
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Winter 5-24-2009

Deployed Software Analysis
Madeline M. Diep
University of Nebraska at Lincoln, mhardojo@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Diep, Madeline M., "Deployed Software Analysis" (2009). Computer Science and Engineering: Theses, Dissertations, and Student
Research. 1.
http://digitalcommons.unl.edu/computerscidiss/1

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/1?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


DEPLOYED SOFTWARE ANALYSIS

by

Madeline Maretta Diep

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Sebastian Elbaum

Lincoln, Nebraska

May, 2009



DEPLOYED SOFTWARE ANALYSIS

Madeline Maretta Diep, Ph.D.

University of Nebraska, 2009

Advisors: Sebastian Elbaum

Profiling can offer a valuable characterization of software behavior. The richer the

characterization is, the more effective the client analyses are in supporting quality

assurance activities. For today’s complex software, however, obtaining a rich charac-

terization with the input provided by in-house test suites is becoming more difficult

and expensive. Extending the profiling activity to deployed environments can mit-

igate this shortcoming by exposing more program behavior reflecting real software

usage. To make profiling of deployed software plausible, however, we need to take

into consideration that there are fundamental differences between the development

and the deployed environments. Deployed environments allow for less overhead, pro-

vide less control for engineers to perform profiling adjustments, and generate high

volumes of information that may be overwhelming and often irrelevant to the client

analyses. These characteristics make existing techniques to support in-house profiling

inadequate for deployed environments.

In this dissertation, we describe the challenges in performing deployed software

profiling and propose deployed software analysis, i.e., a set of analysis techniques that

address these challenges and enable cost-effective deployed software profiling. Specif-

ically, we have developed and implemented techniques that can be applied to each of

the following stages of deployed software profiling: (1) before the software is deployed

to determine effective placements of the instrumentation probes that enable profiling;

(2) during deployment to drive the adjustments in profiling activity; and (3) after



deployment to efficiently process field data into meaningful and beneficial informa-

tion. Each proposed analysis technique is evaluated under a variety of deployment

settings to understand their efficiency and effectiveness trade-offs, and their impact

on the quality of dynamic analyses that consume the profiled field information. The

results suggest that the proposed analysis techniques can (1) reduce the profiling

cost to satisfy a variety of overhead constraints, (2) retain significantly more of the

gain provided by the field information when compared to control techniques, and (3)

increase the precision of dynamic analyses’s results by removing noise in field traces.
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Chapter 1

Introduction

1.1 Motivation

Software profiling aims to characterize a program’s behavior by observing its execu-

tion. The information collected through profiling is used to support quality assurance

activities such as to assess the adequacy of an existing testing effort through test cov-

erage measures, to characterize software usage to estimate its reliability [65], to isolate

faults [19, 40], to automatically construct patterns of software behavior [35, 87], to

dynamically infer program’s invariants [34], and to calculate change impact sets [49].

The effectiveness of software profiling in characterizing the program’s behavior

strongly depends on the thoroughness of the inputs provided to exercise the software.

Within the development environment, the profiled software is typically exercised by

a test suite prepared by the engineers. As software grows to be more complex in its

functionality, coupled with the increasing need for software to be highly configurable

and available on multiple platforms, it has become increasingly difficult for soft-

ware engineers to design a rich test suite that covers every possible usage scenario,

under all combinations of settings and configurations, especially with the limited
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testing resources available in the development environment. To focus their testing

effort, engineers make assumptions about how the software will be used in deployed

environments, and their test suites reflect these assumptions. Inaccuracies in the

assumptions, however, may waste the testing effort and cause a degradation in the

quality and the reliability of the software, causing failures to occur in the deployed

environments even after the software is tested.

To address these limitations, researchers have proposed extending the software

profiling activity to deployed environments. Since the runtime information collected

at deployed sites reflects real user’s interactions with the program, it can be helpful

for engineers to validate their assumptions and to allocate resources for software im-

provement activities. Additionally, deployed sites may expose distinct configuration

settings and usage patterns that can yield vast and more diverse runtime information

than the in-house test suite. Integrating this information with the in-house quality

assurance activities can potentially increase the activities’ effectiveness.

Preliminary efforts to profile software after it has been deployed have been con-

ducted by development companies such as (1) Microsoft through its Window Error

Reporting (WER) tool [61] for various Microsoft products and for software and hard-

ware vendors interacting with Microsoft products through Window Quality Online

Services (Winqual) [57]; (2) Mozilla with its Quality Feedback Agent (also known as

Talkback) [66] and Breakpad for the more recent versions of Firefox and Thunderbird

[63]; and (3) Ubuntu, which utilizes an error reporting tool called Apport [86]. These

efforts mainly provide additional feedback when their software fails in the field; e.g.,

capturing heap stack snapshots when the program crashes or hangs. According to a

Microsoft developer, WER has reported more than 200 unique failures in Microsoft

Visual Studio, of which 78% were successfully fixed [50].
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Analysis activities utilizing field information are not limited to fault isolation ac-

tivities. In an effort to construct better reliability models, for example, Microsoft

employs the Customer Experience Improvement Program (CEIP) [59]. The tool,

embedded in various products, tracks richer events than those of WER, such as com-

puter shutdown, restart, crashes, or driver install failures experienced by customers

who have opted into the program. It then uses the information to calculate fail-

ure rates and failure prevalence [68]. Moreover, research prototypes have also shown

that field information can be leveraged to assist various in-house testing activities to

further direct the testing resources by evaluating the assumptions made during the

testing activities [32], to create additional test cases [32, 33], or to provide additional

data for producing a richer understanding of how changes may impact users [69].

In order to be more efficient and effective, software profiling is enabled by various

analysis activities: analyses performed on the software to be profiled and analyses on

the runtime information obtained from software profiling. For example, static anal-

yses can be applied to the software to determine what program locations are to be

profiled, and field information can be processed to identify execution traces that con-

tain information needed by the engineers. Analysis activities to support profiling of

deployed software, later referred to simply as deployed software analysis, face some of

the same challenges as analyses used to support profiling in the in-house development

environment. In these cases, existing research efforts can also be applied to deployed

software analysis. However, there are some distinct differences between the in-house

environment and the field environment that give rise to additional challenges. Below,

we describe the challenges of profiling deployed software.

1. Overhead Constraints. Software instrumentation to enable software profil-

ing incurs runtime overhead. Past studies have reported that this overhead can

reach up to 970% of the execution time [9]. In contrast, Bodden et al. cited that
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industrial companies are only willing to tolerate 5% runtime overhead from pro-

filing [9]. The overhead constraint due to instrumentation and profiling is even

more important in deployed environments than in the development environ-

ment as regular users will not be as tolerant to runtime overhead. Additionally,

overhead may also be incurred by the space required for information payloads

(information generated by profiling; e.g., execution traces, memory snapshots),

where the high volume of payloads may also translate into high storage costs.

The more instrumentation probes that are inserted and the more frequently

they are invoked, the higher the volume of the payloads. The overhead from

probe execution and the space required for the generated payloads limits the

amount of information that can be collected and prompts the need for strategic

placement and invocation of the instrumentation probes.

2. Enormous Amounts of Data to Process. The payload volume generated

by profiling can overwhelm engineers as they sift through the data to find the

relevant information. When isolating faults, for example, engineers may want

to look at all of the failed runtime information that may potentially relate to

such faults. However, as identified by Podgurski and Yang, “checking program

behavior is one of the most time-consuming parts of testing” [76]. This problem

is aggravated when it comes to deployed environments because executions in

deployed environments tend to be redundant (users tend to exercise common

functionalities of the program) and can involve long executions that include

multiple program functionalities. For example, a site for searching and viewing

crash reports submitted through Mozilla’s Breakpad [64] shows that about 1100

reports related to Firefox were received in one hour just for its top 100 errors

(categorized through their stack signatures). Such pools of data are filled with

noise in the form of irrelevant or duplicated information.
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3. Overwhelming Amounts of Data to Transfer. The transfer of information

from the deployed sites to the development company consumes computation

bandwidth and storage resources. For the deployed sites, data transfer implies

additional computation cycles to marshal and package the data, bandwidth

to perform the transfer, and a likely increase in the runtime overhead. In

one of our previous studies, we found that a 41K LOC program deployed with

instrumentation to capture the basic blocks executed, the menu’s item traversed,

the basic program inputs, and the program’s initial settings and configurations

transferred approximately 240KB data per deployed site per day [24]. For an

organization with thousands of deployed software instances trying to capture

richer data, this can clearly become a bottleneck. This suggests that there is an

important need to be efficient when transferring the field data to the company,

for example, by identifying and transferring only the unique information at each

site.

4. Shifting of Profiling Target. Feedback received from the field may shift the

engineers’ interest to a different analysis or to a different part of the software

than what was originally intended. Empirical studies have revealed that, if the

instrumentation probes remain unchanged, profiling returns new information

in an inverse exponential rate over time [17, 32]. Furthermore, profiling de-

ployed software relies on making assumptions about the users’ behaviors and

estimations about profiling cost when allocating the instrumentation probes

to the users. Unanticipated changes in the users’ behaviors may break those

assumptions, rendering existing probes useless and generating inaccurate esti-

mates of the profiling cost which in turn may cause the overhead constraints

to be violated. These issues prompt the need for analyses that allow engineers

to continuously assess the profiling process to improve its effectiveness and ef-
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ficiency in the presence of changes.

5. Privacy and Security. Profiling deployed software raises issues of privacy and

security. While these are important issues which may hinder the effectiveness

of the analysis activities due to the hesitation on the users’ part to participate

or the risk in collecting and maintaining such critical data, this topic is outside

the scope of this dissertation.

1.2 Contributions

We have developed a set of deployed software analysis techniques to address these

challenges and to increase the cost-effectiveness of profiling deployed software. Fig-

ure 1.1 provides an overview of how we have approached the development of such

techniques. We categorized the analysis techniques along three main threads: (1)

analyses that occur in the pre-deployment stage of the profiling process, (2) analyses

that occur during deployment, and (3) analyses that occur in the post-deployment

phase. This division corresponds to the three phases in the lifecycle of deployed pro-

gram profiling, which we describe in greater detail in Section 2. Approaches marked

by a “P” in Figure 1.1 were developed as part of my Master’s thesis (also part of [32])

and will be summarized in Chapter 2.

Pre-Deployment

At the pre-deployment phase, we are concerned with the challenge of strategically

placing probes to reduce the overhead incurred by profiling complex state

and path properties. Complex properties refer to properties that require the inser-

tion and invocation of probes in multiple program locations to produce meaningful

information. Profiling state properties requires instrumentation for capturing val-
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Deployed Software 
Analysis 

Pre-Deployment During Deployment Post-Deployment 

 Strategic probe 
placement  

Balance profiling cost 
and value 

Leverage 
field data 

Profile complex state 
properties through a 

search-based sampling 
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(Ch. 3) 

Profile path 
properties through 

sampling of a 
property lattice 

(Ch. 4)

Identify and 
normalize 
irrelevant 
variations  

(Ch. 5)

Generate 
test cases 

(P) 

Area

Remove trace 
noise 

Trigger 
transfers

(P) 

Challenge

Technique

Sub-Area

Figure 1.1: Summary of the research area. The proposed techniques are discussed in
parenthesized chapters. Our preliminary work is annotated with a “P”.

ues (e.g., predicates, program variables, program blocks, methods traversed) at spe-

cific program locations. Profiling path properties (also known as temporal or types-

tate properties) requires instrumentation for verifying proper sequencings of program

events (e.g., method calls on an API).

In this dissertation, we have developed two sampling-based techniques to dis-

tribute instrumentation probes across deployed sites for profiling complex properties

that can be tuned to satisfy an overhead budget. Our work improves on the previ-

ous sampling-based approaches for deployed program profiling (discussed in detail in

Section 2.1) by:

1. Comprehensively defining probe distribution as a sampling problem with multi-

ple sampling dimensions (e.g., time, probe locations, deployed sites, properties)

and sampling constraints (e.g., overhead budget, number of program variants,

number of deployed sites). Moreover, we were the first to optimize the probe dis-
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tributions by considering the relation between the distributed instrumentation

probes across program variants.

2. Targeting the overhead cost caused from profiling path properties associated

with method invocations (existing techniques for monitoring path properties

focus on reducing cost by sampling the allocated objects). Our technique was

the first to leverage the semantic structures of path properties to (1) enrich

the space of sampling, providing a pool of path properties where each property

constrains a different subset of method calls, (2) order the properties as a lattice

where a path property subsumes another path property if its set of method calls

is a superset of the other property’s method calls, and (3) drive the sampling

strategy to select path properties with varied detection capabilities by leveraging

the fact that a subsumed property always has less violation detection capability

than its subsuming property.

During Deployment

At the deployment phase, we are concerned with balancing the cost of profiling

with the return value of the profiled information by providing only the infor-

mation that may be of interest to the engineers. In my Master’s thesis, I explored the

opportunity to mitigate the cost of profiling, by reducing the number of unnecessary

field transfers through a set of triggering techniques (also in [32]).

In this dissertation, we look at another opportunity to improve the return value of

the profiled information through iterative profiling. We extend the work of profiling

path properties and develop an analysis technique that leverages feedback from the

field (e.g., observed properties) to refine the profiling process. Our technique is similar

to other techniques that remove or decrease the rate of invocations of instrumentation

probes on the program locations that have been observed sufficiently. However, our
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technique is especially intended for profiling path properties, which enables us to:

1. Leverage the ordering relations between path properties that compose the sam-

pling space (lattice) to make inferences about the value of properties that were

not directly observed. For example, if a property is violated, then any of its

subsuming properties are also violated. Similarly, if a property is observed, then

any of its subsumed properties are also observed.

2. Prune the sampling space by discarding path properties that are unlikely to be

observed due to the specific deployed site’s usage characteristics. Our technique

utilizes the site-specific feedback to determine unlikely method calls and the

corresponding path properties that constrain them to avoid instrumenting for

those properties.

Post-Deployment

At the post-deployment stage, we aim to provide support in managing and pro-

cessing field information. Previously, we have quantified the potential benefit of

leveraging field information, developed techniques to generate test cases from field

data, and evaluated the gains provided by those test cases [32].

In this dissertation we focus on the challenge of removing redundant and noisy

information within execution traces to improve the precision of the dynamic analy-

ses that consume them. We have developed techniques to analyze execution traces

for patterns of event sequences that can indicate irrelevant differences between (and

within) traces with respect to properties inferred by the client analyses. Our tech-

niques are built upon existing work in trace comparisons [13, 22, 39, 51] where we

use abstractions of program behavior to determine if two traces are the same. Our

techniques contribute to this research area by:
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1. Identifying variations in event sequences that may contribute to imprecision in

client analyses, and normalizing those variations. More concretely, our tech-

niques rely on heuristics to identify events whose orderings or repetitions do

not affect the semantics of the trace from the perspective of a client analysis.

2. Introducing the notion of trace segmentation where an execution trace is sys-

tematically decomposed into smaller units. This enables a more precise analysis,

by operating on trace segments instead of whole traces, and is independent of

the length of the traces.

For each of the proposed techniques across the three phases, we perform an empir-

ical study to evaluate their performance through real deployments, simulation, and

case studies. In these studies, we focus on the trends and the trade-offs between the

cost and the effectiveness of the analysis techniques.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 defines the three

stages in the lifecycle of profiling deployed software, categorizes the analysis activities

that may be performed at each stage, and describes their corresponding related work.

Chapters 3, 4, and 5 present the analysis techniques we have developed to target

the challenges described previously for each stage of the profiling lifecycle. In each

chapter, we first describe our motivation through an example, explain the concepts

and background of the technique, and introduce the techniques and their required

infrastructure. Then, we pose the research questions, the study setup for evaluating

the technique, and the threats to the study’s validity. Finally we present the results,

conclusion, and possible future work for each technique. Chapter 6 provides the

overall conclusions for this dissertation and suggests areas for further study.
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Chapter 2

Related Work on Deployed

Analyses

The lifecycle of the profiling process of a deployed program can be viewed as a con-

tinuous cycle consisting of three phases: (1) pre-deployment, (2) during deployment,

and (3) post-deployment. In this section, we categorize deployed program analyses

according to the phases in which they support the profiling activity, and describe

them. When relevant, we also provide a more detailed description of our preliminary

work (the boxes that are marked with “P” in Figure 1.1).

2.1 Pre-deployment Phase

The first phase is the pre-deployment phase, where engineers prepare the software

to be deployed. In this phase, the engineers define the information of interest and

insert instrumentation probes into the software to obtain it. Many infrastructures are

available for convenient program instrumentation. For example, Javassist, BCEL, and

ASM are libraries that can be utilized to instrument Java programs at the byte code
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level [16, 20, 73]; CCI is an instrumentation tool targeting Ansi C [82]; Dyninst is an

API for C++ that allows runtime modification of a program for probe insertion [14];

Pin is a tool for runtime probe insertion into Linux binary executables [75]; Misurda

et al. propose a framework that allows for insertion and removal of instrumentation

probes depending on the profiling demand [62]; and Aspect Oriented Programming

(AOP) is a programming paradigm that allows profiling tasks to be treated as a

crosscutting concern, separating the instrumentation codes to perform profiling from

ones that perform the program’s actual functionality [37].

The profiling activity may incur significant overhead due to the invocations of

the instrumentation probes. Analyses are performed in the pre-deployment phase to

determine the best placement or the rate of probe executions that allows for reduc-

tion in the overhead (runtime and payload), while still capturing the information of

interest. Existing techniques that address this problem can generally be categorized

in two groups: (1) lossless and (2) lossy techniques.

Lossless analysis techniques aim to reduce profiling overhead by identifying redun-

dant program locations and excluding them from being profiled, hence reducing the

number of probes while causing no loss in the generated information. Redundancy can

originate from two sources. First, profiling program locations that do not reveal new

or meaningful information would produce redundant information. Such redundancy

can be eliminated, for example, by identifying residual program locations, i.e., ones

that have not been exercised during in-house testing, and allocating enough probes

just to profile them [74], or by dynamically removing probes after their associated

properties are observed [17, 83]. Similarly, when profiling for violations detection in

path properties, researchers have employed sophisticated static analyses to identify

safe areas in the program where violations could not occur, eliminating the need to

place the probes in these locations [9, 11, 30]. The second source of redundancy
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comes from profiling properties that can be inferred from the observation of other

properties. Techniques have been proposed, for example, to leverage programs’ call

graphs to identify inferrable probes to profile block coverage [1], whole program path

[7], and a subset of procedural acyclic paths [3].

Lossless techniques, however, may not be sufficient to reduce the profiling overhead

to satisfy the stricter overhead constraints of deployed environments. For a more

aggressive overhead reduction, but with a potential loss in the obtained information

and the introduction of false positives in the analyses, lossy techniques based on many

forms of sampling are necessary. Sampling-based approaches select a subset of the

instrumentation probes to be inserted into a deployed program variant or a subset

of the probes to be invoked in a program run, subjecting each program execution to

a much smaller overhead. Sampling leverages the opportunities offered by deployed

environments, i.e., the availability of multiple deployed sites and program executions,

to profile only a subset of the program behavior exposed at each site or execution,

but still collectively approximate how a program is exercised overall.

The sampling techniques that have been proposed can be categorized according to

the dimension over which the sampling is performed, the type of profiled properties

(e.g., simple - require instrumentation probes that are independent of each other to

generate meaningful information such as to profile state coverage or variable values;

or complex - require instrumentation probes that are dependent to each other such as

to profile call-chains or path properties), and when sampling occurs (online - during

program execution; or offline - probes locations are determined and fixed in-house).

In Table 2.1, we summarize and categorize some of the existing sampling techniques.
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Ref Description Dimension Properties Performed
[36] Estimates the execution time spent on

each program routine by sampling the
program counter’s value at fixed inter-
vals.

Time Simple Onlinea

[4] Creates duplicates of code segments that
contain instrumentation probes and sam-
ples between instrumented and non-
instrumented code.

Profiled prop-
erties

Simple Online

[72] Breaks the profiling task into smaller
units and distributes the unit across de-
ployed instances.

Deployed sites,
Profiled tasks

Complex Offline

[52] Samples across the invocations and val-
ues of program predicates using Bernoulli
distribution and statistically ranks the
predicates on their likelihood to cause a
failure.

Profiled prop-
erties

Simple Online

[32](P) Stratifies probes according to their class
locations and samples across the strata.

Deployed sites,
Profiled prop-
erties

Simple Offline

[23]* Utilizes a search heuristic to distribute
probes across variants optimally relative
to a function that favors balancing and
packing of probes in a distribution.

Deployed sites,
Profiled prop-
erties

Complex Offline

[10] Identifies and samples across regions of
program behavior that correspond to in-
dependent instances of path property.

Deployed sites,
Profiled prop-
erties

Complex Offline

[5] Samples across object instances and pro-
file relevant method calls that are per-
formed on the sampled objects.

Profiled prop-
erties

Simple,
Complex

Online

[28]* Composes an integrated property from
a set of path properties, breaks it down
into a set of sub-properties, and leverages
various structure of the sub-properties to
sample across them.

Deployed sites,
Profiled prop-
erties

Complex Offline

aNote that, although the online sampling strategies shown in Table 2.1 inherently determine
which probes are invoked during a run (i.e., during deployment), the analysis is done during the
pre-deployment phase to determine the sampling parameters. Because of that, we categorize online
sampling techniques under pre-deployment.

Table 2.1: Summary of sampling techniques. Our proposed techniques are marked
with a *.
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Our Preliminary Work – Stratified Sampling

In my Master’s thesis I introduced a simple sampling technique, stratified sampling,

to determine the placement of instrumentation probes for profiling simple properties.

The main idea of stratified sampling is to group the population of instrumentation

probes according to a similarity criterion and then sample across the sub-populations

(groups or stratum), where each probe belongs to exactly one strata. If the strat-

ification process generates subsets of populations that are somewhat homogenous,

stratified sampling can yield a sampled set containing probes that are representative

of the probe population.

Sampling is repeatedly performed across strata in proportion to the size of the

strata’s populations to create n sets of instrumentation probes, each containing H

probes, to be inserted into n program variants. There is a trade-off between the

values of H and n. Maintaining H constant while increasing n provides more and

maybe redundant observations across variants. The technique offers the opportunity

to leverage this overlap to reduce H, reducing overhead at each deployed site by

collecting less data while compensating by profiling more deployed instances (trading

more n for less H).

We evaluated the performance of stratified sampling. To do this, we fully instru-

mented1 a text-based e-mail application for Unix called Pine and deployed it to 30

users for a period of 14 days. Prior to deployment, a test suite consisting of 288

test cases was developed where it covered 61% of the program’s functions. The over-

head of running the instrumented program variant was approximately 14%. Then we

simulated our stratified sampling technique over the obtained field information.

We measured the performance of the stratified sampling and compared it to the

1All of the instrumentation probes are inserted into the deployed program. We refer to this as
the full technique.
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full technique (all program blocks profiled). We evaluated the impact of varying the

number of program variants on the additional coverage gained and the number of

probes executed (overhead). Stratified sampling reduced the runtime overhead from

52% up to 98% when compared to full. The least aggressive stratified sampling

technique – stratified sampling to generate 2 program variants where each variant

contains 50% of the probes – provided 8% of coverage gain (1% less coverage gain

than was provided by full) with 7% runtime overhead. Our most aggressive stratified

sampling provides 3% coverage gain with only 0.3% runtime overhead. A more de-

tailed description of the empirical study, the analysis of the results, and the discussion

of the threats to validity can be found in the paper [32].

Our Proposed Techniques

In this dissertation we present two sampling techniques to improve upon initial work

for profiling complex properties. Following the characterizations used in Table 2.1,

our sampling approaches (1) perform sampling of sets of dependent probes, associated

with the complex properties, across the deployment sites; that is, we generate program

variants containing a subset of the probes that are then deployed to one or multiple

sites; (2) determine the probe locations offline which removes the need of having

additional analysis to perform the sampling at run-time; and (3) enable profiling

of complex properties that is capable of producing sound reports given that certain

conditions are met. In Chapter 3 we show one possible situation that breaks this

condition and introduce false positives in the analysis. In Chapter 4 we discuss one

necessary condition to ensure sound violation detection reports.

Two of the techniques listed in Table 2.1 [10, 72] share the same characteristics as

our approaches. We now discuss their differences compared to our techniques. The

first technique, developed by Orso et al. [72], enables profiling of complex properties
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aimed to address the overhead problem. However, it provides only a mechanism to

distribute a set of given properties across sites, not to ensure that the overhead bound

can always be reached. The second technique for profiling path properties, proposed

by Bodden et al. [10], identifies groups of object allocation sites that correspond to

independent instances of a path property which can be used to define the sampling

space. The technique reduces the number of allocated objects that need to be profiled.

However, even when a single object is profiled, the number of method calls performed

on the object can cause the profiling overhead to be excessive. Our proposed approach

mitigates this problem and it is orthogonal to the approach of Bodden et al. [10]. Our

technique generates a pool of related path properties and leverages the properties’

relations to drive the sampling selection strategy. As we briefly discuss in Section

2.2, the properties’ structures can be used during deployment to refine the selection

of path properties to profile. We present our techniques in Chapters 3 and 4.

2.2 Deployment Phase

The second phase of profiling occurs during deployment itself. In this phase, a connec-

tion between the sites in which the software is deployed and the development company

is established. Through this connection, the information related to a user’s execution

can be transferred back from the deployed site to the company. The company may

also provide feedback, bug fixes, and adjustments to the profiling activity at the de-

ployed sites. During deployment, it may also become necessary to tailor the probe

allocation, especially when the cost of profiling begins to outweigh its benefit, such

as when no new information is obtained though profiling still consumes resources.

Deployed software analyses are needed to support the profiling process during the

deployment phase in at least two ways: (1) to allow efficient transfer of field data and
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(2) to tailor the profiling process by adjusting the probe locations.

Efficient Transfer. Transferring field information from the deployed sites to the

development site must be efficient with respect to the size and frequency of transfers.

Many techniques have been proposed to apply different encodings to the execution

traces to decrease their physical size without causing a loss in the contained informa-

tion [38, 79], requiring less resources to store and transfer the runtime data. Another

set of techniques addresses this problem by transferring only the information of inter-

est to the engineers [32, 42]. Most of the commercial reporting tools, such as WER

and Breakpad, collect and send the gathered information only when a fatal failure

occurs [60, 63].

Several research efforts leverage the notion of anomalous behavior to trigger field

data transfer. Employing anomaly detection implies the existence of a baseline be-

havior that is considered nominal or normal. When targeting deployed software, the

nominal behavior can be defined by what the engineers know or understand from the

program. Departure from the nominal behavior interests engineers because it may

reveal new behavior or manifested failures in the program execution. Such triggering

techniques require the definition of three main components: (1) a model to charac-

terize a program’s behavior, (2) a set of the model’s instantiations that represents

the nominal behaviors, and (3) a tolerance to deviations from the nominal behavior.

Many different models have been proposed: event patterns, which are employed by

EDEM to collect deviating user-interface feedback [42], Probabilistic Calling Context

(PCC), a unique value calculated through a probabilistic function representing the

sequence of method calls that lead to a program location [12], and operational profile,

program invariants, and Markov models, which we have explored in our previous work

[32] and will discuss in greater detail later in this section.

Tailored Profiling. Instrumentation probes are often allocated to the deployed
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sites with prior assumptions about the users’ usage patterns. For example, test tasks

can be distributed across sites taking into consideration the sites’ settings and con-

figurations [77]. The mismatch between the assumptions and what actually happens

in the field can potentially jeopardize the effectiveness of the analysis. For example,

if probes to profile a task were allocated to a deployed site that never exercises them,

profiling efforts would be wasted. Additionally, if the profiling overhead exceeds the

tolerated overhead bound at a site, the users may stop using the program altogether.

Because of that, during the deployment phase, it may be necessary to adjust or tailor

the profiling task.

The analysis to enable tailoring of the profiling process can be initiated from two

locations. First, it can be initiated by the engineers at the development company. The

feedback from field information may shift the engineers’ interest in the program. For

example, when profiling for program coverage, after receiving a coverage vector from

a deployment site, the engineers can choose to dispose the instrumentation probes at

the rest of the sites that profile program locations that have been exercised by the

first site [17]. Second, the analysis can be initiated by the profiled program within the

deployed site itself. Programs deployed with internal models, such as a coverage vector

or a finite state automata, can initiate the changes by using the model to determine, at

any point of the execution, if an instrumentation probe should be enabled or disabled.

An online adaptive analysis to profile path properties, for example, utilizes a finite

state machine (FSA) and the program’s current state to dynamically remove the

instrumentation probes if their invocations will not change the FSA state (and to add

them back if necessary) [29]. QVM, a runtime environment to profile Java programs

through sampling, enforces profiling overhead requirements by tracking the overhead

generated by each profiled object and adjusting their sampling rates to satisfy the

overhead budget [5]. SWAT, a profiling tool for detecting memory leaks, utilizes
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an adaptive profiling scheme that adjusts the instrumentation points’ sampling rates

to be inversely proportional to their execution frequencies [40]. These efforts allow

in-house or on-the-fly adjustments to eliminate unnecessary or harmful profiling.

Our Preliminary Work – Triggering Techniques

To address the need for efficient transfer of field data, we have developed trigger-

ing techniques to initiate field data transfer when anomalous program behavior is

detected. We define a triggering approach as follows. Given a program p, a set of

properties to profile Prop, an in-house characterization of those events Prophouse,

and a tolerance to deviations from the in-house characterization ProphouseTolerance,

this technique generates a program variant vi with additional instrumentation to pro-

file events in Prop, and a detection algorithm to identify when field behavior Propfield

deviates from [Prophouse ± ProphouseTolerance]. When such deviation is detected, field

data is transferred to the development company. We consider three triggering tech-

niques corresponding to how Prophouse is characterized. We also consider whether

feedback from the transferred field data is utilized to refine the Prophouse.

The first technique uses operational profiles and triggers a transfer when there is

a departure from the program’s existing operational profile. An operational profile

consists of a set of operations and their associated probabilities of occurrences [65]

and can be used to guide the test suite generation process or the allocation of testing

resources. We implement the operation profile as a vector of probabilistic values where

we construct one vector to represent each user’s usage patterns. The ProphouseTolerance

is instantiated in terms of the minimum and maximum values, or average and standard

deviations of a set of operational profiles vectors.

The second technique triggers a transfer when an existing program invariant is

violated. Program invariants can be thought of as assertions on the program spec-
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ifications that have to hold true at any point in the program’s execution. In this

technique, we set ProphouseTolerance = 0.

The third technique uses Markov models to characterize the field behavior into

three groups: pass, fail, or unknown. One specific encoding of Markov models is in the

form of an n by n matrix, where n is the number of profiled program locations. Each

cell (i, j) in the matrix represents the probability that an observation of location i

is followed by an observation of location j. Engineers construct Markov models from

passing or failing execution traces and use them to classify other execution traces

[13]. Two models match (i.e., are successfully classified as passing or failing) if their

Hamming distance does not exceed a threshold value ProphouseTolerance (i.e., there are

less than ProphouseTolerance differences between their cell’s values). A field trace is

transferred if it is classified as a failing execution or as unknown.

We performed an empirical study using Pine to evaluate the impact of each trigger-

ing technique on the amount of coverage, fault detection, and correctness of inferred

invariants. To obtain the set of nominal behaviors, we selected a percentage of users

of the instrumented Pine and utilized their usage information along with the in-house

test suite to construct sets of operational profiles, invariants, and Markov models.

All anomaly detection techniques reduced, to different levels, the number of transfers

required by the full technique. Such reduction, however, can sacrifice the potential

gains in coverage and fault detection, or infer less accurate invariants. The triggering

technique using operation profiles offered the most aggressive reduction capabilities

(up to 98% reduction is achieved when we use half of the users as a training set)

but could lead to the detection of only 22% of the faults. Such a technique would fit

in settings where data transfers are too costly, only a quick exploration of the field

behavior is possible, or the number of deployed instances is large enough that there

is a need to filter much of the data. The invariant based detection technique offered
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a more detailed characterization of the program behavior, which results in a 46%

transfer reduction but allows the detection of 67% of the faults. Markov-based tech-

niques provided the best combination of reduction (up to 36%) and fault detection

gains (99% of faults detected), but their on-the-fly computational complexity may

not make them viable in all settings.

Our Proposed Technique

We extend our sampling approach for profiling path properties to enable the refine-

ment of the path properties being profiled. The changes in what path properties to

profile can be customized by the engineers at the development company by analyzing

the properties observed and violations detected in the field. Employing the subsum-

ing relations within our lattice of properties, we can propagate what we learn from

observing a property to other related properties. Our approach uses an intuition

similar to the work of SWAT [40], where we decrease the chance of a property being

sampled after it has been observed in an execution. Our technique differs from SWAT

in that we also consider site-specific characteristics to drive the sampling process at a

deployed site to avoid profiling path properties that cannot be observed in that site.

The technique is presented in Chapter 4.

2.3 Post-deployment phase

The last phase of profiling occurs within the development environment. In the post-

deployment phase, the information from the field is managed and analyzed to refine

in-house testing and dynamic analyses to improve software quality and future profiling

activities. The sheer amount of information obtained from the field prompts the need

for analysis techniques that can aid in managing such information. Additionally,
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field information may be redundant and contain irrelevant information. Deployed

software analysis supports profiling during the post-deployment stage by (1) providing

techniques to leverage field information and (2) identifying field data that is pertinent

to the post-deployment client analyses.

Leveraging Field Information. Existing dynamic analysis techniques that

utilize in-house runtime information can generally be adapted for use with field infor-

mation. There are, however, analyses that have been identified as being amenable to

take advantage of the richer field information, such as providing more precise impact

sets [69], extending an in-house test suite [32, 33], ranking the likelihood of program

predicates in causing failure [52], replaying program execution in an occurrence of

failure [18], assisting in debugging through the recorded thread’s call stack, process

information, kernel context, and user’s configuration [60], or constructing richer and

more accurate reliability models [59]. Field data can benefit many post-analyses by

enriching their input set.

Identifying Traces of Interest. To address the challenge of being efficient and

effective in handling high volumes of field data, several analysis techniques and tools

have been proposed to assist engineers in identifying traces that are relevant to the

client analyses that consume them. Gammatella, for example, is a toolset that pro-

vides a means to visualize field data, in addition to collecting and storing it [71].

Additionally, there are various classification techniques to group or cluster similar

traces or reports together, which is useful when engineers wish to eliminate redun-

dant traces or examine similar failing traces for isolating cause of failure. Microsoft,

for example, classifies the WER reports into buckets according to their exception

code, application name, etc., and employs an automated bug triage tool. The tool is

responsible for creating a bug report, associating it with the obtained WER reports,

and assigning the report to the appropriate developers [58, 68]. Podgurski et al. mea-
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sure the Euclidean distance between two traces using coverage, profile vectors, and

complex data flow to filter test cases that are deemed to be similar [22, 51]. Bowring

et al. propose a machine learning based mechanism to automate the classification of

field traces to filter only the field traces classified as failing or unknown [13]. Haran

et al. propose three techniques to build a model for classifying execution data and

evaluate the trade-offs between the model accuracy in classifying new field data and

the amount of execution data needed to build the model [39]. These efforts may pro-

vide increases in post-analysis efficiency by providing a smaller, but still rich, input

set.

Identifying Relevant Parts of a Trace. As we have mentioned previously,

irrelevant information can also be manifested within the traces themselves. This

irrelevant information can be considered noise as it reduces the effectiveness of the

dynamic analyses that consume the field traces. For example, when debugging a

long failing field trace, engineers are interested only in the parts of the trace that

cause the failure. The remaining parts of the trace are noise that may reduce the

effectiveness of the debugging techniques. To alleviate this problem, a set of analysis

techniques has been proposed to increase the ease of managing field information by

removing irrelevant information that can potentially cause noise in the analysis. For

example, environment accesses in the recorded trace that are not pertinent to the

failure associated with the trace can be iteratively detected and removed [18].

Our Preliminary Work – Test Case Generation

Early approaches for profiling deployed software conjectured about the benefits of

leveraging field data for improving testing and analysis activities [42, 72, 74, 77].

However, there was a lack of empirical evaluation utilizing real field data to quantify

these benefits and to explore the trade-offs between the efforts and the benefits of
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profiling in a deployed environment. This motivated us to investigate the overall

benefits by transforming real field data into test cases to be added to the in-house test

suite through different transformation techniques and then measuring the additional

coverage, fault detection, and invariants refinement obtained from these additional

test cases [32]. Specifically, we were interested in understanding the degrees of effort

involved in leveraging field data and their relation to the potential benefit to improve

testing and dynamic client analyses.

We proposed several test case generation techniques, each requiring an increasing

amount of tester’s effort. First, we define a procedure to generate test cases to reach

all the entities executed by the users, including the ones missed by the in-house test

suite. We call this hypothetical procedure Potential because it sets an upper bound

on the performance of test suites generated based on field data. Second, we consider

four automated test case generation procedures that translate each user session into

a test case. The procedures vary in the data they employ to recreate the conditions

at the user site. For example, one technique creates the test cases by parsing the

high-level action sequences recorded in the execution traces and creating test case

commands associated with these actions. Another technique improves the test cases

by considering the user’s configuration when the test cases are run.

With respect to the functional and block coverage gain, the Potential technique

generated test cases from field data that uncover 128 additional functions. The test

generation mechanism requiring the least effort to construct provided only 20% of

the function coverage gained by Potential. The automated mechanism requiring the

most effort provided 38% coverage gain. This indicates that there is a significant

improvement from capturing more information from the field and spending more

effort in leveraging it. However, there is still room for improvement in simulating field

executions within the development environment. This trend was further confirmed
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by the number of faults found by the generated test cases.

Our Proposed Technique

Our technique, defined in more detail in Chapter 5, aims to identify and normalize

sequences of program events within the traces that introduce noise due to their dif-

ferent ordering or repetitive occurrences. Because of that, our work is orthogonal to

existing efforts on trace discrimination where our approach could be applied prior to

those techniques to potentially reduce their cost and enhance their power. We note

that while Mazurkiewicz’s theory of traces develops a formal treatment of notions

of equivalence among program executions that exploits their independence, and thus

the commutativity of program operations [55], our approach is based on heuristics

that may sacrifice precision to gain performance, and its cost-effectiveness tradeoffs

must be assessed for each client analysis.

2.4 Analysis across phases

The deployed software analysis activities performed at each profiling phase are not

independent of each other. A technique applied in one phase may determine the ef-

fectiveness of the techniques in other phases. One example of this relationship lies

between the sampling techniques used in the pre-deployment phase and the various

analysis techniques in the post-deployment phase. On one hand, sampling techniques

may lead to the capture of partial field information, which may introduce noise that

causes the post-deployment analysis techniques to return imprecise results. For ex-

ample, when profiling for open and close method calls in a path property to ensure

that an open call is always followed by a close method call, sampling techniques that

fail to profile an instance of close would yield a false violation. In our preliminary
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study, we have investigated the loss of potential field data from employing specific

sampling techniques during pre-deployment [32] and field transfer triggers techniques

during software deployment [32].

On the other hand, when analyzing field data in a post-deployment phase, there

is an opportunity to refine how instrumentation probes should be allocated to future

sites based on what has been learned about the program or the deployed sites’ usage

patterns. For example, when profiling to obtain program coverage information, newly

captured field data may prompt the redistribution of instrumentation probes that can

increase the probability of profiling unobserved properties.

In this dissertation, we continue performing empirical evaluations that investi-

gate the trade-offs between the gain in the efficiency provided by our analysis tech-

niques and the effectiveness in the analyses that consume the field data. Additionally,

in Chapter 4, we show how our proposed analyses for pre-deployment and during-

deployment can be applied in a continuous and iterative profiling process.
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Chapter 3

Search-based Probe Distribution

for Profiling Complex Properties0

Existing sampling techniques to lower profiling overhead in deployed environments

take advantage of the availability of multiple deployment sites to distribute probes.

During a pre-deployment phase, the sampling techniques employ a selection strategy

to choose a representative subset of the instrumentation probes (or their invocations)

to include in a program variant. Such processes can be repeated to create multiple

program variants, where each variant contains a different subset of the instrumenta-

tion probes. This allows each variant to incur a smaller overhead while potentially

collecting different observations. Each variant can then be deployed to one or more

sites.

These sampling techniques generally assume that the population of properties

being characterized is made up of relatively simple and independent events (e.g., the

execution of a block of code). In practice, however, engineers also need to profile more

complex properties such as execution paths, exceptional control flows, or call-chains.

0Some of the work in this chapter has been previously published in [23].
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Profiling to characterize complex properties requires multiple probes to allow sound

observations. For example, when profiling for a program’s call-chain (i.e., a sequence

of method calls) that involves methods A and B, allocating an instrumentation probe to

profile the occurrence of method A to one program variant and a probe for profiling the

occurrence of method B to another variant would not yield the information required

by the engineers regarding the call-chain A and B.

To ensure that instrumentation probes required to profile a complex property are

always allocated to the same program variant, an engineer would need to group the

probes that correspond to a property they want to observe. Enumerating these sets

of dependent probes can be difficult and costly. To enumerate the method calls that

need to be profiled to observe a program’s call-chains, for example, the program’s

source code can be analyzed to construct a call graph (a graph representing calling

relationships between a program’s methods). The possible call-chains in the program

are all the sequences of method calls that can be formed by performing a walk from the

call graph’s root to any of its leaves. Such a set of call-chains is an over-approximation

of the real call-chain set, as it may contain infeasible call-chains. The imprecision in

probe sets enumeration can introduce ambiguity in a client analysis and cause reports

of false positives.

Two requirements for profiling complex properties emerge: (1) probes to profile

a complex property must be allocated together and (2) sampling techniques must be

able to deal with the difficulty in enumerating sets of dependent probes. Existing

sampling techniques for profiling complex properties have realized the need to group

the allocation of related probes, but have not fully considered the challenge in cre-

ating such groupings especially when trying to satisfy an overhead constraint [72].

Recognizing the challenges of profiling complex properties with minimal overhead

while retaining the potential benefits of field information, we develop a technique to
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Figure 3.1: Probe Distribution Strategies. Events that can be observed by each
distribution are listed inside the parenthesis.

distribute the probes based on a hill-climbing search algorithm.

3.1 A Motivating Example

We describe the intuition behind our approach for profiling properties in the context

of profiling a program’s call-chains. Given the call graph of a program, we define a

call-site sensitive call-chain as a traversal of the call graph from a root node to a leaf

node, where edges in the call graph represent method invocations and are labeled

by the caller-site. (From this point on, we refer to the call-site sensitive call-chains

simply as call-chains).

Consider the following method calls belonging to MyIE, a web browser that

we use to evaluate our approach in a later section. Let ui be a location of an

instrumentation probe in the program: u1 = CAdvTabCtrl.OnMouseMove(), u2 =

CAdvTabCtrl.OnLButtonUp(), u3 = CAdvTabCtrl.GetTabIDFromPoint(...), u4 =
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CHisTreeCtrl.CHisTreeCtrl(), u5 = CHistoryTree.AddHistory(...) ,

u6 = CHistoryTree.StrRetToStr(...) , u7 = CHistoryTree.ResolveHistory(),

and u8 CHisTreeCtrl.FindFolder(...) . Using MyIE’s call graph, we define sev-

eral of its call-chains. Specifically, the eight method calls can form at least five

distinct call-chains that we wish to profile: CC1 = 〈u1, u3〉, CC2 = 〈u2, u3〉, CC3

= 〈u4, u5, u6〉, CC4 = 〈u4, u5, u7〉, and CC5 = 〈u4, u6, u8〉. Suppose that we set the

number of probes that can be inserted, hbound, into a program variant, vi, to be five

and we want to distribute them along the eight potential locations corresponding to

MyIE’s method calls across two program variants. Figure 3.1-a to Figure 3.1-e illus-

trate several possible distribution strategies that can be categorized according to the

distribution target: Probe-based and Property-based. (Note that property actually

refers to complex property, which we will use interchangeably from now on.)

The first type of strategy, Probe-based, distributes probes across the program

variants without explicit knowledge of the profiled properties. This type of strategy

works well for properties that can be profiled with a single probe (e.g., block coverage,

method coverage). One way of distributing probes is by incrementally placing a probe

into a random location in a variant until hbound is achieved (Random-Probes). This

strategy is simple and avoids an engineer’s unintended bias to concentrate probes in

certain sections of a program variant (e.g., variants with probes in rarely executed

units will provide no information from the field). However, such a distribution can

lead to an uneven distribution of probes. For example, in Figure 3.1-a, no probes

are allocated to capture information relative to u2, but both variants allocate one

probe to profile the activity of u7. Coincidentally, such a distribution only allows the

engineer to monitor the occurrence of one call-chain, i.e., CC4.

The Random-Probes strategy may be improved on by considering the notion of

balance. Balancing attempts to generate a distribution with the same number of
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probes assigned to all program locations across variants. Balanced-Probes, in Figure

3.1-b, solves the inequities of Random-Probes by keeping track of the number of probes

allocated per location across variants, distributing probes to only the locations with

fewer probes. With this distribution, all of the instrumentation probes are allocated

to at least one program variant, but, as evident in our example, there is no guarantee

for improvement in the number of distinct call-chains that can be observed. Moreover,

the probe distribution in v2 may introduce an ambiguity with respect to the observed

call-chains. For example, suppose that we observe u4 and u5, it is not clear whether

CC3 and/or CC4 are the ones that have actually occurred.

In the presence of complex properties such as call-chains that require the instru-

mentation of multiple program locations, Probe-based strategies are likely to miss

data and even provide false data. Property-based distributions start addressing this

problem by distributing sets of probes, one set per property. The first variation of this

strategy, Random-Properties (Figure 3.1-c), randomly chooses a property and places

the probes associated with that property into a variant as long as it does not exceed

hbound. This strategy shares the same limitation as Random-Probes. For example, we

note that the resulting distribution does not allocate probes to capture information

relative to properties CC4 and CC5 but two variants allocate probes to profile the

occurrence of property CC1.

The second variation of the Property-based strategy attempts to balance the prop-

erties that receive probes across the variants. The strategy Balanced-Properties keeps

track of the properties previously included and performs an allocation considering only

the properties that were used less frequently. We can observe in Figure 3.1-d that

with this distribution we are able to profile four out of the five call-chains.

A similar strategy, called Balanced-Packed-Properties, improves on the previous

strategy by trying to pack as many properties as possible into each variant taking
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into consideration that some properties may share probes. In the example, call-chains

CC1 and CC2 share location u3, while CC3 and CC4 share locations u4 and u5, CC4

and CC5 share locations u4, and CC3 and CC5 share location of u4 and u6. By

putting the probes needed to profile these properties in the same variant, we can fit

more properties into other variants, potentially increasing our coverage in the field.

Figure 3.1-e shows that, with this strategy, we are able to profile all of the call-chains

within the specified constraints.

A similar type of strategy uses clusters of probes to over approximate what is

needed to profile a property and is called Cluster-based. This type of distribution is

particularly valuable when enumeration of the target properties is not cost effective,

feasible, or cannot be done precisely. Note that the three variations of Property-based

distribution strategies (random, balanced, packed) can also be applied to a Cluster-

based strategy since both types deal with the distribution of sets of probes, rather

than individual probes. Following the previous example, suppose that we form four

clusters : CL1 = {u1, u3, u4}, CL2 = {u2, u3}, CL3 = {u4, u5, u6, u7} and CL4 =

{u4, u6, u8}. Each cluster consists of a set of probes that is an over-approximation of

what is required to profile a property (e.g., CL1 is an over-approximation of CC1),

and may profile a subset of properties (e.g., CL3 over-approximates CC3 and CC4). In

Figure 3.1-f and 3.1-g, we show two Cluster-based strategies, Balanced-Clusters and

Balanced-Packed-Clusters, that distribute these four clusters. We can observe that

both Balanced-Clusters and Balanced-Packed-Clusters are able to distribute probes

to profile all the properties.

Allocating dependent instrumentation probes to encourage balancing and pack-

ing of probes in a program variant is not trivial. With properties of varying lengths

and overlapping probes, it would require an exhaustive enumeration of all combina-

tions of properties onto the set of program variants. Given the fact that there may
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be thousands of properties, this becomes combinatorially infeasible. We approach

this problem by leveraging a heuristic search algorithm to find an allocation that

maximizes balancing and packing of probes.

3.2 Background, Definitions, and Approach

In this section, we define a generalized probe distribution problem, applicable for

profiling simple and complex properties. Then, we show how we can view the distri-

bution problem as an optimization problem and use heuristic search to determine an

optimum probe distribution.

3.2.1 Probe Distribution as a Sampling Problem

Let us define U as the set of locations in program p that need to be instrumented to

profile properties Prop, CL ∈ Cluster as a cluster of probe locations that approxi-

mates a prop ∈ Prop, and H as the set of probes actually inserted in U .

To profile all properties Prop, an engineer can generate an instrumented variant

of p, vi, with probes placed in locations u1, u2, ..., uk of p such that H = U and

k = |H| = |U |. This approach, however, may cause an unacceptable performance

overhead. To address this problem, an engineer can specify a maximum number of

probes hbound, corresponding to an acceptable overhead budget, that can be included

in variant vi to enable the profiling activities.

Since generally hbound << |U |, data collected from all the sites when only one

variant with hbound probes is deployed will reflect only a part of the program behavior

exercised in the field. Having multiple deployed variants of the program, where each

variant contains probes that complement the other variants’ probes, can offer a better

characterization of Prop [32]. This approach will result in the generation of n program
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variants v0, v1, ..., and vn−1, where each variant contains a subset of probes Hv0, Hv1,

..., and Hvn−1, such that the size of each subset is less than or equal to hbound.

Once hbound, n, and U to profile Prop (or the cluster of probes CL to approximate

prop) are defined, the challenge is to find a heuristic to repeatedly select a subset of

instrumentation points to match hbound to distribute over n variants of p, in order to

maximize the likelihood of capturing a representative part of the program behaviors

exercised in the field. More formally, we define the probe distribution across variants

problem as follows:

Given:

U , a set of units in p, u ∈ U , and where ui identifies a potential location for probe

probei;

Prop, a set of properties of interest, prop ∈ Prop, where propj corresponds to a set

of associated program locations required to capture propk;

Cluster, a set of clusters of probes in p, CL ∈ Cluster, where CLl consists of a set of

probes that over-approximates the locations required to profile a prop ∈ Prop;

PD, the set of potential probe distributions across n program variants such that

∀variants : |Hvm| ≤ hbound, and for each vm, PD contains |Hvm| probes from

Cluster1;

f , a function from PD to a real number that, when applied to any such distribution,

yields an award value.

Problem: Find a distribution D ∈ PD such that ∀D′ ∈ PD, D 6= D′, [f(D) ≥ f(D′)].

The definition of f will depend on the information that is targeted by a post-

analysis. For example, f may operate on the number of blocks covered, the potential

1When Prop can be exactly enumerated, Prop = Cluster.
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invariants violated, the number of call-sensitive-chains, or the number of violated

path conditions.

3.2.2 Heuristic Search for Probe Allocation

Finding the distribution that generates the highest award value can be formulated as

an optimization problem [78]. Given a set of constraints, an optimization problem

minimizes or maximizes an objective function that evaluates whether an individual

solution (in this case a single distribution of probes across variants) is better or worse

than another solution. For a given probe distribution, we define an objective function

where zero represents the optimal distribution, with two conditions: (1) there are a

fixed number of variants and (2) all variants have exactly an hbound number of probes.

In this section we define a cost function for a distribution D, cost(D), that when

minimized provides the highest award value for f(D). We then describe an algorithm

for minimizing each of the cost(D)s defined.

First, consider a simple greedy algorithm to distribute individual probes for the

Balanced-Probes scenario. Recall that the Balanced-Probes strategy aims to dis-

tribute instrumentation probes such that each program location, ui, is profiled an

equal number of times across the program variants. Suppose that probeLocationCounti

is the number of times a location ui ∈ U is profiled across the n program vari-

ants. With a greedy algorithm that operates on a single probe, it is always possi-

ble to generate a distribution such that: ∀ui, uj ∈ U , 0 ≤ |probeLocationCounti −

probeLocationCountj| ≤ 1.

We can define a cost function cost(D) that penalizes a distribution that is not

balanced. Suppose that:

minProbeLocationCount = {probeLocationCounti|
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¬∃uj ∈ U : probeLocationCountj < probeLocationCounti}

and

xi =

 1 if probeLocationCounti > minProbeLocationCount + 1

0 otherwise

Then, cost(D) =
∑|U |

i=1 xi. When cost(D) = 0, the distribution is balanced.

The Balanced-Probe distribution algorithm, Algorithm 3.1, places probes in ran-

dom locations maintaining the balance at each step. The algorithm starts by creating

an empty distribution for n variants with hbound. Then, the algorithm selects a vari-

ant at a time to operate on. For the selected program variant r, the algorithm

retrieves which program locations, across all variants, are profiled the least number

of times (minProbeLocationCount). It starts by adding all locations that satisfy

this condition to AvailableLocations. Next, it randomly selects a location, u, from

AvailableLocations, assigns a probe to u, and removes u from AvailableLocations.

When AvailableLocations is empty, minProbeLocationCount is incremented and

AvailableLocations is re-initialized. This process is repeated until the probes as-

signed for variant r reach the overhead hbound.

The Balanced and Balanced-Packed distributions for instrumentation probes to

profile properties and clusters of properties present a more complicated optimization

problem. We can no longer easily calculate if a solution exists where all probes can

be distributed given hbound, number of variants, and number of locations because we

are distributing sets of probes, instead of individual probes, where sets vary in size

and may overlap in contents. To solve the distribution problem for properties and

clusters we choose a different algorithmic strategy: a heuristic search.

We use a hill climb to achieve balance and/or packing [78]. This algorithm will not

guarantee that a global minimum is found for cost(D), but may converge instead on a
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close to optimal local minimum. The hill climb algorithm, Algorithm 3.2, starts with

an initial random distribution of properties (or clusters of properties) as the current

distribution D. It then performs a series of transformations. At each transformation

stage, the algorithm selects a random variant and a random number of properties to

remove from the variant. It then randomly selects a new property to add back into the

variant until hbound is met, generating a new distribution D′. If the new distribution is

better than the current distribution D, the new distribution D′ is accepted, otherwise

it is rejected and the counter for bad moves is incremented. The algorithm terminates

when a cost of zero is obtained or when it is “frozen”- it has performed a pre-defined

number of bad consecutive moves (i.e. it has converged on a local minimum).

A key element of this algorithm is the cost calculation at each transition. There

are three factors to consider when defining cost(D): balance, packing, and whether or

not all properties (or clusters) have been distributed. We define the overall objective

function as follows: cost(D) = α× BALANCE +β×PACKING +γ×ALLUSED. The

three weights α, β, and γ are real numbers between 0 and 1 and their sums should total

to 1. The weights can be adjusted based on the importance of each factor in impacting

Algorithm 3.1 Greedy Algorithm for Probe-based Balanced Distribution
ALLOCATE PROBES(hbound, n){
D = createInitialDistribution(n)
minProbeLocationCount = 0
for (r = 0; r < n; r + +) do

AssignedProbes = 0
while AssignedProbes < hbound do

AvailableLocations = SelectLocations(minProbeLocationCount, r)
u = selectRandomLocation(AvailableLocations)
D[r] = placeProbe(u)
removeLocation(u,AvailableLocations)
AssignedProbes + +
if AvailableLocations is empty

minProbeLocationCount + +
}
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the outcome of the probe distribution. For example, to obtain a distribution where

balancing the frequency of use of each set of probes is not important, α can be set

to 0. We now define a function to calculate BALANCE, PACKING, and ALLUSED.

Note that our function definitions are influenced by the computational complexity to

precisely computing these factors.

Balance refers to the idea that each property should be profiled by approximately

the same number of program variants. The value of Balance is obtained by counting

the number of program probes that are allocated in more program variants than other

probes. In our implementation, we calculate BALANCE as follows:

BALANCE =

|Prop|∑
j

size(propj)×|TimesUsed(propj)−Average(TimesUsed(Prop))|.

The size(propj) refers to the number of probes needed to profile propj. TimesUsed(propj)

Algorithm 3.2 Hill Climb Algorithm for Probes Distribution
ALLOCATE PROBES (hbound, n) {
D = createInitialRandomDistribution(n)
badCounter = 0
while (cost(D) > 0) && (badCounter < MAXBADMOV ES) do

r = selectRandomVariant(n)
c = selectNumberofPropertiesToRemove(r)
D′ = D

removeProperties(c,r)
AssignedProbes = countProbes(r)
while AssignedProbes < hbound do {

prop = selectRandomProperty(AvailableProperties)
D′[r] = placeProbes(prop)

}
if(cost(D′) < cost(D))

D = D′

badCounter = 0
else

badCounter++
}
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measures the number of times propj has been profiled, and Average(TimesUsed(Prop))

is the average across all the properties. Properties that require a larger number of

probes have a smaller probability to be included in a distribution because it is easier

to reach or exceed hbound when they are profiled. In the equation, size(propj) serves

as a multiplier to compensate for this smaller probability.

Packing is meant to encourage a distribution where more sets of dependent probes

are allocated in a program variant by taking into consideration probes overlapping be-

tween these sets. A higher value of Packing means that the distribution has variants

that profile more properties than others. Overlapping of probes makes it compu-

tationally intensive to precisely keep track of what properties are profiled in each

program variant. For example, given three properties prop1 = {A,B,C}, prop2 = {B,C

}, and prop3 = {C,D}, allocating probes to profile prop1 and prop3 implictly includes

prop2. This illustrates how each allocation of a set of probes to a variant may require

the variant to be reassessed to determine whether there exists other properties that

are also inadvertently included. To approximate PACKING, we use the number of

overlapping probes instead. Let ovi be the number of overlapping probes in variant

i, Max(OV ) is the maximum number of overlapping probes across all variants:

Max(OV ) = {ovi|∀j < n,¬∃ovj : ovj > ovi}

and

packi =

 0 if Max(OV ) == ovi

1− 1
Max(OV )−ovi

otherwise

PACKING =
n∑
i

packi

Note that we do calculate PACKING directly from the summation of Max(OV )−ovi

because we want to take into consideration the possibility that the difference between
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each of two values is too far apart.

Finally, ALLUSED penalizes a distribution when there exists a set of probes that

are not allocated to any program variant. Suppose that:

unallocProp = {propi|propi ∈ Prop ∧ propi 6∈ D}

Then

ALLUSED =

|unallocProp|∑
i

size(unallocPropi)

We use various data structures that keep track of properties and probes as they

are inserted and removed to make the implementation more efficient. For example,

a two dimensional array, indexed by the property’s id, is used to keep track, for each

variant, whether or not the property is profiled in it. Note that, because of the probes

overlap, this information is an under-approximation of the actual property coverage

per variant. A one-dimensional array summarizes this information by storing the

count of the number of times the property is profiled in a distribution (i.e., across n

variants). This array is used to calculate BALANCE and requires O(|Prop|) time.

The same data structure is utilized to calculate ALLUSED. Another one-dimensional

array, indexed by the variant’s id, counts the number of probes allocated in each

location. The cost of calculating PACKING requires O(n) time where n is the number

of variants generated. Since n is relatively small this does not have a large impact on

program efficiency.

3.3 Empirical Study

Our overall objective is to learn how to best distribute a limited number of dependent

probes into multiple deployed program variants to capture the maximum amount of

field information. In this study, we aim to assess a series of strategies that utilize
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different probe distribution mechanisms to capture call-chains by posing the following

research question:

What is the impact of the different probe distribution strategies on the amount of

information collected from the field (i.e., call-chains) under a variety of overhead

constraints (hbound). We are interested in evaluating their effectiveness when using

Probe, Property, and Cluster strategies.

The amount of field information that we obtained allows us to perform statistical

tests on the following primary null hypotheses (assumed to be true unless statistically

rejected) corresponding to this research question in Table 3.1.

Table 3.1: Hypotheses
Null There is no significant ...
Hypotheses

H1 performance difference between probe-based (Pr), property-based
(Pp), and cluster-based techniques (Cl).

H2 performance difference between Random (R), Balanced (B), Packed
(P ), and Balanced-Packed (BP ) techniques of the same target type.

H3 difference when using different hbounds.
H4 interaction between types, techniques, and hbounds.

The following sections introduce the design and implementation of the study, the

independent variables, and the dependent variables.

3.3.1 Study Setup

Artifact Selection. We chose MyIE as our object of study. MyIE is a web browser

that wraps the core of Internet Explorer to add features such as a configurable front

end, mouse gesture capability, and URL aliasing. MyIE was particularly attractive

because its source code is available, it introduces many of the challenges of other large

systems (e.g., size, interaction with 3rd party components, complex event handling

and high configurability), it is similar but not identical to other web browsers, and
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it has a small user base that we can leverage for our study. MyIE source code is

available for download at sourceforge.net. It has approximately 41 KLOC, 64 classes,

878 methods, and 2793 blocks. For our study we consider 1197 unit probes that

correspond to the call-site sensitive call-chains.

Artifact Preparation. To collect the field data, we instrumented MyIE source

code to generate a block trace. During a user’s execution, the block trace is recorded

in a buffer. When the buffer is full, the information is compressed, packaged with

a time and site ID stamp, and sent to the in-house repository if a connection is

available, or otherwise locally stored. An in-house server is responsible for accepting

the package, parsing the information, and storing the data in the database.

Test Suite. We require a test suite to generate an initial assessment of the

overhead and bounds. To obtain such a test suite, we generated a set of tests that

exercised all the menu items in MyIE. After examining the coverage results from

the black box test cases, we added test cases targeting blocks that had not yet been

exercised. We automated a total of 243 test cases that yielded 79% of block coverage

and 90% of function coverage.

Deployments and Data Collection. We first performed a set of preliminary

deployments of MyIE within our lab to verify the correctness of the installation scripts,

data capture process, magnitude and frequency of data transfer, and the transparency

of the de-installation process. These deployments consisted of: 1) distribution through

email of the instrumented version of MyIE to three friendly users for regular use for a

period of two weeks, and 2) targeted tasks for approximately 20 high school students

(e.g., download the program through the assigned website, play with the program

for about one hour, and report any problems that they encountered). After this

initial refinement period, we proceeded to perform a full deployment and started

with the data collection. We sent e-mail to the members of our Department and
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various testing newsgroups (e.g., comp.software.testing, comp.edu, comp) inviting

them to participate in the study and pointing them to our MyIE deployment website,

as shown in Figure 3.2, for more information.

After three months, there were 114 downloads and 36 deployed sites that qual-

ified for this study. The sites generated 378 user sessions, corresponding to 60,747

packages of compressed data. We utilized the collected data to simulate each of the

combinations of distribution techniques and types. Each simulation generated n vari-

ants, where each variant consisted of a vector of a size equal to the number of probe

locations in the program. Cells in each vector were initialized with zeroes, and then

populated with at most hbound probes according to the allocation rules specified by

the simulated technique. Each probe distribution generation took, on average, three

hours on a multi-cluster system (each node is a dual Opteron250 of 2.4GHz and 4GB

of RAM).

Each vector was then utilized to mask the data collected from a specific deployed

instance, simulating what would have been collected if a true variant had been de-

ployed in that particular instance. We performed the variant generation and as-

signment process ten times to account for potential variations due to the random
 

Figure 3.2: A snapshot of MyIE deployment website.
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assignment of probes to variants, and from variants to instances. In this dissertation,

we assume that the number of variants n = 36, that is, we have as many variants as

deployed instances which constitutes an upper bound on the potential distribution.

3.3.2 Independent Variables

We manipulated the following variables. First, we defined four levels of overhead

bounds: 5%, 10%, 25%, and 50% over the non-instrumented program. To approxi-

mate the number of probes corresponding to the chosen levels of overhead, we inserted

a number of probes in random locations of the program associated with call-chains,

ran the available test suite, measured the overhead, and repeated the procedure while

adjusting the number of inserted probes until we converged on the target overhead

level. This resulted in four bound levels, hbound, as defined by the following number

of probes: 50, 75, 230, and 450.

We then implemented the three types of techniques illustrated in Section 3.1 by

varying the strategies and probe placement types:

• Probe-based distributions: Random-Probes (R Pr) and Balanced-Probes (B Pr).

• Property-based distributions: Random-Properties (R Pp), Balanced-Properties(B Pp),

Packed-Properties(P Pp) and Balanced-Packed-Properties(BP Pp).

• Cluster-based distributions: Random-Clusters (R Cl), Balanced-Clusters(B Cl),

Packed-Clusters (P Cl), and Balanced-Packed-Clusters(BP Cl).

While the Probe-based distribution techniques operate without prior information

about the properties to profile, the Property-based and the Cluster-based techniques

require some initial call-chain information. In this study, we denote the main method

of MyIE and all methods that represent event handlers as root methods of a call
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graph. We denote a method as a leaf of a call graph if there exists no call from that

method to any other methods in the program. We do not consider loops or any back

edges in the graph and we exclude calls to external libraries.

To apply the Property-based distribution techniques, we needed to generate an

initial list of properties (call-chains). We generated this statically by analyzing a call-

graph of the application with the support of the Microsoft Studio C++ 6.0 navigation

tool-set. We hand-annotated the edges with the caller-site, adding extra edges when a

caller invoked a callee from multiple locations. We validated the graphs by examina-

tion and by running an available test suite to detect any other potential edges missed

by the static analysis tool. We then generated the list of call-chains in our object of

study by performing a depth-first search traversal of the graph2. This process yielded

12355 call-chains with a maximum size of 12 method calls and an average size of three

method calls.

To apply the Cluster-based techniques, we did not need to identify apriori the

set of properties to profile. Instead, we used a heuristic to define the clusters of

probes that may contain the properties of interest. We again utilized the call-graph

to identify our clusters, where each cluster included one root note and all the methods

reachable from that root. This yielded 556 clusters with a maximum size of 80 and

an average size of 11 method calls. To accommodate distribution techniques that can

satisfy hbound = 50, for clusters of the size > 50, we split them by treating their roots’

immediate children as the new roots and repeating the process until all clusters had

the maximum size of 50. We ended up with a total of 571 clusters.

For balancing and packing the Property-based and Cluster-based distributions,

we utilized Algorithm 3.2 with the parameters presented in Table 3.2. For any given

2Although we are aware of more precise techniques for generating call-chains (we discuss in Section
3.3.4 why we did not pursue them and the impact of such a choice), it is important to recognize that
this is an inherent limitation of this type of technique.



47

Table 3.2: Hill Climb Simulation Parameters
Technique α β γ FROZEN

Balanced 0.5 0 0.5 500,000
Packed 0 0.5 0.5 500,000
Balanced-Packed 0.4 0.2 0.4 500,000

distribution, we want to ensure that each property is profiled at least once. Because

of this, the parameter γ is always set to be > 0. Balanced distribution is generated by

employing the concept of BALANCE. For this distribution, we set β to 0 (indicating

that PACKING of properties is not important). Moreover, we treat BALANCE

and ALLUSED to be equally important, setting α and γ to be 0.5. The parameters

for the Packed distribution were set following the same intuition, where we set alpha,

instead of β, to 0. Defining the parameters for the Balanced-Packed technique was

less trivial. We experimented with several combinations of values and found that

the specific values for α, β, and γ listed in Table 3.2 yield a small set of interesting

distributions to explore.

3.3.3 Dependent Variables

The dependent variable is the captured field information value, for which we have

selected two metrics. The first metric is the percentage of call-chains covered in

the field when using a given probe allocation technique with respect to the call-chain

coverage obtained by a theoretical optimal allocation technique, Opt. Given an hbound

level and the data collected from the field, Opt represents what would have been the

ideal distribution of probes across variants. Since we captured a complete block trace

during the deployment of MyIE, we were able to enumerate the call-chains that were

observed for each variant, determine the probes that a variant would need to observe

these call-chains, and approximate the Opt distribution aposteriori. For each variant

that required a number of probes which exceeds a hbound, we performed two passes
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to reduce the instrumentation probes until the hbound constraint was met. First,

we tried to remove the probes corresponding to call-chains that were observed in

multiple variants. Since we guaranteed that at least one call-chain can be observed

in one variant, no call-chain information is lost. If after this step we were still unable

to reduce the number of probes, we then removed the probes associated with the

shortest call-chain in a variant. This step may, however, cause us to lose some call-

chain observations.

The second metric aims to measure the false call-chains reported by each tech-

nique due to missing probes. A call-chain detected in the field is considered false

if (1) the call-chain is not detected by the Full technique (a technique that inserts

instrumentation in all units of the program), or (2) the call-chain is detected by the

Full technique, but it is not detected at the same location in the trace file as Full.

3.3.4 Threats to Validity

From an external validity perspective, our findings are limited by the artifact of

study, the data-collection process, and the user population. Although it is arguable

whether the selected program is representative of the population of all programs, there

are many similar browsers to MyIE, making it a credible experimental object. During

instrumentation and data collection we attempted to balance data representativeness

and power through the utilization of full data capture combined with simulation. The

deployment and download process, as perceived by the users, was identical to many

other sites offering software downloads and on-line patches. Further studies with

other programs and subjects may be necessary to confirm our findings.

From an internal validity perspective, the quality of the collected field data

is an important threat as packages of field data may get lost, corrupted, or not

sent. We controlled this threat by adding different stamps to the packages to en-
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sure their authenticity and to detect any anomalies in the collection process. Ad-

ditionally, alternative definitions of call-site call-chains (e.g., fixed-length call-chains

or component-bounded call-chains) may influence the number of anomalies detected,

or the noise and the static analysis needed to generate the initial list of call-chains

for the Property-based technique may have limited their performance. Our choice

of call-chain definition was driven by practical considerations including limitations

in the static analysis tools which cannot fully process large C++ applications that

utilize MFC components.

The lossy mechanism which we have used to construct the Opt distribution is also

a potential threat to validity, where we repeatedly remove probes corresponding to

the shortest call-chain in order to satisfy the overhead constraint. Such construction

may potentially cause us to lose more call-chain observations than if we removed

probes corresponding to a longer call-chain. We measure the performance of each

technique with respect to Opt, and under-estimating the number of call-chains that

can be observed given an optimal distribution may cause an over-estimation of their

performance. However, longer call-chains may also contain probes that are used by

other observed call-chains in a variant, increasing the complexity of the mechanism.

Moreover, since we are only interested in understanding the performance of a tech-

nique relative to other techniques, and given that we measure each technique using

the same Opt distribution, our findings still hold.

From a construct validity perspective, we have chosen a set of metrics to quan-

tify the value of the collected information that captures only a part of its potential

meaning. Our choices are a function of our interest in exploiting field data for valida-

tion purposes, and our experience and available infrastructure to analyze such data.

Also, from a construct perspective, we have approximated the hbound and have chosen

a subset of the potential levels for it that attempt to operationalize a spectrum of
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Figure 3.3: Identification of Call-Chains.

values that allow us to characterize the effects of the treatments.

From a conclusion validity perspective, we are making inferences based on a few

hundred sessions which may have limited the power to detect significant differences.

However, we were able to reject various hypotheses and discover interesting findings.

3.4 Results

We now compare the performance of probe distribution types (Probe-based, Property-

based, and Cluster-based) and techniques (random, balanced, and packed) across

different bound levels that restrict the number of probes placed in a given variant. We
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start by performing an exploratory analysis of the data through the box plots in Figure

3.3, which depict the percentage of call-chains correctly identified by the deployed

instances (compared to what is achieved by the Opt technique) when utilizing the

distribution techniques for the chosen four levels of hbound (one per subfigure).

Property-based techniques (the techniques in the shaded area of Figure 3.3) and

Cluster-based techniques (the techniques to the right of the shaded area) perform

better than Probe-based techniques (the two left most boxes of each subfigure) in

terms of identifying correct call-chains for all bound levels. This suggests that sim-

ply allocating probes without associating them with the target properties is unlikely

to provide valuable data even in the presence of hbound values as high as 50%. We

also note that Property-based techniques perform at least as well as Cluster-based

techniques when hbound = 450, but consistently worse for lower hbound values. We con-

jecture that when hbound = 450, Property-based techniques can allocate larger sets

of probes, corresponding to longer call-chains, thereby increasing the chance to ob-

serve such call-chains. Additionally, in contrast to Cluster-based techniques that can

only allocate probes corresponding to multiple properties to one variant at a time,

Property-based techniques can spread the profiling of each property across different

variants. This, in turn, may increase the chance of observing the call-chains. We also

conjecture that the poor performance of Property-based techniques for lower hbound

might be caused by the imprecision in determining individual call-chains apriori. This

confirms that Property-based techniques can be beneficial when applied to properties

that can be easily enumerated, but in general a Cluster-based approach seems to be

better, independent of the hbound constraints. An engineer can take this into consid-

eration when deciding which techniques to use.

When comparing random techniques to the search-based techniques (balanced,

packed, and balanced packed) in terms of the correctly identified call-chains we found
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Table 3.3: p-values of the ANOVA Test
Hypotheses Effect p-value

H1 Type(Probes, Properties, Clusters) 0.00
H2 Techniques Probes 0.069

(R, B, P, BP) Properties 0.00
Clusters 0.00

H3 hbound 0.00
H4 Techniques & hbound Probes 0.51

(R, B, P, BP) Properties 0.363
Clusters 0.00

that, within Property-based techniques, the improvement provided is negligible, and

within Cluster-based, balancing and packing may provide some benefits (7% over

random on average).

To formally determine whether the observed tendencies were the result of chance

and to evaluate our hypotheses, we performed an ANOVA on the dependent vari-

able (correctly identified call-chain) and the three independent variables (type of

distributions, techniques, and hbound). The analysis of techniques and hbound was per-

formed independently within each distribution type. The summary of the p-values

of the analysis is shown in Table 3.3. P-values smaller than 0.05 indicate a signifi-

cant relationship between the treatment and the dependent variable that cannot be

attributable to luck, and should be interpreted as a rejection of the null hypothesis.

The p-values in Table 3.3 show that the correct percentage of call-chains reported

by the deployed sites varies significantly across different types of distribution and

bounds (H1). The distribution techniques did not seem to matter when utilizing

Probe-based distributions, but they did within the Property-based and Cluster-based

distributions (H2). As expected and overall, the hbound level did affect the dependent

variable (H3), but it was interesting to see that its effect within the Cluster-based

distribution had a significant interaction (H4).

We further explored the interaction within the Cluster-based distribution through
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Table 3.4: Homogenous groups of Cluster-based distribution
Tech hbound Mean of Homogeneous

Detection Value Group

Random 50 22.6 A
Packed 50 28.2 A B
Balanced 50 28.6 A B
Random 75 29.6 B C
Bal-Packed 50 29.42 B C
Packed 75 33.9 B C D
Balanced 75 35.7 C D
Bal-Packed 75 36.5 D
Packed 230 44.4 E
Random 230 57.2 F
Balanced 230 62.5 F G
Bal-Packed 230 62.92 F G
Packed 450 66.27 G
Random 450 74.6 H
Bal-Packed 450 74.7 H
Balanced 450 75.8 H

a Bonferroni analysis. A Bonferroni analysis compares all pairwise combinations of

techniques and hbound to quantify when a technique really did have a significant effect

on the call-chain detection. The result of this analysis, as presented in Table 3.4,

consists of a list of all potential combinations of techniques and bounds, their mean

values, and a letter representing the group to which the combination belongs (i.e., two

combinations that are assigned different letters are significantly different). We found

that when hbound is 50 (5%) and 75 (10%) the balanced-packed techniques enabled the

detection of a significantly higher percentage of correctly identified call-chains than

random. When hbound is 230 (25%) and 450 (50%), we could not detect differences in

the performance of random, balanced, and balanced-packed techniques (their means

belong to the same group). This means that only under tight overhead bounds do

our techniques make a difference.

Figure 3.4 shows the ratio of falsely reported call-chains over the correctly iden-

tified ones across the three types of distributions. For each type of distribution, we
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Figure 3.4: Falsely Reported Call-Chains.



55

show all techniques on two extreme bound values (50 and 450). We can see different

tendencies between Probe-based, Property-based, and Cluster-based types as hbound

increases: the number of falsely reported call-chains by the Probe-based techniques,

as shown by the top box-plots, increases while the number decreases for Property-

based and Cluster-based types (middle and bottom box-plots). We conjecture that

in the case of Probe-based techniques, the more probes that are inserted, the more

they may lead to partial, and hence ambiguous, property observations in a variant.

In contrast, in Property-based and Cluster-based types, increasing hbound increases

the likelihood that longer call-chains are accommodated, thereby reducing the num-

ber of falsely reported call-chains. The false call-chains reported by Cluster-based

techniques were also contributed from partial observations due to our chosen mecha-

nism in constructing the cluster (where we ensure that each cluster’s maximum size

is 50). We can, instead, remove the maximum size constraint but with a trade-off of

potentially detecting smaller number of call-chains for hbound = 50 and hbound = 75.

We observe, however, that Packing and Balanced Packing can reduce the number of

false reports by encouraging a distribution where multiple clusters that were formed

from splitting a cluster to be allocated to the same variant.

More interesting, however, when hbound is 50, Property-based types yielded higher

number of falsely reported call-chains than the Probe-based types. We note that

the Property-based distributions are prone to reporting false call-chains under tight

hbound because there are not enough probes to discriminate between the monitored

properties and those that subsume them. Furthermore, in addition to having a large

variance (0.055), the number of falsely reported call-chains in the Property-based

techniques is ten times higher than the Cluster-based technique when hbound is 50.

This value improves significantly when hbound is 450, though it is still eight times

higher than the number falsely reported by the Cluster-based technique. Recall that
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when generating clusters of probes, we grouped related call-chains (based on their

roots) together, hence decreasing the chance of observing an incomplete call-chain

because of missing the necessary probes in a variant.

Implications. When the acceptable overhead that bounds the profiling effort is small

(less than 10% in our study), Cluster-based allocation techniques that balance the dis-

tribution across clusters of probes are the most effective in retaining the value of field

data. Additionally, Cluster-based techniques are valuable when enumerating the prop-

erties is not feasible and when performing a heuristic search is too cost-inefficient,

in which case the Cluster-Random technique can be used. When hbound is 450, the

Property-based distribution seems to perform well regardless of the technique. In gen-

eral, any distribution technique working with clusters reported significantly fewer false

call-chains than the Probe-based and Property-based distributions, which translates

into savings for the engineer investigating such chains.

3.5 Conclusions and Future Work

Profiling overhead limits what we can observe and learn from deployed software. To

address this limitation, we investigated ways to distribute probes across variants to

meet profiling overhead constraints while maximizing captured field information. We

have formalized the problem of distributing probes across variants, presented several

distribution techniques, and carefully assessed their performance.

From our findings we can draw several interesting observations. First, the choice

of probe distribution techniques is crucial when overhead bounds are set below 10%

(a reasonable practice when the objective is to remain below the threshold of user

noticeability). Second, distributions that balance probes across variants perform con-

sistently better than those that do not, independent of the overhead bounds and the
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type of distribution. Last, Cluster-based distributions tend to be less expensive to

set up than Property-based, collect more correct information than Property-based or

Probe-based, and report the least false information.

For continuing this work, we want to address the various costs involved in large-

scale profiling efforts. For example, analyzing the target program to relate probes to

properties may be expensive. We have shown that approximations through clustering

can be effective in lowering those costs but we have not yet quantified this. The cost

of the search algorithm can be computationally expensive, especially in the presence

of many target properties and profiling locations. More flexible convergence criteria

and more efficient implementations of the algorithms are necessary to make this ap-

proach scalable. We must also weigh the additional costs introduced by deploying and

maintaining multiple program variants, against the benefit of having more variants

to lower the amount of instrumentation per deployed instance. Future studies should

examine the trade-off between variants and bounds, and more generally, the costs and

benefits of large-scale profiling efforts. Finally, we are interested in studying the im-

pact of using feedback to adjust the sampling of properties, which we start exploring

in Chapter 4.
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Chapter 4

Lattice-based Sampling for

Profiling Path Properties0

Engineers are often interested in profiling a program for its conformance with user-

defined path properties (also referred to as temporal, sequencing, or typestate prop-

erties). Path properties, commonly expressed as Finite State Automata (FSA), con-

strain the orderings of program event (e.g., method call) occurrences as expected by

their programmers, usually to ensure that the program will behave correctly. For ex-

ample, a path property for objects of the type java.nio.channels.SocketChannel

may specify that a method call read() should always be preceded by a method call

connect(). When profiling path properties, instrumentation probes are inserted to

enable observation of the relevant method calls. Whenever such method calls are ob-

served, the state of the FSA is updated and checked on-the-fly to ensure that method

calls orderings have not been violated.

As mentioned in Section 2.1, existing sampling efforts have approached the chal-

lenge of reducing overhead when profiling path properties in deployed environments

0Some of the work in this chapter has been previously published in [28].
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by performing sampling across the allocated objects to select smaller number of in-

stantiated objects to profile [5, 10]. The profiling overhead from leveraging these

sampling strategies, however, still depends on the number of method calls that may

be performed on the objects. Instead, we choose to sample over the method calls con-

strained by a path property. Such sampling approaches share similar challenges as

sampling approaches for profiling complex state properties: both aim to enable profil-

ing of properties requiring multiple probes. Because of this similarity, the search-based

sampling approach introduced in Chapter 3 can be utilized to allocate instrumenta-

tion probes for sound path property profiling (provided we can precisely enumerate or

over approximate program locations that are needed to profile the path properties).

We recognize, however, additional opportunities unique to path properties that

we leveraged to develop a sampling strategy specifically targeted for profiling them:

(1) related path properties can be used to compose a larger and a more complex prop-

erty that constrains more diverse paths of method calls, (2) this integrated property

can be systematically decomposed to generate properties constraining alphabets of

symbols (i.e., sets of method calls) with varied size and cost to observe them, (3)

the decomposed properties can be ordered according to the method calls that they

constrain, as a lattice of properties where a violation of a property implies violations

of all the properties that subsume it, and (4) the properties can be associated with

weights to more effectively guide the sampling process.

Additionally, when profiling path properties, we may be faced with the need to

change the allocated probes during a deployment to adjust the profiling activity. As

discussed in Section 2.1, such change may be triggered by what we have learned

from the field information or from mismatches between the profiled events and the

observed events. Ignoring the need to make this adjustment may cause a waste in

profiling effort, providing no field information (such as in the case of mismatch) or field
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information that is less useful to the engineers. When adjusting the probe locations,

however, we have to be aware of the challenge of choosing the next relevant path

properties to profile, i.e., ones that can provide information of value to the engineers.

For example, if we have observed that a path property constraining the sequence

of methods A, B, and C was violated because of the incorrect orderings of methods

A and B, profiling a path property corresponding to methods A and B in the future

will not provide additional insights to the engineers when they are interested in only

exposing new violations, and the profiling and deployment efforts will be wasted. This

suggests the need for a technique to guide the sampling strategy in selecting future

path properties when the profiling activity is adjusted.

We address the challenges of profiling path properties more efficiently and effec-

tively, either due to profiling overhead or profiling adjustment, by (1) developing a

sampling technique that operates on a lattice of properties and their weights and (2)

proposing a mechanism to update the properties’ weights in the presence of profiling

feedback.

4.1 A Motivating Example

Consider the problem of profiling for correct usage of the java.nio.channels.Socket

Channel API. SocketChannels support networked IO in Java. The standard use-

case for an instance of a SocketChannel is to open and connect a channel, then

perform a series of read and write operations on the channel, and finally to close

the channel. There are, however, many other operations that can be performed on

SocketChannels, for example, open and connect can be performed in a single step

with a call to open(A) passing a socket address A.

Table 4.1 lists a collection of path properties extracted from the SocketChannel
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(1) open() or open(A) before
close()

[close]* | ~[close]*;(open|openA);.*

(2) open() before connect() ~[connect]* | ~[connect]*;open;.*
(3) close() after open() or

open(A)
~[open,openA]*; ((open|openA);
~[close]*; close; .*)?

(4) connect() or open(A) before
read() or write()

~[read,write]* | ~[read,write]*;(connect|openA);.*

(5) no read() or write() after
close()

~[close]*; (close; ~[read,write]*)?

(6) socket() before
shutdownIn(Out)put()

~[shutIn,shutOut]* | ~[shutIn,shutOut]*;socket;.*

(7) no read() after
shutdownInput()

~[shutIn]*; (shutIn; ~[read]*)?

(8) no write() after
shutdownOutput()

~[shutOut]*; (shutOut; ~[write]*)?

Table 4.1: SocketChannel properties as specification patterns and regular expres-
sions.

API documentation [81]. The English phrases, on the left, paraphrase text in the

class documentation using the terminology of the specification pattern system [27].

Regular expressions encoding these path properties are expressed in the Laser FSA

package’s syntax [48]. In this presentation, regular expressions are defined over names

of the public methods in the SocketChannel and Socket classes; in general, method

signatures would be used rather than the method names to treat overloading. In this

syntax, most operators, e.g., *, +, ., ?, have their standard meaning. In addition,

~[ ... ] denotes the complement of a symbol set, which is the disjunction of all

symbols not listed between the brackets, and ; denotes concatenation.

Consider an execution of an application that uses a single instance of SocketChannel

in the typical sequence 〈 open; connect; readk; writek; close 〉 where ak denotes k repe-

titions of a. The cost of profiling this application for the seven properties in Table 4.1

is (2k + 3)(co + 7cm) where co is the cost of executing the instrumentation to observe

a method call and cm is the cost of updating a property FSA. In Section 2.1, we have

mentioned several research efforts to reduce the number of (2k + 3) through static

analyses [9, 11, 30]. The cost of cm can be reduced by the use of clever data structures
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and algorithms [9, 15]. Despite these advances, there still remain path properties for

real-world programs and APIs that cannot be effectively optimized and they can incur

overhead of greater than 150% [9].

Our Lattice-based Approach

One way to reduce profiling overhead is to integrate small properties into larger and

more comprehensive properties, and to profile the integrated properties instead. Ex-

pecting developers to write large complex path property specifications is problematic,

but they can be constructed through specification mining [2] or by directly composing

sets of smaller related properties [6, 10, ?]. We take the latter approach. Figure 4.1

is the product automata constructed from the FSA for all seven original properties

in Table 4.1; we denote this property as φ. This integrated path property is less ex-

pensive to profile than the seven properties independently since it will only require

(2k + 3)(co + cm) to profile, but it still detects the same violations as the original

properties. The real value of the integrated path property, however, lies in defining a

richer space of sub-languages that can be sampled to expose further cost-effectiveness

trade-offs in runtime profiling.

For example, Figure 4.2 illustrates FSAs defined over subsets of the original al-

phabet: {open, read} (on the bottom left) and {close, read} (on the bottom right).

These sub-alphabet properties were not in the original set of seven properties, but each

can be generated by projecting φ onto the sub-alphabet1. Profiling φ{close,read} for the

sequence of SocketChannel calls given above will cost (1 + k)(co + cm). Other sub-

alphabet properties, for example for {close, open, read}, shown on top of Figure 4.2,

encode a single property that enforces elements of multiple original properties, e.g.,

1Note that the automata in Figure 4.2 are limited by the original set of constraints extracted
from informal API documentation. As such, they are incomplete and allow behavior that might
normally be regarded as an error, e.g., open; open is accepted by φ{open,read}.
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Figure 4.1: Integrated Constraint FSA–φ

properties (1), (3), and (5), yet avoids the cost of profiling all symbols in those prop-

erties, such as openA or write. Property φ{close,open,read} can be profiled at a cost of

(2 + k)(co + cm).

The penalty for reducing the profiling cost of sub-alphabet properties is a potential

loss of violation detection. For example φ{close,read} would miss violations where the

SocketChannel was not connected and φ{open,read} would miss violations where it was

not closed. Note, however, that any violation of these properties is guaranteed to be

a violation of the integrated path property φ.

Compared with the original seven properties, the space defined by φ includes 238

properties (including those illustrated in Figure 4.2) that are collectively capable of

the same violation detection as the original properties. Moreover, the sub-alphabet

properties of φ form a lattice that is ordered by the alphabet inclusion. Figure 4.3

shows a portion of the sub-lattice of φ that is rooted at φ{close,open,read,write} (the

symbols are referred to as c, o, r, and w respectively). The three FSAs in Figure

4.2 are part of this sub-lattice (they are shown shaded in Figure 4.3). Property
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Ф{open, read} Ф{close, read}

Figure 4.2: Sub-alphabet FSA

{c,o,r,w} 

{c,o,w} {c,o,r} {o,r,w} {c,r,w} 

{o,w} {c,o} {o,r} {c,w} {c,r} 

{o} {c} 
  

Figure 4.3: Property Lattice for φ{c,o,r,w}. The shaded properties are the three FSAs
in Figure 4.3.

φ{close,open,read} subsumes φ{open,read} and φ{close,read} because its alphabet is a superset

of {open, read} and {close, read}. As we can observe from Figure 4.2, although

φ{open,read} and φ{close,read} are both subsumed by φ{close,open,read}, each property has

a distinct FSA structure. Note also that properties φ{read} and φ{write} are excluded

from the lattice even though their alphabets are subsets of {close, open, read, write}

because they are trivial properties, i.e., properties that unable to reject any streams

of method calls. Profiling trivial properties is not interesting because they cannot

detect any violation. The lattice of sub-alphabet properties is more diverse in terms
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of profiling cost and violation detection ability than the original set of properties, yet

each sub-alphabet property is sound with respect to violation detection relative to

the original properties (i.e., if a sub-alphabet property reports a violation, it is also

violated by one of the original properties).

A sampling strategy can take into consideration the ordering in the lattice, for

example, to ensure that properties with differing violation detection are selected. Such

a strategy, when operating on the lattice of Figure 4.3, might first randomly choose

a property whose estimated profiling cost does not exceed a pre-defined overhead

requirement. Suppose that φ{c,o,r} is the selected property. Subsequently, the strategy

might attempt to choose a property whose alphabet includes some additional symbols.

For example, φ{c,w} might be chosen, but properties φ{c,o} or φ{o,r} would not be since

their alphabets are subsumed by {c, o, r}. Our approach might then deploy a program

variant that profiles φ{c,o,r} and φ{c,w} to a deployed site. Another program variant

that profiles a different set of path properties, following the same intuition, can be

deployed to another user site. This offers the potential to spread violation detection

across deployed sites.

Guiding the Sampling of Lattices of Properties.

When selecting which properties from the lattice to profile, it can be valuable to

guide the sampling strategy so that it favors the selection of certain properties. We

introduce a weighting scheme for a lattice to guide the sampling process where we en-

rich the lattice by assigning a weight to each its sub-alphabet properties. A sampling

strategy can then prioritize the selection of a property based on its weight. The initial

weights of the sub-alphabet properties can be defined, for example, by determining

potential infeasible method calls within a client application through its static analysis

(e.g., the weights of properties constraining unreachable method calls can be set to a
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{c,o,w} {c,o,r} {o,r,w} {c,r,w}
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{o,w} {c,o} {o,r} {c,w} {c,r}

{o} {c}

 

Figure 4.4: Weight Propagation for Lattice for φ{c,o,r,w} in the Case of Non-violated
Property. The weights of the property is represented as shades of grey. Properties
marked by an * are profiled and properties marked by a check mark were actually
observed.

very low value), or by profiling executions to estimate their frequency of occurrence

and cost of observation.

Continuing with our previous example of Figure 4.3, Figure 4.4 illustrates three

weighting schemes for a lattice of φ{c,o,r,w}. For simplicity, we represent the properties’

weights by shading the lattice elements, where the darker the nodes are, the less

weight they have. Suppose that, initially, all the properties in the lattice start with

an equal weight, colored as white, as shown on the top of Figure 4.4. By incorporating

the weighting scheme, we can modify the previous sampling strategy to first select

properties with the highest weight value. Since all the properties initially have the

same weights, the sampling strategy will initially operate like the one in the previous
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example and select φ{c,o,r} and φ{c,w} to be profiled (shown with an * in Figure 4.4).

Collected field observations can be then be used to adjust the properties’ weights.

Suppose that the feedback from a completed execution revealed that no calls to

read() were made during the execution, and φ{c,o} and φ{c,w}, instead of φ{c,o,r},

were observed (shown with a check mark in Figure 4.4). Moreover, the feedback also

revealed that these properties were not violated. Suppose also that we want to adjust

the properties’ weights such that the priority of the observed properties are lowered

(we defer discussion regarding this heuristic until Section 4.2.5).

We process the check marked properties one at a time, starting with φ{c,o} as

shown by the weighting scheme in the middle of Figure 4.4. Since φ{c,o} was ob-

served, we want to decrease the likelihood that this property will be profiled in the

future by decreasing its weight, hence the property is given a darker shade of gray.

Moreover, since φ{c,o} subsumes properties φ{c} and φ{o}, and observations on φ{c,o}

imply observations on φ{c} and φ{o}, their weights would be decreased as well. The

properties φ{c} and φ{o} are referred to as the sub-properties of φ{c,o}. On the other

hand, properties φ{c,o,w}, φ{c,o,r}, and φ{c,o,r,w} subsume the property φ{c,o}, and we

refer to them as the super-properties of φ{c,o}. Observing φ{c,o} means that we have

also observed some behavior of its super-properties; but, since only a portion of their

behavior was observed, their weights are decreased by a smaller amount than that

of the property φ{c,o}. Suppose that the weight is decremented proportional to the

number of shared alphabets between two properties. At this point, properties φ{c,o,w},

φ{c,o,r}, and φ{c,o,r,w} have a lighter shade of gray, showing that their weights are larger

than φ{c,o}’s. Moreover, property φ{c,o,w} is shaded lighter than φ{c,o,r} and φ{c,o,r,w}

since φ{c,o,w} shares fewer common symbols (method calls) to φ{c,o} than φ{c,o,r} and

φ{c,o,r,w} to φ{c,o}.

The bottom of Figure 4.4 shows the final weighting scheme after our approach has
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Figure 4.5: Weight Propagation for Lattice for φ{c,o,r,w} in the Case of Violated Prop-
erty

processed the feedback that φ{c,w} was observed but not violated. First, the weight

of φ{c,w} is reduced to reflect this observation; and now it has the same weight as

property φ{c,o}. Property φ{c} is the sub-property of φ{c,w}, and its weight is further

decreased (now has a darker shade of gray when compared to the middle graph in

Figure 4.4). The weights of its super-properties, φ{c,o,w}, φ{c,r,w} and φ{c,o,r,w}, are

also decreased. Using the current weighting scheme, since properties φ{o,r,w}, φ{o,r},

φ{o,w}, and φ{c,r} have the highest weights among the other properties in the lattice,

they are likely to be selected next by the sampling technique.

We can apply a similar heuristic in adjusting the properties’ weights when a vi-

olation in a property has occurred. Intuitively, when a property is observed to be

violated, then profiling this property provides less information with regard to the

correctness of the program. Figure 4.5 illustrates the weighting scheme of the lattice

after φ{c,o,r} was observed and violated (shown with * and x marks). The weight

of φ{c,o,r} is reduced to reflect a decrease in the interest of profiling this property.

Suppose that the weight of violated properties is decreased more than the ones of not

violated properties. This results in the color of the node associated with φ{c,o,r} being

changed to black. Similarly, the weight of its super-properties, φ{c,o,r,w}, should be

decreased by the same value since a violation to φ{c,o,r} implies that φ{c,o,r,w} was also

violated.
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When adjusting the weights of the sub-properties of φ{c,o,r}, we need to evaluate

these properties individually to determine whether the violation of φ{c,o,r} means that

they were violated as well. This requires that the violating string is available as part

of the profiling feedback. Suppose that φ{c,o,r} was violated because read() occurred

before open(). Clearly the projection of the violating string onto the alphabet {o, r}

will violate φ{o,r}, but not φ{c,o}, φ{o}, or φ{c}. In this case, the weight of property

φ{o,r} is decreased and the node associated with φ{o,r} is given the color of black.

Meanwhile the nodes of φ{c,o} or φ{o} are given a darker shade of gray to show their

weight decrease that corresponds to the properties being observed but not violated.

4.2 Background, Definitions, and Approach

We now describe the foundational concepts for generating a space of properties that

can be sampled to profile path properties during program executions. Properties in

this space are automatically generated from a given set of target properties and (1)

represent necessary conditions for the target properties to hold, (2) offer a diversity in

cost and violation detection power, and (3) are related to each other via a refinement

relation. Then, we show how we enrich the property lattice with a weighting scheme

and how we adjust the weights through profiling feedback.

4.2.1 Profiling Path Properties

Path properties are commonly expressed in terms of observations of a program’s

behavior. An observation may be defined in terms of a change in the data state of

a program, the execution of a statement or class of statements, or some combination

of the two. For simplicity, we only consider observations that correspond to method

calls. We define an observable alphabet, Σ, as a set of symbols that encode observations
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of program behavior.

For run-time profiling, the most common form of path property specification

used is a deterministic finite state automaton (FSA) [43]. An FSA is a tuple φ =

(S, Σ, δ, s0, A) where: S is a set of states, Σ is the alphabet of symbols, s0 ∈ S is

the initial state, A ⊆ S are the accepting states and δ : S × Σ → S is the state

transition function. We use ∆: S × Σ+ → S to define the composite state transi-

tion for a sequence of symbols from Σ. We define a trap state as strap ∈ S such that

¬∃σ ∈ Σ∗ : ∆(strap, σ) ∈ A. A property defines a language, or set, of words L(φ) = {σ

| σ ∈ Σ∗ ∧∆(s0, σ) ∈ A}.

FSA profiling involves instrumenting a program to detect each occurrence of an

observable, a ∈ Σ. The analysis stores the current state, sc ∈ S, which is initially

s0, and at each occurrence of an observable, it updates the state to sc = δ(sc, a) to

track the progress of the FSA in recognizing the sequence of symbols for the program

execution. The analysis detects a violation whenever sc = strap or when the program

terminates with sc 6∈ A. We say that a program execution, t, violates a property, φ,

if the sequence of observable symbols, σ, corresponding to t ends in a non-accepting

state, σ 6∈ L(φ).

Different approaches to checking program-property conformance produce qualita-

tively different results. We want analyses that are sound with respect to reporting

violations; such an analysis may fail to report a violation when it occurs, but it will

never report a violation when one does not occur. Moreover, we are interested in pro-

ducing such reports while reducing checking overhead. Our basic strategy involves

checking for violations of necessary conditions for φ; φ′ is a necessary condition for φ

if both are defined over the same alphabet and L(φ) ⊆ L(φ′).
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4.2.2 Sub-alphabet Properties and the Lattice

To significantly reduce the cost of property profiling, one must reduce the number of

observable occurrences that are processed. One way to achieve this is to consider a

subset of the property’s observables.

Definition 4.2.1 (Sub-alphabet Property) Given an FSA, φ = (S, Σ, δ, s0, A), a

sub-alphabet property is φΣ′ = (S, Σ′, δ′, s0, A), where Σ′ ⊆ Σ and

∀a ∈ Σ′ : δ′(s, a) = δ(s, a)

∀a ∈ Σ− Σ′ : δ′(s, ε) = δ(s, a)

This definition yields sub-alphabet properties that are non-deterministic automata.

For convenience, we use φΣ′ to denote any equivalent automaton, e.g., a determinized

minimized FSA accepting the same language.

Since each sub-alphabet property of φ, φΣ′ where Σ′ ⊆ Σ, is defined over a dif-

ferent language than that of φ, we cannot simply consider language containment to

determine whether they constitute necessary conditions for φ. Instead, we require

that every word over Σ, whose projection onto Σ′ is rejected by φΣ′ , must also be

rejected by φ.

Proposition 4.2.1 (Necessary Sub-alphabet Properties) Let φ be an FSA, Σ′ ⊆

Σ, and πΣ′ : Σ∗ → Σ′∗ be the projection of words over Σ onto words over Σ′, then

∀σ ∈ Σ∗ : πΣ′(σ) 6∈ L(φΣ′) ⇒ σ 6∈ L(φ)

Note that Σ∗ simply refers to any sequence of symbols defined over alphabet Σ.

By Definition 4.2.1, φ and φΣ′ are isomorphic and every transition sequence in φ has a

corresponding sequence in φΣ′ where a ∈ Σ−Σ′ is replaced by ε. After a word σ, φΣ′

can be in a set of states ∆′(s0, π
′
Σ(σ)). Since φΣ′ is non-deterministic, ∆′(s0, π

′
Σ(σ)) is
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a superset of ∆(s0, σ) in φ. Consequently, (∆′(s0, πΣ′(σ)) ∩ A) = ∅ ⇒ ∆(s0, σ) 6∈ A.

Thus any sub-alphabet property is a necessary condition for the original property.

We denote the sub-alphabet property relation φΣ′ � φΣ, for alphabets Σ′ ⊆ Σ.

The three FSAs shown in Figure 4.2 are examples of necessary sub-alphabet prop-

erties of the integrated FSA of Figure 4.1. The bottom left of Figure 4.2, for instance,

is derived by taking the projection of the sub-alphabets {open, read}; while the bot-

tom right FSA is produced by projecting the sub-alphabets {close, read}. Hence,

φ{open,read}, φ{close,read} � φ{close,open,read}

4.2.3 The Lattice of Sub-alphabet Properties

Given an FSA φ, we define a lattice of sound properties for violation reporting relative

to φ by considering each of its sub-alphabet properties. The alphabet power-set

lattice, (P(Σ),⊆), induces a lattice of sub-alphabet properties.

Definition 4.2.2 (Lattice of Sub-alphabet Properties) Given a property φ, the

lattice of sub-alphabet properties, L φ consists of the set {φΣ′|Σ′ ⊆ Σ∧L(φΣ′) 6= Σ′∗}

ordered by �. > = φ, since ∀φ′ ∈ L φ : φ′ � φ. In general, there is a set of least

elements ⊥ = {φ⊥|¬∃φ′ ∈ L φ−{φ⊥} : φ′ � φ⊥}. Meet is defined as φΣ1 u φΣ2 =

φΣ1∪Σ2.

The term L(φΣ′) 6= Σ′∗ in Definition 4.2.2 means that ∃σ ∈ Σ′∗ : σ 6∈ L(φΣ′),

and explicitly excludes trivial properties that are incapable of rejecting a word from

the lattice L φ. Trivial properties lie toward the bottom of the lattice and the least

properties are the ones with the smallest alphabets that are capable of rejecting a

word. The sub-alphabet powerset and property lattices are isomorphic (except for

trivial properties), so we use the alphabet to denote the corresponding property. In

our presentation, we use Σ to denote the alphabet of the > property of a lattice L φ.
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This lattice can be constructed using well-known algorithms on automata [43].

Since the lattice has at most 2|Σ| properties, it can be costly to construct for large al-

phabets. Determinizing non-deterministic automata may incur an exponential blowup

where given a non-deterministic automata with n states the resulting deterministic

automata can have up to 2n states. However, none of the path properties that we

have analyzed have the structure that leads to this blowup (the maximum state size of

the determinized automata we have seen is 81) and required little time to determinize

them.

Since sub-alphabet properties are constructed such that any trace that violates

a property, e.g., φ{close,read} (bottom right of Figure 4.2), is guaranteed to violate

properties with any superset of its alphabet, e.g., φ{close,open,read} (top of Figure 4.2);

a partial order on sub-alphabet properties, which can be used to define a lattice

of properties that is ordered by alphabet containment, can be induced. Intuitively,

this also gives rise to an ordering based on both violation detection effectiveness and

profiling overhead.

Property ordering in the lattice provides several sources of information that can be

exploited in sampling properties for profiling. For example, if the overhead of profiling

a property is too high, one might choose a property lower in the lattice, or if a property

detects no violations, one might choose a property higher in the lattice. In Section

4.2.5 we discuss our lattice sampling strategies which permit several optimizations to

control property sample construction cost and violation detection probability.

4.2.4 Weighting Scheme of a Property Lattice

Though orderings of the properties in a lattice can be leveraged by a sampling strategy

to select properties with varied (and complementary) violation detection capabilities,

static analysis and feedback from past executions provide other insights about the
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properties (e.g., the likelihood of a property to be violated, the feasibility of observing

symbols that were constrained by a property) which should also be considered by the

sampling process to be effective. To introduce this complementary mechanism to

guide the selection strategy, one that does not directly relate to the ordering of the

lattice, we associate the lattice with a weighting scheme.

Definition 4.2.3 (Lattice Weighting Scheme) A weighting scheme of a lattice is

w: L φ → R.

Informally, a lattice weighting scheme is a function that maps each sub-alphabet

property φΣ′ of lattice L φ to a constant real value, which we refer to as a property’s

weight, w(φΣ′). In Section 4.2.5, we show a selection strategy that leverages the

weights of the sub-alphabet properties in the lattice.

Adjusting Lattice Weighting Schemes through Feedback. Various forms of

feedback from past executions and static analysis can be utilized to adjust the weights

of the sub-alphabet properties. Our strategy mainly relies on utilizing the feedback

about property observations and violations that were revealed from prior profiling

activities. To achieve this, additional information may need to be collected, e.g.,

alphabets’ coverage vector, alphabets’ counts, violating strings, or observed sequences

of symbols.

Different types of feedback offer different trade-offs between the cost of obtaining

it and the amount of information that can be inferred from it, which in turn may affect

the quality of weight adjustments. For example, one can simply collect a coverage

vector of the profiled properties’ symbols. Such information requires only a 1-bit

vector of the size of the alphabet; however, inferring the violating strings and the

number of times a property was observed in a run from such a vector is not possible.

On another extreme, one could collect the streams of symbols that were observed in
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an execution. Such information is rich but its cost is proportional to the length of

the execution, which may become too expensive to collect.

Our approach assumes that information about property observations and viola-

tions can be obtained, regardless of whether they are estimated with the help of some

static analysis or exactly obtained from execution traces. Regardless of the specific

feedback that was collected and utilized to adjust a lattice weighting scheme, given

some observations about a property, we use the lattice structure to extend the ob-

servation of one property to other related properties in the lattice. We define two

property relationships. First, the super-properties of φ are those whose alphabets sub-

sume φ’s in L , super(φ) = {φ′ ∈ L : Σ′
φ = Σ′

φ∪Σφ)}; this is equivalent to using t to

detect super-properties. Profiling super-properties of φ may be more expensive, but

allows capturing richer interactions between events. Second, the sub-properties of φ

are those whose alphabets are subsumed by φ’s, sub(φ) = {φ′ ∈ L : Σ′
φ = Σ′

φ ∩Σφ)};

this is equivalent to using u to detect sub-properties. Profiling sub-properties of φ

may be cheaper and can provide a shorter path to violation, but is more limited in

exposing possible interactions between events that could lead to violations.

We adjust the properties’ weights based on the following intuitions. For any

observed property, the feedback may reveal whether it was violated. When a property

φ is observed and violated, profiling that property offers less additional information,

so resources should be shifted to profile other properties. On the other hand, when

a property φ is observed but not violated, our confidence that the program conforms

to φ increases, and profiling such properties may be considered less interesting. To

reflect the decrease in the interest in the profiling of a certain property, we decrease

the weight associated with the property. We use these intuitions to define our two

heuristics for modifying the weighting scheme. Note that there are other heuristics

that can be utilized to adjust the lattice weighting scheme. However, the general
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idea is that, over time, as more feedback is obtained, more parts of the lattice can be

pruned out and the space of properties which the sampling strategy operates on will

be smaller; but has the most potential for providing additional profiling information.

Definitions 4.2.4 and 4.2.5 show the general approach in reducing the weight of

the observed properties, non-violated and violated respectively, and in reducing the

weights of their related properties. The function red(...) in both definitions is used

to tune the amount of weight reduction. The function is first parameterized by the

observed property, φ. To differentiate the amount of reduction depending on whether

or not property φ is violated, it is also parameterized with a binary value, where the

value of 0 triggers the reduction function for a non-violated property and the value

of 1 triggers the reduction function for a violated property.

In the case when non-violated property, φnv, was observed, its weight is reduced by

red(φnv, 0, ...) (as defined in Def. 4.2.4). Similarly, the weights of the sub-properties

of the observed property, sub(φnv), are reduced by the same amount since all the

behavior in the sub(φnv) is also observed by φnv in accordance with the subsuming

relation of L . Adjusting the weights of super(φnv) is more subtle. Confirming the

correctness of φ means that at least some parts of φ′ ∈ super(φ) are also correct,

decreasing their likelihood to reveal a violation. We conjecture that this decrease

should occur at a rate proportional to what φ and φ′ have in common, as measured by

the function common(φ, φ′). Different definitions of common(φ, φ′) are possible. This

function can be instantiated, for example, to calculate the ratio between the shared

alphabet symbols or the common trap strings to the number of distinct symbols or

common trap strings, respectively, of φnv and φ′.

Definition 4.2.4 (Modification for NonViolated Observations) Given w(L ),
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φ ∈ L , where φ is determined to be observed but not violated.

ModifyWeightNonViolated(w(L ), φ) = ∀φ′ ∈ L ,∀φ′ ∈ L
w(φ′)− = red(φ, 0, ...) if φ′ = φ ∨ φ′ ∈ sub(φ)

w(φ′)− = (common(φ, φ′) ∗ red(φ, 0, ...) if φ′ ∈ super(φ)

As defined by Def. 4.2.5, when a violated property φv was observed, its weight

is reduced by red(φv, 1, ...). The weight of each of the super(φv) are reduced by the

same amount because a violation in φv also means a violation in super(φv) occurred

due to the lattice ordering. Each of the sub(φv), on the other hand, may or may not

be violated, as we have illustrated in Section 4.1. We differentiate the operation of

weight reduction for sub(φv) into two. If φ′ ∈ sub(φv) is also violated, its weight is

reduced by the same amount as φv, red(φv, 1, ...). Meanwhile, if φ′ ∈ sub(φv) is not

violated, its weight is reduced by red(φnv, 0, ...), signifying that φ′ is observed, but

not violated.

Definition 4.2.5 (Modification forViolated Observations) Given w(L ), φ ∈

L , where φ is determined to be observed and violated.

ModifyWeightViolated(w(L ), φ) = ∀φ′ ∈ L ,

=


w(φ′)− = red(φ, 1, ...) if φ′ = φ ∨ φ′ ∈ super(φ) ∨

(φ′ ∈ sub(φ) ∧ πΣ′(σ) 6∈ L(φ′))

w(φ′)− = red(φ, 0, ...) if φ′ ∈ sub(φ) ∧ πΣ′(σ) ∈ L(φ′)

The function red(...) can also be parameterized with additional information spe-

cific to the type of feedback that is collected. For example, one can reduce the weights
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proportional to the number of times the property was observed:

red(φ, 0, numObserv(φ)) = numObserv(φ) ∗ c

where c is a constant value. If only a coverage vector is obtained, then numObserv(φ)

can be set to 1. Another criteria that can be used to tune the reduction amount is

by how thorough a property has been observed or violated. A property can accept

and reject a set of sequences of strings of symbols, and one can enumerate all acyclic

symbol sequences that lead to an accept and/or a trap state. Then, we can instantiate:

red(φ, ., numObserv(φ), numNewString(φ, σ)) =

numObserv(φ) ∗ c ∗ numNewString(φ, σ)

numString(φ)

where numNewString(φ, σ) counts the number of words that are uncovered by a

profiling execution and numString(φ) is the total number of the previously enumer-

ated words. The granularity of this enumeration can also be made finer by taking

into consideration the object in which the calls were performed.

4.2.5 Sampling of Property Lattice

Profiling cost can be reduced through sampling. Following the general sampling

problem as defined in Section 3.2, given φ to profile, we define Prop to be L φ and

CL ∈ Cluster as a set of instrumentation points to profile method calls or symbols

of each φΣ′ ∈ L φ. Our sampling approaches to profile path properties construct a

set of properties to be profiled by iteratively adding one property at a time into this

set. The techniques leverage the cost estimation for profiling each property to ensure

that each addition will satisfy the overhead budget, and several selection functions

that exploit the structure of the lattice, the structure of individual properties, and

the weighting scheme to predict the value of each addition to the set’s potential for
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detecting violations.

Selecting Properties

Recall that any violation detected by a property implies that any property that sub-

sumes it will be able to detect that same violation. In other words, violations detected

by a subsuming property always contain the violation detected by the subsumed prop-

erties. The subsumption property inherent in the lattice can be exploited to restrict

sampling to properties with potential added value in terms of violation detection

relative to a given property set.

Definition 4.2.6 (Added Violation-detection) Given a set of properties P ⊆

L ,

addV d(P, L ) = {φ′|φ′ ∈ L ∧¬∃φ′′ ∈ P : φ′ � φ′′}

This definition defines the set of properties in lattice L that are not subsumed

by properties in P and thus have the potential to detect additional violations. In

our lattice example, as shown in Figure 4.3, if φ{c,o} ∈ P , then addV d(P, L ) = L -

{φ{c,o},φ{c},φ{o} }.

When sampling a space, one often wishes to achieve a measure of diversity in the

sampled set. One notion of diversity for properties in L φ measures the magnitude

of differences in property alphabet sizes. Intuitively, we conjecture that the more

alphabets that are “covered” by the selected properties, the more violations that we

can potentially detect. We define the alphabet difference between a sub-alphabet

property φΣ′ and a set of symbols α ⊆ Σ as alphaDiff(φΣ′ , α) = |Σ′ − α|.
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Definition 4.2.7 (Max Alphabet Difference) Given P ⊆ L and alphabet α ⊆ Σ

maxAlpha(P, α) = {φΣ′ | φΣ′ ∈ P∧

¬∃φΣ′′ ∈ P : alphaDiff(φΣ′ , α) < alphaDiff(φΣ′′ , α)}

This defines the subset of path properties that are the most different in terms of

the number of unshared symbols with alphabet α. Continuing with our example,

maxAlpha(P, α) where α = {c, o} yields {φ{c,o,r,w}, φ{o,r,w}, φ{c,r,w} }.

Another notion of diversity can be defined in terms of the rejected symbol se-

quences for a given property by enumerating the set of strings that drive acyclic

transition sequences leading from the property’s start state to its trap state.

Definition 4.2.8 (Acyclic Trap Strings) Given φΣ,

traps(φΣ) = {σ | σ ∈ Σ∗ ∧∆(s0, σ) = strap∧

¬∃i 6= j : ∆(s0, σ[i]) = ∆(s0, σ[j])

where σ[i] denotes the prefix of σ of length i.

Trap strings can be used to order a set of properties in terms of the number of

new trap strings that a given property would add relative to a given set of properties.

In our example, traps(φ{c,o}) = { 〈open〉, 〈close〉, 〈close, open〉 }. Suppose that φ{c,o}

has been selected to be profiled and we are given the choice between profiling φ{o,r}

or φ{c,r} along with φ{c,o}. The previous diversity notion, i.e., the number of unshared

alphabets, will not able to differentiate between the two properties. However, with

respect to trap strings diversity relative to φ{c,o}, φ{c,r} will be selected instead of φ{o,r}

because |traps(φ{c,r}) - traps(φ{c,o})| = | { 〈read〉 , 〈close, read〉, 〈close, read, close〉

} | = 3, while | traps(φ{o,r}) - traps(φ{c,o}) | = | { 〈read〉, 〈read, open〉 } | = 2.
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Definition 4.2.9 (Max Trap Strings) Given P, M ⊆ L ,

maxTrap(P, M) = {φ | φ ∈ P∧

¬∃φ′ ∈ P : |traps(φ)−
⋃

φm ∈ M : traps(φm)| <

|traps(φ′)−
⋃

φm ∈ M : traps(φm)|}

As shown through an example in Section 4.1, one can also define a selection

strategy that leverages weight annotations to bias the selection of a set of properties

with maximum weight.

Definition 4.2.10 (Max Weight) Given a set of properties P in the lattice, P ⊆

L ,

maxWeight(P ) = {φ′|φ′ ∈ L ∧

¬∃φ′′ ∈ P : w(φ′) < w(φ′′)}

Given a cost estimate for profiling a program relative to a set of observed program

events, cost : P(Σ) → Z, calculated, for example, by profiling a small set of runs, one

can select properties based on a given cost threshold.

Definition 4.2.11 (Cost Threshold) Given P ⊆ L , and a cost threshold value

hbound ∈ Z,

costThresh(P, hbound) = {φΣ′|φΣ′ ∈ L ∧cost(Σ′) < hbound}
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Sampling Strategies

Figure 4.1 shows the core of our cost-aware property sampling strategy. In general,

given a threshold on profiling cost (hbound), our sampling strategy operates as follows:

while the threshold has not been reached, select the “best” remaining property from S,

update the set of properties (M) and the remaining cost threshold (hbound), filter the

remaining candidate properties by removing the ones that are subsumed by profiled

properties (addV d(M, L )) or are too costly, and continue.

Algorithm 4.1 General Property Sampling Strategy
PROPERTY SAMPLE(L , hbound){
cost = 0
M = ∅
S = costThresh(L , hbound)
while (cost < hbound ∧ S 6= ∅) do

φΣ′ = select(S, . . .)
M = M ∪ {φΣ′}
cost = cost + cost(Σ′)
S = costThresh(addV d(M,L ), hbound − cost)
return M

}

Selection of properties can be performed in many ways; we explore several ap-

proaches based on the selection functions that are previously defined. Randomly

selecting a property from a given set, select(S, . . .) = rand(S), yields the basic sam-

pling strategy. Choosing properties with maximal alphabet diversity, select(S, . . .) =

rand(maxAlpha(S,
⋃

φΣ ∈ M : Σ)), yields the symbol sampling strategy. Choosing

properties with maximal trap string diversity, select(S, . . .) = rand(maxTrap(S, M)),

yields the path sampling strategy. Composition of selection functions can also be used.

For example, select(S, . . .) = rand(maxAlpha(maxWeight(S),
⋃

φΣ ∈ M : Σ))),

yields the weight-symbol sampling strategy that first favors selecting a property with

maximal weight value before selecting a property with maximal symbol coverage in

the case of ties.
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4.3 Path Property Profiling Infrastructure Sup-

port
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Figure 4.6: Path Property Profiling Infrastructure

Figure 4.6 shows the infrastructure we have built to empirically investigate our

path property profiling approach. The squares in Figure 4.6 represent the compo-

nents of the infrastructure and the circles represent the outputs of the components.

The shaded area of the figure illustrates one of many possible deployment scenarios,

where each program variant will be deployed to one user site (we discuss several other

possible deployment scenarios in Section 4.4.1). To enable the exploration of the dif-

ferent deployment scenarios in our study, we have chosen to simulate the generation of

program variants and their deployments2. In the following section, we briefly describe

the infrastructure to provide their expected output, but we defer the discussion of the

actual implementation until Section 4.4.2. In the subsequent sections, we describe

the remaining components in greater detail.

2Our choice to perform simulation instead of real deployment is driven by the cost and time
constraint for setting up and conducting the study.
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4.3.1 Lattices, Property Samples, and Program Variants

Given a set of constraints CR describing the intended behavior of program P , the

lattice builder generates the enriched property space defined by the lattice from CR, as

described in Section 4.2. We express CR as a set of regular expressions. The lattice

builder uses the Laser FSA toolkit [48] to convert CR into FSAs, construct their

product, and obtain > property. It then generates the lattice L by enumerating all

possible combinations of symbols and projecting > over each sub-alphabet properties

to create an FSA per sub-alphabet.

Provided with the property lattice constructed by the lattice builder and the lattice

weighting scheme maintained by the weight annotator (we discuss this component

in Section 4.3.2), the property sampler implements Algorithm 4.1 to select a set of

properties Φ from the lattice. An instantiation of function select(...), as described

in Section 4.2.5, and a cost threshold hbound drive the selection of Φ, where we can

generate Φ that will satisfy a variety of overhead constraints.

The variant generator then instruments the program to profile the path properties

in Φ to create a program variant p(Φ). A program variant is then executed against

an end user execution context simulating a deployed site. At the very minimum, the

instrumentation probes are responsible to check, at each occurrence of an observable

method call, the current state of the FSAs (corresponding to the selected Φ), and at

the end of execution report to the development company whether or not a program

execution has ended in a violated state. We utilize our object-sensitive FSA run-

time profiling tool [29] that is built upon the Sofya dynamic analysis framework [47]

to obtain this output. The profiling tool listens only for the occurrences of events

that are defined in Φ, where method calls performed on each object instance are

handled by a unique listener to ensure that a method call observation updates the

appropriate FSA (i.e., the one that corresponds to the object in which the method
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call was performed).

Optionally, the program variant can also provide additional feedback that includes

(1) the acyclic transition sequence during profiling and (2) the set of symbols in the

alphabets that have been executed (symbol coverage vector). We note that recording

complete violating strings is cost-prohibitive, consequently we record, during profil-

ing, a transition sequence through the automaton that is acyclic. This sequence can

be only as long as the number of states in the automaton. Updating the sequence

can be performed very efficiently by maintaining a table for each pair of states corre-

sponding to a transition and performing a lookup on the table for every new transition

received. The string of transitions can also determine how complex path properties

may be violated, where violations are distinct if they trace different acyclic transi-

tion sequences through the property automaton to their final non-accept state For

example, the lack of a close or the presence of a write after a close represent two

distinct violations of φ{c,o,r,w} of Figure 4.2.

4.3.2 Weighting Scheme

The weight annotator is responsible for creating and updating a lattice weighting

scheme by annotating each sub-alphabet property with a weight value and adjusting

them as feedback is gathered. It starts by initializing the weighting scheme. The

default weights for all the sub-alphabet properties are 0.

As indicated in Figure 4.6, the weight annotator is parameterized by three pos-

sible inputs: the lattice to be associated with the weighting scheme, L , feedback

(in the form of observed or violated φ), and a request id (along with the symbols

coverage associated with user site id). The last two parameters are optional and,

when provided, regulate the scope in which feedback may impact the calculations of

the weight annotator.
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We differentiate two feedback scopes: global and local. In global, feedback will

guide the selection of subsequent property selection. This is achieved by establishing

one global weighting scheme, in which any prior information will be used to adjust

the properties’ weights. When feedback about an observed property is provided, the

weight annotator will recalculate the weighting scheme employing the functions in

Def. 4.2.4 and Def. 4.2.5. In this dissertation, we instantiated red(...) functions

as follows: red(φ, 0) = 1 and red(φ, 1) = ∞, indicating our emphasis in pruning

properties that have been violated.

We conjectured that there is a potential for improvement by considering a sepa-

rate and localized weighting scheme for each execution context where the properties’

weights are adjusted based on the user site’s specific feedback. This localized feedback

is useful to further guide the sampling selection to reflect the characteristics of its par-

ticular execution context by pruning properties that have less chance of being observed

based on its execution history. For example, when a program variant is deployed at a

site that does not utilize certain symbols, the local feedback may then further reduce

the chance of properties related to these observables from being sampled in the future.

We use a coverage vector to record the set of symbols encountered on the program

execution associated with an execution context id. This is relatively inexpensive to

capture and its size is proportional to the size of the lattice alphabets. Coverage

vector allows the calculation of the observable properties for a run to estimate the

unobservable properties for a deployment site id, Φunobs(id) = {φΣ′ : Σ′ ∩Σobs(id) = ∅},

where Σobs(id) is the set of symbols present in the coverage vector.

When a request id is supplied to the weight annotator, the localized strategy is ini-

tiated and the property sampler will be performed on the localized weighting scheme.

The weight annotator will first check whether there exists a coverage vector associ-

ated with such an id in the profiling feedback database. If such a coverage vector
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exists, then the global weighting scheme is copied to create a local weighting scheme.

Then, the localized weighting scheme is modified by pruning each Φunobs(id) from L ,

which is done by reducing their weights by ∞. If no coverage vector is found, the

weight annotator terminates. Since we always perform the local weight adjustment

on a copy of the global weighting scheme, the exclusion of Φunobs(id) only affects the

current sampling strategy. For future program variant generations, when a different

execution history gives rise to Φ′
unobs(id) 6= Φunobs(id), then the newly observable prop-

erties, though previously unobservable, will not be pruned in L and will be available

for sampling to profile a deployed site id.

4.4 Empirical Study

In this section, we assess the performance of our approach through the following

research questions:

• How rich is the space of properties defined by the lattice (RQ1)? We would like

to explore the degree to which the lattice enriches a space of original properties

for a sampling strategy to operate on, specifically with respect to how property

violation detection varies with alphabet size.

• How effective are the various sampling strategies in detecting violations while

operating under a variety of overhead constraints? We would like to understand

their effectiveness under the different dimensions that define a deployment sce-

nario: the number of program variants generated (RQ2), the number of de-

ployments (RQ3), and whether or not resampling is performed and feedback

is used (RQ4).

In the next sections, we describe the deployment scenarios we are evaluating, the

study setup, the dependent and independent variables, and the threats of validity of
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the study.

4.4.1 Deployment Scenarios

To answer our research questions, we require a deployment scenario for exploring

RQ2, RQ3, and RQ4. There are at least two dimensions that we can consider when

defining a deployment scenario: (1) the number of program variants generated and,

(2) the number of deployed sites (we refer to them simply as deployments). Each

program variant P (Φ) is responsible for profiling a set of properties Φ that is selected

according to some sampling strategy. Then, each program variant is deployed to

one or multiple execution contexts EC. Figure 4.7 shows five possible deployment

scenarios defined by these two dimensions.

Figures 4.7-a and 4.7-b illustrate the deployment scenarios where only one program

variant is generated. In these scenarios, only the sub-alphabet properties contained

in Φi can be potentially observed by P (Φi). In Figure 4.7-a, this program variant

is deployed to only one deployed site (EC1). Figure 4.7-b shows a program variant

deployed to multiple sites, where it may be exposed to a richer set of execution

behaviors. In RQ2, we investigate the performance of several sampling strategies

when we vary the number of deployments while fixing the number of variants; that

is, we evaluate the approach’s performances while moving from the strategy in Figure

4.7-a to the one in Figure 4.7-b.

Figure 4.7-c, 4.7-d, and 4.7-e depict deployment scenarios with multiple program

variants and multiple deployments. In Figure 4.7-c, each program variant is deployed

to a distinct execution context. We conjecture that with multiple program variants

across deployments, we may profile more path properties than if we employ only one

program variant. In RQ3, we compare the performance of the sampling strategies

across different number of variants and a fixed number of deployments. We are
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Figure 4.7: Deployment Scenarios
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interested in understanding the impact of different sampling strategies in selecting

sets of properties to be profiled across multiple program variants.

As the profiling activity is progressing, at certain points, new program variants

can be generated in an attempt to refine the profiling process. For example, after data

is received from a deployed site, a different program variant that profiles a new set of

properties may be generated and redeployed (mimicking the patching and feedback

processes that are commonly in place to support applications as they evolve). Figure

4.7-d and 4.7-e show such deployment scenarios with multiple variants generated

across time (in addition to across deployments). In these scenarios, we show two

ways for resampling properties for new variants.

In Figure 4.7-d, new variants are generated by randomly re-sampling the proper-

ties to profile. This scenario reflects a sampling strategy where a new set of properties

are profiled at predefined intervals. For example, consider a sampling over time (tem-

poral) strategy, where each set of instrumentation probes to profile a property might

be associated with a fixed sampling rate. After every fixed number of executions,

the sampling strategy selects, based on the sampling rate, which instances of the

probes would be invoked. In this scenario, different properties may be executed at

fixed intervals, “generating” a new program variant that profiles different sets of path

properties. The selection of the new set of properties is random and is generally

independent of the previous profiling cycle. In Figure 4.7-e, we consider an adap-

tive profiling scenario where re-sampling of the properties leverages information from

previously profiled data. We show a sampling strategy that uses a weighting scheme

that is continuously updated based on property observations and violations to drive

the sampling process.

For RQ4, we compare the profiling scenarios of multiple variants across deploy-

ments (Figure 4.7-c) with multiple variants across time and deployments (Figure
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4.7-d and 4.7-e) to gauge the benefit of continually refining the selection of profiled

properties. Moreover, we want to evaluate the performance of techniques that lever-

age feedback (strategy in Figure 4.7-e) when compared to ones that do not leverage

feedback (Figure 4.7-d).

4.4.2 Study Setup

To answer the research questions we required a representative artifact with a set of

path properties that we could profile, clients that may use the artifact in ways that

violate its defined properties, and a simulation environment for each of the profiling

scenarios. We outline our study setup in Figure 4.8.
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Figure 4.8: Overview of Study Setup for Path Property Profiling

Artifact. We selected Hibernate, an open source Java library that provides support

for object persistence [41], as our artifact. Its core library, Hibernate Core 3.2, consists

of 78 Java KLoC, is downloaded thousands of times a day, and is used by hundreds
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(1) sf.openSession() or
sf.getCurrentSession()
before anything

(openSession|getCurrentSession);.*

(2) sf.openSession() before
s.close()

~[close]* | ~[close]*;openSession;.*

(3) s.close() or s.disconnect()
after sf.openSession()

~[openSession]*;(openSession;
~[close,disconnect]*; (close|disconnect);.*)?

(4) s.close() or s.disconnect()
or tx.commit() after
sf.getCurrentSession()

~[getCurrentSession]*; (getCurrentSession;
~[close,disconnect,commit]*;
(close|disconnect|commit);.*)?

(5) s.beginTransaction() before
tx.commit()

~[commit]* | ~[commit]*;beginTransaction;.*

(6) tx.commit() after
s.beginTransaction

~[beginTransaction]*;(beginTransaction;
~[commit]*;commit;.*)?

(7) tx.beginTransaction() or
tx.getTransaction before any
object related operations (e.g.,
s.get(A))

~[refresh,save,saveOrUpdate,get,delete,lock,load,
clear,update]*|~[refresh,save,saveOrUpdate,
get,delete,lock,load,clear,update]*;
(beginTransaction|getTransaction);.*

(8) s.load(A) or s.get(A) be-
fore any object changing op-
erations (e.g., s.update(A) or
s.delete(A))

~[save,saveOrUpdate,delete,lock,update,refresh]* |
~[save,saveOrUpdate,delete,lock,update,refresh]*;
(get|load);.*

(9) No object changing opera-
tions (e.g., s.update(A)) after
s.delete(A) unless preceded
by s.get(A) or s.load(A)

~[delete]*; (delete; ~[refresh,get,load,save,lock,
saveOrUpdate,update]*;(get|load);.*)?

Table 4.2: Hibernate properties as specification patterns and regular expressions.

of other open source projects (including the Apache web server).

We derived path properties for Hibernate following the guidelines described by

Dwyer et al., [27]. We examined the Hibernate API and its documentation, identi-

fied recommended usage patterns (and anti-patterns) that could be translated into

constraints, and then translated those constraints into properties represented by reg-

ular expressions. We focused on the usage of transactions and object processing API

calls while considering the three possible states of objects in Hibernate (transient,

persistent, and detached) [8, 41]. The resulting property set has nine path properties

that include 17 Hibernate API calls appearing in the Session, SessionFactory, and

Transaction classes. Given SessionFactory sf, Session s, and Transaction tx.

These properties are shown in Table 4.2.
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We encoded Hibernate’s nine original path properties as regular expressions (as

in Table 4.1). Note that this set of original path properties corresponds to CR in

our infrastructure (as shown in Figure 4.6). We feed CR to the lattice builder of

our infrastructure to generate >. The resulting > has 81 states, where 21 of the

states are accepting states. The tools enumerate all possible combinations of symbols

(API calls), resulting in the generation of 131,071 sub-alphabets, and project > over

set of each sub-alphabet properties to create an FSA per sub-alphabet. Finally, the

trivial FSAs are discarded resulting in an L φ with 106,340 non-trivial sub-alphabet

properties. These processes correspond to steps one and two (shown as diamond

boxes) in Figure 4.8. The process to generate the lattice took approximately two

days on a multi-cluster system (each node is a dual Opteron250 of 2.4GHz and 4GB

or RAM). Although this cost is not trivial, we could, however, lower it by employing

on-demand construction of sampled properties. We discuss the alternative mechanism

for constructing the lattice in Section 4.4.4.

Clients. We illustrate the process for preparing the client applications in step 3 of

Figure 4.8. First, we selected four open source applications as clients (p1 to p4 in

Figure 4.8) that utilize Hibernate: 1) an online auction application (AS) that comes

with the Hibernate package to illustrate its usage [8], 2) a WebStore (WS) online

shopping application [85], 3) NoteCat (NC) a web based application to manage Wiki

notes [67], and 4) iTracker (TR) a project planning and issue tracking application

[84]. The average client size is 4K LOC. To drive the execution of the clients, we

use an enhanced version of their test suites. We added tests to the original suites to

exercise the clients more extensively so that, in turn, they would execute their calls

to the Hibernate API, allowing us to check for path property violations.

To simulate usage violations of the Hibernate path properties, we generated muta-

tions of the client applications exhaustively using all the mutation operators available
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in the muJava [54] and Jester [45] tools. We constrained the mutation generation to

the client classes that are more closely related to the Hibernate operations. We then

ran the test suite on each mutated version of each client and collected a trace of the

calls made to the Hibernate API. We retained the mutants that generated a unique

trace that violated >. As a result of this process, we retained 17 mutants for AS, 14

for WS, 10 for NC, and 9 for TR (the mutants shown as M1 to M4 in Figure 4.8

where Mi corresponds to a set of mutants for client i).

We computed the profiling overhead by comparing the time required to execute a

client’s test suite on the original Hibernate versus the instrumented Hibernate that

enables property violation detection. The test suite attributes and the overhead for

each application when running the complete test suite are presented in Table 4.3.

Column 3 shows the percentage of methods covered by the test suites; columns 4 and

5 give the number of API calls observed during the execution and the time to complete

executing the test cases (averaged between five runs and measured in seconds); and

columns 6 and 7 report the profiling overhead with respect to the runtime execution

for the nine original property and the > properties, respectively.

Simulation of the deployment scenarios. We now define the general setup for

the five deployment scenarios of Figure 4.7. To simulate a deployment site, we first

define a site profile that specifies how Hibernate is exercised at the site, and then run

Hibernate while collecting the trace of method calls generated at the site. Steps five

to seven in Figure 4.8 illustrate this process.

Client # of TC Coverage API Calls Runtime (in sec) Overhead
Orig >

AS 60 67% 10723 751 28% 19%
WS 85 77% 13795 1073 33% 20%
NC 75 71% 9225 912 23% 15%
TR 40 61% 2938 474 19% 14%

Table 4.3: Summary of the four Hibernate clients.
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As shown step five in Figure 4.8, we first use Hibernate, instrumented to profile >

to obtain profiling feedback as discussed in Section 4.3. We use the variant generator

in our infrastructure to instrument it. We then run the profiled Hibernate against

each client application, along with their retained mutants (from now on, we refer

to them simply as client application), using their test suite. For each test case in

their test suite, we record trace information that contains: (1) the test case execution

time, (2) the violation occurrence, (3) the acyclic method calls sequence, and (4) the

symbol coverage vector. As shown in Figure 4.8, T k
i corresponds to a set of trace

information belonging to the mutants in Mi when run against test case k.

To simulate the variability of API usage across sites, each site profile includes one

of the four Hibernate clients applications and a subset of five randomly selected test

cases from the test suite of the chosen client. In Figure 4.8, this translates to the

process of selecting (through SiteSimulator) five random profiling data sets (TIs),

corresponding to the selected test cases, from the client’s respective collection of T s.

Each selection process yields five T s for each client and its mutants.

To simulate scenarios in Figures 4.7-b to 4.7-e, we use Hibernate publicly available

download data to mimic the distribution of the requests for deployment. From July

through August of 2008, Hibernate averaged a new download approximately every 30

seconds; we use a similar distribution to simulate the requests for deployment. We

created a total of 120 sites in this manner, corresponding to the number of deployment

requests in an hour, which is approximately the length of time it takes to run all the

test cases of the four client applications. The 120 sites reflect the maximum number

of deployments that we consider in scenarios in Figure 4.7-c, d, and e.

For all deployment scenarios, our simulation process is driven by one central thread

that is responsible to define and launch a site-thread by instantiating the set of profiled

program variants (as produced by step three in Figure 4.8) and the site’s profile (i.e.,
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the combination of client application and test cases as produced by step six in Figure

4.8). As shown in step seven of Figure 4.8, each deployed site is simulated in a separate

thread that determines which of the properties profiled in the variant assigned to the

site are observed and violated.

Note that the site-threads make their determination of violations detected, cov-

erage symbols, and acyclic traces simply by retrieving the data collected during the

simulation of a site, requiring no further execution; this allows us to simulate thou-

sands of sites with very limited equipment. A site-thread is terminated after the

total execution time recorded while the site was simulated elapses. At termination,

a site-thread returns the following information to the central thread: (1) violations

that were detected, (2) violating strings as describe in Section 4.3, and (3) a cover-

age vector of the properties’ symbols that were observed during the deployment. We

describe the specific simulation setting for each profiling scenario in Section 4.5.

4.4.3 Variables

We manipulate five independent variables. In the first three research questions, we

analyze the effects of changing the space of path properties to profile. We can

profile the set of original properties (orig) and the ones in the lattice (lat) constructed

from orig.

To answer RQ2-RQ4, we also manipulate the overhead bound by setting an

upper limit for profiling overhead of 20%, 15%, 10%, 5%, and 1%. Using the overhead

and the number of invoked API calls reported in Table 4.3 when profiling >, we

correlate the calls’ frequency (i.e., the number of times a call is observed) with the

cost of profiling measured by the real execution time to determine the number of API

calls corresponding to the five overhead values.

The cost estimate of each property is measured by profiling each client applica-
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tion’s test suite and recording the number of API calls observed during the run. The

cost of each property is then the summation of the number of API calls corresponding

to the symbols that define them.

We also vary the number of variants (value ranges from 1 to 2400) and de-

ployments (value ranges from 1 to 120 with increment of 60) to simulate the five

scenarios from Figure 4.7. As discussed in Section 4.4.2, 120 deployments correspond

to the number of generated deployed sites following the Hibernate simulation model;

and the three levels of deployment values are chosen to show the trend of their im-

pact at a finer granularity. The upper bound on the number of variants was chosen

because it provided us with a wide enough range for observing their impacts to the

dependent variables.

Finally, we manipulate the sampling strategy. We consider the following sam-

pling strategies as described in Section 4.2.5: basic, path, and two variations of

weight-symbol strategies (one that utilizes the global weighting scheme and another

that utilizes the global and local weighting schemes).

We account for two dependent variables: efficiency and effectiveness. Efficiency

is measured with respect to profiling cost. We use the number of API calls observed

in the execution as a proxy for profiling cost that is independent of the profiling

implementation. We measure profiling effectiveness in terms of the number of unique

violations detected.

4.4.4 Threats to Validity

The results of our study are limited by several threats to validity. In the following

sections, we discuss the threats that can be found in the study which includes the

general simulation setup, choices of independent and dependent variables, and the

setup for specific research questions, and in the profiling implementation. We further
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categorize the threats by their types: external, internal, and construct.

Threats in the Setup

External validity. We evaluated only one API and the findings may not generalize

to other applications. Hibernate, however, is a sizeable and real API that is used by

many applications and frameworks, such as JBoss and Spring. This threat is further

mitigated by evaluating the API through four clients, where each client differs in their

functionalities, sizes, and behaviors. We only consider the temporal properties of

three Hibernate classes focusing on session transaction and object processing. While

this is only a portion of the rich functionality offered by Hibernate, we believe that

our choice is comparable to the temporal properties evaluated in other path profiling

studies.

When simulating a user site, we relied on the assumptions that each user site

displays a distinct set of behaviors and there may be an overlapping between them.

We picked one client application and five random test cases from a pool of test suite to

simulate the behavior of a user site. This choice is an arbitrary one but, considering

the size of our test suite pool, it seems to strike a reasonable balance by providing

some level of overlap between sites, and at the same time provides some chance of

having a unique execution. Increasing the size of this subset would reduce the chance

for a site to have a unique behavior. On the other hand, decreasing this size may

cause the user sites’ behavior to be disjoint. Moreover, the quality of our result is

affected by the set of behaviors that define the user sites, which in turn relies on

the quality of the test suite. We have extended each client’s provided test suites to

achieve, on average, 70% function coverage to mitigate this concern. Future studies

to assess the impact of overlap amount site behavior is needed.

We evaluated our sampling approaches under the setting of 5 deployment scenar-
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ios by varying the number of variants and deployments. There are, however, other

deployment scenarios and dimensions that can be considered. For example, in the

variant generation across time scenario in Figure 4.7-e, where we resample the profiled

properties utilizing feedback, the interval to resample can influence the effectiveness of

feedback-based sampling approaches since the amount and quality of feedback avail-

able may be different. However, the evaluated deployment scenarios are modeled by

taking into consideration the possible profiling resources (program variants, deployed

site, feedback) and potential benefit from increasing or incorporating such resources.

Again, further studies could explore the impact of other deployment scenarios.

Internal validity. When generating program mutants to represent violations

in path properties, we only retained mutants that generate strings that violate >.

We chose to do this because including mutants that do not lead to a property viola-

tion would obscure the differences among property sampling strategies, resulting in

irrelevant comparisons between the sampling strategies’ performance.

We measure the number of violations detected by running each clients’ mutants

and incrementing the counts when a test case failed. This represents another potential

threat to internal validity since we assume that all the seeded faults manifest in a

program variant independently and do not impact one another. In practice, a violation

can occur and prevent an execution to continue and reveal other violations. However,

since we apply the same treatment to all the sampling strategies, we can still make

comparable observations among the strategies.

We assumed that each observed method call contributes equally to the profiling

overhead and used this assumption to approximate the number of observed method

calls that correspond to the different levels of profiling overhead. We believe that

counting the number of observed events, instead of measuring the actual profiling

overhead, is still advantageous because it is independent of how and where the appli-
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cation is exercised. However, we recognize that they are just estimates of the actual

overhead.

Additionally, when approximating the cost of each sub-alphabet property, we

simply add the number of observed events associated with the symbols that define the

properties. The cost of observing each event actually consists of three components:

(1) the callback to the profiling tool at the symbol observant, and (2) the overhead

in updating the state of FSA within the profiling tool, and (3) updating the violating

string and coverage vector information. Considering that multiple properties may be

profiled at the same time and that they may also share common symbols, we may

have over-approximated the cost of profiling multiple properties through redundant

callback cost. We believe, however, that the cost of callback is insignificant when

compared to the other two cost components.

Construct validity. Our choices of metrics are a few of many ways to measure

the effectiveness and efficiency of a sampling approach. Our metric, especially the

one that measures effectiveness, is driven by our desire to detect distinct violations.

Other metrics, such as the total number of violations (not necessarily distinct) and

the number of properties observed may also be worth exploring in future studies.

When measuring the technique’s efficiency, the number of deployments and the

number of program variants generated can also be associated with the cost of profil-

ing. For example, each program deployment incurs a cost from running the test suite

against a program variant and maintaining feedback from each user site. Additionally,

generating a program variant requires resources to select the set of profiled properties

and to insert appropriate instrumentation. We believe that some of these costs can

be mitigated, for example, by parallelizing the test suite executions. More impor-

tant, however, by providing trends in varying these two treatments, we also provide

information about the trade-offs of increasing the number of deployments/variants to



101

achieve potential violation detection.

For RQ2-RQ4, we have chosen only a subset of potential overhead levels when

varying the number of deployments. The maximum number of deployments is con-

strained by Hibernate’s download model described earlier. Although limited, we

believe that our chosen values are enough to characterize the trend of the impact of

varying the number of deployments.

Threats in Profiling Implementation

External validity. Our simplifying assumptions about deployment scenarios are a

threat to external validity. We used Hibernate’s download model of SourceForge over

a certain period of time to determine the various values that define the deployment

scenarios’ setup, such as the choice of the number of variants, the number of deploy-

ments, and the rate in which a new deployment is requested (and a program variant

is generated). We argue that, although such model is only an approximation, it is

still based upon real data and it was established a priori to the experiment.

In the profiling with refinement scenario, we assume that a user site will contin-

uously interact with Hibernate at the same rate as the download rate. Moreover, we

assumed that with each interaction, a new deployment is requested (similar to the

process in which at program startup, availability for new updates is checked), which

may not reflect request/patching rates (i.e., a user does not necessarily patch the pro-

gram every time a new update is available). Our results for RQ4, however, represent

two ends of a spectrum, where patching is never applied and where patching is always

applied. We believe that in scenarios with intermediate request/patching rates, the

sampling strategies’ performance will fall within the two results.

Internal validity. The cost to generate each sub-property in the lattice con-

stitutes an internal threat to the validity of our findings. Although the generation
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cost seems expensive (two days in this setting), we need to generate such a lattice

only once and the lattice is generally independent of the implementation changes in

the program. Moreover, for certain sampling strategies, we can employ a more effi-

cient lattice construction. For example, for a property sampling strategy that utilizes

the function maxAlpha, we could encode sets of properties based on their alphabet

containment without enumerating them. The function addV d({φΣ′}, L ) can be en-

coded as any property whose alphabet has a non-empty intersection with Σ−Σ′ and

function maxAlpha can count the size of the alphabets of these properties and deter-

mine properties of the largest alphabet. With this mechanism, only a set of selected

properties needs to be generated. For sampling strategies that rely on the notion of

trap strings, however, such encoding is not sufficient since trap strings enumeration

depend on the structure of the FSA. We conjecture that symbolic encodings that per-

mit efficient on-demand construction of property samples for such sampling strategies

may mitigate this cost.

The value in which the lattice weighting scheme was initialized for RQ4’s setup

could be perceived as a potential threat. However, since our sampling strategy oper-

ates by evaluating a property’s weight relative to the other properties’ weights, the

choice of the initial value should not affect the yielded set of sampled properties.

4.5 Results

For each research question, we first describe the specific simulation setting, and then

we present the result and analysis.
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RQ1: Diversity of Lattice of Properties

Simulation Setting. To explore the diversity of the space of properties defined by

the lattice, we analyze how each mutated client utilizes Hibernate when its corre-

sponding test suite is executed. Specifically, we are interested in understanding the

client applications’ interactions with Hibernate’s properties. The analysis consists of

checking what API calls are made (to determine the frequency of each property, and

to approximate the cost for observing them) and what properties are violated (to

measure their effectiveness) by the clients.

Result Analysis. Figure 4.9 provides a bubble plot for each client characterizing

the relationship between the size of the profiled properties, their violation detection

power, and the number of occurrences of properties with the same alphabet size and

violation detection capability3. We also show a linear fitting that illustrates the trend

between the size of sub-alphabet properties and the number of violations that they

detect.

The first thing we notice is how the population of properties defined by the lattice

covers a wide range of size and violation detection power, and how larger properties

tend to identify more violations than smaller ones. For example, in AS, the best

properties of size three can detect 10 of 17 violations, some properties of size 11 can

detect all violations, and all properties of size 16 will detect at least 12 violations.

Although there are differences in how the clients violate the API path properties (e.g.,

profiling one of the properties of size seven is enough to detect all violations caused

by TR but a minimum property size of 10 is necessary to detect all the violations in

AS), these tendencies hold for all clients.

In general, there is a 67% chance that when we randomly sample a property from

3The size of a bubble equals the log value of the frequencies plus one (one is added to prevent
the representation of properties of frequency one to become zero when log is applied).
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Figure 4.9: The size of the sub-alphabets versus violation detection power of AS, WS,
NC, and TR. The size of a bubble indicates observation’s frequency. ∗ indicates a
property in orig.

lat in AS, WS, and NC, it will select a property with higher detection power than

the average violation detection of all the original properties. This chance is lower in

TR, where there is only a 56% chance of randomly picking a “better” property from

lat than from the orig. We conjecture that this is because TR does not utilize as

many functionalities of Hibernate as the other three clients. Because of that, more

properties of Hibernate are not exercised by TR, and there is a higher frequency of

properties with no violation detection capability. If we limit the selection to proper-

ties with sub-alphabet size larger than size three, the probability of choosing a better

property from AS and NC increases to 81% and 73% respectively, while the proba-
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bility for WS and TR decreases to 61% and 49% respectively. The decrease in both

WS and TR can be contributed from the increase in the average violation detection

of the original properties due to the exclusion of properties of the size smaller than

four.

We also observe that, as properties grow in size, more properties in lat perform

better than the orig, indicating that the opportunities for sampling more effectively

are greater in the presence of the integrated properties. Compared with the nine

properties in orig (marked with * in the figure), the properties in lat always include

a property of the same size that has greater (in 25 of 36 cases across the four clients)

or equal (properties of size two and three in NC, and of size two, three, and four in

TR) violation detection power.

The better performances of the properties in lat can be contributed to the addi-

tional constraints that are enforced by the sub-alphabet properties. These additional

constraints can originate from two sources. First, from projecting common symbols

that appear in multiple orig properties, resulting in properties constraining the same

symbols but regulating more diverse path interactions. For example, a sub-alphabet

property with s.close() and sf.openSession() symbols enforces constraints from

both properties 2 and 3 in Table 4.2, where both symbols appear in both proper-

ties. Second, from projecting different sets of symbols composed of multiple orig

properties, such as in the case with the sub-alphabet property defined by s.save(),

tx.commit(), s.close, and s.disconnect symbols. In this situation, we can observe

that there is not an original property listed in Table 4.2 that contains all of these sym-

bols. Such sub-alphabet property is obtained by projecting the four symbols from

properties 4, 5, and 7 in Table 4.2 and may introduce a path constraint between

tx.commit() and s.save() due to their relations with s.beginTransaction().

With respect to the properties’ frequencies, we can make several observations.
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First, there are large variations in the bubble sizes where the minimum size is 1.0

(corresponding to a frequency of one) and the maximum value is 4.8 (corresponding

to a frequency of about 7400 for the property with an alphabet size of eight and zero

detection power found in TR). Second, for all the client applications, the frequency

of properties with similar violation detection capability forms a bell-curve shape,

where there are more properties with sub-alphabet sizes in the median range. This

is as expected since there are greater possible combinations of alphabet subsets with

median sizes than with ones in the extreme sizes. One implication of these observation

is that a sampling strategy that simply selects a property randomly will be biased

toward properties with high frequency of occurrence, which may not necessarily be

the ones with high violation detection power, or the ones most efficient with respect

to the observation cost.

Moreover, if we focus on a constant sub-alphabet size, and look across the violation

detection values and their respective number of occurrences, we can observe that

there tend to be large variations. (We use the trend line to differentiate between

the low detection values (under the line) and high detection values (above the line)

for a fixed sub-alphabet size.) For example, in AS, when we look at the properties

of size six, there are more properties with low violation detection values than ones

with high detection capabilities. On the other hand, for WS, properties of size nine

have similar frequency of occurrences between properties with high and low violation

detection power. This large degree of variation is more apparent with properties

with sub-alphabets of median size. As we have mentioned earlier, properties with

larger alphabet size tend to have higher violation detection power, and they may

also be costly to observe. On the other hand, properties with a small alphabet size

are cheaper to observe, but tend to have low detection power. The median range

properties provide a good trade-off between the detection power and the cost to
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observe them. Furthermore, even if there are several properties of the same alphabet

size that share the same violation detection power, they may not identify the same

violations. Although a property sub-alphabet size is a good indication of its potential

violation detection capability, the lack of correlation between violation detection and

their respective frequency of occurrences, across alphabet sizes, makes it difficult for a

sampling strategy to choose a property, given an alphabet size, which would guarantee

that the selected property will have high violation detection values compared to the

properties of the same size.

We can also observe the existence of outliers in the graph, such as the one for the

properties of size six and detection power of eight in AS. As we can see in Figure 4.9,

the size of the bubble for properties of size six and detection of eight in AS is much

smaller than the properties of the same size but of detection power seven and nine,

indicating that its frequency is lower than its neighboring properties (four properties

compared to 296 properties that detect seven violations and 22 properties that detect

nine violations). A similar effect can be seen in WS with the properties of size

seven and detection power of eight. When we examine the properties more closely,

we found that such events occurred because certain symbols must be clustered in

specific ways to be capable of detecting violations. In AS, for example, symbols close

and openSession can be clustered together and the properties consisting of them

can detect three violations. When adding the symbol disconnect, the properties

consisting of these three symbols can detect a total of seven violations. Adding

the symbol beginTransaction to the cluster allows for two additional violations

being detection. Meanwhile, symbols commit, getTransaction, and either one of

the following symbols: saveOrUpdate, load, or clear form three different clusters

where each cluster contributes one violation. Symbols load, get, saveOrUpdate, and

delete belong to a cluster that can detect a total of five violations. Finally, symbols
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beginTransaction and commit can detect 10 violations.

Considering these clusterings, we can make several conjectures. First, all the

properties of size six and detection power of seven in AS contain the symbols close,

openSession, and disconnect but also three additional symbols that do not belong

to any of the clusters that provide additional violation detection. Since there are

many possible combinations of such symbols, many properties of size six and detec-

tion power of seven can be formed. Second, we can combine the cluster of symbols

close, openSession, and disconnect with any of the commit, getTransaction,

and saveOrUpdate, load, or clear clusters, producing three properties, each with

six alphabet size and detection power of eight. We can also combine close and

openSession with symbols load, get, saveOrUpdate, and delete which produce

one property of alphabet size of six and detection power of eight. These four prop-

erties made up for all the properties in AS with alphabet size of six and detection

power of eight since there is no other clustering that will yield that combination of

size and violation detection characteristics. Third, the properties of size six and de-

tection power of nine contain the symbols close, openSession, disconnect, and

beginTransaction, and a combination of two additional symbols (provided that

they produce properties that are capable of rejecting a string). Again, since there

are several possible combinations of these two symbols, there are higher frequen-

cies of occurrence for such properties when compared to ones with detection power

of eight. Finally, similar observations can be made of the properties of detection

power of 10, where most of the properties of such characteristics contain the symbols

beginTransaction and commit (which are sufficient to detect 10 violations), and

possible combinations of four symbols.

Figure 4.10 shows the box plots characterizing the cost of observing the sub-

alphabet properties across their alphabet size for each client, where we mark the cost
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of observing the original properties with *. As expected, as the size of properties

increases, the profiling costs tended to increase as well. For sub-alphabets of size two,

the cost of profiling orig properties bounded the cost of profiling lat properties of the

same size. This is because all lat properties of size two constrain the same symbols as

those in orig. For the other sub-alphabet sizes, there is always a property in lat that

has higher observation cost than the orig property of the same size. On the other

hand, we can always find a lat property that has lower or equal observation cost than

the counterpart orig property. For AS, profiling properties for sub-alphabets of size

two has an average cost of 1445 events, for size nine the average cost is 5418, and

profiling the property of size 17 (>) implies collecting 10115 events. We also found

that there is great variation in the profiling cost within properties of the same size.

For AS, profiling a property including three API calls can result in observing between

969 and 2771 events. For WS, NC, and TR, this range can go up to 6000 events.

Moreover, the difference between the maximum and the minimum of the profiling

cost seems to peak for properties of sizes 8 or 9.

Implications. The sub-alphabet lattice, lat, offers a rich diversity in cost of obser-

vations and violation detection power from which we can sample. However, the large

variations that exist in the detection power of sub-alphabet properties of the same al-

phabet size, coupled with the multiplicity of properties with similar alphabet size and

violation detection power that do not necessarily provide the best value when profiled,

prompts the need to utilize a sampling strategy that considers structural relations be-

tween the properties (and their relations to violation detection) to enable effective and

efficient profiling.

We further analyze the potential benefit from the greater space of sampling offered

by the lattice and the performance of several sampling strategies in the next sections.



110

  

AS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2000

4000

6000

8000

10000

12000
# 

of
 E

ve
nt

s 
O

bs
er

ve
d

 Mean 
 ±SD 
 Min-Max 

WS

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

2000

4000

6000

8000

10000

12000

14000

 
NC

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Size of Sub-Alphabets

0

2000

4000

6000

8000

10000

# 
of

 E
ve

nt
s 

O
bs

er
ve

d

  

TR

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Size of Sub-Alphabets

0

400

800

1200

1600

2000

2400

2800

 

Figure 4.10: The size of the sub-alphabets versus the cost of observing them in AS,
WS, NC, and TR. ∗ indicates a property in orig.

RQ2: Impact of the Number of Deployments

Simulation Setting. We quantify the effectiveness of several path property sampling

strategies when we vary the number of deployments. To simulate the one program

variant and one deployment scenario in Figure 4.7-a, the simulation central thread

simply picks a set of properties to profile following a selected sampling strategy and

generates a program variant. Then, it randomly selects one simulated site from the

120 that were previously generated, launches the simulation of the deployment of the

generated variant on the selected site, and retrieves the profiling feedback. To simulate

the one variant and multiple deployments scenario in Figure 4.7-b, the central thread
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launches the simulation of the program variant’s deployment to 60 and 120 generated

sites in their own site-threads (the value of 60 deployments is chosen to enable finer

observation of the trends in varying the number of deployments).

We evaluate two sampling strategies: basic and path. The basic strategy randomly

selects a set of properties while the path strategy favors properties that provide the

most diverse acyclic trap strings. For each strategy, we use two property sampling

spaces: orig and lat. This yields four sampling techniques: basic-orig and path-orig

strategies select the profiled properties from the original set of properties; and basic-

lat and path-lat techniques select them from the lattice of sub-alphabet properties.

We use the sampling strategies to select a set of properties to be profiled while

satisfying the 1%, 5%, 10%, 15%, and 20% overhead bounds. To account for the

degree of randomness in the property selections and the user sites assignments, we

performed this process 10 times. Figure 4.11 provides a summary of our findings in the

form of box plots for each of the techniques. (We append the number of deployments

behind the techniques name. For example: path-lat-120 refers to path-lat strategy

with 120 deployments.)

Result Analysis. Increasing the number of deployments increases the number of

violations detected. This is to be expected since increasing the number of deploy-

ments means that we expose the program variant to more, and potentially richer,

program behavior, increasing its chance to detect more violations. However, this

benefit diminishes as the number of deployments increases and the overhead bound

increases. For example, with the path-lat strategy with an overhead bound of 15%,

increasing the number of deployments from one to 60 allows us to detect 10 more

violations. However, increasing the number of deployments from 60 to 120 with the

same strategy only detects five more violations.

Independent of the profiling overhead bound and number of deployments, sam-
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Figure 4.11: Violation Detection vs Number of Deployments
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pling over the space of lat consistently resulted in the detection of more violations

than sampling over orig. This was more obvious with higher overhead bounds. For

example, with an overhead bound of 20%, with 120 deployments and sampling with

the path strategy, the difference in performance between lat and orig is up to four

violations (10% increase). As the overhead bounds get tighter, the differences among

sampling strategies decrease because the number of properties fitting the overhead

constraint is reduced. Furthermore, under extreme overhead constraints, the popula-

tion of selectable properties is small enough that sampling strategies cannot make a

difference.

When we compare more complex sampling strategies, i.e., path strategies, with

basic, we note that path strategies are able to detect more violations than basic.

With an overhead bound of 20% and 120 deployments, path detects an average of up

to 10 more violations than basic. As observed before, however, the benefits decrease

under tighter profiling overhead bounds (using path leads to the detection of only four

additional violations when the overhead bound is 5%). The box plots also reveal that

the most advanced sampling strategy provides smaller violation detection variability

(smaller boxes). This is beneficial because their performance is more consistent and

can be better estimated than the basic strategy.

Implications. The gain in violation detection power obtained by increasing the

number of deployments confirms our belief in the potential of deployed profiling, where

it facilitates the program’s exposure to a richer set of behaviors. Providing a richer

space to sample from can reinforce this gain, but only when the overhead bound is not

too restrictive. If we can generate only one program variant, the choice of sampling

strategy is not important as the diversity that one can obtain from the sampled set is

very limited.
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RQ3: Impact of the Number of Variants

Simulation Setting. To evaluate the effectiveness of the sampling strategies under

different numbers of variants, we use the same four sampling strategies and overhead

bounds as in RQ2 to select 120 sets of properties, where each set of properties is used

to generate one program variant, and each variant is deployed to a site. To simulate

the multiple variants (across deployments) and multiple deployments scenario in Fig-

ure 4.7-c, for each program variant, the simulation central thread randomly selects,

without replacement, a deployment site to become the target of the deployment, and

launches the selected user site’s thread. Similar to RQ2, we account for the random-

ness of the property selection and site assignment by performing the process 10 times.

We plot the average of the total number of violations detected across the number of

program deployments generated as a line graph in Figure 4.12. (Note that in this

scenario, we create a new variant for each deployment, hence the number of variants

and deployments are the same.) To ease the comparison with the one variant and

multiple deployments scenario of Figure 4.7-b, we also plot, in this figure, the average

value of the four sampling strategies from Figure 4.11 at 60 and 120 deployments.

(Note also that the y-axis scalings for 1% and 5% bounds are smaller than the other

bounds in order to show the differences in the one variant values more clearly.)

Result Analysis. We can observe that increasing the number of variants generated

also increases the number of violations detected. This benefit is more apparent for

higher overhead bounds. For example, at the 1% overhead bound, the increase in

the violations detected from one generated program variant to 120 program variants

is about two violations across the different sampling techniques. However, at the

20% overhead bound, the increase is up to 20 violations for our most sophisticated

sampling technique (path-lat).

When compared to the one variant and multiple deployments scenario, we can ob-
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Figure 4.12: Violation Detection vs Number of Variants (and Deployments)
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serve that more violations can be detected by generating additional program variants

assigned for each deployment. At the 10% overhead bound, for path-lat, deploying

one variant to 60 user sites (marked by a triangle in Figure 4.12) can detect, on av-

erage, 11 violations. Meanwhile, generating 60 variants, where each is deployed to

a distinct user site can detect up to 13 violations. Increasing the number of deploy-

ments (and the assigned new variants) to 120, at this overhead bound, still yields a

difference of up to two violations.

More interestingly, however, is that at higher bounds, the benefit of generating

60 variants, instead of one, and deploying it to 60 sites is more apparent than when

120 deployments are used with just one variant. This means that a larger number of

deployments may not overcome the limitation of a variant or even a set of variants.

This also suggests that generating more program variants can compensate for the lack

of deployed sites.

At the 1% overhead bound, similar to RQ1, we can observe that all the techniques

detect a small fraction of the violations. We conjecture that most of the violation

revealing properties cost more than 1% when profiled, hence none of the techniques

are able to select these properties. For overhead bounds of 5% and 10%, the violation

detection rates of the techniques flatten at around 10 and 15 violations respectively.

However, at higher overhead bound values, such as at 15% and 20%, the growth

is accelerated, suggesting that at higher overhead bounds, most violations can be

detected with fewer deployments.

Regardless of the overhead bound, we can observe that strategies that select the

properties from orig generally have lower detection rates than ones that select from

lat. This difference is more obvious for higher overhead bounds. This is because at

higher overhead bounds, the sampling strategies that utilize the lattice of properties

have more options regarding which properties to select when compared to ones that
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utilize the orig set of properties.

Implications. Increasing the number of variants generated allows the profiling of

more properties, hence increasing the violation detection ability. Additionally, if the

number of deployed sites available is limited, increasing the number of variants can

compensate for this limitation. The increase in the number of profiled properties

requires sampling strategies that can provide diversity in the sampled set. The richness

of the lattice sampling space can help to provide such diversity.

RQ4: Impact of Sampling Refinements

Simulation Setting. For the multiple variants and multiple deployments scenario in

Figures 4.7-c, 4.7-d, and 4.7-e, the main simulation thread generates 120 program

variants and simulates each variant’s deployment to one of the 120 sites. In the case

of variant generation across time scenarios (Figures 4.7-d and 4.7-e), after the field

data is received, the site-thread places a new request to receive another variant. A

site-thread notifies the central thread when: (1) a violation is detected, or (2) the

execution of the test suite, simulating a site behavior, is completed. The central-

thread continues deploying sites until all violations are detected or an upper bound

of 2400 program variants have been deployed. This corresponds to deploying 20

variants at each user site. This number was selected because we observed that after

20 iterations, either all of the seeded violations have been detected or the rate of

detection of new violations had flattened.

To answer the research question, we use the simulation tool to select a new set

of properties to monitor whenever a deployment request is received using one of

the four techniques described in Table 4.4 (all of the strategies are applied to lat
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Sampling Technique Sampling Strategy performed on Lattice
basic-lat Randomly selects profiled properties.
path-lat Selects properties that provide most diverse trap strings
path-lat-global-feedback Selects properties with the highest weight and that provide

the most diverse trap strings, where the weighting scheme is
adjusted globally.

path-lat-local-feedback Selects properties with the highest weight and that provide
the most diverse trap strings, where the weighting scheme is
adjusted globally and locally.

Table 4.4: Summary of the sampling techniques.

since it consistently outperforms orig). Note that in this scenario, the basic and

path strategies represent resampling techniques that do not utilize a feedback loop

(i.e., the scenario shown in Figure 4.7-d). Meanwhile path-lat-global-feedback and

path-lat-local-feedback correspond to the resampling techniques that utilize feedback

(i.e., the scenario in Figure 4.7-e). To account for randomness in our simulation and

sampling strategies, we performed 10 runs, each with a new set of 120 deployed sites,

and reported the average number of deployments needed to detect all violations in the

line plots shown in Figure 4.13. Note that we only show the line plots for overhead

bounds of 1%, 5%, and 10% (the trends for 15% and 20% are similar to those of 10%).

Result Analysis. At the 1% overhead bound, none of the techniques are able to de-

tect all violations before the bound of resampling (20 iterations) is reached. However,

both of the feedback-based techniques, path-lat-global-feedback and path-lat-local-

feedback, are able to detect up to two new violations after about 400 program variants

are monitored (3-4 sampling cycles per site). This confirms our conjecture that most

of the seeded violations require profiling for more expensive properties to be detected.

At 5% and 10% overhead, it is more obvious that there is a significant benefit

from continuously re-sampling the program properties and generating program vari-

ants over the profiling activity. At 5% overhead, using the path-lat technique, we

can detect 10 violations by generating and deploying 120 program variants. Through
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Figure 4.13: Rate of Violation Detection for Refinement With and Without feedback
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resampling and redeploying each of the program variants, we are able to detect 26

additional violations (one violation remains undetected) after more than 2000 vari-

ants. At 10% overhead, the technique is able to detect all violations after generating

about 1500 program variants.

When comparing the techniques’ performance, we observe that basic-lat (the solid

line in the figure) has the lowest detection rate of all techniques. At 5% overhead, the

detection rate seems to plateau after 1800 program variants have been deployed.

At 5% and 10% overhead, path-lat, path-lat-global-feedback, and path-lat-local-

feedback have similar detection rates during the first iterations. However, after the

easiest violations are detected, path-lat starts to loose its effectiveness when compared

to the two feedback-based strategies.

Overall, both of the feedback-based techniques perform better than the path-lat

technique. Moreover, path-lat-local-feedback has the highest violation detection rate;

when the overhead bound is at 5%, it is able to discover 100% of the path property

violations when basic-lat, path-lat, and path-lat-global-feedback found 45%(17), 56%

(21), and 86%(32) of the violations respectively. The advantage of the feedback-based

strategies, however, diminishes as the overhead bound increases since more expensive

and potentially powerful properties can be profiled in each variant.

Implications. If timeliness detection of a violation is not a priority or if profiling

feedback is not available, the repeating property should be used to increase the viola-

tion detection. Refining the sample of profiled properties through the use of feedback,

however, enables more (unique) violations to be detected and at a faster rate.
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4.6 Conclusions and Future Work

We introduced a novel approach for controlling the overhead cost of profiling path

properties by composing a single integrated property from a set of simpler and smaller

properties, decomposing it into a set of sub-alphabet properties that collectively pre-

serves the integrated property’s violation detection power, and then strategically sam-

pling a subset of these properties to enable profiling under tight overhead constraints.

Additionally, we introduced a lattice weighting scheme that associates each property

with a weight and showed how we can use the weights value to incorporate profiling

feedback and further improve the chances of detecting currently undetected violations.

We conducted several studies, evaluating the lattice-based sampling approach un-

der several deployment scenarios. Our results showed the potential of our approach

to detect more path violations with less overhead when compared to profiling the

original properties. However, the rich diversity in the violation detection power, size

of sub-properties alphabets, profiling cost, and the frequency of the properties in the

lattice with specific characteristics prompts the need for smarter sampling schemes.

For all deployment scenarios and overhead constraints, our proposed sampling

strategies are able to select properties that yield higher violation detections than when

randomly sampling across properties. When increasing the number of program vari-

ants, the number of violations detected also increased and the benefit from employing

more sophisticated sampling strategies was more apparent. A similar trend was also

observed when the number of deployments was increased. Finally, our study revealed

that refining the profiling activity through resampling of the profiled properties al-

lows for higher violations to be detected. Moreover, the feedback-based sampling

strategies are able to detect more violations at a faster rate than the non-feedback

based strategies and the performance can be improved by leveraging local feedback

to further adjust the weighting scheme.
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In the future, we want to perform further studies to evaluate the effectiveness

of our approach over other path properties including properties involving dynamic

object creation such as enumeration. Profiling such properties is difficult because

the allocated objects tend to be short lived and constrained to a small number of

method calls, but they occur with high frequencies. Dynamic objects, however, are

commonly found in many Java programs, and have many interesting properties [9, 10].

We also wish to explore other forms of feedback apart from coverage vectors and to

investigate the trade-offs between the cost of capturing additional information and

its effectiveness in guiding the feedback-based sampling strategies. Finally, we are

interested in incorporating static analysis to enrich the obtained profiling observation.

For example, flow analysis may be employed to determine if observing a property

inherently means a more expensive property was also observed.
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Chapter 5

Trace Normalization0

In Chapters 3 and 4 we have discussed two techniques that can be applied at a

pre-deployment phase to reduce and control the profiling overhead and enable the

capturing of field traces. At a post-deployment phase, the profiled traces can be

utilized to perform dynamic analyses. The strength of many dynamic analysis tech-

niques depends heavily on the variability of the pool of traces they operate on. A

richer trace pool can result, for example, in improved sets of inferred invariants [34],

more precise fault isolation [19], and smaller change impact sets [49]. On the other

hand, trace variability may be detrimental when it introduces noise, i.e., variation

in traces that is not related to the program’s properties or characteristics that we

wish to analyze. Profiling deployed software can yield large number of traces that are

richer and more diversified. However, field traces can potentially contain noise within

them, that is intensified with their volume.

Existing techniques, as described in Section 2.3, have addressed the problem of

identifying the interesting execution traces at a post-deployment by proposing tech-

niques to cluster execution traces, and then sample from these clusters [13, 22, 39, 51].

0Some of the work in this chapter has been previously published in [25].
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The underlying assumption is that the traces that are further apart (placed in dif-

ferent clusters) are more likely to contain distinct information valuable to a client

analysis. This basic assumption, however, may not always hold. We define an execu-

tion trace as a record of the sequence of events (e.g., as statement executions, method

executions, menu’s items, user’s actions, or user’s inputs) that occurred during a pro-

gram execution. Traces may end up in different clusters due to irrelevant variations

in the sequences of events that comprise them and make them appear different, and

therefore valuable, even though the observed variation is unrelated to the program

property under analysis. This can lead to the retention of a trace that provides no

added value relative to a given trace pool.

We identify two sources of irrelevant variations. The first source are trace events

whose occurrence can be re-ordered (commuted) without affecting the program state.

For example, in a web browser, the events for changing a password and setting one’s

homepage affect different variables or fields in the program. The second source of ir-

relevant variations are redundant events whose occurrence does not lead to a distinct

program state and can be collapsed. A trivial instance of redundant events are exe-

cutions of inspector methods (i.e., methods that are responsible to display the value

of a program’s variables or data structures). Our work aims to reduce the irrelevant

variations of trace events through a normalization that attempts to preserve the dis-

tinct structure of traces while eliminating differences due to commuted or collapsed

sub-traces.

5.1 A Motivating Example

We start by illustrating how a fault isolation client analysis works, and how it would

benefit from our trace normalization approach.
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public class XMLElement { ...
private Vector children;
private String name;
private String content;

}
public class Builder { ...

private XMLElement root;
}
public class Parser { ...

protected void processEle() { // Processes a regular element.
...
// if statement is faulty – the operator || should be &&
if ((ch == ′ <′) || (! fromEntity[0]))

...
this.builder.endElement(...);

else(...)
...
this.builder.addPCData(true);

...
} }
public class Valid {

protected Hashtable attValues;
protected Hashtable entities;
...
public void parseDTD() { ... // Parses the DTD.

for(...) { ...
if (...)

this.processEnt(true);
else if (...)

this.processAtt(true);
...

} }

Figure 5.1: A snippet of NanoXML Program

Many fault isolation analyses compare traces of passing and failing program runs,

and use their differences to pinpoint a likely fault’s location. The fault isolation

analysis we study here is one instance of that type of analysis; it was introduced by

Dallmeier et al. [21] to perform lightweight bug localization by assigning a score to

each class based on its probability of containing the fault. In our example, a class

score is calculated by counting the number of method call sequences, initiated in that

class, that differentiate passing runs from a failing run.

Consider the two classes StdXMLParser and NonV alidator (later referred to as
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…, v.parseDTD, v.processEnt, r, v.processAtt, r, …, p.processEle, b.addPCDATA, r, r, … 

…, v.parseDTD, v.processAtt, r, v.processEnt, r, …, p.processEle, b.endElement, r, r, … 

tp

tf  

tp

tf  

v.processEnt  -  r  -  v.processAtt -  r 

v.processAtt, r, v.processEnt, r 

…, Util.read, Util.scanEntity, return, return, …, Parser.processElement, Builder.addPCDATA, return, return, … 

…, Util.read, Util.scanEntity, return, return, …, Parser.processElement, Builder.endElement, return, return, 

tp

tf  

a. Traces 

b. Program States 

c. Segments 

d. Commutative Transformation 

e. Normalized Traces 

v.processEnt , r, v.processAtt, r 

…, v.parseDTD, v.processAtt, r, v.processEnt, r, …, p.processEle, b.addPCDATA, r, r, … 

…, v.parseDTD, v.processAtt, r, v.processEnt, r, …, p.processEle, b.endElement, r, r, … 
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null 
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null 
null 

null 
null 
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Writer,w 
null 
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Writer,w 
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Page, 0 
Writer,w 
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Page, 0 
Writer,w 
db:null → name:null

Page, 0 
Writer,w 
db:null → name:foo

Si Se

 

Figure 5.2: Trace Normalization approach steps applied to the example.

Parser and V alid for brevity) shown in Figure 5.1 of NanoXML, a software artifact

we study later in Section 5.4. Note that the Parser class has a seeded fault in a

predicate within the processEle method. Given Parser p, V alid v, and Builder b,

suppose that two executions of NanoXML lead to the generation of the two traces in

Figure 5.2-a composed of method invocations and returns, r, where tf corresponds to

a failing run and tp to a passing run.

Let us assume that we consider only call sequences using a sliding window of size

2. Table 5.1 shows the method call sequences that correspond to the traces tp and

tf . Trace tp contains the call sequences v.parseDTD - v.processEnt, v.processEnt

- v.processAtt and p.processEle - b.addPCDATA. Meanwhile, tf contains the call se-
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Table 5.1: Class score for fault isolation analysis performed on original traces.
Class Sequence Set of tp Sequence Set of tf Score

Valid v.parseDTD - v.processEnt v.parseDTD - v.processAtt 4
v.processEnt - v.processAtt v.processAtt - v.processEnt

Parser p.processEle - b.addPCDATA p.processEle - b.endElement 2

quences v.parseDTD - v.processAtt, v.processAtt - v.processEnt and p.processEle

- b.endElement. Given this setting, Dallmeier et al.’s fault isolation client anal-

ysis will assign a score of four to the V alid class because sequences v.parseDTD-

v.processEnt and v.processEnt-v.processAtt appear in tp but not in tf , and

v.parseDTD-v.processAtt and v.processAtt-v.processEnt appear in tf but not

in tp. The same process leads to a score of two for the Parser class, which means

that the V alid class is more likely to contain the fault than the Parser class, even

though the fault is in Parser.

Although not immediately obvious, the above traces contain irrelevant variations

to the fault isolation analysis that cause this client to return an imprecise score

value, skew the class rankings, and potentially provide a larger set of fault locations

for a developer to explore. We now illustrate how our approach can identify those

irrelevant variations, and normalize the traces to reduce them, improving the fault

isolation client effectiveness.

Our Trace Normalization Approach

Our approach requires the capture of one additional piece of information: program

state. We discuss the different forms of program state that may be captured shortly,

but for this example, assume that the relevant program state we capture for this

program and analysis consists of:

1. The root variable of the Builder class representing the structure of the parsed

XML (this key data structure is implemented by the XMLElement class in
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Figure 5.1).

2. The hashtables containing the XML DTD Attributes (attV alues) and Entities

(entities) information.

This capture is performed at the end of each method return as illustrated in Figure

5.2-b. In our example, after the last event in trace tp, the program state captured

shows one entry in the entities hashtable, one entry in the attV alues hashtable, and

a root XML element named db which has one child element. The child element has

the value name as its name and the value foo as its content with no other children.

Given the traces and the captured program states, our approach consists of three

steps. First, we identify segment sets within the traces, where a segment set contains

event sequences within traces that are bounded by the same program states, Si and

Se. The event sequences bounded by Si and Se are called segments. We observe in

Figure 5.2-c that at least one segment set can be identified from the two traces which

contains the segments:

〈v.processEnt, r, v.processAtt, r〉

〈v.processAtt, r, v.processEnt, r〉

where the Si and Se are marked with bolded squares.

Second, we identify irrelevant variations in each segment set. The identification is

based on the observation that segments in a segment set start in the same Si, and in

spite of including different sequences of events, end up in the same Se. Hence, parts

of those event sequences may constitute irrelevant variations. We target variations

due to commutative events or event sequences, and collapsible event occurrences.

Informally, we allow two events (or event sequences) to commute within a segment

set when those events have appeared in different orders in at least two segments from

that set. A sequence of events in a segment is collapsible if it can be reduced in length
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to match another segment. For our example, we note in Figure 5.2-d that the two

segments contain an irrelevant variation caused by commuting the v.processEnt-r

and v.processAtt-r events.

The last step, Figure 5.2-e, is to normalize the segments in each segment set.

Normalization involves transforming each segment to order commutative events in a

canonical order and to collapse sequences of repeated events to a minimal length. The

normalization process operates in a greedy manner: each trace and its corresponding

program states are parsed to identify an Si for a segment. When such an Si is found,

we look for the first Se such that there exists at least one irrelevant variant that

can be normalized in the segment bounded by states Si and Se. Then we apply the

normalization operations as defined previously. The process continues from Si to find

another segment until it reaches the end of the trace.

Continuing with our example, we may decide that all occurrences of

〈v.processEnt, r, v.processAtt, r〉

should be normalized to

〈v.processAtt, r, v.processEnt, r〉

As shown in Figure 5.2-e, one instance of this normalization can be applied in tf .

Table 5.2 presents the method call sequences produced using the normalized traces.

When considering this normalized version of tf , since the V alid class contains the

call sequences v.parseDTD-v.processEnt and v.processEnt-v.processAtt in both

Table 5.2: Class score for fault isolation analysis performed on normalized traces.
Class Sequence Set of tp Sequence Set of tf Score

Valid v.parseDTD - v.processAtt v.parseDTD - v.processAtt 0
v.processAtt - v.processEnt v.processAtt - v.processEnt

Parser p.processEle - b.addPCData p.processEle - b.endElement 2
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traces, the fault isolation technique assigns it a score of zero. Meanwhile, the two

differentiating call sequences for Parser remain unchanged in the presence of the

normalized traces, which means that it would still have a score of two, making Parser

more likely than V alid to contain a fault. Given the fault location, we see how the

normalized traces enhance the precision of the fault isolation client analysis.

5.2 Background and Definitions

Section 5.1 introduced the concepts of segments, segment sets, and commutative and

collapsible events, which form the basis of our trace normalization approach. We

define them more precisely here. Then, we discuss the application and some trade-

offs of our approach.

5.2.1 Key Concepts: Commutative and Collapsible

Intuitively, a trace segment defines a region of program execution that transits from

an initial program state, Si, to an ending program state, Se. Collecting such seg-

ments and analyzing their similarities and differences is the foundation of trace nor-

malization. Segments are sub-traces consisting of at least two events bounded by a

designated pair of states (for commutativity and collapsibility to be applicable).

Definition 5.2.1 (Segment) Given two program states Si and Se, a trace t con-

sisting of a vector of events, e ∈ Σ, has a segment 〈SiβSe〉, if t = αSiβSeγ, where

α, γ ∈ Σ∗ and β ∈ Σk where k > 1.

Segment sets are non-singleton sets of segments bounded by common program

states. Note that a segment set can contain multiple segments belonging to just one

trace.
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Definition 5.2.2 (Segment Set) Given two program states Si and Se and a set of

traces T ,

SEGSETSi,Se = {〈Siβ1Se〉, ..., 〈SiβmSe〉}

s.t m > 1 ∧ ∃t ∈ T : 〈SiβjSe〉is a segment of t

The identification of irrelevant variations is based on the notion of commutative

and collapsible events.

Definition 5.2.3 (Commutative Events) Two events, A and B, commute in

SEGSETSi,Se if:

∃s ∈ SEGSETSi,Se
∃α, β, γ ∈ Σ∗ : s = 〈SiαAβBγSe〉

∃{s′1, ..., s′m} ∈ SEGSETSi,Se
∃{α′

1, ..., α
′
m}, {β′

1, ...β
′
m}, {γ′

1, ..., γ
′
m} ∈ Σ∗ :

∀j < m, s′j = 〈Siα
′
jBβ′

jAγ′
jSe〉

This definition requires that for events A and B to commute within a segment

set, both A and B should appear in at least m + 1 segments in the set with differing

orders. It is worth noting that this definition allows arbitrary freedom in matching

a common prefix, infix, and suffix of the commuting events within a segment. This

definition can be easily extended for fixed sequences of events by replacing A with

a1, . . . , aj and B with b1, . . . , bl.

Definition 5.2.4 (Collapsible Events) A sequence of consecutive occurrences of

event A, Ak where k > n, is collapsible to An, 1 < n < k, within a segment set

SEGSETSi,Se if:

∃{s1, ..., sm} ∈ SEGSETSi,Se
, {α1, ..., αm}, {γ1, ..., γm} ∈ Σ∗ :

∀j < m, 〈SiαjA
nγjSe〉 ∈ SEGSETSi,Se
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Similar to Definition 5.2.3, Definition 5.2.4 require the existence of at least m +

1 segments within a set with the desired property. For both Definition 5.2.3 and

Definition 5.2.4, a more relaxed notion of normalization simply requires a smaller m.

5.2.2 Approach Applicability and Trade-offs

A dynamic client analysis (DA), such as the fault isolation analysis discussed in

Section 5.1, requires the program under analysis P to be instrumented to log events

Σ. As the program is executed, a set of traces T = {t1, t2, . . . , tk} is collected,

where trace ti is a vector of events, e ∈ Σ, captured during one execution of P . In

general, a DA operates on T to calculate properties of P (e.g., invariants in P ) or

P ’s components (e.g., fault likelihood of P ’s classes). For simplicity, we consider only

program events that correspond to method calls.

Conceptually, our normalization approach aims to transform the traces in T to

obtain a new trace set T ′ such that the DA(T ′) is more precise than DA(T ) and

DA(T ′) has recall that is at least that of DA(T ). We can define precision and recall

following the notion in information retrieval. Precision refers to the ability of the

dynamic analysis in providing results that are truly relevant to the analysis. In other

words, DA(T ′) is more precise than DA(T ) if it reports less number of false positives.

On the other hand, recall refers to the ability of the analysis in retaining the truly

relevant results.

The specific formulation of precision and recall, however, will depend on the DA.

For the fault isolation technique, it is natural to compare techniques based on the

extent to which the class ranking produced increases the ease with which a fault is

found. To accommodate this type of rank comparison, we set a precision threshold by

considering only the top X classes in the ranking as the information produced by the

analysis. A technique has 100% recall if the faulty class is within the top X classes.
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For other client analyses, the formulation of precision and recall will be different. For

example, the dynamic change impact analysis presented in Section 5.4 identifies sets

of methods affected by a program change. Consequently, its precision is improved

by eliminating information from T that allows it to report fewer methods that are

not impacted by the change. It retains the recall of the original analysis as long as

it reports at least as many actual changed methods. We provide a more detailed

formulation of precision and recall for fault isolation and dynamic impact analysis in

Section 5.4.

Identifying transformations that can increase precision while retaining recall is

challenging. Our approach discriminates trace variations that do not contribute to a

DA’s recall from those that add irrelevant variations that reduce DA’s precision. It

performs this discrimination by identifying alternative event sequences (bounded by

the same program states) that differ in the number or in the order of their events.

We note that while our goal is to retain recall, there may be situations in which it is

acceptable to sacrifice some recall to significantly increase precision. This is especially

true when precision is achieved by greatly reducing the size of the trace pool or the

amount of spurious information produced by the analysis.

In addition to precision and recall, an assessment of trace normalization must

consider the cost of capturing program states 〈si,1, ..., si,j, ..., si,m〉 for each trace

ti, where si,j is the program state generated by ti at checkpoint j. A program state can

be viewed as an n-tuple of memory values, where each value corresponds to a “state”

of a program’s component, and a program’s component can be a scalar variable,

a reference variable such as an object, a thread, or a program location. Clearly,

if not done carefully, capturing program states during an execution may introduce

significant overhead in the data collection. We discuss several mechanisms to control

this overhead cost in Section 5.4.4
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In the end, the choice of what program states to capture and when to do it in-

volves balancing the cost of data collection and processing, the potential benefits of

normalization, and the implications for the precision and recall of client analyses.

Capturing a more complete program state, for example, may result in a more precise

analysis, but would also require more expensive data collection and processing, and

lead to the identification of fewer segment sets and fewer opportunities for normal-

ization. We believe that there are opportunities to reduce the cost of normalizing a

trace pool across different client analyses by choosing and abstracting parts of the

program state that contain at least as much information as those required by client

analyses.

In addition to the program states, the normalization approach itself may sacri-

fice recall in order to significantly reduce the irrelevant variations in a trace pool, and

consequently improve the precision of a client analysis. For example, the most restric-

tive application of commutative event sequences requires for the candidate segments

to have identical suffixes, prefixes, and infixes. Such constraints can be relaxed to

enable a more aggressive normalization that gains precision but may sacrifice recall.

Overall, the choice of which parts of program state to capture, and what normal-

ization operations and how they are applied to reduce trace segments, will influence

the precision and recall of an analysis operating on the reduced trace pool. Still, as we

shall see in our study of two client analyses that operate on traces with method call

and return information, the normalized traces retained most if not all of the recall,

achieved greater or equal precision, and reduced client analysis cost.
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Figure 5.3: Trace Normalization Infrastructure.

5.3 Trace Normalization Infrastructure Support

We have built an infrastructure to support trace normalization that allows us to

explore several aspects of the approach. Figure 5.3 provides an overview of the in-

frastructure which operates in two phases. The first phase involves the state identifier

and decomposer components. These components incrementally process one trace at

a time, generating a collection of segment sets from a pool of traces and program

states. In the second phase, these segments sets are processed by the analyzer and

the normalizer to transform the original pool of traces by removing their irrelevant

variations. We now discuss the infrastructure in more detail.

5.3.1 State Identifier

The state identifier determines a set of candidate program states that may demark

the beginning (Si) or the end (Se) of segments within traces. The state identifier
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takes a pool of traces and their associated program states, and generates a map from

a program state to a pair consisting of a trace identifier and a set of offsets within

that trace. The offsets encode the locations within the trace that correspond to the

checkpoints in which the program state is captured. To do this, traces are scanned

and whenever a candidate state is found, either new entries in the map are created

or existing entries are updated with new trace and offset values. The map entries of

candidate states that do not appear in multiple traces or locations cannot be segment

delimiters, so they are deleted.

5.3.2 Decomposer

When presented with a trace pool and the program state-trace map provided by

the state identifier component, the decomposer utilizes Definitions 5.2.1 and 5.2.2

to construct the segment sets: for every pair of states, Si and Se, in the map, the

decomposer looks for all the traces in which both of the states appear. Then, for each

such trace, the decomposer considers the event segments bounded below by Si and

bounded above by Se (which is identified by stored offsets in the map), and adds the

segment to the SEGSETSi,Se only if the length of the segment is greater than one.

An unoptimized implementation of the decomposer may be quadratic in the num-

ber of non-trivial program states and in the length of a trace; and linear in the number

of traces. Again, we defer discussion on how we can mitigate this problem to Section

5.4.4.

5.3.3 Analyzer

For each segment set the analyzer uses Definitions 5.2.3 and 5.2.4 to identify patterns

that expose potential sources of irrelevant variation among its segments. Specifically,

we identify commutative events and collapsible events within segments. The analyzer
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can be configured to infer only the commutative properties, the collapsible properties,

or both.

Note that the two definitions allow the analyzer to be configured through the

parameters that define the desired length of common prefix, infix, and suffix of the

commuting events within the segments in a segment set. The length of prefix, infix,

and suffix determine how conservative the approach will be in terms of normaliz-

ing the potentially irrelevant sequence variations. Generally, increasing the length of

matching sequences will lead to the identification of less irrelevant variations. How-

ever, it may also mean less spurious irrelevant variations. In our implementation, we

vary the value of the prefix and suffix lengths when evaluating our approach. We set

the length of infixes for commutative variations to zero to ensure that only adjacent

events are considered to be commutative.

When inferring the commutative and collapsible variations within a segment set,

there is also some flexibility in the required number of segments in the set that exhibit

the potentially irrelevant patterns. Intuitively, the greater the number of segments

in a set that contain a pattern, the more confident one might be that the pattern is

truly irrelevant. For example, if half of the segments have an A followed by a B and

half of the segments have them in reverse orders, then we can be confident about the

commutativity of A and B. In our study, we did not explore this type of variation.

Instead, we used Definitions 5.2.3 and 5.2.4 as stated.

5.3.4 Trace Normalizer

This component generates a normalized version of a trace by utilizing the original

trace and the set of variations associated with each segment set provided by the

analyzer. The normalizer parses the trace and its corresponding program state for

a trace segment, attempting first to identify an Si. When such an Si is found, the
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normalizer scans forward for the first Se such that there exists at least one irrelevant

variation that can be normalized in SEGSETSi,Se . Only the irrelevant variation that

is identified within this segment set can be applied to the corresponding segment.

The normalizer will then attempt to perform the transformation process.

The transformation process based on commutative events selects an order of those

events and transforms each segment in the set so that occurrences of those events

within that segment set obey that order. Certain ordering heuristics, such as sorting

the instances of the segment variations and always choosing the first instance of an

event sequence as the canonical one for commuting operation, should be applied to

maintain the consistency of the normalization operations (we use a canonical ordering

in our implementation). Applying the transformation process on the collapsible events

selects the shortest sequence of repeated events in a segment set and replaces all longer

sequences in segments in the set with it.

Once all possible variations are normalized within the segment, the normalizer

looks for a new potential Si from Se and restarts the process. Once the target trace

is normalized, a string comparison is performed against the other already-reduced

traces to avoid duplication.

5.4 Empirical Study

This study investigates the performance of our trace normalization approach with

respect to two client analyses: 1) lightweight fault isolation as described by Dallmeier

et al. [21] and illustrated in Section 5.1, and 2) dynamic change impact analysis as

described by Law et al. [49]. This second client is meant to assist in determining how

a change to a program method impacts other methods by analyzing execution traces;

the analysis returns an impact set composed of every method called after the changed

method and all methods that are on the stack when the changed method returns.
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We pose the following research questions:

• Does our approach to trace normalization lead to an improvement in the per-

formance of the client analyses (RQ1)? We conjecture that, in the case of fault

isolation, our approach will lead to a better localization, while in the case of

change impact analysis it will result in a more precise impact set. As part of

the study we explore the trade-offs that stemmed from using different types

of program state abstractions and triggering strategies that determine when to

capture the program state.

• What is the impact of trace length and trace pool size on the effectiveness of

the approach (RQ2)? We conjecture that our approach will benefit from larger

traces and pools since they may offer more opportunities for normalization.

5.4.1 Study Setup

Artifact Selection. The object of study is NanoXML, an XML parsing library for

Java used in previous studies of both client analyses conducted by other researchers

[21, 70]. NanoXML is available for download from the Software-artifact Infrastructure

Repository (SIR) [26] which provides a system test suite with 214 test cases and 6

versions of NanoXML with seeded faults. For the fault isolation client we randomly

selected a version of NanoXML’s component library which has 19 Java classes and 7

seeded faults located in 5 distinct classes. For dynamic impact analysis we utilize all

the versions available and identify the changed methods between them.

Data Collection. To obtain the event traces corresponding to the artifact’s test

cases, we first instrumented NanoXML to record method calls and returns during a

program’s execution. We chose to profile such events because both client analyses

operate at that granularity. This process yields us six pools of traces of size 214,
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where each pool corresponds to a version of NanoXML. The average length of the

traces is 2881 events, with minimum and maximum length of 21 and 4790 events

respectively.

To answer RQ1, we require a variety of program state abstractions (snapshots)

and triggering strategies. We consider two types of program states: 1) stack content

(STCK) which records the method calls residing in the stack as a type of program

state abstraction, and 2) a whole heap capture (HEAP ) that records the values of all

program variables in the heap (as generated by JPF [44]). We consider two triggering

strategies to determine when to capture the program state: after every observable

event in the trace (ALL) and at every side-effect-free event (INS) (for this we just

consider the inspector method invocations and returns).

The next step consists of generating the snapshots of the various program state

types and triggers to be interleaved into the event traces. The STCK snapshots

can be derived from the event traces by simulating the pushing and popping of the

stack using the observed method calls and returns. Each unique stack content is then

assigned an integer identifier. Storing the STCK snapshot of a trace requires on

average 9KB of space per trace. The generation of HEAP snapshots is more complex

and for convenience in our study we utilize Java Pathfinder (JPF) [44] to capture it.

We implemented a listener on top of JPF that outputs the hashed program state as

we run NanoXML. The runtime overhead of capturing HEAP when the ALL trigger

is used is 14% over the regular test suite execution time. The hashed program state

of a trace can be represented as a sequence of integers that requires approximately

23KB of space per trace to store it.

The third step of the process is to decompose the traces into segment sets. Table

5.3 characterizes the results of this process through the number of segment sets and

segments that can be derived from NanoXML traces for the STCK and HEAP
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Table 5.3: Segment Sets Information of NanoXML

STCK-ALL STCK-INS HEAP -ALL HEAP -INS

# of Segment Sets 176 148 141 97
Avg. # of segments 14 8 6 4
Max. # of segments 57 43 27 19
Min. # of segments 2 2 2 1
# Normalized traces 44 40 37 30
# Normalizations 75 64 44 37

snapshots when ALL and INS triggering are used. The last two rows of Table 5.3

report the number of distinct traces normalized operations are applied and the number

of normalizations performed overall. Note that in spite of NanoXML is relatively small

trace pool, an average of 18% of traces are normalized across techniques.

The last step consists of finding irrelevant variations in the segment sets and

applying the normalizations across the trace pool. When identifying opportunities

for normalization, we consider exact suffix and prefix matching. Although we explored

the use of different suffix and prefix sizes, the results for this artifact were not different

enough to make them worth mentioning.

Each client analysis was implemented as described by their authors, including their

recommended parameters. For the fault isolation client, we implemented it with call

sequences of outgoing methods using a sliding window of size 5 for each instantiated

object.

5.4.2 Independent Variables

We manipulate the normalization technique. A technique is either an instantiation

of our approach that combines the program state with a checkpointing trigger, or the

CONTROL (the raw set of traces without any processing). As explained, we consider

two types of program states: 1) STCK and HEAP , and two triggering strategies:

ALL and INS. The combinations of the two types of program states and two trigger

types result in four different normalization techniques. For each client analysis we
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compared the result of applying each of those techniques against the CONTROL.

To address RQ2, we manipulate the size of the trace pool and the length of the

traces. We consider three trace pool sizes: 100% of trace pool (214 traces), 75% of

trace pool (160 traces), and 50% of trace pool (107 traces). To generate each pool

we randomly select, without replacement, a percentage of the traces from the original

trace pool. To generalize our observation, we repeated the selection process 10 times.

To assess the effect of different trace lengths, we split the existing traces into buckets

according to their length as measured by the number of events they contain. For

our artifact, we consider five groups: traces of length 0-999, 1000-1999, 2000-2999,

3000-3999, and 4000-4999, which end up containing 50, 10, 30, 71, and 53 traces

respectively.

5.4.3 Dependent Variables

We measure the effect of consuming the trace pool resulting from each normalization

technique for the two client analyses.

Fault Isolation. Irrelevant variations in traces can increase the number of call

sequences characterizing the traces of passing and failing runs and lead to a less

accurate class ranking (lower ranking of faulty classes). The probability that a class

will contain a fault is defined as the sum of the weight of each call sequence divided

by the number of distinct call sequences associated with the class [21]. Given n, the

number of passing runs, and k(c), the number of passing runs that contain a call

sequence c, the weight of a call sequence, w(c), is k(c)
n

if c does not appear in the

failing run and 1-k(c)
n

otherwise. The classes are ranked in decreasing order of their

probability score.

To evaluate the trade-offs between precision and recall when normalized traces

are used with the fault isolation client, we consider only the top X ranked classes,
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reflecting what a developer would do when looking at a fault likelihood ranking. This

is similar to what Liu et al. have done [53]. Note that this method of evaluation

is different from the one used by Dallmeier et al. where the approach is evaluated

with the accuracy of the faulty class prioritization in mind where the technique is

considered to be more accurate if it provides a class rank that is better than a rank

calculated based on the number of classes to need to be examined. For this study we

set X to 1, 2, 4, and 6 classes, which correspond to a precision of 94.7% (1- 1
19

*100),

89.4%, 78.9%, and 68.4% respectively, when we consider 19 NanoXML classes. For

each precision value, if the faulty class is included we assign a recall value of 100%,

0% otherwise.

Dynamic Change Impact Analysis. A dynamic change impact analysis is

more precise when it is able to discard methods that are not impacted by the change,

and it has higher recall value when it retains methods that are truly impacted by the

change.

Computing such precision and recall measures requires the exact impact set. Since

we do not know what are the exact methods impacted by a change, we used the impact

set of CONTROL as an initial approximation, and then we prune the methods from

that set that did not appear in a conservative static impact analysis [80]. We call this

our QEXACT (quasi exact) set; in reality it is only an approximation to the exact

information so our precision and recall measures are, in some sense, relative. For a

given technique, tech:

precisiontech =
|QEXACT ∩ IStech|

|IStech|

recalltech =
|QEXACT ∩ IStech|

|QEXACT |

where IStech is the impact set of the technique tech.
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5.4.4 Threats to Validity

We present several threats that may affect the validity of our findings. The choice

of NanoXML as our object of study and whether or not it is a representative of the

population of all programs contributes to a threat in external validity. However,

NanoXML was chosen because it was used in the studies involving the two client

analyses we evaluate in this study, allowing us to validate our client analyses’ imple-

mentations and to help define their parameters. Moreover, NanoXML also demon-

strates characteristics that we wish to exploit in this study, where the sequence of the

functions that were called to parse two similar XML documents may differ because

of the differences in the orderings of XML elements.

We use a pool of traces from a test suite run, instead of traces from a real de-

ployment, which may affect the external validity of our findings. However, as demon-

strated in Table 5.3, there are still opportunities for normalization even when using

executions traces from a test suite. Though there is a need for further evaluation,

we conjecture that due to the granularity at which our technique can operate, it may

yield higher benefit when used with field data, especially ones with varied in length

because our technique operates on trace segments.

As previously discussed, the non-trivial cost in capturing the program states and

in running the decomposer algorithm may contribute to a threat to internal va-

lidity. The first cost can be mitigated by (1) reducing the space of the program

states to capture, where the size of the program state space is determined by the

number of program components and the range of their possible values [31], (2) re-

ducing the number of checkpoints, perhaps with the assistance of a static analysis

technique, (3) using less expensive information to derive approximations of program

state (e.g., collected branch traces can be used to symbolically execute a program

and approximate a range of program states visited during the execution [46]), and (4)
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using abstractions of program state that are less expensive to collect, such as stack

content or event spectra [7]. Meanwhile, we can take advantage of the opportunities

for parallelization in the decomposer algorithm to mitigate its cost. Multiple threads

implementing the algorithm can execute simultaneously where each thread will be

responsible to decompose a trace.

We use a sliding window of size five to define calling-sequences from the execution

traces that are consumed by the fault isolation client. Reducing the sliding window’s

size limits the possible ways methods can form calling-sequences, hence reducing

the size of calling-sequences set overall. On the other hand, increasing the sliding

window size increases the number of possible enumerations of the calling-sequences,

increasing the size of the set. As mentioned earlier, we chose the size of five following

recommendations from the authors of the technique, who have explored a variety of

window size values and have found that a window of size five works the best for their

technique [21].

With respect to threats in construct validity, we have chosen only a subset

of the possible metrics for evaluating the performance of our techniques. Moreover,

we only evaluated a subset of the possible levels of precision values to calculate the

recall values, bucket sizes, and trace lengths. However, our findings are still useful to

identify trends and trade-offs between the techniques.

5.5 Results

We now present the results of our studies. For each client analysis, we briefly mention

any additional simulation setting and then present the analysis of the result.
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RQ1: Technique Performance

Fault Isolation Effort.

Simulation Setting. To study the fault isolation client, we activated one fault at a

time to avoid introducing additional sources of variation, ran all the tests, and then

used the collected traces either directly or after normalization to calculate the class

rankings. With the class rank, we then computed the recall value for each predefined

precision threshold as discussed in Section 5.4.3.

Result Analysis. Figure 5.4 plots the precision and recall values averaged across

the seven seeded faults for the CONTROL and the four normalization techniques

(the values are joined with lines to show tendencies). As expected, independent of the

technique, the recall value decreased as precision increased. As precision increased,

the techniques lost the ability to retain the truly faulty class. When the precision

is 89.4%, only the HEAP -based techniques retain the ability to identify more than

20% of the faulty classes. When the precision is 94.7%, only HEAP -ALL technique
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Figure 5.4: Fault Isolation Recall and Precision.
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can identify the faulty class.

The most interesting observation from Figure 5.4 is that when the client analysis

consumes the trace pool normalized with any of the four techniques, it performs at

least as well as, but often better than, when it consumes the CONTROL. Given

the same level of precision, the four techniques have equal or greater recall (and

inversely, given the same recall, all techniques provide equal or better precision)

than CONTROL. The differences are apparent for the four techniques when the

precision reaches 78.9%. At 89.4% precision, HEAP -ALL has 28% more recall than

CONTROL. This shows that normalizing the traces increases the performance of

the fault isolation client.

Normalizing traces also has a positive side effect in the reduction of the number

of call-chains that would have to be compared by the fault isolation analysis. For

example, the HEAP based techniques reduced the number of call-chains by an aver-

age of 3% (32 call-chains) when compared with the CONTROL technique. Although

the number is modest, note that the technique operates by performing comparisons

between each member of the call-chain sets corresponding to the passing and the

failing runs. A reduction of size one in the call-chain set of the passing runs is then

compounded by the size of the failing runs produced by the client analysis, thereby

increasing the efficiency of the client analysis.

Implications. Trace normalization yields execution traces that, when they are ana-

lyzed, can provide a more precise faulty class ranking. The generation of stack content

as program states can be easily simulated solely by using traces of method calls and

returns. Because of that, the STCK-based approach provides the best trade-offs with

respect to the effort needed to identify trace segments and the precision - recall value.

Moreover, by increasing the frequency of program state captures, the STCK-based

approach can be competitive with the HEAP -based technique. However, the HEAP -
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Figure 5.5: Dynamic Change Impact Analysis Recall and Precision.

based technique is still valuable if higher precision is required in the analysis result.

Dynamic Change Impact Analysis

Result Analysis. We studied six versions of NanoXML, which resulted in five sets

of changed methods between the consecutive versions. We executed the program

test suite on each changed version to generate their corresponding trace pools, and

then applied our four normalization techniques to the pool of traces for each changed

version. Next, we performed whole program path-based dynamic impact analysis

[49] on the traces collected from executing each program version. For each program

version, we calculated the precision and recall value of the dynamic impact analysis

when consuming the CONTROL and the four normalized trace pools. The averaged

value of the precision and recall across the method change sets is plotted in Figure

5.5.

Result Analysis. We observe that CONTROL technique performs well, provid-

ing 100% recall and 96% precision. Such high precision values leave little room for

improvement. Still, our normalization techniques are able to trade slight percentages
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of recall for precision. With the HEAP -ALL technique, we were able to improve the

precision by almost 3% when compared to the CONTROL (HEAP -ALL technique

identified up to four methods that were not in QEXACT while CONTROL resulted

in the identification of up to eight methods erroneously labeled as impacted). This

precision gain sacrificed the retention of three truly impacted methods. More gener-

ally, we observe similar trends to those of the fault isolation client, where HEAP -

based approaches have higher precision and recall values than the STCK-based. This

is expected since a HEAP snapshot is more likely to detect variables dependencies

than a STCK snapshot, at the cost of a more expensive generation.

Implications. Our normalization techniques sacrifice recall, by dropping real im-

pacted methods from the change impact set, in return for a precision gain, by iden-

tifying and removing false positives in the change impact set. Such trade-offs can be

of a value, for example, when used in conjunction with regression test prioritization

or selection techniques, where test cases corresponding to the methods removed by our

normalization techniques can be given a lower execution priority.

RQ2: Effect of Pool Size and Trace Length

Simulation Setting. This research question explores the impact of trace pool size

and trace length on the effectiveness of the normalization techniques when employed

in conjunction with a dynamic impact analysis. We focused on the impact analysis

client because its study required a simpler experimental design. (The fault isolation

analysis requires that at least one failing trace is part of the pool which imposes an

additional constraint on the process of trace pool generation and a more complex

analysis based on trace length.) In RQ1, we have investigated the precision – recall

relations of our techniques. We now want to explore the technique’s performance

across the different pool sizes and lengths, where we focus on the gain provided by
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each technique in the precision of the change impact set.

We generated three pools of traces with varying size. For each of the three original

trace pools, we applied dynamic change impact analysis to obtain the impact set

of the CONTROL technique. Then, we normalized each of the trace pools using

our four normalization techniques, and performed dynamic impact analysis on the

normalized pools. We calculated the precision of the impact set generated by the

four normalization techniques and the CONTROL technique.

To understand the impact of varied trace lengths, we classified the traces in the

pool into five buckets according to their length as described in Section 5.4. We

conducted a similar procedure as above and generated Figure 5.7 which plots precision

against trace length.

Result Analysis Figure 5.6 depicts the average precision across the five changed

method sets against the three trace pool sizes. Independent of the techniques, we note

that smaller pool sizes seem to provide less opportunities for normalization to remove

irrelevant variations. Under all techniques, precision increases as we increase the pool
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Figure 5.6: Precision of the INS Techniques with vs Trace Pool Sizes.
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size, leading to the removal of more methods that were included in the impact set.

Even under varying trace pool sizes, we observe that our normalization techniques

outperform the CONTROL technique. Additionally, HEAP -based techniques out-

perform the STCK-based techniques across all size values. Similarly, the ALL-based

triggering techniques outperform the INS-based techniques for the same program

state type. We can also observe that as we increase the pool sizes, the difference in

the impact sets’ precision between the two triggering techniques diminishes.

We also observe that precision for the shorter traces is greater than for larger ones

across all techniques. Our original conjecture was actually the opposite so we explored

this further. Upon closer examination, we realized two things that significantly af-

fected our findings. First, the bucket with smaller traces consists primarily of runs

that quickly throw I/O type exceptions which are considered equivalent regardless

of the normalization techniques used, leading to higher precision. Second, for this

artifact, shorter traces tended to be more repetitive than longer ones. Specifically,

on average, 32% of the method invocations performed in the traces from the bucket
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Figure 5.7: Precision of the Normalization Techniques vs Trace Length.
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with the shortest traces are similar and only 5% are similar from the bucket with the

longest traces (the tendency for the rest of the buckets is consistent with 11%, 6%,

5% of repetition in each).

Implications. A larger pool of traces potentially contains more variations in event

sequences that our techniques can take advantage of. Adding more diverse traces to

the pool can aid in increasing the performance of INS-based techniques, which is

valuable since INS-based techniques are less costly than the ALL-based techniques.

A pool of traces that contains a large number of similar events can provide the most

benefit to the trace normalization techniques.

5.6 Conclusions and Future Work

In this chapter we have introduced a novel approach to reducing irrelevant trace

variations that may improve dynamic analyses precision while retaining recall. Our

formulation of trace normalization provides a number of degrees of freedom for con-

trolling their cost and effectiveness. We have implemented several instances of the

approach and, although of limited scope, our results indicate that the removal of ir-

relevant trace variation can be beneficial for two families of analyses. Our approach

enables a fault isolation client to improve rankings of the classes’ fault likelihood. For

the dynamic change impact analysis client, the approach enables the generation of

smaller change impact sets while still retaining most of the valuable information.

The experiences gained while instantiating and assessing the techniques suggest

several directions for future work. We will investigate the notion of subsumption

among segments which may make the decomposition more efficient. We will explore

other properties and relax some of the constraints to allow a more aggressive trace

normalization. For example, we are interested in investigating event sequences that

differ only because of event folding or unfolding. We will explore the opportunities
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to perform the normalization on-line and in combination with other analyses, such as

side-effect analysis.

We also plan to perform similar studies on artifacts with larger trace pools to assess

how the different instantiations of the approach scale and perform, and especially to

evaluate the cost and overhead of the approach which we only briefly investigated

in this paper. Finally, we will continue extending the family of clients that can be

successfully coupled with the approach.
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Chapter 6

Conclusion and Future Work

In this dissertation, we have described a set of challenges that may be faced by

engineers wishing to profile deployed programs cost effectively and we have developed

a set of analysis techniques to address those challenges.

We approached the overhead constraint challenge in pre-deployment phase by

developing two techniques that repeatedly sample subsets of instrumentation probes

for insertion into a program variant with the potential to incur lower overhead. The

first technique, search-based probe distribution, is motivated by the need for engineers

to profile complex events. This technique views the problem of strategically selecting

dependent instrumentation probes and distributing them across multiple program

variants as an optimization problem and employs a heuristic search algorithm to

address it. To steer the search function in yielding distributions that can profile

diverse sets of properties, we provided a cost function that leverages the relations

between profiling probe locations across variants. The function aims to balance the

number of times each set of probes is used (across variants), to increase the number

of sets that can be packed into a variant, and to ensure that there exists a variant

that includes each set of probes. We evaluated the performance of our technique with
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respect to call-chain detection under a variety of overhead bounds. The results of

our study suggested the potential of our technique to generate a probe distribution

that can observe higher numbers of call-chains while reporting smaller numbers of

false positives, especially when compared to techniques that operate on individual

probes or that randomly distribute the profiling probes. Our results also indicated

that over-approximating which probes are needed to profile the properties of interest

can be beneficial when enumerating the exact profiling probes is not cost-effective.

The second technique, lattice-based sampling, specifically targets path properties.

The technique leverages the structures of the path properties of interest to construct

a richer and a more diversified pool of path properties. This provides a convenient

mechanism for engineers to obtain a large selection of path properties to sample from

without having to derive a specification for a complex path property. The properties

in the pool can be ordered as a lattice based on their alphabets containment. We

then defined several selection strategies that made use of the subsumption orderings

of the properties’ alphabets and the structures of the individual properties. We also

accommodated the need for engineers to shift the profiling interest during a deploy-

ment by providing a mechanism to incorporate field information for refining future

probe selection. The mechanism requires a mapping function for the properties lattice

that associates each property with a weight value that can be continuously adjusted.

We evaluated the techniques with respect to their violation detection capability. We

found that sampling strategies operating on the richer lattice sampling space were

able to detect more violations under any overhead constraints than when sampling

on the original properties. By employing selection strategies based on the lattice

structure, a sampling strategy can also select path properties that provide an even

higher violation detection capability. Finally, we showed the usefulness of continuous

readjustment of profiling targets to detect more violations. Coupled with the use of
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field data to guide property selection, the violations can be detected at a higher rate.

To address the challenge of managing field data to increase the efficiency and effec-

tiveness of post-analysis activities that consume that field data in post-deployment,

we developed a trace normalization technique. The technique operates by identifying

and normalizing noise in traces originating from the variations in event sequences

that do not change the semantics of the program from the client analysis perspective.

Our technique first decomposes the traces into segments. Second, it groups together

segments that are delimited by the same starting and ending state. Third, the tech-

nique attempts to identify irrelevant variations within sets of trace segments. We

defined two heuristic patterns that correspond to commutative and collapsible pro-

gram event variations. Finally, it normalizes the detected variations by re-ordering

commuted events and dropping the collapsible events. We studied two client analyses

that consumed the traces normalized by our technique and evaluated their results

in the context of information retrieval: precision and recall. We showed that the

precision of the post-analysis results can be improved by slightly sacrificing their re-

call potential, and can be beneficial for client analyses that favor precision instead of

recall.

We can make several observations across the studies. First, when the overhead

budget is tight, our analysis techniques are useful to ensure that the limited profiling

probes that we deploy along with the program can provide more valuable observations

when compared to randomly selecting the instrumentation probes. On the other hand,

when the overhead budget is high and more probes can be allocated in a program

variant the value of our analysis techniques diminishes. However, strict overhead

budgets are common in deployed environments making analysis techniques such as

ours important.Second, profiling more deployed sites will increase the number of field

observations. However, the gains from these observations diminish as the number of
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deployments increases and observations become redundant. At that point, techniques

that can reduce the noise in the execution traces, such as our trace normalization

technique, become necessary. Finally, we observe that profiling more properties, either

by packing more dependent probes into a program variant or by generating more

program variants (i.e., each profiling a distinct set of properties) is advantageous. The

gain can be extended by employing selection techniques that yield a set of diverse

properties to be profiled.

As future research directions, we recognize several opportunities to improve our

proposed techniques. We have discussed them in detail at the end of Chapters 3,

4, and 5 and summarize them here; (1) by varying different parameter values that

tune the proposed techniques, and (2) by adapting the techniques to address different

cost functions, types of path properties, and field feedback types. In general, we

believe that there is value in performing more empirical evaluations of our techniques

using (1) artifacts with varied characteristics to generalize the potential benefit of our

techniques and (2) traces that are obtained from real deployments in order for our

techniques to observe and truly benefit from their richness and complexity.

We will continue to broaden the scope of our techniques’ applicability by removing

assumptions and considering broader classes of programs and fault types; and recog-

nizing the specific challenges that are caused from this. For example, we have been

focusing on profiling for correctness of the program’s own functionality, where we have

not considered violations due to interactions with other components (e.g., databases),

and on capturing trace events that observe program block and method executions.

Another profiling challenge can be observed when profiling for concurrent programs.

In such programs, the issue of noise originating from irrelevant sequence variations

in traces might be more prevalent due to execution interleaving. Identifying which

variations are truly relevant when leveraging field data to test for faults related to
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race conditions, such as deadlock, can be problematic. Another example are appli-

cations targeted for mobile devices which are notoriously difficult to test thoroughly

in-house because of their numerous modalities and the constraints in profiling such

devices because of their limited power

There also seems to be a natural extension of leveraging the obtained field data

for fault diagnostics to provide more immediate actions for the benefit of users, such

as to provide fault containment. Michail and Xie, for example, have used a fault

prediction model built from knowledge of past failures to warn users if their actions

might lead to a failure [56]. Microsoft, on the other hand, provides feedback to users

when they submit a fault report that has been previously seen. We envision similar

opportunities as well. For example, during deployment, there is an opportunity to

use models of fault prediction to determine checkpoints in the program execution to

initiate a more aggressive profiling or to store program state information for rollback

opportunities. A finite state automata can be leveraged to identify such checkpoints,

such as at a state in which its transitions may lead to error states.

In the post-deployment phase, there is an additional research opportunity and

challenge in attempting to enhance field data observations through static analysis

and statistical inference. In our lattice-based sampling technique, we have shown

that we can leverage a field observation of an FSA to infer observations of other

properties that were not profiled. Recording the frequency of observed transitions and

utilizing knowledge of static structure of the program (and its corresponding mapping

to the FSA) may mitigate the need for capturing acyclic transition sequence, allowing

engineers to choose a feedback type that is less costly to capture. Similarly, given

two observed properties with a common super-property, the frequency information

and the program source code can be leverage to calculate the likelihood of observing

a transition sequence of the super-property.
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Finally, we believe that there are valuable insights to be gained from conducting

qualitative studies gauging users’ acceptance to profiling activity in deployed environ-

ments. Identifying users’ concerns when they are deciding to opt in to the profiling

activity is crucial and will influence future research. For example, privacy concerns

may drive research to further abstract the type of information gathered from the field,

while users’ rejection due to the lack of perceived value for them in providing data

may direct the focus to develop fault tolerance mechanisms that are more visible to

users. It is time to get user feedback to guide the next research phase of deployed

software analysis.
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