
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

2013

Directed Test Suite Augmentation
Zhihong Xu
University of Nebraska-Lincoln, xuzhihong.cq@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Xu, Zhihong, "Directed Test Suite Augmentation" (2013). Computer Science and Engineering: Theses, Dissertations, and Student
Research. 60.
http://digitalcommons.unl.edu/computerscidiss/60

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/60?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages

DIRECTED TEST SUITE AUGMENTATION

by

Zhihong Xu

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Gregg Rothermel

Lincoln, Nebraska

May, 2013

DIRECTED TEST SUITE AUGMENTATION

Zhihong Xu, Ph. D.

University of Nebraska, 2013

Adviser: Gregg Rothermel

Test suite augmentation techniques are used in regression testing to identify code ele-

ments affected by changes and to generate test cases to cover those elements. Whereas

methods and techniques to find affected elements have been extensively researched

in regression testing, the problem of generating new test cases to cover these ele-

ments cost-effectively has rarely been studied. We believe that reusing existing test

cases will help us achieve this task. This research develops test suite augmentation

techniques that reuse existing test cases to automatically generate new test cases to

cost-effectively cover affected elements. We begin by using two dynamic test case

generation techniques for augmentation, involving concolic testing and genetic al-

gorithms. Then we investigate other factors, which we believe have an impact on

the test suite augmentation, with the two techniques both considered. After this,

we present a hybrid algorithm for test suite augmentation, that combines multiple

approaches while accounting for the effects of other factors. Finally, we apply the

test suite augmentation concept to software product line testing to help generate test

cases for software product lines.

iii

ACKNOWLEDGMENTS

I would like to thank all those whose helped make this dissertation’s existence possible.

Thank you for the encouragement, support, and all prompt feedback during these six

years.

I would like to thank my advisor Dr. Gregg Rothermel for supporting me, shar-

ing his knowledge, and helping me during the six years. I would like to thank Dr.

Myra Cohen, Dr. Witawas Srisa-an and Dr. David Rosenbaum for serving on my

committee, reading my dissertation and evaluating my work. Especially, I would like

to mention Dr. Myra Cohen, who has been involved in my work and also given me a

lot of help and suggestions.

I would like to thank all my friends in the Esquared lab, Tingting, Pingyu, Katie,

Wayne, Xiao and Elena. They have been so friendly and given a lot of help. When I

need them, they are always there.

I also would like to thank Dr. Moonzoo Kim and his student, Yunho Kim. I have

been working with them for three years and they have also given me a lot of help and

suggestions for my work.

Lastly, I would like to thank my family for the support and encouragement at all

times.

iv

Contents

Contents iv

List of Figures x

List of Tables xi

1 Introduction 1

2 Background and Related Work 4

2.1 Test Suite Augmentation . 4

2.2 Test Case Generation . 6

2.3 Software Product Lines . 7

3 Basic Test Suite Augmentation Technique 1 - Using Concolic Testing 11

3.1 Concolic Test Case Generation . 11

3.2 Augmentation Algorithm . 13

3.3 Example . 16

3.4 Extension to Interprocedural . 18

3.5 Implementation . 18

3.6 Empirical Study . 19

3.6.1 Objects of Analysis . 19

v

3.6.2 Variables and Measures . 20

3.6.3 Experiment Setup . 22

3.7 Threats to Validity . 24

3.8 Results and Analysis . 25

3.8.1 RQ1: Number of Constraint Solver Calls 25

3.8.2 RQ2: Coverage Criteria . 27

3.9 Discussion . 28

3.10 Conclusions . 29

4 Basic Test Suite Augmentation Technique 2 - Using a Genetic

Algorithm 30

4.1 Genetic Test Case Generation . 30

4.2 Factors Affecting Augmentation When Using Genetic Algorithms . . . 31

4.3 Case Study . 33

4.3.1 Objects of Analysis . 34

4.3.2 Genetic Algorithm Implementation 34

4.3.3 Factors, Variables, and Measures 37

4.3.4 Experiment Setup . 43

4.4 Study Limitations . 43

4.5 Results and Analysis . 44

4.5.1 RQ1: Costs of Augmentation 45

4.5.2 RQ2: Effectiveness of Augmentation 46

4.6 Discussion . 48

4.7 Conclusions . 50

5 A Framework for Test Suite Augmentation 51

5.1 Framework . 51

vi

5.2 Augmentation Techniques . 52

5.2.1 Augmentation Basics . 52

5.2.1.1 Coverage Criterion 52

5.2.1.2 Identifying Affected Elements 53

5.2.1.3 Ordering Affected Elements 53

5.2.1.4 Test Case Reuse Approach 55

5.2.2 Main Augmentation Algorithm 55

5.2.3 Genetic Test Suite Augmentation 57

5.2.4 Concolic Test Suite Augmentation 58

5.3 Empirical Study 1 . 61

5.3.1 Objects of Analysis . 61

5.3.2 Variables and Measures . 63

5.3.3 Experiment Setup . 64

5.3.4 Experiment Operation . 67

5.3.5 Threats to Validity . 68

5.3.6 Results and Analysis . 69

5.3.6.1 RQ1: Order of Affected Elements 71

5.3.6.2 RQ2: Use of Existing and New Test Cases 73

5.3.6.3 RQ3: Test Case Generation Algorithm 75

5.3.7 Discussion and Implications 77

5.3.7.1 Affected Element Order 77

5.3.7.2 Test Case Reuse Approach 78

5.3.7.3 Test Case Generation Techniques 79

5.3.7.4 Iteration Limits . 80

5.3.7.5 Initial Test Suite Characteristics 81

5.3.7.6 The Benefits of Augmentation 83

vii

5.4 Empirical Study 2 . 84

5.4.1 Experiment Setup . 86

5.4.2 Data and Analysis . 89

5.4.3 Discussion and Implications 91

5.5 Additional Analysis and Implications 93

5.5.1 Overall Comparison . 94

5.5.2 Analysis of Specific Branches 98

5.6 Conclusions and Future Work . 105

6 Advanced Test Suite Augmentation Technique - Hybrid Algorithm 106

6.1 Related Work: Combination of Techniques 106

6.2 Direct Hybrid Test Suite Augmentation 107

6.3 Empirical Study . 109

6.3.1 Objects of Analysis . 109

6.3.2 Variables and Measures . 110

6.3.3 Experiment Setup and Operation 111

6.3.4 Threats to Validity . 111

6.4 Results . 112

6.4.1 RQ1: Hybrid versus Concolic 113

6.4.2 RQ2: Hybrid versus Genetic 115

6.5 Discussion and Implications . 116

6.5.1 Masked-out Benefit of Concolic Testing 117

6.5.2 Weakened Diversity of Test Case Population 118

6.5.3 Potential Remedies . 119

6.6 Conclusions . 120

7 Test Suite Augmentation for SPLs 121

viii

7.1 Software Product Line Testing . 121

7.2 CONTESA . 122

7.2.1 Identifying Targets . 124

7.2.2 Ordering and Selecting a Next Product 125

7.2.2.1 A Static Order . 126

7.2.2.2 A Dynamic Order 128

7.2.3 Generating Test Cases . 129

7.3 Empirical Study 1 . 130

7.3.1 Objects of Analysis . 130

7.3.2 Variables and Measures . 131

7.3.3 Experiment Setup and Operation 131

7.3.4 Threats to Validity . 132

7.3.5 Results . 133

7.3.5.1 RQ1: Independent Test Case Generation Versus Con-

tinuous Test Suite Augmentation 134

7.3.5.2 RQ2: Order Effects in Continuous Test Suite Aug-

mentation . 135

7.4 Empirical Study 2 . 136

7.4.1 Objects of Analysis . 137

7.4.2 Variables and Measures . 138

7.4.3 Experiment Setup and Operation 138

7.4.4 Threats to Validity . 138

7.4.5 Results . 139

7.4.5.1 RQ3: Coverage Achieved by Continuous Versus Specification-

Based Test Case Generation 139

ix

7.4.5.2 RQ4: Coverage Achieved During Execution Versus

Coverage Calculated by CONTESA 140

7.4.5.3 RQ5: Faults Detected by CONTESA Versus Faults

Detected by Specification-Based Test Case Generation 140

7.5 Discussion . 141

7.5.1 Overall Expense . 141

7.5.2 Continuous Effectiveness Change 141

7.6 Conclusions and Future Work . 143

8 Conclusion and Future Work 144

Bibliography 147

x

List of Figures

3.1 CFGs for two program versions . 17

3.2 Solver calls: DTSA vs Concolic . 26

4.1 Partial control flow graphs for two versions of a program 37

4.2 Costs of applying the five treatments, per treatment and version 44

4.3 Coverage obtained in applying the five treatments, per treatment and version 45

5.1 Test Suite Augmentation Framework . 52

5.2 Interprocedural control flow graph . 55

5.3 Comparison of branch coverage behaviors for concolic and genetic algo-

rithms on two representative cases. 95

5.4 Symbolic execution tree of the example code 103

6.1 Overview of hybrid test suite augmentation approach 107

7.1 Overview of CONTESA . 123

7.2 Efficiency and effectiveness for GPL and Bali 133

7.3 Effectiveness achieved by test suites from SB, calculated by CsE and when

run CsA . 139

xi

List of Tables

3.1 Differences in Numbers of Solver Calls 27

3.2 Coverage Results . 27

4.1 Disposition of Test Cases Under the Five Treatments for the Example of

Figure 1 . 39

4.2 Results of ANOVA Analysis . 46

4.3 Results of Bonferroni Means Test on Cost 46

4.4 Results of Bonferroni Means Test on Coverage 47

5.1 Objects of Analysis . 62

5.2 Branch Coverage and Sizes of Initial Test Suites 63

5.3 Coverage Using DFO Order and Existing Test Cases 70

5.4 Coverage Using DFO Order and Existing plus New Test Cases 70

5.5 Coverage Using Random Order and Existing Test Cases 70

5.6 Coverage Using Random Order and Existing plus New Test Cases 70

5.7 Impact of Order in which Affected Elements are Considered on Coverage

and Cost. 71

5.8 Impact of Test Case Reuse Approaches on Coverage and Cost. 74

5.9 Comparison of Coverage: Genetic vs Concolic 75

5.10 Impact of Test Reuse in Quartiles . 83

xii

5.11 Results of Concolic Testing From Scratch 84

5.12 Initial Coverage Information for grep . 85

5.13 Coverage and Cost Data for grep, per Version and Technique 89

5.14 Branch Coverage Differences – Smaller Programs 93

5.15 Branch Coverage Differences – grep . 96

5.16 Numbers of Times in which Branches in grep were Covered by One, Two,

or Three Test Suites, for DFO with Existing and New Test Cases 98

5.17 Summary of Coverage Limitations . 101

6.1 Coverage and Cost Data for Printtok1 113

6.2 Coverage and Cost Data for Printtok2 113

6.3 Coverage and Cost Data for Replace . 113

6.4 Branches Covered by Both Algorithms over Branched Covered by the Con-

colic Algorithm . 117

6.5 Cost Differences Between Hybrid Algorithms 119

7.1 Cumulative Effectiveness on Bali Products at Each Stage of Augmentation 142

1

Chapter 1

Introduction

Software engineers use regression testing to validate software as it evolves. To do

this cost-effectively, they often begin by running existing test cases. Existing test

cases, however, may not be adequate to validate the code or system behaviors that

are present in a new version of a system. Test suite augmentation techniques (e.g.,

[2, 78]) address this problem, by identifying where new test cases are needed and then

creating them.

Despite the need for test suite augmentation, most research on regression testing

has focused on reducing testing effort and increasing efficiency when running existing

test cases. There has been research on approaches for identifying affected elements

(code components potentially affected by changes) (e.g., [2, 74, 78]), but these ap-

proaches do not then generate test cases, leaving that task to engineers. There has

been research on automatically generating test cases given pre-supplied coverage goals

(e.g., [30, 81]), but this research has not attempted to integrate the test case genera-

tion task with reuse of existing test cases.

In principle, any test case generation technique could be used to generate test cases

for a modified program. We believe, however, that test case generation techniques that

2

leverage existing test cases hold the greatest promise where test suite augmentation

is concerned. This is because existing test cases provide a rich source of data on

potential inputs and code reachability, and existing test cases are naturally available

as a starting point in the regression testing context. Further, recent research on test

case generation has resulted in techniques that rely on dynamic test execution, and

such techniques can naturally leverage existing test cases.

Given the foregoing discussion, our research has an overall goal of developing

test suite augmentation techniques that support this task cost-effectively for different

kinds of programs. We present a set of techniques that not only integrate test case

generation techniques with reuse of existing test cases, but also consider important

factors that affect the cost-effectiveness of the augmentation process.

It is important to investigate our approach on different types of programs since

program characteristics may impact how well various techniques work. Therefore a

major element of our work involves empirical investigation of augmentation techniques

on real software systems. Our results offer useful suggestions for practical use of

augmentation. Our research also offers incentives for researchers who work on test

case generation techniques to consider reusing test cases to improve these techniques

themselves.

In this dissertation, we provide techniques for cost-effective test suite augmen-

tation. First, we investigate dynamic test case generation techniques that can use

existing test cases and are suitable for our goal. We begin by using a concolic test

case generation technique in test suite augmentation, in which we bring up the idea

of test reuse. We present this work in Chapter 3.

Second, we use a genetic test case generation technique, further investigate the

test reuse ideas and find a set of factors that affect the cost-effectiveness of test suite

augmentation. This work is presented in Chapter 4.

3

After investigating basic test suite augmentation techniques, we explore other

factors that could affect the cost-effectiveness of test suite augmentation and how

these factors affect the test case generation techniques in the test suite augmentation

context. This is presented in Chapter 5.

Fourth, we develop a hybrid test suite augmentation technique by considering the

identified factors including test case generation techniques. We present this work in

Chapter 6.

Finally, we extend our test suite augmentation idea to software product lines,

which share similarities with versions of programs, and we build a test suite augmen-

tation framework for software product lines. This work is presented in Chapter 7.

The contributions of this research are: (1) bringing the test reuse notion into test

suite augmentation (Chapter 3); (2) identifying factors affecting the test suite aug-

mentation process (Chapter 4); (3) developing cost-effective test suite augmentation

techniques (Chapter 5 and 6); (4) extending the test suite augmentation idea into

SPLs (Chapter 7); (5) providing insights into the practical use of augmentation for

engineers (Chapters 5, 6 and 7).

4

Chapter 2

Background and Related Work

We provide background and describe related work on test suite augmentation, auto-

mated test case generation and software product lines.

2.1 Test Suite Augmentation

Let P be a program, let P ′ be a modified version of P , and let T be a test suite for

P . Regression testing is concerned with validating P ′. To facilitate this, engineers

often begin by reusing T , and a wide variety of approaches have been developed for

rendering such reuse more cost-effective via techniques such as regression test selection

(e.g., [21, 63, 72, 76, 77, 103]) and test case prioritization (e.g., [34, 51, 94]).

Test suite augmentation techniques, in contrast, do not focus specifically on the

reuse of T . Rather, they are concerned with the tasks of (1) identifying affected

elements (portions of P ′ or its specification for which new test cases are needed), and

then (2) creating or guiding the creation of test cases that exercise these elements.

Various algorithms have been proposed for identifying affected elements in soft-

ware systems following changes. Some of these [13] operate on levels above the code

5

such as on models or specifications, but most operate at the level of code, and in

this dissertation we focus on these. Code level techniques [11, 41, 74] use various

analyses, such as slicing on program dependence graphs, to select existing test cases

that should be re-executed, while also identifying portions of the code that are related

to changes and should be tested. However, these approaches do not provide methods

for generating actual test cases to cover the identified code.

Five recent papers [2, 67, 68, 78, 86] specifically address test suite augmentation.

Two of these papers [2, 78] present an approach that combines dependence analysis

and symbolic execution to identify chains of data and control dependencies that, if

tested, are likely to exercise the effects of changes. A potential advantage of this

approach is a fine-grained identification of affected elements; however, the papers

do not present or consider any specific algorithms for generating test cases. A third

paper [67] presents an approach to program differencing using symbolic execution that

can be used to identify affected elements more precisely than the approach in [2, 78],

and yields constraints that can be input to a solver to generate test cases for those

requirements. A fourth paper [68] uses program analysis techniques to identify the

parts of new programs that are affected by changes and apply symbolic execution

only on these parts. None of the foregoing approaches, however, are integrated with

reuse of existing test cases. Finally, a recent paper [86] presents an approach for using

dynamic symbolic execution to reveal execution paths that need to be re-tested, in

which existing test cases can be utilized.

In other related work [104], Yoo and Harman present a study of test data aug-

mentation. They experiment with the quality of test cases generated from existing

test suites using an heuristic search algorithm. While their work presents a technique

that is similar to techniques that we consider in this dissertation (because it uses a

search algorithm seeded with existing test cases), their goal is to duplicate coverage in

6

a single release in order to improve fault detection, not to obtain coverage of affected

elements in a subsequent release.

2.2 Test Case Generation

While in practice test cases are usually generated manually, there has been a great

deal of research on techniques for automated test case generation. For example, there

has been work on generating test cases from specifications (e.g., [19, 55, 61]), from

formal models (e.g., [6, 42, 92]), from semi-formal models (e.g., [14, 69]) and by

random selection of inputs (e.g., [12, 20]).

In this work we focus on code-based test case generation techniques, many of which

have been investigated in prior work. Among these, several techniques (e.g., [22, 28,

40]) use symbolic execution to find the constraints, in terms of input variables, that

must be satisfied in order to execute a target path, and attempt to solve this system

of constraints to obtain a test case for that path.

While the foregoing test case generation techniques are static, other techniques

make use of dynamic information. Execution-oriented techniques [49] incorporate

dynamic execution information into the search for inputs, using function minimization

to solve subgoals that contribute toward an intended coverage goal. Goal-oriented

techniques [37] also use function minimization to solve subgoals leading toward an

intended coverage goal; however, they focus on the final goal rather than on a specific

path, concentrating on executions that can be determined through analysis (e.g.,

through the use of data dependence information) to possibly influence progress toward

that goal.

Several test case generation techniques use evolutionary or search-based approaches

(e.g., [7, 30, 58, 66, 93]) such as genetic algorithms, tabu search, and simulated an-

7

nealing to generate test cases. Other work [18, 23, 39, 80, 81] combines concrete and

symbolic test execution to generate test inputs. This second approach is known as

concolic testing or dynamic symbolic execution, and has proven useful for generating

test cases for C and Java programs. The approach has been extended to generate

test data for database applications [35] and for Web applications using PHP [5, 96].

Implementations of several of the techniques discussed above are available. Java

Path Finder (JPF) [46] is a representative symbolic execution tool; it began as a

software model checker, but now is provided with various different execution models

and extensions including some for generating test cases using symbolic execution.

There are several tools (EXE [18], DART [39], CUTE [81], Crest [26] and KLEE [17])

that apply concolic testing to unit testing of C programs. There are also tools that

apply search based techniques. For example, AUSTIN [50] is a structural test data

generation tool (for unit tests) for the C language that uses search based techniques.

AUSTIN is based on the CIL framework and currently supports a random search, as

well as a simple hill climber that is augmented with a set of constraint solving rules for

pointer type inputs. A second tool is called EvoSuite [38], and uses a hybrid approach

for generating test cases for Java programs. EvoSuite generates and optimizes entire

test suites with the goal of satisfying a coverage criterion.

2.3 Software Product Lines

Software product line (SPL) engineering has been shown to be a very successful

approach to software development that allows engineers to build families of products

that share some functionalities in a short time and with high quality [91]. This

paradigm has received attention in industry and the software research community as

it shows how the development of products can be improved and more importantly how

8

to respond quickly and effectively to market opportunities. According to Clements

et al. [24], a software product line is “a set of software-intensive systems sharing

a common, managed set of features that satisfy the specific needs of a particular

segment or mission and that are developed from a common set of core assets in a

prescribed way.” SPL engineering re-uses and combines individual software building

blocks guided by a feature model [24].

While SPL engineering can reduce the time required to develop products compared

to the time required by traditional software development methodologies, it actually

complicates the process of software testing. First, there are an exponential number

of products in a product line with respect to the number of features, and these

may all require some form of testing. Second, individual test cases may be valid

and/or effective on only a subset of products, making their re-use across products

difficult. Third, although products all share some common code, they are often

tested as individual programs (rather than as a family of products) with the aim of

satisfying the specifications for each product instance.

Software product line development promises to develop a family of products in

short time with high quality at lower costs [91]. To achieve this goal, quality as-

surance becomes an essential part of the development process. Quality attributes

such as correctness and reliability have begun to receive attention from industry and

the research community as a consequence of the efforts to use more effectively the

assets of an SPL throughout the products [36, 59]. There are many research pa-

pers concerned with testing and analyzing SPLs. McGregor [45] introduces a set of

testing techniques for software product lines including core assets of testing. These

techniques are similar to techniques used in software development of single systems.

Several authors [9, 60, 62, 73] have proposed the use of use cases to systematically

reuse test specifications. Olimpiew et al. [62] introduces CADeT (Customizable Ac-

9

tivity diagrams, Decision tables and Test specifications). CADeT is a functional

test design method that utilizes feature-based test coverage criteria and use cases

creating a reusable set of test specifications. Nebut et al. [60] use use cases to gen-

erate product-specific functional test objectives, and propose a tool to automate the

test case derivation. References [71, 73] present ScenTED (Scenario-based Test case

Derivation), a technique that supports the derivation of system test cases from do-

main requirements. Other research on methods for testing families of products include

the PLUTO testing methodology [9], where the feature model is used to develop ex-

tended use cases, PLUCS (Product Line Use Cases), that contain variability which

can formulate a full set of test cases using category partitioning for the family of

products.

Thum et al. [87] categorize SPL analysis techniques into three categories: feature-

based (when approaching the system from the individual features), product-based

(when analyzing the system from the product perspective), and family-based (when

viewing the entire product line as a single program). The same categorization can be

applied to testing techniques.

Much of the work on reducing test effort for SPLs has been performed from either

the feature or product view. Specification based testing approaches involve the use

of the feature model to drive selection of products for testing [16], or to generate test

cases that are specific to individual products [10]. Research on model based testing

(called delta-oriented testing) has focused on the deltas (or changes) in behavior

between products to direct the order of testing subsets of products while increasing

re-use between them [52]. Recent trends in software product line testing have also

resulted in approaches to reduce the combinatorial space in SPL testing through

the use of sampling techniques [25, 64] or static analyses that limit the numbers of

10

combinations of features that must be tested together (or the number of test cases to

run for each product) [82, 47].

11

Chapter 3

Basic Test Suite Augmentation

Technique 1 - Using Concolic

Testing

Arguably, the most important factor affecting test suite augmentation is the test case

generation technique used. There are many test case generation techniques available,

but the techniques we use in this work are dynamic ones that can leverage existing test

cases, such as concolic and genetic test case generation techniques. In this chapter,

we report work using concolic testing in the test suite augmentation context. (This

work has appeared in [102].)

3.1 Concolic Test Case Generation

Concolic testing [18, 39, 81] concretely executes a program while carrying along a

symbolic state and simultaneously performing symbolic execution of the path that is

being executed. It then uses the symbolic path constraints gathered along the way to

12

generate new inputs that will drive the program along a different path on a subsequent

iteration, by negating a predicate in the path constraints. In this way, concrete

execution guides the symbolic execution and replaces complex symbolic expressions

with concrete values when needed to mitigate the incompleteness of the constraint

solvers [81]. For example, suppose the path constraint collected from one execution

is x > 1 ∧ y > 1 ∧ xy > 8 with x = 2 and y = 2 and after negation the new path

constraint becomes x > 1∧ y > 1∧ xy < 8. However, this path constraints contain a

non-linear formula which is difficult for constrain solvers to solve. Since we have the

concrete values for the two variables x, y, we can replace one of them with its concrete

value and send the modified constraints to solver again. If we replace y with 2, the

constrain becomes x > 1∧ 2 > 1∧ 2x > 8 and it will be easily solved by a solver and

the results from the solver are a new input. Conversely, symbolic execution helps to

generate concrete inputs for the next execution to increase coverage in the concrete

execution scope.

In the traditional application of concolic testing, test case reuse is not considered,

and the focus of test generation is on path coverage. First, a random input is applied

to the program and the algorithm collects the path condition for this execution. Next,

the algorithm negates the last predicate in this path condition and obtains a new path

condition. Calling a constraint solver on this path condition yields a new input, and

a new iteration then commences, in which the algorithm again attempts to negate the

last predicate. If the algorithm discovers that a path condition has been encountered

before, it ignores it and negates the second-to-last predicate. This process continues

until no more new path conditions can be generated. Ideally, the end result of the

process is a set of test cases that cover all paths. (In practice, bounds on path length

or algorithm run-time can be applied).

13

Algorithm 1 DTSA
Require: Set T of test cases for P

CFGp, P ’s control flow graph
CFGp′ , P

′’s control flow graph
Ensure: Set T ′ of test cases for P ′

1: Main Procedure
2: Goalset=RTS
3: Goalset=RerunAffected
4: if Goalset 6= ∅ then
5: call Augment
6: end if
7:
8: Procedure RTS
9: call Dejavu to find affected test cases and update unaffected test cases’ trace information and path

conditions in P ′

10: subtract branches in CFGp′ covered by unaffected tests to form Goalset
11:
12: Procedure RerunAffected
13: rerun all affected test cases and gather their trace information and path conditions
14: subtract branches in CFGp′ covered by affected test cases from Goalset
15:
16: Procedure Augment
17: Predicatehit=PickPredicatehit(Goalset,CFGp′)
18: order branches in Predicatehit
19: for each ej ∈ Predicatehit do
20: find all test cases covering the source of ej
21: use their path conditions to do DelNeg at e′js source
22: if path conditions after DelNeg have not been seen before then
23: call ConstraintSolver to solve them
24: if they are solvable then
25: put them into T ′

26: run new generated test cases to obtain trace information, path conditions and coverage infor-
mation

27: if they cover any branches in Goalset then
28: subtract them from Goalset
29: update Predicatehit according to Goalset
30: end if
31: end if
32: end if
33: end for

3.2 Augmentation Algorithm

Having introduced concolic testing, we now describe how we use concolic testing for

test suite augmentation.

When program P evolves into P ′, coverage of P ′ by a prior test suite T can

be affected in various ways. Some new code in P ′ may simply not be reached by

test cases in T , and some test cases in T may take new paths in P ′, leaving code

that was previously covered in P uncovered. Regression test selection (RTS) tech-

14

niques (e.g., [11, 76], for a survey see [75]) use information about P , P ′ and T to

select a subset T ′ of T that encounter code changed for P ′, and thus may take dif-

ferent paths in P ′. We can use these techniques to indicate such test cases. In this

work we use one particular safe RTS technique, Dejavu [76], to help drive test suite

augmentation. DejaVu performs simultaneous depth-first traversals on control flow

graphs (CFGs) for procedures in P and P ′ to find dangerous edges that lead to code

that has changed. Execution traces of test cases (bit vectors indicating whether edges

were taken) on the old version of P are then used to select test cases that traversed

dangerous edges in P . We then use information gathered previously for test cases in T

to generate test cases that cover uncovered code to form a branch coverage test suite

T ′ for P ′, using a modified concolic testing approach. We now discuss our approach

as applied intraprocedurally (to single procedures).

Algorithm 1 presents our algorithm for directed test suite augmentation (DTSA).

The main procedure of DTSA (lines 1-6), consists of three steps. Step 1 uses the

Dejavu RTS technique to partition test suite T into two subsets, one containing af-

fected test cases (test cases that reach dangerous edges) and one containing unaffected

test cases (test cases that do not reach dangerous edges). Step 2 reruns the affected

test cases, and calculates a testing objective which includes all of the branches in P ′

that need to be covered. Finally, based on information retrieved from prior execu-

tions of unaffected test cases and executions of affected test cases, Step 3 attempts

to generate test cases to cover the branches in the testing objective.

Procedure RTS (lines 8-10) summarizes Step 1. The algorithm invokes Dejavu

to find the sets of affected and unaffected test cases. We extend Dejavu to also

find the corresponding unaffected test cases’ trace information, path conditions and

covered branches in P ′ as it synchronously traverses the CFGs, a process that succeeds

because the traces and condition information that need updating all exist prior to

15

code changes and can be found as Dejavu traverses the graphs. Next, the algorithm

(line 10) subtracts the branches covered by the unaffected test cases from CFGp′ ,

placing remaining branches into Goalset.

Procedure RerunAffected (lines 12-14) summarizes Step 2. The procedure reruns

all affected cases that are selected by Dejavu to allow engineers to verify their outputs;

during this re-execution, trace and path condition information for these test cases are

also collected. If an affected test case covers branches in Goalset, the branches it

covers are subtracted from that set. After all affected test cases have been run,

control returns to the Main Procedure which then checks whether Goalset is empty

(line 4). If it is, then our test suite is branch coverage adequate for P ′ and the

algorithm terminates; otherwise, the algorithm continues.

The third and most significant step is procedure Augment (lines 16-33). Based

on information gathered in the first two steps, the algorithm attempts to augment T

using a concolic testing approach. The step begins (line 17) by locating, in Goalset,

the branches for which the source node is a predicate node that is covered by at least

one existing test case; these become the immediate targets for test generation. (These

branches are ordered in line 18 for optimization reasons; we explain this later.)

The algorithm next enters a loop in which it selects branches one by one. For a

given branch ej with source (predicate) node p, the algorithm tries all path conditions

for test cases whose execution traces reach p. For each such path condition, the

algorithm deletes all predicates following p and negates p (the DelNeg operation in

line 21) to generate another path condition. If the generated path condition has not

been seen before, the algorithm uses it to generate a new test case. Otherwise, the

algorithm ignores it and moves on to the next path condition.

By calling a constraint solver to solve a modified path condition, the algorithm

may obtain a test case to cover ej. This test case and its trace and path condition

16

information are saved. If the test case’s trace covers branches in Goalset, Goalset

and Predicatehit are updated to indicate the new coverage. If the solver cannot

solve the path condition, the algorithm considers other path conditions that cover

the predicate. If all path conditions fail the branch may be unreachable, or it is

reachable and other methods will need to be found to generate test cases to reach it.

Two aspects of DTSA that differentiate it from existing instantiations of concolic

testing bear further discussion. First, the algorithm iterates through all path condi-

tions whose execution traces reach p (line 20) instead of stopping when a test case

has been generated for the initial target branch ej. It does this because doing so

may allow it to generate more test cases to reach predicates following ej, which may

control additional branches needing to be covered. This increases the possibility of

covering branches that are later in flow.

Similar reasoning motivates the branch ordering that occurs in line 18. Test cases

execute CFG edges from predicates that are reached earlier to those that are reached

later, and thus, passing through earlier branches is a precondition to reaching later

branches; achieving coverage of earlier predicates leads automatically to coverage of

certain later ones, and also produces test cases whose path conditions that can be

manipulated to generate new test cases to cover later branches. Thus, we order the

branches in Predicatehit in breadth first order prior to using them.

3.3 Example

We use an example to illustrate how the algorithm works. Suppose we have five

test cases for program foo in Figure 3.1, t1=(x = 2, y = 2), t2=(x = 4, y = 4),

t3=(x = 1, y = 0), t4=(x = 4, y = 3), t5=(x = −1, y = 0), which are adequate for

branch coverage in foo but not in foo′ due to the change in the second predicate.

17

S1: return x;

S4: return x+y;

S2: return x+2; S3: return y;

S1: return x;

S4: return x+y;

S2: return x+2; S3: return y;

T F

T F

E

X

P1: if(x>0)

P3: if(x>3)

int foo (int x, int y)

T F

T F

X

E

P1: if(x>0)

P3: if(x>3)

T FT F

int foo’ (int x, int y)

P2: if(x>=y)P2: if(x>y)

Figure 3.1: CFGs for two program versions

In Procedure RTS, t1, t2, t3 and t4 are selected as affected test cases, since their

traces contain the predicate node P2, whose content has changed. Test t5 is treated

as unaffected and it also covers branches (P1, S4). Goalset contains (P1, P2), (P2,

S1), (P2, P3), (P3, S2) and (P3, S3).

In Procedure RerunAffected for P ′, test cases t1, t2, t3 and t4 are rerun and their

traces are obtained, all of which are (E, P1, P2, S1, X). After subtraction of the

branches covered by these, Goalset contains (P2, P3), (P3, S2) and (P3, S3). Since

P2 is covered by existing test cases, Predicatehit includes (P2, P3). Four test cases’

executions exercise P2, so the algorithm enters line 21 to use their path conditions

one by one to attempt to generate new test cases.

First, t1’s path condition, (x > 0 ∧ x ≥ y), is selected. DelNeg is applied to P2,

obtaining another path condition, (x > 0 ∧ x < y). Using the solver to solve it, a

new test case is produced, t6=(x = 1, y = 2), that covers branches (P2, P3) and

(P3, S3). At the same time, one more path condition, (x > 0 ∧ x < y ∧ x ≤ 3), is

collected. Since this path covers some branches in Goalset, Goalset and Predicatehit

are updated. Now Goalset has one branch left, (P3, S2), and Predicatehit contains

18

one branch, (P3, S2), since P3 is covered by t6. The algorithm also uses the path

conditions for t2, t3 and t4 to generate new test cases. Since these have the same

path conditions as t1 after DelNeg is applied to P2, the algorithm ignores them.

Using (P3, S2) from Predicatehit as the next objective, the algorithm enters the

next iteration. Running DelNeg on predicate P3 of t6’s path condition, another path

condition, (x > 0∧x < y∧x > 3), is produced. By solving this, the algorithm obtains

an input, t7=(x = 4, y = 5), to cover branch (P3, S2). After updating Goalset, it

becomes empty. At this point, the algorithm has generated test data covering all

branches in foo′.

3.4 Extension to Interprocedural

Thus far we have presented our approach at the intraprocedural level, but as men-

tioned in Section 3.1, concolic testing has also been extended to function interprocedu-

rally. Following similar extensions we extended our technique to the interprocedural

level as well. The algorithm remains essentially as presented above, however, in ad-

dition to ordering branches within methods (line 18) we use depth first ordering to

order methods based on the program’s call graph, ensuring that branches in callers

are covered first.

3.5 Implementation

We implemented our algorithms within the Sofya analysis system [48], which provides

utilities for code instrumentation and CFG construction. We used the RTS module,

Dejavu, provided with Sofya, to find affected and unaffected test cases. With the

help of the Soot framework [90], we inserted code into P and P ′’s source code to

19

obtain the path condition for each execution. With CFGs and trace information,

coverage information was obtained. Then we built a concolic testing module to use

trace information to target uncovered branches and generate new test cases.

3.6 Empirical Study

To provide initial data on the potential applicability of our DTSA approach we con-

ducted an empirical study. The research questions that we address are:

• RQ1: How efficient is DTSA at generating test cases to complete the coverage

of P ′?

• RQ2: How effective is DTSA at generating test cases to complete the coverage

of P ′?

The remainder of this section describes our objects of analysis, variables and measures,

experiment setup, results, and threats to validity.

3.6.1 Objects of Analysis

Since our implementation functions only on programs that utilize arithmetic opera-

tions, as objects for our experiment we use 42 versions of one of the Siemens program,

Tcas, which is available from the SIR repository [31]. Tcas includes an original ver-

sion and 41 revised (faulty) versions, which we denote here as v0 and vk (1 ≤ k ≤ 41),

respectively. The program is also equipped with a “universe” of 1608 distinct test

cases, consisting of black and white box tests, and representing a population of po-

tential test cases. Because Tcas was originally written in C and our implementation

of DTSA functions on Java programs, we converted all of the versions of Tcas to

20

Java, as was done in [2]. The Java versions of Tcas have two classes, 10 methods and

about 200 non-comment lines of code.

In practice when programs evolve, some test suites may need to be augmented

while others may not. Therefore, in our study we utilize 1000 distinct test suites for

v0. While test suites are available in the SIR repository for the C version of Tcas,

those suites were not coverage-adequate for the Java version. Thus, we employed the

same greedy strategy utilized to produce the test suites for the C version to our Java

version to create branch-coverage-adequate suites: randomly and greedily selecting

test cases from the universe and adding them to the suite as long as they add coverage,

and continuing until all reachable branches are covered.

3.6.2 Variables and Measures

Independent Variables. As independent variables we wish to consider our DTSA

technique, and an alternative control technique. One such control technique could be

found in existing augmentation techniques; however, as discussed in Section 2.1, all

such existing techniques merely identify coverage requirements, leaving the creation of

test cases to humans. Studies involving humans are expensive, and before conducting

such studies it is reasonable to first determine whether our approach can be applied

efficiently and effectively. As a control technique in this case, it makes sense to

compare the approach to one in which, given P ′, concolic testing is reapplied from

scratch with a goal of achieving branch coverage. Such a comparison allows us to

assess the cost-benefit tradeoffs, in efficiency and effectiveness, that can be achieved

by DTSA through its reuse of test cases.

21

Our independent variable thus consists of two techniques: the DTSA technique

described in Section 3.2 and the basic concolic testing technique described in Section

3.1, modified to operate on branch coverage.

In our implementation of concolic testing, when we run a test case we record its

associated path condition, and then we apply the DelNeg operation for all input-

related predicates, attempting to generate modified path conditions that will lead to

coverage of as many branches as possible. We use Yices [33] to solve these modified

path conditions, yielding new test cases that cover uncovered branches. For each new

test case we repeat this process, until we have utilized all test cases. We record all of

the path conditions that have been used and ignore duplicates. When we apply the

DelNeg operation to a predicate, if both branches are already covered, we ignore the

modified path condition too. Ultimately, for each new version, this process yields a

test suite that covers all reachable branches possible.

Dependent Variables and Measures. We chose two dependent variables and

corresponding measures to address our research questions. The first variable relates

to costs of the techniques, and the second measures the effectiveness of the techniques

in generating test suites. These measures help us understand the general performance

of the two techniques, in a manner that provides guidance on their relative strengths

and weaknesses.

Technique cost. To measure technique cost, one approach would be to measure

execution time. However, with prototype implementations and studies of compara-

tively small applications this measure is not an appropriate indicator of the costs in

practice.

An alternative approach to cost measurement involves tracking the number of

invocations, by techniques, of the operations that most directly determine technique

22

cost. For the techniques that we consider the operation that matters most involves

the solution of constraints. Thus, in this study, we measure the number of constraint

solver calls made by the techniques.

Technique effectiveness. We have chosen attainment of branch coverage as our

test suite generation objective, and both of our techniques target it. For both tech-

niques, however, there are limitations in achieving full branch coverage. When we

use DTSA to generate test cases to cover all branches, we are limited by the existing

test cases, and using these we may be unable to generate test cases that cover certain

branches. In concolic testing, operations focus on predicates and on achieving cover-

age of these may omit generating additional test cases that could otherwise achieve

coverage beneath these.

Given the foregoing, a measure of technique effectiveness involves its ability to

generate coverage-adequate test suites, and thus, we track that coverage.

3.6.3 Experiment Setup

There are several issues regarding the setup for the experiment that need to be clar-

ified. First, we conducted our experiments using v1.5.2 of the Java Runtime Envi-

ronment (JRE) in a Linux environment. For consistency, all measurements for our

object program were collected on the same system, a Pentium-M 1600 Mhz system

with 1 Gb RAM running SuSE Linux 11.1.

Second, concolic testing can fare differently on different runs, depending on the

inputs it randomly chooses initially. DTSA execution can fare differently on given

test suites. Thus, it is important to compare data for both techniques on multiple

executions, and on DTSA using multiple test suites. Accordingly, to conduct our

study, for each version of the object program considered, and for each test suite aug-

23

mented for that program, we also conducted a run of concolic testing on a randomly

generated set of initial inputs. This procedure also ensured equal numbers of runs of

the two techniques, facilitating subsequent analysis.

Third, all code-coverage-based testing techniques face issues involving infeasible

code components – components (e.g., branches, statements, and so forth) that cannot

be reached on any executions and thus cannot be covered. Adequacy criteria are not

required to cover infeasible components, and coverage adequacy is measured in terms

of percentages of feasible components covered. Each version of our object program

has some unreachable branches; we determined these by inspection and we measure

coverage in terms of the feasible branches only.

Finally, given the versions of our programs and the test suites created for them,

there are numerous cases in which test suites applied to changed versions do not leave

reachable branches uncovered. These are cases where augmentation is not needed.

We omit these cases and gather data for just the instances in which augmentation is

necessary.

Given the foregoing, to conduct our study we performed the following two steps.

First, we instrumented and created the CFG for v0. We then executed v0 on each

of our 1000 test suites, collecting test trace information and path conditions for each

test case in each suite, for use in the next step. Second, for each new version vk

(0 < k ≤ 41) of v0, we constructed the CFG for vk. Then, for each version, for test

suite Tk (0 < k ≤ 1000), we performed the following steps. (1) We executed all test

cases in Tk on vk. (2) We ran algorithm DTSA on the CFGs for v0 and vk, together

with the saved test trace and path condition data for v0. If Tk needs to be augmented

the algorithm performs the augmentation step, and we save the required data on

performance. (3) If Tk needed to be augmented in the prior step we also performed

24

a run of concolic testing on vk, starting from randomly generated program inputs,

saving the required data on performance.

3.7 Threats to Validity

The primary threat to external validity for this study involves the representativeness

of our object program, versions, and associated test suites. We have examined only

one software subject, coded in Java, and other systems may exhibit different cost-

benefit tradeoffs. We have considered only one set of versions of this subject, all

based on changes made to the initial version, and sequences of releases may exhibit

different tradeoffs. Subsequent studies are needed to determine the extent to which

our results generalize, and the extent to which the approach scales to larger systems.

The primary threat to internal validity for this experiment is possible faults in

the implementation of the algorithms and in tools we use to perform evaluation. We

controlled for this threat through extensive functional testing of our tools. A second

threat involves inconsistent decisions and practices in the implementation of the two

techniques studied; for example, variation in the efficiency of implementations of

common functionality between techniques could bias data collected. We controlled for

this threat by having these two techniques implemented, insofar as this was possible,

by the same developer, utilizing consistent implementation decisions and shared code.

Where construct validity is concerned, there are other metrics that could be per-

tinent to the effects studied, such as the total execution cost of the two techniques.

However, in this initial study our subject is not sufficiently complex, and our tools not

sufficiently optimized for run-time, to render comparisons of execution times mean-

ingful.

25

3.8 Results and Analysis

For our object of study, we find 29 versions out of 41 versions needing to be augmented,

because with the exception of unreachable branches they have other branches uncov-

ered by old test suites. We analyze our data relative to those 29 versions for each of

our research questions in turn.

3.8.1 RQ1: Number of Constraint Solver Calls

To address RQ1 (efficiency of DTSA compared to efficiency of concolic) we compare

the number of constraint solver calls made by the two techniques. Figure 3.2 presents

boxplots that show the number of solver calls per technique for the 29 versions. The

x axis enumerates each version and technique using a suffix of D to denote DTSA

and a suffix of C to denote concolic testing.

As the boxplots show, in most cases the number of solver calls made by DTSA is

substantially less than the number made by concolic testing. In some cases, however,

as in v13 and v37, there is some overlap in the ranges of the data sets.

To formally assess which mean differences are statistically significant we used a

paired t-test. Our hypothesis is that the number of constraint solver calls of DTSA

will be less than that of concolic testing. We expect to find negative mean differences

(that is, DTSA consistently has fewer calls to the solver than concolic testing on

average) in our data. Mean differences in which the t-test ρ (rho) value is less than

or equal to 0.05 are deemed statistically significant.

Table 3.1 presents the result of our analysis, providing the mean differences in

numbers of solver calls between DTSA and concolic testing per version, and ρ-values

from the t-tests. Versions for which results are not given are those in which only one

test suite needs to be augmented, or, in the case of v15, where two pairs of the values

26

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

Figure 3.2: Solver calls: DTSA vs Concolic

27

Table 3.1: Differences in Numbers of Solver Calls

Version Mean ρ-value Version Mean ρ-value Version Mean ρ-value
difference difference difference

v1 -19.42 < 0.0001 v13 -7.57 < 0.0001 v23 -14.00 < 0.0001
v2 -15.60 < 0.0001 v14 -19.67 0.001 v24 -14.92 < 0.0001
v3 -20.46 < 0.0001 v15 - - v25 - -
v4 -25.64 < 0.0001 v16 -15.86 0.001 v28 -20.75 0.034
v6 - - v17 - - v29 -10.54 < 0.0001
v7 - - v18 -14.00 < 0.0001 v30 -13.50 < 0.0001
v9 - - v19 - - v35 -16.00 0.002
v10 - - v20 - - v37 -7.95 < 0.0001
v11 - - v21 -17.50 0.02 v39 - -
v12 -15.22 < 0.0001 v22 -17.53 < 0.0001 total -10.47 < 0.0001

Table 3.2: Coverage Results

Branches Branches Branches Branches Branches Branches
missed missed missed missed missed missed

by Concolic by DTSA by Concolic by DTSA by Concolic by DTSA
v1 2.96 0 v13 2.89 0 v23 12 3.00
v2 2.00 2.60 v14 2.83 2.83 v24 3.08 1.00
v3 2.87 2.00 v15 3.00 0 v25 3.00 0
v4 2.91 0 v16 2.86 0 v28 3.00 0
v6 3.00 2.00 v17 3.00 0 v29 2.77 0
v7 3.00 0 v18 3.00 0 v30 2.75 0
v9 6.00 2.00 v19 2.00 0 v35 3.00 0
v10 5.00 5.00 v20 6.00 3.00 v37 2.95 0
v11 6.00 5.00 v21 10.50 3.00 v39 3.00 0
v12 3.00 0 v22 3.15 1.00 total 3.88 1.12

are the same and a t-test cannot return a result. As the table shows, all of the mean

differences are less than 0 and all computable ρ-values are less than 0.05, supporting

our hypothesis.

3.8.2 RQ2: Coverage Criteria

Next we explore RQ2, which involves the effectiveness of DTSA relative to concolic

testing, in terms of achieving adequate branch coverage when augmenting test suites.

28

Table 3.2 displays the mean numbers of branches not covered by the test suites

generated by the two techniques. The total number of reachable branches ranges

from 79 to 84 for all versions and all of the branches listed in this table are reachable

— infeasible branches were calculated by inspection and excluded. For most versions

of our object program, concolic testing left about three branches uncovered, with

exception of v9, v10, v11, v21 and v23. On the first three of these, five or six branches

were left uncovered, while on the last two, over 10 were left uncovered. DTSA, in

contrast, achieved 100% branch coverage on 17 versions, with an average of three

on most other versions. On all but versions v10 and v14, however, DTSA achieved

better coverage than concolic testing.

3.9 Discussion

Our results show that, for the object program and versions considered, the DTSA

technique can be applied effectively, and more efficiently than a full application of

concolic testing. In general, when using DTSA to do test suite augmentation, we

are able to restrict our attention to a smaller number of testing objectives than full

concolic testing, resulting in substantially fewer solver calls.

However, DTSA is not always more efficient than full concolic testing. In full con-

colic testing, it is possible to generate a single test case that covers several branches.

In the final step of DTSA, when the algorithm attempts to cover a branch, it may

need to try all of the path conditions that apply, performing the DelNeg operation

on a specific predicate several times and calling the solver to solve each modified path

condition. This process may ultimately lead to unnecessary solver calls. We believe

that this explains the cases (v13 and v37) in which some runs of DTSA utilized more

solver calls than some runs of concolic testing.

29

As Table 3.2 illustrates, an application of full concolic testing is typically less

effective than an application of DTSA. This effectiveness gap is particularly strong

on versions v21 and v23. We attempted to discern the reasons behind this gap, and we

conjecture that the changes to these versions are likely responsible. In both versions

a function is replaced by a value that is one of two possible returned values from this

function at different positions. The values returned by the function have impacts on

subsequent predicates encountered in execution. The changes to return values render

it difficult (but not impossible) to cover some branches. However, this difficulty is

lessened for DTSA where multiple test cases are available to work from.

The lessons suggested by this analysis are that the modifications made to programs

can matter, but also, having multiple inputs (multiple test cases) available that reach

code close to changes can facilitate generation of applicable tests. This re-use of

prior test cases is not available to an ordinary application of concolic testing “from

scratch”, and it appears to make a difference in our ability to generate test cases that

focus on modifications.

3.10 Conclusions

We presented a new test suite augmentation technique, DTSA, that combines an

existing RTS technique with a modified concolic testing approach to generate test

cases that reach code that has not been covered by old test cases. The results of our

empirical study provide evidence that DTSA was more effective and efficient than

using a concolic testing approach from scratch.

30

Chapter 4

Basic Test Suite Augmentation

Technique 2 - Using a Genetic

Algorithm

In this Chapter, we describe how we use genetic algorithm for test suite augmenta-

tion. This work has appeared in [99]. We begin by explaining the factors that affect

performance when using a genetic algorithm for augmentation. Then we describe how

we investigate one of the factors through an empirical study.

4.1 Genetic Test Case Generation

Genetic algorithms for structural test case generation begin with an initial (often ran-

domly generated) test case population and evolve the population toward targets that

can be blocks, branches or paths in a program [56, 88, 95]. To apply such an algorithm

to a program, the test inputs must be represented in the form of a chromosome, and

a fitness function must be provided that defines how well a chromosome satisfies the

31

intended goal. The algorithm proceeds iteratively by evaluating all chromosomes in

the population and then selecting a subset of the fittest to mate. These are combined

in a crossover stage where information from one half of the chromosomes is exchanged

with information from the other half to generate a new population. A small percent-

age of chromosomes in the new population are mutated to add diversity back into

the population. This concludes a single generation of the algorithm. The process is

repeated until a stopping criterion has been met.

4.2 Factors Affecting Augmentation When Using

Genetic Algorithms

We have identified several factors that are independent of genetic algorithm parame-

ters, but that could potentially affect how well such algorithms perform by impacting

both population size and diversity. We now describe these factors.

F1: Algorithm for identifying affected elements. As discussed in Section 2.1,

various algorithms have been proposed for identifying affected parts of software sys-

tems following changes. We have utilized one such algorithm in our initial work on

augmentation (Chapter 3) in the context of a concolic test generation algorithm.

Where genetic algorithms are concerned, the numbers and complexity of identified

affected elements can clearly impact the cost of subsequent test generation efforts by

affecting the numbers of inputs that the algorithms must generate, and the complexity

of the paths through code that the algorithms must target.

F2: Characteristics of existing test suites. Test suites can differ in terms of

size, composition, and coverage achieved. Such differences in characteristics could po-

tentially affect augmentation processes. For example, the extent to which an existing

32

suite achieves coverage prior to modifications can affect the number and locations of

coverage elements that must be targeted by augmentation. Furthermore, test suite

characteristics can impact the size and diversity of the starting populations utilized

by genetic algorithms.

F3: Order in which affected elements are considered. For genetic algorithms

that utilize existing test cases to generate new ones, the order in which a set of

affected elements are considered can affect the overall cost and effectiveness of test

generation, and thus, the cost and effectiveness of augmentation. For example, if

elements executed earlier in a program’s course of execution are targeted first, and

if test cases are found to reach them, these may enlarge the size and diversity of the

population of test cases reaching other affected elements later in execution, giving

the test generation algorithm additional power when it considers those – power that

it would not have if elements were considered in some other order.

F4: Manner in which test cases are utilized. Given a set of affected elements,

a set of existing test cases, and an augmentation algorithm that uses existing test

cases to generate new ones, there are several ways to interleave the use of existing

and newly generated test cases in the augmentation process. Consider, for example

the following approaches:

1. For each affected element, let the augmentation approach work with all existing

test cases.

2. For each affected element, analyze coverage of existing test cases to determine

those that are likely to reach it and let the augmentation approach use these.

3. For each affected element, let the augmentation approach use existing test cases

which, based on their execution of the modified program, can reach it.

33

4. For each affected element, let the augmentation approach use existing test cases

that can reach it in the modified program (approach 3), together with new test

cases that have been generated thus far and reach it.

5. For each affected element, begin with approach 4 but select some subset of those

test cases, and let the augmentation approach use these.

Each of these approaches involves different tradeoffs. Approach 1 incurs no analy-

sis costs but may overwhelm a genetic algorithm approach by providing an excessively

large population. Approach 2 reduces the test cases used by the genetic algorithm

but in relying on prior coverage information may be imprecise. Approach 3 passes

a more precise set of test cases on to the genetic algorithm, but requires that these

first be executed on the modified program. None of the first three approaches takes

advantage of newly generated test cases as they are created, and thus they may ex-

perience difficulties generating test cases for new elements due to lack of population

diversity. Approaches 4 and 5 do use newly generated test cases along with existing

ones, and also use new coverage information, but differ in terms of the number of new

test cases used, again affecting size and diversity.

Among these four factors, we believe that F4 is of particular interest, because

it provides a range of approaches potentially differing in cost and effectiveness for

using genetic algorithms in augmentation tasks. We thus set out to perform a study

investigating this factor.

4.3 Case Study

To investigate factor F4, we fix the values of other factors at specific settings as

discussed below. The research questions we address are:

34

RQ1: How does factor F4 affect the cost of augmentation using a genetic algorithm?

RQ2: How does factor F4 affect the effectiveness of augmentation using a genetic

algorithm?

4.3.1 Objects of Analysis

For our experiment, we chose a non-trivial Java software application, Nanoxml, from

the SIR repository [31]. Nanoxml has multiple versions and more than 7000 lines of

code. Nanoxml is an XML parser that reads string and character data as input. It has

many individual components which realize different functionality. Drivers are used

to execute the various components. We focused on performing augmentation as the

system goes through three iterations of evolution, from versions v0 to v1, v1 to v2, and

v2 to v3. In other words, we augmented the test suite for v1 using the suite for v0,

augmented the test suite for v2 using the suite for v1 and augmented the test suite for

v3 using the suite for v2. The test suites for v0, v1, and v2 contain 235, 188, and 234

specification-based test cases applicable to the following versions, respectively. These

test cases cover 74.7%, 83.6% and 78.5% of the branches in versions v0, v1, and v2,

respectively.

4.3.2 Genetic Algorithm Implementation

To investigate our research questions we required an implementation of a genetic

algorithm tailored to fit our object program. We used an approach suitable to the

object, that could be modified to work on other string-based programs.

Our chromosome consists of strings containing two parts: test drivers that invoke

an application and input files (XML files) that are the target of the application. The

35

driver is a single gene in the chromosome. The XML files give way to a set of genes;

one for each character in the file.

We treat each part of the chromosome differently with respect to crossover and

mutation. For the test drivers, we use a pool of drivers that are provided with the

application. We do not modify this population, but rather modify how it is combined

with the input files that are evolved. We do not perform crossover on the drivers; we

use only mutation. When a chromosome’s driver gene is selected for mutation, the

entire driver is replaced with another (randomly selected) valid driver from our pool

of potential drivers. This prevents invalid drivers from being generated.

In the XML part of our chromosome, we perform a one point crossover by ran-

domly selecting a line number that is between 0 and the number of lines of the smaller

file. We then swap everything between files starting at that row to the end of the

file. We do not test the file for well-formed XML, but rather use it as-is. During

mutation, each character in the input file is considered a unit. We randomly select

the new character from the set of all ASCII upper and lower case letters combined

with the set of special characters found in the pool of input files, such as braces and

underscores.

Our search targets are branches in the program, therefore for our fitness function

we use the approach level described in [97]. For our initial implementation, for the

sake of simplicity and due to the instrumentation overhead required, we did not

combine this with branch distance. We nonetheless achieved good convergence on

these programs; still, research suggests that branch distance is an important part of

the fitness function [3] and we intend to consider it in the future.

The approach level is a discrete count measuring how far we were from the predi-

cate controlling the target branch in the CFG when we deviated course. The further

away we are from this predicate, the higher the fitness, therefore we are trying to min-

36

imize this value. If we reach the predicate leading to our target, the approach level

is 0. There are other fitness functions, for example, a recent one introduced in [38].

However, in [38], multiple targets are considered at one time, which is different from

our approach here.

For selection, we select the best half of the population to generate the next gen-

eration; we keep the selected chromosomes in the new generation. We rank the

chromosomes and divide them into two parts. The first chromosome in the first half

is mated with the first chromosome in the second half, and the second chromosome

in the first half with the second chromosome in the second half, etc.

We use a three stage mutation. First we select 30% of the test cases in the

population for mutation and mutate the driver for theses test cases. Next we select

30% of the lines in the file part of the chromosome for these test cases, and then select

30% of the genes in these rows for mutation. Our stopping criterion is coverage of

the required program branch or ten generations of our genetic algorithm, whichever

is reached first.

Note that we manually tuned the parameters used by our algorithm so that we

can cover as many branches of a program for a straight test case generation problem

before starting our experiments, and this process also led us to choose the values of

30/30/30. However, we performed this tuning for normal test case generation, not

augmentation, and we did it on the base version of the program. This is appropriate

where augmentation is concerned, because in a regression testing setting, a test gen-

eration algorithm can be tuned on prior versions of the system before being utilized

to augment test suites for subsequent modified versions.

37

!" #" #"!"

$"%!$&%!$'%!$($"%!$&%!$'%!$(

#&)!!'*+

#')!!&*+ #"

#&)!!'*+

#')!!&*+ #"!' !',

$"%!$&%!$'%!$(

$"%!$&%!$'%!$($"%!$&%!$'%!$(

$"%!$&%!$'%!$(

#"

#')!!(*+

"

#&)!!(*+

#&)!!-*+

"

#"

#')!!(*+

"

#&)!!(*+

#&)!!-*+

"

!&

!("

#')!!.*+!&

!- !.!(

$"%!$&%!$'%!$(

$'%!$(
$"%!$&

$"%!$&%!$'%!$(

$"%!$'
$&%!$(

#"

#'#&

#"

#'#&

#"

#'#&

#"

#'#&

!(!- #"

#'#&

!- !.!(

/ 0

Figure 4.1: Partial control flow graphs for two versions of a program

4.3.3 Factors, Variables, and Measures

We describe our factors, variables and measures next.

Fixed Factors. Our goal being to consider only the effects of factor F4, we selected

settings for the other factors described in Section 4.2 and held these constant.

For better understanding, we use the example in Figure 4.1 to explain factors. The

figure shows portions of two versions of a program, in a control flow graph notation.

The graph on the left corresponds to an initial version a and the graph on the right

corresponds to a subsequent version b. Nodes represent statements within methods,

and root nodes are indicated by labels m1 through m6. Solid lines represent control

flow within methods and dashed lines represent calls. Labels on dashed lines represent

test cases in which the associated method call occurs. From version a to b, changes

occur in method m3 in which one branch is added to call a new method m6. Other

methods remain unchanged.

F1: Algorithm for identifying affected elements.

As affected elements we use a set of potentially impacted coverage elements in

P ′. To calculate these, we use the analysis at the core of the DejaVu regression test

selection technique [76] as presented in Section 3.2. After using the analysis identi-

38

fying dangerous edges, we treat methods containing dangerous edges as “dangerous

methods”, and then apply an algorithm that walks the interprocedural control flow

graph for P ′ to find the set of affected methods that can be reached via control flow

paths through one or more of the dangerous methods. All branches contained in

affected methods are targets for augmentation.

In our example, m3′ contains a dangerous edge, so it is a dangerous method, and

m4 and m6 are reachable via interprocedural control flow from the dangerous edge

in m3′, so they are affected methods. Further, m3’s return value to m1 is affected, so

m1 is also affected. Method m2 is called along the path from m3 to the exit node of

m1, so it too is affected. Continuing to propagate impact, m5 and m4 are called by

m2, so they are both affected. In this example all methods and all branches contained

in them are affected, but in general this may not be the case.

F2: Characteristics of existing test suites. Our test suites T are those

provided with Nanoxml. As described above, they are specification-based and operate

at the application testing level, and they achieve branch coverage levels ranging from

74.7% to 83.6% on our versions.

F3: Order in which affected elements are considered. As an ordering,

we used an approach that causes individual methods to be considered in top-down

fashion in control flow, thus approximating the consideration of affected elements in

such a fashion. The approach applies a depth first ordering to all affected methods

in the call graph for P ′. The effect of this approach is to cause augmentation to be

applied to a particular method only after its predecessors in the call graph have been

considered, which may allow test cases generated earlier to cover methods addressed

later. Note, however, that this approach may be imprecise in relation to cycles, and in

the order in which it considers individual branches within individual methods. As an

39

Table 4.1: Disposition of Test Cases Under the Five Treatments for the Example of
Figure 1

Treatment m1 m2 m3 m4 m5 m6
1 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4
2 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2
3 - - t1, t2, t3, t4 t2,t4 - t1, t2, t3, t4
4 - - t1, t2, t3, t4 t2, t4, t1′ - t1, t2, t3, t4
5 - - t1, t2, t3, t4 t2, t1′ - t1, t2, t3, t2′

example, in Figure 4.1, the ordering of methods in version b imposed by our approach

is m1, m3′, m2, m5, m4 and m6.

Independent Variables. Our independent variable is factor F4, the “treatment

of test cases” factor, and we use the five treatments described in that section, more

precisely described here. To facilitate the description, Table 4.1 presents information

on the disposition of test cases achieved by the treatments, applied to the example in

Figure 4.1.

Treatment 1. For each affected element e in method m, all existing test cases

in T are used to compose the initial population for the genetic algorithm. In this

case we may have a large population for the genetic algorithm, which may cause it

to take a relatively long time to complete the augmentation task for P ′. However,

this approach does increase the variety in the population which could improve the

effectiveness of the search. In Figure 4.1, for all target branches, we use all four test

cases t1 to t4 to compose the initial population.

Treatment 2. For each affected element e in method m, all existing (old) test

cases that used to reach m in P , denoted by Told:P , are used to compose the initial

population for the genetic algorithm. In this case since we are using old coverage in-

formation, we avoid running all existing test cases on P ′ first and focus on the changes

from P to P ′. However, if we have new methods in P ′, since there are no existing

40

test cases available to reach them, we lose opportunities to perform augmentation for

them and may lose some coverage.

In Figure 4.1, in this case, for m1, m2, m3 and m4 we use all test cases to form

the initial population, since all the test cases reach them in version a. For m5, we

use just t1 and t2. In this case, since there is no method m6 in version a and there

are no existing test cases that reach it in that version, we cannot do augmentation

for m6 directly.

Treatment 3. For each affected element e in method m, all existing test cases that

reach m in P ′, denoted by Told:P ′ , are used to compose the initial population for the

genetic algorithm. In this case we need to run all existing test cases on P ′ first and

then we use the new coverage information, which is more precise than in treatment 2

since these test cases are near to our target, and this helps the genetic algorithm in

its search. Also, Told:P ′ ⊆ T , so we may lose some variety in the population, but we

may save time in the entire process since we have fewer test cases to execute in each

iteration.

Considering Figure 4.1, when we run all existing test cases on version b, some of

them take new execution paths. Methods m3, m4 and m6 contain uncovered branches

after checking the coverage of all existing test cases on b. For m3, all existing test

cases still reach it in b so they are used in its initial population. Because of the change

in m3, all test cases that used to reach m3 take different paths and reach m6 so they

are used to form the initial population for m6. There are only two test cases, t2 and

t4 from m2, that reach m4 and they are used to form the initial population for m4.

Treatment 4. For each affected element e in method m, all existing test cases that

reach m in P ′ (Told:P ′) and all newly generated test cases that obtain new coverage

in version b, denoted by Tnew:P ′ , are used to compose the initial population for the

genetic algorithm. Here, we also need to run all existing test cases first to obtain

41

their new coverage information. Adding new test cases brings greater variety to the

population, which increases the size of the population but may increase running time.

In Figure 4.1, the same test cases used in treatment 3 are used to form the initial

population for m3, since when we do augmentation for m3 there have not been test

cases generated. We generate a test case t1′ for m3 to cover the branch that calls m4,

so when we do augmentation for m4 we include t1′ with t2 and t4 to form the initial

population for it. For m6, t1′ does not reach it so we still use only the existing test

cases that reach it in its initial population.

Treatment 5. For each affected element e in method m, all existing and generated

test cases generated that reach m in P ′ (Told:P ′ ∪ Tnew:P ′) are considered applicable,

but before being utilized they are considered further. A reasonable size of population

is determined (in our case we chose the size that would be required by using treat-

ment 3) and initial test cases are selected from the applicable test cases to compose

the population. In this case, a good selection technique should be used to choose test

cases that form a population which has the best variety for genetic algorithm. In our

case, we chose test cases according to their branch coverage information on P ′. More

precisely, if we need to pick s test cases, we do the following:

• Find all paths from the root of P ’s call graph to m.

• Put the methods along these paths, including m, into set Mpre.

• Find branches in all methods in Mpre.

• Order the candidates on these branches in terms of coverage

• Pick the first s of the ordered candidates.

In Figure 4.1, m3 is in the same situation as with treatment 4, so the same test

cases are used here. For m4, when we perform augmentation for m3 we generate

thousands of test cases, some that increase coverage such as t1′ and others that cover

42

branches covered by other existing test cases. Next, we order all test cases that

reach m3 and select two that cover most of the branches in m1, m2, m3 and m4.

We select t2 and t1′ here, since they both pass through m1, cover one branch in

m2 and m3′ separately, and pass through one of the branches in m4. The same

procedure is followed on m6. For example, t2′ and t3′ are generated and reach m6

and including these with all existing test cases we select t1, t2, t3 and t2′ to form the

initial population for m6.

Dependent Variables and Measures. We chose two dependent variables and

corresponding measures to address our research questions. The first variable relates

to costs associated with employing the different test case treatments and the second

relates to the effectiveness associated with the different treatments.

Cost of employing treatments. To measure the cost of employing treatments, one

approach is to measure the execution time of the augmentation algorithm under each

treatment. However, measuring time in a manner that facilitates fair comparison

requires the use of identical machines, and for the sake of parallelism we ran our

experiments on a set of machines and under different system loads.

An alternative approach to cost measurement involves tracking, under each test

case treatment, the number of invocations by augmentation techniques of the oper-

ations that most directly determine technique cost. For the augmentation technique

that we consider the operation that matters most involves the execution of test cases

by the genetic algorithm, because if that algorithm finds a target soon it will use fewer

iterations, execute fewer test cases and require less running time. Thus, in this study,

we use the number of test cases executed by the genetic algorithm as a measure of

cost.

43

Effectiveness of employing treatments. To assess the effectiveness of using different

test case treatments, we measure the progress that augmentation can make toward

its coverage goal under each treatment in terms of the numbers of branches covered.

4.3.4 Experiment Setup

To conduct our study we performed the following steps. For each vk (0 ≤ k ≤ 2) we

instrumented and created the CFG for vk using Sofya [84]. We then executed vk on the

test suite Tk for vk, collecting test coverage for use in the next step. Next, we created

the CFG for vk+1 and determined the affected methods and target coverage elements

(branches) in vk+1 using the Dejavu algorithm as described in Section 4.3.3. These

target elements are the affected elements we attempt to cover with our genetic test

case generation algorithm under the different test case treatments. Further, because

a genetic algorithm can fare differently on different runs, for each test case treatment

we executed the test case generation algorithm fifteen times, and we consider data

taken from all of these runs in our subsequent analysis.

4.4 Study Limitations

There are several limitations to our results. The first is the representativeness of

our object program, versions, and test suites. We have examined only one system,

coded in Java, and other systems may exhibit different cost-benefit tradeoffs. We

have considered only three pairs of versions of this subject, and others may exhibit

different tradeoffs. A second threat pertains to algorithms; we have utilized only one

variant of a genetic test case generation algorithm, hand-tuned, and under particular

settings of factors F1, F2, and F3. Subsequent studies are needed to determine the

extent to which our results generalize.

44

Another limitation involves possible faults in the implementation of the algorithms

and in tools we use to perform evaluation. We controlled for this through extensive

functional testing of our tools.

Finally, there are other metrics that could be pertinent to the effects studied.

Given tight implementations and controls over environments, time could be measured.

Costs of engineer time in employing methods could also matter.

4.5 Results and Analysis

TR1 TR2 TR3 TR4 TR5 TR1 TR2 TR3 TR4 TR5 TR1 TR2 TR3 TR4 TR5

5
0

0
0

0
1

0
0

0
0

0
1

5
0

0
0

0

version 1 version 2 version3

n
u

m
b

e
r

o
f

te
s
t

c
a

s
e

s
 e

x
e

c
u

te
d

Figure 4.2: Costs of applying the five treatments, per treatment and version

Figures 4.2 and 4.3 present boxplots showing the data gathered for our indepen-

dent variables. The first figure plots the number of test cases executed (vertical axis)

against each treatment (TR1, TR2, TR3, TR4, and TR5) per version (v1, v2 and v3).

The second figure plots the number of covered branches against each treatment per

version.

45

TR1 TR2 TR3 TR4 TR5 TR1 TR2 TR3 TR4 TR5 TR1 TR2 TR3 TR4 TR5

2
0

2
5

3
0

3
5

version 1 version 2 version3

n
u

m
b

e
r

o
f

b
ra

n
c
h

e
s
 c

o
v
e

re
d

Figure 4.3: Coverage obtained in applying the five treatments, per treatment and
version

4.5.1 RQ1: Costs of Augmentation

To address RQ1 (cost of the treatments) we compare the number of test cases executed

by the treatments. As the boxplots show, in all cases the number of test cases

executed by TR1 is substantially greater than the number executed by the other four

treatments. On versions v1 and v2, but not v3, TR2 results in the execution of the

fewest test cases. TR5 appears to differ slightly from other treatments on v2 and v3,

but in other cases treatment results appear similar.

We performed per version ANOVAs on the data for a significance level of 0.05;

Table 4.2 reports the results. The first three rows pertain to cost comparisons. As

the p−values in the rightmost column show, there is enough statistical evidence to

reject the null hypothesis on all three versions; that is, the mean costs of the five

different treatments are different in each case.

The ANOVA evaluated whether the treatments differ, and a multiple comparison

procedure using Bonferroni analysis quantifies how the treatments differ from each

46

Table 4.2: Results of ANOVA Analysis

Df Sum Sq Mean Sq F value Pr
v1 cost 4 4.04e+10 1.01e+10 109.43 <2.2e-16
v2 cost 4 3.18e+10 7.96e+09 1027.30 <2.2e-16
v3 cost 4 6.13e+10 6.13e+10 68.40 <4.4e-12
v1 cov 4 459.15 114.79 36.84 <2.2e-16
v2 cov 4 124.86 31.21 7.83 2.9e-0.5
v3 cov 4 427.20 106.80 35.19 6.6e-16

Table 4.3: Results of Bonferroni Means Test on Cost

(A) cost
v1 v2 v3

Mean Gr Mean Gr Mean Gr
TR2 11136 A TR2 29960 A TR4 46522 A
TR3 43355 B TR5 49347 B TR2 46752 A
TR4 43914 B TR4 51811 B, C TR3 47262 A
TR5 45086 B TR3 52569 C TR5 48961 A
TR1 84302 C TR1 93048 D TR1 149856 B

other. Table 4.3 presents the results of this analysis for the three versions considering

treatment cost, ranking the treatments by mean. Grouping letters (in columns with

header “Gr”) indicate differences: treatments with the same grouping letter were not

significantly different. In v1 the five treatments are classified into three groups: TR1

and TR2 are most and least costly, respectively, while TR3, TR4 and TR5 are in a

single group intermediate in cost. In v2 the treatments are classified into four groups;

TR1 remains most costly and TR2 least costly, but TR3, TR4, and TR5 form two

overlapping classes in terms of cost, with TR3 significantly more costly than TR5.

In v3, TR1 is most costly and other techniques are classified into a single less costly

group.

4.5.2 RQ2: Effectiveness of Augmentation

Next we explore RQ2, which involves the effectiveness of the five treatments in terms

of achieving branch coverage when augmenting test suites. As mentioned above, after

running all existing test cases we found that 68 branches needed to be covered for

v1, 77 for v2 and 100 for v3. Among these, several branches are difficult to cover in

47

Table 4.4: Results of Bonferroni Means Test on Coverage

(B) coverage
v1 v2 v3

Mean Gr Mean Gr Mean Gr
TR1 31.9 A TR1 29.4 A TR1 35.0 A
TR4 30.6 A, B TR5 28.9 A TR3 29.1 B
TR5 29.9 B TR3 28.1 A TR4 29.1 B
TR3 29.7 B TR4 27.9 A TR2 29.0 B
TR2 24.7 C TR2 25.7 B TR5 28.6 B

each version, since Nanoxml is a parser for XML and often requires specific characters

at specific positions which can be difficult to satisfy. Also, in v2 and v3, since the

test drivers we used are for previous versions and we did not mutate them to trigger

some methods in the new version that are important for improving coverage, we were

unable to cover 13 and 3 branches, respectively.

The boxplots in Figure 4.3 show the numbers of branches covered by each treat-

ment in the fifteen runs for the three versions. On the three versions, TR1 covers

the most branches. For v1 and v2, TR2 covers the fewest branches and TR3, TR4

and TR5 have similar results, while in v1, TR4 appears better and in v2 TR5 appears

better. For v3, the other four treatments return similar results.

Table 4.2 displays the results of ANOVAs on coverage data for the versions (bot-

tom three rows). The p−values indicate that the five treatments do have significant

effects on coverage for all three versions.

Table 4.4 presents the results of the Bonferroni comparison. The results differ

somewhat across versions. In all versions, TR1 is among the most effective treatments,

though it shares this with TR4 on v1 and with all but TR2 on v2. Similarly, TR2 is

always among the least effective treatments, though sharing this with others on v3.

TR3, TR4, and TR5 are always classified together.

48

4.6 Discussion

Our results show that, for the object program and versions considered, TR1 consis-

tently requires significantly more time to execute but also achieves the best coverage

(in terms of means, with significance on one version) than the other treatments. TR2

is also significantly less costly and effective on two of the three versions than other

treatments, and on the third version is in the equivalence class of least costly and

least effective treatments. The other three treatments behave somewhat differently

across versions and we now explore reasons for some of the observed behaviors.

Across all versions, TR4 works comparatively well in terms of cost and coverage

according to Table 4.3 and Table 4.4. It uses a smaller population than TR1, and

this allows it to save time. Compared to TR3, it has more test cases which does bring

greater diversity into its population, since these test cases improve coverage and

help the genetic algorithm find targets sooner. However, it is no more costly than

TR3, and this is arguably due to the presence of many unreachable branches. When

the genetic algorithm tries to cover a branch there are two stopping criteria: either

finding a test case to cover the target or reaching the maximum number of iterations

without covering the target. For these unreachable branches TR4 may have a larger

population than TR3; however, since the branches are unreachable the additional test

cases are not useful but require time to run. Therefore the time consumed counteracts

the time that is saved by covering other branches sooner.

The data shows that on v3, all five treatments improve coverage by only 30%,

which leaves a lot of branches uncovered. We checked all the uncovered branches.

Other than ten determinably unreachable branches, many of the uncovered branches

are new in v3 and no existing test cases reach them. We believe that this relates to

factor F2, the characteristics of existing test suites. The existing test suite for v3

49

covers a relatively small portion of v3’s code, and thus greater effort is required to

augment the test suite for that version. At the same time, this relatively poor test

suite offers little diversity in terms of coverage of v3, and this restricts the genetic

algorithm’s performance. We believe this is the reason that all treatments achieve

lower coverage on v3 than on the other versions.

The foregoing can also can explain why TR2 behaves similar to treatments TR3,

TR4, and TR5 on v3. After updating all the existing test cases’ coverage on v3, many

new methods in that version are still unreachable using the existing test cases. In

this situation, TR3 is similar to TR2. Since we do not generate many new test cases,

when we use TR4, the few new test cases do not add much diversity.

In v3, TR1 is most effective but is three times more expensive than other tech-

niques, while on the other two versions TR1 is less than two times more expensive

than other techniques. We believe this is because the relatively poor starting test suite

leaves many affected methods unreachable. In TR1 for all targets in these methods,

we use all existing test cases as the base for the genetic algorithm. Since they never

reach these methods, our fitness function treats them all equally (the fitness function

measures their performance in the method only). This leaves nothing to guide the

evolution. For these branches, TR1 just iterates until it reaches the maximum num-

bers as explained above, which potentially increases its cost. To solve this problem,

in addition to a better starting test suite, we may need to find a fitness function that

works interprocedually.

Treatment TR5 did not work as expected. We had conjectured that it would

have strengths common to both TR3 and TR4, namely, greater diversity in initial

population and smaller size. However, its cost and effectiveness are not significantly

different than those of TR3 and TR4. We may require a better technique for selecting

test cases to compose the initial population for the genetic algorithm. For example,

50

genetic algorithms require diversity in the chromosome itself, containing all elements

required in the application, instead of simply considering its coverage on the code.

4.7 Conclusions

We described four factors that we believe can influence the cost-effectiveness of test

suite augmentation using genetic algorithms, providing reasons for this belief. We

presented the results of a case study exploring one of those factors, involving the

treatment of existing and newly generated test cases, that we believe could be par-

ticularly significant in its effects. Our results show that different treatments of test

cases can affect the augmentation task when applying a genetic algorithm for test

case generation during augmentation.

At present, the primary implications of this work are for researchers. Our results

indicate that when attempting to integrate genetic test case generation algorithms

into the test suite augmentation task, it is important to consider the treatment of

existing and newly generated test cases, and it may also be important to consider the

other factors that we have presented.

51

Chapter 5

A Framework for Test Suite

Augmentation

We have investigated two test case generation techniques separately and identified

factors that can affect the cost-effectiveness of test suite augmentation. In this chap-

ter, we first present a framework that incorporates all the factors and then evaluate

the impact of three factors, the test reuse approach, the order of targets and test case

generation techniques. (Part of this work has appeared in [100].)

5.1 Framework

Figure 5.1 shows our test suite augmentation framework. The framework incorpo-

rates several factors mentioned in Section 4.2. The most important factor is the test

generation techniques. Other factors are the order of targets, the approach of reusing

existing tests and the characteristics of existing test suites. Different values chosen for

these factors can affect the test suite augmentation process. In the following, we de-

scribe how we use the framework to evaluate several important factors. We begin by

52

Factors

Test	 case	 genera+on	
techniques	

Order	 of	 targets	

Test	 reuse	 approach	

Characteris+cs	 of	 star+ng	
test	 suites	

Tech	 1	 Tech	 2	 Tech	 3	 Tech	 4	 Tech	 5	

Prog	 1	 Prog	 2	 Prog	 3	 Prog	 4	 Prog	 5	

Test Suite Augmentation Framework

Figure 5.1: Test Suite Augmentation Framework

describing augmentation techniques including augmentation basics, and algorithms

used in our experiment, and then we present our experiment results.

5.2 Augmentation Techniques

We now describe the augmentation techniques that we consider. We begin by pre-

senting details relevant to the augmentation task as a whole, and then (Sections 5.2.3

and 5.2.4) we present the two test case generation techniques that we utilize.

5.2.1 Augmentation Basics

5.2.1.1 Coverage Criterion

We are interested in code-based augmentation techniques, and these typically involve

specific code coverage criteria. In this work, we continue to focus on code coverage

at the level of branches; that is, outcomes of predicate statements. While stronger

53

than statement coverage, branch coverage is more tractable than criteria such as path

coverage, and more likely to scale to larger systems.

5.2.1.2 Identifying Affected Elements

As noted in Chapter 1, test suite augmentation consists of two tasks, identifying

affected elements and creating test cases that exercise these elements. In Chapters 3

and 4 we presented one approach, based on the use of Dejavu, for identifying affected

elements. In this work the factors we are studying concern the second of these tasks.

Thus, we choose a simple yet practical approach for identifying affected elements.

Given program P and its test suite T , and modified version P ′ of P , to identify

affected elements in P ′ we execute the test cases in T on P ′ and measure their branch

coverage. Any branch in P ′ that is not covered is an affected element. This approach

corresponds to the common “retest-all” regression testing process in which existing

test cases are executed on P ′ first, and then, augmentation is performed where needed.

5.2.1.3 Ordering Affected Elements

Our augmentation techniques operate on lists of affected elements, and as we have

stated we believe that the order in which these elements are considered can affect the

techniques since test cases covering one element may incidentally cover another. In

this work, we investigate the use of a depth-first order of affected elements.

The depth-first order (DFO) of nodes in a control flow graph is the reverse of

a postorder traversal of the graph [1][page 660]. In dataflow analysis, considering

nodes in DFO causes nodes that are “earlier” in control flow to be considered prior to

those that follow them, and can speed up the convergence of the analysis. The same

approach can be applied to place branches in depth-first order. We conjecture that by

considering affected elements in this order, we may achieve two things. First, we may

54

be able to speed up the process of generating test cases, because test cases generated

for elements that occur earlier in a program’s control flow may incidentally cover

elements occurring later in control flow, eliminating the need to specifically consider

those later elements. Second, we may be able to improve efficiency by considering

targets for which path constraints are shorter prior to those for which constraints are

longer.

To apply this approach interprocedurally, we calculate DFO in terms of branches

in a program’s interprocedural control flow graph (ICFG) [65, 83]. We first build

the ICFG, then we perform a postorder traversal of that graph recording the nodes

visited, and then we reverse the recorded order. Finally, we filter out branches that

were not designated as affected to obtain our ordered list of affected elements.

For example, Figure 5.2 shows a simple interprocedural control flow graph. The

E and X nodes represent method entry and exit. The numbered nodes represent

statements in the program. The nodes with two outgoing edges represent predicate

statements, and the labeled edges represent branches out of those predicates and

the entry edges of methods (the latter ensures that code in methods containing no

branches is also covered). A postorder traversal of the graph visits branches in order

b7, b8, b3, b4, b1, b5, b9, b6, b2, b0. The resulting DFO of the branches in the

ICFG is thus b0, b2, b6, b9, b5, b1, b4, b3, b8 and b7. Considering branches in this

order, we consider b7 only after we have considered b0, b1, b4 and b3. If we begin

the augmentation process with just one test case that covers b0, b1, b3, and b8, we

first filter out these four covered branches from the ordered list, and then consider

the remaining branches in order b2, b6, b9, b5, b4 and b7.

55

Figure 5.2: Interprocedural control flow graph

5.2.1.4 Test Case Reuse Approach

As mentioned in Section 4.2, existing test cases provide a rich source of data on

potential inputs and code reachability, and in the regression testing context, existing

test cases are naturally available as a starting point for attempting to cover each

affected element. Our results in Section 4.5 have shown that the test case reuse

approach is an important factor in the augmentation context that we consider, since

it affects both the cost and the effectiveness of the process.

5.2.2 Main Augmentation Algorithm

Algorithm 2 controls the augmentation process, beginning with an initial set of ex-

isting test cases, TC, an ordered set of affected elements (target branches), Baffini
,

and an iteration limit niter. The algorithm assigns Baffini
to Baff (line 1), which

henceforth contains a set of affected elements still needing to be covered. The main

loop (lines 3-16) continues until we can no longer increase coverage (which may result

due to reaching the iteration limit in the test case generation routines). Within this

56

loop, for each branch bt ∈ Baff , if bt is not covered we call a test case generation

algorithm to generate test cases (line 7). If the algorithm successfully generates and

returns new test cases this means that at least some new coverage has been achieved

in the program (although bt may or may not have been covered in the process).

Algorithm 2 Main Augmentation Algorithm
Require: set of existing test cases TC, ordered set of affected elements Baffini , and an iteration limit niter

Ensure: TC augmented with new test cases
1: Baff = Baffini

2: NewCoverage=true;
3: while NewCoverage do
4: NewCoverage=false
5: for each bt ∈ Baff do
6: if NotCovered then
7: NewTests =AUGMENT(TC,Baff , bt, niter)
8: if NewTests !=Empty then
9: NewCoverage=true

10: end if
11: if UseNew then
12: TC=NewTests ∪ TC
13: end if
14: end if
15: end for
16: end while

To accommodate our other factor of concern — the manner in which existing and

new test cases are used — we allow for the possibility of adding the newly generated

test cases back into our set of available test cases. If the boolean flag UseNew is set

to true, this causes the algorithm to combine the newly generated test cases with the

original test cases (lines 11-12), and then this newly formed TC is used for the next

iteration of our algorithm.

We next describe two different test case generation algorithms that can be invoked

at line 7 to generate new test cases.

57

5.2.3 Genetic Test Suite Augmentation

We have introduced genetic test suite augmentation in Chapter 4. In this section, we

present it more formally and describe how the genetic algorithm fits into our main

augmentation algorithm.

Algorithm 3 describes the genetic algorithm used in our experiment. The algo-

rithm accepts four parameters: a set of test cases TC, a set of affected elements Baff ,

an uncovered target branch bt, and an iteration limit niter. The algorithm returns a

set of new test cases NTC, consisting of all test cases generated that covered any

previously uncovered branches in P .

Instead of using random test cases to form an initial population, we take advantage

of existing test cases to seed the population. We run this algorithm for each target

branch bt. As the starting population, we select all of the test cases reaching method

mbt , the method that contains bt; this determines the population size.

Algorithm 3 GENETIC-AUGMENT algorithm
Require: a set of test cases TC, a set of affected elements Baff , an uncovered target branch bt ∈ Baff ,

and an iteration limit niter

Ensure: a set of new test cases NTC
1: TCcur = TC // set of current target test cases
2: NTC = ∅ // set of new test cases generated
3: TCbt = {test cases in TCcur that reach method mbt , the method containing bt}
4: Population = TCbt

5: i = 0
6: repeat
7: Fitness=CalculateFitness(Population)
8: Population=Select(Population, Fitness)
9: Population=Crossover(Population)

10: Population=Mutate(Population)
11: i = i + 1
12: for each tc ∈ Population do
13: Execute (tc)
14: if tc covers new branches in Baff then
15: Update Baff

16: NTC = NTC ∪ {tc}
17: end if
18: end for
19: until i ≥ niter or bt is covered
20: return NTC

58

The algorithm repeats for a number of generations (set by the variable niter) or

until bt is covered. The first step (line 7) is to calculate the fitness of all test cases

in the population. Since the fitness of a test case depends on its relationship to the

branch we are trying to cover, calculating the fitness requires that we run the test

case. (For test cases provided initially we can use coverage information obtained while

performing the prior execution of TC, which in our case occurred in conjunction with

determining affected elements.) Next a selection is performed (line 8), which orders

and chooses the best half of the chromosomes to use in the next step. This population

is divided into two halves (retaining the ranking) and the first chromosome in the first

half is mated with the first chromosome in the second half and this continues until

all have been mated. Next (line 10) a small percentage of the population is mutated,

after which all test cases in the current population are executed. If bt is covered or

the iteration limit is met we are finished (line 19), otherwise we iterate.

5.2.4 Concolic Test Suite Augmentation

We have shown how concolic testing can be used in the test suite augmentation

context in Chapter 3. In this work, we have improved that concolic algorithm, so

we present our improved approach here and also describe how it fits into our main

augmentation algorithm.

We use the following notation:

• CFGP = (NP , EP) is a control flow graph of a target program P where NP is a

set of nodes (statements in P) and EP is a set of edges (branches in P) between

NP .

• A path condition pc of a target program P is a conjunction bi1 ∧bi2 ∧ ...bin where

bi1 , ...bin are edges in EP and are executed in order. Note that n can be larger

59

than |EP |, since one branch in a loop body of P may be executed multiple times

(i.e., it is possible that bik = bil for k 6= l).

• DelNeg(pc, j) generates a new path condition from a path condition pc by

negating a branch occurring at the jth position in pc and removing all subse-

quent branches. For example, DelNeg(bi1 ∧ bi2 ∧ bi3 , 2) = bi1 ∧ ¬bi2 .

• b is a paired branch of a branch b (i.e., if b is a then branch, b is the else

branch).

• LastPos(b, pc) returns a last position j of a branch bij in a path condition pc

where b = bij (i.e., ∀j < k ≤ n.bik 6= b).

• Solve(pc) returns a test case satisfying the path condition pc if pc is satisfiable;

UNSAT otherwise.

Algorithm 4 describes our concolic augmentation algorithm. The algorithm ac-

cepts the same four parameters accepted by the genetic algorithm, and returns a set

NTC of new test cases. Lines 4-23 detail the main procedure of the algorithm.

Initially, the current target test cases TCcur (from which new test cases are gen-

erated) are the old test cases TC (line 1) and NTC is empty (line 2). The start of

the main procedure resets the set of newly generated test cases NTCcur (line 4) and

selects test cases that can reach bt (the paired branch of bt) from among the current

target test cases TCcur (line 5). If there are no such test cases, the algorithm termi-

nates (lines 6-8). If there are such test cases, the algorithm obtains path conditions

by executing the target program with selected test cases (line 9). From each obtained

path condition pc, the algorithm generates niter new path conditions as follows. Sup-

pose the last occurrence of bt is located in the mth branch of pc. Then, the algorithm

generates niter new path conditions (lines 11-19) by negating bim , bim−1 , ..., bim−niter+1

and removing all following branches in pc, respectively (line 13). If a newly generated

60

Algorithm 4 CONCOLIC−AUGMENT algorithm
Require: a set of test cases TC , a set of affected elements Baff , an uncovered target branch bt ∈ Baff ,

and an iteration limit niter

Ensure: a set of new test cases NTC
1: TCcur = TC // a set of the current target test cases
2: NTC = ∅ // a set of all new test cases generated
3: repeat
4: NTCcur = ∅ // a set of newly generated test cases in the current execution of line 3 to line 23

5: TC
bt

= { all test cases in TCcur that reach bt }
6: if TC

bt
= ∅ then

7: return ∅
8: PC

bt
= { path conditions obtained from executing test cases in TC

bt
}

9: for each pc ∈ PC
bt

do

10: for each i = LastPos(bt, pc) to i− niter+1 do
11: if i > 0 then
12: pc′ = DelNeg(pc, i)
13: tcnew = Solve(pc′)
14: if tcnew 6= UNSAT and tcnew covers uncovered branches in Baff then
15: Update Baff

16: NTCcur = NTCcur ∪ {tcnew}
17: end if
18: end if
19: end for
20: end for
21: end if
22: TCcur = NTCcur

23: NTC = NTC ∪NTCcur

24: until NTCcur = ∅
25: return NTC

path condition pc′ has a solution tcnew (a new test case) (line 14) and tcnew covers

uncovered branches in Baff (line 15), Baff is updated to reflect the new status of

coverage (line 16), and tcnew is added to the set of newly generated test cases NTCcur

(line 17).

Note that the iteration limit niter parameter is a “tuning” parameter that deter-

mines how far back in a path condition the augmentation approach will go, and in

turn can affect both the efficiency and the effectiveness of the approach.

61

5.3 Empirical Study 1

Our goal is to investigate augmentation techniques implemented in the context of our

framework, focusing on three factors (test case generation algorithm, order of affected

elements, and test reuse approach). We thus pose the following research questions.

RQ1: How does the order of consideration of affected elements affect augmentation

techniques?

RQ2: How does the manner of use of existing and newly generated test cases affect

augmentation techniques?

RQ3: How do genetic and concolic test case generation techniques differ in the

augmentation context?

5.3.1 Objects of Analysis

To facilitate technique comparisons, our objects of analysis (programs and test suites)

must be suitable for use by both implementations. To select appropriate objects

we examined C programs available in the SIR repository [31]. We selected four

programs1 (see Table 5.1), each of which is available with a large “universe” of test

cases, representing test cases that could have been created by engineers in practice

for these programs to achieve requirements and code coverage [44].2

1For this study we began by considering the seven Siemens programs, because their size is
amenable to study on enormous numbers of test cases. Constraint solvers, however, have limitations.
Limitations of the concolic test case generation tool we use (see Section 5.3.3) include difficulties
handling non-linear arithmetic and array accesses through symbolic index variables (among others).
While these occur in small numbers in the four Siemens programs we selected (as mentioned in
Section 6.2) they occur much more frequently in the other three programs. While differences in
performance of test case generation techniques across such programs would ultimately be interesting
in studying, we considered this a threat to the validity of our attempts to examine the influence of
other factors on such performance.

2Concolic test case generation techniques set limits on the sizes of inputs they generate, and
some inputs in the test pools provided with the programs did not conform to reasonable limits. We
thus ran several trials with various size limits and selected limits that let us retain at least 60% of

62

Table 5.1: Objects of Analysis

Program Functions LOC Branches Test Cases

printtok1 21 402 174 3052

printtok2 20 483 186 3080

replace 21 516 206 3174

tcas 8 138 76 1608

The programs that we selected do not have actual sequential versions that can

be used to model situations in which evolution renders augmentation necessary. We

were able, however, to define a process by which a large number of test suites that

need augmenting, and that possess a wide range of sizes and levels of coverage ade-

quacy, could be created for the given programs. This lets us model a situation where

the given versions have evolved rendering prior test suites inadequate, and require

augmentation.

To create such test suites we did the following. First, for each program P we used

a greedy algorithm to sample P ’s associated test universe U , to create test suites that

were capable of covering all the branches coverable by test cases in U , and we applied

this algorithm 1000 times to P .3 Next, we measured the minimum size Tmin and

maximum size Tmax for these suites; this provides estimates of the lower and upper

size bounds for coverage-adequate test suites for the programs. Because in practice,

programs are often equipped with test suites that are not coverage-adequate, and

because we wish to study the effects of augmentation using a wide range of initial

test suite sizes and coverage characteristics, we set lower and upper bounds for initial

test suites at Tmin/2 and Tmax, respectively.

Second, we began the test suite construction phase, in which for each test suite

to be constructed, we randomly chose a number n such that Tmin/2 ≤ n ≤ Tmax,

the inputs in the original test universes. We then removed, from the test universes, test cases that
did not conform to these limits. Table 5.1 lists the sizes of the test universes after this reduction.

3We chose 1000 because it is a number beyond which (on all programs) further increases fail to
lead to changes in observed min and max sizes.

63

and randomly selected n test cases from U to create a test suite A. We measured

the coverage achieved by A on P , and if A was coverage-adequate for P we discarded

it. We repeated this step until 100 non-coverage-adequate test suites had been cre-

ated. Statistics on the sizes and coverages obtained by these test suites are given in

Table 5.2.

Table 5.2: Branch Coverage and Sizes of Initial Test Suites

Program Branch Coverage Test Suite Size
Avg Min Max Avg Min Max

printtok1 133.3 110.0 152.0 16.8 9 25

printtok2 158.8 129.0 173.0 18.4 8 29

replace 165.9 127.0 182.0 17.8 9 28

tcas 57.9 30.0 69.0 10.8 5 16

5.3.2 Variables and Measures

Independent Variables Our experiment manipulated three independent variables:

IV1: Order in which affected elements are considered. As orders of affected elements,

we use the depth-first order described in Section 5.2, and a baseline approach that

orders affected elements randomly.

IV2: Manner in which existing and new test cases are reused. We consider two

approaches to reusing test cases; namely, the approach in which a test case generation

algorithm attempts to use only existing test cases, and the approach in which it uses

existing along with newly generated test cases. From Section 4.5, we know that these

two approaches have achieved fairly good coverage and at the same time do not cost

much. Also these two approaches are easy to utilize.

IV3: Test case generation technique. We consider two test case generation techniques;

namely, the genetic and concolic techniques described in Section 5.2.

64

Dependent Variables and Measures We wish to measure both the effectiveness

and the efficiency of augmentation techniques under each combination of potentially

affecting factors. To do this we selected two variables and measures:

DV1: Effectiveness in terms of coverage. The test case augmentation techniques that

we consider are intended to work with existing test suites to achieve higher levels of

coverage in a modified program P . To measure the effectiveness of our techniques,

we track the number of branches in P that can be covered by each augmented test

suite.

DV2: Efficiency in terms of time. To track augmentation technique efficiency, for

each application of an augmentation technique we measure the cost of using the

technique in terms of the wall clock time required to apply it. In Section 3.6 and

Section 4.3, we used different metrics to measure cost, and the metrics are useful and

valid for each technique. However, if we want to make two techniques comparable,

we need to find a metric which is valid for them, so we choose wall clock time.

5.3.3 Experiment Setup

Several steps had to be followed to establish the experiment setup needed to conduct

our experiment.

Genetic Algorithm Implementation. Even though the core of the genetic al-

gorithm implementation used here is similar to the one used in Section 4.3, we have

chosen different object programs. Therefore, we still need to follow some steps to

construct our genetic algorithm for the object programs used in this study. First, in

our case, each test case is a chromosome where the genes are inputs to the programs,

and we customize this for each program. For example, for printtok1 and printtok2,

all the characters in the input file form a chromosome and every character is a gene,

65

while for tcas, every integer in the input is a gene in the chromosome. For selection,

we select the best half of the population to generate the next generation; we keep the

selected chromosomes in the new generation. We rank the chromosomes and divide

them into two parts. The first chromosome in the first half is mated with the first

chromosome in the second half, and the second chromosome in the first half is mated

with the second chromosome in the second half, and so forth.

Second, in crossover, we perform a one point crossover by randomly selecting a

position that is between 0 and the number of genes of the smaller chromosome; we

then swap everything between chromosomes starting at that position to the end of

the chromosome.

Third, our search targets are branches in the program, therefore for our fitness

function we use the approach level described in [97]. The approach level is a discrete

count measuring how far we were from the predicate controlling the target branch

in the CFG when we deviated course; the further away we are from this predicate,

the higher the fitness, therefore we are trying to minimize this value. If we reach the

predicate leading to our target, the approach level is 0. For different programs, we

use different mutation rates: for printtok1 and printtok2 we use 0.06, for replace

we use 0.08 and for tcas we use 0.05.4

Concolic Algorithm Implementation. The implementation of a concolic algo-

rithm used in Section 3.6 is for Java programs. Since we use C programs in this

study, we implemented the concolic test case generation algorithm presented in Sec-

tion 5.2 based on CREST [15, 26]. CREST transforms a program’s source code into

an “extended” version in which each original conditional statement with a compound

4For our initial implementation, for the sake of simplicity and due to the instrumentation over-
head required, we did not combine this with branch distance. We nonetheless achieved good con-
vergence on these programs; still, research suggests that branch distance is an important part of the
fitness function [3] and we intend to consider it in the future.

66

Boolean condition is transformed into multiple conditional statements with atomic

conditions without Boolean connectives (i.e., if(b1 && b2) f() is transformed into

if(b1) {if(b2) f()}).

Extended Programs. To facilitate fair comparisons between concolic and genetic

algorithms, we cannot apply the former to extended programs and the latter to non-

extended programs. We thus opted to create extended versions of all four programs,

and apply both algorithms to those versions.

Iteration Limits. Genetic algorithms iteratively generate test cases, and an itera-

tion limit governs the stopping point for this activity. Similarly, the concolic approach

that we use employs an iteration limit that governs the maximum number of path

conditions that should be solved to generate useful test cases. These iteration limits

can affect both the effectiveness and efficiency of the algorithms. Thus, we cannot

run experiments with just one iteration limit per approach, because this would result

in a case where our comparisons might reflect iteration limits rather than differences

in techniques. For this reason, we chose multiple iteration limits for each test case

generation approach, using 1-3-5-7-9 for concolic, and 5-10-15-20-25 for genetic. (The

different numbers are due to the different meanings of iterations across the two algo-

rithms, as explained in Sections 5.2.3 and 5.2.4.)

Technique Tuning. Genetic algorithms must be tuned to the programs on which

they are to be run. This does not present a problem in a test suite augmentation

setting, because tuning can be performed on early system versions, and then the

resulting tuned algorithms can be utilized on subsequent versions. For this study, we

tuned our genetic algorithms by applying them directly to the extended programs

absent any existing suites.

67

We describe the setup for the parameters in the following. For printtok1 and

printtok2, each chromosome is a variable length string containing ASCII characters.

For replace, each chromosome is split into three parts, each of which contains char-

acters as well. For tcas, our chromosome is composed of integers. For the fitness

function we use the approach level described in [97]. The approach level is a discrete

count that measures how far we were from the predicate controlling the target branch

in the CFG when we deviated course during testing. The further we are from this

predicate, the higher the fitness, therefore we try to minimize this value. If we reach

the predicate leading to our target, the approach level is 0. During the crossover,

for all subjects except replace, we use a one point crossover by randomly selecting

a number between 0 and the length of the shorter chromosome. We then swap ev-

erything between chromosomes at that position to the end of the chromosome. For

each of the three parts of the replace chromosome, we used one point crossover as

just described. We chose different mutation rates for the four subjects, 0.05 for tcas,

0.06 for printtok1 and printtok2, and 0.08 for replace. We chose these based on

trial runs performing test case generation (not augmentation) starting with a random

population. The mutation pool for tcas contains integers mined from predicates in

the program, in addition to integers randomly generated from 1800 to -1800. The

other subjects use the same pool for mutation; all ASCII characters from 32 to 127,

combined with some special characters such as a newline and tab.

5.3.4 Experiment Operation

Given our independent variables, an individual augmentation technique consists of a

triple, (G,A,M), where G is one of the two test case generation techniques (Genetic

or Concolic), A is one of two affected element orders (Random or Depth-first), and M

68

is one of the two test case reuse approaches (Existing test cases or New+Existing test

cases). An individual augmentation technique application consists of an augmentation

technique applied at an iteration limit L, and in our case L has five levels.

Our experiment thus employs eight augmentation techniques and 40 augmentation

technique applications. Each of these is applied to each of our four programs for

each of the 100 test suites that we created for that program. This results in 16,000

augmentation technique applications, for each of which we collect our dependent

variables to obtain the data sets needed for our analysis.

Our experiments were run on Linux boxes with Intel Core2duo E8400s at 3.6GHz

and with 16GB RAM, running Fedora 9 as OSs. Our processes were the only user

processes active on the machines.

5.3.5 Threats to Validity

The primary threat to external validity for this study involves the representativeness

of our object programs and test suites. We have examined only four relatively small

C programs, and the study of other programs, other types of code changes, and other

test suites may exhibit different cost-benefit tradeoffs. Furthermore, our programs

are chosen to allow application of both genetic and concolic testing, and thus, do not

reveal cases in which program characteristics might disable one but not the other of

these approaches. A second threat to external validity pertains to our algorithms;

we have utilized only one variant of a genetic test case generation algorithm, and

one variant of a concolic testing algorithm, and we have applied both to extended

versions of the programs, where the genetic approach does not require this and might

function differently on the original source code. Further, we have considered only two

approaches to handling target branches; other approaches or approaches that handle

69

sets of target branches rather than single branches (see e.g., [4]) may exhibit different

results. Subsequent studies are needed to determine the extent to which our results

generalize.

The primary threat to internal validity is possible faults in the implementations

of the algorithms and tools we use to perform evaluation. We controlled for this

threat through extensive functional testing of our implementations. A second threat

involves the potential for inconsistent decisions and practices in the implementation

of the techniques studied; for example, variation in the efficiency of implementations

of techniques could bias data collected.

Where construct validity is concerned, there are other metrics that could be perti-

nent to the effects studied. In particular, our measurements of efficiency consider only

technique run-time, and omit costs related to the time spent by engineers employing

the approaches. Our time measurements also suffer from the potential biases detailed

under internal validity, given the inherent difficulty of obtaining an efficient technique

prototype.

Where conclusion validity is concerned, our choices of iteration limits for the two

test case generation algorithms may have limited our ability to compare the genetic

and concolic algorithms fairly in regard to RQ3; it is possible that the addition of

additional levels could alter the results of the comparison.

5.3.6 Results and Analysis

As an initial overview of the data, Tables 5.3, 5.4, 5.5 and 5.6 present the average

coverage and cost values obtained per program, across all test suites, for each iteration

limit, for each combination of order of affected elements and test reuse approach. The

coverage is shown as the number of branches covered by augmented test suites and

70

Table 5.3: Coverage Using DFO Order and Existing Test Cases

Coverage (number of branches) Cost (seconds)
Genetic 5 10 15 20 25 5 10 15 20 25
printtok1 154.92 155.88 155.98 156.34 156.73 38.66 78.85 117.18 158.39 194.62
printtok2 175.89 176.15 176.28 176.35 176.37 26.21 54.93 83.90 113.08 151.67
replace 184.55 185.39 186.33 186.67 186.85 65.71 128.39 185.18 247.49 322.67
tcas 69.69 70.49 70.73 70.79 70.82 3.06 5.56 8.29 11.08 13.70
Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 143.97 150.38 151.29 152.19 152.50 1.56 4.35 7.10 9.87 12.62
printtok2 165.50 170.84 171.75 172.48 173.16 0.25 0.52 0.80 1.07 1.35
replace 176.54 185.61 188.27 189.19 189.58 0.89 2.90 4.95 6.94 9.02
tcas 65.12 66.77 68.91 69.51 69.52 0.09 0.19 0.27 0.36 0.44

Table 5.4: Coverage Using DFO Order and Existing plus New Test Cases

Coverage (number of branches) Cost (seconds)
Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 155.74 156.77 156.96 157.43 157.80 81.22 151.32 239.53 314.83 385.65
printtok2 176.37 176.55 176.53 176.57 176.56 54.50 106.33 147.42 229.02 272.56
replace 185.21 186.50 186.71 187.31 187.20 92.26 183.31 283.36 365.82 449.64
tcas 70.68 70.92 70.86 70.95 70.96 5.12 9.64 14.32 18.65 24.33

Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 144.16 150.66 151.74 152.49 152.87 1.93 5.73 9.43 13.05 16.61
printtok2 165.74 171.30 172.15 172.94 173.70 0.30 0.61 0.93 1.26 1.59
replace 176.77 187.54 189.65 190.47 190.75 1.09 3.93 6.65 9.28 11.92
tcas 65.63 67.70 70.20 70.85 70.86 0.10 0.20 0.31 0.41 0.51

Table 5.5: Coverage Using Random Order and Existing Test Cases

Coverage (number of branches) Cost (seconds)
Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 154.93 155.53 155.64 156.19 156.44 39.22 79.07 123.80 164.88 204.94
printtok2 175.74 176.34 176.54 176.49 176.37 28.14 59.02 89.97 113.58 153.63
replace 184.35 185.94 186.33 186.86 186.99 72.15 130.83 192.52 254.15 311.30
tcas 69.80 70.55 70.68 70.76 70.82 2.96 5.41 8.15 11.89 14.50

Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 143.97 150.38 151.29 152.19 152.50 1.56 4.35 7.09 9.87 12.65
printtok2 165.50 170.84 171.75 172.48 173.16 0.25 0.52 0.79 1.07 1.34
replace 176.54 185.61 188.27 189.20 189.58 0.88 2.91 4.97 6.98 9.07
tcas 65.12 66.77 68.91 69.51 69.52 0.09 0.19 0.27 0.36 0.44

Table 5.6: Coverage Using Random Order and Existing plus New Test Cases

Coverage (number of branches) Cost (seconds)
Genetic 5 10 15 20 25 5 10 15 20 25

printtok1 155.55 156.20 156.70 157.65 157.31 89.25 171.06 248.59 379.73 428.48
printtok2 176.50 176.55 176.54 176.59 176.62 64.89 114.84 165.72 201.23 294.72
replace 185.43 186.27 186.95 187.56 187.37 93.53 188.59 285.17 375.81 470.99
tcas 70.64 70.86 70.89 70.93 70.97 5.18 9.73 15.09 20.57 25.32

Concolic 1 3 5 7 9 1 3 5 7 9
printtok1 144.16 150.66 151.68 152.42 152.77 1.92 5.71 9.36 12.92 16.50
printtok2 165.74 171.345 172.20 172.94 173.71 0.30 0.61 0.94 1.26 1.59
replace 176.79 187.56 189.53 190.55 190.81 1.09 3.96 6.77 9.45 12.23
tcas 65.63 67.22 70.20 70.86 70.87 0.10 0.20 0.31 0.42 0.52

71

Table 5.7: Impact of Order in which Affected Elements are Considered on Coverage
and Cost.

Coverage

GDE vs GRE GDN vs GRN CDE vs CRE CDN vs CRN

printtok1 R D D D D D D D R D = = = = = = = D D D

printtok2 D R R R = R = R R R = = = = = = R R R R

replace D R = D R R D R R R = = = = = R R D R R

tcas R R D D = D D R D R = = = = = D D = = R

Cost

printtok1 D D D D D D D D D D R R R D D R R R R R

printtok2 D D D D D D D D R D D R R R R R D D R R

replace D D D D R D D D D D R D D D D R D D D D

tcas R R R D D D D D D D = R R D R D D R D D

the cost is shown in seconds. Each table presents results for concolic and genetic

techniques for one combination of the branch order and test case reuse treatments.

We now discuss and analyze this data with respect to our three research questions,

in turn.

5.3.6.1 RQ1: Order of Affected Elements

Our first research question pertains to the effects of using different orders of affected

elements; in this case, depth-first order versus random. Table 5.7 presents a view

of our data that helps us address this question. The table presents results per pro-

gram, with coverage results in the upper half and cost results in the bottom half.

Column headers use mnemonics to indicate techniques: GDE corresponds to (Ge-

netic, DFO, Existing), GDN to (Genetic, DFO, New+Existing), GRE to (Genetic,

Random, Existing), GRN to (Genetic, Random, New+Existing), CDE to (Concolic,

DFO, Existing), CDN to (Concolic, DFO, New+Existing), CRE to (Concolic, Ran-

dom, Existing), and CRN to (Concolic, Random, New+Existing). Individual columns

correspond to techniques compared; thus, column 2, with header “GDE vs GRE”,

compares (Genetic, DFO, Existing) to (Genetic, Random, Existing).

72

Each entry in the table summarizes the differences observed between the two

techniques for each of the five iteration limits. “D” indicates that the technique

using depth-first order exhibited the better (greater) mean coverage value or better

(lesser) cost value, “R” indicates that the technique using random order exhibited

the better (greater) mean coverage or better (lesser) cost value, and “=” indicates

that techniques exhibited equal mean coverage or cost (through the second decimal

place). For example, for printtok1, comparing GDE and GRE for coverage, the table

contains “R D D D D”, indicating that at the lowest iteration limit random order

produced greater coverage, and at the other four limits depth first order produced

greater coverage. The similar entry for printtok1 for cost, containing “D D D D D”,

indicates that at all five iteration limits depth-first order exhibited the lowest cost.

For each pair of techniques compared, for each iteration limit L, we applied a

Wilcoxon-test [32] to the coverage (and cost) data obtained across all test suites

augmented using α = 0.05 as the confidence limit, to validate the null hypothesis:

there is no significant difference between two orders (DFO and random) in terms

of both effectiveness and efficiency when corresponding techniques are compared at

iteration limit L. In the table, bold-italicized fonts indicate statistically significant

differences. For example, for printtok2, comparing GDE and GRE for coverage, the

only statistically significant difference between techniques occurred at iteration limit

15. It is these statistical differences that we focus on with respect to our research

question.

We begin by considering the results for the genetic algorithm. Where coverage

is concerned, no clear advantage resides in either test case order, and results are

relatively similar in the instances in which existing, or new and existing, test cases

are used. Across all iteration limits and programs, there is only one case in which

the two orders result in a statistically significant difference (printtok2 at iteration

73

limit 15). Even when considering the non-statistically-significant differences between

orders, there is no clear winner.

Where cost results for the genetic algorithm are concerned we see different trends.

First, in the GDE vs GRE column there are 16 instances in which order causes

statistically significant differences: these include all instances for printtok1 and

printtok2 and most instances for replace. In the GDN vs GRN column there are

also 17 instances, again including all instances for replace and most instances for

printtok1 and printtok2. In all of these instances, DFO is less costly than random.

Turning to the concolic approach, where coverage is concerned, when new and

existing test cases are considered, we find only one statistically significant difference

between techniques, for tcas in the CDN vs CRN case at iteration limit 3. Again,

even non-statistically-significant differences show no clear winner. Moreover, when

only existing test cases are used, techniques exhibit no differences in coverage at all.

Therefore, there are no apparent patterns involving iteration limits or programs to

indicate that order potentially influences coverage.

Finally, considering cost results for concolic, unlike the case for the genetic ap-

proach, we see only a few statistically significant differences in costs, with five in the

CDE vs CRE case and four in the CDN vs CRN case. Seven of these instances are

on replace, where DFO is less costly than Random, and these are at higher iteration

limits, so this may indicate some trend that will emerge as programs become more

complex. However, for the other three programs, there is no clear advantage adhering

to either Random or DFO orders.

5.3.6.2 RQ2: Use of Existing and New Test Cases

Our second research question pertains to the effects of reusing existing and newly

generated test cases. Table 5.8 presents data relevant to this question. The table

74

Table 5.8: Impact of Test Case Reuse Approaches on Coverage and Cost.

Coverage

GDE vs GDN GRE vs GRN CDE vs CDN CRE vs CRN

printtok1 N

printtok2 N

replace N

tcas N

Cost

printtok1 E

printtok2 E

replace E

tcas E

format is similar to that of Table 5.7, but in keeping with the goal of comparing

across test case reuse approaches the differences in terms compared all involve reuse

approaches (Existing versus New+Existing). For each pair of techniques compared,

for each iteration limit L, we again applied a Wilcoxon-test [32] to the coverage (and

cost) data obtained across all test suites augmented using α = 0.05 as the confidence

limit, to validate the null hypothesis: there is no significant difference between two

methods of reusing test cases (using existing and using existing and new) in terms

of both effectiveness and efficiency when corresponding techniques are compared at

iteration limit L. between the two techniques at iteration limit L.

We begin by considering the results for the genetic algorithm. Where coverage

is concerned, in all instances, the use of new and existing test cases is superior to

reusing only existing test cases, and in most instances the difference is statistically

significant. This includes 19 of 20 instances when DFO is used, and 16 of 20 instances

in which random order is used.

Where cost results for the genetic algorithm are concerned we observe even stronger

effects: in all instances, using existing test cases only is less expensive, and the effect

of doing so is statistically significant.

75

Table 5.9: Comparison of Coverage: Genetic vs Concolic

GDE GDN GRE GRN
Program vs CDE vs CDN vs CRE vs CRN

printtok1 G G G G

printtok2 G G G G

replace C C C C

tcas G G G G

Turning to the concolic approach, where coverage is concerned, here we see strong

evidence that test case reuse matters for coverage, with the use of new test cases

always more effective, and in all instances statistically significantly so.

Finally, considering cost results for the concolic approach, we again note statis-

tically significant differences in all instances, again with lower costs adhering to the

use of only existing test cases.

5.3.6.3 RQ3: Test Case Generation Algorithm

Our third research question pertains to the effects of using different test case gen-

eration algorithms, and we begin by comparing them for effectiveness. One issue to

consider in doing this involves inherent differences in the test case generation algo-

rithms. In Section 5.3.3 we described the reasoning behind using several iteration

limits for each algorithm: we expect concolic and genetic algorithms to respond dif-

ferently over different limits, and using different limits lets us observe techniques

independent of the threat to internal validity that would attend the use of a single

iteration limit.

Where comparisons of techniques are concerned, there is no inherent relationship

between a given iteration limit for the concolic approach and a given iteration limit

for the genetic approach; that is, concolic limits 1, 3, 5, 7, and 9 do not “correspond”

in any way to genetic limits 5, 10, 15, 20, and 25. It follows that we cannot validly

compare algorithms to each other on a per-iteration-limit basis. Instead, for each

76

object program P , we locate the iteration limit Lg at which the genetic algorithm

operated most effectively on P , and the iteration limit Lc at which the concolic

algorithm operated most effectively on P , and we compare the algorithms at these

respective optimal iteration limits. To perform these comparisons we again applied a

Wilcoxon-test [32] to the coverage data at the chosen iteration limits using α = 0.05 as

the confidence limit, to validate the null hypothesis: there is no significant difference

between the two test case generation techniques.

We begin by considering the results for the genetic algorithm. Where coverage

is concerned, in all instances, the use of new and existing test cases is superior to

reusing only existing test cases.

Table 5.9 presents data relevant to RQ3 with respect to algorithm effectiveness

following the analysis procedure just described. The table provides data for each

program and for each of the four combinations of affected element ordering and test

reuse strategies studied. An individual table entry indicates which technique achieved

greater coverage, and bold-italicized fonts indicate instances in which the difference

was statistically significant.

As the table shows, on every program but replace, the genetic algorithm out-

performs the concolic algorithm, in each category in which they were compared. On

replace the advantage goes to concolic. All differences were statistically significant.

Turning to efficiency, note that this comparison is complicated by the inherent

differences in our two implementations. In fact, it is quite difficult to fairly compare

techniques for efficiency because their implementations are derived from different

sources, and cannot be said to represent “optimal” implementations of the two algo-

rithms. Thus we restrict ourselves to observing efficiency differences in a qualitative

fashion. As data presented in Tables 5.3-5.6 shows, costs for the genetic algorithm

range from times in the tenths of seconds to times above 400 seconds, while costs

77

for the concolic algorithm range from times in the tenths of seconds to times near 20

seconds. With our current implementations this represents a very large difference in

favor of the concolic approach.

A further issue involves the effects that increasing iteration limits have on the re-

spective algorithms. Here, as remarked earlier, increases in limits seem to correspond

to roughly similar increases, proportionally, in costs. This provides some post-hoc

justification for our choice of particular iteration limits, in that they seem somewhat

comparable in terms of their effects on relative effort.

5.3.7 Discussion and Implications

We now discuss the results presented in the prior section and provide further analysis.

5.3.7.1 Affected Element Order

One might argue that in principle, the order of affected elements is not likely to signif-

icantly affect algorithm effectiveness in terms of coverage achieved, because the same

elements will ultimately be considered under any order. This is what we observed in

the results of our study.

Where efficiency is concerned, in contrast, we do see differences: our results show

that DFO can provide savings in costs when using the genetic algorithm. This can be

explained by observing that with the genetic algorithm, if we work with higher-level

branches first we can incidentally cover additional branches. Also, test cases that

cover branches higher in dependency chains could have inputs that are close to those

used to reach lower branches, thereby seeding the population with inputs that help

the algorithm cover those more quickly.

78

With the concolic algorithm, in contrast, cost saving results are mixed. We suspect

this is because test cases generated to cover a given branch bt (lines 11-19 of Algo-

rithm 4) may not cover other uncovered branches unless these uncovered branches

share a common ancestor branch at a short distance from bt (less than niter) in an

execution tree. In such cases, the ordering of affected elements is not likely to affect

cost.

All things considered, based on our results we can argue that DFO has the poten-

tial to be more efficient than random ordering when using genetic algorithms, since

we observed this in almost all cases considered. There seems to be no clear bene-

fit to using either order, however, where the concolic approach is concerned. Still,

these results do not preclude finding some other orderings that are more predictably

cost-effective for that approach.

5.3.7.2 Test Case Reuse Approach

Our results show that the use of new test cases in addition to existing test cases always

significantly increased the cost of test generation by both techniques. This result can

be explained by the correlation between technique effort and the number of test cases

used to seed the technique. Having additional test cases affects the population size

for the genetic algorithm, while the concolic technique must consider each test case

supplied to it. Note that in Section 4.5, these two approaches have similar costs when

using the genetic algorithm, because for the subject program NanoXML not many new

test cases are generated compared to the size of existing test cases. We needed to run

more test cases but at the same time the new test cases brought diversity which led

to fewer iterations. Therefore, these two approaches did not exhibit much difference

in terms of cost in that case.

79

The use of new test cases also significantly increased test generation technique

effectiveness in all cases in which the concolic approach was used, and in most cases

where the genetic approach was used. The difference across techniques can be ex-

plained as follows. With the genetic algorithm, having additional test cases to work

with can increase population diversity and improve the chances that crossover will

generate chromosomes that cover previously uncovered branches; however, changes

due to the increase might not be substantial when just a few test cases are added

to those that have been used previously. This is the same as we see in Section 4.5,

two approaches have achieved similar coverage when the genetic algorithm is used for

NanoXML. The concolic approach, in contrast, utilizes each new test case independently

and can potentially gain from each as such.

If these results generalize we have an important cost-benefit tradeoff. With both

techniques there is a potential payoff for incurring the additional costs involved in

reusing test cases, and this effect is greater for the concolic technique than for the

genetic technique. In practice, whether any effectiveness gain is worth the additional

cost must be assessed relative to the actual costs of generating test cases versus the

actual benefits of obtaining better coverage on the particular systems being verified.

Such assessments, however, are quite viable in the context of software evolution, where

systems are expected to be re-tested many times, and long-term cost-benefit gains

make assessments more worthwhile.

5.3.7.3 Test Case Generation Techniques

As mentioned in our discussion of threats to validity, we are working with particular

variants and implementations of test case generation algorithms. Genetic algorithms

require tuning in terms of fitness function, selection method, and mutation mecha-

nism. We have tuned our algorithms on our object versions, independent of existing

80

test suites, and in practice this approach could be used on early versions of systems in

order to support regression testing of later versions. Still, alternative tunings might

have allowed the genetic algorithms to perform better. Similarly, we have used just

one concolic algorithm and implementation, and alternative algorithms or implemen-

tations might allow it to perform better. Finally, as we have also mentioned, efficiency

differences between the implementations cannot be compared in any rigorously quan-

titative sense.

These cautions noted, in our experiment, concolic and genetic test case generation

techniques did perform statistically significantly differently. The genetic algorithm ex-

hibited greater effectiveness than the concolic algorithm on printtok1, printtok2,

and tcas under all combinations of other factors. It appears that the genetic al-

gorithm is more costly (potentially by two orders of magnitude) than the concolic

algorithm in doing this, although again this comparison must be made cautiously

due to the foregoing factors. These observations do prompt us, however, to further

explore the reasons for differences. We postpone discussion of that exploration to

Section 5.5, however, when we can present it together with further input from the

results of our second study.

5.3.7.4 Iteration Limits

We did not consider iteration limit to be an independent variable; rather, we blocked

our analyses per iteration limit level, since this is our stopping criterion. We did

examine our data, however, to assess iteration limit effects.

First, there does appear to be an increasing trend in coverage values as iteration

limits increase. Beginning with the genetic algorithm, and considering the 16 cases in

which limits increase (i.e., four increases per program, progressing from 5 to 10, 10 to

15, 15 to 20, and 20 to 25), coverage values for GDE increase as limits increase in all 16

81

cases, coverage values for GRE increase as limits increase in 14 of 16 cases, coverage

values for GDN increase as limits increase in all 16 cases, and coverage values for

GRN increase as limits increase in all 16 cases. The coverage increases, however, are

small overall — never more than two — and only 24 of 64 are statistically significant,

which indicates that our genetic algorithm is converging.

Iteration trends occur for the concolic algorithm as well, with values generally

increasing by small amounts in all 64 cases. In this case, all of these increases are

statistically significant, suggesting that iteration plays a more measurable role for

the concolic approach than for the genetic approach, and that further increases may

provide opportunities to increase effectiveness.

Where algorithm efficiency is concerned iteration limits have larger effects. For

the genetic algorithm, costs differ across iteration limits by relatively substantial

amounts (i.e., by factors ranging from four to six from iteration limits 5 to 25).

Where the concolic algorithm is concerned we also see increases in costs as iteration

limits increase. The increases are smaller numerically than those observed with the

genetic algorithm, but they are similar in terms of the factors involved (i.e., they

increase by factors ranging from five to ten from iteration limits 1 to 9).

5.3.7.5 Initial Test Suite Characteristics

Test suites can differ in terms of size, composition, and coverage achieved. Such

differences in test suite characteristics could potentially affect augmentation processes.

For example, the extent to which an existing test suite achieves coverage prior to

modifications can affect the number and locations of coverage elements that must be

targeted by augmentation. Furthermore, test suite characteristics can impact the size

and diversity of the starting populations utilized by test case generation techniques.

82

For these reasons, we chose to additionally examine our results in terms of four

different fixed levels of coverage achieved by test suites. To do this, for each object

program, we considered the total branch coverage achieved by the 100 test suites for

that program, ranked them in terms of coverage, and partitioned them into four equal

size quartiles, denoted Q1, Q2, Q3, and Q4, respectively, where Q1 contains the 25

test suites achieving the lowest levels of coverage, Q2 contains the 25 suites achieving

the next highest levels, and so forth. We then conducted the same statistical tests

on the resulting data that were conducted in examining our first and second research

questions, on a per quartile basis.

In three of the resulting comparisons, namely, (1) the impact of test order on

coverage, (2) the impact of test order on cost, and (3) the impact of test reuse on cost,

we observed no differences in results across quartiles. That is, test suite characteristics

did not impact the associated effects. In one of the resulting comparisons, however,

namely, (4) the impact of test reuse on coverage, we did observe effects.

Table 5.10 presents results relevant to this assessment. The table is similar to

Table 5.8, but in this case, we provide separate results per program for each of the four

quartiles in the rows labeled “Q1”, “Q2”, “Q3” and “Q4”. Where Table 5.8 revealed

statistically significant coverage differences between approaches using existing test

cases and approaches using existing plus new test cases in all but five cases, the per-

quartile assessment exhibits many more cases in which differences are not statistically

significant. This may be caused, in part, by the fact that these comparisons employ

data sets which, being smaller, do not provide enough data to provide sufficient power

to statistical tests. There does appear to be a tendency, however, for lower quartiles

to exhibit significance more frequently than higher quartiles. In other words, the

coverage benefits of using new test cases in addition to existing ones may dissipate as

the degree of coverage achieved by initial test suites increases. Further, on the most

83

Table 5.10: Impact of Test Reuse in Quartiles

Coverage

GDE vs GRN GRE vs GRN CDE vs CDN CRE vs CRN

printtok1 Q1 N

Q2 N

Q3 N

Q4 N N N N E N N N N E = N N N N = N N N N

printtok2 Q1 N

Q2 N

Q3 N N N N N N N N N N N = N = N N = = = =

Q4 N N E E E N E E E E N N = N N N N N N N

replace Q1 N

Q2 N

Q3 N

Q4 N N N N N N N N N N N N N N N = N N N N

tcas Q1 N

Q2 N

Q3 N N N N N N N N N N = N N = = = = = N N

Q4 N = N = = N N N N N = = = = = = = = = =

complex of the programs, replace, the efficacy of using new test cases dissipates

more slowly for the concolic algorithm than for the genetic algorithm. This may

indicate the potential for the algorithms to be differently influenced by initial test

suite characteristics on programs of different characteristics, a suggestion that we

return to in Section 5.5 following presentation of the results of our second study.

5.3.7.6 The Benefits of Augmentation

In Section 1, we conjectured that augmentation techniques working with existing test

suites can perform better than augmentation techniques working without existing

suites. To further consider this claim, we applied the concolic testing tool CREST

from scratch on our programs, working without the benefit of test cases (the approach

under which these algorithms have been traditionally been studied to date).5

5An equivalent investigation of the genetic algorithm would be complicated by the fact that
that the algorithm does require test cases to begin with, and the only relevant approach to compare

84

Table 5.11 displays the results, listing the cost in seconds and the final cover-

age reached in branches on each program, per iteration level IL (left column). En-

tries of the form ‘-’ under tcas indicate cases where larger iteration limits are not

needed. Comparing results with those for augmentation techniques reveals substan-

tially poorer coverage on all programs but tcas, at costs that are relatively similar.

The benefit of allowing the concolic approach to reuse test cases in the augmentation

task is quite clear.

Table 5.11: Results of Concolic Testing From Scratch

printtok1 printtok2 replace tcas

IL Cost Cov. Cost Cov. Cost Cov. Cost Cov.

1 1.4 111 0.5 87 1.5 56 0.2 71

3 3.4 111 0.9 92 2.5 78 - -

5 5.3 111 1.3 101 3.8 78 - -

7 7.8 111 1.9 110 6.2 78 - -

9 9.6 111 2.3 115 8.8 78 - -

5.4 Empirical Study 2

The results of Study 1 suggest that affected element order and test case reuse approach

can indeed have different impacts in the context of different augmentation techniques,

and that the two underlying test case generation techniques that we consider have

different strengths on different programs. However, as we discussed in Section 5.3.5,

the programs we used in that study are relatively small and simple. We wish to

see whether these results generalize to larger, more complex programs. Thus, we

replicated Study 1 on a considerably more complex open-source program, grep, for

which a sequence of six versions was available.

against would be one in which those test cases were randomly generated. Randomly generating
applicable test cases for the object programs is a non-trivial task, and the process of then applying
the genetic algorithm to generate test cases with these is expensive. We judge the knowledge that
might be gained from such an attempt to not be worth this effort. Thus we have not performed this
comparison with respect to the genetic algorithm.

85

For this study, we again consider the same research questions considered in Study 1,

and for completeness we repeat these here, designated RQ1′, RQ2′ and RQ3′ in recog-

nition of the different experimental context being considered.

RQ1′: How does the order of consideration of affected elements affect augmentation

techniques?

RQ2′: How does the use of existing and newly generated test cases affect augmenta-

tion techniques?

RQ3′: How do genetic and concolic test case generation techniques differ in the

augmentation context?

As noted, this study utilizes the grep program provided in the SIR [31]. The grep

program is a command-line text-search utility originally written for Unix. It searches

files or standard input globally for lines matching a given regular expression, and

prints the lines to the program’s standard output. It contains about 10,000 lines of C

code. As mentioned above, grep is available with six sequential versions. However,

the program does not have an enormous test universe of test cases offering complete

coverage of the code; rather, it comes with a single test suite containing 792 test cases.

We augment this test suite for each of the five versions after the base version. Table

5.12 provides details on the numbers of the branches for each of these subsequent

versions, as well as the coverage achieved on each of those versions by the test suite

prior to augmentation.

Table 5.12: Initial Coverage Information for grep

Version Total number of branches Initial coverage

V1 3934 2151

V2 4146 2245

V3 4234 2271

V4 4262 2284

V5 4264 2284

86

This study utilizes the same variables and measures as Study 1. It also possesses

the same threats to validity as Study 1 with the exception of those specifically ad-

dressed in this study (size and representativeness of the object programs). We thus do

not repeat discussion of these here. Instead, we describe only the differences between

this study and Study 1. We then present data and analysis and discussion of results.

5.4.1 Experiment Setup

The grep program is quite different from the programs used in Study 1, in terms

of size and initial test suite, and this required us to make some adjustments to the

experiment process. First, one test case for grep has three parts: option, pattern

and file. The option part includes command-line arguments that change many of the

program’s behaviors. For example, the option flag “-i” enables case-insensitive search

(ignore case). The pattern part is the regular expression that the user wishes to find

in files. Therefore, both option and pattern parts are strings. The file part specifies

where the user wishes to search for the pattern and is usually a path. We did not limit

option and pattern lengths as we did for the programs in our first study, since both

lengths in the existing test cases are less than 30 which does not cause any problem

for our test case generation techniques. For the file parameter, the existing test cases

make use of five different files of which the largest contains 10,965 lines.

A second set of changes involved the settings used for the genetic algorithm, the

first of which involves the test suite reuse approach. With the genetic algorithm, if all

test cases are used to form the initial population for a target, the test case generation

process may take an inordinately long (and practically unreasonable) amount of time.

In such cases, it is common to use a subset of the population [85]. To determine a

reasonable subset size to use, we ran trials on the base version (V0) using initial

87

sizes 25, 50, 100, 150, and 792. They covered 540, 613, 577, 634 and 623 branches

separately in 5.6, 4.4, 4.7, 6.1 and 6.7 days, respectively. We determined that size

50 presented the best ratio of coverage to efficiency when applied to version V0. For

a target, if there are more than 50 test cases reaching the method that contains it,

we select the 50 fittest test cases as the initial population when we just use existing

test cases. When we consider existing plus new test cases in the genetic technique,

in addition to the 50 we chose, we add the newly generated test cases that reach the

method containing the target into the initial population for the target. In this case,

the existing plus new approach has more test cases to use for each target. In our

experiment runs, we use that population size on subsequent versions (and we do not

use data from V0). Note that this approach is practically reasonable in the context of

evolving software, because engineers can tune a testing approach on an initial version

and then use that tuned approach on subsequent versions.

We also altered the genetic algorithm process somewhat for use on grep. Every

character in the option and pattern arguments to the program is treated as a gene in

the chromosome. The whole file is also a gene – this is different from the approach used

for the smaller programs, but is necessary since the files used for grep are very large

and if we consider mutating the files, it would be difficult for the concolic technique

to do so. To be fair, however, in both techniques we treat the file as a manipulable

input. For the genetic approach, this means that the file is treated as a gene, and we

can switch the file in the chromosome with other files in the file pool. We used the

same strategies for fitness function, selection and crossover as the smaller programs.

We use a mutation rate of 0.05.

Finally, because the test case generation process takes much longer on grep than

on the programs used in Study 1, rather than use five different iteration levels we

used just one. To make an informed decision as to an iteration level, we applied the

88

following process to version V0. (Again, this is a process that engineers could apply

on an initial version in practice in order to tune an approach for use on subsequent

versions). We reasoned that an iteration level should be chosen based on the tradeoff

it presents with respect to costs and benefits. We used the following formula to

examine these tradeoffs:

(C(Ik+3)− C(Ik))/C(Ik)

(T (Ik+3)− T (Ik))
(5.1)

Here, C(Ik) is the number of covered branches in the target program at the kth

iteration level and T (Ik) is the execution time required to augment the test suite

at the kth iteration level, measured in hours for the concolic algorithm and days

for the genetic algorithm. The formula calculates the cost-benefit increase across

the subsequent three versions to avoid local minima or maxima that may exist in

calculating it across a single iteration level.

To choose an iteration level for the genetic and concolic algorithms, we applied

each algorithm to version V0 of grep at increasingly higher iteration levels, applying

the equation to each level as the data required for that level (from applications at

subsequent levels) became available. We continued this process until the difference

in ratios between two successive iterations fell below 0.01. In other words, after this

point, it takes more than one hour for the concolic approach and 24 hours for the

genetic approach to increase coverage by 1% when we run the experiment at the third

higher level. This process ultimately led us to choose iteration level 11 for the concolic

approach, and iteration level 15 for the genetic approach.

Having selected the foregoing parameters we proceeded with the experiment runs,

in which we applied each augmentation technique to each of the five subsequent

versions of grep. Because the algorithms do include non-deterministic behavior, we

89

Table 5.13: Coverage and Cost Data for grep, per Version and Technique

Coverage
V1 V2 V3 V4 V5 Avg

D R D R D R D R D R D R

GA
E 584 575 557 592 607 590 594 636 656 593 599.6 597.2
N 587 570 584 615 594 583 631 640 635 621 606.2 605.8

CT
E 390 390 405 405 423 423 448 448 448 448 422.8 422.8
N 604 622 621 621 644 626 668 676 668 676 641.0 644.2

Cost (hours)
V1 V2 V3 V4 V5 Avg

D R D R D R D R D R D R

GA
E 93.6 93.6 88.8 98.4 110.4 84.0 79.2 96.0 91.2 88.8 92.6 92.2
N 160.80 163.2 146.4 184.8 208.8 182.4 132.0 163.2 180.0 213.6 165.6 181.4

CT
E 7.6 8.2 11.6 12.3 13.9 13.7 12.5 12.3 12.4 12.7 11.6 11.8
N 28.3h 28.2h 40.4 41.1 46.3 43.2 34.9 39.7 35.7 39.9 37.1 38.4

applied each algorithm three times for each version. We thus obtained 60 data points

on the program for each algorithm, in total (i.e., 2 test reuse approaches ∗ 2 target

orders ∗ 5 versions ∗ 3 runs).

5.4.2 Data and Analysis

Table 5.13 presents the data gathered for grep. The upper half of the table provides

coverage data and the lower half provides cost data. In each half of the table, the first

two rows present the data for the genetic algorithm and the last two rows present

the data for the concolic algorithm. Coverage data is presented in terms of the

numbers of previously uncovered branches (total number of branches - initial coverage

in Table 5.12) that the approach covered. Cost data is presented in hours for both

algorithms. For each version and algorithm, four numbers are shown, corresponding

to measurements gathered for the four combinations of affected element orders (“D”

and “R”) and test case reuse approaches (“E” and “N”). Each cell in the table shows

the mean value across the three runs performed for the given combination.

Where coverage data is concerned, for the genetic algorithm, on average across all

versions, using DFO and existing test cases covered 599.6 new branches while using

90

existing plus new test cases added 606.2, just a 1.1% increase. Using random ordering,

existing test cases covered 597.2 branches while existing plus new added 605.8, a 1.4%

increase. Results varied across versions, however, with the use of existing plus new

cases outperforming the use of just existing test cases on only three of five versions

for each ordering (V1, V2, and V4 for DFO; V2, V4, and V5, for random). For DFO,

the largest increase was 6.2% on V4 and the smallest was -3.2% on V5, while for

random orders the largest increase was 4.7% on V5 and the smallest was -1.2% on

V3. Differences associated with test case orders were also small on average (less than

one branch), with no test case order being predominantly better.

For the concolic algorithm, differences associated with different test case reuse

methods are greater. On average across all versions, using DFO and existing test cases

covered 422.8 new branches while using DFO and existing plus new test cases added

641.0, a 51.6% increase. Using random orders and existing test cases covered 422.8

new branches while using random orders and existing plus new test cases covered 644.2

branches, a 52.4% increase. Improvements in results were consistent across versions

and fell within relatively similar ranges, with the largest increase being 54.9% on V1

and the smallest 49.1% on V4 and V5 for DFO, and the largest increase being 59.5%

on V1 and the smallest 48% on V3 for random orders. Differences associated with

test case orders, however, continued to be small or none on average.

Where cost data is concerned, for the genetic algorithm, on average across all

versions, using DFO and existing test cases cost 92.6 hours while using existing plus

new test cases cost 165.6 hours, a 78.8% increase. Using random ordering and existing

test cases cost 9221 hours while using random ordering and existing plus new test

cases cost 181.4 hours, a 96.9% increase. Results were consistent in direction across

versions, varying in magnitude from 97.4% on V5 to 64.9% on V2 for DFO and from

117.1% on V3 to 70.0% on V4 for random orders. Differences between test case

91

orders, in contrast, were less consistent across versions. When using just existing

test cases there was no average difference (and no clear winner) between DFO and

random orders. When using existing plus new test cases there was a 15.84 hours

average difference favoring DFO, with DFO outperforming random on all but V3.

For concolic testing, on average across all versions, using DFO and existing test

cases cost 11.6 hours, while using DFO and existing plus new test cases cost 37.1

hours, a 220.0% increase. Using random ordering and existing test cases cost 11.8

hours while using random ordering and existing plus new test cases cost 38.4 hours,

a 224.5% increase. Results were again consistent in direction across versions, varying

in magnitude from 272.4% on V1 to 179.2% on V4 for DFO and from 243.9% on

V1 to 214.2% on V5 for random. Differences between test case orders, however, were

inconsistent across versions and relatively small on average (e.g., 1.3 hours when using

existing plus new test cases and 0.2 hours when using just existing test cases).

Finally, where comparisons of the test case generation algorithms are concerned,

we note that when using just existing test cases, the genetic algorithm attains sub-

stantially higher coverage (from 37.5% to 49.7%) across the five versions than the

concolic algorithm. When using existing plus new test cases, however, the concolic

algorithm outperforms the genetic algorithm, from amounts ranging from 1.0% to

9.1% across versions. Also, in all cases, the concolic algorithm is substantially faster

than the genetic algorithm.

5.4.3 Discussion and Implications

We begin by summarizing the results for grep, as follows:

• DFO and random orders had little effect on coverage differences, for both the

genetic and concolic approaches and under both test case reuse approaches.

92

• DFO and random orders had inconsistent and varying effects on the costs of

genetic and concolic approaches in general. The one combination of treatments

in which order could be seen to have an impact occurred when using both

existing and new test cases with the genetic algorithm.

• The concolic algorithm benefitted substantially in terms of coverage when using

existing plus new test cases rather than just existing test cases, and this benefit

occurred for both test case orders. The genetic algorithm benefitted only mildly

and less consistently.

• In all cases, using existing plus new test cases added substantial costs to the

test case generation process.

• The concolic approach outperformed the genetic approach in terms of coverage

when using existing plus new test cases, while the genetic approach was better

when using just existing test cases.

The foregoing results are similar in their overall trends to those seen in Study 1,

with the exception of the last. We believe that the differences observed for the concolic

approach are primarily due to the fact that initial test suites achieve much lower levels

of coverage on grep than did the initial test suites used in Study 1; thus, new test

cases that are generated have larger potential to lead to additional coverage simply

due to the fact that more targets are available. The fact that the genetic algorithm

does not achieve a similar level of improvement, on the other hand, is likely due to the

fact that the newly generated test cases do not provide better power than the existing

test cases, which is consistent with what we observed on the smaller programs.

The data also prompts additional observations. On this much larger program,

the costs associated with the test generation task are much greater than on the

93

Table 5.14: Branch Coverage Differences – Smaller Programs

DFO/EXISTING DFO/NEW
Program GA CT GA ∩ CT GA∪ CT GA CT GA ∩ CT GA∪ CT

printtok1 5.25 0.27 152.23 157.75 5.65 0.11 152.76 158.52
printtok2 4.39 1.17 171.90 177.54 4.02 1.13 172.50 177.71
replace 4.23 5.70 183.90 193.84 3.35 5.29 185.46 194.09

tcas 1.37 0.10 69.44 70.91 0.13 0.01 70.86 71.00

RAND/EXISTING RAND/NEW
Program GA CT GA ∩ CT GA∪ CT GA CT GA ∩ CT GA∪ CT

printtok1 5.32 0.15 152.35 157.82 5.21 0.13 152.64 157.98
printtok2 4.35 1.14 172.02 177.51 4.02 1.08 172.63 177.7
replace 4.28 5.67 183.93 193.88 3.28 5.22 185.58 194.08

tcas 1.39 0.04 69.50 70.93 0.13 0.02 70.80 71.00

smaller programs, measuring in hours for the concolic approach and days for the

genetic approach. There is still a cost-benefit tradeoff involved, for both techniques,

in choosing to use existing or existing plus new test cases, but the benefit to cost ratio

for the genetic algorithm is much smaller here than with the first four programs, and

the benefit to cost ratio for the concolic algorithm is much larger. Thus, the cases

in which using existing plus new test cases would be worthwhile are likely to occur

much less often for the genetic algorithm than for the concolic algorithm.

5.5 Additional Analysis and Implications

Our two studies revealed overall performance differences between augmentation tech-

niques utilizing different test case generation algorithms and suggested several reasons

for those differences. To obtain further insights we analyzed the differences in cov-

erage results between the techniques in greater detail, and we present the results of

that analysis here.

94

5.5.1 Overall Comparison

We begin by considering results of Study 1. Table 5.14 shows the differences in branch

coverage achieved by concolic and genetic test case generation techniques in that

study. The table shows, for each of the four programs, for each of the four techniques

applied, the average numbers of branches across 100 test suites such that (1) (GA)

test suites generated by the genetic algorithm covered that branch while no test suites

generated by the concolic algorithm covered it; (2) (CT) test suites generated by the

concolic algorithm covered that branch while no test suites generated by the genetic

algorithm covered it; (3) (GA
∫

CT) each algorithm succeeded in generating at least

one test suite that covered the branch. (4) (GA ∪ CT) one or both algorithms

succeeded in generating at least one test suite that covered the branch. As the

table shows, for all techniques and programs, each of the two algorithms (concolic

and genetic) is able to cover at least some branches that cannot be covered by the

other algorithm. On tcas, the smallest of the four programs, the numbers are small

(between 0.01 and 1.39 branches). On the other three programs, larger ranges of

branch coverage differences occur, with the genetic algorithm accounting for more

differences on printtok1 and printtok2, and the concolic algorithm accounting for

more on replace.

We provide further details on two of the programs in Figure 5.3. The figure focuses

on the two object programs on which the techniques exhibited the greatest range of

differences, replace and printtok1, and on the case in which DFO and new plus

existing test cases are utilized. For each of these two cases the figure displays a graph.

The x-axes in these graphs correspond to branches (branch identifier numbers) in the

program. The y-axes indicate the numbers of test suites (from among the 100 suites

used) in which each branch was covered, with the bar extending upward from the

95

Figure 5.3: Comparison of branch coverage behaviors for concolic and genetic algo-
rithms on two representative cases.

line labeled “0” showing results for the concolic algorithm, and the bar extending

downward from that line showing coverage for the genetic algorithm.

In the case of replace, we see that a relatively small number of branches (13

to be precise) are not covered by any of the 100 test suites, for either technique. A

much larger number (101 to be precise) are covered by all 100 test suites, for both

techniques. The remaining branches are missed for at least some test suites by one

or both algorithms. For the concolic algorithm, only a few such branches (7 to be

precise) are missed by between 1 and 99 test suites, while for the genetic algorithm far

more (86 to be precise) are missed by between 1 and 99 test suites. In other words,

96

Table 5.15: Branch Coverage Differences – grep

DFO/EXISTING DFO/NEW
Version GA CT GA ∩ CT GA∪ CT GA CT GA ∩ CT GA∪ CT

v1 541 236 154 931 375 302 302 979
v2 553 293 112 958 403 334 287 1024
v3 531 270 153 954 383 349 295 1027
v4 546 293 155 994 394 341 327 1062
v5 565 285 163 1013 382 334 334 1050

RAND/EXISTING RAND/NEW
Version GA CT GA ∩ CT GA∪ CT GA CT GA ∩ CT GA∪ CT

v1 521 243 147 911 342 323 299 964
v2 559 278 127 964 411 355 266 1032
v3 559 272 151 982 398 356 270 1024
v4 548 276 172 996 374 319 357 1050
v5 518 292 156 966 369 343 333 1045

the concolic algorithm achieves much higher rates of success in covering branches than

the genetic algorithm on a large number of branches.

The printok1 object presents a different picture. Here again, several branches

are left uncovered by both techniques, but the genetic technique is 100% successful

on a few more branches (22 to be precise) than the concolic approach, and the genetic

approach has somewhat higher success at covering branches that are not always cov-

ered. The differences between the two algorithms on this object program, however,

are not as large as those seen on replace.

We next turn our attention to Study 2 and grep. In this case, because the

executions per version involve independent runs of techniques, we cannot compare

differences per run; instead we choose a different approach. Table 5.15 shows, for

each of the five versions of grep, for each of the four techniques applied, the numbers

of branches such that (1) (GA) at least one of the three test suites generated by the

genetic algorithm covered that branch while no test suites generated by the concolic

algorithm covered it; (2) (CT) at least one of the three test suites generated by the

concolic algorithm covered that branch while no test suites generated by the genetic

97

algorithm covered it; (3) (GA
∫

CT) each algorithm succeeded in generating at least

one test suite that covered the branch. (4) (GA
∫

CT) one or both algorithms

succeeded in generating at least one test suite that covered the branch.

As the table shows, on the larger grep object, the genetic and concolic algorithms

exhibited large disparities in their abilities to cover specific branches. For example, for

the scenario in which DFO and existing test cases only were used, both algorithms

jointly were able to cover between 112 and 163 branches across the five versions,

but the numbers of branches covered only by the concolic algorithm exceeds these

numbers by factors of between 0.5 and 0.8, and the number of branches covered only

by the genetic algorithm exceeds these numbers by a factor of between 2.5 and 3.9.

Similar trends (though with different increase factors) are seen in the other scenarios.

Clearly, in this more complex program, the differences in coverage abilities of the two

algorithms are larger than those seen on the smaller, less complex programs.

Table 5.16 considers these differences further for the case in which DFO and

existing plus new test cases are used. For each version of grep, the table displays

data about just those branches that are covered only by genetic testing, or only by

concolic testing. The data denotes the numbers of times these branches were covered

by only one of the test suites generated, only two of the test suites generated, or

all three of the test suites generated. The table shows a trend observed generally

(across all four augmentation techniques) on the program: the concolic approach

either succeeded or failed in all cases (on all test suites created), whereas the genetic

algorithm often encountered branches that are covered only probabilistically, i.e., on

some test suites generated but not on others.

98

Table 5.16: Numbers of Times in which Branches in grep were Covered by One, Two,
or Three Test Suites, for DFO with Existing and New Test Cases

version GA Only CT Only

1 2 3 1 2 3

v1 25 11 339 0 0 302
v2 13 16 374 0 0 334
v3 16 11 356 0 0 349
v4 13 21 360 0 0 341
v5 6 10 366 0 0 334

5.5.2 Analysis of Specific Branches

To further understand the differences in technique performance, we selected several

branches from replace, printtok1 and grep on which such differences occurred and

analyzed them to determine causes of the differences. On replace we selected the

seven branches that exhibited the most extreme differences in results, on which the

concolic algorithm greatly outperformed the genetic algorithm. On printtok1 we

selected the seven branches that exhibited the most extreme differences in results,

on which the genetic algorithm greatly outperformed the concolic algorithm. On

grep, where we have only three test suites, we could not locate branches that were

outliers, so instead we randomly sampled four branches that were easy for the concolic

approach to cover but not for the genetic approach to cover, and four branches in

which this situation was reversed.

Considering replace first, we were able to classify the seven branches on which

the concolic algorithm outperformed the genetic algorithm into three groups based

on three overall observed causes of problems in coverage.

The first group (G1) of branches relates to limitations in the mutation pool settings

chosen for the genetic algorithm. One of the seven branches falls into this group. In

replace, there is a predicate that checks the number of input arguments provided to

the program, and the program needs to be given fewer than two arguments to cover

99

the “true” branch out of this predicate. In the initial population of test cases provided

to the algorithm, however, all test cases have two or three arguments, and we did not

include the choice of mutating the number of inputs as part of our mutation pool.

Thus, the genetic algorithm can never cover the branch. To cover this branch with the

genetic approach, we would need to have sufficient knowledge of the program internals

to cause us to change this behavior, perhaps via a pre-processing static analysis. In

our study we treated the programs as black boxes for the genetic algorithm, and

tuning is done based on program specifications, inputs, and environment conditions.

In contrast, the concolic approach treats program as white boxes, and applying it

requires testers to consider program internals. Thus, for the concolic approach, we

specified the number of arguments as a symbolic value and this let us cover the branch

in question on every run.

The second group (G2) of branches also involves mutation pool settings, but of

a different type, and three of the seven branches belong to it. There are several

branches in replace such that, for those branches to be taken, characters in specific

strings must equal the NULL character. Because we did not include this character in

our mutation pool, the only way in which it would occur in a test case would be if it

occurred in the initial test case population, and this is infrequent. Thus, it is difficult

for the genetic algorithm to cover such branches. Including all possible characters in

the mutation pool could remedy this, but would increase the search space and cost of

the approach substantially. Further analysis of the program could also remedy this,

at the cost of such analysis. In contrast, the concolic approach does not exclude the

character.

The third group (G3) of branches involves the presence of deeply nested if branches,

and three branches belong to it. Predicates in deeply nested branches pose a well-

known problem for genetic algorithms, although the algorithms can be helped through

100

specific program transformations [57]. For example, in replace, there is one branch

in a function named in set 2. This is in the first if statement in that function, but

this function is called at the tenth level of its callee function makepat. Above makepat

there are two other functions. To cover this branch a test case must satisfy several

conditions. The genetic algorithm has no “knowledge” of these conditions and simply

attempts to proceed in a general search direction; thus it is difficult for the algorithm

to satisfy all the conditions at once. Here too, the concolic approach, by design, has

no problem.

Considering printok1, we were able to classify the seven branches considered

into two groups. The first group (G4) contains one branch, and the failure of the

concolic algorithm to cover it is related to the limitations of CREST on pointer arith-

metic and non-linear arithmetic. More specifically, printtok1 contains a predicate

check delimiter() that contains the isalpha() and isdigit() C standard macro

functions. Both of these functions use the bit-wise & operator and pointer arithmetic.

To cover this branch using concolic testing, we would need to use an implementation

that supports bitwise operators by employing bit-vector logic, and handle pointer

arithmetic by providing a memory model. In contrast, the genetic approach is not

affected by complex expressions such as this because it does not attempt to solve

path constraints.

The failure of the concolic approach to cover the second group (G5) of branches,

including the other six, is due to iteration limits. The printok1 program includes a

next state() function that uses a symbolic input character as an index into an array

of characters. Since CREST does not support accesses to array elements through a

symbolic index variable, it transforms the process to use if-then-else statements to

handle all possible values of the symbolic index variable one by one. For example, for a

symbolic unsigned char variable i, int next state(int i) { ... if(a[i]==C)

101

Table 5.17: Summary of Coverage Limitations

group program
number weak

specific cause classification
of branches algorithm

G1 replace 1 GA
limitations in mutation

tuning
pool setting (arguments)

G2 replace 3 GA
limitations in mutation

tuning
pool setting (NULL char)

G3 replace 3 GA deeply nested ifs not reached algorithmic

G4 printtok1 1 CT
limitations handling arithmetic

implementation
constructs

G5 printtok1 6 CT iteration limits and loops algorithmic
G6 grep 1 GA deeply nested ifs not reached algorithmic
G7 grep 3 GA malloc failures not covered algorithmic
G8 grep 2 CT external libraries not analyzable algorithmic

G9 grep 2 CT
dynamic memory management

algorithmic
not controlled

f(b[i]);...} is transformed into the following code where a is an array of characters,

b is an array of integers (suppose that b[i]=i+10; i.e., b[0]=10, b[1]=11, ...), and C

is a character constant:

01:void f(int x){

02: if (x == 10){ ... }

03: else if (x == 20){ ... }

04: else if (x == 30){ ... } ... }

05:

06:int next_state(int i){...

07: // Transformation of

08: // if(a[i]==C) f(b[i]);

09: if(i==0 && a[0]==C) f(b[0]);

10: else if(i==1 && a[1]==C) f(b[1]);

11: ...

12: else if(i==255 && a[255]==C)f(b[255]);

13: ... }

102

However, this transformation still does not solve the problem completely. Suppose

that the concolic approach tries to cover the branches in f() (lines 2-4). The con-

colic approach controls the symbolic variable i that is passed to next state() as a

parameter (line 6) and controls the parameter to f() indirectly (lines 9-12). In other

words, to cover the branches in f(), the concolic approach has to try corresponding

different branches in next state() (i.e., a maximum of 256 different values for sym-

bolic variable i). Given an iteration limit less than 10, there is little chance for the

approach to reach all branches in f(). For example, suppose that a target branch bt

is the then branch of f() at line 2 (i.e., x==10). Also suppose that an initial value of

i is 255, which makes the first symbolic execution path be ¬(i = 0∧a[0]=C)∧¬(i =

1 ∧ a[1]=C)... ∧ ¬(i = 254 ∧ a[254]=C) ∧ (i = 255 ∧ a[255]=C) ∧ ¬(x = 10)... (see

the rightmost execution path in Figure 5.4). To cover bt, Algorithm 4 has to iter-

ate through lines 8-16 255 more times, since bt can be covered by only the leftmost

execution path in Figure 5.4. However, this is not possible since niter < 10 in our

experiments (see line 8 in Algorithm 4). In contrast, the genetic approach may reach

any of the branches if it succeeds in choosing appropriate inputs.

Finally we turn to grep. Of the four branches on which the genetic approach had

difficulties, one (group G6) was a deeply nested branch, similar to the case discussed

above with respect to replace. The other three branches (group G7) are all incident

on malloc attempts, and taken when that routine fails due to the exhaustion of

memory. It is virtually impossible for the genetic approach to generate test cases

for grep that consume enough memory to trigger coverage of these branches. The

concolic approach, however, covers them, but this is actually a side effect rather than a

direct effect. This is because the concolic algorithm saves execution path information

103

Figure 5.4: Symbolic execution tree of the example code

for test cases, and eventually this path information can consume enough memory to

cause malloc failures.

For the four branches on which the concolic approach had difficulties, we identi-

fied two groups, each relevant to two of the branches. The first group (G8) is related

to external binary library functions such as strcmp() and strlen(). Branches be-

longing to this group are taken based on results of these binary library functions.

These functions cannot be analyzed by the concolic algorithm, and thus it fails to

generate test cases that cover them. The genetic approach does not need to analyze

the functions and does select inputs that cover the branches.

The second group (G9) of branches are related to dynamic memory management.

For example, grep transforms a given regular expression pattern into a deterministic

finite automaton (DFA) and stores the DFA in a buffer. Before grep stores the DFA

into the buffer, it should check whether the size of the buffer is large enough to contain

the DFA. If not, grep extends the buffer. Since the concolic approach cannot control

the size of the DFA directly via path conditions, it is difficult for it to cover branches

that compare the size of the buffer and the size of the DFA. The genetic approach,

104

however, due to the diversity created through crossover and mutation, can by chance

end up with test cases that vary the DFA size as needed.

Table 5.17 summarizes the foregoing results. For each of the groups identified,

the table lists the program(s) that group occurred in, the number of branches, the

algorithm that exhibited the weakness in achieving coverage, and the cause of the

weakness. The rightmost column in the table classifies the observed weaknesses into

three categories, as follows.

The first broad category of weaknesses (groups G1 and G2, four branches) involve

tuning limitations (mutation pool settings), and occurred only for the genetic algo-

rithm. Such weaknesses will necessarily occur for that algorithm due to the way in

which the algorithm must be applied; however, in practice they could be partly ad-

dressed by tuning the algorithm better, which is particularly possible in the context

of an evolving program as test suites are reused and improved on subsequent versions.

The second broad category of weaknesses (group G4, one branch) involve effects

related to implementations, and occurred only for the concolic algorithm. In this

case, the failure of the technique is not algorithmic, but rather, is due to the specific

implementation of the algorithm, and could be addressed through improvements in

implementations. For example, the concolic approach could be implemented to better

handle non-linear arithmetic.

The third broad category of weaknesses (groups G3, G5, G6, G7, G8, and G9, 18

branches) involve neither tuning problems nor implementation problems, but rather,

lie in the natures of the algorithms themselves. Genetic algorithms are simply not

likely to handle deeply nested ifs (groups G3 and G6), whereas concolic algorithms

can. Concolic algorithms are simply not able to handle non-analyzable external li-

braries or dynamic memory management issues (groups G8 and G9). We also place

group G5 in this category. While we selected iteration limits and thus, they might

105

be seen as a matter of tuning, at the core of the concolic approach some limit will

be needed as an algorithmic matter, and there could exist programs such that, for

any limit selected, that limit is not sufficient to allow certain branches to be reached.

Finally, regarding group G7, the fact that the concolic implementation could cover

branches incident on malloc failures is related to the algorithm’s need to collect data

that can exceed available memory.

5.6 Conclusions and Future Work

In this work we have focused on test suite augmentation, and our results have several

implications for the creation and further study of augmentation techniques. Perhaps

the most intriguing result stems from the observed complimentariness of the concolic

and genetic test case generation approaches, and the consequent implications this

raises for the prospects of hybrid approaches. The results also have implications,

however, for engineers creating initial test suites for programs. This is because such

engineers often begin, at least at the system test level, with black box requirements-

based test cases. It has long been recommended that such test suites be extended to

provide some level of coverage. The techniques we have presented can conceivably

serve in this context too, working with initial black-box test cases and augmenting

these.

There are additional factors that influence augmentation that we have not exam-

ined directly in this work. Program characteristics certainly play a role, because they

can impact the ability of test case generation techniques to function cost-effectively,

as described in Sections 5.2.3 and 5.2.4. Characteristics of program modifications also

matter. More formal studies of these factors could be helpful.

106

Chapter 6

Advanced Test Suite Augmentation

Technique - Hybrid Algorithm

Since we have seen the benefits of combining test suite augmentation techniques,

we begin building advanced test suite augmentation techniques by considering them

together. As our first step toward advanced test suite augmentation techniques, we

have created a hybrid test suite augmentation technique by combining a concolic

testing and a genetic algorithm. (This work has appeared in [101].)

6.1 Related Work: Combination of Techniques

Recently, other researchers have combined different techniques to help generate test

cases. Hybrid concolic testing [54] combines random and concolic testing to generate

test cases. In contrast, our technique combines genetic and concolic techniques, and

we focus on the test suite augmentation context, in which there are many other factors

to be considered that are not discussed in [54]. Inkumsah et al. [45] combine a genetic

algorithm and concolic testing to generate test cases for programs. They focus on unit

107

Round i

TCi1

Concolic

Algorithm

TCi2
Norm.

for GA
TCi3

Genetic

Algorithm

TCi4
Norm.

for CA
TC(i+1)1

Round i+1

BRi1 BRi2 BR(i+1)1

TCinit

Figure 6.1: Overview of hybrid test suite augmentation approach

testing of objected-oriented programs, whereas we focus on system testing. Further,

they use evolutionary testing to find method sequences and concolic testing to cover

branches, whereas our hybrid approach uses the two generation methods together to

enhance branch coverage. Finally, their approach does not reuse existing test cases,

which is central to our approach.

6.2 Direct Hybrid Test Suite Augmentation

The results of Chapter 5 suggest that a hybrid test suite augmentation technique

should be created keeping the following requirements in mind:

1. Concolic test case augmentation is much more efficient than genetic test case

augmentation. Thus, a hybrid technique should begin by using a concolic test

case generation algorithm and attempt to cover as many branches as possible

before passing control to a genetic test case generation algorithm.

2. Processing targets in depth-first order can improve the efficiency of the genetic

algorithm but has no effect on the concolic algorithm. Thus, we can order the

targets to improve the former without harming the latter.

3. Test reuse approach has an impact on the effectiveness of the concolic algorithm.

When using that algorithm we should utilize new test cases as they are created.

108

Our hybrid test suite augmentation technique is summarized in Figure 6.1. This

hybrid technique incorporates multiple rounds of test case generation, where one

round consists of an application of a concolic test case generation algorithm followed

by an application of a genetic test case generation algorithm. We focus on branch

coverage rather than path coverage for issues of scalability; rounds continue until no

new branches are covered. In the ith round, the concolic algorithm receives a list of

target branches BRi1 and a set of test cases TCi1 from the (i-1)th round, where BR11

is a list of all target branches sorted in depth-first order and TC11 = TCinit is a set

of initial test cases.1 For each round i:

1. The concolic algorithm generates a set of new test cases TCi2, each of which

covers at least one new branch. After this step, BRi2 = BRi1 − cov(TCi2),

where cov(TC) indicates a set of branches covered by TCi2.

2. TCinit, TCi1 and TCi2 are normalized/modified to form a test case population

TCi3 for genetic testing. Currently, the genetic algorithm employed by our hy-

brid augmentation technique fixes the size of a test case population at |TCinit|

for all rounds (i.e.,∀i≥ 1, |TCi3| = |TCinit|). This normalization process ran-

domly selects |TCinit| test cases from TCinit ∪ TCi1 ∪ TCi2.

3. The genetic algorithm generates a set of test cases TCi4, each of which covers

at least one new branch After this step, BR(i+1)1 = BRi2 − cov(TCi4).

4. TCi2 and TCi4 are normalized to form TC(i+1)1, a set of test cases that is

used by the concolic algorithm in the (i+ 1)th round. Currently, this step sets

TC(i+1)1 to TCi2∪TCi4, which are new test cases. This step enables the concolic

algorithm to utilize the “old+new test case reuse strategy” (requirement 3).

1In the first round, any set of branches determined to need coverage can be passed to the
algorithm; in this work we assume that a regression test suite has been executed on the program,
and that the initial set of branches is the set of branches not covered by the test cases in that suite.

109

The precise algorithms used for concolic and genetic test case generation in the

foregoing hybrid augmentation technique are similar to those described in Section 5.2.

To avoid redundancy, we do not repeat them here.

6.3 Empirical Study

Our goal is to compare the use of our hybrid directed test suite augmentation tech-

nique to non-hybrid techniques. We thus pose the following research questions.

RQ1: How does hybrid test suite augmentation compare, in terms of cost and

effectiveness, to augmentation using a straightforward concolic test case generation

technique?

RQ2: How does hybrid test suite augmentation compare, in terms of cost and

effectiveness, to augmentation using a straightforward genetic test case generation

technique?

6.3.1 Objects of Analysis

To facilitate augmentation technique comparisons, programs must be suitable for use

by all techniques. Also, programs must be provided with test suites that need to be

augmented. In our prior work (Chapter 5) we selected several programs from the

SIR repository [31] that meet the needs of such comparisons. Here we utilize three of

these programs, printtok1, printtok2 and replace. We reuse the test suites generated

for them in that work here also.

110

6.3.2 Variables and Measures

The comparison of hybrid and non-hybrid techniques is complicated by the fact that

they inherently involve different amounts of effort. One could certainly run the two

types of techniques for the same amount of time and compare their relative effec-

tiveness, but we expect that in practice, engineers would run the techniques until

the techniques cease to achieve sufficient new coverage, and then stop. It thus seems

more appropriate to run the techniques to some reasonable stopping points, and then

compare their relative effectiveness and efficiency. We choose independent and de-

pendent variables keeping this approach in mind. Further, as discussed below, we use

different iteration limits to investigate the variance that might be seen in performance

if techniques are allowed to run longer times.

Independent Variable. Our experiment manipulates one independent variable:

the augmentation technique used. Three treatments were chosen for this variable:

(1) the hybrid test suite augmentation technique described in Section 6.2, (2) an aug-

mentation technique using just concolic test case generation, and (3) an augmentation

technique using just genetic test case generation.

Dependent Variable. We wish to measure both the effectiveness and the efficiency

of augmentation techniques under each combination of potentially affecting factors.

To do this we selected two variables and measures:

DV1: Effectiveness in terms of coverage. The test case augmentation techniques that

we consider are intended to work with existing test suites to achieve higher levels of

111

coverage in a modified program P ′. To measure the effectiveness of techniques, we

track the number of branches in P ′ that can be covered by each augmented test suite.

DV2: Efficiency in terms of time. To track augmentation technique efficiency, for

each application of an augmentation technique we measure the cost of using the

technique in terms of the wall clock time required to apply the technique.

6.3.3 Experiment Setup and Operation

We followed the same steps described in Section 5.3.3 to set up the experiments.

We continue to use the extended program and we apply several iteration limits on

both techniques. However, in these experiments we use only three iteration limits

for each test case generation algorithm, choosing 1-5-9 for concolic and 5-15-25 for

genetic, because prior studies showed that these represented lower and upper bounds

outside of which technique effectiveness ceased to vary by more than small amounts.

We use the same concolic testing and genetic algorithm implementations described

in Section 5.3.3.

6.3.4 Threats to Validity

The primary threat to external validity for this study involves the representativeness

of our object programs and test suites. We have examined only three relatively small

C programs using simulated versions, and the study of other objects, other types of

versions, and other test suites may exhibit different cost-benefit tradeoffs. However,

if results on smaller programs show that our approach is beneficial, then arguably,

programs with more complex features should enable a hybrid approach to function

even better. A second threat to external validity pertains to our algorithms; we have

utilized only one variant of a genetic test case generation algorithm, and one variant

112

of a concolic testing algorithm, and we have applied both to extended versions of the

object programs, where the genetic approach does not require this and might function

differently on the original source code. Subsequent studies are needed to determine

the extent to which our results generalize.

The primary threat to internal validity is possible faults in the implementation

of the algorithms and in tools we use to perform evaluation. We controlled for this

threat through extensive functional testing of our tools. A second threat involves

inconsistent decisions and practices in the implementation of the techniques studied;

for example, variation in the efficiency of implementations of techniques could bias

data collected.

Where construct validity is concerned, there are other metrics that could be perti-

nent to the effects studied. In particular, our measurements of efficiency consider only

technique run-time, and omit costs related to the time spent by engineers employing

the approaches. Our time measurements also suffer from the potential biases detailed

under internal validity, given the inherent difficulty of obtaining an efficient technique

prototype.

6.4 Results

Tables 6.1, 6.2, and 6.3 present the data obtained in our study for the three object

programs, respectively. Each table shows cost and coverage data. Data is shown per

iteration limit, with CA1, CA5, and CA9 representing limits for the concolic test case

generation algorithm, and GA5, GA15, and GA25 representing limits for the genetic

test case generation algorithm. A given cell in the table represents a comparison

between the techniques indicated by the label at the top of the column containing

that cell.

113

Table 6.1: Coverage and Cost Data for Printtok1

COST (seconds)
CA1 CA5 CA9

CA HY GA HY CA HY GA HY CA HY GA HY
GA5 1.54 57.51 56.38 57.51 6.94 67.11 56.38 67.11 12.27 75.06 56.38 75.06
GA15 1.54 190.37 210.56 190.37 6.94 200.15 210.56 200.15 12.27 192.33 210.56 192.33
GA25 1.54 351.87 339.19 351.87 6.94 405.57 339.19 405.57 12.27 414.33 339.19 414.33

COVERAGE (branches)
CA HY GA HY CA HY GA HY CA HY GA HY

GA5 143.97 155.58 154.89 155.58 151.29 155.65 154.89 155.65 152.50 155.78 154.89 155.78
GA15 143.97 156.11 155.88 156.11 151.29 156.23 155.88 156.23 152.50 156.02 155.88 156.02
GA25 143.97 156.62 156.54 156.62 151.29 156.51 156.54 156.51 152.50 156.51 156.54 156.51

Table 6.2: Coverage and Cost Data for Printtok2

COST (seconds)
CA1 CA5 CA9

CA HY GA HY CA HY GA HY CA HY GA HY
GA5 0.25 35.67 32.21 35.67 0.84 35.02 32.21 35.02 1.43 31.86 32.21 31.86
GA15 0.25 153.88 131.25 153.88 0.84 154.71 131.25 154.71 1.43 159.42 131.25 159.42
GA25 0.25 275.49 248.64 275.49 0.84 291.97 248.64 291.97 1.43 296.92 248.64 296.92

COVERAGE (branches)
CA HY GA HY CA HY GA HY CA HY GA HY

GA5 165.34 176.06 175.85 176.06 171.59 176.42 175.85 176.42 173.00 176.41 175.85 176.41
GA15 165.34 176.58 176.34 176.58 171.59 176.54 176.34 176.54 173.00 176.60 176.34 176.60
GA25 165.34 176.62 176.40 176.62 171.59 176.67 176.40 176.67 173.00 176.65 176.40 176.65

Table 6.3: Coverage and Cost Data for Replace

COST (seconds)
CA1 CA5 CA9

CA HY GA HY CA HY GA HY CA HY GA HY
GA5 0.74 84.66 90.49 84.66 4.40 75.99 90.49 75.99 8.04 82.55 90.49 82.55
GA15 0.74 341.95 320.71 341.95 4.40 322.79 320.71 322.79 8.04 322.19 320.71 322.19
GA25 0.74 570.88 618.83 570.88 4.40 552.71 618.83 552.71 8.04 576.28 618.83 576.28

COVERAGE (branches)
CA HY GA HY CA HY GA HY CA HY GA HY

GA5 176.43 186.94 185.80 186.94 187.24 190.02 185.80 190.02 188.59 190.53 185.80 190.53
GA15 176.43 188.58 187.83 188.58 187.24 190.51 187.83 190.51 188.59 190.75 187.83 190.75
GA25 176.43 189.18 188.81 189.18 187.24 190.66 188.81 190.66 188.59 190.88 188.81 190.88

Next we analyze our results, per research question.

6.4.1 RQ1: Hybrid versus Concolic

The columns labeled “CA HY” in Tables 6.1, 6.2, and 6.3 present data relevant to

this question. Each entry in these columns shows the comparison between the hybrid

test suite augmentation technique and the concolic test suite augmentation technique

114

in terms of cost or coverage. The numbers represent the average cost of, or coverage

obtained by, the two techniques across all 100 test suites. For example, the first

entry in Table 6.1 contains 1.54 and 57.51. Here, 1.54 represents the average cost in

seconds to perform test suite augmentation across 100 test suites with the concolic

augmentation technique run at iteration limit 1, while 57.51 represents the average

cost in seconds when the hybrid augmentation technique is used with its concolic

algorithm component run at iteration limit 1 and its genetic algorithm component

run at iteration limit 5. For each pair of data sets (each cell in the tables), we applied

a Wilcoxon test to determine whether there is a statistically significant difference

between the two techniques, using α = 0.05 as the confidence level. In the table,

bold-italicized fonts indicate statistically significant differences. For example, for the

first entry of Table 6.1, comparing the costs of the hybrid augmentation technique

and the concolic augmentation technique, there is a statistically significant difference

between these two, and the concolic technique cost less than the hybrid technique.

We begin by considering comparisons in terms of cost. The concolic technique

cost less than the hybrid technique on all programs, and the differences in cost were

statistically significant in all cases. On printtok1, the hybrid technique cost up to

350 times more than the concolic technique; on printtok2, the hybrid technique cost

up to 110 times more than the concolic technique; and on replace, the hybrid tech-

nique cost up to 771 times more than the concolic technique. (All of these maximal

differences occurred when the concolic technique was run at iteration limit 1 and the

genetic component of the hybrid technique was run at iteration limit 25.)

Where effectiveness is concerned, the hybrid technique has advantages. In all en-

tries related to coverage comparisons between the hybrid technique and the concolic

technique, the hybrid technique covers more branches than the concolic technique,

and the differences are statistically significant in all cases. On printtok1, the hy-

115

brid technique covered up to 13 branches more than the concolic technique; and on

printtok2 and replace, the hybrid technique covered up to almost 13 branches more

than the concolic technique. Maximal differences occurred when the concolic tech-

nique was run at iteration limit 1 and the genetic component of the hybrid technique

was run at iteration limit 25.

To summarize, comparing the concolic test case augmentation technique to the

hybrid technique, the hybrid technique was more effective but less efficient.

6.4.2 RQ2: Hybrid versus Genetic

The columns labeled “GA HY” in Tables 6.1, 6.2, and 6.3 present data relevant to this

question. We again begin with cost comparisons. Here, results varied more widely

than in the case of RQ1. On printtok1, the hybrid augmentation technique cost

more (by up to 33%) than the genetic augmentation technique in six of nine cases,

of which four involve statistically significant differences. The genetic technique cost

more (by up to 11%) than the hybrid technique in three cases, all of them statistically

significant differences occurring when the genetic component of the hybrid technique

was run at iteration limit 15. On printtok2, the hybrid technique cost more (by up to

21%) than the genetic technique in eight of nine cases, all of which involve statistically

significant differences. The only exception occurred when the concolic component of

the hybrid algorithm was run at iteration limit 9 and the genetic component was run

at iteration limit 5, in which case the two did not differ significantly. On replace, the

genetic technique cost more (by up to 19%) than the hybrid technique in six cases, all

of which involved statistically significant differences. The genetic technique cost less

in the other three cases, only one of which involved a statically significant difference.

116

In terms of coverage, on printtok1 the hybrid technique achieved higher coverage

than the genetic technique in seven cases, of which three involved statistically signifi-

cant differences. The genetic technique had better coverage in the other two cases but

with no statistically significant differences, and in both situations the differences were

smaller than one branch. On printtok2 and replace, the hybrid technique achieved

higher coverage in all cases in which there are statistically significant differences. On

printtok2 the differences were less than one branch while on replace, the differences

ranged from less than one branch up to almost five branches.

Overall, comparing the genetic test suite augmentation technique and the hybrid

test suite augmentation technique, the hybrid technique achieved greater coverage

than the genetic technique and sometimes (but not always) cost less.

6.5 Discussion and Implications

We now discuss the results presented in the prior section, and comment on their

implications.

The hybrid test case augmentation technique outperformed both the concolic and

genetic augmentation techniques in terms of effectiveness in most cases. If our results

generalize, then when effectiveness has the highest priority, the hybrid technique is

the best choice. In this respect, the results of our study met our expectations.

Where the cost of augmentation techniques is concerned, however, the results

presented some surprises. On one hand, it is obvious that the hybrid technique

should cost more than the concolic technique, because the hybrid technique includes

a genetic algorithm component, which itself requires much more time than the concolic

technique. On the other hand, we had expected the hybrid augmentation technique

to cost less than the genetic augmentation technique, because the hybrid technique

117

Table 6.4: Branches Covered by Both Algorithms over Branched Covered by the
Concolic Algorithm

CA1 CA5 CA9

printtok1 53.26% 56.92% 55.15%
printtok2 79.49% 72.88% 69.52 %
replace 35.15% 32.83% 32.47%

begins with a concolic test case generation step, which should cover some targets in

a relatively short time, leaving fewer targets for the genetic algorithm to work on.

We did observe this result in most cases on replace. On printtok1 and printtok2,

however, the hybrid technique usually did not save time with respect to the genetic

technique. We inspected our results further and found that there are two reasons

that can account for this difference.

6.5.1 Masked-out Benefit of Concolic Testing

The first reason for the performance difference is that the branches covered by the

concolic algorithm component of the hybrid technique are easily covered by the genetic

algorithm component of the hybrid technique, in the first few iterations of the genetic

algorithm component. This means that the benefits of concolic testing (i.e., coverage

of target branches in a relatively short time compared to the genetic algorithm) can

be “masked out” at the beginning of the genetic algorithm. To further investigate

this, we identified branches covered by the concolic algorithm and branches covered

by the genetic algorithm in the first five iterations (note that in this case we applied

both algorithms separately, not in the hybrid framework). Then, we calculated the

percentage of branches that are covered by both algorithms over branches covered by

the concolic algorithm. Table 6.4 shows these percentage numbers. For example, the

entry 53.26% in column CA1 for printtok1 means that the straightforward genetic

algorithm covers 53.26% of the branches in five iterations that are covered by the

118

concolic algorithm with iteration limit 1. As the table shows, on printtok1, the

genetic algorithm covers more than 53% of the branches covered by the concolic

algorithm across all levels. On printtok2, the genetic algorithm covers even more

branches: up to 79% of those covered by the concolic algorithm. Thus, this can

explain why the hybrid algorithm is slower than the genetic algorithm on printtok2,

since even more benefits of the concolic algorithm are masked out in this case. On

replace, in contrast, the genetic algorithm covers fewer branches, so the benefits

of using the concolic algorithm first are realized to a larger extent, and the hybrid

technique saves time compared to the genetic technique.

6.5.2 Weakened Diversity of Test Case Population

The second reason for the performance difference involves the diversity of the test

case population. In the hybrid technique we randomly select test cases from the

existing test cases and the test cases newly generated by the concolic algorithm to

form an initial population of test cases for use by the genetic algorithm. The test

cases generated by the concolic algorithm, however, tend to be only slightly different

from existing test cases, due to the manner in which the concolic algorithm operates.

Thus, when drawing from these newly generated test cases it is more likely that an

initial population of test cases will lack diversity, and this can reduce the efficiency

of the genetic algorithm.

To further investigate this issue, we performed an additional set of runs using a

version of the hybrid technique in which the genetic algorithm uses only test cases

from the initial test suite TCinit to form the initial population for targets. When we

compare the coverage data from these runs to the coverage data reported in Section

6.4, there are no statistically significant differences. When we compare the cost

119

Table 6.5: Cost Differences Between Hybrid Algorithms

printtok1 printtok2 replace
GA GA GA

5 15 25 5 15 25 5 15 25

CA
1 H2 H2 H2 H1 H2 H2 H1 H2 H2
5 H2 H2 H2 H1 H2 H2 H1 H2 H2
9 H2 H1 H2 H1 H2 H2 H1 H2 H2

data from these runs, however, in most cases this new version of the hybrid algorithm

(H2) outperformed the initial one (H1). Table 6.5 shows the cost comparison between

the two approaches. Table entries of “H1” indicate that the first hybrid algorithm

cost less than the second, while entries of “H2” indicate that the second algorithm

cost less than the first. Bold-italicized entires indicate that there is a statistically

significant difference between the techniques. As the table shows, in most cases H2

cost significantly less than H1. This confirms our conjecture that the newly generated

test cases affect the diversity of the population for the genetic algorithm, since this is

the only differences between the two hybrid techniques. Nevertheless, H2 continues

to have the shortcoming mentioned earlier (masked-out benefits of concolic testing)

and does not significantly improve efficiency.

6.5.3 Potential Remedies

The foregoing discussion reveals several ways in which our basic hybrid algorithm

could be improved. One method for overcoming the masked-out benefit of con-

colic testing (Section 6.5.1) is to customize a concolic algorithm to attempt to reach

branches that are difficult for a genetic algorithm to reach first. For example, it is well

known that deeply nested branches are difficult for genetic algorithms to cover. We

can modify a concolic algorithm to focus on such branches first. We can also modify

the genetic algorithm to target branches that are difficult for the concolic algorithm

to cover due to the presence of external libraries or floating point arithmetic.

120

Regarding the weakened diversity problem (Section 6.5.2), we can select only new

test cases generated by concolic testing that are largely different from each other

as an initial population for genetic testing. Alternatively, we can enhance symbolic

path formulas to generate a solution that is much different from the previous one by

inserting additional constraints on the solution space. Last, we can fully utilize the

randomized capability of an underlying SMT solver to obtain more diverse solutions.

6.6 Conclusions

We have presented a hybrid technique for performing test suite augmentation, that

utilizes both concolic and genetic test case generation algorithms in an attempt to

harness the different strengths of both. Our empirical study of this technique shows

that it can improve augmentation effectiveness, but as initially configured, it does not

consistently save time in comparison to the genetic and concolic test suite augmen-

tation techniques. Our analysis of these results uncovers reasons for this effect, and

supports suggestions on how to improve the hybrid technique.

In this work we have focused on test suite augmentation. Our results also have

implications, however, for engineers creating initial test suites for programs. Engineers

often begin, at least at the system test level, with black box requirements-based test

cases. The techniques we have presented can conceivably help these engineers extend

initial black-box test cases to achieve better code coverage.

121

Chapter 7

Test Suite Augmentation for SPLs

As mentioned in Chapter 1, the products of a software product line share some

similarities with the versions of a traditional program. In this chapter, we apply

the test suite augmentation idea to software product lines. We begin by introducing

software product line testing. Then we focus on our methodology. Finally we discuss

our experimental results. (This work will appear in [98].)

7.1 Software Product Line Testing

Testing software product line has focused on blackbox or specification-based testing

approaches, performing from a product-based view. For instance, feature models have

been used to represent the product space for instantiating and sampling products for

testing [10, 25, 64, 89]. The work of Uzuncaova et al. [89] transforms a feature model

into an Alloy specification and uses this to generate test cases, while the work of

Cohen et al. [25] and Oster et al. [64] uses the feature model to define samples of

products that should be included in testing. Similarly, the PLUTO methodology [10]

uses the feature model to develop extended use cases that contain variability which

122

can formulate a full set of test cases for the family of products. Schürr et al. [79] use

a classification tree method for testing from the feature model and Reis et al. [70]

perform integration of features based on UML activity diagrams from which they

derive feature dependencies. Cabral et al. [16] use a graph derived from a feature

model (a feature inclusion graph) to select subsets of products and test cases that

can be run on them.

Denger et al. [29] present an empirical study to evaluate the difficulty of detecting

faults in the common versus variable portions of an SPL code base, concluding that

the types of faults found in these two portions of the code differ. In other code-based

approaches, Kim et al. [47] use a dependency analysis to determine which features are

relevant for each test case within a test suite, reducing the number of products tested

per test case (again a product-based view). Shi et al. [82] use a dataflow analysis

to reduce the number of combinations of features that should be tested together and

compositional symbolic execution to integrate features.

Techniques that leverage ideas from regression testing in SPL contexts also ex-

ist [27, 43] and these involve examining changes to the feature model or architecture,

not the products themselves.

In this chapter, we present a hybrid technique for testing SPLs. It involves a hybrid

of family and product based approaches, is white-box (aims to cover more common

code at each step), and transforms the testing problem into one of regression testing.

7.2 CONTESA

We call the system we have developed for testing SPLs “CONTESA”. In this sec-

tion we describe how CONTESA works. The notion behind the approach is that

since products within a product line are not independent (we expect them to share

123

p1#

p2#
p4#

P3#
p5#

p1#

p2#
p4#

P3#

p5#

p1#

p4#

P3#
p5#

p2#

p4#

Products Identify Targets

Select product &
Test generation

Initial Test Suite

Order Products

Continuous Test
Suite Augmentation

Figure 7.1: Overview of CONTESA

large portions of code), we can approach test suite augmentation for product lines

in a continuous instead of an independent fashion, applying augmentation to prod-

ucts iteratively, taking advantage of test cases and testing information derived while

addressing prior products.

Figure 7.1 provides an overview of CONTESA. The algorithm begins with an

initial (possibly empty) set of test cases. These are the base test cases for the product

line, and could have been created following any applicable approach. CONTESA

runs each product’s test suite on that product and identifies affected elements in the

product – these form an initial set of targets (and in the rest of this paper we refer to

them as such) that need to be covered by test cases. CONTESA then begins to iterate

over the products, selecting a next product for augmentation based on heuristics that

we describe below. Given a product, CONTESA uses a test case generation technique

to attempt to cover targets in that product, and applies this technique until all targets

have been covered or some stopping criterion is reached. CONTESA then recomputes

the targets for products not yet tested; this computation informs the selection of the

next product for testing. CONTESA then moves on to the next iteration.

124

In the following sections we describe the three overall activities performed by the

approach (identifying targets, ordering products and selecting one, and generating

test cases) in turn.

7.2.1 Identifying Targets

During augmentation, a target may be a statement, branch, path or method in a

program [100]. In this work we use branches as targets, but CONTESA could function

on other types of code components. There are several methods for identifying target

branches in a product. The easiest method involves considering all branches in each

product as targets. Given a set of initial test cases for a product line, we could run

those test cases and then treat the uncovered branches in each product as our targets.

We refer to this set of uncovered branches for a given product pi as UCpi .

Attempting to cover all uncovered branches in each product in a product line can

be expensive, and it is this expense that we wish to reduce via our approach. We

observe that, as we attempt to generate test cases for a product pi, we likely have

already covered many branches in products previously tested that also exist in pi,

and that are not affected by differences between those prior products and pi. We

call these branches common branches. Rather than attempt to re-generate test cases

for such common branches, CONTESA considers them to be already covered and

removes them from the target set.

To determine common branches for pi, one approach is to run all test cases gener-

ated for prior products on pi and see which branches remain uncovered. This may not

always work, however, on product lines, because often, test case syntax changes across

products, and test cases for one product cannot be directly run on others. An alter-

native approach involves applying a static analysis technique to determine common

125

branches, and then determining which of these common branches has already been

covered during the testing of prior products. The first approach is a product-based

approach, the alternative is a family-based approach. Because the second approach

can apply whether or not test cases are applicable across products, and because it

can save testing costs, this is the approach we investigate in this work.

In CONTESA, we employ a static analysis also based on Dejavu [76] to iden-

tify common code and non-common code (hereafter referred to as variable code) in

products. For each pair of products pi and pj, this analysis takes each pair of meth-

ods that is common to the two products and traverses the two control flow graphs of

these methods synchronously in depth-first order. If this traversal encounters a pair of

nodes in the two graphs for which the associated code differs, it halts and returns the

nodes’ position. We consider any branches not reached in either graph (i.e, branches

that follow differing nodes in control flow) to be variable branches, while branches

that are reached in both graphs are common. We save all common branches for a

pair of products pi and pj in a set Commoni,j. All branches in methods that are not

common to the pair of products are necessarily treated as variable.

Given information on common branches, after we generate test cases for a prod-

uct pi, we update the coverage information for each other product pj by excluding

branches that are both common and covered in pi from the uncovered branch set

UCpj . This gives us a new set of uncovered branches, UC ′
pj

, for each product pj.

7.2.2 Ordering and Selecting a Next Product

After identifying targets for each product, we need to select a next product to work

on. There are several ways in which we could do this. In the simplest approach, we

could randomly select the next product, or we can select the product with the most or

126

the fewest features. In our approach, however, we wanted to leverage the information

collected while “Identifying Targets”. We have created two different techniques for

doing this, one that creates a static order and one that operates dynamically. The

following subsections present these two techniques.

7.2.2.1 A Static Order

Our static approach involves an order that is calculated statically before we perform

any test case generation. In this approach, when selecting each next product, we wish

to choose the product that has the most common uncovered branches with respect

to products that have already been considered. Algorithm 5 presents an algorithm

for computing this order. The algorithm uses several variables in addition to those

already defined above, as follows:

• Premaining is a set that initially contains all products.

• CommonMap is a map containing information about the branches that are

common between each pair of products pi and pj.

• InitialUncovMap is a map denoting the initial set of uncovered branches for

each product.

• Pconsidered is a set used to denote products that have already been considered.

• Ordered is a list in which a prioritized list of products is returned.

• AllUC is used to save information for each remaining product, and later on for

comparison.

• AUCpi is a set of uncovered branches for all products in Pconsidered that are also

common between pi and those products.

• UCCpi is a set of uncovered branches in pi that are common between pi and one

of the products in Pconsidered, and are not covered in any product in Pconsidered.

127

Algorithm 5 StaticOrderCalculation (Premaining, CommonMap, InitialUncovMap)

Pconsidered={pj}
Premaining=Premaining-pj
Ordered= []
while Premaining is not empty do

for each product pi in Premaining do
AllUC=[]
AUCpi={}
for each product pj in Pconsidered do
UCpj=InitialUncovMap.get(pj)
Commoni,j=CommonMap.get(i, j)
AUCpi=AUCpi ∪ (UCpj ∩ Commoni,j)

end for
UCpi=InitialUncovMap.get(pi)
UCCpi= UCpi ∩ AUCpi

AllUC[pi]=UCCpi

end for
pn=Select the product with largest size of UC in AllUC
Ordered.add(pn)
Pconsidered=Pconsidered ∪ pn
Premaining=Premaining - pn

end while
return Ordered

The algorithm begins with a randomly selected product pj, inserts it into Pconsidered,

and removes it from Premaining. For each product pi in Premaining, the inner for loop

is used to calculate all the branches that (1) are common between product pi and

products in Pconsidered and (2) are not covered by initial test suites for products in

Pconsidered, and save them in set AUCpi . All branches in AUCpi that are also not

covered in product pi are then placed in set UCCpi . After this has been done for

all products in Premaining, the algorithm selects the product that has the largest size

of UCC and appends it to the Ordered list. Then this product is removed from

Premaining and added to Pconsidered, and the loop iterates.

By selecting this order, we hope to cover common branches as quickly as possible,

since this is where we can achieve savings.

128

Algorithm 6 DynamicOrderCalculation (Premaining, Pconsidered, CommonMap,
CovMap, InitialUncovMap)

AllU=[]
for each product pi in Premaining do
ACCpi={}
for each product pj in Pconsidered do
Cpj=CovMap.get(pj)
Commoni,j=CommonMap.get(i, j)
ACCpi=ACCpi ∪ (Cpj ∩ Commoni,j)

end for
UCpi=InitialUncovMap.get(pi)
UC ′

pi
= Upi ∩ ACCpi

AllU [pi]=UC
′
pi

end for
pn=Find the product with smallest size of UC ′ in AllU
return pn

7.2.2.2 A Dynamic Order

Our dynamic algorithm, which uses a dynamic order, is called after each attempt

at test case generation, rather than just once initially. In this case, our goal is to select

a next product to consider, from the remaining products, that has the smallest size

of UC ′. Algorithm 6 presents the algorithm for computing this order. The algorithm

uses several variables that are not defined above and we define them as follows:

• CovMap is a map containing covered branches of each product in Pconsidered.

• AllU is a list used to save all the computed information for products in Pconsidered

in order to select the next product.

• ACCpi is a set of branches covered by products in Pconsidered and also common

between pi and those products.

• Cpj is a set of branches covered in pj after test case generation has been per-

formed for pj.

129

Given a set of products that have been considered, the dynamic ordering algorithm

iterates through the remaining products to update their current coverage information.

The inner for loop first finds the branches covered by pj and unions these with the

branches common between pi and pj. This information is saved to ACCpi . After this

calculation has been completed for each product in Pconsidered, the algorithm excludes

the branches in ACCpi from UCpi to form UC ′
pi

. Then, it selects the product that

has the smallest size of UC ′ as the next product. Since we call this algorithm after

each attempt at test case generation, the algorithm can be simplified to let Pconsidered

contain only the product that just has been considered.

This order lets us always select the product that has the fewest uncovered branches

so far. In this manner, we gradually build up the coverage for the entire product line.

The calculation of the ordering requires us to evaluate all pair-wise products.

Note, however, that much of this calculation can be done in the preliminary period

of testing, prior to the time at which the product nears release and time for testing

is critical. Furthermore, the algorithm operates quickly; an earlier implementation

was capable of processing 50,000 lines of code in under two minutes [76]. Still, the

approach may be combinatorially infeasible on larger systems. We believe that we

can relax our analysis by sampling the products with techniques such as pairwise

testing [25, 64], but leave this extension as future work.

7.2.3 Generating Test Cases

After CONTESA has identified targets and chosen a next product Pj to test, it uses

a test case generation technique to augment the test suite for Pj by generating test

cases for targets in Pj. There are many test case generation techniques that could

be employed for such a purpose. For example, we can use a random approach, but

130

this may not work well for large and complex programs since it does not target

specific branches. More sophisticated techniques include dynamic symbolic execution

(e.g., [18, 39, 81]), and evolutionary or search-based approaches (e.g., [7, 66]) such

as genetic algorithms. In this work we use a genetic test case generation algorithm

(described in the background), that we have used in prior augmentation studies [100,

99].

7.3 Empirical Study 1

To evaluate CONTESA we conducted two empirical studies. In the first study, we are

interested in whether our continuous test suite augmentation approach, CONTESA

which is a family-based approach to testing product lines is more effective and efficient

than a product-based process in which test cases are generated independently for each

product. We also wish to determine whether the order used in our continuous test

suite augmentation approach matters. We thus pose the following research questions.

RQ1: Is continuous test suite augmentation more effective and efficient than gener-

ating test cases independently for each product?

RQ2: Does the order used in continuous test suite augmentation matter in terms of

effectiveness and efficiency?

7.3.1 Objects of Analysis

To investigate these questions we selected two software product lines developed by

other researchers and used in prior studies. The first SPL is a Graph Product Line

(GPL) created by Lopez-Herrejon and Batory [53]; it is built using the AHEAD

methodology and implemented as a series of .jak files [8]. GPL has 38 products and

131

1435 lines of code across all of its .jak files. The second SPL is a portion of the

AHEAD tool suite called Bali; it is also built using the AHEAD methodology and

implemented as a series of .jak files. Bali has 8 products, but we excluded two that

involve using a GUI. This left six products containing 11811 lines of code across all

of the .jak files.

7.3.2 Variables and Measures

Independent Variable. Our independent variable is the testing technique utilized.

We considered three techniques: generating test cases for products independently (B),

continuous test suite augmentation using the static order discussed in Section 7.2.2.1

(Cs), and continuous test suite augmentation using the dynamic order discussed in

Section 7.2.2.2 (Cd). Note that Cd and Cd differ only in the order used.

Dependent Variables. We measure the efficiency and effectiveness of each of the

techniques.

DV1: Efficiency. To track technique efficiency, for each application of a technique

we measure the amount of wall clock time required to apply the technique to each

product, in seconds.

DV2: Effectiveness. The techniques that we consider are intended to achieve higher

levels of coverage of each product. To measure the effectiveness of techniques, we track

the number of branches designated as covered in each product after the technique has

run to completion.

7.3.3 Experiment Setup and Operation

To establish the experiment setup needed to conduct our experiment we first tuned

the genetic algorithm. We used the same genetic algorithm described in Section 4.3.2

132

in terms of the fitness function, the selection approach and the crossover approach.

As a mutation rate we used 0.3 for GPL and 0.5 for Bali. We set the iteration limit

to 5 for GPL and 15 for Bali. The chromosome (representation of inputs) for GPL

is an object, with a number of nodes, edges and weights for each of the edges. We

allow 0..9 as an integer range for nodes, and we can have 0 to 30 edges. The weights

can be any value from 0 to 50. We do not use crossover for GPL. During mutation if

we delete nodes, we then delete any associated edges for those nodes during a repair

phase.

For Bali the chromosome is an array of 0 to 4 options (this is variable) followed

by all of the characters from 0 to 2 input files. These are grammar input files that

are used by Bali. During mutation we randomly modify characters or flip options.

During mutation and crossover we do not check to ensure that we maintain a valid

grammar.

Since there is some randomness inherent in the use of genetic algorithms, we

applied each technique to each of our software product lines three times. All of

our data was gathered on a parallel cluster with AMD 6128 2GHz, Quad-Processors

(8-Core) and 128GB RAM on each core.

7.3.4 Threats to Validity

The primary threat to external validity for this study involves the representativeness

of our software product lines. We have examined only two product lines and the study

of others may exhibit different cost-benefit tradeoffs. However, the product lines we

used do present two different variants of product lines, with GPL being smaller but

widely used, and Bali larger and more complex. A second threat to external validity

pertains to our algorithms; we have utilized only one variant of a genetic test case

133

B Cs Cd

20
0

40
0

60
0

80
0

(a) Efficiency for GPL

B Cs Cd

40
00
0

60
00
0

80
00
0

(b) Efficiency for Bali

B Cs Cd

0.
75

0.
85

0.
95

(c) Effectiveness for GPL

B Cs Cd

0.
35

0.
40

0.
45

0.
50

(d) Effectiveness for Bali

Figure 7.2: Efficiency and effectiveness for GPL and Bali

generation algorithm. Subsequent studies are needed to determine the extent to which

our results generalize.

The primary threat to internal validity is possible faults in the implementation

of the algorithms and in tools we use to perform evaluation. We controlled for this

through functional testing. A second threat involves decisions and practices in the

implementation of the techniques studied; for example, variation in the efficiency of

implementations of techniques could bias data collected.

Where construct validity is concerned, there are other metrics that could be perti-

nent to the effects studied. In particular, our measurement of efficiency considers only

technique run-time, and omits costs related to the time spent by engineers employing

the approaches.

7.3.5 Results

Figure 7.2 present the results obtained in our study for both software product lines

with respect to efficiency and effectiveness, respectively. The two sets of boxplots on

134

the left, Figures 7.2(a) and 7.2(c) show data pertaining to GPL while the two sets

of boxplots on the right, Figures 7.2(b) and 7.2(d), show data pertaining to Bali.

Each set of boxplots contains three individual boxplots corresponding to the three

techniques, B, Cs and Cd. As mentioned in Section 7.3.2, B represents generating test

cases for products independently, Cs represents continuous test suite augmentation

using the static order discussed in Section 7.2.2.1, and Cd represents continuous test

suite augmentation using the dynamic order discussed in Section 7.2.2.2. The upper

two sets of boxplots show data on efficiency while the bottom two sets show data on

effectiveness. For efficiency, each boxplot denotes the data obtained on each of the

three runs for each product in the associated software product line. For effectiveness,

each boxplot denotes the final coverage obtained on each of the three runs for each

product in the associated software product line.

7.3.5.1 RQ1: Independent Test Case Generation Versus Continuous

Test Suite Augmentation

We begin by comparing Cs and Cd with B for efficiency. Considering the upper two

sets of boxplots, it appears that on both SPLs, Cs (static continuous augmentation)

and Cd (dynamic continuous augmentation) were more efficient thanB (product based

augmentation). On GPL, B required 276.9 seconds per product on average, whereas

Cs required only 114.1 seconds and Cd required only 151.9 seconds per product on

average. On Bali, B required 70,008.2 seconds (19.4 hours) per product on average,

whereas Cs required only 60,291.4 seconds (16.7 hours) and Cd required only 64,973.2

seconds (18 hours) per product on average.

To determine whether these observed differences were statistically significant, we

applied a Wilcoxon signed rank test to the data at confidence level .05. In all cases,

the differences were statistically significant. (On GPL, for B versus Cs the p-value

135

was 2.2e-16, and for B versus Cd the p-value was 2.245e-15. On Bali, for B versus Cs

the p-value was 2.91e-11 and for B versus Cd the p-value was 2.2e-16).

Next, we compare Cs and Cd to B with respect to effectiveness. Considering the

two bottom sets of boxplots, it appears that on both software product lines, Cs and

Cd were more effective than (achieved greater coverage than) B. On GPL, B achieved

88.3% coverage per product on average, while Cs and Cd each achieved 96.3% coverage

per product on average. On Bali, B achieved 43.5% coverage per product on average,

while Cs achieved 48.7% and Cd achieved 48.0% coverage per product on average. We

note that we are measuring per product coverage (rather than family-based coverage)

since we cannot compose the entire code-base to evaluate this.

We again applied a Wilcoxon signed rank test to the data, at confidence level

.05. Again, in all cases the differences were both statistically significant. (On GPL,

p-values when comparing both Cs and Cd to B were both 2.2e-16. On Bali, for B

versus Cs the p-value was 7.629e-06, and for B versus Cd the p-value was 0.001289.)

In summary, on both product lines, continuous test suite augmentation was statis-

tically significantly more efficient and effective than independent test case generation.

7.3.5.2 RQ2: Order Effects in Continuous Test Suite Augmentation

To address this research question, we compare the results of Cs and Cd, which use

different product ordering approaches static and dynamic, respectively). First we

compare them in terms of efficiency. In Figure 7.2(a), on GPL, Cs appears to be

slightly more efficient than Cd, requiring 37.7 seconds less than Cd in average. In

Figure 7.2(b), on Bali, Cs also appears to be more efficient than Cd, requiring 4,681.8

seconds less on average. Wilcoxon signed rank tests show that the observed differences

are statistically significant, yielding p-values of 4.465e-06 and 2.910e-11 for GPL and

Bali, respectively.

136

Next we compare the two techniques in terms of effectiveness. In the boxplots

for GPL (Figure 7.2(c)) we cannot see differences between the two techniques; in

fact they each achieved 96.5% average coverage and contain identical sets of data

points (hence obviating the need for statistical analysis). On Bali ((Figure 7.2(d))),

however, it appears that Cs yields better coverage than Cd, achieving 0.68% more

final coverage. More concretely, Cs covers between 3 and 29 more branches than Cd

across all products in all three runs. We applied the Wilcoxon signed rank test to the

Bali coverage data, obtaining a p-value of 0.0004824, indicating that the difference

between the techniques on this SPL was statistically significant.

In summary, Order 1 was statistically significantly more efficient than Order 2 on

both product lines, and Order 1 had a statistically significant effectiveness advantage

on one of the two product lines.

7.4 Empirical Study 2

In prior work [16] investigating a product-based approach to testing software product

lines, we used the Graph Product Line (GPL) utilized in our first empirical study,

and used a specification-based test case generation approach to create a test suite for

the system based on its feature model, consisting of 18 test cases. These test cases

were generated from use cases that followed the specifications for each product. The

existence of this test suite and the use of this object in our first study provides a way

for us to investigate three additional interesting questions about our approach.

First, we can investigate whether the test cases generated by CONTESA are bet-

ter than specification-based test cases generated manually in terms of effectiveness.

Second, we can compare the coverage results observed for CONTESA in the first

study, which are there reported from a family-based perspective, to the results that

137

would be achieved if the test cases generated by CONTESA were actually all executed

(a product-based approach) on each of the products. This second question is inter-

esting because we do not retest already covered code in new products. This question

helps us to evaluate the difference between family-based and product-based coverage.

Third, because GPL was seeded with a set of 60 faults for our prior study, which are

present in various GPL products, we can compare the fault-detection ability of the

test cases created by CONTESA with that of the test cases generated manually.

Thus we pose the following research questions:

RQ3 Do the test cases generated by continuous test suite augmentation achieve

better branch coverage on each product than specification-based test cases generated

manually?

RQ4 How do the coverage values computed by CONTESA compare to coverage

values achieved by execution of all test cases on all products?

RQ5 How effective are the test cases generated by CONTESA in terms of fault

detection and compared to specification-based test cases generated manually?

7.4.1 Objects of Analysis

Again, we use the Graph Product Line (GPL) SPL. In this case we also utilize the 60

faults available for GPL (described in [16]). Note that to investigate RQ4 Bali will not

work, because its test cases function only per product as the different products have

different input syntax; thus, we cannot execute all test cases on all products. Further,

investigating RQ3 and RQ5 with Bali would require us to have specification-based

test cases, and we do not.

138

7.4.2 Variables and Measures

Independent Variable. Our independent variable is the approach used to generate

test cases for GPL: specification-based test case generation (SB), continuous test

suite augmentation using the static order mentioned in Section7.2.2.1 (CsE), and

continuous test suite augmentation using the static order, while also using coverage

information gathered from actually running test cases from CsE (CsA). For SB we

use the previously existing test cases.

Dependent Variables. For RQ3 and RQ4, We measure the effectiveness of the test

cases generated by SB and CsA. To do this we track the number of covered branches

in each product after running the test cases generated by the two approaches. We also

track (as in Study 1) the number of branches reported as covered by the CONTESA

approach, using results for CsE generated for the previous study. For RQ5, we

measure the faults detected by test cases generated by SB and CsA.

7.4.3 Experiment Setup and Operation

We used the same experiment setup and operation parameters utilized in the first

study (see Section 7.3.3).

7.4.4 Threats to Validity

This study shares threats to validity with the first study (Section 7.3.4); in addition

it utilizes only one software product line as a subject, which further limits external

validity.

139

SB.38 CsE.38 CsA.38 SB.9 CsE.9 CsA.9
0
.7
0

0
.8
0

0
.9
0

Figure 7.3: Effectiveness achieved by test suites from SB, calculated by CsE and
when run CsA

7.4.5 Results

Figure 7.3 presents the results obtained in our study, with respect to research ques-

tions RQ3 and RQ4. The figure displays six boxplots. The leftmost contains data

obtained by executing test cases from specication-based test case generation on all 38

products. The next one shows the coverage that is accumulated via the CONTESA

process (data repeated from Figure 7.2). The third from left is the result of running

all of the CONTESA test cases on the 38 GPL products. In [16], we used a feature

model based approach called Fig Basis Path to reduce the number of products to be

tested to 9; the right most three boxplots show the data obtained by the three testing

approaches on just those nine products.

7.4.5.1 RQ3: Coverage Achieved by Continuous Versus

Specification-Based Test Case Generation

Figure 7.3 shows that in both cases (with 38 or 9 products), the test cases created by

CONTESA achieved greater actual coverage when executed on all software product

lines. When running all test cases on all 38 products, SB achieved 86.7% coverage

140

while running all test cases CsA on them achieved 88.5%. When running only 9

products, SB achieved 88.1% coverage while CsA achieved 90.0%.

7.4.5.2 RQ4: Coverage Achieved During Execution Versus Coverage

Calculated by CONTESA

Figure 7.3 also shows that in both cases (38 or 9 products), CsE achieved higher

levels of coverage than CsA. Average coverage was 96.4% for CsE and 88.5% for CsA

on all products and average coverage was 96.5% for CsE and 88.5% for CsA on 9

products. The coverage calculated by CONTESA, using its family-based approach,

is greater than that achieved when test cases are run on each product using the

product-based approach. We believe that this reflects differences in the coverage

that can be attained in different products due to code that is non-executable under

particular product configurations, or code whose execution is masked by the presence

of certain features. As such this is indicative of differences between family-based and

product-based testing approaches at the code coverage level.

7.4.5.3 RQ5: Faults Detected by CONTESA Versus Faults Detected by

Specification-Based Test Case Generation

The test cases generated by CONTESA detected 41 faults while the test suite used

in [16] was reported to detect 54 faults. We have investigated that result further and

found that the two studies use different definitions of faults. There are 12“ faults”

detected by the test cases used in [16] that are simple syntax errors. If we count those

as faults, our test suite would detect 53 faults, one fewer. In other words, the test

cases from CONTESA are almost as effective as the test cases generated by humans

in fault detection.

141

7.5 Discussion

We now provide additional insights into the results of our studies.

7.5.1 Overall Expense

The boxplots presented in this paper represent data points relative to single prod-

ucts. Continuous test suite augmentation is a process that is applied to an entire

set of products, so for practical purposes we are also interested in how expensive

this overall process is. To compare this approach to the baseline approach (B) that

independently generates test cases for all products, we also measured the time used

to finish considering all products. In the case of our study, for GPL, an end-to-end

application of continuous test suite augmentation across the entire set of products

on average across our three runs required 4337.6 seconds (1.2 hours) using the static

ordering technique (Cs) and 5771.3 seconds (1.6 hours) using the dynamic ordering

technique (Cd), while technique B required 10523.5 seconds (2.9 hours). For Bali, an

end-to-end application of continuous test suite augmentation across the entire set of

products on average across our three runs required 361,748.7 seconds (4.2 days) using

technique Cs and 389,839.3 seconds (4.5 days) using technique Cd, while technique B

required 393,443.7 seconds (4.6 days).

7.5.2 Continuous Effectiveness Change

In continuous test suite augmentation, after finishing test case generation for a given

product, we update the targets for remaining products, and update the coverage

achieved. Thus, coverage grows cumulatively, and it is interesting to see the effects

of that growth. Table 7.1 presents coverage data from Bali after each application

of augmentation to a specific product for techniques Cs (static) and Cd (dynamic)

142

Table 7.1: Cumulative Effectiveness on Bali Products at Each Stage of Augmentation

Stage
P1 P2 P3 P4 P5 P6

Cs Cd Cs Cd Cs Cd Cs Cd Cs Cd Cs Cd

1 42.2 42.2 42.6 42.6 45.4 45.4 38.0 38.0 46.5 46.5 40.0 40.0
2 42.5 42.5 43.0 43.0 46.2 46.2 39.5 39.5 46.6 46.6 40.5 40.5
3 49.0 47.0 49.3 47.5 50.2 49.7 39.6 40.3 50.4 50.0 40.6 41.4
4 50.6 48.4 51.0 48.8 51.6 50.6 39.8 40.4 51.8 50.8 40.8 41.4
5 51.2 50.3 51.6 50.7 52.6 51.7 40.6 40.4 52.7 51.9 41.6 41.4
6 51.6 50.6 52.0 51.0 52.9 52.0 40.7 40.5 53.1 52.2 41.7 41.5

on Bali. Each row represents the (cumulative) coverage achieved across all products

after a run of augmentation on a particular product. (The particular product is listed

in the leftmost column, denoted by “Stage”, coverage data achieved for each other

product following that stage appears in the twelve columns that follow, per product

and technique). The data in each cell is the average coverage (percentage of branches

covered relative to the number of total branches) achieved across the three runs of

our techniques. Bold numbers indicate, at each stage for each product, cases in which

one technique has achieved better cumulative coverage than the other. There are 20

cases in which Cs has achieved better coverage, and once that advantage is achieved

it is retained; there are no cases in which Cd achieves higher coverage. We applied

the Wilcoxon signed rank test to this data to compare Cs to Cd; results showed that

the two were statistically significantly different (p-value 2.2e-16).

For GPL, there are 38*38 = 1444 data points with each point representing the

average coverage of three runs, so for reasons of space we do not show a similar table

for it. However, we note that among those data points, Cs was more effective than

Cd in 312 cases while Cd was more effective than Cs in 104 cases. We also applied

the Wilcoxon signed rank test to the data to compare Cs to Cd; again the two were

statistically significantly different (p-value 7.636e-12).

143

7.6 Conclusions and Future Work

We have presented CONTESA, a continuous test suite augmentation process for

testing software product lines. CONTESA approaches testing from a product-family

perspective, generating and running tests on products only to covered previously un-

covered code (determined through a regression testing static analysis). We evaluated

CONTESA on two software product lines and observed that a family-based approach

is more effective and efficient than a per-product approach, yielding both higher cov-

erage and a shorter run time. When comparing CONTESA with a product-based

testing approach that uses specification based tests, we see higher code coverage, but

lower fault detection. We also observed that the coverage obtained if we were to

actually run the test cases was lower than the coverage that is estimated through our

analysis.

144

Chapter 8

Conclusion and Future Work

In this thesis, we have presented several test suite augmentation techniques for use

in regression testing. We have also presented a test suite augmentation framework

and studied factors that affect the cost-effectiveness of the test suite augmentation

process, including test case generation techniques, the order of targets and test reuse

approaches. We have shown that the last two factors have different impacts on the first

factor. We have developed a hybrid test suite augmentation technique by combining

test case generation techniques to further improve performance. Finally, extending

the generality of the work, we have developed a test suite augmentation technique for

use on software product lines, CONTESA.

This research has made the following contributions, for both researchers and prac-

titioners:

1. Brought the notion of test reuse into test suite augmentation for regression

testing.

2. Identified several factors that impact the cost-effectiveness of the augmentation

process.

145

3. Provided researchers with new insights into the test suite augmentation process.

4. Developed a framework for instantiating test suite augmentation techniques.

5. Used our framework to instantiate several techniques, including a hybrid tech-

nique, and enabled them to work effectively and efficiently.

6. Introduced the test suite augmentation idea into the SPL testing process and

identified effective orders for augmenting test suites for products in an SPL.

In this work we have focused on test suite augmentation, and our results have several

implications for the creation and further study of augmentation techniques. The

results also have implications, however, for engineers creating initial test suites for

programs. This is because such engineers often begin, at least at the system test

level, with black box requirements-based test cases. It has long been recommended

that such test suites be extended to provide some level of coverage. The techniques

we have presented can conceivably serve in this context too, working with initial

black-box test cases and augmenting these.

In future work we intend to improve our hybrid technique by following lessons

learned from our results, and study its application to additional and larger object

programs. As further potential improvements we will also seek ways in which the

individual test case generation algorithms used by the hybrid technique can make

use of additional information gathered by the other algorithms to generate test cases

more cost-effectively. On SPL testing, future work includes running CONTESA on

larger product lines, and evaluating a sampling approach to reduce the combinatorics

of our pair-wise static analysis. We will also further investigate why we see lower code

coverage when tests are actually run on products (in a product-based fashion) than

146

when coverage is calculated by CONTESA (in a family-based fashion). Finally, we

plan to extend CONTESA to work with alternative test case generation techniques.

147

Bibliography

[1] A.V. Aho, M. Lam, R. Sethi, and J.D. Ullman. Compilers, Principles, Tech-

niques, and Tools. Addison-Wesley, Boston, MA, 2nd edition, 2007.

[2] T. Apiwattanapong, R. Santelices, P. Chittimalli, A. Orso, and M. Harrold.

Matrix: Maintenance-oriented testing requirements identifier and examiner. In

Proceedings of the Testing: Academic Industrial Conference on Practice And

Research Techniques, pages 137–146, 2006.

[3] A. Arcuri. It does matter how you normalise the branch distance in search based

software testing. In International Conference on Software Testing, Verification,

and Validation, pages 205–214, 2010.

[4] A. Arcuri, Z. Iqbal, and L. Briand. Formal analysis of the effectiveness and

predictability of random testing. In Proceedings of the International Symposium

on Software Testing and Analysis, pages 219–229, July 2010.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst.

Finding bugs in dynamic web applications. In Proceedings of the International

Symposium on Software Testing and Analysis, pages 261–272, 2008.

148

[6] A. Avritzer and E. Weyuker. The automatic generation of load test suites and

the assessment of the resulting software. IEEE Transaction Software Engineer-

ing, 21(9):705–716, September 1995.

[7] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in

the presence of loop-assigned flags: a testability transformation approach. In

Proceedings of the International Symposium on Software Testing and Analysis,

pages 108–118, 2004.

[8] D. Batory, J. Neal Sarvela, and A. Rauschmayer. Scaling step-wise refinement.

In Proceedings of the International Conference on Software Engineering, pages

187–197, 2003.

[9] A. Bertolino, A. Fantechi, S. Gnesi, and G. Lami. Product line use cases:

Scenario-based specification and testing of requirements. In Software Prod-

uct Lines - Research Issues in Engineering and Management, pages 425–445.

Springer-Verlag, 2006.

[10] A. Bertolino and S. Gnesi. PLUTO: A test methodology for product families.

In Lecture Notes in Computer Science. 3014, pages 181–197, 2004.

[11] D. Binkley. Semantics guided regression test cost reduction. IEEE Transaction

on Software Engineering, 23(8):498–516, August 1997.

[12] D. Bird and C. Munoz. Automatic generation of random self-checking test

cases. IBM Systems Journal, 22(3):229–245, 1983.

[13] S. Bohner and R. Arnold. Software Change Impact Analysis. IEEE Computer

Society Press, Los Alamitos, CA, 1996.

149

[14] L. C. Briand, Y. Labiche, and S. He. Automating regression test selection based

on UML designs. Information and Software Technology, 51:16–30, January 2009.

[15] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Pro-

ceedings of the International Conference on Automated Software Engineering,

pages 443–446, September 2008.

[16] I. Cabral, M. B. Cohen, and G. Rothermel. Improving the testing and testability

of software product lines. In International Conference on Software Product

Lines, pages 241–255, 2010.

[17] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and automatic generation

of high-coverage tests for complex systems programs. In Proceedings of the

USENIX conference on Operating systems design and implementation, pages

209–224, 2008.

[18] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. Exe: Automatically

generating inputs of death. In Proceedings of the ACM conference on Computer

and Communications Security, pages 322–335, Oct 2006.

[19] J. Chang and D. Richardson. Structural specification-based testing: Automated

support and experimental evaluation. In Proceedings of the International Sym-

posium on Foundations of Software Engineering, pages 285–302, September

1999.

[20] T. Y. Chen and R. Merkel. Quasi-random testing. IEEE Transactions on

Reliability, 56(3):562–568, 2007.

150

[21] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for selective regression

testing. In Proceedings of the International Conference on Software Engineering,

pages 211–220, May 1994.

[22] L. Clarke. A system to generate test data and symbolically execute programs.

IEEE Transactions on Software Engineering, 2(3):215–222, September 1976.

[23] L. Clarke and D. Richardson. Applications of symbolic evaluation. Journal of

Systems and Software, 5(1):15–35, January 1985.

[24] P. Clements and L. Northrup. Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[25] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and adequacy in software

product line testing. In Workshop on the Role of Architecture for Testing and

Analysis, pages 53–63, July 2006.

[26] CREST - automatic test generation tool for C. http://code.google.com/p/

crest/.

[27] P. A. da Mota Silveira N., I. Do. Carmo M., Y. C Cavalcanti, E. S. de Almeida,

V. C. Garcia, and S. R. de Lemos Meira. A regression testing approach for

software product lines architectures. In Brazilian Symposium on Software Com-

ponents, Architectures and Reuse, pages 41–50, September 2010.

[28] R. DeMillo and A. Offutt. Constraint-based automatic test data generation.

IEEE Transactions on Software Engineering, 17(9):900–910, September 1991.

[29] C. Denger and R. Kolb. Testing and inspecting reusable product line com-

ponents: First empirical results. In International Symposium on Empirical

Software Engineering, pages 184–193, 2006.

151

[30] E. Dı́az, J. Tuya, R. Blanco, and J. J. Dolado. A tabu search algorithm for

structural software testing. Journal of Computers and Operations Research,

35(10):3052–3072, 2008.

[31] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact. Empirical

Software Engineering, 10(4):405–435, October 2005.

[32] S. Dowdy, S. Wearden, and D. Chilko. Statistics for Research, 3rd Edition.

Wiley, 2004.

[33] B. Dutertre and L. de Moura. The Yices SMT solver.

http://yices.csl.sri.com/tool-paper.pdf, Aug 2006.

[34] S. Elbaum, A.G. Malishevsky, and G. Rothermel. Test case prioritization:

A family of empirical studies. IEEE Transactions on Software Engineering,

28(2):159–182, 2002.

[35] M. Emmi and K. Majumdar, R.and Sen. Dynamic test input generation for

database applications. In Proceedings of the International Symposium on Soft-

ware Testing and Analysis, pages 151–162, 2007.

[36] L. Etxeberria and G. Sagardui. Quality assessment in software product lines.

In Proceedings of the International Conference on Software Reuse: High Confi-

dence Software Reuse in Large Systems, pages 178–181, 2008.

[37] R. Ferguson and B. Korel. The chaining approach for software test data genera-

tion. ACM Transactions on Software Engineering and Methodology, 5(1):63–86,

January 1996.

152

[38] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for object-

oriented software. In Proceedings of the International Symposium on Founda-

tions of Software Engineering, pages 416–419, 2011.

[39] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random

testing. In Proceedings of the Conference on Programming Language Design

and Implementation, pages 213–223, June 2005.

[40] A. Gotlieb, B. Botella, and M. Reuher. Automatic test data generation using

constraint solving techniques. In Proceedings of the International Symposium

on Software Testing and Analysis, pages 53–62, March 1998.

[41] R. Gupta, M. J. Harrold, and M. L. Soffa. Program slicing-based regression

testing techniques. Journal of Software Testing, Verification and Reliability,

6:83–112, 1996.

[42] A. Hartman and K. Nagin. Model driven testing - agedis architecture interfaces

and tools. In Proceedings of the European Conference on Model Driven Software

Engineering, pages 1–11, December 2003.

[43] W. Heider, P.l Rabiser, R.and Grünbacher, and D. Lettner. Using regression

testing to analyze the impact of changes to variability models on products. In

International Conference on Software Product Lines, pages 196–205, 2012.

[44] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effec-

tiveness of dataflow- and controlflow-based test adequacy criteria. In Proceed-

ings of the International Conference on Software Engineering, pages 191–200,

May 1994.

153

[45] K. Inkumsah and T. Xie. Improving structural testing of object-oriented pro-

grams via integrating evolutionary testing and symbolic execution. In Pro-

ceedings of the IEEE/ACM International Conference on Automated Software

Engineering, pages 297–306, 2008.

[46] http://javapathfinder.sourceforge.net/.

[47] C. Kim, D. S. Batory, and S. Khurshid. Reducing combinatorics in testing

product lines. In International Conference on Aspect-Oriented Software Devel-

opment, pages 57–68, 2011.

[48] A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A flexible framework for

development of dynamic program analysis for Java software. Technical Report

TR-UNL-CSE-2006-0006, University of Nebraska - Lincoln, April 2006.

[49] B. Korel. Automated software test data generation. IEEE Transactions on

Software Engineering, 16(8):870–897, August 1990.

[50] K. Lakhotia, M. Harman, and H. Gross. Austin: A tool for search based soft-

ware testing for the c language and its evaluation on deployed automotive sys-

tems. In Proceedings of the International Symposium on Search Based Software

Engineering, pages 101–110, 2010.

[51] Z. Li, M. Harman, and R. Hierons. Search algorithms for regression test case pri-

oritization. IEEE Transactions on Software Engineering, 33(4):225–237, April

2007.

[52] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity. Incremental model-based

testing of delta-oriented software product lines. In Tests and Proofs, volume

154

7305 of Lecture Notes in Computer Science, pages 67–82. Springer Berlin Hei-

delberg, 2012.

[53] R. E. Lopez-Herrejon and D. S. Batory. A standard problem for evaluating

product-line methodologies. In Proceedings of the International Conference on

Generative and Component-Based Software Engineering, pages 10–24, 2001.

[54] R Majumdar and K. Sen. Hybrid concolic testing. In Proceedings of the Inter-

national Conference on Software Engineering, pages 416–426, 2007.

[55] D. Marinov and S. Khurshid. TestEra: A novel framework for automated testing

of Java programs. In Proceedings of the International Conference on Automated

Software Engineering, pages 22–31, November 2001.

[56] P. McMinn. Search-based software test data generation: a survey: Research

articles. Journal of Software Testing, Verification, and Reliability, 14(2):105–

156, 2004.

[57] P. McMinn, D. Binkley, and M. Harman. Empirical evaluation of a nesting

testability transformation for evolutionary testing. ACM Transactions on Soft-

ware Engineering and Methodology, 18:11:1–11:27, June 2009.

[58] C. Michael, G. McGraw, and M. Shatz. Generating software test data by evolu-

tion. IEEE Transactions on Software Engineering, 27(12):1085–1110, December

2001.

[59] S. Montagud and S. Abrahão. Gathering current knowledge about quality eval-

uation in software product lines. In Proceedings of the International Software

Product Line Conference, pages 91–100, 2009.

155

[60] C. Nebut, F. Fleurey, Y. L. Traon, and J. Jzquel. A requirement-based approach

to test product families. In Proceedings of the Workshop Product Families En-

gineering, pages 198–210, 2003.

[61] J. Offutt and A. Abdurazik. Generating tests from UML specifications. In

Proceedings of the International Conference on the Unified Modeling Language,

October 1999.

[62] E. M. Olimpiew and H. Gomaa. Reusable model-based testing. In Proceedings of

the International Conference on Software Reuse: Formal Foundations of Reuse

and Domain Engineering, pages 76–85, 2009.

[63] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software

systems. In Proceedings of the International Symposium on Foundations of

Software Engineering, November 2004.

[64] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pairwise feature-interaction

testing for SPLs: potentials and limitations. In International Conference on

Software Product Lines, pages 6:1–6:8, 2011.

[65] H. Pande, W. Landi, and B.G. Ryder. Interprocedural def-use associations in

C programs. IEEE Transactions on Software Engineering, 20(5):385–403, May

1994.

[66] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation using genetic

algorithms. Journal of Software Testing, Verification and Reliability, 9:263–282,

September 1999.

156

[67] S. Person, M. Dwyer, S. Elbaum, and C. Păsăreanu. Differential symbolic

execution. In Proceedings of the International Symposium on Foundations of

Software Engineering, pages 226–237, November 2008.

[68] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental symbolic

execution. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, June 2011.

[69] O. Pilskalns, G. Uyan, and A. Andrews. Regression testing UML designs. In

Proceedings of the 22nd IEEE International Conference on Software Mainte-

nance, pages 254–264, 2006.

[70] S. Reis, A. Metzger, , and K. Pohl. Integration testing in software product

line engineering: A model-based technique. In Proceedings of the International

Conference on Fundamental Approaches to Software Engineering, pages 321–

335, 2007.

[71] S. Reis, A. Metzger, and K. Pohl. A reuse technique for performance testing

of software product lines. In Proceedings of the International Workshop on

Software Product Line Testing, 2006.

[72] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool for

change impact analysis of Java programs. In Proceedings of the ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, pages 432–448, October 2004.

[73] A. Reuys, E. Kamsties, K. Pohl, and S. Reis. Model-based system testing of

software product families. In Proceedings of the International Conference on

Advanced Information Systems Engineering, pages 519–534, 2005.

157

[74] G. Rothermel and M. J. Harrold. Selecting tests and identifying test coverage

requirements for modified software. In Proceedings of the International Sympo-

sium on Software Testing and Analysis, Aug 1994.

[75] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques.

IEEE Transactions on Software Engineering, 22(8):529–551, August 1996.

[76] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection tech-

nique. ACM Transactions on Software Engineering and Methodology, 6(2):173–

210, April 1997.

[77] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M Mata, and S. Tu. To-

wards automatic regression test selection for web services. In Proceedings of the

International Computer Software and Applications Conference, pages 729–736,

August 2007.

[78] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Har-

rold. Test-suite augmentation for evolving software. In Proceedings of the In-

ternational Conference on Automated Software Engineering, September 2008.

[79] A. Schürr, S. Oster, and F. Markert. Model-driven software product line testing:

An integrated approach. In Theory and Practice of Computer Science, pages

112–131, 2010.

[80] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit

path model-checking tools. In Proceedings of the International conference on

Computer Aided Verification, pages 419–423, Aug 2006.

158

[81] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for

C. In Proceedings of the International Symposium on Foundations of Software

Engineering, pages 263–272, Sept. 2005.

[82] J. Shi, M. Cohen, and M. Dwyer. Integration testing of software product lines

using compositional symbolic execution. In International Conference on Fun-

damental Approaches to Software Engineering, pages 270–284. Springer, 2012.

[83] S. Sinha, M. J. Harrold, and G. Rothermel. Computation of interprocedural

control dependencies. ACM Transactions on Software Engineering and Method-

ology, 10(2):209–254, April 2001.

[84] http://csce.unl.edu/∼galileo/pub/sofya.

[85] H. Sthamer. The Automatic Generation of Software Test Data Using Genetic

Algorithms. PhD thesis, University of Glamorgan, Pontyprid, Wales, UK, April

1996.

[86] K. Taneja, T. Xie, N. Tillmann, J. Halleux, and W. Schulte. eXpress: Guided

path exploration for regression test generation. In Proceedings of the Interna-

tional Symposium on Software Testing and Analysis, July 2011.

[87] T. Thum, S. Apel, C. Kästner, M. Kuhlemann, I Schaefer, and G. Saake. Anal-

ysis strategies for software product lines. Technical report, Faukulät für Infor-

matik, Otto-von-Guericke-Univerität Magdeburg, April 2012.

[88] P. Tonella. Evolutionary testing of classes. In Proceedings of the International

Symposium on Software Testing and Analysis, pages 119–128, 2004.

159

[89] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing software product

lines using incremental test generation. In Proceedings of the International

Symposium on Software Reliability Engineering, pages 249–258, 2008.

[90] R. Vallée-Rai. Soot: A Java Bytecode Optimization Framework. Master’s

thesis, McGill University, 2000.

[91] F. van der Linden. Software product families in europe: the esaps and cafe

projects. IEEE Software, 19(4):41–49, July 2002.

[92] W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with Java

Pathfinder. In Proceedings of the International Symposium on Software Testing

and Analysis, pages 97–107, July 2004.

[93] H. Waeselynck, P. Thévenod-Fosse, and O. Abdellatif-Kaddour. Simulated an-

nealing applied to test generation: Landscape characterization and stopping

criteria. Empirical Software Engineering, 12(1):35–63, 2007.

[94] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time-aware test

suite prioritization. In Proceedings of the International Symposium on Software

Testing and Analysis, pages 1–12, July 2006.

[95] S. Wappler and F. Lammermann. Using evolutionary algorithms for the unit

testing of object-oriented software. In Proceedings of the Conference on Genetic

and Evolutionary Computation, pages 1053–1060, 2005.

[96] G. Wassermann, D. Yu, D. Chander, A.and Dhurjati, H. Inamura, and Z. Su.

Dynamic test input generation for web applications. In Proceedings of the In-

ternational Symposium on Software Testing and Analysis, pages 249–260, 2008.

160

[97] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for

automatic structural testing. Information and Software Technology, 43(14):841

– 854, 2001.

[98] Z. Xu, M. B. Cohen, W. Motycka, and G. Rothermel. Continuous test suite

augmentation in software product lines. In Proceedings of the International

Software Product Line Conference, 2013.

[99] Z. Xu, M. B. Cohen, and G. Rothermel. Factors affectnig the use of genetic

algorithms in test suite augmentation. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, July 2010.

[100] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen. Directed test suite

augmentation: Techniques and tradeoffs. In Proceedings of the ACM SIGSOFT

Symposium on Foundations of Software Engineering, November 2010.

[101] Z. Xu, Y. Kim, Kim. M, and G. Rothermel. A hybrid directed test suite aug-

mentation technique. In International Symposium on Software Reliability En-

gineering, pages 150–159, 2011.

[102] Z. Xu and G. Rothermel. Directed test suite augmentation. In Proceedings

of the Asia-Pacific Software Engineering Conference, pages 406–413, December

2009.

[103] S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In

Proceedings of the International Symposium on Software Testing and Analysis,

pages 140–150, July 2007.

161

[104] S. Yoo and M. Harman. Test data augmentation: Generating new test data

from existing test data. Technical Report TR-08-04, Dept. of Computer Science,

King’s College London, July 2008.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2013

	Directed Test Suite Augmentation
	Zhihong Xu

	tmp.1369322188.pdf.geSOE

