
University of South Carolina
Scholar Commons

Theses and Dissertations

2016

Efficient Partitioning and Allocation of Data for
Workflow Compositions
Annamaria Victoria Kish
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Kish, A. V.(2016). Efficient Partitioning and Allocation of Data for Workflow Compositions. (Doctoral dissertation). Retrieved from
http://scholarcommons.sc.edu/etd/3824

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F3824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F3824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3824?utm_source=scholarcommons.sc.edu%2Fetd%2F3824&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

Efficient Partitioning and Allocation of Data for Workflow

Compositions

by

Annamaria Victoria Kish

Bachelor of Arts
University of Connecticut 1980

Master of Science
University of South Carolina 2006

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2016

Accepted by:

Csilla Farkas, Major Professor

Caroline Eastman, Committee Member

Manton Matthews, Committee Member

John Rose, Committee Member

Eva Czabarka, Committee Member

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies

Abstract

Our aim is to provide efficient partitioning and allocation of data for web service

compositions. Web service compositions are represented as partial order database

transactions. We accommodate a variety of transaction types, such as read-only

and write-oriented transactions, to support workloads in cloud environments. We

introduce an approach that partitions and allocates small units of data, called mi-

cropartitions, to multiple database nodes. Each database node stores only the data

needed to support a specific workload. Transactions are routed directly to the appro-

priate data nodes. Our approach guarantees serializability and efficient execution.

In Phase 1, we cluster transactions based on data requirements. We associate each

cluster with an abstract query definition. An abstract query represents the minimal

data requirement that would satisfy all the queries that belong to a given cluster. A

micropartition is generated by executing the abstract query on the original database.

We show that our abstract query definition is complete and minimal. Intuitively,

completeness means that all queries of the corresponding cluster can be correctly an-

swered using the micropartition generated from the abstract query. The minimality

property means that no smaller partition of the data can satisfy all of the queries in

the cluster.

We also aim to support efficient web services execution. Our approach reduces

the number of data accesses to distributed data. We also aim to limit the number of

replica updates. Our empirical results show that the partitioning approach improves

data access efficiency over standard partitioning of data.

In Phase 2, we investigate the performance improvement via parallel execution.

ii

Based on the data allocation achieved in Phase I, we develop a scheduling approach.

Our approach guarantees serializability while efficiently exploiting parallel execution

of web services.

We achieve conflict serializability by scheduling conflicting operations in a prede-

fined order. This order is based on the calculation of a minimal delay requirement.

We use this delay to schedule services to preserve serializability without the tradi-

tional locking mechanisms.

iii

Table of Contents

Abstract . ii

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1

1.1 Problem Statement . 1

1.2 Proposed Work . 5

1.3 Benefits of Method . 8

1.4 Dissertation Outline . 9

Chapter 2 Related Work . 10

2.1 Just-In-Time Processing . 10

2.2 Service Oriented Architecture . 12

2.3 Distributed Computing and Storage 18

2.4 Partitioning for Distributed Database Systems 25

2.5 Concurrency Control for Distributed Database Systems 32

2.6 Clustering and Allocation Algorithms 38

Chapter 3 Phase One - Partitioning and Allocation Frame-

work for Atomic Web Services 52

3.1 Introduction . 52

3.2 Definitions . 54

3.3 Abstract Query Example . 61

iv

3.4 Clustering Cost Function . 65

3.5 Clustering . 67

3.6 Implementation . 69

3.7 Future Work . 79

Chapter 4 Phase Two - Parallel Scheduling Framework For

Workload . 84

4.1 Introduction . 84

4.2 Definitions . 86

4.3 Scheduling . 92

Chapter 5 Conclusions and Future Work 104

5.1 Future Work . 106

Bibliography . 110

v

List of Tables

Table 3.1 Input Queries . 72

Table 3.2 Input Queries . 73

Table 3.3 Summary Metrics . 76

vi

List of Figures

Figure 1.1 Motivating Example for a Partitioning and Allocation System . . 2

Figure 1.2 Framework for Phase I - Partitioning and Allocation System . . . 6

Figure 1.3 Framework for Phase II - Partitioning and Allocation System . . 8

Figure 2.1 CWS Transaction Processing Costs 16

Figure 3.1 Framework for Phase I - Partitioning and Allocation System . . . 53

Figure 3.2 Initial Data Structures Representing WSw 57

Figure 3.3 Data Structures Used to Build C 58

Figure 3.4 TPC-C Schema (source: [49]) . 62

Figure 3.5 Transitive Closure on Conditions in C1 63

Figure 3.6 Dendrogram of Clusters Built from Input Queries 71

Figure 3.7 Average Latency . 75

Figure 3.8 Average Throughput . 75

Figure 3.9 Latency Two Partition . 76

Figure 3.10 Throughput Two Partition . 76

Figure 3.11 Latency Two Cluster . 78

Figure 3.12 Throughput Two Cluster . 78

Figure 3.13 Latency Five Cluster . 78

Figure 3.14 Throughput Five Cluster . 78

Figure 3.15 Attribute Example . 79

Figure 3.16 Condition Example One . 81

Figure 3.17 Condition Example Two . 81

Figure 3.18 Condition Example Three . 81

vii

Figure 4.1 Framework for Phase II - Partitioning System 85

Figure 4.2 CWSi Represented as a DAG . 86

Figure 4.3 GW S Representation of Workload w 88

Figure 4.4 Example of Ordered Conflict Graph, CWSi →c CWSj 89

Figure 4.5 Example of Topological Conflict Graph, TOi →c TOj 90

Figure 4.6 Processing CWS with Partial Order Information 91

Figure 4.7 Ordering Information to Build Schedules for w 92

Figure 4.8 Delay d for Consistent Order of Operations for Conflicting CWS 93

Figure 4.9 Flowchart for TO Algorithm . 97

Figure 4.10 Building TOi from CWSi and TOj from CWSj for CWSi →c CWSj 98

Figure 4.11 Example TOi with pTOs . 101

Figure 4.12 Example TOj with pTOs . 102

viii

Chapter 1

Introduction

This dissertation is concerned with correct partitioning and scheduling for a web ser-

vice execution in a parallel database environment. The core idea is to design a system

in the spirit of just-in-time inventory control where only the data required for current

processes are available; it is a fragmentation technique based upon the concept of

minimal data sets. We are also interested in developing a scheduling method that

that provides efficient concurrency control for web services executing in a parallel

environment.

1.1 Problem Statement

There is a need to provide efficient data partitioning and efficient scheduling for

transactional web services and web service compositions in the context of parallel

systems. Current web services solutions for partitioning are based on full replication

[69] [13]. However this approach involves global concurrency control and replica up-

dates, which can be costly [50]. Current web services scheduling techniques focus on

quality of service properties [70] and on controlling communications costs [7]. How-

ever transactional properties of composite web services have not been fully explored

with respect to effective scheduling of web services.

Full replication is used as a strategy to improve availability of transactional data.

The expense of providing full replication grows when more services, more users, and

more databases are on a system. We are motivated to provide a solution that provides

1

good data availability on systems that scale. Most services access just a portion of

the data from a given database, as in Figure 1.1. Also, services will frequently overlap

in their data requirements, as in Figure 1.1. We use these features to develop a new

partitioning strategy that uses just the data required by the services in the current

workload.

Service1 Data Requirements

Service2 Data Requirements

Service3 Data Requirements

Service4 Data Requirements

Service5 Data Requirements

Servicen Data Requirements

Figure 1.1: Motivating Example for a Partitioning and Allocation System

In recent years, there has been research into partitioning techniques for shorter-

running transactions in the Cloud [28] [85]. We seek to partition for conflicting trans-

actions in parallel environments. We do so by introducing an approach that would

allow partitioning of small units of data called micropartitions. Micropartitions are

allocated in such a way that services and service compositions are executed against

a minimum number of database nodes thereby reducing the number of distributed

calls executed during a transaction.

Data partitioning has traditionally been used as a strategy for mitigating data

access costs. There have been three reasons for partitioning. First, distributed pro-

cessing environments use partitioning to place data near the processes that need them,

thereby reducing transmission costs. Second, partitioning has been used to manage

big data, where very large databases are divided and spread across systems to exploit

2

parallel data access. Third, partitions provide concurrent access for users, spreading

the cost of user access in environments where there are heavy user loads.

In the first case, of distributed processing, fragments are designed to provide the

data needed for the applications at a particular node on the network. Some form

of vertical and/or horizontal partitioning is performed to provide local access to the

data. Often, the distribution of the applications is fixed, and the data requirements

are analyzed statically. The database partitions are tightly coupled to the applica-

tions and must be redesigned for changes to the workload.

In the remaining two cases, of big data and heavy user access, some form of hori-

zontal partitioning is normally used. These partitioning techniques are only effective

in reducing costs for a restricted class of applications. In the realm of big data,

horizontal partitioning works well for data analysis, tasks where many partitions are

accessed simultaneously to calculate statistics. In the area of heavy user access simple

requests for data delivery work well against horizontally-partitioned data.

No effective partitioning strategy has been developed, as of yet, for service-oriented

environments. Services are reusable, composable, and dynamic. Reusability means

that a service can be easily used by different clients, in different contexts (i.e., in

conjunction with different services and by accessing data from different underlying

database systems). Composability means that services can be combined in different

ways in order to meet different business requirements. Dynamism means that ser-

vices can be discovered in an automated way and can dynamically relocate, assemble,

interact with other services. In our work we address partitioning that is responsive

to web service compositions.

It is well known that data partitioning doesn’t scale well for web services that

are transactional in nature. In our work, we develop a partitioning strategy that

addresses operation conflicts between web services, which is the fundamental reason

why transactional databases do not scale well.

3

Phase One concerns itself with the partitioning problem, where we seek to parti-

tion data in systems that must scale in a cost-effective way. Reducing cost involves

minimizing data storage, minimizing the cost of distributed access, and minimizing

replication. The first phase of this dissertation contributes to solving the availability

and performance problems of using relational databases with services by developing

a new partitioning technique.

Our motivation for doing this work comes from the nature of cloud computing,

where resources need to scale as needed. Our inspiration came from just-in-time

manufacturing, where manufacturers seek to create a highly-responsive production

environment by providing only the inventory needed when it is needed [23]. Our

contribution is to present a partitioning method that provides minimal data to ser-

vices executing in a parallel database environment and that permits a web service

composition to get all data from a single database node.

Our research is concerned with improving database query response time for sys-

tem workloads. The overhead costs for workload query processing, in distributed

environments, can be very high. The background section describes, in detail, the

costs involved in processing queries in a distributed database environment.

For Phase Two, we claim that we can achieve data scheduling for a workload that

provides improved performance over traditional scheduling methods. We improve

efficiency by creating a schedule that reduces the number of distributed calls due to

commits and correctness verification and that selectively supports parallel processing.

The second phase of our work shows the scheduling procedure for a multiprocessor,

single DBMS node. The scheduling procedure allocates web services from the com-

plex web services, preserving correctness while maximizing parallel execution of the

services. We describe an algorithm that creates such a schedule.

Phase Two describes an effective data scheduling method for a mixed workload

comprised of complex web services. We use the concept of data similarity developed

4

in Phase One to aid in the development of the scheduling method.

1.2 Proposed Work

This dissertation is concerned with correct partitioning and scheduling for web service

execution in a parallel database environment. The core idea is to design a system in

the spirit of just-in-time inventory control where only the data required for current

processes are available; it is a fragmentation technique based upon the concept of

minimal data sets. We are also interested in developing a scheduling method that

that provides efficient concurrency control for web services executing in a parallel

environment.

A good example of possible usage of such a system is an enterprise that wants

to make all its services, from each department, available for company-wide use. Em-

ployees could access and creatively combine available services into compositions that

could work against different databases. The database partitioning can be adjusted to

reflect an evolving workload. The web service compositions can also be transactional

in nature and can be efficiently executed in a parallel processing environment.

We develop a partitioning method based upon clustering of services that use simi-

lar data. The data requirements are then defined for clusters of services and partitions

are realized from these definitions. We call such a defnition an abstract query.

We develop a graph-based, heuristic scheduling technique for scheduling web ser-

vice compositions that preserves correctness of data for multi-processor database sys-

tem. Processes comprised of web services can bring challenges with respect to data

consistency. Implementing commit protocols can be costly. Our scheduling technique

relies upon use of delays in service execution in order to preserve consistency and

avoid use of commit protocols in a parallel execution environment. Our approach to

achieving this goal is a two-phased one to provide the efficient data partitioning and

scheduling.

5

Phase I Overview

…

WS1 … WSm WSn

WSn+1

… WSo

Workload w

Partitioning Engine

Partiton1

Partition2

Partition3

Partition4

… WSm+1

Figure 1.2: Framework for Phase I - Partitioning and Allocation System

Phase I answers the following research questions:

1. How can we efficiently allocate the data to database nodes to satisfy

a set of web services having a single query, in a workload?

2. How can we identify and organize atomic services that have similar

data requirements?

3. Can we demonstrate that this micropartitioning method is more ef-

ficient than the standard range partitioning in use today?

Phase I provides methods to identify data needs of atomic services and then groups

services with similar data needs. Abstract queries are created from these groupings.

The abstract queries form the basis for micropartitions which are then allocated to

nodes. An atomic service is a service that has only one query associated with it.

6

The Clustering Manager in Figure 1.2 is responsible for grouping similar queries.

Given a service inventory residing in an enterprise system, one can extract queries

being used by the current workload and group the queries together based on data

similarity. We create a hierarchy of these clusters. This hierarchy is updated only

when services are added to or deleted from the workload. For each cluster in the

hierarchy, we derive an abstract query that represents the data requirements for that

group of queries. Each cluster is tagged with the derived abstract query. In the

dissertation, we prove the minimality of the data set created from a given abstract

query.

The Partition Engine in Figure 1.2 is responsible for selecting a set of clusters

from which to create micropartitions. For the given workload, candidate clusters are

selected from the cluster tree. The abstract query information stored with the clus-

ters is then used to create the micropartitions that will be stored on the nodes.

In Phase I we assume that all services and nodes are in a central location, as in a

cloud. In Phase I we also deal only with atomic services, those services that contain

only one query.

Phase II Overview

Phase II answers the following research questions:

1. How can we enhance the partitioning framework to handle a work-

load comprised of web services with multiple database operations?

2. How can we develop a scheduling method, for a parallel processing

environment, that creates cost effective execution sequence of web

services with multiple database operations?

In Phase II we develop a scheduling strategy by introducing heuristics that improve

performance of web service compositions involving multiple queries. We will call

7

CWS2

CWS1

CWS3 CWS4 CWS6 CWS7

CWSn

Scheduler

Service

Inventory
Workload w

Partitioning Engine

Partition1

Partition2

Partition3

CWS5

Partitionn

Data Warehouse

Multiprocessor

Multiprocessor

Multiprocessor

Multiprocessor

Figure 1.3: Framework for Phase II - Partitioning and Allocation System

these types of services, complex web services, as opposed to atomic web services.

The scheduler exploits multiprocessor databases in an efficient way providing con-

currency support by ordering complex web services in such a way that delays are

minimized due to conflicting operations in complex web services.

1.3 Benefits of Method

Our partitioning technique reduces the cost of executing transactions by localizing

data and minimizing data partitions. The partitioning techniques could be extended

8

to recreate the database partitions automatically so that the system works for dy-

namically changing workloads. The micropartitioning strategy would be of benefit

in distributed environments where fragments and their corresponding services could

automatically be organized into sets for dispersal.

The scheduler presents a new way of handling concurrency control in a multi-core

environment. It has become apparent that concurrency control methods developed

for relational database systems do not scale well with in-memory multi-core database

systems. The scheduling approach is an attempt to avoid the bottlenecks created by

other concurrency control techniques that are commonly implemented.

1.4 Dissertation Outline

The subsequent dissertation is outlined as follows: Chapter 2, the background section,

discusses related work in data partitioning and scheduling, web services, clustering

and allocation algorithms. Chapter 3 presents Phase I which is clustering and allo-

cation of atomic queries, presents an implementation and discusses implementation

results. Chapter 4 presents Phase II which defines complex web services, quantifies

delays imposed upon complex web services when ordered in a schedule, and uses the

delay information to efficiently order complex web services for execution in a parallel

database environment. Chapter 5 presents our conclusions.

9

Chapter 2

Related Work

Service-oriented architecture and distributed storage have contributed to the advance-

ment of cloud computing. Because of high and variable usage requirements and high

data storage requirements, traditional methods for managing software and data are

insufficient for the cloud. Much research has been devoted to enabling software and

data usage in such an environment. In this section, we present an overview of just-

in-time manufacturing techniques and of service-oriented architecture. We present

developments in distributed computing, database partitioning, and concurrency con-

trol. We present an overview of algorithmic techniques used in the research.

2.1 Just-In-Time Processing

Massive data storage requirements and high levels of user database processing require

new management techniques. How we manage this new environment has been the

subject of research in recent years. The history of manufacturing could provide valu-

able lessons in process improvement for the database community.

Lean manufacturing is a refined manufacturing approach that seeks to create more

responsive systems. A lean system quickly responds to customer demand but does

not hold on to excess inventory in order to do so. A lean system keeps a minimal

amount of inventory on hand and depends upon good supplier communications and

transportation to ensure timely production. A lean system is also designed to quickly

retool to produce different products from a line of products.

10

The just-in-time, JIT, philosophy of production emphasizes minimizing the amount

of on-hand resources used in enterprise production activities. JIT, or lean manufac-

turing, focuses on paring inventory to only the minimal stock needed for current

operations [23]. Instead of being overstocked in order to manage any potential issues,

JIT shops focus on improving the connection between the supplier and the factory

and between the factory and the customer. By reducing inventory, an operation can

save money. Also, by reducing inventory, inefficiencies in the system are exposed and

corrected.

Just-in-time includes a set of principles and practices to reduce cost through re-

moval of waste and through the subsequent simplification of all manufacturing and

support processes. In reality, reducing inventory is usually performed by a combina-

tion of inventory-by-forecasting and just-in-time inventory analysis. In this work, we

address the development of a data partitioning technique that combines just-in-time

data provisioning with predictive processes to support just-in-time processing. Just-

in-time manufacturing identifies muda, or seven forms of waste [67].

1. Inventory - all components not being processed

2. Overproduction - production that is ahead of demand

3. Transportation - moving products that are not actually required to perform

current processing

4. Motion - people or equipment moving more than necessary to perform the

processing

5. Waiting - waiting for the next production step

6. Overprocessing - any non-value added activity or component that the customer

would be unwilling to pay for

7. Defects - the effort involved in inspecting and fixing defects

11

The primary form of waste is excess inventory. This comes from storing raw materials

not immediately needed and producing product not currently requested by the con-

sumer. Manufacturers in lean environments seek to minimize the amount of materials

and products that are stored on site and, instead, cultivate good communication and

transportation lines between themselves and suppliers. Suppliers may, in turn, push

back their inventory requirements to suppliers further up the chain.

In this dissertation, we apply lean principles to the storage and access of data.

First, with respect to data storage, we apply the principle of inventory reduction

by analyzing the minimal amount of data required for transactions in a workload

to execute successfully and provide just that minimal amount of data in front-end

databases.

Second, transaction costs increase because of the high overhead associated with

maintaining correctness of data in environments of increasing parallelism. In fully

distributed parallel execution environments, the costs of concurrency control are high

because of the requirement of maintaining global concurrency control. In multi-

processor, shared memory parallel executing environments, current concurrency con-

trol mechanisms are costly because of the bottlenecks the existing protocols create.

Therefore, in a no-share environment with many DBMS nodes, there is the intu-

ition that concurrency control mechanisms lead to overprocessing distributed trans-

actions, contributing to slower response times. In such environments there are high

costs associated with maintaining concurrency control .

2.2 Service Oriented Architecture

Service-oriented Architecture, SOA, permits software initially designed to be used

within a limited scope of operation to interface with units of processing written in

different languages residing on different platforms. The basic functional gain of any

12

such architecture is to allow software units to interoperate that were not initially

capable of doing so. Such an architectural approach promotes reuse and encourages

combining software to solve new and varied computing problems [44].

Any service-oriented architecture implementation must provide a means of mak-

ing disparate software interoperable. The architecture would provide application

programming interfaces for use by the developer. The software itself remains a black

box to the client, who knows only the functionality from the interface and no detail.

The developer uses standardized design principles to integrate the needed software.

Any service-oriented architecture also creates a federated store of software for assem-

bly and reuse.

To date, composition of services has been most heavily used in grid environ-

ments. Managing data for workflows in grid environments has had research focus.

Researchers analyze the data management requirements of three service-based grid

systems [86]. A widely-used data grid management system, DGMS, is Storage Re-

source Broker [91]. However, current workflows are generally statically defined and

data is allocated accordingly.

There is active research on service composition and orchestration. There is re-

search in developing systems that dynamically bind services to a composition at

runtime and also heal any runtime violations [116]. In other work, the compositions

are automatically or semi-automatically assembled from sets of candidate services to

fulfill the users requirements. Most of these methods are inspired by cross-enterprise

workflow research and AI planning research [90].

Dynamic workflow methods have inspired automated web service composition.

AI planning and deductive theorem proving techniques have been used to automate

compositions. AI systems evaluate preconditions and effects that have been placed

in service documentation files to automatically determine which sets of services will

accomplish a task. Systems have been developed to automatically select and or-

13

chestrate services [87]. Until recently, scheduling of web service compositions has

been a small component in the research papers on automating web service composi-

tions [110] [115] [36]. There has been recent work in the efficient scheduling of web

service compositions in order to take advantage of parallel execution. Everest is a

multi-tenant scheduling service with future work addressing dynamic scheduling of

compositions [100].

Service compositions are also executed in cloud environments or can be designed

to execute across several clouds and enterprise systems [71] [66]. To our knowledge,

data partitioning for service compositions has not been addressed.

Reusability means that a service can be easily used by different clients in different

contexts, where the service accesses data from different underlying database systems

and the service is used in conjunction with different services. In order to support

reuse any SOA implementation ensures that the unit of logic that is the service is

designed to be easily reusable. The logic therein is carefully designed with a thor-

ough understanding of the business context in which it resides and potential areas

for reuse. Since multiple users would be accessing the services, reliability becomes a

key issue in service design as well.

In order to enhance the reusability feature, a service should also be able to ac-

cess heterogeneous data sources and not just be linked to one database or even one

type of database. Researchers in the field of scientific computing have developed

approaches to interface their services with different underlying databases within the

context of the web services implementation. The specifications for this approach are

called Service Data Objects or SDO [93]. OASIS has also developed the SDO which

is a standard to manage access to heterogeneous data sources [14]. Apache Tuscany

Project, which is a service-oriented infrastructure, uses this approach for data access

[40].

The WS-DAI, Web Services Data Access and Integration Specification, provides a

14

set of base specifications for creating service-based interfaces to data resources, that

other services or applications could, in turn, call [10]. WS-DAIR is an additional set

of specifications for defining service-based access to relational databases [105]. Addi-

tional standards for data access have been developed for non-relational data stores as

well [9] [11]. Grid systems have adopted the above standards in order to access and

integrate structured data [108].

The point of creating a service paradigm is to develop systems where services

can be quickly found, used, and reused in new and varied situations. The service-

orientation seeks to maximally exploit existing applications by making them available

to a large audience, by making them easily operable in varied environments, and by

making them easily interoperable with other services and with different data sources.

As a paradigm it has been available for more than a decade, implemented using XML,

and is supported by many standards set by industry leaders. Automation of service

discovery and service composition facilitate service usage. Easy coupling of services

to varied data sources also increases a service’s utility.

The focus of research in the area of discovery is to provide adequate and thor-

ough semantic annotation, for both functional and non-functional aspects of a service.

Therefore, researchers seek to create documents with more complete, semantic anno-

tations so that systems can easily and precisely discover the best candidates from a

service library [81]. Another research concern is the full automation of service dis-

covery [38].

Service-oriented architecture is one of the foundational technologies of clouds.

Cloud infrastructure is virtual and dynamic, with resources appearing and disap-

pearing as needed. Because of this environment no state should be held within the

resource. State is held within the representation of the resource.

Service-oriented architectures are an intermediate step between the older genera-

tion of distributed computing technologies and current cloud computing initiatives.

15

The ideal of SOA is to have a clean partitioning of functionality and a constant rep-

resentation of those services, which is currently the RESTful service implementation.

RESTful services is an architectural style to build lighweight, maintainable, and scal-

able web services. Cloud computing has accepted this service paradigm for effective

deployment of services for clients.

Although web services is a mature technology there is considerable effort to con-

tinue to advance the technology by making the APIs open. This would achieve the

end of making services more available and would allow a client to use services from

different cloud vendors and to more easily port services from one cloud to another

[111].

In Figure 2.1 we have a layered representation of the administrative costs involved

for processing the service and database requests of a workload.

SERVICE

REPOSITORY1

WS
Coordinator

Service
Processing

SERVICE

REPOSITORY2
SERVICE

REPOSITORY3
SERVICE

REPOSITORY4

WS
Coordinator

Service
Processing

WS
Coordinator

Service
Processing

WS
Coordinator

Service
Processing

DBMS1

Transaction
Coordinator

Global
Serialization

2PC

Transaction
Manager

Local
Serialization

Lock Manager 2PL

DBMS2 DBMS3 DBMS4

Transaction
Coordinator

Global
Serialization

2PC

Transaction
Manager

Local
Serialization

Lock Manager 2PL

Transaction
Coordinator

Global
Serialization

2PC

Transaction
Manager

Local
Serialization

Lock Manager 2PL

Transaction
Coordinator

Global
Serialization

2PC

Transaction
Manager

Local
Serialization

Lock Manager 2PL

Figure 2.1: CWS Transaction Processing Costs

16

The WS Coordinator manages the execution sequence of web service within a web

service composition. This is typically done by executing a flow sequence described

in an orchestration document. Such documents are developed using an orchestration

language such as BPEL. Messaging is the method by which data is transmitted from

one web service to another web service; such messaging of data between web services

can be costly when done between application nodes. Our partitioning method local-

izes the set of services in composition, so that web services that pass data are found

on the same application node, thereby reducing transmission cost.

Each DBMS node has a transaction coordinator. Each transaction coordina-

tor has a direct interface between itself and the other transaction coordinators in a

distributed database system. If a transaction involves several databases, the partic-

ipating transaction coordinators must implement two-phase commit protocol across

database nodes to ensure correctness of transaction results. Our partitioning method

selectively places data for web service compositions onto a minimum number of

database nodes, thereby reducing the two-phase commit costs.

The transaction coordinator also handles distributed serialization of operations.

This can be very costly. When the data is localized for web services executing within

a web service composition, the serialization process is also localized. The transac-

tion manager then handles most serialization of operations locally. Our partitioning

method shifts the serialization process from the transaction coordinator to the trans-

action manager.

Distributed lock managers are employed in transaction execution in order to en-

sure consistency of data when replicated data must be updated. Distributed locking

costs are reduced when data replication is tightly controlled.

A significant, outstanding research issue in cloud environments is the cost of query

execution against the underlying database structure. Initially, when optimizing the

database for a particular workload, performance will be excellent. But, due to the

17

dynamic nature of such an environment, with a changing user base and changing

workloads, the problems of less than optimal performance, due to mounting data

shipping costs and data and access skew increase. Researchers have explored dif-

ferent ways of easing the mounting performance problems. First, new partitioning

strategies have been developed to reduce the frequency of distributed transactions,

reducing data shipping costs. Second, alternate concurrency control mechanisms have

been explored, namely, speculative locking, multi-versioning, and optimistic concur-

rency control [92] [17] [45] [62] [65].

2.3 Distributed Computing and Storage

Three technologies have contributed to the advancement of cloud computing, virtu-

alization, service-oriented architecture, and distributed computing and storage. For

our research, we do not address virtualization technologies. We have addressed SOA

and in this section we review distributed computing and storage technologies.

In the future, there will be easier availability of many more services to use and to

orchestrate with other services in the cloud. Open APIs for services are available on

different vendor clouds. Grid computing is similar to cloud computing, but there ma-

jor challenges before grid applications can be ported over to clouds. Grid computing is

typically linked to science where scientific applications require highly-distributed com-

putation. Grid computing generally uses a highly heterogeneous system of computers

and databases to perform highly-distributed analytics which are then consolidated.

A key property of grid computing which cannot be satisfied by cloud computing is

federation. The basis of grid computing is virtual organization, which manages re-

source sharing, user authentication and access control. Grid computing also requires

high performance and high-scalability. Although cloud environments provide high-

scalability they do not provide high-performance environments at the level needed by

18

grid computing.

Databases have been dominated by the relational model for the past several

decades. Opinion is that the rigid structure of relational databases, although han-

dling complex and large amounts of data well, is not suitable for a cloud environment.

Rigid can be interpreted as difficulty altering schemas and difficulty scaling out.

We review the processes and costs involved in processing a transaction against a

database consisting of loosely-coupled sites where each DBMS system is independent

of the others and the transactions may access one or more DBMS nodes [83] [96]. The

DBMS systems involved may be homogeneous. DBMS node homogeneity means that

all nodes have identical software. All nodes are aware of one another and cooperate

to execute user requests. Nodes give up some of their autonomy in that they cannot

independently change software or schemas.

The DBMS systems involved may be heterogeneous in nature, in that, different

sites use different software and schemas. Such differences in software and schemas

pose major problems for distributed transaction processing [54]. Nodes may not be

aware of one another or may provide limited capability in cooperatively processing

transactions.

Distributed data storage, in the relational model involves replication. Systems

maintain multiple copies of data at different locations for the purposes of fault tol-

erance and faster retrieval. Distributed data storage also involves fragmentation,

where relations are partitioned into several fragments stored at different nodes. A

distributed data storage system combines fragmentation and replication in order to

improve efficiency. Generally, relations are fragmented and several copies of the frag-

ments are maintained at different nodes. Full replication means that a relation is

copied, in its entirety, to another node. Fully redundant databases means that the

entire DBMS is replicated to another node.

Replication is advantageous because it provides availability, parallelism, and re-

19

duced data transfer. If a node containing a relation should fail, other nodes would

have a copy of the relation making it available for processing. Queries may processed

against several replicas of data simultaneously. Local copies, made available for use,

reduce data transfer costs.The disadvantages of having replicas is that updating copies

can be costly. Also, the mechanisms for keeping all concurrent data consistent can

be quite complex. One mechanism for concurrency control is to make one replica the

primary copy and apply all update operations to it. This is the primary copy method

protocol.

When queries are processed against distributed data there must be transparency

for the user. The user is unaware as to whether they are accessing a fragment, a

replica, or a particular location. In order to implement such transparency every data

item in the system should have a unique name. There should be an efficient protocol

for finding a data item. It should be possible to switch locations when accessing a

data item without disruption of processing. Each node should be able to create new

data items independently.

For this naming procedure and location procedure there are two common methods

of implementation. The first method of implementation is to have a centralized server

called a name server which, names all data items. Nodes maintain names for all local

data items. Name servers maintain names for all non-local data items. This method

allows for efficient and transparent access to data. It does not, however, allow local

nodes to name their own data items. The name server can also be a bottleneck to

processing.

The second naming method is the assignment of aliases. Each node prefixes the

data item name with a unique node identifier. Each data item, at each node, has the

set of all aliases stored with it so that the data item can be transparently retrieved

from any node. A distributed transaction may access data at several sites. Each site

will have both a transaction manager and a transaction coordinator.

20

As Figure 2.1 shows, the transaction manager performs local transaction admin-

istration. It performs transaction logging for recovery purposes and concurrency

control. The transaction coordinator is responsible for processing a query in a dis-

tributed way, if all data is not available at the local node. The transaction coordinator

starts the transaction. The transaction coordinator creates subtransactions that are

then sent to the appropriate sites for execution. The transaction coordinator then

supervises the termination of the distributed transaction. The transaction coordina-

tor will either successfully terminate the distributed transaction or will supervise the

rollback of all data to a previously consistent state should an error occur during the

transaction process.

Each node has both transaction coordinator and a transaction manager. The

coordinator manages transactions in conjunction with the relevant transaction man-

agers.

A distributed transaction can fail if there is a DBMS node failure, if a commu-

nications link fails, or if a message is dropped. Distributed transaction processing is

more fragile than localized transaction processing. Commit protocols are introduced

into the transaction coordinator software to ensure that all DBMS remain in a consis-

tent state despite any system failures that may occur. Either a transaction succeeds

completely or, because of some failure in the process, the transaction is rolled back

completely. A commit protocol ensures such atomicity in a distributed environment.

The two-phase commit protocol, 2PC, is commonly used. The three-phase com-

mit, 3PC, protocol is more complicated and expensive but provides additional pro-

tections over and above the 2PC. 2PC assumes a fail-stop model. The failed nodes

simply stop working and do no more harm such as sending additional messaging after

the failure. The 2PC protocol is initiated by the transaction coordinator after the

last step of the transaction has been completed.

In the first phase of the commit protocol, the transaction coordinator asks all par-

21

ticipating nodes if they are prepared to commit the transaction. This is the prepare

phase. Upon receiving the message, the transaction manager at each node deter-

mines if it can commit the transaction and replies to the transaction coordinator

with a commit or an abort response.

In the second phase of the commit protocol a record is made of the transaction

managers’ decisions. If any transaction manager aborts then the transaction coor-

dinator broadcasts an abort message to all participants. If all transaction managers

are ready to commit, the transaction coordinator broadcasts a commit message to all

participants. The participants then take appropriate action locally.

If the transaction coordinator node fails then the transaction is blocked until the

node is up and running again. Once the coordinator node is up and running again,

one of several courses of recovery may be initiated. If the coordinator node’s log

indicates that the distributed transaction is ready to commit, the node redoes the

execution of the transaction. If log contains an abort record the coordinator site

aborts the transaction. If log contains a ready message, the node must consult the

transaction coordinator as to the fate of the transaction.

Conflicting transactions are those where there is a conflict between operations

from each transaction. The standard read-write conflict between two queries states

that one query reads a data item and the other query writes the data item. For

example, there is a potential conflict where query one reads a data item, query two

writes the same data item and commits, and query one reads the data item again.

Query one has read the data item twice, but the data item is not in a consistent state.

This is otherwise known as an unrepeatable read.

The standard write-write conflict between two queries states that both queries

write to the same data item. If either query rolls back its write there is a poten-

tial that the committed transaction will have stored incorrect data. This is known as

overwriting uncommitted data. The standard write-read conflict between two queries

22

states that one query writes to a data item and the other reads the data item. There

is a potential conflict in that the read query is reading uncommitted data. This is

otherwise known as a dirty read and if the write query rolls back its write for any

reason, the read query will have computed on incorrect data.

When there are such conflicts between queries, serializability enforcement tech-

niques must be employed to ensure that a schedule of interleaved read and write

operations from different queries results in the same outcome as a serial schedule of

those queries. Such enforcement techniques can be precedence graph cycle elimina-

tion, SS2PL, Strict Strong Two-Phase Locking, or 2PL, Two-Phase Locking, times-

tamp ordering, or snapshot isolation. When such transactional integrity enforcement

techniques must be realized in a distributed environment, the additional overhead

of passing lock information, for example, from one database node to another, can

become very high. Thus, the cost of ensuring serializability at the global level, as in

the cloud or other distributed environment, can be very high.

Concurrent transactions are executed in a preemptive, time-shared method. Context-

switching creates an interleaved schedule and concurrency control methods ensure

that the interleaving is proper in that it results in correct and consistent database

updates. Conflict serializability scheduling detects and specifies the correct order for

two conflicting operations. A view serializable schedule allows all conflict serializ-

able schedules plus blind writes. Conflict serializability and view serializability are

techniques that were developed to address the development of schedules for a single

processor where multiple transactions could be interleaved, resulting in a balancing

of the execution times for the set of transactions.

One common architecture for a multi-processor environment is a parallel database

system. A parallel database can be a single database machine with multiple proces-

sors. It can also be a number of database nodes that are physically close to one

another, connected by high-speed communications lines thus assuming that the com-

23

munications cost is small. It can be a shared memory system, a shared disk system,

or a no-share system.

The common architectures for a parallel database system are shared-memory and

no-share. In shared-memory, all processors access the same memory and disks. This

is standard and accepted architecture today. Shared memory architecture has pro-

cessors accessing the same global address space. For a no-share environment, every

processor has its own machine and environment. In this distributed-memory archi-

tecture processors only have access to their respective local address spaces.

There is flexibility inherent in a shared-memory architecture in that it can sim-

ulate a distributed memory architecture by dividing its global memory into disjoint

parts and assigning these disjoint parts to the different processors. Shared memory

is good from the vantage point that communication costs do not need to be taken

into account in parallel execution of tasks and load balancing is more-easily managed

in this type of environment. However, there are scalability issues associated with a

shared-memory architecture due to increasing points of contention in memory and

cache coherence as processors are added. Inter-transaction parallelism is easy on

a shared-memory system, which guarantees serial execution of a single transaction.

The enforcement of serializability is expensive, however, with long duration waits and

a high number of aborts. However, concurrency control mechanisms, such as lock-

ing, are limiting factors on scalability for multi-core database systems. Scalability on

multicore systems can be hampered by even a single point of contention [46].

Current methods for implementing concurrency control, regardless the mechanism,

whether it is two-phase locking, basic timestamp ordering, multiversion timestamp

ordering, optimistic concurrency control, or timestamp ordering with partition level

locking, do not scale well on multi-core systems [97].

Distributed database, on the other hand, are characterized by high communication

costs for communicating between nodes and is usually a shared-nothing architecture.

24

Maintaining concurrency control for a parallel database system and for distributed

database systems require additional overhead and the costs for a distributed database

system are even more than for a parallel database system, given the communications

overhead.

2.4 Partitioning for Distributed Database Systems

Database fragmentation is a method of dividing larger database systems into smaller

sections in order to improve performance, availability, and security. The foundations

of database partitioning, or fragmentation, adhere to the basic definition of set par-

titioning. Viewing a relation in an RDBMS, one can partition the relation vertically,

horizontally, or both. The correctness rules for database fragmentation are complete-

ness, reconstruction and disjointedness [83]. Each rule corresponds to the conditions

defining mathematical partitioning of sets.

1. Decomposition of relation R into fragments R1, R2, ..., Rn is complete if and

only if each data item in R can also be found in some Ri.

2. If relation R is decomposed into fragments R1, R2, ..., Rn, then there exists some

relational operator 5 that reconstructs R from its fragments (i.e., R = R1 5

...5 Rn. The relational operator 5 is union for horizontal fragments and join

for vertical fragments.

3. If relation R is decomposed into fragments R1, R2, ..., Rn and data item di ap-

pears in fragment Rj, then di should not appear in any other fragment Rk,

j 6= k. For horizontal fragmentation the data item is a tuple. For vertical

fragmentation the data item is an attribute.

In standard distributed database systems, the databases are fragmented based on

25

queries in applications found at specified locations. The fragments are then placed

and replicated at the applications’ location. The frequency and nature of user ac-

cesses also influence the replication and allocation of the fragments. Many distributed

database systems use fragmentation, replication, and allocation methods to achieve

high performance or data access throughput. Replication of the fragments can be

performed to increase availability and can be modeled as partial or full replication.

The allocation/replication process can be modeled as a cost function under a set of

constraints.

Many researchers have studied fragmentation and allocation for DDBMSs. Most

methods provide heuristics for fragmentation because optimal solutions are too costly

[83]. A grouping technique for fragmentation in distributed database systems was de-

veloped and a splitting technique [95] [79]. Heuristic solutions for fragmentation and

allocation of data have also been developed [83]. A number of approaches have been

developed for analyzing the cost of data placement and for finding methods to min-

imize that cost [74] [12] [68]. Other research in wide-area networks examined data

allocation in a larger network setting [55].

Database systems, other than the traditional RDBMS, have been developed over

the past decade, as a response to new use cases that RDBMS, as currently approached,

cannot easily satisfy. We have seen the development of data warehouses and noSQL

databases.

Data warehouses store large amounts of data for information evaluation and an-

alytics. Data warehouses are much larger than traditional transactional databases

and support analysis rather than transactions [22]. Standard partitioning techniques

have been used to manage the volume of data in warehouses [107][53]. Partitioning

methods for the specialized star schemas of data warehouses have also been developed

[15] [33].

Web applications interact with very large NoSQL data stores. Each commercial

26

NoSQL store addresses a different set of use cases. The partitioning strategy for such

systems involves scaling out data onto many commodity machines using a horizontal

partitioning strategy such as hash, list, and/or range indexing. Partitioning is an

integral component of such massively parallel systems [20]. The partitions are called

shards and each shard is under the control of a separate data management system.

The web partitioning strategy works well for a limited class of applications that re-

quire information retrieval. There are several commercial products out on the market

today that use some form of sharding to support data access. Requests for data con-

tent or statistics can be farmed out to all machines simultaneously. The MapReduce

paradigm has been successfully exploited to perform simultaneous requests against

multiple nodes housing data shards [34]. There is also a high-level of replication of

each shard to ensure availability and fault-tolerance.

Data warehousing systems also work well with data sharding. Data in dimension

tables is horizontally partitioned and disseminated to different nodes in a no-share

system. Queries against data warehouses are often ad hoc, complex, read-only queries

that produce summary statistics. These type of queries can be decomposed and sent

to separate partitions, and intra-query parallelism can be exploited to get interme-

diate results which can then be combined. These operations can all be performed

without internode communication.

C-Store is a data warehousing system that horizontally shards data across in-

dependent DBMSs [99]. The authors explicitly acknowledge that any new DBMS

architecture, of which many have appeared in the last few years, should assume a

massively parallel environment. This means that new DBMSs will be systems with

many independently operating nodes, such as clouds, with homogeneous commodity

machines, or grids, with heterogeneous commodity nodes. The nodes may be physi-

cally co-located or not. The authors state that there will be potentially many nodes

in such systems so allocation of data to the nodes must be done in an automated

27

fashion.

C-Store is a column-store database, like many of its data-warehousing predeces-

sors. It uses techniques such as overlapping materialized views to serve data. These

overlapping materialized views, as a whole, cover the entire database. The views

are connected by join indexes whereby the entire database can be recovered. The

overlapping materialized views can be sharded across nodes for faster response time.

Vertica is the commercial offshoot of CStore [4]. The C-Store architecture is optimized

for an analytic workload. The researchers also tried to accommodate transactional

workloads by separating write-operands into a write-optimized store, called WS, and

read-only data into a read-optimized store called RS. Data in WS is moved to the

RS in a controlled fashion by a tuple-mover. However, the researchers acknowledge

that this system can only give reasonable response time for transactional workloads.

C-Store, then, achieves very high performance on analytical queries and reasonable

performance on transactions executed in an on-line environment, or OLTP (online

transaction processing) environments.

Because certain web applications and data warehousing systems work well in mas-

sively parallel systems, these applications have been the first to migrate to enterprise

and internet cloud systems. There has been more difficulty in migrating transactional

systems to clouds. The primary stumbling block has been the provision of good scal-

ability while preserving the traditional ACID properties of standard transactional

systems. Generally, one of the ACID properties, atomicity, consistency, isolation, or

durability, has had to be sacrificed, in order to provide scalability and, by extension,

adequate reliability and response-time that users require. Developing good partition-

ing and allocation strategies for transactional databases when dealing with large data

and large user volumes has been a major issue [48].

NewSQL databases are relational databases that would provide high scalabil-

ity and would preserve ACID properties for transactional workloads [52]. NewSQL

28

databases are databases that adhere to the relational model but that have architec-

tures that make them perform better in systems that must scale. NewSQL databases

also seek to retain SQL declarative language in order to perform queries. The target

workload for NewSQL databases is comprised of many transactions that are short-

lived, that touch smalls subsets of data using index lookups, and that are repetitive,

that use the same queries with different inputs.

Sharding can put an internet infrastructure into deep freeze [25]. The problems

with sharding are that the shards are carefully designed for a set of mutually com-

patible transactions, transactions that perform tuple selection on conditions using

the same attributes. The sharding is engineered precisely along the attributes that

participate in the projection statement. Once new queries, in transactions, are in-

troduced that may not access tuples along the same attributes, overhead increases

exponentially because tables that need to be joined are on different shards, or tuples

that need to be accessed are in different shards. The task of accommodating new

queries must be coded into the associated application logic which becomes difficult

for the application developer. Therefore, shards cannot accommodate heterogeneous

workloads, that is, workloads that incorporate queries using conditional statements

with different attribute values. Shards can, therefore, cannot accommodate changing

workloads without encountering development difficulties.

HStore uses a partitioning strategy that exploits elements of microsharding and

graph-based partitioning [85] [103]. Horizontica was the first commercial offshoot of

HStore [2]. VoltDB is the latest commercial offshoot of HStore [5]. EStore furthers

the research efforts of HStore, allocating data for certain queries in the workload

on a tuple-by-tuple basis. Microsharding is another strategy meant to partition

databases according to analyses performed on OLTP workloads . Elements of mi-

crosharding are already implemented in Google App Engine, GAE, and Google’s

Megastore in that small partitions, called entities are created that represent a logical

29

unit in the data store. These entities are then collected into entity groups. The idea

has been extended to relational databases and a small partition is created, called

a microshard, that would provide data for an entire transaction; the microshard is

created from a definition called a transaction class [104]. Transaction classes con-

tain information about the dataset required. However, these transaction classes are

created manually. Again, microsharding addresses the transactional nature of the

activities but does not address reusability and dynamism.

Relational Cloud is a system developed to provide Database-As-A-Service in the

cloud [3]. As such, it was a research effort determined to provide transactional pro-

cessing in a cloud environment with ACID guarantees. Relational Cloud uses the

Schism partitioning system and uses workload information to guide the partitioning

and replication strategy [28]. The focus is to handle transactions within as few parti-

tions as possible to reduce the cost of two-phase commits. The first part of the Schism

partitioning process involves building a graph from SQL trace workload information.

A graph is built where the nodes are tuples accessed by the workload. An edge is

introduced where two tuples are involved in the same transaction. The graph is then

partitioned between the nodes with the fewest edges in order to isolate tuples that

belong together for transactions. The actual database partitions are derived from

this structure. The graph-based partitioning strategy is useful for creating accurate

partitioning so that transactions are performed in only one partition and are therefore

cost-effective. However, this strategy is NP-complete. The authors introduce heuris-

tics to speed partition creation but at the expense of accuracy. Our strategy creates

micropartition definitions based upon the database schema information rather than

using a graph-based approach at the tuple level. In our approach, the fragments are

allocated to minimize the cost of transactions as well. Schism also only horizontally

partitions the data while our process partitions both horizontally and vertically.

HStore uses a skew-aware partitioning system that also seeks to limit transac-

30

tions to as few nodes as possible while also seeking to balance processing load among

machines. HStore also uses a graph-based partitioning scheme but each node is a

table and each edge is a join in a query. Partitions are created off the graph in a

manner similar to Relational Cloud, but entire tables are migrated to different nodes.

Seemingly, HStore partitions can be more quickly redefined, in the reconstruction of

the graph, based on changing workloads, as compared with Relational Cloud. How-

ever, the partitions are still treated as an entire unit and, therefore, their physical

redefinition and relocation would not be responsive.

An open source database called Oinky uses relational microsharding to manage

data [63]. Here, the database is divided into very small partitions of logically, related

data. The application that needs the data will load only the microshards it needs into

memory and will perform entire transactions against the data. When the transaction

is complete, the data is then written out to database storage. Thus, the system han-

dles atomicity, consistency, and isolation. It is unclear, however, how the overhead

costs of loading into memory and writing out to disk have been taken into account.

Again, the division into small partitions is statically-defined. The focus has been to

maximize the efficiency of transactions.

To date, database partitioning has been handled in an offline manner, where a

database administrator tunes and partitions the database manually to closely match

the queries in the workload in order to optimize performance. There have been some

attempts to automate the partitioning process, in order to repartition as the workload

mix changes or the database change size or user access spikes [59] [6].

The search space of possible partitions is large, making it, as stated before, in-

feasable to always find the optimal solution. However, good solutions are feasible for

automated partitioning, as good solutions have been feasible for automation of query

planning. There are many algorithms for developing partitioning strategies offline

[78] [95]. They cannot be feasibly used in an online setting.

31

AUTOSTORE is an attempt to automate vertical and horizontal partitioning by

representing partitioning, in general, as a one-dimensional partitioning problem and

both vertical and horizontal partitioning as subproblems of 1DPP (One-Dimensional

Partitioning Problem). The online database partitioning algorithm O2P solves 1DPP.

O2P avoids the brute-force method of enumerating all possible splits in the 1DPP [59].

2.5 Concurrency Control for Distributed Database Systems

For the cloud environment, building stateless services required rethinking database

consistency. Traditionally databases have been ACID-compliant, focusing on ensur-

ing that a database is consistent and complete. ACID transactions use some form

of locking mechanism while updating database information and achieving a consis-

tent state. In an ACID system the database cannot be left in an inconsistent state.

This is an issue in high-volume, high-demand systems, such as a cloud environment,

where many users and many services are competing for the same resource. The delay

incurred by locking a database momentarily, to ensure consistency of all the data,

becomes intolerable if there is a high number of users and a high number of services

accessing the same database.

BASE-compliant, transactional database systems are the current solution to this

problem [88]. BASE is focused on ensuring that resources are always available and

that data eventually will become consistent. The database does not lock, ensuring

that users and services always have access to the data. However, this approach gener-

ates a percentage of transactions that must be reconciled or may fail. This is handled

by developers by audits, retries, and reconciliation processes. This is harder to pro-

gram but does allow for high scalability and good performance.

The problem, however, is that it becomes difficult to port standard RDBMS and

their associated applications to the cloud without having to make major alterations

32

to the systems. To transfer an ACID based application and the database to the cloud

without making those major changes, one has to deploy the application to a single

partition, losing much of the value of the cloud because the application cannot scale.

A relational database system cannot scale well, as explained by Brewer’s CAP

Theorem [51]. The CAP Theorem proves by contradiction that there cannot be a

guarantee of both availability and atomic consistency in an asynchronous network

model implementing a read/write data object. In a partially synchronous environ-

ment most of the data can be reliably returned most of the time. It is impossible to

provide reliably consistent data in a partitioned network. In other words, the CAP

Theorem states that only two out of three requirements can be guaranteed in such a

system.

1. Consistency - All nodes see the same data at the same time. Any read operation

that starts after a write operation should see the data that was written, which

is atomic consistency. Multisite transactions have the all-or-nothing semantics

supported by current DBMSs. All replicated data are in consistent states.

2. Availability - Every request receives a response about whether it succeeded

or failed. Every request to a non-failing node in the system must result in a

response. A DBMS must always be up, switching over to a replica if a failure

occurs.

3. Partition tolerance - Despite system failure or message loss, the system contin-

ues to operate. When a network is partitioned messages cannot be sent from

one node to another in the system. No set of failures less than total network

failure results in partition intolerance. Processing continues even if there is a

network failure that splits processing nodes.

Because CAP states that only two of three non-functional requirements can be sat-

33

isfied, this implies that there are only three types of distributed database systems

that one can build, consistent-available, consistent-partition tolerant, or available-

partition tolerant for distributed environments that must scale.

In designing cloud databases, there has been a requirement to select one of the

three previously mentioned options. The selection of availability and partition tol-

erance has been the focus for the new NoSQL database systems. Typically, NoSQL

systems do not allow transactions to cross boundaries. Therefore, consistency is lim-

ited to making sure that all replicas have the same data. NoSQL developers have

found it acceptable to drop the consistency requirement, replacing consistency with

eventual consistency. NoSQL databases satisfy web services which are expected

to be highly available. Even the smallest delay in response time can lead to signif-

icant losses in a customer base. The goal of most web services is to respond with

maximum speed of the network. Partition tolerance, as a type of fault tolerance, is

also a requirement for current web services.

Other distributed database systems advocate the selection of availability and con-

sistency claiming that network partitions are rare especially when network connec-

tions are replicated [98]. Several new database systems have chosen the availability

and consistency requirements over partition-tolerance. There is also a community

that states that new database systems should not be based solely on the CAP Theo-

rem claiming that it is insufficient to explain the engineering tradeoffs in a distributed

database environment [1].

There is the view that latency is a more important issue than partition tolerance

in analysis of distributed systems. Latency is not taken into consideration when per-

forming the CAP analysis where latency can be seen as ever-present, whether there is

a network partition or not. Unavailability due to partitioning can be seen as latency

beyond a certain point in time. Reduced consistency is attributable to latency, not

to partitioning. The issue then becomes how to handle the tradeoff between latency

34

and consistency. Because latency occurs when there is replication in the system the

important issue becomes to manage replication.

There are three types of replication, replication where all nodes are updated at

the same time, update is sent to a master node first, or update is sent to an arbi-

trary node. When all replicants are updated at the same time, update can be done

with or without a preprocessing or protocol execution step. Without the additional

coordination step, the strict definition of consistency is lost. The coordination step,

however, adds latency. In the second case, where a master node receives the up-

date first and coordinates the update to all other replicas, the update process for the

slaves can be done in a synchronous or asynchronous manner or a mix of the two.

Synchronous update would ensure consistency but introduce latency. Depending on

how asynchronous communication is handled, one could have inconsistency or latency

or both. The third type of replication update has an arbitrary node receiving the

update, where extra latency may occur from resolving the location of the update. In

any case, with replication there is always a tradeoff between consistency and latency.

CAP actually states that when there is no partition one can achieve both consis-

tency and availability. It is only in the presence of a partition that one must make the

choice. CAP, therefore, is only an explanation for the failure scenario. Therefore, the

CAP Theorem does not really justify the choice to automatically reduce consistency

guarantees in the NoSQL database systems. These systems also may reduce the other

ACID guarantees as well [1]. CAP, therefore, is only one of two major reasons for

reduced consistency in distributed DBMS environments. It is important to attend to

the consistency and latency tradeoff because that one is constantly present, whereas

the consistency and availability tradeoff only occurs in the relatively rare scenario of a

network partition. The new formulation PACELC handles the tradeoff of consistency

with latency making the CAP Theorem more limited than originally perceived [19].

There are fully ACID compliant DDBMS systems, such as VoltDB, HStore, Mega-

35

Store, BigTable, HBase, that do not give up the consistency requirement and pay the

availability and latency costs for it. Systems that favor low latency/high availability

over consistency are Dynamo, Cassandra, Riak, PNuts [35] [64] [72] [26]. The trade-

offs involved in building distributed database systems are complex and have yet to be

fully explored. Another approach is to examine the three-way tradeoff between

fairness, isolation, and throughput. If the system can delay or selectively prioritize

transactions throughput and consistency could be managed via this means [1]. Re-

searchers have not formally defined fairness but a working definition of fairness is a

system that does not deliberately prioritize or delay certain transactions. In a fair

system, there is never an attempt to artificially add latency to a transaction in order

to control the mix of transactions that are executed at a given time.

There has been recent work in trading fairness in order to obtain good through-

put [37]. In-memory databases accumulate log records of database changes and write

them, as a group in order to honor the durability of the ACID properties. Certain

transactions cannot commit until the batch of log records exceed a certain threshold.

These transactions suffer a loss of fairness for the opportunity to increase through-

put.

Lazy transaction evaluation affects fairness by exploiting spatial locality when

performing updates. Certain transactions with overlapping data sets are deferred to

be executed in a batch fashion rather than when the data is requested [46]. This

benefits throughput but at the expense of response time for certain queries.

Some kind of coordination is required to ensure distributed database consistency.

Those systems guaranteeing strong isolation experience a decrease in consistency.

When conflicting transactions are deferred because of coordination costs incurred un-

der strong isolation, throughput is limited. A system that supports strong isolation

must find a way to circumvent the coordination penalty. One way is to forfeit fairness

whereby the database system chooses the most opportune moment to pay the cost of

36

coordination.

Fairness is sacrificed when a system prioritizes or delays certain transactions ac-

cording to some criteria. Giving up fairness allows the system to have good perfor-

mance while guaranteeing strong isolation. Fairness means that there is a best effort

to quickly execute each transaction. How a system decides to pay for coordination

costs results in systems with strong fairness, good throughput, but weak consistency

or strong fairness, lower throughput, and strong consistency, or a system with less

fairness, high throughput, and strong consistency. Again we are constrained to choose

two out of three non-functional requirements.

Several distributed database systems exploit the FIT tradeoff, which is the tradeoff

among fairness, isolation, and throughput requirements, in order to achieve prescribed

goals. One example is G-Store, a distributed key-value store tailored for applications

exhibiting spatial locality such as multi-player online games [30]. G-Store uses a key-

group mechanism to avoid having to use a distributed commit protocol. Transactions

belonging to a certain game are assigned to a single keygroup and all assigned trans-

actions are executed on a single node. The cost of the grouping protocol is paid prior

to transactions’ executions.

Calvin is a database system that transfers the coordination cost for transactions

to a preprocessing step [106]. The preprocessing step imposes a total order on trans-

actions and processes transactions such that the serialization order is consistent with

the total order of the transaction. This implies a guarantee of strong isolation. This

process also eliminates deadlocks and is deterministic in that each partition is required

to execute the transaction in the predetermined order. This is a form of coordination,

a preprocessing step that is paid upfront. Fairness is sacrificed by having to wait for

a group of transactions to accumulate and to be preprocessed.

There is applicability of the concept of fairness to the future of distributed com-

puting, which is multi-core architecture. Contention in shared memory has shown

37

severe degradation of performance due to cache coherence overhead [18]. The cost of

contention has the same impact as distributed coordination costs in distributed sys-

tems. This implies that the FIT analysis can be applied to multicore environments.

Another in-memory database system, Silo, locally amasses transaction log records

before outputting them to disk. The reduction in sychronization comes at the ex-

pense of fairness. Certain transactions are unable to commit until the log records are

flushed to disk [109]. Doppel periodically replicates high contention records, or hot

records, across all cores. Commuting operations can execute on any record. The pro-

cess of replicating hot records blocks the execution of transactions dependent upon

those records, sacrificing fairness [77].

The analyses of the limitations to scaling distributed database systems clearly

shows that, currently, some desirable feature of such systems must be sacrificed.

Whatever tradeoff theory is espoused, relaxed consistency often becomes a preferred

option to the development of large-scale distributed databases. Therefore, we have

seen concurrency control mechanisms deployed in such databases that relax the re-

quirement for strict consistency.

2.6 Clustering and Allocation Algorithms

There is a large body of work on the topic of clustering and many algorithms have

been developed to perform the clustering task [102] [57] [114]. Clustering, or cluster

analysis is often used as part of the solution to a larger problem. In addition to ma-

chine learning, clustering has been used in many disciplines in order to group data,

such as pattern recognition, information retrieval, and data mining.

There are four main steps to using cluster analysis as part of a solution. Since

clustering can be formulated as a multi-objective optimization problem, the first step

is to develop an optimization function that evaluates the relationship between data

38

items, finding the best pairs. The second step is to select the clustering method. The

third step is to develop a data abstraction that usefully represents the resultant clus-

ters. Finally, a validation method is required to evaluate the quality of the clusters

produced.

The cost function, an optimization function, is an objective function that gener-

ally finds the best available values from a domain of discourse. A utility function is

an optimization function that returns the highest, or maximum value from a range

of values. A cost function is an optimization function that returns the lowest, or

minimal value from a range of values. Approaches to clustering rely on measuring

the relationship between data items in terms of distance, association, or correlation

and returning objects having a minimal relationship value.

Therefore, clustering algorithms generally incorporate a cost function into the

evaluation process. Incorporating a cost function into the clustering algorithm makes

the process a combinatorial optimization problem. Many clustering algorithms incor-

porate the idea of optimality implicitly. However, some algorithms explicitly define

the objective function [58].

Objects for input to the clustering process can be assigned one or more data val-

ues, each data value describing some characteristic, or attribute, of the object. The

dimensionality of the object space is the number of different, defined attributes. For

example, we may want to collect two data items for a group of patients: type of dia-

betes and blood glucose level. In this instance, then, we have a two-dimensional data

set. Each object is represented by a vector of values corresponding to the attributes.

The different data scales used for clustering are qualitative, otherwise called cat-

egorical, and quantitative. Groupings based upon quality place data with the same

value together. Groupings based upon quantity use some form of distance measure-

ment. Objects are thus organized into clusters based upon some measurement of

similarity or distance between data values. Attributes can be discrete or continuous.

39

Qualitative data is discrete. Quantitative data can be discrete or continuous.

Proximity measurements, the relationship between two objects’ quantitative data,

can be expressed as a distance value, an association value, or a correlation value. Dis-

tance calculations quantify the degree of difference between two objects. A common

distance measurement is Euclidean distance. Association coefficients are most often

used with binary data and results lie within the range of 0 to 1, where 0 represents

complete dissimilarity and 1 represents complete similarity. Association coefficients

can also be used, however, with non-binary data. Cosine similarity, Jaccard similar-

ity coefficient and the Jaccard variations are commonly-used association values. The

correlation coefficient measures the degree of correlation between the sets of values

characterizing each pair of objects. Pearson correlation coefficient is a prime exam-

ple.

The distance between two objects in Euclidean space is often used as a prox-

imity measure in cluster analysis. We map the input data into Euclidean space.

The Euclidean distance in one-dimensional space for two points p and q is d(p, q) =√
(p− q)2 = |p− q|.

The Euclidean distance in n-dimensional space, corresponding to a vector of n

numerical attributes for each data point, is

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 or d(p, q) =
√√√√ n∑

k=1
|pk − qk|2.

Other forms of correspondence analysis involve binary vectors. An important sim-

ilarity measure is the Jaccard index, also known as the Jaccard similarity coefficient.

The Jaccard index uses binary values where an attribute, if it is present in a set, is

represented by a 1, if absent, a 0 and is expressed as J(p, q) = A11
A01+A10+A00

.

1. A11 represents the number of attributes that are 1 in p and 1 in q

2. A01 represents the number of attributes that are 0 in p and 1 in q

3. A10 represents the number of attributes that are 1 in p and 0 in q

40

4. A00 represents the number of attributes that are 0 in p and 0 in q

A variation of the Jaccard index is the Jaccard distance, which simply measures dis-

similarity between sample sets by subtracting the Jaccard index from 1,Jd(P,Q) =

1− J(P,Q).

Cluster properties are

1. Flat, hierarchical - The flat, or unnested, model groups data items

into one set of clusters. Data items can also be grouped beginning

with singleton data sets, incrementally grouping until only one large

cluster is left. This is a multilevel representation where singletons

are at a base level and one large cluster is at the topmost level. This

is the hierarchical, or nested, representation.

2. Exclusive, overlapping, fuzzy - Data items can belong to one and

only one cluster which would be exclusive. If so, than the cluster is

a partition, as defined in set theory. Alternatively, data items could

belong to more than one cluster and would be labeled overlapping.

Third, each data item could be assigned a vector of membership

ratings, each rating defining its level of affiliation with each cluster

in the cluster set. This would be the fuzzy approach to cluster

membership. Clusters that are overlapping or fuzzy can still be

called partitions but, not in the set theoretic sense.

3. Complete, partial - In a complete clustering method, each data item

must be assigned to a cluster. In a partial clustering method, not

every data item must necessarily belong to a cluster.

Cluster representations are

41

1. Well-separated - A set of data points form a cluster if points within

a cluster are all closer to each other than to any point outside of

the group. Threshold values can be used to indicate correct level of

closeness.

2. Nearest-neighbor - Data points in a cluster are closer to one or more

points in the cluster than to any points outside of the cluster.

3. Centroid-based - Each cluster is assigned a center, or representative

member. Membership is determined by the degree to which data

items match the prototype. The representative member can be a

centroid, which is an average of all the points assigned to a clus-

ter up to that moment. The representative member can also be a

medoid, which is an actual data point from the cluster that is most

representative of that group.

4. Graph-based - A cluster is represented by a node that is the data

point. Edges connect the data points, representing distances be-

tween the nodes. If the distance is below a certain threshold, then

there is membership in the cluster.

5. Density-based - A cluster is defined as a dense region of data items

surrounded by a sparse region of data items.

6. Similarity-based - A cluster is comprised of a set of objects that are

more similar to one another than to the objects in other clusters.

Many methods, and subsequent algorithms, have been developed for clustering data

[56]. Three very commonly-used clustering techniques are flat clustering analysis,

hierarchical clustering, and probabilistic clustering. K-means and K-medoid are

centroid-based, flat clustering techniques. Divisive and agglomerative hierarchical

clustering are hierarchical clustering techniques that use either a graph-based or

42

geometric-based approaches to building the clusters. Density-based probabilistic clas-

sification technique use statistical methods for finding the distribution of data points.

Partitional or flat clustering methods divide the set of data items into k groups.

K is an input parameter provided by the user. Data items are iteratively moved into

clusters until intracluster distances have been minimized and intercluster distances

have been maximized.

The advantages of such flat methods are that they are relatively scalable and han-

dle large data sets fairly well. Such methods are also simple to understand and simple

to implement. The computational complexity of such methods is O(nki) where n is

the number of data points, k is the number of clusters, and i is the number of itera-

tions of the clustering process.

K-means clustering is a relatively straightforward method of clustering data items

into groups [80]. The basic algorithm performs two main steps and iterates through

these steps until no more changes occur. There is an assignment step where centroids

are defined. Initially, the algorithm is seeded with k randomly placed centroids. The

clusters are defined by finding the boundaries. For boundary identification, lines are

drawn between each pair of centroids. A perpendicular line that bisects each con-

necting line is defined. The perpendicular lines define the boundaries of a cluster. All

points within a given boundary belong to the centroid therein. The second step of the

algorithm identifies a new centroid for each cluster. The new centroid is calculated

using the mean or the median of the data points in the cluster so far. The process

continues until the centroid values no longer change. The algorithm is as follows:

Another category of cluster analysis is hierarchical clustering. Hierarchical clus-

tering methods are valuable in that they develop multiple levels of clusters, by building

a tree, each level yielding a different number of clusters. Therefore, it becomes un-

necessary to input, prior to running the clustering algorithm, the number of clusters

desired. One can simply select the level in the resultant tree that corresponds to the

43

Algorithm 1 K-means Algorithm
Input: Set of n data items, D = d1, ..., dn, number of desired clusters, k
Output: A set of k clusters
Select a set of k points as the initial centroids.
repeat
for all di in D do
Assign each point to the nearest centroid.
Update the centroid by calculating the mean (µ) of each cluster based on the

items in that cluster.
end for

until centroids no longer change

number of desired clusters.

One valuable advantage of hierarchical clustering is that one can quickly choose

the level of granularity of the clusters. One can choose all the clusters from one level

of the hierarchy. One can also choose significant clusters from various levels of the

hierarchy. Another advantage is that many different kinds of inter-object similarity

measures may be defined for clustering in this manner. One may use a number of

different data values in an equation that evaluates similarity.

Disadvantages to hierarchical clustering techniques are that one must apply a

termination criteria within the algorithm. Also, one may not, in most hierarchical

algorithms, revisit a level in the hierarchy to redo clusters at a given level. Hierar-

chical clustering algorithms are greedy and the steps are irreversible.

The tree, or dendrogram, can be built in either a top-down or bottom-up fash-

ion. The top-down clustering procedure is called divisive hierarchical clustering. The

bottom-up procedure is called agglomerative hierarchical clustering. Divisive hierar-

chical clustering can be more accurate because it begins with a global perspective of

the data. But, divisive clustering is computationally far more expensive than the ag-

glomerative technique, where the computational cost for divisive clustering is O(n3)

where n is the number of data elements. Clearly, using divisive clustering techniques

on any but the smallest data sets is computationally prohibitive.

44

Hierarchical clustering efficiencies areO(n2) for the agglomerative approach. These

efficiencies can be improved by incorporating pre-clustering techniques for multiple-

phase clustering. The multiple-phase techniques continuously refines the cluster from

one phase to another. Canopy clustering is an example of pre-clustering [39].

For any clustering approach, a proximity metric is established using one or more

of the following approaches: Euclidean, cosine similarity, Jaccard index and its vari-

ations, or Pearson correlation. For flat clustering algorithms such as k-means or

k-medoid, the proximity of two individual points is measured in order to allocate to

the proper clusters.

In hierarchical clustering the distance measurement is Euclidean, cosine similar-

ity, Jaccard index and its variations, or Pearson correlation, and is generalized from

individual points to all individual points with the clusters. Such a proximity mea-

surement is called a linkage metric. There are certain linkage metrics that have

traditionally been used to join clusters together in the hierarchical methods. Classi-

cal linkage metrics used to join clusters are single-linkage, complete-linkage, average

linkage, and Ward’s method [16].

Single linkage measures the distance of the closest two points from each of two

clusters. The single linkage metric finds the two closest data points that are in dif-

ferent clusters. Single-linkage metric is formulated as min{d(p, q) : p ∈ P, q ∈ Q}.

When the two closest data points are found from the different clusters, the entire

clusters are joined into a larger cluster for the agglomerative approach. The advan-

tage to this type of approach is that it is very straightforward. The disadvantage

is that it tends to create long chainlike clusters with some datasets. The worst-case

time complexity of single-linkage metric is O(n2).

Complete linkage measures the farthest two points. The complete-linkage metric

finds and calculates the distance of the two farthest data points between clusters. The

algorithm then finds the smallest of these calculations and joins those clusters. This

45

is formulated as max{d(p, q) : p ∈ P, q ∈ Q}. The complete-linkage metric avoids

the long chaining that can occur with single-linkage and is less sensitive to outliers

than single-linkage techniques. The worst-case time complexity of complete-linkage

metric is O(n2logn).

Average linkage take the average distance of all pairs of points between two clus-

ters. The group average metric calculates the average of all the pairwise distances

across two clusters and picks the smallest average value, joining those clusters. The

group-average metric is formulated as 1
|P ||Q|

∑
q∈Q

∑
p∈P d(p, q). Average-linkage met-

ric is a compromise between single-linkage and complete-linkage approaches. It has

less sensitivity to outliers than the single-linkage approach. The time complexity of

the average-linkage metric is O(n2logn).

With Ward’s method, the total within-cluster sum-of-squares is used to determine

which clusters to merge. Ward’s method defines the proximity between two clusters

to be an increase in the squared error when the two clusters are merged. This tech-

nique is very similar to the group average method. Ward’s method is the correct

hierarchical analogue to the k-means approach. It is otherwise known as Ward’s min-

imum variance method. Ward’s metric is formulated as d(P,Q) = |P −Q|2 or the

squared Euclidean distance between points in the clusters.

Agglomerative clustering has been the dominant approach to hierarchical clas-

sification schemes [75]. The method starts with singleton clusters and successively

merges pairs of clusters until all the clusters have been merged into one final cluster.

This creates a hierarchy of clusters. The user can then select clusters at the level

of needed granularity. The partitions can be visualized as a tree structure, called

a dendrogram. Such clustering algorithms greedily merge the closest clusters. This

clustering method does not need a predefined number of clusters, k, as part of the

input.

The basic algorithm for hierarchical agglomerative clustering places each data

46

item into its own singleton group. The algorithm then iteratively merges the two

closest groups until all the data has been merged into a single cluster. The algorithm

results in a sequence of groupings. It is up to the user to choose the desired subset of

clusters from this sequence. Groups that merge at high values relative to the merger

values of their subgroups are candidates for natural clusters.

Algorithm 2 Hierarchical Agglomerative Clustering Algorithm
Input: Set of singleton clusters, C1, ..., Cn

Output: A hierarchy of clusters
repeat
Merge the two nearest clusters.

until until there is only one cluster left

A data abstraction is a compact description of the cluster that has been created.

The cluster abstraction can be a useful and meaningful interpretation of the data

found within a cluster. This description can be used for the purposes of creating a

prototype, or centroid, as we have already seen. The abstracted version of the data is

used as reference point in the clustering process. Data abstraction can also be used

to efficiently represent the data in a cluster for further processing or for analysis by

humans. The abstraction, therefore, is simply an efficient representation of the data

in a cluster and can be used for different purposes [57].

The cluster representation becomes an important tool for decision-making. Data

abstraction can be a simple and intuitive explanation of clusters for humans to un-

derstand. It is a form of data compression, which, as mentioned before, forms the

basis for further processing. It increases the efficiency of processing. For example, a

cluster of documents can be described by a representative document. When a search

is performed it is done against the representative documents, not each document.

There are graphical representations of the clustering. A cluster can be repre-

sented by its centroid, a popular scheme. This representation works well for compact

47

clusters, but not for ones that are chainlike or irregularly-shaped. A cluster can be

represented by its most distant points. Boundary points are good to offer informa-

tion about the shape of the cluster. Conjunctive logical expressions can be used to

represent clusters.

It is also important to assess the quality of the clusters that have been built. Even

data with no natural clusterings can be grouped. Any clustering algorithm will form

some groupings. Different algorithmic approaches will form different clusters. Even

running the same algorithm on the same data, though with different parameters, can

produce different results. Whether these groupings make any sense or not is another

question entirely.

One must provide users with a degree of confidence that their clusterings make

sense. A good clustering is one that achieves high intracluster similarity and low

intercluster similarity. An objective function measures the quality of the clustering.

Cluster quality evaluation generally takes three forms, using external evaluation, in-

ternal evaluation, or relative evaluation. An external evaluation compares the cluster

structure to an existing structure in an external evaluation. An internal evaluation

tries to assess whether the cluster structure is appropriate for the data. So, the com-

parison, in an internal evaluation, compares the cluster output with the input data

set. A relative evaluation compares several cluster structures, one to the other, in

order to evaluate the goodness of a particular clustering.

Another important aspect of cluster validity is the choice of the appropriate num-

ber of clusters. It is important to find techniques for choosing the appropriate number

of clusters prior to running a flat clustering algorithm. It is also important to select

the proper number of clusters from a hierarchy by slicing at the proper level in the

tree or by selecting the optimal set of clusters from branches of the tree.

Sometimes users can select the number of clusters, k, based upon their expertise.

Sometimes, however, the appropriate number, k, comes from the data itself. The

48

quality for the resultant clustering often relies on the value of k that is provided. Too

many clusters can make the result complicated and hard to interpret and analyze.

Too few clusters leads to loss of information and misleading interpretations. One at-

tempt to properly estimate k comes from visualization of the data. If data points can

be projected onto two-dimensional Euclidean space then one can get visual feedback

as to the proper number of clusters. This strategy is useful for only a restricted set

of applications.

Another approach is to use indices, or stopping rules, that indicate when the op-

timal cluster number has been reached. These indices often measure compactness of

clusters and interdistance measurements among others. Research has been performed

to rank the quality of the outcome of these indices [73]. It is often recommended to

use several indices to estimate optimal cluster count.

Another approach is optimization of a criterion function under a mixture-model

framework. Statistically, one finds the correct number of components, k, by fit-

ting a model with some observed data and optimizing the criterion function. The

Expectation-Maximization algorithm is used to estimate the model parameters for

a given k. Other approaches are heuristic and based on a variety of techniques.

One such technique considers the distance from a cluster centroid to clusters in its

neighborhood. The k that is persistent in the largest interval of the neighborhood

parameter is considered optimal [61].

Allocation algorithms such as bin-packing and knapsack problems are well-studied

and well-known. The one-dimensional, bin-packing problem is a well-known alloca-

tion algorithm. It is a method to allocate a set of items I = 1, ..., n each having

an associated size or weight wi. The items are dispersed amongst a set of bins, all

having the same capacity c. The problem can be extended to multi-dimensional bin

packing where the additional dimensions represent other salient values of the item,

other than weight.

49

Bin packing methods and algorithms are all computationally hard. There are

many optimization approaches to take in order to speed processing. One would ide-

ally wish to use an exact method for solving a problem. An exact method will solve

a problem to optimality. This is often suitable for medium-sized problems. However,

when the problem space becomes unduly large, other approaches are required to come

up with a reasonable answer in a reasonable amount of time.

Some exact methods for solving a problem to optimality are linear programming,

branch-and-bound programming, dynamic programming, and LaGrangian relaxation

methods. The most common type of application that uses linear programming is

the problem of allocating limited resources among competing activities in the best

possible way. It was a method developed in the research area of operational research.

Linear programming cannot handle discrete variables and all functions must be lin-

ear.

Dynamic programming addresses sequential decision-making problems and other

combinatorial problems. It decomposes a problem into a family of subproblems using

recursion, each recursive call tackling a subproblem.Due the recursive structure of

the solution, the computation time can dramatically increase with an increase in the

problem size. Dynamic programming can handle discrete variables and non-linear

functions.

The branch-and-bound programming model is a divide-and-conquer approach

which continues to divide a problem into smaller and smaller problems to be solved.

The branching corresponds to partitioning the entire set of feasible solutions into

smaller and smaller subsets by fixing an integer variable’s value at each iteration.

The bounds phase calculates the bounds of the remaining solution spaces. The final

stage discards or keeps solution spaces based upon information in their bounds. The

algorithm only searches solution spaces that could contain an optimal solution.

Online environments receive data in a stream and algorithms must cope with a

50

constant stream of data points where there is no foreknowledge of the incoming data.

The online k-means clustering algorithm keeps the clusters as close to optimal as

possible as the data points stream in.

An online algorithm is meant to be able to process data coming into the pro-

gram in serial fashion. Because an online algorithm suffers the disadvantage of not

having a view of all of the data, it is forced to make decisions in a greedy fashion,

which could force a solution into a local optimum. Online algorithms must produce

results in an acceptable time bound. Recomputing entire data sets is often compu-

tationally prohibitive so approximation algorithms are often used in such a settings

[8]. An approximation algorithm, unlike heuristics, guarantees a solution within

a certain factor of optimum. A heuristic, however, can produce quality results, but

cannot guarantee those quality results. In the area of clustering in dynamic envi-

ronments, there has been some research done as to how to recreate the clusters in a

computationally-acceptable way [60].

51

Chapter 3

Phase One - Partitioning and Allocation

Framework for Atomic Web Services

Our aim is to provide efficient partitioning and replication of data. We provide only

the necessary data for the anticipated workload; it is a fragmentation and allocation

technique based upon the concept of minimal data sets [23] [67]. In this chapter

we present a method for grouping queries by data similarity. We then define the

data requirements for such groups; we call such a definition an abstract query. Data

partitions are realized from the abstract queries. We present the results of an imple-

mentation using this partitioning method and show that throughput increases and

latency is reduced when the database is partitioned using this method.

3.1 Introduction

There is a need to provide efficient data partitioning and allocation for services and

service compositions in the context of both centralized and distributed systems [55]

[28] [104] [20] [85] [4] [2]. Current web services solutions are based on full replication

[69] [99] [84] [13]. However this approach involves replica updates, which can be costly

[50].

We develop methods to identify data requirements of atomic web services and

then groups services with similar data needs. An atomic web service, WS, is a ser-

vice that has only one query associated with it. A cluster, Cl, is a grouping of WS

that have similar data needs. An abstract query, Q, is created to represent the data

52

…

WS1 … WSm WSn

WSn+1

… WSo

Workload w

Partitioning Engine

Partiton1

Partition2

Partition3

Partition4

… WSm+1

Figure 3.1: Framework for Phase I - Partitioning and Allocation System

needs of such a grouping. The projection statement, A, of Q is built from attribute

information of the participating queries. The selection statement, C, of Q is built

from predicates of the participating queries. Q contains the information necessary

to form a micropartition. We assume that all services and nodes are in a central

location, as in a cloud. Figure 3.1 shows our framework.

We show that our abstract query definition is complete and minimal. Our em-

pirical results show that our approach improves data access efficiency over standard

partitioning of data. Our method shows an increase in throughput of 110% over

standard range partitioning and a decrease in latency of 38%.

In Section 3.2 we present the definitions and procedures for creating the abstract

query, Q. In Section 3.3, we walk through an example of abstract query development.

Section 3.4 develops the clustering cost function, p, used to group queries in a work-

load. In Section 3.5 we present the clustering algorithm and the allocation algorithm,

respectively. In Section 3.6 we describe our implementation and show results. In

Section 3.7 we further develop the clustering cost function.

53

3.2 Definitions

In this section we define atomic web service, WS and abstract query, Q. We define

the projection statement, A, for an abstract query and present the algorithm that

constructs the projection statement. We define the selection statement, C, for an

abstract query and present the algorithms that construct the selection statement.

We then show that the abstract query definition is complete and minimal.

Definition 1: Atomic Web Service WS

An atomic web service, WS, is a sequence of read and write operations on data items

and a commit or an abort. We represent each WS as a relational algebra query, Q,

of the form Q = πAσC(D), where D is a universal relation, A is a subset of attributes

of D, and C is a conjunction of boolean expressions of the form (a1 op a2), where

ai(i = 1, 2) are either attribute names or constants and op is a relational operator

=, <, or ≤.

Definition 2: Workload w

The workload, w, is a pair (WSw, ≤w) where WSw is a set of atomic web services

{WS1, ...,WSn} and ≤w is the partial order of WSj where (j = 1, ..., n).

We use the concept of abstract query to establish data partitioning. Intuitively,

an abstract query represents a set of atomic services with similar data needs. A data

partition, i.e., the answer generated for an abstract query, can satisfy the data needs

of all the services represented by the abstract query.

54

Definition 3: Abstract Query Q

Let Cl be a cluster of atomic web services denoted as Cl = {Q1, ..., Qn} where each

query Qj is of the form Qj = πAj
σCj

(D), for 1 ≤ j ≤ n whereD is a universal relation.

We say that Q, denoted as Q = πAσC(D), is the abstract query representing Cl if

the following hold:

For any database D

1. (Containment) Qj(D) ⊆ Q(D) for all 1 ≤ j ≤ n and

2. (Minimality) 6 ∃ Q′(D) ⊂ Q(D) and Qj(D) ⊆ Q
′(D) for all 1 ≤ j ≤ n

The projection and selection statements for abstract query Q are built from a set

of query definitions in a cluster. That is, the properties of A are

1. CAj ∪ Aj ⊆ A for all j = 1, ..., n

2. There is no A′ such that CAj ∪ Aj ⊆ A
′ for all j = 1, ..., n and A

′ ⊆ A and

A 6= A
′

and the properties of C are

1. Cj ⇒ C for all j = 1, ..., n

2. There is no C ′ such that Cj ⇒ C
′ for all j = 1, ..., n and C ′ ⇒ C and C 6⇒ C

′

Intuitively, condition 1 for A ensures that any attribute that participates in the an-

swer for Aj for all (j=1,...,n) will also be in the answer for A. Condition 2 ensures that

no projection statement A′ exists that is more restrictive than A, and the abstract

query Q′ conditioned on A′ would contain the answers for Aj for all (j=1,...,n) but

would not contain some of the answer returned for Q.

Intuitively, condition 1 for C ensures that any tuple that participates in the an-

swer for Cj for all (j=1,...,n) will also be in the answer for C. Condition 2 ensures

that no selection condition C ′ exists that is more restrictive than C, and the abstract

query Q′ conditioned on C ′ would contain the answers for Cj for all (j=1,...,n) but

55

would not contain some of the answer returned for Q.

Projection Statement Construction

With the modified Cj assigned to Cl, we now create an abstract query, Q, for each

Cl. We form the selection statement, C, for each Q by first removing each Ci in

Cl where Ci ⇒ Cj. We the join all remaining Cj via disjunction. The individual

conjunctive clauses in C are reduced by removing redundant subgoals. The final C

for Q represents a complete and minimal requirement of the tuples needed for all

queries associated with cluster Cl.

To build the projection statement for Q, we take the union of all attributes in the

projection and selection statements for each query belonging to a cluster.

Let Cl = {Q1, ..., Qn}.

We create the attribute set, A, of the abstract query Q = πAσC(D), as

A = {A1 ∪ ... ∪ An ∪ CA1 ∪ ... ∪ CAn}, where CAj is the set of attribute names

that appear in Cj for all 1 ≤ j ≤ n.

Algorithm 3 computes the projection attributes, A, for the abstract query, given a

cluster, Cl.

Algorithm 3 BuildProjectionStatement
Input: Cl = Q1, ..., Qn

Output: A
A = {∅}
for all Qj in Cl do
A← Aj ∪ A
A← CAj ∪ A

end forreturnA

56

Selection Statement Construction

In our definition for an atomic web service, WS, we defined the projection statement

as a list of attributes, A, and the selection statement as a conjunctive clause, C. The

data structure representation is shown in Figure 3.2. The workload w consists of the

set of atomic web services, WSw and their partial order information.

 Aw

A1 A1,…,Am

… …

An …

Cw

C1 p1 Λ … Λ pn

… …

Cn …

Figure 3.2: Initial Data Structures Representing WSw

Prior to the clustering process, we prepare each Cj, from WSw. We first restate

all predicates, pi, within the original Cj by converting all operators to =, <, ≤ (i.e.,

Ai > ci would be converted to ci < Ai). We then apply transitive closure to each

Cj. Selection of new operators for additional predicates is shown in Figure ??. To

apply transitive closure to each Cj, we use WSw as input to Algorithm 5 (modified

Warshall’s algorithm). By the algorithm, we generate the transitive closure for each

selection statement in WSw.

We build the selection statement, C for Q of each Cl. Prior to clustering process,

we prepare each Cj, from each WSj, 1 ≤ j ≤ n, in workload w. We first restate

all predicates within the original Cj by converting all operators to =, <, ≤ (i.e., a

predicate, Ai > ci would be converted to ci < Ai). We then find transitive closure on

each Cj.

With the modified Cj assigned to Cl, we now create abstract query, Q, for each

57

Cl. We form the selection statement, C, for each Q by first removing each Ci in

Cl where Ci ⇒ Cj. We the join all remaining Cj via disjunction. The individual

conjunctive clauses in C are reduced by removing redundant subgoals. The final C

for Q represents a complete and minimal requirement of the tuples needed for all

queries associated with cluster Cl.

 A1 … Am c

A1

…

Am

c

 M0[1][1] M0[1][m] … M0[1][V] M0[m][V]

C1 <= 10=

C2 = =5,<3

…

Cn < 2<=

Matrix M0[V][V]

Tableau C0[VxV][n]

Figure 3.3: Data Structures Used to Build C

The tableau built in Algorithm 4 is used to build the final C for an abstract

query Q. Data structure M0 identifies the attributes used in a predicate or the single

attribute used and a constant. Data structure C0 identifies the relational operator

used for a predicate in a given conditional statement and an associated constant if

warranted. We use the data structures in Figure 3.3 in Algorithms 5 and 4 to build

the abstract query Q for each cluster Cl. Algorithm 5 usesM0 as the data structure to

apply transitive closure to Cj and adds the additional predicate info to Cj in tableau

C0.

58

Algorithm 4 BuildC0

Input: M0 - table of reconstructed condition statements
Output: C0 - tableau to build select statement for abstract query Q
Construct a temporary record Ck from M0
Addit ← 1
for all Ci in C0 do
if Ci =⇒ Ck then
Addit ← 0
Break

else if Ck =⇒ Ci then
Delete Ci from C0

end if
end for
if AddIt then
Add Ck to C0

end if

Algorithm 5 TransitiveClosure
Input: Cl = {Q1, ..., Qn}
Output: C0 - table of reconstructed condition statements
for all Cj in Cl do
Initialize M0
for all operand in Cj do
Insert row and column to M0 for unique operands
M0[k][l] ← <,≤, or =
if operator == "=" then
Add operator to M0[l][k]

end if
end for
n ← number of columns in M0 - 1

for all i = 1; i <= n; i+ + do
for all j = 1; j <= n; j + + do
for all k = 1; k <= n; k + + do
if M0[i][j] == ” ≤ ” || M0[i][k] == ” ≤ ” then
M0[i][k] ⇐ ” ≤ ”

else if M0[i][j] == ” < ” || M0[i][k] == ” < ” then
M0[i][k] ⇐ ” < ”

else
M0[i][k] ⇐ ” = ”

end if end for end for end for
BuildC0(M0)

end for
BuildC(C0)

59

To build C, from tableau C0, we remove all redundant subgoals from each row,

constructing a conjunctive clause from each row. The conjunctive clauses are then

united using logical disjunction to form the final C.

In this section, we state and prove the properties of our calculation.

Theorem 1: Given a query cluster Cl = {Q1, ..., Qn}, Algorithms 3 and 4 compute

the projection and selection statements, A and C respectively, for the corresponding

abstract query, Q.

Proof Sketch:

Let Qj be πAj
σCj

(D), where Aj is the extended set of attributes of Qj, s.t. every

attribute in Aj is either in the original set of projected attributes or in Cj.

Because A is the union of all the projection attributes of Qj, for all j=1,...,n, every

Aj ⊆ A and there is no attribute in A that is not represented in at least one Aj in

the set of queries belonging to Cl.

Second, we need to show that every tuple, returned by Qj must also be returned

by Q. Note, that for every tuple t that is returned by Qj, t must satisfy Cj; but then,

because Cj ⇒ C, t must also satisfy Q and, therefore, must be in the answer set of

Q.

Third, we need to show that there is no Q′ such that

1. Qj ⊆ Q
′ where j=1,...,n and

2. Q′ ⊂ Q and

3. Q′ 6⊇ Q

We show this by contradiction. Assume that there is a tuple t such that t satisfies C

(i.e., t is in the answer to Q) but t does not satisfy C ′, therefore t is not in the answer

to Q′.

We know that Cj =⇒ C, because any t that satisfies C must also satisfy Cj. Let

60

us assume there is a C ′ s.t. Cj =⇒ C ′, that is, any tuple t that satisfies C ′ must

also satisfy Cj. Where C ′ =⇒ C but C 6 =⇒ C ′, this means that C is more general

than C ′. By contradiction, we state that there exists a tuple t that satisfies C

but does not satisfy Cj or C ′. Then, there is a condition (preposition), pk, in C ′ such

that pk is not true for t. But then, pk was removed from C (but remained in C ′)

due to the generalization of conditions by Algorithm 4. Initially, both C ′ and C are

constructed as a disjunction of selection conditions. But then, pk was generalized for

the construction of C in two possible places:

1. By Algorithm 5, where the transitive closure of each Cj was generated. However,

Algorithm 5 does not remove any selection condition, so both C ′ and C must have

pk. This is a contradiction to the original statement that pk is in C ′ but not in C.

2. The second place where pk could have been removed is in Algorithm 4 to build

a combined condition, however, in this step, we drop Cj when we have analyzed

that another Ck in WS provides all the tuples required by Cj. This will happen

for both C ′ and C. This is also a contradiction to the original statement that pk

is in C ′ but not in C.

3.3 Abstract Query Example

Building the Projection Statement Example

The projection statement, A, for the abstract query, Q, is built by the taking all

unique attributes found in the projection and selection statements of each Qi in Cl.

The projection statement for Q is the union of all modified projection statements of

the queries in Cl. Q1 and Q2 are example queries that have been extracted from the

well-known TPC-C benchmark. See Figure 3.4 for the TPC-C database layout.

Q1: πcustomer.c_discount, customer.c_last, customer.c_credit, warehouse.w_tax

61

Figure 3.4: TPC-C Schema (source: [49])

(σcustomer.c_w_id < 5 (σ warehouse.w_id = customer.c_w_id (customer 1

warehouse)))

Q2: πc_data1 (σc_w_id < 5 (customer))

Attribute set A = {A1 ∪ ...∪An ∪CA1 ∪ ...∪CAn}, where CA is the set of attribute

names.

A1: c_discount, c_last, c_credit, w_tax, w_id, c_w_id

A2: c_data1, c_w_id

62

A: c_discount, c_last, c_credit, w_tax, w_id, c_w_id, c_data1

Building the Selection Statement

Create the selection statement, C, for the abstract query, Q. We begin with the

original conditions from each query in Cl.

C1: w_id < 5 ∧ c_w_id = w_id

C2: c_w_id < 5

Figure 3.5 shows the intuition behind our transitive closure. We apply transitive

closure to each selection statement. In this example, we show the application of

transitive closure for C1. We do this by using Warshall’s Algorithm to complete

a reachability graph. For C1, we add an edge to the predicate with the equality

operator, indicating that we are adding the predicate, w_id = c_w_id. For C1, an

additional directed edge has been added between nodes cwId and 5, indicating that

we are adding a new predicate, c_w_id < 5, to the modified selection statement.

C1: w_id < 5 ∧ c_w_id = w_id ∧ w_id = c_w_id ∧ c_w_id < 5

w_id
=

<

5

c_w_id

<

Figure 3.5: Transitive Closure on Conditions in C1

The select statements to which transitive closure has been applied now include any

new predicates. We now remove predicates with user-defined variables (? in SQL

63

statement predicates would be an example of this) for the final, modified selection

statements. We reduce C by dropping clauses where there is containment. Since,

C1 6→ C2 nor C2 6→ C1, neither clause is dropped. Second, we eliminate redundant

subgoals. With C1 and C2 modified, we create the final selection statement C by

combining C1 and C2 via a logical ∨.

C1: w_id < 5 ∧ c_w_id = w_id ∧ w_id = c_w_id ∧ c_w_id < 5

C2: c_w_id < 5 C: w_id < 5 ∧ c_w_id = w_id ∨ c_w_id = 5

Next, we build the selection statement for Q. We begin by restructuring the selection

statement of each query in Cl. Every Qi in Cl will have a selection statement of the

form ρ1 ∧, ...,∧ ρn where the operands in the predicates are either an attribute of D

or a constant and operators in ρ are =, <, or ≤.

The selection statement, C, for the abstract query Q, is computed as follows:

Let Q = πAσC(D) denote the abstract query for Cl = {Q1, ..., Qn}.

The selection statement, denoted as C, of Q, is defined as

C = {C1 ∨ ... ∨ Cn} for all 1 ≤ j ≤ n,

To satisfy the intuition for the selection statement, we compute C as follows:

The abstract query, Q, minimally covers the data requirements for both Q1 and

Q2.

Q1: π customer.c_discount, customer.c_last, customer.c_credit, warehouse.w_tax,

warehouse.w_id,

customer.c_w_id (σ customer.c_w_id≤ 5 (σwarehouse.w_id = customer.c_w_id

(σc_w_id < 5 (customer 1 warehouse))))

Q2: πc_data1, c_w_id, c_d_id (σ c_w_id ≤ 5 (customer))

64

Q: πcustomer.c_discount, customer.c_last, customer.c_credit, warehouse.w_tax,

warehouse.w_id, customer.c_w_id, customer.c_data1, customer.c_w_id,

customer.c_d_id (σ w_id < 5 (σ c_w_id = w_id (σ c_w_id < 5 (σ c_w_id

≤ 5 (customer 1 warehouse)))))

Finally, we reduce C by merging clauses where there is containment and by eliminat-

ing redundant subgoals.

Q: πcustomer.c_discount, customer.c_last, customer.c_credit, warehouse.w_tax,

warehouse.w_id, customer.c_w_id, customer.c_data1, customer.c_w_id,

customer.c_d_id (σ c_w_id ≤ 5 (customer 1 warehouse))

3.4 Clustering Cost Function

We present our method to cluster queries based on similar data needs. The cost

function, for our clustering, includes proximity measurements, v (attribute similar-

ity) and h (selection statement similarity); the values of h and v together determine

the overall proximity value, p. The value p is defined later in this section.

The measurement v is the vertical partitioning component of the clustering; h

is the measure for horizontal partitioning. The first measurement, v, measures the

similarity between the attributes of two abstract queries, Qi and Qj. The second

calculation, h, measures the similarity of the condition ranges of Qi and Qj. We

select the clusters with the largest p value, to merge.

Similarity of Query Attributes Expression

The first measurement, v, uses Jaccard coefficient to measure the similarity between

the attributes in Qi and Qj. We merge the two abstract queries having the most

similarity (value closest to 1.0) with respect to their attributes.

65

For abstract queries Qi and Qj, v measures the similarity between the respective

attribute sets, Ai and Aj.

v = J(Qi, Qj) = |Ai ∩ Aj|/|Ai ∪ Aj|

For example, given the following queries Q1 and Q2

Q1: πc_discount, c_last, c_credit, w_tax, w_id, c_w_idσ w_id< 5 ∧ c_w_id

= wId ∧ c_w_id < 5

Q2: πc_data, c_w_id, c_d_id σ c_w_id ≤ 5

and their respective attribute sets

A1: cDiscount, cLast, cCredit, wTax, wId, cwId

A2: cData, cwId

v = J(Qi, Qj) = 1
1+5+1 = 1

7 = 0.14

Similarity of Query Condition Ranges Expression

We calculate the second similarity measurement, h by evaluating the selection condi-

tion ranges for abstract queries Qi and Qj. This is a measurement of tuples returned,

and, therefore, of horizontal partitioning.

We have developed a measurement based on the database schema and correspond-

ing metadata and not on the actual database instances. For our initial analysis we

apply the following simplifying conditions: (1) All attributes used in conditions have

attribute domain restrictions that are defined in the database schema and (2) condi-

tions take the form of conjunctions of (a1 op a2), (a1 op c), or (a1 op ?) where a1 and

a2 are attributes in the universal database, D. Operator op is a standard comparison

operator, =, < or, <=. Constant c is a constant value. (3) Data is evenly distributed

across the range of schema values.

For abstract queries Qi and Qj, h measures the similarity between the respective

condition ranges, Ri and Rj.

66

h = |Ri ∩Rj|/|Ri ∪Rj|

For example, given the following abstract queries

Q1: πc_discount, c_last, c_credit, w_tax, w_id, c_w_id σw_id < 5 ∧ c_w_id

= w_id ∧ c_w_id < 5

Q2: πc_data1, c_w_id, c_d_id σc_w_id ≤ 5

and their respective ranges, Ri and Rj, where Ri and Rj must contain integer values

within the domain of cwId, which is 1-10.

Ri: 1, 2, 3, 4

Rj: 1, 2, 3, 4, 5

h = 4
5 = 0.80

Proximity Measure

Our final proximity measure incorporates both v and h.

Definition 4: Proximity measure, p, calculates the similarity value of two abstract

queries, Qi and Qj.

p = wv ∗ v + wh ∗ h

where wv and wh are weights assigned to v and h. Initially, wv and wh are both 0.5.

Consider our running example; the final proximity value is p = 0.5∗0.14+0.5∗0.80

= 0.47

3.5 Clustering

Queries for available services are exposed in the service inventory or can be exposed

in a workload trace. We also have a workload, wW S, and the first task is to gather

67

all the associated exposed queries from the service inventory. The abstract query

for workload query Qi is trivially created by replacing attributes in the projection

statement for Qi with the union of Ai and CAi and also applying transitive closure

to the selection statement of Qi and removing any user-defined conditions.

We cluster WS by similarity measure, p, using agglomerative hierarchical clus-

tering technique. Generally, a dendrogram is a good representation of hierarchical

clustering. The leaves of our representation would be the abstract query representa-

tion of each workload query. This is level 0 in the tree. Each of these level 0 queries

will have an assigned similarity, p, value of 1.0.

Proximity measurement, p = (wv ∗ v + wh ∗ h), is calculated and stored, in a

proximity matrix, for each query pair, WSiWSj, for workload wW S. We use the

average linkage measurement to calculate p for all clusters in the hierarchy. We use

a standard clustering algorithm to build the tree.

Algorithm 6 HierarchicalClustering Algorithm
Input: QwW S

= {Q1, ..., Qn} - set of all queries from the workload
Output: Proximity matrix
Compute initial proximity matrix from QwW S

;
Number of Clusters ⇐ n
while Number of Clusters > 1 do
Merge two "closest" clusters by finding the largest p;
Update proximity matrix;

end while

Each level of the tree represents a newly-formed cluster, except for the first level

which which represents all the singleton clusters. We now label each level of the

hierarchy with the proximity value, p, for all the queries that participate in that

cluster. The proximity values, from level 0 to the top-level, will be monotonically-

decreasing from a starting value of 1.0.

We use the largest gap method for selecting the level of the tree at which to select

clusters. Large gaps between levels often indicate natural clusterings, points where

68

adding one more cluster decreases the quality of the clustering significantly. We cut

the tree at the gap where the difference between the similarity values between levels

is the largest.

Once we have selected the clusters we calculate the size of the micropartition

that would be generated from a cluster’s abstract query, Q. We apply the classical

Worst Fit Decreasing (WFD) algorithm. The WFD algorithm is used to order the

micropartitions by decreasing size. The algorithm allocates the micropartitions across

k nodes beginning with the first micropartition entry, which is the largest. Then, the

next largest micropartition is fitted to the nodes with the most non-allocated space

until all micropartitions have been allocated. The WFD algorithm is a heuristic

variant of the general bin-packing algorithm and offers good performance.

Algorithm 7 WFD Algorithm
Input: - Cl = {Cll, ..., Cln}, cluster (includes micropartition size), k = {k1, ..., kn} -
nodes

Output: Updated k with cluster assignments
Sort Cl in decreasing order of micropartition size;
for all Cli in Cl do
for all kj in k do
Assign to node kj if |kj| < ki for all i = 1, ..., n where i 6= j

end for
end for

3.6 Implementation

In our implementation, we use the OLTP-Bench benchmarking system [27]. OLTP-

Bench is an extensible, universal benchmarking infrastructure that centralizes several

benchmarking systems. OLTP-Bench gives developers access to real and synthetic

databases and a variety of workloads. The testbed is oriented toward OLTP and

web-oriented workloads, making available several statistics.

1. Throughput: Average throughput sustained for a period of time.

2. Latency: Latency in microseconds while running at max-throughput.

69

3. Warmup Time: Elapsed time going from a cold state to maximum sustained

throughput.

OLTP Benchmark Experiments

We selected, from the OLTP-Bench infrastructure, the TPC-C implementation (See

Figure 3.4 for TPC-C database layout). TPC-C is an OLTP workload with a mixture

of read and write intensive transactions that simulate an order-processing environ-

ment [89]. We modified the OLTP-Bench TPC-C benchmarking system, so that,

instead of running 32 queries spread amongst five transactions, we remodeled the

transactions so that we had fifteen transactions, each running 1 query.

Our first step was to generate the hierarchy of clusters, joining queries based on

their proximity, p. We used fifteen query definitions from the workload transactions

as input. We prepared the queries for input according to the process outlined in

the abstract query section. We removed predicates in the selection statement that

included user-defined variables. We extended the projection statement by including

any attributes found in predicates in the selection statement that were not already in

the selection statement. We applied transitive closure to the predicates in the selec-

tion statements. The prepared queries are listed in Table 3.1. A representation

of the resulting clustering is in Figure 3.6. We see, in Figure 3.6, for example, that

queries number 6 and 14 represented in Table 3.1, have exactly the same attributes

and conditions and form the first cluster, 16, with full similarity and a proximity

measurement of 1.0. We see that cluster 19 is formed from queries 4,9,and 10, those

queries having an average similarity value of 0.81.

We selected our clusters using the largest gap method explained in Section 3.5

and chose clusters (28, 27) and (25, 24, 22, 21, 20). We then created a TPC-C

database which contained information for ten warehouses, each warehouse supplying

ten districts. We partitioned the TPC-C database in four different ways. The first

70

18

11

21

1.00

1.00 6 14 5

13 8 15 1 2 9 10 4 12 3 7

16

17

19

20

1.00

0.83

0.81

0.71

0.69

22

0.63

0.58
23

0.50
24

25

0.47

26

0.33

0.25

27

0.19
28

0.10 29

Figure 3.6: Dendrogram of Clusters Built from Input Queries

71

Table 3.1: Input Queries

Query
No

Query Name Input Query Abstract Query, Q

1 Delivery1 SELECT no_o_id FROM new_order
WHERE no_d_id < 3;

A1 – no_o_id, no_d_id
C1 - no_d_id < 3

2 Delivery2 DELETE FROM new_order WHERE
no_d_id > 2;

A2 – no_d_id
C2 - 2 < no_d_id

3 Delivery3 SELECT o_c_id FROM oorder WHERE
o_d_id = 2;

A3 – o_c_id, o_d_id
C3 - o_d_id = 2 and 2 = o_d_id

4 NewOrder1 SELECT c_discount, c_last, c_credit,
w_tax FROM customer, warehouse
WHERE c_d_id < 4;

A4 – c_discount, c_last, c_credit,
w_tax, c_d_id
C4 - c_d_id < 4

5 NewOrder2 SELECT d_next_o_id, d_tax FROM district
WHERE d_id <= 2 FOR UPDATE;

A5 – d_next_o_id, d_tax, d_id
C5 - d_id <= 2

6 NewOrder4 UPDATE district SET d_next_o_id =
d_next_o_id + 1 WHERE d_id = 2;

A6 – d_next_o_id, d_id
C6 - d_id = 2, 2 = d_id

7 OrderStatus1 SELECT o_id, o_carrier_id, o_entry_d
FROM oorder WHERE AND o_d_id < 5;

A7 – o_id, o_carrier_id,
o_entry_d, o_d_id
C7 - o_d_id < 5

8 OrderStatus2 SELECT ol_i_id, ol_supply_w_id,
ol_quantity, ol_amount, ol_delivery_d
FROM order_line WHERE ol_w_id = 2;

A8 – ol_i_id, ol_supply_w_id,
ol_quantity, ol_amount,
ol_delivery_d, ol_w_id
C8 - ol_w_id =2 and 2 = ol_w_id

9 OrderStatus3 SELECT c_first, c_middle, c_last,
c_street_1, c_street_2, c_city, c_state,
c_zip, c_phone, c_credit, c_credit_lim,
c_discount, c_balance, c_ytd_payment,
c_payment_cnt, c_since FROM customer
WHERE c_d_id < 3;

A9 – c_first, c_middle, c_last,
c_street_1, c_street_2, c_city,
c_state, c_zip, c_phone, c_credit,
c_credit_lim, c_discount,
c_balance, c_ytd_payment,
c_payment_cnt, c_since, c_d_id
C9 - c_d_id < 3

method is standard range-partitioning method on the entire database. The second

method is standard range-partitioning on the topmost cluster in the hierarchy (only

that data used by the queries).

The third method partitions by realizing two micropartitions, one from the ab-

stract query description for cluster 28 and one from the abstract query description for

cluster 27. The fourth, and final, method, creates five micropartitions from clusters

25, 24, 22, 21, and 20. These micropartitions are allocated using the classical WFD

algorithm depicted in Section 3.5.

1. Standard range-partitioning of the entire database is a popular approach used by

database managers. We created two partitions, one placed on each node. We

72

Table 3.2: Input Queries

Query
No

Query Name Input Query Abstract Query, Q

10 OrderStatus4 SELECT c_first, c_middle, c_id,
c_street_1, c_street_2, c_city, c_state,
c_zip, c_phone, c_credit, c_credit_lim,
c_discount, c_balance, c_ytd_payment,
c_payment_cnt, c_since FROM customer
WHERE c_d_id <= 2

A10 – c_first, c_middle, c_id,
c_street_1, c_street_2, c_city,
c_state, c_zip, c_phone, c_credit,
c_credit_lim, c_discount,
c_balance, c_ytd_payment,
c_payment_cnt, c_since, c_d_id
C10 - c_d_id <= 2

11 Payment1 UPDATE warehouse SET w_ytd = w_ytd +
?;

A11 – w_ytd
C11 -

12 Payment2 SELECT w_street_1, w_street_2, w_city,
w_state, w_zip, w_name FROM
warehouse;

A12 – w_street_1, w_street_2,
w_city, w_state, w_zip, w_name
C12 -

13 Payment3 UPDATE district SET d_ytd = d_ytd + ?
WHERE d_id <=3

A13 – d_ytd
C13 – d_id <= 3

14 StockLevel1 SELECT d_next_o_id FROM district
WHERE d_id = 2

A14 – d_next_o_id, d_id
C14 – d_id = 2 and 2 = d_id

15 StockLevel2 SELECT COUNT(DISTINCT(s_i_id)) AS
stock_count FROM order_line, stock
WHERE ol_w_id = 2 AND s_w_id = 2 AND
s_i_id = ol_i_id;

A15 – s_i_id, ol_w_id, ol_i_id
C15 – ol_w_id = 2 and 2 = ol_w_id
and s_w_id = 2 and 2 = s_w_id
and s_i_id = ol_i_id and ol_i_id =
s_i_id

placed information related to warehouses 1 through 5 in partition one and the

information for warehouses 6 through 10 into partition two.

2. We selected the topmost cluster, (29), in the generated hierarchy. Using range

partitioning on the one cluster, we created two partitions.

3. We sliced the hierarchy at k = 2 clusters (28 and 27) 1 We create a micropartition

for each cluster, placing each micropartition on a node.

4. We sliced the hierarchy at k = 5 clusters (25, 24, 22, 21, 20) 2. We create mi-

1 See Table 3.1 and Figure 3.6 for corresponding queries and clusters.
28-NewOrder4,StockLevel1,NewOrder2,
Payment3,OrderStatus2,StockLevel2,
Delivery1,Delivery2
27-OrderStatus3,OrderStatus4,NewOrder1,
Payment1,Payment2,Delivery3,
OrderStatus1

2 See Table 3.1 and Figure 3.6 for corresponding queries and clusters

73

cropartitions for each of the five clusters and allocate the micropartitions to the

two nodes in a balanced way.

Empirical Results

Ten workload executions were performed against each of the four different methods

of partitioning and latency and throughput information was captured every 5 seconds

for the 60 second runs. Each data point on the graphs in Figures 3.7 and 3.8 repre-

sent an average of each of the twelve reported values for a 60 second run. There is

considerable improvement in both latency and throughput performance when using

the new clustering method (See Figures 3.7 and 3.8).

We see, in Figure 3.7, that the partitioning design based on the five clusters gives

a lower latency, averaging 80 ms, then the standard two-partition design, averaging

120 ms. We see, in Figure 3.8, that the partitioning design based on the five clusters

gives a higher throughput, averaging 100 req/sec, then the standard two-partition

design, averaging 25 req/sec. The latency for queries running against the five-cluster

micropartition is low and query throughput. Users receive a quick and similar re-

sponse time for every execution.

However, the cost of generating the clusters is high. Also, given a workload with

very similar queries and a higher number of selected clusters, there may be higher

redundancy. Of course, redundancy is not a problem if the queries are read-only.

The averages of each of the sets of ten workload executions are listed in Table

25-OrderStatus3,OrderStatus4,NewOrder1,
Payment1,Payment2
24-Delivery1,Delivery2
22-Delivery3,OrderStatus1
21-NewOrder4,StockLevel1,NewOrder2,
Payment3
20-OrderStatus2,StockLevel2

74

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50 55

m
s

seconds

Average Latency (ms)

Standard Partition (2)
Standard Partition (onecluster)
Clusters (2)
Clusters (5)

Figure 3.7: Average Latency

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55

re
q

/s
e

c

seconds

Average Throughput
(req/sec)

Standard Partition (2)
Standard Partition (onecluster)
Clusters (2)
Clusters (5)

Figure 3.8: Average Throughput

3.3. The table shows the results of our experiment. We see an increase of 76% in

throughput for a partitioning design using two clusters over standard partitioning

using the same subset of data. We see an increase in throughput of 110% for a five

cluster design. The average latency for two cluster and five cluster improved over

standard partitioning method by 22% and 38% respectively.

Standard range partitioning methods balance processing well when the database

is partitioned to match the access requirements of the workload. In other words, if

the partitioning index matches the search conditions for the queries then access will

be efficient. For example, there was balanced access for the TPC-C workload when

executed against the partitioning using standard range partitioning techniques. See

Graphs 3.9, 3.10, which depict that query processing is performed in a balanced way

against the partitions. In other words, one partition does not have higher processing

demands placed upon it than the other partition.

Our partitioning method has overall better performance for the TPC-C work-

75

Table 3.3: Summary Metrics

Throughput Latency

Method
Average
(req/sec) Increase

Average
 (ms) Decrease

Standard
Partitioning 1 29.78

113.15

Standard
Partitioning 2 52.86

105.19

Clusters (2) 93.25 +76% 82.23 -22%

Clusters (5) 110.26 +109% 65.64 -38%

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50 55

m
s

seconds

Average Latency (ms)
Standard Two

Partition Detail

Partition One Partition Two

Figure 3.9: Latency Two Partition

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55

re
q

/s
e

c

seconds

Average Throughput
(req/sec)

Standard Two
Partition Detail

Partition One Partition Two

Figure 3.10: Throughput Two Partition

76

load. We also believe that this partitioning method is not as restrictive of the search

indexes as traditional partitioning method. Each micropartition can have its own

local index to speed up searches.

However, with respect to our clustering method, if too few clusters are selected for

partitioning we may see imbalanced performance where one partition gives superior

performance to the transactions involved and the other partition gives poor perfor-

mance. Therefore, selecting more clusters allows for the allocation of the generated

micropartitions in such a way that there is more evenly-balanced performance among

nodes.

In the clusters in our experiment, we do not see balanced performance against the

partitions in the two cluster experiment. In the two-cluster partitioning (one parti-

tion services 7 of the 15 queries; the other partition services the remaining 8 queries)

we see greatly imbalanced latency and throughput performance (see Figures 3.11 and

3.12), although the average gives us higher overall performance.

However, with the five cluster selection and allocation, again running the appro-

priate queries against the appropriate clusters, we arrive at balanced performance on

the nodes. We allocated three clusters on one node (25, 24, 21) and the remaining

two clusters on another (22, 20). The details have been plotted in the graphs in

Figures 3.13 and 3.14.

Graphs 3.13 and 3.14 show the latency and throughput values of the two nodes

containing the five allocated micropartitions.

77

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55

m
s

seconds

Average Latency (ms)
Two Cluster Detail

Cluster One Cluster Two

Figure 3.11: Latency Two Cluster

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50 55

re
q

/s
e

c

seconds

Average Throughput
(req/sec)

Two Cluster Detail

Cluster One Cluster Two

Figure 3.12: Throughput Two Cluster

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50 55

m
s

seconds

Average Latency (ms)
Allocated Clusters

Clusters 1,2,4 Clusters 3,5

Figure 3.13: Latency Five Cluster

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50 55

re
q

/s
e

c

seconds

Average Throughput
(req/sec)

Allocated Clusters

Clusters 1,2,4 Clusters 3,5

Figure 3.14: Throughput Five Cluster

78

3.7 Future Work

A different approach for calculating query similarity, s, is to use query containment,

in conjunction with query similarity, to assess the proximity of Qi and Qj. By as-

sessing containment for query attributes, as well as assessing similarity, we can have

another definition, v′ , rather than v where v′ indicates complete similarity between

the tuple sets of two queries if the tuples returned by one query in the pair are a

subset of the tuples returned by the other query in the pair. Given two queries, Qi

and Qj where the attributes Ai are a subset of the attributes Aj, we give a v
′ value of

1.0 because one set of attributes is fully contained within the other set of attributes

as we see in the example in Figure 3.15.

Ai = a1, a3
Aj = a1, a2, a3, a4

Figure 3.15: Attribute Example

Containment and Similarity of Attributes Expression

The measurement, v′ , uses the Meet-Min coefficient to measure containment of and

the similarity between the attributes in Qi and Qj. If the set of attributes of one

query is a proper subset of the set of attributes of another query we consider this full

containment and assign an attribute similarity value of 1.0. Otherwise the Meet-Min

metric measures the similarity of two sample sets where there is no full containment.

We merge the two abstract queries having the most similarity (value is closest to 1.0)

with respect to their attributes.

For abstract queries Qi and Qj, v
′ evaluates containment and measures the similarity

between the respective attribute sets, Ai and Aj.

v
′ = |Ai ∩ Aj|/min(|Ai|, |Aj|)

79

Using the same example as in Section 3.4, we see that there is not containment for

the attributes in the projection statement. We apply the Meet-Min formula.

For example, given the following queries Q1 and Q2

Q1: π c_discount, c_last, c_credit, w_tax, w_id,c_w_idσ w_id< 5 ∧ c_w_id

= w_id ∧ c_w_id < 5

Q2: π c_data1, c_w_id, c_d_id σ c_w_id ≤ 5

and their respective attribute sets

A1: c_discount, c_last, c_credit, w_tax, w_id, c_w_id

A2: c_data1, c_w_id

v
′ = Meet−Min(Qi, Qj) = 1

min(2,6) = 1
2 = 0.50

Containment and Similarity of Query Condition Statements

and Database Tuples

We replace h with measurement h′ . By examining the predicates in Qi and Qj we

may be able to determine, whether, for all instances, D, the resultant tuples for Qi

are fully-contained within the answer for Qj.

The intuition is that query data for Qi and Qj should be found in the same par-

tition if the answers for Qi are fully contained within the answers Qj, or visa versa,

for any D. We can then say that one copy of the data satisfies both queries.

For those queries where the answer to one query is fully contained within the

answer of another query, we will calculate an h′ value of 1. For our example, we show

Ci and Cj from Qi and Qj respectively, with each predicate expressed as pi. In the

example in Figure 3.16, we see clearly that the answer for Qj is contained within the

80

answer for Qi.

Ci = p1
Cj = p1 ∧ p2 ∧ p3

Figure 3.16: Condition Example One

Similarly, if Ci ∧Cj is not satisfiable, there are no tuples in any instance that can

satisfy both Ci and Cj. The h′ values for these query pairs will be 0, because the

needed tuples can be in different partitions. There will be no need for concurrency

control because the queries always access different tuples. In the example in Figure

3.17, we see that the answers for Qi and Qj are disjoint. Therefore, we calculate an

h
′ value of 0.

Ci = p1
Cj =!p1 ∧ p2 ∧ p3

Figure 3.17: Condition Example Two

For other conjunctive queries, we cannot definitively say, based upon examining

the syntax of the condition statements, that for every instance D, the answers of Qi

and Qj will intersect. In other words, we cannot, by only looking at predicates of

these queries, determine whether two queries will access the same tuples for any given

database instance, as in the example in Figure 3.18.

Ci = p1 ∧ p2 ∧ p3
Cj = p1 ∧ p4

Figure 3.18: Condition Example Three

For these queries, we need to examine the database instance, D.

81

The calculation, h′ , measures containment and similarity between the semantics of

the condition statements, Ci and Cj or the tuples in the answer sets for Qi and Qj.

Summary of h′ calculation:

Where Ci and Cj indicate answer sets that are always disjoint, Ci ∩ Cj = ∅, h′ = 0.

Where Ci and Cj show containment, Ci ⊆ Cj or Cj ⊆ Ci, h
′ = 1.

Otherwise, given a database instance D, h′ = |Qi ∩ Qj|/min(|Qi|, |Qj|)

For example, given the following abstract queries

Q1: π c_discount, c_last, c_credit, w_tax, w_id, c_w_id σ w_id < 5 ∧

c_w_id = w_id ∧ c_w_id < 5

Q2: π c_data1, c_w_id, c_d_id σ c_w_id ≤ 5

Because Q1 ⊆ Q2, h
′ = 1

For the condition statements we see that there is full containment of Q1 by Q2. Notice

that h′ value is 1, indicating total containment. Therefore, in our example, the final

proximity value is p = 0.5 ∗ 0.5 + 0.5 ∗ 1.00 = 0.75

Query containment is a well-studied area of research, originally studied for the

purpose of query optimization. We use an algorithm that assesses disjunction, con-

tainment, or tuple overlap, to calculate h′ . If each predicate in Q2 can replace a

predicate in Q1 and the execution of the modified Q1 provides all the tuples for the

old Q1 then we have a containment mapping from Q2 to Q1. Refer to Figure 3.3 in

order to understand the structure of each row in C0.

82

Algorithm 8 h
′ Algorithm

Input: M0, C0[i], C0[j], Qi, Qj

Output: h′

ct1 = 0,ct2 = 0,ct3 = 0,ct4 = 0
for all col in C0 do
if C0[i][col] ∩ C[0][j][col == ∅ then
h

′ ⇐ 0 returnh′

else if C0[j][col] =⇒ C0[i][col] then
ct1 + +

else if C0[i][col] =⇒ C0[j][col] then
ct2 + +

else if C0[i][col] 6= ∅ & C0[j][col] == ∅ then
ct3 + +

else if C0[i][col] == ∅ & C0[j][col] 6= ∅ then
ct4 + +

end if
end for
if (ct1 6= 0 And ct2 == 0 And ct3 == 0) Or (ct1 == 0 And ct2 6= 0 And ct4 ==
0) then
h

′ = 1
else
h

′ = |Qi ∩ Qj|/min(|Qi|, |Qj|)
end ifreturnh′

83

Chapter 4

Phase Two - Parallel Scheduling Framework

For Workload

In this chapter, we assume that the web services are executing on parallel processors.

We aim for a balanced workload across processors and to guarantee data consistency.

In order to accomplish these aims we develop a process that orders the execution

sequence of services, and calculates minimal delays, if necessary, to ensure correctness.

4.1 Introduction

Phase Two answers the following research question:

How can we build a schedule for a parallel processing database that

maximizes parallel execution of services while maintaining conflict se-

rializability?

Our research is concerned with improving database query response time for system

workloads. The overhead costs for workload query processing in parallel database

environments can be very high. Chapter 2 describes, in detail, the costs involved in

processing queries in a parallel database environment.

Our claim is that we can achieve a workload schedule that provides improved

performance over traditional scheduling methods, for shared-memory and in-memory

database systems. We improve efficiency by creating a schedule for a multiprocessor

database that eschews the use of traditional correctness protocols while supporting

parallel processing. Section 4.2 gives definitions required for this work. Section

84

CWS2

CWS1

CWS3 CWS4 CWS6 CWS7

CWSn

Scheduler

Service

Inventory
Workload w

Partitioning Engine

Partition1

Partition2

Partition3

CWS5

Partitionn

Data Warehouse

Multiprocessor

Multiprocessor

Multiprocessor

Multiprocessor

Figure 4.1: Framework for Phase II - Partitioning System

4.3, shows the scheduling procedure for a multiprocessor, single DBMS node. The

scheduling procedure allocates web services from the complex web services, preserv-

ing correctness while maximizing parallel execution of the services. We describe how

an algorithm that creates a schedule that preserves correctness and provides good

parallelism.

85

4.2 Definitions

In Phase One, we defined an atomic web service, orWS, to be a transactional unit of

processing, in a service-oriented environment, that executes one query. As a reflection

of a realistic workload, not all transactions will be atomic because many transactions

execute multiple queries. Therefore, we define a complex web service, or CWS, to be

a transactional unit of processing that executes one or more queries. Queries within

CWS may have precedence relationships. Queries between CWS may also execute

in parallel. In addition to defining CWS, we also define a workload w, comprised of

CWS.

Definition 5: Complex Web Service (CWS)

A complex web service is a partial order of atomic web services. The CWS compo-

sition is represented as a pair, ({WS1, ...,WSn},≤) where, WSi (i = 1, ..., n) is an

atomic web service and ≤ is the partial order relation.

Figure 4.2 shows a CWS as a DAG where each participating vertex in the graph

represents a web service and a dashed, directed edge between two vertices represent

the precedence relationship between a pair of web services. Vertexes unconnected by

a path, or set of edges, may execute in parallel.

Figure 4.2: CWSi Represented as a DAG

86

For our research, we define a system workload, w as {CWS1, ..., CWSr}. The

workload w can also be viewed as a set of atomic web services, orWS and the partial

order information for those WS.

Definition 6: Workload w

A workload is a set of complex web services. The workload, w, is represented as

{CWS1, ..., CWSr} where CWSi (i = 1, ..., r) is a complex web service.

The workload w can also be represented as

({WS1, ...,WSl},≤1), ..., ({WSm, ...,WSn},≤r)

We calculate the total execution time of CWS. First, we calculate the processing

cost, pc, for each WS in workload w from the CWS. In Phase I, we defined WS

to be a relational algebra query, Q, where A is the set of attributes used in Q and

|Answer(Q)| is the number of tuples returned.

pc - Processing cost of a web service

For web service WS, pc calculates the

number of data items accessed.

pc = A ∗ |Answer(Q)|

Definition 7: Graph, GW S, for workload w {CWS1, ..., CWSr} is defined as a

partially-connected graph, GW S = (WS,Ap, Ac, n) where

• WS =
r⋃

i=1
WS ∈ CWSi represents the graph vertices

• n labels each vertex with the pair ni = (WSi, pci) where WSi is the name of the

web service and pci represents the processing cost of WSi

• Ap = {ap1, ..., apq} is the set of directed edges, resulting from ≤i where (i = 1, ..., r)

87

• Ac = {ac1, ..., acr} is the set of undirected edges representing conflicting web services

In Figure 4.3, we represent a workload w as a graph, GW S. In GW S, a precedence

edge is represented by a dashed arc. The undirected, conflict edges are represented

as solid lines.

CWSj CWSi CWSk

Figure 4.3: GW S Representation of Workload w

The ordered conflict graph, CWSi →c CWSj, in Definition 8 and in Figure 4.4,

represents the ordered conflict pair (CWSi, CWSj).

Definition 8: Ordered Conflict Graph, CWSi →c CWSj, CWSi, CWSj ∈ w

Let complex web services, CWSi and CWSj be components of a GW S. We say that

the "Ordered-Conflict Graph", denoted as Gi→j, is a subgraph of GW S satisfying the

following conditions

• The nodes of Gi→j are over the nodes of CWSi and CWSj,

• The node labels in Gi→j are the same as in GW S,

• The edges, Apii′jj′ = {ap1, ..., apm}, representing the precedence relation within

CWSi and within CWSj in GW S, are preserved, and,

• The conflicting, undirected edges, Acij = {ac1, ..., acn}, between conflicting oper-

ations opi ∈ CWSi and opj ∈ CWSj are replaced by a directed edge from opi to

opj.

88

CWSj CWSi →c

Figure 4.4: Example of Ordered Conflict Graph, CWSi →c CWSj

The topological conflict graph, TOi →c TOj, in Figure 4.5 represents the ordered

conflict pair (CWSi, CWSj) where CWSi is represented in topological order TOi and

CWSj is represented in topological order TOj, and where all conflicting operations

of TOi precede all conflicting operations of TOj. The value, prec, is the sum of

the processing costs, pc, of all web services that precede a WS in a TO.

prec - total processing cost of web services preceding a WS in TO

Let there be the set of web services that precedes WS in a TO.

WS1, ...,WSm

Then, the prec value of WS is

prec =
m∑

j=1
pcj

Topological Conflict Graph, TOi →c TOj of CWSi →c CWSj

is computed as

• Each vertex label, ni in TOi and nj is extended from ni = (WSi, pci), to be a

triple, ni = (WSi, pci, preci) where preci is the sum of all prec1, ..., preci−1

• Edges, Apii′jj′ are preserved

• Edges, Acij are preserved

89

TOj TOi →c

Figure 4.5: Example of Topological Conflict Graph, TOi →c TOj

Note, TOi and TOj both can be represented as an ordered list and the directed edges

of Acij can be represented as pairs of (ni, nj).

When dealing with a partial order CWSj, we create a topological ordering, TOj,

as in Figure 4.6 (a) to (b), from which to calculate delay. However, different topo-

logical orderings, TOj, can produce different delay calculation results, as can be seen

in 4.6(b) and (c). The ordering in 4.6(b) is non-serializable. The precedence graph

of TOi →c TOj in Figure 4.6(b) is acyclic. The ordering in 4.6(c) is serializable. We

want to find the topological orderings that produce a serializable schedule between

an ordered conflicting complex web service pair, i.e., TOi →c TOj.

90

CWSi →c CWSj TOi →c TOj TOi →c TOj

n1 n4 n5 n6 n1 n4 n1 n5

n2 n7 n2 n5 n2 n6

n3 n8 n9 n3 n6 n3 n4

 n10 n11 n7 n7

 n8 n8

 n9 n9

 n10 n10

 n11 n11

 Figure (a) Figure (b) Figure (c)

Figure 4.6: Processing CWS with Partial Order Information

Our goal is to develop a schedule for w, executing on a database with two pro-

cessors, that maximizes parallel execution of services while preserving serializability.

Given a workload w comprised of complex web services, we can expect to have con-

flicting operations between CWS. When executing multiple complex web services,

we will show that the order in which the conflicting services are scheduled impacts

both the correctness and efficiency of the execution of w.

Intuitively, to build the schedule we first develop an ordering analysis of conflicting

web service pairs. This analysis determines the best topological orders for transac-

tions and the best transaction order to preserve serializability for all transactions in

w. Where serializability cannot be imposed by controlling the topologies of partial

order CWS and by ordering the transactions in the scheduling queue, we impose a

delay in order to guarantee serializability. We guarantee the least delay imposed by

the transactions while satisfying serializability.

We represent an ordering of a conflicting complex web service pair as TOi →c TOj

where conflicting operations in transaction TOi execute before their corresponding

conflicting operations in TOj. The symbol →c indicates the order and the subscript

c indicates that the operations of the TOs are in conflict.

91

Upon determining the best order of execution for conflicting complex web service

pairs (either TOi →c TOj or TOj →c TOi) we can use this information to build a

schedule for w (See Figure 4.7). Using the ordering information, we build a schedule

that supports parallelism while maintaining conflict serializability.

TOj TOi TOk

Figure 4.7: Ordering Information to Build Schedules for w

4.3 Scheduling

We select a preferred topological ordering of partial order complex web services to

enforce serializability. We also select a preferred order of conflicting operations in

transactions to control consistent execution of conflicting operations. If topological

ordering and transaction ordering is not sufficient to enforce serializability, we es-

timate delay requirements for complex web services executing in parallel. Adding

delays to a CWS execution will ensure that the parallel execution history is serial-

izable. Note, that the topologies for each partial order complex web service, if not

eliminating execution delays, will minimize execution delays.

92

We assume that the web services are executing on parallel processors. We aim for

a balanced workload across processors and guarantee data consistency. For the first,

ordering step, given ordered conflict graph, CWSi →c CWSj, we find the topological

conflict graph, TOi →c TOj, such that there is minimum delay in the execution of

TOj. In Figure 4.8, we show TOi and TOj which are executing in parallel.

CWSi →c CWSj TOi →c TOj TOi →c TOj
 delay = 2 delay = 0

n1 n4 n5 n6 n1 n1 n5

n2 n7 n2 n2 n6

n3 n8 n9 n3 n4 n3 n4

 n10 n11 n5 n7

 n6 n8

 n7 n9

 n8 n10

 n9 n11

 n10

 n11

 Figure (a) Figure (b) Figure (c)

Figure 4.8: Delay d for Consistent Order of Operations for Conflicting CWS

Figure 4.8(b) shows parallel execution of TOi and TOj, for CWSi and CWSj

depicted in Figure 4.8(a). Both complex web services start at the same time. Notice

that serializability in (b) is preserved by introducing a delay. Notice that serializabil-

ity is preserved in (c) by using a different topological ordering for CWSj. Of course,

we want a schedule with no delays but, if delays must be introduced, we want them

to be minimal.

It is important to assess the delay of both TOi →c TOj and TOj →c TOi if

there are conflicting operations between CWSi and CWSj. If there are no conflicts,

then complex web services can be assigned to execute in parallel without problems.

A conflicting complex web services pair, {CWSi, CWSj} is a pair of complex web

93

services, CWSi and CWSj, where there is at least one conflicting operation between

CWSi and CWSj.

To accomplish the ordering step, we calculate the delay that would be imposed

on TOj if TOi →c TOj.

Algorithm 9 CalculateDelay Algorithm
Input: TOi →c TOj

Output: d
1: d ← 0
2: for all pairs of conflict operations, {ni :WS, nj :WS} where ni :WS ∈ TOi and
nj :WS ∈ TOj do

3: d ← max(d, (ni :prec+ ni :pc)− nj :prec)
4: end for
5: return d

Claim 1: Delay, d, calculated by Algorithm 9, when introduced prior to the execution

of TOj, is sufficient to guarantee that all conflicting operations of TOi complete before

the corresponding conflicting operations of TOj.

Proof Sketch: By contradiction, assume that delay d, when introduced before the

beginning of execution of TOj, is not a sufficient delay to guarantee that a conflicting

operation opi of TOi executes before the conflicting operation opj of TOj.

Let a single conflict web service pair, {ni :WS, nj :WS}, where ni :WS is in TOi

and nj : WS is in TOj and nj : WS executes before ni : WS completes. But then,

nj :prec+d must be less than ni :prec+ni :pc. That is, nj :prec+d < ni :prec+ni :pc.

Therefore, d < (ni : prec + ni : pc) − nj : prec But then, in line 3 of Algorithm 9, d’s

value would have been replaced by (ni :prec+ ni :pc)− nj :prec. This is a contradic-

tion.

94

An exhaustive search algorithm finds all topological orders for CWSi and for

CWSj and calculates delay for each TOt
i →c TO

t
j, where TOt

i and TOt
j are the cur-

rent topologies to be tested. Algorithm 10 enumerates all candidates and calculates

d for TOt
i →c TO

t
j, returning optimal topologies for CWSi and CWSj in the form of

TOi →c TOj.

Algorithm 10 TO_Exhaustive Algorithm
Input: CWSi →c CWSj

Output: TOi →c TOj

1: Initialize d to ∞
2: for all TOt

i do
3: for all TOt

j do
4: dt ← calculateDelay(TOt

i →c TO
t
j)

5: if dt ≤ 0 then return TOt
i →c TO

t
j

6: else if dt < d then
7: d ← dt

8: TOj ← TOt
j

9: TOi ← TOt
i

10: end if
11: end for
12: end for
13: return TOi →c TOj

Claim 2: Algorithm 10 finds the schedule, TOi →c TOj of CWSi →c CWSj that

imposes least delay, d.

Proof Sketch: The proof trivially follows.

The complexity of Algorithm 10 is O(lk) where l is the number of all TOs of

CWSi and k is the number of all TOs of CWSj. Therefore, to reduce the cost of

selecting a schedule that guarantees minimal delay, our method builds the optimal

topological orders of CWSi and CWSj for CWSi →c CWSj by examining all valid

combinations of sets of WS nodes rather than all valid combinations of individual

WS nodes.

95

The basic intuition for building the topological order TOj from CWSj is to delay

conflicting operations in order to reduce the likelihood that oj is executed before the

corresponding oi in CWSi. We do this by maximizing the number of web services,

and thus the processing cost, preceding each conflict web service in CWSj. When

building the topological ordering TOi from CWSi, the intuition is to execute each

conflicting web service as soon as possible. We achieve this by minimizing the number

of web services, and thus the processing cost, preceding each conflict web service in

CWSi. Thus, for each conflicting web service pair (ni :WS, nj :WS) we want the

smallest (ni :prec+ ni :pc) and the largest nj :prec.

If two conflict web services in CWSi do not have a precedence relationship they

can appear in either order in TOi. The same, of course, holds true for CWSj and

TOj. For each conflicting web service, we create a partial topological order as follows.

For CWSi, given a conflicting operation, coi, the partial topological order pTOi

is generated as:

Let operations o1, ..., ol ∈ CWSi such that ok, (k = 1, ..., l) must precede coi and

ok is not a conflicting operation. pTO is then the topological order of o1, ..., ok and is

extended, at the end, with coi.

For CWSj, given a conflicting operation, coj, the partial topological order pTOj

is generated as:

Let operations o1, ..., ol ∈ CWSj such that ok, (k = 1, ..., l) be the operations that

are not preceded by coj. The partial topological order pTOj is a topological order

over the operations, o1, ..., ol and extended with coj.

We use a combinatorial approach to select all possible combinations of partial topo-

logical orders so that we can find TO pairs with minimal delay. So, the heuristic is a

brute-force algorithm operating at a higher level of granularity (i.e., partial TOs).

Flowchart 4.9, outlines logic for Algorithm 11. Algorithm 11 creates the TOi →c

TOj from CWSi →c CWSj using the heuristic.

96

Y

Y

Y N

Y

N

N

N

N

Start

CWSi
empty?

All Temp
TOi→cTOj
checked?

End

Build pTOi Reduce CWSi
commensurately

Build conflict set
Ci

Call BuildTOi

Call BuildTOj
CWSj

empty?

Build pTOj Reduce CWSj
commensurately

Build conflict set
Cj

Temp

Delay <=

0?

Temp
Delay<
Delay?

Calculate Delay

Y

Delay ←Temp
Delay

Replace
TOi→cTOj with

Temp TOi→cTOj

Replace
TOi→cTOj with

Temp TOi→cTOj

Figure 4.9: Flowchart for TO Algorithm

Example 4.10 shows the process of building a candidate TOi from CWSi and a

candidate TOj from CWSj where CWSi →c CWSj.

The cost of executing Algorithm 11 is O(ckklevel1 ...klevelmclllevel1 ...lleveln) where

k is the number of conflict vertexes in CWSi and l is the number of conflict vertexes

in CWSj. Each element in set (klevel1 , ..., klevelm) represents the number of conflict

vertexes in Ci at each iteration of BuildTOi. The sub-equation, klevel1 ∗ ... ∗ klevelm ,

represents the number of valid candidate TOi built by combining blocks of web ser-

vices comprised of conflict web services and their precedence web services.

Each element in llevel1 , ..., lleveln represents the number of conflict vertexes in Cj

at each iteration of BuildTOj. The sub-equation, llevel1 ∗ ... ∗ lleveln , represents the

number of valid candidate TOj built by combining blocks of web services comprised

97

Algorithm 11 TO Algorithm
Input: CWSi →c CWSj

Output: Optimal TOi →c TOj

1: Initialize global lists Li, Lj to ∅
2: Initialize d to ∞
3: Initialize TOi →c TOj, TOt

i →c TO
t
j

4: Li ← BuildTOi(CWSi, TOi)
5: Lj ← BuildTOj(CWSj, TOj)
6: for all TOt

i in Li do
7: for all TOt

j in Lj do
8: Add conflict edges, Acij, to TOt

i →c TO
t
j

9: dt ← calculateDelay(TOt
i →c TO

t
j)

10: if dt ≤ 0 then return TOt
i →c TO

t
j

11: else if dt < d then
12: d ← dt

13: TOj ← TOt
j

14: TOi ← TOt
i

15: end if
16: end for
17: end for
18: return TOi →c TOj

CWSi →c CWSj candidate
TOi →c TOj

n1 n4 n5 n6 n1 n5

n2 n7 n2 n6

n3 n8 n9 n3 n4

 n10 n11 n7

 n9

 n8

 n10

 n11

1. Select all conflict n in CWSi and place in set Ci
Ci = {n2}
2. Create all combinations of conflict vertexes and their
not successors
3. Upon selection, remove all relevant vertexes and
edges from CWSi – {n1, n2}
4. Repeat until CWSi is empty
1. Add all non-conflict n from CWSj with no incoming

edges to TOj – {n5, n6}

2. Add all conflict n with no incoming edges in CWSj to
set Cj

Cj = {n4}
3. Repeat until CWSj empty
7. Calculate delay for candidate topologies

Figure 4.10: Building TOi from CWSi and TOj from CWSj for CWSi →c CWSj

98

Algorithm 12 BuildTOi Algorithm
Input: CWSi, TOi

Output: TOi

1: Initialize Ci ← {∅}
2: if CWSi not empty then
3: CWSi′ ← CWSi

4: TOi′ ← TOi

5: for all ni :WS where ni :WS ∈ CWSi and ni :WS has no incoming edge do
6: if ni :WS is a conflict vertex then
7: Ci ← Ci

⋃
ni :WS

8: else
9: Insert ni at end of TOi

10: Remove ni and its edges from CWSi

11: end if
12: end for
13: for all ni :WS ∈ Ci do
14: CWSi ← CWSi′

15: TOi ← TOi′

16: CWSi_subtree ← build subtree from CWSi of all precedents to ni :WS plus
ni :WS

17: for all ni :WS ∈ CWSi_subtree do
18: Insert ni :WS at end of TOi

19: Remove ni :WS and its edges, Apii′ , from CWSi

20: end for
21: BuildTOi(CWSi, TOi)
22: end for
23: end if
24: if Ci is empty then
25: Insert TOi to end of Li

26: end if

of conflict web services and their precedence web services. The constants ck and cl

represent the cost of searching CWSi and CWSj, at each iteration, for the subsets

of non-conflicting web services to be paired with each conflict web service.

Claim 3: Algorithm 11 returns valid topological orderings, TOi and TOj for CWSi

and CWSj in CWSi →c CWSj.

99

Algorithm 13 BuildTOj Algorithm
Input: CWSj, TOj

Output: TOj

1: Initialize Cj ← {∅}
2: if CWSj not empty then
3: for all nj :WS where nj :WS ∈ CWSj and nj :WS has no incoming edge do
4: if nj :WS is a conflict vertex then
5: Cj ← Cj

⋃
nj :WS

6: else
7: Insert nj :WS at end of TOj

8: Remove nj :WS and its edges from CWSj

9: end if
10: end for
11: for all nj :WS ∈ Cj do
12: CWSj′ ← CWSj

13: TOj′ ← TOj

14: Insert nj :WS at end of TOj

15: Remove nj :WS and its edges from CWSj

16: BuildTOj(CWSj, TOj)
17: CWSj ← CWSj′

18: TOj ← TOj′

19: end for
20: end if
21: if Cj is empty then
22: Insert TOj at end of Lj

23: end if

Proof Sketch:

For this, we show that every order chain TOi and TOj is valid. That is, they

cannot violate the precedence orders defined in CWSi and CWSj. In Algorithms

12 and 13 remove vertexes and edges from CWSi and CWSj respectively, of those

vertexes that have no incoming edges. The respective topological orders are built by

using the selected vertexes.

Each iteration of Algorithm 12 removes vertexes with no incoming edges and with

a single common successor (removing the outgoing edges of those vertexes also) adding

each vertex, as encountered, to the tail of TOi. The single common successor is then

added to TOi and that vertex, and it’s outgoing edges are removed from CWSi.

100

Each iteration of Algorithm 13 removes vertexes with no incoming edges of a set

of successors (removing outgoing edges of those vertexes also). A successor is added

to TOj and that vertex, and its outgoing edges are removed from CWSj.

Each iteration of the Algorithms 12 and 13 preserve the topological order TOi

and TOj respectively.

Claim 4: Given CWSi →c CWSj, Algorithm 11, builds topologies, TOi and TOj

that result the minimum delay, d, for TOi →c TOj.

Proof Sketch:

To assist in the analysis, we think of the layout of TOi as a series of web service

vertex blocks, which we call pTOs (for partial TO). Each pTOi contains a conflict

WSi as its last vertex, preceded by all vertexes that precede WSi in CWSi. A pTO

may contain only the conflict vertex. Figure 4.11 shows an example of this structure.

pTOi1 contains

predecessors

and Conflict

ni1

pTOi2 contains

predecessors

and Conflict

ni2

Figure 4.11: Example TOi with pTOs

To assist in the analysis, we think of the layout of TOj as a series web service

vertex blocks, which we call pTOs. Each pTOj contains one conflict WSj as its last

vertex, preceded by all vertexes that are not successors to a subset of conflict ver-

101

texes from CWSj. A pTO may contain only the conflict vertex. Figure 4.12 shows

an example of this structure.

pTOj2 contains

remaining not

successors to

nj2 and

Conflict nj2

pTOj12

contains not

successors to

nj1 and nj2

and

conflict nj1

Figure 4.12: Example TOj with pTOs

Every pTO, is treated as a single entity by Algorithm 11 performing a combina-

torial search for optimal delay value at the pTO level. Optimal result is trivially true

at this level. Next, we show that any move of a node within a pTO or to another

pTO will result in either an invalid topology or a higher delay calculation.

In TOi, from TOi →c TOj, changing TOi to TOi′ by moving one or more nodes in

TOi, results in the same or higher d for TOi′ →c TOj or results in an invalid topology

TOi′ .

For TOi, if a node within a block, pTOi1, is moved elsewhere within pTOi1 this

results in an invalid topology, TOi′ because of change of precedence order.

If ni1 is moved into another block, pTOi2, a block which comes after pTOi1 in

TOi, then TOi′ is invalid because a precedence relationship has been broken.

If ni2 is moved out of pTOi2 into another pTOi1, a block which appears earlier in

TOi, the resulting TOi′ is an invalid topology, if conflict ni2 is the node that has been

102

moved. Otherwise, TOi′ is a valid topology. In this case, d is increased for conflict

relationship that involves ni1 with no change in d the conflict associates with ni2.

In TOj, from TOi →c TOj, changing TOj to TOj′ by moving one or more nodes

in TOj, results in the same or higher d for TOi →c TOj′ or results in an invalid

topology TOj′ .

For TOj, if a node within a block, pTOj1, is moved elsewhere within pTOj1 this

may or may not result in an invalid topology, TOj′ because of change of precedence

order. If TOj′ remains a valid topology there is no change in d associated with nj1.

If nj1 is moved into another block, pTOj2, a block which comes after pTOj1 in

TOj, then TOj′ then TOj′ may or may not be a valid topology. If it is a valid topol-

ogy, the d associated with nj1 is decreased.

If nj2 is moved out of pTOj2 into another pTOj1, a block which appears earlier

in TOj, the resulting TOj′ is an invalid topology because we are moving a successor

node to some conflict node appearing after pTOj1.

103

Chapter 5

Conclusions and Future Work

There are limiting factors to the scale out of transactional, distributed databases.

One of the key limiting factors is the overhead associated with concurrency control in

a distributed environment. The goal of concurrency control in a distributed database

environment is to ensure global serializability. challenge to enforcing global serial-

izability is the added cost of communication. The communication is necessary to

establish the correct application of data updates for simultaneously executing trans-

actions and the correct updating of replicas.

The main methods of concurrency control in a global environment have been the

use of established mechanisms that were developed for a centralized environment.

These mechanisms, such as strict, strong two-phase locking, have proven to be costly

as distributed databases scale-out. Snapshot isolation, an implementation technique

for multi-version concurrency control, and global commitment ordering, have proven

to be useful in the reducing the costs of maintaining global consistency.

In Phase One is that we have addressed the overhead cost problem of scaling out

transactional databases. In Phase One, we developed a method of data partitioning

that is driven by query information from a system workload. In this phase of our de-

velopment, we analyzed and addressed the partitioning of data for web services that

have only one query each. We have shown that our method of partitioning improves

performance over standard range partitioning techniques.

Because of the limiting factors to the scale out of transactional, distributed

databases and because of development of commodity multi-processor database sys-

104

tems, there has been a re-examination of economical scale-up of database systems.

Multiprocessor database systems can now process transactions at a faster rate. There-

fore, all processing is done locally, thus localizing serialization of transactions. How-

ever, is has been found that the use of established serialization mechanisms on multi-

processor systems actually prevents efficient exploitation of the multi processor system

[97]. Current concurrency control protocols were developed for uniprocessor sys-

tems. The art of scaling involves identifying the bottlenecks in a system and finding

methods to avert those bottlenecks. Adding processing units to a database system

is an example of hardware vertical scaling and averts the bottleneck of a single pro-

cessor on a system. Creating in-memory databases, that also utilize either multiple

processors or multiple cores, is a reworking of database systems to avert the I/O

bottleneck to disk storage.

Locks are typically required for concurrency control and usually require hardware

support for efficient implementation. Proper support for locks in a multiprocessor en-

vironment is very expensive incurring substantial synchronization issues. Optimistic

methods of concurrency control have been used in multiprocessor systems to reduce

the synchronization messages required to ensure data correctness.

In-memory database systems must also use multiprocessors or multicores. Be-

cause the single processor bottleneck and the I/O bottleneck to disk storage have

been averted, there are of course, new bottlenecks to contend with. Traditional

concurrency control mechanisms do not work well with multiprocessor, especially in-

memory multiprocessor databases. Any kind of locking is the new bottleneck for

systems with such high throughput.

In Phase Two we address the overhead cost problem of scaling up transactional

database systems. Phase Two introduced calculated minimal delays for transactions

in a multi-processor system. By ordering transactions and/or introducing minimal

delays when sending conflicting transactions to multiple processors, we ensure correct

105

execution of conflicting transactions. Thus, concurrency control is implemented by

ordering of transactions and the introduction of minimal delays, rather than with the

use of locking mechanisms.

5.1 Future Work

An issue for future research is to extend the partitioning method to work, not only for

atomic web services, WS, but for complex web services, CWS, as well. One method

could be to partition data for CWS would be to group, by data similarity, at a higher

granularity, at the CWS level. This entails grouping the CWS on their similarity

level, which we call P , the sum of all p for individual conflicting operations between

a given {CWSi, CWSj}.

A second area for research would be to examine the ways in which standard par-

titioning could be used in conjunction with the partitioning method developed in

Phase One. One reason for the integration of standard partitioning methods is the

inherent replication of the Phase One partitioning process. Another reason is Phase

One partitioning could result in no horizontal partitioning due to the nature of the

selection statements.

First, there can be inherent replication in the partitions created from our parti-

tioning method. The partitioning technique from Phase One is not a true partition-

ing in that there can be a overlap in data requirements for the resultant partitions.

Depending upon the nature of the workload, w, the resulting data overlap for the

partitioning could be nothing, due to sufficient variability of data used by conflict-

ing complex web services. The partitioning, at the other extreme, could result in full

replication of data, because every transaction in the workload requires the same data.

A solution for this would be to integrate standard-partitioning methods with the

partitioning method outline in Phase One. There may be a certain subset of transac-

106

tions that partition well using the method outlined in Phase One. The process that

selectively partitions the data for a workload using a number of partitioning options

would be a fruitful area of research.

Second, the Phase One method for identifying the tuples required by a WS is

to examine the selection statement within the query. For our analysis, we removed

all user-defined conditions, a user-defined condition being a condition where the in-

formation is supplied at run-time and assigned to a variable in the condition. Re-

incorporating user-defined conditions implies that all tuples must be provided for that

query because the tuple requirements are unknown until run-time.

In this case, it would be useful to develop a process to layering standard partition-

ing atop the Phase One partitioning method. Application of multiple partitioning

methods groups the transactions using Phase One clustering technique without the

transactions that contain user-defined conditions. The data that is required by the

transactions with the user-defined conditions are retrofitted into the partitions.

Another reason for such an integration approach is to re-introduce intra-query

parallelism into the system as the partitioning method in Phase I only addresses

inter-query parallelism. Performing standard partitioning atop our method would

achieve both goals.

The third area of research would develop a framework for dynamically updating

the partitions and dynamically managing replicas. Dynamic updating of the parti-

tions is a response to changes in the transactions of the workload. The process would

require mechanisms for updating transaction groups as new complex web services are

scheduled and old complex web services leave the system [32] [76] [113] [43] [42] [24].

Dynamic updating is also a response to changes in the data itself. It is important

to develop a process that would efficiently update the database partitions [21] [101]

[41] [104] [31] [59] [6] [94] [47]. A process for updating the partitioning as data is

107

updated, deleted, and added is a fruitful area of research.

In Phase One, the partitioning method places a single copy of data on a nodes,

for write-oriented transactions that conflict. However, with remaining transaction

types (where transactions are globally read-only) there can be many copies of a data

item. If transactions enter the system, that use the data that was previously used

only for read-only transactions, there may need to be a major re-partitioning of the

data. This is an important scenario, and the re-partitioning process would need to

be addressed.

As the volume of users accessing a transaction increasing or decreases, it is nec-

essary to have an efficient and automatic replication process to spread user access

across multiple nodes [112] [82]. A key advantage of the data partitioning framework

developed in Phase I is that it is possible to create replicas only for those transactions

that experience a surge in user activity. All other transactions are unaffected by the

use of such targeted replication.

We have developed a method of data partitioning that is driven by query infor-

mation from a system workload. In this phase of our development, we have analyzed

and addressed the partitioning of data for web services that have only one query

each. We have found that our method of partitioning shows improved performance

over standard range partitioning techniques.

In future work we would apply a variation of this partitioning technique to work-

loads comprised of web services having multiple queries and we demonstrate how

we can effectively localize processing for these types of services. We show how this

reduces the cost of distributed web service processing.

In future work we would also demonstrate how we can efficiently reallocate data

as the data in the partitions changes and as the web services within the workload

also change.

In Phase Two we optimized the topologies of two complex web services in order

108

to ensure the minimum delay needed to preserve correctness when the transactions

execute in parallel. There are many avenues of research that can be conducted to

develop this method of concurrency control.

The first area of research would be to extend the concept of finding minimal delay,

preferably no delay, to ensure correctness for complex web services executing on k

processors. Another area of research would be to integrate topological ordering and

the introduction of delays to complex web services that have interleaved execution

on a single processor. A third area of research would be the preservation of correct-

ness using topological ordering and delays where web services, within an individual

complex web service are allocated to different processors in order to take advantage

of the internal possibilities for parallelism within a single complex web service.

A fourth area of research would be to analyze changing delay requirements needed

to preserve correctness in a dynamic environment, where new service requests contin-

uously enter the system. A fruitful area of research would be to develop a procedure

for dynamic topology switching in order to ensure that any simultaneously executing

complex web services are using optimized topologies.

Integrating the partitioning framework with the scheduling framework is also a

beneficial area of research and analysis. The HEFT, or heterogeneous earliest finish

time algorithm, is a heuristic that schedules a set of dependent tasks onto a set of

heterogeneous systems [29]. HEFT uses precedence relationships and communication

costs to determine assignments of tasks. We could integrate the similarity measure-

ment into an algorithm such as HEFT determine the assignment of tasks to nodes.

109

Bibliography
[1] D. Abadi. Problems with cap, and yahoo’s little known nosql system. Technical

report, Department of Computer Science, Yale University, April 2010.

[2] D. Abadi, S. Harizopoulos, S. Madden, and M. Stonebraker. Horizontica-a new
approach to oltp data bases. Technical report, MIT, 2007.

[3] D. Abadi, S. Harizopoulos, S. Madden, and M. Stonebraker. Relational cloud:
The case for a database service. Technical report, MIT, 2010.

[4] D. Abadi, S. Harizopoulos, S. Madden, and M. Stonebraker. Vertica-an hp
compnay. Technical report, Hewlett-Packard, 2012.

[5] D. Abadi, S. Harizopoulos, S. Madden, and M. Stonebraker. Voltdb. Technical
report, Brown University, 2012.

[6] S. Agarwal, V. Narasayya, and B. Yang. Integrating vertical and horizontal
partitioning into automated physical database design. SIGMOD, pages 359–
370, June 2004.

[7] F. Ahmad and A. Sarkar. Scheduling of composite services in multi-cloud
environment. International Conference of Grid and Cloud Computing and Ap-
plications, 2015.

[8] S. Albers. Online algorithms: A survey. Mathematical Programming, pages
3–26, July 2003.

[9] M. Antonioletti, C. B. Aranda, O. Corcho, M. Esteban-GutiÃľrrez, A. GÃşmez-
PÃľrez, I. Kojima, S. Lynden, and S. M. Pahlev. WS-DAI RDF(S): Introduc-
tion, Motivational Use Cases and Terminology. W3C, December 2009.

[10] M. Antonioletti, M. Atkinson, A. Krause, S. Laws, S. Malaika, N. W. Paton,
D. Pearson, and G. Riccardi. Web Services Data Access and Integration: the
Core (WS-DAI) Specification, Version 1.0 Full Recommendation. W3C, April
2012.

110

[11] M. Antonioletti, S. Hastings, A. Krause, S. Langella, S. Lynden, S. Malaika, and
N. W. Paton. Web Services Data Access and Integration: The XML Realization
(WS-DAIX)Specification, Version 1.1. W3C, May 2009.

[12] P. Apers. Data allocation in distributed database systems. In ACM Transac-
tions on Database Systems, pages 263–304, September 1988.

[13] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson, J. Leon,
Y. Li, A. Lloyd, and V. Yushprakh. Megastore- providing scalable, highly avail-
able storage for interactive services. Fifth Biennial Conference on Innovative
Data Systems Research, pages 223–234, 2011.

[14] R. Barack and F. Budinsky. OASIS-Service Data Objects for Java, Version 3.0.
OASIS, November 2009.

[15] L. Bellatrech, K. Karlapalem, and M. Mohania. Data Warehousing Web Engi-
neering. InfoSci-Booksl, 2002.

[16] P. Berkhin. Survey of clustering mining techniques. Technical report, Accrue
Software Inc., September 2009.

[17] P. A. Bernstein and N. Goodman. Multiversion concurrency control - theory
and algorithms. ACM Transactions on Database Systems, 8(4):465–483, 1983.

[18] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable
locks are dangerous. Proceedings of the Linux Symposium, pages 119–130, 2012.

[19] M. Brooker. Cap and pacelc: Thinking more clearly about consistency. Tech-
nical report, Amazon Elastic Block Store, July 2014.

[20] R. Cattell. Scalable sql and nosql data stores. In SIGMOD Record, December
2010.

[21] M. Charikar, C. Chekuri, T. Feder, and R. Matwani. Incremental clustering
and dynamic information retrieval. Proceedings of the 29th Annual Symposium
on Theory of Computing, pages 626–635, 1997.

[22] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap tech-
nologies. ACM Sigmod Record, 26(1):65–74, March 1997.

111

[23] T.C. Cheng and S. Podolsky. Just-in-Time Manufacturing: An Introduction,
Second Edition. Chapman-Hall, 1996.

[24] C. Chinrungrueng and C. Sequin. Optimal adaptive k-means algorithm with
dynamic adjustment of learning rate. IEEE Transactions for Neural Networks,
6:157–169, January 1995.

[25] Clustrix. The scalable database: Why sharding doesn’t work. Technical report,
Clustrix, 2014.

[26] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!âĂŹs hosted
data serving platform. Proceedings of the VLDB Endowment, pages 1277–1288,
2008.

[27] C. Curino, D. E. Difallah, A. Pavlo, and P. Cudre-Maroux. Oltp benchmark
workloads. Technical report, Consortium of Brown University and MIT, 2012.

[28] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A workload-driven
approach to database replication and partitioning. In Proceedings of the VLDB
Endowment, 2010.

[29] M. I. Daoud and N. Karma. A high performance algorithm for static task
scheduling in heterogeneous distributed computing systems. Journal of Parallel
and Distributed Computing, 68:399–409, 2008.

[30] S. Das, D. Agrawal, and A. El Abadi. G-store: A scalable data store for trans-
actional multi key access in the cloud. Proceedings of the 1st ACM symposium
on Cloud computing, pages 163–174, 2010.

[31] S. Das, D. Agrawal, and A. E. Abbadi. Elastras: An elastic transactional
datastore in the cloud. Proceedings of the 2009 Conference on Hot Topics in
Cloud Computing, 2009.

[32] S. Dasgupta and P. M. Long. Performance guarantees for hierarchical clustering.
In Journal of Computer System and Sciences, volume 70, pages 555–569, June
2005.

[33] C. Dutra de Aguar Ciferri and F. da Fonseca de Souza. Distributing the data
warehouse. In Proc.XV.SBBD Symposium, 2000.

112

[34] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Technical report, Google, 2011.

[35] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zonâĂŹs highly available key-value store. ACM Computing, pages 205–220,
October 2007.

[36] E. Deelman, K. Vahi, M. Rynghe, and G. Juve. Pegasus in the cloud: Science
automation through workflow technologies. Internet Computing, IEEE, 20,
January 2016.

[37] D. J. Dewitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A.
Wood. Implementation techniques for main memory database systems. Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management
of Data, pages 1–8, 1984.

[38] D. A. DiMello and V. S. Ananthanarayana. A review of dynamic web service
description and discovery techniques. 2010 First International Conference on
Intelligent Computing, pages 246–251, 2010.

[39] J. Eastman. Canopy clustering. Technical report, Apache, 2012.

[40] M. Edwards. Service data object overview. Technical report, Apache, 2011.

[41] A. J. Elmore. Elasticity Primitives for Database as a Service. PhD thesis,
University of California Santa Barbara, Distributed Systems Lab, 3 2014.

[42] D. Eppstein. Fast hierarchical clustering and other applications of dynamic
pairs. In Journal of Experimental Algorithmics, pages 1–10, January 2000.

[43] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. Journal of the ACM,
pages 669–696, September 1997.

[44] T. Erl. Service-Oriented Architecture(SOA): Concepts, Technology, and Design.
Prentice-Hall, 2005.

[45] J. M. Faleiro and D. J. Abadi. Rethinking serializable multiversion concurrency
control. Proceedings of the VLDB Endowment, 8(11):1190–1201, 2015.

113

[46] J. M. Faleiro, A. Thompson, and D. J. Abadi. Lazy evaluation of transactions
in database systems. Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pages 15–26, 2014.

[47] A. Fiat, Y. Mansour, A. Rosen, and O. Waarts. Competitive access time via
dynamic storage rearrangement. In Proceedings of the 36th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 392–403, October 1995.

[48] T. Forell, D. Milojicic, and V. Talwar. Cloud management: Challenges and
opportunities. 2011 IEEE International Parallel and Distributed Processing
Symposium, pages 881–889, 2011.

[49] M. Gadgil. Simple and practical: Ideas and practical tips for software profes-
sionals. Technical report, Mahesh Gadgil Blog, January 2011.

[50] H. Garcia-Holina and D. Barbara. The cost of data replcation. SIGCOMM 81
Proceedings of the seventh symposium on Data communications, pages 193–198,
1981.

[51] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition tolerant web services. ACM SigAct News, 33:51–59, June
2002.

[52] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz. Data manage-
ment in cloud environments: Nosql and newsql data stores. Journal of Cloud
Computing, 2(22), October 2013.

[53] Oracle Group. Oracle:partitioning in data warehouses. Technical report, Oracle,
2005.

[54] P. Helland. Life beyond distributed transactions: An apostate’s view. Technical
report, Amazon, January 2007.

[55] Y. Huang and J. Chen. Fragment allocation in distributed database design.
Journal of Information Science and Engineering, 17:491–506, 2001.

[56] A. Jain. Algorithms For Clustering Data. Prentice-Hall, 1988.

[57] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. In ACM
Computing Surveys, pages 264–323, March 1999.

114

[58] A. K. Jain, A. Topchy, M. H. Law, and J. Buhmann. Landscape for clustering
algorithms. Proceedings IAPR International Conference on Pattern Recogni-
tion, pages 1–4, June 2004.

[59] A. Jindal and J. Dittrich. Relax and let the database do the partitioning online.
Springer Verlag, pages 65–80, 2012.

[60] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin pack-
ing approximation algorithms: Survey and classification. Handbook of Combi-
natorial Optimization, pages 455–531, 2013.

[61] R. Kathari and D. Pitts. On finding the number of clusters. Pattern Recognition
Letters, 20:405–416, 1999.

[62] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213–226, 1981.

[63] J. LaCouture. Introducing database microsharding and oinky. Technical report,
Oinky, March 2012.

[64] A. Lakshman and P. Malik. Cassandra - a decentralized, structured storage
system. ACM Computing, 2009.

[65] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling.
High performance concurrency control mechanisms for in-memory databases.
Proceedings of the VLDB Endowment, 5(4):298–309, 2011.

[66] F. Lehman, C. Fehling, R. Meitzner, A. Nowak, and S. Dustdar. Moving ap-
plications to the cloud: An approach based on application model enrichment.
International Journal of Cooperative Information Systems, 20(3):307–356, 2011.

[67] J. K. Liker. The Toyota Way. McGraw-Hill, 2004.

[68] X. Lin, M. Orlowska, and Y. Zhang. On data allocation with minimal overall
communication costs in distributed database design. IEEE Distributed Database
Design, pages 539–544, 1993.

[69] A. Liu, D. Batista, and M. Alomari. A survey of large scale data management
approaches in cloud environments. Communications Surveys and Tutorials,
pages 311–336, 2011.

115

[70] R. Malik, N. Bisht, and P. Mishra. Spw: Scheduling and positioning of webser-
vices. International Journal of Scientific and Engineering Research, 4, Novem-
ber 2013.

[71] S. Marston, Z. Li, S. Bandyopadhyay, and A. Ghalsasi. Cloud computing: The
business perspective. Decision Support Systems, 51(1):176–189, April 2011.

[72] M. Meyer. Riak handbook. Technical report, Basho, 2011.

[73] G. Milligan and M. Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrika, 50:159–179, 1985.

[74] H. L. Morgan and K. D. Levin. Optimal program and data locations in computer
networks. Management Science and Operations Research, pages 315–322, 1977.

[75] F. Murtagh and P. Contreras. Methods of hierarchical clustering. Cornell
University Library, pages 1–21, May 2011.

[76] K. Murugesen and J. Zhang. Hybrid hierarchical clustering: An experimental
analysis. Technical report, University of Kentucky, 2011.

[77] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for con-
tended in-memory transactions. Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, pages 511–524, 2014.

[78] S. Navathe, S. Ceri, G. Weiderhold, and J. Dou. Vertical partitioning algorithms
for database design. ACM Digital Library, 9:680–710, 1984.

[79] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning of algo-
rithms for database design. In ACM Transactions on Database Systems, pages
680–710, 1984.

[80] K. A. Nazeer and M. P. Sebastian. Improving the accuracy and efficiency of
the k-means clustering algorithm. In Proceedings of the World Congress on
Engineering, pages 263–304, July 2009.

[81] L. Ngan, M. Kirchberg, and R. Kanagasabai. Review of semantic web service
discovery methods. 2010 IEEE Sixth World Congress On Services, pages 176–
177, June 2010.

116

[82] L. Nogueira, L. M. Pinho, and J. Coelho. Flexible and dynamic replication con-
trol for interdependent distributed real-time embedded systems. IFIP Advances
in Information and Communication Technology, 329:66–77, 2010.

[83] M. T. Oszu and P. Valduriez. Principles of Database Systems, Third Edition.
Pearson, 2011.

[84] A. Pavlo, C. Curino, and S. Zdonik. H-store. Proceedings of the 2012 interna-
tional conference on Management of Data, pages 61–72, 2012.

[85] A. Pavlo, C. Curino, and S. Zdonik. Skew aware automatic database partition-
ing in shared nothing, parallel oltp systems. Proceedings of the 2012 Interna-
tional Conference on Management of Data, pages 61–72, 2012.

[86] S. Plantikow, K. Peter, M. Hogqvist, C. Grimme, and A. Papaspirou. Gener-
alizing the data management of three community grids. Future Generation of
Computer Systems, 25(3):281–289, March 2009.

[87] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and V. Acre-
toaie. Ant-inspired framework for automatic web service composition. Scalable
Computing: Practice and Experience, 12(1):137–150, 2011.

[88] D. Pritchett. Base An acid alternative. Object Relational Mapping, 6:48–55,
June 2008.

[89] F. Raab, W. Kohler, and A. Shah. Overview of the tpc benchmark c, the
order entry benchmark. Technical report, Transaction Processing Performance
Council, 2013.

[90] S. Rabah, D. Ni, P. Jahanshahi, and L. F. Guzman. Current state and
challenges of automatic planning in web service composition. Arxiv preprint
arXiv:1107.1932, 2011, pages 25–33, 2011.

[91] A. Rajasekar, R. Moore, and M. Wan. Storage resource broker: Managing
distributed data in the grid. Future Generation of Computer Systems, 2006.

[92] P. Khrishna Reddy and M. Kitsuregawa. Speculative locking protocols to im-
prove performance for distributed database systems. IEEE Transactions on
Knowledge and Data Engineering, 16(2):154–169, 2004.

[93] L. Resende and R. Feng. Handling heterogeneous data sources in a soa envi-
ronment with service data objects (sdo). SIGMOD, June 2007.

117

[94] L. Rodriguez and X. Li. Dynamic vertical partitioning of databases using active
rules. Database and Expert Systems Applications, 7447:191–198, 2012.

[95] D. Sacca and G. Wiederhold. Database partitioning in a cluster of processors.
In ACM Transactions on Database Systems, pages 29–56, March 1985.

[96] A. Silbershcatz, H. Korth, and S. Sudarshan. Database System Concepts, Sixth
Edition. McGraw-Hill, 2010.

[97] J. Soares and N. Preguica. Database engines on multicores scale: A practical
approach. SAC, April 2015.

[98] M. Stonebraker. Errors in database systems, eventual consistency, and the cap
theorem. Technical report, Communications ACM, April 2010.

[99] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. OâĂŹNeil, P. OâĂŹNeil, A. Rasin, N. Tran, and
S. Zdonik. Cstore-a column-oriented dbms. Technical report, MIT, 2006.

[100] O. V. Sukhoroslova, A. O. Rubtsov, and S. Y. Volkov. Development of dis-
tributed computing applications and services with everest cloud platform. 6th
International Conference Distributed Computing and Grid Technologies in Sci-
ence and Education, July 2015.

[101] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. Proceedings of the VLDB Endow-
ment, 8:1–9, 2014.

[102] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley, 2006.

[103] A. L. Tatarowicz, C. Curino, E. P. C. Jones, and S. Madden. Lookup tables:
Fine-grained partitioning for distributed databases. IEEE 28th International
Conference on Data Engineering, pages 102–113, 2012.

[104] J. Tatemura, O. Po, and H. Hacigumus. Microsharding: A declarative approach
to support elastic oltp workloads. ACM SIGOPS, 2012.

[105] E. Theocharopoulos and M. Jackson. OGSA WS-DAIR 1.0, Version 1.0. W3C,
December 2008.

118

[106] A. Thomson, T. Diamond, S. C. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: Fast distributed transactions for partitioned database systems. Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, pages 1–12, 2012.

[107] K. Tripp. Strategies for partitioning relational data warehouses in microsoft sql
server. Technical report, IBM, 2005.

[108] K. Tripp. Toward open grid services architecture. Technical report, GLOBUS,
2012.

[109] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions
in multicore in-memory databases. Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

[110] P. Wang, Z. Ding, C. Jiang, and M. Zhou. Automatic web service composition
based on uncertainty execution effects. Services Computing, IEEE Transac-
tions, March 2013.

[111] J. S. Ward and A. Barker. A cloud computing survey: Developments and future
trends in infrastructure as a service computing. Cornell University Library,
pages 1–14, June 2013.

[112] Y. Wei, A. A. Aslinger, S. H. Son, and J. A. Stankovic. Order: A dynamic repli-
cation algorithm for periodic transactions in distributed real-time databases.
Proceedings of the Work-in-Progress Session of the 15th Euromicro Conference
on Real-Time Systems, 2003.

[113] D. H. Widyantoro, T. R. Ioerger, and J. Yen. An incremental approach to
building a cluster hierarchy. In IEEE International Conference on Data Mining,
pages 705–708, April 2002.

[114] R. Xu and D. Wunsch II. Survey of clustering methods. IEEE Transactions on
Neural Networks, pages 645–678, May 2005.

[115] Q. Yu, L. Chen, and B. Li. Automatic web service composition based on
uncertainty execution effects. Elsevier, Computers and Electrical Engineering,
January 2015.

[116] E. Zahoor, O. Perrin, and C. Godart. Disc: A declarative framework for self-
healing web services composition. 2010 IEEE International Conference on Web
Services, pages 25–33, 2010.

119

	University of South Carolina
	Scholar Commons
	2016

	Efficient Partitioning and Allocation of Data for Workflow Compositions
	Annamaria Victoria Kish
	Recommended Citation

	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Proposed Work
	Benefits of Method
	Dissertation Outline

	Related Work
	Just-In-Time Processing
	Service Oriented Architecture
	Distributed Computing and Storage
	Partitioning for Distributed Database Systems
	Concurrency Control for Distributed Database Systems
	Clustering and Allocation Algorithms

	Phase One - Partitioning and Allocation Framework for Atomic Web Services
	Introduction
	Definitions
	Abstract Query Example
	Clustering Cost Function
	Clustering
	Implementation
	Future Work

	Phase Two - Parallel Scheduling Framework For Workload
	Introduction
	Definitions
	Scheduling

	Conclusions and Future Work
	Future Work

	Bibliography

