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Systems that are written to achieve the same high level specifications can vary in

subtle ways. Depending on a programmer’s objective, using one variant of a program

or algorithm over another may be beneficial, and this objective may change over time.

However we do not have sufficient techniques to compare two different system variants

side-by-side to find specific behavioral differences, particularly in the absence of source

code. Assuming two system implementations take the same inputs and produce the

same outputs or exhibit the same behavior under most conditions, we want to find

input instances where the behavior diverges for a given objective. In this paper we

present a framework called UDivE to fill this gap. UDivE accepts a model of the

input space and system constraints, as well as an objective measure for the output

behavior that is of interest. It then uses a genetic algorithm to explore the input

space of two implementations, guiding the search towards divergent behavior. We

have implemented a prototype of UDivE and evaluate it on three different software

case studies, each with different input spaces and objectives. In all three cases we find

‘unexpected’ divergent behavior. In addition, we take a first-step towards applying

UDivE to a cyber-physical system by providing a feasibility study in which UDivE

interacts with a simulation of an unmanned aerial vehicle (UAV), the results of which

are validated on the UAV itself. We show that UDivE can produce promising results,

even in the presence of a simplistic simulator.
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Chapter 1

Introduction

A single software specification is often implemented by many programs and differ-

ent approaches emerge and evolve to address the same problem. This is becoming

particularly true in program families such as software product lines [9], application

programming interfaces (APIs), or even methods within a given API. Given mul-

tiple implementations of a software specification, developers deciding which one to

use must understand when and how they can differ in their behavior for a particular

objective. Often the assumption is that they perform equivalently, because in most

situations they will. But there may be a small set of inputs that deviate from this

norm and a key to achieving such an understanding is identifying inputs that lead to

such unexpected divergent behaviors between the candidate implementations.

Support for finding such divergent behavior is currently lacking. Efforts that do

exist focus on the analysis and validation of versions of the same implementation

of software-based systems, and exclude the consideration of cyber-physical systems.

This has resulted in techniques to better understand the differences and impact of

changes between software versions (e.g, [1, 10, 11, 16, 19, 20, 25, 26]). But these tech-

niques may not scale when applied to completely different implementations, because
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the size of the “delta” means they will report a large number of irrelevant differences

and most of these differences will not lead to divergent behavior. In addition, many of

these techniques require code or some intermediate program representation. Instead,

what is needed is an input-output based approach that can identify where divergence

occurs based on a given behavioral objective.

To address these challenges, we have developed a framework called UDivE (Un-

expected Divergence Explorer). Given two implementations sharing a common spec-

ification and the same interface, and an objective measure, the framework’s goal is to

find a set of inputs where the objective measure diverges. As we shall see, the frame-

work is simple yet powerful. It is simple because it operates on the implementations

as black boxes, using a standard genetic algorithm guided by a fitness function that

rewards larger divergent behavior. It is powerful because even though the effective-

ness of the search depends on how the input space is modeled, very simple models are

sufficient to reveal unexpected behavior in the four studies we conduct. In addition,

UDivE’s most expensive phase is trivially paralellizable.

1.1 Research Contributions

This thesis is motivated by the problem that a solution does not exist for identifying

divergent behavior between two implementations of the same specification, particu-

larly if the only method of interaction with those implementations is from a black-box

perspective. In an effort to address this problem, we present UDivE, a framework for

the automated identification of inputs that may cause two implementations’ behavior

to diverge. Not only do we provide a design of UDivE, but also an instantiation of the

framework. We evaluate UDivE’s effectiveness in three different software domains:

polynomial root-finding, image scaling, and aircraft collision resolution. During this



3

evaluation we search for divergent behavior and present the results, demonstrating

the effectiveness of UDivE. In addition, we extend this evaluation to a cyber-physical

system, providing a first step in allowing UDivE to conjecture about the behavior of

a cyber-physical system by interacting with a simulator of the system, and then veri-

fying UDivE’s results on the cyber-physical system itself. Summarized, this research

makes the following contributions:

1. Recognition of the problem of identifying divergent behavior between two im-

plementations of the same specification and its definition in the context of au-

tomated guided input generation.

2. Design and instantiation of UDivE: a framework for the automated identifica-

tion of inputs that may cause two implementations’ behavior to diverge.

3. A study of UDivE on three different software domains (root-finding, image

scaling, and aircraft resolution) illustrating its application and potential.

4. A feasibility study exploring a first step in the application of UDivE to a cyber-

physical system, including the interaction with a simulator and the verification

of UDivE’s results on the physical system.

1.2 Overview of Thesis

The remainder of the thesis is laid out as follows. Chapter 2 presents a motivating ex-

ample that further illustrates the usefulness of UDivE, as well as background material

on genetic algorithms and other related work. Chapter 3 introduces UDivE, defines

its objective formally, and describes its architecture in a component-wise fashion. In

Chapter 4 we evaluate UDivE on three different software case studies, and present the
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results of the evaluation. Chapter 5 explores UDivE’s application to a cyber-physical

system, and provides a feasibility study in which UDivE interacts with a simulation

of such a system, the results of which are verified on the cyber-physical system itself.

Chapter 6 concludes the thesis and discusses future work.
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Chapter 2

Motivation and Background

In this chapter we present a motivating example based on one of the artifacts analyzed

in Chapter 4, Aircraft Collision Detection and Resolution, to illustrate the potential

of our approach, and provide some background information on genetic algorithms and

other related work.

2.1 An Example of Divergent Behavior

We begin with an example of a system that could be implemented as a cyber-physical

system, however we only consider it only from a software perspective, evaluating only

the algorithmic implementation of the system. We present the domain of the system,

and discuss the components that we consider in this example. We also discuss related

existing approaches, and why they are inadequate. Finally, we present our proposed

approach and discuss how it applies to this example.
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2.1.1 Domain

Aircraft Collision Detection and Resolution (CD&R) algorithms are one of the key

components to handle increasingly congested air spaces. These algorithms aim to

detect critical loss of separation between aircraft and recommend modifications to

an aircraft’s flight plan to avoid a collision. Not surprisingly, many CD&R algo-

rithms exist and many more are emerging [13, 14, 18]. Just within NASA’s Airborne

Coordinated Conflict Resolution and Detection (ACCoRD) framework there are 15

algorithms that can be parameterized to implement 38 operational resolution tech-

niques [23].

These algorithms take different approaches to collision detection and resolution,

yet they all operate on a pair of flight plans (one for the main vehicle, ownship

vehicle, and one for the intruder, traffic vehicle). A flight plan consists of a series

of 4-dimensional points known as trajectory change points (TCPs), each of which

encode latitude, longitude, altitude and time of arrival at the respective TCP. Given

the criticality of these algorithms, it is surprising that many of their trade-offs are

not well characterized.

Unknown Divergence. Consider for example two of the most basic algorithms

provided by ACCoRD, RRGS and RRTRK, which account for aircraft ground speed

and track angle, but ignore more complex factors such as three-dimensional maneuvers

or directional constraints. These two algorithms have the same collision detection

functions but employ distinct resolution approaches. It is not clear from the literature

or from the ACCoRD implementations and documentation how much they may differ

in their proposed flight plan adjustments. This is important as these adjustments

can translate into longer flying distances or durations, and potentially into conflict

propagation with other aircraft.
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2.1.2 Existing Approaches are Inadequate

Existing approaches are inadequate to provide much insight into how the implementa-

tions of these algorithms may differ. Approaches that perform a syntactic comparison

of the implementations, such as the Eclipse IDE Java Source Comparison tool, reveal

that 92% of the lines of code between the implementations are syntactically different.

Although this may be valuable in some contexts, it provides limited insight about the

behavioral differences between these implementations.

Existing test suites for the implementations have the potential to identify some

differences, if they are rich enough. In practice, however, test suites are usually not

exhaustive enough to detect subtle differences. In the context of ACCoRD, running

the 12 test flight scenarios that come with the package does not reveal any differences

between the implementations of RRGS and RRTRK. Automatic approaches for test

generation may help to mitigate that limitation. Since they are not focused on detect-

ing diverging behavior they spend most of their effort generating tests that expose the

same behavior on the implementations. For the example scenario described, 25000

pairs of flight plans generated in 6.5 hours using bounded random input generation

did not result in any test that caused a difference in flight plans when attempting to

resolve a conflict with RRGS or RRTRK. In fact, the vast majority of randomly gen-

erated inputs did not even contain a conflict to resolve, despite the fact that they were

valid flight plans generated within a valid range. Utilizing a more sophisticated test

case generation tool that uses mixed concrete and symbolic execution, CATG [6], did

not render better results. Not only did it require us to simplify RRGS and RRTRK

in order to successfully perform the necessary instrumentation, but after 6.5 hours

none of the approximately 12,000 generated tests achieved a difference in flight plans.

Again, this is not surprising given that the goals of these tools is to achieve higher
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levels of coverage, not to find subtle (and rare) behavioral differences. But it helps to

illustrate that these types of approaches are not cost-effective for identifying divergent

behavior.

Further, approaches that generate tests for code that changed between versions

(e.g., [11,16,26,27,34] ) are not helpful in this setting because the delta between the

implementations is often large, negating the value of the textual differences. These

approaches require access to the implementation source, which in the case of third

party libraries, for example, may not be available. Still, our work is in part inspired

by this family of techniques that guide test case generation.

2.1.3 Our Proposed Approach: UDivE

Instead of an exhaustive test generation method, which will not scale, we propose

to perform an exploration of the implementations’ behavior space that favors the

generation of tests which reveal divergent behavior. In the context of RRGS and

RRTRK we want to favor the generation of flight plans that produce the greatest

difference between the implementations in terms of additional distance travelled from

the original flight plan. The proposed approach does not analyze the implementations’

structure, only their inputs and outputs in an effort to converge towards inputs that

reveal the greatest difference.

Let’s suppose we are interested in minimizing the difference in flight path distance

created by the two implementations when compared to the original flight path. Given

this objective, we want to explore whether, given two aircraft, RRGS and RRTRK can

return results that diverge by more than some percent difference. For this example

we choose 5%. If we find such a flight path, then we can use this to guide us in our

selection of algorithms.
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UDivE employs five elements:

• A representation of the inputs that can be manipulated. In our example we

have two flight plans, one for the ownship aircraft and one for the traffic ship

aircraft, both consisting of 11 TCPs 1.

• Optional constraints on the inputs to be explored. In our example, we target

an area of 100 by 100 miles with starting airports located at the southwest

and southeast corners and the ending airports at the northwest and northeast

corners.

• Initial inputs. These inputs can be generated randomly, obtained from an ex-

isting test suite, or crafted to explore particular scenarios. In our case, we

select the simplest flight plans consisting of a straight path between airports in

opposite corners.

• An objective function based on the implementations’ observable behavior. In

our example, the function consists of the difference between the extra distance

travelled by the adjusted flight plans that result from each implementation.

• An algorithm that guides the input generation toward divergent behavior based

on the objective function (in our framework we utilize a genetic algorithm).

This algorithm will operate iteratively, with the goal that each iteration will

move the generated inputs closer to divergent behavior.

1Note that only the ownship can maneuver to avoid a conflict, however the inputs for both the
traffic ship and ownship flight plan are manipulated to find the conflicting flight plans.
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Figure 2.1: High-level conceptual depiction of UDivE’s operation.

As shown in Figure 2.1, the problem representation and any optional constraints

are provided to a genetic algorithm that generates an initial input (based on the prob-

lem representation and constraints) that are consumed by each implementation. The

outputs produced by the implementations are consumed by the objective function

that evaluates the amount of divergence created by the input supplied to the imple-

mentations. This data is consumed by the genetic algorithm and, together with the

problem representation and any optional constraints, is used to guide the generation

of subsequent inputs as the process repeats.

Given the above instantiation, as shown in Figure 2.2, after an exploration of

116 iterations (20 tests per iteration) taking a total of 6.5 hours, UDivE succeeds in

detecting divergent behavior between RRGS and RRTRK. On this graph the x-axis

shows the number of iterations and the y-axis shows the divergence. Furthermore,

most of UDivE’s execution is trivially parallelizable; the test cases in an iteration can

be run on different machines, reducing the exploration time to less than 10 minutes

when 40 nodes (2 nodes for each test, one for each implementation) are available.
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Figure 2.2: Evolving flight plans while favoring exploration of diverging behavior.

UDivE evolved the flight plans that serve as inputs to RRGS and RRTRK to reveal

differences of more than 8 miles (5%) between the adjusted flight plans they generate.

Figure 2.3 shows the input flight plans leading to this difference, and the outcome

of the implementations in terms of the adjusted plan. In this figure the trafficship

aircraft is a triangle. The ownship aircraft is a circle. In the first frame the two air-

craft have a conflict (the markers are superimposed). In the next two frames there is

a distance between the triangle and circle marker showing that the conflict has been

resolved. The third dimension of time is not explicit on these graphs; the location

of the markers show where the planes are located at the same time. The changed

plan (shown as a dashed line) is different in each frame. On the left is the RRGS

and on the right is the RRTRK algorithm. It is evident that the adjusted plan pro-

duced by RRGS (which flies ahead of the traffic ship) is more efficient than that by

RRTRK (which adjusts the flight plan to go beyond the traffic ship). Interestingly

enough, the ACCoRD Stratway implementation which uses multiple CD&R imple-

mentations in sequence, always attempts to employ RRTRK before RRGS, which

seems inappropriate at least for some cases.
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Figure 2.3: Input flight plans leading to collision, adjusted plan by RRGS and by
RRTRK (in dotted lines). The adjusted plan of RRTRK results in 8 more travelled
miles (5%) than RRGS

This scenario has illustrated the potential and some of the unique dimensions of

UDiVE. Still, it simplifies the problem domain input (e.g., airports’ location and area

size), considers only one objective function (others may include the time travelled or

the number of disturbances caused to other flight plan) and ignores many constraints

(e.g., aircraft must maintain a minimal speed and cannot change velocity instanta-

neously). In the next sections we explain how UDivE can support more sophisticated

representations of the domain’s input, allow for more complex objective functions,

and handle families of constraints throughout the exploration process.

2.2 Background

This section presents background information on genetic algorithms and how they

function. In addition, it presents several other areas of related work that are relevant

to UDivE.
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2.2.1 Genetic Algorithms

In this work we leverage a genetic algorithm. A genetic algorithm (GA) is a popu-

lation based meta-heuristic search technique that aims to optimize a given objective

function, while obeying a set of constraints [30,31].

An objective function (implemented as a concrete “fitness function”) can minimize

or maximize the objective depending on the problem. For instance, in our aircraft col-

lision avoidance avoidance example, we would choose to search for maximum distance

between the new flight paths and the original conflicted one.

GAs have been used to solve many software engineering problems such as test

generation, reverse engineering, and refactoring [15]. A GA encodes the problem

space as a chromosome which is made up of a set of genes - the primitive elements.

In other words, each chromosome encodes a candidate solution to the problem at

hand. Each gene within a chromosome has a domain of valid values that it may hold.

This domain may be the same for all of the genes in a chromosome, or it may differ

depending on the gene. A population consists of a set of chromosomes.

In order to guide a GA’s search, GAs make use of a variety of evolutionary opera-

tors that are designed to mimic biological evolution (e.g. elitism, selection, crossover,

mutation). The fitness function is responsible for measuring the quality (or “fitness”)

of each chromosome based on the given objective. At each iteration (or generation),

each of the evolutionary operators are applied to produce the following iteration (or

generation). The evolutionary operators we consider are described below.

Elitism The elitism operator selects the n most fit chromosomes from the popula-

tion and allows them to propagate to the next generation. Because they are the most

fit, we would like to guarantee that they exist in the next generation. Depending on

the configuration of the GA, chromosomes selected by the elitism operator may also
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be spared from mutation (described below). The value of n is problem specific, and

defined by the user of the GA.

Selection The selection operator is responsible for selecting chromosomes from the

population that will propagate into the next generation. Two common approaches

to selection include a simple rank selection (during which the most fit are always

selected), or a probabilistic approach in which the most fit chromosomes have the

largest probability of being selected, but it is not guaranteed. This type of selection

is often termed roulette-wheel selection. Note that if chromosomes have already been

selected by the elitism operator, they will not be available for further selection because

they have already been chosen to propagate to the next generation.

Crossover The crossover operator is responsible for mating parent chromosomes

to produce child chromosomes. During crossover, two parent chromosomes exchange

genes to form two child chromosomes. The parent chromosomes will persist, for a

total of four chromosomes after mating two parents. The method of gene exchange

varies. Single-point crossover involves genes being exchanged around a single point

in the parent chromosomes. Multi-point crossover involves genes being exchanged

between multiple points in the parent chromosomes. The location at which crossover

occurs in the parent chromosomes is either fixed (e.g. always the midpoint of the

chromosome), or may be selected randomly at the time of crossover.

Mutation The mutation operator is responsible for increasing diversity in the pop-

ulation. Mutation occurs at the gene level. Generally, only a small percentage of the

genes in the population are selected for mutation. The type of mutation that occurs

depends on the encoding of the chromosome, and the domain of the genes. In its

most simplistic form, if each gene is simply a binary digit, mutation will flip the digit
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from 0 to 1, or vice-versa. In the event the domain of the genes is more complex, say

for example, each gene may take any integer value in a predefined range, mutation

might simply select a new value from the range (termed full-range mutation), or it

could increase or decrease the gene’s current value by some percentage (termed creep

mutation). Another possibility is that a gene chosen for mutation will be swapped

with another gene in the chromosome (termed swap mutation). Further, a check must

be performed to ensure mutation does not introduce gene values that appear outside

of the allowed domain. The rate and type of mutation used are problem-specific and

must be determined by the user of the GA.

The GA continues to iterate until either it has met a predefined goal (such as

reaching a predefined fitness value), is stuck in a local optimum (or, ideally, the global

optimum), or a predefined maximum number of iterations have been completed.

2.2.2 Other Related Work

This section presents other types of related work. We first discuss techniques that are

primarily concerned with the analysis and characterization of differences between two

versions of the same system. Next, we present related, but distinct, uses of genetic

algorithms, N-version programming, and program refactoring techniques. We then

discuss the use of meta-heuristic search methods in the context of cyber-physical sys-

tems, including unmanned aerial vehicles (UAVs). Finally, we discuss why UDivE is

unique and not constrained by some of the limitations that hinder related approaches.

The idea of looking for divergence in programs is not new, although to date the

focus has been on different versions of the same system. Techniques include impact

analysis [2, 19, 25], program differencing [1, 17], and differential test case generation

[16,26,27].
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During impact analysis two versions (v and v′) of the same system are analyzed,

most commonly by reasoning about their control flow, to identify code affected by

modifications made to v in v′. Impact analysis can be used to determine what effects

a change has created in v′ after the change has taken place. Another, more proactive,

type of impact analysis is predictive impact analysis, during which the effects of a

change are predicted before they are instantiated in v′ [2, 19, 25]. However, many of

these approaches require access to source code for analysis or instrumentation [25].

Further, some traditional impact analysis techniques such as call graph based analysis,

static program slicing, and dynamic program slicing do not adapt to evolving software

releases efficiently, and must recompute a large amount of information in order to re-

analyze new releases of a software system [2, 19]. Other impact analysis techniques

that leverage whole-path profiling improve these limitations by accommodating soft-

ware evolution with a lower cost and requiring access only to system binaries, rather

than source code, but still require that the binaries be instrumented [19].

Program differencing is a lighter weight technique that finds changed portions of

code in two versions of a software system by operating on the source code or on source

code abstractions such as abstract syntax trees (ASTs) [1, 17]. Certain approaches

to program differencing focus on the special considerations that must be made for

object oriented software systems, due to the complexity that object oriented features

and the relationships between them may add to a software system, especially when

making syntactic changes that could create subtle and unintended effects [1].

Differential test case generation approaches analyze different versions of software

systems to identify changed sections on which the generated tests should focus. For

example, given a software system version v, when a new version of the software

system v′ is released, its existing test suite of often executed against it to ensure that

regression faults were not introduced between v and v′ [16]. However, if the existing
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test suite is not rich enough to exercise all of the changes that have occurred between

v and v′, regression faults may be unintentionally introduced into v′. Therefore, tools

that focus on the portions of v′ that differ from v, and automatically generate tests

to exercise those differences can allow regression faults to be exposed and presented

to developers. However, some of these techniques do not perform well when large

changes occur between versions. A limitation of automated behavioral regression

testing is that it is designed to interact with localized changes that involve less than

a few classes and may not be ideal in the case of extensive changes.

The use of directed symbolic execution (DSE) allows for the discovery of inequiv-

alence between two versions of a program and creates a behavioral delta that charac-

terizes the input values that lead to different behavior between the two versions [26].

This type of tool can support the evolution of software system test suites [26]. An-

other approach that combines the efficiencies of static analysis with the precision of

symbolic execution is directed incremental symbolic execution (DiSE) [27]. This type

of technique is capable of generating path conditions that characterize the differences

between two versions of a software system v and v′. The goal is then to cost-effectively

direct symbolic execution on v′ to explore path conditions that may be effected by the

changes between v and v′ [27]. Path conditions that are deemed effected by DiSE can

be used during regression testing by supplying the solved path conditions as inputs

to test cases [27].

All of the techniques discussed above assume that most of v and v′ are the same,

to be cost-effective. In systems such as the ones we have evaluated with UDivE,

the whole program, or the vast majority, would be marked as impacted, changed,

or inequivalent. This would provide little or no information when using the above

techniques, and their execution would be cost-ineffective. This is expected because

they are designed to operate on differing versions of the same system, whereas UDivE
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is capable of operating on systems that are entirely different in their design and

implementation.

Our work is also related to the use of genetic algorithms to generate pseudo-oracles

by finding inputs which produce differences in program output. The difference is that

they focus on a single program at a time [20] and the use of program transformations

is required. UDivE focuses on two programs at a time, and does not require program

transformations. There has also been research on plagiarism detection [37], with

the aim of finding portions of algorithms that have re-used without permission, but

this work looks for algorithm similarity as opposed to whole program behavior and

divergence of that behavior.

N-version programming is also related to our approach in that multiple, differ-

ent program implementations are written for the same specification. The focus of

N-version programming, however, is to introduce diversity to increase system relia-

bility, not to look for differing behavior. In fact, N-version programming presents an

interesting context for UDivE to explore.

Work on testing program refactoring is related to UDivE [11, 34]. In this line of

research the goal is to find behavioral differences in re-structured code. The behaviors

should be identical, however, since refactoring is supposed to preserve program seman-

tics. This line of work is more akin to testing. For example, refactoring engines are

tools that automatically apply software refactorings. These engines are often found

in integrated development environments (IDEs) such as Eclipse or NetBeans [11].

Automated testing of these refactoring engines can take place by generating complex

programs that serve as test inputs (in the form of Java ASTs) that are then checked

against an oracle after the refactoring has taken place [11]. The goal is to generate

test inputs that, when checked with an oracle, show a behavioral difference in the

refactoring indicating the presence of an error with the refactoring engine.
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There has been work in the area of applying genetic algorithms and multi-objective

genetic programming to various cyber-physical systems [7, 8, 24, 32]. For example,

using a genetic algorithm to optimize the power consumption of a cyber-physical

system model that requires various actuators [7]. Or, the use of genetic algorithms

for UAV path planning and routing [8,32]. Multi-objective genetic programming has

been used to control a fixed-wing UAV as it attempts to accomplish a goal (such

as hovering hear a radar emitter) [24]. However, none of these approaches use a

genetic algorithm to search for divergent behavior between varying implementations

of a cyber-physical system. Rather, they are concerned with controlling or optimizing

only a single system.

UDivE is unique because it is capable of interacting with program implementa-

tions from a black box perspective. It expects completely different program imple-

mentations and designs, and runs the implementations in their original form, deriving

new inputs only through the assessment of output differences between the implemen-

tations. UDivE does not require the generation of an intermediate or alternative

program representation (such as an AST); it only requires an executable of each

implementation. Further, UDivE is not restricted by the language in which the im-

plementations have been written (in fact, each implementation could be written in

a different language). We further discuss UDivE’s execution and applicability in

Chapters 4 and 5.
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Chapter 3

The UDivE Framework

In this chapter we begin with a formulation of the general problem that we are trying

to solve. We then present the architecture for our directed exploration framework,

UDivE.

3.1 Unexpected Divergent Exploration

We begin by defining a function measure : (P, Inputp)→ Z that maps the behavior

of a program P exercised by an input Inputp to a metric M that characterizes that

behavior. Let us also define a function diverge : (Relation,Z,Z) → Boolean that

returns True if the specified relation (e.g., greater than, less than, equal, within a

range of) between the two Z metrics holds, and returns False otherwise. Given a

specification S, programs P s
j and P s

k that are supposed to implement S and accept a

set of inputs Ip, and an expected relation r between the behavior of P s
j and P s

k , the

problem of identifying divergent behavior consists of identifying Idiv ⊂ Ip such that:

Idiv = {∀i ∈ Idiv|diverge(r,measure(P s
j , i),measure(P s

k , i)) == True}
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In the context of our motivating example, the programs in question are RRGS

and RRTRK, both of which match the general specification of a conflict detection

and resolution algorithm, and consume two flight paths as input. The measure

function maps the behavior of these programs to the distance traveled as defined by

the adjusted flight path. In our case, the developer was interested in exploring whether

RRGS and RRTRK behavior could diverge by more than 5%. For these particular

implementations, measure, and relation, diverge will return False for most inputs

so the challenge is to cost-effectively explore the space of flight paths to identify a

divergence.

3.2 UDivE Architecture

Figure 3.1 shows the overall architecture of UDivE. At a high level, UDivE takes

as input a problem model (1) and through the use of a generation (2) and execution

driver (3) runs a genetic algorithm to search for inputs that make diverge true (4).

In the event divergence has not yet been identified (i.e. the hypothesis is still valid),

the fitness of the generation’s metrics is computed (5) and the process repeats. The

framework iteratively evaluates a hypothesis until invalid. The returned input(s)

represent Idiv. In the following subsections, the number of each subsection corresponds

to a number assigned to each of the components shown in Figure 3.1.

3.2.1 Problem Model

A problem model PM encodes the requirements and configuration of a UDivE ap-

plication through a 5-tuple of the form PM = {CT, Pop, C,Op, F tn} where CT is a

chromosome template, Pop is the population size, C is a set of constraints, Op is a

set of evolutionary operators, and Ftn a fitness function.
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Figure 3.1: UDivE Architecture
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Evolutionary Operator Available Options

Elitism {n-Best, None}
Selection {Roulette Wheel, Rank}
Crossover {One-Point, Two-Point}
Mutation {Full-Range, Creep, Swap}

Table 3.1: Supported Evolutionary Operators

CT contains a data structure for the chromosome and its genes, constraints for

initialization Cinit ∈ C and permanent constraints Cperm that are obeyed during

evolution. Op is a set of evolutionary operators to be used during evolution; the

framework’s built-in operators are shown in Table 3.1. UDivE currently supports

elitism (where the value n determines how many elite chromosomes are retained from

generation to generation), two standard selection and crossover operators (Roulette

Wheel and Rank), and three types of mutation [30]. Roulette wheel selection is a

probabilistic approach where the most fit chromosomes have the highest probability

of being selected, but this is not guaranteed. Rank selection simply selects the most

fit chromosomes. Full range mutation selects a new (random) value for the gene from

its domain. Creep mutation increments or decrements the current allele value by some

random number in the range (0, Ncreep]. A swap mutation selects two genes within

a chromosome and swaps their values. Rmut, Ncreep and the method of mutation

are part of the PM supplied to UDivE. Ftn is a fitness function that computes the

fitness of a chromosome. The genes of each chromosome represent the input to the

implementations. The fitness is based on the diverge function which was defined as

an input to the framework.
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In the context of the collision detection and resolution example from Chapter 2,

we show part of the PMcdr as 1:

CT = flightpath = [2]{ownship, traffic},

ownship = {TCPorigin, TCPpath[0..8], TCPdest},

traffic = {TCPorigin, TCPpath[0..8], TCPdest}

TCP = {longitude,lattitude,altitude,time}

Pop = 20,

Cinit = {TCPorigin 6= TCPdest...}

Cperm = {...}

Op = {...},

F tn = |MRRTRK −MRRGS|

(3.1)

3.2.2 Generation Driver

When invoked for the first time, the generation driver will instantiate the chromosome

template CT Pop times to create the population Pinit. As we can see we have 2 parts

to our chromosome, the ownship and the traffic portion. For each of these we have

one TCP for the origin, one for the destination and 9 that define the path between

the origin and destination. The genes consist of the primitive elements of each TCP,

longitude, latitude, altitude and time. We describe the fitness function (Ftn) later.

The genes in the chromosome produced by the instantiation will be populated with

values according to Cinit. We only show one constraint for now. The origin cannot

equal the destination. Other constraints such as the input space of possible latitudes

and longitudes will be included later in Chapter 4. Then, and for every subsequent

invocation, the generation driver will take a set of fitness values Fi for all chromosomes

in the current generation Gi, and using Op and Cperm, it will evolve the chromosomes

in that population to produce Gi+1.

1A full problem model is provided in Chapter 4.
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Chromosome Gi Fitness Gi+1

1 [1,3,4,7,2,10] 10 [1,3,4,7,2,10]
2 [1,6,6,8,4,10] 8 [1,7,6,3,4,10]
3 [1,8,4,1,7,10] 7 [1,3,4,3,4,10]
4 [1,9,6,8,2,10] 2 [1,6,6,6,2,10]

Table 3.2: Sample Evolution in the Generation Driver

If the elitism operator is being used, the n-Best most fit chromosomes in the

population are selected and added to the next generation Gi+1. Next, the selection

operator will begin choosing among the remaining chromosomes until Gi+1 contains a

total of Pop/2 chromosomes. The crossover operator will then conduct pair-wise mat-

ing of the selected chromosomes until Gi+1 contains a total of Pop chromosomes. The

final step is the application of the mutation operator. By default, any chromosomes

selected by the elitism operator are spared from mutation.

To illustrate this process consider the four chromosomes in Table 3.2 representing

a simplified flight path consisting of just 6 latitudes. The chromosomes in generation

Gi with their respective fitness values are shown in the second column, and the

next generation Gi+1 is shown in the last column. Using the elitism operator, the

maximally fit chromosome in Gi, the one with a fitness of 10, is placed in Gi+1. Using

rank selection, the next most fit chromosome in Gi, the one with a fitness of 8, is

kept for further evolving the chromosome pool. The two least fit chromosomes in G

are discarded from the population. Next, 1-point crossover mates the two retained

chromosomes to create two new child chromosomes. In this example, the crossover

point is chosen to be in the middle of the chromosome so the resulting chromosomes

retain half of each source chromosome. Finally, mutation changes a single randomly

selected gene per chromosome - shown in bold - and then the chromosomes are placed

into Gi+1. Throughout this process, Cperm were enforced so that the starting and

ending location of the flights paths was retained.
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3.2.3 Execution Driver

The execution driver prepares, manages, and measures the execution of the target

implementations. It takes a chromosome as input, it runs the implementations on

that input, and it translates their behavior into metrics (the measure function from

Section 3.1).

This component contains three subcomponents, the approach interface and the

two target implementations, all of which must be provided by the user of UDivE. The

approach interface takes as input a set of genes from a chromosome and builds the

input in the format required by the target implementations. The approach interface

then collects the metric values produced by the target implementations and does any

required processing before producing the metric values as output. Depending on the

metric needed, the value could be the result produced by the target implementations,

an expression over those results, or some other type of value that represents the target

system’s behavior (perhaps produced by instrumenting the systems).

This component can operate serially, processing the genes of one chromosome at a

time, or multiple execution drivers can be launched in parallel in order to process an

entire generation at once. Because we had the available computational resources, we

leveraged parallel execution when conducting the case studies presented in Chapter 4.

In the context of the collision detection and resolution implementations, the ap-

proach interface receives as input two flight paths (encoded in the genes of a chro-

mosome) and then calls the target implementations with these paths. The output of

the implementations consists of adjusted flight paths, which are then translated by

this interface into extra distance travelled by subtracting the distance travelled in the

adjusted flight path versus the original flight path.
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3.2.4 Divergent Behavior Checker

The divergent behavior checker instantiates the diverge function from Section 3.1 to

check the developer’s hypothesis about divergence. It determines whether the metrics

produced by the implementations under any of the chromosomes of a generation are

different enough that their behavior can be considered divergent. If the behavior

is considered divergent, then the process is stopped. Otherwise, the exploration

continues by passing the metrics to the fitness computation component. By default,

this component simply checks for metric equality.

For the collision detection and resolution implementations, the check function

consists of a single predicate that evaluates to true when the distance travelled by the

adjusted flight paths produced by the implementations was greater than 5%. This

happens after 116 iterations in our scenario at which point the exploration is stopped.

3.2.5 Fitness Computation

The fitness computation routine is responsible for computing a fitness value for each

chromosome in a generation. It takes as input a collection of metrics for the current

generation Gi and applies the fitness function Ftn. It then produces as output the

fitness values for each chromosome in Gi. The computation of fitness for our collision

detection and resolution consists of the absolute value of the difference between the

distance metrics of the implementations of RRGS and RRTRK (the actual fitness for

this problem is slightly more complex; this will be discussed in Chapter 4). As illus-

trated in Table 3.2, the fitness value assigned by this component to each chromosome

will determine how the population of flights is evolved.
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Chapter 4

Case Studies

We perform three studies to evaluate the feasibility of UDivE. We have several goals

when setting up these studies. First, we want to generate artifacts that present diver-

gent behavior that would be hard to identify through the use of a random approach.

Second, we want to study a range of problems with known, partially known and un-

known divergent behavior. This allows us to validate our framework (on the known

and partially known problems), but it also has potential to generate some interesting

results (on the partially known and unknown problems). Finally, we want to select

three very different domains to show the breadth of applicability.

These criteria led to the selection of the following three problems. Our first case

study, polynomial root finding, has a known (but possibly hard to find) divergence

so we selected it to validate whether our approach would find it. The second study is

based on a question we found on Stack Overflow regarding image scaling algorithms.

It is a domain for which we had little intuition. Even though some general charac-

teristics of the underlying algorithms are known, we were unsure if we would find

divergent behavior. The last study returns to our motivating example and looks for

divergence under the more complex scenario presented by aircraft collision detection
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and resolution. For this problem we lack documentation to know if there are any

possible divergences and/or if our hypothesis should hold.

The studies aim to explore three questions about UDivE:

RQ1: Can UDivE identify divergent behavior?

RQ2: What is the search space UDivE explores?

RQ3: What is the cost of running UDivE?

The definition of divergent behavior varies so it is explained in each study sepa-

rately. The metric to assess the complexity of the problem space explored by UDivE

is measured by the size of the genetic algorithm’s search space. Cost refers to the

amount of time UDivE requires to execute.

4.1 Setup

We use UDivE as illustrated in Figure 3.1. Each study has a distinct chromosome

template, constraints and fitness function to match the problem domain, but most of

the evolutionary operators used are similar across the studies. The 2−Best Elitism

and Rank evolutionary operators were used for all studies. The population size was

selected by running short experiments with various sizes between 12 and 100, and

choosing the smallest size at which maximal gains were observed. In other words, a

population size larger than the chosen size did not appear to produce better results.

These values were 52 for the first two studies and 20 for the ACCoRD study. Further

details for each study are given in the next sections.

We ran our studies using a parallel cluster with AMD 6128 2GHz, Quad-Processors

(8-Core) and 128GB RAM on each core. Each chromosome in a population ran on

its own node during an iteration. We used either 108 nodes or 40 nodes (depending

on which size population was being run). The UDivE framework has 1138 source
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lines of code (SLOC). This does not include the approach interface which is supplied

separately for each problem. The approach interfaces range from 248 SLOC for

the polynomial root finding approach interface to 409 SLOC for the image scaling

approach interface. These figures do not include any libraries on which UDivE or the

approaches interfaces relied upon.

We now present each of our studies in order. We begin with a problem description

on the divergent behavior definition, and follow with the problem definition and the

results of each of the three research questions.

4.2 Univariate Polynomial Root Finding

Several algorithms and implementations exist that compute the root values of a uni-

variate polynomial function within a given x-axis range [x1, x2]. We begin with

this problem because it is relatively simple to encode and understand, and there is a

known oracle (albeit one that would not be obvious without knowledge of the math-

ematical domain). We consider two implementations using different algorithms: the

secant method and the Ridders’ method [28]. Given a polynomial function, each im-

plementation is designed to compute the number of roots n within a given x-axis

range [x1, x2], along with the location (xi, yi) of each root for every 1 ≤ i ≤ n.

The implementations of the root finding algorithms used for this study were taken

from Numerical Recipes, 3rd Edition [28]. The implementations were used with their

default parameters.

4.2.1 Divergent Behavior

Both the secant method and Ridders’ method are designed to compute the roots of a

polynomial function within a given x-axis range. A small variation may exist in the
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values of roots reported by the algorithms, but this variation should be negligible when

viewing a graph of the function. However, there is a known problem, documented

with the secant method as stated in [28], p. 449. In the case when functions are

“not sufficiently continuous”, the algorithm may not converge causing what has been

unofficially termed a secant explosion. We therefore define our divergent behavior as

a difference in the roots returned. We chose our hypothesis as a 15% deviation since

we believe this would be large enough to see a difference when viewing a graph of the

function. We define the null hypothesis as:

Null Hypothesis: Given a univariate polynomial, the secant and Ridders’ method

will report values that are within 15% of one another on the x-axis. In the event

UDivE identifies a polynomial that causes the root finding algorithms to report roots

that differ by more than 15% from one another on the x-axis, our null hypothesis

will be invalidated.

4.2.2 Problem Model

For this study, each chromosome is encoded as a six-term univariate polynomial. A

6-term polynomial was chosen because a wide range of polynomials can be produced

with six terms. The problem model PMroot for this study is defined as

CT = term = [6]{coefficient , exponent}

Pop = 52

Cinit = {−15 ≤ coefficient ≤ 15 ∧ 0 ≤ exponent ≤ 15}

Cperm = {−15 ≤ coefficient ≤ 15 ∧ 0 ≤ exponent ≤ 15}

Op = {2-Best, Rank, One-Point, Creep[0..6],MutRate = 0.10}

Ftn = |Msecant −MRidders|

(4.1)

In our encoding each of the 6 terms of the polynomial is a pair containing the

coefficient and exponent value. For simplicity, and to prevent polynomials that are
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difficult to compute from being introduced into the study (e.g. those with exceedingly

large exponent values), coefficient values were limited to integers in the range [−15, 15]

and exponent values were limited to integers in the range [0, 15]. We begin with

initial chromosomes that are randomly generated within this range. We use one-

point crossover and creep mutation. We use a creep range of [0,6] and a mutation

rate of 0.10. Creep mutation adds or subtracts with a 50% probability, a value chosen

randomly from the given range to 10% of the genes chosen randomly. The permanent

constraints prevent mutation from moving outside of the allowed ranges of values.

We use modular math to stay within the allowed value ranges.

Because we are searching for reported roots with different respective values, the

metric value returned by each of the algorithms is the sum of its roots. No instru-

mentation of the root finding algorithms is required to compute the sum of reported

roots. The approach interface handles this computation by consuming the respective

implementations’ output. Formally, the metric value M for each root finding algo-

rithm is defined as M =
∑n

i=1 xi, where n is the number of roots and xi is the value

of the ith root. The fitness function Ftn computes the absolute value difference of

the metric values Msecant and MRidders′ .

4.2.3 Results

RQ1. UDivE was able to identify a univariate polynomial that invalidated the null

hypothesis within 13 generations. The identified polynomial, (−2x12−6x15 + 10x11 +

x10 + x15 − x10), contains three reported roots, the second of which was identified

by the secant method as (−9999, 6 × 1060) and identified by the Ridders’ method

as (−0.09, 0). This represents an x-axis value percent difference well above our re-

quirement of 15%. A graph of the polynomial that invalidates the hypothesis, along
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Figure 4.1: Input polynomial leading to divergent behavior between Secant’s and
Ridder’s Methods for root finding

with the root values reported by the respective algorithms, is shown in Figure 4.1. In

this figure we show the roots for the secant method with triangles and Ridder’s with

circles. As shown in the Figure, the first and third roots found by the secant method

and Ridders’ method are the same, however the second root reported by the secant

method is significantly different than the (more accurate) root reported by Ridders’

method.

RQ2. The size of the search space for this study is defined as the total number

of univariate polynomials that can be encoded using the given problem model when

satisfying the constraints in the set Cperm. This equates to a search space size of

1.489× 1016 polynomials.
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Trial Hypothesis Invalidated? Maximum % Difference Generations

1 Yes SE 13
2 Yes SE 101
3 Yes SE 2
4 Yes SE 50
5 No 1.1% 500
6 No 1.0% 500
7 Yes SE 28
8 Yes SE 115
9 No 4.6% 500
10 Yes SE 10

Table 4.1: Root Finding Repeatability Trials

RQ3. Each generation required an average of 4.57 seconds of CPU time per node to

execute. We used 108 nodes per generation. Our hypothesis was invalidated in 13

generations, which required approximately 6,416 seconds or 1.8 machine hours.

4.2.4 Repeatability

We are interested in determining if UDivE is capable of repeatedly discovering a

polynomial that invalidates our hypothesis. Therefore, we repeat the trial 10 times

with the goal of invalidating the hypothesis defined in Section 4.2.1.

UDivE discovered a polynomial that invalidates the hypothesis in 7 out of 10 trials.

Table 4.1 shows the results of each trial, the maximum percent difference discovered

during the trial, and the number of generations required to invalidate the hypothesis.

In the event a “secant explosion” is discovered (i.e. a polynomial that prevents

the secant method from converging), “SE” is listed. If, after 500 generations, the

hypothesis has not been invalidated, execution is stopped and the result is reported.

In the event the hypothesis was invalidated, it was observed to occur within the

first 115 generations. Based on the repeatability data presented in Table 4.1, if

the hypothesis was not invalidated within the first 115 generations, it would not be
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Trial Hypothesis Invalidated? Maximum % Difference

1 No 7.4%
2 No 1.9%
3 Yes SE
4 No 2.6%
5 No 0.00%
6 No 10.0%
7 No 6.0%
8 No 1.6%
9 No 2.1%
10 No 4.0%

Table 4.2: Root Finding Random Trials

invalidated before the trial was stopped at 500 generations. Further, the maximum

percent difference achieved for these trials (5, 6, and 9) is well below the threshold of

15%, as required by the hypothesis.

4.2.5 Randomness

We are interested in determining if randomly generated polynomials are capable of in-

validating the hypothesis defined in Section 4.2.1. Therefore, we run 10 trials with the

goal of evaluating how randomly generated polynomials compare to those discovered

by UDivE.

To remain consistent with the repeatability trials executed in Section 4.2.4, 500

iterations were executed and the maximum percent difference discovered is reported.

Table 4.2 shows the results of each trial and the maximum percent difference discov-

ered. Randomly generated polynomials were unable to invalidate the hypothesis in

9 out of 10 trials. In the event a “secant explosion” is discovered (i.e. a polynomial

that prevents the secant method from converging), “SE” is listed.
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Polynomial

1 −3x14 − 1x13 + 3x15

2 −3x14 + 3x15 − 1x13

3 −3x15 + 1x13 + 3x14

4 −3x15 + 3x14 + 1x13

5 −1x13 − 3x14 + 3x15

6 −1x13 + 3x15 − 3x14

7 1x13 − 3x15 + 3x14

8 1x13 + 3x14 − 3x15

9 3x14 − 3x15 + 1x13

10 3x14 + 1x13 − 3x15

11 3x15 − 3x14 − 1x13

12 3x15 − 1x13 − 3x14

Table 4.3: Polynomials in Restricted Search Space

As shown in Table 4.2, the randomly generated polynomials that did not invalidate

the hypothesis produced a maximum percent difference between 0.0% and 10.0%, shy

of the 15% required by the hypothesis.

4.2.6 Search Space Enumeration

We are interested in understanding the landscape of the search space for this case

study. However, because the search space for the given problem model (Section

4.2.2) is too large to effectively enumerate, we enumerate the search space of a more

restricted polynomial. This allows us to understand the landscape of a similar search

space, without requiring an intractable enumeration.

The restricted search space we consider is composed of three-term univariate poly-

nomials with coefficients in the range [−3..3] and exponents in the range [0..15], with

a size of 1404928 polynomials. This search space contains 12 polynomials that in-

validated the hypothesis defined in Section 4.2.2. These polynomials are listed in

Table 4.3. For this restricted search space, each of the polynomials that invalidate
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the hypothesis have a coefficient of either -1, 1, -3, or 3 and an exponent in the range

[13..15].

Only 8.57×10−6% of the polynomials in the restricted search space invalidate the

hypothesis, which shows how difficult it is to find such divergent behavior, and those

polynomials appear to be clustered around the higher level, i.e. polynomials with

large exponent values.

4.3 Image Scaling Algorithms

For our second study we wanted to identify a problem instance raised by developers

that did not seem to have a clear answer, and that is domain specific. We turned to

Stack Overflow to identify such problem, performing a search with the query difference

between algorithms. The fourth question in the list met our requirements 1 and stated:

“Could anyone explain to me the difference between these scaling algorithms? i.e.

Which ones are better for upscaling or downscaling, which are better for photos and

which are better for 2-bit images, and the relative speed of each, etc...”

We selected the two most common algorithms (bilinear and bicubic) from among

the five listed and focused on the downscaling problem. We used open source imple-

mentations of these algorithms written in Java from the OpenCV library [4]. After

some additional searches for information on the differences between these two algo-

rithms we found the following posted statement: “For certain resizing values, e.g.

(depending on software) 25% 33% 50% 67% 75% and 200%, bilinear and bicubic pro-

duce identical results ” 2. From this we set up our divergent behavior hypothesis.

1http://stackoverflow.com/questions/8322788/whats-the-difference-between-these-

scaling-algorithms
2http://photo.net/digital-darkroom-forum/00BjsZ

http://stackoverflow.com/questions/8322788/whats- the-difference-between-these-scaling-algorithms
http://stackoverflow.com/questions/8322788/whats- the-difference-between-these-scaling-algorithms
http://photo.net/digital-darkroom-forum/00BjsZ
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Note that we are not arguing that these claims by the posters are the ground truth,

but rather just using this as a hypothesis a developer may have.

4.3.1 Divergent Behavior

We define divergent behavior in terms of pixel differences between downscaled images,

and the null hypothesis as:

Null Hypothesis: Given an image, the bilinear and bicubic image scaling algorithms

will create scaled down images at 25% scaling that are identical. If UDivE identifies

an image that causes the two implementations to generate different images, our null

hypothesis will be invalidated. We selected a difference of 2.5% when performing

a pair-wise pixel comparison. This percentage represents at least an accumulated

difference of 1000 in a target image of 200× 200 pixels.

4.3.2 Problem Model

We set up a 200× 200 pixel image. Lacking a benchmark or much intuition to serve

as a starting point, we decided to define the problem model in terms of shapes with

different locations, sizes, and colors that may appear in an image. More specifically,

we populated the image randomly with 9 shapes. The domain of shapes used included

circles, squares and triangles, which could each be a solid color, an outline of the shape

(unfilled), or a blank shape (where the entire shape including the border is set to be

all white). Each shape can appear anywhere on the canvas (if it runs off of the canvas

it is truncated) and can be any size within the 200 × 200 pixel space. We chose

this configuration since we are unfamiliar with the image domain and wanted to use

images that are discrete and finite, while still allowing for a wide range of images to

be produced.
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The problem model PMimage for this study is defined as

CT = shape = [9]{x, y, width, height, type, intensity1, intensity2, intensity3}

Pop = 52

Cinit = type = {solidsquare|solidtriangle|solidcircle|opensquare|

opentriangle|opencircle|blanksquare|blanktriangle|blankcircle},

x = [0..134], y = [0..134], width = 66, height = 66,intensityi = {0|85|170}}

Cperm = type = {solidsquare|solidtriangle|solidcircle|opensquare|

opentriangle|opencircle|blanksquare|blanktriangle|blankcircle},

x = [0..200], y = [0..200], width = [20..120], height = [20..120],intensityi = {0|85|170}}

Op = {2-Best,Rank,Two-Point,Swap|FullRangex,y|FullRangewidth,height|

FullRangeinensity[0|1|2||FullRangetype,MutRate = 0.10}

Ftn = |MBilinear −MBicubic|

(4.2)

Each shape has an x and y value denoting the upper left location, a width, height,

a type from within the set of 9 shapes described above, and three intensity values.

The set of operators Op contains the 2-Best elitism operator, rank selection and two

point crossover. For mutation we randomly select 10% of the population’s image

locations and then randomly select from among one of 5 mutation operators. This

includes a swap (randomly select a second location and switch images), a full range

mutation on the x and y values (randomly select a new value for each of x and y),

a full range mutation on width and height, a full range mutation on one (randomly

selected) intensity value, or a full range mutation on the shape type. We did this to

allow a wide range of diversity to appear in our images.

The metric value M for this problem is defined as M =
∑n

i=1 xi, where n is the

number of pixels and xi is the value of the ith pixel.

The fitness function Ftn computes the absolute value difference of the metric

values Msecant and MRidders′ .
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Figure 4.2: Inputs evolved by UDivE for the Bilinear and Bicubic image scaling
implementations. After 825 generations, the input image lead to divergent behavior
greater than the 2.5% target.

4.3.3 Results

RQ1. We found an image after 825 generations that exceeds the 2.5% difference. We

show the fittest input picture in each generation in Figure 4.2 after 0, 50, 325, and

825 iterations. It is interesting to note how, as more iterations are performed, the

input image leading to divergent behavior consists of a more uniform set of shapes

(rectangles) of gray color with a lot of juxtaposition. We conjecture that the bilinear

algorithm implementation struggles to maintain the definition of images with lines

and angles in such proximity when downscaling.

Without domain knowledge and a clear oracle we ran a few additional studies.

First, we repeated this study and each time we saw a similar input (all open rectangles

that were grey-scale). We then removed the rectangle image from our image set. This

attempt converged on an image packed with open triangles (although the percentage

difference did not exceed the 2.5% threshold).

RQ2. There are 200 possible values for x, y, width, and height. There are 9 possible

image types, 3 channels of color and 9 shapes in total. This means our search space

is is (2004 × 9××33)9 = 2.03× 10104.
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Trial Hypothesis Invalidated? Maximum % Difference Generations

1 Yes 2.6% 825
2 Yes 2.57% 194
3 Yes 2.5% 725
4 Yes 2.51% 565
5 Yes 2.52% 1072
6 No 2.48% 2000
7 Yes 2.53% 532
8 Yes 2.52% 1016
9 Yes 2.5% 1262
10 Yes 2.5% 1992

Table 4.4: Image Scaling Algorithms Repeatability Trials

RQ3. Each generation took an average of 3.34 seconds per node to execute. We used

108 nodes for 825 generations for a total of 297,594 seconds or 82.7 hours (or 3.44

days) of machine time.

4.3.4 Repeatability

We are interested in determining if UDivE is capable of repeatedly discovering an

image that invalidates our hypothesis. Therefore, we repeat the trial 10 times with

the goal of invalidating the hypothesis defined in Section 4.3.1.

UDivE discovered an image that invalidates the hypothesis in 9 out of 10 trials.

Table 4.4 shows the results of each trial, the maximum percent difference discovered

during the trial, and the number of generations required to invalidate the hypothe-

sis. If, after 2000 generations, the hypothesis has not been invalidated, execution is

stopped and the result is reported.

The only trial that was unable to invalidate the hypothesis was Trial 6, shown

in Table 4.4. However, the maximum percent difference it was able to discover was

2.48%, which is only slightly lower than the 2.5% required by the hypothesis. The

other trials were able to invalidate the hypothesis in 194 to 1992 generations.
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Trial Hypothesis Invalidated? Maximum % Difference

1 No 0.71%
2 No 0.58%
3 No 0.54%
4 No 0.57%
5 No 0.56%
6 No 0.53%
7 No 0.52%
8 No 0.78%
9 No 0.58%
10 No 0.60%

Table 4.5: Image Scaling Algorithms Random Trials

An interesting aspect of the maximally fit image discovered by UDivE reported in

Section 4.3.3 is that it is composed entirely of grey outlined rectangles with a lot of

juxtaposition. We are interested in determining if the maximally fit images discovered

during the repeatability trials share this trait. In fact, each of the maximally fit

images in the 10 trials share this trait to a high degree. For example, the maximally

fit images produced by trials 1, 4, 6, 8, 9, and 10 are composed entirely of grey

outlined rectangles. Other images are composed entirely of grey outlined rectangles,

with the exception of one outlined rectangle that is either green or blue, for example

the maximally fit images produced by trials 2 and 7. The image that deviated the

most from the trait was that of trial 3, which was composed of all grey outlined

rectangles, with the exception of one blue outlined triangle.

4.3.5 Randomness

We are interested in determining if randomly generated images are capable of inval-

idating the hypothesis defined in Section 4.3.1. Therefore, we run 10 trials with the

goal of evaluating how randomly generated images compare to those discovered by

UDivE.
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To remain consistent with the repeatability trials executed in Section 4.3.4, 2000

iterations were executed and the maximum percent difference discovered is reported.

Table 4.5 shows the results of each trial and the maximum percent difference discov-

ered.

Randomly generated images were unable to invalidate the hypothesis in each of

the 10 trials. In fact, the maximum percent difference discovered during all of the

trials presented in Table 4.5 is 0.71%, which is less than a third of the way to the

2.5% difference required by the hypothesis.

4.4 Aircraft Collision Detection & Resolution

For our last study we return to the motivating problem introduced in Chapter 2,

trying to identify divergent behavior but now with a problem scenario that has a

larger impact. We set up flight plans using real-world locations. We restrict the

ownship flight plan to originate at the Baltimore Washington International Airport

and terminate at the LaGuardia Airport (184 miles apart). We restrict the traffic

ship flight plan to originate at the Harrisburg International Airport and terminate at

the Philadelphia International Airport (83 miles apart). These two flight plans cross

one another, providing an opportunity for a conflict.

As described in Chapter 2, we use unmodified third-party implementations of

the CD&R algorithms RRGS and RRTRK from the Airborne Coordinated Conflict

Resolution and Detection (ACCoRD) Framework developed by NASA [23].

4.4.1 Divergent Behavior

Because RRGS and RRTRK perform strategic conflict resolution, it can be assumed

that they will attempt to resolve a given conflict in such a way that the distance the
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ownship aircraft deviates from its original flight plan is minimized. We expect some

variation due to the different approaches taken by CD&R algorithms, but want to

find out if there are situations where these diverge significantly. Therefore, we would

like to identify flight path resolutions that have a percent difference in distance of

more than 15%. Consider a hypothetical example that involves two resolution flight

paths. Assume the first resolution flight path is the same distance as the original

ownship flight path, 184 miles, and assume the second resolution flight path is 214

miles. This is a difference in distance of 30 miles, and a percent difference in distance

of approximately 15%. We consider this type of difference to be significant, especially

because RRGS and RRTRK perform strategic conflict resolution.

For this problem we do not have guidance on how large of a difference in resolution

would be considered significant in this domain, therefore we simply selected a value

that we deemed as reasonable; in practice this threshold would be determined by a

domain expert.

We define our hypothesis as:

Null Hypothesis: Given a flight plan for both an ownship and traffic aircraft that

contains at least one conflict, the implementations of RRGS and RRTRK should

produce resolutions that do not have a percent difference in distance of more than

15%.

4.4.2 Problem Model

Each chromosome encodes a flight plan for both the ownship aircraft and the traffic

aircraft. There are a total of 11 TCPs in each flight plan. This value was chosen

empirically to be large enough to allow sufficient variation in the flight plan but small

enough so the flight plans would not contain so many TCPs that they were at risk
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of becoming congested and mangled during evolution. Each TCP is composed of a

4-tuple containing a value for latitude, longitude, altitude, and time.

The problem model PMcollision for this study is defined as

CT = flightpath = [2]{ownship, traffic}, ownship = {TCPorigin, TCPpath[0..8], TCPdest},

traffic = {TCPorigin, TCPpath[0..8], TCPdest}

TCP = {longitude,lattitude,altitude,time}

Pop = 20

Cinit = {TCPorigin 6= TCPdest,orgin ≤ TCPpath ≤ dest ∧ onStraightLine(TPC)

longitude = [39N..41N ], lattitude = [73E..79E], altitude = [23000],

ACCoRD.check(ownship), ACCoRD.check(traffic)}

Cperm = {TCPorigin 6= TCPdest ∧ immutable(TCPorigin)∧immutable(TCPdest),

longitude = [39N..41N ], lattitude = [73E..79E],

ACCoRD.check(ownship), ACCoRD.check(traffic)}

Op = {2-Best, Rank, One-point,Creeplat = [0..0.1]|Creeplong = [0..0.1]|Creepalt = [0..0.2]|

Creeptime = [0..5.0],MutRate = 0.1}

Ftn =

if Penalty, Penalty

else |MRRTRK −MRRGS|

(4.3)

The constraints on this study are more complex than our other two studies pre-

sented previously. First the origins and destinations cannot be the same. Next, we

check that all of the TCPs are on a straight line. At initialization we fixed the altitude

to 23,000 but later this is allowed to change. Finally, we did checks on the ownship

and traffic TCPs using the ACCoRD framework to ensure that our models were valid.

These constraints are required for both initialization and as permanent constraints,

although in practice we found that the small size of creep during mutation, did not

require us to enforce any other than mutability; they were never violated.

The set of evolutionary operators Op contains the 2-Best elitism operator, rank

selection operator, one point crossover, and creep mutation operator. For latitude
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values, we use a creep range of [0, 0.1], for longitude values [0, 0.2], altitude values

[0, 1000], and time values [0, 5]. We use a mutation rate of 0.10.

In the event that the algorithm resolves the conflict it will return a modified

conflict-free ownship flight plan. The metric value is defined as the absolute value

of the difference in miles between the original conflicted ownship flight plan and the

new conflict-free ownship flight plan. Formally, the metric value M for each CD&R

algorithm is defined as

M = |distance(ownshiporig)− distance(ownshipnew)|.

In order to accurately calculate flight plan distances, we apply the result of apply-

ing the haversine formula [5] to each pair of TCPs on the flight plan and sum them

up. To ensure that we do not evolve away from conflicted paths or end up without

a resolution for both algorithms (we are only interested in divergence in this study

of distance between the resolved paths) we employ penalties for this situation. If no

conflict occurs between the ownship and traffic flight path, a value of -200 is assigned

to the metric. If on the other hand if one of the algorithms does not return a reso-

lution, its metric is assigned a value of -100. These values will be used as penalties

in the fitness calculation. The fitness function Ftn first checks for the existence of

any penalty. If this exists it uses that value. If not, it computes the absolute value

difference of the metric values MRRTRK and MRRGS.

4.4.3 Results

RQ1. UDivE was able to identify an ownship and traffic ship flight plan that invali-

dated our null hypothesis in 10 iterations. Figure 4.3 summarizes the results. The left

most graph shows the flight plans and the conflict that UDivE found that results in
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Figure 4.3: The figure on the left shows the ownship (circle) and its flight path (solid
line with triangles) and the trafficship (triangle) and its flight path (dotted line)
evolved by UDivE. These flights path show a collision and lead to divergent behavior
in RRGS and RRTRK. The middle and right figures incorporate the adjusted flight
paths (solid lines without triangles) generated by RRGS and RRTRK to resolve the
collision. The difference from the original flight paths proposed by the RRTRK and
RRGS show a percent difference of 16.8%.

divergent behavior. The flight path identified by UDivE for the ownship is 187 miles.

The next two graphs show the resolution paths that avoid the conflict at different

costs. The original ownship flight plan is shown in each of these graphs, with the

respective resolution flight paths shown as an overlay. RRGS resolved the conflict

with a flight path of 185 miles, while RRTRK created a resolution flight path of 219

miles. The difference is 34 miles which represents a percent difference of 16.8%.

RQ2. In the context of this study, the size of the search space was bounded by the

latitude/longitude points (41N, -79E), (41N, -73E), (38N, -79E), and (38N, -73E).

This is the area covering a portion of the East coast of the United States. In addition,

based on the distances between the airports appearing in this space, and the range

of valid speeds of common commercial aircraft, the maximum time value expected

in this study was approximately 3600 seconds. The altitude of the aircraft in this
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study is bounded at 40000 feet. Finally, the amount of precision considered for each

of these non-integer numerical values is 4 decimal places.

Therefore, for a given TCP, each latitude value can take one of 30000 values.

Each longitude value can take one of 60000 values. Each time value can take one

of 3.6 × 107 values, and each altitude value can take one of 4.0 × 108 values. There

are a total of 30000× 60000× (3.6× 107)× (4.0× 108) = 2.59× 1025 possible values

for each TCP. Because there are 9 TCPs per chromosome that are mutable (the

origin and destination TCPs are immutable), each chromosome could hold one of

(2.59 × 1025)9 = 5.24 × 10228 values. This means there is a search space size of

5.24× 10228 flight paths.

RQ2. Each generation required an average of 5.8 seconds per node to execute. We

used 40 nodes per generation and we ran 10 generations for a total of 2,320 seconds

or 39 minutes.
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4.5 Summary of Results

We proposed three research questions in this study. We summarize the results here.

RQ1: Can UDivE identify divergent behavior? In all three scenarios UDivE

was able to find inputs that violated the null hypothesis. We therefore answer this

research question in the affirmative.

RQ: What is the search space UDivE explores? All three of our problems have

large search spaces. The smallest space, that of the image processing implementations

was in the order of 1011. Our largest search space was for the collision avoidance

algorithms, in the order of 1026.

RQ2: What is the cost of running UDivE? The sequential running times of

each of these case studies varied from between 39 minutes (conflict avoidance), to

3.44 days (image processing). In practice we ran UDivE in parallel with one node

per chromosome meaning that the clock runtime was actually a fraction of this cost

(45.9 minutes for image processing).

Discussion. We believe that the case studies show that UDivE has found divergent

behavior of practical significance. In the first study, we examined a problem with a

known divergence. But the divergence itself is not easy to predict without knowledge

of how particular polynomials will behave ahead of time. For the image processing

application, the discussions on Stack Overflow and other discussion groups tell us

that not only the question we studied is of interest, but that the divergence is not

easy to find and the answer is not common knowledge. In our last case study, the

results seem compelling– they reveal undocumented behavior.

If we examine the relationship between RQ2 and RQ3 there does not seem to be a

strong correlation between the search space and run times. In fact our largest search

space ended up having the shortest run time. We believe that the run time is a factor
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of both the constraints on the system and the number of, or distribution of, divergent

solutions in the given search space. We plan to explore this more in future work.

Understanding the landscape of the search space, and how system constraints effect

that landscape will be key in discovering these types of correlations, if they exist. See

Chapter 6 for a more detailed discussion of future work.
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Chapter 5

Extending UDivE to

Cyber-Physical Systems

So far, the case studies we have discussed have considered target systems that exist

purely in the software domain (in the case of the root finding and image scaling

studies), or have application in the physical domain, but the results of the study have

not been extended beyond an algorithmic representation of the problem (in the case

of the aircraft collision detection and resolution study).

Here, we consider a feasibility study involving a cyber-physical system that can

be simulated using software, and the results of which can be verified in the physical

domain. This is valuable because it allows us to consider the extensions to UDivE

that are required for such a study to take place.

The Need for Simulation Many cyber-physical systems require a number of items

to operate successfully. These items may include a “world” on which to sense and

actuate, and resources such as power, sensors, actuators, operating personnel, and
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potential (and costly) repair time. This is problematic since UDivE requires the

target systems to perform tasks repeatedly, potentially thousands (or more) of times.

Therefore, the need to simulate cyber-physical systems to combat cost becomes

evident. By simulating the system, we can still conjecture about cyber-physical sys-

tems, simulating their behavior until our hypotheses have either been validated or

invalidated, and then perform verification of UDivE’s results on the physical system.

Extending UDivE to Interact with Cyber-Physical Systems In order to

allow UDivE to accurately and successfully explore the behavior of cyber-physical

systems, and by extension, simulations of those systems, a consistency check must be

introduced. Once UDivE produces a result, with the aid of a simulator, the result

must be checked on the physical system. Depending on the accuracy of the simulator,

the noise present in the physical system itself, and the cost of physical execution to

check, this process can be non-trivial. We explore such issues in this chapter.

5.1 Background

This section provides the necessary background information that will be referenced

throughout Section 5.2. In addition, it provides a simple introduction to quad-rotor

UAVs, as well as an explanation of common terms that are related to UAVs. Finally,

it provides a simple introduction to proportional-integral-derivative (PID) controllers.

5.1.1 Quad-Rotor Unmanned Aerial Vehicles

A quad-rotor unmanned aerial vehicle (UAV) is an aircraft with four rotors that

is capable of moving in three dimensions. Quad-rotor UAVs are becoming increas-

ingly common in a variety of domains. In addition, the semi- autonomous or fully-
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Figure 5.1: Shown is (A) a schematic view of a typical quad-rotor UAV1and (B) a
Parrot AR.Drone2, the quad-rotor UAV considered in this feasibility study.

autonomous use of these UAVs is an active area of research [3, 12, 21, 22, 33, 36] that

has the potential to revolutionize the application of UAVs to everyday activities.

Quad-rotor UAVs are either remotely controlled by a human operator, semi-

autonomous, or fully autonomous. Semi and fully autonomous UAVs leverage ei-

ther, or a combination of, on-line and off-line processing. On-line processing refers

to computation that takes place on-board the UAV, and off-line processing refers

to commutation that takes place remotely, and the result of which is broadcast to

the UAV. Off-line processing is common when resources are constrained onboard the

UAV, yet it requires complex computation to navigate through its environment.

In order to navigate through its environment, a quad-rotor UAV modifies its

position with four types of movements. They are termed pitch, roll, yaw, and altitude

change. Pitch allows the UAV to tilt forward or backward and achieve translation

in the forward or reverse direction. Roll allows the UAV to tilt to the left or right

2http://www.intechopen.com/source/html/6587/media/image4.jpeg
2http://mrl.isr.uc.pt/experimentaldata/datasets/handle/files/images/devices/

Parrot_AR_Drone_09.jpg

http://www.intechopen.com/source/html/6587/media/image4.jpeg
http://mrl.isr.uc.pt/experimentaldata/datasets/handle/files/images/devices/Parrot_AR_Drone_09.jpg
http://mrl.isr.uc.pt/experimentaldata/datasets/handle/files/images/devices/Parrot_AR_Drone_09.jpg


54

and achieve translation in the left or right direction. Yaw allows the UAV to spin

in either direction. An altitude change allows the UAV to ascend or descend. The

combination of these movements allows for complex flight capability, as well as a high

degree of maneuverability.

When a quad-rotor UAV is to pitch or roll, the degree to which the motion occurs

is measured as an Euler angle. The further the angle from 0 radians, the more

substantial the effect on the UAV. For example, pitching forward with an Euler angle

of 0.2 radians will allow the UAV to travel forward with a greater speed than pitching

forward with an Euler angle of 0.1 radians. Typically, a maximum Euler angle is

enforced that prevents the UAV from pitching or rolling to a degree that would cause

unstable flight. The UAV risks flipping over or becoming uncontrollable if this angle

is too high.

One major advantage of a quad-rotor UAV when compared to a fixed-wing or

single-rotor UAV is the simplicity of its design. As shown in Figure 5.1, a quad-rotor

UAV accomplishes flight with four rotors, each pair of which counter-rotate (a rotor

is paired with the rotor opposite its location). Simply adjusting the rotation rate of

one rotor allows the UAV to pitch or roll (and achieve translation). Adjusting the

rotation rate of a pair of rotors allows the UAV to yaw. Modifying the rotation rate

of all four rotors at the same time modifies lift and allows the UAV to ascend or

descend.

5.1.2 PID Controllers

A PID controller is used to direct a system toward, and then hold it, at a given set-

point. For example, the “cruise control” feature of an automobile may make use of this

type of controller. Because the automobile is incapable of maintaining a desired speed
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(i.e., the set-point) without constant acceleration and brake commands, a controller

is required to calculate the error between the current speed of the automobile and the

desired speed, and then apply the appropriate amount of acceleration or brake until

the automobile is within an acceptable threshold of the set-point (ideally exactly at

the set-point). Because of noise in the environment, such as wind, hills, or uneven

road surfaces, the behavior of the automobile will frequently change, therefore the

controller must have a feedback loop that allows it to continue to correct for changes.

In order to accomplish this type of control, a PID controller makes use of three

terms that combine to produce an output fed into the system being controlled (fol-

lowing the previous example, the output would be acceleration or break commands).

Each of these terms relies on the current magnitude of error. The error is defined as

the distance between the current state and desired the set-point. The proportional

(P) term produces output proportional to the current error. If the current error is

large, the P term will produce a large output, and vice-versa. The integral (I) term

considers accumulated error from the past and produces output that helps eliminate

the accumulated error. The derivative (D) term attempts to predict system behavior

and produces an output that is designed to reduce future error. The values of these

terms (also referred to as gains or coefficients) are defined during a tuning process

and are dependent upon the system being controlled.

Variations of a PID controller may exist depending on the requirements of the

system. For example, some systems may only require a P controller, which uses only

the P term described above. Other systems may require a PD controller, which uses

only the P and D terms described above. These types of controllers are referenced

throughout Section 5.2 when describing the controllers used to direct quad-rotor

UAVs.
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5.2 Feasibility Study: Quad-Rotor UAV

Configuration

We now introduce a feasibility study in which UDivE interacts with a simulator, and

the simulated results produced by UDivE are checked using a cyber-physical system.

The cyber-physical system we consider are quad-rotor UAVs.

As UAVs become more sophisticated, so too do they become more configurable.

In fact, it is often a simple operation to reconfigure a UAV’s flight capability (within a

predefined range to preserve flight stability). Some high-level examples of UAV recon-

figurations include UAVs operating with or without an altimeter, or a UAV navigating

with one of several types of localization techniques. Two common examples of local-

ization techniques include the use of a global positioning system (GPS) chip, or an

inertial measurement unit (IMU); a device that is capable of estimating distance and

direction travelled by tracking accumulated movements. Some lower-level examples

of UAV reconfigurations include modification of the maximum Euler angle at which

the UAV is permitted to pitch and roll, or the coefficients that the UAV uses in its

control system (such as a PID controller). This feasibility study explores the effects

of different configurations of a UAV, that in turn produce different types of behavior,

as the UAV traverses along a flight path.

For this feasibility study, we consider two styles of UAV configuration: passive

and aggressive. These two styles of UAV configuration serve as our “target systems.”

Informally, a UAV in an aggressive configuration will execute its flight commands

abruptly and quickly, whereas a UAV in a passive configuration will execute its flight

commands in a slow, gentle fashion. These configurations are described in more detail

in Section 5.2.2.
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The type of UAV considered in this feasibility study is the Parrot AR.Drone3.

The Parrot UAV is a low-cost quad-rotor that is becoming increasingly common in

both hobbyist and research settings. In addition, the Parrot UAV can be easily

reconfigured using the freely available Parrot SDK4. A Parrot AR.Drone is shown in

Figure 5.1.

The goal of this feasibility study is to determine if UDivE can identify divergent

behavior, discuss the search space UDivE explores, calculate the cost of running

UDivE, and determine the feasibility of checking UDivE’s results on a cyber-physical

system.

5.2.1 Setup

This section discusses the simulator chosen for this feasibility study, its differences

when compared to a physical UAV, and the experimental configuration used for the

study.

In order to simulate the behavior of UAVs in different configurations, we leveraged

the Nimbus Simulator (NimSim). The NimSim simulator was created by us and is

designed to provide basic simulation functionality of a quad-rotor UAV during flight.

We created NimSim to enable the simulation of a large number of flights without the

need to manually collect flight data. The physical characteristics and limitations of

the UAV (e.g. mass, maximum acceleration and speed, maximum Euler angle) to be

simulated can be supplied via a configuration file or updated dynamically at runtime.

For a more detailed discussion of NimSim, see Appendix A.

3http://ardrone2.parrot.com/usa/
4https://projects.ardrone.org/

http://ardrone2.parrot.com/usa/
https://projects.ardrone.org/
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5.2.1.1 NimSim

There are two primary differences between the way NimSim simulates the flight of a

UAV, and the way in which a physical UAV flies in its environment. We assume that

all flight commands (sent both to NimSim and the physical UAV) are provided in the

range [−1.0, 1.0] for each of the x, y, and z directions. For simplicity, this feasibility

study does not consider yaw motion.

The first difference is the way in which translation is accomplished. When config-

ured, NimSim is supplied with a maximum Euler angle. When a translational flight

command is supplied to NimSim (in either, or both, the x and y directions), the

magnitude of the flight command is used to compute the percentage of the maximum

Euler angle at which the simulated UAV is to pitch or roll. For example, if the max-

imum Euler angle of the simulated UAV is 0.52 radians, and a flight command of 0.5

in the x direction is received, the simulated UAV will pitch 0.26 radians. This allows

the simulated UAV to respond to a translational flight command of any magnitude.

This type of design was chosen for its simplicity.

The physical UAV is also configured with a maximum Euler angle. However, when

the physical UAV receives a translational flight command, it will begin to pitch or

roll until its maximum Euler angle has been reached, and will not pitch or roll any

further. This means that if a translational flight command of magnitude M causes

the physical UAV to pitch or roll to its maximum Euler angle, any translational flight

command with a magnitude greater than M will produce the same effect (because

the physical UAV will reach its maximum Euler angle and will not pitch or roll any

further).

The second difference is the use of controllers. Because NimSim creates a simulated

environment in which the simulated UAV will fly, some real-world disturbances and
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noise can be controlled or eliminated. NimSim provides only a very basic model

of real-world forces that act upon the simulated UAV, such as drag and gravity.

Therefore, NimSim does not use controllers (such as a PID controller) when flying

to a waypoint. Rather, NimSim sends the simulated UAV towards its target at a

constant velocity. The speed of the simulated UAV as it travels to the waypoint is

determined by its maximum Euler angle. When the simulated UAV reaches it target,

it simply stops. The simulated UAV will overshoot by a certain amount (depending

on its simulated velocity, and by extension, its simulated momentum), however once

it stops moving it will remain in place.

The physical UAV, however, must operate in the physical world where real-world

forces cannot be controlled or eliminated. In addition, the physical UAV itself is

often a source of noise (due to potentially inaccurate sensor readings or hardware

malfunctions). Therefore, the physical UAV requires the use of controllers to both

fly to, and remain at, a waypoint. This means the physical UAV will not fly to its

target at a constant velocity, rather it will begin to slow down as it gets closer to its

destination, and attempt to correct for any overshoot once it reaches its destination.

In order to remain at a waypoint, the physical UAV uses on-board PID controllers.

For this feasibility study, moving the physical UAV to a waypoint is accomplished

with a P controller in the vertical direction, and a PD controller in the translational

direction.

5.2.1.2 Experimental Configuration

The 2-Best elitism, Rank selection, One-Point crossover, and Full-Range mutation

evolutionary operators are used for this study. Due to limitations of NimSim and our

distributed computing environment, we are unable to execute NimSim in a parallel

fashion. Therefore, because only one instance of NimSim can execute at a given
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time, UDivE is required to execute in serial mode; processing chromosomes one at

a time. Because this study requires real-time simulation, and each chromosome is

processed serially, we use a population size of 12. This population size was chosen

as a compromise to reduce execution time while still providing as much population

diversity as possible.

We ran this study using a HP ProLiant DL580 G7 server with 8 Intel Xeon E7-4820

(2.0GHz/8-core/18MB/105W) processors (64 cores total) and 64GB of memory.

5.2.2 Divergent Behavior

Consider a UAV in either an aggressive or passive configuration. We are interested in

determining if UDivE can identify flight paths that either maximize or minimize the

difference in distance travelled by the UAV in each of the respective configurations.

Similarly, we are interested in determining if UDivE can identify flight paths that

either maximize or minimize the difference in time required to execute the said flight

path by the UAV in each of the respective configurations. We formalize our definition

of aggressive and passive configuration in Section 5.2.2.1, and we introduce hypotheses

that relate to these configurations in Section 5.2.2.2.

5.2.2.1 Configuration Definitions

Because we are interested in the behavior of the UAV, and not the specific implemen-

tation of that behavior, the way in which passive and aggressive are defined for the

simulated UAV and physical UAV differ.

For the simulated UAV, configuration changes relate to the maximum Euler angle

supplied to NimSim. The aggressive configuration is defined as the maximum Euler

angle permitted by the Parrot UAV, which is 0.52 radians. The passive configuration
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is defined as the lowest Euler angle that still permits the simulated UAV to remain

responsive when flying between waypoints, which is 0.13 radians. These values were

determined empirically by experimenting with NimSim.

For the physical UAV, configuration changes relate to the coefficients supplied to

the controller used to move the UAV between waypoints. As discussed in section

5.2.1.1, the controller used to move the physical UAV between waypoints uses two

controllers, one for vertical movement and one for translational movement. The verti-

cal controller is a P controller, whereas the translational controller is a PD controller.

Changes were made to the respective P coefficients of these controllers. The

aggressive configuration is defined as the largest P values that permit the UAV to

fly between waypoints without potentially flipping over or crashing to the ground.

These P values are 0.7 and 0.8 for the vertical controller and translational controller,

respectively. The passive configuration is defined as the smallest P values that permit

the UAV to fly between waypoints without undershooting its target, or becoming

unresponsive to flight commands. These P values are 0.6 and 0.38 for the vertical

controller and translational controller, respectively. These values were determined

empirically by experimenting with the physical UAV.

5.2.2.2 Hypotheses Definitions

We formalize the goals of this feasibility study in the form of 4 hypotheses. We begin

by considering hypotheses that relate to the difference in distance travelled by the

UAV in the respective configurations. We are interested in determining if UDivE can

identify flight paths that either maximize or minimize this difference.

The difference in distance travelled by the UAV in the respective configurations,

when executing randomly generated flight paths (as defined in Section 5.2.3), show

a percent difference of approximately 10%. Therefore, we consider a difference of
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distance to be maximized when the percent difference of the distances travelled by

the UAV in the respective configurations is 15%. Similarly, we consider a difference

of distance to be minimized when the percent difference of the distances travelled by

the UAV in the respective configurations is 5%. Formally, Hypothesis #1 and #2 are

defined below.

Null Hypothesis #1: Given two identical Parrot UAVs, one in an aggressive con-

figuration and the other in a passive configuration, that execute the same flight path,

the UAVs will not travel respective distances that differ by more than 15%. In the

event UDivE identifies a sequence of waypoints that cause the UAVs to travel respec-

tive distances that differ by more than 15% from one another, null hypothesis #1 is

invalidated.

Null Hypothesis #2: Given two identical Parrot UAVs, one in an aggressive con-

figuration and the other in a passive configuration, that execute the same sequence

of waypoints, the UAV with an aggressive configuration will always travel a distance

that is greater than 5.0% of the distance travelled by the passive UAV. In the event

UDivE identifies a sequence of waypoints that cause the UAVs to fly respective dis-

tances that differ by less than 5% of one another, null hypothesis #2 is invalidated.

Next, we consider hypotheses that relate to the difference in time required for the

UAV in the respective configurations to execute a flight path. We are interested in

determining if UDivE can identify flight paths that either maximize or minimize this

difference. The difference in time required by the UAV in the respective configurations

to execute randomly generated flight paths (as defined in Section 5.2.3), show a

percent difference of approximately 40%.

Therefore, we consider a difference of time to be maximized when the percent

difference of the time required by the UAV in the respective configurations to execute

a flight path is 50%. Similarly, we consider a difference of time to be minimized when
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the percent difference of the time required by the UAV in the respective configura-

tions to execute a flight path is 30%. We allow a larger range of percent difference

for hypotheses related to time, when compared to those related to distance, due to

the larger percent difference observed in randomly generated flight paths. Formally,

Hypothesis #3 and #4 are defined below.

Null Hypothesis #3: Given two identical Parrot UAVs, one in an aggressive con-

figuration and the other in a passive configuration, that execute the same sequence

of waypoints, the UAVs will not require respective amounts of time to complete the

sequence that differ by more than 50%. In the event UDivE identifies a sequence of

waypoints that cause the UAVs to require respective amounts of time that differ by

more than 50%, null hypothesis #3 is invalidated.

Null Hypothesis #4: Given two identical Parrot UAVs, one in an aggressive con-

figuration and the other in a passive configuration, that execute the same sequence of

waypoints, the UAV with an aggressive configuration will never require an amount of

time that differs by less than 30.0% of the time required by the passive UAV. In the

event UDivE identifies a sequence of waypoints that cause the UAVs to require re-

spective amounts of time that differ by less than 30.0% of one another, null hypothesis

#4 is invalidated.

5.2.3 Problem Model

For this study, each chromosome encodes a flight path that contains 10 waypoints.

Here, a waypoint WP is defined as a three dimensional point in space, containing an

numeric value for x, y, and z. More formally, WPi = (xi, yi, zi). The point in space

encoded by each waypoint is relative to the UAVs starting position in millimeters. For

example, the waypoint WPA = (800, 1200, 500) represents the point in space that is
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Figure 5.2: View of the XY plane in which the UAV is permitted to fly. The arrow
shows the direction in which the front of the UAV is facing.

800mm in the x direction from where the UAV originated. Similarly, WPA represents

the point in space that is 1200mm and 500mm from where the UAV originated in the

y and z directions, respectively.

The problem model PMUAV for this study is defined as

CT = WP = [10]{x , y , z}

Pop = 12

Cinit = {WP0 = (0, 0, 1000), ∀i > 0| − 2000 ≤WPi{x} ≤ 2000∧

−2000 ≤WPi{y} ≤ 2000 ∧ 1000 ≤WPi{z} ≤ 3000}

Cperm = {WP0 = (0, 0, 1000), ∀i > 0| − 2000 ≤WPi{x} ≤ 2000∧

−2000 ≤WPi{y} ≤ 2000 ∧ 1000 ≤WPi{z} ≤ 3000}

Op = {2-Best, Rank, One-Point, Full-Range,MutRate = 0.10}

Ftn = {|MAggressive −MPassive|,MAggressive −MPassive,MPassive −MAggressive}

The UAV is constrained to remain in a 32 cubic meter box during flight. That

means each waypoint WPi must exist within the bounds of the box. This constraint is

applied for two reasons, to prevent infeasibly long flight paths from being introduced

into the study, and so that we could leverage our motion capture system during
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Figure 5.3: Three dimensional view of the area in which the UAV is permitted to fly.

results verification (discussed in Section 5.2.5.1) to provide a ground truth. Our

motion capture system is only capable of capturing data in the specified area.

In both the x and y dimensions, the UAV is permitted to fly in the range [−2000, 2000].

Because these values are relative to the UAV’s starting position, this range represents

4000 millimeters for each dimension (a total of 16000 square millimeters, or 16 square

meters). See Figure 5.2 for a depiction of this area.

In the z dimension, the UAV is permitted to fly in the range [1000, 3000] after

take off. The UAV begins on the ground at position (0, 0, 0) for each flight, therefore

the first waypoint in each chromosome is constrained to be (0, 0, 1000). This allows

the UAV to take off and enter the valid range of z dimension values. See Figure 5.3

for a depiction of this area.

There were two types of metrics collected during this feasibility study, defined as

Mdist and Mtime. The first metric value is required by hypothesis #1 and #2 and is
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the total distance travelled by the UAV in millimeters. Formally, the metric value

Mdist for each configuration is defined as

Mdist =
n∑

i=2

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

where n is the number of UAV location samples taken during flight and i is the

ith location sample (where i > 1).

The second metric value is required by hypothesis #3 and #4 and is the total

amount of time required by each UAV in seconds. Formally, the metric value Mtime

for each configuration is defined as

Mtime = Time10 − Time0

where Timei represents the time in seconds at waypoint i. Subtracting the time

taken when the UAV reached its final waypoint from the time taken when the UAV

started at its first waypoint yields the total time required to execute the flight path.

5.2.3.1 Fitness Function Definition and Biasing

When attempting to maximize the difference in distance travelled, or the difference

in time required to execute a flight path for Hypothesis #1 and #3, respectively, Ftn

is defined as

Ftn = |Magressive −Mpassive|

Because we are interested in simply maximizing the fitness of the chromosome, we

are not concerned with which metric value is larger or smaller in the random case.

We simply wish to maximize their difference. Therefore, the absolute value difference

of the metric values is used to compute fitness for these hypotheses.
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However, in practice, one of the metric values is smaller than the other in the

random case. In order to minimize the difference in distance travelled, or the difference

in time required to execute a flight path for Hypothesis #2 and #4, respectively, this

must be taken into account. Therefore, we leverage a biasing feature for these two

hypotheses, which allows one of the two metric values to be favored over the other.

For Hypothesis #2 (minimizing the difference in distance travelled), we observe

that in the random case, for a given flight path, the passive configuration will travel

a shorter distance than the aggressive configuration. Therefore, in order to minimize

the difference between the two metric values, Ftn is defined as

Ftn = Mpassive −Maggressive

Because the goal of Ftn is to maximize fitness as generations progress, this definition

of Ftn will favor flight paths in which the aggressive configuration travels a distance

that is closer to the distance travelled by the passive configuration, thereby minimizing

the difference in distance travelled.

For Hypothesis #4 (minimizing the difference in time required), we observe that in

the random case, for a given flight path, the aggressive configuration will require less

time than the passive configuration. Therefore, in order to minimize the difference

between the two metric values, Ftn is defined as

Ftn = Maggressive −Mpassive

. Because the goal of Ftn is to maximize fitness as generations progress, this definition

of Ftn will favor flight paths in which the time required by the passive configuration
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is closer to the time required by the aggressive configuration, thereby minimizing the

difference in time required to execute the flight path.

5.2.4 Results

Can UDivE identify divergent behavior?

The results for each hypothesis are presented below, as produced by the NimSim

UAV simulator. We allowed UDivE to execute until either it invalidated its respective

hypothesis, or the search converged. Here, we define convergence as 10 continuous

generations during which the maximum fitness does not increase. In order to illustrate

how the flight paths evolve during UDivE execution, we show both the generation

0 and maximally fit flight paths for Hypothesis #2 and #4. These hypotheses were

selected because Hypothesis #2 is concerned with the difference in distance travelled,

whereas Hypothesis #4 is concerned with the difference in time required to execute

the flight paths. We wish to illustrate the evolution of the flight paths for each of

these metrics.

Hypothesis #1:

UDivE was unable to identify a flight path that invalidated Hypothesis #1 prior to

converging. However, we report the maximally fit flight path that UDivE was able to

identify, which required 23 generations. When the UAV was in the aggressive config-

uration, it travelled 36.79 meters. When the UAV was in the passive configuration, it

travelled 32.56 meters. This represents a difference of 4.23 meters, or a 12.2% percent

difference, shy of the 15% difference required to invalidate Hypothesis #1. Figure 5.4

shows a three-dimensional diagonal view and the XY plane of the maximally fit flight

path for both UAV configurations. In addition, the starting location and terminal

location of the UAV are denoted in each view with a circle and triangle, respectively.
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Figure 5.4: Hypothesis #1 Maximally Fit Flight Path. Shown from a (A) three-
dimensional diagonal view and (B) as the XY plane. Each grid square represents one
square meter.

As shown in Figure 5.4, we observe complex flight paths with many long segments

that span the majority of the flight area, as well as several abrupt turns that, in some

cases, send the simulated UAV in nearly the opposite direction from which it came.

Hypothesis #2:

UDivE was able to identify a flight path that invalidated Hypothesis #2 in 49

generations. When the UAV was in the aggressive configuration, it travelled 16.81

meters. When the UAV was in the passive configuration, it travelled 16.14 meters.

This represents a difference of 0.67 meters, or a 4.06% percent difference. For this

hypothesis, we show both the generation 0 flight path, as well as the maximally fit

flight path to illustrate how the flight paths change during evolution. Figures 5.5 and

5.6 show a three-dimensional diagonal view and the XY plane of the generation 0

and maximally fit flight path for both UAV configurations, respectively. In addition,
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Figure 5.5: Hypothesis #2 Generation 0 Flight Path. Shown from a (A) three-
dimensional diagonal view and (B) as the XY plane. Each grid square represents one
square meter.

Figure 5.6: Hypothesis #2 Maximally Fit Flight Path. Shown from a (A) three-
dimensional diagonal view and (B) as the XY plane. Each grid square represents one
square meter.
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Figure 5.7: Hypothesis #3 Maximally Fit Flight Path. Shown from a (A) three-
dimensional diagonal view and (B) as the XY plane. Each grid square represents one
square meter.

the starting location and terminal location of the UAV are denoted in each view

with a circle and triangle, respectively. Between generation 0 and generation 49, we

observe flight paths that appear to become simpler and show fewer abrupt turns and

a reduction in complexity.

Hypothesis #3:

UDivE was able to identify a flight path that invalidated Hypothesis #3 in 21

generations. When the UAV was in the aggressive configuration, it required 154

seconds to execute the flight path. When the UAV was in the passive configuration,

it travelled 91 seconds. This represents a difference of 63 seconds, or a 51.42% percent

difference. Figure 5.7 shows a three-dimensional diagonal view and the XY plane of

the maximally fit flight path for both UAV configurations. In addition, the starting

location and terminal location of the UAV are denoted in each view with a circle and

triangle, respectively. As shown in Figure 5.7, we observe complex flight paths with
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Figure 5.8: Hypothesis #4 Generation 0 Flight Path. Shown from a (A) three-
dimensional diagonal view and (B) as the XY plane. Each grid square represents one
square meter.

Figure 5.9: Hypothesis #4 Maximally Fit Flight Path. Shown from a (A) three-
dimensional diagonal view and (B) as the XY plane. Each grid square represents one
square meter.
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several abrupt turns and long flight segments that send the simulated UAV back and

forth across its flight repeatedly.

Hypothesis #4:

UDivE was able to identify a flight path that invalidated Hypothesis #4 in 41

generations. When the UAV was in the aggressive configuration, it required 57 sec-

onds to execute the flight path. When the UAV was in the passive configuration,

it travelled 73 seconds. This represents a difference of 16 seconds, or a 24.6% per-

cent difference. For this hypothesis, we show both the generation 0 flight path, as

well as the maximally fit flight path to illustrate how the flight paths change during

evolution. Figures 5.8 and 5.9 show a three-dimensional diagonal view and the XY

plane of the generation 0 and maximally fit flight path for both UAV configurations,

respectively. In addition, the starting location and terminal location of the UAV are

denoted in each view with a circle and triangle, respectively. Between generation 0

and generation 41, we observe flight paths that become much simpler, with fewer

abrupt turns and a significant reduction in the length of flight segments.

What is the search space UDivE explores?

Because the problem model is the same for all four hypotheses (the only difference

being the type of metric value under consideration), the search space is also the same.

Both the x and y value for each waypoint are permitted to take one of 4000 values (i.e.

any value in the range [−2000, 2000]). The z value for each waypoint is permitted to

take one of 2000 values (i.e. any value in the range [1000, 3000]). The only exception

is the first waypoint, which is constrained to always be defined as WP0 = (0, 0, 1000).

Therefore, the first waypoint can hold only one value. The remaining nine can

each take one of 4000 × 4000 × 2000 = 3.2 × 1011 values. Because there are nine

waypoints that can hold any of these values, the total search space size is
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Hypo Num of Gen Avg Time/Gen (sec) Total Time (Hrs) Total Sim Flights

#1 23 3014.92 19.26 552
#2 49 2551.0 34.72 1176
#3 21 2622.13 15.23 504
#4 41 1881.42 21.42 984

Total 90.63 3216

Table 5.1: Cost of Running UDivE

3.211 × 9 + 1 = 2.88× 1011. That means there are 2.88× 1011 valid flight paths that

could be selected by UDivE for exploration.

What is the cost of running UDivE?

Each hypothesis requires its own run, therefore the cost of running UDivE is

presented for each of the four hypotheses in Table 5.1, as well as the total number of

simulated flights that were required during each respective run.

It is important to consider the comparison of the cost of this feasibility study with

that of manual flight data collection. As shown in Table 5.1, during all of the runs

for all four hypotheses, UDivE explored a total of 3216 flight paths. Note that each

chromosome had to be executed twice, once for each UAV configuration.

Here we provide a simple estimation of the cost of manual flight data collection,

assuming only a single researcher is collecting the data. If we assume that each flight

takes an average of 30 seconds (this number is an estimation based on actual flight

data collected using physical UAVs), that means 26.8 hours of constant flight time

would be required. However, between flights there is set-up and repair time. If we

assume each flight requires an average of 3 minutes of set-up and repair time (this

number is an estimation based on actual flight data collected using physical UAVs),

then an additional 160.8 hours of set-up and repair time would be required. If the

researcher did nothing but collect flight data for 8 hours per day, a total of 23.45 days
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would be required execute the same number of flights NimSim was able to simulate

in a total of 3.77 days (note that NimSim is capable of simulating flights 24 hours per

day).

Regarding the batteries required for flight, a fully charged Parrot UAV battery

provides approximately 12 minutes of flight time. If, as above, we assume each flight

requires an average of 30 seconds, 134 fully charged batteries would be required. Each

battery requires approximately 90 minutes of time to recharge, which would require

8.37 days of charge time. Granted, the researcher would most likely have access

to multiple batteries and chargers, however if the researcher did not have access to

a sufficient number of these resources, then waiting for batteries to recharge could

further increase the cost of manual flight data collection.

5.2.5 Validation of Results with Physical UAV

An important component of this feasibility study is the physical validation of the

results obtained in our simulated environment. In order to physically validate the

results produced in our simulated environment, we execute various flight paths pro-

duced by the simulator using physical Parrot UAVs.

This section discusses the environment in which physical validation was performed,

presents the results of the validation, and compares the results with those obtained

in the simulated environment.

5.2.5.1 Physical Validation Procedure

The UAV was placed in a Vicon motion capture cage5 for this experiment. This

type of motion capture system provides a ground-truth measurement of the UAV’s

5http://www.vicon.com/products/bonita.html

http://www.vicon.com/products/bonita.html
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location, accurate to 0.5 millimeters6. This location information is supplied to the

controller described in Section 5.2.1.1.

The UAV then executes the flight path twice, once in each configuration (as defined

in Section 5.2.2.1), using the controller to move the UAV between waypoints. When

a waypoint has been reached the controller moves the UAV to the next waypoint,

and so forth, until the entire flight path has been executed. We are able to determine

the distance the UAV flew, as well as the time it required, by analyzing the location

information provided by the motion capture system.

Although the motion capture cage in which we performed the validation is 3

meters in height (the same height as the virtual cage used for the simulated UAV),

in practice we found that allowing the UAV to fly to this altitude caused either the

motion capture system to stop reporting positional data about the UAV (because it

could no longer see it), or it caused the UAV to crash into the ceiling of the cage.

Therefore, to preserve flight stability we truncated the z component of all waypoints to

a maximum altitude of 2 meters. Although the UAV often flew higher than 2 meters

(due to overshoot), this allowed the flight paths to be executed without frequent

crashes.

5.2.5.2 Variation in Physical Results

In order to determine the amount of variation present in the physical validation

results, we repeated the flight paths considered in Hypothesis #1 five times using the

same procedure outline in Section 5.2.5.1 using a physical UAV. Although the flight

paths identified by UDivE were unable to invalidate Hypothesis #1, we selected it

because it showed the largest variation in distance travelled, as shown in Table 5.2.

6http://www.vicon.com/products/bonita-features.html

http://www.vicon.com/products/bonita-features.html
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Figure 5.10: Variation of the distance travelled (m) for Hypothesis #1 (A) Generation
0 and (B) Generation 23. The boxes shown in the graph show the range of values
(i.e. variation) present for each generation.

Figure 5.10 shows a plot of the variation we encountered when repeating the

Hypothesis #1 flight paths. For generation 0, the passive UAV configuration showed

a range of 2.25 meters, with a maximum distance of 26.75 meters and a minimum

distance of 24.50 meters. The average distance travelled was 25.93 meters with a

standard deviation of 0.90 meters. The aggressive UAV configuration for generation

0 showed a range of 3.91 meters, with a maximum distance of 36.39 meters and a

minimum distance of 32.48 meters. The average distance travelled was 32.24 meters

with a standard deviation of 1.59 meters.

For generation 23 (the last generation considered), the passive UAV configuration

showed a range of 3.76 meters, with a maximum distance of 32.73 meters and a

minimum distance of 28.97 meters. The average distance travelled was 31.06 meters

with a standard deviation of 1.46 meters. The aggressive configuration for generation

23 showed a range of 3.44 meters, with a maximum distance of 45.31 meters and a
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minimum distance of 41.87 meters. The average distance travelled was 43.25 meters

with a standard deviation of 1.43 meters.

Due to the cost of validating these flight paths (including set up time, and the time

required to monitor the trials), and because of the low standard deviation reported,

we refrained from further checking.

5.2.5.3 Physical Validation Results

Below, the results of the physical validation are displayed for each hypothesis. Each

table shows the results obtained during physical validation, as well as those obtained

using NimSim.

For each of the Tables listed below, the “UAV” column displays the source of the

results, either from the physical UAV or from NimSim. The “Generation” column

displays results for both the randomly generated flight path from generation 0 as well

as the maximally fit flight path from the generation when execution was terminated.

The “Configuration” column displays the UAV configuration, i.e. aggressive or pas-

sive. The “Distance” or “Time” column (depending on the Hypothesis) displays the

distance travelled by the UAV, or the time the UAV required to execute the flight

path.

The “Difference” column displays the difference between the aggressive and passive

configuration for the respective generation. The “% Difference” column displays the

percent difference between the aggressive and passive configuration for the respective

generation. Finally, the “Change” row, shown below the results for both the physical

UAV and NimSim, displays the change in percent difference between generation 0 and

the generation when execution was terminated. This value is annotated with either

a (+) or a (-) to indicate if the change in percent difference increased or decreased,

respectively.
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Because our simulator is simplistic, we do not expect the values to match, however

we are interested in evaluating if the following three trends (T1, T2, and T3) hold

between the NimSim UAV and the physical UAV. These trends are:

1. T1 : For both NimSim and the physical UAV, the change in difference between

the first and last generation will move in the same direction. For example, if for

NimSim we observe an increase in the difference in distance travelled between

the first and last generation, then so too should we observe an increase in the

difference in distance travelled between the first and last generation for the

physical UAV. The same trend should apply if we observe a decrease in the

difference.

2. T2 : For both NimSim and the physical UAV, the change in percent difference

between the first and last generation will move in the same direction. For

example, if for NimSim we observe an increase in percent difference between

the first and last generation, then so too should we observe an increase in

percent difference between the first and last generation for the physical UAV.

The same trend should apply if we observe a decrease in the change in percent

difference.

3. T3 : For both NimSim and the physical UAV, the change of each configuration

style between the first and last generation should move in the same direction.

For example, if for NimSim we observe the distance travelled by the passive

configuration increase between the first and last generation, then so too should

be observe an increase in the distance travelled by the passive configuration

between the first and last generation for the physical UAV. The same applies

to the aggressive configuration. The same trend should apply if we observe a

decrease in the distance travelled.
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Figure 5.11: Depiction of trends T1 and T2 for Hypothesis #1. T1 shows the change
in difference (m) between generation 0 and 23 for both NimSim and the physical
UAV, and T2 shows the change in percent difference between generation 0 and 23
both NimSim and the physical UAV. Two y-axis scales are shown: NimSim on the
left and the physical UAV on the right.

UAV Generation Configuration Distance (m) Difference % Difference

Physical
0

Aggressive 35.22
8.65 27.9

Passive 26.57

23
Aggressive 44.1

11.37 30.0
Passive 32.73

Change (+) 2.1

NimSim
0

Aggressive 33.0
3.26 10.4

Passive 29.74

23
Aggressive 36.79

4.23 12.22
Passive 32.56

Change (+) 1.8

Table 5.2: Maximizing the Difference of Distance (Hypothesis #1)

Hypothesis #1 Validation. Table 5.2 shows the results of checking the Hypothe-

sis #1 flight paths with a physical UAV. We observe each of the three trends occurring.
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Figure 5.12: Depiction of trend T3 for Hypothesis #1. T3 shows the change in dif-
ference (m) between generation 0 and 23 for each configuration style (aggressive and
passive) of both NimSim and the physical UAV. Two y-axis scales are shown: NimSim
on the left and the physical UAV on the right.

Figures 5.11 and 5.11 show a graphical depiction of these trends between generation

0 and 23. The change in percent difference for the physical UAV moves in the posi-

tive direction, changing from 27.9% to 30.0% between generation 0 and generation 23.

Similarly, the change in percent difference for NimSim moves in the positive direction,

changing from 10.4% to 12.2% between generation 0 and generation 23. The change

of the difference in distance travelled for physical UAV moves in the positive direc-

tion, changing from 8.65 meters to 11.37 meters between generation 0 and generation

23. Similarly, the change of the difference in distance travelled for NimSim moves in

the positive direction, changing from 3.26 meters to 4.37 meters between generation

0 and generation 23. The change for each configuration style for the physical UAV

moves in the positive direction between generation 0 and generation 23. Between gen-

eration 0 and generation 23, the aggressive configuration changed from 35.22 meters
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Figure 5.13: Depiction of trends T1 and T2 for Hypothesis #2. T1 shows the change
in difference (m) between generation 0 and 49 for both NimSim and the physical
UAV, and T2 shows the change in percent difference between generation 0 and 49
both NimSim and the physical UAV. Two y-axis scales are shown: NimSim on the
left and the physical UAV on the right.

to 44.1 meters, whereas the passive configuration changed from 26.57 meters to 32.73

meters. Similarly, the change for each configuration style for the NimSim moves in

the positive direction between generation 0 and generation 23. Between generation

0 and generation 23, the aggressive configuration changed from 33.0 meters to 36.7

meters, whereas the passive configuration changed from 29.74 meters to 32.56 meters.

Although we observe each of the three trends occurring, as shown in Table 5.2, the

actual value of the respective measurements differ when comparing the physical UAV

and NimSim.

Hypothesis #2 Validation. Table 5.3 shows the results of checking the Hypothe-

sis #2 flight paths with a physical UAV. We observe each of the three trends occurring.

Figures 5.13 and 5.13 show a graphical depiction of these trends between generation 0
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Figure 5.14: Depiction of trend T3 for Hypothesis #2. T3 shows the change in dif-
ference (m) between generation 0 and 49 for each configuration style (aggressive and
passive) of both NimSim and the physical UAV. Two y-axis scales are shown: NimSim
on the left and the physical UAV on the right.

UAV Generation Configuration Distance (m) Difference % Difference

Physical
0

Aggressive 20.2
6.1 35.6

Passive 14.1

49
Aggressive 17.4

4.7 31.2
Passive 12.7

Change (-) 4.33

NimSim
0

Aggressive 19.1
1.74 9.54

Passive 17.36

49
Aggressive 16.81

0.67 4.07
Passive 16.14

Change (-) 5.47

Table 5.3: Minimizing the Difference of Distance (Hypothesis #2)
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and 49. The change in percent difference for the physical UAV moves in the negative

direction, changing from 35.6% to 31.2% between generation 0 and generation 49.

Similarly, the change in percent difference for NimSim moves in the negative direc-

tion, changing from 9.54% to 4.07% between generation 0 and generation 49. The

change of the difference in distance travelled for physical UAV moves in the negative

direction, changing from 6.1 meters to 4.7 meters between generation 0 and generation

49. Similarly, the change of the difference in distance travelled for NimSim moves in

the negative direction, changing from 1.74 meters to 0.67 meters between generation

0 and generation 49. The change for each configuration style for the physical UAV

moves in the negative direction between generation 0 and generation 49. Between

generation 0 and generation 49, the aggressive configuration changed from 20.2 me-

ters to 17.4 meters, whereas the passive configuration changed from 14.1 meters to

12.7 meters. Similarly, the change for each configuration style for the NimSim moves

in the negative direction between generation 0 and generation 49. Between generation

0 and generation 49, the aggressive configuration changed from 19.1 meters to 16.81

meters, whereas the passive configuration changed from 17.36 meters to 16.14 meters.

Although we observe each of the three trends occurring, as shown in Table 5.3, the

actual value of the respective measurements differ when comparing the physical UAV

and NimSim.

Hypothesis #3 Validation. Table 5.4 shows the results of checking the Hypothe-

sis #3 flight paths with a physical UAV. We observe each of the three trends occurring.

Figures 5.15 and 5.15 show a graphical depiction of these trends between generation

0 and 21. The change in percent difference for the physical UAV moves in the posi-

tive direction, changing from 7.0% to 14.14% between generation 0 and generation 21.
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Figure 5.15: Depiction of trends T1 and T2 for Hypothesis #3. T1 shows the change in
time (sec) between generation 0 and 21 for both NimSim and the physical UAV, and
T2 shows the change in percent difference between generation 0 and 21 both NimSim
and the physical UAV. Two y-axis scales are shown: NimSim on the left and the
physical UAV on the right.

Figure 5.16: Depiction of trend T3 for Hypothesis #3. T3 shows the change in time
(sec) between generation 0 and 21 for each configuration style (aggressive and passive)
of both NimSim and the physical UAV. Two y-axis scales are shown: NimSim on the
left and the physical UAV on the right.
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UAV Generation Configuration Time (sec) Difference % Difference

Physical
0

Aggressive 32.4
2.2 7.0

Passive 30.2

21
Aggressive 41.94

5.54 14.14
Passive 36.4

Change (+) 7.14

NimSim
0

Aggressive 85
52 46.8

Passive 137

21
Aggressive 91

63 51.4
Passive 154

Change (+) 4.62

Table 5.4: Maximizing the Difference of Time (Hypothesis #3)

Similarly, the change in percent difference for NimSim moves in the positive direction,

changing from 46.8% to 51.4% between generation 0 and generation 21. The change

of the difference in seconds required for physical UAV moves in the positive direction,

changing from 2.2 seconds to 5.54 seconds between generation 0 and generation 21.

Similarly, the change of the difference in seconds required for NimSim moves in the

positive direction, changing from 52 seconds to 63 seconds between generation 0 and

generation 21. The change for each configuration style for the physical UAV moves

in the positive direction between generation 0 and generation 21. Between genera-

tion 0 and generation 21, the aggressive configuration changed from 32.4 seconds to

41.94 seconds, whereas the passive configuration changed from 30.2 seconds to 36.4

seconds. Similarly, the change for each configuration style for the NimSim moves in

the positive direction between generation 0 and generation 21. Between generation

0 and generation 21, the aggressive configuration changed from 85 seconds to 91 sec-

onds, whereas the passive configuration changed from 137 seconds to 154 seconds.

Although we observe each of the three trends occurring, as shown in Table 5.4, the

actual value of the respective measurements differ when comparing the physical UAV

and NimSim.
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Figure 5.17: Depiction of trends T1 and T2 for Hypothesis #4. T1 shows the change in
time (sec) between generation 0 and 41 for both NimSim and the physical UAV, and
T2 shows the change in percent difference between generation 0 and 41 both NimSim
and the physical UAV. Two y-axis scales are shown: NimSim on the left and the
physical UAV on the right.

UAV Generation Configuration Time (sec) Difference % Difference

Physical
0

Aggressive 26.9
6.8 22.4

Passive 33.7

41
Aggressive 26.3

1.1 3.36
Passive 27.2

Change (-) 19.04

NimSim
0

Aggressive 71
34 38.6

Passive 105

41
Aggressive 57

16 24.6
Passive 73

Change (-) 14.0

Table 5.5: Minimizing the Difference of Time (Hypothesis #4)
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Figure 5.18: Depiction of trend T3 for Hypothesis #4. T3 shows the change in time
(sec) between generation 0 and 41 for each configuration style (aggressive and passive)
of both NimSim and the physical UAV. Two y-axis scales are shown: NimSim on the
left and the physical UAV on the right.

Hypothesis #4 Validation. Table 5.5 shows the results of checking the Hypoth-

esis #4 flight paths with a physical UAV. We observe each of the three trends oc-

curring. Figures 5.17 and 5.17 show a graphical depiction of these trends between

generation 0 and 41. The change in percent difference for the physical UAV moves

in the negative direction, changing from 22.4% to 3.36% between generation 0 and

generation 41. Similarly, the change in percent difference for NimSim moves in the

negative direction, changing from 38.6% to 24.6% between generation 0 and genera-

tion 41. The change of the difference in seconds required for physical UAV moves in

the negative direction, changing from 6.8 seconds to 1.1 seconds between generation

0 and generation 41. Similarly, the change of the difference in seconds required for

NimSim moves in the negative direction, changing from 34 seconds to 16 seconds be-

tween generation 0 and generation 41. The change for each configuration style for the
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physical UAV moves in the negative direction between generation 0 and generation

41. Between generation 0 and generation 41, the aggressive configuration changed

from 26.9 seconds to 26.3 seconds, whereas the passive configuration changed from

33.7 seconds to 27.2 seconds. Similarly, the change for each configuration style for

the NimSim moves in the negative direction between generation 0 and generation 41.

Between generation 0 and generation 41, the aggressive configuration changed from

71 seconds to 57 seconds, whereas the passive configuration changed from 105 seconds

to 73 seconds. Although we observe each of the three trends occurring, as shown in

Table 5.5, the actual value of the respective measurements differ when comparing the

physical UAV and NimSim.

5.2.6 Discussion

It is clear that, while we have observed results that follow the three trends presented

in Section 5.2.5.3, the values and differences themselves differ. We believe the cause

of these differences are the basic simulation capabilities of NimSim, as well as the

differences between the way in which a UAV is controlled in NimSim and the physical

world (as discussed in Section 5.2.1.1).

To further explore the difference between NimSim and and the physical UAV, we

present a side-by-side comparison of the flight paths from Hypothesis #3, for both

UAV configurations in generation 0 and generation 21. Figure 5.19 shows the flight

paths of the UAV is its respective configurations for generation 0. Figure 5.20 shows

the flight paths of the UAV in its respective configurations for generation 21. For

simplicity, these flight paths are shown from an “above-facing” XY plane perspective.

In addition, each of these Figures shows the staring location of the UAV (denoted as

a circle), and the terminal location of the UAV (denoted as a triangle).
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Figure 5.19: Comparison of Hypothesis #3 NimSim flight paths and physical flight
paths for each configuration at generation 0. Each grid square represents one square
meter.

Because NimSim is not subjected to the same degree of many real-world forces and

noise as the physical UAV, its flight paths are precise and rigid (as evidenced by the

sharp and corners when the simulated UAV changes direction in an abrupt fashion).

The effect of the passive and aggressive configuration can be witnessed by the fact

that the simulated UAV in an aggressive configuration will overshoot its target when

compared to the simulated UAV in a passive configuration. This can be observed in

both Figures 5.19 and 5.20.
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Figure 5.20: Comparison of Hypothesis #3 NimSim flight paths and physical flight
paths for each configuration at generation 21. Each grid square represents one square
meter.

The effect of real-world forces, noise, and the use of a controller for flying between

waypoints can be seen in the physical UAV flight paths in both Figures 5.19 and 5.20.

When compared to the simulated UAV flight paths, the physical UAV flight paths

appear much less rigid and well defined. While the physical UAV is still executing

the same flight path as the simulated UAV, it must constantly correct its trajectory

due to real-world forces and noise. In addition, because the physical is leveraging a

controller when flying between waypoints, it velocity will change as it gets closer to
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(and overshoots) its target. This accounts for the curvature seen in the physical flight

paths. This effect is especially evident when the physical UAV is in the aggressive

configuration shown in Figure 5.20.

The fact that NimSim does not leverage controllers created a noticeable difference

in behavior when compared to a physical UAV that uses these types of controllers.

In order to explore this difference further, we set up an additional experiment. We

created a simple flight path that is a 1 meter square. Given that this is such a small

area with tight stopping and turning distances, we expected to see an exaggerated

difference between the physical and simulated paths. When the physical UAV exe-

cutes this flight path, the aggressive configuration (13.95 seconds) requires more time

to execute this basic pattern than the passive configuration (9.7 seconds) because

it overshoots each corner, and must compensate for its overshoot before moving on.

The passive configuration, on the other hand, overshoots to a smaller degree and

requires less compensatory correction, allowing it to navigate the square in less time.

The simulated UAV, however, does not attempt to correct for overshoot. The ag-

gressive configuration (19.4 seconds) requires less time to complete the pattern than

the passive configuration (35.5 seconds), even though both still overshoot to respec-

tive degrees, simply because the aggressive configuration can fly at a greater speed.

While this type of simple flight path was not observed in our study, it serves as one

basic example of an improvement to NimSim that would allow for more realistic UAV

simulation.

Fortunately, NimSim models the flight of a UAV with enough correctness that we

have observed promising results that follow the trends presented in Section 5.2.5.3.

It is clear that having a simulator that more closely models the physical behavior

of a UAV would allow for our simulated results to be much closer to the physical
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world, and perhaps identify flight paths that invalidate their respective hypotheses

to a larger degree. We discuss this as future work in Chapter 6.
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Chapter 6

Conclusions and Future Work

Identifying divergent behavior between implementations that behave similarly in most

cases can help to avoid unexpected surprises when choosing an implementation to use

in practice. In this thesis, we have introduced a design and implementation of UDivE,

an automated approach to identify this type of divergent behavior. UDivE is capable

of treating implementations as black boxes, and generating inputs that are evolved

based on the output they produce in order to favor greater divergence. In addition, the

most expensive phase of our framework can be parallelized in an effort to significantly

reduce its execution cost.

UDivE also incorporates many parameterizable components to enhance its appli-

cability, and the four studies we presented in Chapter 4 and 5 illustrate its potential

to uncover unexpected behavior in several diverse domains. Further, the feasibility

study presented in Chapter 5 presents a first step in extending UDivE so that it

may conjecture about, and interact with, cyber-physical systems and simulations of

those systems. Even in the presence of a basic simulator, UDivE was able to pro-

duce promising results that trend in the same direction as the results obtained when

verifying the behavior with the cyber-physical system itself.
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6.1 Future Work

We next present areas of future work that we have identified to enhance the applica-

bility and effectiveness of UDivE. These areas include extensions to UDivE itself, as

well as improvements to the process of applying UDivE to cyber-physical systems.

The first area of future work we present is the development of a more diverse

set of problem models to be included with UDivE, including enriching the set of

problem model components such as chromosome templates, fitness functions, and

genetic operators. While a problem model is specific to the problem at hand, and

therefore will generally require some degree of customization, many similarities may

persist between problems and their respective problem models. Therefore, identifying

these similarities and providing additional “pre-packaged” and “off-the-shelf” problem

model components would make the application of UDivE to a new problem faster

and simpler. This would also enable to UDivE to be applied to a more diverse set of

domains.

While UDivE currently provides a rich set of genetic operators (as described in

Chapter 3), there is always the potential to support others, especially customized

genetic operators that may be required for a domain-specific problem. Allowing

customized genetic operators to be easily incorporated into the framework would

increase the applicability of UDivE to new problem domains.

The relationship between search space size and runtime has not been analyzed

in detail. We believe that, while search space size and runtime do not seem to be

strongly correlated, there may be other important factors to consider that would

allow for the discovery of other important correlations. The landscape of the search

space, and where divergent solutions exist in that space, must be explored in greater

detail. Further, understanding how the application of system constraints affect the
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landscape of the search space is important. This type of understanding would allow

us to better conceptualize how our genetic algorithm traverses its search space and

discover new correlations.

The choice to use a genetic algorithm for directed exploration was made for the

studies presented in Chapter 4 and 5 due to the large search spaces being explored. A

robust population-based heuristic search technique such as a genetic algorithm is ben-

eficial when exploring these types of search spaces. However, other types of heuristic

search techniques exist that may be equally or more effective depending on the type

of problem. Therefore, following the above discussion of better conceptualizing the

search space, an area of future work is understanding when another type of heuristic

search technique such as hill climbing could be used with UDivE.

Once UDivE identifies divergent behavior, the question becomes “what is the next

step?” Therefore, an area of future work is interacting with domain experts in selected

fields to understand how to apply the results UDivE discovers. Not only would this

help validate the usefulness of UDivE, but interacting with domain experts would

provide feedback that could help tailor UDivE to be more effective in a given domain.

This notion applies to the way in which problem models are created (including the

chromosome encoding, genetic operators, and constraints chosen), as well as the way

in which hypotheses are defined.

Another area of future work is improving user interaction with UDivE and the

results it produces. In its current implementation, the framework must be launched

from the command line, and all results are written to various files. However, providing

a graphical user interface (GUI) that would centralize the launch, configuration, and

interaction with the results would make it easier for a user to leverage the framework.

This type of GUI could also be extended to provide real-time feedback, such as

updating various plots that describe UDivE’s progress as it executes. This type of
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“centralized control” of UDivE would be especially helpful when UDivE is executing

in multiple locations at once (such as a distributed computing environment when

UDivE is in parallel mode).

To improve the effectiveness of UDivE when interacting with cyber-physical sys-

tems, improvements to UDivE are not the only changes that are necessarily required.

Rather, the target systems with which UDivE interacts are a target for improvement.

For example, in Chapter 5, UDivE interacts with the NimSim UAV simulator in order

to generate flight paths that produce divergent behavior when executed by a UAV in

an aggressive and passive configuration. However, the simplistic nature of the simu-

lator, including the method with which it moves the UAV from one waypoint to the

next, produces flight paths that differ in key ways from those produced when exe-

cuted using a physical UAV. Therefore, an area of future work is the improvement of

NimSim. An example of such an improvement would be extending NimSim so that it

had the ability to simulate more realistic flight paths by leveraging more sophisticated

drag, acceleration, and velocity models. Further, incorporating a controller (such as

a PID controller) to move the UAV from one waypoint to the next would allow the

simulated UAV to travel to target waypoints in a more realistic fashion, including the

ability the compensate for target overshoot.
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Appendix A

NimSim UAV Simulator

The Nimbus Lab UAV simulator (NimSim) is designed to provide real-time basic

quad-rotor UAV simulation functionality. We created NimSim in order to facilitate

experiments that require a large number of UAV flights. Rather than attempting to

manually collect data, a process that can be prohibitively expensive (as outlined in

Chapter 5), NimSim can be used as an alternative.

This appendix describes NimSim’s architecture, supported input and produced

output, configuration process, and implementation. Each of these are outlined in the

following sections.

A.1 NimSim Architecture

NimSim is composed of several decentralized components, each of which are described

below. The decentralized nature of NimSim allows for simple integration of additional

modules. See Figure A.1 for a depiction of the NimSim architecture.
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Figure A.1: NimSim Architecture

A.1.1 Target Waypoint Module

The target waypoint module is responsible for directing the simulated UAV from

its current position to a target waypoint (as defined in Section A.2.2). It takes as

input one or more target waypoints. It then computes the required low-level flight

commands (as defined in Section A.2.1) and produced them as output. In the event

multiple target waypoints are supplied to the target waypoint module, the simulated

UAV will fly to each one sequentially.

A.1.2 Altitude Controller

The altitude controller serves two purposes. First, it serves as the entry point for a

low-level flight command into NimSim. Second, as the name suggests, the altitude

controller is responsible for maintaining the simulated UAV’s altitude at a set point.

This allows the simulated UAV to hover. The altitude control feature may be acti-



100

vated or deactivated. If deactivated, simulated gravity will affect the vertical position

of the simulated UAV without intervention.

The altitude controller has two sources of input. The first is a low-level flight

command. The source of flight commands could either come directly from the user

(e.g. via a joystick or the command line), or the flight commands could come from

the target waypoint module. Both sources of flight commands are of the same format,

as defined in Section A.2.1. The second input source is the current altitude of the

simulated UAV, supplied by the simulator module of NimSim. This is required if a

loop-feedback style controller is being used to control the altitude of the simulated

UAV (such as a PID controller).

A.1.3 Command Mapper

The command mapper is responsible for mapping flight commands provided by the

user into input data that the rest of the simulator can consume. The command

mapper takes as input x, y, and z component values, each of which are in the range

[−1.0, 1.0], and maps the values into force and angle values, in the units of newtons

and radians, respectively. It then produces as output these force and angle values. The

way in which these values are mapped depends on the configuration of the simulator,

as outlined in Section A.3.

A.1.4 Simulator Module

The simulator module determines the simulated position of the UAV. The simulator

module takes as input force and angle data, computes an updated position estimate

of the UAV, and outputs the updated position estimate. The position output is in

the format defined in Section A.2.3.
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A.1.5 Visualizer Module

The visualizer module provides a graphical view of the simulated UAV in a simulated

environment. This component is optional, however if leveraged it provides a simple

three-dimensional, interactive window inside of which the simulated UAV will fly.

Not only is the position of the simulated UAV shown, but its heading, flight path,

and text displaying its position in space (in the form of a three-dimensional point

containing an x, y, and z value) is shown as well.

The visualizer module takes as input the current position of the simulated UAV.

Internally, it stores all of the provided position data, transforms said data into a

format that the graphical user interface can consume, and draws the most recent

simulated UAV position (including heading, flight path, and text) in the visualizer

window.

A.2 NimSim Input and Output

NimSim supports two types of inputs: low-level flight commands or a target waypoint.

Low-level flight commands are provided as input in the event direct control of the

simulated UAV is desired. For example, if the user wishes to s simulate the flight of

the UAV using a joystick. Joystick commands can be mapped into low-level flight

commands that are consumed by NimSim. If a target waypoint is supplied as an input,

NimSim will automatically simulate UAV flight to the specified waypoint. Each of

these inputs are described in more detail below.
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A.2.1 Low-Level Flight Commands

Low-level flight commands can be supplied to NimSim in the event direct control of

the simulated UAV is desired. A flight command FC is defined as FC = (x, y, z, w),

where x, y, and z describe the components of the three-dimensional direction vector

along which the simulated UAV is to fly and w describes the rate of yaw motion that

is to be applied in the unit of radians per second.

Each of the values x, y, and z are permitted to take any value in the range

[−1.0, 1.0]. The value w is permitted to take any value in the range [0, wmax], where

wmax is the maximum yaw rate of the simulated UAV.

As an example, suppose the input Inputi = (0.5,−0.3, 0.8, 3.14) is supplied to

NimSim. This input will send the UAV along a direction vector with component

values (0.5,−0.3, 0.8). The components of the direction vector describe the percentage

of maximum force the UAV is capable of applying (in both the positive and negative

direction). This input will also introduce yaw motion at a rate of 3.14 radians per

second. NimSim maps these component and yaw values to simulated rates of motion

based on the configuration supplied by the user, described in Section A.3.

In addition to low-level flight commands, NimSim supports three operational com-

mands, “take off”, “land,” and “reset” that encode pre-defined low-level flight com-

mands. The take off operation simulates UAV take off, the land command simulates

the UAV landing, and the reset command resets all force and position data within

the simulator (this is equivalent to powering down or restarting a physical UAV).

A.2.2 Target Waypoint

NimSim will accept as input a target waypoint WP = (x, y, z), a three-tuple that de-

scribes a point in space. The units of each x, y, and z value are provided in millimeters.
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Upon initialization, the simulated UAV will begin at point (0, 0, 0). The values pro-

vided in a waypoint WPi = (xi, yi, zi) are relative to this starting position. For exam-

ple, if the UAV begins at point (0, 0, 0), and the waypoint WP1 = (1000, 2000, 1500)

is supplied, the simulated UAV will fly 1000mm in the x direction, 2000mm in the y

direction, and 1500mm in the z direction.

In order to direct the simulated UAV to a target waypoint, NimSim computes

a three-dimensional direction vector that points from the simulated UAV’s current

position to the target waypoint. The components of this vector are used to create

low-level flight commands. These flight commands then move the simulated UAV at a

constant velocity towards the target waypoint. When the simulated UAV reaches the

target waypoint, a zero-valued flight command is applied and simulated drag slows

the simulated UAV until it stops.

A.2.3 Output

NimSim will produce as output the simulated position Posi of the simulated UAV

expressed as a four-dimensional point in space for a given time slice i. Formally, Posi

is defined as Posi = (xi, yi, zi, wi), where (xi, yi, zi) describes the three-dimensional

point in space where the simulated UAV is located at time slice i, and wi describes

the heading of the UAV at time slice i. Positional data reported by NimSim is

relative to the simulated UAV’s starting location. By default, the UAV originates at

Pos0 = (0, 0, 0, 0) when the simulation begins or is reset.

A.3 NimSim Configuration

In order to effectively simulate a wide array of UAVs, NimSim relies on a set of

configuration values that describe the physical properties of the UAV to be simulated
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Configuration Type Description Units Default Value

MAX VZ Max Vertical Velocity mm/sec 2000 mm/sec
MAX YAW RATE Max Yaw Rate radians/sec 3.14 radians/sec
MAX EULER Max Euler Angle radians 0.26 radians
MAX ALTITUDE Max Altitude mm 5000 mm
FORCE OF GRAVITY Gravity Force N 4.0 4N
ACCEL DUE TO GRAV Gravity Acceleration mm/sec2 9800 mm/sec2

MASS OF DRONE UAV Mass kg 0.408 kg
POS VZ GAIN Ascent Gain none 0.97
NEG VZ GAIN Descent Gain none 0.4
PITCH GAIN Pitch Gain none 1.0
ROLL GAIN Roll Gain none 1.0
ROTOR SU TIME Rotor Spin-Up sec 1.0 sec
TAKEOFF DURATION Takeoff Duration sec 1.5 sec
TARGET TO ALT Takeoff Altitude mm 480 mm

Table A.1: NimSim Configuration Values

(such as the UAV’s mass), physics values that describe the UAV’s movement (such

as acceleration rates), and restrictions on the movement of the UAV (such as the

maximum euler angle and yaw rate). NimSim can be configured in two ways, via a

configuration file or dynamically at run-time. If no configuration values are supplied

at runtime, default values from the configuration file are applied. NimSim includes

configuration values that are tuned to simulate a Parrot AR.Drone1.

Table A.1 shows the NimSim configuration values that can be modified by the

user. In addition, it gives their units and default values. The first 4 configuration

values describe limits imposed on the simulated UAV. That is, maximum vertical

velocity, yaw rate, Euler angle, and altitude. The next 5 values are concerned with

ascent and descent. They take into account gravity and the simulated UAV’s mass. In

addition, “gain” values can be supplied that apply to ascent, descend, pitch, and roll.

These values fine-tune the movement of the simulated UAV and must be determined

1http://ardrone2.parrot.com/usa/

http://ardrone2.parrot.com/usa/
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empirically. The last 3 configuration values describe the simulated UAV’s takeoff

behavior, i.e. rotor spin-up time, takeoff duration, and the target takeoff altitude.

There are two more configurations that are not listed in Table A.1. These con-

figurations are responsible for mapping flight commands into force values, both in

the vertical and horizontal directions. The configurations are supplied in the form

of polynomial that describes an trend line. The trend line maps a flight command

component into a force value. These trend lines must be determined empirically for

each type of UAV that is to be simulated. The default trend line provided for vertical

force mapping is 0.6402x3− 2.0× 10−16x2 + 0.4647x. The default trend line provided

for horizontal (i.e. pitch and roll) force mapping is 0.5385x1 + 0.8675. For a given

flight command component (i.e. “x” value), these trends lines will produce the net

force (N) to be applied to the simulated UAV.

A.4 NimSim Implementation

This section describes in the implementation of NimSim. NimSim is implemented

in the C++ programming language [35]. Further, NimSim is built with Robotic

Operating System (ROS) [29]. ROS is a meta-operating system that provides pub-

lisher/subscriber communication functionality (referred to as “topics”) between dis-

tinct computational units (referred to as “nodes”).

Each architectural module described in Section A.1 is composed of one or more

ROS nodes. This type of implementation is advantageous because it allows modules to

be easily changes and modified with minimal impact on the rest of the simulator. Fur-

ther, because each module is decoupled and communicates via a publisher/subscriber

scheme, if a node stops executing due to a failure, the other nodes in the system

will continue to execute without being affected. Another benefit of using ROS for
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NimSim is that the UAVs used in the Nimbus Lab are already built and configured to

communicate and interact with ROS. Therefore, NimSim can consume and produce

messages in the same way as the physical UAVs, lessening the impact of integrating

and using NimSim with new projects.

In order to visualize the simulated UAV in a graphical environment (as described

in Section A.1.5), RViz is leveraged. RViz is three-dimensional visualization tool for

ROS. Because it is built for ROS, it consumes messages from special topics that de-

scribe the content to be visualized. Therefore, is it a simple operation to publish

messages from NimSim that describe the position and flight path of the simulated

UAV that are then used by RViz to produce an interactive three-dimensional visual-

ization.
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