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Abstract

As plant science advances, the quantitative measurement of 3D plant growth has
become an essential tool to evaluate the growth performance of genetically modified
seeds or plants. In the past, “wet volumes” had been used to quantitatively measure
plant growth which result in the destruction of the plants. Other traditional methods
like interferometry methods or mechanical methods are also inefficient because they
are either invasive or unable to provide sufficient growth information. On the other
hand, computer vision methods, especially optical and range flow techniques, are
non-contact, more accurate, and relatively less expensive. But they require a fixed
light source for the experimental environment and also, higher acquisition rate for
the data.

In this thesis, we generate a number of 3D range scans of the Arabidopsis thaliana
plant from different viewpoints. We use ShapeGrabber laser scanner to acquire the
scanned data and Geomagic Studio 12 CAD software to register these scans to produce
3D polygonal meshes. Then, the canopy surface area and 3D stem volume of the plant
are computed from these meshes to determine its growth over a time cycle. To perform
registration in Geomagic, 6 ping pong balls are used as reference spheres. However,
because the laser scanner can only see the 3D environment that is visible from its
line-of-sight, the balls are imaged as semi-spheres in the original range images. But,
Geomagic is unable to register multiple images with incomplete semi-sphere data
and requires full spheres as target objects. Zhao (MSc UWO 2010) and Yang (MSc
UWO 2009) manually replaced these semi-spheres with artificially generated spheres
using Geomagic which is both tedious and error prone. Moreover, they manually
rotated the images to find out the pair of spheres that matches in adjacent range
scans and aligned them manually before performing the registration. Because of
the manual nature of this processing, full or semi automation of the registration
process is very desirable. Among the major contributions of this research are not
only to automatically generate synthetic sphere data but also detect and localize the
semi-spheres in the original range images using parameter estimation techniques and
parametric equation of spheres. Additionally, we reconstruct the original range images
by replacing the incomplete semi-sphere data with “perfect” full sphere data to aid
Geomagic during the automatic detection of target objects. After this pre-processing,
the modified images are automatically registered using Geomagic macros so that the
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3D polygonal meshes found from the registration process can be used to measure plant
growth quantitatively. We believe that the automation of the registration process is
a good first step towards a fully automated system of 3D plant growth measurement.
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Chapter 1

Introduction

This chapter briefly outlines the problems tackled by this thesis and the motivation
for this research. The main contributions of the thesis are summarized and the thesis
outline is also presented here.

For the last few decades, plant scientists, genetic engineers, and bio-technologists
have been working together to develop genetically modified seeds to increase the
productivity of plants as well as to find more means of their use as renewable resources.
It is important for them to be able to measure the 3D growth, both quantitatively
and non-invasively, to see the effects of genetic alteration on the plants. Currently,
this is a difficult task as the observation depends on subtle organic changes.

Traditionally, three types of quantitative measurements have been used to de-
termine plant growth; namely, interferometry methods, mechanical methods, and
computer vision methods. Interferometry methods [1, 2], being non-contact and non-
invasive, require a complex mirror setup and are capable of measuring 3D information
but only for a small number of points on the plant, which is insufficient in most cases.
Mechanical methods [3, 4], on the other hand, require transducers to be attached to
the plant; not only is this invasive but the 3D information is only provided at the
transducers’ locations. Moreover, the effects of the transducers’ contact on the plant
is still undocumented. Computer vision methods, especially, 2D and 3D optical flow
[5, 6, 7, 8, 9] or 3D range flow [9, 10, 11, 12, 13, 14], are non-contact and non-intrusive,
more accurate, and relatively inexpensive (i.e., usually require relatively low-priced
equipment like cameras and computers). Optical and range flow methods can provide
dense growth, leaf motion and leaf expansion measurements. But problems associated
with flow approaches include that local rigidity is assumed and that the lighting must
be fixed. Moreover, the acquisition rate for the data must be adequate (e.g., 15-30
images per second for image data and 1 scan every 2-3 minutes for range data).

In this thesis, instead of using optical or range flow methods, we used a number
of 3D range scans (2D image with depth information of points in a scene from a
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specific point) of a plant (Arabidopsis thaliana), taken from different viewpoints,
to reconstruct a 3D polygonal mesh of it. ShapeGrabber range sensor is used to
acquire the scanned data and to merge these scans into 3D polygonal meshes, we
use Geomagic Studio 12 CAD software. Then, from these polygonal meshes, canopy
surface areas and 3D stem volumes are computed to determine the plant’s growth
over a time cycle. 12 range images of the Arabidopsis plant(s) are acquired as they
are rotated 30◦ about their center on a circular table. The range sensor is at a fixed
location with its line-of-sight towards the plant(s). Such 12 range images together
make up a single dataset indicating the plant’s growth in a particular time over
its entire growth cycle. To perform the registration process in Geomagic, 6 ping
pong balls are used as reference spheres and each adjacent range image must have
at least 3 or more common spheres visible. These reference spheres are imaged as
semi-spheres in the original range images (as the laser scanner can only see those
parts of an object that are visible from its line-of-sight). However, Geomagic requires
full spheres and not semi-spheres for its registration of adjacent images. Thus, to
date, Zhao [15] and Yang [16] manually replaced these semi-spheres with artificially
generated spheres using Geomagic. This is a tedious and error prone task. One of the
major contributions of this research is to automatically generate synthetic spheres,
detect and localize the semi-spheres, and then to replace them with the “perfect” full
sphere data inside the original range images. After the pre-processing, the merging
(registration) is accomplished on these modified range data to generate 3D polygonal
meshes so that they can be further used to quantitatively measure plant growth.

1.1 Problem Statement

This research is a continuation of the work done by Zhao [15] and Yang [16]. In their
theses, Zhao and Yang used the following three steps to obtain the synthesized 3D
polygonal meshes from the 3D range images:

1. In order to merge each 3D range image properly, ping pong balls were used as
the reference spheres.

2. From every dataset, consists of 12 raw range images, a single 3D synthesized
polygonal mesh was generated.

3. Before performing the quantitative analyses, unwanted artifacts (e.g., the back-
ground circular table, the pot(s), and soil) were trimmed away. The reference
spheres were also removed before the 3D polygonal meshes were computed.

The aforementioned approach has some major drawbacks:
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1. First, the whole procedure was performed manually, requiring large time re-
sources. For instance, it took more than 4 hours for Yang to complete the
registration process for a single dataset and she used 75 datasets to measure
the overall growth cycle of a set of Arabidopsis thaliana plants. Moreover, an-
other three weeks were needed to process the synthesized 3D polygonal meshes,
resulting from the registration , before measuring plant growth from them.

2. Second, the raw range images generated by the ShapeGrabber laser scanner
(3PI files) are generally large in size, ranging from 30-50 MB. To construct a
single scene, both Zhao and Yang used 12 range images that had to be aligned
and merged together. Because of this large dataset, the registration process
consumed much manual and computational time.

3. Third, it should be emphasized, considerable manual labor was required through-
out the registration process due to the incompleteness of 3D range data, spe-
cially the reference spheres. Because of this, automation of the registration
process using Geomagic Studio 12 was difficult. We describe these difficulties
in more detail:

• One of the main problems with the reference spheres is that there were
“holes” in the data where part of the surface is inadequately sampled.
The specular reflectance property of the polished surface of the reference
spheres could be one of the reasons for this incompleteness of the range
data. It is possible that due to the specular reflective property of the
reference spheres, the ShapeGrabber sensor failed to measure adequate
surface information for the reference spheres.

• As Yang mention in her thesis, ShapeGrabber SG1002 3D scanner (used
during the experiment), was not able to clearly capture the target objects
under bright visible light as its red laser beam is 660 nm, which is in the
visible spectrum. Although, to minimize the interference with the visible
spectrum light (e.g., daylight), Yang conducted the experiment between
8:00 P.M. to 8:00 A.M. daily.

• Moreover, occlusion of reference spheres via plant foliage can be observed
in many of the later range images during the flowering stage of the plant
growth. Due to this phenomenon, the scanner sensor was unable to fully
capture the target spheres.

• Since the range sensor can only see the 3D environmental points that are
visible from its line-of-sight, only semi-spheres (or less) was recovered in a
single scan.

Because of these aforementioned reasons, Geomagic Studio 12 was unable to
detect the semi-spheres as reference objects during the registration process au-
tomatically, as full sphere surface data are needed. To solve this, Zhao and
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Yang drew a boundary around the incomplete semi-spheres manually and used
Geomagic’s “Best Fit” tool to fit a perfect sphere to incomplete semi-sphere
points. The accuracy of this fit in Geomagic fully depends on the initial manual
selection of the boundary area. The manual enhancement of semi-spheres was
performed on each visible semi-sphere in the 12 views of each dataset. Even
after this manual enhancement, further manual assistance was needed for Ge-
omagic to accomplish “Target Registration”. Both Zhao and Yang opened all
the 12 views of each dataset in Geomagic’s “Display Manager” and manually
rotated them to find out the matching pair of spheres in adjacent range scans.
They did this for all the visible spheres in a dataset as Geomagic needs to
know these information to merge these images properly. In brief, they manu-
ally aligned them before performing “Target Registration” in Geomagic. Yang
performed this tedious manual alignment on all 75 of her datasets. Because of
these reasons, the full automation or semi-automation of the registration pro-
cess is very desirable. Therefore, the main goal of this thesis is to automate
the registration process to reduce human interaction and to increase speed and
accuracy of quantitative plant growth analysis.

1.2 Motivation

In the past, quantitative plant growth was made by using “wet” volumes (submerging
a plant in a large container with a known amount of water and measuring the volume
displacement of the water) that resulted in the destruction of the plant or using
transducer which measured leaf motion and (maybe) plant elongation (the effect of
the contact of the transducer and the plant is unknown till to the date). These days,
with genetic modification of a plant, it is more important than ever to be able to
quantitatively measure the 3D growth of a plant in a non-invasive and non-contact
manner. Moreover, the rapid growth of plant science increases the demand of this kind
of quantitative measurement of plant growth. In their theses, Zhao and Yang tried
to provide a plant growth measurement system using ShapeGrabber laser scanner
and Geomagic Studio. However, due to numbers of reasons (section 1.1), such as
the incomplete 3D range data, the absence of Geomagic macros (i.e., to automate
Geomagic button pressing and other selection-based action), they were unable to
provide a complete or even semi-automatic registration process. As a result, the
growth measurement process of Arabidopsis thaliana became very time consuming
and less accurate than desired. So, the main motivation of this thesis is to fully
automate the registration process to provide a self-sustained and more accurate tool
for the registration process.
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1.3 Thesis Contributions

The major contribution of this thesis is the automation of the entire registration
process. To do this, the following associated goals are accomplished.

1.3.1 Generating Full Sphere from Semi-sphere Data

The reference spheres data inside the original 3PI files are incomplete. The reasons
for this incomplete data include the specularity on the reference spheres (i.e., the ping
pong balls). Specular reflection reflects the laser ray away from the scanner’s sensor.
As a result, it is possible that the laser sensor failed to collect any information for that
surface area. Secondly, because the growth pattern of the plants cannot be anticipated
in the earlier stages of its growth, possible occlusion of reference spheres may occur via
plant foliage, specially, during the flowering stage. Lastly, the laser scanners cannot
scan the surface of any object that is not visible from its line-of-sight (e.g., the back
faces of the reference spheres). Unfortunately, Geomagic Studio 12 cannot register
the range images automatically without full sphere data. In their theses, Zhao and
Yang manually fitted spheres to incomplete semi-spheres data using Geomagic’s “Best
Fit” tool. However, to overcome this problem automatically, we detect the center
and radius of each reference sphere in the original 3D range data using parameter
estimation techniques, namely, least-squares algorithm and M-Estimation for sphere
fitting. Then using these estimated values as well as the parametric equation of sphere,
the 3D sphere co-ordinates are generated. Last of all, to reconstruct each view, the
incomplete semi-sphere data are replaced by the newly generated full sphere inside
the range images.

1.3.2 Automating the Registration Process using Geomagic

Macros

Because registration was manually performed previously, continuous observation and
attention was required, which is both tedious and exhausting. By developing macros
to perform all the actions in Geomagic, we nearly automate the whole registration
process by reducing the need for human interactions. Macros in Geomagic are set of
user-defined instructions that are used to eliminate human interaction during repet-
itive tasks or steps. In Geomagic, macros can be written using VBScript, Python
and Javascript. We use VBScript to write these macros that perform Geomagic’s
registration process in a number of steps, without requiring selection-based actions
(e.g., mouse clicks for selecting a particular tool). In addition, these macros can save
the output files in user defined directories for future processing. This use of macros
therefore eliminates the laborious human effort used before.
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1.3.3 Improving Speed and Accuracy

As the original 3PI files have incomplete reference spheres (just the front faces with
holes), the detection of targets for registration as well as the registration process
itself are significantly slow. The automation of Geomagic’s registration process, ac-
complished in this thesis, can be shown to be a very useful tool for quantitative
plant growth measurement, leading to significant computational speedup and a more
accurate quantitative analyses of plant growth.

Overall, the main goal of this thesis is not to measure the plant growth at the
different stages of its growth as Zhao and Yang did in their theses, but to provide a
self-sustained infrastructure for the overall registration process using Geomagic Studio
12. We believe that this automation of the registration process is a good first step
towards a fully automated system of 3D plant growth measurement.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 summarizes the literature survey. This chapter provides a general
overview of various parameter estimation techniques because we need to fit a sphere
to semi-sphere data by estimating its center and radius. In addition, it surveys
some of the recent activities of plant growth measurement using 3D computer vision
techniques.

Chapter 3 introduces the proposed methodology used in this thesis. We outline
the algorithms applied to the raw range images to overcome the problems stated in
Section 1.1. Moreover, this chapter also discusses the macros used to automate the
registration process, as well as all the steps needed in the quantitative analyses of the
3D growth measurement of Arabidopsis thaliana plant using Geomagic Studio 12.

Chapter 4 presents a detailed analysis of experimental application of our algorithm
to some of Yang’s range datasets. This chapter includes a performance analysis of
the algorithms used to estimate sphere center and radius. Also, we measure canopy
surface area and 3D stem volume of Arabidopsis plants from some of Yang’s range
datasets using our approach and compare the experimental outcomes with Yang’s
results.

Finally, Chapter 5 concludes the thesis and gives future research directions.

appendix A provides estimated average radius and standard deviation of the target
spheres of datasets 30-40 using LS, Huber and Bisquare. appendix B shows average
residual and standard deviation of datasets 30-40 using LS, Huber and Bisquare. In
appendix C we have estimated average radius and standard deviation of the tar-
get spheres of datasets 60-70 using LS, Huber and Bisquare. Average residual and



7

standard deviation of datasets 60-70 using LS, Huber and Bisquare can be found in
appendix D. Whole Plants Surface Area Measurement From Yang and Our Experi-
ment are displayed in appendix E. appendix F shows 3D Stem Volume Measurement
From Yang Our Experiment. The macros, written in VBScript, used to Automate
Various Geomagic’s Tools to eliminate human interaction can be found in appendix
G.



Chapter 2

Literature Review

This chapter provides a general overview of the various parameter estimation tech-
niques widely used in Image Processing and Computer Vision. It also reviews some of
the literature on quantitative plant growth measurement using 3D imaging technology.

2.1 A General Overview of Parameter Estimation

Techniques

Estimation theory is a discipline in Statistics and signal processing that provides tools
to deal with the computation of multi-dimensional parameter values from experimen-
tal data. Parameter estimation theory is often used in the field of Image Processing
and Computer Vision. But for the last few decades, the overwhelming growth of 3D
imaging systems and 3D CAD software makes parameter estimation techniques even
more important. These techniques have become an important component in many
applications in Image Processing and Computer Vision, which depend on some form
of geometric feature detection and estimation from measured data.

Most parameter estimation problems, generally, can be visualized as a combination
of the following four features [17]:

1. Criterion: The selection of the best optimization function, which can possess
either a minimization or a maximization criterion.

2. Estimation: The choice of best method to optimize the chosen objective func-
tion.

3. Design: Efficient and optimal implementation of the chosen method in order
to achieve the best result from the objective function.

8
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4. Modeling: The determination of the mathematical model best describing the
system and the error in the measurement.

Assume that p is the m dimensional vector containing the parameters to be esti-
mated, If the system is noise-free, then the output vector z can be represented as a
vector function, f, which relates z to p as follows:

f(p, z) = 0. (2.1)

Because, in practice, a system is never noise-free, observed measurements y (e.g., the
noisy input vector) are only available for z corrupted with noise, ǫ:

y = z+ ǫ. (2.2)

Usually, a number of measurements, yi (i = 1, ..., n), are taken for the system and
the parameter vector p is estimated using yi. As the measured data is noisy, Eq. 2.1
does not hold and we need to derive a new function F that relates yi to p:

F (p,yi, ...,yn). (2.3)

Usually, Eq. 2.3, known as the cost function or the objective function, needs to be
optimized to find the best solution according to some criteria (or constraints). If
there are no constraints on p and the function F has first and second order partial
derivatives, the necessary conditions for a minimum to exist are given by Eq. 2.4 and
2.5 as follows:

∂F

∂p
= 0 (2.4)

and
∂2F

∂p2
> 0. (2.5)

Therefore, the basic idea of parameter estimation is to minimize the cost function
while satisfying various constraints if applied.

2.2 Basic Categories of Parameter Estimation

Parameter estimation techniques can be subdivided into two main categories:

1. Least-Squares Fitting and

2. Robust Estimation.

In this thesis, our main target is the problems related to sphere fitting using multidi-
mensional range data, most of the mathematical models and examples, used in this
chapter, are based on sphere.
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2.2.1 Least-Squares Fitting

Because of the simplicity of its computation, Least Squares (hereinafter referred to
as LS) is one of the most widely used parameter estimation methods. Based on
differences in the error function, LS methods can be divided into two main categories:

1. Algebraic Techniques and

2. Geometric Techniques.

2.2.1.1 LS Fitting Based on Algebraic Techniques

Algebraic fitting is based on an implicit equation, F (x,p) = 0, with the parameter
vector p = (p1, p2, ....., pq) describing the object to be fitted. In this method, the error
is defined by the amount of deviation (residual) that violates the system of equations.
The non-equality of the equation, F (x,p) 6= 0, indicates that the given points do not
fully lie on the geometric feature.

The equation of a sphere having center at (x0, y0, z0) and radius r is given by:

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2. (2.6)

Substituting x0 = −a
2
, y0 = − b

2
, z0 = − c

2
and r2 = a2+b2+c2

4
− d yields an alternative

equation:
x2 + y2 + z2 + ax+ by + cz + d = 0. (2.7)

In Eq. 2.7, the sphere is expressed in terms of linear parameters, a, b, c, and d. The
center co-ordinates and the radius of the sphere can be estimated from these values.
It should be noted that Eq. 2.7 only has geometric meaning if its parameters a, b, c,
and d satisfy the constraint:

a2 + b2 + c2

4
− d ≥ 0 (2.8)

Otherwise, the resulting radius would not be a real number. If a data point, (xi, yi, zi),
does not fully lie on a sphere, using Eq. 2.6 we can derive the definition of its deviation
as follows:

∆i = (xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2 − r2, (2.9)

or equivalently, using Eq. 2.7 as:

∆i = x2

i + y2i + z2i + axi + byi + czi + d. (2.10)

Eq. 2.11 below is the objective function for an algebraic function using the LS norm.

FAlgebraic =
n

∑

i=0

(x2

i + y2i + z2i + axi + byi + czi + d)2, (2.11)

where the LS norm of a vector is the magnitude of that vector, i.e. for p = p1, ..., pn,
the magnitude of p is given by ||p||2 =

√

p21 + ... + p2n.
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2.2.1.2 The Insufficiency of Algebraic Techniques

The algebraic distance based LS method is computationally efficient as the deviation
function is linear in its parameters. However, in spite of this advantage, the results
of algebraic fitting are often not satisfactory. Among the many disadvantages of
algebraic fitting are [18, 19]:

1. Algebraic techniques are not reliable because of their high sensitivity towards
noise. As a result, sometimes it is difficult to test the reliability of the estimated
parameters as these values can be biased because of outliers,

2. The fitting errors are not properly weighted and the outliers can significantly
influence the result, and

3. The fitting procedure may end up with an unintended geometric features (e.g.,
a hyperbola instead of an ellipse).

To overcome these problems, many researchers prefer to use geometric techniques
instead.

2.2.1.3 LS Fitting Based on Euclidean Norm

Geometric fitting techniques are based on the actual Euclidean or the shortest distance
of the measured sphere data. The original Euclidean distance of a data point (xi, yi, zi)
from the estimated sphere uses the computed center co-ordinates, (x0, y0, z0), and the
computed radius r to measure the distance of this data point from the estimated
sphere. The equation of deviation for geometric fitting is as follows:

∆i =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 − r. (2.12)

Using the LS norm, the objective function is defined as Eq. 2.13:

FGeometric =

n
∑

i=0

(
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 − r)2. (2.13)

Although simple, the algebraic fitting is more sensitive to outliers than the geometric
fitting while the latter is computationally more expensive than the prior. Geometric
fitting is more robust and accurate than the algebraic fitting. So, if it can be known
beforehand that the system is (relatively) free of noise, the LS method based on
algebraic fitting may be the best option to use.

Variation and improvisation of the LS methods, both algebraic and geometric, can
be found in many scholarly articles, many of which even attempted to improve their
performances by getting over the shortcomings. In his paper, Zhang [17] discussed
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the pros and the cons of the gradient weighted LS method. In case of ordinary LS
method, optimal (in terms of minimum covariance) solution is promised if the errors
are uncorrelated and their variances are constant. But in case of a system of equations
having unequal variances, ordinary LS does not yield an optimal solution. In order to
obtain a constant variance function, it is sufficient to divide the original function by
its gradient and in that case, the gradient weighted LS proves to be effective. In the
case of the gradient weighted LS method, the minimum of the sum of squares is found
by setting the gradient to zero. However, the gradient weighted LS method, being a
nonlinear minimization problem, does not provide a closed-form solution. Therefore,
the estimated solution is only an approximation and in practice, iterative procedure
needs to be run.

Both algebraic and geometric distance based LS methods consider only the values
of co-ordinates of measured points and not the direction towards which those data
points have been acquired using 3D imaging systems (e.g., laser scanners and opti-
cal range cameras). The geometric scan-directed method, a novel idea proposed by
Witzgall et al. [20, 19], considers the values of co-ordinates of the measured points
as well as the direction of acquisition. In their experimental setup, authors used a
LADAR (LAser Detection And Ranging) scanner, capable of generating millions of
data points by sending out a laser signal and analyzing its reflection back to the
instrument. Among the assumptions of the algorithm are that the data points are
acquired in the direction of scan and the impact of a data point (xi, yi, zi) on a sphere
is found on a ray, referred to as “scan ray”, emanating from the instrument position,
(0, 0, 0) (origin), so that the intended target point lies at the intersection of the scan
ray with the sphere. The scan ray, as it does not intersect the sphere, experiences a
“miss”; otherwise, a “hit”. Although every data point, as it is in the dataset, arises
from a hit. But as the sphere is not in best-fit position, misses are to be expected.
The version of “directional” fitting reported by the authors distinguishes between two
deviations based on “hit” and “miss”. The procedure deletes those “miss” points and
minimize the point cloud. The full point cloud is then again screened for points that
cause misses of the re-minimized sphere, and these points are deleted before the next
re-minimization. This process is repeated unless the number of misses has stabilized.
The objective is to stop at a sphere fitted to a stable set of data points all providing
hits. Recent research shows that the proposed method, still subject to more exper-
iments, successfully solves the sphere fitting problem. The experiment, conducted
in this research, indicates that for certain applications it may not be enough to fit
geometric features on the co-ordinates of points alone, but to consider the directions
in which those points are acquired as well.

A robust, but simple, non-parametric algorithm based on geometric fitting for the
LS method is proposed by Ahn et al. [18]. In their research, the authors developed an
efficient technique for the fitting of any geometric structure including circles, spheres,
ellipses, hyperbolas, and parabolas. The main achievement was to develop a com-
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mon technique that is not feature specific (e.g., circle or sphere specific algorithm)
rather than provides solution for may geometric features like circles, spheres, ellipses,
hyperbolas and parabolas.

Fitzgibbon et al. [21, 22] can be named as pioneers for their proposed ellipse-
specific algorithm. They designed a non-iterative fitting method specifically for el-
lipses. The method incorporates the ellipticity constraint, 4ac−b2 = 1 into a normal-
ization factor by minimizing the algebraic distance. This algorithm always returns
ellipse parameters even from data corrupted by significant noise. After the devel-
opment of the Fitzgibbon et al.’s ellipse-specific fitting algorithm, Halir and Flusser
[23] analyzed this algorithm. They characterized the drawbacks of Fitzgibbon et al.’s
algorithm method and proposed improvements. The approach of Fitzgibbon et al.
has both singularity and numerical instability problems often yielding a significantly
incorrect solution. By decomposing and rearranging the constraint and scatter ma-
trices, Halir and Flusser overcome the singularity problem. They evaluated their
algorithm for a large amount of range data and their findings showed that their pro-
posed approach preserved favorable properties such as a guaranteed ellipse specific
solution and robustness against noise. In addition, their proposed method removes
the numerical stability problem and yields reliable optimal solutions.

Gander et al. [24] examined both algebraic and geometric distance problems based
on synthetic data for circles and ellipses. They reported that the latter are more stable
although the former must be acknowledged for their simplicity. They concluded that
the comparison between these two methods would not be very enlightening due to the
absence of proper estimation or objective criterion. So, they experimented different
non-liner algorithms (e.g., Gauss-Newton, Newton, Gauss-Newton with Marquardt
modification, Variable projection, and Orthogonal distance regression) to compute the
geometric fit with respect to stability and efficiency. The general conclusion based on
a small dataset includes that these non-linear algorithms were expensive compared to
algebraic solution, newton method was the most efficient of all. However, the variable
projection algorithm was the most expensive and finally, for ellipse fitting problem,
orthogonal distance regression algorithm was the most promising one.

One of the major drawbacks of the non-linear LS method is the randomized restart-
ing needed to overcome the local minima or maxima. Most of these algorithms start
with initial guesses for the parameters and then refine the values iteratively. This can
result in unbounded running time for most non-linear LS algorithms. Burr et al. [25]
used “inverse transformation” to overcome this problem along with the “stereographic
projection”. The first algorithm takes advantage of the property that for spheres that
pass through the inversion point (i.e., if all the data points and inversion point lie on a
sphere), the transformed points will lie on a plane. It follows that points distributed
roughly on a sphere, with the least sum of squares fit sphere passing through the
inversion point, will also lie near a plane. The key property taken advantage of in
this algorithm is that points on a sphere in the d-dimensional normal space will lie on
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a d-dimensional sphere on the d+ 1-dimensional hypersphere. In the case presented,
points on a 3-sphere in R

3 will lie on a 3-sphere on the 4-sphere in the transformed
space. This 3-sphere defines a unique hyperplane in R

4, and can be easily found
again using the technique of least squares fitting to a hyperplane. These proposed
algorithms transform the non-linear unbounded problems in bounded time problems.
Their experimental results showed that their proposed algorithm outperformed the
current state-of-the-art algorithms and exhibited favorable time complexities even for
high dimension parameter space.

Most papers on parameter estimation usually only focus on the problems related
with estimation theory. However, Lukács et al. [26] addressed a more generalized
problem of parameter estimation that includes two major problems to the date. First,
finding the principal curvatures of the surfaces and second, fitting of that particular
surface (as defined by these curvatures) to the measured data using a non-linear LS
method. More precisely, the problem addressed by Lukács et al. can be decomposed
into two logical steps; segmentation, where the data points are grouped into sets each
belonging to a different surface and fitting, where the best surface of an appropri-
ate type is fitted to each set of points. However, Lukács et al. report no major
improvement of the LS method.

2.2.2 Robust Estimation

Unlike the classical statistical model, robust statistics models provide a means to
think of alternative estimators that are not affected by large local deviations from the
model (we call these “bad” data points, outliers, to distinguish them from inliers,
the “good” data). More precisely, a robust estimator attenuates the effect of outliers
on the computed results. These outliers could be a side-effect of deviations from
assumptions or could be caused by measurement error. If the percentage of outliers
is not too large (the break point) the computed solution using the robust estimator
can have a reasonable efficiency and reasonably small bias (from the outliers). For
example, the median is a robust measure of its central tendency, while the mean
does not have this property. Another example consists of fitting a line to a collection
of 2D points. If 99% of the points are close to a line with the correct slope and
y intercept but 1% is wildly off (the outliers) then using traditional LS fitting will
yield an incorrect solution for the slope and y intercept while a robust fitting will
completely (nearly) suppress the effect of the outliers.

2.2.2.1 M-estimators

M-estimation [27, 28, 29, 30] is one of the most popular robust techniques that deals
with the sensitivity of the LS regression to outliers in noisy data. These estimators are
normally ignore unusual or deviated data. M-estimation method can also be regarded
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as a generalization of maximum-likelihood estimation. M-estimation can be thought
of as iterative weighted LS, where particular method decide the weight differently at
each iteration.

Fox and Weisberg [28] described the robustness of M-estimators against noisy
data. Earlier, Fox [27] experimented with and reported the performances of three
famous M-estimators: namely, ordinary LS estimator (assuming that the errors be
normally distributed), the Huber estimator and the Turkey Bisquare or Biweight esti-
mator. The authors also compared the results based on their objective functions and
corresponding weight functions. Table 2.1 shows the objective and weight functions
for these three aforementioned robust estimators.

Method Objective Function Weight Function

LS ρLS(e) = e2 ωLS(e) = 1

Huber ρH(e) =

{

1

2
e2 |e| ≤ k

k|e| − 1

2
k2 |e| > k

ωH(e) =

{

1 |e| ≤ k
k
|e| |e| > k

Bisquare ρB(e) =







k2

6

{

1−
[

1−
(

e
k

)2
]3
}

|e| ≤ k

k2

6
|e| > k

ωB =

{

[

1−
(

e
k

)2
]

2 |e| ≤ k

0 |e| > k

Table 2.1: Objective function and weight functions of the LS, Huber and Bisquare
estimators [27]

Table 2.1, as described by Fox, shows that the values of the objective functions for
OLS and Huber, increase without bound as the residual e departs from 0. However,
the change in the rate of increase is more drastic for the OLS than Huber estimator.
In contrast, the Bisquare objective function values eventually level off (for |e| > k).
One of the major drawbacks of OLS estimator is that it assigns equal weight for every
observation. But for Huber and Bisquare estimators these weights are adaptive. The
value k for the Huber and Bisquare is known as the tuning constant. The smaller
the k value, the more resistance there is against outliers. But in the case of a normal
or Gaussian error distribution, a smaller k value results in higher expense for both
Huber and Bisquare estimators. This is one of the major problems with these two M-
estimators. So, in practice, to reduce the case, the value of k is assigned as k = 1.345σ
and k = 4.685σ for the Huber and Bisquare estimators, respectively (where σ is the
standard deviation of the normal error distribution). It may be noteworthy that in
case of normal error distribution, OLS estimator provides the optimal solution and
computationally less expensive than the other two.

Zhou et al. [29] proposed a sphere center detection algorithm based on M-
estimation to avoid the ambiguity and inaccuracy results reported for the LS method
when the error distribution is not normal. Zhou et al. claimed that most of the state-
of-art algorithms for positioning the center coordinates of the spherical target are
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based on the LS method and thus are vulnerable to outliers as there is no guarantee
that the error distribution of a system is always normal. In practice, due to specu-
lar reflectance property, occlusions and accessibility limitations of parts of a surface,
point clouds may exhibit a large number of outliers and the estimated results can
be radically inconsistent. Most of the state-of-art algorithms that use standard LS
methods, focus on the minimization of sum of the squared residuals,

∑

i ri
2, but Zhou

et al. reduced the effect of outliers by replacing this function with another weighted
function:

min
∑

i

ω(ri)ri
2, (2.14)

where ω is a weight function, the ri are the residuals and σ is the standard deviation
of residuals. Among many weight functions, the authors choose the one proposed
by Professor Zhou Jiangwen [31] as ω1 The aforementioned weight function, ω, en-
sures that if the resulting residual of data exceeds a certain limit that is 2.5 times
larger than the standard deviation, the data are regarded as outliers. Therefore, the
corresponding weight is set to zero so that the data has no effect on the estimated
value(s). Because of the adaptive nature of the weight functions, the M-estimation
based methods are more robust and reliable than the LS methods in most cases.

2.2.2.2 Bounded-Influence Estimators and MM-estimators

Although M-estimator is a popular robust method for dealing with outliers, it can
be vulnerable to high-leverage observations. Basically, leverage implies how far away
a value of the independent variable is from the mean value. The farther away the
observation, the more leverage it has. To avoid this kind of unexpected phenomenon,
bounded-influence estimators [17, 28] like least-trimmed squares (LTS) regression have
been proposed to setup higher breakdown point than M-estimators. For LS methods,
solution is achieved by minimizing sum of squared residuals over n points. However,
instead of minimizing the sum of squared residuals over n points, a subset of those
points (k, for example), are used. The n − k points with the largest residuals are
excluded so that they do not influence the estimation. However, the method being
binary (the data points are either included or excluded), no closed form solution
exists. Therefore, finding a LTS solution is basically done by finding the subset k,
that provides the lowest sum of squared residuals among every possible combination
from n points. As a result, as n increases, the number of combinations grows rapidly
which is one of major problems with LTS estimator. However, LTS estimator has

1ωi =







1 |ri| ≤ 1.5σ
1.5σ

ri
1.5σ < |ri| ≤ 2.5σ

0 2.5σ |> ri|
,

where r is the residual and σ is the standard deviation of residuals. The function implies that if
the r is 2.5 times larger than σ, the data are regarded as outliers. In such cases, to nullify the effect,
the corresponding weight is set to zero, or else, different weight is given to each data point.
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proved to be an efficient starting point for M-estimators. The M-estimation, along
with the use of a bounded-influence estimation to provide initial guess, is often called
MM-estimation [28]. The MM-estimators are more attractive than the M-estimators
as they retain the high break-down point property (nearly 50%) of the bounded-
influence estimator as well as share the efficiency of M-estimators.

2.2.2.3 L1 Regression

In general, L1 regression [28] attempts to minimize the sum of the absolute errors
(the L1 norm). On the other hand, L2 regression (OLS regression), minimizes the
sum of the squared errors (the L2 norm). As a result, L1 regression provides much
less weight to large deviations or outliers. Because of the nature of the error function,
L2 regression is more sensitive towards noise than L1 regression.

2.2.2.4 Regression Diagnostics

Regression diagnostics is one of the oldest methods for robust estimation [32]. This
method attempts to eliminate data that are possibly wrong and reject them by an
analysis of a globally fitted model in an iterative manner. Zhang [17] discussed the
pros and cons of this method. He noted that the major problem of this method is to
find a quality initial guess, as the success of this estimation method depends on it.
Similar to the Bisquare estimator, a poor initial guess for Regression diagnostics may
lead to failure of rejecting the outliers. As a result, this technique does not always
guarantee a correct solution. However, Zhang noted that the regression diagnostics
technique works well for problems with a moderate percentage of outliers.

2.2.2.5 Least Median of Squares (LMedS) Estimators

The least median of squares (LMedS) method estimates the parameters by solving
the nonlinear minimization problem:

min (mediani ri
2), (2.15)

where r is the residual. Unlike LS, this estimator yields the minimum value of the me-
dian of the squared residuals rather than finding the minimum sum of squares. Zhang
[17] discussed both the advantages, robustness toward outliers, and the disadvantages,
impossible to convert to a weighted LS problem, of the LMedS estimator.

It is noteworthy that most of these aforementioned robust estimators were de-
veloped between the mid-1960s and the mid-1980s. The literature show that among
these estimators, the M-estimators, the MM-estimators and the L1 estimators are
the most widely used ones.
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2.3 Recent Plant GrowthMeasurement Techniques

using Computer Vision

As mentioned in Chapter 1, to measure plant growth, plant researchers use three
types of measurement techniques:

1. Interferometry Methods,

2. Mechanical Methods, and

3. Computer Vision Methods.

In their MSc theses, Zhao [15] and Yang [16] discussed these three methods, their
uses, their advantages and disadvantages, and some of the research where these meth-
ods have been applied. So, to avoid repetition, we are not going to discuss these
methods here. However, Table 2.2 taken from Yang [16] is presented here to pro-
vide a quick overview of these three methods by summarizing their representative
examples and describing their major advantages and disadvantages.
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Approaches Benefits Limitations Citations

Interferometry • Non-contact • Requires complex setup Fox and Puffer [1, 2]
• Non-invasive with mirrors and lasers. Jiang and Staude [33]
• Micron accuracy • Performs measurement Dyrseth [34]

at 1 or a few points. Kadono et al. [35]
• Unable to measure leaf
motion.

Mechanical • Simple • This is not a non-contact Lang [3]
Transducers • Low complexity method. Pasumarty et al. [4]

• Only 1 or few points can Lüthen et al. [36]
be measured.

Computer • 3D and non-invasive • Sensitive to lighting condition Barron and Liptay [5, 6]
Vision • Non-contact and vibration. Liptay et al. [37]
Approaches • Required inexpensive equipment • The sequences of the range Aboelela et al. [38]

• Micron accuracy images must be differentiable. Spies et al. [39, 40, 41, 42, 43]
• Uses range images Ortiz-Uribe et al. [44]
• Able to measure leaf expansion
• Provides dense growth measurement

Table 2.2: Advantages and disadvantages of three approaches to measure quantitative plant growth [16]
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It is noteworthy that Zhao and Yang first used 3D volume and 3D areas from
merged 3D laser range scans to measure the growth cycle of Arabidopsis thaliana.
Some recent articles have appeared on using range scanning to measure plant growth.
Apart from this, detail discussion on other categories of plant growth measurement
techniques can be found in Zhao and Yang’s theses.

An accurate system of plant growth measurement is an essential part of most of
the experiments that investigate the effects on plants due to altered environmental
factors. The traditional approach is to harvest a subsample of the test plants over
time (which is time consuming and requires a large number of replicated plants while
suffering from the fact that the harvested individual trees can no longer be used
for further growth study). An alternative non-destructive approach is to monitor
the subtle organic changes in plants over time using allometric relationships [45].
However, a significant amount of time and labor is also required to record various
variables (e.g. plant height and twig and branch length) for a large number of trees.

Keigtleya and Bawden [46] measured the wood volume of Vitis vinifera plants
(commonly known as grape vines), from the images derived using a tripod mounted
laser scanner and compared the results with standard biological water submersion
measurements. From digital calculations, the plant volume was measure using the
combinations of 2, 3, 4, 6 and finally, 10 scans and likewise, volume measurements
was made by submerging the vine trunks and cordons in water and measuring the dis-
placement. Experimental results showed that standard error for the digital technique
dropped rapidly as additional scans were added to volume calculation. Interesting
enough that similar phenomenon is also reported by Zhao and Yang. Also, in both
cases, the estimated digital volumes were greater than those of water submerged
volumes, this method reveals a new, rapid and non-destructive method to remotely
measure standing biomass.

Seidel et al. [47] experimented with 63 potted juvenile Fagus sylvatica L. trees by
measuring total above-ground biomass, the biomass of axes (e.g., stems and twigs)
and the total leaf area. To do so, they used a portable 3D laser scanner (the ZF
Imager 5006) along with the phase difference (interferometry method). They used a
relationship between total number of detected hits for a tree and the tree’s biomass.
The major target of this experiment was to test the potentiality of the proposed
method for measuring the above-ground biomass and compare the results against
traditional biomass harvests and other established allometric estimates of biomass.
Experimental results showed that growth measurements using a laser scanner has
good correlation with above-ground biomass. The results were more accurate for
plants with leaves rather than for defoliated plants and this is also the case with
Zhao and Yang. Their experimental outcomes were more accurate for the vegetative
stage rather than the flowering stage of Arabidopsis thaliana. However, their proposed
method outperformed other alternative non-destructive methods. They also showed
that 3D laser scanning is a promising technique for the non-destructive monitoring of
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biomass and growth in young trees. The main aim of this research was to verify the
feasibility of using TLS to measure the biomass and volume of grape vines.

With recent advances in 3D imaging instrumentation and software, 3D laser scan-
ning has become a common method for the optical measurement of the 3D objects.
As a result, 3D imaging techniques are now being put to use for research in the plant
sciences for evaluating plant growth. Some of these articles, reported by Keigtleya
and Bawden and Seidel et al., are briefly mentioned here. Hosoi and Omasa [48] used
a portable 3D laser scanner to calculate canopy leaf area density profiles for decidu-
ous trees. Watt et al. [49] measured total tree height and the tree’s biomass using
allometric relationships (differential growth rates of the parts of a living organism’s
body) based on the terrestrial laser scanner data. On the other hand, Lim and Treitz
[50] used Airborne laser scanners to derive trees biomass.

2.4 Conclusion

In this chapter, various parameter estimation techniques, mainly LS and robust es-
timation techniques, were surveyed and their advantages and disadvantages stated.
Finally, some of the recent achievements in the field of plant growth measurement
using 3D laser scanning were presented.



Chapter 3

Experimental Methodology

This chapter outlines the pre-processing methods applied on each view of the raw range
images so that Geomagic Studio 12 can automatically create synthesized 3D polygon
meshes from them and then measure the canopy surface areas and 3D stem volumes
from the merged images of the Arabidopsis thaliana plant.

In this thesis, we use the range images collected from the 3D scans of the Arabidop-
sis thaliana plants using ShapeGrabber SG1002 laser range scanner. These images
were recorded by Yang [16] in 75 datasets. Each dataset consists of 12 range scans
of 4 pots of plants (wild type, pBI 121 plasmid control, and two genetically modified
lines called 104 and 31). These pots were placed on a rotating platform. The range
scanner was positioned about 30 cm from the plants with a view angle of roughly 45◦.
The platform was rotated by 30◦ increments, showing the plant at 12 different views
about a full 360◦ rotation. 30◦ rotational increments provided different views of the
plants but had significant overlap of the plants’ body in the adjacent views, allowing
Geomagic to merge these scans to construct 3D model of the plants. Merging these
views allowed a triangular mesh of the plants to be constructed from which plants
growth can be measured. The merging process required that there be at least 3 com-
mon visible reference spheres in each set of adjacent views. Six reference spheres were
used to guarantee this condition. Figure 3.1 shows the experimental setup used by
Yang.

After Yang scanned the images, she calculated the canopy surface areas (leaves
are not flat, for example) and 3D stem volumes of the plants using the triangular
meshes computed from each dataset of 12 scans. This calculation of a triangular
mesh from 12 raw 3D range images was achieved by a manual registration process
using Geomagic Studio. The reasons behind the choice of manual registration for
Yang are mentioned in Section 1.1. However, two major problems are invoked due to
this approach:

• First, it requires human interaction that can introduce significant errors to the

22
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Figure 3.1: The experimental setup used by Yang in the Transgenic lab no. 3 at the
Biotron Experimental Climate Change Research Center, the University of Western
Ontario [16]

subsequent growth measurements.

• Second, it takes hours (more than 4) to process a single dataset.

We introduce several pre-processing techniques to overcome the problems listed
above so as to replace human interaction with automatic registration. We do this
by detecting semi-spheres in the range images and replacing these semi-sphere with
“perfect” synthetic sphere data. Also, macros in Geomagic Studio 12 are used to
replace the selection-based actions (e.g., mouse “clicks”) to select appropriate buttons
to perform the registration process.

Before describing the proposed methodology, two different kinds of file formats
are described here that are used during the implementation phase. This will allow
the readers to more readily understand the proposed methodology and the reason
of using two formats here. Table 3.1 describes the format of the 3PI files. 3PI is
the native file format for the ShapeGrabber scanner. One of the advantages of 3PI
is data is stored in ASCII and can be changed at will by a user. However, once
a 3PI file is opened and modified by Geomagic Studio, it cannot be re-saved as a
3PI file but rather as a WRP file, where WRP is Geomagic’s native file format and
is unfortunately proprietary. As a result, once a file is saved in the WRP format,
it can only be further manipulated by Geomagic Studio (but it cannot be modified
using user-defined functions without Geomagic). Therefore, we use a file format that
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is both known and alterable using both user-defined functions and Geomagic. The
ASCII representation of the STL (Standard Tessellation Language) is used to achieve
the aforementioned goals and Table 3.2 gives a general overview of the STL file format.
Thus, 3PI files are converted to STL files that are used in all further pre-processing.
Once all kind of pre-processing is done on STL files, we convert them in WRP format
to speedup Geomagic’s actions.

Topic Description

Organization of Data - During scanning, data is acquired profile by profile
(i.e., a profile is the data collected from the processing ).
of 1 full laser line).
- In a profile, points are in ascending order along the
X-axis.

Co-ordinate System No specific co-ordinate system is defined for this file format.

Comments - Any line starting with a pound (#) sign is a comment.
- Structured comments, provide additional information,
start with a colon sign (:) followed by the pound (#) sign.
- For example:
- #:Number of Points per Profiles: <integer>

indicates the maximum number of points in a profile.
- #:Number of Profiles: <integer> indicates the
maximum number of profile in the file.
- #:Profile: <integer> indicates a particular profile.
- #:Pose Transformation: describes the standard rigid
transformation applied to the scan data.

Data Points - Each valid data point is represented by one line
in the file.
- Each line consists of the coordinates of the point, the
intensity value and the order of the point in the profile.
- Co-ordinates of a point are floating point values, the
range for the intensity value and the order of the point
is 1200-14000 and 0-1280, respectively.

Table 3.1: 3PI file format (ShapeGrabber laser scanner’s native format)

The methodology followed in this thesis is as follows:

1. For each semi-sphere in the 1st view of the 1st dataset:

i. Segment the Semi-spheres (still a manual process): Each semi-
sphere is manually segmented using Geomagic Studio 12. For each visible
semi-sphere in the original 3PI file, an individual STL file is generated
containing the semi-sphere data for that particular view. Since there are
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Topic Description

Starting String solid (lower case)

Body facet normal n1 n2 n3

outer loop
vertex v1x v1y v1z
vertex v2x v2y v2z
vertex v3x v3y v3z
endloop
endfacet
(Here, the values of n or v are floating point number
in sign-mantissa ’e’-sign-exponent format.)

Ending String endsolid (lower case)

Table 3.2: STL file format

most 6 visible semi-spheres there are at most 6 STL files. It may be
noteworthy that both the 3PI and the STL files contain the same semi-
sphere data but have different formats.

ii. Estimate the Parameters (Using LS Method): Initially, the radius
and the center coordinates are estimated from the STL files containing
the semi-sphere data using a LS sphere estimation method. As the semi-
sphere data inside the STL files are manually segmented, the probability
of having outliers (in this particular place, “outliers” refers affiliated parts
of semi-sphere data, like the stands and overlapping leaves, not the “noisy
data” produced by the scanner) is relatively low. So, LS should return a
reasonable solution here. This, as well as the simplicity of the implemen-
tation and the computation are the major reasons for using the LS method
at this stage. However, these initial estimated values play a vital role as
they serve as the initial guess for the robust estimation stage.

2. Step 1 is repeated for all the views of the 1st dataset.

3. For each view of the 1st to 75th datasets:

i. Segment the Semi-spheres (Automatic Segmentation): Each semi-
sphere is automatically segmented from the 3PI files using the estimated
radius and the center coordinate obtained from step 1 and 2. This au-
tomatic step relies on the assumption that the reference spheres and the
range sensor have not being moved and that each view is generated by
the same rotational increment of (30◦) as before. Likewise, a maximum of
6 individual STL files are generated containing semi-sphere data for each
view.
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ii. Estimate the Parameters (Using Robust Estimation): Now, with
robust estimation, the sphere center coordinates and radius are estimated
using the estimated values from LS method as the initial guess. As af-
filiated parts of semi-sphere data may be introduced due to automatic
segmentation, refinement of parameters is done using robust estimation
techniques in this stage.

iii. Segment the Plant Data: Another STL file, containing only the plant
data, is generated from the original 3PI files by deleting the semi-spheres
using the estimated values of their center coordinates and radius from step
3(ii).

iv. Replace the Semi-Sphere with Full Sphere Data: “Perfect” full
sphere data are generated using the estimated parameter values from step
3(ii) and parametric equation of spheres. Then, the semi-sphere data are
replaced with “perfect” full sphere data and saved as STL files for further
manipulation.

v. Reconstruction of Each View’s Data : There are now 7 STL files
generated from step 3[iii] and step 3[iv], 6 STL files containing full sphere
data (the actual number may vary depending on the number of visible semi-
sphere in the original 3PI files) and 1 STL file containing the plant data.
These files are then combined using Geomagic Studio 12 to reconstruct
each original view. At this point, the reconstructed view contains full
sphere data in the place of the incomplete semi-sphere data.

4. Process of Registration: Each 12 reconstructed views of each dataset are
then registered using Geomagic Studio 12 to generate the synthesized 3D poly-
gon mesh.

5. Measuring Plant Growth: Using the 3D polygon meshes generated from
Step 4, we compute the area and the volume of the plants to estimate the
plants’ growth cycle over the time.

Note that according to the proposed methodology, the manual detection of semi-
spheres from the original raw images is done only once. But in practice, we performed
this manual detection more than once as Yang seems to have moved the position of
the reference spheres as well as the scanner a number of times during the scanning
process (however, this did not affect her results). Table 3.3 shows the ranges of
datasets where the position of all the 6 reference spheres remained static. Each
dataset at the beginning of these range intervals had to be manually segmented.

Figure 3.2 shows a flow chart for the automation process described above.
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Position Number Range of Datasets
Position: 01 00-08
Position: 02 09-11
Position: 03 12-51
Position: 04 54-55
Position: 05 56-62
Position: 06 63-68
Position: 07 69-71
Position: 08 72-78
Position: 09 79-80
Position: 10 81-83

Table 3.3: List of the ranges indicating up to which datasets the position of the ref-
erence spheres was unchanged. Note that datasets 52 and 53 and parts of dataset 51
are missing.

3.1 Implementation of Automatic Registration Pro-

cess

The automation of the registration process comprises of four major stages:

1. Process of segmentation and estimation

2. Replacement of semi-sphere with full sphere data

3. Reconstruction of views

4. Process of registration

The sections following gives the details about the implementation. Figure 3.3 shows
the detail of the stages related to the automation of the aforementioned registration
process.
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Figure 3.2: Steps related to the proposed methodology
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3.1.1 The Process of Segmentation and Estimation

During the segmentation phase, the location of all 6 reference spheres is estimated
from each view either manually or automatically. For both manual and automatic
segmentation, Geomagic Studio 12 and user-defined functions are used, respectively.
The main goal of this step is to separate each semi-sphere from the original 3PI file
and then save the remaining files in STL file format, so that the incomplete semi-
spheres can be replaced by full sphere data, facilitating further manipulation. These
segmented semi-spheres data are used to estimate the center coordinates and radius.
Initially, the LS method is used to estimate these parameters and then fine tuning is
done using robust iterative M-estimation with the help of the previously mentioned
values as the initial guess. After the parameter estimation phase, these estimated
values serve the purpose to generate plant only files by removing the semi-spheres
data as well as to replace the semi-sphere data with “perfect” full sphere data. 7
STL files in total, 6 semi-sphere files and 1 plant only file (semi-spheres removed),
are generated for each view at this phase. Note that the number of semi-sphere files
may vary (≤ 6) depending on the visibility of reference spheres in the original 3PI
file. These newly generated files are used in the reconstruction phase.

3.1.1.1 Segmentation of Semi-Spheres

This stage is accomplished in two different ways:

1. Manual Segmentation of Semi-Spheres: Manual segmentation of semi-
spheres is performed using Geomagic Studio 12. Theoretically, this stage is
needed only for the 1st dataset. But in practice, this is performed for all the
first of datasets where the reference spheres are in constant locations, among the
75 datasets, as Yang changed the spheres’ position during the scanning process.
For further explanation, we just consider the 1st dataset. Each of the 12 views
(12 3PI files) of the 1st dataset is opened in the “Model Manager” of Geomagic
and semi-spheres are segmented manually one by one using “Selection” tool.
While saving these semi-spheres files, the STL file format is used instead of the
3PI format. We use the STL format here as Geomagic Studio does not allow
any altered files to be saved in 3PI format, which is native to ShapeGrabber
laser scanner. We can alter 3PI files using any editor, of course.

Moreover, Geomagic’s native format, WRP, is a propriety format and not acces-
sible to us. Once any file is saved in the WRP format it can not be manipulated
afterward (except by Geomagic, of course). Moreover, the STL format is a well
known file formate can be saved in either ASCII and binary. We use the STL
format is here for both readability and ease of further processing.

2. Automatic Segmentation of Semi-Spheres: Automatic segmentation is
performed on each view of datasets 2-75 (the first view of various subranges
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of the datasets, where the reference spheres are moved, was first manually seg-
mented). Automatic segmentation is accomplished using user-defined function,
Segment Semi Sphere (). To segment the 3D points related to semi-spheres
the estimated parameter values from the estimation phase (Section 3.1.1.2) are
used. Although this step is explained here, in practice, it comes after the man-
ual segmentation and the estimation of the initial center coordinates and radius
of the semi-spheres of the 1st datasets were the reference spheres are moved.
Because the position of the reference spheres is assumed to be static during
the whole scanning process (but Yang [16] moved them to improve the spheres’
visibility) and so, the position of any semi-sphere in any dataset can be located
once the center coordinates and radius of the semi-spheres of the 1st dataset
where reference spheres are moved are computed.

Let us assume that the estimated center coordinates of themth semi-sphere, m =
1, 2, ..., 6, of the nth view, n = 1, 2, ..., 12, of the 1st dataset are (xcm,n,1, ycm,n,1, zcm,n,1)
and the radius is rm,n,1. Then, for all 3D points, (xi, yi, zi), where

√

(xi − xcm,n,1)2 + (yi − ycm,n,1)2 + (zi − zcm,n,1)2 ≤ (rm,n,1 + ε), (3.1)

belong to the mth semi-sphere of the nth view of the rest of the datasets (in
dataset ranges where the reference spheres have not been moved). In Eq. 3.1,
ε = 0.5. is a term used to slightly increase the estimated radius value (so that
all sphere points are definitely included in Eq 3.2.

3.1.1.2 Estimation of Parameters (Center Coordinates and Radius of
Semi-Spheres)

To estimate the center coordinates and radius, two different approaches are used in
this thesis.

1. Estimation of Parameters using LS Method: To estimate the center co-
ordinates and the radius of the semi-spheres for data obtained using manual
segmentation, LS method is used. The main reasons for selecting this method
include ease of designing an efficient error function, simplicity of the method
itself and ease in implementation and computation. Moreover, due to manual
segmentation, the possibility of having affiliated sphere elements is relatively
low.

A user-defined MATLAB function, LS Sphere Fit (), is used to estimate the
parameters using the ordinary LS method. This function is a modification of
the solution of a sphere fitting problem provided by Ken Garrard, one of the
members of MATLAB Central [51]. This function takes the 3D point cloud of
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sphere as input and returns the estimated center coordinates and radius along
with the individual residual as well as the average residual. Eq. 3.2 is used in
the implementation because the equation expresses the parameters, a, b, c, and,
d, in a linear manner:

x2 + y2 + z2 + ax+ by + cz + d = 0. (3.2)

By solving the system of equations, the estimated values of the center coordi-
nates, (xc, yx, zx), and the radius, r, of the sphere are determined from a, b, c,
and, d using Eq. 3.3 and Eq. (3.4), respectively:

(xc, yc, zc) ≡ (−
a

2
,−

b

2
,−

c

2
) (3.3)

and

r =

√

a2 + b2 + c2

4
− d. (3.4)

Note that these estimated values are used as the initial guess for the robust
estimation of spheres. The values obtained from this stage are very important
as the convergence of the robust estimation depends on a good initial guess as
it is an iterative calculation.

2. Estimation of Parameters using Robust Estimation: Because the au-
tomatically segmented semi-spheres in later datasets may be introduced with
extremely outside data (e.g., the stands used for the reference spheres and part
of plant foliage close to the spheres), further refinement is done using a robust
technique, namely M-Estimation. Moreover, data can be corrupted with noise
during scanning process. The estimated values of center coordinates and radius
for the 1st dataset serve as the initial guess for this stage. One of the main
reason (other than the noises introduced during the scanning process) of using
M-Estimation is to protect the estimated parameter values from outliers intro-
duced due to automatic segmentation. Because if a little non-sphere data close
to the sphere is included it can affect the merging stage with wrong position of
target spheres.

When implementing M-Estimation, we examined both the Huber and the Bisquare
estimators, to draw comparisons between their performances and their accuracy.
Important factors related to the implementation of M-Estimators are MaxIter,
the maximum number of iterations allowed for the estimation, TolFun, the ter-
mination tolerance (difference in adjacent residual sum of squares calculations),
and TolX , the termination tolerance on the estimated coefficients. During our
experiments, we use MATLAB’S built-in function “nlinfit” to implement the
Huber and the Bisquare estimators. The values of the aforementioned parame-
ters are set to the default values1.

1The default values of MaxIter, TolFun, and TolX ’ is 100, 1e-8, and 1e-8, respectively, in
MATLAB.
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3.1.1.3 Segmentation of Plant Data

After estimating the center coordinates and the radius for each semi-sphere for all
the datasets, these values are used to delete the semi-spheres data from the original
3PI files, generating a file that contains only the plant data.

If the estimated center coordinates and the radius of one of the semi-spheres in
a particular view is (xc, yc, zc) and r, respectively, then we delete all the (xi, yi, zi)
satisfying:

√

(xi − xc)2 + (yi − yc)2 + (zi − zc)2 ≤ (r + ε) (3.5)

from the 3PI files. Eq. 3.5 is satisfied only for those points lying on or within the
surface of a particular sphere with radius r. However, an additional parameter, ε, is
used with the radius to ensure the successful removal of all semi-sphere data from the
file. If a little non-sphere data close to the sphere is also removed its effect on the
merging stage will be negligible. Figure 3.4(a) shows the original image of the 2nd

view of the 12th dataset and Figure 3.4(b) shows the same image after removing the
semi-spheres data.

(a) (b)

Figure 3.4: Segmentation of plant data; (a) the original raw 3PI image of the 2nd

view of the 12th dataset, (b) the same view after removal of the semi-sphere data from
the original image

3.1.2 Replacement of Semi-sphere with Full Sphere Data

In this phase, the incomplete semi-sphere data are replaced with full sphere data to
aid the automation of the overall registration process. Initially, the 3D coordinates of
a full sphere are generated using the estimated center coordinates and radius values
from the estimation phase (Section 3.1.1.1). After that the newly generated sphere
“perfect” data are saved as individual STL files in ASCII mode.



34

To generate the 3D coordinates in MATLAB, the parametric equations of sphere
were used. The estimated center coordinates and radius values are used in these
equations so that the location of the newly generated full spheres are exactly the
same as the semi-spheres in the original 3PI files during the scanning process. The
parametric equations of a sphere are:

x = xc + rcosθsinϕ

y = yc + rsinθsinϕ

z = zc + rcosϕ.

(3.6)

In this equation, θ is the azimuthal angle that varies from 0 to 2π while ϕ is
the polar angle that varies from 0 to π. Moreover, in these equations, r is the
radius, and (xc, yc, zc) is the center coordinates of the sphere. During implementation,
250000 points are generated using the parametric equations of sphere with an angle
increments of 0.0126 for ∆θ and 0.0063 for ∆φ. Once the 3D full sphere points have
been generated, the coordinates were saved in a STL file. STL files, which represent
the surface geometry of three 3D objects as facets, independent of attributes like color
or texture, can be represented in both ASCII and binary mode. Although binary
files are more compact, the ASCII format of STL files has been used here for both
readability and ease of modification/ manipulation. To store the 3D points in a STL
file, the standard format of an ASCII STL file is maintained so that Geomagic Studio
can read it. As mentioned in Table 3.2, surface normal for a triangle needs to be
informed in the STL file. To calculate the surface normal, N , Eq. 3.7 has been used.
The equation takes the vector cross product (×) of two edges of a triangle to calculate
the surface normal. For a triangle having three 3D points, p1, p2 and p3, the vectors
U = p2 − p1 and V = p3 − p1 can be computed and then the unnormalized surface
normal can be computed as N = U × V . Surface normals can be used by Geomagic
to shade the surfaces. To achieve the goal, a modified version of Bill McDonald’s, one
of the contributors of MATLAB Central, surf2stl () [52] function is used.

Nx = UyVz − UzVy

Ny = UzVx − UxVz

Nz = UxVy − UyVx

(3.7)

Once the full sphere STL files have been generated, these STL files along with
the plant only STL file from the segmentation phase (section 3.1.1.3) are fed into the
next phase to reconstruct the original views with complete reference spheres. Figure
3.5(a) shows one of the segmented semi-spheres of the 1st view of the 1st dataset with
the semi-spheres and Figure 3.5(b) shows the full sphere after the replacement of the
semi-sphere data.
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(a) (b)

Figure 3.5: Replacement of the semi-spheres with the full sphere data; (a) segmented
semi-spheres from the 1st view of the 1st dataset, (b) the same image after replacing
the incomplete semi-sphere data with the full sphere data using the estimated center
coordinates and radius values

3.1.3 Reconstruction of Views

In the reconstruction phase, every view of the each datasets is regenerated with
full sphere data. In the original 3PI files, the reference spheres are incomplete as
they appear as noisy, holey semi-spheres rather than full spheres. To merge the
12 views in each dataset into a single polygonal mesh, the full sphere files from
Section 3.1.2 and the plant only files from Section 3.1.1.3 are combined together using
Geomagic’s tool “Combine” (Polygons → Combine → Combine). This command
creates a single polygonal object combining multiple user selected (active) polygon
objects. To remove the need human interaction, this command is recorded as a macro
using VBScript (Combine.vbs). This phase returns the original views of each dataset
with the full spheres in the place of incomplete semi-spheres. The list of macros
(written in VBScript), used in this thesis, is given in Table 3.4.

Figure 3.6a shows the original raw image of the 1st view of the 30th dataset and
Figure 3.6b shows the reconstructed view with full sphere data.

3.1.4 Process of Registration

Registration is a process of re-orientating two or more objects, point or polygon, that
comprises a single scene. This is a useful process to make a more complete scene by
coinciding the identical regions of different objects so that important information can
be retrieved from that scene using further analysis.

All the previous pre-processing are done only to automate this time consuming
and laborious phase. In the registration phase, the reconstructed views with full
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(a) (b)

Figure 3.6: Reconstruction of views; (a) the original raw 3PI image of the 1st view
of the 30th dataset, (b) the same view with full sphere data after the reconstruction
process

sphere data (section 3.1.2) are used to generate the 3D models of Arabidopsis thaliana
showing the different stages of its growth cycle. To create 3D synthesized polygon
meshes from the reconstructed images, 12 different views of each dataset is merged
together to create a complete 3D model of that particular growth stage. Afterwards,
the growth pattern (specially, area and volume) of the Arabidopsis thaliana can be
measured from these 75 composite 3D images.

This phase is composed of processes accomplished using several tools of Geomagic
Studio 12. These commands are recorded as macros to reduce human interaction
during the whole process of registration. Steps related to this phase are as below:

1. For each view of the 1st dataset:

i. Detect Sphere Targets (Alignment → Scan Registration → De-
tect Sphere Targets): This Geomagic command detects the center co-
ordinates of reference spheres and generates point features to aid during
“Target Registration” step. The result of this step is a point feature label,
named as Target 1, 2, ..., N , in the “Features” folder. Geomagic automati-
cally generates these labels to uniquely identify each reference spheres and
the feature folder is Geomagic’s self-created folder where it keeps all these
labeled features for further use during “Target Registration”. The spheres
must be labeled as feature points so Geomagic knows which spheres cor-
respond to which sphere over time (Yang [16] did this manually). This is
the one of the steps for which replacement of semi-sphere data with full
sphere data is done to facilitate automation.

However, “Detect Sphere Targets” is basically manual operation but in
well controlled environments it can be automated. This tool is sensitive to
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a great deal of factors relating to curvature in the model. Moreover, for
incredibly dense target model, this operation will fail as Geomagic’s cur-
rent algorithm is unable to work with extremely dense model. Again, the
targets need to be complete and properly sampled to make this tool work.
As this is a very sensitive action, sometimes unexpected results may occur.
As in first place, our sphere data was so dense that Geomagic’s “Detect
Sphere Targets” failed to detect target spheres properly. We reported this
bug2 regarding the “Detect Sphere Targets” tool when the amount of data
for targets is large.

However, this problem can be resolved with or without using Geomagic. To
overcome this problem without using Geomagic is to make sure that while
creating the full spheres, number of 3D points are generated in such a way
so that this tool can properly identify the targets. Otherwise, two other
Geomagic’s commands can be used to modify the large data so that “Detect
Sphere Targets” and “Target Registration” can be applied properly3.

• Convert to Points (Polygons → Convert → Covert to Points): This
tool is used to convert a polygonal object to a point object so that the
large data can be re-sampled.

• Sample (Points → Sample → Uniform): This tool is used to reduce
the number of points on flat surfaces uniformly. In the case of curved
surfaces as spheres have, the command reduces the number of points
to a specified density. It only works on Unordered Point objects. In
practice, 0.5mm is specified as the degree of point-reduction so that
points are thinned to have this distance between any two points.

However, down sampling of data may directly affect the performance of
the registration process. So, it is advisable to create the full spheres in
such a way so that “Detect Sphere Targets” works perfectly.

ii. Target Registration (Alignment → Scan Registration → Target Regis-
tration): This is the main registration process that registers or merges two
or more point or polygon objects based on targets found by Detect Sphere
Targets. At least three targets must have been found on each object to per-
form “Target Registration”. So, in order to perform registration properly,
at least three of the six reference spheres from each view must be visible
and detected properly during the “Detect Sphere Targets” step. During

2We sent a mail to Geomagic Support Center (support.geomagic.com) mentioning that “Detect
Sphere Targets” tool does not work properly for our data and the “Target Registration” phase is
sometimes skipped while running macros. Their technical team, especially, the macro team, replied
us mentioning that they found a bug with these two tools when the amount of data is large for
target objects. Their existing algorithm is unable to handle dense target data.

3These steps are suggested by the technical team of Geomagic to overcome the problems with
macro to some extent.
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this step, 12 views of a single dataset are merged together to generate a sin-
gle 3D mesh of that scene. It is noteworthy that similar to “Detect Sphere
Targets”, “Target Registration” is also preferable as manual operation as
this is extremely sensitive to environmental factors like the curvature in
the model.

iii. Target Cleanup (Alignment → Scan Registration → Target Cleanup):
Once the registration is done, the target spheres are removed using “Tar-
gets Cleanup” tool. This Geomagic command removes spherical or circular
sticker registration targets from an object.

iv. Global Registration (Alignment → Scan Registration → Global Regis-
tration): One of the major difficulties in measuring plant growth is that
the point cloud data provided by the scanner is often not dense enough.
Moreover, due to growth chamber ventilation that we could not control,
sudden movements of plant leaves or stem may be captured in the range
images during the scanning process. These sudden movements may affect
the registration process resulting poor performance. To attenuate such un-
desirable errors, refinement of the previous registration needs to be done.
This is accomplished by the Global Registration step, which refines two or
more roughly registered point or polygon objects. This step also includes
“Overlap Reduction”, a part of the “Global Registration” tool, performed
after “Global Registration” is done. This option slightly bends the objects
to accomplish a more perfect registration.

2. Apply step 1 on each view of the rest of the 74 datasets.

All these actions are automated using Geomagic’s macros. After the registration
phase, 75 triangular meshes (composite scenes) are generated showing Arabidopsis
thaliana at the different stages of its growth. These 3D images are then used in the
growth measurement phase. Figure 3.7 shows the overall registration process where
the icons are the corresponding symbols of these tools in Geomagic. Table 3.44 lists
all the macros of Geomagic and their equivalent code written in VBScript.

Figure 3.8(a) shows the synthesized 3D polygonal mesh after performing “Target
Registration” using the reference spheres and Figure 3.8b shows the final polygonal
mesh after removing the targets and performing “Global Registration”. These images
are generated using the 30th dataset.

4This table gives a basic introduction to the macros used here. Further information regarding
the arguments and the detail implementation can be found in the appendix G.
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Name of the Tool Equivalent VBScript Code
Open a file geo.open
Save as geo.saveas
Combine geo.combine objects
Select All Objects in the Display Manager geo.select all objects
Merge geo.merge objects
Detect Sphere Targets geo.detect sphere targets
Convert to Points geo.modify current points
Sample geo.sample
Target Registration geo.target registration
Target Cleanup geo.target cleanup
Global Registration geo.global registration
Obtain the Surface Area geo.query

Table 3.4: List of the Geomagic’s macros and their equivalent VBScript code used to
automate the registration process

3.1.5 Measuring the Growth Cycle of Arabidopsis thaliana

Plants

In this section we describe the steps necessary to measure the growth of Arabidopsis
plants over their life cycle. It may be noteworthy that measuring plant growth is not
our main goal. Rather than we focus on the automation of the registration process
that is needed to create the 3D polygonal meshes from which plant growth can be
measured. Additionally, this part is still done manually as the provided Geomagics’s
tools to measure plant growth are not recordable, yet.

3.1.5.1 Manual Editing (Pre-processing)

To measure growth from the 3D triangular meshes , obtained from the registration
process (section 3.1.4), manual editing using Geomagic is required to remove the
extraneous elements (e.g., the post, the background table and the soil). The manual
nature of this editing may directly affects the accuracy of the measurement. Similar
approaches are used here as Yang used in her thesis [16].

1. Using “Boundary From Spline” (Polygons → Boundaries → Create →
Boundary From Spline) tool, a boundary line is defined between the leaves
and the soil.

2. Step 1 is applied to the lower part of the leaves if there is any further soil
attached to the leaves.
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3. Using “Bounded” (Select → Data→ Select Components stack → Bounded)
tool (i.e., right-click at one of selected triangles in the “Graphic Area”), area
selected using step 1 and step 2 is bounded and removed.

After performing the aforementioned steps, the shape of the leaves may not be still
perfect due to additional overlapping triangles around their edges. Therefore, to refine
the shape of the leaves by smoothing the edges, “Relax Boundary” (Polygons →
Boundaries → Modify stack → Relax Boundary) tool is used. The level of the
smoothness can be controlled using the Iterations field. The higher the number for
Iterations, the smoother the boundary line will become. For leaves, having partial
extraneous polygons around their edges, Partial Boundary is preferred instead
of Entire Boundary option. Figure 3.9a shows the extraneous elements in the
synthesized 3D polygon meshes (in red) and Figure 3.9b shows the extra triangles
around the leaves without a defined boundary. After all these manual pre-processing,
the edited synthesized 3D triangular meshes are used to measure the plant growth,
especially the surface area and the 3D volume.

3.1.5.2 Measuring Plant Growth using the 3D Triangular Meshes

The surface area and the 3D volume of a plant increases naturally, as it grows. There-
fore, we calculated the plant canopy area and volume as measurements of the growth
of Arabidopsis plants using its 3D synthesized triangular meshes.

A triangular mesh is a type of polygonal mesh that defines the shape of a polyhe-
dral object in 3D computer graphics and solid modeling [53]. As a triangular mesh
is the combination of meshes representing a particular object, surface area of the
overall mesh can be computed by summing the areas of each triangle. One of the 3D
triangles on the mesh having vertices P1, P2 and P3, and the 2 vectors lying on it are
A = P2 −P1 and B = P2 −P3. And the area of the triangle is 1

2
||A×B||2. This way,

the overall surface area of 3D triangular mesh is determined by summing up the area
of each triangle on the mesh [54].

Moreover, the volume of a triangular mesh can be calculated in Geomagic and the
algorithm is as follows [15]: Assume that we have a triangulated surface embedded in
R3 and z = (0, 0, 0) be an additional point in space. For each triangle on the surface
with vertices a, b, c, a tetrahedron a, b, c, z can be imagined. Then the volume of the
tetrahedron is computed with a sign (positive if z sees a, b, c making a left turn and
negative if otherwise). The overall volume of the body is computed by adding all the
signed volumes.

Using Geomagic’s embedded functions “Compute Area”, canopy surface area is
computed based on the 3D triangular mesh. For the plant canopies, the entire surface
area or specific area is obtained by selecting the proper region.
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Tools → Analysis → Compute stack → Compute Area

In order to measure volume, the macro needs a watertight polygon mesh. The
object can not have any holes or gaps. It can have multiple volumes, but they all need
to be closed. Moreover, when measuring volume, direction of the normal of all the
triangles have to be in the same direction, “facing up” or “facing away”. “Compute
Volume to Plane” is used to measure plant volume as plant body is not closed. This
tool uses a plane to project the surface area, too. If the plane is a best fit plane through
the center of the data, then the volume is measured in both positive and negative
space. Both absolute values have to be added to get the volume. But because the leafs
are convex/ concave (and so, we have 3D area), this measurement will not be accurate
or consistent over the length of the experiment. That is why a plane is created that is
below the data (on the yellow side at a known stable juxtaposition from the foliage)
like the table top. Moreover, the position of the plane is very important to measure
volume as the further away the plane the large the volume will be. So, to maintain
consistency the plane should be always at a fixed distance from the plants. Before
calculating the volume, we use the following steps:

1. Use the table, used during the scanning process, as our reference plane to provide
consistency during measuring volume to plane.

2. Create a best fitting plane to the reference table using “Best Fit” (Features
→ Create → Plane stack → Best Fit) tool.

3. Create an offset plane at a specific distance from the best fit plane using “Plane
Offset”5 (Features → Create → Plane stack → Plane Offset) tool. The
distance between the best fit and offset plant should be always same to provide
consistency.

4. Align the offset plane to the XY “World Plane” using “Align ToWorld” (Alignment
→ Object Alignment → Align To World → Best Fit) tool.

5. Compute volume using “Compute Volume To Plane” (Tools → Analysis →
Compute stack → Compute Volume To Plane) tool.

These steps enable the Geomagic to perform a volume measurement of an open object.
This overall procedure is explained in Figures 3.10a, 3.10b, 3.10c, 3.10d, and 3.10f.

5For experimental purpose, we set the offset plane just below the foliage. But this creates another
problem as it seems somehow the distance between the table and the pots also changed during the
scanning process. So, we pick a common distance of -65mm (- indicates above) to place our offset
plane. But this will not provide proper result as the distance between the plants and the plane is
1-2mm at some points and again 60-70mm at some points. But setting the offset just below the
foliage will also create the similar problem as the distance changed during scanning process.
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Figure 3.7: Steps related to the overall registration process
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(a) (b)

Figure 3.8: (a) The synthesized 3D polygonal mesh after performing “Target Regis-
tration” using the reference spheres, (b) the final polygonal mesh after removing the
targets and performing “Global Registration”

(a) (b)

Figure 3.9: Pictorial illustration of problems with the manual editing before measur-
ing plant growth; (a) The extraneous elements (e.g., the soil) in the synthesized 3D
triangular mesh (in red) and (b) the extraneous triangles around the leaves without a
regular or defined boundary.
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(a) (b)

(c) (d)

(e)

Figure 3.10: Illustration of the volume measurement processing using 65th dataset; (a)
The table, used during the scanning process, is re-used as the reference plane to provide
consistency during measuring volume to plane, (b) A best fit plane is created using
the reference table, (c) Offset plane is created under the plant foliage, (d) Align the
offset plane with XY “World Plane”, and (e) “Compute Volume to Plane” operation
using the aligned XY and offset plane
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The proposed methodology is explained below pictorially. It may be noteworthy
that the demonstration is based on the 30th showing the vegetative stage of Arabidop-
sis thaliana.

Figures 3.11a-3.11f show the first 6 original raw range images of the 30th dataset
collected from the 3D scans of the Arabidopsis plants using the ShapeGrabber Laser
Scanner with a 30◦ rotating angle showing the plants at different views. Figure 3.11a
shows the 1st view at 30◦, Figure 3.11b shows the 2nd view at 60◦, Figure 3.11c shows
the 3rd view at 90◦, Figure 3.11d shows the 4th view at 120◦, Figure 3.11e shows the
5th view at 150◦, and Figure 3.11f shows the 6th view at 180◦.

Figures 3.12a-3.12f show the rest of the 6 range images of the 30th dataset collected
from the 3D scans of the Arabidopsis plants using the ShapeGrabber Laser Scanner
with a 30◦ rotating angle showing the plant at different views. Figure 3.12a shows
the 7th view at 210◦, Figure 3.12b shows the 8th view at 60◦, Figure 3.12c shows the
9th view at 90◦, Figure 3.12d shows the 10th view at 120◦, Figure 3.12e shows the 11th

view at 150◦, and Figure 3.12f shows the 12th view at 180◦.

Figure 3.13a shows one of the 6 semi-spheres of the 1st view of the 30th dataset,
Figure 3.13b shows the same file with the semi-sphere replaced with full sphere data
using the estimated center coordinates and radius as well the parametric equations of
sphere, Figure 3.13c shows both the semi-sphere and the full sphere files open (both
of the files are selected or “active”) in the “Display Manager” of Geomagic Studio 12,
and Figure 3.13d shows the plant data after removing the semi-spheres using their
estimated center coordinates and radius values.

Figures 3.14a-3.14f show the reconstructed views of the first 6 range images of
the 30th dataset with the semi-spheres replaced with full sphere data. Figure 3.14a
shows the 1st view, Figure 3.14b shows the 2nd view, Figure 3.14c shows the 3rd view,
Figure 3.14d shows the 4th view, Figure 3.14e shows the 5th view, and Figure 3.14f
shows the 6th view.

Figures 3.15a-3.15f show the reconstructed views of the second 6 range images
of the 30th dataset with the semi-spheres replaced by full sphere data. Figure 3.15a
shows the 7th view, Figure 3.15b shows the 8th view, Figure 3.15c shows the 9th view,
Figure 3.15d shows the 10th view, Figure 3.15e shows the 11th view and Figure 3.15f
shows the 12th view.

Figures 3.16a-3.16f show the first 6 reconstructed views of the 30th dataset after
performing the Convert to Points, Sample, and Detect Sphere Targets operations
in Geomagic Studio 12. Figure 3.16a shows the 1st view, Figure 3.16b shows the
2nd view, Figure 3.16c shows the 3rd view, Figure 3.16d shows the 4th view, Figure
3.16e shows the 5th view and Figure 3.16f shows the 6th view after performing the
aforementioned operations.

Figures 3.17a-3.17f show the second 6 reconstructed views of the 30th dataset after
performing the Convert to Points, Sample, and Detect Sphere Targets operations in
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Geomagic Studio 12. Figure 3.17a shows the 7th view, Figure 3.17b shows the 8th

view, Figure 3.17c shows the 9th view, Figure 3.17d shows the 10th view, Figure
3.17e shows the 11th view, and Figure 3.17f shows the 12th view after performing the
aforementioned operations.

Figure 3.18a shows the registered point object after performing “Target Registra-
tion” in Geomagic using all the 12 views of the 30th dataset and Figure 3.18b shows
the synthesized 3D polygonal mesh obtained from the previously mentioned registered
point object with further refinement using “Global Registration” tool in Geomagic.

The area and volume measurement process is not shown here as this is already
been covered in Figure 3.10.

The methodology is now explained below pictorially using the 60th showing the
flowering stage of Arabidopsis thaliana.

Figures 3.19a-3.19f show the first 6 original raw range images of the 60th dataset
collected from the 3D scans of the Arabidopsis plants using the ShapeGrabber Laser
Scanner with a 30◦ rotating angle showing the plants at different views. Figure 3.19a
shows the 1st view at 30◦, Figure 3.19b shows the 2nd view at 60◦, Figure 3.19c shows
the 3rd view at 90◦, Figure 3.19d shows the 4th view at 120◦, Figure 3.19e shows the
5th view at 150◦, and Figure 3.19f shows the 6th view at 180◦.

Figures 3.20a-3.20f show the rest of the 6 range images of the 60th dataset collected
from the 3D scans of the Arabidopsis plants using the ShapeGrabber Laser Scanner
with a 60◦ rotating angle showing the plant at different views. Figure 3.20a shows
the 7th view at 210◦, Figure 3.20b shows the 8th view at 60◦, Figure 3.20c shows the
9th view at 90◦, Figure 3.20d shows the 10th view at 120◦, Figure 3.20e shows the 11th

view at 150◦, and Figure 3.20f shows the 12th view at 180◦.

Figure 3.21a shows one of the 6 semi-spheres of the 1st view of the 60th dataset,
Figure 3.21b shows the same file with the semi-sphere replaced with full sphere data
using the estimated center coordinates and radius as well the parametric equations of
sphere, Figure 3.21c shows both the semi-sphere and the full sphere files open (both
of the files are selected or “active”) in the “Display Manager” of Geomagic Studio 12,
and Figure 3.21d shows the plant data after removing the semi-spheres using their
estimated center coordinates and radius values.

Figures 3.22a-3.22f show the reconstructed views of the first 6 range images of
the 60th dataset with the semi-spheres replaced with full sphere data. Figure 3.22a
shows the 1st view, Figure 3.22b shows the 2nd view, Figure 3.22c shows the 3rd view,
Figure 3.22d shows the 4th view, Figure 3.22e shows the 5th view, and Figure 3.22f
shows the 6th view.

Figures 3.23a-3.23f show the reconstructed views of the second 6 range images
of the 60th dataset with the semi-spheres replaced by full sphere data. Figure 3.23a
shows the 7th view, Figure 3.23b shows the 8th view, Figure 3.23c shows the 9th view,
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Figure 3.23d shows the 10th view, Figure 3.23e shows the 11th view and Figure 3.23f
shows the 12th view.

Figures 3.24a-3.24f show the first 6 reconstructed views of the 60th dataset without
performing the Convert to Points, Sample, and Detect Sphere Targets operations.
Figure 3.24a shows the 1st view, Figure 3.24b shows the 2nd view, Figure 3.24c shows
the 3rd view, Figure 3.24d shows the 4th view, Figure 3.24e shows the 5th view and
Figure 3.24f shows the 6th view.

Figures 3.25a-3.25f show the second 6 reconstructed views of the 60th dataset with-
out performing the Convert to Points, Sample, and Detect Sphere Targets operations
in Geomagic Studio 12. Figure 3.25a shows the 7th view, Figure 3.25b shows the 8th

view, Figure 3.25c shows the 9th view, Figure 3.25d shows the 10th view, Figure 3.25e
shows the 11th view, and Figure 3.25f shows the 12th view.

Figure 3.26 shows the synthesized 3D polygonal mesh obtained after performing
“Global Registration” in Geomagic.

3.2 Conclusions

This chapter outlined the proposed methodology followed in this thesis. It describes
the two major components of our work: automation of the registration process and
measuring the growth cycle. The pre-processing methods to overcome the incomplete
sphere data problem were introduced. We demonstrated our methods using the range
images from the 30th dataset of the Arabidopsis thaliana plants.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: The first 6 original raw range images of the 30th dataset collected from
the 3D scans of the Arabidopsis thaliana plants using the ShapeGrabber Laser Scanner
with a 30◦ rotating angle showing the plant at different views; (a) the 1st view at 30◦,
(b) the 2nd view at 60◦, (c) the 3rd view at 90◦, (d) the 4th view at 120◦, (e) the 5th

view at 150◦, and (f) the 6th view at 180◦.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: The rest of the 6 original raw range images of the 30th dataset collected
from the 3D scans of the Arabidopsis thaliana plants using the ShapeGrabber Laser
Scanner with a 30◦ rotating angle showing the plant at different views; (a) the 7th

view at 210◦, (b) the 8th view at 60◦, (c) the 9th view at 90◦, (d) the 10th view at 120◦,
(e) the 11th view at 150◦, and (f) the 12th view at 180◦.
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(a) (b)

(c) (d)

Figure 3.13: Demonstration of the semi-sphere and plant data segmentation phase
and the replacement of semi-spheres with full sphere data phase using the 1st view
of the 30th dataset; (a) One of the 6 semi-spheres of the 1st view of the 30th dataset
segmented manually using Geomagic Studio 12, (b) the same file with the semi-sphere
replaced with a full sphere using the estimated center coordinates and radius as well as
the parametric equations of sphere, (c) both the semi-sphere and the full sphere files
are opened in the “Display Manager” of Geomagic Studio 12, (d) the plant data after
removing the semi-spheres using their estimated center coordinates and the radius.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: The reconstructed views of the first 6 range images of the 30th dataset
with the semi-spheres replaced with full sphere data; (a) the 1st view, (b) the 2nd view,
(c) the 3rd view, (d) the 4th view, (e) the 5th view, and (f) the 6th view.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: The reconstructed views of the second 6 of the 12 range images of the
30th dataset with the semi-spheres replaced with full sphere data; (a) the 7th view, (b)
the 8th view, (c) the 9th view, (d) the 10th view, (e) the 11th view and (f) the 12th

view.



53

(a) (b)

(c) (d)

(e) (f)

Figure 3.16: The first 6 reconstructed views of the 30th dataset after performing the
Convert to Points, Sample, and Detect Sphere Targets operations in Geomagic Studio
12; (a) the 1st view, (b) the 2nd view, (c) the 3rd view, (d) the 4th view, (e) the 5th

view, and (f) the 6th view.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: The second 6 reconstructed views of the 30th dataset after performing
the Convert to Points, Sample, and Detect Sphere Targets operations in Geomagic
Studio 12; (a) the 7th view, (b) the 8th view, (c) the 9th view, (d) the 10th view, (e)
the 11th view, and (f) the 12th view.



55

(a) (b)

Figure 3.18: Illustration of the registration phase using all the 12 views of the 30th

dataset; (a) The registered point object after performing “Target Registration” in Ge-
omagic using all the 12 views of the 30th dataset and (b) the synthesized 3D polygonal
mesh obtained from the previously mentioned registered point object with further re-
finement using “Global Registration” tool in Geomagic.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: The first 6 original raw range images of the 60th dataset collected from
the 3D scans of the Arabidopsis thaliana plants using the ShapeGrabber Laser Scanner
with a 60◦ rotating angle showing the plant at different views; (a) the 1st view at 30◦,
(b) the 2nd view at 60◦, (c) the 3rd view at 90◦, (d) the 4th view at 120◦, (e) the 5th

view at 150◦, and (f) the 6th view at 180◦.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: The rest of the 6 original raw range images of the 60th dataset collected
from the 3D scans of the Arabidopsis thaliana plants using the ShapeGrabber Laser
Scanner with a 60◦ rotating angle showing the plant at different views; (a) the 7th

view at 210◦, (b) the 8th view at 60◦, (c) the 9th view at 90◦, (d) the 10th view at 120◦,
(e) the 11th view at 150◦, and (f) the 12th view at 180◦.
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(a) (b)

(c) (d)

Figure 3.21: Demonstration of the semi-sphere and plant data segmentation phase
and the replacement of semi-spheres with full sphere data phase using the 1st view
of the 60th dataset; (a) One of the 6 semi-spheres of the 1st view of the 60th dataset
segmented manually using Geomagic Studio 12, (b) the same file with the semi-sphere
replaced with a full sphere using the estimated center coordinates and radius as well as
the parametric equations of sphere, (c) both the semi-sphere and the full sphere files
are opened in the “Display Manager” of Geomagic Studio 12, (d) the plant data after
removing the semi-spheres using their estimated center coordinates and the radius.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: The reconstructed views of the first 6 range images of the 60th dataset
with the semi-spheres replaced with full sphere data; (a) the 1st view, (b) the 2nd view,
(c) the 3rd view, (d) the 4th view, (e) the 5th view, and (f) the 6th view.



60

(a) (b)

(c) (d)

(e) (f)

Figure 3.23: The reconstructed views of the second 6 of the 12 range images of the
60th dataset with the semi-spheres replaced with full sphere data; (a) the 7th view, (b)
the 8th view, (c) the 9th view, (d) the 10th view, (e) the 11th view and (f) the 12th

view.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: The first 6 reconstructed views of the 60th dataset; (a) the 1st view, (b)
the 2nd view, (c) the 3rd view, (d) the 4th view, (e) the 5th view, and (f) the 6th view.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: The second 6 reconstructed views of the 60th dataset; (a) the 7th view,
(b) the 8th view, (c) the 9th view, (d) the 10th view, (e) the 11th view, and (f) the 12th

view.
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Figure 3.26: the synthesized 3D polygonal mesh obtained from dataset 60 using “Global
Registration” tool in Geomagic



Chapter 4

Results and Discussion

This chapter discusses various problems encountered when processing Yang’s Ara-
bidopsis range datasets. It also gives experimental results and a discussion, followed
by a description of the various methods used to validate the measurements of plant
growth and other experimental outcomes (i.e., the validation of the parameter estima-
tion methods).

4.1 Problems with theArabidopsis thaliana Datasets

During our experiments, we observed that Yang’s Arabidopsis thaliana datasets [16]
had the following problems:

4.1.1 Missing Datasets

It is a good thing that plant growth measurement using Yang’s datasets is not the
main goal of this thesis. We cannot find 30 range views (from the 7th view of the 51st

dataset to the 12th view of the 53rd dataset)1.

4.1.2 Validating the Experimental Outcomes

We do not have any “gold standard” measurements to validate our experimental
outcomes. The reasons are twofold:

1We contacted Yang about this and she said the datasets must be “lost”.

64
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1. No Available Manual Measurements: To validate our experimental re-
sults, comparisons should have been made between the measured volumes of
Arabidopsis thaliana obtained from the 3D triangular meshes and that of from
the manual measurement process (e.g., “wet volume” measurements). Yang [16]
tried to do this with measuring the volume of Arabidopsis thaliana plants by
submerging the entire plant in the water and measuring the volume of the dis-
placed water (this is Archimedes principle). To do this, Yang cut off a complete
Arabidopsis plant from its root and put its body into a cylinder containing 450
ml water. Theoretically, the plant volume can be estimated by calculating the
difference between the volume of the water with and without the plant. How-
ever, Yang was unable to measure the volume due to the air bubbles trapped
inside the cylinder. She tried to prevent the formation of these air bubbles by
creating a vacuum environment for the cylinder fastening a sheet of rubber over
the cylinder’s top and sucking the air out but this did not work. Even with
these air bubbles, Yang could have conducted these wet volume measurements
but unfortunately she did not. As a result, we do not have any volume data
from the “wet volume” measurement process to validate our experimental out-
comes. Figure 4.1a shows the experimental setup used by Yang during her “wet
volume” measurement process and Figure 4.1b shows the air bubbles trapped
inside the cylinder due to which she was unable to measure the “wet volume”
of Arabidopsis plants successfully.

2. Problem with Yang’s Result: With no volume data from the manual mea-
surement process, we try to compare our areas and volumes with Yang’s result.
But we are unable to do so due to the following problems:

i. Because trimming of unnecessary elements (for example, the table, the
pots and the soil) from the 3D triangular meshes was performed by man-
ual editing, comparison between the area and volume data of Yang and
ours becomes subjective (because Yang’s trimming cannot be reproduced).
In order to quantitatively compare our results with Yang’s, her trimmed
images are required (and these were not saved).

ii. In her thesis, Yang presented her experimental outcomes (i.e. the areas
and volumes of Arabidopsis thaliana) for each day. But we are provided
with the scanned images whose filenames have no information on which
day they were scanned. As a result, we cannot be 100% certain about
the mapping of a specific dataset with the actual day on which they were
scanned.

Because of these aforementioned reasons, we are unable to draw any definite
comparisons between our experimental results and Yang’s result.

We know that Yang conducted her experiments for 25 days starting at 8:30
P. M., February 4th, 2010 and ending at 7:46 P. M., February 28th, 2010 (as
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(a) (b)

Figure 4.1: Illustration of the experimental setup used by Yang for measuring
the “wet volumes” of one of the plants in the lab; (a) Cylinder containing 450
ml Water to Perform the Analog Measurement, (b) Air Bubbles Trapped in the
Water. [16]

described in her thesis). She performed 3 scans daily so there should be 75
datasets. However, there are 75 datasets (with 30 range views missing). We
mapped each dataset with Yang’s times by mapping her 1st dataset to 8:30
P.M., February 4th. We believe this mapping is the correct one.

4.1.3 Problems with Manual Processing

The major problem with the manual processing the the 3D triangular meshes is
that the manual processing directly affects the accuracy of the calculation of plant’s
growth (i.e. the areas and the volumes). Specifically, trimming the extraneous mesh
components affiliated with plant leaves (for example, the soil) adversely affects the
measuring accuracy. Figure 4.2a and 4.2b are examples of plant leaves adjacent to
soil. Because there is no well defined edge between the leaf and the soil, ambiguity
arises when separating the soil from the leaf in the 3D triangular mesh. We approach
this problem in a similar manner as Yang did in her thesis. Using Geomagic Studio
12, a red line is drawn near the leaf edge and all the affiliated components outside



67

that line are trimmed away (Figure 4.2c). However, this approach could not generate
a complete and accurate shape of the leaves in the 3D triangular meshes successfully
(we are conservative in that mesh components that are part of the plant and the soil
are not trimmed). Moreover, due to the manual nature of this pre-processing phase,
enormous time and labor are required to complete the measurement of plant growth.

(a) (b)

(c)

Figure 4.2: Problems with manual pre-processing of 3D triangular meshes; (a) 3D
range image of one of the leaves where the leaf is inside the red colored line and the
soil is under the leaf, (b) another leaf and its affiliated components highlighted with
red circle, and (c) 3D range image of one of the leaves and its affiliated components
highlighted with red line [16].

4.2 Methods of Validation

4.2.1 Validation of Sphere Fitting Algorithms

We measure the radius of each reference spheres (i.e. the ping pong balls) used by
Yang using an electronic caliper (with the accuracy of 0.02 of a mm)and compare
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the values with the resultant radii obtained from our LS and M-Estimation methods.
Yang did not mark the balls with any indicator. Therefore, we were unable to identify
specific spheres in the range images. Because of this, comparing individual radius
values was impossible. Because the physical radius values of the 6 ping pong balls
differ from each other (slightly), we use an average radius value to compare our results
with the manually annotated values. Figure 4.3a shows the electronic caliper used
to measure the radius and Figure 4.3b shows the radius measurement of one of the
reference spheres using the electronic caliper.

(a) (b)

Figure 4.3: Illustration of the radius measurement process of one of the reference
spheres using electronic caliper; (a) The electronic caliper used in the lab to measure
the radius and (b) The radius measurement process of one of the reference spheres
using electronic caliper.

Thus, we also verify the quality of the fitting based on average residual values. The
residual of a sample is the difference between the sample or the experimental value
and the predicted or estimated value by the function. The “norm of the residual” is
an indicator of the goodness of the fit (i.e. a lower norm signifies a better fit). We
compute the average norm of the residual using Eq. (4.1) to analyze the performance
of the our fitting algorithms:

Average Residual =

∑n

i=0
‖di‖

2

n
, (4.1)

where n is the total number of samples and di is the residual of the ith sample.

4.2.2 Validation of the Registration Process

The accuracy of the plant 3D surface area and 3D volume measurement depends
on the performance of the registration process to a great extent. The better the
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registration process, the accurate the plant growth measurement will be. To get a
better result, the identical areas of multiple images need to be properly merged or
overlapped during registration. If these areas are not properly merged, the distance
between any two points of these areas in multiple images will increase resulting larger
area or volume of objects in the merged model than their physical area or volume.
Because large distance will result in multiple pseudo edges of an object. So, during
our experiment, we recorded the average distance and standard deviation of any
two points after completing the registration process. For instance, we merged 12
reconstructed range images to generate a single polygonal mesh. Assuming that I1,
I2, ...., I12 are the 12 images, we have N1, N2, ...., N12 set of points (the triangular
facet vertices) belong to the respective images. If n1 ∈ N1, n2 ∈ N2,....,n12 ∈ N12,
then the average distance and standard deviation between any two of these points,
DAvg and DStd, indicate that on an average the distance between any two such points
is DAvg with standard deviation DStd. Naturally, smaller values of DAvg and DStd

is preferred; smaller values indicates significant overlapping of the points after the
registration process. From these values, we can determine the quality of the merge
calculation and this the quality of convergence we achieved during the registration.

4.2.3 Validation of Plants Areas and Volumes

As mentioned earlier, that we do not have any “gold standard” area and volume mea-
surements to compare our area and volume values for validation purposes. However,
we compare the pattern of our growth rate with Yang’s results for two subsets of the
datasets.

4.3 Experimental Results and Discussion

4.3.1 Performance Analysis of the Parameter Estimation Tech-
niques

To verify the performance of our parameter estimation technique, we measured the
radius of each reference sphere using the electronic caliper. We refer to these measure-
ments as the “physical radii” or “actual radii”. The average physical radii, rphysical,
and their standard deviations of the physical radii are:

rphysical = 19.563mm, standard deviation = 0.059mm.

Table 4.1 shows the experimental results of the radii (average and standard de-
viation values) obtained from the LS, Huber and Bisquare estimators for datasets
30-40. Similar results are shown is Table 4.2 for datasets 60-70. Both Table 4.1
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and Table 4.2 show that in most cases, the Bisquare estimator outperforms the LS
and Huber estimators, except for those “highlighted” table entries showing excep-
tions. Although, for some cases, the average rBisquare value compares poorly with
the average rLS values, the standard deviations corresponding to those table entries
show that Bisquare performs better than LS, in practice. The only exceptions are for
two particular datasets, 39 and 40. This is possibly a side-effect of the poor “initial
guess” provided by the LS estimator. Note that among all the datasets, these two
exhibit high standard deviation values for LS. Because Bisquare is very sensitive to
the “initial guess”, a poor starting value can drastically reduce its performance. The
performance of the Huber estimator is poorer than the Bisquare estimator, but, in
most cases, it is better than for the LS estimator.

On the other hand, Table 4.3 shows the experimental average residual values
(average values and standard deviations) obtained for the LS, Huber and Bisquare
estimators for datasets 30-40. Similar results are shown is Table 4.4 for datasets 60-
70. Both Table 4.3 and Table 4.4 show that the performances of all the three fitting
algorithms are quite similar, where “small” values in these table entries indicate a
better fitting by these estimators. However, for some cases, LS outperforms Bisquare
estimator as indicated by both the average and standard deviation residual values.
Detailed information can be found in Appendices A, B, C, and D.

We note that LS is optimal for mean zero Gaussian error. Indeed, a robust
estimator can do at most as well as LS is the error is mean zero Gaussian. But this
depends on the parameters for the robust estimator being well chosen. Of course, if
the input error is not mean zero Gaussian a robust estimator will almost certainly be
better. Our data is rough mean zero Gaussian but with sometimes the semi-sphere
segmentation data contains non-sphere data, which a robust estimator can eliminate.
In general, it is a good idea to start a robust estimation off with a LS estimate as the
initial guess.

From the data in Tables 4.1, 4.2, 4.3 and 4.4, we make the following conclusions:

1. Our experimental outcomes support our claim that the Bisquare estimator is
very sensitive to “initial guess”. We believe that the poorer performance showed
by this estimator in one or two cases is a side-effect of the poor “initial guess”
provided by the LS estimator. Of course, the LS performance, in terms of the
average radius and standard deviation values is poor as well.

2. Based on our experimental datasets, the performance of all three estimators is
similar in most cases. However, on average, the Bisquare estimator provides
better fitting. However, if both performance and simplicity are our selection
criteria, then the LS estimator is the best among these three estimators. We
were unable to find any cases where the Huber estimator outperformed both the
LS and the Bisquare estimators. However, the Huber estimator performance
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is better than the LS estimator in some cases, albeit the difference is almost
negligible.

3. If average residual only is considered, all the estimators perform equally in that
they all provide similar average residual values. However, in some cases, the LS
estimator outperforms the other two estimators. The average residual difference
is very small in these cases (<0.001mm).

4. In the case of the LS estimator, the average error is approximately 1.395%
whereas the error for Huber and Bisquare estimators are 1.559% and 1.343%,
respectively. The standard deviations are 0.651, 1.912 and 1.889 for the LS, the
Huber and the Bisquare estimators, respectively. Based on the average errors,
the Bisquare estimator seems more effective but based on the standard deviation
values, the LS estimator seems better. To verify, we conducted a t-test using the
online tool “GraphPad Software” [55] to confirm whether they are statistically
significant or not. This test is performed by statisticians to determine whether
or not a result found from a sample drawn from a population will also be
true for the entire population. To decide whether two means of the same k

number of samples are the same or not, we consider the differences between
the corresponding means. A null hypothesis which states that the means are
drawn from the same population is true if the difference between the means is
zero; the difference will be different from zero, otherwise. If the null hypothesis
is true, then we say that the means are drawn from the same population and
are not statistically significant; if the null hypothesis is rejected, then we say
that the means are drawn from different population and statistically significant.
So for a given confidence level, we will check whether the actual difference
exceeds the confidence limit. The paired t-test compares two paired groups and
makes inferences about the size of the average difference between the paired
measurements. The most important results are the paired p values and the
confidence interval. The paired p value (if we assume that the null hypothesis
is true, is the probability of obtaining a test statistic at least as extreme as
the one that was actually observed). For the LS-Huber pair, p 0.6338, for
the Huber-Bisquare pair, p is 0.0001 and for the Bisquare-LS pair p is 0.8815.
Now, according to the definition of p, if any of these p-values is less than or
equal to a predefined threshold, then the null hypothesis is rejected. In this
experiment, we have chosen this threshold (indicating significance level) to be
at 0.05 (and hence the confidence interval is 95%) which is the conventional
threshold. In this way, only the difference between Huber-Bisquare pair is
considered to be statistically significant. The p for the other two pairs show
they are not statistically significant. So, from the paired t-test conducted on the
average errors of the three estimators, we see that the means are not statistically
significant for the LS-Huber and the Bisquare-LS pairs. However, we found
it to be statistical significant for the Huber-Bisquare pair. Being statistical
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Average Radius ± Standard Deviation
Dataset LS Huber Bisquare

30 19.805 ± 0.349 19.741 ± 0.247 19.711 ± 0.211
31 19.829 ± 0.374 19.766 ± 0.274 19.737 ± 0.238
32 19.839 ± 0.384 19.777 ± 0.287 19.745 ± 0.252
33 19.786 ± 0.326 19.722 ± 0.227 19.691 ± 0.195
34 19.791 ± 0.338 19.731 ± 0.233 19.701 ± 0.196
35 19.799 ± 0.348 19.741 ± 0.245 19.714 ± 0.210
36 19.868 ± 0.643 19.792 ± 0.449 19.691 ± 0.234
37 19.888 ± 0.656 19.811 ± 0.463 19.707 ± 0.241
38 19.888 ± 0.655 19.815 ± 0.464 19.712 ± 0.244
39 19.978 ± 1.066 21.333 ± 4.207 21.312 ± 4.180
40 20.187 ± 1.391 20.571 ± 2.326 20.448 ± 2.060

Table 4.1: Estimated average radius and standard deviation values for the reference
spheres in datasets 30-40 using the LS, Huber and Bisquare estimators.

significant, the Bisquare estimator should perform significantly better than the
Huber estimator for the sample, as well as the entire population. However,
because the results are not statistically significant for the other two estimator
pairs, LS-Huber and Bisquare-LS, if they are applied to the entire population,
it cannot be guaranteed that the pairs perform as well on the whole populations
as they did on the sample.

4.3.2 Performance Analysis of the Registration Process

Tables 4.5 and 4.6 show the performance of the registration process used in this
thesis based on two parameters, the average residual and the standard deviation of
the distance of two points after the completion of convergence process for datasets
30-40 and datasets 60-70, respectively. The overall average residual and standard
deviation obtained from Table 4.5 for datasets 30-40 are:

Average DistanceBetween Two Points, d̄ = 0.433mm, standard deviation = 0.352mm.

(4.2)
The overall average residual and deviation obtained from Table 4.6 for datasets 60-70
are:

Average DistanceBetween Two Points, d̄ = 0.601mm, standard deviation = 0.551mm.

(4.3)

From these results, we can draw the following conclusions:
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Average Radius ± Standard Deviation
Dataset LS Huber Bisquare

60 19.652 ± 0.167 19.668 ± 0.166 19.667 ± 0.166
61 19.669 ± 0.171 19.684 ± 0.169 19.683 ± 0.168
62 19.665 ± 0.157 19.681 ± 0.157 19.680 ± 0.156
63 19.804 ± 0.353 19.745 ± 0.230 19.710 ± 0.211
64 19.897 ± 0.482 19.827 ± 0.390 19.788 ± 0.358
65 19.923 ± 0.493 19.857 ± 0.420 19.815 ± 0.388
66 19.843 ± 0.348 19.758 ± 0.247 19.709 ± 0.206
67 19.872 ± 0.385 19.784 ± 0.286 19.739 ± 0.256
68 19.925 ± 0.468 19.855 ± 0.409 19.814 ± 0.389
69 19.576 ± 0.147 19.599 ± 0.147 19.599 ± 0.147
70 19.903 ± 0.529 19.835 ± 0.443 19.794 ± 0.405

Table 4.2: Estimated average radius and standard deviation values of the reference
spheres in datasets 60-70 using the LS, Huber and Bisquare estimators.

1. Among the datasets used for formulating the results reported in this section, the
30-40 datasets are taken from the “vegetative” stage of the Arabidopsis plant
growth cycle where only leaf growth can be observed and the 60-70 datasets are
taken from the “flowering” stage of the Arabidopsis plant growth cycle. These
later images show the stems, leaves and flowers of the plants. From Tables 4.5
and 4.6, it can be seen that the quality of convergence is better in case for the
30-40 datasets than the 60-70 datasets. One of the major reasons may be the
quality of scanning performed in the recovery of these range images. Due to the
air flow in the lab (uncontrollable during Yang’s experimental measurements),
the stems of the Arabidopsis plants moved slightly from view to view during
the scanning process (which is extremely undesirable). This movement results
in relatively poor performance of the registration process for datasets 60-70,
showing comparatively large quality of fit values. In consequence, the stems are
poorly merged and in some cases multiple stems are observed instead of a single
one.

2. Practically, from these table entries, we are not able to come to any concrete
conclusion about the performance of the registration process used here as these
parameters are not reported in Zhao or Yang’s theses. As a result, we can not
determine whether our performance is better than their procedures or not.

3. However, these reported parameters can be used as an indicator of performance
measurement of the registration process in future experiments on the growth
measurement of Arabidopsis plants.
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Average Residual ± Standard Deviation

No. of Dataset LS Huber Bisquare

30 1.504E-03 ± 5.479E-04 1.518E-03 ± 5.687E-04 1.533E-03 ± 5.893E-04

31 1.554E-03 ± 6.095E-04 1.569E-03 ± 6.294E-04 1.584E-03 ± 6.494E-04

32 1.576E-03 ± 6.334E-04 1.591E-03 ± 6.530E-04 1.607E-03 ± 6.738E-04

33 1.476E-03 ± 4.993E-04 1.489E-03 ± 5.194E-04 1.504E-03 ± 5.422E-04

34 1.449E-03 ± 5.047E-04 1.462E-03 ± 5.261E-04 1.477E-03 ± 5.497E-04

35 1.454E-03 ± 5.102E-04 1.467E-03 ± 5.310E-04 1.479E-03 ± 5.514E-04

36 1.683E-03 ± 1.202E-03 1.724E-03 ± 1.300E-03 1.884E-03 ± 1.690E-03

37 1.702E-03 ± 1.246E-03 1.743E-03 ± 1.344E-03 1.912E-03 ± 1.754E-03

38 1.697E-03 ± 1.251E-03 1.738E-03 ± 1.349E-03 1.906E-03 ± 1.756E-03

39 3.226E-03 ± 4.926E-03 2.883E-03 ± 4.084E-03 2.909E-03 ± 4.145E-03

40 2.149E-03 ± 2.311E-03 2.120E-03 ± 2.236E-03 2.345E-03 ± 2.783E-03

Table 4.3: Estimated average residual and and standard deviation values of the refer-
ence spheres of datasets 30-40 using the LS, Huber and Bisquare estimators.

4.3.3 Performance Analysis of the Plant Growth Measure-

ment

In Yang’s thesis, from 900 original 3D range views, she generated a total of 83 syn-
thesized 3D triangular meshes, each one synthesized from 12 original 3D range views.
Based on these 3D triangular meshes, she calculated the areas of plant canopies and
the total visible leaf and stem coverage area. However, we generated only 22 synthe-
sized 3D triangular meshes for our experiment, 11 in the vegetative stage of growth
and 11 in the flowering stage of growth, as measuring canopy area and volume is not
our main thesis goal. Out of 900 original range views, we selected 264 3D range views,
132 representing the “vegetative” stage of growth and the other 132 representing the
“flowering” stage of growth to generate 22 synthesized 3D polygon meshes. From
these meshes, we measured the canopy 3D surface areas and 3D plant volumes and
compared the results with Yang’s results.

4.3.3.1 Changes in Plant Canopy Area

Figures 4.4a, 4.4b, 4.4c, and 4.4d show the 3D triangular meshes of the Arabidopsis
plants at four different nights (the 10th night, the 13th night, the 20th night, and the
23rd night) during the 25 days of scans conducted by Yang. We measured the canopy
surface areas from the 3D polygonal meshes of the 30-40 and the 60-70 datasets.
Furthermore, the area growth rates were calculated using Equation (4.4). Figure 4.5a
shows the growth patterns of these plants for the 30-40 datasets, based on canopy
surface area and the patterns their growth rates are shown in Figure 4.5b. Figure 4.6a
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Average Residual ± Standard Deviation

No. of Dataset LS Huber Bisquare

60 1.252E-03 ± 1.836E-04 1.252E-03 ± 1.835E-04 1.252E-03 ± 1.835E-04

61 1.264E-03 ± 2.070E-04 1.263E-03 ± 2.070E-04 1.263E-03 ± 2.070E-04

62 1.258E-03 ± 2.026E-04 1.258E-03 ± 2.025E-04 1.258E-03 ± 2.026E-04

63 1.686E-03 ± 6.977E-04 1.703E-03 ± 7.277E-04 1.726E-03 ± 7.705E-04

64 1.833E-03 ± 8.659E-04 1.853E-03 ± 8.911E-04 1.878E-03 ± 9.256E-04

65 1.919E-03 ± 9.658E-04 1.939E-03 ± 9.886E-04 1.967E-03 ± 1.025E-03

66 1.823E-03 ± 7.831E-04 1.845E-03 ± 8.118E-04 1.877E-03 ± 8.557E-04

67 1.860E-03 ± 8.296E-04 1.884E-03 ± 8.561E-04 1.912E-03 ± 8.888E-04

68 2.061E-03 ± 1.110E-03 2.082E-03 ± 1.131E-03 2.109E-03 ± 1.158E-03

69 5.594E-04 ± 1.462E-04 5.591E-04 ± 1.460E-04 5.591E-04 ± 1.460E-04

70 2.046E-03 ± 1.189E-03 2.070E-03 ± 1.226E-03 2.100E-03 ± 1.275E-03

Table 4.4: Estimated average residual and standard deviation values of the reference
spheres for datasets 60-70 for the LS, Huber and Bisquare estimators.

shows the growth patterns of Arabidopsis plants for the 60-70 datasets for canopy
surface area measurements and the patterns of the area growth rates are shown in
Figure 4.6b. The area growth rate is computed as:

Area Growth Rate =
A2 − A1

A1

, (4.4)

where A1 and A2 are the areas of a canopy at two consecutive times [15].

In Figures 4.5 and 4.6 we show the growth rates in the canopy at the vegetative
stage of growth for the 30-40 datasets and the canopy/stem foliage growth rates for
the flowering stage of growth for the 60-70 datasets.

We compared our measured canopy area with Yang’s result to compare the per-
formance of the proposed method. Figures 4.7a, 4.7b, 4.7c, and 4.7d graphically
represent the comparison of the canopy surface area measurement between the pro-
posed or automated method and Yang’s method for the 4 lines of Arabidopsis thaliana,
31, 104, pBI 121, and wild type, respectively for datasets 30-40. Similarly, Figures
4.8a, 4.8b, 4.8c, and 4.8d graphically represent the comparison of the canopy surface
area measurement between the proposed or automated method and Yang’s method
for the 4 lines of Arabidopsis thaliana, 31, 104, pBI 121, and wild type, respectively
for datasets 60-70.

A detailed discussion of some important points are as follows:

• It is natural that the canopy surface areas of the plants increased as they grew
and this was what we observed as seen in Figures 4.5a and 4.6a.
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Dataset Number of Iterations Average Distance ± Standard Deviation
30 24 0.441 ± 0.341
31 14 0.432 ± 0.331
32 14 0.417 ± 0.338
33 21 0.405 ± 0.345
34 16 0.415 ± 0.337
35 13 0.424 ± 0.326
36 16 0.438 ± 0.357
37 16 0.439 ± 0.363
38 18 0.422 ± 0.338
39 14 0.446 ± 0.380
40 29 0.484 ± 0.414

Table 4.5: Performance Analysis of the overall registration process based on the aver-
age and standard deviation of distance between two points after the completion of the
registration process on datasets 30-40

• Based on the transgenic characteristics, the canopy surface areas of the 31 and
104 lines are expected to grow faster than those of wild type and pBI 121
(plasmid-only control) type among the Arabidopsis plants. The 31 and 104

lines were genetically modified to produce up to 80% more oil than the wild
type. This faster growth can be fully observed in Figures 4.5a and 4.6a. As the
number of days increases, the canopy areas of the 31 and 104 lines were always
larger than those of the wild types and pBI 121 (plasmid-only control) type.

• In Figure 4.5b and 4.6b, the negative growth rates that are observed can be
explained by changes in leaf sizes as leaves wilt or as the plant respires in
the night-time, according to Zhao and Yang. Some of interesting observations
regarding Figure 4.5b and 4.6b are as below:

i. Among the datasets 60-70, the number of negative peaks are higher than
the datasets 30-40. Yang mentioned that the errors in calculating the vol-
umes of plant stems were due to the ShapeGrabber laser scanner’s inability
to capture tiny objects properly, such as the plant stems, which were about
1 mm in diameter. However, other factors include the uncontrollable air
flow in the lab, that caused the stems to jigger during the scanning pro-
cess, were also serious problems. This jiggering results in poor alignment
during the registration process and multiple stems are observed, instead
of a a single merged stem in the 3D polygonal mesh. Moreover, the scan-
ner was unable to properly scan thin stems and this inadequate sampling
results in missing stem parts in some of the datasets. Also, we had a hard
time distinguishing the soil and the pots in these images. This may also be
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Dataset Number of Iterations Average Distance ± Standard Deviation
60 9 0.557 ± 0.489
61 15 0.658 ± 0.596
62 13 0.678 ± 0.620
63 19 0.555 ± 0.503
64 9 0.590 ± 0.543
65 15 0.563 ± 0.511
66 20 0.561 ± 0.511
67 15 0.581 ± 0.530
68 13 0.625 ± 0.574
39 21 0.643 ± 0.585
70 22 0.602 ± 0.596

Table 4.6: Performance Analysis of the overall registration process based on the aver-
age and standard deviation of distance between two points after the completion of the
registration process on datasets 60-70

another reason for the inconsistency in results for datasets 60-70. Figure
4.9a shows the multiple stems in the 3D polygonal meshes of 61st dataset,
which may be a side-effect of the uncontrollable air flow in the lab during
the scanning process. Figure 4.9b shows the inadequately sampled stems
in the 3D polygonal meshes of 70th dataset due to the scanner’s inability
to capture tiny objects properly.

ii. Again, the manual nature of the editing may also be a reason behind this
negative growth rate or inconsistency of the changes of canopy surface area
measurement values.

• Yang mentioned in her thesis, that for calibrating data, her areas and volumes
are comparatively larger than the original values and the error rate was relatively
higher. This was due to the conservative way plant trimming was manually
performed. However, our measured areas are relatively smaller than Yang’s
results, as can be seen in Figures 4.7a, 4.7b, 4.7c, 4.7d, 4.8a, 4.8b, 4.8c, and
4.8d. We cannot claim our results are more accurate than hers, as we do not
have any “gold standard” to make any quantitative comparisons. Also, the
manual nature of editing needs to be considered here (although, we followed
the exact steps mentioned in Yang’s thesis for editing).

4.3.3.2 Changes in 3D Stem Volume

We measured the 3D volumes of plant stems and foliage volumes from the 3D polygo-
nal meshes using datasets 60-70 only, because datasets 30-40 represent the “vegetative
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(a) (b)

(c) (d)

Figure 4.4: 3D triangular meshes of the Arabidopsis plants for four different nights
during the 25 days of scans conducted by Yang; (a) taken at 20:30 for the 10th night,
(b) taken at 02:00 for the 13th night, (c) taken at 20:30 for the 20th night, and (d)
taken at 02:00 for the 23rd night.

stage” of Arabidopsis plants and do not show any stem growth. To measure 3D stem
volume, we used Geomagic’s “Volume to Plane” tool because the plant stems are
irregular objects. This measurement fully depends on the position of the plane and
distance between the object and the plane. To provide consistency in our measure-
ment, we used the circular table (used during the scanning process) as our reference
plane and then placed another offset plane at a specific distance in almost every im-
age. Detail information and parameters to set plane for volume measurement are
discussed in Section 3.1.5. These information are very important as the measured
values fully depend on them. Furthermore, the volume growth rates are calculated
using Equation (4.5) as follows:

V olume Growth Rate =
V2 − V1

V1

, (4.5)

where V1 and V2 are the areas of a canopy at two consecutive times [15]. Figure 4.10a
shows the growth patterns of the Arabidopsis plants, based on 3D stem and foliage
volume. Figure 4.10b shows their growth rate.
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Figure 4.5: Growth patterns of the Arabidopsis plants showing the changes in the
canopy surface area for datasets 30-40; (a) Growth patterns of the Arabidopsis plants
showing the changes in the canopy surface area and (b) the patterns of their area
growth rate.

We compared our measured 3D stem volumes with those of Yang. However, this
comparison is not entirely valid as we had no information regarding Yang’s positioning
of the plane before measuring stem volume. Figures 4.11a, 4.11b, 4.11c, and 4.11d
graphically represent the comparison of the 3D stem volume measurements between
the automatic and manual methods for the 4 lines of Arabidopsis thaliana, 31, 104,
pBI 121, and wild type, respectively for datasets 60-70.

A detailed discussion of the experimental results are as follows:

• The natural incremental volume changes of stems over time is observed from
Figures 4.10a, with some minor exceptions. These exceptions are possibly due
to the contribution of several factors, including scanner’s inability to capture
tiny objects, the uncontrolled air flow in the lab. that jiggered the stems during
the scanning process, resulting in a poor alignment, missed stem area due to
inadequately scanned data in some datasets, and difficulties in segmenting the
soil and the pots from the actual plants.

• Although the transgenic characteristics of these plants indicate that the growth
of 31 and 104 lines should be faster than those of wild type and pBI 121 (plasmid-
only control) type of the Arabidopsis plants, this is not fully exhibited in Figure
4.10b. Inconsistency is observed here, which again can be due to the side-effects
of the aforementioned reasons. The 3D stem volume growth rate for wild type
and pBI 121 lines were relatively more consistent than 31 and 104 growth rates.
31 showed the highest growth rate. However, instead of 104, the growth rate of
pBI 121 was the second best. Of course, it should be noted that a plant’s overall
growth can not be measured from its stem growth only. Finally, the Wild type
Arabidopsis plants showed very slow stem growth rate.
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Figure 4.6: Growth patterns of the Arabidopsis plants showing the changes in the
canopy surface area for datasets 60-70; (a) Growth patterns of the Arabidopsis plants
showing the changes in the canopy surface area and (b) the patterns of their area
growth rate

• Our measured volumes are greater than Yang’s results. as shown in Figures
4.11a, 4.11b, 4.11c and 4.11d. These large values can be due to:

i. Incompatibility of the position of the plane. For example, for a similar
object, the volumes are 1.358e5, 6.111e4, and 1.735e5 if we position the
offset plane 90 mm, 120 mm, and 50 mm respectively above the reference
plane.

ii. From some of the stem images in the thesis, it looks like Yang only used
the principle structure (no leaves or vegetative branches) but we included
leaves with the stem (foliage), vegetative branches and leaves attached to
it, and also the auxiliary and terminal buds while measuring stem growth.
Figures 4.12a and 4.12 show the pre-processed stems used by Yang and us,
respectively.

4.4 Conclusion

The experimental outcomes related to the sphere fitting algorithms show that the
implemented algorithms (LS and M-estimators) provide good fitting, which is essential
for achieving better convergence during the registration process. However, due to the
manual nature of the growth measuring procedures, it is obvious that errors are
introduced during the measurement of the plant data. For instance, while measuring
plant growth via area and volume measurement from the synthesized 3D triangular
meshes, trimming the extraneous elements (i.e. the table, pots and soil) in the 3D
range images may have caused significant problems as it was done manually. This
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Figure 4.7: Graphical representation of the comparison of canopy surface area mea-
surement between the proposed (automated) method and Yang’s method for datasets
30-40; (a) for 31, (b) for 104, (c) for pBI 121, and for wild type

is because it is hard to clearly identify and separate the leaves and their affiliated
components. Despite the errors in our experimental measurements (even, the lack
of proper “gold standard” for validation), the presented growth patterns strongly
support the approach of using 3D imaging technology to measure plant growth and
provided more detailed and continuous growth data beyond the traditional destructive
growth measurement methods.
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Figure 4.8: Graphical representation of the comparison of canopy surface area mea-
surement between the proposed (automated) method and Yang’s method for datasets
60-70; (a) for 31, (b) for 104, (c) for pBI 121, and for wild type

(a) (b)

Figure 4.9: Pictorial explanation of the negative peaks in the growth rate of
canopy surface area among the datasets 60-70; (a) Multiple stems in the 3D
polygonal meshes of 61st dataset which may be a side-effect of the uncontrolled
air flow in the lab during the scanning process and (b) Inadequately sampled
stems in the 3D polygonal meshes of 70th dataset due to the scanner’ inability to
capture tiny objects properly.
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Figure 4.10: Growth patterns of the Arabidopsis plants showing the changes in the
3D stem volume for datasets 60-70; (a) Growth patterns of the Arabidopsis plants
showing the changes in the 3D stem volume and (b) the patterns of their stem volume
growth rate
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Figure 4.11: Graphical representation of the comparison of canopy surface area mea-
surement between the proposed (automated) method and Yang’s manual method for
datasets 60-70; (a) for 31, (b) for 104, (c) for pBI 121 and (d) for wild type.
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(a) (b)

Figure 4.12: Difference between Yang and our automatic pre-processed stem used
in measuring 3D stem volume for dataset 70; (a) Yang’s pre-processed stem be-
fore measuring 3D stem volume and (b) our pre-processed stem before measuring
3D stem volume



Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we automated the manual registration process used by Zhao [15] and
Yang [16] during their attempts to measure the growth of Arabidopsis thaliana plants
quantitatively using Geomagic Studio. We ran our experiments based using Yang’s
Arabidopsis datasets. Yang used the SG1002 ShapeGrabber range scanner to gen-
erate the 3D scanned images of the plant(s) and Geomagic Studio CAD software to
merge these scans into 3D polygonal meshes. Then, from these polygonal meshes,
3D areas and 3D volumes were computed to determine the plant’s growth over a
time cycle. To perform the registration (merging) process in Geomagic, 6 ping pong
balls were used as reference spheres during the scanning process. But these reference
spheres were imaged as semi-spheres in the original range images because the laser
scanner can only see the visible parts of an object. However, without full spheres, Ge-
omagic is unable to perform the registration of the adjacent images. Therefore, Zhao
and Yang manually replaced these semi-spheres with artificially generated spheres
using the Geomagic software. One of the major contributions of this research is to
automatically detect and localize the semi-spheres in the original range images us-
ing parameter estimation techniques, generate synthetic spheres using the estimated
parameter values and the parametric equations of spheres, and finally to reconstruct
each range view by automatically replacing the semi-spheres with the “perfect” full
sphere data. After the pre-processing, the registration is accomplished automatically
using macros in Geomagic on these modified range data so that the merged data can
be used to quantitatively measure plant growth (see Appendix G).

In Chapter 1, we briefly outlined the problems tackled by this thesis, followed by
a detail discussion in Section 1.1 that include the tedious, manual and error-prone
registration process used by Zhao and Yang, the incompleteness of 3D range data,
especially the often poorly sampled reference spheres. These problems made the

85



86

automation of the registration process using Geomagic Studio 12 difficult. The mo-
tivation (see Section 1.2) to design and develop a fully automated and self-sustained
registration process to provide an automatic and more accurate tool for the plant
growth measurement process. The main contributions of this thesis were also sum-
marized here in Section 1.3). Among the contributions listed include the detection
and estimation of the locations of semi-spheres inside the range images using pa-
rameter estimation techniques, the generation and replacement of full sphere with
semi-sphere data using the estimated parameter values and the parametric equations
of spheres, and finally, the automation of the overall registration process providing
speed and accuracy.

Chapter 2 provides a general overview of the various parameter estimation tech-
niques widely used in Image Processing and Computer Vision. Some of these tech-
niques were used to detect the location of semi-spheres in the range images and to
replace these incomplete data with full sphere to aid the automation of the registra-
tion process. Two major categories of parameter estimation techniques, namely, LS
(Section 2.2.1) methods and robust estimation techniques (Section 2.2.2), and their
sub-categories are discussed here. However, this chapter also reviews some of the
recent literature, especially, Keigtleya and Bawden [46] and Seidel et al. [47], on
quantitative plant growth measurement using 3D imaging technology (Section 2.3).

In chapter 3, we explained the pre-processing methods applied on each view of
the raw range view images, so that Geomagic Studio 12 can automatically create
synthesized 3D polygon meshes from them and then measure the 3D areas and 3D
volumes from the merged images of the Arabidopsis plant. The proposed methodol-
ogy included several steps, i.e. segmentation of the semi-spheres both manually and
automatically, estimation of the parameters, the center coordinates and radius of the
reference spheres, using LS and M-estimators to estimate the sphere parameters and
perform a segmentation of the measured semi-sphere data from plant data, replace-
ment of semi-spheres with full sphere data in the original range images, reconstruction
of each view, and finally, the registration of these views to create 3D polygon meshes
to aid the plant growth measurement process. In Section 3.1.5.1, pre-processing of
these 3D polygon meshes are outlined so the plant’s surface area and 3D volume could
be measured from them to estimate the growth over a period of time.

Chapter 4 discusses the various problems of the Arabidopsis plant datasets used
in this thesis. These problems include the missing datasets and the absence of “gold
standard” to verify the experimental outcomes (see Section 4.1). We also outlined
the various methods used to validate the results in Section 4.2 followed by the exper-
imental results and discussion (see Section 4.3). Results showed that the parameter
estimation techniques performed well. Although, plant growth measurement was not
our primary goal, we presented results to show the growth pattern of the Arabidopsis
plants in this chapter. However, the quantitative analysis of plant growth showed that
some errors were introduced in our calculations. However, despite these calculation
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errors, the presented growth patterns strongly support the approach of using 3D imag-
ing technology to measure plant growth and provide more detailed and continuous
growth data beyond the traditional destructive growth measurement methods.

Despite of the errors in the calculation of plant growth measurement, we suc-
cessfully designed and developed a fully automated and self-sustained registration
process using macros in Geomagic to provide an automatic and more accurate tool
to aid plant growth measurement process.

5.2 Future Work

On the basis of our experiments, we believe that future work should focus on the
following issues:

• Automatic Range Segmentation: Although we have already automated the
overall registration process, a significant amount of time is still needed to edit
the 3D range images. Manual editing of 3D range images is essential to remove
the extraneous elements before measuring the plant growth (surface area and 3D
volume). Moreover, the manual editing of the 3D triangular meshes significantly
affects the accuracy of the surface area and the 3D volume measurements, a
system with more accurate and automatic editing functions is needed to be
developed which will reduce the unnecessary errors involved in Section and as
well as the time required.

• “Gold Standard” for Validation: We do not have any “gold standard to
validate the performance of the registration process which is an essential part
of plant growth measurement. Therefore, during the next experimental setup,
steps should be taken to measure the plants using traditional “destructive” or
“wet volume” methods after they have been scanned by the range sensor..

• Re-scanning to Generate Better Datasets: The whole scanning should
be re-done to generate better quality 3D range images. The datasets of the
Arabidopsis plants used in our thesis are generate using ShapeGrabber SG1002
scanner. However, this scanner is not able to clearly capture the target objects
under bright visible light as its red laser beam is 660 nm, which is in the visible
spectrum. Moreover, the scanning environment should be highly controlled. To
improve the quality of the range images the following steps can be considered:

- Instead of using such scanners, infrared laser scanners can be used. Infrared
light is electromagnetic radiation with a wavelength longer than that of
visible light, measured from the near infrared laser beam at 825 nm (not
visible to the human eye and, more importantly, having no effect on plant
growth)
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- To reduce the editing before growth measurement, the visibility of the
extraneous elements (i.e. the soil, the pots and the table) can be minimized
during the scanning phase. To do so, soil, pots and the table could be
covered using black paper or black plastic bag or even more removed from
the image via depth segmentation.

- Prevention steps should be taken so that the stems of the plants do not
move unless this motion is caused by natural cause (i.e. plants’ natural
growth and due to the increasing weight of the plants’ body). The plant
motion caused by wind in the experimental growth chamber needs to be
eliminated during the experimental measurements.

- During the experimental measurements, the sphere targets were also seem
to be moving or they were bumped at some point. To achieve better
alignment in the registration phase, it is better not to move the plants as
well as the sphere targets once experimental measurements begin. Also,
the reference spheres can be arranged in a slightly less symmetric pattern
(i.e. varying the height and the distance between two adjacent targets).

- The scanner should always remain in a static position through out the ex-
periment. As we are experimenting with growing plants, increasing height
may not be anticipated beforehand. To be in the safe side, a reasonable
distance should be maintained so that plant’s body does not exceed the
scanners line-of-sight (which may result in the change of scanner’s or ta-
ble’s position). The change in position during the scanning process is not
at all desirable as this will directly affect volume measurement (“Compute
Volume To Plane” is extremely sensitive to the position of the reference
plane).

• Retaining Automation in Geomagic: There are some issues that need to
be cared of for retaining automation in Geomagic using macros.

i. Two of the Geomagic’s tools “Detect Sphere Targets” and “Target Regis-
tration” used in this thesis are manual operations. They are very sensitive
to the curvature in the model and need a controlled environment and there-
fore proper measures (e.g., sphere targets should be properly imaged but
not extremely dense) should be taken so that automation is guaranteed all
the time.

ii . “Target Cleanup” can act differently than what is expected during the
use of the macros. Targets may not exactly overlap each other during
registration and can result in larger sphere in the merged image. As the
radius of the target is now changed in the merged image, “Target Cleanup”
needs to know the exact radius to remove the targets properly. Radius
needs to be picked carefully so that the close non-sphere elements (e.g.,
stems and leaves) are not affected at the same time the target is removed
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perfectly. In our case, we had to clean the spheres manually at some points.
However, “Global Registration” can be performed without removing the
targets but will result in relatively less accuracy.

iii. We had to record the experimental results of the areas and volumes manu-
ally from Geomagic as these tools do not have any automatic functionalities
yet.

In this chapter, we summarized the main contributions of our thesis. We conclude
the chapter with some suggestions for future work.

We would like to leave the reader with the news that most of our suggestions for
future work have been met or exhibited by a new growth chamber build on the 4th

floor on the North Campus building. In this chamber, the wind can be turned off
during experimental measurements. A 7 degrees-of-freedom robot arm has a SG1002
ShapeGrabber scanner as its payload. Now a plant (maybe an Arabidopsis plant)
can be placed on a table, and be scanned by the moving scanner (it can be stopped
at controlled positions for scanning) allowing not only side views of the plant but top
and bottom (views under and well as above leaves). This equipment was purchased
by a CFI grant awarded in 2009 and the lab is in a close to final state now. We expect
to measure significantly better range data with this equipment.



Appendix A

Average and Standard Deviation of
Average Radius (Datasets: 30-40)

Radius ± Standard Deviation
No. of View LS Huber Bisquare
View 01 19.999 ± 0.370 19.878 ± 0.231 19.834 ± 0.187
View 02 20.123 ± 0.509 19.990 ± 0.356 19.924 ± 0.279
View 03 19.789 ± 0.378 19.754 ± 0.273 19.735 ± 0.235
View 04 19.822 ± 0.431 19.733 ± 0.317 19.694 ± 0.276
View 05 19.733 ± 0.356 19.676 ± 0.242 19.648 ± 0.207
View 06 19.684 ± 0.388 19.643 ± 0.264 19.622 ± 0.221
View 07 19.566 ± 0.167 19.570 ± 0.138 19.566 ± 0.129
View 08 19.580 ± 0.151 19.595 ± 0.151 19.594 ± 0.150
View 09 19.627 ± 0.216 19.615 ± 0.179 19.608 ± 0.170
View 10 19.751 ± 0.410 19.712 ± 0.301 19.696 ± 0.272
View 11 19.971 ± 0.419 19.851 ± 0.269 19.797 ± 0.212
View 12 20.017 ± 0.392 19.873 ± 0.245 19.810 ± 0.196

Table A.1: Average and standard deviation of average radius (mm) for dataset 30
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare
View 01 20.030 ± 0.397 19.914 ± 0.259 19.871 ± 0.215
View 02 20.200 ± 0.629 20.107 ± 0.575 20.056 ± 0.537
View 03 19.819 ± 0.374 19.773 ± 0.267 19.750 ± 0.228
View 04 19.812 ± 0.443 19.739 ± 0.323 19.705 ± 0.279
View 05 19.738 ± 0.364 19.689 ± 0.240 19.661 ± 0.204
View 06 19.688 ± 0.383 19.652 ± 0.261 19.633 ± 0.220
View 07 19.573 ± 0.159 19.579 ± 0.134 19.575 ± 0.125
View 08 19.593 ± 0.158 19.607 ± 0.157 19.606 ± 0.155
View 09 19.650 ± 0.264 19.636 ± 0.204 19.626 ± 0.185
View 10 19.782 ± 0.446 19.738 ± 0.332 19.719 ± 0.298
View 11 20.010 ± 0.441 19.873 ± 0.280 19.811 ± 0.217
View 12 20.055 ± 0.429 19.903 ± 0.255 19.835 ± 0.193

Table A.2: Average and standard deviation of average radius (mm) for dataset 31
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.044 ± 0.417 19.928 ± 0.277 19.884 ± 0.232
View 2 20.238 ± 0.704 20.162 ± 0.702 20.113 ± 0.669
View 3 19.830 ± 0.372 19.780 ± 0.267 19.754 ± 0.230
View 4 19.833 ± 0.426 19.747 ± 0.314 19.708 ± 0.273
View 5 19.739 ± 0.367 19.691 ± 0.240 19.663 ± 0.205
View 6 19.687 ± 0.380 19.651 ± 0.259 19.633 ± 0.219
View 7 19.574 ± 0.156 19.581 ± 0.133 19.577 ± 0.126
View 8 19.597 ± 0.160 19.611 ± 0.159 19.609 ± 0.156
View 9 19.660 ± 0.277 19.642 ± 0.211 19.631 ± 0.190
View 10 19.797 ± 0.468 19.749 ± 0.348 19.729 ± 0.310
View 11 20.010 ± 0.444 19.872 ± 0.281 19.809 ± 0.215
View 12 20.069 ± 0.438 19.910 ± 0.2574 19.833 ± 0.195

Table A.3: Average and standard deviation of average radius (mm) for dataset 32
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.932 ± 0.333 19.814 ± 0.233 19.762 ± 0.222
View 2 20.065 ± 0.426 19.904 ± 0.238 19.820 ± 0.183
View 3 19.780 ± 0.386 19.750 ± 0.276 19.731 ± 0.237
View 4 19.789 ± 0.442 19.722 ± 0.320 19.689 ± 0.276
View 5 19.784 ± 0.350 19.705 ± 0.242 19.670 ± 0.208
View 6 19.680 ± 0.371 19.638 ± 0.252 19.616 ± 0.211
View 7 19.565 ± 0.154 19.572 ± 0.135 19.569 ± 0.128
View 8 19.578 ± 0.154 19.594 ± 0.155 19.594 ± 0.155
View 9 19.591 ± 0.163 19.601 ± 0.154 19.599 ± 0.151
View 10 19.728 ± 0.341 19.674 ± 0.214 19.647 ± 0.167
View 11 19.959 ± 0.408 19.840 ± 0.260 19.787 ± 0.203
View 12 19.980 ± 0.387 19.855 ± 0.249 19.801 ± 0.201

Table A.4: Average and standard deviation of average radius (mm) for dataset 33
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.972 ± 0.352 19.848 ± 0.229 19.793 ±0.202
View 2 20.104 ± 0.471 19.941 ± 0.270 19.858 ±0.185
View 3 19.789 ± 0.394 19.756 ± 0.281 19.736 ±0.239
View 4 19.823 ± 0.444 19.739 ± 0.321 19.700 ±0.275
View 5 19.760 ± 0.367 19.692 ± 0.242 19.660 ±0.204
View 6 19.685 ± 0.387 19.645 ± 0.259 19.624 ±0.214
View 7 19.582 ± 0.191 19.578 ± 0.146 19.571 ±0.132
View 8 19.585 ± 0.148 19.601 ± 0.149 19.601 ±0.150
View 9 19.602 ± 0.173 19.609 ± 0.158 19.606 ±0.152
View 10 19.730 ± 0.335 19.688 ± 0.227 19.668 ±0.192
View 11 19.940 ± 0.399 19.840 ± 0.259 19.795 ±0.207
View 12 19.924 ± 0.391 19.839 ± 0.252 19.801 ±0.201

Table A.5: Average and standard deviation of average radius (mm) for dataset 34
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.971 ± 0.354 19.858 ± 0.229 19.815 ± 0.187
View 2 20.160 ± 0.559 20.015 ± 0.390 19.955 ± 0.326
View 3 19.797 ± 0.393 19.760 ± 0.282 19.739 ± 0.241
View 4 19.831 ± 0.448 19.744 ± 0.324 19.704 ± 0.277
View 5 19.764 ± 0.369 19.693 ± 0.244 19.660 ± 0.205
View 6 19.685 ± 0.386 19.647 ± 0.260 19.627 ± 0.216
View 7 19.585 ± 0.200 19.579 ± 0.149 19.571 ± 0.132
View 8 19.585 ± 0.147 19.601 ± 0.148 19.601 ± 0.149
View 9 19.609 ± 0.175 19.612 ± 0.158 19.609 ± 0.153
View 10 19.737 ± 0.342 19.699 ± 0.245 19.684 ± 0.221
View 11 19.940 ± 0.401 19.844 ± 0.260 19.799 ± 0.209
View 12 19.925 ± 0.398 19.843 ± 0.254 19.806 ± 0.200

Table A.6: Average and standard deviation of average radius (mm) for dataset 35
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.988 ± 0.239 19.914 ± 0.306 19.865 ± 0.239
View 2 19.949 ± 0.229 19.885 ± 0.255 19.866 ± 0.229
View 3 19.748 ± 0.268 19.715 ± 0.302 19.697 ± 0.268
View 4 19.795 ± 0.382 19.736 ± 0.472 19.695 ± 0.382
View 5 19.897 ± 0.228 19.749 ± 0.372 19.659 ± 0.228
View 6 19.709 ± 0.274 19.662 ± 0.326 19.638 ± 0.274
View 7 19.667 ± 0.190 19.614 ± 0.230 19.591 ± 0.190
View 8 19.620 ± 0.199 19.635 ± 0.199 19.635 ± 0.199
View 9 19.649 ± 0.198 19.593 ± 0.263 19.559 ± 0.198
View 10 20.001 ± 0.338 19.847 ± 0.802 19.656 ± 0.338
View 11 20.218 ± 0.130 20.122 ± 1.187 19.683 ± 0.130
View 12 20.178 ± 0.139 20.033 ± 0.670 19.748 ± 0.139

Table A.7: Average and standard deviation of average radius (mm) for dataset 36
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.899 ± 0.479 19.941 ± 0.330 19.899 ± 0.262
View 2 19.906 ± 0.368 19.929 ± 0.272 19.906 ± 0.246
View 3 19.716 ± 0.444 19.737 ± 0.325 19.716 ± 0.282
View 4 19.705 ± 0.654 19.748 ± 0.477 19.705 ± 0.383
View 5 19.671 ± 0.707 19.768 ± 0.381 19.671 ± 0.224
View 6 19.644 ± 0.475 19.669 ± 0.323 19.644 ± 0.266
View 7 19.595 ± 0.396 19.622 ± 0.234 19.595 ± 0.187
View 8 19.645 ± 0.203 19.645 ± 0.202 19.645 ± 0.202
View 9 19.569 ± 0.402 19.604 ± 0.270 19.569 ± 0.198
View 10 19.673 ± 1.225 19.870 ± 0.842 19.673 ± 0.362
View 11 19.697 ± 1.465 20.146 ± 1.199 19.697 ± 0.131
View 12 19.760 ± 1.059 20.057 ± 0.698 19.760 ± 0.146

Table A.8: Average and standard deviation of average radius (mm) for dataset 37
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.019 ± 0.487 19.950 ± 0.341 19.911 ± 0.275
View 2 20.018 ± 0.379 19.961 ± 0.296 19.935 ± 0.269
View 3 19.773 ± 0.440 19.739 ± 0.323 19.718 ± 0.281
View 4 19.817 ± 0.655 19.755 ± 0.479 19.712 ± 0.386
View 5 19.924 ± 0.703 19.768 ± 0.377 19.672 ± 0.219
View 6 19.722 ± 0.471 19.673 ± 0.320 19.648 ± 0.264
View 7 19.674 ± 0.373 19.622 ± 0.228 19.597 ± 0.186
View 8 19.631 ± 0.202 19.646 ± 0.201 19.645 ± 0.201
View 9 19.649 ± 0.403 19.606 ± 0.272 19.572 ± 0.200
View 10 20.011 ±1.220 19.874 ± 0.848 19.678 ± 0.371
View 11 20.237 ± 1.472 20.143 ± 1.203 19.695 ± 0.129
View 12 20.188 ± 1.057 20.044 ± 0.683 19.756 ± 0.143

Table A.9: Average and standard deviation of average radius (mm) for dataset 38
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 21.368 ± 3.760 22.792 ± 7.251 22.782 ± 7.231
View 2 20.708 ± 1.877 31.260 ± 27.854 31.255 ± 27.894
View 3 19.767 ± 0.414 19.723 ± 0.311 19.703 ± 0.273
View 4 19.815 ± 0.634 19.756 ± 0.462 19.715 ± 0.373
View 5 19.909 ± 0.704 19.758 ± 0.382 19.663 ± 0.231
View 6 19.721 ± 0.482 19.672 ± 0.332 19.647 ± 0.277
View 7 19.641 ± 0.399 19.584 ± 0.242 19.558 ± 0.195
View 8 19.540 ± 0.240 19.591 ± 0.202 19.591 ± 0.203
View 9 19.074 ± 1.058 19.513 ± 0.138 19.471 ± 0.123
View 10 19.801 ± 0.703 21.570 ± 5.031 21.569 ± 5.038
View 11 20.018 ± 0.987 21.005 ± 3.362 21.010 ± 3.366
View 12 20.377 ± 1.539 21.770 ± 4.921 21.781 ± 4.952

Table A.10: Average and standard deviation of average radius (mm) for dataset 39
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 21.286 ± 3.547 22.200 ± 5.794 22.137 ± 5.646
View 2 22.282 ± 5.631 26.671 ± 16.554 26.648 ± 16.561
View 3 19.791 ± 0.448 19.754 ± 0.326 19.732 ± 0.281
View 4 19.834 ± 0.659 19.773 ± 0.484 19.731 ± 0.391
View 5 19.933 ± 0.750 19.774 ± 0.409 19.664 ± 0.224
View 6 19.735 ± 0.499 19.686 ± 0.346 19.661 ± 0.290
View 7 19.647 ± 0.442 19.581 ± 0.263 19.550 ± 0.204
View 8 19.566 ± 0.234 19.596 ± 0.219 19.596 ± 0.220
View 9 19.660 ± 0.451 19.596 ± 0.283 19.544 ± 0.178
View 10 20.016 ± 1.286 19.952 ± 1.088 19.681 ± 0.428
View 11 20.263 ± 1.565 20.182 ± 1.333 19.679 ± 0.122
View 12 20.232 ± 1.175 20.090 ± 0.809 19.751 ± 0.138

Table A.11: Average and standard deviation of average radius (mm) for dataset 40
obtained from LS, Huber and Bisquare estimators



Appendix B

Average and Standard Deviation of
Average Residual (Datasets: 30-40)

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.586E-03 ± 6.552E-04 1.609E-03 ± 6.828E-04 1.630E-03 ± 7.075E-04

View 2 1.964E-03 ± 1.151E-03 2.000E-03 ± 1.194E-03 2.034E-03 ± 1.233E-03

View 3 1.395E-03 ± 5.517E-04 1.403E-03 ± 5.728E-04 1.413E-03 ± 5.952E-04

View 4 1.604E-03 ± 6.467E-04 1.620E-03 ± 6.703E-04 1.637E-03 ± 6.960E-04

View 5 1.535E-03 ± 5.558E-04 1.546E-03 ± 5.734E-04 1.557E-03 ± 5.916E-04

View 6 1.433E-03 ± 4.924E-04 1.445E-03 ± 5.204E-04 1.457E-03 ± 5.490E-04

View 7 1.289E-03 ± 1.701E-04 1.290E-03 ± 1.713E-04 1.290E-03 ± 1.725E-04

View 8 1.247E-03 ± 1.682E-04 1.246E-03 ± 1.681E-04 1.246E-03 ± 1.683E-04

View 9 1.355E-03 ± 3.528E-04 1.357E-03 ± 3.591E-04 1.359E-03 ± 3.634E-04

View 10 1.396E-03 ± 5.313E-04 1.406E-03 ± 5.537E-04 1.413E-03 ± 5.696E-04

View 11 1.602E-03 ± 6.197E-04 1.625E-03 ± 6.477E-04 1.651E-03 ± 6.794E-04

View 12 1.644E-03 ± 6.803E-04 1.673E-03 ± 7.109E-04 1.706E-03 ± 7.454E-04

Table B.1: Average and standard deviation of average residual (mm) for dataset 30
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.617E-03 ± 6.935E-04 1.639E-03 ± 7.204E-04 1.659E-03 ± 7.453E-04

View 2 2.070E-03 ± 1.380E-03 2.097E-03 ± 1.404E-03 2.123E-03 ± 1.421E-03

View 3 1.454E-03 ± 5.599E-04 1.464E-03 ± 5.817E-04 1.475E-03 ± 6.053E-04

View 4 1.630E-03 ± 6.401E-04 1.644E-03 ± 6.621E-04 1.659E-03 ± 6.859E-04

View 5 1.667E-03 ± 6.037E-04 1.679E-03 ± 6.180E-04 1.692E-03 ± 6.339E-04

View 6 1.426E-03 ± 4.861E-04 1.437E-03 ± 5.126E-04 1.448E-03 ± 5.389E-04

View 7 1.325E-03 ± 2.355E-04 1.325E-03 ± 2.359E-04 1.325E-03 ± 2.366E-04

View 8 1.284E-03 ± 2.538E-04 1.284E-03 ± 2.540E-04 1.284E-03 ± 2.545E-04

View 9 1.387E-03 ± 4.991E-04 1.391E-03 ± 5.101E-04 1.394E-03 ± 5.187E-04

View 10 1.433E-03 ± 6.002E-04 1.444E-03 ± 6.249E-04 1.452E-03 ± 6.439E-04

View 11 1.678E-03 ± 6.260E-04 1.705E-03 ± 6.561E-04 1.737E-03 ± 6.907E-04

View 12 1.680E-03 ± 7.364E-04 1.714E-03 ± 7.736E-04 1.753E-03 ± 8.174E-04

Table B.2: Average and standard deviation of average residual (mm) for dataset 31
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.630E-03 ± 7.269E-04 1.652E-03 ± 7.547E-04 1.673E-03 ± 7.803E-04

View 2 2.122E-03 ± 1.508E-03 2.146E-03 ± 1.524E-03 2.171E-03 ± 1.540E-03

View 3 1.486E-03 ± 5.674E-04 1.497E-03 ± 5.883E-04 1.508E-03 ± 6.106E-04

View 4 1.673E-03 ± 6.229E-04 1.688E-03 ± 6.444E-04 1.704E-03 ± 6.674E-04

View 5 1.724E-03 ± 6.691E-04 1.735E-03 ± 6.801E-04 1.748E-03 ± 6.937E-04

View 6 1.415E-03 ± 4.835E-04 1.426E-03 ± 5.098E-04 1.437E-03 ± 5.355E-04

View 7 1.309E-03 ± 2.123E-04 1.309E-03 ± 2.127E-04 1.310E-03 ± 2.133E-04

View 8 1.298E-03 ± 2.766E-04 1.298E-03 ± 2.770E-04 1.298E-03 ± 2.777E-04

View 9 1.408E-03 ± 5.421E-04 1.413E-03 ± 5.553E-04 1.417E-03 ± 5.661E-04

View 10 1.451E-03 ± 6.325E-04 1.463E-03 ± 6.596E-04 1.473E-03 ± 6.818E-04

View 11 1.677E-03 ± 6.404E-04 1.705E-03 ± 6.714E-04 1.739E-03 ± 7.074E-04

View 12 1.722E-03 ± 7.182E-04 1.759E-03 ± 7.587E-04 1.806E-03 ± 8.123E-04

Table B.3: Average and standard deviation of average residual (mm) for dataset 32
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.517E-03 ± 6.269E-04 1.538E-03 ± 6.555E-04 1.564E-03 ± 6.885E-04

View 2 1.824E-03 ± 8.587E-04 1.859E-03 ± 9.032E-04 1.902E-03 ± 9.609E-04

View 3 1.363E-03 ± 5.771E-04 1.372E-03 ± 5.988E-04 1.381E-03 ± 6.222E-04

View 4 1.534E-03 ± 6.666E-04 1.548E-03 ± 6.902E-04 1.563E-03 ± 7.157E-04

View 5 1.679E-03 ± 6.058E-04 1.692E-03 ± 6.211E-04 1.706E-03 ± 6.368E-04

View 6 1.438E-03 ± 4.698E-04 1.449E-03 ± 4.956E-04 1.460E-03 ± 5.218E-04

View 7 1.254E-03 ± 1.235E-04 1.254E-03 ± 1.243E-04 1.255E-03 ± 1.250E-04

View 8 1.198E-03 ± 9.974E-05 1.197E-03 ± 9.968E-05 1.197E-03 ± 9.968E-05

View 9 1.230E-03 ± 1.261E-04 1.230E-03 ± 1.266E-04 1.230E-03 ± 1.271E-04

View 10 1.427E-03 ± 5.346E-04 1.438E-03 ± 5.601E-04 1.451E-03 ± 5.895E-04

View 11 1.609E-03 ± 6.162E-04 1.632E-03 ± 6.439E-04 1.658E-03 ± 6.757E-04

View 12 1.635E-03 ± 6.871E-04 1.659E-03 ± 7.139E-04 1.686E-03 ± 7.431E-04

Table B.4: Average and standard deviation of average residual (mm) for dataset 33
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.555E-03 ± 6.396E-04 1.579E-03 ± 6.704E-04 1.607E-03 ± 7.056E-04

View 2 1.827E-03 ± 8.544E-04 1.865E-03 ± 9.019E-04 1.909E-03 ± 9.587E-04

View 3 1.367E-03 ± 5.817E-04 1.376E-03 ± 6.045E-04 1.387E-03 ± 6.296E-04

View 4 1.574E-03 ± 6.737E-04 1.590E-03 ± 6.990E-04 1.607E-03 ± 7.273E-04

View 5 1.515E-03 ± 6.256E-04 1.529E-03 ± 6.474E-04 1.543E-03 ± 6.709E-04

View 6 1.410E-03 ± 4.982E-04 1.422E-03 ± 5.269E-04 1.434E-03 ± 5.568E-04

View 7 1.289E-03 ± 2.035E-04 1.290E-03 ± 2.073E-04 1.292E-03 ± 2.110E-04

View 8 1.199E-03 ± 1.001E-04 1.198E-03 ± 1.000E-04 1.198E-03 ± 1.000E-04

View 9 1.249E-03 ± 1.774E-04 1.249E-03 ± 1.786E-04 1.250E-03 ± 1.799E-04

View 10 1.375E-03 ± 4.629E-04 1.384E-03 ± 4.838E-04 1.393E-03 ± 5.032E-04

View 11 1.530E-03 ± 6.063E-04 1.550E-03 ± 6.345E-04 1.572E-03 ± 6.666E-04

View 12 1.491E-03 ± 6.331E-04 1.509E-03 ± 6.591E-04 1.528E-03 ± 6.870E-04

Table B.5: Average and standard deviation of average residual (mm) for dataset 34
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.531E-03 ± 6.312E-04 1.553E-03 ± 6.592E-04 1.572E-03 ± 6.868E-04

View 2 1.870E-03 ± 9.458E-04 1.904E-03 ± 9.871E-04 1.934E-03 ± 1.017E-03

View 3 1.393E-03 ± 5.724E-04 1.402E-03 ± 5.955E-04 1.413E-03 ± 6.207E-04

View 4 1.585E-03 ± 6.747E-04 1.601E-03 ± 7.007E-04 1.619E-03 ± 7.302E-04

View 5 1.529E-03 ± 6.188E-04 1.543E-03 ± 6.411E-04 1.558E-03 ± 6.654E-04

View 6 1.404E-03 ± 4.991E-04 1.416E-03 ± 5.272E-04 1.428E-03 ± 5.560E-04

View 7 1.297E-03 ± 2.201E-04 1.299E-03 ± 2.247E-04 1.301E-03 ± 2.293E-04

View 8 1.199E-03 ± 1.025E-04 1.198E-03 ± 1.024E-04 1.198E-03 ± 1.024E-04

View 9 1.263E-03 ± 1.582E-04 1.263E-03 ± 1.594E-04 1.263E-03 ± 1.603E-04

View 10 1.373E-03 ± 4.502E-04 1.381E-03 ± 4.682E-04 1.386E-03 ± 4.801E-04

View 11 1.531E-03 ± 5.980E-04 1.550E-03 ± 6.267E-04 1.573E-03 ± 6.596E-04

View 12 1.471E-03 ± 6.519E-04 1.489E-03 ± 6.793E-04 1.508E-03 ± 7.089E-04

Table B.6: Average and standard deviation of average residual (mm) for dataset 35
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.461E-03 ± 7.616E-04 1.481E-03 ± 8.046E-04 1.514E-03 ± 8.784E-04

View 2 1.493E-03 ± 4.255E-04 1.504E-03 ± 4.409E-04 1.511E-03 ± 4.522E-04

View 3 1.408E-03 ± 6.267E-04 1.416E-03 ± 6.485E-04 1.425E-03 ± 6.693E-04

View 4 1.594E-03 ± 1.012E-03 1.614E-03 ± 1.060E-03 1.642E-03 ± 1.130E-03

View 5 1.846E-03 ± 1.341E-03 1.915E-03 ± 1.495E-03 2.026E-03 ± 1.756E-03

View 6 1.488E-03 ± 7.172E-04 1.506E-03 ± 7.608E-04 1.524E-03 ± 8.048E-04

View 7 1.451E-03 ± 5.864E-04 1.466E-03 ± 6.222E-04 1.481E-03 ± 6.595E-04

View 8 1.281E-03 ± 3.281E-04 1.281E-03 ± 3.279E-04 1.281E-03 ± 3.281E-04

View 9 2.062E-03 ± 1.972E-03 2.094E-03 ± 2.051E-03 2.129E-03 ± 2.135E-03

View 10 2.269E-03 ± 2.719E-03 2.407E-03 ± 3.058E-03 2.737E-03 ± 3.868E-03

View 11 2.146E-03 ± 2.495E-03 2.231E-03 ± 2.702E-03 3.139E-03 ± 4.927E-03

View 12 1.700E-03 ± 1.445E-03 1.776E-03 ± 1.631E-03 2.202E-03 ± 2.669E-03

Table B.7: Average and standard deviation of average residual (mm) for dataset 36
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.478E-03 ± 7.801E-04 1.496E-03 ± 8.175E-04 1.522E-03 ± 8.736E-04

View 2 1.523E-03 ± 4.533E-04 1.533E-03 ± 4.679E-04 1.542E-03 ± 4.797E-04

View 3 1.409E-03 ± 6.835E-04 1.420E-03 ± 7.096E-04 1.431E-03 ± 7.366E-04

View 4 1.600E-03 ± 1.041E-03 1.621E-03 ± 1.091E-03 1.652E-03 ± 1.166E-03

View 5 1.872E-03 ± 1.401E-03 1.946E-03 ± 1.569E-03 2.073E-03 ± 1.867E-03

View 6 1.494E-03 ± 7.406E-04 1.513E-03 ± 7.866E-04 1.533E-03 ± 8.355E-04

View 7 1.460E-03 ± 6.263E-04 1.478E-03 ± 6.699E-04 1.498E-03 ± 7.180E-04

View 8 1.310E-03 ± 3.948E-04 1.309E-03 ± 3.947E-04 1.309E-03 ± 3.950E-04

View 9 2.066E-03 ± 2.033E-03 2.101E-03 ± 2.119E-03 2.140E-03 ± 2.214E-03

View 10 2.318E-03 ± 2.854E-03 2.455E-03 ± 3.190E-03 2.818E-03 ± 4.080E-03

View 11 2.191E-03 ± 2.492E-03 2.275E-03 ± 2.697E-03 3.207E-03 ± 4.978E-03

View 12 1.700E-03 ± 1.448E-03 1.771E-03 ± 1.621E-03 2.216E-03 ± 2.707E-03

Table B.8: Average and standard deviation of average residual (mm) for dataset 37
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.480E-03 ± 7.856E-04 1.497E-03 ± 8.212E-04 1.520E-03 ± 8.728E-04

View 2 1.555E-03 ± 4.760E-04 1.565E-03 ± 4.883E-04 1.573E-03 ± 4.986E-04

View 3 1.406E-03 ± 6.764E-04 1.417E-03 ± 7.021E-04 1.427E-03 ± 7.283E-04

View 4 1.603E-03 ± 1.036E-03 1.623E-03 ± 1.086E-03 1.654E-03 ± 1.160E-03

View 5 1.863E-03 ± 1.389E-03 1.938E-03 ± 1.556E-03 2.062E-03 ± 1.848E-03

View 6 1.489E-03 ± 7.297E-04 1.507E-03 ± 7.750E-04 1.527E-03 ± 8.225E-04

View 7 1.449E-03 ± 5.828E-04 1.464E-03 ± 6.195E-04 1.481E-03 ± 6.593E-04

View 8 1.308E-03 ± 3.988E-04 1.307E-03 ± 3.986E-04 1.308E-03 ± 3.990E-04

View 9 2.025E-03 ± 2.060E-03 2.060E-03 ± 2.147E-03 2.100E-03 ± 2.245E-03

View 10 2.330E-03 ± 2.889E-03 2.466E-03 ± 3.223E-03 2.832E-03 ± 4.120E-03

View 11 2.159E-03 ± 2.525E-03 2.242E-03 ± 2.729E-03 3.178E-03 ± 5.024E-03

View 12 1.701E-03 ± 1.461E-03 1.776E-03 ± 1.645E-03 2.206E-03 ± 2.695E-03

Table B.9: Average and standard deviation of average residual (mm) for dataset 38
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 3.461E-03 ± 5.596E-03 3.175E-03 ± 4.893E-03 3.179E-03 ± 4.901E-03

View 2 5.725E-03 ± 1.044E-02 3.695E-03 ± 5.446E-03 3.702E-03 ± 5.444E-03

View 3 1.434E-03 ± 6.490E-04 1.444E-03 ± 6.731E-04 1.454E-03 ± 6.970E-04

View 4 1.648E-03 ± 9.951E-04 1.668E-03 ± 1.044E-03 1.697E-03 ± 1.114E-03

View 5 1.876E-03 ± 1.378E-03 1.949E-03 ± 1.542E-03 2.071E-03 ± 1.828E-03

View 6 1.514E-03 ± 7.447E-04 1.532E-03 ± 7.908E-04 1.552E-03 ± 8.389E-04

View 7 1.420E-03 ± 6.321E-04 1.436E-03 ± 6.737E-04 1.455E-03 ± 7.185E-04

View 8 1.512E-03 ± 8.982E-04 1.507E-03 ± 8.867E-04 1.507E-03 ± 8.870E-04

View 9 5.181E-03 ± 9.609E-03 4.935E-03 ± 9.003E-03 5.038E-03 ± 9.255E-03

View 10 5.597E-03 ± 1.076E-02 4.766E-03 ± 8.717E-03 4.765E-03 ± 8.714E-03

View 11 5.054E-03 ± 9.636E-03 4.609E-03 ± 8.548E-03 4.609E-03 ± 8.546E-03

View 12 4.290E-03 ± 7.784E-03 3.882E-03 ± 6.788E-03 3.884E-03 ± 6.792E-03

Table B.10: Average and standard deviation of average residual (mm) for dataset 39
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 3.204E-03 ± 4.943E-03 3.027E-03 ± 4.507E-03 3.044E-03 ± 4.547E-03

View 2 4.083E-03 ± 6.366E-03 3.388E-03 ± 4.638E-03 3.397E-03 ± 4.635E-03

View 3 1.421E-03 ± 7.092E-04 1.432E-03 ± 7.369E-04 1.444E-03 ± 7.661E-04

View 4 1.631E-03 ± 1.051E-03 1.652E-03 ± 1.102E-03 1.683E-03 ± 1.175E-03

View 5 1.913E-03 ± 1.475E-03 1.995E-03 ± 1.659E-03 2.149E-03 ± 2.021E-03

View 6 1.530E-03 ± 7.937E-04 1.550E-03 ± 8.410E-04 1.569E-03 ± 8.894E-04

View 7 1.450E-03 ± 7.001E-04 1.472E-03 ± 7.542E-04 1.497E-03 ± 8.161E-04

View 8 1.362E-03 ± 5.476E-04 1.360E-03 ± 5.441E-04 1.360E-03 ± 5.443E-04

View 9 2.475E-03 ± 3.068E-03 2.552E-03 ± 3.259E-03 2.641E-03 ± 3.477E-03

View 10 2.709E-03 ± 3.796E-03 2.851E-03 ± 4.145E-03 3.559E-03 ± 5.879E-03

View 11 2.244E-03 ± 2.709E-03 2.321E-03 ± 2.900E-03 3.426E-03 ± 5.606E-03

View 12 1.762E-03 ± 1.571E-03 1.835E-03 ± 1.749E-03 2.366E-03 ± 3.043E-03

Table B.11: Average and standard deviation of average residual (mm) for dataset 40
using LS, Huber and Bisquare estimators



Appendix C

Average and Standard Deviation of
Average Radius (Datasets: 60-70)

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.6253±0.1804 19.6388±0.1736 19.6373±0.1705
View 2 19.6862±0.1200 19.7016±0.1197 19.7009±0.1195
View 3 19.7485±0.1472 19.7610±0.1425 19.7597±0.1399
View 4 19.7396±0.1764 19.7513±0.1702 19.7500±0.1684
View 5 19.7391±0.1739 19.7518±0.1661 19.7509±0.1653
View 6 19.7391±0.1691 19.7572±0.1724 19.7570±0.1731
View 7 19.6700±0.2321 19.6877±0.2316 19.6866±0.2311
View 8 19.6089±0.1710 19.6286±0.1733 19.6284±0.1738
View 9 19.6043±0.1965 19.6231±0.1995 19.6230±0.2001
View 10 19.5370±0.1486 19.5545±0.1518 19.5544±0.1519
View 11 19.5681±0.1405 19.5866±0.1453 19.5865±0.1451
View 12 19.5600±0.1490 19.5751±0.1479 19.5748±0.1476

Table C.1: Average and standard deviation of average radius (mm) for dataset 60
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.6310 ± 0.1750 19.6385 ± 0.1535 19.6376 ± 0.1518
View 2 19.6949 ± 0.1200 19.7118 ± 0.1203 19.7117 ± 0.1205
View 3 19.7593 ± 0.1434 19.7725 ± 0.1401 19.7711 ± 0.1377
View 4 19.7538 ± 0.1605 19.7647 ± 0.1573 19.7631 ± 0.1556
View 5 19.7853 ± 0.1762 19.7933 ± 0.1708 19.7903 ± 0.1686
View 6 19.7560 ± 0.1880 19.7718 ± 0.1892 19.7707 ± 0.1888
View 7 19.6760 ± 0.2108 19.6909 ± 0.2047 19.6885 ± 0.2028
View 8 19.5993 ± 0.1405 19.6183 ± 0.1415 19.6184 ± 0.1422
View 9 19.6245 ± 0.2134 19.6397 ± 0.2108 19.6401 ± 0.2115
View 10 19.5943 ± 0.2277 19.6123 ± 0.2325 19.6122 ± 0.2327
View 11 19.5959 ± 0.1676 19.6142 ± 0.1732 19.6141 ± 0.1732
View 12 19.5571 ± 0.1258 19.5749 ± 0.1284 19.5749 ± 0.1284

Table C.2: Average and standard deviation of average radius (mm) for dataset 61
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.6282 ± 0.1726 19.6425 ± 0.1658 19.6409 ± 0.1623
View 2 19.7142 ± 0.1364 19.7306 ± 0.1368 19.7298 ± 0.1360
View 3 19.7392 ± 0.1130 19.7542 ± 0.1120 19.7542 ± 0.1122
View 4 19.7566 ± 0.1521 19.7692 ± 0.1481 19.7672 ± 0.1471
View 5 19.7914 ± 0.1906 19.8008 ± 0.1816 19.7969 ± 0.1780
View 6 19.7508 ± 0.1784 19.7699 ± 0.1807 19.7693 ± 0.1811
View 7 19.6616 ± 0.1767 19.6755 ± 0.1678 19.6733 ± 0.1662
View 8 19.6057 ± 0.1475 19.6237 ± 0.1476 19.6236 ± 0.1480
View 9 19.6369 ± 0.2299 19.6547 ± 0.2323 19.6548 ± 0.2327
View 10 19.5687 ± 0.1614 19.5867 ± 0.1655 19.5867 ± 0.1656
View 11 19.5774 ± 0.1323 19.5956 ± 0.1365 19.5956 ± 0.1367
View 12 19.5547 ± 0.1058 19.5721 ± 0.1079 19.5719 ± 0.1078

Table C.3: Average and standard deviation of average radius (mm) for dataset 62
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.9443 ± 0.4900 19.8449 ± 0.3159 19.8032 ± 0.2553
View 2 19.9000 ± 0.3392 19.8101 ± 0.1716 19.7593 ± 0.1101
View 3 20.0585 ± 0.4738 19.9486 ± 0.3726 19.9099 ± 0.3508
View 4 20.3947 ± 0.6738 20.1986 ± 0.5142 20.1106 ± 0.4521
View 5 19.9265 ± 0.4880 19.8316 ± 0.2309 19.7418 ± 0.1339
View 6 19.7380 ± 0.2125 19.6791 ± 0.1754 19.6522 ± 0.1650
View 7 19.5947 ± 0.1606 19.6123 ± 0.1580 19.6104 ± 0.1572
View 8 19.6515 ± 0.3583 19.6197 ± 0.2513 19.6040± 0.2217
View 9 19.5346 ± 0.1382 19.5505 ± 0.1381 19.5486 ± 0.1362
View 10 19.5295 ± 0.1202 19.5473 ± 0.1233 19.5465 ± 0.1234
View 11 19.5979 ± 0.1601 19.5790 ± 0.1278 19.5676 ± 0.1198
View 12 19.7811 ± 0.6232 19.7163 ± 0.4171 19.6712 ± 0.3085

Table C.4: Average and standard deviation of average radius (mm) for dataset 63
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.9452 ± 0.6935 19.8799 ± 0.5126 19.8196 ± 0.3759
View 2 20.1762 ± 0.7177 20.0524 ± 0.6049 20.0128 ± 0.5987
View 3 20.2724 ± 0.6750 20.1100 ± 0.6125 20.0382 ± 0.6407
View 4 20.5501 ± 0.8386 20.4164 ± 0.8330 20.3384 ± 0.8289
View 5 20.0239 ± 0.7144 20.0141 ± 0.6544 20.0105 ± 0.6488
View 6 20.0151 ± 0.4440 19.8185 ± 0.2710 19.7226 ± 0.2072
View 7 19.5774 ± 0.1444 19.5870 ± 0.1402 19.5831 ± 0.1402
View 8 19.6529 ± 0.3162 19.6210 ± 0.2317 19.6027 ± 0.2070
View 9 19.5863 ± 0.2881 19.5530 ± 0.1697 19.5310 ± 0.1231
View 10 19.5024 ± 0.1135 19.5209 ± 0.1109 19.5206 ± 0.1110
View 11 19.6820 ± 0.2673 19.6248 ± 0.1583 19.5908 ± 0.1273
View 12 19.7786 ± 0.5668 19.7240 ± 0.3870 19.6806 ± 0.2827

Table C.5: Average and standard deviation of average radius (mm) for dataset 64
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.1266±0.7594 20.0128±0.6273 19.9641±0.5834
View 2 20.2724±0.8143 20.1695±0.7477 20.1301±0.7404
View 3 20.3091±0.7123 20.1530±0.6619 20.0753±0.6795
View 4 20.5591±0.8351 20.4316±0.8297 20.3549±0.8138
View 5 20.0495±0.6871 20.0109±0.6357 19.9932±0.6328
View 6 20.0608±0.5686 19.8590±0.3518 19.7119±0.2010
View 7 19.6046±0.2125 19.6050±0.1668 19.5966±0.1538
View 8 19.5905±0.2124 19.5946±0.1952 19.5902±0.1902
View 9 19.5868±0.2486 19.5720±0.1600 19.5519±0.1249
View 10 19.5374±0.1227 19.5527±0.1196 19.5514±0.1179
View 11 19.5745±0.1222 19.5741±0.1072 19.5661±0.1020
View 12 19.8043±0.6266 19.7448±0.4357 19.6954±0.3166

Table C.6: Average and standard deviation of average radius (mm) for dataset 65
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.0187±0.5197 19.8716±0.3416 19.8107±0.2839
View 2 20.0167±0.4064 19.8560±0.2256 19.7804±0.1536
View 3 20.2216±0.4038 20.0062±0.3112 19.9172±0.3241
View 4 20.3851±0.6308 20.1670±0.4579 20.0346±0.3253
View 5 19.9993±0.5011 19.8590±0.2726 19.7444±0.1379
View 6 19.7336±0.1907 19.6745±0.1541 19.6464±0.1467
View 7 19.6117±0.2202 19.5994±0.1636 19.5878±0.1482
View 8 19.7195±0.3957 19.6704±0.3180 19.6422±0.2984
View 9 19.5137±0.1386 19.5328±0.1397 19.5324±0.1394
View 10 19.5025±0.1115 19.5224±0.1067 19.5209±0.1067
View 11 19.5965±0.1688 19.5785±0.1239 19.5665±0.1193
View 12 19.8013±0.4840 19.7554±0.3458 19.7299±0.2941

Table C.7: Average and standard deviation of average radius (mm) for dataset 66
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.0094±0.5328 19.8535±0.3546 19.7872±0.2986
View 2 20.1513±0.5927 19.9576±0.3936 19.8516±0.3178
View 3 20.2605±0.4566 20.0342±0.3262 19.9283±0.3310
View 4 20.4951±0.7043 20.2763±0.5463 20.1570±0.4491
View 5 20.1170±0.5727 20.0093±0.4345 19.9712±0.4145
View 6 19.7534±0.2016 19.6776±0.1472 19.6446±0.1329
View 7 19.6260±0.2419 19.5999±0.1663 19.5827±0.1439
View 8 19.7257±0.4246 19.6776±0.3350 19.6495±0.3104
View 9 19.5269±0.1437 19.5392±0.1285 19.5368±0.1232
View 10 19.5010±0.1210 19.5166±0.1150 19.5150±0.1151
View 11 19.5368±0.1293 19.5545±0.1316 19.5535±0.1305
View 12 19.7550±0.4929 19.7119±0.3540 19.6879±0.3007

Table C.8: Average and standard deviation of average radius (mm) for dataset 67
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.1036 ± 0.6543 19.9387 ± 0.4948 19.8586 ± 0.4455
View 2 20.1093 ± 0.6860 20.0151 ± 0.5892 19.9793 ± 0.5755
View 3 20.3475 ± 0.6317 20.1525 ± 0.5908 20.0469 ± 0.6031
View 4 20.5609 ± 0.7816 20.4502 ± 0.7735 20.3689 ± 0.7410
View 5 20.1721 ± 0.6347 20.0634 ± 0.5910 20.0053 ± 0.5941
View 6 20.1107 ± 0.6654 19.9965 ± 0.6118 19.9506 ± 0.6052
View 7 19.6092 ± 0.2558 19.5958 ± 0.1732 19.5748 ± 0.1451
View 8 19.6886 ± 0.3700 19.6415 ± 0.2652 19.6131 ± 0.2309
View 9 19.5263 ± 0.1370 19.5479 ± 0.1419 19.5468 ± 0.1408
View 10 19.5232 ± 0.1126 19.5436 ± 0.1133 19.5430 ± 0.1126
View 11 19.5589 ± 0.1286 19.5765 ± 0.1435 19.5643 ± 0.1303
View 12 19.7894 ± 0.5545 19.7437 ± 0.4145 19.7122 ± 0.3437

Table C.9: Average and standard deviation of average radius (mm) for dataset 68
obtained from LS, Huber and Bisquare estimators
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Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 19.674 ± 0.125 19.695 ± 0.127 19.695 ± 0.128
View 2 19.663 ± 0.178 19.682 ± 0.174 19.687 ± 0.174
View 3 19.721 ± 0.123 19.741 ± 0.120 19.742 ± 0.121
View 4 19.598 ± 0.160 19.622 ± 0.162 19.622 ± 0.163
View 5 19.544 ± 0.146 19.574 ± 0.149 19.573 ± 0.149
View 6 19.505 ± 0.139 19.530 ± 0.135 19.530 ± 0.136
View 7 19.617 ± 0.336 19.641 ± 0.340 19.641 ± 0.340
View 8 19.489 ± 0.118 19.514 ± 0.120 19.514 ± 0.120
View 9 19.487 ± 0.087 19.508 ± 0.086 19.508 ± 0.086
View 10 19.475 ± 0.102 19.497 ± 0.102 19.497 ± 0.102
View 11 19.544 ± 0.102 19.566 ± 0.102 19.566 ± 0.102
View 12 19.599 ± 0.144 19.621 ± 0.144 19.621 ± 0.145

Table C.10: Average and standard deviation of average radius (mm) for dataset 69
obtained from LS, Huber and Bisquare estimators

Radius ± Standard Deviation
No. of View LS Huber Bisquare

View 1 20.211 ± 0.829 20.093 ± 0.715 20.051 ± 0.698
View 2 20.206 ± 0.660 20.049 ± 0.540 19.992 ± 0.546
View 3 20.700 ± 1.070 20.575 ± 1.153 20.475 ± 1.152
View 4 20.130 ± 0.769 20.007 ± 0.566 19.949 ± 0.502
View 5 19.816 ± 0.433 19.713 ± 0.285 19.656 ± 0.219
View 6 19.547 ± 0.135 19.558 ± 0.122 19.556 ± 0.120
View 7 19.638 ± 0.331 19.647 ± 0.336 19.644 ± 0.339
View 8 19.631 ± 0.176 19.594 ± 0.137 19.575 ± 0.140
View 9 19.689 ± 0.417 19.639 ± 0.300 19.595 ± 0.214
View 10 19.568 ± 0.148 19.571 ± 0.152 19.564 ± 0.151
View 11 19.806 ± 0.664 19.732 ± 0.462 19.679 ± 0.348
View 12 19.898 ± 0.721 19.840 ± 0.549 19.789 ± 0.433

Table C.11: Average and standard deviation of average radius (mm) for dataset 70
obtained from LS, Huber and Bisquare estimators



Appendix D

Average and Standard Deviation of
Average Average Residual
(Datasets: 60-70)

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.260E-03 ± 1.348E-04 1.260E-03 ± 1.348E-04 1.260E-03 ± 1.349E-04

View 2 1.135E-03 ± 7.820E-05 1.135E-03 ± 7.819E-05 1.135E-03 ± 7.821E-05

View 3 1.105E-03 ± 1.439E-04 1.105E-03 ± 1.439E-04 1.105E-03 ± 1.439E-04

View 4 1.116E-03 ± 1.670E-04 1.115E-03 ± 1.670E-04 1.115E-03 ± 1.670E-04

View 5 1.204E-03 ± 7.265E-05 1.204E-03 ± 7.265E-05 1.204E-03 ± 7.267E-05

View 6 1.258E-03 ± 1.135E-04 1.257E-03 ± 1.134E-04 1.257E-03 ± 1.134E-04

View 7 1.411E-03 ± 3.909E-04 1.411E-03 ± 3.907E-04 1.411E-03 ± 3.907E-04

View 8 1.302E-03 ± 2.159E-04 1.301E-03 ± 2.157E-04 1.301E-03 ± 2.157E-04

View 9 1.312E-03 ± 1.896E-04 1.312E-03 ± 1.893E-04 1.312E-03 ± 1.893E-04

View 10 1.336E-03 ± 2.976E-04 1.336E-03 ± 2.973E-04 1.336E-03 ± 2.973E-04

View 11 1.318E-03 ± 2.718E-04 1.318E-03 ± 2.713E-04 1.318E-03 ± 2.713E-04

View 12 1.269E-03 ± 1.274E-04 1.269E-03 ± 1.273E-04 1.269E-03 ± 1.273E-04

Table D.1: Average and standard deviation of average residual (mm) for dataset 60
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.302E-03 ± 1.901E-04 1.302E-03 ± 1.908E-04 1.302E-03 ± 1.909E-04

View 2 1.126E-03 ± 5.812E-05 1.125E-03 ± 5.804E-05 1.125E-03 ± 5.804E-05

View 3 1.096E-03 ± 1.357E-04 1.096E-03 ± 1.357E-04 1.096E-03 ± 1.357E-04

View 4 1.116E-03 ± 1.668E-04 1.115E-03 ± 1.667E-04 1.116E-03 ± 1.668E-04

View 5 1.265E-03 ± 1.994E-04 1.265E-03 ± 1.995E-04 1.265E-03 ± 1.999E-04

View 6 1.285E-03 ± 1.446E-04 1.284E-03 ± 1.445E-04 1.284E-03 ± 1.446E-04

View 7 1.425E-03 ± 4.215E-04 1.424E-03 ± 4.215E-04 1.424E-03 ± 4.217E-04

View 8 1.333E-03 ± 2.678E-04 1.332E-03 ± 2.676E-04 1.332E-03 ± 2.676E-04

View 9 1.346E-03 ± 2.579E-04 1.345E-03 ± 2.577E-04 1.345E-03 ± 2.577E-04

View 10 1.321E-03 ± 2.878E-04 1.321E-03 ± 2.875E-04 1.321E-03 ± 2.875E-04

View 11 1.290E-03 ± 2.258E-04 1.290E-03 ± 2.254E-04 1.290E-03 ± 2.254E-04

View 12 1.261E-03 ± 1.290E-04 1.261E-03 ± 1.288E-04 1.261E-03 ± 1.288E-04

Table D.2: Average and standard deviation of average residual (mm) for dataset 61
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.280E-03 ± 1.791E-04 1.280E-03 ± 1.790E-04 1.280E-03 ± 1.790E-04

View 2 1.140E-03 ± 9.894E-05 1.140E-03 ± 9.888E-05 1.140E-03 ± 9.890E-05

View 3 1.072E-03 ± 1.212E-04 1.072E-03 ± 1.212E-04 1.072E-03 ± 1.212E-04

View 4 1.119E-03 ± 1.686E-04 1.119E-03 ± 1.686E-04 1.119E-03 ± 1.686E-04

View 5 1.293E-03 ± 2.868E-04 1.293E-03 ± 2.869E-04 1.293E-03 ± 2.876E-04

View 6 1.282E-03 ± 1.459E-04 1.282E-03 ± 1.458E-04 1.282E-03 ± 1.458E-04

View 7 1.439E-03 ± 4.561E-04 1.438E-03 ± 4.563E-04 1.439E-03 ± 4.565E-04

View 8 1.340E-03 ± 2.574E-04 1.339E-03 ± 2.571E-04 1.339E-03 ± 2.571E-04

View 9 1.268E-03 ± 1.268E-04 1.268E-03 ± 1.267E-04 1.268E-03 ± 1.267E-04

View 10 1.292E-03 ± 2.166E-04 1.292E-03 ± 2.163E-04 1.292E-03 ± 2.163E-04

View 11 1.306E-03 ± 2.266E-04 1.305E-03 ± 2.262E-04 1.305E-03 ± 2.262E-04

View 12 1.268E-03 ± 1.476E-04 1.268E-03 ± 1.474E-04 1.268E-03 ± 1.474E-04

Table D.3: Average and standard deviation of average residual (mm) for dataset 62
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.674E-03 ± 7.895E-04 1.701E-03 ± 8.331E-04 1.728E-03 ± 8.742E-04

View 2 1.478E-03 ± 6.048E-04 1.499E-03 ± 6.448E-04 1.531E-03 ± 7.064E-04

View 3 1.708E-03 ± 7.519E-04 1.728E-03 ± 7.761E-04 1.743E-03 ± 7.930E-04

View 4 2.431E-03 ± 1.304E-03 2.491E-03 ± 1.375E-03 2.555E-03 ± 1.462E-03

View 5 1.698E-03 ± 8.106E-04 1.735E-03 ± 8.996E-04 1.816E-03 ± 1.096E-03

View 6 1.850E-03 ± 6.443E-04 1.858E-03 ± 6.496E-04 1.865E-03 ± 6.551E-04

View 7 1.487E-03 ± 3.534E-04 1.486E-03 ± 3.534E-04 1.487E-03 ± 3.536E-04

View 8 1.532E-03 ± 5.250E-04 1.543E-03 ± 5.509E-04 1.553E-03 ± 5.727E-04

View 9 1.571E-03 ± 7.511E-04 1.571E-03 ± 7.518E-04 1.572E-03 ± 7.538E-04

View 10 1.395E-03 ± 2.717E-04 1.394E-03 ± 2.710E-04 1.394E-03 ± 2.710E-04

View 11 1.579E-03 ± 3.830E-04 1.583E-03 ± 3.885E-04 1.586E-03 ± 3.931E-04

View 12 1.826E-03 ± 1.182E-03 1.850E-03 ± 1.239E-03 1.881E-03 ± 1.315E-03

Table D.4: Average and standard deviation of average residual (mm) for dataset 63
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.674E-03 ± 1.098E-03 1.699E-03 ± 1.159E-03 1.749E-03 ± 1.279E-03

View 2 1.901E-03 ± 1.072E-03 1.928E-03 ± 1.101E-03 1.949E-03 ± 1.113E-03

View 3 1.993E-03 ± 9.723E-04 2.029E-03 ± 1.002E-03 2.077E-03 ± 1.043E-03

View 4 2.582E-03 ± 1.387E-03 2.622E-03 ± 1.418E-03 2.674E-03 ± 1.466E-03

View 5 1.760E-03 ± 8.837E-04 1.763E-03 ± 8.927E-04 1.764E-03 ± 8.944E-04

View 6 2.212E-03 ± 9.649E-04 2.260E-03 ± 1.011E-03 2.322E-03 ± 1.075E-03

View 7 1.447E-03 ± 3.575E-04 1.447E-03 ± 3.582E-04 1.447E-03 ± 3.590E-04

View 8 1.522E-03 ± 4.597E-04 1.530E-03 ± 4.781E-04 1.540E-03 ± 4.988E-04

View 9 1.768E-03 ± 8.625E-04 1.776E-03 ± 8.699E-04 1.787E-03 ± 8.804E-04

View 10 1.470E-03 ± 5.132E-04 1.469E-03 ± 5.125E-04 1.469E-03 ± 5.125E-04

View 11 1.860E-03 ± 6.092E-04 1.874E-03 ± 6.241E-04 1.890E-03 ± 6.427E-04

View 12 1.814E-03 ± 1.212E-03 1.836E-03 ± 1.266E-03 1.869E-03 ± 1.343E-03

Table D.5: Average and standard deviation of average residual (mm) for dataset 64
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.983E-03 ± 1.190E-03 2.013E-03 ± 1.230E-03 2.040E-03 ± 1.263E-03

View 2 2.179E-03 ± 1.399E-03 2.206E-03 ± 1.425E-03 2.232E-03 ± 1.450E-03

View 3 2.077E-03 ± 1.090E-03 2.114E-03 ± 1.116E-03 2.165E-03 ± 1.155E-03

View 4 2.616E-03 ± 1.439E-03 2.655E-03 ± 1.466E-03 2.702E-03 ± 1.504E-03

View 5 2.014E-03 ± 9.682E-04 2.021E-03 ± 9.786E-04 2.027E-03 ± 9.849E-04

View 6 2.303E-03 ± 1.120E-03 2.361E-03 ± 1.192E-03 2.489E-03 ± 1.376E-03

View 7 1.543E-03 ± 3.951E-04 1.544E-03 ± 3.990E-04 1.547E-03 ± 4.033E-04

View 8 1.380E-03 ± 2.432E-04 1.380E-03 ± 2.446E-04 1.381E-03 ± 2.459E-04

View 9 1.989E-03 ± 1.416E-03 1.995E-03 ± 1.419E-03 2.005E-03 ± 1.430E-03

View 10 1.462E-03 ± 4.511E-04 1.461E-03 ± 4.505E-04 1.461E-03 ± 4.505E-04

View 11 1.636E-03 ± 5.750E-04 1.638E-03 ± 5.780E-04 1.640E-03 ± 5.813E-04

View 12 1.852E-03 ± 1.303E-03 1.877E-03 ± 1.365E-03 1.916E-03 ± 1.458E-03

Table D.6: Average and standard deviation of average residual (mm) for dataset 65
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.840E-03 ± 8.448E-04 1.876E-03 ± 8.875E-04 1.912E-03 ± 9.293E-04

View 2 1.994E-03 ± 1.240E-03 2.038E-03 ± 1.292E-03 2.090E-03 ± 1.356E-03

View 3 2.099E-03 ± 6.147E-04 2.143E-03 ± 6.525E-04 2.195E-03 ± 7.014E-04

View 4 2.426E-03 ± 1.341E-03 2.489E-03 ± 1.405E-03 2.581E-03 ± 1.520E-03

View 5 1.963E-03 ± 7.963E-04 2.003E-03 ± 8.550E-04 2.097E-03 ± 1.014E-03

View 6 1.858E-03 ± 6.274E-04 1.866E-03 ± 6.335E-04 1.874E-03 ± 6.400E-04

View 7 1.553E-03 ± 4.595E-04 1.557E-03 ± 4.682E-04 1.561E-03 ± 4.769E-04

View 8 1.627E-03 ± 5.659E-04 1.641E-03 ± 5.989E-04 1.660E-03 ± 6.400E-04

View 9 1.565E-03 ± 6.455E-04 1.564E-03 ± 6.446E-04 1.564E-03 ± 6.446E-04

View 10 1.590E-03 ± 7.759E-04 1.589E-03 ± 7.743E-04 1.589E-03 ± 7.745E-04

View 11 1.547E-03 ± 4.825E-04 1.552E-03 ± 4.954E-04 1.558E-03 ± 5.068E-04

View 12 1.814E-03 ± 1.004E-03 1.827E-03 ± 1.036E-03 1.840E-03 ± 1.065E-03

Table D.7: Average and standard deviation of average residual (mm) for dataset 66
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 1.837E-03 ± 8.464E-04 1.875E-03 ± 8.913E-04 1.914E-03 ± 9.357E-04

View 2 2.127E-03 ± 1.335E-03 2.184E-03 ± 1.392E-03 2.265E-03 ± 1.470E-03

View 3 2.144E-03 ± 6.772E-04 2.196E-03 ± 7.299E-04 2.269E-03 ± 8.197E-04

View 4 2.508E-03 ± 1.384E-03 2.571E-03 ± 1.433E-03 2.648E-03 ± 1.500E-03

View 5 2.098E-03 ± 9.949E-04 2.124E-03 ± 1.027E-03 2.141E-03 ± 1.047E-03

View 6 1.854E-03 ± 6.635E-04 1.864E-03 ± 6.714E-04 1.874E-03 ± 6.795E-04

View 7 1.653E-03 ± 5.458E-04 1.659E-03 ± 5.578E-04 1.666E-03 ± 5.705E-04

View 8 1.593E-03 ± 6.301E-04 1.609E-03 ± 6.659E-04 1.629E-03 ± 7.114E-04

View 9 1.647E-03 ± 8.231E-04 1.647E-03 ± 8.221E-04 1.647E-03 ± 8.220E-04

View 10 1.580E-03 ± 7.483E-04 1.579E-03 ± 7.474E-04 1.580E-03 ± 7.477E-04

View 11 1.402E-03 ± 3.074E-04 1.401E-03 ± 3.072E-04 1.401E-03 ± 3.075E-04

View 12 1.880E-03 ± 9.997E-04 1.893E-03 ± 1.028E-03 1.905E-03 ± 1.053E-03

Table D.8: Average and standard deviation of average residual (mm) for dataset 67
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 2.104E-03 ± 1.187E-03 2.149E-03 ± 1.237E-03 2.203E-03 ± 1.294E-03

View 2 1.962E-03 ± 1.111E-03 1.983E-03 ± 1.133E-03 2.001E-03 ± 1.146E-03

View 3 2.340E-03 ± 9.528E-04 2.388E-03 ± 9.826E-04 2.462E-03 ± 1.043E-03

View 4 2.775E-03 ± 1.605E-03 2.815E-03 ± 1.631E-03 2.868E-03 ± 1.671E-03

View 5 2.357E-03 ± 1.228E-03 2.388E-03 ± 1.254E-03 2.426E-03 ± 1.285E-03

View 6 2.493E-03 ± 1.417E-03 2.520E-03 ± 1.442E-03 2.546E-03 ± 1.463E-03

View 7 1.954E-03 ± 1.079E-03 1.962E-03 ± 1.088E-03 1.974E-03 ± 1.102E-03

View 8 1.681E-03 ± 6.843E-04 1.695E-03 ± 7.134E-04 1.714E-03 ± 7.509E-04

View 9 1.599E-03 ± 7.703E-04 1.598E-03 ± 7.687E-04 1.598E-03 ± 7.690E-04

View 10 1.551E-03 ± 6.899E-04 1.550E-03 ± 6.885E-04 1.550E-03 ± 6.885E-04

View 11 1.918E-03 ± 1.250E-03 1.920E-03 ± 1.250E-03 1.926E-03 ± 1.261E-03

View 12 2.002E-03 ± 1.344E-03 2.019E-03 ± 1.383E-03 2.038E-03 ± 1.426E-03

Table D.9: Average and standard deviation of average residual (mm) for dataset 68
using LS, Huber and Bisquare estimators
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Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 5.275E-04 ± 1.746E-04 5.272E-04 ± 1.744E-04 5.272E-04 ± 1.744E-04

View 2 4.916E-04 ± 8.511E-05 4.914E-04 ± 8.503E-05 4.914E-04 ± 8.503E-05

View 3 4.768E-04 ± 3.061E-05 4.766E-04 ± 3.063E-05 4.766E-04 ± 3.063E-05

View 4 5.200E-04 ± 4.860E-05 5.197E-04 ± 4.856E-05 5.197E-04 ± 4.856E-05

View 5 6.162E-04 ± 2.105E-04 6.158E-04 ± 2.101E-04 6.158E-04 ± 2.101E-04

View 6 5.801E-04 ± 1.670E-04 5.798E-04 ± 1.668E-04 5.798E-04 ± 1.668E-04

View 7 5.411E-04 ± 7.231E-05 5.408E-04 ± 7.227E-05 5.408E-04 ± 7.227E-05

View 8 6.667E-04 ± 3.223E-04 6.663E-04 ± 3.218E-04 6.663E-04 ± 3.218E-04

View 9 6.354E-04 ± 2.907E-04 6.351E-04 ± 2.904E-04 6.351E-04 ± 2.904E-04

View 10 5.266E-04 ± 3.816E-05 5.264E-04 ± 3.811E-05 5.264E-04 ± 3.811E-05

View 11 6.230E-04 ± 2.415E-04 6.227E-04 ± 2.412E-04 6.227E-04 ± 2.412E-04

View 12 5.078E-04 ± 7.330E-05 5.076E-04 ± 7.325E-05 5.076E-04 ± 7.325E-05

Table D.10: Average and standard deviation of average residual (mm) for dataset 69
using LS, Huber and Bisquare estimators

Average Residual ± Standard Deviation

No. of View LS Huber Bisquare

View 1 2.182E-03 ± 1.359E-03 2.212E-03 ± 1.392E-03 2.235E-03 ± 1.413E-03

View 2 2.035E-03 ± 9.407E-04 2.071E-03 ± 9.773E-04 2.107E-03 ± 1.006E-03

View 3 3.028E-03 ± 1.789E-03 3.083E-03 ± 1.827E-03 3.165E-03 ± 1.898E-03

View 4 2.214E-03 ± 1.343E-03 2.252E-03 ± 1.405E-03 2.287E-03 ± 1.468E-03

View 5 2.031E-03 ± 1.060E-03 2.060E-03 ± 1.115E-03 2.101E-03 ± 1.195E-03

View 6 1.570E-03 ± 4.695E-04 1.570E-03 ± 4.700E-04 1.570E-03 ± 4.702E-04

View 7 1.375E-03 ± 2.342E-04 1.375E-03 ± 2.342E-04 1.375E-03 ± 2.343E-04

View 8 1.806E-03 ± 7.051E-04 1.812E-03 ± 7.073E-04 1.819E-03 ± 7.109E-04

View 9 2.749E-03 ± 3.376E-03 2.791E-03 ± 3.477E-03 2.845E-03 ± 3.608E-03

View 10 1.547E-03 ± 3.792E-04 1.547E-03 ± 3.801E-04 1.548E-03 ± 3.814E-04

View 11 2.246E-03 ± 1.453E-03 2.274E-03 ± 1.516E-03 2.313E-03 ± 1.604E-03

View 12 1.775E-03 ± 1.159E-03 1.798E-03 ± 1.216E-03 1.840E-03 ± 1.315E-03

Table D.11: Average and standard deviation of average residual (mm) for dataset 70
using LS, Huber and Bisquare estimators



Appendix E

Whole Plants Surface Area
Measurement From Yang and Our
Experiment

Day Time No. of Dataset Wild Type PBI 121 104 31

Day 10 20:30 30 3342.62 3777.84 5059.15 3930.76
Day 10 02:00 31 3730.31 3874.14 3719.14 4363.21
Day 10 07:30 32 3822.18 4263.61 3927.54 4166.91
Day 11 20:30 33 4197.74 4180.32 4295.79 5000.05
Day 11 02:00 34 4102.25 4480.02 4376.26 5106.50
Day 11 07:30 35 4232.78 4924.62 4554.71 5214.75
Day 12 20:30 36 5032.27 5014.17 4843.95 6219.73
Day 12 02:00 37 4773.76 5650.46 5259.04 5701.83
Day 12 07:30 38 5186.52 5812.33 5445.97 6120.73
Day 13 20:30 39 5902.45 5915.17 5724.45 6745.73
Day 13 02:00 40 5861.97 6248.85 5951.78 6777.32

Table E.1: Canopy area measurement (mm2) from Yang’s experiment (Datasets 30-
40)
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Day Time No. of Dataset Wild Type PBI 121 104 31

Day 20 20:30 60 14172.20 16443.74 15858.38 15977.50
Day 20 02:00 61 14792.92 15852.55 16123.73 15394.64
Day 20 07:30 62 15014.97 16674.08 16615.42 17328.54
Day 21 20:30 63 16120.92 16794.41 16931.46 17652.27
Day 21 02:00 64 16019.35 16921.30 17557.30 17363.46
Day 21 07:30 65 15341.21 18471.51 17305.88 17959.18
Day 22 20:30 66 16320.89 18017.47 17347.15 18678.06
Day 22 02:00 67 16220.81 18553.07 17523.78 17509.06
Day 22 07:30 68 16750.02 18333.81 18383.57 19164.54
Day 23 20:30 69 17297.20 17589.05 17892.23 17892.23
Day 23 02:00 70 17196.29 18839.08 17930.98 19511.85

Table E.2: Canopy area measurement (mm2) from Yang’s experiment (Datasets 60-
70)

Day Time No. of Datasets Wild Type pBI 121 104 31

Day 10 20:30 30 3496.31 3157.16 3762.83 3367.57
Day 10 02:00 31 3585.96 3502.92 3841.31 3540.40
Day 10 07:30 32 3537.87 3458.65 4011.28 3573.07
Day 11 20:30 33 3864.04 3893.66 4283.65 4109.90
Day 11 02:00 34 4316.47 4130.61 4761.47 4244.41
Day 11 07:30 35 4320.21 4180.14 5026.26 4122.45
Day 12 20:30 36 4633.31 4664.31 5038.71 4881.80
Day 12 02:00 37 4641.03 4690.95 5051.10 4893.05
Day 12 07:30 38 4817.77 4825.52 5099.75 4977.78
Day 13 02:00 40 5083.11 5229.51 5302.69 5366.00

Table E.3: Canopy area measurement (mm2) from our experiment (Datasets 30-40)
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Day Time No. of Datasets Wild Type pBI 121 104 31

Day 20 20:30 60 13582.09 15297.73 13486.47 14382.57
Day 20 02:00 61 14101.53 14497.15 13276.03 14148.77
Day 20 07:30 62 12484.63 10572.50 9417.98 10566.93
Day 21 20:30 63 9463.17 12037.84 9499.38 10741.95
Day 21 02:00 64 13136.28 13268.39 12342.89 12920.67
Day 21 07:30 65 13177.36 13906.46 12803.19 12943.45
Day 22 20:30 66 13190.81 10584.92 11996.18 11191.61
Day 22 02:00 67 13643.68 13982.82 13003.61 14523.48
Day 22 07:30 68 11919.97 9602.43 8038.32 10960.86
Day 23 02:00 70 13533.68 13246.14 13255.76 13176.26

Table E.4: Canopy area measurement (mm2) from our experiment (Datasets 60-70)



Appendix F

3D Stem Volume Measurement
From Yang Our Experiment

Day Time No. of Datasets Wild Type pBI 121 104 31

Day 20 20:30 60 447.99 592.30 588.72 785.41
Day 20 2:00 61 491.07 591.76 618.72 803.96
Day 20 7:30 62 541.22 648.72 636.17 862.45
Day 21 20:30 63 581.54 705.73 717.14 905.09
Day 21 2:00 64 631.58 772.62 769.13 958.34
Day 21 7:30 65 626.33 747.53 751.51 1053.76
Day 22 20:30 66 652.35 815.23 824.52 1082.48
Day 22 2:00 67 693.81 885.94 843.67 1111.48
Day 22 7:30 68 700.39 948.02 988.02 1238.09
Day 23 20:30 69 761.51 1052.42 1011.52 1390.39
Day 23 2:00 70 793.11 1139.29 1093.17 1285.12

Table F.1: 3D stem volume measurement (mm3) from Yang’s experiment (Datasets
60-70)
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Day Time No. of Datasets Wild Type pBI 121 104 31

Day 20 20:30 60 35082.85 98915.89 50517.96 61119.68
Day 20 02:00 61 70072.73 101520.10 51103.44 61963.46
Day 20 07:30 62 71494.65 104441.50 57609.21 62437.06
Day 21 20:30 63 98722.67 106156.60 43577.41 81628.91
Day 21 02:00 64 77284.93 117533.50 84733.73 37875.49
Day 21 07:30 65 79526.28 123383.00 2082.85 90746.66
Day 22 20:30 66 86207.63 106383.70 35876.06 133797.00
Day 22 02:00 67 87164.23 107997.00 171849.80 138036.40
Day 22 07:30 68 87711.48 125942.80 99290.14 153445.50
Day 23 02:00 70 87093.84 151774.40 120619.40 98104.56

Table F.2: Canopy area measurement (mm3) from our experiment (Datasets 60-70)



Appendix G

Macros used to Automate Various
Geomagic’s Tools

’*********************************************************************

’This macro saves a file in STL format

’ This macro is used to save the semi-spheres 3PI files in STL Format

’*********************************************************************

’ Specify the current directory (folder path)

’ This is needed as we want to perform a certain operation on every

’ files of this directory

FolderPath = "C:\Save_as_STL\"

Set fso = CreateObject ("Scripting.FileSystemObject")

Set folder = fso.GetFolder (FolderPath)

’ "files" contains every file of the above directory

Set files = folder.Files

for each file in files

str = "3pi"

a = Split (file, ".")

If a(1) = str Then

’ Open each file in the current directory in Geomagic’s

’ "Display Manager"

geo.open 0, 1, CStr(file)

newFile = a(0) & ".stl"

’ The first 2 arguments in important for geo.saveas

’ newFile = The name of the STL file

’ 3 indicates that the user wants to save the file in STL format
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geo.saveas newFile, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 1, 0

End If

next

’***********************************************************************

’ This macro combines multiple Polygon objects.

’ This macro is used to combine the full sphere files and the plant only

’ files during the reconstruction of views phase.

’***********************************************************************

’ Specify the current directory (folder path)

’ "Combined.txt" is a text file which contains the information of the

’ total number of semi-spheres in each view. This information is needed

’ during the reconstruction phase.

Set objFSO = CreateObject ("Scripting.FileSystemObject")

Set objFile = objFSO.OpenTextFile ("C:\Combined\Combined.txt",

ForReading)

Const ForReading = 1

Path = "C:\Combined\"

Dim Temp(6)

i = 0

Do Until objFile.AtEndOfStream

’ The first line of "Combined.txt" contains the total number of files

’ on which this operation needs to be performed

If i = 0 Then

Total_File = objFile.ReadLine

Else

File_Name = objFile.ReadLine

Total_Sphere = objFile.ReadLine

’ Plant only file has the prefix "Delete-"

a = Split (File_Name, ".")

Delete_File_Name = Path & "Delete-" & a (0) & ".stl"

’ Full sphere files have the prefix "Full-Ball-"

For j = 0 to (Total_Sphere-1)

Temp (j) = Path & "Full-Ball-" & (j+1) & "-" & a (0) & ".stl"

Next

If Total_Sphere = 6 Then
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’ Open each file in the current directory in Geomagic’s

’ "Display Manager"

’ Second argument = Total number of files to be opened

geo.open 0, 7, CStr(Delete_File_Name), CStr(Temp (0)), CStr(Temp (1)),

CStr(Temp (2)), CStr(Temp (3)), CStr (Temp(4)), CStr(Temp (5))

ElseIf Total_Sphere = 5 Then

geo.open 0, 6, CStr(Delete_File_Name), CStr (Temp (0)), CStr (Temp (1)),

CStr (Temp (2)), CStr (Temp (3)), CStr (Temp (4))

ElseIf Total_Sphere = 4 Then

geo.open 0, 5, CStr(Delete_File_Name), CStr (Temp (0)), CStr (Temp (1)),

CStr (Temp (2)), CStr (Temp (3))

ElseIf Total_Sphere = 3 Then

geo.open 0, 4, CStr(Delete_File_Name), CStr (Temp (0)), CStr (Temp (1)),

CStr (Temp (2))

End If

’ Combining the active files in the display manager

’ Combined_File_Name is the object name not the file name

Combined_File_Name = "Combined-" & a (0)

geo.merge_polygon_objects Combined_File_Name, 0

’ Saving as WRP file with the prefix "Combined-"

WRP_Name = Path & Combined_File_Name & ".wrp"

geo.saveas WRP_Name, 1000, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0

End If

i = i + 1

Loop

objTextFile.Close

’*********************************************************************

’This macro converts a polygon object into point object

’Also re-samples the point object by a specified factor

’ This macro is used before registration process as some of tools of

’ Geomagic can not be recorded as macros in case of large dataset

’*********************************************************************

’ Specify the current directory (folder path)

’ This is needed as we want to perform a certain operation on every
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’ files of this directory

FolderPath = "D:\Point_Sample\"

Set fso = CreateObject ("Scripting.FileSystemObject")

Set folder = fso.GetFolder (FolderPath)

Set files = folder.Files

for each file in files

str = "wrp"

a = Split (file, ".")

If a(1) = str Then

’ Open each file in the current directory in Geomagic’s

’ "Display Manager"

geo.open 0, 1, cStr(file)

’ Converts the current polygon object into a point object

geo.modify_current_points 0

’ Re-samples the point object by a specified factor

’ In our case, factor = 0.5 mm

geo.sample 0.0005, 0, false, 0

b = Split (a(0), "\")

a = Split (b(3), "-")

newFile = FolderPath & "Point" & "-" & a(1) & "-" & a(2) & "-" & a(3)

& ".wrp"

’ Saving as WRP file with the prefix "Point-"

geo.saveas newFile, 1000, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0

End If

next

objTextFile.Close

’***********************************************************************

’This macro performs all the steps of the final registration

’ This macro include "Target Registration", "Target Cleanup" and "Global

’ Registration" phases

’***********************************************************************

’ Specify the current directory (folder path)

’ "Registration.txt" is a text file which contains the information of the

’ total number of files in the directory and total number of views in a

’ single dataset. This information is needed

’ during the registration phase.

Set objFSO = CreateObject ("Scripting.FileSystemObject")

Set objFile = objFSO.OpenTextFile ("C:\Registration\Registration.txt",
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ForReading)

Const ForReading = 1

Path = "C:\Registration\"

Dim Temp(12)

i = 0

Do Until objFile.AtEndOfStream

If i = 0 Then

’ The first line of "Registration.txt" contains the total number of

’ files on which this operation needs to be performed

Total_File = objFile.ReadLine

Else

’ The second line contains basic file name and the third line contains

’ the total number of views in a dataset

File_Name = objFile.ReadLine

Total_Scene = objFile.ReadLine

a = Split (File_Name, ".")

objTextFile.Write (a(0)) & vbCrLf

b = Split (a(0), "-")

’ Target detected fiiles have the prefix "Target-Detected-"

For j = 0 to (Total_Scene-1)

Temp (j) = Path & "Target-Detected-" & b(0) & "-" & b(1) & "-" & "00"

& j & ".wrp"

Next

’ objectName is the object name not the file name

’ finalName is the WRP file name

objectName = "Registered-" & b(0) & "-" & b(1)

finalName = Path & "Registered-" & b(0) & "-" & b(1) & ".wrp"

’ Open each file in the current directory in Geomagic’s

’ "Display Manager"

’ Second argument = Total number of files to be opened

geo.open 0, 12, CStr(Temp (0)), CStr(Temp (1)), CStr(Temp (2)),

CStr(Temp (3)), CStr (Temp(4)), CStr(Temp (5)), CStr(Temp (6)),

CStr(Temp (7)), CStr(Temp (8)), CStr(Temp (9)), CStr (Temp(10)),

CStr(Temp (11))

’ These are the tools used for registration purpose

’ "Target Registration", "Target Cleanup", "Global Registration",

’ and "Merge"
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geo.target_registration 0, 0, 0.1, 1, 0, 0, 0

geo.global_registration 0, 100, 2000, false, 20, false, true, false

geo.merge_polygon_objects objectName, 0

’ Saving as WRP file with the prefix "Combined-"

geo.saveas finalName, 1000, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0

End If

i = i + 1

Loop

objTextFile.Close
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