golgi 6Cell

2Yeast 530 165 233 149 103 33 34 1247
3Overlap 451 133 218 132 90 32 0 1056
1Yeast-LowRes
2Yeast-HighRes
3Overlap of Yeast-LowRes and Yeast-HighRes
4Mitochondrion
5Vacuole
6Cell Periphery

2.2.6 Evaluation of individual Predictors and ensemble algorithms

To evaluate the performance of predictors, accuracy and MCC were calculated using

the equations below: Accuracy: MCC: where TP, TN, FP, FN means true positive,

true negative, false positive and false negative predictions. It should be noted that

since localization prediction is a multi-class classification problem, MCC can only

be calculated for each location while an overall accuracy can be calculated for each

prediction method for a given dataset. In our experiments, 10-fold cross-validation

was used to evaluate all the ensemble algorithms.
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2.3 Results and Discussion

2.3.1 Evaluation of individual predictors

Table 2.3: Prediction performance(MCC Scores) of individual predictors for the Yeast
Low-Res dataset

Cytosol Mitochondrion Nucleus Secretory Overall
Accuracy

YLoc 0.146 0.556 0.367 0.314 0.453
(2010)
NetLoc 0.270 0.350 0.484 0.473 0.556
(2010)

MultiLoc2 0.268 0.581 0.420 0.339 0.558
(2009)

KnowPred 0.286 0.415 0.345 0.534 0.51
(2009)
Subcell 0.134 0.243 0.181 0.326 0.399
(2008)

WoLFPSORT 0.265 0.549 0.312 0.568 0.484
(2007)
BaCelLo 0.164 0.526 0.291 0.339 0.468
(2006)
CELLO 0.261 0.547 0.302 0.534 0.493
(2006)
SubLoc 0.184 0.354 0.260 0.391 0.439
(2001)

1LR 0.429 0.668 0.476 0.607 0.668
2LR 0.504 0.666 0.550 0.664 0.707

1LR with 8 predictors without NetLoc
2LR with all 9 predictors

We obtained the prediction results on three test datasets (Yeast Low-Res, Yeast

High-Res and Human) from the selected individual predictors using the web servers or

standalone programs and then evaluated their accuracy and MCC scores. The results

of 9 predictors for the Yeast Low-Res dataset are shown in Table 2.3, the results of 6

predictors for the Yeast High-Res dataset are shown in Table 2.4, and the results of

8 predictors for the Human dataset are shown in Table 2.5.

For the Yeast dataset (Table 2.3, 2.4), most algorithms have better performance
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Table 2.4: Prediction performance(MCC Scores) of individual predictors for the Yeast
High-Res dataset

1Y 2M 3S 4W 5C 6N 7LR 8LR

Cytosol 0.441 0.293 0.146 0.251 0.255 0.247 0.459 0.555
*Mito 0.689 0.496 0.251 0.510 0.501 0.318 0.684 0.713
Nucleus 0.405 0.275 0.181 0.311 0.306 0.434 0.351 0.473

ER 0.207 0.203 0.022 0.059 0.000 0.340 0.431 0.463
Vacuole 0.115 0.045 0.034 0.000 0.061 0.189 0.174 0.191
Golgi 0.008 0.010 0.054 0.118 -0.005 0.465 0.038 0.275
Cell 0.107 0.044 0.068 0.142 0.090 0.449 0.04 0.269

Periphery
Overall 0.506 0.473 0.300 0.362 0.354 0.523 0.585 0.640
Accuracy
*Mitochondrion
1YLoc(2010)
2MultiLoc2(2009)
3Subcell(2008)
4WoLFPSORT(2007)
5CELLO(2006)
6NetLoc(2010)
7LR with 5 predictors without NetLoc
8LR with all 6 predictors

on predicting Mitochondrion proteins. For the Yeast High-Res dataset (Table 2.4), we

can see that all predictors except NetLoc showed poor performance on predicting pro-

teins localized to secretory pathway compartments especially golgi, and cell periphery.

This suggests that PPI can be an effective feature for predicting low-resolution com-

partments. Predictors with relatively high accuracy on the Yeast Low-Res Secretory

proteins, such as CELLO and WoLFPSORT, don’t have corresponding performance

on predicting proteins localized to ER, Golgi, Vacuole in the Yeast High-Res dataset

which are highly overlapped with the Yeast Low-Res Secretory proteins (Table 2.3).

This means those predictors have difficulties in distinguishing smaller compartments

of secretory pathway. YLoc and MultiLoc2 have very different performances between

the Yeast Low-Res and High-Res datasets, which could be due to the use of differ-
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Table 2.5: Prediction performance(MCC Scores) of individual predictors for the Hu-
man dataset

Cytosol Mitochondrion Nucleus Secretory Overall
Accuracy

YLoc 0.308 0.546 0.454 0.720 0.628
(2010)

MultiLoc2 0.334 0.451 0.293 0.627 0.581
(2009)

KnowPred 0.307 0.048 0.419 0.477 0.514
(2009)
Subcell 0.050 0.080 0.122 0.205 0.303
(2008)

WoLFPSORT 0.261 0.329 0.277 0.553 0.527
(2007)
BaCelLo 0.220 0.439 0.233 0.607 0.54
(2006)
CELLO 0.117 0.369 0.234 0.428 0.419
(2006)
SubLoc 0.065 0.264 0.162 0.339 0.375
(2001)

1LR 0.362 0.515 0.375 0.712 0.646
1LR with all 8 predictors

ent training datasets. For the Human dataset (Table 2.5), the Secretory proteins

(which are exclusively Extracellular proteins) are the easiest for YLoc, MultiLoc2,

and WoLFPSORT, which may suggest that these proteins have more distinct fea-

tures such as secretory pathway signals than the Yeast Secretory proteins. As shown

in Table 2.1, YLoc, MultiLoc2, and WoLFPSORT all use sorting signals as one of

their features. The variation of prediction performance of the individual predictors

implies that an ensemble algorithm may be able to integrate their strengths and

achieve better overall performance.

2.3.2 Ensemble performance

From Table 2.3 to 2.5 we can compare the performances between logistic regression

(LR) ensemble algorithms and their element predictors on the three test datasets.
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We can see that LR ensemble has better overall accuracy than the best element

predictor over the three datasets; for the Yeast Low-Res dataset and Yeast High-

Res dataset, LR ensemble have more than 10% improvement over the best element

predictors when integrating all available element predictors. However, LR ensemble

does not always have the best performance on each compartment. This is because the

ensemble training process is to optimize the overall accuracy while performance of

certain compartment(s) could be compromised. We can also see that when all of the

element predictors failed on certain compartments, such as Golgi and Cell Periphery in

the Yeast High-Res dataset, LR ensemble doesn’t have any improvement on predicting

those compartments.

2.3.3 Prediction performance of the optimal ensemble algorithms using exhaustive

search

Here we evaluated the prediction accuracy of the logistic regression ensemble algo-

rithm with all combinations of K (K=2...9) predictors using 10-fold cross-validation.

Figure 2.1(a) shows the result tested on the Yeast Low-Res dataset. First, we found

that by using just three predictors, the ensemble algorithm can achieve comparable

performance as using nine predictors. The 3 predictors are NetLoc (PPI), WoLFP-

SORT and YLoc which cover most of the available features among the predictors. On

the other hand, the ensemble algorithm composed of predictors with low coverage of

features has poor prediction efficiency. It is also observed that when more predictors

were used, the performance discrepancy between the ensemble algorithms based on

different predictors became smaller. This indicates that the prediction performance

is more reliable as the number of predictors increases.

We also evaluated the ensemble performance on the Human dataset with all com-

binations of predictors including YLoc, MultiLoc2, WoLFPSORT, CELLO, SubLoc,

Subcell, BaCelLo and KnowPred. However, relatively limited accuracy improvement
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(a)

(b)

Figure 2.1: Prediction performance of the logistic regression ensemble methods with
K individual predictors selected by exhaustive search. (a) Performance on the Yeast
Low-Res dataset, (b) Performance on the Human dataset. Each dot represents one
combination of predictors. The number of predictors is annotated on the X axis. The
performance of the logistic regression ensemble method is annotated on the Y axis.
The dots connected by the line represent the combinations of predictors determined
by the minimalist algorithm for different K values.
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over the best individual predictor has been achieved by the LR ensemble compared to

the Yeast dataset. One reason is that the ensemble algorithm for the Yeast dataset

includes NetLoc which uses protein-protein correlation network information for lo-

calization prediction. This distinctive feature makes it complementary to the other

algorithms, which leads to significant performance boosting. Another reason may be

that the strengths and bias of different predictors are enlarged or reduced to different

degrees on different datasets, which may result in the change of complementary re-

lationship among predictors. The varying complementary relationship thus leads to

different prediction accuracy of the ensemble composed of the same set of predictors

on different datasets.

2.3.4 Contributions of individual predictors to the ensemble algorithm

To explore the contributions of individual predictors to the ensemble algorithm and

their redundant or complementary relationships, we calculated their contribution

scores in the ensemble algorithm for the Yeast Low-Res and Human datasets. Nine

predictors are available for the Yeast Low-Res dataset and 8 predictors for the Hu-

man dataset. Figure 2.2(a) and 2.2(b) show the normalized contribution scores and

prediction accuracies of the 9 (8) predictors on the Yeast Low-Res dataset and Hu-

man dataset respectively. For the Yeast Low-Res dataset, YLoc2, Subcell, WolfP-

SORT, BaCelLo, CELLO, and SubLoc all have relatively low contribution scores,

which suggests that their predictions are highly redundant with the other predic-

tors’ predictions. We also found that the predictors simply using the most common

features(amino acids composition) such as CELLO, SubLoc, Subcell, all have rela-

tively low contribution scores, which suggests that the proteins whose localizations

can be correctly predicted by these predictors can also be predicted correctly by other

predictors. On the other hand, it can be observed that predictors using distinct fea-

tures such as NetLoc and KnownP have relatively high contribution scores. NetLoc
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(a)

(b)

Figure 2.2: Contribution scores of individual predictors. (a) 9 predictors for the Yeast
Low-Res dataset, (b) 8 predictors for the Human dataset.
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(PPI) has the highest contribution score because it used very different PPI informa-

tion compared to other predictors, which allows it to correctly predict proteins that

other individual predictors cannot. KnowPred applies a sophisticated local similarity

method to detect remote sequence homology and therefore might correctly predict

some proteins that most of others cannot. Another reason why NetLoc and Know-

Pred have relatively high contribution scores is that they don’t use other common

features so they are less likely to make the same wrong predictions like other pre-

dictors. For the Human dataset, YLoc, MultiLoc2 and KnowPred have the highest

contribution scores while CELLO, SubLoc, and Subcell still have the lowest contribu-

tion scores, which suggests that the latter three predictors’ correct predictions can be

covered by the other component predictors or that they tend to mislead the ensemble

algorithm by making majority incorrect predictions. This contribution score analysis

can thus be applied to evalute future new protein localization predictors in terms of

their unique prediction capability.

2.3.5 Prediction performance of the minimalist ensemble algorithm

To test the performance of our minimalist LR ensemble algorithm with K component

predictors, we run the minimalist algorithm to generate the combination of predic-

tors for each K to build the minimalist ensemble algorithms and then tested them

on the Yeast Low-Res and Human datasets. The results in Figure 2.1 show that

for the LR ensemble method, our minimalist ensemble algorithm can achieve near-

optimal performance for any given K value. We also found that using 3-4 individual

predictors can obtain near-best performance for all possible K values on the Yeast

Low-Res dataset. This means that our minimalist ensemble algorithm can use 1/2 to

1/3 of individual predictors used by existing ensemble algorithms to achieve similar

performance while remarkably reducing the computational effort.

To examine the complementary relationships of the selected algorithms in the
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ensemble algorithms, Table 2.6 shows the most frequent predictors selected by the

minimalist ensemble algorithms during the 10-fold cross-validation and the best com-

bination for each K according to the exhaustive search of the LR ensemble on the

Yeast Low-Res dataset. It is interesting to find that NetLoc and WoLFPSORT are

the key component algorithms that are selected by the best combination and the

minimalist ensemble with different K components. YLoc is the second tier of al-

gorithms selected by the best combination, while MultiLoc2 is the second tier of

algorithm selected by the minimalist algorithm. The consistent difference of the se-

lected component predictors between the best combination and the minimalist after

the key component algorithms is due to that our minimalist algorithm used greedy

and stepwise method to search the optimal K component predictors.

Table 2.6: The most frequent predictors selected by the minimalist algorithm with size
of each K (note by M) during the 10-fold cross-validation and the best combination
of K predictors (noted by B) according to the exhaustive search result of the logistic
regression ensemble on the Yeast dataset

Number of 2 3 4 5 6 7 8
predictors
YLoc B B B BM BM BM
(2010)
NetLoc BM BM BM BM BM BM BM
(2009)

MultiLoc2 M BM M M M BM
(2009)

KnowPred M BM BM M BM
(2008)
Subcell B B
(2007)

WoLFPSORT BM BM BM BM BM BM BM
(2006)
BaCelLo BM M
(2006)
CELLO M BM BM BM
(2006)
SubLoc B B B BM
(2001)
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2.3.6 Comparison of computational complexity

The computational complexity of the ensemble involves the effort to collect prediction

results from individual predictors either from local software running or from web

servers and the total running time. Since most of the predictors are available only

via web servers which are sometimes offline, it is desirable to have fewer component

predictors. As demonstrated in Figure 2.1, the minimalist algorithm can efficiently

find the key component predictors. Since only 4 predictors are needed for the ensemble

algorithm to achieve comparable performance of using 9 predictors, about 1/2 to 2/3

amount of computation time to collect prediction results can be saved.

Several ensemble schemes have been proposed for building ensemble localization

prediction algorithms, including weighted voting [4] (weight is assigned based on pre-

dictor accuracy), LDA [6], and classifiers-based ensemble algorithms such as decision

tree (DT) [7]. It is interesting to compare their performance on the genome-wide

Yeast and Human datasets. Here we compared their best performance given K in-

dividual predictors selected by exhaustive search. As shown in Figure 2.3, weighted

voting has the worst performance and its performance degrades dramatically when

more individual predictors are included. This is because its prediction can be eas-

ily biased by redundant low-performance predictors. LDA ensemble is better than

weighted voting because it can assign LDA optimal weights to predictors and avoid

the prediction results being biased by low-performance predictors. However, it is

still a voting based algorithm which might not be able to capture the rules relating

the predictions of predictors to the real locations. For other classifiers-based (such

as naive Bayes, decision tree and logistic regression) ensemble methods, they yield

better prediction accuracy because these machine learning algorithms can better find

and learn the rules between the features (predictions of individual predictors) using

supervised learning. For these machine learning ensemble methods, the capability to

handle redundancy is essentially the capability to handle over-fitting. As Figure 2.3
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(a)

(b)

Figure 2.3: Performance of the best ensemble on the Yeast dataset using different
ensemble schemes with K (K = 2..9) predictors selected by exhaustive search. (a) 9
predictors including NetLoc (PPI) (b) 8 predictors without NetLoc (PPI).
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(a)

(b)

Figure 2.4: Performance of different ensemble schemes on the Yeast Low-Res dataset
with K (k = 2..9) predictors selected by Minimalist algorithm and Top-K accurate
method. (a) Different ensemble methods with K (k = 2..9) predictors selected by
Minimalist algorithm. (b) Different ensemble methods with K (k = 2..9) predictors
selected by Top-K accurate algorithm.
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shows, if too many predictors are included, voting based ensemble algorithms such as

weighted voting and LDA show the trend of downgrading the performance.

Figure 2.3(a) and 2.3(b) showed the performance of the ensemble algorithms with

or without including the PPI based predictor NetLoc. It is observed that ensemble

algorithms without NetLoc have much less improvement over the best individual

predictors, which means that these ensemble algorithms except weighted voting can

automatically take advantage of the unique/beneficial component predictors (such

as NetLoc which uses a unique protein-protein interaction features) to improve the

performance. From Figure 2.3(b) we also noticed that LDA ensemble’s performance

could degrade dramatically when too many redundant predictors are included without

including predictor(s) with distinct property such as NetLoc.

We also compared the performances of the minimalist ensemble algorithms on the

Yeast Low-Res dataset. The result is shown in Figure 2.4(a), which demonstrates

similar relationship of the performance for the evaluated ensemble algorithms in Fig-

ure 2.3(a) and 2.4(b) shows the performance of the ensemble methods by selecting

the top K accurate predictors. We can see that the main peformance difference be-

tween the minimalist ensemble and top-K ensemble is when K is less than 4, which

means the top 4 accurate predictors can form a very complimentary group. However,

top K method is not reliable especially when the predictor with distinct features has

relatively low accuracy, or when many included predictors are highly redundant.

2.3.7 Comparison with other ensemble algorithms

There are several published and publicly available ensemble algorithms such as Con-

Loc [6] and PROlocalizer [5]. ConLoc intergrated 13 different predictors and used

LDA as the ensemble scheme. PROlocalizer intergrated 11 different programs to pre-

dict localization of animal proteins. We tested ConLoc on our Yeast Low-Res and

Human datasets. The results are shown in Table 2.7 and 2.8. It should be noted that
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although our datasets are not overlapped with ConLoc ensemble training dataset,

the performance result of ConLoc can still be overestimated since we didn’t exclude

proteins of our datasets that are overlapped with the training datasets of ConLoc’s

13 element predictors. To test our minimalist ensemble algorithm, we first collected

predictions of ConLoc’s 13 element predictors on the Yeast Low-Res and Human

datasets and then tested LR ensemble with 10-fold cross-validation. The results (Ta-

ble 2.7 and 2.8) showed that LR ensemble achieved higher accuracy than LDA based

ConLoc on both datasets, which is consistent with our previous experiment results

(Figure 2.3(a) and 2.3(b)) alghough ConLoc LDA used a different ensemble training

dataset.

To investigate the redundancy among ConLoc’s 13 predictors, we applied our

minimalist algorithm to select K out of the 13 predictors and tested them on the

Yeast Low-Res dataset and the Human dataset. The results (Table 2.7 and 2.8,

column 5) showed that for the Yeast Low-Res dataset, using only 4 predictors can

achieve equally good performance as using all the 13 predictors. The most frequent

4 predictors selected by our minimalist algorithm during the 10-fold cross-validation

are CELLO, Proteome Analyst, PTS1Prowler, and SherLoc. For the Human dataset,

using only 3 predictors can achieve better performance than using all the 13 predictors.

The most frequent 3 predictors selected by our minimalist algorithm during the 10-

fold cross-validation are Proteome Analyst, PTS1Prowler, and SherLoc.

We also tested PROlocalizer which is an integration algorithm based mainly on

binary classifiers. However, the server was able to generate prediction results for only

399 out of 1305 proteins in our Human dataset. The overall prediction accuracy of

PROlocalizer on those 399 proteins is 0.81 while the standalone predictor YLoc alone

has an overall accuracy 0.84 on the same dataset. We argue that it is difficult to

construct a reliable protocol-based ensemble algorithm such as PROlocalizer when

the predictions of individual predictors are still not reliable leading to accumulation
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Table 2.7: Comparison of the performance of ConLoc and Minimalist LR ensemble
algorithm with 13 predictors on the Yeast Low-Res dataset

The best element ConLoc 1LR 2LR
predictor of ConLoc:

SherLoc
Cytosol 0.301 0.441 0.489 0.472

Mitochondrion 0.574 0.622 0.708 0.731
Nucleus 0.341 0.461 0.537 0.541
Secretory 0.533 0.537 0.608 0.605
Overall 0.529 0.616 0.696 0.693
Accuracy

1LR ensemble with 13 predictors used in ConLoc
2LR+minimalist algorithm to select K out of 13 predictors in ConLoc, K=4

Table 2.8: Comparison of the performance of ConLoc and Minimalist LR ensemble
algorithm with 13 predictors on the Human dataset

The best element ConLoc 1LR 2LR
predictor of ConLoc:
Proteome Analyst

Cytosol 0.390 0.414 0.429 0.460
Mitochondrion 0.613 0.628 0.641 0.645

Nucleus 0.463 0.415 0.371 0.392
Secretory 0.754 0.721 0.749 0.758
Overall 0.644 0.664 0.689 0.703
Accuracy

1LR ensemble with 13 predictors used in ConLoc
2LR+minimalist algorithm to select K out of 13 predictors in ConLoc, K=3

of errors along its sequential inference steps. Instead, the machine learning based

ensemble methods can learn complementary rules among the predictors to function

as a “protocol”� to determine protein localization.

2.4 Conclusions

Although many protein localization prediction algorithms have been developed, the

prediction performance remains low and the features used to predict localizations are

still limited. Ensemble algorithms have shown some promise to take advantage of a
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variety of features by combining individual predictors. However, combining as many

as possible individual predictors, which is the most common strategy, has the draw-

back of high running complexity and low availability as well as risk of performance

degradation. The result of our minimalist ensemble algorithm showed that it is pos-

sible to significantly reduce the number of individual predictors in a given ensemble

algorithm while maintaining comparable performance. It is also observed that the

best component algorithm set tends to keep predictors with unique features, which

indicates that new features are the key to further improve the prediction accuracy for

localization prediction. The success of our minimalist ensemble algorithm based on

feature selection and logistic regression showed that supervised ensemble algorithms

based on machine learning can effectively capture the complex relationships among

individual predictors and achieve better performance than the voting methods.
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Chapter 3

SeqNLS: Nuclear localization signal prediction based on frequent
pattern mining and linear motif attributes

3.1 Background

A nuclear localization signal is a protein peptide bound to carrier proteins for traf-

ficking nuclear proteins into the nucleus. As the most direct evidence for nuclear

localization, identification of NLSs can help to elucidate protein functions. How-

ever, experimental identification of such signals is costly and currently only a limited

number of NLSs have been identified. It is thus desirable to develop algorithms for

computational prediction of NLSs. Several NLS prediction methods have been devel-

oped such as PSORT II [19], PredictNLS [20], NLStradamus [21], cNLS Mapper [22],

and NucImport [23]. PSORT II predicts NLSs based on sequence patterns imple-

mented as three simple rules according to the classification of NLSs [24]; the rules are

mainly clusters of basic amino acids K and R and gaps between the clusters. Pre-

dictNLS predicts NLSs based on 194 potential NLS motifs, which are derived from

114 experimentally verified NLSs with a silico mutagenesis approach. Nguyen Ba et.

al. [21] found that NLSs tend to have similar residue frequency distributions which

are different from that of background residues. Their NLStradamus algorithm detects

NLSs by using a simple two-state or four-state HMMs to accommodate the frequency

variations. cNLS Mapper estimates classical NLS (cNLS) functionality of a peptide

by calculating sum of the functional contribution of each residue in the peptide ac-
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cording to the activity-based profiles, which are obtained from the systematic amino

acid-replacement analyses in budding yeast. NucImport builds a Bayesian network to

predict nuclear localization by incorporating various attributes related to the nuclear

importing. If a protein is predicted as a nuclear protein, the location of its NLS is

predicted as the segment in the protein with the highest cNLS score in the inferred

cNLS class based on the dependencies with other attributes in the Bayesian network.

These five NLS prediction methods have achieved different degrees of success.

However, their prediction performance is still far from being sufficient to assist bi-

ologists to discover putative NLSs in protein sequences of interest. Each of them

has their weakness. Although a great portion of NLSs can be covered by the rules

used in PSORT II to detect NLS, quite a few patterns covered by the rules exist

in peptides which do not contain NLSs, leading to a high false positive rate or low

prediction precision. The sensitivity of the PredictNLS algorithm depends on the

number of NLS motifs it used, which has been extended by introducing the poten-

tial NLS motifs generated using in-silico mutagenesis analysis. But they are still too

specific and couldn’t effectively accommodate NLS variability [21]. The performance

of the NLStradamus algorithm depends on its assumption that NLSs have certain

residue distributions. However, many NLS instances in our testing datasets have

shown very different residue frequencies. Both cNLS mapper and NucImport algo-

rithms are developed based on the characteristics of cNLS. However, approximately

43% of proteins localized to the nucleus may use other transport mechanisms other

than the classical nuclear import pathway according to Lange et al [25].

One of the challenges of NLS prediction is that functional NLSs are not de-

fined [70]. Many NLSs are short peptides that occur regularly in non-nuclear proteins.

In fact, NLS is one type of linear motifs as defined in the database of eukaryotic linear

motifs [71]. Linear motifs are short stretches of residues which are highly involved in

cell signaling and regulating. To adapt to the fast fine-tuning cell regulatory process,

34



certain characteristics of linear motifs have thus evolved and might have contributed

to NLS variability: only a few residues within a linear motif are functionally impor-

tant, and mutation of a single residue can switch on/off the functionality [72, 73].

The nature of shortness, flexibility and sensibility provides linear motifs evolution-

ary plasticity to form a functional unit and fine-tune cell singling network over short

evolutionary distances, which, however, increases the difficulties in computational

identification of linear motifs such as NLSs.

In the past decade, many computational approaches have been proposed to dis-

cover linear motifs. There are two categories of the methods [72]: one is super-

vised methods aiming to identify new instances of known linear motifs in protein

sequences [71, 74–80]; the other is de novo methods for discovering new linear mo-

tifs [81–84]. The challenge of the former is to discriminate between true and false

positive matches. Most of such prediction algorithms take advantage of the spe-

cial attributes of linear motifs [85] to remove false positive matches that are un-

likely to be functional linear motifs. The latter de novo linear motif discovery algo-

rithms [81, 82, 84] are usually based on the enrichment analysis of candidate motifs

integrated with disorder prediction and evolutionary conservation. Since NLS is one

type of linear motifs, the framework of the first category may apply to predicting

NLSs. However, despite the availability of a number of NLS motifs [86, 87], they are

either too specific [21] or they only target a specific pathway of NLSs. To cover more

NLSs, we need a new approach to utilize linear motif attributes.

In this chapter, we propose a novel algorithm for NLS prediction based on sequential-

pattern mining and linear motif scoring. Our strategy is first to detect potential NLS

candidates using the sequential-pattern mining method, which are then scored in

terms of their likelihood of being (part of) NLS based on their sequence and lin-

ear motif features. The qualified candidate motifs will then be combined into NLS

predictions.
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3.2 Materials and Methods

3.2.1 Training and Testing dataset

We used 114 experimentally determined NLSs from NLSdb [86] as the source of the

positive training dataset for sequential pattern mining. Two NLSs without a specific

form in amino acid sequence and a reference citation were removed. 94 out of 112

were real NLSs of which the parent proteins could be found, while the rest 18 were

either synthetic NLSs or NLSs of which the parent proteins couldn’t be found. We

then removed the redundant NLSs in order to avoid non-functional residues being

enriched in the positive training dataset: given a NLS A, the redundant NLSs to A

are defined as NLSs whose parent proteins are highly homologous to the parent protein

of NLS A and are overlapped with NLS A in the alignment of their parent proteins.

To remove redundant NLSs, Blastclust with 90% sequence identity and 90% sequence

coverage was applied on the parent proteins of the 94 NLSs. If multiple NLSs were

overlapped in the alignment of their parent proteins which were in the same cluster,

then only one of the NLSs was kept; 4 out of the 94 NLSs were thus removed. In

the end, 108 experimentally verified NLSs were left in our positive training dataset

for sequential-pattern mining. We then collected 2238 non-nuclear proteins from the

BaCello dataset [59], from which 26772 non-overlapped peptides of length 40 were

randomly sampled for the negative training dataset for sequential-pattern mining.

The length 40 was determined because it approximated the longest NLSs in the

positive training dataset. To prepare the training dataset for linear motif scoring

(to be defined below), the 90 NLSs with known parent proteins used in the training

dataset of sequential-pattern mining were used as the positive training dataset. For

each of the 90 NLSs, a random amino acid segment of the same length in the same

parent protein which was not overlapped with any annotated NLS was collected to

produce the negative dataset.
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We prepared two independent testing datasets according to the species of the NLS

source proteins for evaluating the NLS predictors: 1) The Yeast NLS dataset; 2) The

Hybrid NLS dataset of which the parent proteins are from different species. The Yeast

dataset was prepared based on the dataset used in NLStradamus [21]. The Hybrid

dataset was collected by searching annotated NLSs from literature published after

2010. All NLSs in the testing datasets redundant to NLSs in the training dataset (90

NLSs with known parent proteins) were removed, and redundant NLSs in the testing

dataset itself were also removed. In the end, the Yeast dataset contains 50 NLSs

from 41 proteins, and the Hybrid dataset contains 73 NLSs from 53 proteins. Both

datasets are provided in the supplementary file (Table S1 and Table S2).

3.2.2 Overview of the proposed algorithm

Our SeqNLS algorithm is developed based on the following observations of NLSs:

1) most known NLSs are composed of a sequence of well-conserved segments of

amino acids with variable-length gaps. This is because a set of NLSs binding to the

same binding pockets usually share such patterns due to the geometrical or physical-

interaction constraints at the binding interface. Such sequential patterns are thus

over-represented among these NLSs; 2) similar to other linear motifs, NLSs usually

occur in the disordered regions of the protein sequences; 3) NLSs for different path-

ways may be different. Our algorithm for NLS prediction can be divided into two

steps: 1) mining NLS sequence patterns from experimentally verified NLS instances

and then predicting NLS candidates on query sequence(s); 2) scoring candidate NLSs

based on sequence and linear motif scoring and applying local conservation masking.

Our sequential-pattern mining method is motivated by the fact that diversity among

the experimentally verified NLSs has hampered the discovery of NLS motifs due to

a limited number of NLS instances [87, 88]. SeqNLS addresses this issue by using a

more general motif model: the sequential patterns.
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3.2.3 Sequential-pattern based prediction of NLSs

In our method, sequential pattern mining is used to extensively collect potential NLS

segments/building blocks, which are then used to detect potential NLS segments in

query sequences.

NLS sequential-pattern mining

Figure 3.1(a) shows the flow chart of NLS sequential-pattern mining on a training

dataset. We first define a segment of amino acids as a word, and a set of words

in sequential order as a word-list; the NLS sequential patterns are thus defined as

word-lists over-expressed in a set of NLSs (positive training dataset) against a set

of peptides not overlapped with any NLS (negative training dataset). The number

of different word-lists within the positive training dataset is too large while many

of them are redundant; therefore, we limit the search space of word-lists as frequent

word-sets within the positive training dataset, which can effectively reduce the search

space and maintain the diversity of word-lists; the frequent word-set is defined as a

word-set with support count no less than 3 within the positive training dataset and

set size not larger than 4. For example, if there are 12 NLSs in the positive training

dataset containing the word-set AT, KK, the word-set AT, KK is a frequent word-set

since its support count is 12 and the set size is 2. We apply the frequent item-set

mining algorithm [89] to collect all the frequent word-sets within the positive training

dataset in step 1; the word-lists are obtained by permuting each of the frequent

word-sets, and the corresponding support counts in the positive training dataset are

then collected in step 2; in step 3, all the word-lists are scored according to their

corresponding occurrences in the positive and negative training datasets to measure

their enrichment. The enrichment score is defined as follows:

ES = log(NP1/NP)/((NB1 + 1)/NB)
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Figure 3.1: The flow charts of predicting NLS. (a) The flow chart of
mining the sequential patterns. (b) The flow chart of predicting NLS
on a query sequence; the dashed line corresponds to the sequence-
based predictor, and the other branch using linear motif scoring
refers to the integrated prediction algorithm.
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where ES is the enrichment score, NP is the number of NLSs in the positive training

dataset while NP1 is the number of NLSs in the positive training dataset containing

the word-list, and NB is the number of peptides of length 40 that are not overlapped

with NLS in the negative training dataset while NB1 is the number of peptides in

the negative training dataset that contain the word-list; NP is 108 and NB is 26772

according to our training dataset. The enrichment score ES is essentially a measure

of over-representation for the word-lists in the training NLSs relative to the non-NLS

peptides. The word-lists with ES not lower than a default threshold 1.0 are collected

as the sequential patterns, which will then be used to detect segments which are likely

to be (parts of) a NLS in a query sequence.

Detecting potential NLS segments by using the NLS sequential patterns

The process to detect potential NLS segments by using the collected NLS sequential

patterns is illustrated in Figure 3.1(b). First, the collected sequential patterns are

used to find qualified matches in the query sequence, which are defined as the matches

of the sequential patterns in the query sequence with each gap between the words

no longer than two amino acids. The reason to limit the length of the gaps is to

maintain the statistical significance of the sequential-pattern matches since it is much

more likely to have words in a specific order by chance when long gaps are allowed.

These qualified matches are recognized as potential NLS segments in our algorithm,

of which ES is a measure of the significance of these potential NLS segments to be true

NLS. In Figure 3.1(b), the dashed line corresponds to our sequence-based predictor,

and the other branch using linear motif scoring refers to our integrated prediction

algorithm.
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3.2.4 Incorporation of bipartite-NLS motifs

Our SeqNLS algorithm does not make any assumptions over the type of the predicted

NLSs. However, to improve the prediction performance, a bipartite-NLS motif is in-

corporated in SeqNLS to increase the sensitivity of detecting bipartite NLSs. Bipartite

NLSs are a class of classical NLS usually composed of two clusters of basic amino acids

separated by a gap of 10-12 residues [90, 91] while longer gaps are also possible [92].

Bipartite NLSs are very common as it was approximated that 25.8% of proteins

localized to the nucleus contain putative bipartite NLSs [25]. Several consensus pat-

terns of bipartite NLSs have been defined such as (K/R)(K/R)X10–12(K/R)3/5 [93],

KRX10-12KRRK [94], and KRX10–12K(K/R)(K/R) or KRX10–12K(K/R)X(K/R) [87],

where (K/R)3/5 represents any 5 consecutive amino acids having at least three of

either lysine or arginine. Since bipartite NLSs have long gaps between the two words,

they may not be detected by our sequential-pattern mining method. Therefore, we

included a bipartite-NLS motif (K/R)(K/R)X10(K/R)3/5, which is also used to pre-

dict bipartite NLS in PSORTII, to complement the motifs mined from the training

NLSs. As shown in Figure 3.1(b), when detecting potential NLS segments, our algo-

rithm also collects the matches of the bipartite-NLS motif in addition to the qualified

matches of the sequential patterns. The matches of the bipartite-NLS motif were

found usually more reliable than the matches of sequential patterns according to our

experiment result. Therefore the enrichment score of the matches of the bipartite-

NLS motif is set as an arbitrarily large value which will never be lower than the

enrichment-score cutoff as defined in the next paragraph.

3.2.5 Predicting NLS based on sequence features only: sequence-based predictor

Given a query sequence, the extracted sequential patterns along with the bipartite-

NLS motif are used to scan it for matches. Those matches with ES score lower than

a pre-defined cutoff will be removed (the matches of the bipartite-NLS motif will
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never be removed). The remaining matches will then be combined using a merging

procedure: every two overlapped matches are merged into one match of which the

boundaries are defined as the union of the overlapped matches. The merging process

will continue until all the matches are not overlapped. The resulting matches will be

the output of the sequence-based NLS predictor.

3.2.6 Linear motif scoring

To further improve the performance of NLS prediction, we developed a linear motif-

scoring scheme to remove the false positives of the matches as obtained above based

on the linear motif attributes. NLSs are one kind of linear motifs, which are found

to predominantly occur in disordered regions [85, 95]. One possible reason is that

disordered regions can provide linear motifs unstructured interfaces to adapt to the

interacting partner with higher flexibility. In addition, evolutionary plasticity inherent

to disordered regions increases the likelihood of evolving linear motifs [85]. To exploit

this preference of linear motifs, we used PrDOS [96], one of the best-performing

disorder predictors according to CASP9 [97], to predict disorder scores for all residues

in the query sequence. Given a predicted amino acid segment, the median disorder

score of residues within the segment is defined as the disorder score of the predicted

peptide.

Another factor to estimate the likelihood of linear motifs is residue accessibility,

which is required for linear motifs to function; deeply buried residues are less likely to

interact with the partner proteins [98]. In our experiments, NetSurfP [99] was used

as the residue-accessibility predictor, and the relative surface area (RSA) was used

as the measure of residue accessibility. Given a predicted amino acid segment, the

median RSA score of residues within the segment is defined as its RSA score. Our

linear motif-scoring scheme is implemented by estimating the probability of being

NLS for a given peptide. We call this probability as the linear motif score (SL).
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It is calculated by building a Support Vector Machine (SVM) classifier based on

the aforementioned linear motif attributes, whose output is the probability of an

input amino acid segment belonging to the NLS class. We collected 90 NLSs and

90 non-NLS peptides (mentioned in the section “Training and Testing dataset”) as

the positive and negative training datasets for the SVM. The linear motif attributes

including the PrDOS disorder score and the NetSurfP RSA score were used as the

features. The SVM classifier was trained using the LIBSVM package [100] with the

radial basis function as the kernel, and the probability of being NLS for a given input

peptide was obtained by calculating the probability estimation of LIBSVM.

3.2.7 Predicting NLS based on sequence and linear motif scoring: SeqNLS, the

integrated predictor

Our SeqNLS algorithm works by sequential-pattern mining and matching plus lin-

ear motif scoring. First, it collects the matches of the sequential patterns and the

bipartite-NLS motif in the query sequence. Next, all the matches of the sequential

patterns and the bipartite-NLS motif will be estimated the probability of being NLS

by linear motif scoring. The respective linear motif score will then be combined with

the corresponding enrichment score to generate the final score. The matches whose fi-

nal scores lower than a predefined cutoff will be removed. To combine the enrichment

score and the linear motif score, we defined the normalized enrichment score which

has the same scale as the linear motif score (between 0 and 1). According to our

experiment result, we found that when the enrichment-score cutoff is over a certain

threshold EK, the prediction precision cannot be improved by further increasing the

cutoff. The normalized enrichment score is thus defined according to the following

formula:

Normalized(ES ) =


1 if ES ≥ EK

(ES − Minscore)/(EK − Minscore) Otherwise
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where Normalized(ES) represents the normalized enrichment score, and Minscore

represents the minimal possible score of ES, which is 1 according to our setting since

only sequential patterns with ES greater or equal to 1 are collected. The final score

will then be calculated according to the following formula:

The final score =



α × Normalized(ES ) + (1 − α) × S L if match is from

the bipartite

NLS motif

α × Normalized(ES ) + β × (1 − α) × S L Otherwise

It should be noted that the SVM model of calculating SL is trained to discriminate

between NLSs and peptides not overlapped with NLS; however, those true positive

matches, which are matches overlapped with NLS according to our definition, do not

always have accurate NLS boundaries; the more accurate the NLS boundaries of the

true positive matches are, the more reliable their SL will be. In the formula, SL of

the sequential-pattern matches is multiplied by a weighting factor β (smaller than 1)

because we found that the true positive matches of the bipartite-NLS motif generally

have more accurate NLS-boundaries in terms of residue-level accuracy. In our study

the optimal α and β are set as 0.8 and 0.6 respectively.

3.2.8 IRLC-masking

Due to the short and degenerate nature of linear motifs, the evolutionary conserva-

tion of linear motifs cannot be well represented by simple sequence-alignment models.

Davey et al [101] proposed the relatively local conservation (RLC) score, which mea-

sures the conservation of residues relative to their neighboring regions. They applied

RLC masking to remove residues unlikely to be functional residues within linear mo-

tifs, based on the rationale that functional residues should be more conserved than
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the neighboring regions. While RLC masking has been used to remove false positive

matches of known linear motifs [101], it is not an appropriate method to remove false

positive NLS predictions due to the fact that those true positive NLS predictions,

unlike the true positive matches of other linear motifs, do not always have accurate

NLS boundaries and may cover non-functional residues while wildcard positions are

not known. Therefore, we proposed the inverse relative local conservation (IRLC)

scheme to remove false positive NLS predictions based on the following rationale:

since linear motifs are more conserved than their flanking residues, the chance to

have a flanking residue which is much more conserved than the residues within the

linear motif should be very small.

To evaluate IRLC, we first define M as the mean conservation score of N residues

within a predicted NLS:

M =
1

N

N∑
i=1

Ci

where Ci is the conservation score representing the degree of conservation of a

residue in position i of the predicted NLS; Ci can be calculated by any suitable scoring

metric, while in our experiment, position specific scoring matrix (PSSM) was used to

evaluate residue conservation; the conservation score of a residue in the position i’ of

a sequence was obtained from the corresponding column of the residue in the i’-th row

of the PSSM of the sequence. The PSSM of each query sequence was generated by

three iterations of PSI-BLAST [102] searches against NCBI non-redundant database

with the BLOSUM62 substitution matrix and E-value threshold of 0.001. Second, we

define IRLCj as the IRLC score for a flanking residue j:

IRLC j = (C j − M)/σ

where the flanking residues are defined as the residues within 5 amino acids away
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from the predicted NLS, and σ represents the standard deviation of the conservation

scores of all the residues in the sequence. The IRLC score for a NLS prediction can

thus be defined as:

IRLC = max
j

IRLC j

A NLS prediction will be determined as a false positive prediction if its IRLC score

is higher than some threshold value T. The rationale is that if there is any residue

in the flanking region that is much more conserved than the average conservation

score of the region of interest, it is less likely that the region of interest represents

a functional NLS since it contradicts the property of relative local conservation of

linear motifs.

3.2.9 Performance evaluation

To evaluate NLS prediction performance, a NLS prediction is considered a hit if

the prediction is overlapped with at least one annotated NLS in the testing dataset

otherwise it is labeled as a miss. Three performance metrics are defined to evaluate

NLS prediction performance as follows:

precision = Nhits/(Nhits + Nmiss)

recall = Nhits/Nnls

F1 score = 2 × precision × recall/(precision+ recall)

where Nhits is the number of hits, Nmiss is the number of misses, and Nnls is the

number of NLSs in the testing dataset. In addition, we introduced the amino acid

level performance coefficient [103] (aPC) to evaluate the amino acid-level accuracy of

a predicted peptide overlapped with NLS. The aPC is defined as follows:
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aPC = aT P/(aT P + aFN + aFP)

where aTP represents the number of amino acids of a predicted NLS that are

overlapped with the true NLS; aFP represents the number of amino acids of a pre-

dicted NLS that are not overlapped with the true NLS; aFN represents the number of

amino acids of the true NLS that are not overlapped with the predicted NLS. In our

evaluation, the mean aPC of all the true positive predictions (Mean aPC) is defined

to evaluate the amino acid level accuracy of a predictor.

3.3 Results and Discussion

Table 3.1: The prediction performance of the sequence-based predictor with different
enrichment-score cutoffs with and without incorporating the bipartite-NLS motif on
the Yeast dataset

1Enrich 1.0 1.2 1.4 1.6 2.0 2.3 Bipartite*
Precision 0.212 0.311 0.458 0.564 0.6 0.6 0.667

+B 0.204 0.303 0.427 0.547 0.613 0.63
Recall 0.8 0.66 0.6 0.42 0.12 0.06 0.32

+B 0.8 0.68 0.62 0.56 0.38 0.34
F1 score 0.335 0.423 0.519 0.482 0.2 0.109 0.432

+B 0.325 0.413 0.505 0.554 0.469 0.442
Mean aPC 0.453 0.413 0.412 0.443 0.49 0.442 0.805

+B 0.554 0.563 0.607 0.645 0.736 0.788
1Enrichment-score cutoff
*Predictions with only the bipartite-NLS motif: (K/R)(K/R)X10(K/R)3/5

3.3.1 Performance of the sequence-based NLS predictor

We applied the sequence-based predictor to the Yeast and Hybrid datasets, and the

result is shown in Figure 3.2. It shows that when the enrichment-score cutoff is set

higher, the precision of the predictor increases. This is because the matches of the
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Figure 3.2: The prediction performance of the sequence-based predictor. (a) The
Yeast dataset; the bipartite-NLS motif is not incorporated. (b) The Yeast dataset; the
bipartite-NLS motif is incorporated. (c) The Hybrid dataset; the bipartite-NLS motif
is not incorporated. (d) The Hybrid dataset; the bipartite-NLS motif is incorporated.
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Table 3.2: The prediction performance of the sequence-based predictor with different
enrichment-score cutoffs with and without incorporating the bipartite-NLS motif on
the Hybrid dataset

1Enrich 1.0 1.2 1.4 1.6 2.0 2.3 BiPartite*
Precision 0.322 0.421 0.57 0.702 0.632 0.667 0.77

+B 0.3 0.399 0.546 0.677 0.676 0.739
Recall 0.808 0.767 0.658 0.507 0.164 0.027 0.23

+B 0.808 0.781 0.685 0.616 0.342 0.233
F1 score 0.46 0.544 0.611 0.589 0.261 0.053 0.358

+B 0.438 0.528 0.608 0.645 0.455 0.354
Mean aPC 0.367 0.416 0.46 0.475 0.504 0.494 0.646

+B 0.418 0.473 0.534 0.56 0.601 0.634
1Enrichment-score cutoff
*Predictions with only the bipartite-NLS motif: (K/R)(K/R)X10(K/R)3/5

sequential patterns with the higher enrichment score are more significant and thus are

more likely to be part of NLS. However, in Figure 3.2(a) and 3.2(c), it can be shown

that for both the Yeast dataset and the Hybrid dataset, when the enrichment-score

cutoff is higher than 1.62, no obvious precision improvement can be obtained by fur-

ther raising the cutoff. We thus set EK as 1.62 in our experiment. In the meantime,

recall decreases with the increase of the enrichment-score cutoff. This is because fewer

matches can meet the higher enrichment-score cutoff, and thus fewer annotated NLSs

can be covered by the matches. The performance of the predictor incorporated with

the bipartite-NLS motif is shown in Figure 3.2(b) and 3.2(d). It was found that

precision can be further improved by setting a higher enrichment-score cutoff even

when the cutoff is higher than 1.62 (EK). It implies that the bipartite-NLS motif

is a more reliable NLS pattern than the mined sequential patterns; by setting the

higher enrichment-score cutoff, the proportion of the sequential-pattern matches will

become smaller, and the matches of the bipartite-NLS motif will dominate prediction

performance when the enrichment-score cutoff is much higher than EK. To evalu-

ate the performance of the bipartite-NLS motif in NLS prediction, we evaluated the

performance of the sequence-based predictor using only the bipartite-NLS motif in
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Table 3.1 and Table 3.2 (last column). It was shown that the predictor using only

the bipartite-NLS motif has high precision on the both datasets: 0.667 on the Yeast

dataset and 0.77 on the Hybrid dataset. It also has very high residue-level accuracy:

the Mean aPC is 0.805 and 0.645 on the Yeast dataset and the Hybrid dataset respec-

tively while the Mean aPC of most other NLS predictors is around 0.4 to 0.5. The

high precision of the bipartite-NLS motif based predictor is probably due to the high

specificity of the bipartite-NLS motif pattern. However, the recall of this method is

only 0.32 and 0.233 respectively on the Yeast dataset and the Hybrid dataset.

To evaluate if the bipartite-NLS motif can help to improve the sequence-based

predictor, the prediction performance of the sequence-based predictor with or without

incorporating the bipartite-NLS motif is shown in Table 3.1 and Table 3.2. It is shown

that recall can be improved on both the Yeast and Hybrid datasets after incorporating

the bipartite-NLS motif. Improvement on recall depends on the enrichment-score

cutoff: when the enrichment-score cutoff is lower, more bipartite NLSs in the testing

datasets could be partially covered (overlapped) by the sequential-pattern matches,

and thus improvement on recall is smaller. Alternatively, when the cutoff score is

higher than 1.6, the incorporation of the bipartite-NLS motif significantly improves

recall. Besides, the Mean aPC can be significantly improved by incorporating the

bipartite-NLS motif: when the enrichment-score cutoff is set as 1.6, the Mean aPC

can be improved from 0.443 to 0.645 on the Yeast dataset and from 0.475 to 0.56 on

the Hybrid dataset. Improvement on the Mean aPC also depends on the enrichment-

score cutoff: when the enrichment-score cutoff is lower, more bipartite NLSs in the

testing dataset are likely to be overlapped with the matches and thus improvement on

the Mean aPC by incorporating the bipartite-NLS motif is less obvious. In addition,

improvement on both recall and the Mean aPC by incorporating the bipartite-NLS

motif also depends on the ratio of bipartite NLSs in the testing datasets, which

explains why the improvement on the Yeast dataset is greater than that of the Hybrid
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dataset. From Table 3.1 and Table 3.2, we also found that when the enrichment-score

cutoff is set as 1.0, 80% of the NLSs can be covered by our sequential-pattern matches

for both the Yeast and Hybrid datasets. This indicates that our sequential patterns

with the enrichment score higher than 1.0 cover 80% of NLSs, which can be used in

searching potential NLSs extensively.

3.3.2 Linear motif attributes of NLS

Here we evaluate the discriminative capacity of linear motif attributes for NLS iden-

tification. Figure 3.3(a) shows the disorder propensity of NLSs: the mean PrDOS

disorder score of the 90 training NLSs is 0.632 while the mean PrDOS disorder score

of the 90 peptides not overlapped with NLS is 0.386. The disorder propensity of

NLSs is clearly shown by the peak at index 0, while no such preference exists for

the peptides not overlapped with NLS. Figure 3.3(b) shows the RSA propensity of

NLSs: the mean NetSurfP RSA score of the 90 training NLSs is 0.393, while the

mean NetSurfP RSA score of the 90 peptides not overlapped with NLS is 0.299. The

preference of NLSs for higher RSA is also observed by the peak at index 0, while no

such preference exists for the peptides not overlapped with NLS. Compared to the

disorder propensity, the RSA propensity of NLSs is less significant since the difference

of the mean attribute value between NLSs and peptides not overlapped with NLS is

0.094 for NetSurfP RSA, while it is 0.246 for PrDOS disorder (the PrDOS disorder

score and the NetSurfP RSA score both have the same scale 0-1).

To further investigate the discriminative capacity of these attributes, we first used

each of the attributes to build a single-feature binary classifier in which the prediction

is based on the cutoff of the attribute value. The ROC curves of the binary classifiers

are plotted in Figure 3.4. As shown in the figure, the AUC values for the PrDOS

disorder score and the NetSurfP RSA score are 0.783 and 0.69 respectively. This sug-

gests that PrDOS disorder and NetSurf RSA are both useful features to discriminate
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Figure 3.3: The linear motif attributes of NLSs. (a) PrDOS disorder
scores of the 200 residues either side of the annotated NLSs and ran-
dom peptides not overlapped with NLS. (b) NetSurfP RSA values of
the 200 residues either side of the annotated NLSs and random pep-
tides not overlapped with NLS. The index 0 represents the residue
at the boundary of the left or right side of the NLS (or peptide).
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Figure 3.4: ROC curves for the PrDOS disorder feature and NetSurfP RSA feature.

between NLS and non-NLS peptides. We further used each of the attributes to build

a single-feature SVM classifier. The LIBSVM package with the radial basis function

kernel was used to run a 5-fold cross-validation on the 90 NLSs and 90 non-NLS pep-

tides in the training dataset. We found that when the PrDOS disorder score of the

peptide was used as the single feature, it achieved a 5-fold cross-validation accuracy

of 70.83% on discriminating NLS and non-NLS peptides; while using the NetSurfP

RSA score of the peptide as the single feature, it achieved 64.88% accuracy; when

both the PrDOS disorder score and the NetSurfP RSA score of the peptide were used

as the features, the accuracy was 70.24%, which was not higher than that of using the

PrDOS disorder score alone. This indicates that although the NetSurfP RSA score

is also a discriminative attribute, it is redundant if the PrDOS disorder score is used.
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Therefore, in our following experiments only the PrDOS disorder score is used in the

linear motif scoring to estimate the probability of being NLS.

3.3.3 Performance of the integrated predictor: SeqNLS

Figure 3.5 shows the prediction performance of SeqNLS on the Yeast and Hybrid

datasets. The algorithm attains a precision and recall of 0.7 and 0.5 or higher when

the final-score cutoff is set as 0.85. By tuning the final-score cutoff, the algorithm can

attain different precision and recall rates with the higher final-score cutoff leading to

higher precision and lower recall. The higher final-score cutoff also leads to the higher

Mean aPC, which indicates that matches with the higher final scores generally are less

likely to cover non-NLS amino acids. As indicated previously, the highest precisions

of the sequence-based predictor are 0.667 and 0.77 respectively on the Yeast dataset

and the Hybrid dataset by maximizing the enrichment-score cutoff. For the integrated

predictor, precision can be further improved to around 0.75 to 0.8 on both the Yeast

dataset and the Hybrid dataset while a higher recall is maintained. This implies

that the proposed linear motif scoring and IRLC-masking improve the prediction.

Figure 3.5 also shows that recall starts dropping dramatically when the final-score

cutoff exceeds certain value over 0.8 on the both Yeast and Hybrid datasets. This

is because matches with the enrichment scores higher than EK certainly have the

final scores at least 0.8 according to the formula of calculating the final score. These

matches cover 56% and 60.3% of NLSs (see Figure 3.2(b) and Figure 3.2(d)) in

the Yeast and Hybrid datasets. Therefore, recall won’t drop dramatically when the

final-score cutoff is lower than 0.8. When the final-score cutoff is set higher than

0.8, matches with the low enrichment scores are removed since the weight of the

enrichment score is much higher than that of the linear motif score (0.8 vs. 0.2);

with the increase of the cutoff afterward, matches with high enrichment scores but

low linear motif scores will start being removed, and eventually only matches with

54



Figure 3.5: The prediction performance of the integrated predictor. (a) The
Yeast dataset (b) The Hybrid dataset. IRLC masking is applied in both (a)
and (b).
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Figure 3.6: The effect of IRLC-masking. Peptides overlapped with NLS are obtained
by adjusting boundaries of the NLSs to upstream or downstream proteins randomly
in the parent by 1/3 length of the corresponding NLSs.

high enrichment scores and high linear motif scores are left. The result shows that

for both the Yeast and Hybrid datasets, the precision of the integrated predictor can

still be improved by increasing the final-score cutoff even when the final-score cutoff

is already higher than 0.8. This indicates that matches with low linear motif scores

are less likely to be (part of) NLS despite their high enrichment scores. Therefore, the

enrichment score and the linear motif score are highly complementary in discerning

NLS.

56



3.3.4 Effect of IRLC-masking

Figure 3.6 shows the ratio of three types of peptides in our training dataset with

the IRLC scores higher than a threshold value T. It can be observed that the ratio of

NLSs with the IRLC score higher than T is smaller than that of random peptides that

are not overlapped with NLS. This result corresponds to our IRLC hypothesis that

the chance is relatively low to find a residue in the flanking region of a NLS that is

much more conserved; in other words, NLSs indeed tend to have higher relative local

conservation. The similar trend can be observed for peptides partially overlapped with

NLSs, which mimics true positive NLS predictions. This implies that IRLC-masking

may be effective in masking out false positive NLS predictions with a smaller chance

of masking out true positive NLS predictions. Figure 3.6 also shows that when T

is higher than 1.7, both the ratios of NLSs and peptides overlapped with NLS with

the IRLC score higher than T are close to 0. To avoid masking out any true positive

predictions, the IRLC-masking cutoff is set as 1.7 throughout our experiment.

Table 3.3: The prediction performance of the integrated predictor with different final-
score cutoffs with and without IRLC masking on the Yeast dataset

1Final 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Precision 0.462 0.483 0.492 0.537 0.651 0.8 0.875

IRLC 0.509 0.518 0.528 0.583 0.7 0.8 875
Recall 0.58 0.56 0.56 0.56 0.54 0.32 0.14

IRLC 0.56 0.54 0.54 0.54 0.54 0.32 0.14
F1 scorel 0.514 0.519 0.524 0.548 0.59 0.457 0.241

IRLC 0.533 0.529 0.534 0.561 0.61 0.457 0.241
Mean aPC 0.635 0.638 0.639 0.639 0.644 0.844 0.734

IRLC 0.634 0.637 0.638 0.638 0.644 0.844 0.734
1Final-score cutoff

Table 3.3 and Table 3.4 describe the prediction performance of the integrated pre-

dictor with or without IRLC-masking on the Yeast and Hybrid datasets respectively.

It shows that IRLC-masking improves the precision of the integrated predictor on

the Yeast dataset while it is not effective on the Hybrid dataset. This is because the
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Table 3.4: The prediction performance of the integrated predictor with different final-
score cutoffs with and without IRLC masking on the Hybrid dataset

1Final 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Precision 0.564 0.583 0.6 0.662 0.759 0.733 0.8

IRLC 0.565 0.578 0.595 0.662 0.759 0.733 0.8
Recall 0.685 0.658 0.644 0.63 0.562 0.151 0.055

IRLC 0.671 0.644 0.63 0.63 0.562 0.151 0.055
F1 scorel 0.619 0.618 0.621 0.646 0.646 0.25 0.103

IRLC 0.614 0.609 0.612 0.646 0.646 0.25 0.103
Mean aPC 0.539 0.575 0.58 0.578 0.579 0.587 0.361

IRLC 0.535 0.572 0.577 0.578 0.579 0.587 0.361
1Final-score cutoff

effect of IRLC-masking depends on where false positive predictions are distributed:

if no false positive predictions are located in the regions of the sequence that con-

tradict the property of relative local conservation (RLC), the precision cannot be

improved. This can also explain why precision is not improved by applying IRLC-

masking on the Yeast dataset when the final-score cutoff is higher than or equal to

0.9. In addition, it shows that for the both datasets after IRLC-masking is applied,

recall decreases slightly when the final-score cutoff is lower than 0.8 while it remains

the same when the final-score cutoff is higher than 0.8. This is because the true

positive predictions coming from matches with the lower final scores generally have

less accurate boundaries, which lead to more true positive predictions being masked

out by IRLC-masking.

3.3.5 Comparison of SeqNLS with state-of-the-art NLS prediction algorithms

Here we compare the prediction performance of SeqNLS with those of state-of-the-art

NLS prediction algorithms. Considering that some of the compared NLS predictors

may generate overlapped NLS predictions, for all the compared NLS predictors, if

two NLS predictions are overlapped, they will be merged into one prediction before

evaluation. Table 3.5 and Table 3.6 show the prediction performance of different NLS
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Table 3.5: The prediction performance of different NLS predictors on the Yeast
dataset

Yeast Dataset Precision Recall F1 score Mean aPC
PSORT II 0.455 0.66 0.538 0.696
PredictNLS 0.462 0.12 0.19 0.411
NLStradamus 0.864 0.36 0.508 0.473
cNLS Mapper 0.8 0.46 0.584 0.437
NucImport 0.526 0.4 0.455 0.414

1Seq 0.569 0.56 0.564 0.641
1Int 0.7 0.54 0.61 0.644

1Sequence-based predictor (enrichment-score cutoff=1.62 (EK))
2Integrated predictor (final-score cutoff = 0.85, IRLC masking)

Table 3.6: The prediction performance of different NLS predictors on the Hybrid
dataset

Hybrid Dataset Precision Recall F1 score Mean aPC
PSORT II 0.617 0.671 0.643 0.657
PredictNLS 0.857 0.151 0.256 0.455
NLStradamus 0.714 0.329 0.45 0.56
cNLS Mapper 0.696 0.425 0.527 0.466
NucImport 0.632 0.329 0.432 0.358

1Seq 0.682 0.603 0.64 0.57
1Int 0.759 0.562 0.646 0.579

1Sequence-based predictor (enrichment-score cutoff=1.62 (EK))
2Integrated predictor (final-score cutoff = 0.85, IRLC masking)

prediction methods on the Yeast and Hybrid datasets respectively. We can see that

PSORTII has the highest recall on the both datasets while its precision is the lowest

among all the methods. This indicates that many NLSs and non-NLS peptides can

be covered by the NLS patterns used in PSORTII. An interesting observation is that

PSORTII has the highest Mean aPC. We investigated the individual patterns used in

PSORTII and found that its high Mean aPC is attributed to the predictions of the

bipartite-NLS pattern (K/R)(K/R)X10(K/R)3/5. PredictNLS only generated a small

number of predictions as shown by its low coverage in terms of recall. It was found

that both NLStradamus and cNLS mapper have very high precision on the Yeast
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dataset. This is partially due to that our Yeast dataset is included in the training

data of the NLStradamus prediction server and the activity profiles built in cNLS

mapper are optimized for yeast. For the Hybrid dataset, both NLStradamus and

cNLS mapper exhibit lower precision since this dataset is not overlapped with the

Yeast dataset and includes many different species in addition to the yeast species, of

which the collected NLSs are from literature after 2010. The NucImport algorithm

has a very poor Mean aPC score because its NLS predictions have uniform length of

20 amino acids. Another limitation of NucImport is that it can predict only one NLS

per sequence while in the testing datasets some NLSs occur within the same parent

proteins.

As shown in Table 3.5 and Table 3.6, our sequence-based predictor with the

enrichment-score cutoff set as 1.62 (EK) has comparable or better prediction per-

formance than other NLS prediction methods: it achieved a recall rate of 0.56 and

0.603 on the Yeast dataset and the Hybrid dataset respectively, which is only second

to PSORTII. However, its precision is better than PSORTII on both datasets. The

integrated predictor shows better precision than the sequence-based predictor since

it incorporates linear motif attributes. When the final-score cutoff is set as 0.85, the

integrated predictor achieved a precision of 0.7 and 0.759 on the Yeast and the Hybrid

datasets respectively while its recall is 0.54 on the Yeast dataset and 0.562 on the

Hybrid dataset. That is, over 50% of the NLSs can be covered. The reason that the

integrated predictor can achieve high precision while maintaining high recall is that

the algorithm can extensively detect potential NLSs by using the sequential-pattern

mining method while exploiting linear motif scoring, which is not used by other NLS

prediction methods. As for residue-level accuracy, both the sequence-based predictor

and the integrated predictor achieve the higher Mean aPC compared to most other

NLS prediction methods because of its incorporation of the bipartite-NLS motif. It is

interesting to note that another example of achieving better prediction performance
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by integrating sequence features and predicted disorder is NESsential [104], which is

a computational method designed to predict nuclear export signals (NESs).

3.4 Conclusions

In this study, we propose SeqNLS, a novel method for nuclear localization signal pre-

diction based on frequent pattern mining and linear motif scoring. Various attributes

of NLS including the sequential-pattern enrichment, predicted disorder, and local con-

servation are investigated based on the two well-curated datasets, which demonstrates

their discriminative capacity for identifying NLSs. Our experimental results indicate

that sequence features in terms of sequential patterns and linear motif features are

highly complementary for NLS prediction. Compared to other state-of-the-art NLS

prediction methods, SeqNLS achieves better overall prediction performance. For the

Yeast and Hybrid datasets, SeqNLS attains a F1 score of 0.61 and 0.646 respectively

compared to 0.538 and 0.643 of PSORT-II.
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Chapter 4

Computational identification of post-translational modification (PTM)
based nuclear import regulations by characterizing nuclear localization
signal-import receptor interaction

4.1 Background

As the control center of the cell, the nucleus is separated from the cytoplasm by the

nuclear envelop. Except that small nuclear proteins (<40 kDa) can diffuse into the

nucleus through the nuclear pore complex (NPC) [105], most other nuclear proteins

are imported into the nucleus through nuclear import pathways [106]. Traffic of large

molecules such as proteins and RNA through the pores is required for both gene

expression and the maintenance of chromosomes. Understanding of the regulation

mechanisms of such traffic can bring biological insights to the cell and diseases. For

example, deregulation of nuclear import is associated with numerous cancers such as

breast cancers, prostate cancers, and other diseases [7–10].

In the nuclear import pathways, the import receptors, which belong to the karyo-

pherins family, bind to NLS of the nuclear proteins. Proteins bound by import

receptors can then pass through the NPC through the transient interaction between

karyopherins-ß and NPC (2). NLS thus has been regarded as evidence for nuclear

localization of proteins. Computational prediction of NLS has been a well-studied

research topic [19–23] and current computational NLS prediction tools have sub-

stantially reduced time and cost for biologists to discover NLSs by focusing their
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experiments on putative NLS motifs. However, nuclear import of proteins is more

than an issue of binary outcomes (either nuclear localized or not nuclear localized).

In fact, nuclear import is a highly regulated process [5, 6], in which the distribution

of particular proteins between the nucleus and cytoplasm can be regulated through

promoting or repressing their nuclear import activities.

The nucleus is the most critical compartment in a eukaryotic cell, which hosts

important nuclear proteins such as transcription factors, histones, and signaling

molecules. The import regulation of a particular nuclear protein is thus a means

to control gene expression, cell proliferation, cell apoptosis, etc. in reaction to envi-

ronmental changes [5, 7, 26, 27]. In recent years, an increasing number of researches

are devoted to studying nuclear import regulation of proteins. The discovery of the

import regulation mechanism for a particular nuclear protein is of great interest since

it implies a potential way to control the protein’s activity [5]. Moreover, it contributes

to uncovering the potential biological pathways that regulate the associated biolog-

ical activities in the nucleus. Nuclear import activity is mostly regulated through

modulating the interactions between nuclear proteins and their binding import re-

ceptors [8]. In particular, modulating the NLS binding affinity to its binding receptor

by post-translational modification (PTM) is the best understood mechanism (PTM-

based nuclear import regulation) that regulates the nuclear import of proteins. In

previous studies, the most common type of PTM for nuclear import regulation is

phosphorylation [5, 6, 26–28] while lysine acetylation has been found to be another

frequent type [29–36]. The reason that nuclear import can be regulated through the

PTM is that nuclear import activity is directly related to the binding affinity of NLS

for its binding import receptor [37–39]. However, identifying the PTM-based nu-

clear import regulation is difficult since PTM may promote, repress or may not have

obvious impact on the nuclear import activity [27].

The most commonly used approach to infer the PTM-based nuclear import regu-
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lation is the site-directed mutagenic analysis [26, 32, 40–46]. This approach basically

mutates the NLS residue at the PTM site to a residue that either prevents the PTM

or mimics the residue after the PTM. It then evaluates the likelihood that the PTM

regulates the nuclear import of the protein based on the change of the correspond-

ing nuclear import activity. The strategy of mimicking residue after PTM such as

phosphorylation has been performed computationally by cNLS mapper [22], in which

the position-wise contributions of different amino acids to the nuclear import activity

are approximated in the activity-based profiles. However, the interaction between a

NLS and its binding import receptor is very sensitive to the NLS change. The site-

directed mutagenic analysis is thus not always reliable due to the difference between

the mimicking residues and the residues after PTM. Since the PTM-based nuclear

import regulation is now recognized as a common nuclear import regulation mecha-

nism, there is a need for developing quantitative methods to expand the identification

of more PTM-regulated nuclear proteins [27].

For the PTM-based nuclear import regulation, it is technically true that PTM

regulates the nuclear import of a protein through modification of its NLS residue(s).

However, the induced change on the interaction between the NLS and the import

receptor is the ultimate factor that governs the change on its nuclear import activity.

In other words, the induced change on the NLS-import receptor interaction should

better characterize the change of the nuclear import activity caused by PTM than

the difference of the NLSs. Therefore, in our method we first applied molecular

interaction energy components (MIEC) [47–50], which has been successfully used to

characterize domain-peptide interactions, to characterize the NLS-import receptor

interaction. Next, we used SVR to learn the relationship between the MIEC features

and the corresponding nuclear import activity, which is quantitated as NLS activity

scores [22] in the experimental dataset. The characteristic of our method (NIpredict)

is that it is a machine learning based method based on features calculated from
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NLS-import receptor interaction interface, which can thus be applied to assess the

impact of PTM within NLS on the corresponding nuclear import activity. Our cross-

validation results showed that nuclear import activities for different NLS variations

can be accurately predicted by NIpredict. We then applied NIpredict systematically

to identify the potential PTM-based nuclear import regulations for human and yeast

nuclear proteins.

4.2 Material AND Methods

4.2.1 Preparation of the training dataset

The training datasets of NIpredict were prepared based on the experimental dataset

from Kosugi et al [22]. Kosugi’s dataset provides the NLS activity scores as the

measure to represent different levels of nuclear import activities for a number of

classical NLS mutants. Considering that the major binding site and the minor binding

site in Imp-α are different binding site and may have different interactions with the

bound NLSs, two training datasets for NIpredict were prepared as shown in the

supplementary file (Table S3 and Table S4): the major-site dataset is for NLSs bound

to the major binding site with 374 instances while the minor-site dataset is for NLSs

bound to the minor binding site with 152 instances In the major binding site, there are

five well-recognized binding site positions (P1-P5), while there are four well-recognized

binding site positions (P1’-P4’) in the minor binding site [70,91,107]. The alignment

of the NLS residues in the dataset onto the binding site positions can be obtained by

aligning the strictly conserved lysine in P2 and the KR-motif in P1’P2’ [70, 107] for

the major-site and minor-site datasets respectively. Since the experiment of Kosugi’s

dataset was conducted in vivo in living yeast cells, the import receptor was implicitly

indicated as Kap60 since Saccharomyces cerevisiae possesses a single Imp–α gene.
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Figure 4.1: Flowchart of building the NIpredict model. The binding complex struc-
tures of different NLSs were first modeled by the defined superimposition procedure
(step 1). The binding complex structure of NLS mutants were modeled by mutat-
ing the NLS residues in the selected template using Scwrl4 and then optimizing the
structure through the defined Amber energy minimization procedure (step 2). The
interaction interface was modeled in terms of a set of residue pairs (How to derive the
set of residue pairs in step 3 will be explained in Figure 2). For each of the modeled
binding complex structures, the interaction between the NLS and the import recep-
tor was characterized in terms of the four decomposed energies between each of the
m residue pairs (step4). Support Vector Regression was used learn the relationship
between the characterized interaction, which is represented by MIEC features, and
the corresponding NLS activity score (step5).
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4.2.2 Building the NIpredict model

The process of building the NIpredict model is shown in a flowchart (Figure 4.1).

First, we collected binding complex structures for different NLSs. In step 2, we

modeled the binding complex structures of the training dataset (see next section).

Next, we defined NLS-import receptor interaction interface. In step 4, the NLS-import

receptor interactions of the training dataset are characterized based on MIEC and

Amber simulation. Finally, the relationship between the characterized interaction and

the corresponding nuclear import activity is learned by a Support Vector Regression

model. The details of each step will be discussed in the following subsections.

Collecting binding complex structures for different NLSs

We collected a number of NLS-Impa binding complex structures from the PDB

database [108] with different NLSs as template candidates. This is because differ-

ent NLSs may form different orientations when bound to kap60, and we collected

template candidates for two reasons: One is to construct the generic model of the

NLS-import receptor interaction interface; the other is to choose an optimal structure

template to model the binding complex structures of NLSs in our training datasets.11

NLS-Imp� binding complexes were collected for the major binding site: 1EE4, 1IQ1,

1Q1S, 1Y2A, 2YNR, 3BTR, 3OQS, 3RZ9, 3VE6, 4BA3, and 4HTV; 5 NLS-Imp�

binding complexes were collected for the minor binding site: 1EE4, 1IQ1, 1Q1S,

2YNR, and 3Q5U. However, among those collected complexes most of the binding

proteins were not kap60 except 1EE4. To expand the pool of template candidates,

for each of the collected binding complex structures of which the binding protein

was not kap60 (binding complex structure C), we built the corresponding binding

complex structure of the bound NLS peptide in C for the binding import receptor

as kap60 (binding complex structure C’) through the defined superimposition proce-

dure: C’ was built by first superimposing C to the yeast NLS binding complex 1EE4
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and then acquiring the coordinates of the bound peptide, which was followed by the

energy-minimization procedure (to be defined below) to optimize the structure. The

structure superimposition was performed by SPalign [109].

Modeling binding complex structures

The procedure to model the binding complex structure of a NLS A for its binding

import receptor can be divided into two steps: 1) selecting a template binding complex

and mutating its bound peptides to the NLS A; 2) optimizing the structure. In the

first step, the bound peptides in the complex were truncated to exactly align the

binding site positions of the NLS A to avoid the influence from the extra flanking

residues while SCWRL4 [110] was used to mutate the truncated bound peptides to

the NLS A In the second step, the mutated complex structure from SCWRL4 was

optimized by performing energy minimization using AMBER12 and the AMBER03

force field [111] which followed the same procedures by Li et al [50]: before performing

energy minimization, tleap was first used to preprocess the complex structure so that

the structure was solvated in a rectangle box of TIP3P water that extended 12 Å

from any solute atom, and the system was neutralized by placing counter ions Na+

or Cl- around the structure using the Columbia potential. The preprocessed complex

structure was then optimized in 5000 steps of energy minimization, in which the first

1000 steps used steepest descent minimization and the rest 4000 steps used conjugate

gradient minimization. The snapshot of the conformation in the last step was used

for energy decomposition (to be explained below).

The template binding complex determines the starting conformation of the mod-

eled complex structure and thus affects the conformation of the optimized binding

complex structure. Selection of the template binding complex is therefore highly as-

sociated with the accuracy of the modeled binding complex structure. The template

binding complex was selected from the template candidates according to the corre-
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sponding performance, while the template candidates of which the bound peptides did

not completely cover the binding site positions of the NLS were not considered. 3RZ9

was used as the template complex structure for NLSs in the major-site dataset except

NLSs numbered from 306 to 374; the binding sites positions of those NLSs numbered

from 306 to 374 cannot be completely covered by the bound peptide in 3RZ9 and 1Q1S

was used as their template binding complex structure. For the minor-site dataset, no

bound peptides in the collected PDB structures were found to completely cover the

binding sites positions of the NLSs. 3UKX was used as the template complex struc-

ture since its bound peptide covers the most binding site positions of the NLSs in the

minor-site dataset (except P-4’ for NLS numbered from 80 to 152 in the minor-site

dataset). To model the position of the missing NLS residue serine in P-4’position,

residue serine was placed in P-4’position of 3UKX using Swiss-PdbViewer [112].

Modeling interaction

The basic idea of modeling interaction is to identify the residue pairs between NLS

residues and/or import receptor residues that may affect binding and then charac-

terize their preference using their interacting energies. Three classes of residue pairs

were defined which are composed of residues at two positions of NLS and/or kap60p.

The most important class is the domain-peptide residue pair, which was defined as

residue pairs between the directly interacted NLS residues at the binding site posi-

tions P1-P5 (P1’-P4’ for the minor binding site) and residues in kap60 within a 6-Å

distance cutoff for any of the template candidates. Accordingly, 104 domain-peptide

residue pairs were defined for the characterization of the domain-peptide interac-

tion for the major site, which were highlighted by the orange links in Figure 4.2(a)

and listed in Figure 4.2(b); the potentially interacting residues in kap60 are high-

lighted in blue color in Figure 4.2(c). For the minor site 80 domain-peptide residue

pairs were defined. In addition, the interactions between the directly interacted NLS
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Figure 4.2: Residue pairs defined at the domain-peptide interaction interface for the
major site. (a) Diagram of the modeled interaction interface. Orange links represent
the domain-peptide residue pairs. (b) List of the defined domain-peptide residue
pairs. (c) Potentially interacting residues in kap60.

70



residues in the adjacent positions (internal-peptide interaction) were also considered

to reflect the conformational preference of the peptide under the bound condition:

4 and 3 internal-peptide residue pairs were defined for the characterization of the

internal-peptide interaction for the major site and the minor site respectively. In

addition, interactions of NLS flanking residues were considered (flanking-residue in-

teraction) to reflect their enhancing or repressing effect on NLS binding: 2 N-terminal

flanking residues and 2 C-terminal flanking residues next to the directly interacted

NLS residues were defined as the NLS flanking residues. Residue pairs between the

NLS flanking residues and the directly interacted residues along with their previously

defined potentially interacting import receptor residues were defined as the flanking-

residue residue pairs, which were used for the characterization of the flanking-residue

interaction: 256 and 220 flanking-residue residue pairs were thus defined for the ma-

jor site and the minor site respectively. The combination of domain-peptide residue

pairs, internal-peptide residue pairs, and flanking-residue residue pairs was used to

define the interaction interface.

Given the modeled binding complex structure (the snapshot of the conformation

in the last step of the energy minimization procedure) and the defined residue pairs

of the interaction interface, the interaction can be characterized in terms of the de-

composed energies between the residue-pairs defined in the model of the interaction

interface. Energy decomposition was performed using MMPBSA of the AMBER

package, while the GB model was used to simulate the solvent effect with the input

parameters developed by Onufriev et al [113, 114]. The interaction energies between

any two residues of interest were decomposed into van der Waals interaction energy,

electrostatic interaction energy, polar solvation free energy, and non-polar solvation

free energy. The decomposed energies between the defined residue pairs in the model

of the interaction interface were used as the input features of the SVR, while the NLS

activity scores were used as the prediction values. The SVR model was trained using
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the LIBSVM package [100] with nu-support vector regression (nu-SVR) as the SVM

type and linear function as the kernel.

4.2.3 Performance Evaluation

To evaluate the prediction performance of NIpredict, we performed leave-one-out

cross-validation on the training datasets. Two metrics were used to evaluate the

prediction performance with regard to the NLS activity scores: correlation coefficient

and mean squared error (MSE). Since the training datasets are composed of activity

scores of different variations of the NLS signal, the performance of NIpredict on the

training datasets can be regarded as evaluating how accurate NIpredict can assess

the impact of NLS change over its nuclear import activity. Direct evaluation on

how effective NIpredict can identify the PTM-based nuclear import regulation will

be discussed in the case studies.

4.2.4 Genome-wide prediction of nuclear import activity

In addition to performance evaluation on the training datasets, we applied NIpredict

to predict the nuclear import activity of genome-wide nuclear proteins that contain

targeted peptides covered by the mutation templates (shown in Table S3) in our train-

ing datasets. This limited coverage is due to that our prediction model is trained on

NLS instances from these templates. Accurate prediction of binding activity of pro-

teins of other templates depends on the experimental data of their binding activities,

which are not available now. While most mutation templates in the training datasets

are not common in proteins of human and yeast genomes, the mutation template

PxxK[KR]x[KR]xx is a very common NLS motif bound to the major site. In this mo-

tif, the P2 site lysine is strictly conserved; P3 and P5 are conserved for basic residues

either K or R, and a helix breaking proline is located in the N terminal flanking

position P-2. We prepared the Yeast dataset which contains 1404 nuclear proteins
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collected from Uniprot. Besides, although these training datasets are for the yeast

species and the import receptor is the unique kap60, previous study showed that the

NLSs bound to the major site or minor site of the Imp-α in yeast are also bound

to most Imp-α variants in human [87]. This implies that the binding specificities of

the Imp-α variants in human are similar to kap60’s. Therefore, in addition to the

Yeast dataset, we prepared the Human dataset which contains 2720 nuclear proteins

from Uniprot. We scanned the Yeast and Human datasets for matches of the motif

PxxK[KR]x[KR]xx and then applied NIpredict to predict the import activity of these

matched proteins. To model the NLS modified by PTM, the Amber library file of the

phosphorylated amino acids based on craft et al [115] and the Amber library file of

the acetylated lysine based on papamokos et al [116] were used.

4.3 Result AND Discussion

4.3.1 Characterization of NLS-Impa interaction using MIECs

In NIpredict, the decomposed interaction energies of all the residue pairs defined in the

model of the interaction interface are combined as the features for characterizing the

interaction between NLSs and import receptors. To measure the energy contribution

of a peptide residue to the interaction, all the decomposed energies between this

peptide residue and each of its potentially interacting domain residues as defined

in the domain-residue residue pairs are added up. Figure 4.3 shows the average

energy contributions of the binding site positions P1-P5 and P1’-P4’ for the major-

site dataset and the minor-site dataset respectively. For the major site, the figure

shows that position 2 (P2) has the highest average energy contribution, while energy

contributions of P3 and P5 are the second and roughly equal contribution, which

is consistent with the results of previous research [117]. For the minor site, it is

shown that P2’ has the highest energy contribution while P1’ is second to P2’. The

importance of these two positions in terms of energy contribution corresponds to the
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Figure 4.3: The average energy contributions of different binding site positions. (A)
The major binding site; (B) The minor binding site.
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Figure 4.4: The energy contributions of different binding site positions for NLSs in
the datasets. (A) The major binding site; (B) The minor binding site.
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conserved “KR” motif at P1’P2’, of which P2’ arginine is especially important to the

interaction [107]. The consistency between our predicted contribution of the peptides

to the binding and previous studies demonstrates the effectiveness of our binding

complex structure modeling the characterization based on decomposed energies. On

the other hand, we found that the relative energy contributions for different binding

site positions are not always the same as shown in Figure 4.4. They depend on the

types of residues at the positions and the flanking residues, which implies the high

flexibility of the binding site to affect NLS binding.

Table 4.1: Performance of NIpredict using different models of the interaction interface

Major Site Minor Site
interaction interface model Correlation MSE Correlation MSE

(residue pairs) Coefficient Coefficient
domain-peptide 0.637 4.16 0.773 3.47

domain-peptide+internal-peptide 0.637 4.15 0.771 3.5
domain-peptide+flanking-residue 0.729 3.45 0.713 4.61
domain-peptide+internal-peptide 0.718 3.59 0.719 4.52

+flanking-residue

To illustrate how the definition of the interaction interface affects the binding

activity prediction, Table 4.1 shows the performance of NIpredict using different in-

teraction interface definitions. NIpredict achieved a correlation coefficient of 0.729

for the major-site dataset when the domain-peptide residue pairs and flanking-residue

residue pairs were included in the interaction interface, while it attained a correlation

coefficient of 0.773 for the minor-site dataset when only the domain-peptide residue

pairs were used. From Table 4.1, we found that inclusion of the internal-peptide

residue pairs had no performance improvement for both the major-site dataset and

minor-site dataset. The reason could be that NLSs bound to the major site or the

minor site are short and no specific secondary structures are formed under the bound

condition, which is also suggested before [50]. On the other hand, the inclusion of

flanking-residue residue pairs significantly improved the performance on the major-
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site dataset. One of the reasons could be that many NLSs in the major-site dataset are

only different in the flanking residues, and the interaction with those flanking residues

are thus more effective features for predicting the import activity of those NLSs. For

the minor-site dataset, however, the inclusion of the flanking-residue residue pairs

degraded the performance, which could be due to that flanking-residue residue pairs

introduced too many irrelevant residue interactions into the interface model for the

minor-site dataset. In machine learning it is well known that noise features downgrade

SVR performance.

We also evaluated the leave-one-out prediction performance on the 76 NLSs of the

major-site training dataset that are covered by the mutation template PxxK[KR]x[KR]xx

in the major-site dataset. It achieved a correlation coefficient of 0.633 and MSE of

5.76. The reason of having lower prediction performance on those 76 NLSs than the

overall prediction performance on the major-site dataset could be that the muta-

tion template PxxK[KR]x[KR]xx includes more wildcard positions and involves more

complicated variations than other mutation templates.

4.3.2 Comparison with other methods on predicting nuclear import activity

Both NIpredictand cNLS mapper can be used to predict nuclear import activity.

NIpredict achieved a correlation coefficient and MSE of 0.729 and 0.345 on the major-

site dataset and 0.773 and 0.347 on the minor-site dataset. cNLS mapper obtained

a correlation coefficient and MSE of 0.881 and 1.782 on the major-site dataset and

0.871 and 1.468 on the minor-site dataset, of which the result was obtained by testing

the datasets on the cNLS mapper website predictor. However, because the activity

profiles of cNLS mapper were built based on our test datasets, its performance tend

to be overestimated. Indeed, when the training and test datasets are the same as we

tested cNLS mapper, NIpredict attained a correlation coefficient and MSE of 0.948

and 0.731 on the major-site dataset and 0.944 and 0.923 on the minor-site dataset,
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which beats cNLS mapper.

In addition to predicting nuclear import activities for PTM-modified NLSs, NIpredict

is expected to be more accurate on predicting nuclear import activities for wild-type

NLSs than cNLS mapper. The reason is that while in general higher binding affinity

leads to higher nuclear import activity, the exact relationship between binding affinity

and corresponding nuclear import activity is complicated and is still not well under-

stood [38]. So the additive rules incorporated in the activity profiles of cNLS mapper

may be insufficient to model the complicated relationship between NLSs and their

corresponding import activity. On the other hand, MIEC features have been success-

fully used to characterize various domain-peptide interactions. In particular, it was

successfully applied to predict the binding affinity of another domain, Amphiphysin-1

Src homology 3, for different bound peptides [47]. This implies that the impact of

bound peptide change on its binding affinity can be effectively characterized using

MIEC, which is also proved by our successful prediction of nuclear import activity

based on MIEC. In short, the advantage of NIpredict on predicting the nuclear im-

port activity of wild-type NLSs lies that NIpredict is more sensitive to subtle changes

within NLS that affect nuclear import activity.

4.3.3 Computational prediction of phosphorylation-based nuclear import inhibition

of UL44

To further evaluate the capability of NIpredict in identifying PTM-based nuclear

import regulation, we applied it to analyzing the regulation of the human virus

UL44. It is known that the segment 425-PNTKKQK-431 of UL44 is a NLS bound

to Impa/ß complex with high affinity and is sufficient and necessary for its nuclear

localization [118]. Further studies found that the Thr-427 of the above NLS is a

CDK1-mediated phosphorylation site which is related to its nuclear import. The

phosphorylation at Thr-427 appears to inhibit its nuclear import based on the fact
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that the mutation of Thr-427 to Ala-427 leaded to similar accumulation in the nucleus

while Thr-427 to Asp-427 mutation, which mimics the phosphorylation, greatly re-

duced its nuclear activity [45, 119]. So it remains to explain how this is achieved.

We found that the segment 425-PNTKKQKCG-433 NLS is covered by our tem-

plate PxxK[KR]x[KR]xx while Thr-427 is at the wildcard position. We predicted

the nuclear import activity of UL44 before and after Thr-427 phosphorylation using

NIpredict. The predicted NLS activity score of the wild-type NLS PNTKKQKCG

was 8.3 while the predicted NLS activity scores of the NLS mutants PNAKKQKCG

and PNDKKQKCG were 7.7 and 4.9 respectively. Not unexpected, the predicted

NLS activity score of the Thr-427 phosphorylated NLS was only 2.5, which indicates

that the nuclear import is significantly inhibited due to phosphorylation. This pre-

diction result by NIpredict was consistent with previous experimental studies [118].

Essentially, it computationally confirmed that Thr-427 phosphorylation inhibits the

nuclear import of UL44 by weakening its interaction with Imp-α.

4.3.4 Genome-wide scan of PTM-based nuclear import regulations on the Yeast and

Human datasets

To identify more potential PTM-regulated nuclear import proteins, we developed a

systematic pipeline based on NIpredict to scan the Yeast and Human datasets. The

first step is to identify potential NLSs by pattern match with motif PxxK[KR]x[KR]xx

and then predict their nuclear import activity using NIpredict. The scan result is

shown in Table S5 and Table S6 for the Yeast and Human datasets respectively. 117

motif matches were found for the Yeast dataset, of which 102 motif matches have

predicted NLS activity scores greater than 3. 385 motif matches were found for the

Human dataset, of which 331 motif matches have predicted NLS activity scores greater

than 3. The motif matches that are overlapped with the Uniprot-annotated NLS

(potential, portable, etc.) are marked as (*). In the Yeast dataset, 5 motif matches
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are overlapped with the Uniprot annotated NLS while in the Human dataset, 34 motif

matches are overlapped with the Uniprot annotated NLS. The lowest predicted NLS

activity score of the motif matches overlapped with the Uniprot annotated NLS is

3.71, which implies that motif matches with very low predicted NLS activity scores

are unlikely to be NLS.

In addition to the predicted NLS activity scores from NIpredict, another important

factor to evaluate the likelihood of a candidate NLS is the disorder degree of the

peptide segment. NLS is one type of linear motifs which have tendency to be located

in disordered region [52]. The disorder factor was excluded from Kosugi’s experiment

since all NLS mutants were fused to the C-terminal of GUS-GFP reporter. However,

some of the motif matches in the datasets may be located in globular domain where

they may not be exposed to interact. Therefore, we estimated the disorder score of

each motif match, which is defined as the medium disorder score of residues within

the match. The disorder score of each residue was predicted using IUPred [120].

As shown in Table S5 and Table S6, all the motif matches (except one) that are

overlapped with annotated NLS have disorder scores higher than 0.5. This indicates

that motif matches with the disorder scores lower than 0.5 are less likely to be NLS.

Therefore, the motif matches with the predicted NLS activity score higher than 3 and

the disordered score higher than 0.5 were identified as potential NLSs for the further

investigations.

To identify potential PTM-based nuclear import regulation, we collected the ex-

perimentally verified PTM sites from DbPTM 3.0 [121] that overlap the wildcard

positions of the motif matches. The NLS activity scores of the motif matches before

and after PTM were predicted using NIpredict and are shown in Table S7. The pre-

dicted NLS activity scores of the motif matches increase, decrease, or remain roughly

equal after phosphorylation or acetylation on the underlined residue(s). All possible

combinations of the PTM sites within the predicted NLS were listed in Table S7, while
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some of the combinations may never happen during the life cycle of the protein. The

motif matches of which the predicted NLS activity scores subject to apparent change

are likely to be the candidates of the PTM-based nuclear import regulation, while

the criteria of identifying potential NLSs were also considered to judge the likelihood

of the PTM-based nuclear import regulation.

4.3.5 Case Studies on PTM-based nuclear import regulations identified by NIpredict

Localization of nuclear proteins to nucleus is the prerequisite for their participation

in nuclear activities. Regulation of nuclear localization is a known mechanism to

control and regulate other biological activities such as gene transcription and cell

cycle progression [5]. It is thus interesting to check what biological activities could

be regulated by our identified potential PTM-based nuclear import regulations. By

screening the candidates of potential PTM-based nuclear import regulations in Table

S7, we identified three potential regulation mechanisms of biological activities based

on NIpredict predictions and associated biological evidences.

PKG inhibits spliceosome assembly by phosphorylation based regulation of SF1 nu-

clear import

A spliceosome is a large complex in the nucleus whose function is to remove introns

from pre-mRNA (RNA splicing). Spliceosome assembly is thus a necessary event for

RNA-splicing. SF1 and U2AF65 are both important components in spliceosome and

their interaction is critical for spliceosome assembly. It was found that the Ser-20

phosphorylation mediated by cGMP-dependent protein kinase (PKG) on human SF1

(Q15637) inhibits its interaction with U2AF65, which leads to a block of spliceosome

assembly [122]. Wang et al [122] raised another possibility that the Ser-20 phos-

phorylation may regulate localization of SF1 since Ser-20 is adjacent to a putative

NLS, which is among our NIpredict predictions (Table S5). The motif match 13-
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PSKKRKRSR-21 of SF1 has a predicted NLS activity score and a disorder score of

8.04 and 0.65, which is very likely to be NLS. As shown in Table S7, the predicted

NLS activity score of this putative NLS decreased from 8.04 to 3.78 after the Ser-20

phosphorylation. The significant reduction on the predicted NLS activity score of

SF1 indicates the repressing effect of the Ser-20 phosphorylation on the nuclear im-

port of SF1. This result is consistent with the biological role of PKG with regard to

SF1, which is known to prevent spliceosome assembly through repressing the nuclear

activity of SF1 by the Ser-20 phosphorylation. Therefore, the PTM-based nuclear

import regulation of SF1 mediated by PKG could be another mechanism to regulate

RNA splicing.

SIRT1 promotes histone H1 nuclear import by decetylation

Histone is a protein family of which the function is to package DNA into structural

units called nucleosomes. Formation of nucleosomes directly contributes to condensed

chromatin, of which the repressive chromatin structure leads to DNA substrates less

accessible for gene transcription. Histone acetylation/deacetylation is closely associ-

ated with gene transcription in that histone acetylation facilitates gene transcription

through dissociating DNA from nucleosomes and de-condensing chromatins while hi-

stone deacetylation represses gene transcription through recovering nucleosomes and

condensing chromatin. SIRT1 is a known histone deacetylase which deacetylates

histone H1 (P10412) at Lys-26 [123] and catalyzes the formation of compacted chro-

matin. From out NIpredict predictions (Table S5), histone H1 has a motif match

19-PVKKKARKS-27, which has a predicted NLS activity score and a disorder score

of 12.8 and 0.64. It means that this motif match is likely to be an NLS. As shown

in Table S7, the Lys-26 acetylation on histone H1 reduced its predicted NLS activity

score from 12.8 to 6.3, which indicates the promoting effect of the Lys-26 deacetylation

on the nuclear import of histone H1. Considering that histone H1 is the prerequisite
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component for organizing nucleosomes, increasing its nuclear availability could thus

facilitate condensing chromatin. This is consistent with the biological role of SIRT1

with regard to histone H1, which is known to promote chromatin compacting through

the Lys-26 decetylation on histone H1. Interestingly, the predicted NLS activity score

before the Lys-26 deacetylation is still within the functional range (6.3), indicating

that the basic level of nuclear availability of histone H1 is still required when gene

transcription is active. These evidences showed that the PTM-based nuclear import

regulation of histone H1 mediated by SIRT1 could be another mechanism to regulate

gene transcription.

CDK regulates the nuclear import of ORC6 via phosphorylation

DNA replication occurs only in dividing eukaryotic cells, which must be tightly con-

trolled to ensure that the genome is only replicated once. Previous studies have found

that DNA replication is regulated by Cyclin-dependent kinases (CDK)-mediated

phosphorylation on different proteins through multiple levels of mechanisms [124]. In

particular, it is known that CDK mediated phosphorylation on ORC6 (P38826) has

an effect to prevent helicase from loading with unknown mechanisms [124–126] One

possible mechanism is that CDK mediated phosphorylation on ORC6 blocks Cdt1

recruitment through inhibiting Cdt1 binding [127]. We found that ORC6 contains

a motif match 115-PSPKKNKRS-123 which is covered by our NIpredict predictions

(Table S6). The predicted NLS activity score and the disorder score of this motif

match is 5.04 and 0.67 respectively. This motif match is thus likely to be an NLS,

in which Ser-116 is the phosphorylation site mediated by CDK [128] . As shown in

Table S7, the predicted NLS activity score of this motif match drops from 5.04 to

1.27 after the Ser-116 phosphorylation, which indicates that the Ser-116 phosphory-

lation significantly inhibits the nuclear import of ORC6. This prediction result is

consistent with the biological role of CDK with regard to ORC6, which is known to
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prevent helicase from loading through CDK-mediated phosphorylation. Therefore,

the PTM-based nuclear import regulation of the ORC6 mediated by CDK could be

another mechanism to regulate DNA replication.

The above three hypotheses on PTM-based nuclear import regulation mechanisms

were based on the prediction results of NIpredict and the known biological roles of

PTM-mediating enzymes (PKG, SIRT1, and CDK). We found that a common charac-

teristic of these three proteins is that their participations in the nuclear activities are

also controlled by other mechanisms in addition to the PTM-regulated nuclear import

process. Such kinds of multiple regulation mechanisms are common in biological sys-

tems to make the regulated activity tightly controlled, which is also e.g. reported in

experimental studies [5]. The first two hypothesized regulation mechanisms regulate

biological activities in different stages of gene expression while the third hypothesized

regulation mechanism regulates biological activities during cell proliferation. The di-

versity of the biological activities regulated by PTM-based nuclear import regulations

indicates it is widely involved in various biological activities within the cell nucleus.

4.4 Conclusions

In this study, we proposed a computational method, NIpredict, for predicting nu-

clear import activity and discovery of PTM-based nuclear import regulations. This

approach is based on characterizing the interaction between NLS and the import

receptor in terms of MIEC and learning the relationship between the characterized

interaction energies and the corresponding nuclear import activity by Support Vec-

tor regression. The accuracy of NIpredict is demonstrated by its high performance

in leave-one-out cross-validation on the training datasets and accurate prediction in

the real case. NIpredict was then used to systematically scan the Yeast and Human

genome for identifying potential PTM-based nuclear import regulations. Based on

NIpredict predictions and known biological roles of the PTMs (or PTM-mediating

84



enzymes), we identified the potential regulation mechanisms of three biological activ-

ities through the identified PTM-based nuclear import regulation. It should be noted

that the scope of analysis in this study was limited by the NLS mutation templates

due to limited experimental dataset. This approach can be applied to identify more

comprehensive list of PTM-based regulations of protein sub-cellular localization given

more experimental datasets. A web server for predicting nuclear import activity given

the NLS sequence is available at http://mleg.cse.sc.edu/NIpredict.
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Chapter 5

Conclusions

My dissertation is composed of three parts which addressed issues in the corresponding

topics: prediction of protein localization, prediction of protein sorting signal, and

identification of protein localization regulation. They were organized into Chapter 2,

Chapter 3 and Chapter 4 respectively. In the next section I will give a brief summary

of my dissertation.

5.1 Summary

Protein localization has been recognized as useful information for protein function

annotation. Despite many computational methods have been proposed for protein

localization prediction, their prediction accuracies are far from being sufficient for

genome wide protein localization prediction. Ensemble methods have been proposed

as solutions for achieving higher prediction accuracies by combining strength of dif-

ferent protein localization predictors. However, no previous works addressed the issue

of intensive computation for applying the ensemble solutions. In the first part of the

dissertation, a framework of designing minimalist ensemble algorithms for practical

genome-wide protein subcellular localization prediction is proposed, which can signifi-

cantly reduce the number of individual predictors in a given ensemble algorithm while

maintaining comparable performance. In particular, we analyzed the predictions of

9 existing protein localization predictors and addressed issues of algorithm redun-

dancy, consensus mistakes, and algorithm complementarity in designing ensemble
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algorithms.

Sorting signals are direct evidences for protein localization. Prediction of sorting

signals can thus help elucidate the functions of proteins. In the second part of the

dissertation we investigated nuclear localization signals and proposed SeqNLS, a novel

computational method for NLS prediction. SeqNLS outperformed other state-of-the-

art NLS prediction algorithms for two main reasons: the algorithm can extensively

identify potential NLSs by mined NLS sequence patterns through applying frequent

pattern mining techniques; SeqNLS incorporates the linear motif attributes of NLS

which can effectively remove false positive predictions.

Nuclear import of proteins can be regulated through modulating their NLSs by

PTM. In the third part of the dissertation we proposed NIpredict to predict nuclear

import activity based on characterized NLS-import receptor interaction. Our ex-

periments showed that nuclear import activity change due to NLS change could be

accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a

systematic framework to identify potential PTM-based nuclear import regulations for

human and yeast nuclear proteins. Application of this approach has uncovered the po-

tential nuclear import regulation mechanisms by phosphorylation and/or acetylation

of three nuclear proteins including SF1, histone H1, and ORC6.

5.2 Main Conclusions

Despite the fact that existing protein localization prediction methods use different

algorithms to predict protein localization, many of them use similiar features and thus

tend to make wrong predictions on the same proteins. Incorporation of prediction

algorithms using distinct features rather than high-performance prediction algorithms

contributes to ensemble predictions.

The importance of incorporating distinct features for designing an prediction al-

gorithm is also addressed in Chapter 3. While most other NLS prediction algorithms
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simply utilize sequence features, an important factor that SeqNLS outperforms other

NLS prediction algorithms is that SeqNLS incorporates the linear motif attributes of

NLS in addition to sequence features.

Protein interactions are essential events for controlling cellular processes includ-

ing protein localization. In Chapter 4, to the best of my knowledge, it is the first

time that protein localization is investigated through modeling protein-protein inter-

actions. Despite the limitation of experimental dataset, results of serveral uncovered

potential regulation mechanisms have demonstrated its research potential and await

further experimental verification.
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