
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

April 2011

Finding Faulty Functions From the Traces of Field
Failures
Syed Shariyar Murtaza
The University of Western Ontario

Supervisor
Dr. Nazim H. Madhavji
The University of Western Ontario

Joint Supervisor
Dr. Mechelle S. Gittens
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Syed Shariyar Murtaza 2011

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Software Engineering Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Murtaza, Syed Shariyar, "Finding Faulty Functions From the Traces of Field Failures" (2011). Electronic Thesis and Dissertation
Repository. 106.
https://ir.lib.uwo.ca/etd/106

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/106?utm_source=ir.lib.uwo.ca%2Fetd%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

 FINDING FAULTY FUNCTIONS FROM THE TRACES OF FIELD FAILURES

(Spine title: Finding Faulty Functions from the Function-call Level Traces)

(Thesis format: Integrated Article)

by

Syed Shariyar Murtaza

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Syed Shariyar Murtaza 2011

ii

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Nazim H. Madhavji

Co-supervisor

Dr. Mechelle S. Gittens

Examiners

 Dr. Michael W. Godfrey

Dr. Luiz Capretz

Dr. Charles X. Ling

Dr. James H. Andrews

The thesis by

Syed Shariyar Murtaza

entitled:

 Finding Faulty Functions from the Traces of Field Failures

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

______________________ _______________________________
 Date Chair of the Thesis Examination Board

iii

Abstract

Corrective maintenance, which rectifies field faults, consumes 30-60% time of software

maintenance. Literature indicates that 50% to 90% of the field failures are rediscoveries

of previous faults, and that 20% of the code is responsible for 80% of the faults. Despite

this, identification of the location of the field failures in system code remains challenging

and consumes substantial (30-40%) time of corrective maintenance. Prior fault discovery

techniques for field traces require many pass-fail traces, discover only crashing failures,

or identify faulty coarse grain code such as files as the source of faults. This thesis (which

is in the integrated article format) first describes a novel technique (F007) that focuses on

identifying finer grain faulty code (faulty functions) from only the failing traces of

deployed software. F007 works by training the decision trees on the function-call level

failed traces of previous faults of a program. When a new failed trace arrives, F007 then

predicts a ranked list of faulty functions based on the probability of fault proneness

obtained via the decision trees. Second, this thesis describes a novel strategy, F007-plus,

that trains F007 on the failed traces of mutants (artificial faults) and previous faults.

F007-plus facilitates F007 in discovering new faulty functions that could not be

discovered because they were not faulty in the traces of previously known actual faults.

F007 (including F007-plus) was evaluated on the Siemens suite, Space program, four

UNIX utilities, and a large commercial application of size approximately 20 millions

LOC. F007 (including the use of F007-plus) was able to identify faulty functions in

approximately 90% of the failed traces by reviewing approximately less than 10% of the

code (i.e., by reviewing only the first few functions in the ranked list). These results, in

fact, lead to an emerging theory that a faulty function can be identified by using prior

traces of at least one fault in that function. Thus, F007 and F007-plus can correctly

identify faulty functions in the failed traces of the majority (80%-90%) of the field

failures by using the knowledge of faults in a small percentage (20%) of functions.

Keywords

Faulty Function, Execution Trace, Software Maintenance, Decision Tree, Mutation, Fault

Rediscovery, 80-20 Pareto Rule, Deployed Software, Cost Sensitive Machine Learning.

iv

Co-Authorship Statement

This thesis is written in an integrate-article format. There were several co-authors of the

papers (published or submitted) related to this thesis. The author of this dissertation is the

primary author of all the publications arising out of this dissertation. Dr. Nazim H.

Madhavji is a co-author of all the publications in the capacity of a supervisor of the

research conducted. Similarly, Dr. Mechelle Gittens is also a co-author of all the

publications in the capacity of a co-supervisor. From the inception of the idea of the F007

technique, their role has been active in carving out the technique for the impact on the

body of knowledge. Zude Li is also a co-author of some of the papers in the capacity of

his help in building a mathematical model for the pattern mining technique used in the

paper, and providing feedback in editing and writing of papers.

v

Acknowledgments

Above all, I thank Almighty God for strength and perseverance in times of weariness. I

continue to progress because You have set great things for me.

I would like to thank my father, mother, brothers and their families who have patiently

waited for me, motivated me, and above all strengthened me with their love and

unrelenting support during the fulfillment of my goals.

Most importantly, sincere thanks and gratitude to my supervisor Dr. Nazim H. Madhavji

and co-supervisor Dr. Mechelle Gittens. Without your support, guidance and tireless

effort this thesis would not have been possible. I am truly indebted to your invaluable

supervision and priceless advices that helped me to cultivate the skills to succeed in this

endeavor and those advices will continue to influence me throughout my career.

I would like to acknowledge the support of all current and former colleagues in my lab,

staff members (especially Graduate Secretary Janice Weirsma) and professors at

Western, and other colleagues who have been instrumental in developing a congenial and

conducive research environment. In particular, I am grateful to Zude Li for his

suggestions on my thesis, Andriy Miranskyy of IBM for his help in data collection, Mark

Wilding of IBM for providing me with resources needed to conduct an industrial-scale

study at IBM, and Dr. Jamie Andrews for providing the mutation tool for this research.

I am also thankful to the University of Western Ontario for giving me the opportunity to

conduct doctoral studies with full financial support during the last four years. I would

also like to thank Ontario Graduate Scholarship for funding me during the course of this

research and NSERC Canada for providing the funding necessary to collaborate with

industry. I would also like to acknowledge IBM, Canada, for providing the resources

needed for this research.

Thanks to all my friends who made my time in London memorable and thanks to my

former classmate Bilal Ahmed for his suggestions on the F007 technique.

vi

Table of Contents

CERTIFICATE OF EXAMINATION .. ii

Abstract ... iii

Co-Authorship Statement... iv

Acknowledgments ...v

Table of Contents .. vi

List of Tables... xi

List of Figures ... xiii

Chapter 1 ...1

1 Introduction ..1

1.1 Research Problem ..2

1.2 Research Contribution ..2

1.3 Thesis Structure ...5

1.4 References ...7

Chapter 2 ... 10

2 F007: Finding Faulty Functions from the Function-call level Traces of the Field

Failures ... 10

2.1 Introduction ... 10

2.2 Related Work ... 15

2.2.1 In-house Fault Localization Techniques .. 16

2.2.2 Statistically Identifying Field Failures .. 17

2.2.3 Classifying “Pass-fail” Field Traces .. 18

2.2.4 Rediscovery of Problems .. 19

2.2.5 Localizing System Level Faults .. 19

2.2.6 Research Gap ... 20

vii

2.3 The F007 Technique .. 21

2.3.1 MINEPI .. 23

2.3.2 Decision Tree Algorithm .. 29

2.4 Experimental Setup .. 32

2.4.1 The Data Set ... 32

2.4.2 The Empirical Process .. 35

2.5 Executing F007 .. 37

2.6 Results ... 41

2.6.1 Episode Rules ... 41

2.6.2 Identifying Faulty Functions in Failed Traces using Minimal-earlier

Failed Traces .. 46

2.6.3 Rules of Decision Tree in Understanding Fault Proneness of Faulty

Functions .. 57

2.6.4 Entry Exit Events in Traces .. 58

2.7 Case Study on a Large Commercial Application .. 61

2.7.1 Data Collection ... 62

2.7.2 Executing F007 using different heuristics ... 63

2.7.3 Evaluating Heuristic ‘a’ .. 64

2.7.4 Evaluating the Heuristic ‘b’ .. 66

2.7.5 Evaluating the Heuristic ‘c’ .. 66

2.7.6 Identifying the Faulty Functions and Components across Releases 68

2.8 Executing F007 across Releases: Revisiting Example Execution 73

2.9 Summary of the Results ... 74

2.10 Comparison with Contemporary Techniques .. 76

2.11 Threats to Validity ... 81

2.11.1 Conclusion Validity .. 81

viii

2.11.2 Internal Validity ... 82

2.11.3 Construct Validity .. 82

2.11.4 External Validity .. 84

2.12 Conclusions and Future Work .. 85

2.13 References ... 87

Chapter 3 ... 91

3 Using Mutants to Discover New and Rediscovered Field Faults by Exploiting the

Similarity of Traces among Different Faulty Functions ... 91

3.1 Introduction ... 91

3.2 Related Work ... 96

3.2.1 Fault Discovery Techniques for Inhouse Faults....................................... 96

3.2.2 Fault Discovery Techniques for Field Failures .. 97

3.2.3 Fault Discovery Using Mutation ... 98

3.2.4 Research Gap ... 99

3.3 F007-basic and F007-plus Overview .. 100

3.3.1 F007-basic .. 100

3.3.2 F007-plus ... 101

3.4 Fundamentals ... 102

3.4.1 Subject Programs .. 102

3.4.2 Mutation ... 105

3.4.3 Decision Tree ... 108

3.5 The F007-plus Strategy .. 113

3.5.1 Step 1: Measuring the code metrics of functions 114

3.5.2 Step 2: Using the decision tree on the code metrics 116

3.5.3 Step 3: Generating mutants of the suspected functions 119

3.5.4 Step 4: Identifying faulty functions in the traces of the current release .. 119

ix

3.5.5 Executing F007-plus ... 119

3.6 Implementation, Scalability and Runtime Performance of F007-plus 123

3.6.1 Implementation Details ... 123

3.6.2 Scalability .. 124

3.6.3 Execution Time .. 125

3.7 Case Studies to Investigate Research Questions: (Q1) Similarity of Traces

among Faulty Functions and (Q2) Discovering Actual Faults using Mutant

Faults ... 126

3.7.1 Making every function faulty using mutants to identify faulty

functions in actual traces... 126

3.7.2 Making only the selected functions faulty using mutants to identify

faulty functions in the traces of actual faults ... 133

3.7.3 Summary of the Key findings ... 137

3.8 Evaluating F007-plus ... 138

3.8.1 Using F007-plus to Identify Faulty Functions in the UNIX utilities 138

3.8.2 Measuring statements-effort in identification of faulty functions 142

3.8.3 Identifying Multiple Faulty Functions ... 145

3.8.4 Rules of Decision Tree in Understanding Fault Proneness of Faulty

Functions .. 149

3.9 Summary of the Findings ... 150

3.10 Comparison Against Other Techniques .. 151

3.11 Threats to Validity ... 155

3.11.1 Conclusion Validity .. 155

3.11.2 Internal Validity ... 156

3.11.3 Construct Validity .. 156

3.11.4 External Validity .. 157

3.12 Conclusions ... 158

x

3.13 References ... 160

Chapter 4 ... 164

4 Emerging Theory .. 164

4.1 Introduction ... 164

4.2 An Emerging Theory ... 164

4.2.1 Explanation of propositions (P
1

1 and P
1

2) from the study [S1] 166

4.2.2 Explanation of propositions (P
1

3, P
1

4 and P
1

5) from the study [S2] 168

4.2.3 Explanation of proposition P
2

1 .. 169

4.3 Emerging Theory Statement ... 169

4.4 Evaluating Emerging Theory.. 169

4.5 Implications ... 174

4.6 Conclusion ... 175

4.7 References ... 175

Chapter 5 ... 177

5 Conclusions and Future Work ... 177

5.1 Conclusions ... 177

5.2 Future Work ... 179

5.3 References ... 180

Appendix ... 182

Glossary of Terms ... 189

Curriculum Vitae ... 192

xi

List of Tables

Table 1: Thesis core. ..6

Table 2. Characterization of F007 and closely related techniques. 20

Table 3: Epsiode rules from a parallel episode of length 3.. 28

Table 4. Characteristics of the subject programs. ... 33

Table 5: Faulty functions prediction accuracy (in percentage) for failed traces of the

programs using window widths 3, 5 and 7. .. 42

Table 6: Execution statistics of the best episodes. .. 45

Table 7: Classification accuracy for “function entry and exit” and “function entry or exit”

(in percentage) using F007. .. 59

Table 8: Characteristics of the commercial application under study. 62

Table 9: Identifying the faulty functions in the failed traces of a large software system by

reviewing less than 1 % of the code (functions). .. 65

Table 10: Comparison of related techniques focusing on function-call pattern analysis. . 79

Table 11: Characteristics of the subject programs. ... 103

Table 12: Misclassification cost ratio “Cf : Cnf ” for the following releases of the UNIX

utilities using training-set of previous releases. .. 120

Table 13: Mutation time for the subject programs. ... 125

Table 14: Processing time for traces... 126

Table 15: List of multiple faulty functions in release 3 of the Flex and the Grep program.

 .. 146

Table 16: Theoretical propositions arising from the empirical studies. 166

xii

Table 17: Accuracy of F007 using the patterns of function-calls (the MINEPI algorithm)

and using only single function-calls. .. 182

Table 18: Accuracy of identifying faulty functions using the episodes of length 1 with

frequency and confidence. ... 185

Table 19: Accuracy of F007 using only function “entry or exit” or both function “entry

and exits”. ... 186

xiii

List of Figures

Figure 1: A function-call level execution trace. ..3

Figure 2: An example of common patterns in failed function-call level executions of the

Space program. .. 11

Figure 3: Event (function) sequences and episodes. ... 24

Figure 4: Length 3 serial episode rules and a trace with confidence and pre-known faulty

functions from history.. 30

Figure 5: Length 2 episode rules, faulty functions and traces of 23 versions of “Tot_info”

from the Siemens suite. .. 38

Figure 6: The C4.5 decision tree model for the faulty function “gser” of “Tot_info”. 39

Figure 7: Faulty function ranking for trace “T1013” of version 1 of program “Tot_info”.

 .. 40

Figure 8: Accuracy of F007 on: all the releases of Flex, Grep, Gzip and Sed programs;

the seven programs of the Siemens suite; and the Space program. 49

Figure 9: Using traces of earlier releases or different faults for training F007 and testing

F007 on successive releases. .. 51

Figure 10: Using traces of earlier releases and 10% traces of the following releases to

train F007 and identify faulty functions in the rest of the traces of the following release.

 .. 53

Figure 11: Statements-effort using F007 in identifying faulty functions. 55

Figure 12: Statements-effort in using traces of earlier releases and 10% traces of the

following releases to train F007 and identify faulty functions in the rest of the traces of

the following release. ... 56

xiv

Figure 13: Functions vs. size graph of randomly selected releases of the UNIX utilities

(X-axis shows labeled by numbers instead of names and Y-axis shows the size of each

function). ... 57

Figure 14: Decision tree models for faulty functions of Flex and grep program. 58

Figure 15: Example execution trace of the large commercial software (with names

obfuscated for privacy reasons). ... 64

Figure 16: F007 on three releases of a large commercial application. 69

Figure 17: Identifying the faulty functions across releases. .. 70

Figure 18: Identifying faulty functions across releases. .. 71

Figure 19: Identifying faulty components across releases (a total of 300 components

make 100% program in this figure). ... 72

Figure 20: Comparing Frequent Pattern Mining (FP) using function sequences and

Tarantula on function coverage against F007. .. 77

Figure 21: Comparing Effective Fault Localization and Tarantula on statement coverage

against the statement-effort of F007. .. 78

Figure 22: Best and worst case accuracies using F007 for the UNIX utilities. 83

Figure 23: Failed function-call level execution traces for faults in function “sgrrot”,

“GetReal” and “mksnode” of the Space program. .. 92

Figure 24: A scenario of fault discovery in failed traces of deployed software. 101

Figure 25: Correct source code of the function “Get1Real” of the Space program, its real

faulty version and its faults generated using mutants. ... 106

Figure 26: Faulty functions and traces from mutants of the Space program. 108

xv

Figure 27: The C4.5 decision tree model for the function “Get1Real” of the Space

program from failed traces of mutants by using one-against-all approach. 111

Figure 28: Ranking of suspected faulty functions in real failed traces obtained from the

decision tree model of failed traces of mutants. .. 113

Figure 29: Average misclassification cost for the UNIX utilities. 122

Figure 30: Faulty function prediction accuracy for the Space program on its failed traces

of actual faults using the failed traces of mutants of all functions. 128

Figure 31: Accuracy of identification of faulty functions in the actual traces using mutant

traces on the UNIX utilities. .. 131

Figure 32: Faulty function prediction accuracy by using failed traces of the same faulty

functions on the Space program. .. 134

Figure 33: Faulty function prediction accuracy by using failed traces of the same faulty

functions on the UNIX utilities. ... 135

Figure 34: Faulty function prediction accuracy on the actual failed traces of the following

release using the failed traces of selected mutants and the actual failed traces of the

preceding release. .. 139

Figure 35: Faulty function prediction accuracy on the actual failed traces of the current

release using the failed traces of selected mutants, actual failed traces of the preceding

release, and the 10% traces of the current release. .. 141

Figure 36: Faulty function prediction accuracy in terms of statements-effort on the actual

failed traces of the current release using the failed traces of selected mutants and actual

failed traces of the preceding release. ... 143

Figure 37: Faulty function prediction accuracy in terms of statements-effort on the actual

failed traces of the current release using the failed traces of selected mutants, actual failed

traces of the preceding release and 10% of the current release...................................... 144

xvi

Figure 38: Identifying multiple faulty functions in the Flex and Grep program using

mutant traces and actual traces. .. 147

Figure 39: Decision tree models for faulty functions of Flex and grep program. 149

Figure 40: F007-basic on the UNIX utilities. ... 152

Figure 41: F007-plus on the UNIX utilities and straw-man approach for prediction of

faulty functions. ... 153

Figure 42: Histograms of different accuracies at win(w)=3, win(w)=5 and win(w)=7

using bin of 5 (percentage) units. ... 183

1

Chapter 1

1 Introduction

According to an industrial poll (Erlikh, 2000), 85-90% of software systems’ budget goes

to software maintenance. Considering the high cost of software maintenance several

researchers measure the cost associated with different categories of software

maintenance. Schach et al. (2003) measures change logs and code modules of three

software products (a commercial real-time product, a Linux kernel, and the GCC

compiler) and finds that 53.4% to 56.7% of maintenance time is spent in corrective

maintenance, 36.4-39% of time in perfective maintenance and 2.2-4% in adaptive

maintenance. Lee & Jefferson (2005) also measures a Web-based Java (TM) application

which reveals that 32% of maintenance time is spent in corrective maintenance along

with 62% in perfective maintenance and 6% in adaptive maintenance.

The time spent in adaptive maintenance is small, and the time spent in perfective

maintenance is difficult to avoid because it deals with the addition of new features or

functionality. The time spent in corrective maintenance, however, is alarming because it

deals with faults in a software system. Faults in a software system negatively affect

software quality, customers’ businesses and the market reputation of an organization.

Thus corrective maintenance requires greater attention of the software engineering

researchers.

Studies also show that in large software products about 50-90% (Brodie et al., 2005; Lee

and Iyer, 2000; Wood, 2003) of the field failures are “rediscoveries” of the previous

faults and 20% of the code is responsible for 80-100% of the faults (Boehm & Basili,

2001; Gittens et al., 2005; Ostrand et al., 2005). Despite knowing this, every field failure

again requires the same effort in identification of the fault origin (Brodie et al., 2005; Lee

and Iyer, 2000) and consumes more resources (again and again) on the same fault (Brodie

et al., 2005; Lee and Iyer, 2000). According to our own discussions with developers of a

large organization, identification of the fault origin can consume 30%-40% time of

corrective maintenance (Proprietary Workshop, 2008). If faulty code (e.g., components,

2

functions) can be easily or automatically identified, then this will significantly reduce the

corrective maintenance effort, cost and time.

1.1 Research Problem

This thesis, therefore, addresses the problem of identifying faulty functions in the

execution traces
1
 of crashing and non-crashing failures of deployed software.

Previous techniques focusing on the field failures: (i) require many passing and failing

traces to identify the fault origin (e.g., using statistical debugging to identify important

locations in the proximity of faulty source code (Chilimbi et al., 2009; Liu and Han,

2006)); (ii) discover only crashing failures by matching symptom of a problem with

previously known faulty symptoms (Brodie et al., 2005; Lee and Iyer, 2000); (iii)

identify faulty coarse grain code from execution traces such as files as the source of the

field failure (Podgurski et al., 2003); and (iv) classify a field trace as passing trace or

failing trace (Haran et al., 2007). Note that a non-crashing failure is more difficult to

diagnose than a crashing failure because a non-crashing failure could manifest itself well

after the executions of faulty code. However, the origin of the crashing failure can be

readily identified by the same sequence of last function-calls after a crash.

1.2 Research Contribution

We solved the research problem, described in previous section, by developing an

automated solution that identifies faulty functions in a (function-call level) failed trace of

a deployed software system by using previously resolved (function-call level) failed

traces of that program. Figure 1 shows a function-call level trace where “function entry”

shows when control enters a function and “function exit” shows when it leaves a

function. The proposed solution fills the gap of finer-grained discovery of fault origin

(faulty function) from only a failed field trace of crashing and non-crashing failures.

1
 An execution trace is a record of the sequence of code labels (e.g., statements, functions) executed during

a particular run of a program (IEEE Std. 610.12, 1990).

3

Figure 1: A function-call level execution trace.

The contributions of this thesis are:

(a) A technique F007 that identifies the list of suspected faulty functions in a trace of

field failure by training the decision tree on previous failed traces of past releases

and current release of a program (see Section 2.3). F007 can discover new and

rediscovered faults in a function if traces of at least one (same or different) fault

in that function are present in a previous collection of failed traces (see Section

2.6.2 and Section 2.7.6).

(b) A novel strategy called F007-plus that trains F007 on the failed traces of

mutants
2
 (artificial faults) and previous actual faults. F007-plus facilitates F007 to

discover new faulty functions that were not discovered by F007 – F007 was able

to discover only those faulty functions that were found previously faulty due to

actual faults (see Chapter 3 and Section 3.5).

2
 Mutants are automatically seeded faults generated by changing statements of a program (Offutt et al.,

2001).

4

(c) Identification of faulty functions in a trace of a current release by using the traces

of prior faults in that function with the help of F007 and F007-plus. Traces of

prior faults are obtained from pevious releases, mutants (artificial faults), or the

current release (see Section 2.6.2 and Section 2.7; and Section 3.8).

(d) Faulty functions in approximately a maximum of 90% failed traces of subject

programs can be identified on reviewing 10% or less of the code by using F007

and F007-plus (different settings result in different results; see, for example:

Section 2.6.2 and Section 2.7; and Section 3.8).

(e) A discovery that only “function entry” or “function exits” in a function-call level

trace (see Figure 1) are adequate to discover a fault’s origin and their combine use

does not affect the accuracy of identifying the fault’s origin. This discovery

reduces the size and run time overhead of the function-call level trace to

approximately half (see Section 2.6.4).

(f) Patterns (or combinations) of function-calls (e.g., three functions that always

appear together in a trace) do not produce better results than single function-calls

when used with the decision tree algorithm (see Section 2.6.1).

(g) Faults generated using mutants (artificial faults) can be used to discover real faults

(see Section 3.7 and Section 3.8).

(h) Traces (function-calls) of different faults in a group of related functions are

similar; and traces of faults in one group of functions are different from traces of

faults in another group of functions (see Section 3.7).

(i) An emerging theory: “A faulty function can be so identified if the traces of at

least one fault in that function are already known; and the accuracy of

identification increases with the decreasing proportion of faulty functions in the

program.” This emerging theory has been validated by using the criteria to

measure goodness of theories by Sjøberg et al. (2008) in Section 4.4 of this thesis,

and it is derived from two studies of this thesis, which are the core components of

5

this dissertation. The details of these two studies are described in the next section

(see Chapter 4).

These research contributions are significant for deployed systems when only a few traces

are available which is mostly the case because: (a) collection of multiple passing and

failing traces for deployed systems can impede business operations by incurring extra

overhead on them; and (b) collection of many traces consumes customers’ resources and

time. F007 (including F007-plus) addresses this need by using only the “failed” and

reduced (i.e., “function entry” OR “function exit”) function-call level traces. F007 is also

very useful in the field testing such as alpha testing and beta testing. F007 is significant

for the corrective maintenance from the point of view of reducing effort in locating the

finer-grained fault origin (faulty functions) in the traces of the field failures.

1.3 Thesis Structure

The contributions of this thesis span the two studies of this dissertation. These two

studies form the core of this thesis and are characterized in Table 1 with the following

information: chapter number where the study is described in this thesis, study title,

distinct characteristics of one study from another study, and publications year with the

publications venues. Table 1 briefly provides the description of these studies by

highlighting their differences.

The first study (in Chapter 2) proposes F007 and shows that: (a) patterns of function-calls

are not better than single function-calls in discovering the fault origin; (b) only “function

entry” or “function exit” are sufficient to discover the fault origin; and (c) different faults

in the same function have similar function-calls. The second study, in Chapter 3,

proposes F007-plus and shows that: (a) different faults in closely related functions occur

with similar function-calls; and (b) mutants can be used to discover actual faults. Thus, it

can be observed from Table 1 that these two studies are incrementally built over each

other with the general focus on identifying faulty functions in the field traces.

These studies were conducted on twelve different programs and their many releases such

as: (a) seven programs of the well known Siemens suite (Do et al., 2005); (b) the Space

6

program (Do et al., 2005); (c) Flex, Grep, Gzip and Sed--the four open source UNIX

utilities--and their four to five releases (Do et al., 2009); and (d) a very large scale

commercial program deployed in the field for about 20 or more years, with 20 million

LOC and 200,000 functions. We evaluated F007 and improved strategy F007-plus by

using a metric, also used by other researchers working on fault localization such as Jones

and Harrold (2005) and Chilimbi et al. (2009), that quantifies a developer’s effort in

discovering fault locations. This effort measurement metric measures the number of

functions or statements reviewed in discovering faulty functions or component. For

example, F007 can identify faulty functions in 70-90% of the field failures on reviewing

10% or less of the program (i.e., 2-3 functions; see Section 2.6.2).

Table 1: Thesis core.

Chap.

Study Title

Distinct Characteristics

Publications

2

F007: Finding Faulty

Functions from the

Function-call level

Traces of the Field

Failures

 F007 is proposed to identify

rediscovered faulty functions in

the Siemens suite, the Space

program, the UNIX utilities,

and the large software system.

Also identifies function-calls

similarities amongst different

faults in the same function.

ISSRE (Murtaza et

al., 2008);

CASCON(Murtaza

et al., 2010);

IEEE Trans.

(submitted, Murtaza

et al., 2011)

3

Using Mutants to

Discover New and

Rediscovered Field

Faults by Exploiting the

Similarity of Traces

among Different Faulty

Functions

F007-plus improves F007 by

identifying new faulty

functions using mutant

(artificial faults) traces. Also

identifies the similarity in

function-calls of closely related

faulty functions. The study was

evaluated on the UNIX utilities

and the Space program.

ICSE (Murtaza et

al., 2011);

IEEE Trans.

(submitted, Murtaza

et al., 2011)

This thesis is actually documented in the “integrated-article” format. Official guidelines

pertaining to the “integrated-article” format can be found on the website of the University

of Western Ontario
3
. In the “integrated-article” format, each chapter is a separate study

3
 http://grad.uwo.ca/current_students/trg_3.htm

7

and contains its own introduction, related work, procedure, evaluation and bibliography.

However, the studies should not be disparate and the dissertation should show the logical

relation amongst them. In our case, the research problem is the same but solutions are

different: the second solution incrementally extends and overcomes the limitation of the

first solution. In our case, the related work also overlaps in the two studies because of the

same research problem. Thus, this thesis is structured as follows: Chapter 2 and Chapter 3

articulate two studies as shown in Table 1; Chapter 4 derives and validates an emerging

theory based on the findings of the two studies; and Chapter 5 concludes this thesis with

the directions to future work.

1.4 References

Boehm, B. & Basili V., R. "Software Defect Reduction Top 10 List", Computer, Vol. 34,

No. 1, IEEE CS Press, Jan. 2001, pp. 135-137.

Brodie, M.; Sheng Ma; Lohman, G.; Mignet, L.; Modani, N.; Wilding, M.; Champlin, J.;

and Sohn, P. “Quickly Finding Known Software Problems via Automated

Symptom Matching.” Proc. 2nd Int’l Conf. on Autonomic Computing, Seattle,

USA, June 2005, pp. 101-110.

Chilimbi, T. M.; Liblit, B.; Mehra, K.; Nori, A. V.; and Vaswani, K; “HOLMES:

Effective Statistical Debugging via Efficient Path Profiling”. Proc. 31
st
 Intl. Conf.

on Softw. Eng., IEEE CS, Canada, May, 2009, pp. 34-44.

Do, H., Elbaum, S. G.; and Rothermel, G. “Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact." Empirical Softw.

Eng., Vol. 10, Springer, Oct. 2005, pp. 405-435.

Erlikh, L."Leveraging Legacy System Dollars For E-Business," IT Professional, Vol.2,

No.3, May-Jun, 2000, pp.17-23.

Gittens M.; Kim Y.; and Godwin D. “The Vital Few Versus the Trivial Many: Examining

the Pareto Principle for Software.” Proc. 29th Int'l Computer Softw. and Appl.

Conf., Edinburgh, Scotland, July 2005, pp. 179-185.

Haran, M.; Karr, A.; Last, M.; Orso, A.; Porter, A.A.; Sanil, A.; Fouche, S. “Techniques

for Classifying Executions of Deployed Software to Support Software

Engineering Tasks.” IEEE Trans. on Softw. Eng. Vol. 33, No.5, May, 2007, pp.

287-304.

IEEE Std. 610.12, Standard Glossary of Software Engineering Terminology, IEEE

Computer Society Press, Los Alamitos, CA, 1990.

Jones, J. A. and Harrold, M. J., "Empirical Evaluation of the Tarantula Automatic Fault-

Localization Technique". Proc. 20th Int’l Conf. on Automated Softw. Eng.,

IEEE/ACM, CA, USA, 2005, pp.273-282.

8

Lee M. G. and Jefferson T. L. “An Empirical Study of Software Maintenance of a Web-

based Java Application.” Proc. Int’l Conf. on Soft. Maintenance, IEEE, Budapest,

Hungary, Sep., 2005, pp. 571-576.

Lee, I. and Iyer, R. “Diagnosing Rediscovered Problems Using Symptoms.” IEEE Trans.

on Sofw. Eng., Vol. 26, No. 2, Feb, 2000, pp.113-127.

Liu, C. and Han, J. “Failure Proximity: A Fault Localization-based Approach.” Proc. of

the 14th SIGSOFT Symp. on Foundations of Softw. Engg., ACM, Portland, USA,

Nov. 2006, pp. 45-56.

Murtaza, S.,S.; Gittens, M.; Li, Z.; Madhavji, N.,H.; “F007: Finding Rediscovered Faults

from the Field using Function-level Failed Traces of Software in the Field”.

Proc. Conf. of the Center for Advanced Studies on Collaborative Research:

Meeting of Minds, ACM, Canada, Nov. 2010, pp. 61-75.

Murtaza, S.S.; Gittens, M.; and Madhavji, N.H. “Discovering the Fault Origin from Field

Traces”, Proc. of 19
th
 International Symposium on Software Reliability Engineering,

IEEE CS, Seattle, USA, Nov. 2008, pp. 295-296.

Murtaza, S.S.; Madhavji, N.H.; Gittens, M.; Li, Z.; “Diagnosing New Faults Using Mutants

and Faults of Prior Releases (NIER Track)”, Proc. of 33rd International Conference

on Software Engineering, ACM, Honolulu, Hawaii, USA, May, 2011--accepted.

Murtaza, S.S.; Madhavji, N.H.; Gittens, M.; Li, Z.; Wilding, M.; Miranskyy, A.; Godwin, D.;

“F007: Finding Faulty Functions from the Function-call level Traces of the Field

Failures”, IEEE Transactions on Software Engineering,IEEE, USA, 2011--submitted.

Murtaza, S.S.; Madhavji, N.H.; Gittens, M.; Li, Z.; “Using Mutants to Discover New and

Rediscovered Field Faults by Exploiting the Similarity of Traces among Different

Faulty Functions”, IEEE Transactions on Software Engineering, IEEE, USA, 2011--

submitted.

Offutt, A., J.; and Untch, R., H. “Mutation 2000: Uniting the Orthogonal,” in Mutation

Testing for the New Century, Wong W,E., Ed., USA: Kluwer Academic

Publishers, 2001, pp. 34-44.

Ostrand T. J.; Weyuker E.; and Bell R. M. “Predicting the Location and Number of Faults

in Large Software Systems.” IEEE Trans. on Software Engineering, Vol. 31, No.

4, 2005, pp. 340-355.

Podgurski, A.; Leon, D.; Francis, P.; Masri,W.; Minch, M.; & Sun, J.; Wang, B,

“Automated Support for Classifying Software Failure Reports”. Proc. Intl. Conf.

on Software Engineering, IEEE CS, Portland, US, May, 2003, pp. 465-475

Proprietary workshop on large commercial software, Sep., 2008.

Schach S. R.; Jin B.; Yu L.; Heller G. Z.; and Offutt J.; “Determining the Distribution of

Maintenance Categories: Survey versus Measurement”. Empirical Softw. Eng.

Vol. 8, No. 4, Springer, Dec., 2003, pp. 351-365.

Sjøberg, D.; Dyba, D.; Anda, B. C.; and Hannay. J.; “Building Theories in Software

Engineering”, In Guide to Advanced Empirical Software Engineering. Shull,F.,

Singer,J., and Sjøberg,D.I.K, Eds., Springer, London, 2008, pp. 312–336.

9

Wood A. “Software Reliability from the Customer View.” Computer, Vol. 36, No. 8,

IEEE CS, Aug., 2003, pp.37-42.

10

Chapter 2

2 F007: Finding Faulty Functions from the Function-call
level Traces of the Field Failures

2.1 Introduction

Corrective software maintenance activity rectifies faults in a program (e.g., faults

reported by users) (Chapin, 2000). Schach et al. (2003) measured change logs and code

modules of three software products (a commercial real-time product, a Linux kernel, and

the GCC compiler) and found that approximately 53% to 57% of the maintenance time is

spent in corrective maintenance, approximately 36-39% in perfective maintenance and

approximately 2-4% in adaptive maintenance. Also, Lee & Jefferson (2005) measured a

Web-based Java (TM) application, revealing that 32% of the maintenance time is spent in

corrective maintenance, 62% in perfective maintenance, and 6% in adaptive maintenance.

Likewise, Sousa (1998) conducted a survey of large financial organizations in Portugal

and reported that approximately 36% of the maintenance time is spent in corrective

maintenance, approximately 49% in adaptive maintenance and approximately 14% in

perfective maintenance. Previous research thus suggests that corrective maintenance

effort is significant and, thus, research aimed at reducing this effort should be of high

priority in software engineering.

Studies also show that in large software products approximately 50% (Wood, 2003), 70%

(Lee and Iyer, 2000) and 50%-90% (Brodie et al., 2005) of the field failures are

“rediscoveries” of previous faults. However, when a fault in software is reported by a

user, it is not immediately apparent which part of software caused the failure -- even if it

is a rediscovery (Lee and Iyer, 2000). It requires that faulty components, and ultimately

the lines of code where the fault originates (Brodie et al., 2005; Lee and Iyer, 2000) are

again identified. Such rediscoveries consume substantial resources; for example, Brodie

et al. (2005) reported that one third of all the time spent by support staff at IBM is spent

in diagnosing only rediscoveries. According to our own discussions with a developer of a

large organization, fault identification, including rediscovered and new faults, can

consume 30%-40% of corrective maintenance time (Proprietary Workshop, 2008).

11

Also, studies have reported that as much as 100% of the field faults originate in 10% of

the code (Gittens et al., 2005), and 92% of the overall faults originate in 20% of the files

(Ostrand et al., 2005) — this is the “80-20 Pareto rule” for software. Thus, if 50-90% of

the field failures are rediscoveries of previous faults, and the faults originate from 20% of

the code, then 20% of the code is causing 50-90% of the field failures. If the faulty code

(e.g., components, functions or such abstractions) can be easily or automatically

identified, then this should significantly reduce the maintenance effort, cost and time.

Figure 2: An example of common patterns in failed function-call level executions of

the Space program.

During our preliminary experiments involving the Space
4
 program (Do et al., 2005), we

observed that if the same, or different, fault occurs in the same function then, in the most

cases, the function-call level execution traces involving that function have similar

function-call sequences. For example, Figure 2 (part ‘a’) shows that the sequence of last

function-calls for two different faults (version
5
 12 and 18) in the same function “sgrrot”

are exactly the same. On the other hand, in part ‘b’ the sequence of the last function-calls

due to a fault in function “GetReal” is different from the sequence in part ‘a’. Figure 2

4
 Space is a C program, an interpreter for an antenna array definition language written for the European

space Agency and faults were found during development.

5
 In the Space program, each fault is equivalent to one version.

12

shows only the last function-calls but similar characteristics (with some variations) were

also observed in the sequences of earlier function-calls. Moreover, in the cases of other

faulty functions of the Space program, we observed similar characteristics as described

for Figure 2.

These early observations, as explained above for Figure 2, warranted further empirical

investigation. In particular, if these observations of similar function-call patterns held;

and 50-90% of the faults were rediscoveries; and the Pareto rule also held, then the faults

causing the majority of the field failures could be discovered by using the “failed” traces

of a few earlier faults originating in a small percentage of the code. This is the

fundamental motivation and basis of our investigation and it represents a divergent

approach to locating faulty functions from execution traces.

This paper, therefore, addresses the problem of identifying the “function”-level origin of

the field failures in the code. Our focus is on those field failures that can occur due to: (a)

previously known faults or (b) a new fault in a previously known faulty function. The

rationale behind this is rooted in empirical findings: (i) a significant amount (50-90%) of

the field failures are rediscoveries (Brodie et al., 2005; Lee and Iyer, 2000; Wood, 2003);

and (ii) 80% of the field failures are concentrated in a relatively minor segment (20%) of

a system (Gittens et al., 2005; Ostrand et al., 2005). Also, supporting this rationale is that

faults in the same function occur with similar patterns of function calls (see Figure 2)
6
. In

short, this paper focuses on using only a small part (20%) of the software system to solve

the problem of identifying most (80-90%) of the rediscovered faults of a software system.

Our technique (called F007) uses a pre-classified, historical, collection of only “failed”

function-call traces to identify faulty functions in newly collected failed traces. F007

trains a decision tree on the pre-classified collection to identify faulty functions in new

failed traces. This pre-classified collection can be built from a collection of failed traces

with the known faulty functions, obtained from the executions of software test cases. The

6
 Another example that can be drawn from practice is, when an out-of-bound index error occurs in an array

in a function, then the sequence of the last function calls are usually the same.

13

reason for using in-house traces is in one of our studies on a very large commercial

application (Gittens et al., 2005): we found an overlap in the location of faults in source

code between field and pre-release failure; and we found that in general 20% of the code

is responsible for 80% of the faults. Later on, failed traces from the field, as they get

resolved, can be added to the collection, since the majority of faults are rediscoveries.

Previous techniques related to the field failures focus on: (a) classifying successful and

failed traces (e.g., using decision trees (Haran et al., 2007), and using Markov model

(Bowring et al., 2004)); (b) classifying rediscovered crashing failures via symptoms

(Brodie et al., 2005; Lee and Iyer, 2000); (c) clustering traces related to coarse-grained

code (e.g., files) (Podgurski et al., 2003); and (d) using statistical debugging (Chilimbi et

al., 2009; Liu et al., 2005) to identify the origin of the field failures. The novelty of F007

can be readily seen from the contrast with previous approaches:

1. F007 can identify faulty functions (of rediscovered or new faults in the same

function) in failed traces of both crashing (e.g., segmentation fault) and non-

crashing (e.g., logical error) faults by using the knowledge of only previously

resolved failed traces. In contrast, other techniques (Brodie et al., 2005; Lee and

Iyer, 2000) identify faults in only crashing situations, identify faults at coarse

grained level (e.g., files) (Podgurski et al., 2003), need knowledge of the type of a

fault (Liu et al., 2005), and require a collection of passing traces with failing traces

related to a fault (Chilimbi et al., 2009; Liu et al., 2005). It should be noted that: (a)

the non-crashing failures are more difficult to solve because a user may not

recognize the failure until well after the execution of the faulty code; whereas the

origin of the crashing failure can be readily identified by the same last sequence of

function-calls after a crash (Podgurski et al., 2003); and (b) collecting many passing

and failing traces is not feasible in the field because of the overhead of trace

collection and the user’s resources consumption in fault reporting.

2. The techniques for “pass-fail” classification of field traces (Haran et al., 2007;

Bowring et al., 2004) classify the traces as passing and failing. F007 builds upon

14

this by further examining only the failed traces to identify a faulty function in a

failed trace.

3. When experimenting for F007, we discovered that only function entry OR exit

points are required for finding the faulty functions in the failed trace. This reduces

the overhead (runtime and size) by approximately half. This further distinguishes

F007 from other techniques.

4. This paper further validates our previous work (Murtaza et al., 2010) on F007.

Previously (Murtaza et al., 2010), we evaluated F007 only on the Siemens suite

(Hutchins et al., 1994) which contains one release of seven small programs (128-

494 LOC). This paper extends our work on F007: (a) by evaluating F007 on larger

programs, such as: Space program (5767 LOC) (Do et al., 2005); several releases of

four open source UNIX utilities. Flex, Grep, Gzip and Sed (4032-9831 LOC) (Do

et al., 2005); and three releases of a very large commercial enterprise-level software

of approximately 20 millions LOC and 200,000 functions; (b) by showing that

F007 can use the traces of faulty functions of earlier releases to accurately identify

the same faulty functions in subsequent releases; and (c) by showing that F007 can

be used efficiently on very large programs by removing irrelevant function-calls.

This further strengthens the significance of F007.

Our results of F007 on the Siemens suite, the Space program, four UNIX utilities, and the

large software application show that: (a) F007 identified 75-90% of the faulty functions

in the four UNIX utilities by reviewing less than 5% of the program, when trained only

on 25% of the failed traces of the same release; (b) F007 discovered the same faulty

functions (with different or the same faults) with 70% accuracy in the Siemens suite on

reviewing 20% of the program when trained on 25% failed traces of at most one fault of

the same faulty functions; (c) F007 identified faulty functions with 96% accuracy in the

Space program on reviewing 5% of the code when trained on only 1% of the failed traces

with at most one fault in the same function; and (d) F007 identified faulty functions in the

subsequent release by using the failed traces of earlier releases and 10% failed traces of a

current release with an accuracy of (i) 70-95% in the four UNIX utilities (that we studied)

15

on reviewing 5% or less of the code and (ii) 65-80% in the very large software system on

reviewing 3% or less of the code. A direct comparison of F007 with other techniques

does not exist (see Section 3.10). However, previous approaches that use function-call

level traces (e.g., Di Fatta et al. (2006) and Tarantula (Jones and Harrold, 2005) on

function coverage by Di Fatta et al. (2006)) identify only up to 40% faults (i.e., faulty

functions) by reviewing 20% of the code in the Siemens suite; whereas, F007 can identify

70% faults (i.e., faulty functions) by reviewing 20% of the code.

These results imply that: (a) F007 can identify faulty functions in majority of the failed

traces by using a small percentage of the previous failed traces; and (b) faults in the same

function occur with similar function-call traces. F007 actually identifies faulty functions

in a failed trace which makes it important when only a few traces are available for the

fault discovery from deployed software—mostly the case due to trace overhead or user’s

resources consumption in fault reporting. F007 is therefore valuable since most of the

field failures are rediscoveries of the faults originating from the same area of source of

code. Thus F007 has the potential to reduce the corrective maintenance effort from the

point of view of locating the finer-grained fault origin (faulty functions) from the field.

This paper continues as follows: Section 2.2 describes related work; Section 2.3 describes

the F007 technique; Section 2.4 discusses the experimental setup; Section 2.5 shows an

example of F007 from the Siemens suite (Do et al., 2005; Hutchins et al., 1994) ; Section

2.6 evaluates the results of executing F007 with the Siemens suite, the Space program

(Do et al., 2005) and the UNIX utilities (Do et al., 2005); Section 2.7 validates F007 on a

very large commercial application; Section 2.8 elaborates on the example execution from

the perspective of prediction of faulty functions across releases; Section 2.9 summarizes

the results on all the programs; Section 2.10 compares F007 against the contemporary

techniques; Section 2.11 explains threats to validity; and Section 2.12 concludes and

describes future work.

2.2 Related Work

Scientific literature describes a number of fault discovery techniques: (a) in-house fault

localization techniques such as evaluating statement coverage (Jones and Harrold, 2005;

16

Wong et al., 2007) and recording function sequences (Dallmeier et al., 2005; Di Fatta et

al., 2006); and (b) fault discovery techniques for field failures scuh as statistically

identifying field failures (Liu and Han, 2006; Podgurski et al., 2003), techniques for

classifying field failures (Bowring et al., 2004; Haran et al., 2007; Elbaum et al., 2007),

techniques for rediscovering known problems (Brodie et al., 2005; Lee and Iyer, 2000),

and techniques for localizing system configuration level faults (Chen et al., 2004; Ding et

al., 2008; Yuan et al., 2006). In the following sub-sections, we elaborate on each of these

techniques.

2.2.1 In-house Fault Localization Techniques

Agrawal et al. (1995) present a heuristic method which considers that the fault lies in the

difference between a successful test case execution and a failed test case execution,

known as a dice. Wong et al. (2006) present two improvements over this dice-based

technique (Agrawal et al., 1995): (a) if a bug is not found in a dice, then the first

improvement, called augmentation, incrementally includes the code from the intersection

of a failed test case and a successful test case; and (b) if a dice is too big then another

improvement, called refining, gradually decreases the code by differentiating the dice

with another successful test case

Jones and Harrold (2005) and Wong et al. (2007) discover faulty statements in a program

by using a theory that statements executed by passing test cases are less likely to be faulty

compared to those executed by failing test cases. Zhang et al. (2009) identify suspected

statements by contrasting edge profiles (i.e., paths executed when control moves from

one branch to another) of failing and passing runs. They (Zhang et al., 2009) argue that

propagating faulty program states can be captured using edge profiles, which can identify

faulty statements better than coverage based techniques such as the technique by Jones

and Harrold (2005).

 Di Fatta et al. (2006) and Dallmeier et al. (2005) propose a technique that localizes the

faulty functions and the faulty classes, respectively, by extracting function-call patterns

from the failed and successful executions. Statistical debugging based techniques (e.g.,

Zheng et al. (2009) and (SOBER) Liu et al. (2005)) instrument source code with light

17

weight assertions (e.g., null pointer check) and then apply a statistical utility function on

the assertions obtained from failed and successful executions. This is to discover faulty

assertions (e.g., null pointers).

These techniques are suitable for in-house testing but not for deployed software because:

(a) mostly they require a collection of failing traces related to one fault
7
, but failure traces

in the field do not necessarily result due to the same fault; (b) in deployed software, often

only a few traces (at the time of fault) are available due to the overhead incurred in trace

collection, and sometimes it is not known if a trace is passing or failing; (c) different

customer usages can result into many different normal execution paths that are not

observed in passing executions in in-house testing, and it is not feasible to collect many

passing traces from customers due to overhead involved in trace collection; (d) finer

grained (e.g., statement coverage) coverage profiles are costlier to collect than function

coverage; and (e) the statistical-debugging based techniques require the knowledge of the

type of bug for instrumentation, and if a fault is not found another type of assertion (e.g.,

null pointer check) is instrumented in source code, and so on the process is repeated until

the fault is found.

2.2.2 Statistically Identifying Field Failures

Podgurski et al. (2003) form clusters of execution traces of the field failures based on

common faulty source files. The granularity in the Podgurski et al. approach is a faulty

file, whereas the majority of the clusters contained failed traces with multiple files (fault

origin), making it unsuitable for the manual investigation of the correct faulty file (and

finer-grain origin gets even more difficult). In contrast, F007 discovers faults

automatically at the finer-grained, function-level; and the faults in the majority of traces

can be discovered correctly by reviewing the first suspected function. Podgurski et al.

(2003) experimented on GCC, Javac and Jikes; whereas, we experimented on the

Siemens suite, the Space, the UNIX utilities and the large commercial program.

7
 One of the Dallmeier et al. (2005) methods uses one failed trace and a collection of passing traces.

18

Liu and Han (2006) cluster failing runs according to a rank list of assertions obtained

using the statistical debugging tool SOBER (Liu et al., 2005). In the approach by Liu and

Han (2006), the fault locations (in the Siemens suite) are discovered by following the top

rank predicates in the list produced using SOBER. However, their approach also requires

a collection of the passing traces and the failing traces for the same fault. Their work (Liu

and Han, 2006) also suffers from the limitations of statistical debugging (see Section

2.2.1). F007 can discover faulty functions without such limitations.

Another statistical debugging tool, HOLMES (Chilimbi et al., 2009), uses path profiles to

classify faults for deployed software. Their technique can only be applied to the server

side applications (Chilimbi et al., 2009), because they have to redeploy software

components with instrumentation of selected functions to collect the passing traces and

the failing traces pertaining to one fault (a limitation, see Section 2.2.1). In some cases,

this may not be feasible for running servers as well due to the runtime redeployment of

instrumented software components.

2.2.3 Classifying “Pass-fail” Field Traces

Elbaum et al. (2007) experiment with different anomaly detection algorithms that detect

abnormal behavior in deployed system. They identified abnormal behavior by comparing

the deployed system’s (function-call level) trace with the model of in-house passing

traces. Their objective is to anticipate the occurrence of a failure such that trace collection

for the failure could be automatically started at the right time when the system is in the

field. Bowring et al. (2004) and Haran et al. (2007) develop techniques based on the

Markov model (Bowring et al., 2004) and decision tree (Haran et al., 2007) to

characterize (statement, branch or function level) executions as being passed or failed

runs. These techniques complement our work in discovering the faulty functions in that

the F007 technique requires only failed traces. For example, if traces collected from the

field also contain some of the passing traces, they can be filtered out by using the

techniques proposed by Haran et al. (2007) and Bowring et al. (2004). The failed traces

can be collected directly from the field using Elbaum’s et al. (2007) technique.

Subsequently, F007 could use the filtered (failed) traces to localize faults.

19

2.2.4 Rediscovery of Problems

Brodie et al. (2004) use string matching to group one function-call trace of a crash with

other groups of function-call traces for different crashes. The groups of crashes were

formed by exactly matching the function-call paths of different crashes. They claim that

every group, formed on the basis of the same trace matches, has the same crashing

reason. However, traces due to the same crashing reason (or same fault) are not exactly

the same, and they can take different approaches. Lee and Iyer (2000) propose a

technique to classify the rediscovered crashing failure by literal matching of its function-

call trace with already known failure traces. They consider a variety of heuristics to

match several function-call paths followed by the same fault. In F007, we model several

paths leading to the same fault by the decision tree algorithm. F007 addresses the more

difficult problem of non-crashing failure classification, where a user may notice a failure

well after the execution of the faulty code (Podgurski et al., 2003). For example, if a

Statement object is not de-initialized in a Java program, memory consumption continues

to increase, and application slows down due to swapping by OS: this occurs long after

many functions execute that object. Similarly, initialization of a wrong value to a variable

can influence in the wrong output well after the manipulation of that variable. F007 can

discover faulty functions in both the non-crashing and crashing failure traces.

2.2.5 Localizing System Level Faults

Yuan et al. (2006) employ support vector machines (a classification algorithm) to

determine the root causes of a problem (e.g., network cable unplugged) confronting a

user of a system on the basis of execution traces of software. Chen et al. (2004) describe

a technique based on the decision tree and association rule to diagnose faulty components

(e.g., a web server) in large distributed systems. Ding et al. (2008) also propose a

technique to identify faults occurring due to configuration of software. They collect

software runtime behavior (e.g., system calls, environment variables) of the passing and

the failing runs. The origin of the fault (e.g., large log files) is identified by deviations in

failing and passing run. In summary, these three techniques also complement our work in

that they focus on the identification of faults in application interactions or at system level;

whereas, F007 focuses on the faults within an application. For example, systems level

20

techniques (Chen et al., 2004; Ding et al., 2008; Yuan et al., 2006) could first identify

faults at the system level (e.g., memory overload); F007 can then identify logical faults

within a program (e.g., infinite loop).

2.2.6 Research Gap

Table 2 characterizes closely related techniques in four categories: focus of the research;

fault localization at a level of single trace or at a level of collection of traces for one fault;

fault localization granularity; and the specific type of knowledge required to discover

faults. Each category further classifies each technique. For example, the focus of

research classifies each technique into testing and corrective maintenance.

Table 2. Characterization of F007 and closely related techniques.

• Focus: Testing (T); and Corrective Maintenance (CM).

• Trace Contents: Statement coverage (St); Function Sequence (FS); Predicate Count (PC); and Path Profile

(PP).

• Input: Single Trace (Tr); and Collection of Passing Traces and Failing Traces for one Fault of a Program

(PFV)

• Fault Location Granularity: Function (Fn); Statement (St), File (Fi), Predicates (check points in code)(P);

Paths (Ph); Cause of Only Crashing Failures (hardware, software) (Cr); Execution Dice (ED); and Class (Cl).

• Weakness: Type of bug (TB); Collection of Passing Traces and Failing Traces for one fault of a program

(PFV); and Historical Traces for Faults (HT).

Reference Focus Trace

Contents

Input Fault Location

Granularity

Weakness

Agrawal et al. (1995) T St PFV ED PFV

Wong et al. (2006) T St PFV ED PFV

Wong et al. (2007) T St PFV St PFV

Jones et al. (2005) T St PFV St PFV

Di Fatta et al. (2006) T FS PFV Fn PFV

Dallmeier et al. (2005) T FS PFV Cl PFV

Liu et al. (2005) T PC PFV P PFV, TB

Zheng et al. (2003) T PC PFV P PFV,TB

Chilimbi et al. (2009) CM PP PFV Ph PFV

Liu et al. (2006) CM PC PFV P PFV, TB

Podgurski et al. (2003) CM FS Tr Fi HT

Lee & Iyer (2000) CM FS Tr Cr HT

Brodie et al. (2005) CM FS Tr Cr HT

F007 CM FS Tr Fn HT

21

The closest techniques to F007 (i.e., techniques for corrective maintenance) focus on: (a)

finding a fault in a trace at coarser (file) level (manual investigation of the finer-grain

origin of fault remains difficult) (Podgurski et al., 2003); (b) discovering only crashing

faults (Brodie et al., 2005; Lee and Iyer, 2000); and (c) identifying fault by using many

passing traces and failing traces for a fault (Chilimbi et al., 2009; Liu and Han, 2006).

F007 fills the gap of finer-grained discovery of fault origin (faulty function) from only a

failed field trace of the deployed instance of a software application (by using previous

failed traces from field or in-house testing). F007 distinguishes from these techniques in

the following ways:

• F007 contributes by showing that different faults in the same function occur with

similar function-calls (see Section 2.6.2).

• F007 can discover (new or old faults in the same) faulty functions in a failed field

trace by reviewing only a small percentage of the code (e.g., first two to three

functions; described in detail in Section 2.6.2 and Section 2.7).

• F007 shows that only “function-entry” or only “function-exit” are sufficient to

identify faulty functions (or fault origin) from a function-call trace (see Section

2.6.4). This discovery facilitates in reducing the size and trace collection overhead

to approximately half.

These distinguishing factors of F007 are significant for the deployed systems when only a

few traces are available—mostly the case due to user’s time consumption and trace

overhead. Also, if most of the field failures are (50-90%) rediscoveries and originate

from the same area (20%) of code, then (considering the above factors) F007 can

discover the origin (faulty functions) of the majority of faults (see Section 2.6.2 and

Section 2.7).

2.3 The F007 Technique

Recall from Section 2.1 that F007 identifies faulty functions in function-call level traces

of field failures. F007 requires a historical collection of traces (or their reproductions)

22

from failed executions (e.g., as in Figure 2). F007 also assumes that the faulty functions

have previously been identified in a historical collection of traces.

Also recall from Section 2.1 that an initial collection of traces can be built using in-house

test case traces of software because there is an overlap between the origin of in-house and

the field faults (Gittens et al., 2005). Subsequently, failed traces from the field can be

added to the collection. This is because most of the faults (80-90%) are rediscoveries

originating with similar patterns from the same area (20%) of source code.

 Following are the primary two steps of F007:

Step 1: F007 first extracts patterns (combinations) of function-calls from the given

function-call traces using the MINEPI algorithm (Mannila et al., 1997). (Function-call

level execution traces are shown in Figure 2, where “function entry” and “function exit”

show when control enters and exits a function respectively.) The MINEPI algorithm is

used to identify temporal patterns in sequences; e.g., if function “TapeGet” is called in

part ‘b’ of Figure 2 then another “TapeGet” would follow within the distance of one

function-call.

Step 2: F007 then trains decision trees (Witten and Frank, 2005) on these patterns

(obtained from historical traces of in-house or field faults) to discover faulty functions in

a given set of new trace of failure. The decision tree is a well known classification

algorithm (Witten and Frank, 2005). For example, F007 trains a decision tree on the

historical collection of traces for each faulty function. Whenever a new failed trace

arrives, each decision tree tries to associate the patterns in the new trace with its

knowledge of patterns. Each decision tree then predicts its faulty function for a new trace

with a probability. Predicted faulty functions are then arranged in a list in the decreasing

order of their predicted probabilities. The list of faulty functions is then presented to

developers with the knowledge that functions with the highest probabilities should be

considered highly suspected faulty functions.

 The intuition behind this approach to discovering patterns in traces is that function-calls

related to similar faults constitute similar patterns (also noted in (Lee and Iyer, 2000)),

23

and the decision tree algorithm (in the second step) can further leverage these similar

patterns by associating them to common faulty functions. An example of similar patterns

of function-calls is shown in Section 2.1.

 Section 2.3.1 describes step 1 of F007 (the MINEPI algorithm to extract patterns of

function-calls), and Section 2.3.2 describes step 2 of F007 (the decision tree algorithm).

2.3.1 MINEPI

Mannila et al. (1997) propose two algorithms (WINEPI and MINEPI) to discover

temporal patterns in log files such as telecommunication alarms and data logs for Web

servers. The sequences of function-calls (see Figure 2) bear similar temporal relationships

to each other. Association rules (Witten and Frank, 2005) do not discover such temporal

relationships. For example, the time duration of two function-calls is not considered in

the association rules; whereas the function-calls in a trace bear temporal relationships and

MINEPI can extract the temporal relationship. MINEPI is preferred over WINEPI

because it can discover patterns not discovered by WINEPI (Mannila et al., 1997).

Fundamental Definitions: We shall now summarize the MINEPI algorithm (Mannila et

al., 1997) by using the notations and definitions used by Mannila et al. (1997), with

minor modifications and simplifications:

• First, consider a set R of event types.

• An event is expressed as a pair (A, t), where:

 A ∈ R is an event type, and t is an occurrence time of the event expressed as an

integer --indicating the order of this event in the temporal sequence.

For example, in our case the name of a function in a function-call level trace is an event

type (A) and the t is the calling order of the function in a function-call trace.

• An event sequence S on R can be formally expressed as a triple (s, Ts, Te), where:

24

Ts <= Te and Ts is the (integer) starting time, and Te is the (integer) ending time,

and s= < (A1, t1), (A2, t2)……. (An, tn) > is an ordered sequence of events such that

Ai ∈ R for all i=1….. n, and ti <= ti+1 for all i=1….. n-1, and Ts <= ti < =Te for all i

= 1 to n.

For example, a sequence of events is shown in Figure 3 (which we use in examples in the

rest of this section; serial and parallel episodes in Figure 3 are explained later). In Figure

3, foo1, foo2, foo3 and foo4 are the event types (functions), (foo1,1) is an example of the

event (A,t), Ts= 1 and Te=12; and s= < (foo1,1), (foo2,2)…… (foo4,12) >.

Figure 3: Event (function) sequences and episodes.

• An episode α is a pair (V, ≤) where V⊂ R and “≤” is a partial order relationship on V.

If a partial order ≤ among predicates of an episode is a trivial partial order (unordered)

then the episode is called a parallel episode; that is, Ai ≰ Aj for all Ai, Aj ∈ V such that

Ai ≠ Aj. If a partial order “≤” among predicates of an episode is a total (fixed) order then

the episode is called a serial episode; that is, Ai ≤ Aj or Aj ≤ Ai for all Ai, Aj ∈ V. An

episode α = (V, ≤) occurs in an event sequence S if: (i) for all Ai ∈ V there is an event

(Ai, ti) in S; and (ii) for all Ai, Aj ∈ V with Ai ≤ Aj and Ai ≠ Aj there are events (Ai , ti)

and (Aj, tj) in S such that ti < tj. The length ‘L’ of an episode α is the number of event

types in an episode, i.e., |V|.

In this text, we denote trivial partial order by “:” symbol between two event types of a

parallel episode and a total (fixed) order by “<” symbol between two event types of a

serial episode. Suppose A1, A2 .… An ∈ V then we represent a serial episode as “A1 < A2

….< An” and a parallel episode as “A1 : A2 ….. : An”. For example, “foo3 < foo4”

25

represents a serial episode of Length 2 in Figure 3, and it shows that foo3 precedes foo4.

Similarly, “foo1 : foo2” is a parallel episode of Length 2 in Figure 3 that shows that foo1

and foo2 occcur together but not in a fixed order.

• A episode β = (V' , ≤ ') is a sub-episode of α= (V, ≤), denoted by β ⊂α , if there

exists an injective mapping f: V' �V such that f(A') = A for all A' ∈ V ' and A ∈ V, and

for all Ai' , Aj' ∈ V ' with Ai' ≤' Aj' then f(Ai') ≤ f(Aj') such that f(Ai') = Ai and f(Aj')=

Aj and Ai , Aj ∈ V.

• A window on an event sequence S (s,Ts,Te) is also an event sequence W (w, ts, te),

where: ts <= Te, te >= Ts, ts <= te, and w consists of the events (Ai, ti) with ts <= ti <=

te and Window width, win(w), is the time span te –ts.

An example of the window width of win (w)= 3 is shown in Figure 3, and it is W (<(foo2,

4), (foo1,5), (foo3,6), (foo4,7) >, 4, 7).

• The minimal occurrence of an episode α in an event sequence S is the interval [ts,

te], if α occurs in a window W(w, ts, te) and α does not occur in any proper sub-window

W'(w', ts', te') such that ts<= ts' and te'<=te and win(w') < win(w). The set of minimal

occurrences of an episode α in a given event sequence is denoted by mowin (w)(α):

 mo win (w)(α) = { [ts,te] | [ts,te] is a minimal occurrence of α }

• The number of minimal occurrences of an episode in a sequence is the frequency
8

“|mo win(w)(α)|” of an episode.

Thus, we extract only those episodes which have minimal occurrences for a window

width. For example:

8
 Mannila et al. (1997) used the term “support” ; for simplicity, we use he term “frequency” in this paper

26

(1) Serial episode “foo1 < foo2” minimally occurs twice (|mo4(foo1<foo2)|=2) in the

event sequence in Figure 3 during the intervals {[1,2],[8,11]} for the window

width win(w)=4. In the interval [1,4] “foo1<foo2” is minimally true for “foo1” at t1

and “foo2” at t2, but not for ‘foo2’ at t4 because there exists ‘foo2’ at t2 which is

true for the minimal occurrence of “foo1 < foo2” in the interval [1,4]. Length ‘L’

of the episode “foo1< foo2” is 2.

(2) Parallel episode “foo1 : foo2” (length L=2) minimally occurs in the event sequence

of Figure 3 for the win(w)=2 at the intervals [1,2], [4,5], [8,9].

(3) Parallel episode “foo1:foo2:foo3” (Length L=3) is minimally true for win(w)=3 in

intervals {[1,3], [3,5], [4,6], [6,9],[8,11]}, and is not minimally true for the interval

[2,5] because there exists a sub-interval [3,5], i.e., [3,5] is the minimal occurrence

within the interval [2,5]. Similarly, it is also not minimally true for the interval [1,4]

because [1,3] is the minimal occurrence.

• An episode rule is an expression of the form β [win(w1)] ⇒ α [win(w2)], where β ⊂

α (β is a sub-episode of α) and win(w1), win(w2) are integers. Episode β has a minimal

occurrence at the interval [ts,te] with window W1(w1, ts, te) and te – ts ≤ win(w1), and

episode α has the minimal occurrence at the interval [ts,t'e] with window W2(w2, ts, t'e)

for some t'e such that t'e – ts ≤ win(w2) and t'e > te. Confidence of the rule β [win(w1)]

⇒ α [win(w2)] is given as:

|)(|

|)}(|)({|

)(

)()(

1

21

β

αβ

wwin

wwinwwin

mo

momo

For example, “foo1” is the only sub-episode of the serial episode “foo1 < foo2” that

could be extracted according to the definition of episode rule (i.e, a subepisode should

begin at the same time as an episode and subepisode’s time interval should not be greater

than an episode). The episode rule for this serial episode with win(w2)=4 and win(w1)=3

is “foo1[3] => (foo1< foo2)[4]”. Confidence of this episode rule, from the event sequence

in Figure 3, is shown below:

27

3

2

)(

|)}(|)({|

13

21413 =
<

foomo

foofoomofoomo

This rule is read as “if ‘foo1’ minimally occurs within the window width of 3 time units,

then there is a 67% (2/3=0.67) chance that ‘foo2’ will follow ‘foo1’ such that “foo1 <foo2”

occurs minimally within 4 time units.”

Executing MINEPI: The MINEPI algorithm starts by first extracting minimal occurrences

of all the episodes of length L=1. Subsequently, it extracts minimal occurrences of all the

higher length episodes (serial or parallel) of length L = 2, 3 to n incrementally for a

particular window width. Maximum value of the length ‘L’ and the window-width is

decided by the user in the MINEPI algorithm. Also, the minimum frequency is set by the

user. This is to select the frequent episodes beyond a minimum frequency value. For

example, a user can select episodes with minimum frequency greater than 5.

After extracting all the episodes, episode rules are generated for each episode by

identifying every sub-episode of an episode as per the definition of episode-rule. An

episode rule β [win(w1)] ⇒ α [win(w2)] is generated if conf (β [win(w1)] ⇒ α [win(w2)])

is greater than the minimum confidence. (The minimum confidence for an episode rule is

also set by a user.) To keep things simple: we chose win(w2) in the rule to be the

maximum window width set by the user and set win(w1)= win(w2) - 1, for all our rules;

and we also write the rule β [win(w1)] ⇒ α [win(w2)] as β ⇒ α. For example “foo1[3] =>

(foo1< foo2)[4]” can be written as “foo1=> foo1< foo2” that is foo1 within window width 3

precedes foo2 with 67% chance within a window width of 4.

It should be noted that with larger values of window width and episode length, a large

number of episode rules will result. On the contrary, smaller values of minimum

frequency and minimum confidence can also result in a large number of episode rules,

which would be infeasible for processing and memory utilization. However, we must not

miss important episode rules necessary for classification. Therefore, we set minimum

frequency to greate than zero (i.e., 1) and minimum confidence to greater than zero, and

to keep overhead minimum we decided to vary episode length and window width. This

was done until we found the best combination of episode length and window width, that

28

is, the one which can predict the faulty function (using decision trees) with the highest

accuracy.

Execution Example: Suppose, we have extracted a parallel episode “foo1:foo2:foo3” of

length 3 for win(w2)=4 as set by a user. First we identify all the sub-episodes; that is, sub-

episodes of length 1 {foo1, foo2, foo3}, and the sub-episodes of length 2 {foo1:foo2,

foo2:foo3, foo1:foo3}. Second, we generate an episode rule for every sub-episode β and

episode α. So, six episode rules can be generated in all for this parallel episode

corresponding to each of the six sub-episodes with minimum confidence and frequency

greater than 0. This is shown in Table 3 where: first column shows sub-episode, second

column shows the episode rule using sub-episode and episode, third column shows how

confidence is calculated, fourth column shows confidence value using Figure 3, and fifth

column shows an informal interpretation of the rule.

Table 3: Epsiode rules from a parallel episode of length 3.

 αααα=foo1:foo2:foo3 and win(w2)=4 and win(w1)=3

ββββ ββββ =>αααα Confidence Conf. Val Informal

Interpretation (if

mo3(ββββ)=true and

mo4(αααα)=true)

foo1 foo1 => foo1:foo2:foo3 |{mo3(foo1)|mo4(foo1 :foo2: f oo3)}|

/ |{mo3(foo1)}|

2/3 foo1< (foo2:foo3)

foo2 foo2 => foo1:foo2:foo3 |{mo3(foo2)|mo4(foo1 :foo2:f oo3)}|

/ |{mo3(foo2)}|

1/3 foo2 < (foo1:foo3)

foo3 foo3 => foo1:foo2:foo3 |{mo3(foo3)|mo4(foo1 :foo2:f oo3)}|

/ |{mo3(foo3)}|

2/3 foo3 < (foo1:foo2)

foo1 : foo2 foo1:foo2 =>

foo1:foo2:foo3

|{mo3(foo1:foo2)|mo4(foo1 :foo2:f

oo3)}| / |{mo3(foo1:foo2)}|

3/3 (foo1:foo2) < foo3

foo1 : foo3 foo1:foo3 =>

foo1:foo2:foo3

|{mo3(foo1:foo3)|mo4(foo1 :foo2:f

oo3)}| / |{mo3(foo1:foo3)}|

1/5 (foo1:foo3) < foo2

foo2 : foo3 foo2:foo3 =>

foo1:foo2:foo3

|{mo3(foo2:foo3)|mo4(foo1 :foo2:f

oo3)}| / |{mo3(foo2:foo3)}|

1/5 (foo2:foo3)< foo1

For example, in the first row of Table 3 the rule “foo1=> foo1: foo2 : foo3” is read as if

“foo1 ” occurs minimally in 3 time units then there is a (2/3) 67% chance that “foo2 :

foo3” will follow such that “foo1: foo2 : foo3” occurs minimally in 4 time units.

Informally, this can be interpreted as “foo1” minimally occurs within 3 time units in a

total-order with unordered “foo2 and foo3” such that “foo1: foo2 : foo3” occurs minimally

29

in 4 time units; that is, “foo1 < (foo2 :foo3)” given that mo3(foo1)=true and mo4(foo1

:foo2:f oo3)=true (recall that “<” denotes total order and “:” denotes no-order).

Similarly, consider another episode rule “foo1:foo3 => foo1:foo2:foo3” and it is read as if

“foo1:foo3” occurs minimally in 3 time units then there is 20% chance that “foo2” will

follow such that “foo1:foo2:foo3” minimally occurs in 4 time units. An informal

intepretation “(foo1:foo3) < foo2” is also shown in Table 3. In other words, parallel

episode rules are the combination of serial and parallel episodes – i.e, they are actually

hybrid episodes. Finally, an example of creation of episode rules from serial episodes is

already shown above.

Confidence of Length 1 Episodes: In the MINEPI algorithm, by definition the confidence

of episodes of length 1 is always 1. We have modified this definition for the episodes of

length L=1, such that:

Where A1, A2…An be the event types in a given event sequence, and αi be the

episode ({Ai},{}) with no partial order, and mo0(αi) is the minimal occurrence of αi

when win(w)=0 (i.e., when there is only single event).

It measures the chances of occurrence of length 1 episodes in an event sequence. For

example, the confidence of foo1 in Figure 3 is: Conf (foo1) = | mo0 (foo1)| / ∑| mo0 (fooi)|

= 3/12 (where, i=1-4).

Conclusion: In short, the MINEPI algorithm extracts all kinds of temporal patterns (i.e.,

serial, parallel and hybrid) of different lengths and different window widths from a

sequence.

2.3.2 Decision Tree Algorithm

Recall (from Section 2.3, lead text) that decision trees were trained on the episode rules

(patterns of function-calls) to predict faulty functions in the failed traces. Figure 4 gives

|)(||)(|)(
1

00 ∑
=

=
n

i
ijj

momoConf ααα

30

an example of length 3 episode rules and a trace. A row represents a trace from a

historical collection of failure traces, and cells represent the confidence of episode rules

in a trace respectively. For example, first cell shows that an episode rule “foo1 => (foo1

< foo2 < foo3” has a confidence of 1 in the trace T1. The last column shows the faulty

functions for a historical trace, already identified in a trace from history (as discussed

earlier in Section 2.3, lead text). In data mining terminology, faulty function is a

dependent variable and the episode rules of function calls are independent variables.

F007 employs one-against-all (Witten and Frank, 2005) approach in training the decision

tree classifier. In this approach, a dataset (of traces) with M categories of dependent

variable (faulty functions) is decomposed into M new datasets with binary categories.

Each new binary dataset ‘Di’ has category ‘Ci’ (where i = 1 to M) labeled as positive and

all other categories are labeled as negative. On each new datasets ‘Di’ the decision tree

algorithm is trained; resulting in ‘M’ trees in total.

Figure 4: Length 3 serial episode rules and a trace with confidence and pre-known

faulty functions from history.

Whenever a new faulty trace arrives, each decision tree predicts its category ‘Ci’ of the

dependent variable (faulty function) along with a probability of being faulty. Predicted

faulty functions are then arranged in a list in the decreasing order of their predicted

probabilities. Empirical evidence (Polat and Güneş, 2009) shows that training multiple

31

decision trees (one-against-all) on several binary datasets yields better results than

training a single decision tree on a dataset with many categories of dependent variable.

In fact, we employed the one-against-all approach with a little modification; i.e., instead

of selecting the predicted faulty function with the highest probability, we ranked the

predicted faulty functions in the decreasing order of their predicted probabilities. The

reason is that: (a) a developer gets multiple options if the function with the highest

probability is not the actual faulty function, (b) a developer’s effort could be quantified

using a metric to estimate effort in discovering the fault (Jones and Harrold, 2005; (Di

Fatta et al., 2006) (e.g., percentage of code reviewed in discovering the fault), and (c)

using the developer’s metric, the comparison against other techniques gets simpler. The

function list is then presented to a developer with an intuition that the higher the function

is in the list, the more likely it is to be faulty compared to the lower ones in the list.

Finally, the type of decision tree algorithm we used is C4.5 (Witten and Frank, 2005).

The C4.5 decision tree algorithm is the most widely used algorithm. It is suitable for a

dataset with numerical values (e.g., see Figure 4) of independent variables, unlike ID3

decision tree algorithm (Witten and Frank, 2005) which works only with nominal values

of independent variables. The C4.5 decision tree develops a model of a dataset which is

then used to predict the faulty function (dependent variable) from episode rules

(independent variables) in a new failure trace. The details of the C4.5 algorithm (such as

calculating information gain to build a node of a tree, pruning a tree for better

classification accuracy, and probability of prediction) can be found in standard text by

Quinlan (1993). We show later, in Section 2.5, an example of how the C4.5 decision tree

works with the MINEPI algorithm.

Several other algorithms for classification also exist, such as neural networks, support

vector machines, naïve Bayes classifiers, etc. We have chosen the decision tree because

in our experiments other algorithms have not yielded as effective results as the decision

tree in terms of performance or accuracy. For example, we used Weka (Witten and Frank,

2005) to evaluate different algorithms on the trace dataset. Naïve Bayes, using Weka,

resulted in lower accuracy than the decision tree and the neural network took quite long

32

for training on traces. Nonetheless, the purpose of this research is not the comparison of

the classification algorithms, but to substantiate that the classification algorithms are

useful in discovering faulty functions. Any classification algorithm can be used and a

detailed comparison of the classification algorithms is out of the scope of this paper.

2.4 Experimental Setup

In this section, we explain the details of the setup of the controlled experiment that we

conducted to evaluate F007. We have evaluated F007 on the four well-known open

source UNIX utilities (i.e., Flex, Grep, Gzip and Sed) (Do et al., 2005), the Siemens suite

of seven programs (Do et al., 2005; Hutchins et al., 1994) and the Space program (Do et

al., 2005). All these programs were developed in the C language. The Siemens suite was

developed by Hutchins et al. (1994) in the C language, and we downloaded it on March,

2008 (Siemens suite, 2008). The Space program was written for the European Space

Agency in the C language and was made available by Do et al. (2005) at subject

infrastructure repository (Do et al., 2005). The Siemens suite and the Space program have

been used in a number of studies, e.g., Jones and Harrold (2005), Di Fatta et al. (2006),

Liu et al. (2005), Bowring et al. (2004), and Wong et al. (2006). The four UNIX utilities

(Do et al., 2005) are also used in different studies; e.g., Zhang et al. (2009), and are

available from the subject infrastructure repository (SIR) (Do et al., 2005). This

commonality of the programs under study across different studies simplifies the

comparison of the F007 against other techniques
9
.

In Section 2.4.1, we explain the characteristics of the dataset and in Section 2.4.2 we

articulate the process of controlled experimentation on this dataset.

2.4.1 The Data Set

Table 4 shows the characteristics of the twelve different programs (including seven

different programs of the Siemens suite (Hutchins et al., 1994)) used in the study. Each of

9
 We downloaded the Space program in March, 2009 (Do et al., 2005) and the UNIX utilities in August,

2010 (Do et al., 2005).

33

Table 4. Characteristics of the subject programs.

Flex, Sed, Grep and Gzip are well known UNIX utilities.

In the Siemens suite: Print_tokens and Print_tokens2 are lexical analyzers; Replace is a pattern

replacement program; Schedule and Schedule2 are priority schedulers; Tcas is an altitude separation

program; and Tot_info is a utility for information measurement.

Space is an interpreter for an antenna array definition language written for the European Space Agency.

Releases for Flex: R1=2.4.7, R2= 2.5.1, R3=2.5.2, R4=2.5.3, R5=2.5.4.

 Releases For Grep : R1=2.2, R2= 2.3, R3=2.4, R4=2.4.1.

Releases for Gzip: R1=1.1.2, R2= 1.2.2, R3=1.2.4, R4=1.3.

Releases for Sed: R1=2.0.5, R2= 3.01, R3=4.0.6, R4=4.0.7, R5=4.1.5.

Space and the seven programs in the Siemens suite have only one release.

Program # Test

Cases

LOC (excludes

comments &

blank lines)

Functions

Faulty

Functions

Faulty

Versions

Total (Sum

of) Failed

Traces

Flex 567 8250-9831 151-169 3-12 (26) 4-16 (45) 7-362 (877)

Grep 809 8484-9041 142-150 2-4(9) 3-5(15) 11-247 (659)

Gzip 214 4032-5103 89-111 3-6(13) 3-6(16) 14-50 (99)

 Sed 370 4711-9226 115-183 1-4 (10) 3-5 (18) 60-141 (465)

Space 13585 5767 136 26 34 71958

Print_tokens 4130 336 18 4 7 484

Print_tokens2 2064 343 19 4 9 2064

Replace 5542 494 21 11 32 4567

Schedule 2650 277 18 4 9 785

Schedule2 2710 249 16 6 8 275

Tcas 1608 128 9 9 40 1531

Tot_info 1052 268 7 5 23 1900

the seven programs in the Siemens suite and the Space program (Do et al., 2005) comes

with an original version (deemed correct
10

), many faulty versions, and a collection of test

cases. A faulty version is a variant of the original version by one fault; that is every faulty

version was equivalent to one fault. A fault actually encompasses statements changed

from the statements of the original program. A fault can span over multiple statements

and multiple functions. In the Siemens suite, there were several instances of faults

spanning across multiple functions; whereas in the Space program each fault was present

in a single function. The faults in the Siemens suite were hand seeded, and in the Space

program they were found during actual development.

Table 4 also shows the characteristics of the four UNIX utilities. A distinct trait of the

10 Of course, in general, there is no way to guarantee correctness. However, the program is taken as a

benchmark and this then becomes the reference point.

34

UNIX utilities from the Siemens suite and the Space program is that they have different

releases, and each release contains several faulty versions (or faults). Each fault, as in the

Space program, was present in a single function. In Table 4, the second row shows

release numbers for each of the releases of the UNIX utilities used in our study. We have

labeled each release from R1 to R5, which will be used in the following sections. The

faults in the UNIX utilities were also hand seeded (Do et al., 2005) but a specific

procedure was followed to keep them realistic (Do et al., 2005). For example, the faults

were inserted at the changes between source code of different releases; i.e., regression

faults.

In Table 4 the first column shows the name of a program and the second column shows

the number of test cases. In the UNIX utilities, the test cases were shared across releases.

Third and fourth column shows the lines of code and the number of functions in a

program. For the UNIX utilities, the third and the fourth columns represent minimum and

maximum LOC or functions for the different releases of every program, respectively. For

example, five releases of the “Flex” program have 8250 to 9831 lines of code and 151 to

169 functions. Similarly, the last three columns of Table 4 show the minimum-

maximum number of distinct faulty functions, minimum-maximum faulty versions and

minimum-maximum failed test cases for all the releases of every program in the UNIX

utilities. A number in the bracket of the last three columns for the UNIX utilities show

the total number of distinct faulty functions, total faulty versions and total test cases

across all the releases of a program. The faulty functions in these programs are

determined using the following procedure:

• If a fault has occurred across multiple functions then multiple functions are

grouped together and considered as one distinct faulty function. For example, in

the faulty version 11 of the program “Tcas” the functions “Own_Below_Threat”,

“Own_Above_Threat” and “alt_Sep_Test” have changed-statements compared to

the original program. These three faulty functions were grouped together under a

new joint name (including all three names) for the version 11. This is because a

failure could occur because of a fault in any one of these three functions, and all

35

three should be identified together. Similarly there were several other instances of

multiple faulty functions in the Siemens suite (Hutchins et al., 1994).

• If the same function in one (faulty) version is found faulty in other (faulty)

versions (with different statements), then all these versions of a program are

considered to have faults in the same faulty function. For example, function

“Initialize” in the program “Tcas” is faulty across seven versions (i.e.,

7,8,16,17,18,19 and 33). Similarly, this rule applies to functions across releases.

• If a fault is found in a global variable, in the source or in the header files, then the

functions where that global variable is used are considered faulty. For example,

the program “Tcas” in versions 13, 14, and 36 has, respectively, faults in global

variables “OLEV”, “MAXALTDIFF” and “DOWNWARD_RA”. These variables

are used in function “alt_sep_test” in the source code, and it is considered as a

faulty function for versions 13, 14 and 36 for program “Tcas”. Similarly, there are

several similar instances of global variables in the Siemens suite.

2.4.2 The Empirical Process

We collected function-call traces (see Figure 2) for the Siemens suite using a GCC based

profiling tool, called Etrace
11

 (2008). For the Siemens suite and the Space program we

ran all the test cases on the original version of the program as well as on all the faulty

versions of the program. If the output of the same test case on the faulty and the original

version differed then it is considered failed, and we collected an execution trace for that

failed test case. For the four UNIX utilities, we ran the scripts (based on similar

procedure) provided by the subject infrastructure repository (Do et al., 2005) to identify

the failed test cases. Later, we collected the failed traces for the identified failed test

cases. Following the documentation of SIR (Do et al., 2005) and other experiments

(Zhang et al., 2009) for the UNIX utilities, those faulty versions (faults) were excluded

11
 Etrace has a bug which prevents it from capturing traces of the segmentation faults. We fixed it to

collect such traces.

36

which failed on more than 20% of the test cases. This is because Do et al. (2005)

concurred that faults revealed by more than 20% of the cases can be identified by testers

(Do et al., 2005). So, in order to keep our results synchronized with others (Do et al.,

2005; Zhang et al., 2009), we also used faults with 20% or lesser failed test cases.

In Table 4, the Faulty Versions column excludes those versions for which traces could

not be captured due to non-failure of a test case or due to the exclusion condition of more

than 20% of the test cases for the fault. For example, in the “Grep” program no test cases

failed for all the faults (faulty versions) in release 2.4.2; that is, Table 4 excludes the fifth

release for the Grep program provided by SIR (Do et al., 2005). Similarly, the “Sed”

program had seven releases but no test cases failed for the release 1.18 and release 3.02.

For “Gzip”, no test cases failed on release 1.2.3, we have excluded it too. The versions

with no failed test cases for the Siemens suite include version 4 and 9 of the program

“Schedule2”; version 38 of the program “Tcas”; and version 10 of the program

“Print_tokens2”. In the Space program, version 1,2,32 and 34 had no failing cases.

Similarly, there were several instances of faulty versions (within a release) with no failed

test cases or faulty versions with more then 20% of failing cases in the Flex, Grep, Gzip

and Sed programs.

We collected failed traces for these programs using Ubuntu 10.04. There could be little

variations for UNIX utilities in the failing of test cases for the number of faulty versions

on different platforms (Do et al., 2005). Our number of failing test cases on the faulty

versions for the UNIX utilities in Table 4 mostly matches with the documentation

provided by Do et al. (2005). We applied the F007 technique, using our tool (built in Java

and MySQL) independently on each of the faulty programs. We used the J48 algorithm

API in the Weka library (Witten and Frank, 2005) for the implementation of the C4.5

decision tree algorithm

Recall from Section 2.3.1 that in order to generate an optimal number of episodes, higher

length episodes were generated by setting the minimum frequency to 1, the minimum

confidence to greater than 0, while varying the window width and episode length to

different values. Also recall that in MINEPI (Liu et al., 2005) these parameters (window

37

width, episode length, frequency, confidence) are selected by a user. Therefore, to find

the best accuracy of predicting the faulty functions, we varied window widths to length 3,

5 and 7; and episodes to length 1, 2 and 3. We stopped building episodes with higher

window widths or higher lengths when accuracy stopped improving (discussed in Section

2.6). In summary, we generated: (i) the episodes of length 1; (ii) the serial and parallel

episodes of length 2 and 3; and (iii) the rules (see Section 2.3.1) for serial and parallel

episodes of length 2 and 3 for every trace of a program and for every window width.

Finally, the C4.5 decision tree algorithm (using one-against-all approach (Witten and

Frank, 2005)) has been trained on episode rules of every length for each window width.

This was done to discover the best combination of episode rules and the window width

for a program in discovering the faulty functions.

To train the C4.5 algorithm, the dataset was divided into four different stratified parts

(Witten and Frank, 2005). In the stratification of data, each of the categories of dependent

variables (different faulty functions in our case) is represented in approximately the same

ratio in each new part as it is in the original dataset. We used three parts (approximately

75% of dataset) for training the C4.5 decision tree algorithm (using one-against-all

approach) for each length of different episode rules (serial/parallel) in a window width,

and used one part (approximately 25%) for testing. We repeated the above procedure for

training and testing three times by using a different part for testing and three different

parts for training each time. The accuracy of the prediction was then averaged for each of

the three repetitions. This is called three fold cross validation (Witten and Frank, 2005).

This was done to avoid any bias in the accuracy of prediction if only specific part is used

for training and testing. Literature (Witten and Frank, 2005) recommends selecting more

than 50% of data for training to avoid under training a classifier and use 3 to 10 fold cross

validation – if the dataset is not very large.

2.5 Executing F007

In this section, we describe an illustrative example of identifying faulty functions in the

Siemens program “Tot_info” by using F007. In Figure 5 (part a), rows represent failed

traces of 23 faulty versions of “Tot_info” (to save space only a random selection of

example episode rules and failed traces are shown). The column headers show episode

38

rules of length 2 (generated using window width of 3) and actual faulty functions for the

failed traces of a particular version. There were 37 episode rules, 1900 fail traces and five

distinct faulty functions. Each trace is represented by a trace number (e.g., T1000) with

its corresponding version number prefixed (e.g., V10_T1000). A cell in Figure 5 shows

the confidence of an episode rule in a trace, and the cell of the last column shows the

name of faulty functions for that trace.

Figure 5: Length 2 episode rules, faulty functions and traces of 23 versions of

“Tot_info” from the Siemens suite.

Recall (from Section 2.3.2) that in the one-against-all approach (Witten and Frank, 2005),

a dataset with M faulty functions (category of dependent variable) is decomposed into M

(total categories) new datasets. Therefore, we transformed the dataset of Figure 5 (part a)

39

into five new datasets such that each new dataset contained traces labeled only for one

faulty function. The rest of the traces for other faulty functions were labeled as “others”.

An example of a faulty function “gser” against all “other” faulty functions is shown in

part b of Figure 5. It again shows a random selection of example traces (to fit space). The

columns for part ‘b’ of Figure 5 are the same as for part ‘a’ of Figure 5.

 In order to evaluate the prediction accuracy, the original dataset was first divided into

two parts: training (75%) and testing (25%). This 75% of the original training data was

actually decomposed into five new datasets (using one-against-all approach) as shown in

part b of Figure 5.

Figure 6: The C4.5 decision tree model for the faulty function “gser” of “Tot_info”.

A separate decision tree was trained on each of the five new datasets. An excerpt of a

trained decision tree generated for part b of Figure 5 is shown in Figure 6. This tree was

obtained by applying the J48 algorithm in the data mining tool Weka (Witten and Frank,

2005) which was the implementation of the C4.5 decision tree algorithm. We will not

show the steps of generation of the C4.5 algorithm (Witten and Frank, 2005) due to

complexity, size and cluttering of text - however the reader may refer to the standard

texts (Quinlan, 1993; Witten and Frank, 2005) for details.

A row in Figure 6 contains an episode rule, its confidence, and a name of faulty function

after a colon sign if any. An episode rule with the confidence value represents the node of

40

a tree and faulty function names after the colon sign represents the leaf of a tree. The

discovery of a faulty function was done by traversing this trained tree (like If-Then-Else

statements) according to the confidence values of a trace in a test set. For example the

decision tree of Figure 6 shows that if in a failed trace, the confidence value of an

episode rule “LGamma => (LGamma < QGamma)” is less than or equal to “0.958333”

and the confidence value of “InfoTbl => (InfoTbl < gser)” is less than or equal to

“0.13333”, then the faulty function is “others” (that is not “gser”).

Similarly, a total of five different decision trees according to the one-against-all approach

were trained. Every failure trace in a test set was input to the five decision trees, and each

of the trees predicted a faulty function for the trace with a probability. The probability of

prediction in the C4.5 algorithm is determined by measuring the number of training

instances correctly classified at a leaf and dividing it by the total number of instances

correctly and incorrectly classified at that leaf (Quinlan, 1993). Functions were then

arranged in a list in the decreasing order of the probability. An example of a ranked list of

faulty functions for a trace “T1013” of version 1 of “Tot_info” is shown in Figure 7. In

this case, “InfoTbl” was the faulty function and was ranked at position 1, as it had the

highest probability produced by one of the five C4.5 decision trees. The fifth decision

tree predicted “others” as faulty function, which can be ignored because it means other

functions. F007 was, similarly, applied to other episode rules and window widths of all

the subject programs in Table 4.

Figure 7: Faulty function ranking for trace “T1013” of version 1 of program

“Tot_info”.

Similarly, we identified faulty functions in every failed trace of the test set and measured

the accuracy of the identification of faulty functions for the test set. Finally, we repeated

41

the above process two more times (three in all) every time with a different 25% test set

and 75% train set (according to the three fold cross validation). The accuracy on the test

set was then averaged. As mentioned in Section 2.4.2, this is called three fold cross

validation and the results are shown in the next section.

2.6 Results

In this section, we show the results of evaluating F007 on the programs in Table 4. In

Section 2.6.1, we identify the best episode rules (patterns) of function-calls (using the

decision tree) in identifying faulty functions. This section allows us to determine which

episode rule should be used to determine the faulty functions. In Section 2.6.2, using the

best episode rule obtained in Section 2.6.1, we evaluate F007 using a realistic scenario:

(a) identify the faulty functions in successive releases using the traces of previous

releases, and (b) use a minimal number of traces associated with one fault of a function to

identify the same faulty functions with another fault or same fault. This section helps us

in determining that different faults in the same function can be diagnosed correctly, and

the same faults with the knowledge of few traces can also be identified correctly. In

Section 2.6.3, we explain that rules generated from the decision tree can be useful in

diagnosing fault proneness of a function from the perspective of related functions. In

Section 2.6.4, we show that only “entry” or “exits” are sufficient to discover faulty

functions from the function-call level trace.

2.6.1 Episode Rules

In this section, we first determine in Section 2.6.1.1 the difference between accuracies of

different episode rules using statistical tests and identify the best episode or episode rule

to determine the faulty functions. Later in Section 2.6.1.2 we show the execution

statistics of F007 using the best episode or episode rule.

2.6.1.1 Evaluating Episode Rules

In this section, we actually evaluate the effect of episode rules (patterns) of function-calls

(using the decision tree) in identifying faulty functions in failed traces. We use three fold

cross validation in estimating the accuracy of identifying faulty functions. Table 5 shows

42

the results of applying F007 to the programs shown in Table 4. We have randomly

selected a handful of programs from Table 4 to be shown in Table 5 to avoid cluttering

the text. In Table 5 columns depict program name, the type of episode rule, episode

length, and percentage of failed traces successfully diagnosed on reviewing the first

function in the list, using the window width 3, 5 and 7. For example, row three shows that

the faults in 73.553%, 72.933% and 70.041% of the failed traces in the test set were

successfully identified after reviewing the first function in the list obtained using serial

episode rules of length 3 of the program “Print_tokens” and window widths 3, 5 and 7

respectively. Row three also shows that these are average accuracy values, on three

different test sets, obtained using three fold cross validation.

Table 5: Faulty functions prediction accuracy (in percentage) for failed traces of the

programs using window widths 3, 5 and 7.

Programs Episode

Rule Type

Length Win(w)= 3 Win(w)= 5 Win(w)= 7

P
ri

n
t_

to
k

en
s

NA 1 74.380 74.380 74.380

Serial/Parallel 2 73.347 68.801 70.041

Serial 3 73.553 72.933 70.041

Parallel 3 73.347 71.900 68.595

P
ri

n
t_

to
k

en
s2

 NA 1 61.773 61.773 61.773

Serial/Parallel 2 56.298 57.364 55.523

Serial 3 56.346 57.655 58.624

Parallel 3 57.9 57.509 57.46

R
ep

la
ce

 NA 1 65.447 65.447 65.447

Serial/Parallel 2 65.963 65.611 64.932

Serial 3 64.861 65.096 65.518

Parallel 3 63.97 63.806 64.838

G
re

p
 (

R
3

) NA 1 95.546 95.546 95.546

Serial/Parallel 2 99.595 98.380 98.380

Serial 3 99.190 97.571 97.976

Parallel 3 98.785 97.976 98.380

S
ed

 (
R

3
) NA 1 89.361 89.361 89.361

Serial/Parallel 2 95.745 93.617 93.617

Serial 3 95.035 94.326 94.326

Parallel 3 94.326 95.035 92.198

G
zi

p
 (

R
1

) NA 1 90.0 90.0 90.0

Serial/Parallel 2 90.0 90.0 90.0

Serial 3 92.0 92.0 90.0

Parallel 3 92.0 90.0 90.0

In Table 5, the prediction accuracy for the length 2 parallel episode rules and the serial

episode rules are shown together because they yield the same episode rules and the same

43

accuracy. Also, in Table 5, episodes of length 1 have no types and they are also

independent of window widths (i.e., win(w) = 0), but we have shown them together with

other window widths. In terms of the UNIX utilities, we have selected one of the releases

with the largest number of failed traces. This is because we are trying to evaluate the

accuracy of episode rules, and the results of one release will hold for others too. In the

next section we shall show the results on all the releases.

Recall from Section 2.3.1 that larger window widths result into more episode rules and

consume more space and time. However, it can be seen in Table 5 that the difference in

accuracy between window widths is marginal. We have omitted the information on time

and the number of episode rules to avoid cluttering of text in Table 5. In order to

determine if there is any significant difference in the accuracy between different window

widths, we conducted the Wilcoxon signed-rank test (Marques de Sá, 2003). We selected

the Wilcoxon signed-rank test because the data, part of it shown in Table 5, did not

follow the normal distribution. We analyzed the normality of data using Shapiro-Wilk

test (Marques de Sá, 2003) by setting the alpha level (or level of significance) to 0.05.

The Shapiro-Wilk test for 48 data points of 12 programs at window width 3 resulted into

W=0.8721 and p=0.00004 (< 0.05). This means that the data distribution is not normal

because the null hypothesis that data are drawn from normal distribution is rejected as p <

0.05. The histogram of the data points also showed a positively skewed distribution,

confirming that the data is not normal. Similar results of non-normal distribution were

also obtained for data points of win(w) = 5 and win(w) = 7.

We first conducted the Wilcoxon signed-rank test between the window width 5 and the

window width 7 with the null hypothesis: “there was no significant difference between

classification accuracy of win(w) = 5 and win(w) = 7”. We again set the alpha level to

0.05 as at this level we can reduce the risk of type 1 error (false positive). The Wilcoxon

signed rank test for 48 (i.e., for 12 programs) matched observations did not result in

significant difference between “win(w) = 5” (M=73.477, SD=13.018) and “win(w) = 7”

(M=73.346, SD=12.935) with z=0.227 and (two-tailed) p=0.820. This provides the

evidence (p > 0.05) that the null hypothesis could not be rejected and the fault prediction

accuracies of “win(w) = 5” and “win(w) = 7” were identical.

44

Similarly, the Wilcoxon signed-rank test between: (a) “win(w) = 3” (M=73.796,

SD=13.299) and “win(w) = 5” (M=73.477, SD=13.018) produced z = 1.708 (two tailed)

p=0.088; and (b) “win(w) = 3” (M=73.796, SD=13.299) and “win(w) = 7” (M=73.346,

SD=12.935) generated z=2.047 (two-tailed) p=0.041. In the case of win(w) = 3 and

win(w) = 5 (case ‘a’), the accuracies with different window widths were identical (i.e., p

> 0.05). In the case of win(w) = 3 and win(w) = 7, the accuracies were not identical (i.e.,

p < 0.05); in fact, the accuracy to discover the faulty functions at win(w) = 7 had actually

started decreasing. Thus, the use of window width win(w) = 3, which was also cheaper

compared to higher window widths, was satisfactory for classifying the failed traces.

We can also observe from Table 5 (win(w) = 3) that accuracy also varies among the

episode lengths. To determine if there is any improvement in the accuracy between

different episodes rules, we conducted the Wilcoxon signed rank test between episodes of

length 1 and the higher episode rules within win(w) = 3. The Wilcoxon signed rank test

with 12 observations between: (a) the episodes of length 1 (M=74.285, SD=12.325) and

the serial/parallel episode rules (M=73.940, SD=13.927) of length 2 resulted in z=0.178

and (two tailed) p=0.859; (b) the episodes of length 1(M=74.285, SD=12.325) and the

serial episode rules of length 3 (M=73.667, SD=14.364) resulted in z=0.628 and (two

tailed) p=0.530; and (c) the episodes of length 1 (M=74.285, SD=12.325) and the parallel

episode rules of length 3 (M=73.293, SD=14.245) yielded z=0.549, (two tailed) p=0.583.

In all these cases the value of p is significantly higher than significance level of 0.05,

substantiating that there is no significant difference between the accuracy of the episodes

of length 1 and the higher length (serial or parallel) episode rules. This implies that the

episodes of length 1, which are just single function-calls, are not only cost-effective to

generate, but also yield equivalent (or better) fault prediction accuracy than higher length

episode rules. It should be noted that our experiments are exhaustive and include several

combinations of episode (function patterns) types, window widths and episode lengths,

but these experiments suggests that the same results can be obtained using length 1

episodes (single function-calls) if the decision tree is used with them for predicting faulty

functions in failed traces. We also experimented with the length 1 episodes using the

frequency values instead of the confidence values. The results were similar, and no

45

difference existed. We have not shown the data points here because it does not have any

further impact on the results of the episodes.

2.6.1.2 Execution Statistics

In Table 6, we show the best faulty function prediction accuracy of F007 on each of the

twelve programs, obtained using episode of length 1. Table 6 also shows the number of

episodes, average size of a failed trace, time taken per trace to generate episodes of length

1 (including I/O), and the accuracy of finding faulty functions in the failed traces on

reviewing the first function in the list (generated using F007). An interesting

characteristic that can be observed from Table 4 is that each program has a different

number of functions, but in Table 6 the accuracy of identifying faulty functions remains

similar. The average accuracy for the twelve programs is appriximately 70% on

reviewing only the first function in the list. This shows that the faults in the same

function occur with similar sequences of function-calls. Thus, if 20% of the code (i.e.,

functions, components) is responsible for 80% of the faults then majority of the faults can

be identified by failed traces of previous faults in the same function.

Table 6: Execution statistics of the best episodes.

Program # of

Episodes

Avg. size of a

trace (KBs)

Time per

trace with

I/O (sec)

Accuracy

Print-tokens 19 43.795 0.364 74.3

Print-tokens2 20 35.622 0.277 61.773

Replace 22 22.227 0.268 65.447

Schedule 19 16.521 0.2194 71.488

Schedule2 17 33.028 0.268 60.363

Tcas 10 1.016 0.110 73.481

Tot_info 8 1.509 0.014 68.482

Space 125 33.62 0.235 73.6

Flex 143 516.0 1.809 60.905

Grep 90 107.35 0.431 89.919

Gzip 58 1294.9 4.047 66.666

Sed 62 43.98 0.369 85.611

The execution time in Table 6 was obtained by performing experiments on a 3GHz CPU,

with 3 GB of RAM. This time measurement involved the use of a network drive to read

traces, running of Java application (i.e., F007’s implementation) in NetBeans, and the use

46

of MySQL database to store episodes on a local hard disk. This time could vary

depending on the proper database configurations and implementation techniques used for

programming. We optimized execution time by using bulk inserts and bulk reads when

accessing disk and database system, but we believe that this time can be improved

further.

Nonetheless, processing single function-calls (length 1 episodes) and their frequencies is

a trivial task – unlike patterns of function-calls (higher length episode rules). It should be

noted that this length 1 episode generation (time) was only required to be done once for

historical traces. It can also be observed that length 1 episode generation time increased

linearly with the trace size. In addition to this time, there was a time required to generate

the C4.5 decision tree model, which was dependent on the Weka (Witten and Frank,

2005) API implementation. The maximum time for the C4.5 tree generation was

approximately 5 minutes for the Space program. In practice, the decision tree model must

also be generated once, but should be updated when traces with new faulty functions are

included in the database.

2.6.2 Identifying Faulty Functions in Failed Traces using Minimal-
earlier Failed Traces

In this section we first show that by using a small percentage of the failed traces for

training, F007 can identify the faulty functions in the rest of the failed traces (Section

2.6.2.1). Secondly, we show that F007 can identify faulty functions in the following

releases using the traces of previous releases (Section 2.6.2.2). Thirdly, we deomonstrate

that how much would be the effort in statements when identifying faulty functions using

F007 (Section 2.6.2.3).

2.6.2.1 Using a smaller percentage of traces for training and a
larger for testing

In Section 2.6.1, we used three-fold cross validation to identify the best episode in

predicting faulty functions. However, realistically speaking, it is not feasible to use 75%

of the failed traces for training to identify faulty functions in the rest of the 25% failed

traces. In reality only a small percentage of failed traces will be available initially to

47

identify faulty functions in the rest of the failed traces. For example, once a software

application is deployed, initially there will be few traces from the deployed instances of

the software application. A realistic case would be to use few initial failed traces to

predict faulty functions in the rest of the upcoming traces from the field; later on, new

failed traces could be used for training as they get resolved. Therefore, we now evaluate

F007 by using 25% or less failed traces for training to identify the faulty functions in the

rest of the failed traces. If 50-90% of the field failures are rediscoveries of previous

faults and 20% of the faulty functions (code) is causing 80% of the faults with similar

function-call sequences (see Section 2.6.1), then F007 (with 25% test set) should be able

to identify faulty functions in the majority of the failed traces.

We evaluated our approach following the similar graphical convention used by Jones and

Harrold (2005), Wong et al. (2007) and Di Fatta et al. (2006). This makes the comparison

simpler with others and results easier to interpret. Hence, we computed a score for each

failed trace as the percentage of program (i.e., functions or statements) needs to be

reviewed to find the fault. Horizontal axis (X-axis) represents the percentage of a

program that needs to be examined and X-axis is divided into segments. Each segment is

ten percentage points except for the first segment which is divided into 1 percentage

points; i.e., 1-10% segments are divided into 1 percentage points and 90-100% segments

are divided into 10 percentage points each. The vertical axis (Y-axis) measures the

cumulative percentage of failed traces that achieve a score within a segment.

100*
%

functionsTotal

functionfaultytheuptoreviewedFunctions

reviewto

programof
=

Equation 1: Estimating program review effort in functions.

For example, in Figure 8, the Y-axis shows the cumulative percentage of failed traces, and

the X-axis represents the percentage of the program to be examined in identifying faulty

functions. The X-axis is measured by the percentage of functions reviewed, in the

chronological order from the list generated by F007 (see Section 2.5), in identifying

faulty functions in the failed trace of a program. This is shown in Equation 1, which

48

shows percentage (%) of program (in terms of functions) to review for a failed trace is the

functions reviewed, divided by the total number of functions.

In Figure 8, the point (1, 77) (first point) on the (red or marked by squares “■”) series

called “Flex” shows that the faulty functions in 77% of the failed traces of the five

releases of the Flex program were discovered by reviewing 1% (≈ 1 function) or less of

the code. Similarly, in the same series, the faulty functions in 95% of the failed traces

were discovered by reviewing 2% (≈ 2 functions) or less of the code. The results, in

Figure 8, for the Flex program are obtained by training F007 on 25% of the failed traces

of a release and predicting faulty functions in rest of the 75% failed traces of that release.

This process is repeated for each release of the Flex program and the score (using

Equation 1) of each failed trace (in the test set) of each release is also calculated. The

percentage of the failed traces for the Flex program is measured by summing the number

of failed traces of all the releases of Flex that fall within each segment (on X-axis) and

dividing them by the total number of failed traces. Finally, the results are then shown as

the cumulative percentage of failed traces on Y-axis. Similarly, Figure 8 also shows the

accuracy of prediction of faulty functions for all the releases (see Table 4) of Grep, Gzip

and Sed programs. The results for the Grep, Gzip and Sed are obtained in exactly the

same manner to the results of the Flex program.

Figure 8 also shows the accuracy of identification of the faulty functions in the failed

traces of the Siemens suite (shown by pink series or marked by “▬”). In the Siemens

suite, there were seven programs, each with one release. The results in Figure 8 are

obtained by training F007 on the 25% failed traces of each program and using the rest of

the 75% failed traces as test set for the respective program. The cumulative percentage of

failed traces is measured in a similar manner to the Flex program; except the Siemens

suite has seven programs whereas the Flex program has five releases. Finally, Figure 8

depicts the result on the Space program too. The Space program has only one release but

a very large number of failed traces (see Table 4). We therefore trained F007 only on the

10% of failed traces of the Space program and tested on the remaining 90% of the failed

traces (Refaat, 2007). This is because if a data set is very large, a minimum of a 10%

sample of large data is considered as a good estimate of original data including training

49

and testing (Refaat, 2007), but to show we can identify the faulty functions using minimal

traces we used only 10% of the traces for training.

An important thing to note here is that we used 10% of the traces (for training) for the

Space program and 25% traces for the UNIX utilities and the Siemens suite. In the case

of the Space program, there were about 72,000 failed traces and the use of 10% traces

still resulted into approximately 7000 traces for training. On the other hand, all the UNIX

utilities had fewer than 500 failed traces and the most of the programs of the Siemens

suite had fewer than 2000 failed traces. Due to fewer failed traces of the UNIX utilities

and the Siemens suite, we selected 25% of their traces for training F007. The reason lies

in the fact that the decision tree requires a reasonable number of traces for training; for

example, literature (Witten and Frank, 2005) recommends selecting more than 50% of

data for training when data set is small—we still use less than 50%.

Figure 8: Accuracy of F007 on: all the releases of Flex, Grep, Gzip and Sed

programs; the seven programs of the Siemens suite; and the Space program.

50

It should also be noted that the faulty functions in the majority of the failed traces can be

identified by reviewing top one to three functions. For example, in terms of the Siemens

suite, faulty functions in approximately 72% of the failed traces can be identified by

reviewing 10% of the program (≈ 1.5 function) and about 85% of the failed traces can be

diagnosed by reviewing approximately 20% of the program (≈ 3 functions). In all other

programs faulty functions in approximately 90% of the failed traces can be identified by

reviewing top 1-3 functions (i.e., approximately 3% or less of the program). Also note

that, straight lines at the end of a series till the 100% traces when there are no more points

visibile on a series mean that: F007 does not result in any more predictions of faulty

functions in traces and a developer identifies faulty functions by random guesses till the

100% traces. For example, in the case of the series “Siemens” in part ‘a’ of Figure 8, 92%

of the failed traces were resolved correctly by reviewing 50% of the program using F007

after which a developer randomly gusesses the faulty functions in the remaining 8% of

traces.

In Section 2.1, we mentioned our initial observations in the Space program (see Figure

2), when the same or different fault occurs in the same function then the function calls

exhibit similar patterns. Our results in Section 2.6.1 and in Figure 8 also confirm that the

same faulty functions do have similar sequences of function-calls, because we have used

a smaller percentage of traces for training and a larger for testing.

2.6.2.2 Identifying faulty functions across releases

To strengthen the finding, different faults in the same function indeed occur with similar

sequences of function-calls, we trained F007 on the failed traces of earlier releases of the

UNIX utilities to identify faulty functions in the following releases -- the faults in one

release are different from the faults in other releases.

The results are shown in Figure 9, which are obtained in a similar manner to Figure 8;

that is: (a) the training set contains the failed traces of past releases of the program; (b)

the test set includes the traces of the following release of the program; (c) the score of

each failed trace is again measured using Equation 1; and (d) the percentage of failed

traces for a segment on X-axis is the percentage of failed traces of the (same level release

51

in) test-set of all the programs that fall within each segment. For example, the series

“using release 1-3 for release 4” shows that by training F007 on the failed traces of

release 1, faulty functions in approximately 60% of the failed traces can be identified in

release 4 (test-set). This identification requires the review of approximately 3% or less of

the code, and it is the accuracy of identifying faulty functions in the traces of release 4

using the traces of release 1 to release 3 for all the four programs in the UNIX utilities

(i.e., Flex, Grep, Gzip and Sed). Similarly, Figure 9 shows the result on other releases of

the UNIX utilities by using the traces of all the preceding releases as the training set and

the following releases as the test set.

Figure 9: Using traces of earlier releases or different faults for training F007 and

testing F007 on successive releases.

Figure 9 also shows the accuracy of identifying faulty functions in the Siemens suite and

the Space program—each of which has only one release. In terms of the Siemens suite,

we used only 25% of the training set by removing the trace records of more than one fault

52

(faulty versions in the Siemens suite) for a function (if existed). In other words, the

training dataset contained trace records for only one fault (version) for each function.

Traces of the same or other faults in the same function were kept in the test set. The

results for the Siemens suite in Figure 9 show the accuracy of identifying the faulty

functions for the seven programs in the same manner to Figure 8. Similarly, we applied

this procedure to the Space program. The Space program contained approximately 70,000

failed traces of overall faults and taking advantage of the large number of the failed traces

we used only 1% of the traces for training F007 and the rest of the 99% for testing. Also,

like the Siemens suite, we removed the traces of more than one fault in the same function.

The results for the Space program are also shown in Figure 9.

It can be observed in Figure 9 that the accuracy of identifying the faulty functions in

release 2 using release 1 of the UNIX utilities is very low compared to the identification

of the faulty function in other releases of the UNIX utilities. This is because the majority

of the functions found faulty in the release 2 were not found faulty in the release 1. So,

those functions could not be predicted, whereas the same faulty functions (with different

faults) were predicted correctly –i.e., less than 10% of the code (function) review.

Similarly, in the case of identification of the faulty functions in the traces of release 3

using the failed traces of releases 1-2, about 23% of the failed traces were correctly

diagnosed on the review of 5% of the program. In the rest of the cases, faulty functions

were not found in the earlier releases. In the case of release 5, the accuracy is about 47%

on the review of 8% of the code, and in the case of release 4 of the UNIX utilities, the

accuracy of identification of faulty functions is the highest; i.e., 60% on the review of

3% of the program.

Note that, in the case of the UNIX utilities, the accuracy improved as the traces of more

and more releases were used for training F007 to identify the faulty functions in the

subsequent release. For example, from release 2 to release 4 it increased by 50 percent

and in release 5 it improved by 40% from release 2. This is because the training-sets had

more faulty functions which were common to the subsequent release. Also, note that

mostly the identification of the faulty functions in the subsequent releases was made on

reviewing 10% of the program or less; i.e., first few functions in the list. Similarly, in the

53

case of the Siemens suite and the Space program, faulty functions in the majority of the

failed traces were identified by reviewing first two to three functions. In the Siemens

suite, 20% of the code is approximately equivalent to three functions, because the

Siemens suite is a collection of small programs. Furthermore, this identification in Figure

9 is done by training F007 on either traces of different faults from previous releases (in

the cases of the UNIX utilities) or traces of at least one fault in the same function (in the

case of the Siemens suite and the Space program). Thus, this implies that if (different)

faults are in the same function then they can be identified accurately, provided the traces

of at least one fault in the same function are present in the training set.

Figure 10: Using traces of earlier releases and 10% traces of the following releases

to train F007 and identify faulty functions in the rest of the traces of the following

release.

In some traces, both in Figure 8 and Figure 9, we were not able to identify faulty

functions at all and the whole program had to be reviewed. However, in the majority of

traces, if faulty functions were present in the training set, we were able to identify faulty

functions correctly in both of Figure 8 and Figure 9. This implies that different faults in

54

the same function do occur with similar sequences of function-call, but up to a certain

limit. This is because in some cases the patterns of function-calls for faults in one

function matched with the patterns of function calls for faults in another function. They

were not always differentiable but mostly we were able to distinguish faulty functions by

reviewing only the first few functions.

In Figure 10, in a similar manner to Figure 9, we show the accuracy of identifying faulty

functions across releases in the UNIX utilities. This time we also used 10% of the failed

traces of the succeeding releases along with the failed traces of the preceding release to

train F007. It can be observed in Figure 10 that the faulty functions in approximately 70-

90% of the failed traces were identified by reviewing only 5% or less of the code

(functions). If 50-90% of the field failures are rediscoveries of the same fault (Brodie et

al., 2005; Lee and Iyer, 2000; Wood, 2003) then this can be highly significant in

identifying the faulty functions in the field traces. We also know that 20% of the code is

responsible for 80% of the faults (Gittens et al., 2005; Ostrand et al., 2005). Therefore, if

the faults in the same function occur with similar sequences of function-calls (as we have

verified from the results in Figure 9) and 50 to 90% are rediscoveries then we can

identify faulty functions in 80-90% of the field failed traces using F007 (provided the

training-set contains the traces of faulty functions). This is what we observed in Figure

10, that is, approximately 70-90% of the failed traces were identified on reviewing first

few functions by using F007. In the case of Figure 9, a faulty function was identified with

high accuracy (i.e., by reviewing 10% of the code) if it was also faulty in earlier releases,

and the accuracy improved with the number of releases—implying that 20% of the code

is causing majority of the faults. Finally, after identifying the faulty function, previously

known faulty statements for that faulty function can be used for inspection.

2.6.2.3 Measuring statements-effort

So far, we have shown the accuracy of identifying faulty functions by using the

percentage of functions reviewed as the code reviewed. However, the sizes of functions

vary in a program, and functions with large sizes could account for the majority of the

code and hence large numbers of faults. Therefore, in order to quantify the effort of a

55

developer in terms of number of statements, we summed all the statements of a function

that would be reviewed by a developer up to the faulty function in the list of suspected

functions generated by F007. For example, if the fourth function in F007’s list is the

actual faulty function then we summed the number of statements of all the four functions

in estimating the effort. This is shown in Equation 2.

`100*
Re%

=

 ∑
SatementsTotal

viewedFunctionaofStatements

reviewto

programof

Equation 2: Estimation effort in statements.

Figure 11: Statements-effort using F007 in identifying faulty functions.

In Figure 11, we show effort of a developer in identifying faulty statements using F007

across releases of the UNIX utilities, on the Siemens suite, and on the Space program.

56

Figure 11 is similar to Figure 9 except the effort to identify a function is estimated in

statements using Equation 2. Similarly, Figure 12 shows the same results as in Figure 10,

but the effort is estimated in terms of statements. Figure 11 and Figure 12 show that there

is not much difference between the effort in statements and that in functions in Figure 9

and Figure 10. In fact, the effort in statements seems to be proportional to the effort in

functions. This implies that in commercial or professional programs the sizes of the

functions are not distributed in distinctly large to small proportions, but that they are

distributed mostly in closely related sizes. However, Figure 11 and Figure 12 only

represent statements of faulty functions. In order to validate this we drew functions vs.

size graph of randomly selected releases of the four UNIX utilities. This is shown in

Figure 13, where we can observe that apart from few outliers mostly the sizes of

functions remain close to each other.

Figure 12: Statements-effort in using traces of earlier releases and 10% traces of

the following releases to train F007 and identify faulty functions in the rest of the

traces of the following release.

57

In Figure 11 and Figure 12, the estimation of effort in terms of statements is actually

going to be lower than what we have shown. This is because we have summed all the

statements of a function, and the programmer using the context of the fault can skip a

function or may jump to another function after reviewing a few statements. Thus, in

reality the effort in statements would be better than the shown here.

Figure 13: Functions vs. size graph of randomly selected releases of the UNIX

utilities (X-axis shows labeled by numbers instead of names and Y-axis shows the

size of each function).

2.6.3 Rules of Decision Tree in Understanding Fault Proneness of
Faulty Functions

Decision tree model actually generates rules from the independent variables in a training

dataset and use those rules to predict a dependant variable (see Section 2.5). In this

section, we show examples of decision trees (i.e., rules) for randomly selected functions.

These rules are useful in understanding why a particular function could be faulty and

58

which unique execution paths mostly lead to that faulty function. For example, if a

particular function is found faulty in a large number of traces and due to different faults,

then a programmer can analyze these rules to find out which execution paths are causing

that function to be faulty and perform extensive testing on the functions of those paths.

Figure 14: Decision tree models for faulty functions of Flex and grep program.

In Figure 14 (‘a’, ‘b’, and ‘c’), we show the three decision tree models, generated using

the one-against-all approach, for functions of the Flex and Grep program. For example, in

Figure 14 part ‘a’, the rules are read as if occurrence of the function

“check_trailing_context” is less than equal to zero, and occurrence of allocate_array is

less than equal to 35, and “add_accept” is greater than 7, then the faulty function is

“yyparse”. In a similar manner, other rules in part ‘a’, ‘b’ and ‘c’ of Figure 14 can be

analyzed. Thus, these rules actually provide an abstraction of a collection of faulty traces

belonging to faulty functions, and provide a succinct human-readable view of suspicious

function-calls (out of many function-calls in traces) related to a faulty function.

2.6.4 Entry Exit Events in Traces

In Figure 2, we showed an example execution trace having “function entry” and

“function exit” events. However, we discovered that “function entry” or “function exit”

events, by themselves, are adequate to predict the fault origin. Their combined use does

59

not improve the accuracy. In order to statistically validate this we conducted the

Wilcoxon signed rank test (Marques de Sá, 2003) on the accuracy of classification

obtained by using both “function entry and exit” and only “function entry or exits” from a

trace. We again set the alpha level (or level of significance) to 0.05. We stated the null

hypothesis as the mean difference of accuracy between the accuracies of classification

obtained using “function entry and exit” and only “function entry/exit” is zero.

Table 7: Classification accuracy for “function entry and exit” and “function entry

or exit” (in percentage) using F007.

Program Episode Rule Entry and

Exits

Entry or

Exits

G
re

p
 (

R
3

) 1 100.0 95.546

(S/P) 2 99.190 99.595

(S) 3 99.595 99.190

(P) 3 99.190 98.785

S
e

d
 (

R
3

) 1 89.361 89.361

(S/P) 2 92.908 95.745

(S) 3 92.908 95.035

(P) 3 92.908 94.326

F
le

x
(R

3
) 1 58.840 58.563

(S/P) 2 63.260 61.050

(S) 3 60.773 61.326

(P) 3 60.773 61.602

S
ch

e
d

u
le

 1 73.248 74.267

(S/P) 2 65.350 65.478

(S) 3 65.605 66.930

(P) 3 66.369 66.667

S
ch

e
d

u
le

2

1 60.363 60.363

(S/P) 2 68 65.0909

(S) 3 63.272 60

(P) 3 59.272 62.909

T
ca

s

1 73.481 73.481

(S/P) 2 73.873 73.546

(S) 3 73.481 73.807

(P) 3 73.481 72.045

T
o

t_
in

fo
 1 68.842 68.842

(S/P) 2 68.947 66.831

(S) 3 67.819 65.831

(P) 3 63.207 60.244

Table 7 shows the accuracy of classification for function "entry and exit” and function

"entry or exit” for all types of episode rules, obtained using window width win(w)=3 for

60

randomly selected programs only (to save space). In Table 7, for function “entry or

exits”, we have randomly selected for some programs only function “entry” symbol and

for some programs only function “exit” symbols. This is because using only function

“entry” or only function “exit” yield similar number of episodes and accuracy. However,

the use of both function “entry and exit” together generates twice as many episodes. The

accuracy of function “entry and exit” is also shown in Table 7. All other programs not

shown in Table 7 also yield similar results. In Table 7, column “episode rule” includes

both the length of episode and type of episode rule (S= Serial, P = Parallel). Finally, the

results in Table 7 are obtained by using the confidence values for the function “entry and

exits” and “entry or exits”.

The Wilcoxon signed rank test on Table 7 with 48 observations (on 12 programs) yielded

z=1.022, (two tailed) p=0.307. This confirms that the null hypothesis cannot be rejected,

and there is no significance difference between the classification accuracy of function

“entry and exit” and function “entry/exit”. The use of episode rules in the Wilcoxon test

also verifies that the patterns of function-calls (higher length episode rules) on function

“entry and exits” do not yield better results too. It should be noted that: episodes

generated using function “entry and exit” were twice as many as only function “entry or

exit”; and episodes generated using function “entry and exit” took twice as much time

for extraction from traces as only function “entry or exit”. This not only reduces the

processing time for fault discovery to half, but also reduces the space to store traces to

half. For example, processing time for traces of release 3 of the Flex program using F007

was: (a) 24.399 minutes for both function “entry and exit”; and (b) 12.584 minutes for

only function “exit”. In order to demonstrate, we also measured the size of a trace of the

test case “t534” of the fault “F_AA_2” of release 3 of the Flex program. It was found to

be 3060 KB with both function “entry and exit”, 1591 KB with only function “exit”, and

only 1632 KB with only function “entry”.

This finding also implies that the overhead on the deployed systems, will be half of a

normal (function-call) failure trace if only function “entry” or function “exit” is collected

for software—reducing the size of a trace to half as well. Thus, in all the results we have

shown in previous sections, we have either used only function “entry” or function “exit”

61

symbols, and discarded the other one—either entry or exit can be discarded. This

discovery of function “entry” or “exit” is another distinguishing factor of F007 from

previous techniques.

Dallmeier et al. (2005) showed on the SPEC JVM 98 Java programs suite (543 class files,

total size 1.48 MB) that the time taken by instrumented software run is almost two orders

of magnitude higher than a normal run. Though, tools, environments, and instrumentation

methods differ and this can not be generalized, but in any case the time will be reduced to

approximately half if only function “entry or exits" are collected. This also means that the

trace of the same size could contain two times more information. This is significant for

the deployed systems when sometimes a fault cannot be captured in a trace due to its size

limitation, for example, if trace-collection is started by a user well before the appearance

of failure. During our analysis of a large commercial program, shown in the next section,

we found that sizes of some function-call level traces were in several GBs. This

discovery would certainly be beneficial in reducing the size and overhead of trace

collection to half for such large commercial programs.

2.7 Case Study on a Large Commercial Application

The programs shown in Table 4 ranged from small to medium in sizes and all of them --

except Space -- had hand-seeded faults. Also, apart from the faulty functions in the

Siemens suite, all other programs had single faulty function per fault. In this section, we

validate F007 on a large-scale commercial application (of size over 20 MLOC) deployed

in the field for more than 20 years, have millions of users, developed by several

thousands of software engineers over the years, and have many field faults across many

functions and components. The characteristics of this software application are shown in

Table 8.

Table 8 first shows the general static characteristic of the software application: 82%

rediscoveries of the field faults were observed by us in a sample of fault (defect) records

(bug/defect records) for a few recent releases; the failed traces, faulty components and

faulty functions are for three releases; the last row shows total distinct faulty functions

and components for all the three releases.

62

Table 8: Characteristics of the commercial application under study.

20+ million LOC, 300+ components, approx. 200 K+

functions, and 82% rediscoveries of field faults.

 # Failed

Traces

Faulty

Comp.

Faulty

Func.

Release 1 269 52 65

Release 2 337 35 47

Release 3 99 30 31

Total Distinct Faults (Union) 65 103

We collected failed traces, quantified in Table 8, from the historical trace repository. The

average size of a trace in our collection was 50 MB, and often the size of a trace reached

several gigabytes. Due to their large sizes, traces for this commercial software are not

kept in its repository for a long time and are purged soon after the resolution of the

problem. This inhibited us from collecting traces for all the faults. Thus, we collected the

failed (field) traces (of the faults) present in the repository for the recent three releases

during a period of two years (2007-2009).

In this section, first, in Section 2.7.1, we explain the data collection process for the

application. In Section 2.7.2, we discuss richer contents of the function-call level traces

of the application, and different heuristics that we used to evaluate F007 on this large

application. Afterwards, from Section 2.7.3 to Section 2.7.5, we explain the evaluation of

different heuristics using F007. Finally in Section 2.7.6, we show the results of the

identification of the faulty functions and faulty components on different releases of this

software application.

2.7.1 Data Collection

In order to execute F007 on this large software application, we collected the required data

from different sources of this application, as follows:

Step 1: First, we collected execution traces from a “customer-trace” repository

containing the execution traces of the software faults reported by customers from the

field. These (failed) traces were captured at the time of the occurrence of the faults at

the customers’ sites, or sometimes reproduced in the lab based on the customers’

descriptions.

63

Step 2: Second, we extracted the program analysis record for each fault from the

repository. The program analysis record contained the faulty component, problem

resolution, reference to the source code changes, and other related information.

Step 3: Third, we extracted the functions
12

, using the references obtained for the faults

in Step 2, from the version control repository. These functions were changed because of

the faults, and we considered them faulty functions corresponding to the faults. Though

not all the functions changed are faulty, no explicit records of the faulty functions are

kept for this large industrial application.

Step 4: Fourth, we grouped together all the faulty functions of different faults under one

name, if one or more faulty functions for one fault matched the faulty functions of

another fault. For example, the faulty functions “foo1”, “foo2” for the fault “F1” were

grouped with “foo1”, “foo3”, “foo2” of the fault “F2” as “Group1”. The reason is that a

fault could occur because of any of these functions and they should be simultaneously

identified. In Table 8, “Faulty Func.” column shows the number of faulty functions after

forming the groups (i.e., the number of groups of faulty functions).

Step 5: Finally, if a fault is found faulty in multiple components we also grouped them

together under one distinct name as in Step 4. In Table 8, “faulty comp.” column also

shows the number of faulty components after forming the groups.

2.7.2 Executing F007 using different heuristics

 The next step after the collection of data is to execute F007 on the data. During the

analysis of data, we observed that the function-call level traces of this software are richer

(in terms of new entities) than what we used for other subject programs (e.g., see Figure

2). An example of execution traces, captured by maintainers, for this software application

is shown in Figure 15, which has, in addition, probe points and error codes compared to

only “function entry” and “function exits” of Figure 1. The probe points are the specific

12 A faulty function name is extracted with its scope (e.g., namespace, file), because two functions in

different namespaces can be same.

64

locations within a function that are executed during a software run. The error codes

represent the exceptions thrown during a software run.

Figure 15: Example execution trace of the large commercial software (with names

obfuscated for privacy reasons).

In Section 2.6.4, we showed that the use of only one of “function exit” or “function

entry” is necessary to predict the faulty functions. Considering this fact for a trace in

Figure 15 as well -- since the traces in Figure 2 and Figure 15 are similar-- we further

investigated the properties of the additional characteristics of the trace shown in Figure

15 using different heuristics. We trained F007 on: (a) “function exits”, “function probe

points”, and “function exit with error code”
13

; (b) only “function exits” without “error

codes” and “probe points”; and (c) only those “function exits” which have large

variations in occurrences across the execution traces.

2.7.3 Evaluating Heuristic ‘a’

The results of the identification of faulty functions in the failed traces of this software,

using F007 with the three heuristics (defined in Section 2.7.2), are shown in Table 9. The

results in Table 9 are obtained by training F007 on 25% traces of release 2 and testing on

75% traces of release 2. We chose release 2 to show the results because it has the largest

number of failed traces. All other releases also exhibit similar results.

13
 Each “function exit”, “function probe”, and “function exit with error code” is a length 1 episode.

65

 For example, column “ALL” in Table 9 shows the results of F007 with heuristic ‘a’ for

release 2. First cell in column “ALL” shows that the faulty functions in 52% of the traces

in a test set of release 2 is identified by reviewing only the first function in the list. The

list of faulty functions is generated using F007 from a training set of release 2. Similarly,

second cell shows that faulty functions in 55.1% of the failed traces are identified by

reviewing only the first two functions in the list. This goes on up till 74.6% of the traces

are diagnosed till the review of eight functions in the F007’s list of faulty function. F007

was unable to identify the faulty functions in the remaining 25.4% of the traces using

heuristic ‘a’ (‘ALL’).

In this software, there were more than 200,000 functions, but we assumed
14

 that

approximately 1000 functions would be required to review for the rest of the 25.4%

(cumulative 100%) of traces (see the 9th row in Table 9). The code review is measured in

Table 9 is measured by dividing functions reviewed by 1000 functions. The code review,

in Table 9, in terms of functions is less than 1% up till the 8th function which is very

14
 On discussion with developers, it is more than 1000 but we considered the minimum number of

functions that a developer may consider using experience and contextual information.

Table 9: Identifying the faulty functions in the failed traces of a large software system by

reviewing less than 1 % of the code (functions).

of

Functions

Reviewed

% of Heuristics

Code

Review

ALL EXITS SD> 10 SD > 20 SD > 100 SD > 200 SD > 400

1 0.1 52.0 52.4 52.8 52.8 56.0 54.6 54.6

2 0.2 55.1 52.8 53.3 53.3 56.8 56.0 55.5

3 0.3 56.8 57.7 58.2 58.2 61.3 60.4 59.1

4 0.4 62.7 58.6 58.6 58.6 62.2 61.3 60.4

5 0.5 64 64.8 64.8 64.8 64.4 63.5 62.6

6 0.6 73.7 67.1 67.1 67.1 68.4 68.4 68.0

7 0.7 74.6 75.1 75.1 75.1 78.6 78.6 78.2

8 0.8 74.6 75.5 75.5 75.6 79.1 79.1 78.6

1000 100 100 100 100 100 100 100 100

 Episodes for Heuristics

 17331 10481 6999 6190 3611 2686 1892

66

significant for this software. Finally, the last row of Table 9 shows the number of

episodes generated for the heuristic using the sample traces we studied; e.g., for heuristics

‘a’ the number of episodes of length 1 (i.e., sngle function-calls) was 17331.

2.7.4 Evaluating the Heuristic ‘b’

In Table 9, column “EXITS” shows the results of F007 with heuristic ‘b’. For this, we

trained and tested F007 only on the “function exit” excluding “error codes”. Also, we did

not use the function-calls with the “probe points”. It can be observed that accuracy of

identifying faulty functions is similar for only “function exits” (heuristic ‘b’), and

“function exits with probe points and error codes” (heuristic ‘a’). A Wilcoxon Signed

Rank test (Marques de Sá, 2003) between the results of heuristic ‘a’ and heuristic ‘b’

show that no significant difference exists because: z=0.420, observations = 9 and two tail

p=0.674 > 0.05.

Note that in heuristic ‘b’ we removed “error codes” (i.e., the type of error); however,

interestingly enough the results were similar to heuristic ‘a’. This again shows that

different faults in the same function occur with similar sequence of function-calls

irrespective of the type of the fault within a function (see Section 2.6.2). Also, note that

the number of episodes for heuristic ‘b’ is 10481 compared to 17331 episodes of heuristic

‘a’. This means heuristic ‘b’ is better than heuristic ‘a’ because the smaller number of

episodes consume smaller amount of memory and results in efficient decision tree

generation.

2.7.5 Evaluating the Heuristic ‘c’

During our experiments on this commercial application, we observed that a large number

of length 1 episodes (“function exits”) occur with a small variation in their occurrences

across traces because: (a) they occur in very few traces; or (b) they occur with a similar

number of occurrences across traces. If episodes occur with the same (or very similar)

occurrences across traces of different faulty functions then they do not contribute much in

classifying faulty functions for a trace using the decision tree. Similarly, if episodes occur

in very few traces of the same faulty function then they also do not help in distinguishing

the same faulty functions in different failed traces. In order to determine whether

67

episodes with small variations in traces of this commercial application affect the accuracy

of predicting faulty functions, we employed heuristic ‘c’.

In heuristic ‘b’ we already determined “function exits” are sufficient for predicting faulty

functions; therefore, in heuristic ‘c’ we use only “function exits” as episodes of length 1.

In heuristic ‘c’, we set different thresholds for standard deviations of occurrences of

(length 1) episodes (“function exits”). We then trained F007 on the episodes with

standard deviations higher than the set threshold. The objective here is to remove

unnecessary episodes such that: the efficient decision tree can be generated with smaller

memory consumption; the accuracy of identifying faulty functions remains the same as

heuristic ‘b’ (“EXITS”); and the failed traces should not get excluded.

We set thresholds of standard deviation of occurrences from 10 to 500 with steps of 10,

and then trained F007 on the episodes of length 1 with standard deviations of occurrences

higher than each of the threshold values. We show the results in Table 9 for selected

threshold values to avoid cluttering the text. The results in Table 9 are obtained by

training F007 on 25% traces of release 2 and testing on 75% traces of release 2—similar

to heuristic ‘a’ and ‘b’. In Table 9, the columns starting with “SD” (Standard Deviation)

show different thresholds for standard deviation of occurrences of episodes. For example,

first cell in the column “SD > 10” shows that the faulty functions in 52.8% of the failed

traces were identified by training and testing F007 on episodes with standard deviation of

occurrences greater than a threshold of 10.

We stopped at the threshold of 400 because beyond this value a number of failed traces

started to get excluded from the train and the test set. It can be observed from Table 2

that the accuracy remains similar between heuristic ‘b’ “EXITS” and different thresholds

of standard deviation in heuristic ‘c’. The results obtained from standard deviation of 400

has minimum number of episodes, we consider it as the best case for heuristic ‘c’. A

Wilcoxon Signed Rank test with 9 observations between the results of heuristic ‘b’

(“EXITS”) and the results of heuristic ‘c’ with “SD > 400” yielded: z=0.630 and

p=0.529; that is, no significant difference exists as p >0.05.

68

Recall from the beginning of this section that our intuition was to remove the episodes

with small variations; however, the standard deviation of 400 occurrences would seem

quite high. If we compare this standard deviation of 400 occurrences with the maximum

standard deviation of 358,945.53 occurrences in the traces of this large software, then it is

quite a small variation. Thus, episodes (or simply functions) with large variations are

fewer and contribute efficiently in the decision tree model in identification of faulty

functions in the traces.

Similarly, we evaluated the three heuristics on two other releases (release 1 and 3) and.

the accuracy of identifying the faulty functions remains similar. Heuristic ‘c’ for release 1

and 3 also resulted in similar results. Thus, we considered “SD > 400” as the threshold

point. Our results in the rest of the section are obtained using episodes with standard

deviation of occurrence higher than the threshold of 400.

In terms of other programs used in this study, exclusion of function-calls with small

variance resulted in the exclusion of failed traces. This is because there were only a few

hundred function-calls in other programs compared to 17000 function-calls (from the

sample of traces we used) of the large software application. However, using all the

function-calls for the larger program will also result in the same accuracy, as shown here,

but it will consume more space and memory.

2.7.6 Identifying the Faulty Functions and Components across
Releases

In Figure 16, we show the results of F007 on three releases by using 25% training set and

75% test set. It can be observed that on average the faulty functions in 70% of the failed

traces are successfully identified by F007 for each of the releases by reviewing less than

1% of the code (functions). In the rest of the 30% cases some of the faulty functions

occurred only once (one trace). So these functions were not identified at all by F007 for

the sample of traces we used. However, there were 82% rediscoveries of the faults in the

database and the traces were not kept for a long time in the repository of this commercial

software due to their large sizes. This is why we have a few faulty functions found only

69

in one trace. F007 stores traces in its database in the form of common functions

(episodes); thereby, reducing the storage overhead required to store traces in the raw

form. Thus, actual raw traces can also be preserved for a long time by F007.

Figure 16: F007 on three releases of a large commercial application.

In Figure 17, we show the results for identification of the faulty functions in release 2 by

using release 1 as a train-set for F007. By using traces of release 1 we were able to only

identify faulty functions in 35% of the failed traces of release 2 on the review of 3% or

less of the code. This is because not all of the faulty functions found in release 2 were

present in the training set of release 1. However, on using 10% traces of release 2 with

the traces of release 1 approximately 80% of the faulty functions were successfully

identified. Similarly, in Figure 18, we have used the traces of both release 1 and release 2

to identify the faulty functions in the traces of release 3. Figure 18 shows that the faulty

functions in about 60% of the traces were identified by using only the traces of release 1

and release 2.

70

In our experiments in Section 2.6.2 and in this section (Figure 17), interestingly, we

observed that in the first few releases there are fewer common faulty functions than in the

subsequent releases (e.g., Figure 18). It could be due to the sample of data that we used

for experiments did not contain common faulty functions in the failed traces. It could also

mean that as the software gets stable through releases, the number of faulty functions

become similar. Nonetheless, if 50-90% of the field failures are rediscoveries of the same

fault then by using just 10% of the failed traces of current release we can still identify the

majority of the faulty functions. Also, in the case of earlier releases, the accuracy of F007

can be improved by using in-house failed traces because we have observed that: fault in

the same function occurs with similar function-call sequences; and there is an overlap

among origin of in-house and field faults according to our own study on a very large

software system (Gittens et al., 2005).

Figure 17: Identifying the faulty functions across releases.

In the large commercial software application it would be worthwhile to point out faults at

a higher level of granularity too, such as components. A large system actually contains so

71

many components that it makes the component level a useful abstraction for maintainers

to locate bugs in functions, files, and statements. This could aid maintainers in correctly

diagnosing the fault origin. For example, maintainers can use their experience to decide

which combination of faulty functions and faulty components from F007’s predicted list

would lead them to the correct fault origin.

Figure 18: Identifying faulty functions across releases.

In Figure 19, we show the accuracy of F007 in identifying the faulty components in the

field traces. Here, we used 300 components as the total number of components to

measure the code review in terms of components. We first used release 1 to identify the

faulty components in release 2. It can be seen in Figure 19 for the series “using release 1

for release 2” that faulty components in approximately 50% of the failed traces were

diagnosed correctly by reviewing 8% of the program (i.e., components in this case).

Similarly, second series “using release 1 and 10% of release 2 for release 2” shows that

faulty components in approximately 90% of the failed traces of releases 2 can be

correctly identified on reviewing approximately 8% of the code. This identification of

72

faulty components was done by using only 10% of the failed traces of release 2 and the

traces of release 1 as a training set, and the remaining 90% of the traces of release 2 as a

test set. Finally, following the similar approach, Figure 19 also shows that faulty

components in 90% of failed traces of release 3 were identified by using only failed

traces of release 1 and release 2. This identification is done by just reviewing

approximately 8% of the code (components).

In Figure 19, we have not shown the results for release 3 from the combination of traces

of release 3, release 2 and release 1. This is because 90% of the components in release 3

were already identified using the traces of release 1 and 2 on the review of approximately

8% or less of the code (components).

Figure 19: Identifying faulty components across releases (a total of 300 components

make 100% program in this figure).

In the results of this section, we have only shown the results in terms of number of

functions or components reviewed (program). For this commercial software, we could

73

not get access to the actual source code to count the number of statements of functions or

components. Doing so would help in finer-grained evaluation in terms of the number of

statements reviewed for each function or component (similar to what we have shown in

Section 2.6.2.3. However, as we mentioned in the earlier section (Section 2.6.2.3,

maintainers do not review all the statements of every component or function to identify a

fault; they use their experience and context to focus only on the few relevant statements.

Thus, further finer-grained evaluation would be based on the subjective judgment.

2.8 Executing F007 across Releases: Revisiting Example
Execution

In Section 2.6.2 and Section 2.7 we showed that F007 can identify faulty functions in

failed traces of the current release of software by using failed traces of previous releases.

However, the example execution of F007 shown in Section 2.5 described an example of

predicting faulty functions in the same release. In the case of predicting faulty functions

across releases, the following issues need to be considered prior to training F007:

1. In a new release there could be newer faulty functions that are not present in the

current release. In order to build the decision tree model we need to add those

newer functions in the training set of failed traces of previous release with the

confidence of 0. This is because they do not exist in the previous release and may

or may not occur in the traces of the current release. For example, in the “Flex”

program function (or episode of length 1) “format_pinpoint_message” did not

exist in the failed traces of release 1 and release 2, and was found in only in the

failed traces of release 3.

2. In Section 2.7 we mentioned that in the large software application, we can

identify faulty functions by using function-calls (episodes of length 1) of higher

variances. Therefore, in the case of the identification of the faulty functions in

newly failed traces in the same release only those functions should be used which

were identified as having higher variances in the historical collection of the failed

traces. In a new release, in-house failed traces can be added to the historical

74

collection of failed traces of previous releases to identify functions with higher

variances. Later, as failed traces from the field arrive, only those functions

identified with higher variances should be considered for discovering faulty

functions in the trace. Note that this process is carried out offline, does not affect

software in the field, is not always required to be done, and can be repeated at

regular intervals when there are enough (e.g., 5% of the historical collection) new

failed traces.

In short any one of the two procedures: (1) adding new functions or (2) using the

functions with higher variances, can be used. This is because both of them yield the same

results (see Table 9).

2.9 Summary of the Results

Our results in Section 2.6 on the Siemens suite (Hutchins et al., 1994), the Space program

(Do et al., 2005), the four UNIX utilities (i.e., Flex, Grep, Gzip and Sed) (Do et al.,

2005), and on the commercial application (200K functions) in Section 2.7 show that:

• Patterns (episode rules) of function-calls do not yield better results than the single

function-calls when used with the decision tree in identifying faulty functions (see

Section 2.6.1).

• When function-call level execution traces are used then only “function entry” or

only “function exits” are adequate for discovering faulty functions (see Section

2.6.4). This discovery implies that the size of the trace, and run time overhead of

the function-call level trace collection could be halved. This discovery also

applies to the execution traces of larger software application with richer semantics

(e.g., exceptions thrown)—i.e., events other than function “entry” or “exit” can be

ignored However, the thrown-exceptions may be useful in understanding the type

of fault (see Section 2.7.2)

• Faults in the same function occur with the similar sequence of function-calls

because F007 can identify the same faulty functions (with different types of

75

faults) in the failed traces, if only the failed traces of at least one fault in the same

function are known (see Section 2.6.2. and Section 2.7).

• F007 can accurately identify faulty functions in traces of a current release by

using failed traces of previous releases, provided that the faulty functions are

present in the traces of previous releases (see Section 2.6.2. and Section 2.7.6).

• F007 can also identify faulty functions in the same release by using only few

(e.g., 10%) failed traces. If 50-90% of the field failures are rediscoveries than this

can be highly beneficial; e.g., using few earlier traces of at least one fault in a

function, the same faulty function in new upcoming field traces can be identified

(see Section 2.6.2. and Section 2.7.6).

• F007 yields different results with different empirical settings but, in general, F007

can identify faulty functions in approximately 65-90% of the failed traces on the

review of first few (e.g.,1-4) functions (see Section 2.6.2. and Section 2.7.6).

• In the commercial software system, F007 can identify faulty functions using only

single function-calls (length 1 episodes; see Section 2.7.2) of higher variance in

the failed traces. This is because in the large software application many function-

calls (e.g., system calls) occur in few traces, or occur in small variations across

traces: ignoring such function-calls, in large software system, did not affect the

accuracy of fault-origin discovery, and did not exclude any traces (see Section

2.7.5). This reduces many unnecessary function-calls in large software, generates

efficient decision tree by consuming less memory and space, and results in the

same accuracy as using all the function-calls (see Section 2.7.5). In terms of other

programs used in this study, exclusion of function-calls with small variance

resulted in the exclusion of failed traces. This is because there were only a few

hundred function-calls in other programs compared to 17,000 function-calls (from

the sample of traces we used) of the large software application (see Section 2.7.5).

Thus, the results show that for medium to small programs all the function-calls

can be used to discover faulty functions; whereas, for large programs function-

calls of higher variances or all the function-calls can be used (see Section 2.7.5).

76

We used F007 on a variety of software applications (see Table 4 and Table 8), with hand

seeded and real faults, having research and commercial applications. In all the cases, the

results were similar and show the significance of F007. In terms of the UNIX utilities,

faults were hand seeded but they were added in the actual changes in the sources code

from one release to another. This makes them quite realistic (Do et al., 2005) because

changes in a program are made due to faults or modification for new functionality. This is

one of the reasons why the same 20% of the source code is responsible for 80% of the

faults. F007 can accurately identify the faults in the same area of code (i.e., functions or

components). In the case of new functionality (e.g., new functions and components) F007

would still work if it is trained on a small percentage of new field failed traces (or in-

house traces) and will identify 50-90% rediscoveries.

2.10 Comparison with Contemporary Techniques

In, Figure 20 we juxtapose the results of F007 and those of other fault localization

techniques -- using the Siemens suite. These other techniques include Frequent Pattern

Mining (FP) (Di Fatta et al., 2006) and Tarantula (Jones and Harrold, 2005) on function

coverage taken from the work of Di Fatta et al. (2006). Tarantula was actually proposed

for statement coverage by Jones and Harrold (2005). In Figure 20, Y-axis (named as axis

1) for the FP and the Tarantula is measured in the percentage of versions. A fault was

equivalent to one version in the Siemens suite. Each version contained many passing and

failing traces. FP and Tarantula actually discovered a faulty function containing a fault,

by using passing traces and failing traces pertaining to that fault (or version).

In Figure 20, we also show the performance of F007 on the Siemens suite; however, the

Y-axis (axis 2) for F007 is calibrated in the number of failed traces for all versions

(faults) of the Siemens suite. This means that F007 can discover the faulty functions in a

single trace using the previous collection of (only) “failed” traces for the same or

different faults in the same function. F007, unlike FP and Tarantula, does not require a

collection of “passing” traces and “failing” traces related to the same fault in a faulty

function to discover that faulty function. However, F007 still requires an initial collection

of labeled traces with known faulty functions (i.e., the knowledge of at least one fault for

the function) to discover the faulty functions in new traces. (See Section 2.3 where we

77

describe how an initial set of traces can be built from in-house traces and subsequently

can be evolved from field traces, and how F007 can be trained on the evolved set of

traces.)

Figure 20: Comparing Frequent Pattern Mining (FP) using function sequences and

Tarantula on function coverage against F007.

Thus, F007 is useful for deployed software where a large number of faults are

rediscoveries originating from a small percentage of code. It is also useful when it is not

feasible to collect many passing traces and failing traces for a fault from the field, or

when only the failed traces are gathered for economic reasons. FP and Tarantula are

suited primarily for in-house testing where pass-fail traces are readily accessible for a

fault, but they are not suitable when only limited failing traces are available from the

field. Thus, while F007 is related to FP and Tarantula, it is not directly comparable

because F007 is suited for field testing and FP and Tarantula are suitable for in-house

testing. Similarly, other techniques mentioned in Section 2.2.1 (e.g., discovering faulty

statements using statement coverage (Jones and Harrold, 2005; Wong et al., 2006; Wong

78

et al., 2007; Zhang et al., 2009); statistical debugging (Chilimbi et al., 2009; Liu and Han,

2006; Liu et al., 2005; Zheng et al., 2004) also have the same major differences with

F007 as do FP and Tarantula in Figure 20. A similar comparison of F007 in terms of

effort in statements is made against the statement-level techniques, effective fault

localization using code coverage (EFL) (Wong et al., 2007) and Tarantula on statement

coverage (Jones and Harrold, 2005), in Figure 21. Again, the same differences exist

between F007 and EFL and Tarantula, and the results are not directly comparable for the

same reasons as mentioned before for Figure 20 (FP and Tarantula on function coverage).

The statement effort for F007 would only improve as it was the pessimistic approach (see

Section 2.6.2); whereas, the statement effort for EFL and Tarantula, in Figure 21, would

not improve further --it is the best case. In Section 2.2 and Table 2, we characterized

F007 and the other closely related techniques similar to Tarantula and EFL. There is no

direct comparison of F007 against other fault discovery techniques focusing on in-house

testing.

Figure 21: Comparing Effective Fault Localization and Tarantula on statement

coverage against the statement-effort of F007.

79

 Table 10: Comparison of related techniques focusing on function-call pattern

analysis.

Reference Pattern

Length

Pattern Type Method Output

Di Fatta et al. (2006) 2+ Serial Heuristic Function

Dallmeier et al. (2005) 2+ Serial Heuristic Class

Elbaum et al. (2007) 5 Serial Heuristic Pass/fail

Yuan et al. (2006) 1 Serial Classifier Config. Cause

F007 1 Serial, Parallel,

and Hybrid

Classifier Function

In Section 2.6.1 we showed that only single function-calls (episodes of length 1) are

sufficient to discover faulty functions in failed traces. In Table 10, we provide a

comparison of our findings with those of the related techniques focusing on the use of

patterns in fault discovery. Table 10 shows that: (a) the references of the related

techniques focusing on the use of patterns; (b) the length of function-call patterns that

other researchers found effective in improving accuracy; (c) empirical method employed

by researchers (a machine learning classifier or other comparison heuristics); and (d) the

output of techniques. The techniques in Table 10 are explained as follows:

• The technique (FP) to detect faulty functions by Di Fatta et al. (2006) and using

object-specific sequences to detect faulty classes by Dallmeier et al. (2005) were

primarily focused on testing. They (Di Fatta et al., 2006; Dallmeier et al., 2005)

compared patterns of functions-calls extracted from passing traces against the

patterns from failing traces to detect faulty functions (Di Fatta et al., 2006) or

(Java) classes (Dallmeier et al., 2005). They (Di Fatta et al., 2006; Dallmeier et

al., 2005) found that patterns of length greater than two function-calls discover

faults with 15% to 20% better accuracy than length 1 functions. Di Fatta et al.

(2006) experimented on the Siemens suite and Dallmeier experimented on

NanoXML (4334-7646 LOC and 16-23 classes).

• Elbaum et al. (2007) found out that patterns of length up to five are useful in

deciding when to start the collection of the traces of field failures. They found

(Elbaum et al., 2007) that function-call patterns of length up to five improve

accuracy by 10% from length 1 function-calls, but the accuracy does not improve

80

beyond length five. Elbaum et al. (2007) use heuristics such as identification of

exceptional function sequences and exceptional frequency ranges to achieve their

task on the Pine program (157,245-186,366 LOC and 1558-1785 functions).

• Yuan et al. (2006) use support vector machines (a classification algorithm) to

identify root causes of the configuration problems in a Windows XP based

system. Due to the large size of the Windows XP, their traces contained about

100,000 system function-calls. Yuan et al. (2006), like F007, found out that

patterns of function-calls of higher length do not yield any better accuracy than

single function-calls.

• Finally, we evaluated F007 on small to large commercial programs (see Table 4

and Table 8), and found out that when using the decision tree classifier higher

length patterns of function-calls do not improve accuracy. Our findings our

similar to what Yuan et al. (2006) found when using another classifier. However,

Yuan et al. (2006) (including other researchers in Table 10) only extracted serial

patterns (of length equivalent to window width); whereas, we have extracted

serial, parallel and hybrid patterns (see Section 2.3.1) of different window widths

and length sizes--our experiments cover a wide range of patterns. We have also

validated our results by conducting statistical tests on many different programs

(see Section 2.6.1.1); other researchers’ works in Table 10 lack on this front.

Another novel contribution of this paper is that it identified that the use of only function

“entry” or only function “exit” is sufficient to discover fault origin (see Section 2.6.4).

This discovery helps in reducing the size and overhead of function-call traces to half;

e.g., the large program used in our study, in some cases, has traces of about 4GB (44

million function-calls)—such traces can be reduced to half. Also, in the case of the large

program (see Section 2.7.5), we remove those functions which had low variances because

they occur in few traces or occur in all the traces. Yuan et al. (2006) also performed

similar filtering by setting a threshold to remove function-calls occurring rarely in some

traces. Interestingly, in Yuan et al. (2006) and in our case the accuracy remains same

after removing such function-calls. Thus, this shows that in case of the large programs,

81

the sizes of function-call traces can be reduced to more than half—if rarely occurring or

function-calls with low variances are discarded along with function “entry” or “exit”.

In summary the novel attributes of this paper are: (a) faulty functions in future releases or

the same release can be identified by using the traces of at least one fault of the same

faulty functions from previous or the same release; (b) different faults in the same

function occur with similar function-calls; (c) patterns of function-calls (i.e., serial,

parallel, and hybrid) do not improve the accuracy of identification of fault origin—single

function-calls are sufficient; (d) only function “entry” or only function “exits” are

sufficient to discover the fault origin; and (e) in the large program, the removal of

function-calls with similar frequencies do not decrease the accuracy of identification of

faulty functions.

2.11 Threats to Validity

In this section, we describe certain threats to the validity of the research results. We

classify threats into four groups: conclusion validity, internal validity, construct validity,

and external validity.

2.11.1 Conclusion Validity

Conclusion validity is concerned with our ability to draw the correct conclusion about the

relations between treatment and outcome of an experiment (Wohlin et al., 2000).

A threat to conclusion validity exists with traces of the number of faults we used to infer

the conclusion. In the large software application, in Table 8, we observed 82%

rediscoveries of faults in the database, but we were able to collect failed traces of only

some of the faults. Similarly, in terms of the UNIX utilities, the failed traces for some

faults were not used because of the criteria of using the faults with less than 20% of failed

test cases (Do et al., 2005). The sample of failed traces that we collected did not represent

all the faults that occurred in the releases of the software applications. This threat is

mitigated by the fact that results in the large software application were similar to the

results of the Siemens suite (Do et al., 2005; Hutchins et al., 1994), Space (Do et al.,

2005) and UNIX utilities (Do et al.,2005). In fact, the accuracy across releases would be

82

higher if the failed traces of all the faults were used. This is because the decision tree

would have had sufficient knowledge of cross-release faulty functions, and resulted in a

better accuracy.

The threat to conclusion validity is low because we have evaluated F007 on twelve

medium to large programs with several releases, and a large legacy program with three

releases. There is thus sufficient evidence for valid conclusions.

2.11.2 Internal Validity

Internal validity is concerned whether the relationship between treatment and outcome is

causal, and not due to any confounding factors (Wohlin et al., 2000).

A threat to internal validity exists in the implementation of the algorithms and this

technique, since it involved quite a lot of programming. Human errors (e.g., logical

errors) are a possibility in the implementation of the algorithms. Though, it was not

possible to manually verifiy the output on all the traces for the MINEPI algorithm, we

have mitigated this threat, and made our implementation reliable, by manually

investigating the outputs on different example traces. For example, in the case of the

MINEPI algorithm (Mannila et al., 1997), we manually verified the outputs on different

examples.

2.11.3 Construct Validity

Construct validity refers to the extent to which the experiment settings actually reflect the

construct under study (Wohlin et al., 2000).

A threat exists in measuring the programmer’s effort in discovering faulty functions.

Recall, from Section 2.3, 2.5, and 2.6.2, that F007 generates a list of faulty functions for a

new failed trace, and the programmer’s effort is measured by counting functions (or

statements) examined (see Equation 1 and Equation 2). In a ranking based technique,

such as F007, it is possible that two or more functions can be listed at the same rank. In

such cases, the best case is the first function to be examined is faulty and the worst case is

the last function to be examined is faulty. For example, suppose there is one function

listed at rank 1, five functions listed at rank 2, and one of the five functions at rank 2 is

83

faulty. The best case is that the faulty function is the second to be discovered (i.e., one at

rank 1 and one at rank 2), whereas the worst case is that the faulty function is the sixth to

be discovered. This implies that an incompetent technique will have high best case

accuracy (e.g., 90-100% accuracy on examining 1-10% of the program) and low worst

case accuracy (e.g., 90-100% accuracy on examining 90-100% of the program), because

it will list all the functions as faulty at the same rank.

Figure 22: Best and worst case accuracies using F007 for the UNIX utilities.

In our case, the worst and the best case mostly resulted in the same accuracy: in few

cases, there were only minor difference between the worst and the best case. For

example, Figure 22 shows the examples of the worst and the best case accuracy

differences on the UNIX utilities obtained using F007. Thus, in all our results we have

shown the best case accuracies because: (a) there was hardly any difference between the

worst and the best case; (b) this avoided cluttering of graphs; and (c) related techniques

84

demonstrate their best cases, a valid comparison could only be made by comparing their

best cases with our best case.

Another threat to construct validity exists in measuring the code reviewed by the

programmer to identify faulty functions. This measure of programmer’s effort was

dependent on the faulty traces and their correct mapping to faulty functions. In the case of

the large software application, as mentioned in Section 2.7, no record of direct mapping

between faulty functions and failed traces was kept. We collected the required data by

using the help of different developers, tools and scripts. The process was complex and it

could have resulted in discrepancies in the mappings of traces to the faulty functions in

some cases. This threat was mitigated by the fact that the results on the very large

software application were similar to the results of other software studied. Also, this threat

was mitigated by using sufficient number of traces for the large software.

A threat to construct validity exists in the use of failed field traces for fault discovery by

F007. Consider, automated failure reporting such as in Mozilla, Net Beans, and Visual

Studio. This failure reporting facilitates fault localization by providing contextual

information, traces, etc. to the developers. It may be possible that such large number of

traces may contain passing traces. In such cases, pass-fail classification techniques

(Bowring et al., 2004; Haran et al., 2007) or a technique to collect only function-calls

related to the fault (Elbaum et al., 2007) (which are complementary to our work) can be

used to classify a trace as passing or failing. However, if a trace is captured at the time of

a fault (as it was in the case of the large program; see Section 2.7), then F007 will

identify faulty functions in that trace. This is because if the trace is captured at the time of

a fault then it would encompass the sequences of function-calls contributing to faulty

functions; even if it doesn’t contain specific fault conditions (e.g., exception thrown).

Thus, F007 can identify faulty functions in such field traces because our results (in

Section 2.7) on the large program are not different from other subject programs.

2.11.4 External Validity

External validity refers to the ability to generalize results of an experiment to industrial

practice (Wohlin et al., 2000).

85

If a commercial software application is restructured, then a threat exists when predicting

faulty functions across the releases. In the restructuring of software application new

functions are added, previous functions are modified, and functions are re-grouped in

different namespaces or files. Therefore, the restructuring is just like a new release of

software and the same method can be applied as discussed in Section 2.8. For example, in

the “Sed” program (of the UNIX utilities) release 3.02 to release 4.0.6 took 5 years,

almost every major function changed, new developers work on the project and changes

were significant (Do et al.,2005). Our results on the Sed program are shown in Section

2.6.

2.12 Conclusions and Future Work

Discovering the origin of a fault (Brodie et al., 2005; Lee and Iyer, 2000) is an arduous

task; it soaks up 30% to 40% of the time required to do corrective maintenance

(Proprietary Workshop, 2008) -- despite the fact that 10%-20% of a program’s code is

deemed responsible for 80% of the faults (Gittens et al., 2005; Ostrand et al., 2005) and

50%-90% of field failures are rediscoveries of previous faults (Brodie et al., 2005; Lee

and Iyer, 2000; Wood, 2003). A number of techniques proposed for deployed software

focus on: the classification of field profiles into failed or successful executions (Bowring

et al., 2004; Haran et al., 2007); clustering field profiles (Podgurski et al., 2003);

rediscovery of crashing failures (Brodie et al., 2005; Lee and Iyer, 2000); and statistical

debugging (Chilimbi et al., 2009).

This paper describes a new technique (called F007) for identifying faulty functions from

a given “failed” execution trace. F007 trains the decision tree algorithm C4.5 on function-

calls extracted from a collection of failed traces to identify faulty functions in a new

failed trace (see Section 3). F007 deals with both crashing and non-crashing faults. This

technique is beneficial for deployed systems because most of the failures are

rediscoveries of the same or similar faults originating from the same area of the source

code (see Section 2.1). F007 is also useful when only a few traces are available and a

collection of many traces (e.g., pass-fail) is not feasible. In contrast, closely related

techniques find the fault in a trace at a coarser level (Podgurski et al., 2003) such as files,

discovering only those rediscovered faults causing crashes (Brodie et al., 2005; Lee and

86

Iyer, 2000) , or require both passing traces and failing traces for a fault (Chilimbi et al.,

2009).

We evaluated F007 on the Siemens suite (Hutchins et al., 1994), the Space program, and

the four UNIX utilities (i.e., Flex, Grep, Gzip and Sed) (see Section 2.6). On training

F007 on 1-25% of the failed traces, F007 can identify faulty functions in: (a) 75% to 90%

of the failed traces in the test set of the UNIX utilities by reviewing 5% or less of the

code (see Section 2.6.2); (b) 70% of the failed traces in the test set of the Siemens suite

by reviewing 20% or less of the code (see Section 2.6.2); and (c) 96% of the failed traces

in the Space program by reviewing 5% or less of the code (see Section 2.6.2). There is no

direct quantitative comparison of F007 with the related techniques (see Section 2.10);

however, if compared with the closest techniques (Di Fatta et al., 2006; Jones and

Harrold, 2005) (see Figure 20) identifying faulty functions using a collection of pass-fail

traces, then F007 still identifies faulty functions with 20% better accuracy at a finer grain

level of an individual trace. F007 makes this identification using previous failed traces of

(at least one fault of) the same function and focuses on corrective maintenance; whereas

other techniques require pass-fail traces and focus on testing.

During our experiments, we found that: (a) patterns (combinations) of function-calls (see

Section 2.3.1) do not discover faults better than single function-calls when used with

classification algorithms (e.g., decision tree; see Section 2.6.1); (b) the use of only the

“function entry” or the “function exits” in the function-call level trace would suffice to

discover faults with the same accuracy as that when both the “function entry and exit”

are used together (see Section 2.6.4) – thus, reducing the overhead (size, time) of a trace

to half; and (c) faults in the same function occur with similar sequence of function-calls

because F007 can identify same faulty functions with new faults by using the knowledge

of previous faults in the same function (see Section 2.6.2 and Section 2.7).

We also evaluated F007 on a large commercial software system of over 20 million LOC

and 200K+ functions (see Section 2.7). F007 can identify faulty functions in the

subsequent releases by using the failed traces of previous releases with: (a) approximately

10-60% failed traces on the review of 10% of the code (see Section 2.6.2) in the UNIX

87

utilities; and (b) approximately 30-60% failed traces on the review of 3% in the large

commercial application (see Section 2.7.6). Similarly, if F007 is trained on 10-25% of the

failed traces of a release, then F007 can identify faulty functions in approximately 70-

80% of the remaining failed traces of the same release of the large program: this

identification requires 1-3% of the code review (see Section 2.7.6). In the case of the

large system, we empirically found that rarely occurring function-calls or function-calls

with the similar frequencies among traces can be removed without affecting the accuracy

(see Section 2.7.6); this is similar to what Yuan et al. (2006) found on another large

system (Windows XP). This can further facilitate in reducing the size of a function-call

trace. Moreover, no direct quantitative comparison of performance of F007 on the large

program is possible with any other techniques because of its large size and approach of

F007 in discovering faulty functions (or components).

 Though F007 cannot identify the faults in the new faulty functions, this limitation is

compensated by the fact that 50-90% of the field failures are rediscoveries of the previous

faults (Brodie et al., 2005; Lee and Iyer, 2000; Wood, 2003) and originate from the same

20% area of code (Gittens et al., 2005; Ostrand et al., 2005). For future work, we are

planning studies to overcome this limitation by employing mutants to generate faulty

functions for data preparation. This would allow F007 to identify all the faulty functions

if the faults in the same function occur with similar sequence of function-calls.

Thus, we conclude that using function-call traces of at least one fault in the same function

from previous releases or the same release, we can identify faulty functions in majority of

the traces of new failures. This has been verified on many subject programs of this study.

2.13 References

 Agrawal, H.; Horgan, J.R.; & London, S.; Wong, W.E.; “Fault Localization using

Execution Slices and Dataflow Tests”. Proc. Int’l Softw. Symp. on Reliability

Eng., France, Oct., 1995, pp.143-151.

Bowring J.F.; Rehg J.M.; and Harrold. M.J; “Active Learning for Automatic

Classification of Software Behavior”, SIGSOFT Soft Eng. Notes Vol. 29, No. 4,

ACM, US, Jul. 2004, pp. 195-204.

Brodie, M.; Sheng Ma; Lohman, G.; Mignet, L.; Modani, N.; Wilding, M.; Champlin, J.;

and Sohn, P.; “Quickly Finding Known Software Problems via Automated

88

Symptom Matching”. Proc. 2nd Int’l Conf. on Autonomic Computing, Seattle,

USA, June 2005, pp. 101-110.

Chapin. N, “Do We Know What Preventive Maintenance Is?, Proc. of Int’l Conf. on Soft.

Maintenance, IEEE CS, Washington , USA, October, 2000, pp. 15-17.

Chen M.; Accardi A.; Kiciman E.; and Fox A.; Patterson D.; and Brewer E.; “Path-based

Failure and Evolution Management”. Proc. Int’l Symp. on Networked Systems

Design and Implementation, San Francisco, USA, March 2004, pp. 309-322.

Chilimbi, T. M.; Liblit, B.; Mehra, K.; Nori, A. V.; and Vaswani, K; “HOLMES:

Effective Statistical Debugging via Efficient Path Profiling”. Proc. 31
st
 Intl.

Conf. on Softw. Eng., IEEE CS, Canada, May, 2009, pp. 34-44.

Dallmeier, V.; Lindig, C.; and Zeller, A.; “Lightweight Defect Localization for Java”.

Proc. 19th European Conf. on Object-Oriented Programming, Springer LNCS,

Glasgow, UK, Aug. 2005, pp. 528-550.

Di Fatta, G.; Leue, S.; and Stegantova, E; “Discriminative Pattern Mining in Software

Fault Detection”. Proc.3
rd

 Int’l Workshop on Softw. Quality Assurance, ACM,

Oregon, USA, Nov. 2006, pp. 62-69.

Ding, X.; Huang, H.; Ruan, Y.; Shaikh, A.; and Zhang, X.; “Automatic Software Fault

Diagnosis by Exploiting Application Signatures”. Proc. 22nd Conf. on Large

Installation System Admin., San Diego, CA, USA, Nov., 2008, pp. 23-39.

Do, H.; Elbaum, S. G.; and Rothermel, G.; “Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact". Empirical Softw.

Eng., Vol. 10, Springer, Oct. 2005, pp. 405-435.

Elbaum, S., Kanduri, S., and Andrews, A. “Trace Anomalies as Precursors of Field

Failures: An Empirical Study”. Empirical Softw. Eng., Vol.12, No.5, Springer,

Oct. 2007, pp. 447-469.

Etrace (Runtime Tracing Tool): http://ndevilla.free.fr/etrace/; March, 2008

Gittens M.; Kim Y.; and Godwin D.; “The Vital Few Versus the Trivial Many:

Examining the Pareto Principle for Software”. Proc. 29th Int'l Computer Softw.

and Appl. Conf., IEEE CS, Edinburgh, Scotland, July 2005, pp. 179-185.

Haran, M.; Karr, A.; Last, M.; Orso, A.; Porter, A.A.; Sanil, A.; Fouche, S.; “Techniques

for Classifying Executions of Deployed Software to Support Software

Engineering Tasks”. IEEE Trans. on Softw. Eng. Vol. 33, No.5, May, 2007, pp.

287-304.

Hutchins, M.; Foster, H.; Goradia, T.; Ostrand, T., "Experiments on The Effectiveness of

Dataflow- and Control-Flow-Based Test Adequacy Criteria". Proc. 16
th

 Int’l

Conf. on Softw. Eng., IEEE, Sorrento, Italy, May,1994 ,pp.191-200.

Jones, J. A. and Harrold, M. J., "Empirical Evaluation of the Tarantula Automatic Fault-

Localization Technique". Proc. 20th Int’l Conf. on Automated Softw. Eng.,

IEEE/ACM, CA, USA, 2005, pp.273-282.

89

Lee M. G. and Jefferson T. L.; “An Empirical Study of Software Maintenance of a Web-

based Java Application”. Proc. Int’l Conf. on Soft. Maintenance, IEEE, Budapest,

Hungary, Sep., 2005, pp. 571-576.

Lee, I.; Iyer, R., “Diagnosing Rediscovered Problems Using Symptoms”. IEEE Trans. on

Sofw. Eng., Vol. 26, No. 2, Feb, 2000, pp.113-127.

Liu, C. and Han, J., “Failure Proximity: A Fault Localization-based Approach”. Proc. of

the 14th SIGSOFT Symp. on Foundations of Softw. Eng., ACM, Portland, USA,

Nov. 2006, pp. 45-56.

Liu, C.; Yan, X.; Fei, L.; Han, J.; Midkiff, S. P.; “SOBER: Statistical Model-Based Bug

Localization”. SIGSOFT Softw. Eng. Notes, Vol 30, No.5, ACM, USA, Sep.,

2005, pp. 286-295.

Mannila, H.; Toivonen, H; Inkeri,V.; "Discovery of Frequent Episodes in Event

Sequences". Data Mining and Knowledge Discovery, Vol. 1, No. 3, Springer, Jan

1997, pp. 259-289.

Marques de Sá, J., P.; Applied Statistics Using SPSS, STATISTICA, MATLAB and R,

1st ed., Springer, Aug., 2003.

Murtaza, S.,S.; Gittens, M.; Li, Z.; Madhavji, N.,H.; “F007: Finding Rediscovered Faults

from the Field using Function-level Failed Traces of Software in the Field”. Proc.

Conf. of the Center for Advanced Studies on Collaborative Research: Meeting of

Minds, ACM, Canada, Nov. 2010, pp. 61-75.

Ostrand T. J., Weyuker E., and Bell R. M., “Predicting the Location and Number of

Faults in Large Software Systems”. IEEE Trans. on Softw. Eng., Vol. 31, No. 4,

2005, pp. 340-355.

Podgurski, A.; Leon, D.; Francis, P.; Masri,W.; Minch, M.; & Sun, J.; Wang, B,

“Automated Support for Classifying Software Failure Reports”. Proc. Intl. Conf.

on Softw. Eng., IEEE CS, Portland, US, May, 2003, pp. 465-475.

Polat, K. and Güneş, S; “A Novel Hybrid Intelligent Method Based on C4.5 Decision

Tree Classifier and One-Against-All Approach for Multi-class Classification

Problems”. J. of Expert Syst. Appl., Vol. 36, No.2, Pergamon Press, Mar.2009,

pp.1587-1592.

Proprietary workshop on large commercial software, Sep., 2008.

Refaat, M.; Data Preparation for Data Mining using SAS, Elsevier, 2007.

Quinlan, J. R.; C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,

1993.

Refaat M., Data Preparation for Data Mining using SAS, Elsevier, 2007.

Schach S. R.; Jin B.; Yu L.; Heller G. Z.; and Offutt J.; “Determining the Distribution of

Maintenance Categories: Survey versus Measurement”. Empirical Soft. Eng. Vol.

8, No. 4, Springer, Dec., 2003, pp. 351-365.

Siemens Suite: http://www-static.cc.gatech.edu/ aristotle/Tools/ subjects/, March, 2008.

90

Sousa M. J., "A Survey on the Software Maintenance Process”, Proc. of 14
th

 Int’l Conf.

on Soft. Maintenance, IEEE CS, Washington, March, 1998, pp. 265-274.

Witten I.H. and Frank E., Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, San Francisco, USA, 2005.

Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; and Wesslén, A;;.

Experimentation in Software Engineering: An Introduction. Kluwer Academic

Publishers, Norwell, USA, 2000..

Wong, W. E. and Qi, Y.; “Effective Program Debugging Based On Execution Slices and

Inter-Block Data Dependency”. J. Syst. Softw., Elsevier, Vol.79, No. 7, July,

2006, pp. 891-903.

Wong, W.E.; Yu Qi; Lei Zhao; Kai-Yuan Cai, "Effective Fault Localization using Code

Coverage". Proc. 31
st
 Int’l Conf. on Comp. Softw. & App., IEEE, China, July,

2007, pp.449-456.

Wood A., “Software Reliability from the Customer View”. Computer, Vol. 36, No. 8,

IEEE CS, Aug., 2003, pp.37-42.

Yuan, C.; Lao, N.; Wen, J.; Li, J.; Zhang, Z.; Wang, Y.; and Ma, W; “Automated Known

Problem Diagnosis with Event Traces”. SIGOPS, OS. Syst. Rev., Vol. 40, No. 4,

ACM, USA, Oct., Aug. 2006, pp. 375-388.

Zhang, Z.; Jiang B., and Wang, X., "Capturing Propagation of Infected Program States".

Proc. Intl. Conf. on Foundations of Soft Engg., ACM, Netherlands, 2009, pp. 43-

52

 Zheng A.X.; Jordan M.I., Liblit, B.; and Aiken, A; “Statistical Debugging of Sampled

Programs”. Advances in Neural Info. Processing Syst., MIT Press, Cambridge,

MA, US, 2004, pp. 9-18.

91

Chapter 3

3 Using Mutants to Discover New and Rediscovered Field
Faults by Exploiting the Similarity of Traces among
Different Faulty Functions

3.1 Introduction

Scientific literature indicates that corrective maintenance of software consumes 30-60%

(Lee and Jefferson, 2005; Schach et al., 2003) of the time of maintenance activities.

Typically, maintainers collect data (such as execution traces) related to software failures

in order to fix the faults. For cost reduction and quality purposes, organizations of such

applications as Mozilla, NetBeans, Microsoft Visual Studio.NET and others have

employed automated means to collect and report failure-data.

While such automation makes data collection and reporting practical from numerous

sources, it can also overwhelm developers because manually interpreting such reports and

identifying fault origin is resource draining for large systems with huge user bases

(Podgurski et al., 2003). Data shows that it can soak up 30%-40% of corrective

maintenance time (Proprietary Workshop, 2008).

Thus, various researchers have focused on reducing the time spent in the discovery of

faults. Prior research includes: (a) classification of field traces as failed or successful

(e.g., using decision trees (Haran et al., 2007), using Markov models (Bowring et al.,

2004); (b) classification of rediscovered crashing failures (e.g., by matching symptoms

with previous faults (Brodie et al., 2005; Lee and Iyer, 2000)); (c) clustering traces

relating to coarse grain code such as files (Podgurski et al., 2003); (d) using statistical

debugging to identify a fault from passing traces and failing traces of that fault (Chilimbi

et al., 2009; Liu and Han, 2006); and (e) our earlier work (called F007) (Murtaza, et al.,

2010) that identified rediscovered faulty functions from failed traces. Prior techniques

either (i) require a collection of passing and failing traces, which is resource-intensive for

deployed software, or (ii) they focus only on rediscovered faults, which means new faults

cannot be discovered.

92

The ‘entry’ and ‘exit’ points represent function entry and exit, respectively.

Figure 23: Failed function-call level execution traces for faults in function “sgrrot”,

“GetReal” and “mksnode” of the Space program.

Different functions in a computer program have different purposes, but they are

programmed to cooperate in order to achieve specific goals according to stakeholder

scenarios. It is possible that though two goals (say A and B) are distinct, there are

partially overlapping execution paths in achieving these two goals. That is, some

functions and the sequence in which they are executed are similar in attempting to reach

the distinct goals A and B. Also, two distinct goals X and Y can have completely non-

overlapping execution paths; that is, functions executed in achieving goals X and Y are

different. Thus, the program traces resultant from the execution of similar function

sequences (on the paths to achieve goals A and B) will be similar, and program traces due

to goals X and Y will have different function sequences.

In Figure 23, we show the ends of traces of faults in functions of the Space program (Do

et al., 2005) – an interpreter for an antenna array definition language written for the

European Space Agency. Figure 23 shows that when two different faults (V12 and V18)

occur in the function “sgrrot” then program traces of failing test cases are exactly the

same; and when a fault (V11) occurs in the function “mksnode” (part ‘c’) then the trailing

93

end of the failing trace is the same as the failing trace of faults in function “sgrrot” (part

‘a’). On the contrary, Figure 23 also shows that the program traces of a fault (V6) in the

function “GetReal” (part ‘b’) are completely different from the traces of faults in the

functions “sgrrot” and “mksnode”. These observations show that (failing) traces of faults

in some functions (e.g., “sgrrot” and mksnode”) are similar to each other, and traces of

faults in some functions are completely different from one another.

These initial observations warrant further empirical investigation because—if there is a

similarity in the faulty traces of related functions then—using the traces of artificial

faults (e.g., manually or automatically seeded faults) of functions, we can identify the

same faulty functions in the traces from actual program executions by users. In practice,

artificial faults can be seeded into functions during (or after) software testing before

deploying a software application, and traces of artificially faulty functions can be

collected by running test cases. Literature suggests that we can identify the majority of

the real faulty functions using artificially faulty functions because: (a) 50-90% of the

faults are rediscoveries of previous faults (Brodie et al., 2005; Lee and Iyer, 2000; Wood,

2003) —implying that function-call patterns will be similar for the same faulty functions;

and (b) 20% of the code is responsible for 80-100% of the faults (Gittens et al., 2005;

Ostrand et al., 2005)—implying that function-call patterns will be similar for the faults

originating from the same area of code (functions). If the majority of faulty functions in

field traces can be quickly identified then the time spent in corrective maintenance would

be reduced.

In our previous work (called F007) (Murtaza, et al., 2010), we showed empirically that

different faults in the same function occur with similar function-calls. We observed that

by using the function-call level traces of at least one fault of a function, we can discover

the same faulty function from the traces of different faults in that function (Murtaza, et

al., 2010). This characteristic was observed on the function-calls of only previously

known faulty functions of the subject programs; which represented a small percentage of

total functions of the subject programs. In this paper, considering the observations of

Figure 23 (that traces of different faulty functions are similar), we extend the scope of our

94

previous empirical investigation to all the functions (i.e., making them artificially faulty)

by addressing the question:

 (Q1) Are the function-call level traces of some faulty functions similar and that of some

other faulty functions different?

Furthermore, F007 (Murtaza, et al., 2010) requires a historical collection of failed traces

of the actual faulty functions in order to discover those functions in the traces of

(crashing and non-crashing) field failures. Though useful for identifying faulty functions

in the field traces, this also limits the use of F007 to only the set of previously known

faulty functions. This paper overcomes the limitation of F007 by proposing a new

strategy to identify both new and old faulty functions in the failed traces. This new

strategy, called F007-plus, uses (a) failed traces of mutants (Offutt et al., 2001) (i.e.,

automatically seeded faults generated by modifying statements) – this was not the case in

the previous F007 approach (which, from hereon, is called F007-basic to avoid

confusion)—and (b) failed traces of previously known faulty functions in order to

identify the new and old faulty functions in traces. The use of mutants in F007-plus, in

fact, facilitates F007-basic (Murtaza, et al., 2010) to discover new faulty functions. Thus,

the second research question that follows from this mutant based strategy is:

(Q2) Can the faults generated using mutants be used to discover the actual faults?

 These two questions posed in this paper are new and have not been dealt with in the

literature before. As mentioned earlier, these questions are important because we can

reduce the time and effort spent in corrective maintenance by using artificial faults (i.e.,

mutants) to discover the actual faults. This paper investigates the answers to these

questions by using Space (Do et al., 2005), Flex (Do et al., 2005), Grep (Do et al., 2005),

Gzip (Do et al., 2005) and Sed programs (Do et al., 2005) as the subject programs of this

study. These programs were selected because of their commercial or production- level

usage, reasonable sizes, and use by other fault discovery and testing related techniques

(Andrews et al., 2005; Jones and Harrold, 2005; Wong et al., 2007; Zhang et al., 2009).

The contributions of this paper are:

95

 (a) The finding that traces (function-calls) of different faults in a group of related

functions are similar; and traces of faults in one group of functions are different from

traces of faults in another group of functions. This answers the first research question

(Q1).

(b) When using F007-plus, faulty functions in approximately 30-80% of the failed

traces of the latest release of the subject programs can be identified by reviewing 20%

of the code: in this identification F007-plus used traces of mutants of the latest releases

and the failed traces of previous releases. This answers the research question (Q2). If

F007-plus is compared against F007-basic (which only uses traces of previous releases)

then F007-plus improves upon F007-basic by 10-60% by reviewing of 20% of the code.

(c) If compared with third party techniques in the literature then F007-plus: (i) does not

require the knowledge of passing and failing traces (Chilimbi et al., 2009; Liu and Han,

2006) and (ii) can identify finer–grain faulty functions from both crashing and non-

crashing failures (Brodie et al., 2005; Lee and Iyer, 2000). Also, this paper distinguishes

itself by investigating: (i) the use of mutants in discovering actual faults; and (ii) the

similarity of traces among different faulty functions. The collective contributions of this

paper add to the advancement of scientific knowledge, and were not discussed in the

literature before.

The rest of the paper continues as follows: in Section 3.2, we describe related work;

Section 3.3 describes the differences between F007-basic and F007-plus; Section 3.4

explains the fundamentals of mutation and decision tree as used in F007 and F007-plus;

Section 3.5 describes the steps of F007-plus strategy; Section 3.6 describes the execution

time; Section 3.7 finds answers to the issue of similarity of function-calls (Q1) and the

effect of making every function artificially faulty using mutants (Q2); Section 3.8

evaluates the strategy F007-plus (Q2) and improves the answer to (Q2); Section 3.9

summarizes all the results of this paper; Section 3.10 compares F007-plus against other

techniques; Section 3.11 explains threats to validity of the investigated questions; and

Section 3.12 explains the conclusion and future work arising from this study.

96

3.2 Related Work

 This section describes closely related techniques such as: fault discovery techniques for

in-house faults (e.g., evaluating statement coverage to discover faulty statements (Jones

and Harrold, 2005; Wong and Qi, 2006, Wong et al., 2007); fault discovery techniques

for field failures (e.g., rediscovering known crashing problems (Lee and Iyer, 2000; Liu

and Han, 2006) and the use of mutation (e.g., for measuring test case efficacy (Mayer

and Schneckenburger, 2006; Do and Rothermel, 2006).

3.2.1 Fault Discovery Techniques for Inhouse Faults

Many researchers have proposed techniques for discovering fault locations by using the

difference between passing traces and failing traces pertaining to a fault such as:

discovering faulty statements using statement level traces (e.g., Agrawal et al. (1995),

Wong and Qi (2006), Jones and Harrold (2005), Zhang et al. (2009) and Wong et al.

(2007)); discovering faulty functions using function-call traces (e.g., Di Fatta et al.

(2006)); discovering faulty classes using function-call traces (e.g., Dallmeier et al.

(2005)); and identifying assertions (e.g., null pointer checks) using statistical debugging

(e.g., Zheng et al. (2004) and (SOBER) Liu et al.(2005)).

These techniques are suitable for in-house testing but not for deployed software because:

(a) different customer usages can cause many different normal execution paths that are

not observed in the passing executions of in-house testing, and it is not feasible to collect

many passing traces from customers due to overhead involved in the trace collection;(b)

they require a collection of failing traces related to the same fault, but failure traces in the

field do not necessarily materialize for the same fault; (c) in deployed software, often

only a few traces (at the time of fault) are available due to the overhead incurred in the

trace collection, and sometimes it is not known if a trace is passing or failing; and (d) the

statistical debugging-based techniques require the knowledge of a type of a fault for

instrumentation, and if a fault is not found, another type of assertion (e.g., null pointer

check) is instrumented in source code and the process continues till the fault is found—

not feasible to disrupt the execution of deployed software for so long.

97

3.2.2 Fault Discovery Techniques for Field Failures

Podgurski et al. (2003) form clusters of execution traces of the field failures based on

common faulty source files. The granularity in the Podgurski et al. approach is a faulty

file where the majority of the clusters encompasses failed traces with different files,

making it not suitable for the discovery of finer-grained (e.g., function) origin of fault. In

contrast, in this paper we focus on discovering faulty functions from only a field trace

using previous failing traces and traces of mutants.

Liu and Han (2006) cluster failing runs according to the rank list of assertions obtained

using the statistical debugging tool SOBER (Liu et al., 2005). Liu and Han (2006),

require a collection of passing traces and failing traces for the same fault to discover its

origin. Their work also suffers from the limitations of statistical debugging-based

techniques and requirement of pass-fail traces (see Section 3.2.1). In this paper, we focus

on discovering faulty functions by using only failed traces by avoiding such limitations.

Another statistical debugging tool, HOLMES (Chilimbi et al., 2009), identifies suspicious

fault locations from the traces containing executed paths of deployed software. This tool

can only be applied to server side applications, because they (Chilimbi et al., 2009) have

to redeploy software components with instrumentation of selected functions to collect

passing traces and failing traces pertaining to one fault. The use of passing-failing traces

is also a limitation, as discussed in Section 3.2.1. Also, in some cases, this may not be

feasible for servers too due to the redeployment of instrumented software components on

running systems.

Elbaum et al. (2007) propose a technique that compares the field failure traces (function

sequences) to in-house passing traces in order to anticipate the occurrence of a failure

such that data collection for a defect in the field can be started. Bowring et al. (2004) and

Haran et al. (2007) develop a technique based on the Markov model (Bowring et al.,

2004) and the decision tree (Haran et al., 2007) to characterize (statement or branch level)

executions as being passing or failing runs. These techniques complement our work in

discovering faulty functions in the following ways: (a) if traces collected from the field

also contain some of the passing traces, they can be filtered by using the techniques

98

proposed by Haran et al. (2007) and Bowring et al. (2004); or (b) failed traces from the

field can be collected directly from the field using Elbaum’s et al. (2007) technique.

Subsequently, F007-pluse can use the filtered (failed) traces to localize faulty functions.

Brodie et al. (2005) use string matching to group one function-call trace of a crash with

other groups of function-call traces for different known crashes. Lee and Iyer (2000)

propose a technique to classify a rediscovered crashing failure by literal matching of its

function-call trace with already known failure traces. They consider a variety of

heuristics to match several function-call paths followed by the same fault. In this paper,

we address the more difficult problem of non-crashing failure classification, where a user

may notice a failure well after the execution of faulty code. We focus on discovering

faulty functions in both the non-crashing (e.g., logical error) and crashing failure (e.g.,

segmentation fault) traces at the fine-grained level of faulty function.

Yuan et al. (2006) employ support vector machines (a classification algorithm in machine

learning) to determine the root causes of a problem (e.g., unable to browse on Internet

explorer) confronting a user of a system on the basis of execution traces of software.

Chen et al. (2004) describe a technique based on the decision tree and the association rule

to diagnose faulty components (e.g., a web server) in large distributed systems. Ding et

al. (2008) also propose a technique to identify faults occurring due to configuration of

software (e.g., large log files) by contrasting failing and passing runs. These techniques

also complement our work; for example, these techniques can identify fault at the system

level (e.g., memory overload), after which F007-plus can identify logical faults (e.g.,

infinite loop).

3.2.3 Fault Discovery Using Mutation

Mutants are automatically generated variants (faulty version) of a program obtained by

applying mutation operators to the source code (Offutt et al., 2001): this is called

mutation (Andrews et al., 2005; Offutt et al., 2001). For example, mutation operators

include changing an arithmetic operator with another in a statement, negating a decision

in if or while statements, or deleting a statement. Moreover, mutation analysis is a

99

measure of quality of test cases (Offutt et al., 2001). Mutation and related concepts are

further explained in Section 3.4.2.

Mutation analysis has mostly been used to measure, enhance and compare the

effectiveness of testing strategies. For example, Mayer and Schneckenburger (2006) use

mutation analysis to compare the effectiveness of all the adaptive random testing

techniques in detecting failures. Similarly, Do and Rothermel (2006) employ mutation

analysis to evaluate the ability of several test case prioritization techniques in improving

the fault detection rate on Java programs. Test case prioritization is used to reduce the

cost of regression testing by running important test cases first—i.e., test cases which have

more chances of detecting faults (Do and Rothermel, 2006). Andrews et al. (2006) use

mutation analysis to compare the cost-effectiveness of data and control flow coverage

criteria (i.e., Block, Decision, C-Use, and P-Use). Andrews et al. have also empirically

determined that mutation faults are similar to real faults (Andrews et al., 2005; Andrews

et al., 2006), but different from hand seeded-faults (Andrews et al., 2005). Hao et al.

(2005) use mutants as faulty versions of a program to evaluate fault localization

techniques. In contrast, the focus of this paper is on using the faults generated from

mutation to discover the origin of real faults, and on using mutants to determine the

similarity of function-calls of different faults.

3.2.4 Research Gap

Comparable studies in the literature focusing on field failures find faults in traces at

coarse-grain levels (e.g., file) (Podgurski et al., 2003), discover only crashing faults

(Brodie et al., 2005; Lee and Iyer, 2000) require a collection of passing and failing traces

for a fault (Chilimbi et al, 2009; Liu and Han, 2006) and F007-basic (Murtaza, et al.,

2010) (overviewed in the next section) identifies only rediscovered faulty functions from

only a failed field trace. Based on this, we describe the research gap as: (i) identifying

new faulty functions from only a failed trace of crashing and non-crashing failures and

(ii) discovering actual faults using mutants, which helps in preparation of failed traces

without affecting deployed systems.

100

This paper distinguishes from previous work as in: (a) it proposes a new strategy (F007-

plus) that improves F007-basic in discovering new and rediscovered faulty functions

from failed field traces; (b) it investigates whether mutants can be used to discover actual

faults; and (c) it investigates whether function-call traces of different faulty functions are

similar.

These distinguishing factors are important because: (a) F007-plus can discover faulty

functions when only a few traces of failures are available from deployed systems; and (b)

we can use the function-call level traces of mutants of approximately 20% functions to

identify faulty functions in approximately 80% of the actual failed traces, if the function-

call traces of different faulty functions are similar.

3.3 F007-basic and F007-plus Overview

In this section, we explain the fundamental differences of F007-basic and F007-plus. First

we describe the steps of F007-basic, showing how F007 works, in Section 3.3.1. Second,

we identify the steps of F007-plus in Section 3.3.2.

3.3.1 F007-basic

F007-basic identifies rediscovered faulty functions (Murtaza, et al., 2010) from the

function-call level traces of field failures. The steps of F007-basic are explained below:

Step 1: F007-basic first extracts function-calls and their occurrences from the given

function-call level traces
15

 of prior failures of a program. F007 then labels function-calls

and their occurrences of each trace with its corresponding faulty functions.

Step 2: Secondly, F007-basic trains the decision trees using one-against-all (Witten and

Frank, 2005) approach on the extracted function-calls and their corresponding faulty

functions, identified in Step1. In the one-against-all approach, one decision tree is trained

for each faulty function.

15
 Function-call level trace is shown in Figure 23 where the “function entry” shows when control enters the

function and the “function exit” shows when the control leaves the function.

101

Step 3: Thirdly, when a new failed trace arrives, F007-basic also extract function-calls

and their occurrences from that trace and provides it to the trained decision trees. Each

decision tree predicts a faulty function with a probability. Functions are then arranged in

decreasing order of the probability with the intuition that the top most functions are more

likely to be faulty than the lower ones in the list.

3.3.2 F007-plus

The F007-plus strategy facilitates F007-basic to discover new and rediscovered faulty

functions. A scenario for fault discovery using F007-plus in a failed trace of a deployed

system is depicted in Figure 24. Figure 24 shows that:

(1) When a fault occurs in the deployed system, a function-call level trace is captured.

The captured trace is then passed on to a “fault locator” as shown in Figure 24.

Figure 24: A scenario of fault discovery in failed traces of deployed software.

(2) The “fault locator” identifies faulty functions in the captured failed trace of the

deployed software system by using the decision tree (Witten and Frank, 2005) built on

a collection of failed traces of mutants (artificial faults) and prior faults. This strategy

102

of using mutant and prior faults is called F007-plus. F007-plus works as follows: (a)

F007-plus first identifies approximately 20% (or more) of the suspected faulty

functions in a software release, and generates mutants for those suspected functions;

and (b) F007-plus then collect traces on mutants of the suspected functions, and

execute F007-basic on traces of mutants and prior releases to discover new an old

faulty functions. The use of mutants facilitates F007-basic to discover majority of the

new faulty functions. Thus, the fault locator, shown in Figure 24, is based on the

improved strategy (F007-plus) of mutants and prior faults to train the decision trees.

(3) Once faulty functions in the captured failed trace are correctly identified, the trace is

added to the collection of the failed traces. The fault locator will then be able to

resolve potential failed traces based on the updated knowledge of the failed traces.

Thus, F007-plus strengthens F007-basic further in identifying faulty functions. The use of

mutants in F007-plus also facilitates in investigating questions posed in Section 3.1.

3.4 Fundamentals

This section provides the background necessary to understand the rest of the paper. In

Section 3.4.1 we first characterise the subject programs used in the study. Second, in

Section 3.4.2, we describe the fundamentals of mutation and draw examples of mutants

from the subject program. Third, in Section 3.4.3, we explain how decision trees are

generated using one-against-all approach, and show examples on mutant traces of the

subject programs.

3.4.1 Subject Programs

We used the Space program (Do et al., 2005) and four open source UNIX utilities (Do et

al., 2005) (i.e., Flex, Grep, Gzip and Sed) for our experiments. Space is a C program, an

interpreter for an antenna array definition language written for the European Space

Agency, and the faults were found during actual development. The UNIX utilities are

well known commercial applications and the faults in the UNIX utilities were hand

seeded (Do et al., 2005) but a specific procedure was followed to keep them realistic (Do

et al., 2005). For example, the faults were inserted at the changes between the source

103

codes of different releases. Space program and the UNIX utilities are made available by

Do et al. (2005) at the subject infrastructure repository (SIR). Space program has been

used in a number of major fault localization studies; e.g., classification of field traces as

failed or successful (Bowring et al., 2004), and finding faulty statements in a program

during in-house testing (Jones and Harrold, 2005; Wong and Qi, 2006). UNIX utilities

were also used in different studies; e.g., identifying faulty statements using edge profiles

(Zhang et al., 2009). Table 11 characterizes these programs in detail.

UNIX utilities come with different releases and have several faults in each release;

whereas the Space program has one release and many different faults. There are twenty

programs in Table 11, if we consider each release as one program. Each program consists

of one original version -- deemed correct because it passes all the test cases--and several

faulty versions -- deemed fail because they fail on one or more of the given test cases. A

faulty version is a variant of the original version by one fault—that is, one fault is

equivalent to one faulty version. A fault is equivalent to incorrect statements in the code.

In Table 11, the second row shows the release-numbers for each of the releases of the

UNIX utilities used in our study. We have labeled each release from R1 to R5, which will

be used in the following sections. In Table 11, first column shows the name of a program

and the second column shows the number of test cases. In the UNIX utilities, the test

cases were shared across releases. Third and fourth column in Table 11 show the lines of

Table 11: Characteristics of the subject programs.

Flex, Sed, Grep and Gzip are well known UNIX utilities.

 Space is an interpreter for an antenna array definition language written for the European Space Agency.

Releases for Flex: R1=2.4.7, R2= 2.5.1, R3=2.5.2, R4=2.5.3, R5=2.5.4.

Releases For Grep: R1=2.2, R2= 2.3, R3=2.4, R4=2.4.1.

Releases for Gzip: R1=1.1.2, R2= 1.2.2, R3=1.2.4, R4=1.3.
Releases for Sed: R1=2.0.5, R2= 3.01, R3=4.0.6, R4=4.0.7, R5=4.1.5.

Space and seven programs in the Siemens suite have only one release.

Program Test

Cases

LOC (excludes

comments &

blank lines)

Functions Faulty

Functions

Faulty

Versions

Failed Traces

Flex 567 8250-9831 151-169 3-12 (26) 4-16 (45) 7-362 (877)

Grep 809 8484-9041 142-150 2-4(9) 3-5(15) 11-247 (659)

Gzip 214 4032-5103 89-111 3-6(13) 3-6(16) 14-50 (99)

 Sed 370 4711-9226 115-183 1-4 (10) 3-5 (18) 60-141 (465)

Space 13585 5767 136 26 34 71958

104

code and the number of functions in a program. For the UNIX utilities third and fourth

column represent minimum and maximum LOC or functions for the different releases of

every program, respectively. For example, five releases of “Flex” have 8250 to 9831 lines

of code and 151 to 169 functions. Similarly, the last three columns of Table 11 show the

minimum-maximum number of distinct faulty functions, minimum-maximum faulty

versions and minimum-maximum failed test cases for the releases of every program of

the UNIX utilities. A number in the bracket of the last three columns for the UNIX

utilities show the total number of distinct faulty functions, total number of faulty

versions and total number test cases across all the releases of a program. For example, in

the case of Flex program, Table 11 shows that there are 3-12 faulty functions from

release 1-5 of the Flex program, and there are a total of 26 distinct faulty functions from

release 1-5. Similarly, there are 4-16 faulty versions (a total of 25), and 7-362 failed

traces (a total of 877) in all the five releases of the Flex program. The distinct faulty

functions point out that there were cases when the same function was found faulty across

different versions; that is, there were different faults in the same functions of different

releases. We used Etrace
16

 (2008) to collect the function-call level failed traces as shown

in Figure 23. A failed trace was collected when a test case failed on the faulty version. A

test case was considered failed when output of the same test case on the faulty version

differed from the original version of the program. Following the documentation provided

by Do et al. (2005) for the UNIX utilities and following the previous experiments (Zhang

et al., 2009) on the UNIX utilities, we excluded those faulty versions (faults) which failed

on more than 20% of the test cases. Thus, in Table 11, the faulty versions column

excludes those versions for which traces could not be captured due to non-failure of a test

case or due to the exclusion condition of more than 20% cases.

 Note that, for the “Grep” program no test cases failed for all the faults (faulty versions)

of release 2.4.2; that is., the fifth release for the “Grep” program provided by Do et al.

(2005) was excluded. Similarly, the “Sed” program had seven releases but no test cases

16
 Etrace has a bug which prevents it from capturing traces of the segmentation faults. We fixed it to

collect such traces.

105

failed for the release 1.18 and release 3.02; and. for “Gzip” no test cases failed on release

1.2.3. Accordingly, we have excluded these releases. Finally, for the Space program,

version 1, 2, 32 and 34 had no failing test cases.

Finally, the difference between mutants and the actual faults of the Space program and

the UNIX utilities is that mutants are automatically generated faults and they are not the

faults found in development or seeded by human experts; mutants are described below.

3.4.2 Mutation

The term mutation refers to the generation of mutants (faulty variant) of a program by

applying mutant operators (e.g., replacing an arithmetic operator with another operator in

a statement). Mutants are automatically generated (virtual) faulty versions; whereas,

faulty versions of the Space program and the UNIX utilities in Section 2.2.1 are the

actual faults.

A mutant is considered dead (or killed) if the output of a test case on the mutant differs

from the output of that test case on the original program (Offutt et al., 2001). Mutants

which are not killed by test cases are called live mutants. Live mutants actually show

inadequacy and weakness of the test suite in exposing faults (Offutt et al., 2001). If a test

suite misses some control flow paths of a program then it would be weak in detecting

mutants (i.e., faults) on those paths of a program. Sometimes mutants become equivalent

to the original program and they cannot be killed (Offutt et al., 2001)—i.e., they produce

the same output as the original program. Identifying equivalent mutants is a tedious task

and it is an undecidable problem (Andrews et al., 2005; Offutt et al., 2001) —not even

automatic solutions can identify all equivalent mutants (Offutt et al., 2001).

In this paper, we used a program developed by Andrews et al. (2005) to generate mutants

for the code written in the C language. In order to generate mutants for a source file, they

(Andrews et al., 2005) apply “mutation operators” (when possible) sequentially to each

line of code. This results into one mutant for every valid application of a mutation

operator on each line of code. Andrews et al. (2005), based on the research on mutation

operators, use the following four classes of mutation operators to generate mutants:

106

• First class replaces an integer constant C by 0, 1, -1, ((C)+1), or ((C)-1).

• Second class replaces an arithmetic, relational, logical, bitwise logical,

increment/decrement, or arithmetic-assignment operator by another operator from

the same class.

• Third class negates the decision in an if or while statement.

• Fourth class deletes a statement.

Figure 25: Correct source code of the function “Get1Real” of the Space program, its

real faulty version and its faults generated using mutants.

In Figure 25, we show the examples of mutants for the Space program by using the above

mutation operators. In Figure 25, part ‘a’ shows the source code of correct Space program

for the function “Get1Real”. Part ‘b’ of Figure 25 shows the faulty statements of the same

function “Get1Real” found in real faulty version (version 4) of the Space program, and

randomly selected mutants for the same function “Get1Real”. These three mutants are

obtained after applying three different mutant operators from the above list. Andrews et

al. (2005) have also empirically determined the relationship of mutant faults with the

actual faults. They found that mutant faults are close representative of the actual faults,

107

but they are different from hand seeded faults (when executing different techniques on

mutants, handseeded and actual faults). They also observed that the hand seeded faults

are harder to detect than the actual faults (2005).

The process of mutation can result in large number of mutants and it is computationally

expensive to use all of them. For example, for the Space program (6218 LOC), the

process of mutation can result in 12,262 mutants (i.e., 12,262 automatically generated

faulty versions). It can be expensive to run test suites on all the mutants of a program and

collect the failed traces for each mutant. For example, Dallmeier et al. (2005) found in

their experiments on the SPEC JVM 98 Java programs suite (543 class files, total size

1.48 MB) that an instrumented program can take two orders of magnitude of a normal run

(Dallmeier et al., 2005). This cannot be generalized; however, this shows an example of

instrumented software run.

 We therefore randomly selected only three mutants for every function of the subject

programs. We used three mutants per function in order to avoid a situation of no failed

traces for a faulty function, because sometimes a mutant does not compile or no test cases

fail on mutants (Andrews et al., 2006). The use of three mutants does not guarantee the

situation of no failed test cases, however generating more than three (e.g., five) would

result in lots of mutants for a program. A mutant does not compile if a change in

statement results in a compile time error; for example, deleting a variable declaration can

result in compile time error. A test case does not fail on a mutant when the mutant is

either a live mutant or an equivalent mutant.

Further, running all the test cases and collecting all the failed traces on mutants can be

quite time and space consuming. Therefore, we decided to experiment by collecting a

maximum of 10 failed traces per function, a maximum of 20 failed traces per function,

and a maximum of 30 failed traces per function (i.e., 10 failed traces per mutant). The

intuition is to determine the minimum number of failed traces necessary for predicting

faulty functions while keeping it feasible for resource utilization. The function-call traces

(see Figure 23) were again collected using Etrace (2008). We collected a failed trace if

108

the output of a test case on the mutant and the original version of a program (i.e., the

Space or a release of the UNIX utilities) differed.

 After collecting the failed traces of mutants, we trained the decision tree algorithm

(Witten and Frank, 2005) on them to predict faulty functions in the failed traces of actual

faults of the Space or the UNIX utilities. In data mining terminology, the failed traces of

mutants form a training set and the failed traces of actual faults form a test set.

3.4.3 Decision Tree

 We train the decision tree algorithm on a collection of failed traces. The intuition behind

using the decision tree is that the decision tree algorithm can associate similar

occurrences of function-calls to common faulty functions. The decision tree algorithm

first requires the failed traces to be converted into a form on which the decision tree can

be applied (Witten and Frank, 2005). This transformed representation of the failed traces

is shown in Figure 26, part a.

Figure 26: Faulty functions and traces from mutants of the Space program.

Figure 26 shows selected examples of function-calls and failed traces of mutants for the

Space program. A row represents a failed trace of a mutant and a cell represents the

109

occurrence of function-calls in that failed trace. The last column shows the known faulty

functions for failed traces obtained from the corresponding mutant. For example, row one

in Figure 26 shows that the function “adddef” occurred four times, “elemdef” occurred

once, and “waitcont” appeared once in the failed trace of the test case 5605 (T5605) on

the mutant 373(M373) of the Space program. The faulty function in this trace is the

function “adddef”. In data mining terminology, function-calls are independent variables

and faulty function is a dependent variable.

The reason for selecting single function-calls as independent variables (as columns in

Figure 26) lies in the empirical investigation of our earlier paper (Murtaza, et al., 2010),

where we have empirically investigated that the patterns (sub-sequences) of function-

calls do not yield better results than the single function-calls when used with the decision

tree.

For example, consider an example of a pattern (sequence) of length three function-calls

“adddef�elemdef�waitcont”. This pattern is read as “adddef” precedes “elemdef” and

“elemdef” precedes “waitcont” in the failed traces. If all such function-call patterns

(Murtaza, et al., 2010) of different lengths are extracted from the failed traces and used

with the decision tree to identify faulty functions, then the results are not better than the

use of single function-calls with the decision tree (Murtaza, et al., 2010). Thus we

consider the use of single function-calls and their frequencies with the decision tree in

this paper, as shown in Figure 26. In short, the decision tree can build an accurate model

of relationships of function-calls with single function-calls and their occurrences, and this

model will be equal to the model of function-call relationships built using patterns

(sequences) of different length of function-calls (Murtaza, et al., 2010).

Following the transformation of data, shown in Figure 26, we trained the decision tree

algorithm on it using the one-against-all approach (Witten and Frank, 2005). In the one-

against-all approach, a dataset (as in part ‘a’ of Figure 26) with M categories of

110

dependent variable
17

 (faulty functions) is decomposed into M new datasets with binary

categories. Each new binary dataset ‘Di’ has category ‘Ci’ (where i = 1 to M) labeled as

positive and all other categories labeled as negative. An example of a dataset of a faulty

function “Get1Real”, against all “others” faulty functions, is shown in part b of Figure

26. It again shows a random selection of example traces (to fit space). The columns for

part ‘b’ of Figure 26 are the same as for part ‘a’ of Figure 26.

According to the one-against-all approach (Witten and Frank, 2005), on each new

datasets ‘Di’ the decision tree algorithm is trained; resulting in ‘M’ trees in total.

Whenever a new faulty trace comes, each decision tree predicts its category ‘Ci’ of the

dependent variable (i.e., the faulty function) along with a probability of being faulty. A

category ‘Ci’ (i.e., faulty function) with the highest probability is considered as the

correct prediction. Empirical evidence (Polat and Gunes, 2009) shows that training

multiple decision trees (one-against-all) on several binary datasets yields better results

than training a single decision tree on a dataset with many categories of dependent

variable.

An excerpt of the trained decision tree generated for part ‘b’ of Figure 26 is shown in

Figure 27. Each row contains a function, its frequency of occurrence, and the name of a

faulty function after a colon sign if any. Function name with the frequency value

represents the node of a tree and the faulty function name after the colon sign represents

the leaf of a tree. For example, the decision tree of Figure 27 shows that if in a failed

trace the occurrence of the function “portspec”, “adddef” and “recgrdef” is less than or

equal to “0” and the function “Get1Real” is <=1, then the faulty function is “Get1Real”.

In other words the tree represents If-Then-Else statements. A total of 120 different

decision trees (one for each faulty function, when automatically possible)
18

 were

17 In data mining terminology, the faulty function is a dependent variable and the function-calls are

independent variables.

18
 There were a total of 136 functions in the Space program. On some faulty (mutated) functions no test

cases failed or there were not sufficient statements for valid application of mutation operators for some

functions (see Section 3.4.2). Similar was the case with the UNIX utilities.

111

generated by using the one-against-all approach for the Space program; an excerpt of one

of them is shown in Figure 27.

The tree of Figure 27 was obtained by applying the J48 algorithm in the data mining tool

Weka (Witten and Frank, 2005), which is an implementation of the C4.5 decision tree

algorithm. The C4.5 decision tree algorithm is the most widely and practically used

algorithm. It is suitable for a dataset with numerical values (e.g., see Figure 27) of

independent variables, unlike ID3 decision tree algorithm (Witten and Frank, 2005)

which works only with nominal values of independent variables. The details of the C4.5

algorithm can be found in standard text by Quinlan (1993) and Witten and Frank (2005).

We have avoided showing here the details due to the complexity, size and cluttering of

text.

Figure 27: The C4.5 decision tree model for the function “Get1Real” of the Space

program from failed traces of mutants by using one-against-all approach.

Several other algorithms for classification also exist, such as neural networks, support

vector machines, naïve Bayes classifiers, etc. (Witten and Frank, 2005). We chose the

decision tree algorithm because during our empirical analysis other algorithms have not

yielded as efficient results as the decision tree in terms of either performance or accuracy.

For example, we used Weka (Witten and Frank, 2005) tool to evaluate different

algorithms on the trace dataset. Naïve Bayes, using Weka, resulted in the lower accuracy

112

than the decision tree and the neural network took long time for training on the trace

dataset. Support vector machine (SVM) with linear kernel resulted in the similar accuracy

as the decision tree, but SVM was slightly slower than the decision tree using Weka. We

selected the decision tree algorithm because of its simplicity, wide use, easy to

understand rules, accuracy and the speed. Nonetheless, the purpose of this research is not

the comparison of the classification algorithms, but to provide evidence that the

classification algorithms are useful in fault localization. The formal comparison of these

algorithms is out of the scope of this paper, and any classification algorithm can in fact be

used.

 Following the training of the decision trees on mutant-traces, actual traces were provided

as input to the decision trees for prediction. Each decision tree, generated using the one-

against-all approach, predicted a faulty function with a probability. The probability of

prediction in the C4.5 algorithm is determined by measuring the number of training

instances correctly classified at a leaf and dividing it by the total number of instances

(correct and incorrect) reached that leaf (Quinlan, 1993).

When predicting faulty functions using the one-against-all approach we made a minor

modification; i.e., instead of selecting a predicted faulty function with the highest

probability, we ranked the predicted faulty functions in the decreasing order of their

predicted probabilities. The reason is that: (a) the developer gets multiple options if

function with the highest probability is not the actual faulty function, (b) the developer’s

effort could be quantified using a metric to estimate effort in discovering a fault (Jones

and Harrold, 2005; Di Fatta et al., 2006) (e.g., percentage of code reviewed in

discovering faulty functions). The function list is then presented to the developer with

the intuition that higher the function is in the list more likely it is to be faulty compared to

the lower ones in the list.

An example of a ranked list of faulty functions for two different traces of actual faulty

versions of the Space program is shown in Figure 28. Figure 28 first shows ranking for

the trace “t1915” for version 11 of the Space program according to probabilities predicted

by the decision trees. In version 11 “mksnode” is the faulty function ranked at position 2.

113

Similarly, for the trace “t4455” of version 4 the function “Get1Real” is the faulty

function.

Figure 28: Ranking of suspected faulty functions in real failed traces obtained from

the decision tree model of failed traces of mutants.

Finally, as actual failed traces arrive and faulty function is identified in those traces, the

actual traces can then be added to the failed trace collection of mutants. If there are failed

traces of faulty functions of prior faults then they can also be added to the initial

collection of mutants. The decision tree can then be re-trained based on the updated

collection to diagnose future failed traces (see Figure 24). If 50-90% (Brodie et al., 2005;

Lee and Iyer, 2000; Wood, 2003) of the field failures are rediscoveries of previous faults

then the refined knowledge of failed traces will actually improve the accuracy of

discovery of faulty functions in the new actual failed traces.

3.5 The F007-plus Strategy

Recall that F007-plus uses mutation to facilitate F007-basic in discovering new and old

faulty functions. F007-plus actually trains decision trees on the failed traces of mutants

and failed traces of prior faults. Following are the steps of F007-plus, which are further

explained in the following sections:

1. Measure code metrics (e.g., executable LOC, cyclomatic complexity, maximum

nesting, ratio of comments to LOC) of every function of current and prior releases.

Measurement of metrics facilitate F007-plus in identifying the characteristics of

“faulty” and “not-faulty” functions, which F007-plus can use to predict suspected

functions in future release.

114

2. Train the decision trees on these code metrics, using the cost sensitive machine

learning
19

 of prior releases and identify the suspected functions (to be faulty) in a

current release. The identification of suspected functions is important because only 20%

of the code is responsible for 80-100% of faults (Gittens et al., 2005; Ostrand et al.,

2005) and we can save time of mutant traces collection by generating mutants of

approximately 20% suspected functions.

3. Generate mutants of the suspected function identified in step 2 and collect mutant

traces of those suspected functions. In this step we actually prepare a collection of failed

(mutant) traces of the suspected functions that makes a training-set for the decision tree

as explained in Section 3.4.3.

4. Train the decision trees, as explained in Section 3.4.3, on the traces of mutants and

prior faults, and identify faulty functions in the traces of a current release. This step is

adopted from F007-basic with the addition of mutant traces, which facilitates in

predicting new and old faulty functions in a failed trace.

3.5.1 Step 1: Measuring the code metrics of functions

In Section 3.4.2, we mentioned that time and effort to collect mutant traces can be

reduced by collecting ten failed traces per mutant and by selecting only three mutants per

function. Literature indicates that 20% of the code is responsible for 80-100% of the

faults (Gittens et al., 2005; Ostrand et al., 2005). This means we can save further time of

mutant-trace collection by generating mutants of only the suspected faulty functions.

The suspected faulty functions in the current release can be identified using the code

metrics (e.g., cyclomatic complexity, path counts, executable lines of code, coupling,

inheritance depth etc.) based techniques proposed in the literature for software

components (Basili et al., 1997; So et al., 2002) and classes (Emam et al., 2001) (method

‘c’). For example: predicting faulty components by building the C4.5 decision tree model

19
 In cost sensitive learning, a classifier (e.g., decision tree) is forced to make lesser error on one type of

category (e.g., faulty functions) and more errors on other type of category (e.g., not-faulty functions).

115

of source code metrics of the past releases (Basili et al., 1997); using fuzzy logic based

model of the inspection data of the past releases to predict faulty components in the

current release (So et al., 2002); using logistic regression on object oriented code metrics

to identify faulty classes (Emam et al., 2001); and application of different machine

learning algorithms via code metrics to classify as high or low maintenance cost,

reusability and fault proneness of software components (Lounis and Ait-Mehedine,

2004). Below we describe how F007-plus uses source code metrics to predict the

suspected functions (to be faulty) in a similar manner as described in the prior techniques

for components (Basili et al., 1997; So et al., 2002) and classes (Emam et al., 2001);

however, empirical evaluation and a formal comparison of these techniques (Basili et al.,

1997; So et al., 2002; Emam et al., 2001) is out of the scope of this paper.

In F007-plus we measured four source code metrics for every function of each release,

such as:

• Executable lines of code: the lines of code of a function excluding comments;

• Cyclomatic complexity: the amount of decision logic of a function;

• Max nesting: the total nesting level of control constructs (if, while, etc.) in the

functions; and

• The ratio of comment to the code: the ratio of commented lines to the

executables lines of a function.

We chose the above four source code metrics in F007-plus because they yielded the best

results in our case. We actually used the Understand tool
20

 to extract the source code

metrics of functions. Using this tool we were able to extract the following source code

metrics: declarative statements, lines of code, comment lines, executable statements,

cyclomatic complexity, maximum nesting, path count, ratio of comment to code, blank

lines, and few variations of cyclomatic complexity. We chose the above four source code

20
Code metrics were extracted using the Understand tool (www.scitools.com).

116

metrics because the use of other code metrics (extracted using the Understand tool) with

the decision tree resulted in lower accuracy of predicting suspected functions in a new

release. Also these code metrics were found useful in the literature (Basili et al., 1997; So

et al., 2002; Emam et al., 2001). Many other code metrics exist (e.g., coupling, fan-in,

fan-out, Halstead complexity, etc.) and can be extracted using different tools. However,

as mentioned earlier the focus of this paper is not the evaluation of code metrics, but to

show that we can leverage the code metrics based techniques to achieve the goal of

identifying faulty functions in actual traces. Thus, other code metrics which yield better

results can be used too.

 Moreover, if a function was found faulty in a release then we assigned it a label of

“faulty”, otherwise we assigned it a label of “not-faulty”. In data mining terminology,

independent variables are the code metrics and a dependent variable is the fault proneness

of the function; i.e., “faulty” or “not-faulty”.

For example, consider part ‘a’ of Figure 26. In this case, the code metrics formed the

columns of Figure 26, each row would represent the values of the four code metrics for

each function of a release and the last column would contain “faulty” or “not-faulty”

status of the function in a release.

3.5.2 Step 2: Using the decision tree on the code metrics

Secondly, we trained the decision tree on the code metrics of functions of the preceding

release to predict functions in the following release as (possibly) “faulty” or “not-

faulty”
21

. For example, we trained the decision tree on the code metrics of the functions

of the release 1 of the “Flex” program to predict faulty functions in release 2 of the

“Flex” program. Similarly, we used release 1 and 2 to predict the possible faulty

functions in release 3. In general, we trained the decision tree on the code metrics of

releases 1 to n-1 to identify the possible faulty functions (or suspected functions) in

release n.

21 We trained a single decision tree in this case because there are only two categories of dependent variable:

faulty and not-faulty.

117

The above approach of training the decision tree to predict faulty functions result in high

accuracy with few errors (incorrect predictions) of “faulty” and “not-faulty” functions

For example, usually 20% of the functions in a program are “faulty” and the rest

(majority) of the functions are “not-faulty” and a decision tree classifier gets biased

towards “not-faulty” functions. This biased decision tree classifier would predict

suspected functions with approximatley 90% accuracy with around 10% of “faulty”

functions predicted as “not-faulty” and about 1-2% of “not-faulty” functions predicted as

“faulty”.

In this case, however, the cost of predicting a “faulty” function as “not-faulty” (false

negative) is much more than the cost of predicting a “not-faulty” function as “faulty”

(false positive). This is because if a function is not identified as “faulty” for the release of

a program then we can not generate mutants for that function. If there is no mutant, then

there will be no failed traces for the faulty function and the faulty function cannot be

predicted in the actual failed trace. On the other hand, a few extra false positives will

result in the generation of mutants of few more “non-faulty” functions and will not

adversely affect the accuracy of prediction of faulty functions in failed traces. For

example, if we get around 70% accurate predictions of (suspected) faulty and not-faulty

functions from the decision tree with hardly any “false negatives” and about 30% “false

positives” then we can generate mutant traces of all the (to be) faulty functions and use

those traces to identify faulty functions in new traces; however, if we don’t have mutant

traces of the suspected functions we cannot identify those functions in new failed traces.

In short, we use the cost-sensitive learning strategy (Ting, 2002; Witten and Frank, 2005)

to train the decision tree on the code metrics. Costs in cost sensitive learning are the

values which force the decision tree to make lesser error on one type of predictions (e.g.,

faulty) than the other (i.e., not-faulty). Suppose ‘Cf’ is the cost of misclassifying a

function as “faulty” and ‘Cnf’ is the cost of misclassifying a function as “not-faulty”.

Training instances belonging to the “faulty” category are assigned weights according to

the cost ‘Cnf’ and the training instances belonging to the “not-faulty” category are

118

assigned weights according to the cost ‘Cf’
22

 . The decision tree is then trained with the

normal procedure on the training set except that new weights of instances are used

instead of normal unit weights of instances (Ting, 2002).

For example, if we set ‘Cf’ to 1 and ‘Cnf’ to 20 then it means that the cost of

misclassifying a function as “not-faulty” is 20 times more than misclassifying it as

“faulty”. Hence, the weights of instances in the training set belonging to a faulty class

will be 20 times more than the instances of “not-faulty” class.

Thus, in this step, we first generate a training set with the high misclassification cost of

functions as “non-faulty” (‘Cnf’) and the low misclassification cost of the functions as

“faulty” (‘Cf’). The selection of the cost ratios depend on the subjective judgment of the

user of a particular problem (Witten and Frank, 2005). We developed our own criteria for

selecting the cost values: (a) we selected those cost values on which approximately 70%

of faulty functions were correctly predicted as faulty in the training-set (prior releases);

and (b) we used the training set of these identified cost values to predict expected faulty

functions in the test-set (current release) using the decision tree. We selected the

threshold value of 70% for training-sets because at this level we found that the majority

of faulty functions in test-sets were correctly identified with fewer false negatives

(incorrect not-faulty predictions) and not many false positives.

 For example, if 20 functions are faulty in a training set and 80 functions are not-faulty,

then we select those cost values at which 12-15 faulty functions are correctly predicted as

faulty in a training set. This will also result in 10-30 not-faulty functions predicted as

faulty (false positives). Overall there will be few more suspected (to be faulty) functions

(i.e., including true positive and false positives) but fewer faulty functions incorrectly

predicted as not-faulty. Note that, correct prediction of 12-15 faulty functions is

approximately 70% but not exactly 70%. We choose cost ratios such that this value

remains around 70% because sometimes selection of two adjacent cost values can make

22
 Actual equation to measure the weights using cost can be found in Kai Ming Ting’s paper (Ting, 2002).

We used the “cost sensitive learning” algorithm in the Weka API (Witten and Frank, 2005) which

implements Kai Ming Ting’s technique to make any classifier cost sensitive.

119

all the functions or the majority of the functions predicted as faulty (e.g., [Cf =1, Cnf =30]

and [Cf =1, Cnf =40] can have such an effect and selecting any other cost value in between

them could result in the same predictions as [Cf =1, Cnf =30]). Thus, we select the cost

values by setting the threshold of around 70% for correct suspected (to be faulty)

functions predictions for a training set, such that only a small proportion of false positives

are predicted (i.e., not-faulty predicted as faulty). This criterion will help maintainers in

identifying the suitable cost ratios for their software systems. An example execution of

F007-plus is shown in Section 3.5.5.

3.5.3 Step 3: Generating mutants of the suspected functions

In the third step, we generate (three) mutants of the suspected faulty functions and collect

failed traces on those mutants. See Section 3.4.2 for the mutant generation process.

3.5.4 Step 4: Identifying faulty functions in the traces of the current
release

In the last step, we train the decision tree algorithm, as explained in Section 3.4.3, on

failed traces of mutants collected in Step 3 and failed traces of prior releases. The trained

decision tree is then used to discover faulty functions in the traces of the failures of the

succeeding software release.

3.5.5 Executing F007-plus

In Table 12, we show the cost ratio Cf : Cnf that we used for the different releases of the

UNIX utilities. For example, the value 1:20 (Cf : Cnf) for “release 2” of the program Flex

shows that we set Cnf to 20 and Cf to 1 on the training set obtained from release 1 to

estimate faulty functions in release 2. Similarly, (Cf : Cnf) 1:5 in the last column for the

Flex program demonstrates that we set this value on the training set
23

 obtained from

release 1 to 4 to estimate faulty functions in the release 5 of the Flex program.

23
 We actually used SQL queries with “UNION” keyword when extracting code metrics of multiple

releases. This means in the training set of release 1 to n-1 more than one record for a function would exist

only if a function was changed in any one of the relase from 1 to n-1;otherwise, only one record per

function would be present in the training set.

120

Table 12: Misclassification cost ratio “Cf : Cnf ” for the following releases of the

UNIX utilities using training-set of previous releases.

Program Release 2 Release 3 Release 4 Release 5

Flex 1:20 1:30 1:5 1:5

Grep 1:45 1:10 1:5 NA

Gzip 1:5 1:7 1:3 NA

Sed 1:110 1:10 1:85 1:45

Recall from Section 3.5.2, the selection of cost ratios depend on the subjective judgment

of the user of a particular problem (Witten and Frank, 2005). We selected the cost ratios

when approximately 70% of the “faulty” functions in the “training-set” were correctly

classified as described in Section 3.5.2. That is for all the programs and releases, we

developed a criterion that: if 70% of the faulty functions are correctly predicted as faulty

in the training set with a small proportion of incorrectly predicted not-faulty functions as

faulty, then we select those cost ratios for the test set. For example, consider release 3

(R3) of the Flex program in Table 12, where we selected the cost ratio of (Cf : Cnf) 1:30.

The steps of F007-plus on R3 of Flex are described below:

• We selected this cost ratio of 1:30 for R3 of Flex because in the training set (of

R1 and R2) 20 functions out of 26 functions were correctly classified as “faulty”

(i.e., approximately 77% of the faulty functions were correctly predicted in the

“training-set”), and 110 functions out of 186 were correctly classified as “not-

faulty” on those cost ratios.

• We then assigned weights according to Cnf =30 to the faulty instances in the

training-set and according to Cf =1 to the non-faulty instances in the training-set.

This resulted into the new cost sensitive training-set.

• We generated the decision tree from this cost-sensitive training-set of R1 and R2

to predict suspected “faulty” functions in the test set of release 3 (R3). This

decision tree predicted 8.0 out of 12.0 functions correctly as “faulty”, and 93 out

of 152 functions correctly as “not-faulty”.

121

• We generated mutants of 67 “faulty” functions—i.e., 8.0 correctly predicted

faulty functions and 59 (152-93) incorrectly predicted faulty functions—for the

release 3 of the “Flex” program.

• Finally, mutant traces were collected on mutants of 67 faulty functions (as

described in Section 3.4.2), and the decision tree is generated (as described in

Section 3.4.3) from those mutant traces and failed traces of prior releases R1 and

R2. This decision tree then predicted faulty functions in the actual traces of

release R3. The accuracy of prediction of faulty functions in actual traces is

shown in Section 3.8.

Following this approach of F007-plus, we also performed experiments on all other

releases and other programs (i.e., Flex, Grep, Gzip and Sed) using the cost ratios shown

in Table 12.

An ultimate measure of performance of a cost sensitive learning algorithm is average

misclassification cost of testing examples (or traces in test-sets in our case). A specific

threshold doesn’t exist but a cost sensitive learning algorithm should have a low average

mislcassification cost. The average misclassification cost is measured by using Equation

3. In Figure 29, we show the average misclassification cost for different releases of each

of the four programs: Flex, Grep, Gzip, and Sed. In Figure 29, Y-axis shows the average

misclassification cost, and X-axis shows program releases such that earlier releases form

training-sets (of code metrics) for F007-plus and succeeding releases form test-sets. Each

point on the series represents the average misclassification cost corresponding to the cost

ratios in Table 12 for each program. For example, first point on the “Flex” series in

Figure 29 show that when F007-plus was trained on the code metrics of release 1 and

predicted suspected functions in release 2 using the cost ratios 1:20 then the average

misclassification cost was approximately 0.6. Note that the cost ratios are different for

every release of a program, but the criterion of setting those cost ratios is the same (i.e.,

an approximate 70% threshold).

122

�����	�
�������������� ��� =
�� ∗ �� + �� ∗ ���

�

Equation 3: Measures the average misclassification cost where: FP is total functions

predicted as false positive, Cf is the misclassification cost of predicting a function as

faulty, FN is total functions predicted as false negative, Cnf is the cost of

misclassifying a function as not-faulty, and N is the total number of traces.

Figure 29: Average misclassification cost for the UNIX utilities.

It can be observed from Figure 29 that mostly the average misclassification cost deceases

as the number of releases increase, or in other words as the number of training instances

increase the average misclassification cost goes down. However, in some cases the

average misclassification also increases slightly. The reason is that we selected different

cost ratios for each release of a program. Usually in the cost sensitive learning, cost ratios

are kept same. In our case we have delveoped a criterion (of 70% threshold) to select cost

ratios and this crierion remains constant. The reason for developing such a criterion is

that every program is different, and setting of different cost values by maintainers is not

straight forward even if they have the knowledge of cost sensitive learning. Thus, we

0

0.5

1

1.5

2

2.5

3

Flex Grep Gzip Sed

A
v

e
ra

g
e

 m
is

cl
a

ss
if

ic
a

ti
o

n
 c

o
st

R1 to R2

R1-R2 to R3

R1-R3 to R4

R1-R4 to R5

Average misclassification cost for the UNIX utilities

123

selected the same criterion of 70% threshold for true positives in the training set with a

small proportion of false positives. In short, in our case the cost ratios may not be the

same but the criterion for selecting those cost ratios is the same.

Overall, the average misclassification cost in Figure 29 remains low or decreases

(mostly) over number of releases. This means that the number of false negatives and false

positives would approach to zero if the average misclassification cost approaches zero.

Also, if there are fewer false negatives (FN) then the average misclassification cost will

be high because we have high ‘Cnf’ value (see Equation 3). This implies that F007-plus

predicts fewer false negatives and false positives, even if the training set contains

instances from the first release. The suspected (to be faulty) functions predicted by F007-

plus constituted approximately 10-40% of the total functions. For example F007-plus

predicted: (a) 44-56 faulty functions in the five releases of the Flex program; (b) 12-43

faulty functions in the four releases of the Grep program; (c) 29-45 faulty functions in the

four releases of the Gzip program; and (d) 4-28 faulty functions in the five releases of the

Sed program. After identifying the susepcted functions, we collected mutant traces for

those functions and trained the decision trees on those traces. The results showing the

accuracy of prediction of faulty functions in actual traces are described in Section 3.8.

3.6 Implementation, Scalability and Runtime Performance
of F007-plus

In this section, first we provide details of the implementation of F007-plus in Section

3.6.1. Second (in Section 3.6.2) we discus the issue of scalability of F007-plus on large

programs with millions of lines of code. Thirdly, we show the execution time of F007-

plus.

3.6.1 Implementation Details

We implemented F007-plus as a Java application in NetBeans, and used MySQL

database to store processed traces (e.g., functions and occurrences). We optimized F007-

plus for bulk reads of large traces from hard disk, bulk inserts of large records into the

database, and used different table-indexes in MySQL database. We also used SWI Prolog

based mutant generation tool developed by Andrews et al. (2005). The tool (Andrews et

124

al., 2005) generates mutants for almost every statement of the program, which results in a

large number of mutants. For example, it generates 12262 mutants for the Space program.

We modified this tool to generate three random mutants for every function of a program:

(a) first we developed a program in Java (using regular expressions) that extracted

functions and their locations from C program; and (b) second we randomly selected three

mutants (generated by the tool from Andrews et al. (2005)) for one of the lines within a

function.

Moreover, we downloaded (Do et al., 2005) the UNIX utilities (i.e., Flex, Grep, Gzip and

Sed) and the Space program with several UNIX based scripts to enable faults in different

releases of programs and run test cases on those faults of a particular program release.

We also modified those scripts to automatically compile mutants in functions of

programs, and to automatically run test cases on mutants of functions. Recall, from

Section 3.4, we collected execution traces using Etrace (2008) and collected up to 10

failed traces per mutant. Using the scripts for mutants (and Etrace), we collected (failed)

mutant traces, and using the original downloaded scripts (and Etrace) for the UNIX

utilities we collected actual failed traces.

 We generated mutants and collected (actual and mutant) failed traces on Ubuntu 10.02

on a 3GHz CPU with 3 GB of RAM. We executed F007-plus (i.e., storing traces into

database, generating decision tree from the traces in database, and predicting faulty

functions in the actual traces) on Windows 2008 server on dual core 2.5 GHz CPUs and

4GB of RAM.

3.6.2 Scalability

In this paper, we have experimented on only medium size commercial or production level

programs. However, the steps of F007-plus strategy are scalable to large programs with

millions of lines of code. For example, in F007-plus we identify suspected faulty

functions in a current software release, which would be equivalent to approximately 20%

of functions of a program—if 20% of the code is responsible for 80% of the faults

(Gittens et al., 2005; Ostrand et al., 2005). In our execution of F007-plus on the UNIX

utilities, F007-plus resulted into about 10-40% of suspected functions (see Section 3.5.5).

125

Further, we selected only three mutants per functions and generated only 10 failed traces

per mutants to keep the resource and time consumption to minimum. Also, failed traces

of in-house testing can be used as well alongside mutant traces and failed traces of

previous releases because: (a) from our earlier study we have found an overlap in the

location of field and in-house faults (Gittens et al., 2005); and (b) same 20% of the code

is responsible for 80% of the faults. Thus, the decisions taken during the design of F007-

plus make it scalable to large programs.

3.6.3 Execution Time

The execution time to generate mutants from the modified tool for the subject programs

is shown in Table 13. Table 13 shows the name of a program, minimum-maximum lines

of code for the different releases of a program, minimum-maximum mutation time for the

different releases, and the minimum-maximum number of mutants for the different

releases. For example, the modified mutation tool took 21-44 seconds for 320-517

mutants of the Sed program with 4711-9266 LOC.

In Table 14, we show the average size of an actual trace, average size of a mutant trace,

and I/O time per trace. I/O time per trace includes time to extract function-calls and their

occurrences from a failed trace along with the storage into MySQL database. It should be

noted that this processing time is required to be done once for a collection of failed

traces.

Table 13: Mutation time for the subject programs.

Program LOC Mutation

Time (sec)

Mutants

Flex 8250-9831 64 -251 395-477

Grep 8484-9041 39-60 394-425

Gzip 4032-5103 23-31 246-319

Sed 4711-9226 21-44 320-517

Space 6218 45 361

In addition to this time, there was time required to generate the C4.5 decision tree model,

which was dependent on Weka (Witten and Frank, 2005) API implementation. The

maximum time for the C4.5 tree generation from mutants and evaluation on actual 71958

traces was approximately 15 minutes for the “Space” program. In practice, the decision

126

tree model is also required to be generated once, and only needs to be updated when

traces with new faulty functions are included in the database. The only regular work

required is to predict a faulty function in a new failed trace, which consumes few

seconds.

Table 14: Processing time for traces.

Program Avg. size of an

actual trace

(KBs)

Avg. size of a

mutant trace

Time per trace

with (I/O) sec

Flex 440.19 595.16 1.809

Grep 483.34 1321.52 0.431

Gzip 600.83 315.299 4.047

Sed 57.79 150.65 0.369

Space 33.62 48.2 0.235

3.7 Case Studies to Investigate Research Questions: (Q1)
Similarity of Traces among Faulty Functions and (Q2)
Discovering Actual Faults using Mutant Faults

In this section, we investigate the answers to the following questions posed in Section

3.1: (Q1) Are the function-call traces of some faulty functions similar and the function-

call traces of some faulty functions different? (Q2) Can the mutant faults be used to

discover actual faults? The answers are sought using the F007-plus technique described

in Section 3.3.

In Section 3.7.1, we determine the answers to these questions by making every function

faulty using mutants. In Section 3.7.2, we further investigate the questions by making

only the selected functions faulty. Finally, Section 3.7.3 summarizes this section by

mapping questions to the findings.

3.7.1 Making every function faulty using mutants to identify faulty
functions in actual traces

Recall from Section 3.4.2 that we randomly selected three mutants per function and

collected ten failed traces per mutant; that is, a maximum of 30 failed traces for every

function of a program. During our investigations, we observed that for some functions the

number of failed traces per function were less than the maximum limit of 30. This is

because, sometimes, the randomly selected mutants did not compile, a few test cases

127

failed on the mutant, or no test cases failed at all on the mutant. In short, there were 30 or

less failed mutant traces per function.

 Nonetheless, in order to investigate how many failed traces of mutants per function are

enough to identify faulty functions in the actual failed traces, we experimented with a

maximum of 5, 10, 15, 20, 25 and 30 mutant traces per function. In other words, we

trained the decision tree on 5, 10, 15, 20, 25 or 30 failed traces to identify faulty functions

in the actual traces. Figure 30 shows the results obtained for 5, 10, 15, 20, 25 and 30

mutant traces per function for the Space program. In Figure 30, the X-axis represents the

percentage of the program to be examined in discovering faulty functions. It is measured

by the percentage of functions
24

 reviewed up to the discovery of faulty functions in a

program, as shown in Equation 4.

100
%

∗=

functionsTotal

functionfaultytheuptoreviewedFunctions

reviewto

programof

Equation 4: Estimating program review effort in functions.

 Using Equation 4 we compute a score for each failed trace as the percentage of a

program (i.e., functions or statements) need to be reviewed to find the faulty function.

Horizontal axis (X-axis) represents the percentage of program that needs to be examined

and is divided into segments. Each segment is 10 percentage points except for the first 10

segments which are divided into 1 percentage points; i.e., 1-10% segments are divided

into 1 percentage points and 90-100% segments are divided into 10 percentage points

each. Vertical axis (Y-axis) measures the cumulative percentage of failed traces that

achieve a score within a segment
25

. For example, in part ‘a’ of Figure 30, the point (10,

60) on a series “using 25 traces per function” (i.e., marked by “▬” shows that faulty

24
 We used functions as the programmer would review the functions in the function-call trace to discover

the faulty functions, not statements.

25
 We have taken this approach from the similar graphical convention used for evaluation of the

developer’s effort by Jones and Harrold (2005), Wong et al. (2007) and Di Fatta et al. (2006).

128

functions in approximately 60% of the actual failed traces were discovered by reviewing

10% or less of the code (functions) for the Space program. This identification in the

actual traces was done by training the decision tree algorithm on 25 or lesser failed traces

of mutants of every function of the Space program. Note that, straight lines at the end of a

series till the 100% traces when there are no more points visibile on a series mean that:

F007-plus does not result in any more predictions of faulty functions in traces and a

developer identifies faulty functions by random guesses till the 100% traces. For

example, in the case of the series “using 25 traces per function” in part ‘a’ of Figure 30,

84% of the failed traces were resolved correctly by reviewing 50% of the program using

F007-plus after which a developer randomly gusesses the faulty functions in the

remaining 16% of traces.

Recall from Section 3.4.3 that F007-plus generates a ranked list of suspected functions

for a potential failed trace. It is possible that F007-plus can list two or more functions at

Figure 30: Faulty function prediction accuracy for the Space program on its failed

traces of actual faults using the failed traces of mutants of all functions.

129

the same rank, then the best case effort entails that the first function to be examined is

faulty and the worst case effort entails that the last function to be examined is faulty. For

example, suppose there is one function listed at rank 1, and five functions listed at rank 2.

The best case effort is that the faulty function is the second function to be examined (i.e.,

one at rank 1 and one at rank 2), whereas the worst case is that the faulty function is the

sixth to be examined.

In Figure 30 part ‘a’ shows the best case effort of the programmer by using F007-plus

with 5-30 mutant traces per function of the Space program, and part ‘b’ of Figure 30

shows the worst case effort of the programmer with F007-plus by using the same number

of mutant traces. In Figure 30, the same series is represented by the same colour and

symbol in both part ‘a’ and ‘b’. For example, “using 25 traces per function” series is

represented by the pink colour and the symbol “▬” in both the worst and the best case.

It can be observed from Figure 30 (part ‘a’ and ‘b’) that when F007-plus uses fewer

mutant traces per functions then the best case effort is higher than larger number of

mutant traces per function; whereas, the worst case effort is lower or similar to larger

number of mutant traces per function. For example, when five mutant traces per functions

were used then F007-plus identified faulty functions in 90% of the traces on the review of

3% or lesser program in the best case (see part ‘a’); whereas in the worst case (see part

‘b). F007-plus identified faulty functions in only 20% of the failed traces using five

mutant traces per function. If the difference between the worst case and the best case is

too high for a series then it means most of the functions are listed at the same rank, and

the use of particular numbers of mutants per functions represented by that series is

ineffective. This also means that using fewer mutant traces, the decision tree was not able

to get sufficient information to predict faulty functions in actual traces, and most of the

suspected faulty functions were predicted with the same probability.

In the case of Figure 30, the use of 25 and 30 traces per functions series have a small gap

between their worst and best cases, respectively: implying that there are fewer functions

listed at the same rank for 25 and 30 mutant traces per function. In the case of 25 mutant

traces per function, both the worst case effort and the best case effort are better than the

130

30 mutant traces per function. However, the gap between the worst and the best of 30

mutant traces per functions is smaller than 25 mutant traces per function. Thus, we can

say that F007-plus with 25-30 mutant traces per function is able to identify faulty

functions in 50-60% of the actual failed traces on the review of 20% of the code for the

Space program.

The test suites in the Space program were more extensive than the ones would usually be

produced in practice; that is, approximately 13,000 test cases for approximately 6000

lines of code. This means almost all of the functions and control flow paths were

exercised by the test cases. However, in the UNIX utilities, the sizes of the programs

were almost the same as the Space program, but the test cases were not as extensive as

the Space program. The test suites of the UNIX utilities mimic the real world scenario

closely. On the other hand, recall from Section 3.4.2, if the test suite does not exercise all

the paths then this shows the weakness of the test suite in detecting faults, and,

eventually, will leave many mutants live or equivalent.

Nonetheless, we show separately in Figure 31, the accuracy of identification of faulty

functions on the four UNIX utilities (i.e., Flex, Grep, Gzip and Sed) using 5, 10, 15, 20,

25 and 30 failed mutant traces. We have randomly chosen release 1 (R1) (see Table 11)

from several releases of the UNIX utilities for this experiment as manifested in Figure 31.

We generated mutants of release 1 (R1) of each of the Flex, Grep, Gzip and Sed

programs. We again randomly selected three mutants per function of a program and

collected traces by running the test cases of the respective programs on their mutants.

In Figure 31, each series actually shows the accuracy of the identification of faulty

functions on the release 1 (R1) of all of the four UNIX utilities we studied. The

percentage of failed traces for each series is measured by first summing the number of

actual failed traces of all the four UNIX programs that achieve a (program-review) score

within each segment (on X-axis) and then dividing them by the total number of failed

traces of all the four programs. The results are then shown as the cumulative percentage

of failed traces on Y-axis. For example, in part ‘a’ of Figure 31 the point (30, 50) on the

series “using 30 (mutant) traces per function” shows that only 50% of the failed traces

131

were resolved correctly in the Flex, Grep, Gzip and Sed program by reviewing 30% or

lesser code.

 In the same manner to Figure 30 (for the Space program), we also show the best case and

the worst case accuracy for the UNIX utilities in Figure 31. It can be again observed

from Figure 31 that the use of fewer mutant traces per function results in larger difference

between the worst and the best case. Also, the use of 25 mutant traces per function results

in almost identical best and worst case effort for the UNIX utilities in Figure 31.

Similarly, the use of 30 mutant traces per function also results in identical best and the

worst case effort. This means there was rarely more than one function listed at the same

rank for 25 and 30 mutant traces per function. Thus, we can state that F007-plus with 25-

30 mutant traces per function is able to identify faulty functions in 50% of the actual

failed traces on the review of 30% of the code for the UNIX utilities.

Figure 31: Accuracy of identification of faulty functions in the actual traces using

mutant traces on the UNIX utilities.

132

Overall, the accuracy of identification of the faulty functions on the UNIX utilities in

Figure 31 is low compared to the Space program in Figure 30. In the case of the UNIX

utilities, the test suites were not as exhaustive as in the case of the Space program. This

left many mutants live or equivalent in the UNIX utilities (see Section 3.4.2), or resulted

into few failed test cases on the mutants of faulty functions. For example, in the case of

the Sed program (release 1), we were able to collect the failed traces for only 87

functions out of 183 total functions. Similarly, we collected mutant traces for 79

functions out of total 89 of the Gzip program (release 1), 68 out of 142 for the Grep

program (release 1), and 130 functions out of 151 for the Flex program (release 1). In the

case of the Space program, which has a very large collection of the test suite, mutant

traces for 116 functions
26

 were collected out of total 136 functions.

This implies that extensive test suites would result in better accuracy (as in Figure 30)

than shorter test suites (as in Figure 31). The reason is that extensive test suites, in our

investigation, resulted in more failing traces, covering many flow paths for the faults in

the same functions, and providing the decision tree more knowledge to identify the faulty

functions. Further, in both Figure 30 and Figure 31, the use of “25 mutant traces per

function” and “30 mutant traces per function” series shows better results than lesser

number of mutant traces per functions.

The results in Figure 30 and Figure 31 show that by using the failed traces of the mutants

of every function, the faulty functions in the actual trace are not entirely distinguishable,

particularly for the smaller test suites. This is because 100% or closer accuracy was not

obtained on the review of 1% (or little more) of the code. This also implies that different

faults in the same function do not occur with the similar sequence of function calls, but

overlap with the function-calls of faults in some other functions.

In fact, Figure 30 and Figure 31 show that there are M groups of closely related

functions, and functions in each group make calls to each other or call the same functions

26
 Some of the functions in the Space program have no statements in the body; so, no valid mutants and no

actual faults were possible in them.

133

regularly. When a fault occurs in one of the functions of a group (e.g., Mi) then the

function-calls overlap. When a fault occurs in a function in another group Mk then there

are few overlapping function-calls with the function-calls of faults in groups other than

Mk. The reason is that if the function-calls of all the functions had overlapped then we

would have had to review about 100% (or closer to 100%) of the program to identify the

faulty functions in any trace. We could still find faulty functions in 60% of the failed

traces of the Space program (see Figure 30) by looking at 20% percent of the program

(functions), when using 25 mutant trace per function. Similarly, we could find faulty

functions in 50% of the traces of the UNIX utilities by reviewing 30% of the code (see

Figure 31), when using 25-30 mutant trace per function

Thus, from these results we can state that: “A group Mi of related functions has similar

function-call traces when a fault occurs in the functions of that group Mi; but the

function-call traces of Mi are different from the function-call traces of another group of

function Mk if a fault occurs in the functions of group Mk. Where i, k = 1-n and i ≠ k and

Mi ⊂ N and Mk ⊂ N and N={functions | functions ∈ program}.” This answers the first

research question (Q1) that traces of different faulty functions are similar and traces of

some faulty functions are different. Also, we found that faulty functions in 50-60% of the

failed traces can be identified by making every function faulty using mutants. This

identification requires the review of 20-30% of the code. This answers the second

research question (Q2).

3.7.2 Making only the selected functions faulty using mutants to
identify faulty functions in the traces of actual faults

In order to further validate the above proposition, we trained the decision tree on the

mutant traces of only those faulty functions that were also faulty in actual traces. We

made this decision because: (a) this would allow us to identify whether different faults in

the same function occur with the same traces; and (b) this would facilitate in further

validating that traces of some faulty functions are similar. This trained decision tree on

the mutant traces of the selected faulty functions was then used to identify faulty

functions in the actual failed traces. The results are shown in Figure 32 by the series

“using mutant traces of the same faulty functions as in the actual traces”: this series

134

shows both the best and the worst case marked by ■ and ●. The best and the worst case

efforts, however, have overlapped and no significant difference is noticeable; except for

the first point, which is approximately (1,30) in the worst case and (1,32) in the best case.

These results were obtained by using 30 mutant traces per function.

Figure 32: Faulty function prediction accuracy by using failed traces of the same

faulty functions on the Space program.

In order to compare the accuracy of mutant traces of the selected faulty functions, we also

trained the decision trees on 1% of the actual failed traces and tested them on the rest of

the 99% actual failed traces. This 1% of the actual traces has the same faulty functions as

the remaining 99% traces for the Space program
27

. This is shown in Figure 32 (for the

Space program) by the best case (marked by▲) and the worst case (marked by ♦) of the

series “using only 1% actual traces for training and the actual 99% traces for testing”.

27
 We divided data into 100 equal parts using Weka API (Witten and Frank, 2005), each part contained

equal proportion of failed traces for every faulty function. We used one part for training and the rest of the

99 parts for testing. This is called stratification; without stratification faulty functions with lesser traces

would be missing from some parts-- resulting in incorrect classification accuracy.

135

Again the difference between the worst case and the best case is almost not noticeable. It

can be observed from Figure 32 that the difference between the accuracy of identifying

faulty functions using actual traces and using mutant traces is quite narrow. For example,

using the mutant traces of the same faulty functions as the actual traces for the training

set, the faulty functions in approximately 77% of the actual traces can be identified by

reviewing 10% or less of the code. Similarly, in Figure 32, using 1% of the actual traces

as the training set, the faulty functions in approximately 97% of the traces can be

identified by reviewing 3% or less of the code. This shows that faulty functions in

majority of the actual traces were identified by training the decision trees on different

faults (mutants) of the same function.

Figure 33: Faulty function prediction accuracy by using failed traces of the same

faulty functions on the UNIX utilities.

Following the approach similar to Figure 32, the results on the UNIX utilities are shown

in Figure 33. In the UNIX utilities we have used 10% of the actual traces for training,

136

instead of 1% because there were fewer failed traces in the UNIX utilities compared to

the Space program (see Table 11). In the case of the Space program, there were about

72000 failed traces and the use of 10% traces still resulted into approximately 7000 traces

for training. On the other hand, all the UNIX utilities had less than 500 failed traces. Due

to fewer failed traces of the UNIX utilities, we selected 10% of their traces for training

F007. The reason lies in the fact that the decision tree requires a sufficient number of

traces for training; for example, literature (Witten and Frank, 2005) recommends

selecting more than 50% of data for training when the data set is not large—the 10% we

used we used is still much less than recommended 50%.

It can be observed from Figure 33 that the accuracy of “using mutant traces of the same

functions as in the actual traces” for training and the accuracy of “using 10% of the actual

traces” for training are quite close. Also, note that the difference between the best and the

worst case efforts is hardly noticeable for the mutant traces and actual traces series. For

the UNIX utilities, in Figure 33, we used 30 mutant traces per function to train the

decision tree on the mutant traces (25 mutant traces per function could have been used

too, as we discussed in Section 3.7.1).

In both the cases, Figure 32 and Figure 33, faulty functions in 90-95% of the failed traces

can be identified by reviewing 2% (≈ 3 functions) of the program, when using a

proportion of actual traces for training. On the other hand, by using mutant traces, faulty

functions in approximately 60% of the failed traces can be identified by reviewing 3% (≈

4 functions) of the program in Figure 32 and Figure 33. This implies that: (a) function-

call paths triggered by different faults in the same function are not exactly the same but

they are similar—because accuracy of mutants and proportion of actual faults (in Figure

32 and Figure 33) are not the same; (b) there are actually groups of related functions that

occur with overlapping function-calls when a fault occurs in the functions of same

group--because we need to review few functions before identifying the faulty function;

and (c) different groups of functions have few overlapping function-calls, otherwise we

would have had a very low accuracy of identification of faulty functions using mutants—

we can identify faulty functions in approximately 70-80% of the failed traces using

mutants by reviewing 10% or less of the code (in Figure 32 and Figure 33). These

137

observations are the same as what we observed in Figure 30 and Figure 31 in Section

3.7.1

3.7.3 Summary of the Key findings

 We summarize the key findings from the case studies:

• “Related functions in a group ‘Mi’ have similar function-call traces when a fault

occurs in the functions of that group ‘Mi’; but the function-call traces of ‘Mi’ are

different from the function-call traces of another group of function ‘Mk’ if a fault

occurs in the functions of group ‘Mk’. Where i,k= 1-n and i ≠ k and Mi ⊂ N and

Mk⊂N and N={functions | functions ∈ program}.” This answers the first research

question (Q1).

• Faulty functions in 50-60% of the actual traces can be identified by reviewing 20-

30% of the code by making every function artificially faulty (i.e., using mutants) and

using the traces of all those mutated functions (see Figure 30 and Figure 31). This

answers the second research question.

Also, the results in this section show that faulty functions in actual traces can be

identified with high accuracy (60-65%) by reviewing 3% of the code using the mutant

traces, provided the faulty functions in the mutant traces are the same as the actual traces

(see Figure 32 and Figure 33). However, an important question is how to determine those

faulty functions which are going to be faulty in actual traces? From literature, we know

that 20% of the code is responsible for 80% or more of the faults (Gittens et al., 200;

Ostrand et al., 2005). If we can some how identify the suspected faulty functions in the

current release of a software system, train the decision trees on the mutant traces of those

suspected functions then we can predict faulty functions in the actual traces. This is

discussed in the next section. Therefore, this section only partially answers the question if

mutant faults can be used to discover actual faults.

138

3.8 Evaluating F007-plus

In the previous section, we identified that if the decision tree is trained on the mutant

traces with the same faulty functions as in the actual traces, then the faulty functions in

the actual traces can be identified accurately. However, in reality, the actual faulty

functions are not generally known and so we need to predict the probable faulty

functions. This can be achieved through the method proposed in F007-plus in Section 3.5.

Recall that in F007-plus we can identify the suspected faulty functions using the code

metrics based cost sensitive learning (see Section 3.5), and then we can generate mutants

of only those suspected faulty functions.

In the following sections, we show how F007-plus is evaluated on the four UNIX utilities

(i.e., Flex, Gzip, Grep and Sed). We show the accuracy of identification of faulty

functions using F007-plus in Section 3.8.1, effort in statements in discovering faulty

functions in Section 3.8.2, identification of multiple faulty functions in Section 3.8.3, and

the use of rules in diagnosing fault proneness of a function from the perspective of related

functions in Section 3.8.4. Moreover, the evaluation of F007-plus facilitates in further

investigating the question: (Q2) Can the mutant-faults be used to discover actual faults?

Specifically, F007-plus would focus on how mutants can be used to accurately identify

actual faults—i.e., identifying faulty functions in a trace by reviewing few functions.

3.8.1 Using F007-plus to Identify Faulty Functions in the UNIX utilities

In Figure 34, we show the average accuracy of predicting faulty functions in the actual

traces of release 2, 3, 4 and 5 of the UNIX utilities. The results in Figure 34 are obtained

by training F007 on the failed traces of prior releases and the failed traces of mutants of

the suspected functions of a current release. In terms of mutants, we used a maximum of

30 mutant-failed-traces per function as we identified in Section 3.7 for the UNIX utilities.

Recall from Section 3.4.1 and Section 3.6.1 that we collected actual failed traces on the

different releases of the UNIX utilities by collecting traces of failed test cases. Also recall

from Section 3.7 that 1-10% segments on X-axis are divided into one percentage points

and 90-100% segments are divided into ten percentage points each.

139

The results in Figure 34 for the four UNIX utilities and their several releases are obtained

in the following way
28

: (a) the training set contains the failed traces of the past releases

and traces of mutants of the current release of one of the UNIX program; (b) the test set

includes traces of a current release of the same program;(c) the score of each failed trace

is again measured using Equation 4; and (d) the percentage of failed traces for a segment

on X-axis is the percentage of failed traces of the same level releases --used as test-sets in

above point ‘b’-- that fall within each segment for the four programs of the UNIX

utilities.

Figure 34: Faulty function prediction accuracy on the actual failed traces of the

following release using the failed traces of selected mutants and the actual failed

traces of the preceding release.

28
 This approach is adopted from the similar graphical convention used for evaluation of the developer’s

effort by other researchers (Jones and Harrold, 2005; Di Fatta et al., 2006; Wong et al., 2007).

140

The percentage of the failed traces for a particular segment on X-axis is measured by

summing the number of actual failed traces (of the releases of four programs used as test

sets) that achieve a program-review score within each segment on X-axis. Afterwards,

the sum is divided by the total number of failed traces in the test release of all the four

programs. For example, at the level of release 3, Flex, Gzip, Grep and Sed had 0, 173, 28

and 1 traces resolved correctly, respectively, on the program-review of 1%. The total

number of failed traces for Flex, Grep, Gzip and Sed in release 3 were 362, 247,14 and

98 respectively. This resulted into an accuracy of 28% on the review of 1% of the

program for release 3 of the UNIX utilities as shown in Figure 34 by the series “using

the traces of release 1-2 and the traces of mutants of release 3 for release 3”. For the

remaining 99% segments on X-axis the results are shown as cumulative percentage. We

have adopted this approach from literature as used by other researchers (Di Fatta et al.,

2006; Jones and Harrold, 2005; Witten and Frank, 2005). This approach helps in avoiding

cluttering of graphs, if the results were shown for all the programs separately.

Similarly, Figure 34 shows the result on other releases of the UNIX utilities by using the

traces of all the preceding releases and mutants of the current release as the training set

and the following releases as the test set. In Figure 34, we have only shown the best case

effort to avoid cluttering the graph. Also, the difference between the best and worst case

effort was not noteworthy (as in Section 3.7.2, or in some cases remained close to the

best case), so we presented only one series. Similarly, in all other figures in this section

we show only the best case efforts.

It can be observed from Figure 34 that faulty functions in 30-60% of the failed traces can

be identified correctly by reviewing 20% of the program for release 2 and 5. Similarly, in

release 3 and 4 about 80% of the failed traces can be identified by reviewing 20% of the

program. The accuracy for release 2 is low compared to release 3, 4 and 5 because many

mutants were not killed by the test cases (i.e., test cases did not fail on the mutants). This

resulted in non-failing (mutant) traces for several faulty functions in the training set and

those faulty functions were not diagnosed in the actual traces.

141

For example, in the case of Gzip, no test cases failed at all on the mutants of release 2 to

4. We, therefore, used the traces of mutants of release 1 of Gzip for the releases 2 to 4. In

the case of other programs, the mutants (of the same faulty function) of previous releases

also resulted into no failing test cases or very few mutant traces, which had no effect on

the accuracy when they were included with the failed traces of mutants of the following

release. The accuracy was also partially affected in some cases when some faulty

functions were not estimated as faulty using the code metrics (see Section 3.5)--resulting

in no mutant traces for those functions. Nevertheless, the accuracy of identification of

faulty functions is still approximately 60-80% on reviewing less than 20% of the program

(functions) for the majority of the releases, which is still quite significant in terms of

savings in effort in reviewing functions.

Figure 35: Faulty function prediction accuracy on the actual failed traces of the

current release using the failed traces of selected mutants, actual failed traces of the

preceding release, and the 10% traces of the current release.

142

In Figure 24, we showed that once the actual failed traces are resolved they can be added

to the repository of failed traces. The decision tree can then be retrained on the collection

to identify faulty functions in the actual failed traces. This is because 50-90% of the field

failures are rediscoveries of previous faults (Brodie et al., 2005; Lee and Iyer, 2000;

Wood, 2003) and using the resolved failed traces will help in improving the accuracy of

identification of the faulty functions. For example, in Figure 35 we show the results by

merging 10% of the actual failed traces with the actual failed traces earlier releases and

the failed traces of the selected mutants. In other words, we added 10% of actual failed

traces to the training sets used in Figure 34. The test set in Figure 35 is the rest (90%) of

the actual failed traces for each release. It can be observed from Figure 35 that the

majority of the faulty functions in the failed traces can be identified by reviewing less

than 5% of the program.

The results of Figure 35 have high significance for the 50-90% rediscovered faults

(Brodie et al., 2005; Lee and Iyer, 2000; Wood, 2003). This is because with only limited

knowledge of 10% of the actual failed traces along with the failed traces of previous

releases and mutants, faulty functions in 90% of the failed traces can be correctly

identified. Thus a majority of the failed traces can be correctly resolved with the minimal

effort in corrective maintenance by training the decision tree on failed traces of mutants

and few failed traces of actual faults. Further, even if the failed traces of the actual faulty

functions are not known for the current release then we can still identify faulty functions

with an accuracy of 30-80% on the review of 20% program in the failed traces of the

current release (see Figure 34).

3.8.2 Measuring statements-effort in identification of faulty functions

So far, we have shown the accuracy of identification of faulty functions by using the

percentage of functions reviewed as the code reviewed. However, the sizes of functions

vary in a program, and functions with large sizes could account for majority of the code

and hence large number faults. Therefore, in order to estimate the effort of a developer in

terms of number of statements we summed all the statements of a function reviewed by a

developer up till the faulty function. For example, if the fourth function in the list

143

generated using F007-plus was the actual faulty function then we summed the number of

statements of all the four functions in estimating the effort. This is shown in Equation 5.

=

 ∑
100*

%

statementsTotal

functionreviewedaofStatements

reviewto

programof

Equation 5: Estimation effort in statements.

In Figure 36, we show the effort of a developer in identifying faulty statements across

releases of the UNIX utilities. In Figure 36, like Figure 34, the training set contained only

the traces of earlier releases and selected mutants, but the effort of developer is estimated

in statements. Similarly, for Figure 37, the training set contained the failed traces of

earlier releases, selected mutants, and 10% of the following releases, and the effort of a

developer is estimated in terms of statements.

Figure 36: Faulty function prediction accuracy in terms of statements-effort on the

actual failed traces of the current release using the failed traces of selected mutants

and actual failed traces of the preceding release.

144

We can observe from Figure 34 to Figure 37 that effort in terms of statements mostly

remained proportional to the effort in functions. This implies that in commercial or

professional programs, functions are not distributed in extremely large to extremely small

sizes: functions sizes are mostly proportional to each other.

Figure 37: Faulty function prediction accuracy in terms of statements-effort on the

actual failed traces of the current release using the failed traces of selected mutants,

actual failed traces of the preceding release and 10% of the current release.

In Figure 36 and Figure 37, the estimation of effort in terms of statements is a pessimistic

approach as we have summed all the statements of a function. In reality, a developer

using the context of a fault (e.g., inputs, error message) can skip a function or may jump

to another function after reviewing a few statements or no statements at all. A developer

would not likely review all the statements of a function to determine whether that

function is faulty or not. Therefore, in reality, the effort in statements would be better,

and the graphs in Figure 36 and Figure 37 actually show the worst case. Further, a

145

developer can also use the previous faulty statements in a function as a starting point to

investigate statements in a function. If 50-90% of the field failures are rediscoveries of

the previous faults (Brodie et al., 2005; Lee and Iyer, 2000; Wood, 2003) then most of the

previous faulty statements would likely be faulty again and this would further reduce the

effort in statements.

3.8.3 Identifying Multiple Faulty Functions

In F007-plus, the multiple faulty functions are identified in the following two ways:

a) In Figure 26, we have shown that a trace is assigned a label of one faulty function.

In the case of multiple faulty functions, a trace is assigned the label of multiple

faulty functions and the decision tree is then trained on such traces. The decision

tree identifies multiple faulty functions in a similar fashion to single faulty

function as discussed in Section 3.4.3.

b) Previous method is better suited for the actual traces, when we already know

multiple faulty functions for a trace, because artificially generating mutants for

multiple functions can result into mutants for approximately 2n combinations of

faulty functions (where n= total functions in a program). Therefore, in the case of

mutants, F007-plus trains the decision tree on the traces of single faulty functions

(as discussed in discussed in Section 3.4.3). F007-plus then predicts single faulty

function for a multiple faulty function trace. The intuition is that if one of the

faulty functions out of few faulty functions of the actual trace is predicted

correctly then we consider that faulty function has been discovered for that trace.

This is because it is likely that if a programmer discovers (or fix) one faulty

function then other faulty functions occurring due to the same fault would get

diagnosed (or fixed) automatically. Moreover, after fixing one faulty function if

the failure appears again then the process can be repeated to discover other faulty

functions.

146

Table 15: List of multiple faulty functions in release 3 of the Flex and the Grep

program.

Flex

Group 1 flexinit; yy_flex_realloc; myesc

Group 2 list_character_set; dump_associated_rules ; flexinit

Group 3 dump_associated_rules; yy_delete_buffer; set_input_file

Group 4 action_define; gen_NUL_trans

Group 5 myesc; yy_flex_realloc; global; yy_delete_buffer; set_input_file;

reading; flexinit; gen_NUL_trans

Group 6 genctbl; global; gen_NUL_trans; dump_associated_rules;

action_define; list_character_set

Grep

Group 1 gcompile; nlscan; grepfile; page_alloc

Group 2 fillbuf; grepdir

Group 3 fillbuf; init_syntax_once; page_alloc'

Group 4 reset; lex

Group 5 grepfile; lex; init_syntax_once

Group 6 prtext; closure

Group 7 fillbuf; prline; lex

In order to demonstrate above two methods to identify multiple faulty functions, we

enabled more than one fault simultaneously in the UNIX utilities by Do et al. (2005). The

scripts provided by Do et al. (2005) enable faults one by one (one fault pertains to one

faulty function) in the UNIX utilities, and run test cases on those enabled faults. This

results into the failed traces of only one faulty function for each run of test suite.

Similarly, we collected the failed traces of the mutants of single faulty functions one by

one (as discussed in method ‘b’ above). Thus, our earlier results were based on single

faulty functions.

We randomly selected the Flex and the Grep programs to illustrate the case of multiple

faulty functions. We selected release three of these programs because release three

resulted in the largest number of failed traces of single faulty functions—i.e., many test

cases failed on release three of Flex and Grep. We randomly enabled multiple faults

simultaneously for the release three of Flex and Grep: each time we enabled a different

combination of faults. This resulted into several functions being faulty at the same time.

The list of functions that we randomly made faulty for the Flex and Grep program is

shown in Table 15. For example, for the Flex program, we enabled faults in six different

groups of functions. In the first group, there are three faulty functions “flexinit”,

“yy_flex_realloc” and “myesc” that resulted by enabling different faults provided with

147

the Flex program (Do et al., 2005). We ran test suite on these groups of functions one by

one, and collected all the failed traces; that is, in this case we relaxed the criteria of

selecting only those faults which have 20% or lesser failed test cases. This also allowed

us to evaluate F007 on the faults with more than 20% failed test cases.

Figure 38: Identifying multiple faulty functions in the Flex and Grep program using

mutant traces and actual traces.

In Figure 38, we show the results of identifying multiple faulty functions by using F007-

plus. First we identified faulty functions in the traces of multiple-faulty-function-release-

three using the traces of mutants of releases three and the actual failed traces of release

one and two. If any one of the faulty function predicted by F007-plus matched one of the

faulty functions of the trace, we considered that the faulty function was identified. For

example, in the case of failed traces of group 1 of Flex program (Table 15), the first

148

faulty function that matched from the list of predicted faulty functions from F007-plus

was “flexinit”, and “flexinit” was listed at the rank 1 of the predicted faulty function list.

In Figure 38, the accuracy of identifying faulty functions in multiple-faulty-function-

release-three using the traces of mutants and failed traces of prior releases is: (a) 50% on

the review of 7% of the program for the Grep; and (b) 98% on the review of 10% of the

program of the Flex. This shows that even if there are multiple faults in different

functions, one of the faulty functions can still be identified -- due to the similarity of

function-calls between the multiple-faulty-function trace and the identified faulty

functions trace. This again confirms the similarity of function-call traces among the

faulty function's trace. Also note that it is not necessary that failed traces of multiple

faults are triggered by all the multiple faults. It is possible that on running some test cases

one particular fault in a faulty function is executed, hence resulting in the function-call

traces similar to single faulty function.

In the case of Grep, Figure 38 shows that the accuracy is only 50% and in the rest of the

cases faulty functions were not discovered at all. One of the reasons for no discovery of

faulty functions in the remaining cases is that the training set did not contain failed traces

of some faulty functions or contained very few. For example, in the case of “group 1” of

Grep program (i.e., gcompile, nlscan, grepfile, and page_alloc) only one trace of the

function “gcompile” and four traces of the function “grepfile” were present in the training

set. This means that the decision tree had not enough knowledge and it didn’t predict

faulty functions.

Finally, Figure 38 also shows the results of F007-plus by using mutant traces, failed

traces of previous releases, and the 10% failed traces of multiple-faulty-function-release.

In other words, the training set also includes the failed traces of actual multiple faulty

functions (i.e., traces with the label of multiple functions as described in method ‘a’).

Figure 38 shows that faulty functions in approximately 80% of the failed traces can be

identified by reviewing 1% of the program for both the Flex and the Grep, when 10%

failed traces of the multiple-faulty-function-release were also used. The inclusion of

actual 10% traces overcomes the limitation of not discovering the faulty function when

149

previous traces do not have that faulty function. This is significant (as mentioned before)

when 50-90% are rediscoveries of the same fault (Brodie et al., 2005; Lee and Iyer, 2000;

Wood, 2003).

Thus, the results in this section show that F007-plus can effectively identify faulty

functions in the failed traces of multiple faulty functions. The results in this section also

show that mutants can accurately identify actual faults with high accuracy. This improves

the answer to research question (Q2).

3.8.4 Rules of Decision Tree in Understanding Fault Proneness of
Faulty Functions

Decision tree model actually generates rules from the independent variables in a training

dataset and use those rules to predict a dependant variable (see Section 3.4.3). In this

section, we show examples of decision trees (i.e., rules) for randomly selected functions.

These rules are useful in understanding why a particular function could be faulty and

which unique execution paths mostly lead to that faulty function. For example, if a

particular function is found faulty in a large number of traces and due to different faults,

then a programmer can analyze these rules to find out which execution paths are causing

that function to be faulty and perform extensive testing on the functions of those paths.

Figure 39: Decision tree models for faulty functions of Flex and grep program.

150

In Figure 14 (‘a’, ‘b’, and ‘c’), we show the three decision tree models, generated using

the one-against-all approach, for functions of the Flex and Grep program. For example, in

Figure 14 part ‘a’, the rules are read as if occurrence of the function

“check_trailing_context” is less than equal to zero, and occurrence of “allocate_array” is

less than equal to 35, and “add_accept” is greater than 7, then the faulty function is

“yyparse”. In a similar manner, other rules in part ‘a’, ‘b’ and ‘c’ of Figure 14 can be

analyzed. Thus, these rules actually provide an abstraction of a collection of faulty traces

belonging to faulty functions, and provide a succinct human-readable view of suspicious

function-calls (out of many function-calls in traces) leading to a faulty function.

3.9 Summary of the Findings

In this section, we summarize all the results of this study:

• Different faults in the same function do not occur with the exactly the same

occurrences of function-calls, but different faults in the same function do have similar

or closely related function-call occurrences (see Section 3.7.2).

• A conclusion that: “A group ‘Mi’ of related functions have similar function-call traces

when a fault occurs in the functions of that group ‘Mi’; but the function-call traces of

‘Mi’ are different from the function-call traces of another group of function ‘Mk’ if a

fault occurs in the functions of group ‘Mk’. Where i,k= 1-n and i ≠ k and Mi ⊂ N and

Mk⊂N and N={functions | functions ∈ program}.”(See Section 3.7.1.) This answers

the first research question (Q1).

• Faulty functions in 50-60% of the actual traces can be identified on reviewing 20-

30% of the code by making every function artificially faulty (i.e., using mutants) and

using the traces of all those mutated functions (see Figure 30 and Figure 31 in Section

3.7.1). This answers the research question (Q2); but the accuracy of identifying faulty

functions remains low when using the mutant traces of all the faulty functions.

• A new strategy F007-plus that improves F007-basic-- that identifies only rediscovered

faulty functions by using prior faults--by identifying new and old faulty functions

using mutants and prior faults (see Section 3.5 and Section 3.8).

151

• When using F007-plus, faulty functions in approximately 30-80% of the failed traces

in the current release can be identified using the failed traces of the mutants of the

suspected functions of the current release and failed traces of the previous releases

(see Section 3.5).This improves the answer to research question (Q2). If 10% traces of

the current release are used then faulty functions in 77-97% of the failed traces can be

identified by reviewing approximately 3% of the program (see Section 3.8)

• The use of 25-30 mutant traces per function is sufficient to discover faulty functions in

the actual traces (see Section 3.7).

• Results show that developer’s effort in terms of the review of statements mostly

remains proportional to the developer’s effort in terms of the review of functions (see

Section 3.8.2).

3.10 Comparison Against Other Techniques

 In Section 3.2, we described the characteristics of prior techniques and how they differ

from our technique. In this section, we shall further articulate the significant differences

with the closely related techniques, which will get clearer now.

In Figure 40, we show the results of F007-basic (Murtaza et al., 2010) by training the

decision tree on the actual failed traces of earlier releases and identifying faulty functions

in the following releases of the UNIX utilities—that is, without using mutants. Figure 40

shows the accuracy of identification of faulty functions on all the four UNIX utilities

(i.e., Flex, Grep, Gzip and Sed) and the results were obtained in the same manner as

described in Section 3.8.

For example, in Figure 40, the series “using release 1 for release 2” shows that by

training the decision tree on the failed traces of release 1 (training-release) of the four

UNIX utilities, approximately 10% of the faulty functions can be identified in release 2

(test-release). This identification requires only the review of 7% or less of the code

(functions) for the four UNIX utilities. Similarly, Figure 40 shows the result on other

releases of the UNIX utilities by using the traces of all the preceding releases as the

training set and the following releases as the test set.

152

Figure 40: F007-basic on the UNIX utilities.

A limitation of the F007-basic approach is that faulty functions can only be identified in

the current release if they are present in the previous release—new faulty functions can

not be identified. This problem can be mitigated by using the mutants of the expected

faulty functions of the current release with the traces of previous release—i.e., using

F007-plus. We show the results of F007-plus on the UNIX utilities in Figure 41 which is

the same as Figure 34. Results of F007-plus, in Figure 41, are annotated as R2, R3, R4,

and R5 for release 2, release 3, release 4 and release 5 respectively. It can be observed

that F007-plus (by using mutants) improves F007-basic by 10-60% on reviewing 20% of

the code. F007-plus can identify 30-80% of the faulty functions in the traces of the

succeeding release of the UNIX utilities by using the failed traces of prior releases and

mutants of the current release. F007-plus, however, needs to be improved further to

identify the majority of the faulty functions within the review of 10% of the code: that is,

more research in the area of identification of the suspected faulty functions can improve

F007-plus further.

153

Figure 41: F007-plus on the UNIX utilities and straw-man approach for prediction

of faulty functions.

Figure 41 also compares F007-plus with a straw-man approach. In the staw-man

approach, we considered that for every new failed trace in a current release, a developer

predicts the function with the largest LOC and the function found faulty in the largest

number of failed traces of previous releases. The results are shown in Figure 41 by

annotations SR2, SR3, SR4 and SR5 for release 2, 3, 4 and 5 respectively. For example,

for release 2 (SR2), less than 1% of the failed traces were correctly resolved by reviewing

2% of the code. For the remaining 99% of the traces, 100% of the code was required to

be reviewed. (Recall that straight line, when there are no points on a series in a graph,

means that a developer needs to predict faulty functions by himself or herself.) The

154

difference between the accuracy of prediction of faulty functions seems to be low

between F007-plus and the straw-man approach in the case of release 2 and release 5. In

the case of F007-plus, the accuracy of prediction is low when test cases did not fail on

mutants and there are not enough traces belonging to particular faulty functions in the

training set. In the case of straw-man approach, accuracy of prediction is actually very

low except in release 5, and the accuracy of predictionof the straw-man approach

overlaps with F007-plus in Figure 41 only when a developer is predicting faulty functions

randomly (i.e., at a straight line). Thus, F007-plus can effecticiently identify faulty

functions across releases. Moreover, if only a small percentage (e.g., 10%) of failed

traces of a current release is available then 70-90% of the failed traces can be identified

by reviewing less than 10% of the program, as shown in Figure 35.

Other fault discovery techniques such as recording function sequences (Dallmeier et al.,

2005; Di Fatta et al., 2006) to identify faulty functions (Di Fatta et al., 2006) and faulty

classes (Dallmeier et al., 2005); evaluating statement coverage to identify faulty

statements (Jones and Harrold, 2005; Wong et al., 2007); and statistical debugging

(Chilimbi et al., 2009; Liu et al., 2005; Zheng et al., 2004) have the following major

differences with our technique: (a) our technique can discover faults in a single trace

using the previous traces (e.g., from mutants); whereas all these techniques identify a

fault in a collection of passing traces and failing traces related to the same fault (version)

29
; (b) our technique incurs less overhead on deployed system as it does not require many

passing traces and failing traces to be collected for a given fault; and (c) most of these

techniques are suitable for in-house testing where passing and failing traces are readily

available, whereas our technique is suitable for the field traces where only a few failed

traces are available to find a fault. Thus, these techniques are related to our technique but

they are not directly comparable and suited for a different purpose.

29
A version is equivalent to one fault in the Space program or the UNIX utilities. These third party

techniques identify fault in a collection of passing and failing traces of one version; whereas our technique

identify faults in every failed trace of a version using prior failing traces.

155

Another, closely related technique focusing on field failures, proposed by Podgurski et al.

(2003), clustered together failed (function level) execution profiles according to the same

faulty source file. They evaluated their technique on programs such as GCC, Javac and

Jikes, and it resulted in 57%, 30% and 29% clusters (groups of failed traces for a file)

with the same source files, respectively. The majority of clusters contained more than one

file making it difficult for manual investigation, specially the fine-grained code. Our

technique discovers faults in failed traces at a finer-grain level— function, and with an

accuracy of: (a) 25-80% on reviewing 10% of the code (functions) when using mutant

traces and traces of prior releases (see Figure 34); and (b) 70-95% on reviewing 10% of

the code (functions) when using only 10% failed traces of the current release (see Figure

35).The differences of this paper with other related techniques are already described in

Section 3.2.

 In Figure 23, we showed an example of the function-call level execution trace having

both “function entry” and “function exit” events. However, we have found, in our earlier

experiments (Murtaza, et al., 2010), that either “function entry” or “function exit” events,

by themselves, are adequate to predict the fault origin (Murtaza, et al., 2010). Their

combined use does not improve the success rate. This finding also implies that the

overhead on the deployed systems will be half of a normal (function-call) failure trace if

only “function entry” or “function exits” is collected for software—reducing the size of a

trace to half as well (Murtaza, et al., 2010). Thus, in all the results we have shown in this

paper, we have only used “function exit” events.

3.11 Threats to Validity

In this section, we describe certain threats to the validity of the research results obtained

through our employed research process. We classify threats into four groups: conclusion

validity, internal validity, construct validity, and external validity.

3.11.1 Conclusion Validity

Conclusion validity is concerned with our ability to draw the correct conclusion about the

relations between treatment and outcome of an experiment (Wohlin et al., 2000).

156

A threat to conclusion validity belongs to random variations in mutant traces. We

randomly chose 3 mutants per function, but on some programs test cases did not fail on

the mutants (see Figure 34 for release 2). It is possible that different selected mutants for

the same function might result in failing test cases and variations in accuracy for some

programs. For example, in Figure 33, we have observed that by using different random

mutant traces per function, the accuracy of identification of faulty function is about 75%

on the review of 10% of the program; whereas in Figure 33 we showed 70% accuracy on

using other mutant traces. This may be due to the function-call path that a fault generated

using mutant has taken in the traces. However, this threat is mitigated by the fact that we

use 25-30 mutant traces per faulty function, repeated experiments on about 19 real world

programs (i.e., 4-5 releases of the four UNIX utilities, and one release of the Space

program; see Table 11), and we collected different faulty paths for a function by

selecting three different mutants per function. Also, as we have found out in the

experiments that function-call traces of related functions are similar, therefore the results

are not going to be different from the ones shown in this paper.

3.11.2 Internal Validity

Internal validity is concerned whether the relationship between treatment and outcome is

causal, and not due to any confounding factors (Wohlin et al., 2000).

A threat to internal validity can exist in the implementation of different algorithms

because an incorrect implementation can influence the output. For example, we wrote

shell scripts to automate mutant trace collection, developed a Java program to

automatically extract functions and their locations from C programs, modified the mutant

tool to randomly generate three mutants per function, and developed F007-plus in Java

and MySQL. In our investigation, this threat is mitigated by making our implementation

reliable, for example, by manually investigating the outputs (e.g., we manually verified

for some programs that random mutants were correctly generated for a function).

3.11.3 Construct Validity

Construct validity refers to the extent to which the experimental settings actually reflect

the construct under study (Wohlin et al., 2000).

157

A threat to construct validity is related to the use of code metrics. We used four code

metrics (see Section 3.8) for a function as independent variables to predict faulty

functions for the future releases. A different set of code metrics can be used if they result

in better accuracy. For example, a factor for the accuracy for release 2 in Figure 34 is

low, apart from no failing test cases, is that some of the suspected functions using code

metrics were not predicted. Also the cost ratios in Table 12 for the “Sed” program are

quite high, which could mean that a different set of code metrics can be used which may

result in a lower cost ratio for the “Sed” program”. However, the focus of this research is

not to determine which set of code metrics are suitable, but to demonstrate that we can

leverage the code metrics based techniques (Basili et al., 1997;Emam et al., 2001;Lounis

and Ait-Mehedine, 2004); to generate mutants to identify faulty functions in the actual

traces. Further, we have also described the criteria for selecting the cost ratio using

training set, which can be used to identify majority of “faulty” functions in the future

releases. Also, the results in Section 3.8 on other releases show that this method has a

potential to generate right set of mutants to identify faulty functions accurately, if the test

cases fail, in the actual failed traces.

A threat to construct validity exists in the use of failed field traces for fault discovery by

F007-plus. Consider, automated failure reporting such as in Mozilla, Net Beans, and

Visual Studio. This failure reporting facilitates fault localization by providing contextual

information, traces, etc. to the developers. It may be possible that such large number of

traces may contain passing traces. In such cases, pass-fail classification techniques

(Bowring et al., 2004; Haran et al., 2007) or a technique to collect only function-calls

related to the fault (Elbaum et al., 2007) (which are complementary to our work) can be

used to classify a trace as passing or failing. However, if a trace is captured at the time of

a fault, then F007-plus will identify faulty functions in that trace. This is because if a

trace is captured at the time of a fault then it would encompass the sequences of function-

calls contributing to faulty functions.

3.11.4 External Validity

External validity refers to the ability to generalize results of an experiment to industrial

practice (Wohlin et al., 2000).

158

Second threat to validity is that we have experimented only on the medium sized

commercial programs. This technique is still to be validated on the very large industrial

scale software application, and caution is advised in unproven context. However, many

of the significant papers in the field of fault localization have used the Space program

(Andrews et al., 2005; Jones and Harrold, 2005; Wong and Qi, 2006) and the UNIX

utilities (Zhang et al., 2009). This shows the significance of our results.

Another threat to external validity exists in that a new failed trace (e.g., from a new

release) could contain a function-call that does not exist in the training set. In order to

build the decision tree, we need to add those newer functions in the training set of the

failed traces of previous releases with the confidence of ‘0’, or discard the new function-

calls and use the ones already in the trained tree. In the case of F007-plus, we have

mitigated this threat by using the mutant traces of the last release, which facilitated in

including the functions introduced in the new release. Also, before generating the

decision tree from the traces of the training set, we checked if there were new functions

in the traces of the test set. If there were new functions, we added the names of those

functions with the value of ‘0’ in the training set.

3.12 Conclusions

Identification of the origin of a fault remains an arduous and time consuming activity of

corrective maintenance, which can consume approximately 30-40% of corrective

maintenance time (Proprietary Workshop, 2008). A number of techniques proposed for

deployed software focus on: the classification of field profiles into failed or successful

executions (Bowring et al., 2004; Haran et al., 2007); clustering field profiles (Liu and

Han, 2006; Podgurski et al., 2003); rediscovery of crashing faults (Brodie et al., 2005;

Lee and Iyer, 2000); statistical debugging (Chilimbi et al., 2009; Liu and Han, 2006); and

rediscovery of crashing and non-crashing faults (Murtaza, et al., 2010).

This paper discusses two new questions that have not been dealt with in the literature

before: (Q1) Are the function-call level traces of some faulty functions similar and that of

some other faulty functions different? (Q2) Can the faults generated using mutants

(artificial faults) be used to discover the actual faults? These questions are important

159

because we can reduce the time and effort spent in the corrective maintenance by using

artificial faults (i.e., mutants) to discover the actual faults. We investigated the answers to

these research questions by experimenting on one release of the Space program, and four

to five releases of the Flex, Grep, Gzip and Sed programs (Do et al., 2005).

This paper contributes by identifying: “A group ‘Mi’ of related functions have similar

function-call traces when a fault occurs in the functions of that group ‘Mi’; but the

function-call traces of ‘Mi’ are different from the function-call traces of another group of

function ‘Mk’ if a fault occurs in the functions of group ‘Mk’. Where i,k= 1-n and i ≠ k

and Mi ⊂ N and Mk⊂N and N={functions | functions ∈ program}”. This answers the first

research question (Q1).

This paper also contributes by proposing a new strategy F007-plus that improves our

prior work F007-basic (Murtaza, et al., 2010) –that identifies only rediscovered faulty

functions--by identifying new and old faulty functions using mutants and prior faults (see

Section 3.8). F007-plus trains the decision trees on the traces of the mutants of suspected

faulty functions in a current release and the failed traces of actual faulty functions to

identify faulty functions in actual failed traces (see Section 3.5): the suspected faulty

functions were identified using the cost sensitive learning strategy on the code metrics of

programs.

When using F007-plus faulty functions in approximately 30-80% of the failed traces in

the following release can be identified using the failed traces of the mutants of the

suspected functions of the current release and failed traces of the previous releases (see

Section 3.8.1). This answers research question (Q2). If 10% traces of the current release

are used then faulty functions in 77-97% of the failed traces can be identified by

reviewing approximately 3% of the program (see Section 3.8.1). If F007-plus is

compared with F007-basic (which only uses traces of previous releases) then F007-plus

improves F007-basic by 10-60% on the review of 20% of the code (see Section 3.10).

Our technique is thus invaluable for deployed software when it is not feasible to collect

many (passing and failing) traces. This is mostly the case with deployed software due to

overhead incurred and time spent in collecting traces.

160

We have experimented only on the medium size commercial programs and this technique

still requires validation on very large scale industrial programs. Also, we have used code

metrics based classification to identify the possible faulty functions and mutants (see

Section 3.8) in a future release. One of the future research issues is to explore this further

to exactly identify the right set of expected faulty functions to generate the exactly

relevant mutants for training. This will improve the accuracy of identification of the

faulty functions in the actual traces, and will result in the reduced effort of mutants and

the failed traces generation.

3.13 References

 Agrawal, H.; Horgan, J.R.; London, S.; Wong,W.E.; “Fault Localization using Execution

Slices and Dataflow Tests”, Proc. of Int’l Soft. Symp. on Reliability Eng., IEEE,

France, Oct., 1995, pp.143-151.

 Andrews, J. H.; Briand, L. C.; and Labiche, Y, “Is mutation an appropriate tool for

testing experiments?”, Proc. of the 27th Intl. Conf. on Sof. Engg.,ACM, St. Louis,

USA, May, 2005, pp. 402-411.

 Andrews, J.H.; Briand, L.C.; Labiche, Y.; Namin, A.S.; , "Using Mutation Analysis for

Assessing and Comparing Testing Coverage Criteria," IEEE Transactions on

Softw. Eng., Vol.32, No.8, Aug. 2006, pp.608-624.

Basili, V. R., Condon, S. E., El Emam, K., Hendrick, R. B., and Melo, W.,

“Characterizing and modeling the cost of rework in a library of reusable software

components,” Proc. Conf. on Software Engineering, ICSE, ACM , Boston, USA,

May , 1997, pp. 282-291.

 Bowring J.F.; Rehg J.M.; and Harrold. M.J; “Active Learning for Automatic

Classification of Software Behavior”, SIGSOFT Soft Eng. Notes, Vol. 29., No. 4,

ACM, USA, July 2004, pp. 195-204.

 Brodie, M.; Sheng Ma; Lohman, G.; Mignet, L.; Modani, N.; Wilding, M.; Champlin, J.;

Sohn, P., “Quickly Finding Known Software Problems via Automated Symptom

Matching”, Proc. of Second Int’l Conf. on Autonomic Computing, ICAC 2005,

IEEE CS, June 2005, pp. 101-110.

 Chen M.; Accardi A.; Kiciman E.; Fox A.; Patterson D.; and Brewer E.; “Path-based

Failure and Evolution Management”, Proc. of Int’l Symp. on Networked Systems

Design and Implementation, USENIX Association, CA,USA, March 2004,pp.

309-322.

 Chilimbi, T. M.; Liblit, B.; Mehra, K.; Nori, A. V.; Vaswani, K; “HOLMES: Effective

Statistical Debugging via Efficient Path Profiling.”, Proc. of 31
st
 Intl. Conf. on

Soft. Eng., IEEE CS, Canada, May, 2009, pp.34-44.

161

 Dallmeier, V.; Lindig, C.; Zeller, A, “Lightweight Defect Localization for Java”,

ECOOP 05- Object Oriented programming, Lecture Notes in Computer Science,

Springer, Glasgow, UK, August 2005,pp 528-550.

 Di Fatta, G.; Leue, S.; Stegantova, E; “Discriminative Pattern Mining in Software Fault

Detection”, In Proc. of 3
rd

 Int’l Workshop on Soft. Quality Assurance, ACM,

Oregon, USA, Nov. 2006, pp. 62-69.

Ding, X.; Huang, H.; Ruan, Y.; Shaikh, A.; and Zhang, X.; “Automatic Software Fault

Diagnosis by Exploiting Application Signatures”. Proc. 22nd Conf. on Large

Installation System Admin., USENIX Ascoiation, San Diego, CA, USA, Nov.,

2008, pp. 23-39

 Do H. and Rothermel. G., “On the Use of Mutation Faults in Empirical Assessments of

Test Case Prioritization Techniques”. IEEE Transactions on Soft. Engg., Vol. 32,

No. 9, IEEE, USA, Sep. 2006, pp. 733–752.

 Do, H.; Elbaum, S. G.; and Rothermel, G.; “Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact," Journal of

Empirical Soft. Eng., vol. 10, Kluwer Academic Publisher, USA, Oct. 2005, pp.

405-435

 Emam E.,K; Melo,W.; Machado, J.,C.; “The prediction of faulty classes using object-

oriented design metrics”, Journal of Systems and Software, Vol. 56, No. 1,

Elsevier Science Inc., USA, Feb. 2001, pp. 63-75.

Elbaum, S., Kanduri, S., and Andrews, A. “Trace anomalies as precursors of field

failures: an empirical study”. Journal of Empirical Soft. Engg., Vol.12, No.5,

Kluwer Academic Publisher,USA, Oct. 2007, pp. 447-469.

Etrace(Runtime Tracing Tool):http://ndevilla.free.fr/etrace/;March, 2008.

Gittens M., Kim Y., and Godwin D., “The vital few versus the trivial many: Examining

the pareto principle for software”, Proc. of 29th Int'l Computer Software and

Applications Conf. (COMPSAC'05), IEEE CS, Edinburgh, Scotland, July 2005,

pp. 179-185.

Hao, D.; Pan, Y.; Zhang, L.; Zhao, W.; Mei, H.; and Sun, “A Similarity-aware Approach

to Testing Based Fault Localization”, Proc. of 20th IEEE/ACM Intl. Conf. on

Automated Soft. Engg.,ACM, CA, USA, Nov. 2005, pp. 291-294.

Haran, M.; Karr, A.; Last, M.; Orso, A.; Porter, A.A.; Sanil, A.; Fouche, S.; “

Techniques

for Classifying Executions of Deployed Software to Support Software

Engineering Tasks”, IEEE Trans. on Soft. Eng. Vol. 33, No.5, IEEE, USA, May,

2007, pp. 287-304.

 Hutchins, M.; Foster, H.; Goradia, T.; Ostrand, T., "Experiments on The Effectiveness of

Dataflow- and Control-Flow-Based Test Adequacy Criteria," Proc. of 16
th

 Int’l

Conf. on Soft. Eng., IEEE, Sorrento, Italy, May,1994 ,pp.191-200.

Jones, J. A. and Harrold, M. J., "Empirical Evaluation of the Tarantula Automatic Fault-

Localization Technique," Proc. of 20
th

 Int’l Conf. on Automated Soft Eng., ACM,

CA, USA,2005, pp.273-282.

162

Lee M. G.; Jefferson T. L.; “An Empirical Study of Software Maintenance of a Web-

based Java Application”, Proc. of Int’l Conf. on Soft. Maint. (ICSM), IEEE CS,

Budapest, Hungary, Sep.,2005, pp. 571-576.

Lounis, H.; Ait-Mehedine, L. “Machine Learning Techniques for Software Product

Quality Assessment,” Proc. Conf. on Quality Software (QSIC), IEEE CS,

Germany, Sep, 2004, pp. 102-109

Lee, I.; Iyer, R., “Diagnosing Rediscovered Problems Using Symptoms”, IEEE

Transactions on Software Engineering, vol. 26, no. 2,IEEE USA, Feb. 2000, pp.

113-127.

Liu, C. and Han, J., “Failure proximity: a fault localization-based approach”. Proc. of the

14th SIGSOFT Sym. on Foundations of Software Engineering, ACM, Portland,

USA, Nov. 2006, pp. 45-56.

Liu, C.; Yan, X.; Fei, L.; Han, J.; Midkiff, S. P.; “SOBER: Statistical Model-Based Bug

Localization”, SIGSOFT Softw. Eng. Notes, Vol 30, No.5, ACM, USA, Sep,2005,

pp. 286-295.

Mayer J. and Schneckenburger. C., “An Empirical Analysis and Comparison of Random

Testing Techniques”.Proc. of Intl. Symp. on Empirical Soft. Engg., ACM, Brazil,

Sep., 2006, pp. 105–114.

Murtaza, S.,S.; Gittens, M.; Li, Z., Madhavji, N.H.; “F007: Finding Rediscovered Faults

from the Field using Function-level Failed Traces of Software in the Field”, Proc.

2010 conference of the centre for advanced studies on collaborative research:

meeting of minds (CASCON 2010), ACM, Ontario, Canada, Oct. 2010, pp. 57-71.

Offutt, A., J. and Untch, R., H., “Mutation 2000: uniting the orthogonal”, in Mutation

Testing for the New Century, Kluwer Academic Publishers, Wong W,E., (Ed.),

USA, 2001, pp. 34-44.

Ostrand T. J., Weyuker E., and Bell R. M., “Predicting the location and number of faults

in large software systems”, IEEE Trans. on Software Eng., Vol. 31, No. 4, 2005,

IEEE, USA,pp. 340-355.

Podgurski, A.; Leon, D.; Francis, P.; Masri,W.;Minch, M.; Sun, J.; Wang, B, “Automated

Support for Classifying Software Failure Reports”, Proc. Intl. Conf. on Software

Eng. ,IEEE CS, Portland, US, May,2003, pp. 465-475.

Polat, K.; Güneş, S, “A Novel Hybrid Intelligent Method Based on C4.5 Decision Tree

Classifier and One-Against-All Approach for Multi-Class Classification

Problems”, Journal of Expert Syst. Appl. Vol. 36, No.2 , Pergamon Press, USA,

Mar., 2009, pp. 1587-1592.

Proprietary workshop on a large commercial software, Sep., 2008.

Quinlan, J. R.; C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers

Inc., 1993.

Schach S. R.; Jin B.; Yu L.; Heller G. Z.; and Offutt J. “Determining the Distribution of

Maintenance Categories: Survey versus Measurement”, Journal of Empirical Soft.

Engg. Vol. 8, No. 4, Springer, Netherlands, Dec., 2003, pp. 351-365.

163

So, S. S., Cha, S. D., and Kwon, Y. R., “Empirical evaluation of a fuzzy logic-based

software quality prediction model,” Fuzzy Sets and Syst., Vol. 12, No. 2, Elsevier

Science,The Netherlands, April, 2002, pp.199-208.

Ting, K.M.; "An instance-weighting method to induce cost-sensitive trees," IEEE

Transactions on Knowledge and Data Engineering, Vol.14, No.3, IEEE, USA,

Jun 2002, pp.659-665.

Witten I.H. and Frank E., Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann Publisher, San Francisco,USA, 2005.

Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; and Wesslén, A;;.

Experimentation in Software Engineering: An Introduction. Kluwer Academic

Publishers, Norwell, USA, 2000.

Wong, W. E. and Qi, Y., “Effective Program Debugging Based On Execution Slices and

Inter-Block Data Dependency”, J. Syst. Softw., Vol.79 ,No. 7, Elservier Inc.,

USA, July, 2006, pp. 891-903.

Wong, W.E.; Yu Qi; Lei Zhao; Kai-Yuan Cai, "Effective Fault Localization using Code

Coverage," Proc. of 31
st
 Int’l Conf. on Comp. Soft. & App.,Vol.1, IEEE CS,

China, July, 2007, pp.449-456.

Wood A., “Software reliability from the customer view”, Computer , vol. 36, no. 8, IEEE

CS, USA, August 2003, pp. 37-42

Yuan, C.; Lao, N.; Wen, J.; Li, J.; Zhang, Z.; Wang, Y.; and Ma, W; “Automated known

problem diagnosis with event traces”, SIGOPS, OS. Syst. Rev., Vol. 40, No. 4,

ACM,USA, Oct., 2006, pp. 375-388.

Zhang, Z.; Jiang B., and Wang, X., "Capturing Propagation of Infected Program States".

Proc. Intl. Conf. on Foundations of Soft Engg., ACM, Netherlands, 2009, pp. 43-

52.

Zheng A.X.; Jordan M.I., Liblit, B.; Aiken, A, “Statistical Debugging of Sampled

Programs”, In Advances in Neural Information Processing Systems, MIT Press,

Cambridge, MA, US,2004. pp. 9-18.

164

Chapter 4

4 Emerging Theory

4.1 Introduction

The main objective of this dissertation was to develop a technique to automatically

identify fault origin in the traces of field failures. However, we observed that findings of

this thesis during the course of this research could lead to the foundation of an emerging

theory in the field of software fault localization. We, thus, propose an emerging

descriptive theory for the relationships between function-call traces of different faults.

This emerging theory is developed in a bottom-up fashion according to the results

obtained from the empirical findings; that is, it directly follows from the observations

(Sjøberg et al., 2008). The propositions of emerging theory are formed in Section 4.2 by

hypothetico-inductive model (Sjoberg et al., 2008), and this emerging theory is stated in

Section 4.3 using the propositions formed in Section 4.2. The propositions are evaluated

using the criteria for measuring the goodness of a theory (Sjøberg et al., 2008) in Section

4.4. We explain the implications of this theory in Section 4.5 and conclude this chapter in

Section 4.6.

4.2 An Emerging Theory

 In this section, first we explain the background information on how theory is formed on

the basis of literature. Sjøberg et al. (2008) identified three levels of abstractions to

develop a theoretical proposition. In the first level (or Level 1), relationships that are

concrete and can be directly inferred from the observations become the Level 1

propositions. Level 2 propositions are abstract representation of possibly many Level 1

theoretical propositions. Finally, Level 3 theoretical proposition combine all other

theoretical propositions and tend to articulate an aspect of Software Engineering (SE).

Sjoberg et al.’s (2008) method to develop theoretical propositions is also used by Ferrari

(2010), in his Ph.D. thesis, to develop an emerging theory on the interaction of system

architecting and requirement engineering. The work on an emerging theory in this thesis

is inspired from his work (Ferrari, 2010).

165

Sjøberg et al. (2008) develop their framework for describing SE theories by using the

other frameworks proposed for other sciences such as social sciences, behavioral

sciences, business management, etc. For example, the above three levels of propositions

are based on the work of social research (Merton, 1968; Yin, 1984) and information

systems research (Caroll & Swatman, 2000). Sjøberg et al. (2008) argue that software

engineering (SE) theories are different from social and behavioral sciences. This is

because SE theories are more applied and dependent on time and place at the current

stage of development (Sjøberg et al., 2008); whereas theories in the social and behavioral

sciences are independent of time and place (Cohen, 1989). For example: change in

education and skill of a software engineer over time may change the validity of a theory;

and the context of lab or industry as a placeholder may affect the validity of a theory

(Sjøberg et al., 2008). Thus, we adopted the framework for describing SE theories by

Sjoberg et al. (2008) to propose an emerging theory in this thesis.

In Table 16, we hierarchically organize different level of propositions emerging from this

thesis. Level 1 proposition is observed directly from the empirical results of the studies in

this thesis. Level 2 propositions are higher level abstract representations of Level 1

propositions. Both Level 1 and Level 2 propositions are testable and tested in their source

studies or abstracted from the source studies. There are no Level 3 propositions for our

findings because typically Level 3 findings are derived from a larger set of studies as the

discipline gets matured (Sjøberg et al., 2008).

Table 16 first labels two studies conducted in this thesis as [S1] and [S2], and later it

shows two theoretical propositions that arise from theses two empirical studies. Each

proposition has two proposition levels according to Sjøberg et al. (2008) criteria and each

level proposition references the source study from which it is observed. Level 1

propositions are observed from the study [S1] and [S2], whereas Level 2 proposition,

which generalize Level 1 propositions, is abstracted from Level 1 propositions. Each

level proposition is also assigned a unique number which will be used in explaining the

propositions. Explanation of the propositions is as follows:

166

Table 16: Theoretical propositions arising from the empirical studies.

[S1] (Chapter 2) F007: Finding Faulty Functions from the Function-call level Traces of the Field

Failures.

[S2] (Chapter 3) Using Mutants to Discover New and Rediscovered Field Faults by Exploiting
the Similarity of Traces among Different Faulty Functions.

P
L

I represents a unique proposition number, where L = level number and I=proposition id at that

level.

Level 1 proposition Level 2 proposition

(P
1
1) Faulty functions in 70-90% of failed traces

can be identified on reviewing 20% or less of the

program, when using the traces of at most one fault
in 20% functions of the Space program and 20-

100% functions of the Siemens suite [S1].

(P
2
1) A faulty function can be so identified

if the traces of at least one fault in that

function are already known; and the

accuracy of identification increases with
the decreasing proportion of faulty

functions in the program.

(P
1
2) Faulty functions in 10-60% of failed traces in

a succeeding software release can be discovered by

reviewing 10% or less of the code, if traces of
faults in less than10% functions of preceding

software releases are known in the UNIX utilities

and the large program (we used) [S1].

(P
1
3) Faulty functions in 30-80% of failed traces in

a current release can be discovered on reviewing
20% of the program, when using failed traces of

mutants (artificial faults) in approximately 10-40%

functions of the current release and failed traces of
faults in 10% functions of the preceding release of

the UNIX utilities (we used) [S2].

(P
1
4) Faulty functions in 50-60% of the actual

traces can be identified on reviewing 20-30% of the
code by making every function artificially faulty

(i.e., using mutants) and using the traces of all

those mutated functions of the UNIX utilities and
the Space program [S2].

(P
1
5) A group ‘Mi’ of related functions have similar

function-call traces when a fault occurs in the

functions of that group ‘Mi’; but the function-call
traces of ‘Mi’ are different from the function-call

traces of another group of function ‘Mk’ if a fault

occurs in the functions of group ‘Mk’. Where i,k=

1-n and i ≠ k and Mi ⊂ N and Mk ⊂ N and

N={functions | functions ∈ program} [S2].

4.2.1 Explanation of propositions (P1
1 and P1

2) from the study [S1]

During our experiments on the Siemens suite (Hutchins et al., 1994; Do et al., 2005) and

the Space program (Do et al., 2005) in the study [S1], we have observed that if only a few

traces (1-25%) of one fault in a function are known then F007 can identify the same

167

faulty functions with different faults in 70-90% of the failed traces on reviewing 3% and

20% of the program for the Space program and the Siemens suite, respectively (see

Section 2.6.2.2). For the Siemens suite, 20% of the program-reivew was equivalent to 3

functions, and for the Space program 3% of the program was equivalent to 2-3 functions.

This implies proposition P1
1 and it shows that different faults in the same function occur

with similar occurrences of function-calls but up to a certain limit.

Similarly, in Study [S1], we also found that by using the failed traces of faulty functions

of previous releases, the same faulty functions in approximately 10-60% failed traces of

future releases can be identified on reviewing approximately 5-10% of the code (see

Section 2.6.2.2 and Section 2.7.6). For example, Section 2.6.2.2 (in Chapter 2) shows the

results on different releases of the UNIX utilities and Section 2.7.6 (in Chapter 2) the

results on the large program. In both Section 2.6.2.2 and Section 2.7.6, if faulty function

was present in the previous releases then it was accurately identified (i.e., by reviewing

less than 10% of the program). Moreover, when F007 was trained on more and more

traces of earlier releases the accuracy of identification of faulty functions in the

succeeding releases increased: because there were more common faulty functions across

releases. This implies proposition P1
2 and it also shows a similarity in function-call traces

of differerent faults in the same functions.

In the study [S1], the Space program had about 20% faulty functions, and those functions

were found faulty in actual development. Similarly, in the case of large commercial

program, we found less than 10% functions faulty in our sample of traces, and the faults

were actually found during the execution of software in the field. On the contrary, faults

in the UNIX utilities and the Siemens suite were hand seeded. To keep the faults realistic

in the UNIX utilities Do et al. (2005) seeded faults in those areas of code where changes

were made by developers; this resulted into approximately 10% faulty functions in the

UNX utitilies in our experiement. The Siemens suite, on the other hand, was a collection

of seven small (non-commercial) programs with 20-100% faulty functions hand seeded

by Hutchins et al. (1994), and, thus, the programs in the Siemens suite did not follow the

80-20 Pareto rule of software faults unlike other subject programs. This suggests that in

168

commerical programs a small proportion of functions are faulty, and using the traces of

those faulty functions we can identify faulty functions in majority of the failed traces.

4.2.2 Explanation of propositions (P1
3, P

1
4 and P1

5) from the study
[S2]

The proposition P1
3 at Level 1 is observed from the study [S2], where we found that using

the traces of mutants (i.e., artificially faults obtained by changing statements (Offutt et

al., 2001)) in functions we can identify the same functions in the traces of actual faults. In

the study [S2], we observed that we can estimate expected faulty functions in a current

release using the code metrics of past releases (see Section 3.5), and we can accurately

determine faulty functions in a failed trace by using the failed traces of those expected

faulty functions and traces of faulty functions of prior releases. The expected faulty

functions constituted approximately 10-40% of the total functions. For example, F007-

plus in the study [S2] estimated: (a) 44-56 faulty functions in the Flex program; (b) 12-43

faulty functions in the Grep porgram; (c) 29-45 faulty functions in the Gzip program; and

(d) 4-28 faulty functions in the Sed program. Moreover, less than 10% of the functions

were actually faulty in the previous releases, some of which overlapped with the expected

faulty functions. Thus using faults in approximately 10-40% of the functions, we were

able to identify faulty functions in 30-80% of failed traces in Section 3.8.1. Again, in this

case (Section 3.8.1), if the training set had traces of those faulty functions that were faulty

in succeeding releases, then the accuracy of identifying faulty function was high (e.g.,

80%); otherwise the accuracy was low (e.g., 30%) when training set was missing the

traces of faulty functions. The high accuracy of identification of faulty functions, when

traces of those faulty functions (with different mutant faults) were present in the training

set, also show that there was a similarity in traces of different faults in functions.

In order to determine how different and similar are the function-calls of faults in one

function with the function-calls of faults in other functions we conducted the study [S2].

In the study [S2], we made every function in the Space program and the UNIX utilities

artificially faulty using mutation (see Section 3.7.1). The results showed that faulty

functions in 50-60% of the failed traces were discovered on reviewing 20-30% of the

program, when every function was faulty (i.e., propostion P1
4). These results imply that

169

function-calls of closely related functions overlap when faults occur in them; that is,

traces of faulty functions form groups (see Section 3.7). In other words, we observed that

different faults in a group of related functions occur with similar function-call traces and

traces of faults in one group of functions differ from the traces of faults in other groups of

functions. This results in proposition P
1

5. This propition P
1
5 also means that we can

identify faulty functions with high accuracy (as in P
1

1, P
1

2, P
1

3) in failed traces if in a

previous collection of failed traces (i.e., training-set) only a small percentage (i.e., up to

40%) of functions are faulty. If the training-set has faulty traces of every function then

the accuracy of identification would be low. If 20% of the code is responsible for 80% of

the faults (Boehm and Basili, 2001; Gittens et al., 2005; Ostrand et al., 2005) then a small

proportion of functions will always be faulty in a program.

4.2.3 Explanation of proposition P2
1

 Finally, proposition P2
1 generalizes from the propositions at level 1 by using the fact that:

(a) a faulty function can be accurately identified from traces if traces of at least one (same

or different) fault of that faulty function are present in the previous collection of traces

(i.e., using proposition P
1

1, P
1

2, and P
1
3); and (b) accuracy of identification of faulty

functions would be higher if a small proportion of functions are faulty (i.e., using

proposition P
1
1, P

1
2, P

1
3, P

1
4, and P

1
5) because traces of closely related faulty functions

overlap.

4.3 Emerging Theory Statement

Overall, based on the propositions at Level 1 and Level 2 this emerging theory can be

stated as:

“A faulty function can be so identified if the traces of at least one fault in that

function are already known; and the accuracy of identification increases with

the decreasing proportion of faulty functions in the program.”

4.4 Evaluating Emerging Theory

Sjøberg et al. (2008) also list criteria for evaluating the “goodness” of theories. Similar

criteria to measure the goodness of theories were also presented by Boehm and Jain

170

(2005). Ferrari (2010) also used Sjøberg et al. (2008) criteria for the evaluation of

goodness of an emerging theory on the interaction of system architecting and requirement

engineering. We have also adopted the following criteria from the work of Sjøberg et al.

(2008). In fact, Sjøberg et al. (2008) criteria are almost similar to the work of Boehm and

Jain (2005) criteria and can be considered as their (Boehm and Jain, 2005) representative.

Sjøberg et al. (2008) (and also Boehm and Jain (2005)) criteria were adapted for SE

theory evaluation from other disciplines such as Business Management (Bacharach,

1989), Psychology (Haig, 2005), and Sociology (Cohen, 1989). Following are the criteria

taken from the work by Sjøberg et al. (2008), where each criterion desginates the degree

of support (i.e., low, medium, or high) for the emerging theory from the empirical studies

(e.g., [S1], [S2]). The classification of each criterion as low, medium, or high is based on

the author’s subjective judgment as explained below. Our judgment is derived from the

explanation given by Sjøberg et al. (2008) for each criterion. In the following definitions,

we only explain high and low classification with the intuition that medium classification

would lie in between high and low classification.

1. Empirical support: The degree to which a theory is supported by empirical studies

that confirm its validity (Sjøberg et al., 2008). We consider that empirical support

will be high if the evaluation of a theory is done using a series of studies that

complement each other; whereas, empirical support will be low if there is only one

study that evaluates the technique. The reason is that if there are many studies

repeating the same evaluation of a theory then we can consider that the results of

this theory will be the same if applied in practice.

2. Utility: The degree to which a theory supports the relevant areas of the software

industry (Sjøberg et al., 2008). We consider that the utility of a theory will be high

if the propositions of a theory can be used as input in decision making,

understanding and prediction in a given industrial setting; whereas, utility of a

theory will be low if the theory is not able to reduce the complexity of the empirical

world and decision making.

171

3. Generality: The breadth of the scope of a theory and the degree to which the

theory is independent of specific settings (Sjøberg et al., 2008). We consider that

higher generality means broader applicability of a theory in different settings;

whereas, lower generality means application of a theory is valid in specific settings.

4. Testability: The degree to which a theory can be empirically refuted (Sjøberg et

al., 2008). We consider higher testability when propositions of a theory are

internally consistent, free from ambiguities, and tested in empirical studies;

whereas, we consider lower testability when all propositions of a theory are not

tested in empirical studies and the propositions lack consistency such that they are

not easy to be tested in other replicated studies.

5. Explanatory Power: The degree to which a theory accounts for and predicts all

known observations within its scope, is simple in that it has few ad hoc

assumptions, and relates to that which is already well understood (Sjøberg et al.,

2008). We judge that a theory will have high explanatory power if it can be

supported by analogies to well known theories and explains all relevant

relationships and accounts for all known data in its field; whereas, we consider

explanatory power low for a theory if it cannot be associated with well known

theories and misses some relationships in its explanation.

6. Parsimony: The degree to which a theory is economically constructed with

minimum of concepts and propositions. There is a delicate balance between

parsiomony and explanatory power. We consider that higher parsimony means

removal of unnecessary concepts and propositions (from a theory) that add little

additional value to our understanding; whereas, lower parsimony means complex

concepts and propositions that are difficult to understand.

172

Empirical Support

The empirical support of this emerging theory is considered to be medium because the

number of programs on which we evaluated F007 (including F007-plus) in the two

studies is only 13 small to very large programs, and five of these programs have three to

five releases (see Table 4 in Section 2.4.1). If we consider each release as one program

then F007 (including F007-plus) was evaluated on approximately 30 programs. This

shows that the results were empirically grounded in the results from a sufficient number

of programs, and there is certainly room to do more. Thus, we consider that the empirical

support is medium.

Utility:

This emerging theory can be used as an aid to maintainers in identifying the origin of

faults during corrective maintenance. Maintainers can focus on the traces of 20% of

functions/components and can easily use the F007 technique to identify faulty functions

in the field failures. We consider utility of this theory to be high. Section 2.6, Section 2.7,

and Section 3.8 show the utility of this emerging theory in practical settings.

Generality

Since we have experimented on 13 different programs (see Table 4 in Section 2.4.1) from

small to very large sizes, this theory is generalizable to other programs. In 12 of the

programs the traces were collected in “lab” settings by running test cases. In the case of

the very large program, traces were actually field traces and were collected when failure

occurred at the customer site. The theory itself is independent of specific formats and

program elements in a trace, making it more generalisable to systems across different

programming concepts (such as process-to-process communication mechanisms, events,

triggers, message passing, call/return, etc.). This theory is also independent of a

programming language and the age of a program because: (a) F007 analyzed execution

traces not the constructs of source code to discover faulty functions; and (b) F007 was

evaluated from one to many releases of programs and the results were similar if faulty

173

traces of functions were present in the training set—i.e., irrespective of the age of a

program. Considering all these aspects we judge medium generality for this theory.

Testability

The propositions are defined in a consistent, understandable and non-amibiguous way,

atleast from the practitioners and researchers familiar with the topic of this theory. Each

of the studies [S1],[S2] can be easily replicated and the stated propositions (P1
1, P

1
2, P

1
3, P

1
4,

and P
1
5) are based on these studies. Each of the propositions has been empirically

validated, and they are easily testable. Different study designs (such as identifying faults

at system or configuration level) can be used to independently test the propositions. We

consider testability high for this emerging theory.

Explanatory Power

The theory presented in this chapter provides an explanation of identification of a faulty

function in a failed trace from traces of different faults in that function. This theory also

implies that when a small proportion (e.g., 20%) of functions are faulty then the accuracy

of identification of faulty functions is high—that is always going to be the case if 20% of

the code is responsible for 80% of the faults. However, we think that theory can be made

stronger in explanatory power by identifying quantitative characteristics to its attributes;

for example: (a) How accurately faulty functions can be identified? (b) What proportion

of failed traces can be resolved correctly? (c) Can we generalize this theory

quantitiatively like the 80-20 Pareto rule (i.e., using traces of 20% functions can we

resolved 80% failed traces!)? Thus, further studies can strengthen the explanatory power

of the theory. We consider explanatory power low for this emerging theory.

Parsimony

This emerging theory at both levels of proposition is constructed using few, clear and

concise concepts (such as function-calls, traces, faults and faulty functions). An

application of these concepts was also shown in the form of F007 (see Section 2.3,

Section 2.6, and Section 2.7) and F007-plus (see Section 3.5 and Section 3.8). Thus we

think that parsimony is high.

174

4.5 Implications

There are several implications of this emerging theory on both practice and research:

Practice

• Quality of the software would improve as the maintainers can spend more time on

fixing the faults rather than diagnosing the faults.

• Fault locations (e.g., function, component) could also be quickly identified during

the “testing” phase of succeeding releases using the failed traces of previous

releases.

• Time and effort spent in corrective maintenance would be reduced.

• It could be used in diagnosing faults at a system level or faults in configuration of

a system using operating system level call traces.

Research

• Researchers can further build new emerging theories based on this theory; e.g.,

what is the relationship among the functions in a group, how different functions

form a group when a fault occurs in them, and what are those functions. Such

theories could be used to determine the groups of functions before releasing

software and traces of a fault in one function can be used to identify another

faulty function of the same group.

• Researchers can validate this theory by using it as a preliminary hypothesis and

by performing experiments on different programs or from different perspectives.

The results can then be fed back to this theory and it can be modified or further

strengthened.

• Researchers can investigate a new theory using the 80-20 Pareto rule for software

code (Boehm and Basili, 2001; Gittens et al., 2005; Ostrand et al., 2005) as a

basis. For example, if 20% of the code is causing 80% of the faults, then is it

175

possible to identify faulty functions in 80% of the traces using the traces of 20%

function?

4.6 Conclusion

In this chapter, we propose an emerging theory based on the empirical findings of the two

studies, discussed in Chapter 2 and Chapter 3, of this thesis. This emerging theory

identifies that faults in a function can be identified if traces of at least one fault in that

function are already known: based on the fact that faults in closely related functions have

similar function-call traces.

The emerging theory is stated as: “A faulty function can be so identified if the traces of at

least one fault in that function are already known; and the accuracy of identification

increases with the decreasing proportion of faulty functions in the program.”

The emerging theory was developed in a bottom-up fashion using hypothetico-inductive

model (Sjoberg et al., 2008) and each of its proposition (see Section 4.2) was empirically

grounded in the findings of the two studies (see Section 2.6 and Section 2.7 in Chapter 2,

and Section 3.8 in Chapter 3). Subsequently, we also evaluated this theory (see Section

4.4) on the basis of “theory goodness” criteria proposed by Sjoberg et al. (2008) and

similar criteria of Boehm and Jain (2005). This theory is still in initial stages as it was

done on only thirteen programs of small to very large sizes. Overall, the emerging theory

satisfies the goodness criteria of utility, generality, parsimony, testability, empirical

support and explanatory power (see Section 4.4).

Clearly, more empirical studies are needed to test in detail the specific aspects of the

theory (such as what are those functions that form a group and have same function-call

traces). Thus, more efforts are needed from the maintenance community to conduct

studies in various contexts and from various perspectives to strengthen this emerging

theory.

4.7 References

Bacharach, S.B. “Organizational theories: some criteria for evaluation.” The Academy of

Management Review, Vol. 14, No. 4, Oct., 1989, pp. 496–515.

176

Boehm, B. & Basili V., R. "Software Defect Reduction Top 10 List", Computer, Vol. 34,

No. 1, IEEE CS Press, Jan. 2001, pp. 135-137.

Boehm, B.; and Jain., A.“An initial theory of value-based software engineering,” in

Value-Based Software Engineering, 1st Edition. Biffl, S.; Aurum, A., Boehm, B.,

Erdogmus, H., & Grünbacher G., Eds., Springer, LNCS, Germany, 2005, pp. 15-

33.

Carroll, J. and Swatman, P.A.“Structured-case: a methodological framework for building

theory in information systems research.” European Journal of Information

Systems, Vol. 9, No. 4, Dec., 2000, pp. 235–242.

Cohen, B. Developing Sociological Knowledge: Theory and Method. 2nd ed., Belmont,

CA: Wadsworth Publishing, 1989.

Do, H., Elbaum, S. G., and Rothermel, G.“Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact." Empirical Softw.

Eng., Vol. 10, Springer, Oct. 2005, pp. 405-435.

Ferrari, R. “An emerging theory on the interaction between requirements engineering and

systems architecting based on a suite of exploratory empirical studies.” Ph.D.

thesis, University of Western Ontario, Sep., 2010.

Gittens M.; Kim Y.; and Godwin D. “The Vital Few Versus the Trivial Many: Examining

the Pareto Principle for Software.” Proc. 29th Int'l Conf. Computer Softw. and

Appl., Edinburgh, Scotland, July 2005, pp. 179-185.

Haig, B.D. “An abductive theory of scientific method.” Psychological Methods, Vol.10,

No. 4, 2005, pp. 371–388.

Hutchins, M.; Foster, H.; Goradia, T.; Ostrand, T., "Experiments on The Effectiveness of

Dataflow- and Control-Flow-Based Test Adequacy Criteria". Proc. 16
th

 Int’l

Conf. on Softw. Eng., IEEE, Sorrento, Italy, May,1994 ,pp.191-200

Merton, R.K. Social Theory and Social Structure, 3rd ed., New York: The Free Press,

1968.

Offutt, A., J. and Untch, R., H., “Mutation 2000: uniting the orthogonal,” in Mutation

Testing for the New Century, Wong W,E., Ed., USA: Kluwer Academic

Publishers, 2001, pp. 34-44.

Ostrand T. J.; Weyuker E. and Bell R. M. “Predicting the Location and Number of Faults

in Large Software Systems.” IEEE Trans. on Softw. Eng., Vol. 31, No. 4, 2005,

pp. 340-355.

Sjøberg, D.; Dyba, D.; Anda, B. C.; and Hannay. J. “Building theories in software

engineering,” in Guide to Advanced Empirical Software Engineering. Shull,F.,

Singer,J., and Sjøberg,D.I.K, Eds., London: Springer, 2008, pp. 312–336.

Yin, R.K. Case Study Research: Design and Methods. Thousand Oaks, CA, USA: Sage

Publications, 1984.

177

Chapter 5

5 Conclusions and Future Work

In this section, we conclude this thesis in Section 5.1 by reflecting on the two studies of

this thesis and the emerging theory derived from those two studies. Finally, in Section 5.2

we present the future work.

5.1 Conclusions

Corrective software maintenance (which deals with the correction of faults) can soak up

to approximately 30-60% time of software maintenance activities (Schach et al., 2003;

Lee and Jefferson, 2005). One of the time consuming and difficult activities of corrective

maintenance is identification of the origin of fault that can consume approximately 30-

40% time of corrective maintenance (Proprietary Workshop, 2008). To aid in reducing

the time and effort spent in corrective maintenance this thesis addresses the problem of

automatically finding the finer-grained fault locations (faulty function) in the execution

traces of field failures.

The solution to this problem is proposed in the form of the technique F007 that

automatically identifies faulty functions from the function-call level execution traces of

field failures. F007 predicts a ranked list of faulty functions for a failed trace by training

the decision trees on the historical collection of failed traces. This thesis incorporates two

studies: (a) first study proposes F007 and shows that F007 can be used to identify

rediscovered field faults; and (b) second study proposes F007-plus that improves F007 by

showing that F007 can be used to discover both new and rediscovered faults. Each study

is documented in its own chapter with its own introduction, related work, methodology,

evaluation and conclusions.

In the first study, F007 identifies faulty functions in a field trace of the latest release of a

program by training the decision tree on: (a) the historical collection of failed traces of

the same release of a program; and (b) the failed traces of preceding releases and the

latest release of a program (see Chapter 2). Though F007 is useful--especially when 50-

178

90% failures are rediscoveries of the same fault (Brodie et al., 2005; Lee and Iyer, 2000;

Wood, 2003) and 20% of the code is responsible for 80% of the faults (Gittens et al.,

2005; Ostrand et al., 2005)--a limitation of F007 in first study is that it can identify those

faulty functions that are observed in previous traces of actual faults; new faulty functions

can not be identified.

The second study (see Chapter 3) overcomes this limitation by proposing a new strategy

F007-plus. F007-plus trains F007 on the failed traces of mutants (artificial faults) to

identify faulty functions in the actual field traces. F007-plus also uses the failed traces of

previous and current releases, if any, in training F007. The use of mutants facilitates F007

to identify new faulty functions.

 We evaluated F007 and F007-plus on thirteen subject programs with several releases;

that is: (i) seven programs of the Siemens suite with one release (Do et al., 2005), (ii) the

Space program with one release (Do et al., 2005), (iii) the Flex program with five releases

(Do et al., 2005), (iv) the Grep program with four releases (Do et al., 2005), (v) the Gzip

program with four releases (Do et al., 2005), (vi) the Sed program with five releases (Do

et al., 2005), and (vii) a very large commercial software application (of 20 million LOC)

with three releases. Our findings from the two studies are:

(a) Patterns of function-calls do not yield better fault identification accuracy than the

single function-calls when used with the classification algorithm such as the

decision tree (see Chapter 2, Section 2.6.1).

(b) The size of a function-call level (see Figure 1, chapter 1) trace can be reduced to

half because only “function entry” or ‘function exit” events are enough to identify

fault locations in a failed trace. Using both of them (“function entry” and “function

exits”) together has no effect on the accuracy of identification of the fault (see

Chapter 2, Section 2.6.4). This discovery could also decrease the runtime overhead

of a function-call trace collection to approximately half.

(c) A group ‘Mi’ of related functions have similar function-call traces when a fault

occurs in the functions of that group ‘Mi’; but the function-call traces of ‘Mi’ are

179

different from the function-call traces of another group of function ‘Mk’ if a fault

occurs in the functions of group ‘Mk’. Where i,k= 1-n and i ≠ k and Mi ⊂ N and

Mk ⊂ N and N={functions | functions ∈ program (see Chapter 3, Section 3.7).

(d) In general, F007 (including F007-plus) can identify faulty functions in

approximately a maximum of 90% failed traces of the subject programs on

reviewing 10% or less of the source program (different settings result in different

results; see, for example: Section 2.6.2 and Section 2.7; and Section 3.8).

We also observed that the above findings of this thesis lead to the foundation of an

emerging theory. We, therefore, proposed an emerging descriptive theory that is

empirically grounded in the findings of two studies shown of this thesis (see Chapter 4),

and is stated as:

“A faulty function can be so identified if the traces of at least one fault in that

function are already known; and the accuracy of identification increases with the

decreasing proportion of faulty functions in the program.”

Although, the above results are encouraging, but except for only one very large industrial

program in the first study (see Chapter 2, Section 2.7), all the experiments were

conducted in the lab settings. Therefore, more experiments on the programs with actual

field settings are required to be done.

5.2 Future Work

In Chapter 3, we identified expected faulty functions of a current release using the code

metrics of previous releases. The prediction of expected faulty functions, which was done

using cost sensitive learning, included many false positives (see Section 3.5). Another

future research issue is to explore this further to identify exactly right set of expected

faulty functions and their mutants for training. This will further improve the accuracy of

identification of faulty functions in the actual traces, and will result in the reduced effort

of mutants and failed traces generation.

180

Another possible research area is the application of cost sensitive learning in the

identification of faulty functions in the failed traces. If cost sensitive learning strategy is

used in training the decision tree in F007 then the important research issue will be to

develop the criteria to assign costs to faulty functions. For example, functions or

components with highly critical functionality can be assigned higher cost. This would

result in high accuracy of identification if fault occurs in those highly critical functions,

but would result in low accuracy on the non-critical functions.

Due to widespread use of mobile applications, the application of F007 on mobile systems

is a potential area of research. An important research issue is to use execution traces

containing limited information due to small processing power of mobile systems and

accurately identify a fault’s origin.

In distributed systems or multiple software systems that run together (e.g., web server

running with database management system), traces contain sequence of events instead of

sequence of function-calls. An important research issue is to determine whether the traces

of events follow similar patterns as function-call traces as identified by F007 (i.e.,

different faults in a function have similar traces). This will help in quickly identifying a

fault’s origin at the configuration level of a system.

Finally, there are certain issues in commercialization of the F007 technique and its F007-

plus strategy. For example, a framework or integrated development environment is

needed that can allow practitioners to automatically identify faulty functions in failed

traces, automatically identify expected faulty functions in a current release from the data

of past releases, generate mutants automatically for the expected faulty functions and

collect mutant traces for the program. If these steps can be automated or semi-automated,

only then the chances are high for the impact of F007 technique on practice.

5.3 References

Brodie, M.; Sheng Ma; Lohman, G.; Mignet, L.; Modani, N.; Wilding, M.; Champlin, J.;

Sohn, P., “Quickly Finding Known Software Problems via Automated Symptom

Matching”, Proc. of Second Int’l Conf. on Autonomic Computing, ICAC 2005,

IEEE CS, June 2005, pp. 101-110.

181

Do, H., Elbaum, S. G., and Rothermel, G. “Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact.".Empirical Softw.

Eng., Vol. 10, Springer, Oct. 2005, pp. 405-435.

Gittens M., Kim Y., and Godwin D., “The vital few versus the trivial many: Examining

the pareto principle for software”, Proc. of 29th Int'l Computer Software and

Applications Conf. (COMPSAC'05), IEEE CS, Edinburgh, Scotland, July 2005,

pp. 179-185.

Lee M. G. and Jefferson T. L. “An Empirical Study of Software Maintenance of a Web-

based Java Application.” Proc. Int’l Conf. on Softw. Maintenance, IEEE,

Budapest, Hungary, Sep., 2005, pp. 571-576.

Lee, I.; Iyer, R., “Diagnosing Rediscovered Problems Using Symptoms”, IEEE

Transactions on Software Engineering, vol. 26, no. 2,IEEE USA, Feb. 2000, pp.

113-127.

Ostrand T. J., Weyuker E., and Bell R. M., “Predicting the Location and Number of

Faults in Large Software Systems.” IEEE Trans. on Softw. Eng., Vol. 31, No. 4,

2005, pp. 340-355.

Proprietary workshop on large commercial software, Sep., 2008.

Schach S. R.; Jin B.; Yu L.; Heller G. Z.; and Offutt J. “Determining the Distribution of

Maintenance Categories: Survey versus Measurement.” Empirical Softw. Eng.,

Vol. 8, No. 4, Springer, Dec., 2003, pp. 351-365.

Wood A., “Software reliability from the customer view”, Computer , vol. 36, no. 8, IEEE

CS, USA, August 2003, pp. 37-42

182

Appendix

Detailed Results of F007 using the MINEPI Algorithm and Function Entry and

Function Exit Calls

In this section, we show the results of F007 using patterns of function-calls (i.e., the

MINEPI algorithm (Mannila et al., 1997)) and single function-calls on all the subject

programs. The Shapiro-wilk test and the Wilcoxon signed rank tests (Marques de Sá,

2003) in (Chapter 2) Section 2.6.1.1 were conducted on this dataset.

Table 17: Accuracy of F007 using the patterns of function-calls (the MINEPI

algorithm) and using only single function-calls.

Program Episode

Rule Type

Length Win (w) = 3 Win(w) = 5 Win (w) = 7

Print_tokens NA 1 74.380 74.380 74.380

Serial/Parallel 2 73.347 68.801 70.041

Serial 3 73.553 72.933 70.041

Parallel 3 73.347 71.900 68.595

Print_tokens2 NA 1 61.773 61.773 61.773

Serial/Parallel 2 56.298 57.364 55.523

Serial 3 56.346 57.655 58.624

Parallel 3 57.9 57.509 57.46

Replace NA 1 65.447 65.447 65.447

Serial/Parallel 2 65.963 65.611 64.932

Serial 3 64.861 65.096 65.518

Parallel 3 63.97 63.806 64.838

Schedule NA 1 73.248 73.248 73.248

Serial/Parallel 2 65.478 67.643 67.643

Serial 3 66.930 64.698 64.698

Parallel 3 66.667 64.041 64.042

Schedule2 NA 1 60.363 60.363 60.363

Serial/Parallel 2 65.0909 61.454 62.909

Serial 3 60.0 62.181 60.727

Parallel 3 62.909 62.181 59.636

Tcas NA 1 73.481 73.481 73.481

Serial/Parallel 2 73.546 73.546 73.416

Serial 3 73.807 73.807 73.416

Parallel 3 72.045 72.045 73.807

Tot_info NA 1 68.842 68.842 68.842

Serial/Parallel 1,2 66.831 66.666 67.325

Serial 1,3 65.831 66.602 65.960

Parallel 1,3 60.244 63.326 65.575

Space

NA 1 80.425 80.425 80.425

Serial/Parallel 2 74.333 74.410 75.324

183

Serial 3 75.124 75.124 74.215

Parallel 3 75.721 75.321 76.100

Grep (R3) NA 1 95.546 95.546 95.546

Serial/Parallel 2 99.595 98.380 98.380

Serial 3 99.190 97.571 97.976

Parallel 3 98.785 97.976 98.380

Sed (R3) NA 1 89.361 89.361 89.361

Serial/Parallel 2 95.745 93.617 93.617

Serial 3 95.035 94.326 94.326

Parallel 3 94.326 95.035 92.198

Gzip (R1) NA 1 90.0 90.0 90.0

Serial/Parallel 2 90.0 90.0 90.0

Serial 3 92.0 92.0 90.0

Parallel 3 92.0 90.0 90.0

Flex (R3) NA 1 58.563 58.563 58.563

Serial/Parallel 2 61.050 61.050 61.602

Serial 3 61.326 60.773 61.602

Parallel 3 61.602 61.050 60.773

Figure 42: Histograms of different accuracies at win(w)=3, win(w)=5 and win(w)=7

using bin of 5 (percentage) units.

184

In order to determine whether the dataset is normal, we first conducted the Shapiro-wilk

test on the accuracy values of the twelve subject programs corresponding to each of the

window widths in Table 17. The Shapiro-wilk test on 48 data points at: (a) win(w)=3

resulted into W=0.887 and p=0.00024; (b) win(w)=5 resulted into W=0.876 and

p=0.00011; and (c) win(w)=7 resulted into W=0.8843 and p=0.0002. This means that

data distribution is not normal for each of the window widths because p value is less than

alpha value of 0.05 (p <0.05) for each of the window widths. To further investigate about

the distribution of data, we constructed the histogram of data points for each of the

window widths, which are shown in Figure 42. These histograms show positively skewed

data distributions, which again confirm the non-normal distribution of the data points.

Thus, we conducted the Wilcoxon signed rank test as the data distribution is not normal.

We first conducted the Wilcoxon signed-rank test between the window width 5 and the

window width 7 with the null hypothesis: “there was no significant difference between

classification accuracy of win(w)=5 and win(w)=7”. We again set the alpha level to 0.05

as at this level we can reduce the risk of type 1 error (false positive).The Wilcoxon signed

rank test for 48 (i.e., for 12 programs) matched observations did not result in significant

difference between “win(w)=5” (M=73.50, SD=12.998) and “win(w)=7” (M=73.27,

SD=12.983) with z=0.803 and (two-tailed) p=0.422. This provided the evidence (p >

0.05) that the null hypothesis could not be rejected and the fault prediction accuracies of

“win(w)=5” and “win(w)=7” were identical.

Similarly, the Wilcoxon signed-rank test between: (a) “win(w)=3” (M=73.80,

SD=13.299) and “win(w)=5” (M=73.50, SD=12.998) produced z = 1.860 (two tailed)

p=0.63; and (b) “win(w)=3” (M=73.80, SD=13.299) and “win(w)=7” (M=73.27,

SD=12.983) generated z=2.326 (two-tailed) p=0.020. In the case of win(w)=3 and

win(w)= 5 (case ‘a’), the accuracies with different window widths were identical (i.e., p >

0.05). In the case of win(w)=3 and win(w)=7, the accuracies were not identical (i.e., p <

0.05); the accuracy to discover the faulty functions at win(w)=7 had actually started

decreasing.

185

We can also observe from Table 17 at win(w)=3 that accuracy also varies among the

episode lengths. To determine if there is any improvement in the accuracy between

different episodes rules, we conducted the Wilcoxon signed rank test between episodes of

length 1 and the higher episode rules within win(w)=3. The Wilcoxon signed rank test

with 12 observations between: (a) the episodes of length 1 (M=74.285, SD=12.325) and

the serial/parallel episode rules (M=73.940, SD=13.927) of length 2 resulted in z=0.178

and (two tailed) p=0.859; (b) the episodes of length 1(M=74.285, SD=12.325) and the

serial episode rules of length 3 (M=73.667, SD=14.364) resulted in z=0.628 and (two

tailed) p=0.530; and (c) the episodes of length 1 (M=74.285, SD=12.325) and the parallel

episode rules of length 3 (M=73.293, SD=14.245) yielded z=0.549, (two tailed) p=0.583.

In all these cases the value of p is significantly higher than significance level of 0.05,

substantiating that there is no significant difference between the accuracy of the episodes

of length 1 and the higher length (serial or parallel) episode rules. This implies that the

episodes of length 1, which are just single function-calls, are not only cost-effective to

generate, but also yield equivalent (or better) fault prediction accuracy than the higher

length episode rules.

Table 18: Accuracy of identifying faulty functions using the episodes of length 1

with frequency and confidence.

Program Frequency Confidence

Print_tokens 73.967 74.380

Print_tokens2 55.475 61.773

Replace 66.083 65.447

Schedule 71.337 73.248

Schedule2 61 60.363

Tcas 73.481 73.481

Tot_info 68.053 68.842

Space 80.529 80.425

Sed 93.617 89.361

Gzip 90.0 90.0

Grep 98.785 95.546

Flex 58.287 58.563

In Table 17, we used the confidence values with the episodes of different lengths to

identify the faulty functions using the decision trees. Table 18 shows the accuracy of the

identification of the faulty functions using the frequency and the confidence values with

186

the episodes of length 1. We gain conducted the Wilcoxon singed-rank test to determine

if there was any difference between the accuracies of the identification of the faulty

functions using the frequency values or the confidence values with the episodes of

length 1. The Wilcoxon signed-rank test with 12 observations resulted into z=0.178 and

(two-tailed) p=0.859. This shows that when decicion tree is used there is no significant

difference between the frequency and confidence values of the episodes of length 1 (or

simply function-calls). Thus, either frequency or confidence can be used with the

function-calls to identify the faulty functions in the failed traces using the decision trees.

Table 19: Accuracy of F007 using only function “entry or exit” or both function

“entry and exits”.

Program Episode Rule Entry and Exits Entry or Exits

Print_tokens 1 75.206 74.3801

(S/P) 2 70.867 73.553

(S) 3 73.14 73.55

(P) 3 73.347 73.347

Print_tokens2 1 60.804 61.77

(S/P) 2 58.527 56.298

(S) 3 59.011 56.346

(P) 3 60.222 57.9

Replace 1 64.791 65.447

(S/P) 2 66.198 65.963

(S) 3 66.268 64.861

(P) 3 66.057 63.97

Schedule 1 73.248 74.267

(S/P) 2 65.061 65.350

(S) 3 64.667 65.605

(P) 3 66.388 66.369

Space 1 80.425 80.425

(S/P) 2 76.577 74.333

(S) 3 75.124 75.124

(P) 3 75.721 75.721

Schedule2

1 60.363 60.363

(S/P) 2 68.0 65.0909

(S) 3 63.272 60

(P) 3 59.272 62.909

Tcas 1 73.481 73.481

(S/P) 2 73.873 73.546

(S) 3 73.481 73.807

(P) 3 73.481 72.045

Tot_info 1 68.842 68.842

(S/P) 2 68.947 66.831

187

(S) 3 67.819 65.831

(P) 3 63.207 60.244

Flex (R3) 1 58.840 58.563

(S/P) 2 63.260 58.563

(S) 3 60.773 61.050

(P) 3 60.773 61.326

Grep (R3) 1 100.0 95.546

(S/P) 2 99.190 99.595

(S) 3 99.595 99.190

(P) 3 99.190 98.785

Sed (R3) 1 89.361 89.361

(S/P) 2 92.908 95.745

(S) 3 92.908 95.035

(P) 3 92.908 94.326

Gzip (R1) 1 90.0 90.0

(S/P) 2 90.0 90.0

(S) 3 86.0 92.0

(P) 3 90.0 92.0

In all of the above results, we have either used only function “entry” OR function “exit”

symbols. In the end, in this appendix we also show the accuracy of the identification of

the faulty functions using both the function “entry and exits” and only the function “entry

or exits” on all the programs (see Section 2.6.4). This is shown in Table 19, where first

column shows the name of the program, second column shows the accuracy obtained

using both the function “entry and exits” and the last column shows the accuracy using

only the function “entry or exits”. In Table 19, for function “entry or exits”, we have

randomly selected for some programs only function “entry” symbol and for some

programs only function “exit” symbols. Furthermore, the results in Table 19 were

obtained using the confidence values for the function “entry and exit” and “entry” or

“exits”, and using win(w)=3.

The Wilcxon signed-rank test between the function “entry and exits” (M=73.98,

SD=12.770) and only the function “entry or exits” (M=73.721, SD=13.656) resulted into

z=0.837 and p=0.402; substantiating that there is no significant difference between the

accuracies of the identification of the faulty functions using function “entry and exits”

and only function “entry or exits”. Thus function “entry or exits” are sufficient to

discover the faulty functions because they result in approximately 50% lesser trace size,

reduced overhead in the trace collection and storage of the traces.

188

References

Mannila, H.; Toivonen, H; Inkeri,V.; "Discovery of Frequent Episodes in Event

Sequences". Data Mining and Knowledge Discovery, Vol. 1, No. 3, Springer, Jan

1997, pp. 259-289.

Marques de Sá, J., P.; Applied Statistics Using SPSS, STATISTICA, MATLAB and R,

1st ed., Springer, Aug., 2003.

189

Glossary of Terms

In this section, we present a glossary of important terms used in this dissertation:

Adaptive software maintenance: Adaptive software maintenance is defined as the type

of software maintenance which allows programs to work in a changed environment

(IEEE Std. 610.12, 1990; Swanson, 1976); for example, adapting to a new operating

system.

Corrective maintenance: Corrective maintenance is the software maintenance which

corrects faults of a system (IEEE Std. 610.12, 1990; Swanson, 1976); for example, the

corrective maintenance activity corrects functional or processing faults reported by users.

Cost sensitive learning: In cost sensitive learning a classifier (e.g., decision tree) is forced

to make lesser error on one type of category (e.g., faulty functions) of dependent variable

and more errors on other type of category (e.g., not-faulty functions) of dependent

variable (Witten and Frank, 2005).

Decision tree: The decision tree is a machine learning classification algorithm, which

specify sequences of decisions (from the independent attributes of a dataset) that need to

be made for a particular outcome (dependent attribute of the dataset). Formally, it is a

method of approximating discrete-valued functions that is robust to noisy data and

capable of learning disjunctive expressions (Mitchell, 1997).

Execution trace: An execution trace is a record of the sequence of code labels (e.g.,

statements, functions) executed during a particular run of a program (IEEE Std. 610.12,

1990).

Failure: The inability of a system or component to perform its required functions within

specified performance requirement (IEEE Std. 610.12, 1990).

Fault: An incorrect step, process or data definition in a computer program (IEEE Std.

610.12, 1990).

190

Mutants: Mutants are automatically seeded faults generated by changing statements of a

program (Offutt et al., 2001).

One-against-all approach: In this approach, a dataset with M categories of dependent

variable is decomposed into M new datasets with binary categories. Each new binary

dataset ‘Di’ has category ‘Ci’ (where i = 1 to M) labeled as positive and all other

categories are labeled as negative. On each new datasets ‘Di’ the decision tree algorithm

is trained; resulting in ‘M’ trees in total. Each decision tree predicts its category ‘Ci’ of

the dependent variable along with a probability of being faulty. The category ‘Ci’ with

the highest probability is considered faulty (Witten and Frank, 2005). Another way of

finding the faulty category ‘Ci’ is that the category ‘Ci’ predicted by most decision trees

is considered faulty.

Perfective maintenance: Perfective maintenance is the type of software maintenance

which is done to improve the maintainability, performance, or other quality attributes of a

software system (IEEE Std. 610.12, 1990; Swanson, 1976); for example, adding new

features.

Software maintenance: Software maintenance is defined as the process of modifying a

software system or a component after its delivery to customers (IEEE Std. 610.12, 1990).

Types of software maintenance: Software maintenance was divided into three different

categories by Swanson (1976): adaptive, perfective and corrective. Each of them is

explained separately in this glossary.

References

IEEE Std. 610.12, Standard Glossary of Software Engineering Terminology, IEEE

Computer Society Press, Los Alamitos, CA, 1990.

Mitchell T. M., Machine Learning, McGraw Hill, 1997.

Offutt, A., J.; and Untch, R., H. “Mutation 2000: Uniting the Orthogonal,” in Mutation

Testing for the New Century, Wong W,E., Ed., USA: Kluwer Academic

Publishers, 2001, pp. 34-44.

Swanson E. B., “The Dimensions of Maintenance”, Proc. of 2nd Int’l Conf. on Softw.

Eng., IEEE CS, San Francisco, USA, Oct., 1976, pp. 492-497.

191

Witten I.H. and Frank E., Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, San Francisco, USA, 2005.

192

Curriculum Vitae

Name: Syed Shariyar Murtaza

Preferred Name: Shariyar

Post-secondary The University of Karachi

Education and Karachi, Sind, Pakistan

Degrees: B.S. (Computer Science)--2004

Kyung Hee, University

Suwon, Gyeonggi-do, South Korea

M.S. (Computer Science)--2006

The University of Western Ontario

London, Ontario, Canada

Ph.D. (Computer Science)--2011

Honours and Province of Ontario Graduate Scholarship

Awards: 2009-2010

Korean govt. (IITA) MS Scholarship 2004-2006

University of Western Ontario Graduate Teaching and

Research Assistance Award 2006-2010

Best presenter award at several venues.

Related Work Teaching and Research Assistant

Experience The University of Western Ontario, 2006-2008

Research Assistant

Kyung Hee University, South Korea, 2004-2006

Software Developer

Perheal Pvt. Ltd., Hodgins Media Ventures Inc.

2003-2004, 2007-2008

193

Publications:

[1] Murtaza, S.S.; Madhavji, N.H.; Gittens, M.; Li, Z.; “Diagnosing New Faults Using

Mutants and Faults of Prior Releases (NIER Track)”, Proc. of 33rd International

Conference on Software Engineering, ACM, Honolulu, Hawaii, USA, May, 2011--

accepted.

 [2] Murtaza, S.S.; Gittens, M.; Li, Z; Madhavji, N.H.: “Finding Rediscovered Faults from the
Field using Function-level Failed Traces of Software in the Field”, Proc. 2010 conference of the

Centre for Advanced Studies on Collaborative Research, ACM, Nov. 2010, Canada.

[3] Li, Z.; Gittens, M.; Murtaza, S.S.; Madhavji, N.H.; Miranskyy, A.V.; Godwin, D.; and

Cialini, E.: “Analysis of Pervasive Multiple-Component Defects in a Large Software System”,

proc. of 25th IEEE International Conference on Software Maintenance (ICSM), IEEE,

Edmonton, Alberta, Canada, Sep. 2009, pp. 265-273.

[4] Murtaza, S.S.; Gittens, M.; Madhavji, N.H.: “Discovering the Fault Origin from Field

Traces”, Proc. of 19
th
 International Symposium on Software Reliability Engineering, IEEE CS,

Seattle, USA, Nov. 2008, pp. 295-296.

[5] Murtaza, S.S.; Ahmed, B.; Hong, C.S.:" On the Dynamic Management of Information in

Ubiquitous Systems using Evolvable Software Components", Proc. of 9th Asia Pacific

Network Operation and Management Symposium (APNOMS), Springer Verlag, LNCS, Okinawa,

Japan, Sep. 2006, pp. 513-516.

[6] Murtaza, S.S.: MS Thesis: “A Dynamic Ontology Based Ubiquitous System using

Evolvable Software Components”, June 2006. It was an autonomic and ubiquitous system,

which learnt the user schedule and preferences when it interacted with the UPnP based devices.
The system then automated the environment based on its learnt knowledge about the user. All the

devices (TV, Fridge, Light Bulb, etc.) along with the surveillance and controlling applications

were developed using C# and Intel UPnP SDK.

[7] Murtaza, S.S.; Hong, C.S.:" A Conceptual Architecture for Uniform Identification of

Objects", Proc. of the Fourth Annual ACIS International Conference on Computer and

Information Science (ICIS' 05), IEEE CS, July. 2005, pp. 670-675.

[8] Murtaza, S.S.; Hong, C.S.:" An Evolvable Software Architecture for Managing

Ubiquitous Systems", Proc. of the 8th Asia Pacific Network Operation and Management

Symposium (APNOMS), Sep. 2005, pp. 400-409.

[9] Murtaza, S.S.; Amin S.O.; Hong C.S.: “Applications of SNMP in Ubiquitous

Environment”, KNOM Review, Journal, Vol. 8, No. 2, Feb. 2006, pp. 14-19.

[10] Murtaza, S.S.: Internet draft on IETF, “A Web of Physical Objects’ Uniform Resource

Identifier”, March 2, 2004, http://ietfreport.isoc.org/all-ids/draft-shariyar-wop-uri-01.txt.

[11] Murtaza, S.S.: BS Thesis: “A Web of Physical Objects”, Dec 2003. It analyzed the trends

and practices of semantic web and ubiquitous computing. It also proposed a URI scheme for

physical objects and was published as an internet draft on IETF.

	Western University
	Scholarship@Western
	April 2011

	Finding Faulty Functions From the Traces of Field Failures
	Syed Shariyar Murtaza
	Recommended Citation

	Finding Faulty Functions From the Traces of Field Failures

