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ABSTRACT 

Developing new materials have historically been time-consuming. Computational 

material discovery can search large design space to identify promising candidates for 

experimental verification. Recently, Density Functional Theory (DFT) based first 

principle calculation has been able to calculate many electrical and physical properties of 

materials, making them suitable for computational doping based material discovery. In 

material doping, given a base material, one can change its properties by substituting some 

elements with new ones or adding additional elements. In computational doping, we have 

a grid of atoms in a supercell, some of which can be substituted with dopant atoms. There 

are many possible doping positions for the doped elements in the supercell, among which 

the most stable supercell with the lowest free electronic energy is the one that most likely 

appears in experiments. So finding the most stable doped supercell configuration is the 

first step for computational doping, which is usually done exhaustively nowadays. For 

each such substitution, the Vienna Ab-Initio Simulation Package is usually used to 

calculate its energy and higher level physicochemical properties. Free energy calculations 

take about 15-30 hours for a supercell of 75 atoms for substituting two positions out of 15 

with a single dopant element, and it may take days to weeks for multiple dopant 

elements. This is a typical optimization problem with expensive evaluation functions. 

Here we first developed a genetic algorithm for finding the most stable structure of the 

doped material with the lowest free electronic energy for a single dopant element. It can 

reduce the running time for computational doping by up to 75%. We used SrTiO3



vi 

perovskite as the base material and Nb as the substitution element.  We also developed 

another genetic algorithm for multiple dopant elements. Since the search space becomes 

larger, the genetic algorithm works better and saves up to 85% of calculations for finding 

the most stable structures. Finally, we developed a genetic programming (GP) algorithm 

for computational doping which can simultaneously determine multiple dopant elements 

with different doping ratios. The simultaneous search of dopant elements and their ratios 

can speed up the search process for large doping spaces. 
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CHAPTER 1  

INTRODUCTION 

The clean, efficient, renewable and environmental-friendly energy generation is 

one of the most challenging works in today’s world. In this energy-centric world, the 

importance of oil as a fuel type is known by everyone. The twentieth century was the 

witness of the first oil wars in the world, and it looks like these fights will continue to 

increase. In response, researchers and scientists have focused on substitution sources for 

oil to generate energy since the oil sources will run out one day. While oil-dependent 

countries try to create new energy generation sources to remove the high cost of oil, oil-

producing countries try to be ready to compete with other countries when their resources 

are depleted or new energy resources become cheaper and more popular than the oil. Two 

decades ago, most trains used gasoline as a fuel. Today, trains are mostly run by 

electricity since its cost is much lower than oil.  

Changing the type of the fuel requires changing the engines and equipment where 

the fuel is used. The type of material of the engine or the equipment using the fuel may 

need to be changed depending on different fuel types. Interaction between the fuel and 

the material, the heat when the fuel is used, the exhaust gas are some parameters that 

need to be considered when an energy generator system is prepared. Thus, the materials 

used in these systems become very important in the name of cost, security, usage-time 

etc. 
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Due to the high cost of oil and the issue of air-pollution, scientists and researchers 

focused on creating new, clean, environmental-friendly, and cheap power generation 

systems. Solar panels and wind farms have helped but, their natural limitations makes 

them useful only in certain conditions.  

In 1962, Westinghouse Electric Corporation introduced the “solid electrolyte fuel 

cell”.  Solid oxide fuel cells (SOFCs) are energy conversion devices that convert 

chemical energy directly into electrical energy. SOFCs are fuel flexible devices and are 

able to use different gases as fuel including: hydrogen, biogas, natural gas, methane, 

butane and others. They minimize the emissions, making them environmental-friendly. 

Another advantage of SOFCs over other power generation systems is that they work 

quietly and with no vibration. Also they are highly efficient, with pressurized SOFCs 

reaching 70% efficiency in hybrid/gas turbine power generation systems [1].  

The general purpose of this dissertation is to build a framework for new material 

design and discovery by using genetic algorithms and genetic programming. For this, 

Solid Oxide Fuel Cells were chosen to be the test bed. Different materials can be used for 

the components of SOFC. The first topic of this dissertation will be, what computational 

material design and discovery is, and what has been done in this field, in Section 1.1. In 

Section 1.2, what are SOFCs and what kind of materials were used for the anode, cathode 

and electrolyte for SOFCs will be explained. The candidate materials proposed by 

scientists for SOFCs will also be discussed. Then, the kind of methods that were used to 

discover new materials for SOFCs will be reviewed. The limitations of current studies 

follows in Section 1.3. Finally, our proposed method will be explained in addition to how 
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it will help both finding new materials for SOFCs and also other material 

design/discovery researches in Section 1.4.  

1.1 COMPUTATIONAL MATERIAL DISCOVERY AND DESIGN 

Since we are living in a competitive world, companies rival with each other to 

produce a product with a lower cost, better performance, and higher profit. If we take cell 

phones as an example, costumers are looking for a lighter, thinner, larger screen that also 

has a longer lasting battery.  

In such a competitive world, one needs to make “the better” survive. This may be 

the thinnest, lightest, the most durable, and strongest, etc. based on the costumers’ 

demand. While the companies produce the new technology, they need to check multiple 

things at the same time. For instance, cell phones can be produced more thinly, but they 

should also cost the same or even lower than the previous version. Similarly, the new cell 

phones can be produced with a larger screen but the battery cannot die in 2 hours.  

Almost all technology in the world consists of a set of materials. In principle, the 

discovery of novel materials could be accelerated by computational studies. 

Computational material design minimizes costly and time-consuming experimentation. 

Since the experimental studies are time-consuming and expensive, computational studies 

have become an important area for material discovery and design. Based on the 

calculated properties, the values are provided from the careful synthesis and experimental 

tests.  

In the industry, new materials do not come about easily or quickly. Commercial 

applications of new materials usually come many years after the initial discovery. The 

reason for this latency is that many parameters should be optimized to apply a new 
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material to the product. Some of these parameters are cost, stability, chemical and 

mechanical properties, durability, and potential for large-scale fabrication. 

Sometimes, scientists only look for a small change for the material, attempting to 

make only one parameter better. In these cases, materials with similar characteristics are 

determined and tested for that specific parameter. The desired material, for instance, 

should be as strong as the current one, but needs to be lighter. Using this strategy, a new 

device, Infrasorb-12 [2], produced in 2011, is used for the screening of porosity of 

materials. This device identifies high surface area materials out of 12 samples at a time. 

The process can be called “high-throughput screening” in experimental studies.   

For instance, Greeley et al. studied over 700 binary alloys to identify a new 

electro-catalyst for the hydrogen evolution reaction. They used the Density Functional 

Theory (DFT) calculations and found that Bismuth and Platinum alloy (BiPt) is the most 

promising candidate for the Hydrogen Evolution Reaction (HER). It is also verified by 

experimental tests that BiPt is superior to the Pt, which is a typical (HER) catalyst [3].  

Curtarolo et al. studied the stability of 176 crystal structures in 80 binary alloys 

using more than 14000 DFT calculations [4]. Ortiz et al. combined data mining 

techniques and DFT to identify new materials for radiation detectors by screening 22000 

compounds [5]. 

1.2 SOLID OXIDE FUEL CELLS 

Solid oxide fuel cells (SOFCs) are electrochemical devices that convert chemical 

energy to electrical energy by combining a fuel and an oxidant. A dense electrolyte is 

placed between two electrodes, the anode (fuel electrode) and the cathode (air electrode). 

On the anode side, fuel is fed and passed through the oxidation reaction. At the same 
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time, the oxidant is fed to the cathode side and, takes the electrons from the electric 

circuit, and then undergoes a reduction reaction. This electron flow from the anode to the 

cathode produces the current electricity [6]. The component, called an interconnect, 

connects the anode of one cell with the cathode of another so that voltage output can be 

enhanced for practical applications [7]. Interconnect can be a ceramic or metallic layer 

placed between each individual cell (Figure 1.1).  

 

Figure 1.1: A Typical Solid Oxide Fuel Cell (SOFC) 

SOFCs are reliable power generating systems in terms of efficiency, fuel 

flexibility, reliability and environmental friendliness. Since SOFCs are a solid-state 

construction, they are allowed to choose different cell and stack designs. Different design 

of solid oxide fuel cells have been investigated so far, such as tubular, planar, bell-and-

spigot, banded, and corrugated geometries [8], [9] (Figure 1.2). 
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Figure 1.2: Two most common SOFC designs: planar and tubular 

Additionally, SFOCs can be used as co-generators with gas turbine power systems 

to enable full exploitation of electricity and heat. In this system, the efficiency can be 

increased up to 70% [7]. Comparing to the other fuel cell technologies, SOFCs are fuel 

flexible and can use H2, CH4, coal gas, or other hydrocarbon fuels including biomass.  

They have been used in many areas including distributed power generation, electric 

vehicles, portable power for military and consumer electronics such as smart phones. In 

recent years, studies on SOFC have significantly expanded due to its broad application 

area [1], [10], [11].  

Before the SOFCs can get a significant share of the electrical power market, some 

important issues, such as choice in fuel and the development of optimal materials for the 

fuel-cell stack, have to be addressed [12]. Although many materials have been used for 

the SOFC, some of them are more preferable due to their high ionic conductivity and 

chemical stability. The most common are oxide ion conducting Yttria-Stabilized Zirconia 

(YSZ) as electrolyte, strontium-doped lanthanum manganite (LSM) as cathode, and 

Nickel/YSZ as anode [6]. 
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One of the most important features of SOFC is its high temperature operation 

(800-1000 ). This feature offers many advantages over conventional power-generating 

systems. The high temperature operation feature allows the natural gas fuel to be 

reformed within the cell stack, eliminating the use of an expensive external reformer [13]. 

The high operation temperature of SOFCs produces a high quality heat byproduct, and 

this can be used for co-generation [14]. Additionally, SOFCs emit almost 65% less 

carbon dioxide than a conventional coal burning power plant.  

Recently, scientists are working on reducing the operation temperature using 

different kind of materials. Since high temperature operation SOFC’s need time to start 

up and cool down, different materials aid to make this process faster. Also, a lower 

temperature increases system stability and durability. Moreover, inexpensive metallic 

interconnections could be used at lower temperatures in place of lanthanum chromite-

based ceramic interconnections, which require expensive fabrication costs. However, at 

lower temperatures, such as 600 , the electrode kinetics and electrolyte conductivity 

decrease dramatically. For example, lowering the temperature increases the YSZ 

electrolyte resistance [15].  

SOFC materials usually demand multiple and conflicting requirements [16]. For 

electrolytes, high ionic conductivity, low electronic conductivity, stability in oxidizing 

and reducing environment, long-term stability, and low reaction with electrodes are 

expected. For electrodes, high catalytic activity, high ionic conductivity, and electronic 

conductivity are expected. While some of these properties can be approximately 

calculated from DFT, many of them can only be measured reliably from experiments.  In 

doping literature, a common result is a tabular presentation of the material properties of 
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the doped materials with different doping compositions or temperatures. It is thus useful 

to develop predictive models to predict such property based on atomic, electronic, and 

structural features, which may significantly reduce the number of experimental tests as 

well as search space for genetic programming-based high-throughput screening. 

Macro-scale material properties, such as electronic conductivity, are influenced 

by many material features including crystal structure, local atomic environments, 

electronic structure, bonding and energy levels of a dopant-host system. Kong et al. 

developed a predictive model of light yield using Partial Least Squares (PLS) regression 

[17]. However, the relationship between these low-level features and high-level 

properties is usually non-linear. One approach can be to develop a predictive model of 

material properties using non-linear symbolic regression [18] based on genetic 

programming. This approach has been successfully applied to discover scientific laws 

from experimental data [19].  

Due to these conflicting requirements of fuel cell materials, a great number of 

doping experiments have been conducted to material design to tune the material 

performance for both anode and cathode sides [20]–[41].  

Determining the potential doping elements experimentally is time consuming and 

expensive work. Despite years of experimental efforts, the ideal set of SOFC materials 

remain to be discovered. Thus, theoretical data and computational approaches are needed 

for guiding experimental doping to help the SOFC material discovery process. 

1.3 LIMITATIONS OF CURRENT STUDIES 

Many experimental studies have been conducted to search for ideal materials for 

SOFC operation in the past decades [7], [16]. Today, scientists are working on lowering 
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the operation temperature to 500-600 , which can significantly reduce the cost and 

improve the reliability of the SOFC system. However, it is a huge challenge to the 

development of electrolyte and electrode materials because many requirements have to be 

met at the same time. The materials used to make cell components for different designs of 

SOFC can either be the same or very similar. It is important to choose the proper 

materials for different cell components [13]. Thus, current studies have focused on either 

some known systems or materials that have already been explored by experimental 

doping.  

In general, a good electrode in solid oxide fuel cells has to meet such 

requirements; high electronic conductivity, chemical and dimensional stability, and 

compatibility and minimum reactivity with the electrolyte [13]. Here, the thickness for 

such electrode-supported designs can be as low as 5-20 µm which decreases ohmic 

resistance and makes them suitable for operation at lower temperatures (~800 ). 

Similarly, the requirements for electrolytes are high ionic conductivity, low 

electric conductivity, chemical stability, and good mechanical properties for long-term 

stability. Mainly, three electrolyte systems have been used in recent studies; Yttria 

stabilized zirconia (YSZ), strontium-doped lanthanum manganite (LSM), and gadolinium 

or samarium-doped ceria (CGO/CSO) [16]. The thickness of the electrolyte, typically 

YSZ, is 50-150 µm, which keeps its ohmic resistance high. These cells are suitable only 

for operation at ~1000  [10]. Many dopant electrolyte materials have been tested for 

these systems, including Ce0.85Gd0.85Mg0.05O1.9, Ce1-aGda-ySmyO2-0.5a, Ce1-x-yGdxPrO2-z, 

Ce0.8Sm0.2-xYxO1.9, Ce0.8Gd0.2-xYx, etc [42]. A lot of performance comparisons have been 
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reported for these materials in the literature [43]. However, it is difficult to obtain reliable 

design rules to guide the search process.  

Cathode (electrode) material systems are usually in the form of ABO3 perovskite 

oxides, K2NiF4 structures, or ordered double perovskites. The main approach of 

identifying new cathode materials is also doping materials such as Ba0.9Co0.7Fe0.2Nb0.1O3-

δ, Ba0.5Sr0.5Co0.8F30.2O3-x, La2-xSrxNiO4+x, LaBaCuFeO5+x, LaBaCuCoO5+x, 

La0.6Sr0.4Co0.2Fe0.8O3-δ [22], [41], [44]–[48]. However, the number of doping possibilities 

is extremely large, and an exhaustive search is not feasible. Thus, some computational 

screening is necessary to guide the experimental studies. The anode material systems 

include mainly YSZ and Ni/YSZ Cermets and perovskite such as Titanates and 

Chromites. An anode material is preferred to be a stable microstructure with high ionic 

and electronic conductivity. Doping strategies have been applied to increase the ionic 

conductivity of SrTiO3, or electronic conductivity by Niobium [23], [24], [35], [49]–[51].  

In the last few years, Chen et al. have explored many different SOFC materials by 

experimental doping, and they are: electrolyte materials La0.8Sr0.2Ga0.87Mg0.13O3, 

BaCe0.7In0.2Yb0.1O3-δ [52], anode materials Sr2Fe1.5Mo0.5O6-δ [27], Sm0.2(Ce1-xTix)0.8O1.9 

[23], Sr2Fe4/3Mo2/3O6 [25], Sr0.9Ti0.8-xGaxNb0.2O3 [20], cathode materials 

Ba0.9Co0.5Fe0.4Nb0.1O3-δ [34], BaCo0.7Fe0.2Nb0.1O3-δ [22], La0.6Sr0.4Co0.2Fe0.8O3-δ [41]. 

However, a more extensive exploration of the doping space is needed to find more 

suitable SOFC materials. Since the SOFC material search is a multi-objective 

optimization problem due to multiple property requirements, it is useful to explore the 

design space using first principle density functional theory (DFT) calculations.  
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First principle density functional theory (DFT) calculations have been applied to 

doped materials since 1978 [53]–[69], and the number of such studies is increasing. The 

studies about the first principle calculations have been reviewed by Hautier et al. [70]. 

The most common approach is to build a supercell from unit cells and then replace the 

elements at some positions with the possible dopant atoms. The exchange and correlation 

potential is usually treated with the Generalized Gradient Approximation (GGA) by 

Perdew and Wang (PW91), and the interaction between ions and electrons is described by 

the projector-augmented wave (PAW) method. For example, Han et al. [Hu 103] 

determined the magnetic properties of Li, Na and K doped AIN using VASP (Vienna Ab 

Initio Simulation Package) based first-principle calculations. They used a supercell built 

from 3x3x2 Wutzite unit cells, containing 72 atoms in total. By calculating the density of 

states (DOS) and spin density distribution, it was shown that the origin of ferromagnetic 

coupling can be attributed to a p-p hybridization interaction involving holes. Chen et al. 

[71] studied the electronic band structure of StTiO3 with different Nb-doped 

concentrations by using first principle calculations. Zhang et al. [61] studied the 

electronic structure and optical properties in heavy metal doped ZnO using DFT-based 

structural and band structure calculations. The supercells with the 32, 64, 72 and 108 

atoms were used in these calculations. They found that Ag- and Au-doped ZnO have little 

lattice mismatch, while Pt-doped ZnO has a large lattice mismatch. Additionally, the 

structural, electronic and magnetic properties of Ca-doped α-Cr2O3 (Chromium oxide) 

crystal have been investigated using the DFT calculation [72]. It was found that the 

electronic band structure and the band-gap width are in close agreement with the 

experimental results. Oxygen vacancy formation and migration in N-doped Cu2O [73] 



 

12 

and Sr- and Mg-doped LaGaO3 [74] are investigated using DFT principles. They 

calculated the energy based on different modifications of the band structures and oxygen 

vacancy formations. 

First principle studies have also been applied to fuel cell material research [53], 

[75]–[80]. Zhou et.al [81] studied oxygen reduction reaction (ORR) on a cathode material 

LaSrCoO4 by using the periodic density functional theory (DFT + U). They investigated 

that the Co site is a more preferred site for the absorption of oxygen. Shishkin [75] et al. 

also performed a DFT + U study of the electronic structure and chemical properties of the 

Ni/CeO2 and Ni/CeO2/YSZ systems and compared the change in the electronic charge 

localization. Chen et al. [82] studied spin-polarized DFT calculations to investigate ORR 

on Sr-doped LaMnO3 cathode material. Ahmad et al. [83] used the CRYSTAL09 

software package and studied the thermodynamic phase stability of LaMnO3 and its 

competing oxides. An et al. [84] applied DFT to determine catalytic activity of bimetallic 

nickel alloys for solid-oxide fuel cell anode reactions. 

Most of the current DFT studies on fuel cell materials have been used for the 

explanation of experimental results rather than high-throughput screening to find new 

materials. Currently, a lot of information can be extracted by using first-principle 

calculation based DFT, including the type of the band gap, the width of valence and 

conduction bands, the effective mass of electron and hole, charge densities, total and 

partial density of states. These features of materials can be used to predict high-level 

performance such as ion and electronic conductivity. In this study, DFT studies were 

applied on SrTiO3 perovskite for SOFC anode material. This dissertation will help to 
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develop a computational doping framework and pipeline for large-scale screening of new 

fuel cell materials.  

1.4 MOTIVATIONS 

This dissertation is motivated by the recent success of combinational data mining 

algorithms and material informatics [17], [85]–[90], and DFT based high-throughput 

screening [91], for material discovery. Recently, research groups have studied the 

screening of new materials for lithium ion battery materials [92], [93], alloys [94], 

photocatalysts [95], and nanowires [96]. Ramprasad et al. brought the review papers of 

different application areas of first principles computation studies together and presented 

an excellent source for researchers in 2012 [97].  

Curtarolo et al. proposed an automatic optimization framework AFLOW [98] 

which has automatically calculated the band structures of 150,000 structures from the 

Inorganic Crystal Structure Database (ICSD) using VASP. Also, a repository for 

materials was built, AFLOW.LIB.ORG [99] that has phase diagrams, free energies, stable 

and meta-stable structures of alloys, electronic structures and magnetic properties. 

AFLOW framework has useful utility scripts that can further extract various types of 

electronic properties from the band structures, such as band gap, charge density, etc. 

They claimed that their hybrid GGA/PBE(+U) calculation takes much less time than the 

default VASP calculations that usually take about 5 hours. The details of high throughput 

electronic band structure calculations and several other challenges of DFT was explained 

in [100].  

Another high-throughput infrastructure for density functional theory calculations 

has been proposed by Jain et al. [91]. They implement crystal structure prediction coded-
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in Java for data selection and then use Java back-end to create batches of DFT jobs. 

These jobs are wrapped by AFLOW, which optimizes each structure. The jobs are 

submitted to the Sun Grid Engine queue system, and the results are entered into a 

PostgreSQL database via Java Database Connectivity (JDBC). This functionality is 

accompanied by a graphical front-end, allowing for data exploration and analysis. 

These projects have established a good model of the use of DFT and will guide 

this study to develop our computational doping framework. Starting from one candidate 

element for one material, we will be able test multiple candidate elements for that 

material at the same time. Using the power of genetic algorithms and genetic 

programming we will be able make “high-throughput screening” for new material design 

and discovery studies.  
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CHAPTER 2  

BACKGROUND 

2.1 DENSITY FUNCTIONAL THEORY 

Density functional theory (DFT) is one of the most successful approaches to 

investigating the electronic structure of atoms, molecules, solids; in general, many-body 

systems. The ground state properties of a system can be calculated by using some 

functions of electron density with this theory. Today, DFT can be applied in many 

research areas such as physics, chemistry and material science. For instance, in 

computational chemistry, one can easily predict molecular structures, atom and ion 

energies, and electric and magnetic properties. In most cases, DFT calculations are quite 

satisfactory when compared to traditional methods.  

DFT tries to obtain approximate solutions to the Schrodinger equation (1) at a 

reasonable computational time while keeping the balance between the accuracy and the 

scalability. This equation was formulated by Erwin Schrodinger in 1925, and it indicates 

how the quantum state of a physical system changes with time.  

    𝑖ћ
𝜕

𝜕𝑡
𝜓 = Ĥ𝜓            (1) 

Equation 1 is the general form of the time-dependent Schrodinger equation; 𝑖 is 

the imaginary unit, 𝑡, is time, ћ is the Planck’s constant divided by 2π, ψ is the wave 

function of the system, and Ĥ is the Hamiltonian operator (total energy of any given wave 

function). 



 

16 

The non-relativistic time-dependent Schrodinger equation (2) calculates the 

movement of a single particle in an electric field. Here, m is the particle’s mass, V is its 

potential energy, ∇2 is the Laplacian, and 𝜓 is the wave function.  

                               𝑖ћ
𝜕

𝜕𝑡
𝜓(𝑟, 𝑡) = [

−ћ
2

2𝑚
∇2 + 𝑉(𝑟, 𝑡)]𝜓(𝑟, 𝑡)          (2) 

Soon after the description of the Schrodinger, Hartree and Fock created a theory 

for determining the wave function and energy of a quantum many-body system in a 

stationary state. The Hartree-Fock method simplifies the Schrodinger equation by 

calculating the one-electron wave functions that are approximated by a linear 

combination of atomic orbitals (wikipedia).  

Hohenberg and Kohn established the fundamentals of today’s DFT by stating 

their theorems. First the ground state properties of a many-electron system can be 

uniquely determined by its electron density. With this theorem, the many-body problem 

of N electrons with 3N coordinates can be reduced to 3 spatial coordinates by using the 

some functional of the electron density. The second theorem states that the exact ground 

state charge density minimizes the total energy [101].  

Finally, Kohn and Sham moved the idea one step forward and turned the DFT 

into a more practical tool by expressing the total energy as a set of equations for non-

interacting electrons. Finding a fictitious system of non-interacting electrons will lead to 

finding the same density as the one with the interacting electrons.  

                            [−
ℎ2

2𝑚
 ∇2 + 𝑣𝐾𝑆(𝑟)] 𝜓𝑖(𝑟) =  𝜀𝑖𝜓𝑖(𝑟)                                    (3) 

In the equation (3), Kohn and Shan defined 𝑣𝐾𝑆 as the external potential in which 

non-interacting electrons move. Wave functions are represented by 𝜓𝑖(𝑟), and 𝜀𝑖 is the 

orbital energy of the corresponding Kohn-Shan orbital. 𝑣𝐾𝑆(𝑟) can be expressed as the 



 

17 

sum of three terms. 𝑉(𝑟) represents the Coulomb interaction between the nuclei and 

electron, 𝑉𝐻(𝑟) is the Hartree potential, and 𝑉𝑥𝑐(𝑟) is the exchange-correlation potential. 

Here, 𝑉𝑥𝑐(𝑟) is the only unknown term.  

So far, a systematic way to determine this exchange-correlation potential, 𝑉𝑥𝑐, has 

not been found. Most DFT researchers use two major approximations to define this 

function. The first is Local Density Approximation (LDA), which accepts the exchange-

correlation potential at each location is equivalent to that of a homogeneous electron gas 

with the same electron density. The second is the Generalized Gradient (GGA), which 

uses the gradient of the electron density.  

2.2 GENETIC ALGORITHMS 

Genetic algorithms were first developed and used by John Holland in the 1970s 

[102]. As a subclass of evolutionary algorithms, genetic algorithms solve the 

optimization problems using the idea of natural evolution. Individuals are born and, try to 

survive in a competitive environment. The winners proceed with their lives and pass their 

genetics onto the next generation, while the others die. This procedure is usually referred 

to as the “survival of the fittest”. Today, genetic algorithms are used for search and 

optimization problems. Many different disciplines such as bioinformatics, computational 

science, mathematics, physics, manufacturing, use genetic algorithms to find global 

optimum solutions. 

As shown in Figure 2.1, the procedure starts with the creation a population with 

the individuals in it. The population is created randomly in most cases, but if the 

programmer has some prior knowledge of the solution, the system may be started with 

some known individuals. It may help to converge quickly because the system has already 
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started at a good position. The individuals, also called chromosomes, are actually 

“candidate solutions” for the optimum solution. The representation of individual may 

vary based on the problem, however the most commonly used representations are binary 

strings and real values. The individuals consist of “genes”, which represent a one-bit 

string in a binary string representation, or a real value in real value representation. Each 

individual has one fitness value that is calculated by the fitness function, describes its 

score (or rank) compared to other individuals in the population. Based on this fitness 

value, the individuals are ranked in the population in accordance to which ones are 

adequate and which ones are not. The adequate individuals pass on to the next generation 

while the remaining are removed from the population. 

 

Figure 2.1: A typical genetic algorithm flowchart 
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Although programmers have described some new operators for genetic algorithms 

recently, the main operators are mutation, crossover and selection. The new operators are 

actually some modified or combined versions of these operators.  

A mutation operator takes an individual and modifies one or more genes of an 

individual. It maintains the genetic diversity of the population from one generation to the 

next. A user-defined mutation probability is chosen to decide what percentage of the 

population will be mutated. If the mutation operator creates an individual that is superior 

to the current one, the new individual is put into population for the next generation. Thus, 

mutation in genetic algorithms usually helps to create better individuals. The mutation 

probability is usually chosen to be low, because if it is too high, the population will alter 

all acceptable individuals, not allowing the population to create better solutions.  

Different types of mutations can be used in genetic algorithms; several are 

detailed below: 

 Flip Bit Mutation: The mutation operator takes an individual, chooses a gene 

(randomly) and changes it (0 replaced with 1, and 1 replaced with 0). This 

operator is only used for binary genes. 

1 1 0 1 0 1 1 0 0 1 

 

1 1 0 1 0 1 0 0 0 1 

 

 Boundary mutation: This type of mutation operator is usually used for real 

valued individuals. The mutation operator selects a gene and replaces it with 

either a lower or upper bound of search space. For example, if the search 

space is [-500,500], 
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34 72 56 -20 10 -12.5 22 -82 402 -311 

 

34 72 56 -20 10 500 22 -82 402 -311 

 Non-uniform Mutation: This operator increases the probability that the 

amount of mutation will be close to 0 with the next generations. Hence, this 

mutation operator keeps the population from stagnating in the early 

generations and allows tuning solutions in later generations. 

 Uniform Mutation: The operator replaces the value of the selected gene with 

the uniform value chosen between the lower and the upper bounds for this 

gene. 

 Gaussian Mutation: This mutation operator adds a unit Gaussian distributed 

value to the selected gene. If the new value of a gene falls outside the 

boundaries, it is clipped.  

Crossover is another important operator for genetic algorithms. The idea is to get 

good genes from each parent and create a better offspring. Crossover also occurs 

according to user-defined probability in the evolution process.  

Different types of crossover can be chosen based on the user’s preference: 

 One-point Crossover: This operator randomly chooses a crossover point, and 

exchanges the parts from each parent to create two offspring. 

Parent 1             Parent 2 

1 1 1 0 1 1 1 1 0  0 0 0 1 1 0 1 0 1 

  

0 0 0 1 1 1 1 1 0  1 1 1 0 1 0 1 0 1 

Offspring 1             Offspring 2 
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 Two-point Crossover: This operator selects two crossover points and 

exchanges the parts between these two points from each parent.  

Parent 1             Parent 2 

1 1 1 0 1 1 1 1 0  0 0 0 1 1 0 1 0 1 

  

 

1 1 1 1 1 0 1 1 0  0 0 0 0 1 1 1 0 1 

Offspring 1             Offspring 2 

One disadvantage of one-point crossover and two-point crossover is destruction of 

the building blocks. In other words, if 5 consecutive genes have good characteristics, and 

if these genes are separated while choosing the points, the offspring will not be as 

adequate as their parents.  

 Arithmetic Crossover: A weighting factor (x ε [0,1]) and a linear function are 

used to create offspring in the following way: 

Offspring 1: x * (Parent1) + (1-x) * (Parent2) 

Offspring 2: (1-x) * (Parent1) + x * (Parent2) 

For example: x = 0.6 

Parent 1           Parent2 

1.2 3.0 2.5 4.5  0.8 2.4 2.0 3.2 

 

1.0

4 

2.7

6 

2.3 3.9

8 

 0.9

6 

2.6

4 

2.2 3.7

2 Offrpring1           Offspring 2 
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This arithmetic crossover is clearly for real-valued individuals, not for binary 

strings. For binary representation, similar operators can be defined, such as two parents 

can be added by using the logical operator ‘AND’, and they can create one offspring.    

 Uniform Crossover: This operator uses a fixed mixing ratio to decide which 

parent will contribute each of the gene values in the offspring individual. If 

the mixing ratio is 0.5, then the offspring will consist of half of each parent. 

Note that, unlike one-point and two-point crossovers, a uniform crossover 

works at the gene level, not the segment level. It is decided randomly which 

genes are selected from each parent.  

Parent 1     Parent 2 

1 1 1 0 1 1 1 1 0  0 0 0 1 1 0 1 0 1 

 

1 0 1 0 1 0 1 0 0  0 1 0 1 1 1 1 1 1 

Offspring 1    Offspring 2 

 Selection operator is the mechanism used to choose which individuals will be 

selected to be parents for the crossover operator. Selection uses fitness value to evaluate 

the individuals and sort them in descending order based on their fitness value. The idea is 

to choose the best individuals and then create better offspring. To do that, different 

selection methods have been tested in the literature. The most commonly used methods 

will be shown here. 

 Roulette-Wheel Selection: This operator calculates the sum of the fitness 

values in the population (S). A random value (r) is chosen from the interval 

(0-S). Then, selection starts a loop to sum fitness values through 0 to 

temporary sum (s). If s is greater than r, the operator stops and returns the 
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individual to its origin. For this operator, the individuals with greater fitness 

values will be more likely to be chosen. This may cause a problem if the 

difference among the fitness values is large. The individuals with lower fitness 

have very few chances to be selected. To avoid that, individuals can be 

ordered with a weight value, which is determined after they ordered according 

to their fitness. For example, if a population has N individuals, the best 

individual’s weight value will be N, the second best N-1, and the worst 

individual 1. Thus, the operator will select the better individuals anyway; 

however, the individuals with lower fitness will have a chance to be selected.  

 Tournament Selection: Although there are many different versions of this 

operator, the main idea is to make two randomly chosen individuals combat 

based on their fitness value. The winner will be the first parent from the fight. 

Then another combat occurs between two randomly chosen individuals, and 

the winner will be the second parent. Another version of this method chooses 

two individuals again and as well as a random value between 0 and 1. If this 

number is greater or equal than the user-defined tournament parameter, the 

selection operator chooses the first individual as parent. Then it repeats the 

same procedure again to select the second parent.   

Elitism is another operator that can be used in genetic algorithms. The main idea 

is to keep the good individuals and not allow them to be modified. At each generation, 

before mutation and crossover, elitism copies a user-defined number of best individuals 

to the next population. This procedure actually increases the performance of genetic 

algorithm since the best found individuals are protected.  
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One known problem of genetic algorithm is “premature convergence”. Premature 

convergence is used if a population for an optimization problem converges too early and 

is stuck in the local optimal solution. If sub-optimal individuals dominate the population, 

selection operator tends to keep it around, and the population only creates individuals that 

are very similar to their parents. As the number of generation increases, the population 

loses its variety.  

Two key parameters are used in genetic algorithms. One of them is population 

size, which indicates the number of individuals in the population. If the chosen 

population size is too small, there will not be enough diversity in the population. If it is 

too large, however, then it will take a long time to compute even for one generation. The 

second important parameter is number of generations. The number of generations 

indicates how many generations the population will breed. If the chosen number of 

generations is too small, the population may not be able to find the optimal solution.  

The complete procedure of genetic algorithm is concluded with a termination 

criterion. This termination criterion is usually set to the maximum number of evaluation 

reached. The number of evaluation is the multiple of the number of generation and the 

population size. Another termination criterion is to set a threshold that checks the solution 

found by the genetic algorithm. If the system starts creating similar individuals and can 

no longer find better solutions, the search process can be stopped.   

2.3 GENETIC PROGRAMMING 

Genetic programming (GP) is also an evolutionary-based method inspired by 

biological evolution. GP consists of a set of instructions and a fitness value to determine 

how a computer program performs a job. While the individuals in genetic algorithms are 
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usually raw data, the individuals in genetic programming are computer programs. These 

individuals (computer programs) are traditionally represented as tree structures. Every 

internal node in the tree has an operator function, and every terminal node holds an 

operand.  

Although the first studies on genetic programming were made in the early 1950s, 

today’s modern genetic programming was developed by John R. Koza in the 1990s [103]. 

GP is a probabilistic algorithm that searches the space of combinations of 

predefined functions and terminals [104]. Some of the important parameters are 

population size, maximum generation, maximum initial program length (initial tree 

depth), maximum program length (tree depth), termination criteria, and 

mutation/crossover duplication rates. GP starts with randomly created computer 

programs, which are called individuals. First, the root function is selected, and then each 

leaf is filled until the depth of tree is reached. This procedure is repeated until all the 

members of population are created. When the initial population is ready, the fitness 

values of the individuals are calculated by a user-defined fitness function. The calculated 

fitness values are stored to be later utilized by the selection operator. The selection 

operator ranks the individuals in population with respect to their fitness values, and the 

better (the fitter) individuals are selected for reproducing. In other words, the pairs of 

computer programs (individuals) from the population, based on their observed fitness, are 

used to create new subprograms (new offspring). 

The population of the programs evolves recursively over a series of generations. 

Like other Evolutionary Algorithms (EA), GP also uses the Darwinian principle of 

natural selection (survival of the fittest). GP also uses EA operators such as selection, 
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crossover (Figure 2.2) and mutation (Figure 2.3). The fitness function in GP determines 

whether the programs (individuals) are successful or not. In other words, fitness function 

ranks the individuals based on their value, the useful ones are chosen for the next 

generation, and the ones with the lower fitness are kicked out of the population. In most 

cases, fitness values are real numbers, and the optimization problem turns out to be a 

minimization or maximization problem.  

 In genetic algorithms, the individuals can be represented as binary or real values. 

The length of the individuals should be fixed through the generations and cannot be 

changed. However, in genetic programming, the individuals can be different sizes, and 

their length can change as the number of generation increases.  

 Koza et.al. [104] defines 6 steps to prepare a genetic programming: determining 

the architecture of the program trees, identifying the terminals, identifying the functions, 

choosing the fitness measure, choosing control parameters for process execution and 

identifying the termination criterion and output option. In chapter 3, the steps will be 

explained with an illustrative example.  
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Figure 2.3: An example of mutation operation using logical operands. 

Figure 2.2: An example of mutation operation using logical operands 
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CHAPTER 3  

GENETIC ALGORITHMS FOR A SINGLE DOPANT ELEMENT 

The material doping problem can be described as determining what 

species/elements and in what compositions should be added to the base material to 

achieve desired material properties. It is also called inverse design problem [105]. The 

most common approach in computational-doping based material design is to substitute 

specific elements in a material with new ones. This substitution is done in a small 

percentage to keep the balance of the original material’s characteristics with the new 

element’s effects. Too many or too few dopant elements will be unable to achieve desired 

results. To find the best ratios of base material and the substitution elements via 

computational doping, a supercell is first created from one or more primitive cells of the 

base material, of which several of the atoms will be replaced by the dopant elements. The 

larger the created supercell, the higher the simulation accuracy of the doped material. 

However, larger supercells make the running time of DFT calculations to be as long as 

days or weeks for each doped configuration. Given a base material such as SrTiO3, there 

are dozens of possible dopant elements for substituting Sr/Ti/O elements, and for each 

dopant elements, there are many possible positions for the substitution, which leads to a 

complex doping space. It is practically infeasible to exhaustively search and evaluate all 

possible doping configurations even using DFT calculation since each DFT calculation of 

a configuration may need hours or even days. To reduce the number of such expensive 

optimization simulations, we developed a combinatorial genetic algorithm to search the 
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dopant element configuration space on the supercell to find the most stable configuration 

with the lowest free electronic energy. The following sections will describe the 

representations of individuals and the methods for mutation and crossover. It will also 

detail the usage of the elitism, the type of selection method and the objective function for 

our computation doping experiments.  

 

Figure 3.1: Computational doping framework with genetic algorithms and genetic 

programming 

The computational doping procedure is summarized in Figure 3.1. We now 

explain this procedure by framing the following questions: 1) What is the purpose of 

doping elements into another material?  2) Why do we need to do computational doping? 

3) Can doping not be done experimentally? The purpose of doping elements into a 
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material is to change the characteristics of the base material. If, for example, we have a 

base material and we want to increase its electronic conductivity, this can be done by 

introducing another element into the material or substituting some elements of the base 

material with the new element. Similarly, the heat resistance of a material can also be 

increased by doping new elements. Many electronic, chemical and even physical 

properties of a material can be changed by doping new elements [106]. In addition, new 

materials can be discovered by doping [107]. 

As shown in Figure 3.1, there are many possible dopant elements given a base 

material. To calculate the chemical or electronic properties of the doped material, such as 

electronic conductivity, one needs to get the most stable structure for the material. 

However, there are many different configurations for doping an element into the base 

material. To get the most stable structure, the energy of all configurations needs to be 

calculated exhaustively. Since DFT calculations may take hours to days depending on the 

material structure, supercell size and/or dopant elements, it is infeasible to calculate the 

energies of all the configurations exhaustively. In addition, the ratios for doping also 

needs to be determined to find the most stable structure. For instance, if Nb was chosen 

for doping SrTiO3 consisting of 75 atoms (15 Sr, 15 Ti, and 45 O) and will be used to 

substitute the Ti atoms. For 1 Nb-Ti substitution, there are 15 different configurations, 

and DFT calculations need to be run for each of them. For 2 Nb-Ti substitution, there are 

105 (15-choose-2) configurations. For 4 Nb-Ti substitution there are 1365 configurations. 

Each of these 1365 DFT calculations takes approximately 15-30 hours on a 12-Core 

2.46Ghz CPU with 24 GB ram. Nevertheless, all different ratios and the corresponding 

configurations needs to compute intensive DFT calculations to find the most stable 
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structure for Nb-doped SrTiO3. It is almost impossible to prepare this many different 

configurations of any doped material in laboratory, and that’s why we need 

computational doping.  

In our work, by using genetic algorithms, we reduced the number of DFT 

calculations for finding the most stable structure of the doped material for 13% Nb-doped 

SrTiO3 (2 Nb-Ti substitutions), to 27%Nb-doped SrTiO3 (4 Nb-Ti substitutions), and 

saved up to 70% of time. Details about implementation of our genetic algorithms will be 

explained in the following section.  

Even if reasonable amount of time can be saved by using genetic algorithms, 

determining the most stable doped structure among different dopant elements is still 

sequential. It is necessary to run all different configurations depending on the ratios for 

each individual dopant element. To address this limitation, we proposed the genetic 

programming based computational doping, which can work with different dopant 

elements with different ratios simultaneously for parallel search of the most stable doped 

materials. The procedure will be explained in Chapter 5. 

3.1 GENETIC ALGORITHMS FOR A SINGLE DOPANT ELEMENT 

Although the general idea of all genetic algorithms (GA) is similar, each GA 

implementation is specific to its application. The representations of individuals, the 

methods for mutation and crossover, the usage of elitism, the type of selection method, 

and finally the objective function make all genetic algorithms unique. These important 

components of genetic algorithm must be chosen carefully to achieve its application 

goals.  
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Since we are looking for the best configuration of atoms in the supercell, our goal 

is to find the best doping positions among all possible configurations. Consider an 

example of a supercell consisting of 75 atoms of SrTiO3 material with Nb as the dopant 

element. If 4 Nb atoms are substituted with 4 Ti atoms, it makes approximately 27% Nb-

doped SrTiO3. Since there are 15 Ti atoms in the supercell, 4 of them will need to be 

chosen to substitute with the Nbs. It turns the problem into a combinatorial optimization 

problem. Mathematically, 15-choose-4 is equal to 1365, meaning there are exactly 1365 

different options for the placement of Nb atoms in the supercell for the Nb-Ti substitution 

(Figure 3.2). The energy of each configuration of dopants will be evaluated by running 

VASP [108] simulation, which is the state-of-the-art DFT calculation software. This 

many VASP calculations are simply impractical because each of them takes 

approximately 13-16 hours to complete. The goal of our genetic algorithm based 

approach is to reduce this number of calculations. 

 

Figure 3.2: The grid of the Nb-doped SrTiO3. The 4 Nb atoms are respectively in the 

3rd, 8th, 10th, 14th positions 
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The genetic algorithm used here is a generation-based genetic algorithm with 

fixed numbers of generations. A binary representation is used for individuals but with 

some constraints compared to traditional binary representation. Each individual’s length 

is equal to the possible doping positions. The bits/positions that are occupied by doping 

candidate elements are set to 1, and the remaining are 0 (Figure 3.3). 

0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 

Figure 3.3: A representation of an individual that places the 4 Nb atoms at 3th, 8th, 

10th, 14th position of 15 possible positions 

 

 

 

 

 

 

 

 

 

To handle the issue of expensive fitness calculation, we develop a mechanism to 

avoid duplicate fitness evaluation (Figure 3.4). Traditional genetic algorithms can 

generate identical individuals that were evaluated in previous generations or even in the 

same generation through the crossover or mutation operator. Here we don’t prefer to use 

the duplicate individuals in the next generations. Thus, we implemented our genetic 

algorithm in three different cases depending on how we avoid evaluating the same 

individual multiple times and what we should do when a created individual has already 

been evaluated before: 

Set parameters  

Initial Population 

Fitness Calculation 

Generation Loop Start 

 Find elite individuals 

 Selection 

 Crossover 

 Mutation 

 Fitness Calculation 

 Combine elite and new population 

End Loop 

Figure 3.4: Pseudo-code of our genetic algorithm 
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1) GA-basic algorithm: it checks a new individual created by crossover and 

mutation operators. If it has been evaluated before, it randomly creates a similar but 

different individual.  

2) GA-SS algorithm: it checks the individual after it is created by crossover or 

mutation, and if the individual has been created and evaluated before, GA_SS creates 

another similar individual based on individuals with previously calculated fitness values.  

3) GA-SC, it uses similar statistical idea with GA-SS. However, it applies this 

statistics during the crossover process. The details about these three different versions 

will be explained in forthcoming, sub-sections and the results will be explained under 

Results sections.   

After creating the initial population, the algorithm calculates the fitness values 

and is ready to start generation loop. We used a fixed number of generations to keep the 

number of evaluations fixed. In the loop, first we find the elite individuals in the 

population based on user-defined elite percentage. These elite individuals can be used for 

crossover and mutation, as with any others. But eventually they will survive to the next 

generation. Tournament selection is used as the selection operator. Our selection method 

finds N/2 parents (N = number of individuals in the population – elite individuals) by 

using the winner of tournament idea. The selected parents are used in our uniform 

crossover operator. Since the 1’s in the individuals represent the actual position of the 

individual dopant elements, there will always be the same number of 1’s. Thus, we divide 

each individual to get an equal number of 1’s at the same side. If we have an even 

number of 1’s, say M, in an individual, both parts of each parent will have M/2 1’s. If it’s 

odd, however, the first part of each parent will have (M+1)/2, and the second part will 
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have (M-1)/2 1’s. Then, we exchange the first part of the first parent with the second part 

of the second parent to create the first child. The second child is created with other parts. 

Since there should be a fixed number of 1s in the representation of an individual, uniform 

crossover may create a child with more or less 1s. If 4 positions are sought to place the 

substitution element, the crossover operator may create one child with two 1s, and 

another child with six 1s.  This configuration is unacceptable. Another problem with 

uniform crossover is that if parents have some common positions. We will explain our 

crossover operator with an example (Figure 3.5). 

After crossover, some individuals are chosen for mutation with user-defined 

mutation probability. The central idea behind the mutation is simply flipping bits. One of 

the 1’s is chosen randomly and substituted with a randomly chosen 0. The fitness 

function is called for new individuals after crossover and mutation. Finally, these new 

individuals and elite individuals are added together to create a new population for the 

next generation. For testing purposes, our algorithm keeps the best-so-far individuals and 

the current population for each generation. 

As mentioned above, three genetic algorithms for finding stable doped materials 

based on VASP DFT calculation have been implemented and evaluated.  

3.1.1 GA-basic 

GA-basic is a traditional generational genetic algorithm for solving the doping 

problem. It includes a special representation type. Since our main goal is to reduce the 

number of fitness calculations while still finding the optimal solutions, our genetic 

algorithm doesn’t evaluate the individuals that have already been evaluated before. 
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Figure 3.5: The crossover operator of GA-basic algorithm 

If the crossover or mutation operators create an individual that has already been evaluated 

before, it needs to be replaced with a new one. In this case, GA-basic randomly chooses 

one single position of the individual, let’s say 8th position of [3, 5, 8, 11], and then look 

for individuals consisting of the rest positions, 3th, 5th, and 11th. Finally, the algorithm 

chooses one of the available individuals from the Pool and creates a new individual. If 

i) If there are no common positions 

Let the parents be :  

3 5 7 13 and 2 4 6 8 

Then, after the uniform crossover is applied, the offspring will be: 

3 5 6 8 and 2 4 7 13 

ii) If there are common positions: 

 If there is only one different position for each parent.  

In this case, if we apply uniform crossover, then the offspring will be the same with 

parents. Ex: 

4 6 7 12 and 2 6 7 12 

 

2 6 7 12 and 4 6 7 12 

Instead, we search for other available positions from the Pool that include the 

common positions. Let’s say 1st, 3rd, 5th, 8th, 9th, 10th, 11th, 13th, 14th, 15th positions 

was not used with 6th, 7th, and 12th positions together so that to build the individuals, 

such as  [1, 6, 7, 12], [3, 6, 7, 12], or so on. Then we randomly choose one of them to 

create a similar offspring:  

6 7 8 12 and 6 7 8 12 

 

 If there is 2 or more different positions for the parents: 

The idea is to crossover the different positions of the parents and keep the common 

positions unchanged. Ex: Let the parents be: 

4 6 7 12 and 2 5 7 12 

Then, the offspring will be : 

4 5 7 12 and 2 6 7 12 
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there is no individual in the Pool consisting of these 3th, 5th, and 11th positions, then the 

algorithm chooses another positions to change, let’s say 5th, and look for the individuals 

consisting 3th, 8th, and 11th positions. If there is no individuals left in the Pool for 3-

tuples, then the algorithm randomly chooses a pair, let’s say 3th, 5th positions, and look 

for the individuals consisting of 8th and 11th positions in the Pool. This procedure is 

repeated for 3-tuples to change and one position to keep, if no individuals found in the 

Pool. 

3.1.2 GA-SS 

The second version of our implementation is GA-SS, genetic algorithm with 

statistical similarity. Here a statistical procedure is used to pick better parents for 

mutation and crossover operators to generate better candidates for fitness evaluation. In 

GA-basic, if an individual is created which has already been evaluated before; the 

algorithm will choose a random but similar positions for individuals from the Pool. 

Instead, GA-SS runs a statistical process. Instead of choosing only similar positions, GA-

SS checks the previously evaluated individuals containing each position separately. For 

example, let the individual be [3, 8, 10, 14] which placed the Nb atoms in 3th, 8th, 10th, 

14th positions, respectively. Considering we randomly choose 8th position and we will 

keep 3th, 10th and14th positions occupied. Then, we look for the candidates from Pool 

which they haven’t been used before. We determine the positions consisting of [3, 10, 14] 

and keep the fourth position as a candidate for substitution for 8th. In this instance the 1st, 

2nd, 5th, 7th, and 12th positions are available and can be used. Then, we calculate the 

average fitness values of the individuals which have already been calculated and choose 

the best position which has the maximum average fitness (lowest energy). Let the 5th 
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position be the one which has the maximum, then we create the individual as [3, 5, 10, 

14]. This procedure is repeated if there is no individual left in Pool, which consists of [3, 

10, 14]. If so, we choose another single element from [3, 8, 10, 14] except what we 

already chose before, 8th. If all the possibilities is over for the single elements, the 

procedure is repeated for the pairs, such as [8, 10], to substitute and to keep the rest. 

3.1.3 GA-SC 

The last implementation of our genetic algorithm is GA-SC, a genetic algorithm 

with statistical crossover. The method is similar to GA-SS. However, we implement this 

statistical sampling process at different levels of the algorithm. While GA-SS uses 

statistical sampling after crossover or mutation, GA-SC uses statistical sampling during 

the crossover process. The statistical sub-combinatorial approach (explained in GA-SS) is 

applied to parents who have the common positions. GA-SS still allows running uniform 

crossover in part i) on the other hand, in part ii of Figure 3.5, GA-SC uses statistical 

sampling to choose “not-common” positions rather than choosing randomly. 

3.1.4 Material Preparation 

We tested our algorithms on 2 different systems of Nb-doped SrTiO3 material: 

13% Nb-doped SrTiO3 (2 Nb atoms in 15 possible positions) and 27% Nb-doped SrTiO3 

(4 Nb atoms in 15 possible positions). 

Since the material preparation is similar for both systems, only the 27% Nb-doped 

SrTiO3 (4 Nb atoms in 15 possible positions) will be explained in detail. The crystal 

structure for the primitive cell of SrTiO3 material was obtained from materialproject.org 

[109]. We initially optimized the lattice parameter of the SrTiO3 unit cell. Figure 3.6 

shows the energy values of different lattice parameters in the search process. Our optimal 
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lattice parameter with the lowest energy (3.946) is consistent with materialproject.org 

(3.945).  

 

Figure 3.6: Lattice parameter optimization for SrTiO3 primitive cell 

After lattice optimization, a supercell of 75 atoms containing 15 unit cells (5x3x1) 

was created from fully relaxed structure. A template file is created by substituting 4 Nb 

atoms with 4 Ti atoms from the POSCAR file of SrTiO3 supercell. When the genetic 

algorithm creates an individual representing the positions in which the Nb atoms will be 

placed, then the actual POSCAR file for this individual is created from the template file. 

For this system of Nb-doped SrtiO3, there are 1365 possible configurations. Exhaustively 

evaluating all these configurations would take almost 3 months on a 10-node Linux 

cluster.  

In our calculations, we used the free energy as the fitness function of our genetic 

algorithm based on plane wave density functional theory implementation of the Vienna 

Ab initio Simulation Package (VASP 5.3) [108]. The exchange and correlation potential 
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was treated within the Generalized Gradient Approximation (GGA) with the Perdev-

Burke-Ernzerhof (PBE) functional [110]. The interaction between ions and electrons was 

described by the projector-augmented wave (PAW) method [111]. The cutoff for the 

kinetic energy was set to 520eV for all calculations with respect to ENMAX values of 

corresponding elements in POTCAR file. 

3.2 RESULTS 

We implemented our genetic algorithms in Matlab, and tested their performances 

using the fitness values obtained for all the 1365 possible configurations using exhaustive 

search. We compared our different implementations of the genetic algorithm with each 

other and with exhaustive search to see how much our algorithms can speed up the whole 

optimization process. 

3.2.1 13% Nb-doped SrTiO3 

In this system, the supercell is created from 15 unit cells (5x3x1). There are 15 Sr, 

15 Ti and 45 O atoms in the supercell, and the goal is to find the doping positions with 

the lowest energy for 2 Nb atoms out of 15 Ti positions. There are 105 possible doping 

configurations in total for these experiments if running exhaustively. Calculating the free 

electronic energy of each configuration using VASP DFT package needs 15-30 hours on 

our Linux cluster computing node with 12-Core 2.46Ghz CPU with 24 GB ram. 

Although this search space is small for a genetic algorithm to expose its ability, we did 

this experiment to see how our genetic algorithm’s behavior changes from small search 

spaces to larger ones. The fitness landscape space is shown in Figure 3.7. We duplicated 

the values for symmetry view in 3D. It means we only have individuals as, for example 

[3, 5] but not [5, 3], since they occupy the same positions for dopant elements. Also, we 
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set the values for couples like [3, 3] to little lower than the maximum value of all results. 

The search space showed that there exists gradient information that genetic algorithms 

can exploit to quickly find the optimal or near-optimal results. 

 

Figure 3.7: The search space for 13% Nb-doped SrTiO3 

The first experiment tested the ability of different GA implementations for finding 

the optimal doping configurations given a fixed numbers of evaluations. Here only 40 

fitness evaluations out of 105 are allowed, and compared the best found results of three 

GAs compared with the exhaustive search results. Additionally, 10 independent runs 

were executed for each algorithm to check robustness of the algorithms (Table 3.1). As a 

result, with only 38% of total evaluations, even the basic GA can get one of the top 3 

results in most of the 10 runs. The GA-SS algorithm had similar or slightly better 

performance. In most cases, it found better results than the basic, but sometime it became 

stuck in local optima and takes longer to get good results.  The GA-SC with statistical 

crossover works best as indicated by Table 3.1. The numbers in columns show the ranks 
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of the best results found by each algorithm. If it is 2, then it means 2nd best solution is 

found for that run. For most of the runs, it successfully located the best solution and it 

finds one of the top 3 results with only 40 out of 105 evaluations.  That means a saving of 

65*15=975 hours of computing resources on a 12-core high-end Computer. 

Table 3.1: Results of 10 independent runs for algorithms given 40 fitness evaluations 

 

runs GA-basic GA-SS GA-SC 

1 4 2 2 

2 2 1 1 

3 7 2 3 

4 4 3 1 

5 1 6 1 

6 3 1 1 

7 2 1 1 

8 3 10 1 

9 1 2 3 

10 2 4 3 

 

The second experiment tested how fast our algorithms find the lowest energy 

doping positions. The algorithms run as long as possible and are then checked when they 

converged and in what generations they found the lowest energy (worst-case scenario). 

Table 3.2 shows the final results. The numbers in columns show that the number of 

individuals evaluated to find the best solution out of 105 evaluations. It shows that the 

GA-SC not only find one of the top 3 best solutions out of the 40 fitness run experiments 

as shown in Table 3.1, it also found such solutions much faster than the other two 

algorithms. On average it founds the best solution when about 46 evaluations have been 

used, which is much better than the other two algorithms.  
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Table 3.2: 10 independent runs of three algorithms to check when they find the best 

solution 

runs GA-basic GA-SS GA-SC 

1 58 36 20 

2 34 92 28 

3 42 76 28 

4 42 28 68 

5 74 84 76 

6 50 68 68 

7 26 52 60 

8 82 28 44 

9 50 28 44 

10 66 84 20 

average 52.4 57.6 45.6 

3.2.2 27% Nb-doped SrTiO3 

In this system, the supercell is created from 15 unit cells (5x3x1). There are 15 Sr, 

15 Ti and 45 O atoms in the supercell. The goal is to find the best positions for 4 Nb 

atoms to substitute with 4 Ti atoms. In this real-world optimization problem, 1365 DFT 

calculations are needed to find the best dopant positions if done exhaustively and each 

takes approximately 15 hours on a 12-core 2.4GHz CPU with 24 GB ram Linux 

computing node.  

Similar to 13% Nb-doped SrTiO3 experiments, we tested the ability of our 

different GA implementations for finding the optimal doping configurations given a fixed 

numbers of evaluations. Here only 400 fitness evaluations are allowed out of 1365, and 

compared the best found results of three GAs with the exhaustive search results. 

Additionally, 10 independent runs were executed for each algorithm to check the 

robustness of the algorithms (Table 3.3). With only 32% of total evaluations, the basic 

GA can get one of the optimal results in half of the 10 runs. The GA-SS algorithm had 

similar performance. In some cases, it found better results than the basic GA. The GA-SC 
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with statistical crossover works best as indicated by Table 3.3. The numbers in columns 

show the ranks of the best results found by each algorithm. If it is 2, then it means 2nd 

best solution is found for that run. For all of the 10 runs, it successfully located the best 

solution and it finds one of the top 3 results with only 440 out of 1365 evaluations.  That 

means a saving of 915*15=13725 hours of computing resources on a 12-core high-end 

Computer.  

Table 3.3: Results of 10 independent runs for algorithms given 400 fitness 

evaluations 

runs GA-basic GA-SS GA-SC 

1 4 1 3 

2 1 2 1 

3 4 1 1 

4 1 3 2 

5 1 1 1 

6 6 1 3 

7 5 3 3 

8 1 5 1 

9 4 3 2 

10 1 4 1 

 

Similarly, the second experiment tested how fast our algorithms find the lowest 

energy doping positions for this real-world computational doping experiments. Thus, the 

algorithms run as long as possible until they find the optimal doping position. We then 

checked when they converged and in what generation (with how many fitness 

evaluations) they found the lowest energy (worst-case scenario) configuration.  Figure 

3.8 shows the final results.  It shows that the GA-SC not only find one of the top 3 best 

solutions out of the 440 fitness run experiments as shown in Table 3.4, it also found such 

solutions much faster than the other two algorithms. The numbers in columns show that 

the number of individuals evaluated to find the best solution out of 1365 evaluations. On 
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average it founds the best solution when on average about 350 evaluations have been 

used, which is much better than the other two algorithms. Compared to exhaustive search, 

it uses only about ¼ evaluations to find the optimal solution, which is a great saving in 

terms of computational resource and speeding up computational doping experiments. 

 

Figure 3.8: Comparison of the number of evaluations used to find the optimal 

solution for three algorithms 

 

Table 3.4: 10 independent runs of three algorithms to check when they find the best 

solution 

runs GA-basic GA-SS GA-SC 

1 368 368 296 

2 512 584 440 

3 296 440 368 

4 368 368 296 

5 512 296 368 

6 368 656 152 

7 512 296 296 

8 584 368 440 

9 584 728 368 

10 368 296 368 

average 447.2 440 339.2 
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3.3 CONCLUSION 

In this chapter, we developed genetic algorithm based approach for identifying 

optimal doping position assignment for single element dopant substitutions. For the base 

material SrTiO3, Niobium (Nb) was chosen to substitute with Titanium (Ti) atoms. A 

supercell of 75 atoms was created for SrTiO3 and 4 of the 15 Ti atoms were substituted 

with Nb atoms. The whole search space has 1365 different possible configurations. Our 

GA finds the top 3 best configurations with the lowest fitness by only running 25% of 

total evaluations.  
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CHAPTER 4  

GENETIC ALGORITHMS FOR MULTIPLE DOPANT 

ELEMENTS 

This chapter describes the technique and evaluation of finding optimal doping 

configurations with multiple dopant elements using genetic algorithms. Rather than 

looking for the best configuration for a single type of dopant element and testing another 

dopant element and finally comparing them, this algorithm can search and evaluate 

multiple dopant elements at the same time and obtain the best (most stable) configuration 

in terms of the electronic free energy. The developed algorithm can thus be used for 

search mixed dopant materials.  

In this chapter, five candidate elements were chosen; Niobium (Nb), Rhodium 

(Rh), Gallium (Ga), Aluminum (Al) and Indium (In) to substitute with Titanium (Ti) 

elements on Strontium Titanate (SrTiO3) material. For the base material SrTiO3, the 

supercell model now consists of 75 atoms. At this time, 2 Ti atoms are to be substituted 

with any of the 5 candidate elements. Both substitution positions can be filled with atoms 

of the same or different candidate elements (Figure 4.1).  

The binary representation of a GA individual is very similar to the GA for single 

element doping as discussed in Chapter 3, except that it represents the positions with 

different integers for atoms of different elements. In this representation, the occupied 

positions will be represented by the integers which shows the id of the elements. If, again
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there are 5 dopant candidates, the id for these elements will be 1 to 5. The bits showing 

with 0 still represent not-substituted Titanium positions (Figure 4.2). 

 

Figure 4.1: The grid of Al-In doped SrTiO3. One Al atom substituted with one Ti at 

5th position, and one In atom substituted with one Ti atom at 11th position 

 

0 0 0 0 2 0 0 0 0 0 4 0 0 0 0 

 

Figure 4.2: Binary representation of an individual that places Al atom 5th position 

and In atom at 11th position 

 Different from the single-dopant-element GA, statistical crossover was not used 

here. Recalling GA-SS, the statistics for each position is kept to determine how favorable 

a position is. If the individuals with that position set as 1 get high fitness value, then this 

position will get higher chance for selection. However, there are multiple dopant 

elements and these elements may prefer different positions for different reasons. For 
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example, while Niobium atoms prefer to be doped into SrTiO3 around the center, Indium 

atom may prefer the corners or sides. Thus, a different crossover method is implemented 

different from the single-dopant-element GA.  

4.1 CROSSOVER 

 Since we have multiple dopant candidates this time, three more crossover options 

were added to the existing genetic algorithm to handle different cases. There is one main 

crossover function and these sub-options are chosen in this function based on different 

cases. These crossover options behave differently, thus users can choose whichever 

works for their cases. The following sub-sections will explain how the crossover method 

is implemented  

4.1.1 Crossover only elements 

Here we implemented the crossover option when both parents occupy the same 

positions. We assume these positions are highly favorable and do not want to lose them. 

Instead, we exchange the elements at the positions using the crossover operator. 

Let the parents be A1_A2_5_10 and A3_A4_5_10. In this case, there are still 3 

options.  

If atoms, A1, A2, A3, A4, are all different, then a single point crossover over 

elements is implemented and the offspring will be: 

A1 A2 5 10 and A3 A4 5 10 

 

A3 A2 5 10 and A1 A4 5 10 

 

If one of the atoms are the same from A1, A2, A3, A4, then the same atom is kept 

and 2 different atoms are chosen randomly from our atom list. Let the parents be A-

1_A2_5_10 and A1_A4_5_10. New offspring will be created in the following way:  
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A1 A2 5 10 and A1 A4 5 10 

 

A1 A3 5 10 and A1 A5 5 10 

 

Finally, if both elements and positions are the same for both parents but in 

different order, the elements are swapped to create new offspring. Let the parents be 

A1_A2_5_10 and A2_A1_5_10. New offspring will be created in the following way: 

A1 A2 5 10 and A2 A1 5 10 

 

A1 A1 5 10 and A2 A2 5 10 

 

Recalling the previous question: What if both elements and positions of the 

parents are the same? The answer is, the checking procedure does not allow the same 

parent to stay in the population. As soon as one individual is created, the algorithm 

checks if this individual has been created before or not. If it has been created before, 

immediately another is created. In this way, the population never has matching 

individuals at the same time.  

4.1.2 Crossover only positions 

This crossover option is implemented when we want to crossover only dopant 

positions. If there is one atom superior to others or one pair of atoms superior to the other 

pairs, then this will dominate the population in later generations. Thus, it is a good idea to 

keep these atoms unchanged and try to find better positions for this configuration. In this 

case, again there are 3 different cases to be considered. 

Let the parents be A1_A2_P1_P2 and A1_A2_P3_P4. In this case, there are still 3 

options. If positions P1, P2, P3, P4, are all different, then implementing a single point 

crossover over these positions, the offspring will be: 
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A1 A2 P1 P2 and A3 A4 P3 P4 

 

A1 A2 P3 P2 and A3 A4 P1 P4 

If one of the positions is the same from P1, P2, P3, P4, then the same position is 

kept and two different positions are chosen randomly from the not-occupied positions. 

Let the parents be A1_A2_P1_P2 and A3_A4_P1_P3. New offspring will be created in the 

following way:  

A1 A2 P1 P2 and A3 A4 P1 P3 

 

A1 A2 P1 P8 and A3 A4 P1 P5 

Finally, if the doping positions are the same for both parents, then crossover the 

dopant elements (by calling xover_elems_only) to create new offspring. Let the parents 

be A1_A2_P1_P2 and A3_A4_P1_P2. New offspring will be created in the following way: 

A1 A2 P1 P2 and A3 A4 P1 P2 

 

A1 A4 P1 P2 and A3 A2 P1 P2 

4.1.3 Crossover elements and positions 

This crossover option is implemented to keep the diversity in the population. The 

main crossover function will first call this option if there is no common position of the 

parents. Basically, the crossover of the atoms and the positions is done at the same time. 

If the parents are A1_A2_P1_P2 and A3_A4_P3_P4, then, the new offspring will be created 

in the following way: 

A1 A2 P1 P2 and A3 A4 P3 P4 

 

A1 A4 P1 P3 and A3 A2 P2 P4 
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Although these cases are chosen by default, users can change the behavior of the 

crossover operator. For instance, if both parents have the same positions it is preferable to 

keep those positions and crossover the atoms. Instead, users may change the positions 

and keeps the atoms, or even may crossover both positions and atoms.   

4.2 MUTATION 

The mutation operator here is very similar to the single dopant element GA 

mutation, except that it can mutate the atoms too. Although one mutation option was set 

as default, it can be implemented in different ways. The default operator chooses one 

substituted position at random and swaps that position with non-substituted position.  

Let Al_Rh_2_8 be an individual to be mutated. The mutation operator chooses 2 

or 8 randomly and replaces it with one of [1,3,4,5,6,7,9,10,11,12,13,14,15] and the new 

offspring will be Al_Rh_2_10.  

In the same way, the positions can be kept unchanged and the atoms mutated. In 

the mutation operator, a coin toss operation is made to decide if either atom mutation or 

position mutation will be implemented.  

Another idea for mutation operator would be to apply mutation to both atoms and 

positions. These options were written in the code and left to the user’s preference. 

4.3 MATERIAL PREPERATION 

The material preparation for evaluation experiments is similar to previous chapter. 

In addition to Niobium atom, four more types of atoms were prepared, Aluminum, 

Indium, Rhodium, and Gallium. Related files, such as INCAR, POSCAR, POTCAR and 

KPOINTS were also prepared to run VASP experiments. Initially the lattice parameters 

were optimized for the POSCAR file and a supercell was created consisting of 75 atoms, 



 

53 

which has 15 Strontium atoms, 15 Titanium atoms, and 45 Oxygen atoms. The POSCAR 

file was used as a template to create actual POSCAR files which has different doped 

configurations.  

For fitness calculations, the VASP parameters were carefully chosen. Monkhorst-

Pack is used to create the grid with 5x3x1 dimensions grid for KPOINT file. In the 

INCAR file, the cutoff for the kinetic energy was set to 520eV for all calculations with 

respect to ENMAX values of the corresponding elements in the POTCAR file. The 

interaction between ions and electrons was described by the projector-augmented wave 

(PAW) method. The exchange and correlation potential was treated with the Generalized 

Gradient Approximation (GGA) with the Perdev-Burke-Ernzerhof (PBE) functional.  The 

maximum number of ionic steps (NSW) was to 200 to allow as much ionic calculation as 

possible. EDIFF, which is used to global break condition for electronic calculation, was 

set to 10-4.  

 After the electronic structure and total energy are calculated, several high level 

material properties can be calculated. For instance, the electronic conductivity and ionic 

conductivity can be calculated for different dopant elements and the effect of dopant 

elements can be compared [112]. 

4.4 RESULTS 

This sub-section describes the evaluation of the proposed genetic algorithm on 

13% XY-doped Strontium Titanate (SrTiO3) system where X and Y can be any of 5 

candidate dopants, Niobium (Nb), Aluminum (Al), Indium (In), Rhodium (Rh) and 

Gallium (Ga). These 5 dopant elements will be substituted with any two of 5 candidate 

dopant elements to find the lowest free energy of VASP calculations. 
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Since we have 15 positions and among them 2 positions will be substituted from 

any of 5 dopant elements, totally 2625 different combinations are possible. Different 

from single dopant element experiments, these multiple dopant experiments take much 

more time to calculate the free energy via VASP. The configurations with different 

dopant elements make the VASP calculations much more complex. For example while 

the configuration Nb_Nb_3_5 takes 15 to 30 hours to calculate the free energy, the 

configuration Nb_Rh_4_9 may take 175 hours to finish calculation, since one additional 

different element is in the system.  

In this test, the population size was set to 40 and 10 generations were executed. 

The elite probability was set to 0.1. As a selection method, tournament selection was used 

and tournament size was set to 2. Mutation operator was used as described in section 4.2 

and mutation probability was set to 0.1. 

During our experiments, we first calculated the free energies for all the possible 

doping configurations to get the ground truth via exhaustive search and then the genetic 

algorithm was tested against all known fitness values. In this experiment, the known 

fitness values vary between -571.796 and -599.695. Since genetic algorithms are heuristic 

search methods, the initial population is chosen by random. If the individuals in the initial 

population are close to global optimum, then the algorithm can easily converge in a 

couple generations. Figure 4.3 shows how the population is converged if the initial 

population is close to global optimum. The population finds the best individual at 6th 

generation and converged. 



 

55 

 

Figure 4.3: One of the successful run of finding the lowest fitness value 

If the individuals in initial population are far away from the global optimum, it 

may take more generations to converge if at all in a given number of generations. In this 

case, with the power of crossover and mutation, the population should be able to find 

better individuals as early as possible. Figure 4.4 shows fitness values over generations if 

the initial population is not close to global optimum. The population makes a big jump at 

search space in early generations and then converges in 7th generation. 
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Figure 4.4: Another successful run of finding the individual with minimum fitness 

value starting from far away from the global minimum 

To see how many evaluations can be saved with the genetic algorithm compared 

to exhaustive search to find the optimal doping configurations, only a small number of 

evaluations was allowed in our GA experiments. This tests the ability of the genetic 

algorithm for finding the optimal doping configuration. For this purpose, only 400 

evaluations were run out of 2625. Then those 400 best found individuals were checked 

against the best known individuals. It means only 15% of all configurations were ran and 

85% of configuration were saved. At the same time, the robustness was tested by 

executing the genetic algorithm 100 times. Figure 4.5 shows the results of 100 runs and 

out of 72 of them the genetic algorithm found the best configuration. Out of 22 runs, the 

genetic algorithm finds the second best configurations, out of 3 runs the third-best 

configuration was found. Among all 100 runs, only two times the genetic algorithm failed 

to find the one the top 3 configurations.  
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Figure 4.5: The result of 100 individual runs of the genetic algorithm 

These results showed that, by running only 15% of the VASP simulations in 

exhaustive search, our genetic algorithm found the best results in 72 out of 100 runs. In 

addition, the genetic algorithm found one of the top 3 configurations in 98 out of 100 

runs. This means by running our genetic algorithm with only 15% of exhaustive search 

for computation doping experiments, lots of experiments and calculation time can be 

saved. 

4.5 CONCLUSION 

In this chapter, we developed genetic algorithm based approach for identifying 

optimal doping position assignment for multiple element dopant substitutions. For the 

base material SrTiO3, Niobium (Nb), Aluminum (Al), Gallium (Ga), Rhodium (Rh) and 

Indium (In) were chosen to substitute with Titanium (Ti) atoms. A supercell of 75 atoms 

was created for SrTiO3 and 2 of the 15 Ti atoms were substituted with any combination 

of these five atoms. The whole search space has 2625 different possible configurations. 
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Our GA finds the best configuration with the lowest fitness value at 72 cases out of 100 

and top 3 best configuration at 92 out of 100 by only running 15% of total evaluations.  
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CHAPTER 5  

GENETIC PROGRAMMING FOR MULTIPLE ELEMENTS 

DOPING 

Genetic programming is a genre of genetic algorithms where the typical 

individual representations are syntax trees composed of internal functional nodes and end 

terminals [113]. Starting with an initial population of tree-structured individuals 

(materials), a fitness evaluation process will be applied to all individuals. Then, the 

individuals with higher fitness values will be selected for crossover and mutation 

according to the survival of the fittest principle. A new population will then be generated, 

and the process loops until the termination criteria is met. The whole framework is shown 

in Figure 5.1 using SrTiO3 as the example.  Below, we define the components of the 

framework, which will be implemented using Open-Beagle, a C++ framework for genetic 

programming [114], [115].  

This chapter will first describe the generic version of genetic programming for 

material doping, then we will describe how we implemented in our project.  

5.1 GENERIC VERSION OF GENETIC PROGRAMMING FOR 

MATERIAL DOPING 

The doping space of a given material system such as ABO3 perovskite consists of 

the allowable doping sites, dopant elements of each site, and amount of doping elements. 

While it is possible to apply doping on A and B site at the same time, it is also possible to
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apply vacancy on either side. The doping process can be mapped as a sequential process 

of adding dopant elements to the base material, which can be modeled by a GP syntax 

tree. 

A variable-length GP tree structure representing a doped material is shown in 

Figure 5.2. It represents the Nb-doped SrTiO3 material, Sr0.95Ti0.8Nb0.2O3 with 0.05 

vacancy on Strontium side. The second tree level represents the allowed doping sites. 

Empt means vacancy; Nb means doping with Niobium; EndP means no more allowing 

doping on that site; 0.05 and 0.2 are dopant amounts as percentages. With this mapping, 

finding the optimal doped material is equivalent to finding the optimal GP tree. To search 

in this variable tree structure doping space, we used Genetic Programming (GP) [104], 

[116]–[118] as the efficient sampling technique combined with DFT calculation for 

computational doping. Genetic programming is a class of evolutionary algorithms 

SrTiO3 Unit Cell 

Structure 

Initial doping 

population 

Fitness Evaluation 

New Population Parent Selection 

Crossover 

Mutation 

Terminate? Solution 
Yes 

No 

Genetic Programming Framework for 

Computational Doping 

Figure 5.1: GP-based computational doping framework 
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inspired by biological evolution, and it has been used in a wide variety of fields, 

including bioinformatics, quantum computing, mathematical algorithms, and mechanical 

systems. One of the major benefits of a genetic search is that complementary features of 

two individuals can be combined to generate better offspring solutions. This reduces the 

complexity of search space and eliminates the most infeasible doping configurations.  

 

 

 

 

 

 

 

 

 

 

 

5.1.1 GP Tree Representation 

A GP syntax tree is composed of two types of nodes. First type is the GP 

functions which have branches. The second type is called GP terminals, which are ending 

nodes of the GP tree. GP algorithms can be further classified into non-typed GP and 

strongly typed GP, in the latter case, all GP nodes have a return type and only GP nodes 

with identical return type can be exchanged or replaced. In this work, we used strongly 

typed GP for computational doping. 

 SrTiO3 

Sr Ti O3 

Empt Nb 
EndP 

0.05 EndP 0.2 EndP 

Figure 5.2: Representation of the Sr0.95Ti0.8Nb0.2O3 tree structure 
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5.1.2 Genetic Crossover and Mutation in GP 

Crossover and mutation are the two major approach to introduce variation during 

evolutionary search of GP. These two operators can be conveniently implemented by the 

constrained strongly typed genetic programming (STGP) approach [119]. STGP is an 

extended version of genetic programming that enforces data type constraints, which 

provides a great reduction in representation and search space. This significantly decreases 

the search time and/or improves the generalization performance of the solutions. Figure 

5.3 shows the crossover operator between two individuals. Only the sub-trees of the same 

doping site can be exchanged. The tree structure can be mutated by changing the dopant 

element at a given node, modifying the dopant composition parameter, or replacing a 

subtree with a randomly generated subtree. 
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5.1.3 Initial Population Seeding 

Individuals of initial population can be generated according to the strongly typed 

GP rule. While new arbitrary individuals can be randomly generated, prior 

experimentally verified doped materials reported in the literature can also be used to seed 

the starting population. 

5.1.4 Fitness Evaluation 

This is the most challenging and time-consuming part of the computational 

doping process. Since multiple conflicting properties usually need to be optimized while 

seeking ideal doped materials, the genetic search is defined as a multi-objective 

optimization problem, for which the evolutionary algorithms are among the best methods 

[120]–[123]. Since the objectives are usually conflicting, it is not easy to find a single 

optimal solution that respects all objectives.  

Figure 5.3: GP-Crossover operator for La/Nb-doped SrTiO3 and Ga/Rh-doped 

SrTiO3 

Child 1 Child 2 

SrTiO3 

Sr Ti O3 

La 

 

Rh EndP 
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EndP 0.2 EndP 

SrTiO3 

Sr Ti O3 

Ga 

 

Nb EndP 

0.05 EndP 0.2 EndP 
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The material property calculation is based on the supercell approach for DFT 

studies on doped materials [76]. DFT simulation will be calculated by the Vienna Ab 

initio Simulation Package (VASP), with some improved features. There are four steps in 

the DFT based property/fitness calculation: 1) Supercell generation; 2) doping/vacancy 

position assignment; 3) DFT calculation; 4) property calculation.  One of the major 

obstacles here is in Step 2, in which a large number of possible configurations of the 

doped elements or vacancy can exist in the lattice structure. In this case, we need to 

identify the configuration with the lowest energy. In the previous study [76], Suthirakun 

et al. used an exhaustive search to achieve that, which is too computationally costly for 

the proposed computational doping. 

VASP-based DFT calculations are extremely time-consuming. For example, in 

our experiments a supercell of 75 atoms with 2 dopant elements takes 15-30 hours to run 

on a 12 core CPU Linux node. When increase the number of dopant elements, the 

running time increases days to weeks. Several approaches can be used to speed up the 

fitness evaluation step:  1) Multi-resolution first principle calculations that mix VASP 

with faster lower-resolution DFT calculation codes such as GULP [124], [125] can be 

used for calculating the electronic structure. 2) The statistical material prediction models 

developed below can be utilized, or performance comparison results in the literature will 

be used.  This is possible because in a genetic search with tournament selection, only 

relative performance among individuals is needed for parent selection.  
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5.2 OUR IMPLEMENTATION OF GENETIC PROGRAMMING FOR 

MULTIPLE DOPANT ELEMENTS WITH MULTIPLE DOPING RATIOS 

 In previous section, we proposed the general version of GP based computational 

doping. However the doping material simulation is done via VASP simulation of 

supercells, of which partial positions of the atoms are substituted by the doped elements. 

To avoid the redundancy of the representation, we have developed the following GP 

approach for computational doping. This section will describe how the genetic 

programming is implemented to find best doping configurations when multiple dopant 

elements are used to substitute Ti-site of material SrTiO3. The SrTiO3 supercell consists 

of 75 atoms (15 Sr, 15 Ti, and 45 O) and is created from 15 unit cells (5 x 3 x 1). The 

candidate materials for substitution with Titanium are Niobium (Nb), Rhodium (Rh), 

Indium (In), Gallium (Ga) and Aluminum (Al). The allowed doping ratios are chosen as 

15:1 or 15:2, which means either one Ti atom will be substituted with one of the 

candidate atoms or 2 Ti atoms will be substituted with any of 2 candidate atoms. Total 

possible configurations can be calculated in the following way: since there is 15 Ti atoms 

and 5 candidate atoms, there are 15 x 5 = 75 possible configurations for single dopant 

substitution (15:1 doping ratio). Similarly, for 15 Ti positions any 2 of 5 candidate atoms 

will be chosen leading to C(15,2) * (C(5,2) + 5) = 2625 different ways. C(15,2) means 15 

choose 2, and it calculates how many different ways can be chosen 2 spaces from 15 

possible spaces (C(15,2) = 105) (Table 5.1). Notice that the positions cannot be the same 

because one position can only be occupied by one atom, and the first position will always 

be smaller than the second position. The purpose for this is to avoid generating duplicate 

configurations. For example, the individuals Nb_Al_3_5 and Al_Nb_5_3 are the same 



 

66 

configurations, where Nb will be substituted at 3rd position and Al will be substituted at 

5th position for both configurations.   

Table 5.1: 105 different positions that can be chosen for substitutions for two dopant 

elements 

1 2 

1 3 

1 4 

1 5 

1 6 

1 7 

1 8 

1 9 

1 10 

1 11 

1 12 

1 13 

1 14 

1 15 

2 3 

2 4 

2 5 

2 6 

…. …. 

…. …. 

…. …. 

…. …. 

…. …. 

11 15 

12 13 

12 14 

12 15 

13 14 

13 15 

14 15 

C(5,2) means 5 chooses 2 and it calculates how many different ways a pair of dopants 

can be chosen out of 5, for example {Nb,Rh} is one of them. However it doesn’t choose 

duplicate elements as a pair. Thus the pairs with the same atoms should be added in this 

set and that 5 in the equation corresponds the pairs with identical atoms, such as 
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{Nb,Nb}. Thus, the right side of the equation (C(5,2)+5) = 25, and this means the pairs 

for 15:2 doping rate can be chosen in 25 different ways (Table 5.2). This makes the total 

number of 15:2 doping rate substitutions to be 105*25 = 2625. 

Table 5.2: All possible ordering of 2 elements out of 5 elements 

Nb Nb 

Nb Al 

Nb Rh 

Nb Ga 

Nb In 

Al Al 

Al Nb 

Al Rh 

Al Ga 

Al In 

Rh Rh 

Rh Ga 

Rh In 

Rh Nb 

Rh Al 

Ga Ga 

Ga In 

Ga Nb 

Ga Al 

Ga Rh 

In In 

In Nb 

In Al 

In Rh 

In Ga 

 

All together for the single and multiple dopant elements, there are 75 + 2625 = 

2700 total possible configurations. Although doping ratios are chosen as up to 15:2, it can 

be chosen to substitute more Ti atoms such as 15:3 or 15:4, however, it will increase the 

computational complexity exponentially. 
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5.2.1 Tree Structure – Representation of Individuals 

 In genetic programming, all individuals are actually syntax trees. The general tree 

structure was explained in previous sections. In this work, the tree structure will be 

simplified to make it more understandable. Since we will only apply doping on the Ti 

side, the aim is to choose the positions and the atoms which give the best fitness values. 

Thus, there is no need to include Sr, Ti or O3 atoms in the tree structure. Our tree 

structure will represent the substitution positions and substitution elements with Ti. 

 First, we define the GP functions and the GP terminals. The GP functions are 

ADD functions for all different atoms. Since there is 5 candidate dopants there are 5 

functions AddNb, AddIn, AddAl, AddGa, AddRh, which means whenever the algorithm 

chooses these functions, the corresponding atom will be substituted with one Titanium 

atom on one specific position. The position is a terminal of these functions and represents 

at which position will substitute Titanium atom with corresponding atom. There is one 

more terminal, named EndP. EndP means there is no more doping on this side. Figure 5.4 

shows how does a single dopant element configuration and two-dopant elements 

configuration are represented.  

 

 

 

 

 

Figure 5.4: Single dopant configuration of Nb at 4th position (left). Two-dopant 

configuration of Nb and Rh at 4th and 9th positions (right) 
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AddRh  4 

EndP  9 
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In Figure 5.4, the left tree is the individual for substitution Ti with Nb at 4th 

position. Similarly, the right tree is the individual for substitution of two Titanium atoms 

with Nb at 4th position and Rh at 9th position. As seen in Figure 5.4 EndP is a terminal 

point which stops the tree growing, that’s how the program can generate single dopant 

element configurations. EndP is chosen randomly as soon as the other functions such as 

AddNb, AddRh, etc. Since we are only testing 15:1 and 15:2 doping ratios, the types of 

trees on the Figure 5.4 are the only valid trees. The OPEN BEAGLE parameter 

max_tree_depth is set to 2, and this parameter is used to stop growing the tree through 

more levels. In other words, if a user wants to apply 15:3 doping ratio, this 

max_tree_depth should be set to 3 to generate configurations which has 3 substitution 

positions and corresponding atoms.  

5.2.2 Crossover 

 The crossover operator exchanges two compatible subtrees with the same return 

type of the selected parents and creates two offspring. If the selected parents are only 

single dopant elements, then crossover exchanges their positions and creates the offspring 

(Figure 5.5).  
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If the crossover is between two-dopant elements individuals, then one subtree is 

chosen from each parent and exchanges each other (Figure 5.6). If the root is selected as a 

subtree then the created individual will not be a valid individual, since the number of 

dopant elements will exceed the maximum number of substitutions for one child. In this 

case, this individual will be ignored and another subtree will be chosen.   

 

 

 

 

 

 

 

 

 

 

 

 AddNb 

EndP  9 

 AddRh 

EndP  4 

 Child 1  Child 2 

Figure 5.5: Crossover of individuals Nb_4 and Rh_9. The created offspring are 

Nb_9 and Rh_4 
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Figure 5.6: Crossover between Nb_Rh_4_9 and Nb_In_5_8. The created offspring 

are Nb_In_4_8 and Nb_Rh_5_9 

In addition to the crossover operator seen in Figure 5.6, another crossover 

possibility to exchange only positions was explained in Figure 5.7.  Since Position node 

is still a valid node to crossover, the offspring can be created by exchanging only 

positions too.  
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Figure 5.7: Crossover between Nb_Rh_4_9 and Ga_In_5_8. The created offspring 

are Nb_Rh_5_9 and Ga_In_4_8 

If the selection operator selects an individual from single-dopant configuration 

and the other one from two-dopant configuration, the crossover operator chooses one 

sub-tree from two-dopant configuration and exchanges it with other parent (Figure 5.8).  
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5.2.3 Mutation 

Similar to the crossover operator, mutation can also be done in different ways. 

The idea is basically modifying an individual to get better individuals. This modification 

can be adding or removing a subtree or replacing the position node with another one. 

Let the individual to mutate be Nb_Rh_4_9. Figure 5.9 shows how to replace a 

subtree with another one. This subtree can be a single-dopant configuration or can be a 

position only.  

 

   

 

 

 

 

Figure 5.8: Crossover between a two-dopant configuration individual and 

single-dopant configuration individual 
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Another possible mutation is to remove a subtree completely and replace it with 

an EndP node (Figure 5.10). Once again, Position node cannot be selected to replace with 

EndP since it is always a right subtree.   

 

 

 

 

 

 

 

 

 

Figure 5.9: Two different mutation operator: a) Mutation was applied on a 

subtree which is a single-dopant configuration, b) Mutation was applied on 

Position node (is still a subtree). 

Figure 5.10: Mutation operator was applied on Nb_Rh_4_9 (a) and the new 

individual Nb_4 (b) was created 
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Similarly, mutation operator can add another subtree by replacing EndP with a 

valid subtree and can create a two-dopant configuration from a single-dopant 

configuration individual (Figure 5.11).  

 

 

 

 

 

 

 

5.2.3 Parameters 

Open Beagle uses a configuration file XML format to define the parameters 

(Table 5.3). These parameters and more can be reached by running the program with 

extension –OBUsage or –OBhelp and set in beagle.conf file in desired way. The results 

can be both printed out the on screen and also be written in beagle.log file with more 

details. If a user wants to change the default parameters, this can be done by writing 

<Entry key="ec.pop.size">40</Entry> as shown in Table 5.3. This line overwrites the 

parameter for population size and set its new value to 40. The parameter “ec.repro.prob” 

is the reproduction probability of an individual and is used to reproduce an individual. 

The parameter “ec.hof.demesize” is the number of individuals kept in each deme’s hall-

of-fame (best individuals so far). The termination criteria can be set in two ways: One is 

the, number of maximum generations and the parameter “ec.term.maxgen” is used to 

Figure 5.11: Mutation operator mutates the individual Nb_4 and creates the 

new individual Nb_Ga_4_7 
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determine it. The other one is the maximum fitness value with the parameter 

“ec.term.maxfitness”. If both of them are used, then the program stops when any of them 

is reached first. If the user’s optimization problem is minimization of the fitness value 

instead of maximization fitness, then this parameter can still be used when we convert the 

fitness values by multiplied the objective value by -1. The parameter “gp.cx.indpb” sets 

the crossover probability of an individual at each generation.  The parameter 

“gp.mutshrink.indpb” is the shrink mutation probability describing how likely to replace 

a branch with one of its child node. In this case the selected node and its other children 

are removed. The parameter “gp.mutstd.indpb” is the standard mutation probability for an 

individual. A standard mutation replaces a sub tree of the individual with a randomly 

generated one. The parameter “gp.init.mindepth” is the minimum depth for newly created 

trees. In this implementation this parameter is set to 2 because each valid individual 

should have at least one atom and its position. The parameter “gp.init.maxdepth” is the 

number of maximum depth of initial trees and it is also set to 2 in our GP. The parameter 

“gp.tree.maxdepth” is the number of maximum depth of trees and it is set to 3 in our 

implementation. This is an important parameter because it is also used to stop the trees 

growing. Since in the doping example described above, there are only two substitution 

positions and corresponding elements. If the tree grows more than depth of 3, then the 

program will create individuals with more positions and elements, indicating that invalid 

individuals will be created. If a user wants to implement this program on 3 or more 

substitution positions, then this parameter needs to be set as the number of substitution 

positions.  
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<Beagle> 

  <Evolver> 

    <BootStrapSet> 

      <GP-InitHalfConstrainedOp/> 

      <SpambaseEvalOp/> 

      <GP-StatsCalcFitnessSimpleOp/> 

      <TermMaxGenOp/> 

      <TermMaxFitnessOp fitness="1000.0"/> 

      <MilestoneWriteOp/> 

    </BootStrapSet> 

    <MainLoopSet> 

      <SelectTournamentOp/> 

      <GP-CrossoverConstrainedOp/> 

      <GP-MutationStandardConstrainedOp/> 

      <GP-MutationShrinkConstrainedOp/> 

      <GP-MutationSwapConstrainedOp/> 

      <GP-MutationSwapSubtreeConstrainedOp/> 

      <SpambaseEvalOp/> 

      <GP-StatsCalcFitnessSimpleOp/> 

      <TermMaxGenOp/> 

      <TermMaxFitnessOp fitness="1000.0"/> 

      <MilestoneWriteOp/> 

    </MainLoopSet> 

  </Evolver> 

  <System> 

    <Register> 

      <Entry key="ec.pop.size">40</Entry> 

      <Entry key="ec.repro.prob">0.0</Entry> 

      <Entry key="ec.hof.demesize">5</Entry> 

      <Entry key="ec.term.maxgen">20</Entry> 

      <Entry key="gp.cx.indpb">0.8</Entry> 

      <Entry key="gp.mutshrink.indpb">0.2</Entry> 

      <Entry key="gp.mutstd.indpb">0.2</Entry> 

      <Entry key="gp.init.mindepth">2</Entry> 

      <Entry key="gp.init.maxdepth">2</Entry> 

      <Entry key="gp.tree.maxdepth">3</Entry> 

      <Entry key="lg.file.level">7</Entry> 

    </Register> 

  </System> 

</Beagle> 
 

 

Table 5.3: An example of the configuration file to run Genetic Programming on 

Open Beagle 
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5.2.4 Results 

The main routine of the program consists of these 5 steps (Table 5.4): 1) Building 

primitives, 2) Building an evolutionary system, 3) Building evaluation, 4) Building an 

evolver and 5) Building a vivarium. In the primitive set, the only constrain is the Add_ 

functions and EndNode can only be placed in the left subtree and the node Position will 

always be in the right sub-tree. 

int main(int argc, char *argv[]) { 

try { 

// 1: Build primitive set 

GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet; 

lSet->insert(new AddNb); 

lSet->insert(new AddRh); 

lSet->insert(new AddIn); 

lSet->insert(new AddAl); 

lSet->insert(new AddGa); 

lSet->insert(new EndNode); 

lSet->insert(new Position); 

// 2: Build a system 

System::Handle lSystem = new System(); 

lSystem->addPackage(new GP::PackageConstrained(lSet)); 

// 3: Build evaluation operator 

  lSystem->setEvaluationOp(“yourEvalOp” new “YourEvalOp”::Alloc; 

// 4: Build evolver 

Evolver::Handle lEvolver = new Evolver(); 

// 5: Build vivarium 

Vivarium::Handle lVivarium = new Vivarium; 

// 6: Initialize and evolve the vivarium 

lEvolver->initialize(lSystem,argc,argv); 

lEvolver->evolve(lVivarium, lSystem); 

} 

catch(Exception& inException) { 

inException.terminate(); 

} 

return 0; 

} 
 

 

Table 5.4: Pseudo-code of our GP implementation’s main function 
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Before the GP tested, some important parameters need to be optimized. 

Tournament selection size which determines how many tournaments will be occurred to 

select the parents for crossover is one of them. Different sizes have been tested and then 

we decided to set to 7. Figure 5.12 shows the different tournament sizes against best 

found individuals. For each size of tournament, the GP run 10 times and the ranks of the 

best found individuals were recorded and then compared with the known results. For 

example, on the first run the second best individual is found. On the second run the third 

best individual is found, on the third run the best individual is found, and so forth. Then 

the average values and standard deviation was calculated for each tournament size. 

Finally, it was determined to use tournament size 7, as it has the best average value and 

the lowest standard deviation found in this experiment. For instance, the average values 

of 7 and 5 are close to each other, however for tournament size 5, the GP may find the 

ninth or tenth best individual, and is why the standard deviation of tournament size 5 is 

higher than the tournament size 7. On the other hand, with tournament size 7, the GP 

finds one of the top 3 best results on all 10 independent runs. 

 

Figure 5.12: Different tournament sizes vs best found individuals 
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Population size and the number of generations are two critical parameters for all 

kind of genetic searches. In this work, since the search space is relatively small, there are 

not many options to vary these parameters. Also the total number of evaluations was set 

to around 400 to be comparable to Genetic Algorithms run in previous chapters. 

Generally, the total number of evaluations is equal to multiplication of population size 

and number of generations. However, in this work, GP may create invalid individuals. 

This can be an empty tree, or invalid number of nodes in the tree of which the fitness 

evaluation cannot be evaluated. Thus, the number of total evaluations is not exactly equal 

to the multiplication of population size and the number of generations. Instead, a counter 

is implemented inside the code to keep track of the total number of evaluations. In 

addition, since each different run may produce different number of total evaluations, ±10 

evaluations are ignored. Thus, if the total number of evaluations are set to 400, and if the 

program produces any number in the range [390-410], it was accepted as 400. Figure 

5.13 shows that best found individuals with different number of population sizes and the 

number of generations. For each test case, GP run 10 times and best found individuals are 

compared to known results. For the case of population size 45 and the number of 

generations is 11, the GP finds one of top 3 results for each different runs. 

Finally, the GP was tested with optimized parameters. The number total 

evaluations was set to around 410 (15% of the whole search space) to be comparable to 

Genetic Algorithms implemented in previous chapters. To check the robustness of the 

algorithm, 50 independent runs were executed. The best individuals were recorded and 

compared to the best known results. The top 3 best results were found for 43 runs out of 
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50. Figure 5.14 shows the results of 50 independent runs and which best individual was 

found at each run. 

 

Figure 5.13: Best found individuals with different number of population sizes and 

the number of generations 

 

 

Figure 5.14: The result of 50 independent GP runs. Best found individuals are 

shown at each run. The top 3 best results were found at 43 runs out of 50 
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After testing GP, the crossover and mutation operators were also tested to see how 

they affect the generic search. First, the crossover operator was shut down and only 

mutation was allowed. The population size and the number of generations was set to 

proper numbers to get the similar total number of evaluations with GP for comparison. 

Then, the crossover operator was turned on and the mutation operator was shut down. 

Again, proper number of population size and the number of generations were chosen for 

fair comparison. Figure 5.15 shows the results of 50 runs of GP, GP with no crossover 

and GP with no mutation. Surprisingly, the results showed that mutation operator is more 

effective on genetic search than the crossover operator. It is generally not true. In this 

work, mutation looks more effective than crossover, because the crossover operator needs 

to be more carefully implemented and the GP tree depth limit put strong limitation on the 

search space capability of GP crossover operator. For larger search space, the 

contribution of crossover may be different, which is left for our future work. 

 

Figure 5.15: The results of 50 runs for different GP operators 
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5.3 CONCLUSIONS 

We have successfully applied genetic programming for multi-element 

computational doping. Our experiments showed that GP is an effective algorithm for 

searching optimal doped materials in terms of free energy. It can save up to 80% of 

VASP simulations when doing VASP based simulation. Compared to genetic algorithm, 

the GP algorithm has the advantage of open-ended search space and may find better 

solutions for large doping problems.    
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CHAPTER 6  

CONCLUSION 

In this dissertation, an evolutionary framework for high-throughput computational 

doping were developed using genetic algorithms, genetic programming and Density 

Functional Theory (DFT) calculations. Although many DFT calculations have been 

applied to material research [53], [76], [126]–[134], a majority of them are used for 

measuring or verifying material performance [135]–[140]. Only some of them were 

applied for high-throughput material screening [95], [141], [142]. The ultimate goal of 

this dissertation is transforming current heuristic research practice in material research. 

More specifically, 

 We developed a genetic algorithm-based approach for identifying optimal 

doping position assignments for single and multiple dopant elements. 

 We developed a genetic programming based search framework for 

computational doping that can screen materials with different doping 

elements and/or different substitution ratios.  

Evolutionary algorithms based computational doping framework will reduce the 

time for both experimental studies and computational studies. Fast computational 

screening will help to expand the material design space dramatically by evaluating novel 
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dopant elements with high speed. By working on the material of Solid Oxide Fuel Cell 

materials, this work may also help to speed up the SOFC material exploration processes. 

The genetic algorithms we implemented in Chapter 3 will help to find best doping 

configurations when only a single dopant element is doped in a base material. Our 

experiments showed that it can save up to 75% of VASP calculations by running the 

genetic algorithm to find the most stable structure compared to exhaustive search. In 

Chapter 4, we implemented another genetic algorithm which can work on multiple 

dopant elements. Since search space is larger in this case, the genetic algorithm brings 

even better benefits. With only 15% of total calculations, GA can get one of top 3 

configurations out of 2625 different configurations. Finally, we implemented a Genetic 

Programming algorithm, which can work with different dopant elements and also 

different substitution rates. In this case, the search complexity increases dramatically 

when the number of elements increases and the allowed substitution rates increase. We 

tested our Genetic Programming with 5 dopant elements {Nb, Rh, Ga, Al, In} and 2 

different substitution rates (15:1 and 15:2) on our base material SrTiO3. The results show 

that, by running only 15% of total calculations, one of the top 3 best configurations can 

be found by using GP.  

 Overall, this work will dramatically speed up the computational doping process, 

which is especially critical for large-scale computational screening.  

 



 

86 

REFERENCES 

[1] K. Kendall, S. C. Singhal, and K. Kendall, High-temperature solid oxide fuel cells: 

fundamentals, design, and applicatons. Elsevier Advanced Technology, 2003. 

[2] P. Wollmann, M. Leistner, U. Stoeck, R. Grünker, K. Gedrich, N. Klein, O. Throl, 

W. Grählert, I. Senkovska, F. Dreisbach, and S. Kaskel, “High-throughput 

screening: speeding up porous materials discovery.,” Chem. Commun. (Camb)., 

vol. 47, no. 18, pp. 5151–3, May 2011. 

[3] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, 

“Computational high-throughput screening of electrocatalytic materials for 

hydrogen evolution.,” Nat. Mater., vol. 5, no. 11, pp. 909–13, Nov. 2006. 

[4] S. Curtarolo, D. Morgan, and G. Ceder, “Accuracy of ab initio methods in 

predicting the crystal structures of metals: A review of 80 binary alloys,” Calphad, 

vol. 29, no. 3, pp. 163–211, Sep. 2005. 

[5] C. Ortiz, O. Eriksson, and M. Klintenberg, “Data mining and accelerated 

electronic structure theory as a tool in the search for new functional materials,” 

Comput. Mater. Sci., vol. 44, no. 4, pp. 1042–1049, Feb. 2009. 

[6] N. Q. Minh, “Solid oxide fuel cell technology--features and applications,” Solid 

State Ionics, vol. 174, pp. 271–277, 2004. 

[7] W. . Zhu and S. . Deevi, “A review on the status of anode materials for solid oxide 

fuel cells,” Mater. Sci. Eng. A, vol. 362, no. 1–2, pp. 228–239, Dec. 2003. 

[8] N. Q. Minh, “Ceramic Fuel Cells,” J. Am. Ceram. Soc., vol. 76, pp. 563–588, 

1993. 

[9] N. Q. Minh and T. Takahashi, Science and technology of ceramic fuel cells. 

Elsevier, 1995. 

[10] S. C. Singhal, “Solid oxide fuel cells for stationary, mobile, and military 

applications,” Solid State Ionics, vol. 152–153, pp. 405–410, Dec. 2002. 

[11] M. C. Williams, J. P. Strakey, W. A. Surdoval, and L. C. Wilson, “Solid oxide fuel 

cell technology development in the U.S,” Solid State Ionics, vol. 177, no. 19–25, 

pp. 2039–2044, Oct. 2006. 

[12] B. C. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, vol. 

414, no. 6861, pp. 345–52, Nov. 2001. 

[13] S. C. Singhal, “Advances in solid oxide fuel cell technology,” Solid State Ionics, 

vol. 135, no. 1–4, pp. 305–313, Nov. 2000. 

[14] A. S. Nesaraj, “Recent developments in solid oxide fuel cell technology – a 

review,” Ind. Res., vol. 13, pp. 117–131, 2010.



 

87 

[15] J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler, 

“Fabrication of thin electrolytes for second-generation solid oxide fuel cells,” Solid 

State Ionics, vol. 131, pp. 79–96, 2000. 

[16] A. J. Jacobson, “Materials for Solid Oxide Fuel Cells,” Chem. Mater., vol. 22, no. 

3, pp. 660–674, Feb. 2010. 

[17] C. S. Kong and K. Rajan, “Rational design of binary halide scintillators via data 

mining,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, 

Detect. Assoc. Equip., vol. 680, pp. 145–154, Jul. 2012. 

[18] J. W. J. Davidson, D. A. Savic, and G. A. G. Walters, “Symbolic and numerical 

regression: Experiments and applications,” Inf. Sci. (Ny)., vol. 150, no. 1, pp. 95–

117, 2003. 

[19] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental 

data.,” Science, vol. 324, no. 5923, pp. 81–5, Apr. 2009. 

[20] G. Xiao, X. Dong, K. Huang, and F. Chen, “Synthesis and characterizations of A-

site deficient perovskite Sr0.9Ti0.8−xGaxNb0.2O3,” Mater. Res. Bull., vol. 46, no. 

1, pp. 57–61, Jan. 2011. 

[21] G. Xiao and F. Chen, “Ni modified ceramic anodes for direct-methane solid oxide 

fuel cells,” Electrochem. commun., vol. 13, no. 1, pp. 57–59, Jan. 2011. 

[22] Z. Yang, C. Yang, B. Xiong, M. Han, F. Chen, C. Jin, M. Han, and F. Chen, 

“Ba0.9Co0.7Fe0.2Nb0.1O3−δ as cathode material for intermediate temperature 

solid oxide fuel cells,” Electrochem. commun., vol. 13, no. 22, pp. 882–885, Nov. 

2011. 

[23] Y. Chen, F. Chen, W. Wang, D. Ding, and J. Gao, “Sm0.2(Ce1−xTix)0.8O1.9 

modified Ni–yttria-stabilized zirconia anode for direct methane fuel cell,” J. Power 

Sources, vol. 196, no. 11, pp. 4987–4991, Jun. 2011. 

[24] X. Dong, S. Ma, K. Huang, and F. Chen, “La0.9−xCaxCe0.1CrO3−δ as potential 

anode materials for solid oxide fuel cells,” Int. J. Hydrogen Energy, vol. 37, no. 

14, pp. 10866–10873, Jul. 2012. 

[25] G. Xiao, Q. Liu, X. Dong, K. Huang, and F. Chen, “Sr2Fe4/3Mo2/3O6 as anodes 

for solid oxide fuel cells,” J. Power Sources, vol. 195, no. 24, pp. 8071–8074, Dec. 

2010. 

[26] L. Zhang, Y. Liu, Y. Zhang, G. Xiao, F. Chen, and C. Xia, “Enhancement in 

surface exchange coefficient and electrochemical performance of 

Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles,” Electrochem. 

commun., vol. 13, no. 7, pp. 711–713, Jul. 2011. 

[27] Q. Liu, D. E. Bugaris, G. Xiao, M. Chmara, S. Ma, H.-C. zur Loye, M. D. 

Amiridis, and F. Chen, “Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid 

oxide fuel cells,” J. Power Sources, vol. 196, no. 22, pp. 9148–9153, Nov. 2011. 

[28] C. Yang, C. Jin, and F. Chen, “Performances of micro-tubular solid oxide cell with 

novel asymmetric porous hydrogen electrode,” Electrochim. Acta, vol. 56, no. 1, 

pp. 80–84, Dec. 2010. 



 

88 

[29] C. Yang, C. Jin, A. Coffin, and F. Chen, “Characterization of infiltrated 

(La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells,” 

Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5187–5193, Jun. 2010. 

[30] C. Yang, A. Coffin, and F. Chen, “High temperature solid oxide electrolysis cell 

employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen 

electrode performance,” Int. J. Hydrogen Energy, vol. 35, no. 8, pp. 3221–3226, 

Apr. 2010. 

[31] C. Yang, C. Jin, and F. Chen, “Micro-tubular solid oxide fuel cells fabricated by 

phase-inversion method,” Electrochem. commun., vol. 12, no. 5, pp. 657–660, May 

2010. 

[32] Q. Liu, C. Yang, X. Dong, and F. Chen, “Perovskite Sr2Fe1.5Mo0.5O6−δ as 

electrode materials for symmetrical solid oxide electrolysis cells,” Int. J. Hydrogen 

Energy, vol. 35, no. 19, pp. 10039–10044, Oct. 2010. 

[33] C. Jin, C. Yang, F. Zhao, A. Coffin, and F. Chen, “Direct-methane solid oxide fuel 

cells with Cu1.3Mn1.7O4 spinel internal reforming layer,” Electrochem. commun., 

vol. 12, no. 10, pp. 1450–1452, Oct. 2010. 

[34] Z. Yang, C. Jin, C. Yang, M. Han, and F. Chen, “Ba0.9Co0.5Fe0.4Nb0.1O3−δ as 

novel oxygen electrode for solid oxide electrolysis cells,” Int. J. Hydrogen Energy, 

vol. 36, no. 18, pp. 11572–11577, Sep. 2011. 

[35] C. Jin, Z. Yang, H. Zheng, C. Yang, and F. Chen, “La0.6Sr1.4MnO4 layered 

perovskite anode material for intermediate temperature solid oxide fuel cells,” 

Electrochem. commun., vol. 14, no. 1, pp. 75–77, Jan. 2012. 

[36] C. Jin, C. Yang, H. Zheng, and F. Chen, “Intermediate temperature solid oxide fuel 

cells with Cu1.3Mn1.7O4 internal reforming layer,” J. Power Sources, vol. 201, 

pp. 66–71, Mar. 2012. 

[37] G. Xiao, C. Jin, Q. Liu, A. Heyden, and F. Chen, “Ni modified ceramic anodes for 

solid oxide fuel cells,” J. Power Sources, vol. 201, no. 3, pp. 43–48, Mar. 2012. 

[38] C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen, and M. Han, “Sulfur-tolerant redox-

reversible anode material for direct hydrocarbon solid oxide fuel cells.,” Adv. 

Mater., vol. 24, no. 11, pp. 1439–43, Mar. 2012. 

[39] L. Wu, Z. Jiang, S. Wang, and C. Xia, “(La,Sr)MnO3–(Y,Bi)2O3 composite 

cathodes for intermediate-temperature solid oxide fuel cells,” Int. J. Hydrogen 

Energy, vol. 38, no. 5, pp. 2398–2406, Feb. 2013. 

[40] B. Liu, W. Guo, F. Chen, and C. Xia, “Ga site doping and concentration variation 

effects on the conductivities of melilite-type lanthanum strontium gallate 

electrolytes,” Int. J. Hydrogen Energy, vol. 37, no. 1, pp. 961–966, Jan. 2012. 

[41] Y. Wang, L. Zhang, F. Chen, and C. Xia, “Effects of doped ceria conductivity on 

the performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode for solid oxide fuel cell,” 

Int. J. Hydrogen Energy, vol. 37, no. 10, pp. 8582–8591, May 2012. 

[42] J. W. Fergus, “Materials challenges for solid-oxide fuel cells,” Jom, vol. 59, no. 

12, pp. 56–62, 2007. 



 

89 

[43] S. G. Kang and D. S. Sholl, “First principles assessment of perovskite dopants for 

proton conductors with chemical stability and high conductivity,” RSC Adv., vol. 

3, no. 10, p. 3333, 2013. 

[44] Z. Li, B. Wei, Z. Lü, X. Zhu, X. Huang, Y. Zhang, Z. Guo, and W. Su, “Ba and Gd 

Doping Effect in (BaxSr1-x)0.95Gd0.05Co0.8Fe0.2O3-δ (x = 0.1-0.9) Cathode on 

the Phase Structure and Electrochemical Performance,” Fuel Cells, vol. 12, no. 4, 

pp. 633–641, Aug. 2012. 

[45] J. Zou, J. Park, B. Kwak, H. Yoon, and J. Chung, “Effect of Fe doping on 

PrBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells,” 

Solid State Ionics, vol. 206, pp. 112–119, Jan. 2012. 

[46] S.-F. Wang, H.-C. Lu, Y.-F. Hsu, C.-C. Huang, and C.-T. Yeh, “SrCo1−xSbxO3−δ 

cathode materials prepared by Pechini method for solid oxide fuel cell 

applications,” Ceram. Int., vol. 38, no. 7, pp. 5941–5947, Sep. 2012. 

[47] Z.-B. Yang, M.-F. Han, P. Zhu, F. Zhao, and F. Chen, 

“Ba1−xCo0.9−yFeyNb0.1O3−δ (x = 0–0.15, y = 0–0.9) as cathode materials for 

solid oxide fuel cells,” Int. J. Hydrogen Energy, vol. 36, no. 15, pp. 9162–9168, 

Jul. 2011. 

[48] H. Gu, H. Chen, L. Gao, Y. Zheng, X. Zhu, and L. Guo, “Effect of Co doping on 

the properties of Sr0.8Ce0.2MnO3−δ cathode for intermediate-temperature solid-

oxide fuel cells,” Int. J. Hydrogen Energy, vol. 33, no. 17, pp. 4681–4688, Sep. 

2008. 

[49] X. Li, H. Zhao, F. Gao, N. Chen, and N. Xu, “La and Sc co-doped SrTiO3 as novel 

anode materials for solid oxide fuel cells,” Electrochem. commun., vol. 10, no. 10, 

pp. 1567–1570, Oct. 2008. 

[50] Z. Xie, H. Zhao, Z. Du, and T. Chen, “Effects of Co Doping on the 

Electrochemical Performance of Double Perovskite Oxide Sr2MgMoO6− δ as an 

Anode Material for Solid Oxide Fuel Cells,” J. …, vol. 116, no. 17, pp. 9734–

9743, 2012. 

[51] J. S. Yoon, M. Y. Yoon, C. Kwak, H. J. Park, S. M. Lee, K. H. Lee, and H. J. 

Hwang, “Y0.08Sr0.92FexTi1−xO3−δ perovskite for solid oxide fuel cell anodes,” 

Mater. Sci. Eng. B, vol. 177, no. 2, pp. 151–156, Feb. 2012. 

[52] F. Zhao, S. Wang, L. Dixon, and F. Chen, “Novel BaCe0.7In0.2Yb0.1O3−δ proton 

conductor as electrolyte for intermediate temperature solid oxide fuel cells,” J. 

Power Sources, vol. 196, no. 18, pp. 7500–7504, Sep. 2011. 

[53] S. Suthirakun, S. C. Ammal, G. Xiao, F. Chen, H.-C. Zur Loye, and A. Heyden, 

“Density functional theory study on the electronic structure of n-and p-type doped 

SrTiO_ {3} at anodic solid oxide fuel cell conditions,” Phys. Rev. B, vol. 84, no. 

20, p. 205102, 2011. 

[54] L. H. Gao, Z. Ma, and Q. B. Fan, “First-principle studies of the electronic structure 

and reflectivity of LaTiO3 and Sr doped LaTiO3 (La1-xSrxTiO3),” J. 

Electroceramics, vol. 27, no. 3–4, pp. 114–119, Sep. 2011. 

[55]  a J. Du, S. C. Smith, X. D. Yao, and G. Q. Lu, “Hydrogen spillover mechanism on 



 

90 

a Pd-doped Mg surface as revealed by ab initio density functional calculation.,” J. 

Am. Chem. Soc., vol. 129, no. 33, pp. 10201–4, Aug. 2007. 

[56] H. Kamisaka, T. Suenaga, H. Nakamura, and K. Yamashita, “DFT-Based 

Theoretical Calculations of Nb-and W-Doped Anatase TiO2: Complex Formation 

between W Dopants and Oxygen Vacancies,” J. Phys. Chem. C, vol. 114, pp. 

12777–12783, 2010. 

[57] R. Rurali, E. Hernández, P. Godignon, J. Rebollo, and P. Ordejón, “First-

Principles Studies of N and P Dopant Interactions in SiC: Implications for Co-

Doping,” Mater. Sci. Forum, vol. 433–436, pp. 649–652, 2003. 

[58] A. Ghazali and P. L. Hugon, “Density-Functional Approach to the Metal-Insulator 

Transition in Doped Semiconductors,” Phys. Rev. Lett., vol. 41, no. 22, pp. 1569–

1572, 1978. 

[59] J. D. Baniecki, M. Ishii, H. Aso, K. Kurihara, and D. Ricinschi, “Density 

functional theory and experimental study of the electronic structure and transport 

properties of La, V, Nb, and Ta doped SrTiO3,” J. Appl. Phys., vol. 113, no. 1, p. 

013701, 2013. 

[60] F. Wang, C. Di Valentin, and G. Pacchioni, “Doping of WO3 for Photocatalytic 

Water Splitting: Hints from Density Functional Theory,” J. Phys. Chem. C, vol. 

116, pp. 8901–8909, 2012. 

[61] X. D. Zhang, M. L. Guo, Y. Y. Shen, C. L. Liu, Y. H. Xue, F. Zhu, and L. H. 

Zhang, “Electronic structure and optical transition in heavy metal doped ZnO by 

first-principle calculations,” Comput. Mater. Sci., vol. 54, pp. 75–80, Mar. 2012. 

[62] R. Han, W. Yuan, H. Yang, X. Du, Y. Yan, and H. Jin, “Possible ferromagnetism 

in Li, Na and K-doped AlN: A first-principle study,” J. Magn. Magn. Mater., vol. 

326, pp. 45–49, Jan. 2013. 

[63] H. Yoshida, “Density functional theory calculation on the effect of local structure 

of doped ceria on ionic conductivity,” Solid State Ionics, vol. 160, no. 1–2, pp. 

109–116, May 2003. 

[64] S. Liu, J. Li, Y. Zhang, X. Xu, and Z. Chen, “Density functional theory study on 

electronic structure of N-doped In2O3,” J. Mol. Struct. THEOCHEM, vol. 866, no. 

1–3, pp. 75–78, Oct. 2008. 

[65] X. Jia, W. Yang, M. Qin, and J. Li, “Structure and magnetism in Mn-doped 

zirconia: Density-functional theory studies,” J. Magn. Magn. Mater., vol. 321, no. 

15, pp. 2354–2358, Aug. 2009. 

[66] Z. Zhou, X. Gao, J. Yan, and D. Song, “Doping effects of B and N on hydrogen 

adsorption in single-walled carbon nanotubes through density functional 

calculations,” Carbon N. Y., vol. 44, no. 5, pp. 939–947, Apr. 2006. 

[67] M. Nolan and G. W. Watson, “The electronic structure of alkali doped alkaline 

earth metal oxides: Li doping of MgO studied with DFT-GGA and GGA+U,” Surf. 

Sci., vol. 586, no. 1–3, pp. 25–37, Jul. 2005. 

[68] C. Alemán, D. Curcó, and J. Casanovas, “A density functional theory study of n-

doped 3,4-ethylenedioxythiophene oligomers,” Chem. Phys. Lett., vol. 386, no. 4–



 

91 

6, pp. 408–413, Mar. 2004. 

[69] Y. Dai, S. Han, B. Huang, and D. Dai, “Study on n-type doping with phosphorous 

in diamond by means of density functional theory,” Mater. Sci. Eng. B, vol. 99, no. 

1–3, pp. 531–535, May 2003. 

[70] G. Hautier, A. Jain, and S. P. Ong, “From the computer to the laboratory: materials 

discovery and design using first-principles calculations,” J. Mater. Sci., vol. 47, 

no. 21, pp. 7317–7340, May 2012. 

[71] X. G. Guo, X. S. Chen, Y. L. Sun, L. Z. Sun, X. H. Zhou, and W. Lu, “Electronic 

band structure of Nb doped SrTiO 3 from first principles calculation,” Phys. Lett. 

A, vol. 317, no. 5, pp. 501–506, 2003. 

[72] F. Maldonado, R. Rivera, and A. Stashans, “Structure, electronic and magnetic 

properties of Ca-doped chromium oxide studied by the DFT method,” Phys. B 

Condens. Matter, vol. 407, no. 8, pp. 1262–1267, Apr. 2012. 

[73] M. Li, J.-Y. Zhang, Y. Zhang, and T.-M. Wang, “Oxygen vacancy in N-doped 

Cu2O crystals: A density functional theory study,” Chinese Phys. B, vol. 21, no. 8, 

p. 87301, 2012. 

[74] J. Zhang, E.-J. Liang, Q. Sun, and Y. Jia, “Oxygen vacancy formation and 

migration in Sr- and Mg-doped LaGaO3: a density functional theory study,” 

Chinese Phys. B, vol. 21, no. 4, p. 47201, 2012. 

[75] M. Shishkin and T. Ziegler, “The Electronic Structure and Chemical Properties of 

a Ni/CeO2 Anode in a Solid Oxide Fuel Cell: A DFT+ U Study,” J. Phys. Chem. 

C, vol. 114, pp. 21411–21416, 2010. 

[76] S. Suthirakun, S. C. Ammal, G. Xiao, F. Chen, K. Huang, H.-C. zur Loye, and A. 

Heyden, “Obtaining mixed ionic/electronic conductivity in perovskite oxides in a 

reducing environment: A computational prediction for doped SrTiO3,” Solid State 

Ionics, vol. 228, pp. 37–45, Nov. 2012. 

[77] X. Chen, S. Sun, X. Wang, F. Li, and D. Xia, “DFT Study of Polyaniline and 

Metal Composites as Nonprecious Metal Catalysts for Oxygen Reduction in Fuel 

Cells,” J. Phys. Chem. C, vol. 116, no. 43, pp. 22737–22742, Nov. 2012. 
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