
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

4-6-2017

Uncovering Transcriptional Activators and Targets
of HSF-1 in Caenorhabditis elegans
Jessica Brunquell
University of South Florida, jlhoskin@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Brunquell, Jessica, "Uncovering Transcriptional Activators and Targets of HSF-1 in Caenorhabditis elegans" (2017). Graduate Theses
and Dissertations.
http://scholarcommons.usf.edu/etd/6686

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholarcommons.usf.edu%2Fetd%2F6686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

 

Uncovering Transcriptional Activators and Targets of HSF-1 in Caenorhabditis elegans 

 

 

 

by 
 
 
 

Jessica Brunquell 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
with a concentration in Cellular and Molecular Biology 

Department of Cell Biology, Microbiology, and Molecular Biology 
College of Arts and Sciences 
University of South Florida 

 
 

Major Professor: Sandy D. Westerheide, Ph.D. 
Brant Burkhardt, Ph.D. 
Younghoon Kee, Ph.D. 
Cecilia Nunes, Ph.D. 

 
 

Date of Approval: 
March 24, 2017 

 
 
 
 

Keywords: heat shock response, HSF1, heat shock proteins, C. elegans, longevity 
 

Copyright © 2017, Jessica Brunquell 



 

 

DEDICATION 

  

I would like to dedicate this work to my parents, William J. Hoskins and Janice A. Hoskins, 

for their continuous love and support. Also, to my mentor Sandy D. Westerheide for 

providing me with countless opportunities to advance as a scientist, and for her guidance 

which contributed to my success. To my husband Andrew J. Brunquell for his whole-

hearted understanding, love, and support. Lastly, to my life-long friend Danielle J. DeLaire 

for her humor, love, and encouragement.  



 

 

ACKNOWLEDGEMENTS 

 

I would like to acknowledge my committee members: Brant Burkhardt, Ph.D., Younghoon 

Kee, Ph.D., Cecilia Nunes, Ph.D., and Patrick Bradshaw, Ph.D., as well as my lab mates, 

for helpful guidance and discussion throughout the duration of my degree. I would also 

like to especially acknowledge Rachel Raynes, Ph.D., for her mentorship, and the 

undergraduate students that contributed to this work: Philip Bowers, Stephanie Morris, 

and Alana Snyder.  



i 

  

 

TABLE OF CONTENTS 

 

LIST OF TABLES ............................................................................................................ ix 

 

LIST OF FIGURES .......................................................................................................... xi 

 

LIST OF ACRONYMS .................................................................................................. xvii 

 

ABSTRACT ................................................................................................................. xviii 

 

CHAPTER 1. Introduction ............................................................................................... 1 

The History of the Heat Shock Response ............................................................. 1 

Ferruccio Ritossa discovered the heat shock response in 1960 ................ 1 

The discovery of heat shock factor 1 ......................................................... 2 

Heat Shock Proteins and Molecular Chaperones ................................................. 2 

Heat shock proteins function to promote proteostasis ............................... 2 

The chaperone Hsp70 is highly induced upon stress and  

functions to refold denatured proteins .................................................. 3 

Small HSPs act as holdases to prevent the aggregation  

of misfolded proteins during stress ....................................................... 5 

HSF1 Structure and Regulation ............................................................................ 6 

The domains of HSF1 contribute to transcriptional activity ........................ 6 

HSF1 activity is regulated by phosphorylation ........................................... 6 

HSF1 activity is regulated by acetylation ................................................... 7 

Summary: The HSF1 activity cycle ............................................................ 7 

Sirtuin Activity Regulates the HSR ....................................................................... 8 

SIRT1 regulates the mammalian HSR ....................................................... 8 

SIRT1 is regulated by AROS and CCAR2 ................................................. 9 

CCAR2 inhibits SIRT1 activity ................................................................... 9 

CCAR2 negatively regulates the HSR ..................................................... 10 

Genome-wide Studies of the HSR ...................................................................... 10 

Various physiological processes are altered in response to 

 HS .................................................................................................... 10 

Transcription and translation are repressed during HS ............................ 11 

Post-transcriptional changes following HS ............................................... 11 

Activating the HSR to combat aging ........................................................ 12 

Activating the HSR to combat disease ..................................................... 13 

Small-molecule activators of the HSR...................................................... 13 



ii 

Caenorhabditis elegans as a Model Organism ................................................... 14 

An introduction to C. elegans ................................................................... 14 

Longevity studies in C. elegans often implement the use  

of FUdR .............................................................................................. 14 

The HSR is highly-conserved in C. elegans and mediated  

by HSF-1 ............................................................................................ 15 

Studies: Uncovering Transcriptional Regulators and Targets  

of HSF-1 in C. elegans .................................................................................. 16 

 

CHAPTER 2. Fluorodeoxyuridine Enhances The Heat Shock  

Response And Decreases Polyglutamine Aggregation In  

An HSF-1-Dependent Manner In Caenorhabditis elegans ....................................... 20 

Abstract .............................................................................................................. 20 

Introduction ......................................................................................................... 21 

Results ............................................................................................................... 22 

Standard FUdR treatment enhances hsp mRNA expression ................... 22 

Low-dose FUdR treatment enhances hsp mRNA expression .................. 22 

Low-dose and standard FUdR treatment improves  

proteostasis in a C. elegans Huntington’s disease model .................. 23 

Discussion .......................................................................................................... 24 

Methods .............................................................................................................. 25 

C. elegans strains and maintenance ........................................................ 25 

RNA interference ..................................................................................... 25 

Fluorodeoxyuridine treatment .................................................................. 25 

Heat shock treatment ............................................................................... 26 

Quantitative RT-PCR ............................................................................... 26 

Protein aggregation assay ....................................................................... 26 

 

CHAPTER 3: Coffee Extract and Caffeine Enhance The Heat Shock  

Response and Promote Proteostasis in an HSF-1-Dependent Manner in 
Caenorhabditis elegans ........................................................................................... 31 

Abstract .............................................................................................................. 31 

Introduction ......................................................................................................... 32 

Results ............................................................................................................... 35 

Treatment with caffeinated and decaffeinated coffee extract  

enhances HS-induced hsp-70 promoter activity ................................. 35 

Treatment with caffeinated coffee extract enhances hsp-70  

mRNA expression greater than that of decaffeinated coffee .............. 37 

Treatment with pure caffeine robustly enhances hsp-70 

 mRNA expression in a dose-dependent manner ............................... 38 

Induction of hsp-70 mRNA expression in response to 

 treatment with caffeinated coffee extract and moderate 

 caffeine is dependent on HSF-1 ........................................................ 39 



iii 

Caffeinated coffee extract and pure caffeine treatment 

protect a C. elegans Huntington’s disease model against  

polyglutamine aggregation and toxicity in an  

HSF-1-dependent manner .................................................................. 40 

Discussion .......................................................................................................... 41 

Methods .............................................................................................................. 45 

C. elegans strains and maintenance ........................................................ 45 

RNAi feeding ............................................................................................ 45 

Heat shock conditions .............................................................................. 45 

Coffee extract and caffeine media preparation ........................................ 45 

RNA preparation and cDNA synthesis ..................................................... 46 

Quantitative RT-PCR ............................................................................... 46 

Fluorescence microscopy and quantification ........................................... 47 

Polyglutamine aggregation assay ............................................................ 47 

Paralysis assay ........................................................................................ 47 

Statistical analyses .................................................................................. 48 
 

CHAPTER 4. DBC1/CCAR2 and CCAR1 are Highly Disordered 

 Proteins That Have Evolved From One Common Ancestor .................................... 53 

Abstract .............................................................................................................. 53 

Introduction ......................................................................................................... 54 

Results ............................................................................................................... 57 

CCAR2 and CCAR1 are intrinsically disordered proteins  

with a similar domain structure and a similar pattern of 

 predicted intrinsic disorder ................................................................. 57 

Human CCAR2 shares common ancestry with the 

 nematode CCAR1 ortholog LST-3 ..................................................... 59 

CCAR2 is more conserved than CCAR1 ................................................. 61 

CCAR1 appeared before CCAR2 in evolution ......................................... 62 

CCAR2 and CCAR1 exhibit similar domain flexibility ............................... 63 

Discussion .......................................................................................................... 64 

Methods .............................................................................................................. 68 

CCAR2 homologs and paralogs .............................................................. 68 

Disorder prediction ................................................................................... 68 

CH-CDF analysis ..................................................................................... 70 

Three-Dimensional structure prediction ................................................... 70 

Phylogenetic analysis .............................................................................. 71 

Genome neighborhood analysis .............................................................. 71 

Mutation rate analysis .............................................................................. 71 

 

CHAPTER 5: LST-3 is a Negative Regulator of Sir-2.1 and the 

 Heat Shock Response in Caenorhabditis elegans .................................................. 79 

Abstract .............................................................................................................. 79 



iv 

Introduction ......................................................................................................... 80 

Results ............................................................................................................... 83 

Negative regulation of the HSR by CCAR2 is conserved 

in C. elegans and mediated by LST-3 ................................................ 83 

lst-3 RNAi decreases HSF-1 acetylation and increases  

HSF-1 binding to the hsp-70 promoter ............................................... 84 

lst-3 RNAi enhances hsp-70 mRNA expression upon HS 

in a Sir-2.1-dependent manner ........................................................... 85 

lst-3 RNAi promotes stress-resistance and fitness in a 

Sir-2.1-dependent manner .................................................................. 87 

lst-3 RNAi promotes longevity in a Sir-2.1-dependent  

manner ............................................................................................... 87 

lst-3 RNAi promotes proteostasis in a C. elegans 

Huntington’s disease model ............................................................... 88 

Discussion .......................................................................................................... 89 

Methods .............................................................................................................. 92 

C. elegans strains and growth conditions ................................................ 92 

RNA interference ..................................................................................... 92 

HS treatment ............................................................................................ 93 

EX-527 compound treatment ................................................................... 93 

Fluorescence microscopy ........................................................................ 93 

Immunoblotting ........................................................................................ 93 

Quantitative RT-PCR ............................................................................... 94 

Lifespan analysis ..................................................................................... 94 

Thermotolerance and thrashing assay ..................................................... 95 

Protein aggregation assay ....................................................................... 95 

Paralysis assay ........................................................................................ 95 

Acetylation assay ..................................................................................... 96 

Chromatin immunoprecipitation procedure and data analysis ................. 96 

Statistical Analyses .................................................................................. 98 

 

CHAPTER 6. The Genome-Wide Role of HSF-1 in the Regulation  

of Gene Expression in Caenorhabditis elegans ..................................................... 106 

Abstract ............................................................................................................ 106 

Background ...................................................................................................... 108 

Results ............................................................................................................. 110 

Experimental set-up for genome-wide analysis of regulation  

of gene expression by HSF-1 ........................................................... 110 

Genes that are regulated by HSF-1 in response to HS .......................... 113 

Genes that are normally upregulated by HSF-1 in 

response to HS ...................................................................... 113 

Genes that are normally downregulated by HSF-1 in  

response to HS ...................................................................... 115 



v 

Genes that are regulated by HSF-1 independently of HS ...................... 117 

Genes that are normally upregulated by HSF-1  

independently of HS .............................................................. 117 

Genes that are normally downregulated by HSF-1 

independently of HS .............................................................. 119 

Discussion ........................................................................................................ 121 

Regulation of gene expression by HSF-1 .............................................. 121 

Cuticle structure genes are normally upregulated by  

HSF-1 via HS-dependent and -independent mechanisms ..................... 122 

Roles for HSF-1 in regulating metabolism and development 

in a HS-independent manner ............................................................ 123 

Network analysis identifies a nuclear hormone receptor  

as a common link between processes regulated by HSF-1  

upon HS ........................................................................................... 123 

Network analysis identifies a tyrosine kinase as a common 

link between various developmental processes regulated 

by HSF-1 independently of HS ......................................................... 125 

HSF-1 impacts aging-regulated gene expression .................................. 125 

HSF-1 regulates collagen genes which may affect the  

aging process ................................................................................... 127 

Conclusion ........................................................................................................ 127 

Methods ............................................................................................................ 128 

C. elegans strains and maintenance ...................................................... 128 

RNA interference and heat shock conditions ......................................... 128 

Immunoblotting and quantification ......................................................... 129 

RNA preparation for RNA-seq ............................................................... 129 

RNA-seq data analysis .......................................................................... 129 

Volcano plot analysis ............................................................................. 130 

Venn diagram analysis........................................................................... 130 

Quantitative RT-PCR ............................................................................. 130 

Fluorescence microscopy ...................................................................... 131 

Heat map generation ............................................................................. 131 

Gene ontology analysis via DAVID ........................................................ 131 

Network analysis with the Cytoscape platform ....................................... 132 
 

CHAPTER 7.  HSF-1 is a Regulator of miRNA Expression in Caenorhabditis 

elegans .................................................................................................................. 144 

Abstract ............................................................................................................ 144 

Introduction ....................................................................................................... 145 

Results ............................................................................................................. 147 

Uncovering the genome-wide regulation of miRNA  

expression by HSF-1 in HS-dependent and -independent  

mechanisms ..................................................................................... 147 



vi 

Experimental design used for miRNA-sequencing ...................... 147 

Validation of experimental treatment conditions .......................... 148 

HSF-1 alters global miRNA abundance during and 

independently of HS .............................................................. 149 

Venn diagrams separate miRNAs regulated by  

HSF-1 during and independently of HS ................................. 149 

HSF-1 regulates miRNA expression during HS ..................................... 150 

miRNAs normally upregulated by HSF-1 during HS .................... 150 

miRNAs normally downregulated by HSF-1 during HS ............... 152 

HSF-1 regulates miRNA expression independently of HS ..................... 153 

miRNAs normally upregulated by HSF-1 independently 

of HS ...................................................................................... 153 

miRNAs normally downregulated by HSF-1 

independently of HS .............................................................. 155 

Discussion ........................................................................................................ 157 

HSF-1 post-transcriptionally regulates gene expression by  

controlling miRNA abundance .......................................................... 157 

Global biological processes impacted during HS by 

HSF-1-regulated miRNAs ................................................................. 158 

Oxidative stress response factors link miRNA/mRNA 

networks regulated by HSF-1 during HS .......................................... 158 

Cytoprotection, development, metabolism, and longevity 

are predicted to be impacted during HS by HSF-1-regulated 

miRNAs ............................................................................................ 159 

Global biological processes impacted independently 

of HS by HSF-1-regulated miRNAs .................................................. 160 

Insulin-like signaling factors link miRNA/mRNA 

networks regulated by HSF-1 independently of HS .......................... 160 

Development, metabolism, and longevity are predicted to be  

impacted by HSF-1-regulated miRNAs independently of HS ........... 161 

HSF-1 may impact longevity through the post-transcriptional  

control of collagen and cytoskeletal genes ....................................... 162 

Conclusion ........................................................................................................ 163 

Methods ............................................................................................................ 164 

C. elegans maintenance ........................................................................ 164 

RNA interference and heat shock treatment .......................................... 164 

miRNA preparation for miRNA-seq ........................................................ 164 

miRNA-sequencing data analysis .......................................................... 165 

Volcano plot generation ......................................................................... 165 

miRNA-seq data normalization and statistical analysis .......................... 165 

Computational target prediction and network visualization .................... 166 

Gene ontology analysis.......................................................................... 166 

 



vii 

CHAPTER 8. Conclusions and Future Directions ....................................................... 175 

Conclusions ...................................................................................................... 175 

Summary: Compound, genetic, and environmental 

regulation and transcriptional targets of HSF-1 in C. elegans .......... 175 

Fluorodeoxyuridine, coffee, and caffeine treatment 

may protect against aging-related diseases through 

activation of the HSR ........................................................................ 176 

Enhancing sirtuin activity to promote longevity ...................................... 177 

A role for HSF-1 in promoting longevity through the 

induction of collagen gene expression .............................................. 177 

Future Study 1: Collagens as Modulators of the HSR and Longevity ............... 178 

Rationale: Collagen genes are regulated by HSF-1 during and 
independently of HS and may impact longevity ................................ 178 

AIM 1: Uncovering collagen genes as modulators of the HSR .............. 179 

AIM 2: Determining a direct role for HSF-1 in regulating  

collagen gene expression ................................................................. 180 

AIM 3: Uncovering a role for HSF-1-regulated collagen  

genes in modulating longevity, healthy aging,  

and proteostasis ............................................................................... 180 

Conclusion: Manipulating collagen gene expression  

may be one mechanism utilized by HSF-1 to promote  

longevity during and independently of heat-stress ........................... 181 

Future Study 2: Uncovering a Sirtuin/HSF-1 longevity-associated  

network........................................................................................................ 181 

Rationale: Modulating sirtuin activity enhances the HSR and 

promotes longevity ........................................................................... 181 

AIM 1. Determine the genome-wide targets of Sir-2.1 during  

and independently of heat- stress .................................................... 182 

AIM 2. Determine the global HSF-1/Sir-2.1 network .............................. 183 

AIM 3. Determine the role of HSF-1/Sir-2.1 regulated genes 

in modulating the HSR and longevity................................................ 183 

Conclusion: Identifying a role for Sir-2.1 in regulating 

longevity during and independently of heat-stress ........................... 184 
 

REFERENCES ............................................................................................................ 194 

 

APPENDIX A: Supporting Figures and Tables For Chapter 2. .................................... 216 

 

APPENDIX B: Supporting Figures and Tables For Chapter 3. .................................... 217 

 

APPENDIX C: Supporting Figures and Tables For Chapter 4 ..................................... 218 

 

APPENDIX D: Supporting Figures and Tables For Chapter 5 ..................................... 224 



viii 

 

APPENDIX E: Supporting Figures and Tables For Chapter 6. .................................... 227 

 

APPENDIX F: Supporting Figures and Tables For Chapter 7. .................................... 331 

 

APPENDIX G: Extended Protocols ............................................................................. 343 

 

APPENDIX H: Copyright Permission........................................................................... 361 

 

 



ix 

 

 

LIST OF TABLES 

 

Table 4.1. The domain function of human CCAR2 and CCAR1. ................................... 73 

 

Table 6.1. Top 15 genes normally upregulated by HSF-1 upon HS. ........................... 140 

 

Table 6.2. Top 15 genes normally downregulated by HSF-1 upon HS. ...................... 141 

 

Table 6.3. Top 15 genes normally upregulated by HSF-1 independently of HS. ......... 142 

 

Table 6.4. Top 15 genes normally regulated by HSF-1 independently of HS. ............. 143 

 

Table 7.1. miRNAs normally regulated by HSF-1 upon HS. ........................................ 173 

 

Table 7.2. miRNAs normally regulated by HSF-1 independently of HS ...................... 174 

 

Table 8.1. Collagen genes regulated by HSF-1 during HS ........……………..…………186 

 

Table 8.2. Collagen genes regulated by HSF-1 independently of HS  ..….……………..189 

 

Table C1. All CCAR2, CCAR1, and LST-3 sequences used in this study  

and their Uniprot IDs. ............................................................................................. 222 

 

Table E1. Significantly altered genes in the hsf-1(+);+HS treatment 

condition compared to the control....………………………………………………….. 233 

 

Table E2. Significantly altered genes in the hsf-1(-);-HS treatment  

condition compared to the control       …..…………..…………………….……………….241 

 

Table E3. Significantly altered genes in the hsf-1(-);+HS treatment  

condition compared to the control            ………………………………….………………….278 

 

 



x 

Table E4. DAVID output of the processes enriched by HSF-1 in a  

HS-dependent manner ……………….…………………………………………………298 

 

Table E5. DAVID output of the processes enriched by HSF-1 in a  

HS-independent manner .…………………………………………………..……………309 

 

Table E6. Aging-related genes regulated by HSF-1 in a  

HS-dependent manner ….………………………………………………………………324 

 

Table E7. Aging-related genes regulated by HSF-1 in a  

HS-independent manner ..………………………………………………………………326 

 

Table F1. Significantly altered miRNAs in the hsf-1(+);+HS  

treatment condition compared to the control  ………………………………………….338 

 

Table F2. Significantly altered miRNAs in the hsf-1(-);+HS treatment  

condition compared to the control …….………………………………………………..339 

 

Table F3. Table F1. Significantly altered miRNAs in the hsf-1(-);-HS  

treatment condition compared to the control ..….……………………………………..340 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

 

LIST OF FIGURES 

 

Figure 1.1. HSF1 is a multi-domain protein. .................................................................. 17 

 

Figure 1.2. The mammalian HSF1 activity cycle. .......................................................... 17 

 

Figure 1.3. CCAR2 negatively regulates SIRT1 activity. ............................................... 18 

 

Figure 1.4. Caenorhabditis elegans are an ideal model organism. ............................... 18 

 

Figure 1.5. Studies: uncovering transcriptional regulators and targets of HSF-1. ......... 19 

 

Figure 2.1 Treatment with 100 µM or 200 µM FUdR from the L4/YA stage  

enhances HS induction of hsp-70 and hsp-16.2 mRNA expression in  

C. elegans in an HSF-1-dependent manner. ........................................................... 28 

 

Figure 2.2. Treatment with 25 µM FUdR from the L1 stage enhances HS  

induction of hsp-70 and hsp-16.2 mRNA expression in C. elegans in an  

HSF-1-dependent manner. ...................................................................................... 29 

 

Figure 2.3. Treatment with FUdR decreases polyglutamine aggregation in an  

HSF-1-dependent manner. ...................................................................................... 30 

 

Figure 3.1. Treatment with coffee extract enhances HS-induced hsp-70  

promoter activity. ...................................................................................................... 48 

 

Figure 3.2. Treatment with caffeinated coffee extract enhances hsp-70 mRNA 
expression in a dose-dependent manner greater than decaffeinated coffee ........... 49 

 

Figure 3.3. Treatment with pure caffeine enhances hsp-70 mRNA  

expression greater than caffeinated coffee extract in a dose-dependent  

manner. .................................................................................................................... 49 

 

Figure 3.4. Induction of hsp-70 mRNA expression in response to treatment  

with caffeinated coffee extract and caffeine is dependent on HSF-1. ...................... 50 



xii 

 

Figure 3.5. Treatment with caffeinated coffee extract and 3.6 mM pure  

caffeine promotes proteostasis in a C. elegans Huntington’s disease  

model in an HSF-1-dependent manner. ................................................................... 51 

 

Figure 3.6. Summary of the effects of caffeinated coffee extract and pure  

caffeine on the heat shock response and proteostasis in C. elegans. ..................... 52 

 

Figure 4.1. Human CCAR2 and CCAR1 are paralogs................................................... 73 

 

Figure 4.2. Disorder analyses show the domain structure and molecular  

flexibility of hCCAR2 and hCCAR1. ......................................................................... 74 

 

Figure 4.3. CH-CDF analysis for all CCAR2 and CCAR1 proteins. ............................... 75 

 

Figure 4.4.  Phylogenetic analysis of CCAR2 and CCAR1 homologs. .......................... 75 

 

Figure 4.5. Gapped disorder prediction for zCCAR2, zCCAR1, and LST-3. ................. 76 

 

Figure 4.6. CGN score between human and other species for both  

CCAR1 (black) and CCAR2 (gray). .......................................................................... 76 

 

Figure 4.7. Genome neighborhood analysis between human and mouse  

CCAR2 (a) and CCAR1 (b). ..................................................................................... 77 

 

Figure 4.8. The amino acid substitution rates of specific domains among  

various groups of species for CCAR2 (a) and CCAR1 (b). ...................................... 77 

 

Figure 4.9. The average disorder score for each domain in CCAR2 and  

CCAR1 across all grouped species. ........................................................................ 78 

 

Figure 5.1. lst-3 RNAi enhances hsp-70 promoter activity upon HS……………..………..98 
  

Figure 5.2. lst-3 RNAi decreases HSF-1 acetylation and increases HSF-1  

recruitment to the hsp-70 promoter. ....................................................................... 100 

 

Figure 5.3. lst-3 RNAi enhances a family of hsp-70 mRNAs in a  

sir-2.1-dependent manner upon HS. ...................................................................... 101 

 

 



xiii 

Figure 5.4. lst-3 RNAi promotes thermotolerance and thrashing in aging  

worms in a sir-2.1-dependent manner. .................................................................. 102 

 

Figure 5.5. lst-3 RNAi increases longevity in a sir-2.1-dependent manner. ................. 103 

 

Figure 5.6. lst-3 RNAi decreases polyglutamine aggregation and paralysis  

in a Huntington’s disease model, and prevents age-related decline  

of the HSR. ............................................................................................................ 104 

 

Figure 6.1. Genes that are normally upregulated by HSF-1 in response to HS. .......... 133 

 

Figure 6.2 Genes that are normally downregulated by HSF-1 in response to HS. ...... 134 

 

Figure 6.3. Genes that are normally upregulated by HSF-1 independently of HS. ...... 135 

 

Figure 6.4. Genes that are normally downregulated by HSF-1 independently  

of HS. ..................................................................................................................... 136 

 

Figure 6.5. Network analyses of the top HSF-1-regulated processes. ........................ 137 

 

Figure 6.6. Age-regulated genes controlled by HSF-1. ............................................... 138 

 

Figure 7.1. Scheme for miRNA-sequencing experimental setup and data  

normalization. ........................................................................................................ 167 

 

Figure 7.2. Networks and biological processes impacted by HSF-1-regulated  

miRNAs during HS. ................................................................................................ 168 

 

Figure 7.3. Networks and biological processes impacted by HSF-1-regulated  

miRNAs independently of HS. ............................................................................... 169 

 

Figure 7.4. Integrated target prediction analysis uncovers miRNA/mRNA  

interaction networks regulated by HSF-1 during HS. ............................................. 170 

 

Figure 7.5. Integrated target prediction analysis uncovers miRNA/mRNA  

interaction networks regulated by HSF-1 independently of HS. ............................. 171 

 

Figure 7.6. A model for heat stress-dependent and -independent processes  

controlled by HSF-1-regulated miRNAs. ................................................................ 172 

 



xiv 

Figure 8.1. Modulating the HSR to promote thermotolerance and longevity,  

and to prevent neurodegenerative diseases. ......................................................... 185 

 

Figure 8.2. Uncovering collagens as modulators of the HSR. ..................................... 186 

 

Figure 8.3. Determine HSF-1 binding to collagen gene promoters. ............................ 186 

 

Figure 8.4. The role of HSF-1-regulated collagen genes in controlling longevity,  

healthy aging, and proteostasis. ............................................................................ 187 

 

Figure 8.5. Determining genome wide Sir-2.1 targets. ................................................ 192 

 

Figure 8.6. Determining HSF-1/Sir-2.1 regulated networks ......................................... 192 

 

Figure 8.7. Determine a role for the HSF-1/Sir-2.1 network in regulating the  

HSR and longevity. ................................................................................................ 193 

 

Figure A1. Treatment with 25 µM FUdR from L1 to day 3 does not affect  

worm growth while still inhibiting egg hatching similarly to 100 µM or  

200 µM of FUdR from the L4 stage to day 3 of adulthood. .................................... 216 

 

Figure B1. High-dose caffeine treatment stunts development. .................................... 217 

 

Figure C1.  Sequence alignment of CCAR2 domains from various species. ............... 218 

 

Figure C2.  Sequence alignment of CCAR1 domains from various species. ............... 219 

 

Figure C3.  Alignment of the C-terminal domain between human CCAR2  

(hDBC1, CCAR2) and human CCAR1 (hCCAR1). ................................................ 219 

 

Figure C4. Sequence alignment between zebrafish CCAR1  

(Uniprot ID: F1QV66) and C. elegans CCAR1 (Uniprot ID: G5EFJ2). ................... 220 

 

Figure C5. Sequence alignment between zebrafish CCAR1  

(Uniprot ID: F1QV66) and zebrafish CCAR2 (Uniprot ID: E9QH28). ..................... 221 

 

Figure D1. lst-3 and hsf-1 mRNA levels are decreased roughly 50% in  

response to RNAi treatment. .................................................................................. 224 

 

 



xv 

Figure D2. lst-3 RNAi enhances a family of hsp-70 mRNAs in a  

sir-2.3-independent manner upon HS. ................................................................... 225 

 

Figure D3. The ability of lst-3 RNAi to enhance hsp-70 promoter activity  

and mRNA expression during HS is dependent on the deacetylase activity  

of Sir-2.1. ............................................................................................................... 226 

 

Figure E1. Scheme and validation of experimental conditions for RNA-seq  

experiments. .......................................................................................................... 227 

 

Figure E2. Dendogram clustering of the biological duplicates for each  

RNA-seq condition reveals conserved alignment between replicates. ........................ 228 

 

Figure E3. Scheme for RNA-seq data normalization. .................................................. 229 

 

Figure E4. Volcano plots show the global expression profile for each  

RNA-seq condition relative to the control. .............................................................. 229 

 

Figure E5. Genes regulated by development and molting share a similar  

expression profile between each RNA-seq treatment condition. ............................ 230 

 

Figure E6. The Venn diagram shows the total number of genes that were  

found to be significantly altered (q-value<0.05) for each of the indicated  

comparisons between samples. ............................................................................. 230 

 

Figure E7. Validation of top RNA-seq hits for genes normally upregulated  

by HSF-1 during HS via qRT-PCR. ........................................................................ 231 

 

Figure E8. Collagen genes may control tissue specific regulation of the HSR. ........... 231 

 

Figure E9. Validation of top RNA-seq hits for genes normally downregulated  

by HSF-1 during HS via qRT-PCR. ........................................................................ 232 

 

Figure E10. Validation of the top RNA-seq hits for genes normally regulated  

by HSF-1 independently of HS via qRT-PCR. ....................................................... 233 

 

Figure E11. A model for major HSF-1 regulated processes in HS-dependent  

and -independent mechanisms. ............................................................................. 234 

 

 



xvi 

Figure F1. Validation of RNAi treatment conditions for miRNA-seq  

experiments. .......................................................................................................... 331 

 

Figure F2. Dendogram analysis and differential expression between  

miRNA-seq biological duplicates shows a correlation between  

biological replicates. ............................................................................................... 332 

 

Figure F3. Volcano plots for each miRNA-seq condition relative to the  

control. ................................................................................................................... 333 

 

Figure F4. miRNAs normally upregulated by HSF-1 during HS. ................................. 334 

 

Figure F5. miRNAs normally downregulated by HSF-1 during HS. ............................. 335 

 

Figure F6. miRNAs normally upregulated by HSF-1 independently of HS. ................. 336 

 

Figure F7. miRNAs normally downregulated by HSF-1 independently of HS. ............. 337 

 

Figure F8. Biological processes enriched by HSF-1-regulated miRNAs  

during HS. .............................................................................................................. 338 

 

Figure F9. Biological processes enriched by HSF-1-regulated miRNAs  

independently of HS. .............................................................................................. 339 

 



xvii 

 

 

LIST OF ACRONYMS 

HSR: Heat shock response 

HSF1: Heat shock factor 1 

HS: Heat shock 

HSP: Heat shock protein 

HSE: Heat shock element 

AROS: Active regulator of SIRT1 

SIRT1: silent mating type information regulation 2 homolog 1 

CCAR1: Cell cycle and apoptosis regulator 1 

CCAR2 (DBC1): Cell cycle and apoptosis regulator 2 

microRNA: miRNA 

FUdR: 5-fluoro-2’-deoxyuridine 

ESA: Essential for SIRT1 activity 

L1: First larval stage 

L2: Second larval stage 

L3: Third larval stage 

L4: Last larval stage 

YA: Young adult 

YFP: Yellow fluorescence protein 

GFP: Green fluorescence protein 

EV: Empty vector 

RNAi: RNA interference 

qRT-PCR: quantitative reverse transcription polymerase chain reaction 

NGM: Nematode growth medium 

LZ: Leucine zipper 

LST-3: Lateral signaling target 3 

NLS: Nuclear localization sequence 

CH-CDF: Charge hydropathy and cumulative distribution function 

CDF: Cumulative distribution function 

CH: Charge-hydropathy 

CGN: Conservation of Genomic Neighborhood  

RNA-seq: RNA sequencing 

DAVID: Database for Annotation, Visualization, and Integrated Discovery 

NHR: Nuclear hormone receptor 

miRNA-seq: microRNA sequencing 

 

  



xviii 

 

 

ABSTRACT 

 

In order to survive, cells must be able to cope with a variety of environmental stressors. 

The heat shock response (HSR) is a pro-survival mechanism employed by cells in 

response to protein denaturing stress, such as heat.  Since its discovery in 1960, the heat 

shock response has been found to be regulated by the transcription factor heat shock 

factor 1 (HSF1). During periods of increased stress, HSF1 undergoes a multi-step 

process of activation that involves homotrimerization, DNA-binding, and post-translational 

regulatory modifications, all of which ultimately function to control the transcription of 

chaperone genes. These chaperone genes encode molecular chaperone proteins which 

function to promote survival during stress by restoring protein homeostasis to the cell. 

Although HSF1 is classically studied for its role in regulating the HSR, HSF1 also has 

roles in regulating metabolism, development, and longevity. Studies in the nematode 

Caenorhabditis elegans demonstrate the HSF1 homolog, HSF-1, as a global regulator of 

gene expression that has both stress-dependent and -independent functions. Modulating 

HSF1 activity therefore has implications beyond stress-induced processes, and has been 

suggested as a promising therapeutic target for diseases of aging and protein 

dysfunction.  

We were interested in determining regulators of the HSR using C. elegans as a model 

to test for effects on proteostasis and longevity. In these studies, we observed the effects 

of compound treatment (Chapters 1 and 2), genetic manipulation (Chapters 3 and 4), and 
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environmental stimuli (Chapters 5 and 6), on the HSR in C. elegans. In Chapters 1 and 

2, we describe our findings that treatment with the DNA synthesis inhibitor 

Fluorodeoxyuridine, and treatment with coffee and caffeine, enhance the heat shock 

response and improve proteostasis in aging worms in an HSF-1-dependent manner. In 

Chapters 3 and 4, we uncovered that negative regulation of the HSR by the cell cycle and 

apoptosis regulator CCAR2 is conserved in C. elegans, and is mediated by the CCAR2 

ortholog, LST-3. We also uncovered that negative regulation of the HSR by LST-3 

requires the SIRT1 homolog Sir-2.1, and knockdown of LST-3 via lst-3 RNAi works 

through Sir-2.1 to enhance stress-resistance, fitness, proteostasis and longevity. In 

Chapters 5 and 6, we describe the global impact of HSF-1 in regulating transcriptional 

processes during a heat stress. The profiling of global HSF-1 mRNA and miRNA targets 

has allowed us to uncover a heat-dependent and -independent role for HSF-1 in 

regulating gene expression to impact stress-resistance, proteostasis, and longevity. 

Altogether, these studies demonstrate the impact of compound treatment, genetic 

manipulation, and environmental stimuli on the heat shock response, while also 

uncovering global stress-dependent and -independent roles for HSF-1. This work 

therefore provides insight into various methods of activating the HSR by modulating HSF-

1 activity, and uncovering global HSF-1 target genes, which may be useful for designing 

therapeutic treatment strategies for diseases of protein dysfunction. 
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CHAPTER 1. INTRODUCTION 

 

The History of the Heat Shock Response 

Ferruccio Ritossa discovered the heat shock response in 1960 

In 1960 at the Genetics Institute in Pavia, Ferruccio Ritossa unintentionally discovered 

the heat shock response (HSR) in Drosophila melanogaster. Ritossa was an established 

investigator in Italy, and chose to perform his studies on nucleic acid synthesis in 

Drosophila. At the time, Drosophila was an unpopular model organism, and many 

scientists thought that studies utilizing the fruit fly for scientific advancement were 

irrelevant. However, Ritossa chose this model over more popular bacterial models 

because he considered the fruit fly to be more similar to human studies (1). During his 

research, one of his colleagues mistakenly increased the incubator temperature where 

his flies were being kept and Ritossa observed a chromosomal puffing pattern. This 

increase in puffing suggested an increase in transcriptional activity was occurring in 

response to increased temperatures. After recreating these conditions with the correct 

experimental controls, Ritossa was able to successfully repeat what he previously 

witnessed (2). Although Ritossa grasped the importance of such a transcriptional 

response, he had difficulty publishing his results, and his manuscript was rejected for 

lacking biological importance. The study was eventually published in Experientia in 1962 

(1,3), although years would pass before the biological significance of his findings were 

grasped by the scientific community. 
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The discovery of heat shock factor 1 

Years after Ritossa discovered the HSR, transcription and translation became the focus 

of stress-related research. In the 1970’s, pulse radiolabeling of mRNA and protein 

products uncovered changes in transcription and translation rates occurred in response 

to heat shock (HS) (4-6). These studies revealed a global decrease in transcription and 

translation during exposure to increased temperatures, with the exception of select genes 

and their corresponding protein products, which are coined heat shock proteins (HSPs). 

It was later found that treatment with heat resulted in robust induction of heat shock 

protein 70 (Hsp70), which is named for its molecular weight of 70 kDa. Studies examining 

the promoter of hsp70 identified a series of three inverted repeats of the sequence 

nGAAn, which is referred to as a heat shock element (HSE) (7-9). The discovery of HSEs 

ultimately allowed for the identification of the transcriptional regulator of the HSR, the 

transcription factor heat shock factor 1 (HSF1), via affinity chromatography and 

biochemical purification of HSE-oligonucleotide bound sepharose beads (10-12). The 

stress field has since expanded and diverged into two groups, one focused on structural 

analyses of HSPs, and the other on regulation of the HSR by HSF1.  

Heat Shock Proteins and Molecular Chaperones  

Heat shock proteins function to promote proteostasis  

Many of the hsp genes upregulated by HSF1 during stress encode molecular chaperones 

which function to refold misfolded proteins that accumulate and aggregate during stress. 

Chaperones recognize the exposed hydrophobic amino acid residues of unfolded 

proteins, and are therefore capable of interacting with a broad range of misfolded protein 

substrates (13,14). Although the expression of many chaperone genes are upregulated 
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upon exposure to protein denaturing stressors, others are constitutively expressed. As 

such, chaperones are not only important for maintaining proteostasis during stressful 

insults, but can also assist during de novo protein folding, assembly, transport, and 

protein clearance (15-18). Overall, the regulation of protein chaperone expression is 

important for maintaining proteome integrity during and independently of stress.  

The chaperone Hsp70 is highly induced upon stress and functions to refold 

denatured proteins 

The Hsp70 class of chaperones are central to the proteostasis network. A constitutive 

and stress inducible form of Hsp70 is present in the cell, and each function to maintain 

and restore the quality of the proteome. The constitutive form of Hsp70, Hsc70, is 

responsible for de novo protein folding, while the highly stress inducible Hsp70 functions 

to prevent proteins from aggregating and misfolding (19). Thus, both the constitutive and 

stress-inducible forms of Hsp70 function as protein folding catalysts that are responsible 

for maintaining the proteome.  

The structure of Hsp70 plays an important role in mediating its function and protein-

protein interactions. Hsp70 is composed of two domains, a conserved nucleotide-binding 

domain and a variable protein binding domain. The nucleotide-binding domain hydrolyzes 

ATP, which in turn regulates structural changes in the protein-binding domain (20-22). 

While in the ATP-bound state, the protein-binding domain acts as a rigid base with a 

flexible lid that folds back and binds to the nucleotide-binding domain, thus allowing 

misfolded polypeptide substrates with hydrophobic residues to enter. Upon ATP 

hydrolysis, the lid detaches from the nucleotide-binding domain, ultimately sequestering 
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the misfolded polypeptide in order to prevent the aggregation of misfolded protein 

products. The structure of Hsp70 is therefore essential for its function as a holdase.   

In addition to functioning as a holdase, Hsp70 can also refold misfolded proteins and 

act as a molecular chaperone. Two models exist for the protein refolding capacity of 

Hsp70. The first kinetic partitioning model suggests that through holdase activity, the free 

concentration of the misfolded polypeptides are low, and this promotes an environment 

to allow the protein to refold into its native state. The second local unfolding model 

suggests that the binding and release of substrates from Hsp70 may function to untangle 

misfolded regions of the polypeptide, and contribute to the kinetics of protein folding (23). 

Thus, Hsp70 may function to restore proteostasis during stress by contributing to the 

kinetics that promote a protein refolding state.  

Hsp70 activity is regulated by various protein-protein interactions. For example, Hsp70 

typically functions in a complex with J-domain proteins and nucleotide exchange factors 

to increase binding specificity and strength. J-domain proteins guide Hsp70 to misfolded 

substrate proteins, while nucleotide exchange factors can control the ATP/ADP bound 

state of Hsp70. For example, the J-domain protein Hsp40 is a co-chaperone that functions 

to enhance Hsp70 binding specificity and ATPase activity (24). During basal conditions, 

nucleotide exchange factors promote substrate release from Hsp70, however during 

stress, nucleotide exchange factors become denatured thus lose the ability to accelerate 

substrate release (25,26). Thus, J-domain proteins and nucleotide exchange factors act 

in conjunction with Hsp70 to modulate binding affinity and client protein binding to 

promote a protein refolding during stress.   
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Small HSPs act as holdases to prevent the aggregation of misfolded proteins 

during stress 

Small HSPs are ubiquitous molecular chaperones that can prevent aggregation and 

denaturation of proteins during periods of increased stress. Small HSPs, which are 

characterized by their low molecular mass, are the least evolutionary conserved class of 

molecular chaperones (27,28). The most studied group of mammalian small HSPs is the 

α-crystallins αA (HspB4) and αB (HspB5), both of which act quickly to shield the cell 

against the denatured polypeptides. Small HSPs are thus the chaperones that form the 

first line of defense against protein aggregation and misfolding to promote homeostasis 

during stress.  

 The structure of small HSPs is unique in that it contributes to complex formation that 

promotes the regulation of protein stability through electrostatic interactions (29). Small 

HSPs have a highly variable N-terminal domain, and an α-crystallin domain in the C-

terminal region. The N-terminal region is highly variable between species, however due 

to the nature of this region to be flexible, it may be involved in stabilizing the formation of 

oligomers or the recognition and selection of substrate proteins (30-32). Unlike the N-

terminal domain, the small C-terminal region is highly-conserved between species and 

commonly protrudes from formed complexes due to its flexibility (33). This C-terminal 

extension is essential for chaperone activity in both mammalian Hsp25 and C. elegans 

Hsp-16.2 (34-36). Overall, it is clear that the structure of small HSPs allow for the 

formation of large complexes which can quickly shield misfolded proteins from the 

surrounding environment during stress. 
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HSF1 Structure and Regulation 

The domains of HSF1 contribute to transcriptional activity  

HSF1 is a multi-domain protein containing a DNA-binding domain, trimerization domains, 

a regulatory domain, and a transactivation domain (Figure 1.1). The DNA-binding domain 

of HSF-1 is highly-conserved and conforms to a helix-turn-helix motif (37-39). HSF1 

homotrimerizes during stress, and the DNA-binding domain of each monomer recognizes 

one of the three inverted repeats that compose the HSE in the major groove of the 

promoter of HSF1 target genes (40). The trimerization domain consists of three 

hydrophobic heptad repeats A/B/C (HR-A/B/C). The HR-A/B region is responsible for 

oligomerization during stress, however this can be prevented by the HR-C region which 

is able to fold back and inhibit the HR-A/B region (41-43). The transactivation domain is 

targeted by several proteins that regulate transcriptional initiation and elongation (44). 

The regulatory domain represses HSF1 activation during basal conditions by forming an 

inhibitory complex with the MAP kinase ERK (45), however this interaction can be 

prevented by phosphorylation events during stress to allow for HSF1 activation (46,47). 

The domains of HSF1 are therefore essential for coordinating a balance of HSF1 activity 

during both stressed and unstressed conditions, ultimately controlling the regulation of 

the HSR.  

HSF1 activity is regulated by phosphorylation 

Depending on the cellular environment, HSF-1 activity can be modulated by multiple 

kinases. There are currently 22 phosphorylation sites that have been identified within 

HSF1, and some sites are stress-inducible while others are constitutively phosphorylated 

(48,49). Hyper-phosphorylation of HSF1 during stress is commonly associated with 
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increased transcriptional activity. For example, phosphorylation of HSF1 by the kinases 

CK2, CaMKII, PKA, MAPK, and PLK1 promote DNA-binding and the transcriptional 

activity of HSF1 (50-54). However, phosphorylation of HSF1 by the kinases MK2, and 

GSK-3β can reduce DNA-binding and transcriptional activity (55,56). Overall, it is clear 

that phosphorylation is one post-translational modification that can be utilized by the cell 

to fine-tune HSF1 activity.  

HSF1 activity is regulated by acetylation 

Acetylases also regulate HSF1 activity depending on the cellular environment. For 

example, the histone deacetylase HDAC1 associates with the DNA-binding domain of 

HSF1 to inhibit HSF1 binding to HSEs ultimately decreasing hsp70 mRNA levels during 

HS. The deacetylases HDAC7, HDAC9, and SIRT1 associate with the activation domain 

of HSF1, increase HSF1 binding to HSEs, and enhance hsp70 mRNA expression during 

HS (57). Additionally, acetylation of the DNA-binding domain of HSF1 by p300 results in 

attenuation off of the DNA and transcriptional inactivation (58). However, the deacetylase 

activity of SIRT1 allows HSF1 to remain in a DNA-bound transcriptional state, thereby 

enhancing hsp70 mRNA expression during HS  (58). The HSR is thus controlled by 

regulating HSF1 activity via post-translational modifications.  

Summary: The HSF1 activity cycle 

The HSR is tightly a regulated response that functions to maintain protein homeostasis 

during stress and promote survival. HSF1 is a monomer in the cytoplasm during basal 

conditions, and is kept in an inactive state through associations with Hsp70, Hsp90, and 

Hsp40 (Figure 1.2a) (59-61). It is thought that in response to protein denaturing stressors, 

Hsp70, Hsp90, and Hsp40 are titrated away from HSF1 in response to the concentration 
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of denatured proteins increases (8,62-65). Once HSF1 is released from the Hsp70/40/90 

complex, homotrimerization and subsequent translocation into the nucleus allows HSF1 

to bind to HSEs in the promoter of hsp genes (Figure 1.2b). Transcriptional activation 

occurs upon hyper-phosphorylation (Figure 1.2c) (52,66), whereas attenuation occurs via 

acetylation of the DNA-binding domain of HSF1 (Figure 1.2d) (58). The deacetylase 

activity of SIRT1 promotes the HSR by enhancing DNA-binding (58). Overall, the HSR is 

a tightly controlled and complex response regulated by a variety of factors in response to 

protein denaturing stressors.  

Sirtuin Activity Regulates the HSR 

SIRT1 regulates the mammalian HSR 

SIRT1 is a prolongevity factor that can regulate various biological processes including 

metabolism, cytoprotection, and apoptosis (67). SIRT1 belongs the highly-conserved 

sirtuin family, where mammals have seven sirtuin family members SIRT1-7 and C. 

elegans have four sirtuin family members Sir-2.1-2.4 (68,69). SIRT1 regulates many 

diverse biological processes through the deacetylation of target substrates. Some 

processes regulated by SIRT1 include controlling chromatin structure, apoptosis, and the 

HSR (67,70,71). Interestingly, SIRT1 enhances mammalian HSF1 activity by extending 

the DNA-bound state of HSF1 during stress. This method of regulation may be conserved 

across species, as the C. elegans SIRT1 homolog, Sir-2.1, can also regulate HSF-1 and 

the HSR in the nematode (72). SIRT1 is therefore a highly-conserved regulator of the 

HSR.  
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SIRT1 is regulated by AROS and CCAR2 

SIRT1 is regulated by various genetic factors depending on the cellular environment. For 

example, active regulator of SIRT1 (AROS) enhances SIRT1 activity, were as the cell 

cycle and apoptosis regulator CCAR2 (also known as DCB1) inhibits SIRT1 activity 

(73,74). AROS was identified as a SIRT1 interacting partner by a yeast two-hybrid screen, 

whereas CCAR2 was identified as a SIRT1 interacting partner via co-immunoprecipitation 

(73,75). In both contexts, the acetylation state of p53 was found to be a target of AROS 

and CCAR2 in response to regulating the deacetylase activity of SIRT1. SIRT1 activity 

can therefore be regulated by AROS and CCAR2, and may ultimately affect various 

physiological processes.   

CCAR2 inhibits SIRT1 activity 

CCAR2 is a large multidomain protein that regulates various cellular pathways through 

inhibition of SIRT1 activity (76). CCAR2 inhibits SIRT1 by competitively binding to the 

catalytic domain of SIRT1 and inhibiting deacetylase activity by blocking the essential for 

SIRT1 activity domain from coming into contact with the deacetylase core (Figure 1.3) 

(77). This inhibitory interaction is enhanced with several post-translational modifications, 

including enhanced phosphorylation of CCAR2 on T454, which can stabilize the 

CCAR2/SIRT1 complex (78,79). Conversely, the CCAR2/SIRT1 interaction is inhibited by 

acetylation of CCAR2 at K112 and K115 (80,81). The ability of CCAR2 to inhibit SIRT1 

activity thus highlights CCAR2 an interesting target to enhance the prolongevity effects 

of SIRT1.  
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CCAR2 negatively regulates the HSR 

CCAR2 regulates many cellular processes including the HSR. In mammalian cells, 

overexpression of CCAR2 decreases hsp70 transcription, HSF1 binding to the hsp70 

promoter, while increasing HSF1 acetylation during HS (67). Conversely, knockdown of 

CCAR2 enhances hsp70 mRNA expression in response to HS (67). Thus, the SIRT1 

modulator CCAR2 negatively impacts the HSR in mammals.  

Genome-wide Studies of the HSR 

Various physiological processes are altered in response to HS 

Uncovering genome-wide changes in response to HS has been an active area of research 

in multiple model organisms (82-89). These studies have confirmed that common cellular 

processes are conserved across species and altered during HS. As expected, HSPs and 

molecular chaperones are the largest group found to be induced upon HS. Next, the 

proteolytic system, which can clear misfolded and aggregated proteins from the cell, is 

also enhanced during HS. DNA and RNA modifying enzymes, metabolic enzymes, 

kinases, and proteins involved in cellular structure have also been commonly shown to 

be regulated. These cellular processes appear to be conserved in their regulation, 

although the genetic composition of each class varies from species to species. Also, the 

expression kinetics for heat inducible gene transcription is likely highly dependent on the 

severity and duration of HS, which also vary between datasets. However, it appears that 

protein chaperones, the proteolytic system, DNA and RNA modifying enzymes, metabolic 

enzymes, regulatory kinases, and structural integrity proteins may be conserved systems 

impacted during HS.  
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Transcription and translation are repressed during HS 

In order to prevent newly synthesized proteins from becoming misfolded or aggregated, 

selective inhibition of transcription and translation occurs during increased periods of heat 

(90,91). There are multiple mechanisms that may control this phenomenon. First, HSF1 

may be an orchestrator of stimulus dependent chromatin conformation. For example, 

HSF1 decreases the acetylation of core histones in an HDAC1/2 dependent manner, 

ultimately compacting chromatin and inhibiting transcription (92). Also, transcriptional 

repression may be mediated by RNA-polymerase II pausing via stress-induced 

sumoylation of chromatin bound proteins at actively transcribed promoters (93). Thus, 

multiple mechanisms may play a role in transcriptional repression during HS.  

In addition to HS resulting in transcriptional repression, translation is also globally 

repressed during stress. The mechanisms currently known to halt translation during HS 

include repression of cap recognition complexes and repression of the initiation factor 

eIF2α (94,95). Recently, ribosome footprint profiling has uncovered a conserved 

mechanism of translation elongation pausing following a severe HS (96). Interestingly, 

Hsp70 was found to regulate translation by interacting with elongation factors, ribosomal 

proteins in the exit tunnel, and with nascent chains (96,97). Thus, repression of translation 

elongation during stress is a conserved mechanism that may function to prevent the 

misfolding of newly synthesized polypeptides.  

Post-transcriptional changes following HS 

microRNAs (miRNAs) are a family of small (19-23 bp), non-coding, and conserved RNA 

molecules that elicit a complex mechanism of post-transcriptional genetic control by fine-

tuning gene expression. miRNAs modulate gene expression by post-transcriptionally 
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regulating target genes through inhibition of mRNA translation (98) or destabilization of 

mRNA molecules (99). Over the last decade, HS has been reported to alter miRNA 

expression in plants, humans, rodents, and more recently in C. elegans (100,101). In 

human dermal fibroblast and HeLa cell lines, various miRNAs were shown to be induced 

and suppressed in response to HS (100,102). Also, a targeted screen in HeLa cells 

identified 8 miRNAs differentially expressed in response to heat, and found that 7 out of 

8 of these heat-induced miRNAs contained at least one HSF1 binding site in their 

promoters (101). Subsequently, overexpression and silencing of HSF1 was shown to 

impact miRNA expression. These data therefore suggest a direct regulatory role for 

mammalian HSF1 in controlling heat-induced miRNA expression.  

The HSR in Aging and Disease 

Activating the HSR to combat aging 

The average life expectancy of the population increases each year resulting in a need to 

uncover interventions to delay the onset of age-related diseases and decline. The HSR 

has been implicated to play a role in aging, as the ability of cells to maintain proteostasis 

deteriorates rapidly during the aging process. Mammalian and non-mammalian models 

such as human cell culture lines, rat, Drosophila, and C. elegans show a decreased 

capacity to mount a response to stress when comparing young vs old animals (103-109). 

HSF1 may also play an important role during aging, as a reduction in C. elegans HSF-1 

levels results in decreased lifespan (110,111). Also, neurodegenerative diseases 

commonly occur later in life when the HSR is dampened (112-114). Thus, activating the 

HSR is one method suggested to combat aging.  
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Activating the HSR to combat disease 

Many diseases are known to be associated with a malfunction in protein folding, and it is 

suggested that maintaining the proteome is important for promoting a healthy cellular 

environment. When the cell cannot cope with increasing levels of misfolded proteins, the 

formation of toxic protein aggregates can result and lead to a disease state (115). 

Activating the HSR may therefore be one therapeutic strategy to prevent protein folding 

diseases by increasing chaperone levels to overcome the build-up of toxic aggregate 

species. 

Small-molecule activators of the HSR 

Uncovering pharmalogical activators of the HSR are of interest for diseases of aging and 

protein dysfunction. Modulators of the HSR often target cellular components responsible 

for maintaining proteostasis including translation inhibition (puromycin) (116,117), protein 

folding inhibitors (azetidine 2-carboxylate, canavanine) (118-120), chaperone inhibitors 

(geldanamycin, radicicol) (121-124), DNA-synthesis inhibitors (fluorodeoxyuridine) (125), 

and proteasome/protease inhibitors (MG132) (126). Modifying these pathways may 

enhance proteostasis by decreasing protein turnover or increasing the production of 

chaperones. However, many pharmalogical activators of the HSR are not therapeutically 

feasible due to cytotoxicity and bioavailability (127). Therefore, uncovering feasible HSR 

activators may assist in the design of new potential therapies for aging and diseases of 

protein conformation.  
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C. elegans as a Model Organism 

An introduction to C. elegans 

C. elegans is an advantageous model organism for studying the molecular basis of 

cellular and physiological processes and how they impact aging and longevity (128). This 

organism is small in size, has a short life cycle, short life span, transparent anatomy for 

microscopic analysis, generates a large number of offspring, and has both easy and 

economic culturing (Figure 1.4) (129,130). The nematode goes through various molts 

before becoming a progeny producing adult, these include the first, second, third, and 

fourth larval stages (L1-L4, respectively). C. elegans are hermaphroditic and born with 

sperm, whereas oocytes are produced during adulthood. After adulthood, the typical 

lifespan of the worm is 20-30 days depending on their growth temperature which typicall 

ranges from 20°C-25°C. There are numerous resources available for C. elegans genetics 

including a fully sequenced annotated genome, detailed anatomical atlas, cell fate map, 

an RNAi feeding library for simple gene knockdown, and many available resources on 

basic biology and behavior. In addition, C. elegans is particularly beneficial for our studies 

as the HSR is highly-conserved in this species, and we are able to observe the effects of 

manipulating the HSR on aging and longevity.   

Longevity studies in C. elegans often implement the use of FUdR 

Aging and longevity studies in C. elegans provide valuable information on the 

consequence of genetic or chemical stimuli on lifespan. During longevity studies, 

separating progeny from adult C. elegans is essential to follow the original parental 

population throughout their lifespan. Rapid progeny development of larval nematodes 

makes it difficult to separate the parental generation from offspring during aging 
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experiments. For this reason, the DNA synthesis inhibitor 5-fluoro-2’-deoxyuridine (FUdR) 

is commonly employed to maintain a synchronous population of nematodes for aging 

studies (131-133). C. elegans embryos undergo rapid cellular divisions, requiring 

continual DNA synthesis. FUdR inhibits DNA synthesis after it is metabolized into FdUMP 

(5-fluoro-2′-deoxyuridine 5′-monophosphate) by thymidine kinase. FdUMP subsequently 

inhibits thymidylate synthase, an enzyme that is essential for pyrimidine biosynthesis 

(134). As adult nematodes undergo minimal cellular divisions, the standard practice for 

inhibition of reproduction is to treat synchronous populations of nematodes with FUdR at 

their last larval stage just before progeny production occurs. This is thought to have a 

minimal impact on adult nematodes while inhibiting the development of embryos. Adult 

nematodes are then scored every other day for survivors throughout lifespan. C. elegans 

are therefore advantageous for studying lifespan in response to various treatments due 

to their short lifespan and the ease of performing lifespan assays.  

The HSR is highly-conserved in C. elegans and mediated by HSF-1 

The HSR is vital for maintaining cellular function and promoting survival during stress, 

and regulation of the HSR and HSF1 are highly-conserved from yeast to human. In C. 

elegans, the HSF1 homolog, HSF-1, undergoes similar activation steps. HSF-1 exists as 

a monomer that homotrimerizes and binds to partially conserved HSEs in the promoter 

region of hsp genes during HS (135). HSF-1 has also been shown to be phosphorylated 

upon HS, similarly to a mammalian system (135). There are many advantages in utilizing 

the worm to study the HSR, such as observing the effects of manipulating the HSR and 

HSF-1 activity on a whole organism. In fact, studies of the HSR in C. elegans have 

identified a cell non-autonomous regulatory process that requires thermosensory neurons 
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for hsp induction, and that activation of the HSR in one tissue can elicit a response in 

distal tissues (136,137). Moreover, HSF-1 has a non-stress role in promoting longevity 

and development (111,138). Therefore, studies of the HSR in C. elegans have uncovered 

a conserved function for HSF1, a cell non-autonomous role for activation of the HSR, and 

a role for HSF-1 outside of stress responses.  

Studies: Uncovering Transcriptional Regulators and Targets of HSF-1 in C. elegans 

We were interested in testing the effects of various genetic, compound, and 

environmental stimuli on activation of the HSR by examining various HSF-1 regulated 

processes such as cytoprotection, longevity, transcription, and proteostasis using C. 

elegans as a model organism (Figure 1.5). Chapters 1 and 2 describe our findings that 

FUdR, coffee, and caffeine activate the HSR in an HSF-1-dependent manner and improve 

proteostasis in aging worms. Chapters 3 and 4 describe our findings that the nematode 

protein LST-3 is an ortholog to mammalian CCAR2, and that negative regulation of the 

HSR by CCAR2 is conserved in C. elegans and is mediated by LST-3. Chapters 5 and 6 

describe the genome-wide impact HSF-1 may have in regulating transcriptional 

processes during HS. By globally profiling HSF-1 mRNA and miRNA targets, we have 

uncovered heat-dependent and -independent processes controlled by HSF-1. Overall, 

these studies have found small molecule and genetic regulators of the HSR, while also 

uncovering stress-dependent and independent roles for HSF-1 in cytoprotection, 

longevity, transcription, and proteostasis. 
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Figure 1.1. HSF1 is a multi-domain protein. The domains of HSF-1 are important for regulating 
transcriptional activity. The DNA binding domain recognizes heat shock elements in the promoter 
region of heat shock protein genes. The HR-A/B region and the HR-C region control homotrimerization 
and subsequent transcription initiation. The regulatory domain and the transactivation domain harbor 
post-translational modification sites that control HSF-1 activity.  
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Figure 1.2. The mammalian HSF1 activity cycle. (a) Under non-stressed conditions, HSF1 is kept in a 
monomeric state by HSP70, HSP40, and HSP90, and shuttles between the nucleus and the cytoplasm. 
(b) Upon stress, HSF1 homotrimerizes and binds to heat shock elements which consist of three inverted 
repeats in the promoter region of HSF1 target genes. (c) Transcriptional activation via 
hyperphosphorylation allows for transcriptional activity and the production of heat shock protein genes, 
among other HSF1 target genes. (d) The HSR is attenuated when acetylation of the DNA-binding domain 
blocks accessibility of HSF-1 to DNA. The deacetylase SIRT1 deacetylates HSF-1 and subsequently 
increases the DNA-bound state of HSF-1, thus preventing attenuation and promoting the production of 
hsp genes. 
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Figure 1.4. Caenorhabditis elegans are an ideal model organism. The characteristics that make C. 
elegans a model organism include well defined genetics, translational impact to mammalian systems, 
and use for aging studies. These attributes combined make this nematode an ideal system for studying 
the effects of stress responses on the physiology of a whole organism.  
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Figure 1.5. Studies: uncovering transcriptional regulators and targets of HSF-1. Using C. elegans 
as a model organism, we tested the effects of compound treatment (Chapters 1 and 2), genetics 
(Chapters 3 and 4), and environment (Chapters 5 and 6) on various HSF-1-regulated processes 
including cytoprotection, longevity, transcription, and proteostasis.  
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Abstract  

The heat shock response is a prolongevity mechanism employed by cells to maintain 

proteostasis during stress. This response is conserved in all organisms, and in 

Caenorhabditis elegans, is mediated by the transcription factor heat shock factor 1 (HSF-

1). We show here that a compound commonly used to prevent larval development during 

aging studies in C. elegans, 5-fluoro-2’-deoxyuridine (FUdR), enhances heat shock 

induction of hsp mRNA expression in an HSF-1-dependent manner. Treatment with FUdR 

also decreases age-dependent polyglutamine aggregation in a Huntington’s disease 
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model, and this effect depends on HSF-1 as well. We therefore conclude that FUdR 

treatment modulates the HSR and proteostasis, and should be used with caution when 

used to inhibit reproduction during aging studies.  

Introduction 

The model organism Caenorhabditis elegans is frequently used in aging studies due to 

its rapid lifecycle, short lifespan, and ability to easily obtain a synchronous population. 

However, the rapid progeny development in this model makes it difficult to separate the 

parental generation from offspring during aging experiments. For this reason, the DNA 

synthesis inhibitor 5-fluoro-2’-deoxyuridine (FUdR) is commonly employed to maintain a 

synchronous population of nematodes in aging studies (131-133).  

C. elegans embryos undergo rapid cellular divisions which requires continual DNA 

synthesis. FUdR is able to inhibit DNA synthesis after it is metabolized into FdUMP (5-

fluoro-2′-deoxyuridine 5′-monophosphate) by thymidine kinase. FdUMP subsequently 

inhibits thymidylate synthase, an enzyme that is essential for pyrimidine biosynthesis 

(134). As adult nematodes undergo minimal cellular divisions, the standard practice for 

inhibiting reproduction is to treat synchronous populations of nematodes with FUdR 

around the L4/young adult (YA) life stage prior to progeny production. This treatment 

strategy is thus thought to have a minimal impact on adult nematodes while inhibiting the 

development of progeny. 

Recent studies have suggested that FUdR treatment may enhance stress-resistance. 

For instance, treatment with FUdR increases the lifespan of gas-1 mitochondrial mutants 

and tub-1 fat storage mutants, while also affecting the metabolism of wild-type nematodes 

(139-141). These recent studies have highlighted the importance of testing the effects of 
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FUdR on the particular conditions that are going to be used in an experiment prior to its 

use. We were therefore interested in determining effects on the HSR and proteostasis in 

response to treatment with FUdR by observing changes in chaperone expression in wild-

type worms, and aggregate formation in a C. elegans Huntington’s disease model. 

Results 

Standard FUdR treatment enhances hsp mRNA expression 

To determine if the HSR is affected by treatment with the standard doses of 100 µM or 

200 µM of FUdR given to L4/YA worms, transcript levels of the hsp-70 genes C12C8.1 

and F44E5.5 and the hsp-16.2 gene Y46H3A.3 were analyzed via qRT-PCR with or 

without heat shock (HS) and with or without hsf-1 RNAi as indicated (Figure 2.1). As 

expected, HS induced C12C8.1, F44E5.5, and Y46H3A.3 mRNA expression in an HSF-

1-dependent manner. Interestingly, 200 µM of FUdR on its own was able to activate 

expression of F44E5.5 mRNA. In addition, treatment with either 100 µM or 200 µM of 

FUdR enhanced HS induction of this gene and of the C12C8.1 and Y46H3A.3 mRNAs. 

This data indicates that standard FUdR treatment strategies used to inhibit progeny can 

enhance the HSR and would thus likely affect experimental results. 

Low-dose FUdR treatment enhances hsp mRNA expression 

We next looked for an alternative FUdR treatment strategy that would inhibit progeny 

production without impacting the HSR. We found that FUdR doses lower than 100 µM, 

given at the L4/YA stage, were not effective against preventing progeny development 

(data not shown). However, a low-dose treatment of 25 µM FUdR effectively inhibited all 

progeny from hatching if given at the L1 larval stage instead of the typical L4/YA stage. 

Also, this early treatment condition did not result in developmental defects (Figure A1, 
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see Appendix A). We were therefore interested in determining the effects of this 

alternative, low-dose, FUdR treatment strategy on the HSR.  

Using low-dose 25 µM FUdR treatment, we again evaluated the transcript levels of 

C12C8.1, F44E5.5, and Y46H3A.3 with or without HS and with or without hsf-1 RNAi 

(Figure 2.2). Interestingly, 25 µM FUdR alone induced C12C8.1, F44E5.5, and Y46H3A.3 

expression in an HSF-1-dependent manner, and the induction of all three mRNAs were 

enhanced by HS. We were therefore unable to find an FUdR treatment condition that 

could effectively prevent progeny development while also not activating or enhancing the 

HSR. 

Low-dose and standard FUdR treatment improves proteostasis in a C. elegans 

Huntington’s disease model 

As activation of the HSR improves proteostasis, we next tested whether FUdR was able 

to affect protein aggregation using a C. elegans Huntington’s disease model. This model 

expresses 35 polyglutamine tracts fused to YFP (Q35::YFP), where polyglutamine 

aggregates form in an age-dependent manner (142). We observed that treatment with 25 

µM FUdR from the L1 larval stage to day 3 of adulthood, or 200 µM of FUdR from L4/YA 

stage to day 3 of adulthood, decreased polyglutamine aggregation that was enhanced 

with HS and in an HSF-1-dependent manner (Figure 2.3a). As a separate approach to 

aggregate counting, we also quantified aggregate numbers using ImageJ software. The 

results indicate that blind analysis by hand counting aggregates and ImageJ quantification 

both reveal a similar trend (Figure 2.3b). Therefore, we conclude that low-dose and 

standard FUdR treatment strategies promote proteostasis in a C. elegans Huntington’s 

disease model.  
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Discussion 

In this study, we have found that various doses and stages of FUdR treatment enhances 

the HSR and promotes proteostasis in C. elegans. We first tested an FUdR treatment 

strategy commonly used by the C. elegans community during lifespan assays (100 µM or 

200 µM FUdR from the L4 larval stage through adulthood), and found that hsp mRNA 

expression enhanced in response to FUdR treatment. We then tested an alternative 

treatment strategy (25 µM FUdR from the L1 larval stage through adulthood) and found 

that although this low-dose treatment was able to effectively inhibit progeny development 

without causing any developmental delays, we still observed induction and enhancement 

of the HSR in response to treatment. Both standard and low-dose FUdR treatment 

promoted proteostasis in a C. elegans Huntington’s disease model. Additionally, each of 

these observations were found to be dependent on HSF-1. We were therefore unable to 

find an FUdR treatment strategy that could be used during lifespan assays to effectively 

inhibit progeny while also not affecting the HSR. 

Other studies were published while our work was in progress, confirming that FUdR 

treatment increases stress-resistance and proteostasis in C. elegans (143,144). Although 

the effect of FUdR on proteostasis was suggested to be independent of HSF-1 (143), our 

research shows that HSF-1 is required. In this study, we used hsf-1 RNAi for gene-

knockdown, whereas the study that demonstrated independence of HSF-1 used a C-

terminally truncated hsf-1 mutant worm (sy441) (145). It is possible that this mutant worm 

may retain partial HSF-1 activity. Future studies regarding the dependence of HSF-1 on 

FUdR-mediated induction of the HSR may help determine the role of HSF-1 in regulating 

this process.  
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Overall, our data further support a role for FUdR in promoting proteostasis in an HSF-

1-dependent manner. These findings confirm FUdR as an activator of the HSR through 

HSF-1, and highlight that caution should be taken when using FUdR in aging and stress-

response studies.  

Methods 

C. elegans strains and maintenance 

The Bristol N2 (wild-type) and Q35::YFP (142) strains were used in this study. All strains 

were grown at 24°C and maintained on standard nematode growth media (NGM) seeded 

with the Escherichia coli strain OP50. Age synchronization was accomplished by standard 

20% hypochlorite treatment and a 24 hour rotation at 220 rpm in M9 buffer at 24°C without 

food.  

RNA interference  

Synchronized larval nematodes were placed onto standard NGM plates supplemented 

with 25 µg/mL ampicillin and 1 mM isopropyl-beta-ᴅ-thiogalactopyranoside seeded with 

either empty plasmid (EV control, L4440) or hsf-1 RNAi from the Ahringer RNAi library 

(146). RNAi bacteria were grown for 12 hours and concentrated 20x in order to prevent 

inadvertent caloric restriction through inhibition of bacterial growth from FUdR treatment. 

Bacteria were allowed to induce on the plates overnight at room temperature. 

Fluorodeoxyuridine treatment 

FUdR (Sigma, cat# F0503) was diluted in sterile water to obtain a 100 mM stock. FUdR 

was added as a supplement to RNAi plates at a final concentration of 25 µM, 100 µM, or 

200 µM, as indicated. 
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Heat shock treatment 

Nematodes were grown on 100 mm RNAi plates, wrapped in parafilm, and submerged in 

a 33°C water bath for 30 minutes. For qRT-PCR analysis, animals were allowed to 

recover for 15 minutes at growth temperature prior to RNA extraction. For aggregate 

analysis, animals were allowed to recover overnight at growth temperature.  

Quantitative RT-PCR 

RNA was extracted with TRIzol® reagent (Ambion®, cat# 15596-026) by standard 

protocol, and cleaned up using the RNeasy Kit (Qiagen, cat# 74104). RNA was reverse 

transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

cat# 4368814) according to manufacturer’s instructions. cDNA was diluted to 50 ng/µl to 

be used as a template for qRT-PCR performed with the StepOne Plus Real-time PCR 

system (Applied Biosystems, cat# 4376600) using iTaq™ Universal SYBR® Green 

Supermix (BioRad, cat# 1725121) according to manufacturer’s instructions. Statistical 

analysis was performed with GraphPad (GraphPad Software, La Jolla California USA, 

http://www.graphpad.com) using ANOVA followed by the Bonferroni post-test when an 

interaction term was significant as indicated by the F statistic.  

Protein aggregation assay  

Q35::YFP nematodes were grown on control RNAi (EV, L4440) or hsf-1 RNAi plates. 

Worms without FUdR treatment were picked to new plates daily after first progeny 

development until day 3 of adulthood was reached. FUdR-treated worms were also 

picked to new plates daily in order to undergo similar conditions to the control worms. The 

EVOS fluorescence microscope was used to image each worm after sedation with 10 mM 

levamisole. Protein aggregation was scored by blind analysis of 50 worms per condition 
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in independent biological triplicates as previously described (128,173), where any stand-

alone GFP aggregate was scored as such. For ImageJ quantification, the color of the 

fluorescent images was inverted and then adjusted to black and white using Adobe 

Photoshop© (Adobe Systems Incorporated, San Jose, CA, USA). ImageJ (v. 1.44; 

http://imagej.nih.gov/ij/) was used to adjust the color threshold of each fluorescent image 

by the triangle method as a means to set an automatic threshold (178). Particle analysis 

was used to count and outline each aggregate with the following parameters: Size: 0-

Infinity; Circularity: 0.00-1.00; Show: Outlines. 

 

  



28 

 

  
Figure 2.1 Treatment with 100 µM or 200 µM FUdR from the L4/YA stage enhances HS induction 
of hsp-70 and hsp-16.2 mRNA expression in C. elegans in an HSF-1-dependent manner. 
Synchronized nematodes were grown until the L4/YA stage while being fed control RNAi (black bars) 
or hsf-1 RNAi [hsf-1(-), blue bars] as indicated. After developing to the point just before progeny 
production, worms were either picked to new plates daily, or transferred to plates containing 100 µM or 
200 µM FUdR, to avoid progeny contamination, until collection at day 3 of adulthood. Worms were heat 
shocked (HS) at 33°C for 30 minutes and allowed a 15 minute recovery before collection. mRNA levels 
were quantified for the hsp-70 genes C12C8.1 and F44E5.5, and the hsp-16.2 gene Y46H3A.3, via 
qRT-PCR. Results are representative of averaged technical duplicates from independent biological 
triplicates. Statistical analysis was performed using ANOVA followed by Bonferroni’s comparison test 
(*P<0.05, **P<0.01, ***P<0.001).  
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Figure 2.2. Treatment with 25 µM FUdR from the L1 stage enhances HS induction of hsp-70 and 
hsp-16.2 mRNA expression in C. elegans in an HSF-1-dependent manner. The same growth and 
experimental conditions were used as indicated in Figure 2.1, except nematodes were grown on 25 µM 
FUdR plates from the L1 stage until day 3 of adulthood. Results are representative of averaged technical 
duplicates from independent biological triplicates. Statistical analysis was performed using ANOVA 
followed by Bonferroni’s comparison test (*P<0.05, **P<0.01, ***P<0.001).  



30 

 

 

 

Figure 2.3. Treatment with FUdR decreases polyglutamine aggregation in an HSF-1-dependent 
manner. 25 µM FUdR was administered at the L1 stage, or 200 µM of FUdR was administered at the 
L4/YA stage, until day 3 of adulthood using the same growth conditions as described in Figures 2.1 and 
2.2. Q35::YFP nematodes were heat shocked at 33°C for 30 minutes and allowed to recover overnight. 
Images were taken, and aggregates were scored, on day 3 of adulthood (D3). (a) Fluorescent images 
of 5 worms for each condition are shown. The ImageJ outlines of the worms and aggregates are shown 
below each fluorescent image. (b) Quantification of the collective number of aggregates per worm by 
hand counting and using ImageJ software. Aggregates in 50 worms were counted per each condition 
based off of the fluorescent images for each treatment condition in biological triplicate. Significance was 
determined using ANOVA followed by Bonferroni’s comparison test (*P<0.05, **P<0.01, ***P<0.001). 
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Abstract 

As the population ages, there is a critical need to uncover strategies to combat diseases 

of aging. One method suggested to improve the quality of aging is through moderate 

consumption of coffee and caffeine. Studies in the soil-dwelling nematode Caenorhabditis 

elegans have demonstrated the protective effects of coffee extract and caffeine in 

promoting the induction of conserved longevity pathways including the insulin-like 

signaling pathway and the oxidative stress response. We were interested in determining 

the effects of coffee and caffeine treatment on the regulation of the heat shock response. 

The heat shock response is a highly-conserved cellular response that functions as a 

cytoprotective mechanism during stress, mediated by the heat shock transcription factor
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 HSF-1. In the worm, HSF-1 not only promotes protection against stress, but is also 

essential for development and longevity. Induction of the heat shock response has been 

suggested to be beneficial for diseases of protein-conformation by preventing protein 

misfolding and aggregation, and as such has been proposed as a therapeutic target for 

age-associated neurodegenerative disorders. In this study, we demonstrate that coffee is 

a potent, dose-dependent, inducer of the heat shock response. Treatment with a 

moderate dose of pure caffeine was also able to induce the heat shock response, 

indicating caffeine as an important component within coffee for producing this response. 

The effects that we observe with both coffee and pure caffeine on the heat shock 

response are both dependent on HSF-1. In a C. elegans Huntington’s disease model, 

worms treated with caffeine were protected from polyglutamine aggregates and toxicity, 

an effect that was also HSF-1-dependent. In conclusion, these results demonstrate 

caffeinated coffee, and pure caffeine, as protective substances that promote proteostasis 

through induction of the heat shock response.  

Introduction 

The average life expectancy of the population increases each year, resulting in a need to 

uncover interventions to delay the onset of aging-related diseases. Caffeine is a 

bioavailable compound that is consumed in large quantities worldwide with implications 

in promoting human healthspan and aging-associated neuropathologies (147). Moderate 

caffeine consumption has been suggested to promote protection against numerous 

neurodegenerative disorders including Alzheimer’s disease, dementia, and Parkinson’s 

disease (148,149). Additionally, epidemiological studies have correlated moderate 

caffeine consumption with improved memory (150), and reduced cognitive decline and 
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mortality (151,152). Thus, moderate caffeine consumption has been suggested to 

promote healthy aging and longevity in humans. 

Studies in the multi-cellular nematode Caenorhabditis elegans have demonstrated the 

positive impact of caffeine on longevity. Caffeine was uncovered as a longevity-promoting 

substance in a screen aimed at uncovering FDA-approved compounds that could extend 

the C. elegans lifespan (153). The lifespan extension observed in response to caffeine 

treatment was found to be temperature- and dose-dependent, and mediated in part 

through the insulin-like signaling pathway (153-155). Additionally, a worm Alzheimer’s 

model treated with caffeinated coffee extract was protected against β-amyloid-induced 

paralysis, an effect that was found to be dependent on the oxidative stress response 

factor SKN-1 (156). Taken together, these results suggest that caffeine and coffee 

treatment may act through conserved longevity pathways to promote healthy aging in C. 

elegans.   

The cytoprotective heat shock response (HSR) is a highly-conserved response 

employed by cells exposed to protein denaturing stressors, such as heat, which functions 

to maintain proteostasis (157). The mammalian HSR is regulated at the transcriptional 

level by the transcription factor heat shock factor 1 (HSF1). During stressful insults, HSF1 

enhances the expression of heat shock protein (hsp) genes which encode chaperone 

proteins. Chaperones serve multiple cytoprotective functions including the prevention of 

aggregate formation, promotion of protein folding, and mediation of protein degradation 

(158,159). Regulation of the HSR by HSF1 is thus an important cytoprotective mechanism 

utilized during heat stress to promote survival. 
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While HSF1 is classically studied for its role in regulating the HSR, studies of the C. 

elegans HSF1 homolog, HSF-1, have shown this transcription factor to also be essential 

for development and longevity (110,111). Knockdown of hsf-1 in C. elegans decreases 

lifespan and induces rapid aging, while its overexpression increases lifespan 

(110,111,138). Also, increased expression of hsp-70 in a C. elegans Huntington’s disease 

model protects against protein aggregate formation and its associated toxicity (160). 

Thus, enhancing HSF-1 activity may promote longevity and proteostasis. 

Many diseases of protein quality control, such as neurodegenerative disorders, are 

associated with the misfolding, aggregation, and accumulation of disease-associated 

proteins. Neurodegenerative diseases have been associated with a decline of the HSR, 

and decreased proteome maintenance, during the process of aging (161-163). In order 

to combat diseases of protein quality control, the identification of compounds that can be 

harnessed therapeutically to activate the HSR has been an active area of research over 

the past decade. However, many of the compounds currently known to modulate HSF1 

activity are not therapeutically feasible due to cytotoxicity and bioavailability issues (127). 

Therefore, uncovering alternative HSR activators may assist in the design of new 

potential therapies for diseases of protein conformation, and aging, such as 

neurodegenerative disorders.  

An interesting characteristic of HSR activators is that they often function synergistically 

with heat shock (HS) to enhance induction of the HSR. For example, the anti-

inflammatory drug indomethacin synergizes with a mild heat stress to increase hsp 

induction (164). Similarly, the triterpenoid celastrol (165), the inflammatory pathway 

intermediate arachidonic acid (166), the hydroxylamine derivative bimoclomal (167), 
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caloric restriction (72), and the pyrimidine analog fluorodeoxyuridine (125), can also 

function synergistically with HS to enhance hsp expression compared to treatment with 

each compound alone. Thus, many currently known HSR activators have synergistic 

effects on hsp expression when combined with a heat stress. 

In this study, we demonstrate caffeine as a component in coffee that mediates 

induction of the HSR in C. elegans. Using hsp-70 as a marker for induction of the HSR, 

we show a dose-dependent role for caffeine in inducing the HSR alone and together with 

HS, greater than that of decaffeinated or caffeinated coffee extracts. Furthermore, a C. 

elegans Huntington’s disease model was protected from polyglutamine aggregation and 

toxicity in response to treatment with caffeinated coffee extract, and even more so in 

response to treatment with a moderate dose of pure caffeine, an effect that is dependent 

on HSF-1. We therefore conclude that caffeinated coffee and, to a greater extent, caffeine 

are protective compounds that can induce the HSR and suppress age-associated protein 

aggregation in C. elegans.  

Results 

Treatment with caffeinated and decaffeinated coffee extract enhances HS-induced 

hsp-70 promoter activity  

To determine the effects of coffee on the HSR, we grew worms on plates supplemented 

with coffee extract and then assessed hsp-70 promoter activity by visualizing GFP 

expression under the control of the HS-inducible C12C8.1 (hsp-70) promoter (phsp-

70::GFP) (Figure 3.1). Synchronous phsp-70::GFP nematodes were left untreated 

(control), or subjected to treatment with decaffeinated or caffeinated coffee extract added 

at a 10% vol/vol to NGM plates, from the L1 larval stage to the L4 larval stage prior to 
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treatment with or without a 30 minute HS (Figure 3.1a). As expected, HS treatment of the 

control showed induction of HS-induced GFP expression as compared to the untreated 

control. Treatment with caffeinated (3.6 mM caffeine) and decaffeinated (0.032 mM 

caffeine) coffee extracts both enhanced HS-induced GFP expression as compared to the 

HS-treated control, with the caffeinated coffee extract having a stronger effect on hsp-70 

promoter activity. To quantify the GFP expression of the fluorescent images in Figure 

3.1a, fluorescence intensity was measured for each treatment condition using ImageJ 

(Figure 3.1b). Treatment with decaffeinated and caffeinated coffee extract increased HS-

induced fluorescence intensity 10-fold and 20-fold as compared to the HS-treated control, 

respectively. Thus, we conclude that components present in decaffeinated coffee can 

enhance the HSR, while caffeinated coffee further increases this effect, suggesting a role 

for coffee and caffeine in modulating the HSR.  

We were next interested in more closely examining tissue-specific induction of the 

hsp-70 promoter in response to treatment with caffeinated coffee extract alone (Figure 

3.1c). We observed that hsp-70 promoter activity was localized to intestinal gut granules. 

C. elegans gut granules are acidic lysosome-like organelles that serve as sites for fat 

storage and nutrient metabolism (168). These granules fluoresce under ultraviolet light 

due to the accumulation of glycosylated anthranilic acid, and can be visualized with a 

DAPI filter (168). Corresponding DAPI images are therefore shown to visualize the 

location of gut granules. Overlay of the GFP/DAPI images confirmed the localization of 

GFP expression to these intestinal granules in response to treatment with caffeinated 

coffee extract. Thus, treatment with caffeinated coffee extract results in tissue specific-
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activation of the hsp-70 promoter in gut granules in the absence of stress, and 

enhancement of hsp-70 promoter activity throughout the worm during HS.  

Treatment with caffeinated coffee extract enhances hsp-70 mRNA expression 

greater than that of decaffeinated coffee 

We next used qRT-PCR to measure the expression of the endogenous hsp-70 family 

members C12C8.1, F44E5.4, and F44E5.5 in response to treatment with caffeinated and 

decaffeinated coffee extracts (Figure 3.2). Synchronous wild-type worms were left 

untreated (control), or subjected to treatment with decaffeinated or caffeinated coffee 

extract (added at a 10% vol/vol to NGM plates) from the L1 larval stage to the L4 larval 

stage prior to treatment with or without  a 15 minute HS. As expected, HS treatment of 

the control increased the expression of each hsp-70 family member as compared to the 

untreated control. Consistent with the results in Figure 3.1, decaffeinated coffee extract 

did not induce C12C8.1 mRNA expression upon treatment alone, but was able to 

enhance HS-induced C12C8.1 mRNA expression 6-fold as compared to the HS-treated 

control. Additionally, treatment with caffeinated coffee extract alone induced C12C8.1 

mRNA expression 3-fold, and enhanced HS-induced C12C8.1 mRNA gene expression 

35-fold. We also observed that treatment with caffeinated coffee extract had a stronger 

effect (13-fold) on C12C8.1 mRNA expression compared to treatment with decaffeinated 

coffee extract (Figure 3.2a). A similar trend is also observed for the hsp-70 family 

members F44E5.4 and F44E5.5 (Figure 3.2b-c). Treatment with caffeinated coffee extract 

therefore has a stronger effect on inducing hsp-70 mRNA expression, and enhancing 

hsp-70 mRNA expression upon HS, as compared to treatment with decaffeinated coffee 
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extract. These data thus further suggest a role for caffeine as a component in coffee that 

can activate the HSR. 

Treatment with pure caffeine robustly enhances hsp-70 mRNA expression in a 

dose-dependent manner 

To determine the effects of pure caffeine on the HSR, qRT-PCR was performed for the 

hsp-70 family members C12C8.1, F44E5.4, and F44E5.5 in response to treatment with 

various doses of caffeine (Figure 3.3). Synchronous wild-type worms were left untreated 

(control), treated with caffeinated coffee, or subjected to treatment with low (0.5 mM, 1 

mM), moderate (3.6 mM), and high (5 mM, 10 mM) doses of pure caffeine, from the L1 

larval stage to the L4 larval stage prior to a 30 minute HS-treatment. We observed that 

low and moderate doses of caffeine did not affect the rate of development of the worm, 

whereas high doses stunted development Figure B1 (see Appendix B). We therefore 

focused our studies on low and moderate doses of caffeine to avoid changes in the 

developmental stages of the worms from affecting our data. As expected, HS-treatment 

increased the induction of each HS-inducible hsp-70 family member (80-200-fold) as 

compared to the untreated control. Similar to the trend observed in Figure 3.2, treatment 

with caffeinated coffee extract alone induced the expression of each hsp-70 family 

member (5-20 fold), and enhanced the expression of each hsp-70 family member when 

combined with HS (150-300 fold), compared to the respective controls. Interestingly, pure 

caffeine treatment has a robust, and dose-dependent, effect on hsp-70 mRNA expression 

compared to treatment with caffeinated coffee extract. In fact, treatment with 3.6 mM pure 

caffeine alone induced C12C8.1 mRNA expression (50-fold) similarly to that of HS (80-

fold), indicating caffeine as a strong inducer of the HSR (Figure 3.3a). Additionally, 
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treatment with 3.6 mM pure caffeine (the amount of caffeine resulting from our caffeinated 

coffee extract protocol) resulted in the largest enhancement of HS-induced C12C8.1 

mRNA expression, compared to treatment with caffeinated coffee extract and low-dose 

caffeine treatment. A similar trend is also observed for the hsp-70 family members 

F44E5.4 and F44E5.5 (Figure 3.3b-c). These data thus demonstrate caffeine as a 

component in coffee that induces and enhances the HSR.   

Induction of hsp-70 mRNA expression in response to treatment with caffeinated 

coffee extract and moderate caffeine is dependent on HSF-1 

We next used qRT-PCR to assess the role of HSF-1 in regulating hsp-70 mRNA 

expression in response to treatment with caffeinated coffee extract and pure caffeine. 

Wild-type worms were either left untreated or subjected to treatment with caffeinated 

coffee extract, or 3.6 mM pure caffeine, from the L1 larval stage the L4 larval stage prior 

to treatment with or without a 30 minute HS in the presence of control or hsf-1 RNAi 

(Figure 3.4). As expected, HS treatment of the control increased the expression of each 

hsp-70 family member as compared to the untreated control in an HSF-1-dependent 

manner. Consistent with the results in Figure 3.3, treatment with caffeinated coffee extract 

and 3.6 mM caffeine induced C12C8.1, F44E5.4, and F44E5.5 mRNA expression upon 

treatment alone, and also collectively with HS (Figure 3.4, black bars). Additionally, the 

ability of worms to enhance hsp-70 mRNA expression in response to caffeinated coffee 

extract and pure caffeine treatment is dependent on HSF-1. Worms fed hsf-1 RNAi 

showed a 500-1500-fold decrease in their ability to enhance hsp-70 mRNA expression 

upon treatment with caffeinated coffee extract or 3.6 mM caffeine during HS (Figure 3.4, 
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blue bars). Thus, induction of the HSR in response to caffeinated coffee extract and pure 

caffeine treatment is dependent on HSF-1.   

Caffeinated coffee extract and pure caffeine treatment protect a C. elegans 

Huntington’s disease model against polyglutamine aggregation and toxicity in an 

HSF-1-dependent manner 

We were next interested in testing the effects of caffeinated coffee extract and 3.6 mM 

pure caffeine on proteostasis by observing protein aggregate formation in a C. elegans 

Huntington’s disease model (Figure 3.5). The Huntington’s disease model we used 

harbors 35 polyglutamine repeats fused to YFP under the control of a muscle promoter 

(Q35::YFP), and develops insoluble protein aggregates in the body wall muscle in an age-

dependent manner (142). Synchronous Q35::YFP worms were left untreated (control), or 

subjected to treatment with caffeinated coffee extract or 3.6 mM pure caffeine from the 

L1 larval stage until day 3 of adulthood in the presence of control or hsf-1 RNAi. We 

observed a decrease in punctate-YFP aggregation upon treatment with caffeinated coffee 

extract and 3.6 mM pure caffeine, an effect that is dependent on HSF-1 (Figure 3.5a). 

ImageJ was used on threshold-adjusted images to allow quantification of the number of 

aggregates per worm for each treatment condition (Figure 3.5b). Treatment with 

caffeinated coffee extract and 3.6 mM pure caffeine suppressed aggregate formation by 

a magnitude of 10 and 15 less aggregates per worm, respectively, compared to the 

control (Figure 3.5b, black bars). The decrease in aggregate formation observed in 

response to treatment with caffeinated coffee and 3.6 mM pure caffeine was dependent 

on HSF-1, as worms cultured in the presence of hsf-1 RNAi did not exhibit a decrease in 

aggregate formation in response either treatment condition (Figure 3.5b, blue bars). 
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These data suggest that treatment with caffeinated coffee extract and pure caffeine 

protects against polyglutamine aggregate formation in a C. elegans Huntington’s disease 

model in an HSF-1-dependent manner.  

 We next assessed the toxicity associated with polyglutamine expansions by observing 

paralysis in the Huntington’s disease model in response to treatment with caffeinated 

coffee extract or pure caffeine (Figure 3.5c). Synchronous Q35::YFP worms were left 

untreated (control), or subjected to treatment with caffeinated coffee extract or 3.6 mM 

pure caffeine from the L1 larval stage until day 5 of adulthood in the presence and 

absence of hsf-1 RNAi. Treatment with caffeinated coffee extract reduced paralysis by 

25%, while 3.6 mM pure caffeine reduce paralysis by 39%, compared to the control 

(Figure 3.5c, black bars). The ability of caffeinated coffee extract and 3.6 mM caffeine to 

reduce paralysis is abolished in the presence of hsf-1 RNAi, showing dependence on 

HSF-1 (Figure 3.5c, blue bars). This data correlates to Figure 3.5b, suggesting that the 

number of aggregates present in the worm may be associated with paralysis. Thus, 

treatment with caffeinated coffee extract and 3.6 mM pure caffeine decreases 

polyglutamine aggregate formation and paralysis in an HSF-1-dependent manner in a C. 

elegans Huntington’s disease model.  

Discussion 

In this study, we demonstrate caffeine as a component in coffee that activates the HSR 

and promotes proteostasis in C. elegans (for a summary of results, see Figure 3.6). We 

observe that treatment with caffeinated coffee extract results in greater activation of the 

HSR as compared to decaffeinated coffee extract, and find a dose-dependent role for 

pure caffeine in activating the HSR. Furthermore, we show a central role for HSF-1 in 
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regulating the response to caffeinated coffee extract and pure caffeine treatment on hsp-

70 mRNA induction. Additionally, treatment with caffeinated coffee extract and a 

moderate dose of pure caffeine protects against polyglutamine aggregation and toxicity 

in a C. elegans Huntington’s disease model in an HSF-1-dependent manner. Overall, this 

work suggests that caffeinated coffee extract and moderate caffeine consumption may 

protect against age-associated neurodegeneration by promoting proteostasis through 

activation of the HSR.    

Caffeine is well known for its bioavailability in natural products including coffee, tea, 

and chocolate (169). The degree of caffeine consumption varies world-wide. The average 

amount of caffeine consumed in the US is approximately 168 mg per day, the equivalent 

of two cups of coffee (170). Our data suggests that the effects of caffeine are highly dose-

dependent, and that an optimum dose of caffeine can maximize health benefits while 

decreasing health risks. Our treatment conditions consisted of low (0.5 mM, 1 mM), 

moderate (3.6 mM), and high-dose (5 mM, 10 mM) chronic caffeine exposure from the 

first larval stage to the last larval stage of development. Moderate caffeine treatment 

enhanced the HSR with no developmental delays, whereas high-dose caffeine treatment 

severely stunted development. We therefore conclude that moderate chronic caffeine 

consumption may promote proteostasis while avoiding off-target phenotypic effects.   

Coffee extract contains many dissolved solutes other than caffeine, including 

chlorogenic and phenolic acids, aromatic compounds, and diterpene molecules, among 

others (171-173). Although we demonstrate caffeine as a robust activator of the HSR, our 

data also suggests other coffee components as modulators of the HSR. Worms treated 

with decaffeinated coffee extract show a moderate enhancement of HS-induced hsp-70 
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mRNA expression, suggesting a caffeine-independent induction of the HSR. Two 

diterpene molecules found in coffee extract, cafestol and kahweol, affect the oxidative 

stress response and protect against neurodegeneration (174,175). Thus, it would be 

interesting to determine if these compounds, along with other coffee components, also 

modulate the HSR.  

In mammals, the pharmacological effects of caffeine are mediated by stimulation of 

the central nervous system through non-selective inhibition of neuronal adenosine 

receptors (176,177). In C. elegans, caffeine-mediated lifespan extension was found to be 

dependent on adenosine signaling (155), suggesting a partially conserved mechanism. 

Interestingly, the density of serotonergic receptors, and serotonin levels, are increased in 

response to caffeine intake in mammals (178), while the metazoan HSR is induced 

through stimulation of serotonergic neurons (179). Therefore, it would be interesting to 

determine the dependency of adenosine receptors and serotonin signaling in caffeine-

mediated induction of the HSR in C. elegans.   

The metazoan HSR is a highly complex system that employs cell-nonautonomous 

signaling to maintain proteostasis between tissues (136,137). The release of 

neuropeptides from neurons, such as serotonin, can act as a signaling mechanism to 

activate the HSR in distal tissues (179,180). Treatment with caffeinated coffee extract 

results in unique tissue-specific activation of the hsp-70 promoter in gut granules, a 

process that may be elicited through coffee-mediated neurostimulation. Gut granules are 

located predominately in the intestine and are major sites for fat storage and nutrient 

metabolism (181-183). The HSR has been linked to the metabolic state of an organism. 

For example, caloric restriction can synergize with heat to enhance the HSR (72). 
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Although caffeinated coffee extract treatment does not affect C. elegans feeding, or 

initiate a secondary caloric restrictive response (156), our data suggests that gut granular 

metabolic processes may influence the HSR. Further investigation into coffee-induced 

neuronal stimulation, and the effects on tissue-specific hsp-70 promoter induction, may 

uncover novel neuronal receptors that mediate cell-nonautonomous signaling. 

C. elegans is a powerful model that can be utilized to uncover therapeutic compounds 

for neurodegenerative diseases. Many of the compounds found to elicit positive 

responses in C. elegans neurodegenerative disease models have a translational impact 

in mammalian systems (184). Small molecule activators of the HSR have been suggested 

as possible therapeutic strategies to prevent aggregate-associated neurodegenerative 

disorders (163,185-187). HSR inducers often function synergistically with one another to 

enhance induction of the HSR (72,125,165). We can now add coffee extract and caffeine 

to the list of compounds that induce the HSR alone, and that function synergistically with 

heat to promote induction of the HSR. Ultimately, this finding may aid in the design of 

potential therapies for diseases of protein quality control. 

Overall, this study demonstrates caffeinated coffee extract and a moderate dose of 

caffeine as activators of the HSR, both alone, and in combination with HS. Our studies 

suggest that the genetic mechanisms behind the neuroprotective benefits associated with 

coffee and caffeine supplementation depend, at least in part, on activation of the HSR 

and HSF-1. Caffeinated coffee extract and moderate caffeine treatments are promising 

therapeutic options for age-associated neurodegenerative diseases due to bioavailability 

and low toxicity. Additionally, caffeine readily crosses the blood-brain barrier, making it 

an ideal therapeutic candidate for neurodegenerative disorders (188). Caffeinated coffee 
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extract and caffeine may elicit their protective benefits, in part, through induction of the 

HSR, thus warranting further studies in mammalian systems.  

Methods 

C. elegans strains and maintenance  

The wild-type N2, pC12C8.1::GFP (111), and Q35::YFP (AM140) (142) strains were used 

in this study. Worms were maintained at 23°C on standard NGM plates seeded with 

Escherichia coli OP50. A synchronous population of nematodes was obtained by 

standard 20% hypochlorite treatment, and a 24 hour rotation at 220 rpm in M9 buffer 

without food.  

RNAi feeding 

Synchronous L1 nematodes were plated onto standard NGM plates supplemented with 

25 µg/mL ampicillin and 1 mM isopropyl-beta-ᴅ-thiogalactopyranoside seeded with 

sequence-verified empty vector control RNAi or hsf-1 RNAi isolated from the Ahringer 

RNAi library (146).  

Heat shock conditions 

Synchronous nematodes were grown on plates, wrapped in parafilm, and submerged in 

a 33°C water bath for either 15 or 30 minutes as indicated. For qRT-PCR, worms were 

allowed to recover for 15 minutes prior to RNA extraction.   

Coffee extract and caffeine media preparation 

We performed an aqueous extraction protocol to obtain decaffeinated and caffeinated 

coffee extract that was developed in the Pallanck laboratory (174). This extraction method 

was previously determined to contain 0.032 mM caffeine in the decaffeinated coffee 

extract, and 3.6 mM caffeine in the caffeinated coffee extract (174). Briefly, 18.48 g of 
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caffeinated and decaffeinated Starbucks House Blend whole bean coffee was ground for 

3 minutes, placed into boiling water for 30 minutes, filtered with a French press, and 

sterilized with a 0.2 µM filter. Coffee extract was then added at a final volume of 10% to 

plates. The indicated concentrations of pure caffeine (Fisher Scientific, cat# S93153) 

were added to NGM prior to autoclaving, similarly to Sutphin et al. (154). Worms were 

exposed to each treatment condition from the L1 larval stage until the L4 larval stage for 

gene expression analyses, until day 3 of adulthood for polyglutamine aggregate analyses, 

and until day 5 for the paralysis assay.  

RNA preparation and cDNA synthesis 

Total RNA was extracted using TRIzol® reagent (Ambion®, cat# 15596-026) by standard 

protocol, and purified using RNeasy columns (QIAgen, cat# 74104). RNA was reverse 

transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

cat# 4368814) according to manufacturer’s instructions. cDNA was diluted to 50 ng/µl 

prior to being used as a template for qRT-PCR. 

Quantitative RT-PCR  

qRT-PCR was performed with the StepOne Plus Real-time PCR system (Applied 

Biosystems, cat# 4376600) using iTaq™ Universal SYBR® Green Supermix (BioRad, 

cat# 1725121) according to the manufacturer’s instructions. Data analysis was performed 

according to standard calculations using the comparative Ct method (189). Relative 

mRNA levels were normalized to gapdh, and calculated from independent biological 

triplicates and technical duplicates.  
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Fluorescence microscopy and quantification 

Worms were collected in 1 mL of M9 buffer, placed onto a glass slide, and anesthetized 

with 10 mM levamisole prior to imaging. An EVOS fluorescence microscope was used for 

phase contrast, GFP, and DAPI imaging. Fluorescence intensity was quantified using 

ImageJ (ImageJ Software, Bethesda Maryland USA, http://imagej.nih.gov/ij/) for 50 

worms per treatment condition in independent biological triplicates (190). 

Polyglutamine aggregation assay 

Synchronous Q35::YFP animals were cultured on control or treatment plates as indicated. 

Worms were picked daily to new plates until day 3 of adulthood to avoid progeny 

contamination. At day 3 of adulthood, 5 worms were lined up side by side on a NGM plate 

spotted with 10 µL of 10 mM levamisole to induce paralysis. Worms were photographed 

as described above, and ImageJ (ImageJ Software, Bethesda Maryland USA, 

http://imagej.nih.gov/ij/) was used to apply the triangle method as a means to set an 

automatic color threshold. Particle analysis was then used to count the number of 

aggregates of 50 worms per condition in independent biological triplicates (125,190,191). 

Paralysis assay 

Synchronous Q35::YFP animals were cultured on control or treatment plates as indicated. 

Worms were picked to new plates daily until day 5 of adulthood to avoid progeny 

contamination. Paralysis was determined by transferring 100 live worms per condition, in 

biological duplicates, to a corresponding fresh plate and observing movement within 5 

minutes. Worms that did not move within that time frame were scored as paralyzed. 

 

 

http://imagej.nih.gov/ij/
http://imagej.nih.gov/ij/
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Statistical analyses 

Statistical analyses were carried out with GraphPad Software (GraphPad Software, La 

Jolla California USA, http://www.graphpad.com) using ANOVA followed by the Bonferroni 

post-hoc test. Error bars are representative of standard deviation between independent 

biological replicates as indicated. 
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Figure 3.1. Treatment with coffee extract enhances HS-induced hsp-70 promoter activity. (a) 
Fluorescent images are shown of synchronous phsp-70::GFP nematodes left untreated (control), or 
subjected to treatment with decaffeinated and caffeinated coffee extract (added at a 10% vol/vol to NGM 
plates), from the L1 larval stage to the L4 larval stage prior to treatment with or without a 33°C 15 minute 
heat shock (HS) followed by a 12 hour recovery. (b) The GFP intensity of 50 worms given the same 
treatment conditions in (a) was quantified using ImageJ and significance was determined using the 
Bonferroni post-hoc test compared to the control and between treatment conditions.  * p < 0.05, *** p < 
0.001. (c) Treatment with caffeinated coffee extract results in localized phsp-70::GFP expression. Phase 
contrast, DAPI, GFP, and DAPI/GFP overlay images of phsp-70::GFP worms left untreated or subjected 
to treatment with caffeinated coffee extract are shown in order to compare tissue specific hsp-70 
promoter activation to the location of gut granules. 
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Figure 3.2. Treatment with caffeinated coffee extract enhances hsp-70 mRNA expression in a 
dose-dependent manner greater than decaffeinated coffee. (a-c) mRNA expression for the hsp-70 
genes C12C8.1, F44E5.4, and F44E5.5 was determined with qRT-PCR using synchronous wild-type 
worms left untreated (control), or subjected to treatment with decaffeinated and caffeinated coffee 
extract (added at a 10% vol/vol to NGM plates), from the L1 larval stage to the L4 larval stage prior to 
treatment with or without a 33°C 15 minute heat shock (HS) followed by a 15 minute recovery. Results 
are representative of technical duplicates from biological triplicates, and significance was determined 
using the Bonferroni post-hoc test compared to the control and between treatment conditions.  * p < .05, 
*** p < 0.001. 

Figure 3.3. Treatment with pure caffeine enhances hsp-70 mRNA expression greater than 
caffeinated coffee extract in a dose-dependent manner. (a-c) mRNA expression for the hsp-70 
genes C12C8.1, F44E5.4, and F44E5.5 was determined with qRT-PCR using synchronous wild-type 
worms grown on standard plates left untreated (control), and plates supplemented with caffeinated 
coffee extract (for comparison) or various doses of pure caffeine, as indicated, from the L1 larval stage 
to the L4 larval stage before treatment with or without a 33°C 30 minute heat shock (HS) followed by a 
15 minute recovery. The amount of caffeine previously found to be present in the protocol we used to 
obtain our caffeinated coffee extract is 3.6 mM. Results are representative of technical duplicates from 
biological triplicates, and significance was determined using the Bonferroni post-hoc test compared to 
the control and between treatment conditions. * p < 0.05, *** p < 0.001. 
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Figure 3.4. Induction of hsp-70 mRNA expression in response to treatment with caffeinated coffee 
extract and caffeine is dependent on HSF-1. mRNA expression for the hsp-70 genes C12C8.1, 
F44E5.4, and F44E5.5 was determined with qRT-PCR using synchronous wild-type worms grown on 
RNAi plates fed empty vector RNAi (control) or hsf-1 RNAi to knockdown gene expression. Worms were 
then left untreated (control) or grown on plates supplemented with caffeinated coffee extract (added at 
a 10% vol/vol to NGM plates) or 3.6 mM pure caffeine, as indicated, from the L1 larval stage to the L4 
larval stage before treatment with or without a 33°C 30 minute HS followed by a 15 minute recovery. 
Results are representative of technical duplicates from biological triplicates, and significance was 
determined using the Bonferroni post-hoc test compared to the control and between treatment 
conditions. * p < 0.05, **<0.01, *** p < 0.001. 
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Figure 3.5. Treatment with caffeinated coffee extract and 3.6 mM pure caffeine promotes 
proteostasis in a C. elegans Huntington’s disease model in an HSF-1-dependent manner. (a) 
Polyglutamine aggregates in a C. elegans Huntington’s disease model are suppressed upon treatment 
with caffeinated coffee extract and caffeine. Fluorescent images and threshold-adjusted images (black 
and white) are shown of synchronous worms expressing 35 polyglutamine tracts fused to YFP 
(Q35::YFP) under the control of a muscle promoter that were grown on RNAi plates with empty vector 
RNAi (control) or hsf-1 RNAi. Worms were left untreated (control), or subjected to treatment with 
caffeinated coffee extract (added at a 10% vol/vol to NGM plates) or 3.6 mM pure caffeine from the L1 
larval stage until day 3 of adulthood. (b) Quantification of polyglutamine aggregates. Aggregates were 
scored with ImageJ particle analysis using the threshold-adjusted images from (a) for 50 worms per 
condition in biological triplicates. (c) Treatment with caffeinated coffee extract and 3.6 mM caffeine 
prevents paralysis in a C. elegans Huntington’s disease model. Worms given the same treatment 
conditions in (a) were grown until day 5 of adulthood and a worm was considered paralyzed if no 
movement was observed in 1 minute for 100 worms per condition in biological duplicates. Significance 
was determined using the Bonferroni post-hoc test compared to the control and between treatment 
conditions.  * p < 0.05, **<0.01. 
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Figure 3.6. Summary of the effects of caffeinated coffee extract and pure caffeine on the heat 
shock response and proteostasis in C. elegans. In this study, we have found that C. elegans treated 
with caffeinated coffee extract and pure caffeine induce hsp-70 mRNA expression upon treatment alone, 
and in combination with HS, in an HSF-1-dependent manner. The level of induction of hsp-70 mRNA 
expression observed in response to treatment with caffeinated coffee extract and pure caffeine 
treatment corresponds to the extent of polyglutamine aggregate suppression and paralysis observed in 
a C. elegans Huntington’s disease model. We therefore conclude that moderate caffeine consumption 
may promote proteostasis through induction of the HSR. 
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Abstract 

Cell cycle and apoptosis regulator 2 (CCAR2, DBC1) is a predominantly nuclear, multi-

domain protein, that modulates gene expression by inhibiting several epigenetic 

modifiers. For example, CCAR2 regulates chromatin remodeling through the inhibition of 

the deacetylases SIRT1 and HDAC3, and the methyltransferase SUV39H1. CCAR2 

shares many highly-conserved protein domains with its paralog cell cycle and apoptosis 

regulator 1 (CCAR1). In this study, we examined the full-length sequential and structural 

properties of CCAR2 and CCAR1 from multiple species, and correlated these properties 

with the evolutionary path of these proteins. Our data confirms that the conserved 

domains shared between CCAR2 and CCAR1 have similar structures, as well as similar 

patterns of disorder. Our data suggests that CCAR2 emerged later in evolution than 



54 

CCAR1. CCAR2 contains regions that exhibit less conservation across species as 

compared to the same regions in CCAR1, suggesting a continuously evolving scenario 

for CCAR2. Additionally, our analyses indicate similarities between CCAR2, CCAR1, and 

the nematode protein lateral signaling target 3 (LST-3). Altogether, this study suggests 

that CCAR1 evolved from LST-3, and that CCAR1 underwent a duplication event to 

evolve into modern day CCAR2. This study provides insight into the structure and 

evolution of CCAR2 and CCAR1, which may impact future studies on the biological 

functions of these proteins.  

Introduction 

Cell cycle and apoptosis regulator 1 (CCAR1) and 2 (CCAR2) are emerging as important 

regulators of a variety of physiological processes. CCAR2 regulates gene expression by 

inhibiting the chromatin modifying deacetylases SIRT1 and HDAC3, and the 

methyltransferase SUV39H1 (73,192-194). As a result, CCAR2 regulates a variety of 

cellular processes including aging, metabolism, apoptosis, and stress response pathways 

(67,73,194-197). CCAR2 studies are currently expanding to uncover new interacting 

partners and roles in other biological processes. 

CCAR1 is the paralog of CCAR2 that was originally identified as a mediator of 

apoptosis in a process that involves sequestration of 14-3-3 and altered expression of 

multiple cell-cycle regulatory genes (195,196,198). CCAR1 also binds to a mediator 

complex and enhances the transcription of estrogen receptor and glucocorticoid receptor 

target genes, while also acting as a co-activator of p53-dependent transcription (199). 

Additionally, CCAR1 cooperatively binds to CCAR2 and synergistically enhances 
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estrogen receptor function (200). Thus, similarly to CCAR2, CCAR1 regulates a variety 

of cellular processes, and functions together with CCAR2 in some cases. 

The domains of CCAR2 and CCAR1 are important for their functions. CCAR2 and 

CCAR1 share many of the same functional domains including an S1-Like domain and a 

nuclear localization signal (NLS) on the N-terminus, a Leucine zipper (LZ) domain and a 

Nudix domain that are centrally located, and an EF-Hand domain and coiled-coil 

segments on the C-terminus (196,200,201). However, experimental evidence regarding 

the specific functions of the S1-Like, Nudix, and EF-Hand domains for both CCAR2 and 

CCAR1 have not yet been determined.  

The N-terminus of CCAR2 (aa1-264) is the region where most of the currently known 

protein-protein interactions have been mapped. The S1-Like domain was originally 

identified in the ribosomal protein S1. Proteins that contain homology to this domain 

typically have RNA binding capabilities, suggesting evolution from an ancient nucleic acid 

binding protein (202). The NLS is an important site for regulation via post-translational 

modifications, where acetylation can disrupt CCAR2 translocation into the nucleus and 

ultimately inhibit nuclear interactions (203). The LZ is a structural motif that functions as 

a dimerization domain, and can bind to DNA to regulate gene expression in CCAR2, but 

it is likely non-functional in CCAR1 (204). CCAR2 interactions with epigenetic modifiers, 

nuclear receptors, and mRNA splicing components all take place within the N-terminal 

area (73,192-194,200,203). The CCAR2/SIRT1 interaction has been highly studied due 

to the important role that CCAR2 plays in inhibiting the epigenetic modifications that are 

regulated by SIRT1. Conflicting data points to either the LZ of CCAR2 (aa243-264) 

(73,77,200,205) or the N-terminal amino acids 1-240 as being critical for this interaction 
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with SIRT1 (203). The N-terminus has therefore been implicated in a majority of CCAR2 

regulated processes.  

The central region of CCAR2 and CCAR1 contains a Nudix domain that is catalytically 

inactive due to the absence of key amino acid residues within the catalytic site. However, 

it has been suggested to play a role in sensing NAD products of the SIRT1 deacetylase 

reaction (196). The SAP domain, specific to CCAR1, is also centrally located. This domain 

shares homology with a DNA-binding motif commonly found in a diverse set of nuclear 

proteins that are typically involved in chromosomal organization (206). The central region 

of CCAR1 and CCAR1 is therefore not known to be involved in many interactions.  

The C-terminus of both CCAR2 and CCAR1 contains an EF-Hand domain and coiled-

coil segments. EF-Hand domains bind to calcium ions and regulate gene expression but, 

similar to the Nudix domain, the EF-Hand of CCAR2 and CCAR1 may not be functional 

(195). Both proteins also contain a coiled-coil segment in the C-terminus, with an extra 

coiled-coil segment present in CCAR1. Coiled-coil regions are known to contain important 

protein interaction motifs (207). The coiled-coil region of CCAR2 has been shown to 

interact with only one protein thus far, the circadian cycle nuclear receptor Rev-erbα. 

Overexpression of CCAR2 can enhance the stability and expression of Rev-erbα, 

ultimately affecting circadian oscillations and metabolism (208). Coiled-coil segments are 

typically protein interactions motifs, thus there are likely more roles for the C-terminus of 

both CCAR2 and CCAR1.  

The presence of highly-conserved domains shared between CCAR2 and CCAR1 

indicates that CCAR2 and CCAR1 may have evolved from one common ancestor. 

Corresponding to this, an evolutionary connection between CCAR2 and CCAR1 has been 
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reported in the large ortholog database OrthoDB (209). Also, CCAR2 and CCAR1 are 

predicted to be intrinsically disordered as demonstrated in the D2P2 database of 

predicted disordered proteins (210). As shown by previous studies on other proteins (211-

220), evolutionary analysis that takes protein intrinsic disorder into account can uncover 

segments that are critical for protein function (221-223). We were therefore interested in 

evaluating the detailed evolutionary path that CCAR2 and CCAR1 have taken, and the 

factors that have influenced their evolutionary path in order to add to the current 

knowledge base of these two proteins. 

In this study, we have predicted the structural properties of CCAR2 and CCAR1, and 

our findings support the function of both proteins in many protein-protein interactions due 

to the high occurrence of disordered residues in each protein. Phylogenetic analysis 

predicts that both CCAR2 and CCAR1 evolved from one common ancestor, the nematode 

protein LST-3. Collectively, this study provides insight into the future studies of CCAR2 

and CCAR1 by evaluating both evolution and structure. 

Results 

CCAR2 and CCAR1 are intrinsically disordered proteins with a similar domain 

structure and a similar pattern of predicted intrinsic disorder 

Human CCAR2 (hCCAR2) and human CCAR1 (hCCAR1) have ~30% sequence 

similarity to one other, and share multiple highly-conserved domains. Figure 4.1 shows 

the sequential locations of the functional domains for both proteins, and indicates the 

known or predicted functions of the domains, and Table 4.1 lists the predicted or known 

function of each domain. The sequence alignment of each domain is provided in Figure 

C1 and Figure C2 (see Appendix C). The size difference between CCAR2 and CCAR1 is 
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the result of three segments found in hCCAR1 that hCCAR2 lacks, including an elongated 

N-terminal disordered region, a SAP domain, and an extra coiled-coil segment in its C-

terminus (CC1). 

In order to compare the similarities in conformational properties between hCCAR2 and 

hCCAR1, the degree of predicted protein intrinsic disorder of these two proteins were 

analyzed (Figure 4.2). While 41% of hCCAR2 is composed of disordered residues, 61% 

of residues are disordered in hCCAR1. As expected, a majority of the functional domains 

listed in Figure 4.1, including the S1-Like, LZ, Nudix, and EF-Hand, are located in the 

structured segments of both proteins. The domains that are intrinsically disordered, or 

have a high degree of structural flexibility as indicated by higher disorder score, are the 

NLS and coiled-coil segments on hCCAR2 and hCCAR1, as well as the SAP domain that 

is specific to hCCAR1. The predicted 3D structures of these functional domains indicate 

that many of these domains are structured and have limited flexibility. 

Analysis of the disorder curves on the C-terminal residues (~400aa) of hCCAR2 and 

hCCAR1 indicates a high degree of similarity on the curve of predicted protein intrinsic 

disorder in this region, thereby suggesting a similar conformational fluctuation and further 

functional role (Figure 4.2, shaded region). Corresponding to this finding, a sequence 

alignment between these two regions shows 30% sequence identity, indicating 

evolutionary conservation (Figure C3, see Appendix C). The high degree of similarity 

between the structure of the conserved domains in hCCAR2 and hCCAR1, along with the 

similarity in the C-terminal region, leads to the presumption that hCCAR2 and hCCAR1 

may share a common molecular origin.  

In addition to hCCAR2 and hCCAR1, we determined the sequence level of intrinsic 
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disorder from other species using a CH-CDF plot. We carried out CH-CDF analysis for all 

of the proteins in our dataset, and found that all CCAR2 and CCAR1 proteins have large 

negative values (<-0.1) on CDF distance, indicating that these proteins are mostly 

intrinsically disordered (Figure 4.3). In terms of CH distances, CCAR1 and CCAR2 

proteins have varying distributions. Most CCAR1 proteins have a positive CH distance, 

while all CCAR2 proteins have a negative CH distance. Detailed analysis indicates that 

many groups have localized distribution on this CH-CDF plot, such as amphibian CCAR1 

and bird CCAR1. Mammalian CCAR1 proteins have the broadest distribution on CH 

distance, followed by CCAR1 proteins from aquatic animals. Compared to mammalian 

CCAR2 proteins, mammalian CCAR1 proteins are more scattered in the CH-CDF plot, 

indicating more structural variability. Therefore, based on the algorithms of CH and CDF 

distance, it can be concluded that most CCAR1 proteins have extra charged residues, 

while almost all CCAR2 proteins are more structure-prone. 

Human CCAR2 shares common ancestry with the nematode CCAR1 ortholog LST-

3 

To study the evolutionary relationship between CCAR2 and CCAR1, phylogenetic 

analysis was performed with the CCAR2 homologs and paralogs listed in Table C1 (see 

Appendix C), and the results are shown in Figure 4.4. Most mammals have evolved to 

incorporate both CCAR2 and CCAR1 into their genomes (Figure 4.4. purple shaded 

region). As a comparison, insects and nematodes have only incorporated CCAR1 into 

their genomes (Figure 4.4. light and dark blue shaded regions). Interestingly, the first 

known evolutionary appearance of CCAR2 is in zebrafish (Figure 4.4. pink shaded 

region). This is a clear indication that CCAR2 emerged later than CCAR1. Another 



60 

interesting observation is that the nematode LST-3 proteins are more closely related to 

CCAR1 in lower species, such as insects. These observations have revealed an 

interesting evolutionary picture of CCAR2/CCAR1/LST-3, where CCAR2 has evolved 

from CCAR1, and CCAR1 originated from LST-3.    

To compare homology between nematode LST-3 and hCCAR2/hCCAR1, a cross-

validation between the nematode proteome and the human proteome was performed. 

Specifically, the nematode Caenorhabditis elegans protein LST-3 was aligned against the 

complete human proteome and the only two significant hits (E value < 1.0e-20) were 

hCCAR2 and hCCAR1. Conversely, both hCCAR2 and hCCAR1 protein sequences were 

aligned against the complete C. elegans proteome, and the only significant hit was LST-

3. This result shows that the only possible ancestor of CCAR2 and CCAR1 in higher 

species is nematode LST-3. 

To further explore the evolutionary path of LST-3, CCAR1, and CCAR2, we compared 

the full-length sequences of C. elegans LST-3, zebrafish CCAR1 (zCCAR1), and 

zebrafish CCAR2 (zCCAR2), as the first emergence of CCAR2 is in zebrafish. The 

resulting gapped-disorder curve of this comparison is shown in Figure 4.5. A gapped 

disorder curve aligns proteins by the shape of the curve based on the disorder score. 

Instead of presenting the actual sequence similarity, the gapped disorder curve describes 

the overall similarity of the flexibility of the protein segments, which indicates any 

evolutionary gaps that may be present between proteins (224-226).  

The structural similarities shared between zCCAR2, zCCAR1, and LST-3 include a 

structured segment present at aa200 (Figure 4.5, shaded area 1), a similar disordered 

curvature spanning from aa200-400 (Figure 4.5, shaded area 2), the fluctuating peaks 
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from aa500-600, and the increasingly disordered C-termini beginning at aa1100 and 

continuing to the end of the proteins (Figure 4.5, shaded area 3). The N-termini of 

zCCAR2 and LST-3 have two gapped regions (pink lines) that are located immediately 

before and after the S1-Like domain. zCCAR1 contains two other gapped segments 

similar to zCCAR2, one near the center of the protein that corresponds to the conserved 

Nudix domain, and another on the C-terminus that does not correspond to a well-defined 

functional region. When compared to either zCCAR1 or LST-3, zCCAR2 contains four 

additional gapped regions, thus indicating a difference of four insertions or deletions 

throughout evolution. The locations of these insertions and deletions are roughly in line 

with the gapped segments in the sequence alignment provided in Figure C4 and Figure 

C5 (see Appendix C).  

CCAR2 is more conserved than CCAR1 

The conservation of the genomic neighborhood (CGN) of CCAR2 and CCAR1 was 

calculated for mammals, birds, insects, reptile, amphibians, and fish (Figure 4.6). The 

CCAR2 gene is not present in birds, insects, or amphibians, but in the species where 

CCAR2 gene is present, the CGN score of the CCAR2 gene for that species is higher 

than that of CCAR1. This is another indication that the genomic region surrounding the 

CCAR1 gene is less conserved than the CCAR2 gene.  

Two synteny plots comparing the human and mouse genes for CCAR2 and CCAR1 

are illustrated in Figure 4.7. In these plots, more conserved genes can be found in the 

neighboring region of CCAR2 as compared to CCAR1, also indicating that CCAR2 is 

more conserved than CCAR1. 
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CCAR1 appeared before CCAR2 in evolution  

To further examine the variability of insertions and deletions in CCAR2 and CCAR1, the 

amino acid substitution rate of each conserved domain across various groups of species 

was analyzed (Figure 4.8). The overall mutation rate for CCAR1 is approximately 20% 

from amphibian to human, while CCAR2 has a relatively high substitution rate of about 

50% from insect to mammal and 30% from Therapsida to primate. Even after CCAR2 

becomes more conserved after Therapsida, the substitution rate of various domains in 

CCAR2 is still approximately 10% higher than that of the corresponding CCAR1 domains. 

Also, the mutation rate of each domain for CCAR2 in fish is similar to that of insects for 

CCAR1, indicating a similar trend during the beginning of the evolutionary process 

between both proteins, with CCAR1 evolving first.  

Examination of each domain individually reveals that the evolutionary process has 

varied between both proteins. Interestingly, the fish CCAR2 protein contains a SAP 

domain that then disappears from amphibian and onward. The remaining S1-Like, NLS, 

LZ, Nudix, and CC2 domains continue to have high mutation rates from fish to amphibian, 

while the EF-Hand domain remains relatively conserved. Variation continues to be 

observed between all domains until a gradual steadying of mutation rates occurs in 

Therapsida and continues until human.  

 The mutation rate of each domain in CCAR1 exhibits a different trend. The mutation 

rate of the S1-Like, LZ, EF-Hand, SAP, NLS, and CC2 domains in CCAR1 varies from 

insects to fish, while the mutation rate between all domains decreases from fish to 

amphibian. Limited changes occur from amphibians to mammals in all domains except 

for the NLS and CC1 domains, where the mutation rate decreases more dramatically. 
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This is followed by a further increase in mutation rates in all domains from mammals to 

Therapsida, with an eventual leveling off of the mutation rates in humans. This data further 

supports CCAR1 appearing first in evolution, not only by appearing in insects before 

CCAR2, but also by becoming conserved much earlier in evolution. 

CCAR2 and CCAR1 exhibit similar domain flexibility 

To determine if the mutation rate of each domain has affected protein structure and 

flexibility in the evolutionary process, the average disorder score of each domain across 

different species was compiled (Figure 4.9). The overall disorder scores between the 

various domains of CCAR2 and CCAR1 are very similar. The NLS and CC2 domains are 

disordered in both proteins, while the Nudix, S1-Like, EF-Hand, and LZ are ordered 

domains. Also, the SAP domain in CCAR2 that is only present in fish is highly disordered, 

corresponding with the intrinsic disorder of the SAP domain throughout CCAR1 evolution. 

Even though this overall similarity in structure exists, differences can be seen in the trend 

of intrinsic disorder across evolution between each domain in CCAR2 and CCAR1. The 

S1-Like, Nudix, LZ, and EF-Hand domains in CCAR1 tend to become less structured 

throughout evolution, while in CCAR2 the same domains become more structured. 

During the evolutionary process, it appears that some domains underwent a drastic 

change in structural flexibility that is measured by predicted disorder score. In CCAR2, 

the S1-Like and LZ domains decreased in structural flexibility from fish to amphibian, 

whereas the opposite trend is observed in CCAR1. The NLS and CC2 domains of CCAR2 

tend to drastically change in structural flexibility where a vibration pattern can be 

observed, before eventual leveling off into a disordered structure in primates, and carrying 

over into humans. In CCAR1, structural flexibility has increased in the SAP domain from 
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fish to amphibian, The NLS domain had a sudden decrease in structural flexibility from 

mammals to Therapsida, before increasing from primate to human.  

Discussion 

CCAR2 and CCAR1 are emerging as important regulators in a number of cellular 

pathways. CCAR2 and CCAR1 share a similar domain structure, indicating they may 

have similar biological functions. The similar domain structure shared between the two 

multi-domain proteins may also indicate origination from a common ancestor (227). 

Therefore, it is important to investigate the process by which the functional domains of 

these two proteins have evolved. We predict here for the first time that CCAR2 and 

CCAR1 are comprised of mostly intrinsically disordered regions, and that several of the 

functional domains in these two proteins are intrinsically disordered. These findings 

provide support for the role of these two proteins in many molecular interactions, as 

intrinsically disordered regions are frequent sites for protein-protein interactions (228). In 

our prediction, the extended N-terminus of CCAR1 is much more flexible than that of 

CCAR2, as denoted by a higher disorder score, which may indicate a unique functional 

role for this region. Corresponding to this, CCAR1 has recently been shown to have 

distinct functions apart from CCAR2, such as binding directly to the LZ domain of CCAR2 

and synergistically regulating the function of CCAR2 (200). This regulatory ability would 

require a unique region capable of binding directly to CCAR2, which our analysis 

suggests may be on the N-terminal domain. 

It is often found that two protein paralogs develop throughout evolution from one 

common ancestor (229). Supporting this notion, our analysis of CCAR2 and CCAR1 from 

multiple species has established evidence that both proteins have evolved from one 
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common nematode ancestor, LST-3. We have shown that CCAR1 first appears in insects, 

while CCAR2 first appears much later in fish. Further supporting this claim is the fact that 

the CCAR2 protein in fish is the only species in which CCAR2 contains a SAP domain, a 

domain typically only found in CCAR1 proteins.  

The SAP domain is a DNA/RNA binding domain with about 40 amino acids. The core 

structure of this domain is a two- or three-helix bundle. There are currently two x-ray 

structures of SAP domains in the PDB, however, in these two x-ray structures, the SAP 

domains are in complexes with other proteins and RNA. Therefore, these two x-ray 

structures of SAP domains cannot be used to assess the actual structural flexibility of the 

SAP domain by itself. There are also several other NMR structures for SAP domains in 

the PDB database. From these structures, the SAP domain has huge structural flexibility. 

The RMSD values of structural alignment between these structures from different NMR 

experiments are very large. Therefore, results from NMR experiments provide evidence 

that the SAP domain is flexible. In addition, the length of the SAP domain is less than 40 

amino acids, indicating that the SAP domain may not have enough hydrophobic 

interaction by itself. Furthermore, in our prediction, the SAP domain is likely to be in a 

“dip” indicating a structure-prone tendency, however, this “dip” is flanked by two long 

disordered regions. Therefore, the possible 3D structural picture of the SAP domain is 

that this domain forms a small and flexible hydrophobic core, and sits in the middle of a 

long disordered region. The SAP domain of LST-3 was likely passed on to the fish CCAR2 

protein in the early evolutionary history of CCAR2. Other species may not have required 

this particular domain in CCAR2, and hence continued to evolve without it. All of these 
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findings combined suggest that LST-3 is the common ancestor, and ortholog, to both 

CCAR2 and CCAR1.  

A gapped disorder plot shows that zCCAR2 contains four additional gapped 

regions when compared to zCCAR1 and LST-3, indicating that a difference of four 

insertions/deletions and/or substitutions allowed for the first evolutionary appearance of 

CCAR2 in zebrafish. As mutation rate is linked to evolution, understanding the mutation 

rates of these proteins can help to decipher their evolutionary history. We see that CCAR1 

emerges earlier in evolution in insects, and that it becomes relatively conserved by the 

amphibian period, except for the CC1 and the CC2 regions, which were still undergoing 

evolution. CCAR2, on the other hand, took much longer to become relatively conserved, 

and still has not yet reached the low mutation rate of CCAR1, indicating the possibility of 

acquiring new functional roles in the future evolutionary period. CCAR2 becomes 

relatively conserved in Therapsida. Taking into consideration that Therapsida appeared 

about 300 million years later than amphibians, this provides evidence that CCAR2 arose 

much later in evolution than CCAR1, further supporting the notion that a CCAR1 homolog 

gave rise to CCAR2 over time.  

Domain-level analysis provides yet more information on the correlation between 

protein flexibility and evolution. The disorder scores for the NLS and CC2 domains in 

CCAR2 have undergone drastic changes in the evolutionary process. This may indicate 

the sudden acquisition of a hydrophobic core, and thus an increased protein-binding 

ability. However, since this new function may not be essential for the species, the acquired 

hydrophobic binding sites may disappear in the evolutionary process. 

The LZ domain of CCAR2 has been implicated in a variety of regulatory processes. 
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The LZ domain is a heptad repeat of leucine residues, which represents the hydrophobic 

core of a coiled-coil formed by two different chains. The basic regions next to the LZ 

domain along the coiled-coil can interact with the major groove of DNA to regulate the 

process of gene expression. A substitution in heptad repeats from hydrophobic to less-

hydrophobic, or hydrophilic and charged residues, will lessen the hydrophobic interaction 

and distort the structure of the coiled-coil, and thereby prevent DNA binding ability. 

Therefore, in order to retain the function of the LZ domain, all of the mutations on this 

domain should be hydrophobic-dominant and thus be more structure-prone with a lower 

disorder score. In CCAR2, the LZ domain tends to become more structure-prone. 

Conversely, the LZ in CCAR1 loses structure slightly from insect to fish. It is interesting 

to see this deviation since CCAR2 first appears in fish. The presence of CCAR2 in fish 

may have resulted in a decreased requirement for the LZ domain in CCAR1, ultimately 

affecting the current functional role of the LZ in modern CCAR2 and CCAR1. This same 

concept is also applicable to each the structured domains as well. 

Overall, our data presents new findings on the structure and evolution of CCAR2 and 

CCAR1. Our findings support the function of both proteins in many protein-protein 

interactions due to the high occurrence of disordered residues. We have found an 

unstructured region on the N-terminus of CCAR1 that may be responsible for unique 

protein interactions independent of CCAR2. Similarly, we have determined that the LZ of 

CCAR2 may be involved in unique interactions, as the LZ of CCAR1 has become 

unstructured and possibly non-functional throughout evolution. We see that CCAR1 

appeared much earlier in the process of evolution as compared to CCAR2, and that the 

nematode LST-3 protein may be the common ancestor of CCAR2 and CCAR1. As the 
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nematode C. elegans is a model organism frequently used in experimental biology, this 

work may help to broaden CCAR2 and CCAR1 studies by demonstrating the important 

role nematodes have had in the evolution of these two proteins. Specifically, the 

nematode LST-3 protein may have undergone multiple insertions and deletions to give 

rise to modern-day CCAR1 and CCAR2.  

Methods 

CCAR2 homologs and paralogs 

BLASTP (230,231) was used to align the human CCAR2 (hCCAR2) protein sequence 

(UniProt ID: Q8N163) against the entire UniProt database (232). The obtained UniProt 

hits were filtered using a cutoff alignment score set at 10% of the hCCAR2-hCCAR2 

alignment score based on trial and error. The 129 sequences that remained had a minimal 

sequence similarity of ~30% and a minimal sequence coverage of ~50% as compared to 

hCCAR2, complying with previous studies (233). After removing redundant sequences 

using BLASTClust and cutoff of 90% sequence identity, 93 sequences from 65 species 

were used for analysis (Table C1, see Appendix C). The 65 species include: mammals, 

birds, reptiles, amphibians, fish, insects, and nematodes. The proteins found include 

CCAR2, CCAR1, LST-3, and other undefined generic names. In addition, the complete 

proteomes of human, zebrafish, and C. elegans were downloaded from UniProt for 

comparative studies. 

Disorder prediction 

PONDR-FIT (234) and PONDR-VLXT (235) were employed to run disorder prediction 

analysis. The disorder scores from both PONDR-FIT and PONDR-VLXT were used to 

measure the flexibility of the amino acids in all of the proteins examined. PONDR-FIT is 
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one of the most accurate disorder predictors as it adopts the meta-predictor strategy. 

Meta-predictors are prevailing in the field of disorder prediction due to improved accuracy 

(234,236). Many state-of-the-art disorder predictors are meta-predictors (236-241). 

PONDR-FIT uses an artificial neural network to optimize the prediction results from six 

component predictors: PONDR-VLXT (235), PONDR-VSL2 (242,243), PONDR-VL3 

(244,245), FoldIndex (246), IUPred (247), and TopIDP (248).  PONDR-FIT improves the 

prediction accuracy significantly in various testing datasets compared to its component 

predictors (234). PONDR-VLXT is the first generation of disorder prediction software that 

is specifically designed to detect local flexibility of amino acid sequences. Although 

PONDR-VLXT is not the most accurate tool, it is still powerful due to its sensitivity to 

amino acid composition (234,249). PONDR-VLXT has been successfully applied in 

detecting linear interaction motifs (MoRFs) (250-252), which have proven to be extremely 

abundant in protein-protein interactions (228,253-255). The values of predicted disorder 

scores were applied to measure the structural flexibility of proteins and the combination 

of disorder scores from PONDR-VLXT, PONDR-FIT, and other predictors, has been 

applied in many studies in order to explore a broad range of biological questions. 

Examples of these studies include methionine oxidation (224), phosphorylation (256), p53 

evolution (233), binding motifs (257), iPS transcription factors (224), PTEN interactions 

(256), the spliceosome (258), the structural flexibility of viral proteins (224), and evolution 

across species (257,259). In this manuscript, we have also used predicted disorder 

scores to measure the structural flexibility of whole protein sequences along with local 

regions.  
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CH-CDF analysis 

The previously mentioned predictors were used to predict intrinsic disorder at a residue 

level. Intrinsic disorder can also be measured at the entire sequence level using a Charge-

Hydropathy and Cumulative Distribution Function (CH-CDF) plot (239,260). A CH-CDF 

plot is composed using parameters from both a Charge-Hydropathy (CH) plot (261) and 

a Cumulative Distribution Function (CDF) plot (262). In each of these two plots, structured 

proteins and disordered proteins stay in different regions, and can be separated by a 

linear boundary line. The distance of a protein from the boundary line in each of them 

(dCH in CH plot and dCDF in CDF plot) describes the tendency of the protein for being 

structured or disordered. The sign of the distance (positive or negative) shows whether 

the entire protein is structured or disordered. The performances of these two individual 

plots are often complementary. Therefore, their combination improves the prediction 

accuracy at the sequential level to 90% (239,260). In the CH-CDF plot, the directional 

distance dCH in the CH plot is set as the y-axis, and the directional distance dCDF in the 

CDF plot is used as the x-axis. As dCH and dCDF both have positive and negative values, 

the entire CH-CDF plot can be split into four quadrants using dCH=0 and dCDF=0: (1) 

Q1, dCH>=0 & dCDF>=0; (2) Q2, dCH<0 & dCDF>=0; (3) Q3, dCH<0 & dCDF<0; and 

(4) Q4, dCH>=0 & dCDF <0. By definition, proteins in Q2 are predicted to be structured. 

Proteins in Q3 and Q4 are disordered. Proteins in Q1 have excessive charged residues 

but can be structured. 

Three-Dimensional structure prediction 

The 3D structure of the structured domains for both human CCAR2 and CCAR1 were 

built using HHpred (263), RaptorX (264), and I-TASSER (265). Each structured domain 
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has three predicted structures. The structure with the highest QMean score (266) was 

selected as the final predicted structure.  

Phylogenetic analysis 

Mega5 (267) was used to run multiple sequence alignments, and to analyze the 

phylogeny of the sequences. CLUSTALW was chosen to perform the multiple sequence 

alignment (default PAM matrix, Gap opening score 10, Gap extension score 0.1). 

Nearest-neighboring algorithm was selected to analyze the phylogenetic relations among 

the sequences. The final phylogenetic tree was obtained by bootstrapping 2000 times.  

Genome neighborhood analysis 

We calculated the conservation of genomic neighborhood (CGN) score (268,269) of both 

CCAR2 and CCAR1 for selected species, including mammals, birds, insects, reptiles, 

amphibians, and fish. When calculating the CGN score, all of the genes within a window 

of two million bases from the center of CCAR2 or CCAR1 of that species were extracted 

from GeneBank. The number of total genes in the window of the human genome was 

defined as MHS, the number of common genes between human and another species X 

was counted as CX, and then the CGN score of species X was calculated as CGNX = CX 

/ MHS. The human and mouse gene lists were also used to build a synteny plot (270-272). 

Mutation rate analysis 

The substitution rate between each group of domains between each species set is 

calculated as follows: (1) Two groups of sequences were aligned using CLUSTALW. (2) 

The domain structure of hCCAR1 was used to label the location of similar regions in all 

of the other sequences. (3)  The amino acid of each sequence, on each site within a 

specific region, in the second group was compared with the amino acid sequence in the 
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first group. If no match was found, a substitution was recorded for this site. (4)  This 

process was repeated for each group with step (3) for all of the sequences in the second 

group. The final substitution frequency is Si for the i-th site. (5) The sum was calculated 

for all of the substitutions for the sites in the entire region to get the total substitution ∑Si 

(i=1,…,L),  where L is the number of sites in this region. (6) For example, if there were M 

sequences in the first group and N sequences in the second group, the final substitution 

rate would be ∑Si / (M*N*L). 
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Domain 
Name 

Domain Function 

S1-Like Homology to an RNA-binding domain. 

NLS Nuclear localization signal.  Acetylation of the NLS in CCAR2 regulates nuclear 
localization. 

LZ Likely non-functional in CCAR1. Regulation of a diverse set of cellular pathways in 
CCAR2. 

Nudix Catalytically inactive hydrolase domain in CCAR2 and CCAR1.  Predicted to function 
as a sensor in CCAR2 that may bind to NAD metabolites and regulate SIRT1. 

SAP Homology to a putative DNA-binding motif predicted to be involved in chromosomal 
organization. 

EF-Hand Inactive variant of a calcium dependent regulator of multiple cellular processes. 
CC Predicted protein-protein interaction motif. 

S1-Like 

55-112 

CC2 EF-Hand NLS Nudix LZ hCCAR2 

202-219 

243-264 

340-461 

704-748 

794-918 

hCCAR1 Nudix SAP S1-Like CC2 EF-Hand NLS CC1 LZ 

147-204 

322-357 

381-407 

478-586 

637-669 

874-902 

924-968 

1033-1120 

Figure 4.1. Human CCAR2 and CCAR1 are paralogs. The domains for human CCAR2 (hCCAR2) and 
human CCAR1 (hCCAR1) are depicted along with the amino acid boundaries for each domain.  

Table 4.1. The domain function of human CCAR2 and CCAR1.  

The domains for hCCAR2 and hCCAR1 are listed along with their known or predicted function.  
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Figure 4.2. Disorder analyses show the domain structure and molecular flexibility of hCCAR2 
and hCCAR1. The curves present the disorder score predicted by PONDR-FIT (FIT, dark cyan) and 
PONDR-VLXT (VLXT, dark pink). The x-axis of human CCAR2 (Hccar2, UniProtID: Q8N163) is shifted 
by 200 residues in order to align the C-terminus to human CCAR1 (hCCAR1, UniProtID: Q8IX12). The 
gray shadow behind PONDR-FIT represents the prediction of error. Residues with a score higher than 
0.5 are disordered, while residues with a score lower than 0.5 are structured. The horizontal bars are 
the conserved functional domains identified in both proteins (S1-Like: aqua blue; NLS: medium blue; 
LZ: dark blue; Nudix: light purple; SAP: medium purple; CC1: dark purple; EF-Hand: light pink; CC2: 
dark pink). The predicted 3D structures are scaled roughly with their lengths. 
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Figure 4.3. CH-CDF analysis for all CCAR2 and CCAR1 proteins. The x-axis and y-axis are the CDF 
and CH distances, respectively. The CDF distance is calculated from PONDR-VSL2 prediction. All 
CCAR2 proteins are split into two groups: mammal and others (as denoted by “D” in the legend). All 
CCAR1 proteins are arranged into six groups, including mammal, amphibian, aquatic animals, insect, 
and bird (as denoted by “C” in the legend). Nematode LST-3 proteins are in one group. 

Figure 4.4.  Phylogenetic analysis of CCAR2 and CCAR1 homologs. A phylogenetic tree was built 
for all 93 protein sequences in 65 species as listed in Table C1 using Mega5 software. The dashed lines 
split the tree into two parts: all CCAR2 proteins are on the left while all CCAR1 proteins are on the right. 
The nematode LST-3 proteins, although closely related to CCAR1, are categorized into a sub-group of 
CCAR1. The colored shadows cover several regions that are extensively discussed in the manuscript.  
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Figure 4.5. Gapped disorder prediction for zCCAR2, zCCAR1, and LST-3. The disorder prediction 
was analyzed by PONDR-FIT for zebrafish CCAR2 (zCCAR2, UniProt ID: E7FGT1), zebrafish CCAR1 
(zCCAR1, UniProt ID: F1QV66), and C. elegans LST-3 (UniProt ID: G5EFJ2). Residues with a score 
higher than 0.5 on the -axis are disordered, while residues with score lower than 0.5 are structured. 
The -axis represents the amino acid number. The black line represents the disorder prediction, while 
the pink horizontal lines represent gapped segments. The shaded regions represent similar patterns 
seen between all three proteins.  

1 2 

Figure 4.6. CGN score between human and other species for both CCAR1 (black) and CCAR2 
(gray). A high CGN score of >0.5 indicates that more than half of the gene neighbors are conserved 
within 2 Mb and shows conservation of the local chromosomal environment, while a score of <0.5 
indicates that less than half of the neighboring genes are conserved. 
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Figure 4.7. Genome neighborhood analysis between human and mouse CCAR2 (a) and CCAR1 
(b). The lines connect identical genes from human and mouse, surrounding 2 Mb of either CCAR2 (a) 
or CCAR1 (b). 

CCAR2 

CCAR1 

Human 

 
 

Mouse 

Human 

 
 

Mouse 

a 

b 

Figure 4.8. The amino acid substitution rates of specific domains among various groups of 
species for CCAR2 (a) and CCAR1 (b). Based on the sequences in Table C1, human is in one group, 
all other primates excluding human are in the second group, all other Therapsida excluding primates 
are in the third group, all other mammals compose the fourth group, amphibians are in the fifth group, 
fish are in the sixth group, and insects are in the seventh group. Eight domains were analyzed including 
the S1-Like, NLS, LZ, SAP, CC1, EF-Hand, and CC2 domains.  

CCAR2 CCAR1 
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Figure 4.9. The average disorder score for each domain in CCAR2 and CCAR1 across all grouped 
species. The categorization of domains and species groups is the same as in Figure 4.8. The disorder 
score for each domain is averaged for all of the sequences in each species group. The original disorder 
score was predicted by PONDR-FIT. 
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CHAPTER 5: LST-3 IS A NEGATIVE REGULATOR OF SIR-2.1 AND THE HEAT 

SHOCK RESPONSE IN CAENORHABDITIS ELEGANS 

 

Authored by: Jessica Brunquell, Rachel Raynes, Philip Bowers, Stephanie Morris, Alana 

Snyder, and Sandy D. Westerheide 

All experiments were performed by, or under the guidance of, J. Brunquell. J. Brunquell, 

P. Bowers, S. Morris, and A. Snyder performed florescent imaging and qRT-PCR 

replicates. J. Brunquell and S. Morris performed immunoblotting. J. Brunquell and A. 

Snyder performed polyglutamine aggregate analyses. All data analyses were performed 

by J. Brunquell. J. Brunquell, R. Raynes, and S.D. Westerheide participated in design of 

the study. The manuscript was written by J. Brunquell and S.D. Westerheide.  

Abstract 

Defects in protein quality control during aging are central to many human diseases, and 

strategies are needed to better understand mechanisms of controlling the quality of the 

proteome. The heat shock response (HSR) is a conserved survival mechanism mediated 

by the transcription factor HSF1 which functions to maintain proteostasis. In mammalian 

cells, HSF1 is regulated by a variety of factors such as the prolongevity factor SIRT1. 

SIRT1 promotes the DNA-bound state of HSF1 through deacetylation of the DNA-binding 

domain of HSF1, thereby enhancing the HSR. SIRT1 is also regulated by various factors, 

including negative regulation by the cell-cycle and apoptosis regulator CCAR2. CCAR2 

negatively regulates the HSR, possibly through its inhibitory interaction with SIRT1.
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 We were interested in studying conservation of the SIRT1/CCAR2 interaction in 

Caenorhabditis elegans, and utilizing this model organism to observe the effects of 

modulating sirtuin activity on the HSR, longevity, and proteostasis. The HSR is highly 

conserved in C. elegans, and is mediated by the HSF1 homolog, HSF-1. We have 

uncovered that negative regulation of the HSR by CCAR2 is conserved in C. elegans and 

is mediated by the CCAR2 ortholog, LST-3. This negative regulation requires the SIRT1 

homolog Sir-2.1. In addition, knockdown of LST-3 via lst-3 RNAi works through Sir-2.1 to 

enhance stress-resistance, fitness, longevity, and proteostasis. This work therefore 

provides insight into the benefits of enhancing sirtuin activity to promote the HSR, which 

may allow for the development of new methods to modulate this response for therapeutic 

purposes.  

Introduction 

Maintaining the quality of the proteome is essential for cellular homeostasis, and an 

accumulation of misfolded proteins is a feature of many aging-related diseases (66). A 

conserved mechanism utilized by the cell to maintain proteostasis is through induction of 

the cytoprotective heat shock response (HSR). The HSR is regulated by the transcription 

factor heat shock factor 1 (HSF1). HSF1 functions to protect cells from protein-damaging 

stress through the transcription of heat-inducible heat shock protein (hsp) genes which 

encode protein chaperones that assist in protein folding and clearance (273-276). 

Increasing chaperone expression is not only beneficial during stress, but also solubilizes 

toxic aggregate species in animal models of protein dysfunction diseases (277). 

Uncovering HSR activators to promote chaperone production is thus an active area of 

research.  
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One factor known to modulate the HSR is the sirtuin family member silent mating type 

information regulation 2 homolog 1 (SIRT1) (57,58,67,278,279). SIRT1 belongs to a 

family of conserved  NAD+-dependent deacetylases that promotes the HSR and longevity 

(280,281). Increased expression of SIRT1 enhances the HSR through deacetylation of 

the DNA-binding domain of HSF1, thereby prolonging its DNA-competent state and 

allowing for increased transcription of hsp70 (58). SIRT1 is also essential for maintaining 

the proteome, as a SIRT1 deficiency results in defective protein quality control 

mechanisms (282). Enhancing SIRT1 activity may therefore be one strategy for promoting 

the HSR and proteostasis. 

SIRT1 activity is controlled by a number of factors depending on the cellular 

environment. Active regulator of SIRT1 (AROS) is a positive regulator of SIRT1 that 

promotes deacetylation of the SIRT1 substrates HSF1 and p53 (67,75). Cell cycle and 

apoptosis regulator 2 (CCAR2), also known as DBC1, is a negative regulator of SIRT1 

that enhances acetylation of p53 and HSF1 (67,73,192). Bioinformatic analyses also 

suggest the presence of a  NAD+ binding site on CCAR2 that may limit the cellular 

availability of NAD+ required for SIRT1 to function (196). The ability of AROS and CCAR2 

to modulate SIRT1 activity, and impact the acetylated state of HSF1, also impacts the 

HSR (67). AROS enhances the HSR by promoting HSF1 binding to the hsp-70 promoter 

and enhancing hsp-70 mRNA expression, whereas CCAR2 dampens the HSR by 

decreasing HSF1 binding to the hsp-70 promoter and inhibiting hsp-70 mRNA expression 

(67). Thus, sirtuin modulators are able to impact the mammalian HSR.  

Caenorhabditis elegans is an ideal model organism for studying the impact of genetics 

on physiology and longevity. The HSR is highly conserved in C. elegans and is mediated 
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by the HSF1 homolog, HSF-1. HSF-1 has been associated with aging and longevity, as 

knockdown of hsf-1 decreases lifespan and induces rapid aging, while its overexpression 

increases lifespan (110,111,138). Additionally, SIRT1-regulated processes are also 

conserved in the worm and mediated by Sir-2.1. Worms expressing extra copies of sir-

2.1 exhibit increased longevity (283-285). Also, enhancing sir-2.1 activity through the 

induction of caloric restriction enhances the transcription of hsp-70 (72). Although C. 

elegans does not possess an ortholog to AROS, CCAR2 is conserved in the worm and is 

referred to as lateral signaling target 3 (LST-3) (76). We were therefore interested in 

determining if negative regulation of the HSR by the SIRT1 modulator CCAR2 is 

conserved in the worm, and how this interaction would impact stress-related responses 

and longevity.  

In this study, we have identified LST-3 as a negative regulator of Sir-2.1 and the HSR 

in C. elegans. LST-3 negatively regulates the HSR by modulating hsp-70 promoter 

activity, HSF-1 acetylation, and HSF-1 binding to the hsp-70 promoter during HS. A family 

of HS-inducible hsp-70 genes is enhanced during heat shock (HS) in response to lst-3 

RNAi, and this effect is dependent on the deacetylase activity of Sir-2.1. We have also 

found that modulating Sir-2.1 activity via lst-3 RNAi promotes stress-resistance, fitness, 

longevity, and proteostasis. This work thus supports the use of sirtuin modulators as a 

means to improve proteostasis and promote healthy aging, which may be beneficial for 

aging-related diseases of protein quality control.  
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Results  

Negative regulation of the HSR by CCAR2 is conserved in C. elegans and mediated 

by LST-3  

To determine if LST-3 negatively regulates the HSR in C. elegans, we first tested for 

effects on transcription driven by the hsp-70 promoter in response to lst-3 RNAi (Figure 

5.1). To do this, we used a C. elegans HS-inducible promoter fusion construct that has 

the promoter of hsp-70 (C12C8.1) fused to GFP (phsp-70::GFP). This reporter worm was 

fed control RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 larval stage to 

the L4 larval stage prior to treatment with or without a 15 minute HS, followed by a 6 hour 

recovery (Figure 5.1a). Our RNAi feeding strategy resulted in a 50-fold reduction in hsf-1 

and lst-3 mRNA levels (Figure D1, see Appendix D). As expected, HS treatment of control 

RNAi worms resulted in increased GFP expression compared to the untreated control, 

and this was dependent on HSF-1. Interestingly, lst-3 RNAi enhanced GFP expression 

during HS compared to the HS control. To quantify the GFP expression of the fluorescent 

images, ImageJ was used to measure the fluorescence intensity for each treatment 

condition (Figure 5.1b). In the RNAi control, HS resulted in a 9-unit increase in 

fluorescence intensity, which was dependent on HSF-1. When HS was combined with lst-

3 RNAi, the fluorescence intensity increased 20-units. We also analyzed the GFP 

expression of our reporter worm via immunoblot (Figure 5.1c), followed by quantification 

of band intensity by ImageJ (Figure 5.1d), and a similar trend was observed. Treatment 

with HS induced GFP expression 25-units, and HS combined with lst-3 RNAi resulted in 

a 50-unit increase in GFP expression. Thus, lst-3 RNAi increases HS-inducible hsp-70 
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promoter activity by a magnitude of 2x, indicating that LST-3 would normally negatively 

regulate the HSR.  

lst-3 RNAi decreases HSF-1 acetylation and increases HSF-1 binding to the hsp-70 

promoter 

CCAR2 has previously been shown to affect HSF1 acetylation and DNA-binding in 

mammalian cells (67). To determine if these functions are also conserved in C. elegans, 

we assessed the effects of lst-3 RNAi on HSF-1 acetylation and DNA-binding to the hsp-

70 promoter (Figure 5.2). An EQ73 worm strain containing HSF-1 tagged GFP under the 

control of its own endogenous promoter (HSF-1::GFP) (135) was fed control RNAi or lst-

3 RNAi [lst-3(-)] from the L1 larval stage to the L4 larval stage prior to treatment with or 

without a 15 minute HS. To assess HSF-1 acetylation, immunoprecipitation of HSF-1 

using an α-GFP antibody, followed by immunoblotting with an α-acetylated lysine 

antibody, was performed (Figure 5.2a, top panel). Total HSF-1 levels and resulting IgG 

bands are also shown as controls (Figure 5.2a, middle and bottom panel, respectively). 

To quantify the total acetylation levels of HSF-1, ImageJ was used to determine the band 

intensity of the α-acetylated lysine immunoblot (Figure 5.2b). HS treatment decreased 

HSF-1 acetylation by 9-units in the RNAi control, whereas lst-3 RNAi decreased HSF-1 

acetylation by 18-units compared to the RNAi control. Furthermore, lst-3 RNAi combined 

with HS decreased acetylation by 13-units compared to the HS RNAi control. Thus, lst-3 

RNAi decreases HSF-1 acetylation, therefore suggesting that LST-3 would normally 

enhance this modification.  

We next performed chromatin immunoprecipitation in HSF-1::GFP worms fed control 

RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 larval stage to the L4 larval 
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stage prior to treatment with or without a 15 minute HS (Figure 5.2c-d). To measure HSF-

1 binding to the hsp-70 promoter, we designed primers to encompass a known HSF-1 

binding site ~200 bp upstream of the transcription start site in the promoter of the hsp-70 

gene C12C8.1 (Figure 5.2c), or to a non-specific binding site ~4,100 bp upstream as a 

control (Figure 5.2d). A diagram of the primer design locations is also shown (Figure 

5.2e). As expected, HS increased HSF-1 binding to the hsp-70 promoter 10-fold, and this 

binding was abolished upon treatment with hsf-1 RNAi. Interestingly, lst-3 RNAi increased 

HSF-1 binding 5-fold in the absence of HS, and 40-fold during HS, compared to the 

respective controls. We therefore conclude that LST-3 would normally decrease HSF-1 

binding to the hsp-70 promoter, similarly to CCAR2 in mammalian cells (67).  

lst-3 RNAi enhances hsp-70 mRNA expression upon HS in a Sir-2.1-dependent 

manner  

CCAR2 is suggested to negatively regulate the HSR through its inhibitory association with 

SIRT1 (67). To determine if negative regulation of the HSR by LST-3 in C. elegans is 

mediated through Sir-2.1, we used qRT-PCR to measure the expression of the HS-

inducible hsp-70 family members C12C8.1, F44E5.4, and F44E5.5 in wild-type (N2) 

worms, and in LG339 worms containing a non-functional Sir-2.1 protein (sir-2.1Δ), in 

response to lst-3 RNAi (Figure 5.3). Synchronous N2 or sir-2.1Δ worms were fed control 

RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 larval stage to the L4 larval 

stage prior to treatment with or without a 15 minute HS, followed by a 15 minute recovery. 

In wild-type worms, HS treatment of the control increased the expression of each hsp-70 

family member in an HSF-1-dependent manner, as expected (Figure 5.3a-c). Consistent 

with the results in Figure 5.1, lst-3 RNAi enhanced HS-induced C12C8.1 mRNA 
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expression compared to the HS treated control (Figure 5.3a). A similar trend is also 

observed for the hsp-70 genes F44E5.5 and F44E5.4 (Figure 5.3b-c). Interestingly, the 

ability of lst-3 RNAi to enhance HS-induced hsp-70 mRNA expression was abolished in 

the sir-2.1Δ strain (Figure 5.3d-f). To ensure that these results were specific to Sir-2.1, 

we also examined Sir-2.3 (a homolog to mammalian SIRT4) by performing the same 

analyses in a sir-2.3Δ strain (RB654) (Figure D2a-c, see Appendix D). The ability of lst-3 

RNAi to enhance hsp-70 mRNA expression during HS is unaffected in this sir-2.3Δ strain. 

Thus, negative regulation of the HSR by LST-3 is dependent on Sir-2.1.  

 We were next interested in determining if the deacetylase activity of Sir-2.1 was 

required for LST-3 to negatively regulate the HSR (Figure D3, see Appendix D). We used 

a small-molecule selective inhibitor of mammalian SIRT1 deacetylase activity, EX-527, 

which has also been shown to inhibit Sir-2.1 in C. elegans (286,287). First, we assessed 

hsp-70 promoter activity by feeding phsp-70::GFP worms control RNAi, or lst-3 RNAi [lst-

3(-)] in combination with EX-527, from the L1 larval stage to the L4 larval stage prior to 

treatment with or without a 15 minute HS, followed by a 6 hour recovery (Figure D3a, see 

Appendix D). Similar to Figure 5.1, lst-3 RNAi resulted in enhanced hsp-70 promoter 

activity during HS compared to the HS control. Blocking the deacetylase activity of Sir-

2.1 upon treatment with EX-527 prevented lst-3 RNAi from enhancing hsp-70 promoter 

activity during HS. This trend was confirmed using qRT-PCR for the hsp-70 genes 

C12C8.1, F44E5.5, and F44E5.4 (Figure D3b-d, see Appendix D). These data suggest 

that negative regulation of the HSR by LST-3 is mediated through the deacetylase activity 

of Sir-2.1. 
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lst-3 RNAi promotes stress-resistance and fitness in a Sir-2.1-dependent manner 

To examine the impact of LST-3 on stress-resistance and fitness, we next assessed 

survival upon exposure to a lethal HS (thermotolerance) and thrashing in aging worms in 

response to lst-3 RNAi (Figure 5.4). Wild-type (N2) or sir-2.1Δ worms were fed control 

RNAi or lst-3 RNAi [lst-3(-)] from the L1 larval stage until day 3 of adulthood, treated with 

a lethal 42°C 1 hour HS, and survivors were scored 12 hours after the HS. This HS 

treatment condition resulted in ~50% survival in wild-type worms fed control RNAi, and 

~80% survival in wild-type worms fed lst-3 RNAi (Figure 5.4a). lst-3 RNAi not only 

promoted survival during a lethal HS, but also enhanced the fitness of worms that survived 

the lethal HS which was measured in number of body bends/30 seconds (Figure 5.4b). 

Wild-type worms fed control RNAi that survived a lethal HS moved at a rate of 20 body 

bends/30 seconds, whereas worms fed lst-3 RNAi moved at a rate of 55 body bends/30 

seconds. The ability of lst-3 RNAi to enhance thermotolerance and fitness was dependent 

on Sir-2.1 (Figure 5.4c-d). sir-2.1Δ worms fed lst-3 RNAi did not show an increase in 

survival upon exposure to a lethal HS compared to the RNAi control, and exhibited a 

dramatic decrease in fitness regardless of lst-3 RNAi treatment. These data therefore 

suggest that LST-3 would normally reduce stress-resistance and fitness through inhibition 

of Sir-2.1. 

lst-3 RNAi promotes longevity in a Sir-2.1-dependent manner 

Next, we performed lifespan assays to assess the impact of LST-3 on longevity (Figure 

5.5). Wild-type (N2) or sir-2.1Δ worms were fed control RNAi or lst-3 RNAi [lst-3(-)] from 

the L1 larval stage throughout life. Worms were scored every other day starting at day 1 

of adulthood for survival, and scored as dead when non-responsive to poking with a 
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platinum wire. Wild-type worms fed control RNAi had a median survival of 10 days, and 

a maximum survival of 18 days, whereas worms fed lst-3 RNAi had a median survival of 

12 days, and a maximum survival of 22 days (Figure 5.5a). The increase in median and 

maximum lifespan observed in response to treatment with lst-3 RNAi was dependent on 

Sir-2.1, as sir-2.1Δ worms show a 4 day decrease in longevity when fed lst-3 RNAi 

compared to the RNAi control (Figure 5.5b). Thus, LST-3 would normally decrease 

longevity via inhibition of Sir-2.1.  

lst-3 RNAi promotes proteostasis in a C. elegans Huntington’s disease model  

To observe the impact of LST-3 on proteostasis, we used a C. elegans Huntington’s 

disease model to observe polyglutamine aggregate formation and toxicity in response to 

lst-3 RNAi (Figure 5.6). The Huntington’s disease model used here (AM140) contains 35 

polyglutamine repeats fused to YFP under the control of a muscle promoter (Q35::YFP), 

and develops insoluble protein aggregates in an age-dependent manner in the body wall 

muscle (142). Synchronous Q35::YFP worms were fed control RNAi, hsf-1 RNAi [hsf-1(-

)], or lst-3 RNAi [lst-3(-)] from the L1 larval stage until day 3 of adulthood prior to treatment 

with or without a 15 minute HS, followed by a 12 hour recovery. Fluorescent images, as 

well as threshold-adjusted images, are shown (Figure 5.6a). ImageJ was used on the 

threshold-adjusted images to quantify the number of aggregates per worm for each 

treatment condition (Figure 5.6b). As expected, hsf-1 RNAi increased aggregate 

formation in the absence of HS by 10 aggregates/worm, and in the presence of HS by 12 

aggregates/worm, compared to the respective controls. Interestingly, lst-3 RNAi 

decreased aggregate formation by 9 aggregates/worm in the absence of HS, and by 12 
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aggregates/worm during HS, compared to the respective controls. LST-3 would therefore 

normally decrease proteostasis in a C. elegans Huntington’s disease model.  

 We next examined paralysis in the Huntington’s disease model in order to assess the 

toxicity associated with aggregate formation (Figure 5.6c). Synchronous Q35::YFP 

worms were fed control RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 

larval stage until day 5 of adulthood prior to treatment with or without a 15 minute HS, 

followed by a 12 hour recovery. As expected, treatment with hsf-1 RNAi increased the 

number of paralyzed worms by 19% regardless of HS. Treatment with lst-3 RNAi 

decreased the number of paralyzed worms by 12% in the absence of HS, and by 25% 

during HS. These data suggest that LST-3 would normally antagonize proteostasis and 

lead to increased aggregate-associated toxicity in a C. elegans Huntington’s disease 

model.  

 To determine if the decrease observed in aggregate formation in response to lst-3 

RNAi may be due to increased hsp-70 mRNA levels in aging worms, we performed qPCR 

on day 3 C. elegans fed lst-3 RNAi (Figure 5.6d-f). Interestingly, treatment with lst-3 RNAi 

increased the expression of each hsp-70 family member in the absence of HS, while 

collectively enhancing hsp-70 expression when combined with HS. lst-3 RNAi may 

therefore prevent age-associated decline of the HSR, and be beneficial for maintaining 

proteostasis during aging, suggesting LST-3 normally dampens the HSR with age. 

Discussion 

In this study, we have identified LST-3, a CCAR2 ortholog, as a negative regulator of the 

HSR in C. elegans. We have found that LST-3 modulates hsp-70 promoter activity, HSF-

1 acetylation, and HSF-1-binding to the hsp-70 promoter during HS. Worms treated with 
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lst-3 RNAi show an increase in HS-inducible hsp-70 gene expression that is dependent 

on Sir-2.1. Additionally, lst-3 RNAi promotes stress-resistance, thermotolerance, fitness, 

longevity, and proteostasis, while also preventing an age-dependent decline in the HSR. 

We therefore conclude that enhancing the HSR by modulating sirtuin activity is one 

strategy that may be utilized to promote proteostasis and longevity, and may be beneficial 

for diseases of protein quality control.  

 Our previous bioinformatics study was the first to suggest LST-3 as an ortholog and 

common ancestor to mammalian CCAR2 (76). The work performed here is the first to 

show that the function of mammalian CCAR2 in negatively regulating the HSR is 

conserved in C. elegans and is mediated by LST-3. It would be interesting to determine 

if other known SIRT1/CCAR2 pathways in mammalian cells, such as the regulation of 

p53 (192,288), are also conserved in C. elegans. This study, combined with future work, 

could expand C. elegans as a model for studying other SIRT1/CCAR2 regulated 

processes which would be beneficial to assess in a whole organism.  

Uncovering compounds that modulate the SIRT1/CCAR2 interaction to promote 

SIRT1 activity is of interest, as CCAR2 exhibits binding specificity for SIRT1 and not to 

other sirtuin family members (192). Recently, a carboxamide-based pharmacological 

scaffold compound, EX-527, was found to prevent the SIRT1/CCAR2 interaction (81). 

However, this compound also inhibits the deacetylase activity of SIRT1 (287). If new 

compounds are developed to inhibit SIRT1/CCAR2 binding, while not inhibiting SIRT1 

catalytic activity, it would be beneficial to test these small-molecules in C. elegans to 

detect possible effects on growth, reproduction, healthspan, and lifespan. Our work 

provides a model in which to assess small-molecule regulators of SIRT1/CCAR2 binding, 
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which may be beneficial for future studies into developing therapeutic strategies to 

promote SIRT1 activation.  

Modulating the HSR by controlling SIRT1 activity is a promising method of promoting 

proteostasis, as many of the small-molecules known to modulate HSF1 activity are not 

feasible due to cytotoxicity and bioavailability (127). The likelihood of developing diseases 

of protein dysfunction, such as neurodegenerative disorders, is increased upon aging, 

possibly due to induction of the HSR dramatically declining during the aging process 

(103,104). Activators of the HSR have been suggested as possible therapeutic strategies 

for these diseases of aging (163,185-187). Our data suggest that modulating Sir-2.1 

activity may prevent an age-associated decline in the HSR, and prevent polyglutamine 

aggregation in a C. elegans Huntington’s disease model. Therefore, our studies support 

the use of sirtuin modulators for diseases of protein quality control to promote healthy 

aging.  

 In addition to this work providing a new model to study SIRT1/CCAR2 regulated 

processes, and supporting sirtuin modulators as a means to induce the HSR, we have 

also uncovered a novel function for LST-3 in negatively regulating the HSR in C. elegans. 

There is currently little known regarding the function of LST-3 in C. elegans. LST-3 is 

involved in a lateral signaling pathway that is part of a group of proteins that regulate 

vulval development (289). Based on our work, we can now add a function for the highly 

under characterized LST-3 protein in negatively regulating Sir-2.1 and the HSR. As future 

work further characterizes the function of LST-3, it will be interesting to see if other stress 

response pathways are also influenced by this protein.  
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In conclusion, our work demonstrates the positive effects of promoting the HSR by 

enhancing Sir-2.1 activity. We have identified LST-3 as a CCAR2 ortholog that maintains 

a conserved function in negatively regulating the HSR, thereby providing a new model for 

future CCAR2 studies. It will be interesting to see if future studies find small molecules 

that interfere with the SIRT1/CCAR2 interaction and promote proteostasis and healthy 

aging in mammalian systems. This study supports the use of sirtuin modulators to benefit 

diseases of protein dysfunction, while also uncovering a novel function for LST-3 in 

regulating the HSR in C. elegans.  

Methods 

C. elegans strains and growth conditions 

The following C. elegans strains were used in this study: Bristol N2 (wild-type), sir-2.1Δ 

(LG339) (290), sir-2.3Δ (RB654) (291), Q35::YFP (AM140) (38), and the pC12C8.1::GFP 

reporter strain (39). All strains were grown at 23°C and maintained on standard nematode 

growth media (NGM) containing the Escherichia coli strain OP50 as a food source. Age 

synchronization was accomplished by 20% hypochlorite treatment followed by washing 

and 24 hour incubation in M9 buffer at 23°C at 220 rpm.  

RNA interference  

Synchronous L1 nematodes were placed onto standard NGM plates supplemented with 

25 µg/mL ampicillin and 1 mM isopropyl-beta-ᴅ-thiogalactopyranoside seeded with either 

HT115 bacteria containing an empty vector (L4440, control), or with sequence verified 

gene-specific RNAi strains isolated from the Ahringer RNAi library (40). RNAi bacteria 

was concentrated 10x prior and allowed to induce on the plates overnight at room 

temperature.  
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HS treatment 

C. elegans were grown on RNAi plates as indicated, wrapped in parafilm, and then 

submerged in a 33°C water bath for the allotted times. Prior to RNA extraction, animals 

were allowed to recover for 15 minutes at growth temperature. Prior to GFP analysis, 

animals were allowed to recover for 8 hours at growth temperature.  

EX-527 compound treatment 

EX-527 (Sigma, cat# E7034) was diluted in DMSO and added to NGM after autoclaving 

at a final volume of 1 µM. Synchronous worms were grown on vehicle control or EX-527 

supplemented plates from the L1 larval stage to the L4 larval stage prior to analyses.  

Fluorescence microscopy 

Animals were anesthetized with 10 mM Levamisole and photographed using an EVOS 

fluorescence microscope. Image processing was accomplished using Adobe 

Photoshop© (Adobe Systems Incorporated). Quantification of fluorescence intensity was 

performed using ImageJ Software (v. 1.44; http://imagej.nih.gov/ij/). 

Immunoblotting  

Animals were harvested in Buffer C (20mM HEPES pH 7.9, 25% glycerol, 0.42M NaCl, 

1.5 mM MgCl2, 0.2 mM EDT, and 0.5mM DTT) with the addition of Halt™ protease 

inhibitors (Pierce, cat# 78430). Protein was extracted by sonication with a Diagenode 

Bioruptor 300 for 15 minutes with 30 second pulses. Protein was quantified by Bradford 

assay, resolved on a 10% SDS-PAGE gel, and transferred to a PVDF membrane. The 

blot was incubated with anti-GFP polyclonal antibody (Abcam, cat# ab290) at a 1:2500 

dilution and with anti-Actin (Amersham, cat# JLA20-C) at a 1:750 dilution. Quantification 

of band intensity was performed using ImageJ Software (v. 1.44; http://imagej.nih.gov/ij/) 

http://imagej.nih.gov/ij/
http://imagej.nih.gov/ij/
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following the guidelines for analyzing 1-D gels by generating lane profile plots, drawing 

lines to enclose peaks of interest, and then measuring peak areas using the wand tool. 

Quantitative RT-PCR 

RNA was extracted with TRIzol® reagent (Ambion®, cat# 15596-026) by standard 

protocol. RNA was reverse transcribed using a High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, cat# 4368814) according to the manufacturer’s 

instructions. cDNA was diluted to 50 ng/µl to be used as a template for qRT-PCR 

performed with the StepOne Plus Real-time PCR system (Applied Biosystems, cat # 

4376600) using iTaq™ Universal SYBR® Green Supermix (BioRad, cat# 1725121) 

according to the manufacturer’s instructions. Data analysis was performed according to 

standard calculations and normalized to a GAPDH control (41). Results are 

representative of averaged technical duplicates from independent biological triplicates. 

Statistical analysis was performed with GraphPad (GraphPad Software, 

www.graphpad.com) using ANOVA followed by the Bonferroni post-test. 

Lifespan analysis 

All lifespan assays were performed at 23°C with 100 worms per condition. Animals were 

transferred to fresh plates daily for 5 days to avoid progeny contamination. Adult worms 

were scored every other day and counted as dead when no response was observed by 

gentle poking with a platinum wire. Survivability was plotted using GraphPad Prism v.6 

(GraphPad Software, www.graphpad.com) and statistical analysis was done using the 

Kaplan-Meyer log-rank test. 

 

 

http://www.graphpad.com/
http://www.graphpad.com/
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Thermotolerance and thrashing assay 

100 synchronized L1 nematodes were grown on control (L4440) or gene-specific RNAi 

plates at growth temperature (23°C), transferred to new plates daily until day 3 of 

adulthood, and then submerged in a 42°C water bath for 1 hour which allowed for a 50% 

survival rate which is considered lethal. Animals were scored 12 hours later and marked 

as dead when non-responsive to poking by a platinum wire. Live animals were then 

scored for fitness by assessing movement when placed into a drop of M9 on a glass slide. 

Worms were allowed to acclimate to the M9 for 10 seconds, and then body bends were 

counted for 30 seconds.  

Protein aggregation assay 

Q35::YFP (AM140) nematodes were synchronized and grown on empty vector (L4440, 

control) or gene-selected RNAi plates. Worms were picked to fresh plates daily after first 

progeny development until day 3 of adulthood, and then plates were submerged in a 33°C 

water bath for 15 minutes and allowed to recover for 12 hours at growth temperature. 

Protein aggregates were scored in a blind analysis of at least 50 worms per condition in 

independent biological triplicates as previously described (38), and also by ImageJ 

analysis.  

Paralysis assay 

Q35::YFP (AM140) nematodes were synchronized and grown on empty vector (L4440, 

control) or gene-selected RNAi plates. Worms were picked to fresh plates daily after first 

progeny development until day 5 of adulthood, and then plates were submerged in a 33°C 

water bath for 15 minutes and allowed to recover for 12 hours at growth temperature. 

Paralysis was determined by transferring live worms to a corresponding RNAi plate, and 
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observing movement within a 2 minute period. Worms that did not move within the 

timeframe were considered paralyzed.  

Acetylation assay 

Approximately 13,000 HSF-1::GFP (EQ73) worms were bleach synchronized and placed 

onto gene-specific RNAi plates until reaching the L4 stage prior to being left untreated or 

heat shocked as described above. Worms were collected in HLB Buffer [50 mM HEPES-

KOH, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% (wt/vol) sodium deoxycholate, 1% 

(vol/vol) Triton X-100, 0.1% (wt/vol) SDS, Halt™ protease inhibitors (Pierce, cat# 78430), 

1 μM trichostatin A, 1 μM nicotinamide, and 1 μM EX-527] and homogenized with a 

Dounce homogenizer prior to centrifugation at 14,000xg for 20 minutes at 4°C. Protein 

was quantified by Bradford assay, and immunoprecipitation was accomplished using 1 

mg protein extract and an anti-GFP polyclonal antibody (Abcam, cat# ab290) at a 1:100 

dilution. The antibody-protein complex was allowed to form overnight at 4°C with rotation. 

50 μL of salmon sperm DNA/protein-A agarose beads (Millipore, cat# 16-157) was then 

added and allowed to incubate for 1 hour at 4°C. The beads were washed 3 times with 

HLB buffer supplemented with 1 μM trichostatin A, 1 μM nicotinamide, and 1 μM EX-527 

before being boiled in Laemeli buffer. The resulting supernatant was then resolved on a 

10% SDS-PAGE gel and transferred to a PVDF membrane. The blot was incubated with 

anti-GFP antibody (Abcam, cat# ab290) at a 1:50,000 dilution and with anti-AcK antibody 

(Cell Signaling cat# 9441) at a 1:100,000 dilution. 

Chromatin immunoprecipitation procedure and data analysis 

Chromatin immunoprecipitation (ChIP) was performed essentially as previously 

described (292). Where approximately 13,000 HSF-1::GFP (EQ73) worms were bleach 



97 

synchronized and placed onto gene-specific RNAi plates until reaching the L4 stage prior 

to being left untreated or given a 15 minute HS as described above. Worms were 

collected, cross-linked with 1% formaldehyde, lysed with a homogenizer, and quenched 

with Glycine before being sonicated with a Diagenode Bioruptor 300 for 10 minutes with 

30 second pulses. Protein was quantified and technical triplicates were performed with 2 

mg of total protein diluted in HLB buffer [50 mM HEPES-KOH, pH 7.5, 150 mM NaCl, 1 

mM EDTA, 0.1% (wt/vol) sodium deoxycholate, 1% (vol/vol) Triton X-100, 0.1% (wt/vol) 

SDS, and Halt™ protease inhibitors (Pierce, cat# 78430)]. 1% of each sample was saved 

as the input. An anti-GFP polyclonal antibody (Abcam, cat# ab290) at a 1:100 dilution, 

and the IgG antibody was used at a 1:1,000 dilution. The antibody-protein complex was 

allowed to form overnight at 4°C. 50 μL of salmon sperm DNA/protein-A agarose beads 

(Millipore, cat# 16-157) was added to the diluted supernatant and allowed to incubate for 

1 hour at 4°C. The antibody-protein-agarose bead complex was washed 2 times with 

WB1 (50 mM HEPES-KOH, pH 7.5, 150 mM NaCl, 1 mM EDTA pH 8.0, 1% sodium 

deoxycholate, 1% Triton X-100, 0.1% SDS and HALT protease inhibitors), WB2 (50 mM 

HEPES-KOH, pH 7.5, 1 M NaCl, 1 mM EDTA, pH 8.0, 0.1% sodium deoxycholate, 1% 

Triton X-100, 0.1% SDS and HALT protease inhibitors), WB3 (50 mM Tris-Cl, pH 8.0, 

0.25 mM LiCl, 1 mM EDTA, 0.5% NP-40 and 0.5% sodium deoxycholate), and then with 

1xTE. The ChIP samples and the input samples were placed at 45°C for 2 hours with the 

addition of proteinase K buffer/proteinase K. The samples were then reverse cross-linked 

with an overnight incubation at 65°C, and DNA was purified the next day using a PCR 

purification kit. qRT-PCR was performed using primers flanking a HS element in the 

promotor of the hsp-70 (C12C8.1) gene. Percent input was calculated by first adjusting 
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the raw Ct values of the diluted input to 100% by subtracting 6.644 (log2 of the dilution 

factor). The square of the average Ct values of the ChIP samples, subtracted from the 

adjusted input, was then multiplied by 100 to obtain the percent input.  

Statistical Analyses 

Statistical analyses were carried out with GraphPad Software (GraphPad Software, La 

Jolla California USA, http://www.graphpad.com). All error bars are representative of 

standard deviation between independent biological replicates, as indicated. 
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Figure 5.1. lst-3 RNAi enhances hsp-70 promoter activity upon HS. (a) Fluorescent images are 
shown of pC12C8.1(hsp-70)::GFP worms fed control RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] 
from the L1 larval stage to the L4 larval stage prior to treatment with or without a 15 minute 33°C HS, 
followed by a 6 hour recovery. (b) Quantification of GFP intensity for 50 worms/condition for each 
treatment condition in A was determined using ImageJ. (c) GFP protein levels in worms given the same 
treatment conditions in (a) were determined via immunoblotting. (d) Quantification of band intensity for 
the immunoblot in (c) was done using ImageJ software and graphed as intensity in arbitrary units. For 
(b) and (d), significance was determined using the Bonferroni post-hoc test where *** p< 0.001. 
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Figure 5.2. lst-3 RNAi decreases HSF-1 acetylation and increases HSF-1 recruitment to the hsp-
70 promoter. (a) Acetylation was assessed in HSF-1::GFP (EQ73) worms were fed control or lst-3 RNAi 
[lst-3(-)] from the L1 larval stage to the L4 larval stage prior to treatment with or without a 15 minute 
33°C HS. HSF-1 was immunoprecipitated (IP) using an α-GFP antibody and acetylation was measured 
by immunoblotting (IB) and probing with an α-AcK (acetylated lysine) antibody, total HSF-1 levels were 
measured by probing with an α-GFP antibody. IgG bands are also shown as a loading control. (b) 
Quantification of band intensity for the top panel in A was done using ImageJ software and graphed as 
intensity in arbitrary units. (c) HSF-1 binding to the hsp-70 promoter was assessed by performing 
chromatin immunoprecipitation in HSF-1::GFP (EQ73) worms using the same treatment conditions in 
(a), and an α-GFP antibody to immunoprecipitate HSF-1. Binding was assessed via qRT-PCR using 
primers designed to encompass HS elements in the promoter region of the C12C8.1 (hsp-70) gene. (d) 
HSF-1 binding to a non-specific site ~4kb upstream of the hsp-70 promoter was assessed by performing 
chromatin immunoprecipitation using the same conditions in (c). (e) Primer design schematic used for 
ChIP. Primers for ChIP were designed to flank the known C. elegans HSF-1 binding site (TTCnnGAA) 
in the promoter of the hsp-70 gene C12C8.1 or at a non-specific site ~4kb upstream of the transcription 
start site. For (b) and (c), significance was determined using the Bonferroni post-hoc test where * p<.05, 
** p< 0.01, *** p< 0.001. 
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Figure 5.3. lst-3 RNAi enhances a family of hsp-70 mRNAs in a sir-2.1-dependent manner upon 
HS. (a-c) qRT-PCR was used to measure the expression of the hsp-70 family members C12C8.1, 
F44E5.5, and F44E5.4 in synchronous wild-type (N2) worms fed control RNAi, hsf-1 RNAi [hsf-1(-)], or 
lst-3 RNAi [lst-3(-)] from the L1 larval stage to the L4 larval stage prior to treatment with or without a 15 
minute 33°C HS followed by a 15 minute recovery. (d-f) qRT-PCR was used to measure the expression 
of the hsp-70 family members C12C8.1, F44E5.5, and F44E5.4 in a sir-2.1Δ strain (LG339) given the 
same treatment conditions in (a-c). For (a-f), significance was determined using the Bonferroni post-hoc 
test where * p<.05, ** p< 0.01, *** p< 0.001. 
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Figure 5.4. lst-3 RNAi promotes thermotolerance and thrashing in aging worms in a sir-2.1-
dependent manner. (a) Thermotolerance was measured in wild-type (N2) worms fed control RNAi or 
lst-3 RNAi [lst-3(-)] from the L1 larval stage until day 3 of adulthood prior to treatment with a lethal (50% 
survival in the control) 42°C 1 hour HS. (b) Thrashing was measured as number of body bends/30 
seconds for survivors of the lethal HS in (a). (c) Thermotolerance was measured in sir-2.1Δ worms fed 
control RNAi or lst-3 RNAi [lst-3(-)] from the L1 larval stage until day 3 of adulthood prior to treatment 
with a lethal 42°C 1 hour HS. (d) Thrashing was measured in number of body bends/30 seconds for 
survivors of the lethal HS in (c). For (a-d), significance was determined using the Bonferroni post-hoc 
test where ** p< 0.01, *** p< 0.001. 
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Figure 5.5. lst-3 RNAi increases longevity in a sir-2.1-dependent manner. (a) Lifespan analysis was 
performed at 23°C in wild-type (N2) worms fed control RNAi or lst-3 RNAi [lst-3(-)] throughout lifespan. 
(b) Lifespan analysis was performed at 23°C in sir-2.1Δ worms fed control RNAi or lst-3 RNAi [lst-3(-)] 
throughout lifespan. For (a-b), worms were scored every other day for survival, and significance was 
determined using the Mantle-Cox rank test.  
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Figure 5.6. lst-3 RNAi decreases polyglutamine aggregation and paralysis in a Huntington’s 
disease model, and prevents age-related decline of the HSR. (a) Fluorescent images of a C. elegans 
Huntington’s disease model containing 35 polyglutamine repeats fused to YFP under the control of a--  



105 

  Figure 5.6. lst-3 RNAi decreases polyglutamine aggregation and paralysis in a Huntington’s 
disease model, and prevents age-related decline of the HSR (Continued). muscle promoter 
(Q35::YFP) were fed control RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 larval stage 
until day 3 of adulthood prior to treatment with or without a 15 minute HS followed by a 12 hour recovery. 
Threshold-adjusted images, are shown below the fluorescent images. (b) ImageJ was used to quantify 
the number of polyglutamine aggregates/worm using the threshold-adjusted images from A for 50 
worms/condition in biological triplicates. (c) Paralysis was measured in Q35::YFP worms were fed 
control RNAi, hsf-1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 larval stage until day 5 of adulthood 
prior to treatment with or without a 15 minute HS followed by a 12 hour recovery. (d-f) qRT-PCR was 
used to measure the expression of the hsp-70 family members C12C8.1, F44E5.5, and F44E5.4 in wild-
type (N2) worms given the same treatment conditions in (a). For (b-f), significance was determined 
using the Bonferroni post-hoc test where * p<.05, ** p< 0.01, *** p< 0.001. 



106 

 

 

CHAPTER 6. THE GENOME-WIDE ROLE OF HSF-1 IN THE REGULATION OF 

GENE EXPRESSION IN CAENORHABDITIS ELEGANS 

 

Authored by: Jessica Brunquell, Stephanie Morris, Yin Lu, Feng Cheng, and Sandy D. 

Westerheide 

Published in BMC Genomics: Brunquell, J., et al. (2016). "The genome-wide role of HSF-

1 in the regulation of gene expression in Caenorhabditis elegans." BMC Genomics 17: 

559. 

All experiments were performed by, or under the guidance of, J. Brunquell. J. Brunquell 

performed RNA preparation for RNA-sequencing, qRT-PCR replicates for HS and RNAi 

treatment condition verification, Western blotting, and fluorescent imaging. S. Morris 

performed qRT-PCR replicates for RNA-seq verification. Y. Lu and F. Cheng contributed 

to data analyses, normalization of the sequencing data, and dendogram clustering of the 

samples. J. Brunquell, F. Cheng, and S.D. Westerheide participated in design of the 

study. The manuscript was written by J. Brunquell and S.D. Westerheide. See Appendix 

H for copyright permission. 

Abstract 

The heat shock response, induced by cytoplasmic proteotoxic stress, is one of the most 

highly-conserved transcriptional responses. This response, driven by the heat shock 

transcription factor HSF1, restores proteostasis through the induction of molecular 

chaperones and other genes. In addition to stress-dependent functions, HSF1 has also 

been implicated in various stress-independent processes. In C. elegans, the HSF1 
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homolog HSF-1 is an essential protein that is required to mount a stress-dependent 

response, as well as to coordinate various stress-independent processes including 

development, metabolism, and the regulation of lifespan. In this work, we have performed 

RNA-sequencing for C. elegans cultured in the presence and absence of hsf-1 RNAi 

followed by treatment with or without heat shock. This experimental design thus allows 

for the determination of both heat shock-dependent and -independent biological targets 

of HSF-1 on a genome-wide level. Our results confirm that C. elegans HSF-1 can regulate 

gene expression in both a stress-dependent and -independent fashion. Almost all genes 

regulated by HS require HSF-1, reinforcing the central role of this transcription factor in 

the response to heat stress. As expected, major categories of HSF-1-regulated genes 

include cytoprotection, development, metabolism, and aging. Within both the heat stress-

dependent and -independent gene groups, significant numbers of genes are upregulated 

as well as downregulated, demonstrating that HSF-1 can both activate and repress gene 

expression either directly or indirectly. Surprisingly, the cellular process most highly 

regulated by HSF-1, both with and without heat stress, is cuticle structure. Via network 

analyses, we identify a nuclear hormone receptor as a common link between genes that 

are regulated by HSF-1 in a HS-dependent manner, and an epidermal growth factor 

receptor as a common link between genes that are regulated by HSF-1 in a HS-

independent manner. HSF-1 therefore coordinates various physiological processes in C. 

elegans, and HSF-1 activity may be coordinated across tissues by nuclear hormone 

receptor and epidermal growth factor receptor signaling. This work provides genome-wide 

HSF-1 regulatory networks in C. elegans that are both heat stress-dependent and -

independent. We show that HSF-1 is responsible for regulating many genes outside of 
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classical heat stress-responsive genes, including genes involved in development, 

metabolism, and aging. The findings that a nuclear hormone receptor may coordinate the 

HS-induced HSF-1 transcriptional response, while an epidermal growth factor receptor 

may coordinate the HS-independent response, indicate that these factors could promote 

non-cell autonomous signaling that occurs through HSF-1. Finally, this work highlights the 

genes involved in cuticle structure as important HSF-1 targets that may play roles in 

promoting both cytoprotection as well as longevity. 

Background 

When organisms are exposed to protein-denaturing stressors such as heat, the heat 

shock response (HSR) is engaged to manage protein damage and restore proteostasis 

(157). The HSR is highly-conserved across species and is regulated by the transcription 

factor heat shock factor 1 (HSF1). During basal conditions, HSF1 exists as a monomer in 

the cytoplasm and nucleus, and during stress conditions undergoes trimerization and 

accumulation in the nucleus, where it binds to heat shock elements in the promoters of 

heat shock protein (hsp) genes (293). HSPs primarily act as molecular chaperones which 

refold the misfolded proteins that accumulate during stress, but they can also have 

essential functions in protein synthesis, processing, and degradation (294,295). Thus the 

HSR, and HSPs, play a large role in maintaining organismal proteostasis. 

The soil-dwelling, free-living, nematode Caenorhabditis elegans is a powerful model 

organism that has provided insights into the regulation of a number of stress response 

pathways, including the HSR. HSF-1, the C. elegans homolog to mammalian HSF1, 

contains conserved N-terminal DNA-binding and trimerization domains, as well as a 

putative transactivation domain at the C-terminus (145). It has recently been shown that 
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the same activity steps required for mammalian HSF1 activation, including trimerization, 

hyperphosphorylation, and induction of DNA-binding, are also required for worm HSF-1 

activation (135,138).  

Studies in C. elegans show that HSF-1 plays a central role not only in the HSR, but 

also in contributing to organismal physiology. HSF-1 is essential to worm viability, as a 

truncated mutant that lacks the C-terminal putative activation domain is defective in 

chaperone induction and egg laying, and also has a decreased lifespan (145). In addition, 

this strain has a temperature-sensitive developmental arrest phenotype, with arrest 

occurring at the L2-L3 transition (145). Various experiments using hsf-1 RNA interference 

(RNAi) have shown that HSF-1 regulates the expression of specific hsp genes upon heat 

shock (HS), and have also implicated a non-stress-induced role for HSF-1 in processes 

including development, metabolism, and longevity (58,110,111,145,296-299). 

Interestingly, studies in C. elegans have identified the HSR as a cell non-autonomous 

process that requires thermosensory neurons for hsp induction (300). Upon the 

completion of sequencing of the C. elegans genome, over 40 percent of the predicted 

protein products were found to be significantly conserved in other organisms (301), and 

many signaling pathways are conserved (302). C. elegans is thus an excellent model 

system for studying the role of HSF-1 in stress responses and other physiological 

processes in a simple multicellular organism. 

In this study, we have performed RNA-sequencing (RNA-seq) with synchronous larval 

stage L4 wild-type C. elegans fed empty vector (EV) control RNAi or hsf-1 RNAi treated 

with or without HS. We show that significant numbers of genes are upregulated as well 

as downregulated by HSF-1 under both conditions. In addition to hsp genes, HSF-1 is 
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required for the regulation of genes involved in a wide variety of cellular processes 

including cytoprotection, development, metabolism, and aging. Network analysis points 

to possible routes by which HSF-1 signaling may be coordinated across tissues. A nuclear 

hormone receptor may coordinate the HS-induced HSF-1 transcriptional response, while 

an epidermal growth factor receptor may coordinate the HS-independent response. 

Surprisingly, the top HSF-1-regulated gene category, both with and without heat stress, 

is cuticle structure. This result, together with other recent studies, thus links regulation of 

the extracellular matrix to HSF-1, cytoprotection, and longevity. 

Results  

Experimental set-up for genome-wide analysis of regulation of gene expression by 

HSF-1 

Previous experiments have shown that HSF-1 regulates the expression of specific hsp 

genes upon HS, and have also implicated a non-stress-induced role for HSF-1 in 

development, metabolism, and longevity (58,110,111,145,296-299). To examine HS-

dependent vs. -independent gene regulation by HSF-1 on a genome-wide level, we used 

whole transcriptome RNA-sequencing. We treated synchronous L1 larval stage 

nematodes with RNAi against hsf-1 [indicated as hsf-1(-)] or with an EV control plasmid 

[indicated as hsf-1(+)] until the L4 larval stage. At the L4 stage, we then treated 

nematodes from both groups with or without a 30 minute 33C HS, as diagrammed 

(Figure E1a, see Appendix E). Experiments were performed in biological duplicates. The 

L4 stage was chosen for our studies as this is a time when the response to HS is strong, 

prior to a sharp decline that occurs shortly after the transition to adulthood (103,303). 

These treatment conditions, optimized for our studies, resulted in a ~9- log2-fold induction 
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of the hsp-70 gene C12C8.1, a classical HSF-1 target gene, in hsf-1(+) animals treated 

with HS (Figure E1b, see Appendix E, black bars). As expected, RNAi against hsf-1 

blunted hsp-70 induction by HS (Figure E1b, see Appendix E, purple bars). The efficiency 

of our RNAi feeding strategy was assessed by testing the effects of hsf-1 RNAi on 

transcription driven by two heat shock protein promoter- GFP reporter worm strains 

(Figure E1c-d, see Appendix E). HS increases GFP expression, and this effect is 

dependent on HSF-1 as demonstrated with hsf-1 RNAi. Using an HSF-1::GFP 

overexpression worm strain, we also show that HSF-1 protein levels are reduced 80% in 

response to hsf-1 RNAi treatment (Figure E1e-d, see Appendix E). Overall, these data 

validate our HS treatment conditions and RNAi feeding strategy.  

Cluster analysis performed on biological replicate RNA-seq samples revealed 

conserved patterns of expression induced by each treatment condition (Figure E2, see 

Appendix E). We normalized each condition to the hsf-1(+);-HS control in order to 

determine fold changes in relative RNA abundance (Figure E3, see Appendix E). A 

complete list of the significant genes altered in response to each condition, after 

normalization to the control, is provided in Tables E1, E2, and E3 (see Appendix E). 

Volcano plot analyses show that while a limited group of genes for each comparison have 

a log2-fold change of 6 or higher, the majority of genes have a log2 -fold change of 

approximately 4 or less (Figure E4a-c, see Appendix E). As growth temperature and HSF-

1 expression levels can affect the rate of development in the worm (304), we verified that 

our observed gene expression changes were not simply due to a change in the rate of 

development between each treatment condition. To do this, we analyzed several genes 

that are known to be differentially expressed during development and molting, including 
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abu-11, wrt-2, his-24, lin-29, abu-10, abu6, pqn-47, pin-42, ptr-3, abu-8, abu-7, and sdz-

37 (305), and detected no significant expression differences in these genes across 

treatment groups (Figure E5, see Appendix E). Overall, our data indicate that the worms 

in our four treatment conditions are developmentally synchronous to one another, and 

that the biological replicates for each condition share a similar expression profile, thus 

validating our experimental conditions. 

Next, to visualize total HS-dependent vs. -independent gene expression regulated by 

HSF-1, we constructed a Venn diagram with the differentially expressed genes for each 

condition which were determined to be statistically significant as compared to the hsf-

1(+);-HS control (Figure E6, see Appendix E). The shaded areas of the Venn diagram 

correspond to HS-dependent and -independent processes regulated by HSF-1 (as 

indicated by the red and pink shaded areas in Figure E6, respectively), and these are the 

transcripts that we have focused our subsequent analyses on. Altogether, we found that 

942 genes are significantly regulated by HSF-1 during HS (Figure E6, see Appendix E, 

red shaded area), and that 2,436 genes are significantly regulated by HSF-1 

independently of HS (Figure E6, see Appendix E, pink shaded area), highlighting that 

HSF-1 regulates both HS-dependent and -independent transcriptional processes. 

Interestingly, only 4 genes are significantly regulated by HS independently of HSF-1. 

HSF-1 is thus not only an essential transcriptional regulator for a majority of the genes 

altered by HS, but global RNA expression analysis supports a gene-regulatory role for 

HSF-1 under both heat stress and non-stress conditions. A greater number of gene 

changes that depend on HSF-1 are independent of heat stress, thus highlighting the 

important role of HSF-1 in regulating gene expression under non-stress conditions. 
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Genes that are regulated by HSF-1 in response to HS 

Genes that are normally upregulated by HSF-1 in response to HS 

To determine whether HSF-1 can affect gene expression in both a positive and negative 

fashion, we separated out the positively vs. negatively regulated genes and analyzed 

them by Venn diagram. We find that 654 transcripts are normally upregulated by HSF-1 

upon HS (Figure 6.1a, dark blue). We next examined these 654 genes in more depth. 

The top 15 genes in this category are listed in Table 6.1 (a complete list of the 654 

significantly upregulated genes is provided in Table E1, see Appendix E). Included in the 

top 15 upregulated transcripts are 3 hsp-70 family genes and 6 hsp-16 family genes, all 

with log2-fold changes greater than 6. The presence of chaperone genes in our top 15 

hits was expected, and gave us confidence in our experimental strategy. Aside from 

chaperone genes, there are a number of non-chaperones included in the top 15 most 

upregulated genes, including the nucleosome remodeling factor complex member nurf-1 

(306), the predicted collagen gene col-149, and various genes of unknown function (Table 

6.1). Therefore, the top 15 genes regulated by HSF-1 under HS conditions include 9 hsp 

genes and 6 genes with diverse functions. 

We then further examined the induction characteristics of the top 15 HSF-1-dependent 

genes induced by HS. The log2-fold changes for a subset of these genes are plotted 

(Figure E7a, see Appendix E, black bars) and compared to the expression of the same 

genes in the presence of HS but in the absence of hsf-1 (Figure E7a, see Appendix E, 

purple bars). The fact that hsf-1 RNAi completely eliminates HS-inducibility of these 

genes highlights their dependency on HSF-1. Independent quantitative RT-PCR (qRT-
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PCR) for the same subset of highly induced genes (Figure E7b, see Appendix E) validates 

our RNA-seq data.  

In order to better visualize the global patterns of transcript upregulation by HSF-1 in 

response to HS, we constructed a heat map of the 654 significantly upregulated genes 

(Figure 6.1b, lane 1). Interestingly, and consistent with the data for a set of the top 15 

upregulated genes (Figure E7a-b, see Appendix E), genes that are normally upregulated 

by HSF-1 upon HS are either unchanged or downregulated under HS conditions upon 

hsf-1 knockdown on a global level (Figure 6.1b, lane 2). The fact that many of the 654 

HS-induced genes that require HSF-1 are downregulated upon hsf-1 knockdown implies 

that HSF-1 may play a role in the basal regulation of these genes, which is then enhanced 

upon HS. Together, these data demonstrate the HSF-1 dependency of most HS-induced 

genes.  

To identify the various functional processes normally upregulated by HSF-1 during 

HS, we used the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) classification tool to define the top 5 gene ontology terms for all of the 654 genes 

found to be significantly upregulated (Figure 6.1c). The complete output from DAVID can 

be found in Table E3 (see Appendix E). Surprisingly, the top functional category, with an 

enrichment score of 97, contains genes involved in cuticle structure. The next four 

categories, all with enrichment scores under 12, include genes involved in translation, the 

response to stress, the regulation of growth, and amine catabolic processes. We thus find 

that the largest functional category of genes regulated by HS is not the expected heat 

stress-responsive gene-set, but instead genes associated with forming cuticle structure.  
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We next tested the effects of a cuticle collagen gene, col-123, on induction of the HSR 

by measuring hsp-70 promoter activity in phsp-70::GFP worms (Figure E8a-c, see 

Appendix E). We see that col-123 RNAi decreases HS-induced hsp-70 promoter activity, 

and may control tissue-specific regulation of the HSR. Testing the effects of other 

collagen genes on regulation of the HSR may provide insight into a signaling role for 

collagens in coordinating stress responses. 

Genes that are normally downregulated by HSF-1 in response to HS 

We next examined the genes separated out from the Venn diagram analysis to be 

normally downregulated by HSF-1 upon HS (Figure 6.2). We find that there are 288 

transcripts in this group (Figure 6.2a, dark purple). The top 15 genes normally 

downregulated by HSF-1 upon HS are listed in Table 6.2 (a complete list of the 288 

significantly downregulated genes is provided in Table E1, see Appendix E). There are a 

variety of distinct transcripts downregulated by HSF-1 during HS. The gene with the 

highest log2-fold decrease (-3.71) is acs-2, which encodes an acyl-CoA synthetase. This 

enzyme participates in breakdown of fatty acids into acyl-CoA in the mitochondria to allow 

for -oxidation, thus increasing fat consumption (307). Another downregulated gene is 

dct-1, which encodes a protein that has pro-apoptotic activity (308). The tetraspanin 

family member tsp-1 is also downregulated. The tetraspanin family of proteins is required 

for epithelial integrity in the worm and regulates cuticle formation (309). Other 

downregulated genes include fbxa-66 and fbxa-21, which encode FboxA proteins with 

unknown functions; nep-26, which encodes a zinc metallopeptidase that negatively 

regulates signaling peptides (310); glc-1, which encodes a subunit of a glutamate-gated 

chloride channel (311); and delm-2, which encodes an ortholog of an acid-sensing ion 
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channel family member (312). There are also multiple transcripts of unknown function in 

this gene group. Therefore, the top 15 genes normally downregulated by HSF-1 under 

HS conditions include genes with a diverse set of functions. 

     We then further studied the top 15 genes that are normally downregulated by HSF-1 

upon HS. The log2-fold changes of a subset of the top 15 HSF-1-dependent genes 

repressed by HS are plotted (Figure E9a, see Appendix E, black bars), and these data 

are compared to the expression of the same genes in the presence of HS but in the 

absence of hsf-1 (Figure E9a, see Appendix E, purple bars). Interestingly, we found that 

all of the genes that are downregulated by HS in the presence of HSF-1 are upregulated 

by HS in the absence of HSF-1. One way this could occur is if HSF-1 normally suppresses 

the expression of these genes, and HS-activated HSF-1 suppresses them even further. 

To verify our RNA-seq data, we performed independent qRT-PCR for the same subset of 

highly downregulated genes, and found that the qRT-PCR data was consistent with our 

RNA-seq data (Figure E9b, see Appendix E).  

To visualize the patterns of transcripts that are normally downregulated by HSF-1 

upon HS, we constructed a heat map to visualize the log2-fold changes of the 288 

significantly downregulated genes (Figure 6.2b, lane 1). As a comparison, the expression 

of the same transcripts under HS conditions upon hsf-1 knockdown is shown (Figure 6.2b, 

lane 2). As with the data for the top downregulated genes (Figure E9a-b, see Appendix 

E), many of the 288 genes that are normally downregulated by HSF-1 under HS 

conditions are conversely upregulated by HS in the absence of HSF-1. Thus, HS can 

have completely opposite effects on gene expression depending on the presence or 

absence of HSF-1.  
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Upon DAVID analysis of gene ontology terms for the repressed genes, the top 5 

functional categories all had enrichment scores of 4 or lower. These functional categories 

include genes that encode proteins with kinase activity, ion binding activity, transcription, 

ATP-binding activity, and reproductive development (Figure 6.2c). The complete output 

from DAVID can be found in Table E3 (see Appendix E). Overall, these results show that 

a diverse group of genes are normally suppressed by HSF-1 during HS. 

Genes that are regulated by HSF-1 independently of HS  

Genes that are normally upregulated by HSF-1 independently of HS 

While HSF-1 has been historically studied for its role in regulating responses elicited by 

HS, HSF-1 also has functions that are independent of HS including roles in development, 

metabolism, and longevity (110,111,138,297). To identify processes upregulated by HSF-

1 independently of HS, we examined the 1,353 genes from the Venn diagram that we 

determined to be downregulated in response to hsf-1 RNAi independently of HS, 

suggesting that they are normally upregulated by HSF-1 (Figure 6.3a, light purple). In 

order to gain insight into the normal HSF-1-regulatory role of these HS-independent 

genes, we reversed our data comparison [control vs. hsf-1(-);-HS] to obtain the fold 

change, as this gene group is shown to be downregulated in response to hsf-1 RNAi and 

would thus normally be upregulated by HSF-1.  

The top 15 genes that are normally upregulated by HSF-1 under non-stress conditions 

are listed in Table 6.3 (a complete list of the significantly upregulated genes is provided 

in Table E2, see Appendix E). Surprisingly, a group of vitellogenin lipid transporter 

transcripts (vit-1, -3,-4, and -5) are among the top 15 genes. Vitellogenins are made in 

the intestine of late larval/early adult hermaphrodites and are taken up by the germ cells 



118 

to provide nourishment to embryos (313). Other top upregulated genes include acdh-1, 

which encodes a short chain acyl-CoA dehydrogenase and may play a role in energy 

production (314,315); K11G9.3, which is predicted to be an ortholog of human 

butyrylcholinesterase; folt-2, which encodes a folate transporter (316); ilys-5, which is 

predicted to have lysozyme activity; ZC266.1, which is predicted to have G-protein 

coupled receptor activity; fat-7, which encodes a fatty acid desaturase (317); K10B2.2, 

which is predicted to have carboxypeptidase activity; Y52E8A.4, which encodes the 

ortholog to a major facilitator superfamily; ugt-22, which encodes the ortholog of a 

polypeptide predicted to have transferase activity; and two genes with unknown function. 

Therefore, a diverse set of genes, including vitellogenins and others, are normally 

upregulated by HSF-1 independently of HS.  

We then further characterized the induction characteristics of the top 15 genes that 

are normally upregulated by HSF-1 independently of heat stress. The log2-fold changes 

of a subset of these top 15 genes are plotted (Figure E10a, see Appendix E, orange bars), 

and are compared to the expression of the same genes in the presence of HS and 

absence of hsf-1 (Figure E10a, see Appendix E, purple bars). This data shows that HS 

does not affect the expression of these genes in the absence of hsf-1. The expression of 

these mRNAs was also verified with qRT-PCR, and the results are consistent with the 

RNA-seq data (Figure E10b, see Appendix E).  

To investigate a HS-independent role for HSF-1 in the induction of gene expression 

on a global level, we generated a heat map of all 1,353 genes found via Venn diagram to 

be normally upregulated by HSF-1 in the absence of HS (Figure 6.3b, lane 1). As a 

comparison, genes that are normally upregulated by HSF-1 in the presence of HS are 
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plotted (Figure 6.3b, lane 2). The transcripts in this group that are normally upregulated 

by HSF-1 in the absence of HS remain upregulated or unchanged in the presence of HS, 

verifying the heat stress-independent induction of this gene group. 

We next used DAVID to determine the top 5 functional processes that are normally 

upregulated by HSF-1 independently of HS. We found that cuticle structure was again the 

gene category with the highest enrichment score (9.7), as was also the case for the genes 

that are upregulated by HSF-1 during HS (Figure 6.3c). This indicates that HSF-1 may 

regulate the basal expression of genes involved in cuticle structure, and that these genes 

are then further induced upon HS. Other functional processes, with enrichment scores 

between 4-10, include genes that encode proteins involved in the mitochondrial envelope, 

acyl-CoA dehydrogenase activity, peptidase activity, and oxidoreductase activity. The 

complete output from DAVID can be found in Table E4 (see Appendix E). The 

mitochondrial envelope, acyl-CoA dehydrogenase activity, peptidase activity, and 

oxidoreductase activity are all processes that can be linked to metabolism, further 

substantiating a functional role for HSF-1 in regulating this process. 

Genes that are normally downregulated by HSF-1 independently of HS 

We next examined the 1,083 genes from the Venn diagram that we determined to be 

upregulated in response to hsf-1 RNAi independently of HS, suggesting that they are 

normally downregulated by HSF-1 (Figure 6.4a, light blue). We reversed our data 

comparison [control vs hsf-1(-);-HS] to obtain the fold change, as this gene group is shown 

to be upregulated in response to hsf-1 RNAi and would thus normally be downregulated 

by HSF-1. The top 15 genes in this category are listed in Table 6.4 (a complete list of the 

significantly downregulated genes is provided in Table E2, see Appendix E). There are a 
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variety of transcript types in this list, including T22F3.11, which is an mRNA that encodes 

the ortholog of the human solute carrier family 17; eol-1, which regulates olfactory 

learning (318); BO348.2, which encodes an ortholog of human lipopolysaccharide-

induced TNF factor; col-158, which encodes a structural constituent of the cuticle; fbxa-

163 and T08E11.1, which encode proteins that contain F-box motifs predicted to be 

important for protein-protein interactions; clec-174 and clec-13, which encode 

carbohydrate binding proteins; srg-31, which encodes a protein involved in embryo 

development; clec-60, which encodes a protein involved in the immune response; 

B0507.8, which encodes an ortholog of human cingulin-like 1; clec-13, which is predicted 

to have carbohydrate binding activity; F22F12.1, which encodes an ortholog of human 

GRB10 interacting GYF protein 2; and Y47H10A.5 and ZK355.8, which both have 

unknown functions. Overall, we find that a diverse set of mRNAs are normally 

downregulated by HSF-1 independently of HS, indicating that HSF-1 may normally 

suppress a variety of cellular processes in a HS-independent manner.  

The induction characteristics of the top 15 genes in this category were then analyzed. 

The log2-fold changes from the RNA-seq data for a subset these genes are plotted (Figure 

E10c, see Appendix E, orange bars), and are compared to the expression of the same 

genes in the presence of HS in the absence of hsf-1 (Figure E10c, see Appendix E, purple 

bars). The expression of these mRNAs was also verified with qRT-PCR, and the results 

are consistent with the RNA-seq data (Figure E10d, see Appendix E). Altogether, these 

data confirm that HS does not affect the expression of these genes in the absence of hsf-

1.  
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To investigate a HS-independent role for HSF-1 in the suppression of gene 

expression, we constructed a heat map of all 1,083 genes found via Venn diagram to be 

normally suppressed by hsf-1 in the absence of HS (Figure 6.4b, lane 1). As a 

comparison, the expression patterns of the same transcripts suppressed by hsf-1 in the 

presence of HS are shown (Figure 6.4b, lane 2). The transcripts in this group that are 

significantly downregulated by HSF-1 in the absence of HS remain downregulated or 

unchanged by HSF-1 in the presence of HS, further verifying that regulation of this subset 

of genes by HSF-1 is independent of HS.  

We next used DAVID to determine the functional processes that are normally 

downregulated by HSF-1 independently of HS. Genes involved in cell cycle processes 

were most abundant, with an enrichment score of 19, followed by genes involved in 

epithelium development, regulation of growth, genitalia development, and cell migration, 

all with enrichment scores under 6 (Figure 6.4c). The complete output from DAVID can 

be found in Table E4 (see Appendix E). Cell cycle processes, epithelium development, 

regulation of growth, genitalia development, and cell migration are all processes that can 

be linked to development, thus confirming a HS-independent role for HSF-1 in 

development. 

Discussion 

Regulation of gene expression by HSF-1   

C. elegans is a useful model organism for identifying regulatory processes that are shared 

between species. While the transcription factor HSF-1 has classically been studied as a 

factor that is responsive to cytoplasmic proteotoxic stress, it is becoming increasingly 

evident that this transcription factor also has major non-stress-induced roles in 
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coordinating gene expression. With the RNA-sequencing experiments performed here, 

we confirm that HSF-1 can regulate gene expression under both heat-stress and non-

stress conditions. In addition to genes that are classically stress-responsive, such as 

chaperones, our work shows that HSF-1 also regulates sets of genes involved in a variety 

of cellular processes including metabolism, development, and longevity.  

Cuticle structure genes are normally upregulated by HSF-1 via HS-dependent and 

-independent mechanisms 

A surprising result of our study is that genes controlling cuticle structure comprise the 

largest gene ontology group that is upregulated by HSF-1 in both a HS-dependent and -

independent manner. The C. elegans cuticle is an exoskeletal structure that creates a 

barrier between the animal and the environment, provides body shape, and allows 

movement via attachment to muscle. Many of the genes in the cuticle structure category 

are collagens, structural proteins that form an extracellular matrix composing the 

exoskeleton, or cuticle, of the nematode. There are ~154 distinct collagen genes in C. 

elegans, and they are expressed in a tissue-specific fashion and at distinct temporal times 

(319). Cuticle structure is controlled by enzymes involved in collagen processing, and the 

polymerization pattern is dictated by actin filaments that are organized in specific patterns 

around the body of the worm. In humans, collagens comprise about one-third of all 

expressed protein (320). Aside from the structural role of collagens, these genes can also 

participate in signal transduction (321-323). Collagen genes were recently found to be 

upregulated by SKN-1, the C. elegans oxidative stress-responsive transcription factor 

(324). In future work, it will be interesting to test whether collagen can act to relay signals 

to stress-specific transcription factors including SKN-1 and HSF-1. 
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Roles for HSF-1 in regulating metabolism and development in a HS-independent 

manner 

Although HSF-1 has classically been studied as a transcription factor that responds to HS 

and cytoplasmic proteotoxic stress, HSF-1 has recently been gaining importance as a 

transcription factor that is involved in non-stress processes including development and 

metabolism (325,326). In mice, HSF family members have been documented to be 

involved in diverse developmental processes, including oogenesis, spermatogenesis, 

and corticogenesis (327). HSF-1 in the worm has also been shown to be regulated by 

insulin/IGF-1, TGF-, and cGMP signaling to control development (328). The finding that 

mammalian HSF1 can be regulated by SIRT1, a deacetylase that is under metabolic 

control, provides evidence that HSF-1 and metabolism are linked (58). This finding is also 

true for C. elegans HSF-1, as the SIRT1 homolog SIR-2.1 regulates the C. elegans HSR 

(329). Additionally, the insulin-like signaling regulators DDL-1/2 have been linked to HSF-

1 regulation (135). Here, we show that under non-stress conditions, HSF-1 upregulates 

a number of genes involved in developmental and metabolic processes. Therefore, our 

work further highlights the links between HSF-1 and these non-stress processes. 

Network analysis identifies a nuclear hormone receptor as a common link between 

processes regulated by HSF-1 upon HS 

To determine how the genes regulated by HSF-1 during HS may interact with each other, 

we performed network analysis using genes associated with the top GO-terms as 

determined by DAVID. We used the MiMI plugin to integrate data from protein interaction 

databases (including gene ontology databases, MeSH, and PubMed) to allow for the 

creation of interaction networks using the network-building software Cytoscape. This 



124 

analysis enabled us to identify interacting partners shared by at least two genes regulated 

by HSF-1 during HS. The transcripts induced by HSF-1 during HS are shown in red, while 

the transcripts downregulated by HSF-1 during HS are shown in blue, with the intensity 

of color correlating to the fold change. Genes that are not colored were not found to be 

affected by HSF-1 during HS in our dataset, but are neighbors shared by at least two 

genes that were affected.  

We found network linkages between the processes of cuticle structure formation, 

translation, the response to stress, protein kinase activity, and transcription (Figure 6.5a). 

Interestingly, the nuclear hormone receptor nhr-111 is a common link between several of 

the HS-regulated processes that require HSF-1, including cuticle structure, translation, 

and the response to stress. Nuclear hormone receptors comprise a class of ligand-gated 

transcription factors that bind to small molecule metabolites such as fatty acids, vitamins, 

and steroids to directly regulate gene transcription (330). They are thus well-poised to 

coordinate metabolism, development, reproduction, and homeostasis across diverse 

tissues. nhr-111 is broadly expressed in C. elegans and is located in eight head neurons, 

the sensory PVD neurons in the posterior lateral body wall, the pharynx, the intestine, the 

dorsal peri-vulva region, and the somatic gonad precursor cells (331). In future work, it 

will be interesting to test the role of nhr-111 and other nuclear hormone receptors in the 

HSR, and to see if it can contribute towards the coordination of this response across 

tissues.  
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Network analysis identifies a tyrosine kinase as a common link between various 

developmental processes regulated by HSF-1 independently of HS 

To uncover C. elegans interaction networks associated with processes regulated by HSF-

1 independently of HS, we performed network analysis using genes associated with the 

top GO-terms as determined by DAVID (Figure 6.5b). Network linkages were found for 

genes involved in the mitochondrial envelope, peptidase activity, oxidoreductase activity, 

cell cycle processes, and epithelium development. We found that let-23, an epidermal 

growth factor receptor tyrosine kinase (EGF-RTK) (332), is predicted to interact with many 

of these transcripts. The EGF pathway in C. elegans has been linked to multiple 

developmental pathways (333). This RTK may thus allow for signaling to HSF-1 during 

non-stress conditions to modulate developmental gene expression. Interestingly, HSF1 

null mouse embryonic fibroblasts are defective in both basal and EGF-induced cell 

migration (334), so the link between HSF-1 and the EGF signaling pathways may be 

conserved across species. It will thus be worthwhile in future work to test for the 

involvement of let-23 in the regulation of HSF-1 activity in C. elegans. 

HSF-1 impacts aging-regulated gene expression  

As HSF-1 has been implicated to play an important role in both aging and disease (335), 

we analyzed the role of HSF-1 in regulating age-associated transcriptional changes in our 

data sets (Figure 6.6). By comparing the transcriptome profiles between young and old 

adult C. elegans, a previous study by Budovskaya et al. identified 1,254 genes to be 

differentially regulated upon worm aging (336). A Venn diagram comparison of these 

1,254 age-regulated genes with those that we found to be regulated by HSF-1 during HS 

shows that 174 aging-associated genes overlapped with our dataset (Figure 6.6a). Table 
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E5 (see Appendix E) lists the genes shared between both datasets. The functional 

processes regulated by this overlapping gene set were then determined via DAVID 

analysis. Cuticle structure was the largest functional category, with an enrichment score 

of 76 (Figure 6.6b). Other gene categories, all with enrichment scores of 5 or lower, 

include cuticle development, the response to stress, amine catabolic processes, 

carbohydrate binding, and membrane structure. Network analysis performed the 174 

overlapping genes shows that only a small subset of these genes are predicted to interact 

with each other (Figure 6.6c).  

Next, a comparison between aging-associated genes and those we found to be 

regulated by HSF-1 independently of HS was done. A Venn diagram shows that 275 

aging-associated genes overlapped with our dataset (Figure 6.6d), and Table E6 (see 

Appendix E), lists the genes shared between both data-sets. The functional processes 

regulated by this gene set was then determined via DAVID analysis. Cuticle structure was 

again the largest category, with an enrichment score of 9. The other categories, with 

enrichment scores of 5 or lower, include peptidase activity, C-type lectin, vitamin binding, 

and lifespan-associated processes (Figure 6.6e). The transcriptional impact of these 

HSF-1 and aging-regulated genes that are independent of HS was then determined by 

network generation (Figure 6.6f). Interestingly, the interaction network of aging-

associated genes regulated by HSF-1 independently of HS is four-fold larger than the 

network of aging genes that depend on HS. We thus conclude that HSF-1 may have a 

role in impacting longevity that can be separated from its role in stress responses.  
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HSF-1 regulates collagen genes which may affect the aging process 

It is interesting that the cuticle structure genes constitute the largest overlap with aging-

related genes. In humans, mutations in collagens lead to a large number of heritable 

human diseases, including rare diseases as well as common ones such as osteoporosis 

and musculoskeletal diseases (337). Collagens are long-lived proteins known to 

accumulate damage during aging, leading to a decline in tissue health (338). Also, type I 

collagens become resistant to proteolysis upon age (339,340), affecting their turnover. 

Interestingly, mice expressing cleavage-resistant type I collagen go through an 

accelerated aging process (341). Thus, cellular aging can be affected by the state of the 

extracellular matrix in mammals.  

Recently, collagen production and extracellular matrix remodeling were determined to 

be essential for longevity in C. elegans. Collagen may directly affect signaling processes 

associated with longevity in C. elegans, including signaling through SKN-1 (324,342). We 

note that HSF-1 was also recently shown to regulate cytoskeletal integrity in a process 

that can influence stress resistance and longevity in C. elegans (343). Thus, the linkage 

of both the extracellular matrix and the cytoskeleton to HSF-1 may provide a mechanism 

by which HSF-1 promotes longevity. 

Conclusion 

Next generation sequencing has allowed us to uncover highly varied roles for C. elegans 

HSF-1 in both HS-dependent and -independent mechanisms, including roles in the 

regulation of development, cytoprotection, metabolism, and aging (for a model, see 

Figure E11 in Appendix E). Network analyses show that under HS conditions, the nuclear 

hormone receptor NHR-111 may allow coordination of the HSF-1 response across 
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tissues, while under basal conditions, the EGF receptor LET-23 may regulate a similar 

coordination. These findings warrant further studies in order to further understand the 

methods of non-cell-autonomous signaling across tissues. A striking result shown here is 

that multiple genes involved in cuticle structure, including collagen genes, are enriched 

as HSF-1 targets in HS-dependent and -independent manners. As recent studies link 

collagen to cytoprotection and longevity, the regulation of collagen expression may be 

one method by which HSF-1 enhances lifespan. Harnessing the ability of HSF-1 to 

regulate collagen could thus have broad appeal in the treatment of diseases of aging. 

Methods 

C. elegans strains and maintenance 

The wild-type N2 strain, phsp-70(C12C8.1)::GFP (111), phsp-16.2(Y46H3A.3)::GFP 

(344), and EQ73 (HSF-1::GFP) (135) strains were used in this study. Worms were 

maintained at 23°C on standard NGM plates seeded with Escherichia coli OP50 (345-

347). A synchronous population of nematodes was obtained by standard 20% 

hypochlorite treatment, and a 24 hour rotation at 220 rpm in M9 buffer without food. 

RNA interference and heat shock conditions 

Approximately 4,000 wild-type nematodes were synchronized and placed at the L1 larval 

stage onto standard NGM plates supplemented with 50 µg/mL ampicillin and 1 mM 

isopropyl-beta-ᴅ-thiogalactopyranoside seeded with either HT115 bacteria containing an 

empty plasmid (L4440, control), or sequence-verified gene-specific RNAi isolated from 

the Ahringer RNAi library (146). RNAi bacteria were allowed to induce on the plates 

overnight at room-temperature. Synchronized animals developed on RNAi plates before 

being treated at the L4 stage with a 30 minute 33C HS by submerging the plates in a 
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water bath. The time and duration of HS was optimized for this experiment (Figure E1 B-

D, see Appendix E). Worms were then collected for RNA extraction.  

Immunoblotting and quantification 

Animals were harvested in Buffer C (20 mM HEPES pH 7.9, 25% Glycerol, 0.42 M NaCl, 

1.5 mM MgCl2, 0.2 mM EDTA, and 0.5 mM DTT) with the addition of Halt™ protease 

inhibitors (Pierce, cat# 78430). Protein was extracted by sonication with a Diagenode 

Bioruptor 300 for 10 minutes with 30 second pulses. Protein was quantified by Bradford 

assay, resolved on a 10% SDS-PAGE gel, and transferred to a PVDF membrane. The 

blot was incubated with an α-GFP polyclonal antibody (Abcam, cat# ab290) at a 1:2500 

dilution and with α-Actin (Amersham, cat# JLA20-C) at a 1:750 dilution. Quantification of 

band intensity was performed using ImageJ Software (v. 1.44; http://imagej.nih.gov/ij/). 

RNA preparation for RNA-seq 

Total RNA was prepared using TRIzol® reagent (Ambion®, cat# 15596-026) by standard 

protocols, and then cleaned up on RNeasy columns (QIAgen, cat# 74104). RNA integrity 

analysis, sample preparation, and RNA-sequencing was performed at the Yale Center for 

Genome Analysis using the Illumina HiSeq 2000 sequencing system.  

RNA-seq data analysis 

A quality-control analysis of raw RNA-seq reads was performed using the FastQC 

program (348). Short reads were aligned to the C. elegans reference genome (ws200 

release) using Bowtie software (349). The program TopHat was used to discover 

transcript splicing junctions (350). The program Cufflinks was chosen to assemble the 

aligned reads, estimate their abundance, and calculate the fragments per kilobase of 

exon per million fragments mapped (FPKM) values (351). Transcripts that were 
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differentially expressed in different conditions, compared to the hsf-1(+);-HS control, were 

determined with CuffDiff, which uses the Benjamini-Hochberg correction for multiple 

testing to obtain the q-value (the FDR-adjusted the p-value) (352). The results were 

visualized with a dendogram using the program CummeRbund (352). The RNA-seq data 

has been deposited in NCBI SRA database (Access ID: PRJNA311958).  

Volcano plot analysis 

Volcano plots were made using GraphPad Prism Software (GraphPad Software, La Jolla 

California USA, http://www.graphpad.com), where the Y-axis represents the q-value 

(FDR-corrected p-value) after being adjusted to reflect a -log10 value, and the X-axis 

represents the log2-fold change of each mRNA after comparison to the hsf-1(+);-HS 

control.  

Venn diagram analysis 

Venny 2.0 (353) was used to construct Venn diagrams with the significantly altered 

mRNAs for each condition (q-value<0.05) as compared to the hsf-1(+);-HS control.  

Quantitative RT-PCR  

qRT-PCR was performed to validate the top hits from our RNA-seq data. An aliquot of the 

RNA samples that were used for sequencing were reverse transcribed into cDNA using 

a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, cat# 4368814) 

according to the manufacturer’s instructions. cDNA was diluted to 50 ng/µl to be used as 

a template for qRT-PCR which was performed with the Step One Plus Real-time PCR 

system (Applied Biosystems) using iTaq™ Universal SYBR® Green Supermix (BioRad, 

cat# 172-5121) according to manufacturer’s instructions. Data analysis was performed 

according to standard calculations using the comparative Ct method (189). Relative 
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mRNA levels were normalized to gapdh, and calculated from two biological replicates and 

technical triplicates. Primer sequences are available upon request. Statistical analyses 

were carried out with GraphPad Prism Software (GraphPad Software, La Jolla California 

USA, http://www.graphpad.com) using ANOVA followed by the Bonferroni post-hoc test. 

Error bars are representative of standard deviation between independent biological 

replicates. 

Fluorescence microscopy 

Animals were anesthetized with 10 mM Levamisole and photographed using an EVOS 

fluorescence microscope. Image processing was accomplished using Adobe 

Photoshop© (Adobe Systems Incorporated, San Jose, CA).  

Heat map generation 

The heat maps were organized using Cluster 3, by organizing the genes into 3 clusters, 

using K-means and 100 runs, and the Euclidean distance similarity metric (354).  

Gene ontology analysis via DAVID 

Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to 

identify over-represented gene ontology terms using the Functional Annotation Clustering 

tool and a high classification stringency (355). The enrichment score provided by DAVID 

takes into account the probability that the members of a gene cluster are present 

randomly in the gene list. The enrichment score determines biologically significant 

functional groups by using the p-values for a cluster of genes to determine the geometric 

mean of that cluster (in negative log scale), where if the geometric mean of the p-values 

= 1e−10, then the enrichment score would be 10.  
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Network analysis with the Cytoscape platform 

Network analysis was performed using the MiMI plugin for the Cytoscape platform (356). 

The MiMI plugin integrates data from protein interaction databases including gene 

ontology databases, MeSH, and PubMed to allow the creation of interaction networks 

using the network-building software Cytoscape. Interacting partners shared by at least 

two mRNAs were identified and used to construct interaction pathways. 
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Figure 6.1. Genes that are normally upregulated by HSF-1 in 
response to HS.  (a) The Venn diagram shows the overlap among genes 
that were found to be significantly upregulated (q-value<0.05) for each of 
the indicated comparisons between samples. The dark blue shaded area 
includes genes that are normally upregulated by HSF-1 upon HS. The q-
value is the FDR-adjusted p-value of the test statistic, as determined by 
the Benjamini-Hochberg correction for multiple testing. (b) Hierarchical 
clustering of the genes normally upregulated by HSF-1 upon HS. Lane 1 
corresponds to the fold change of the 654 genes found in the dark blue 
section of the Venn diagram in (a) in the hsf-1(+);+HS vs. control samples. 
As a comparison, lane 2 corresponds to the fold change of the same genes 
found in lane 1, but in the hsf-1(-);+HS vs. control samples, as determined 
by RNA-seq. The heat map was organized using Cluster 3 by k-means 
and Euclidean distance. (c) Top processes normally upregulated by HSF-
1 during HS. The genes found in the dark blue section of the Venn diagram 
in (a) were classified by Gene Ontology terms that were determined using 
DAVID.  
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Figure 6.2 Genes that are normally downregulated by HSF-1 in 
response to HS. (a) The Venn diagram shows the overlap among genes 
that were found to be significantly downregulated (q-value<0.05) for each 
of the indicated comparisons between samples. The dark purple shaded 
area includes genes that are normally downregulated by HSF-1 upon HS. 
The q-value is the FDR-adjusted p-value of the test statistic, as 
determined by the Benjamini-Hochberg correction for multiple testing. (b) 
Hierarchical clustering of the genes normally downregulated by HSF-1 
upon HS. Lane 1 corresponds to the fold change of the 288 genes found 
in the dark purple section of the Venn diagram in (a) in the hsf-1(+);+HS 
vs. control samples. As a comparison, lane 2 corresponds to the fold 
change of the same genes found in lane 1, but in the hsf-1(-);+HS vs 
control samples, as determined by RNA-seq. The heat map was 
organized using Cluster 3 by k-means and Euclidean distance. (c) Top 
processes normally downregulated by HSF-1 during HS. The genes 
found in the dark purple section of the Venn diagram in (a) were classified 
by Gene Ontology terms that were determined using DAVID.  
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Figure 6.3. Genes that are 
normally upregulated by HSF-1 
independently of HS. (a) The 
Venn diagram shows the overlap 
among genes that were found to be 
significantly downregulated (q-
value<0.05) for each of the 
indicated comparisons between 
samples. The light purple shaded 
area includes genes that are 
downregulated upon treatment with 
hsf-1 RNAi, and are likely normally 
induced by HSF-1 independently of 
heat shock, therefore are referred 
to as upregulated genes. The q-
value is the FDR-adjusted p-value 
of the test statistic, as determined 
by the Benjamini-Hochberg 
correction for multiple testing. (b) 
Hierarchical clustering of the genes  
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Benjamini-Hochberg correction for multiple testing. (b) Hierarchical 
clustering comparing the genes normally suppressed by HSF-1 
independently of HS. The fold change of genes found in the light blue section 
of the Venn diagram in (a) were determined by RNA-seq to be upregulated 
in response to hsf-1 RNAi, and would thus normally be suppressed by HSF-
1. Lane 1 corresponds to the fold change of these genes in the control vs. 
hsf-1(-);-HS samples, and as a comparison, lane 2 corresponds to each the 
fold change of the same genes found in lane 1 but in the control vs. hsf-1(-
);+HS samples. The heat map was organized using Cluster 3 by k-means 
and Euclidean distance. (c) Top processes normally downregulated by HSF-
1 independently of HS. The genes found in the light blue section of the Venn 
diagram were classified by Gene Ontology terms that were determined using 
DAVID.  

Figure 6.4. Genes that are 
normally downregulated by HSF-
1 independently of HS. (a) The 
Venn diagram shows the overlap 
among genes that were found to be 
significantly upregulated (q-
value<0.05) for each of the indicated 
comparisons between samples. The 
light blue shaded area includes 
genes that are upregulated upon 
treatment with hsf-1 RNAi, and are 
likely normally suppressed by HSF-
1 independently of heat shock, 
therefore are referred to as 
downregulated genes. The q-value 
is the FDR-adjusted p-value of the 
test statistic, as determined by the  
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Figure 6.5. Network analyses of the top HSF-1-regulated processes. (a) Predicted network 
regulated by HSF-1 during HS. Genes associated with the top 5 induced and suppressed processes 
in Figure 6.1c and 6.2c were used for analysis. (b) Predicted network regulated by HSF-1 
independently of HS. Genes associated with the top 5 induced and suppressed processes in Figure 
6.3c and 6.4c were used for analysis. For (a) and (b), the color of each gene corresponds to the degree 
of HSF-1 regulation of the corresponding transcript. Network analysis was done with MiMI using the 
Cytoscape platform. The uncolored genes were not affected by HSF-1 during or independently of HS 
in our dataset, but are neighbors shared by at least two genes that were affected in our dataset.  
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Figure 6.6. Age-regulated genes controlled by HSF-1. (a) The Venn diagram shows the overlap 
among genes that are differentially expressed during aging and regulated by HSF-1 during HS. The 
Venn diagram was made using genes previously found to be regulated during aging by Budovskaya et 
al. compared to genes we found to be regulated by HSF-1 during HS. (b) Cellular processes affected 
by aging and HSF-1 during HS. Genes shared between the aging dataset and HSF-1-regulated HS-
dependent dataset from (a) were analyzed with DAVID and the Gene Ontology terms are listed in order 

of decreasing enrichment. (c) Network analysis of the genes regulated by aging and HSF-1 during HS.-  
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Figure 6.6. Age-regulated genes controlled by HSF-1 (Continued). Network analysis was done with 
MiMI using the Cytoscape platform and the transcripts listed in Table E6 (see Appendix E). The color 
of each transcript corresponds to the degree of HSF-1 regulation. Genes that are not colored were not 
affected by HSF-1 our dataset, but are neighbors shared by at least two genes that were affected in our 
dataset. (d) The Venn diagram shows the overlap among genes that are differentially expressed during 
aging and regulated by HSF-1 independently of HS. The Venn diagram was made using genes 
previously found to be regulated during aging by Budovskaya et al. compared to genes we found to be 
regulated by HSF-1 independent of HS. (e) Cellular processes affected by aging and HSF-1 
independently of HS. Genes shared between the aging dataset and HSF-1-regulated HS-independent 
dataset from (c) were analyzed with DAVID and the Gene Ontology terms are listed in order of 
decreasing enrichment. (f) Network analysis of the genes regulated by aging and HSF-1 independently 
of HS. Network analysis was done with MiMI using the Cytoscape platform and the transcripts listed in 
Table E7 (see Appendix E). The color of each transcript corresponds to the degree of HSF-1 regulation. 
Genes that are not colored were not affected by HSF-1 in our dataset, but are neighbors shared by at 
least two genes that were affected in our dataset. 
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Table 6.1. Top 15 genes normally upregulated by HSF-1 upon HS. 

 Transcript 
ID 

Gene 
Name 

Fold Change 
(log2) hsf-

1(+);+HS vs 
control 

Description (WormBase) 

1 F44E5.5 F44E5.5 8.06 
F44E5.5 encodes a member of the Hsp70 family of 

heat shock proteins 

2 F44E5.4 F44E5.4 7.87 
F44E5.4 encodes a member of the Hsp70 family of 

heat shock proteins 

3 Y46H3A.3 
hsp-
16.2 

7.53 
hsp-16.2 encodes a 16-kD heat shock protein (HSP) 

that is a member of the hsp16/hsp20/alphaB-crystallin 
(HSP16) family of heat shock proteins 

4 Y46H3A.2 
hsp-

16.41 
7.41 

hsp-16.41 encodes a 16-kD heat shock protein (HSP) 
that is a member of the hsp16/hsp20/alphaB-crystallin 

(HSP16) family of heat shock proteins 

5 T27E4.2 
hsp-

16.11 
7.31 

hsp-16.11 encodes a 16-kD heat shock protein (HSP) 
that is a member of the hsp16/hsp20/alphaB-crystallin 

(HSP16) family of heat shock proteins 

6 C12C8.1 hsp-70 7.15 
hsp-70 encodes a heat-shock protein that is a 

member of the HSP70 family of molecular 
chaperones 

7 T27E4.8 
hsp-
16.1 

6.9 
hsp-16.1 encodes a 16-kD heat shock protein (HSP) 

that is a member of the hsp16/hsp20/alphaB-crystallin 
(HSP16) family of heat shock proteins 

8 T27E4.3 
hsp-

16.48 
6.77 

hsp-16.48 encodes a 16-kD heat shock protein (HSP) 
that is a member of the hsp16/hsp20/alphaB-crystallin 

(HSP16) family of heat shock proteins 

9 Y38E10A.13 nspe-1 6.54 
nspe-1 is a nematode-specific peptide that has an 

unknown function 

10 T27E4.9 
hsp-

16.49 
6.5 

hsp-16.49 encodes a 16-kD heat shock protein (HSP) 
that is a member of the hsp16/hsp20/alphaB-crystallin 

(HSP16) family of heat shock proteins 

11 F26H11.2 nurf-1 4.15 
nurf-1 encodes the C. elegans ortholog of Drosophila 

NURF301, a component of the NURF chromatin 
remodeling complex 

12 ZC21.10 ZC21.10 3.84 Unknown function 

13 D2013.8 scp-1 3.68 

scp-1 encodes PTC-related protein that contains a 
sterol-sensing domain related to human Sterol 

regulatory element binding protein (SREBP) cleavage 
activating protein 

14 R107.5 R107.5 3.29 Unknown function 

15 B0024.1 col-149 3.01 
col-149 is predicted to be a structural constituent of 

the cuticle 
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Table 6.2. Top 15 genes normally downregulated by HSF-1 upon HS. 

 

  

 Transcript ID 
Gene 
Name 

Fold Change 
(log2) hsf-

1(+);+HS vs 
control 

Description (WormBase) 

1 F28F8.2 acs-2 -3.71 

acs-2 encodes an acyl-CoA synthetase; by 
homology, ACS-2 is predicted to catalyze 
conversion of a fatty acid to Acyl-CoA for 

subsequent beta oxidation 

2 W09G12.7 W09G12.7 -3.28 Unknown function 

3 C07A4.2 C07A4.2 -2.85 Unknown function 

4 C14F5.1 dct-1 -2.84 

dct-1 encodes a protein with similarity to the 
mammalian BNIP3 proteins that interact with 
Bcl-2 and the Adenovirus E1B proteins which 

have been shown to have pro-apoptotic activity 

5 C02F5.8 tsp-1 -2.81 
tsp-1 is a part of the tetraspanin family that 

encodes an ortholog of a human CD151 
molecule 

6 Y54F10BM.11 fbxa-66 -2.63 
fbxa-66 encodes an FboxA protein that has an 

unknown function 

7 Y119D3B.9 fbxa-21 -2.55 
fbxa-21 encodes an FboxA protein that has an 

unknown function 

8 K08D9.4 K08D9.4 -2.54 Unknown function 

9 C49G7.7 C49G7.7 -2.52 Unknown function 

10 T12A7.6 T12A7.6 -2.42 Unknown function 

11 F33H12.7 F33H12.7 -2.30 Unknown function 

12 Y47H10A.5 Y47H10A.5 -2.14 Unknown function 

13 ZK970.1 nep-26 -2.12 

nep-26 is a thermolysin-like zinc 
metallopeptidase found on the surface of cells 

that negatively regulates small signaling 
peptides 

14 F11A5.10 glc-1 -2.07 
glc-1 is the alpha subunit of a glutamate-gated 

chloride channel 

15 C24G7.1 delm-2 -2.06 
delm-2 encodes an ortholog of human acid-
sensing ion channel family member 4, and is 

predicted to have sodium channel activity 
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Table 6.3. Top 15 genes normally upregulated by HSF-1 independently of HS. 

 

  

 Transcript 
ID 

Gene 
Name 

Fold Change 
(log2) hsf-1(-

);-HS vs 
control 

Description (WormBase) 

1 C55B7.4 acdh-1 4.62 

acdh-1 encodes a short-chain acyl-CoA 
dehydrogenase. ACDH-1 is predicted to be a 

mitochondrial enzyme that catalyzes the first step of 
fatty acid beta-oxidation, and thus plays a key role in 

energy production 

2 F59D8.1 vit-3 3.52 

vit-3 encodes a vitellogenin, a precursor of the lipid-
binding protein related to vertebrate vitellogenins 
and mammalian ApoB-100, a core LDL particle 

constituent 

3 F59D8.2 vit-4 3.47 
vit-4 is involved in embryo development and is 

predicted to have lipid transporter activity 

4 C04F6.1 vit-5 3.39 

vit-5 encodes a vitellogenin, a lipid-binding protein 
precursor related to vertebrate vitellogenins and 

mammalian ApoB-100, a core LDL particle 
constituent 

5 K09F5.2 vit-1 3.38 vit-1 is predicted to have lipid transporter activity 

6 Y40H7A.10 Y40H7A.10 3.37 Unknown function 

7 K11G9.3 K11G9.3 3.15 
K11G9.3 encodes an ortholog of human 

butyrylcholinesterase 

8 F37B4.7 folt-2 3.06 
folt-2 encodes a putative folate transporter and is 

orthologous to the human folate transporters 
SLC19A1, SLC19A2, and SLC19A3 

9 F22A3.6 ilys-5 2.99 
ilys-5 is involved in embryo development and is 

predicted to have lysozyme activity 

10 ZC266.1 ZC266.1 2.76 
ZC266.1 is predicted to have G-protein coupled 

receptor activity 

11 F10D2.9 fat-7 2.64 
fat-7 encodes an essential delta-9 fatty acid 

desaturase that is required for the synthesis of 
monounsaturated fatty acids 

12 K10B2.2 K10B2.2 2.55 
K10B2.2 encodes an ortholog of human cathepsin A 
and is predicted to have carboxypeptidase activity 

13 Y52E8A.4 Y52E8A.4 2.46 
Y52E8A.4 encodes an ortholog of human major 

facilitator superfamily domain containing 11 

14 C08F11.8 ugt-22 2.44 
ugt-22 encodes an ortholog of human UDP 

glucuronosyltransferase 1 family polypeptide, and is 
predicted to have transferase activity 

15 F54F7.2 F54F7.2 2.44 Unknown function 
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Table 6.4. Top 15 genes normally regulated by HSF-1 independently of HS. 

 

 Transcript 
ID 

Gene 
Name 

Fold Change 
(log2) hsf-1(-

);-HS vs 
control 

Description (WormBase) 

1 T22F3.11 T22F3.11 -5.85 
T22F3.11 encodes an ortholog of human solute 

carrier family 17 

2 T26F2.3 eol-1 -5.38 
eol-1 is required in the URX sensory neurons for 

inhibition of olfactory learning 

3 B0348.2 B0348.2 -5.32 
B0348.2 encodes an ortholog of human 
lipopolysaccharide-induced TNF factor 

4 Y47H10A.5 Y47H10A.5 -5.17 Unknown function 

5 D2023.7 col-158 -5.17 
col-158 is predicted to be a structural constituent of 

the cuticle 

6 C08E3.6 fbxa-163 -4.95 
fbxa-163 encodes a protein containing an F-box, a 

motif predicted to mediate protein-protein 
interactions 

7 F07E5.9 F07E5.9 -4.90 Unknown function 

8 Y46C8AL.2 clec-174 -4.89 
clec-174 is predicted to have carbohydrate binding 

activity 

9 T07H8.5 srg-31 -4.84 
srg-31 is involved in embryo development and is 

predicted to have transmembrane signaling receptor 
activity 

10 ZK666.6 clec-60 -4.81 
clec-60 appears to play a role in the innate immune 

response to some bacterial pathogens 

11 B0507.8 B0507.8 -4.64 
B0507.8 encodes an ortholog of human cingulin-like 

1 

12 ZK355.8 ZK355.8 -4.60 Unknown function 

13 H16D19.1 clec-13 -4.50 
clec-13  is predicted to have carbohydrate binding 

activity 

14 T08E11.1 T08E11.1 -4.37 
T08E11.1 encodes a protein containing an F-box 

motif predicted to mediate protein-protein 
interactions 

15 F22G12.1 F22G12.1 -4.35 
F22G12.1 encodes an ortholog of human GRB10 

interacting GYF protein 2 
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Abstract 

The ability of an organism to sense and adapt to environmental stressors is essential for 

proteome maintenance and survival. The highly-conserved heat shock response is a 

survival mechanism employed by all organisms, including the nematode Caenorhabditis 

elegans, upon exposure to environmental extremes. Transcriptional control of the 

metazoan heat shock response is mediated by the heat shock transcription factor HSF-

1. In addition to regulating global stress-responsive genes to promote stress-resistance 

and survival, HSF-1 has recently been shown to regulate stress-independent functions in 

controlling development, metabolism, and longevity. However, the indirect role of HSF-1 

in coordinating stress-dependent and -independent processes through post-

transcriptional regulation is largely unknown. MicroRNAs (miRNAs) have recently 
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emerged as a class of post-transcriptional regulators that control gene expression through 

translational repression or mRNA degradation. To determine the role of HSF-1 in 

regulating miRNA expression, we have performed high-throughput small RNA-

sequencing in C. elegans grown in the presence and absence of hsf-1 RNAi followed by 

treatment with or without heat shock. This has allowed us to uncover the miRNAs 

regulated by HSF-1 via heat-dependent and -independent mechanisms. Integrated 

miRNA/mRNA target-prediction analyses suggest HSF-1 as a post-transcriptional 

regulator of development, metabolism, and longevity through regulating miRNA 

expression. This provides new insight into the possible mechanism by which HSF-1 

controls these processes. We have also uncovered oxidative stress response factors and 

insulin-like signaling factors as a common link between processes affected by HSF-1-

regulated miRNAs in stress-dependent and -independent mechanisms, respectively. This 

may provide a role for miRNAs in regulating cross-talk between various stress responses. 

Our work therefore uncovers an interesting potential role for HSF-1 in post-

transcriptionally controlling gene expression in C. elegans, and suggests a mechanism 

for cross-talk between stress responses. 

Introduction 

The ability of an organism to adapt to proteotoxic stressors is essential for long-term 

survival. The mammalian heat shock factor HSF1 is a highly-conserved transcription 

factor that protects against extreme environmental conditions through induction of the 

cytoprotective heat shock response (HSR) (66). Activation of the HSR is triggered by 

proteotoxic stressors including heat, heavy metals, and infection (163). Upon exposure 

to stress, HSF1 transcribes heat shock protein genes (hsps) which encode molecular 
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chaperones that mediate the refolding or degradation of damaged proteins (294,295). 

HSF1 is thus an important mediator of the response to heat stress and proteome 

maintenance. 

The C. elegans HSR is highly-conserved and mediated by the HSF1 homolog HSF-1. 

Studies in C. elegans have demonstrated a role for HSF-1 outside of its classic role in 

regulating the HSR by demonstrating HSF-1 as a regulator of development, metabolism, 

and longevity (110,111,314,325,357). HSF-1 has also been shown to be a regulator of 

global mRNA expression in both stress-dependent and -independent processes (357). 

However, the post-transcriptional role for HSF-1 in controlling stress-dependent and -

independent gene expression is largely unknown. 

MicroRNAs (miRNAs) are a family of small, non-coding, and conserved RNA 

molecules that elicit complex mechanisms of genetic control through the post-

transcriptional modulation of gene expression. The primary function of miRNAs is in the 

silencing of gene expression through complimentary base pairing to the 3’ UTR of target 

mRNAs leading to their degradation or translational repression (98,99). The regulation of 

gene expression by miRNAs is suggested to be vast. There are over 1,000 miRNAs in 

the human genome and over 250 miRNAs in the C. elegans genome, and many miRNAs 

are predicted to have hundreds of putative mRNA targets (358). Thus, miRNAs are 

important post-transcriptional regulators of global gene expression in multiple organisms.  

 Studies in C. elegans have been useful for determining the biological outcomes 

associated with changes in miRNA expression (359). For example, miRNAs have been 

shown to control various physiological process including the control of stress responses, 

development, and longevity, in the nematode (360-363). Interestingly, these miRNA-
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regulated processes are also known to be regulated by HSF-1. However, the role of HSF-

1 in coordinating miRNA expression to regulate these overlapping biological processes is 

unclear.  

In this study, we examined the genome-wide role of HSF-1 in regulating miRNA 

expression to affect biological processes in C. elegans. We performed high-throughput 

small-RNA sequencing in C. elegans grown in the presence and absence of hsf-1 RNAi 

followed by treatment with or without heat shock (HS). We have found that HSF-1 controls 

miRNA expression during and independently of heat stress. The biological processes 

predicted to be impacted by HSF-1-regulated miRNAs include development, metabolism, 

and longevity. Additionally, integrated miRNA/mRNA target prediction analyses have 

uncovered oxidative stress response factors and insulin-like signaling factors as a 

common link between processes affected by HSF-1 regulated miRNAs in stress-

dependent and -independent mechanisms, respectively. Overall, this work highlights 

miRNAs as important HSF-1 targets that may have biological implications in regulating 

development, metabolism, and longevity, and in cross-talk between stress responses.  

Results 

Uncovering the genome-wide regulation of miRNA expression by HSF-1 in HS-

dependent and -independent mechanisms 

Experimental design used for miRNA-sequencing 

To uncover the post-transcriptional role of HSF-1 in regulating mRNA expression through 

controlling miRNA abundance, we utilized miRNA-sequencing to characterize the HSF-1 

regulatory miRNA network in both HS-dependent and -independent mechanisms in C. 

elegans (Figure 7.1). Synchronous L1 larval stage nematodes were fed empty vector (EV) 
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control RNAi [hsf-1(+)] or hsf-1 RNAi [hsf-1(-)] until the L4 larval stage prior to treatment 

with or without a 30 minute 33°C heat shock in biological duplicates (Figure 7.1a). miRNA-

seq was performed on the Illumina Hi-Seq 2000 platform and analyzed by miRDeep2 in 

order to identify miRNA read counts for each treatment condition. This experimental set-

up thus allows for the determination of the genome-wide miRNAs regulated by HSF-1.  

Validation of experimental treatment conditions  

To validate our RNAi and HS treatment conditions, we assessed HS-inducible hsp 

promoter activity and mRNA expression in response to treatment with or without hsf-1 

RNAi (Figure F1, see Appendix F) (357). The promoter activity of the HSF-1 target genes 

hsp-70 and hsp-16.2 were determined using hsp promoter fusion constructs, and we have 

determined that hsp promoter activity is induced upon HS and that this induction is 

dependent on HSF-1 (Figure F1a-d, see Appendix F). Additionally, hsps constitute a 

majority of the top protein-coding genes induced by HS, and all are dependent on HSF-

1, as determined by an mRNA-seq experiment performed in parallel to this miRNA-seq 

study (Figure F1e, see Appendix F) (357). These data thus verify that the HS conditions 

used for this study induce global hsp mRNA expression while demonstrating the efficiency 

of our hsf-1 RNAi treatment conditions used for miRNA-seq. 

Next, we validated the biological replicates used for miRNA-seq by determining 

similarities between experimental duplicates for each experimental treatment condition 

(Figure F2, see Appendix F). Similarities between biological duplicates were first analyzed 

with Cluster analysis. The data shows that experimental duplicates clustered together, 

indicating high similarity between replicates (Figure F2a, see Appendix F). Linear 

regression analysis of each treatment condition validates similarities between miRNA-seq 
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reads for each replicate, with each condition having R2 values above 0.94 (Figure F2b-e, 

see Appendix F). Overall, these data validate our biological replicates by showing a 

conserved pattern of expression between duplicates for each experimental condition.  

HSF-1 alters global miRNA abundance during and independently of HS 

To determine relative miRNA abundance, we normalized each treatment condition to the 

hsf-1(+);-HS control, and significantly altered miRNAs were uncovered using the 

Benjamini-Hochberg correction for multiple testing (Figure 7.1b). A complete list of the 

significantly altered miRNAs, and their fold change for each experimental condition 

relative to the hsf-1(+);-HS control, is provided in Tables F1, F2, and F3 (see Appendix 

F). The resulting global miRNA expression profiles for each treatment condition were 

plotted in order to visualize miRNA distribution patterns between experimental conditions 

(Figure F3, see Appendix F). In the presence and absence of HS, hsf-1 RNAi alters global 

miRNA distribution, suggesting HSF-1 as a regulator of miRNA expression during and 

independently of HS in C. elegans. 

Venn diagrams separate miRNAs regulated by HSF-1 during and independently of HS 

To further examine the role of HSF-1 in regulating miRNA expression in HS-dependent 

and -independent mechanisms, Venn diagrams were made using the miRNAs listed in 

Table F1 (Figure 7.1c). The shaded regions of the Venn diagrams correspond to miRNAs 

regulated by hsf-1 upon HS (Figure 7.1c, blue shading), and miRNAs regulated by hsf-1 

independently of HS (Figure 7.1c, yellow shading). Through Venn diagram analysis, we 

have found that a total of 22 miRNAs are regulated by HSF-1 in a HS-dependent manner, 

and that 7 miRNAs are regulated by HSF-1 in a HS-independent manner. Overall, this 

method of Venn diagram analysis separates the miRNAs regulated by HSF-1 during and 



150 

independently of heat stress, and our preceding analyses focus on these HSF-1-

regulated miRNAs. 

HSF-1 regulates miRNA expression during HS 

miRNAs normally upregulated by HSF-1 during HS 

We were next interested in further examining the miRNAs normally regulated by HSF-1 

during HS (Figure 7.2). By separating out the upregulated vs. downregulated miRNAs via 

Venn diagram, we have determined that 10 miRNAs are normally upregulated by HSF-1 

upon HS (Figure F4a, blue shading, see Appendix F). The log2-fold changes of these 10 

miRNAs obtained from the sequencing data are plotted in the presence and absence of 

HSF-1 during HS (Figure F4.b, blue and grey bars, respectively, see Appendix F). We 

considered a miRNA to normally be upregulated by HSF-1 during HS if a significant 

difference existed between the hsf-1(+);+HS and hsf-1(-);+HS treatment conditions as 

determined by the Benjamini-Hochberg correction for multiple testing.  After taking these 

parameters into account, 6 miRNAs were determined to normally be upregulated by HSF-

1 during HS (Figure F4.c, see Appendix F). Through this method of data analysis, we 

found that miR-784, miR-231, miR-86, miR-53, miR-47, and miR-34 are normally 

upregulated by HSF-1 during HS.  

Next, we determined the known functions of the miRNAs we found to normally be 

upregulated by HSF-1 upon HS. The description according to WormBase, along with the 

log2-fold change of each miRNA, is listed (Table 7.1, upregulated). While the functions of 

miR-784, miR-231, miR-86, miR-53, and miR-47 are currently unknown, miR-34 encodes 

a microRNA that is highly-conserved with orthologues in Drosophila, mouse, and human 

(364). In C. elegans, miR-34 is highly expressed upon aging (360). Although a deletion 
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of miR-34 does not significantly impact C. elegans lifespan (360), loss of miR-34 in 

Drosophila does accelerate aging and brain degeneration (364). Induction of miR-34 by 

HSF-1 during HS may thus be one method of controlling aging-associated processes.  

To uncover potential mRNA targets of the miRNAs we found to be regulated by HSF-

1 upon HS, we performed integrated prediction-based analysis by comparing predicted 

mRNA targets to genes we previously determined to be regulated by HSF-1 upon HS via 

mRNA-seq (Figure 7.2a) (357). We used mirWIP as our primary prediction tool, as this 

program reduces false positives by considering multiple characteristics of miRNA target 

binding such as structural accessibility of target sequences, total free energy, and base-

pairing (365). For miRNAs not yet in the mirWIP database, we used TargetScan to predict 

mRNA targets. In order to generate a consolidated and accurate HSF-1-regulated 

miRNA/mRNA network, we compared the predicted mRNA targets to genes we 

previously determined by mRNA-seq, performed in parallel to this study, to be regulated 

by HSF-1 (357). Due to the inhibitory nature of miRNAs on target mRNA expression, 

predicted mRNA targets were inversely correlated to the mRNA-seq data. The resulting 

integrated miRNA/mRNA prediction output predicted to be suppressed by HSF-1 upon 

HS is shown in Figure 7.2b. Overall, 62 potential mRNA targets are predicted to be 

downregulated by the miRNAs that we determined to normally be upregulated by HSF-1 

upon HS. 

Next, we used the database for annotation, visualization, and integrated discovery 

(DAVID) to uncover the biological processes predicted to be suppressed by the miRNAs 

upregulated by HSF-1 during HS (Figure 7.2c). The category with the largest enrichment 

score (2.33) is cell fate commitment, followed by signal transduction, protein kinase 
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activity, signaling cascade, and development, all with enrichment scores between 2.21-

1.12. These processes encompass developmental and signaling pathways, which are 

likely the main physiological processes suppressed by HSF-1-regulated miRNAs during 

HS. 

miRNAs normally downregulated by HSF-1 during HS 

We were next interested in examining the miRNAs normally downregulated by HSF-1 

during HS (Figure 7.2d-e). By separating out the upregulated vs. downregulated miRNAs 

via Venn diagram, we determined that 12 miRNAs are normally downregulated by HSF-

1 upon HS (Figure F5a, blue shading, see Appendix F). The log2-fold change of these 12 

miRNAs are plotted in the presence and absence of HSF-1 during HS (Figure Fb, blue 

bars and grey bars, respectively, see Appendix F). We considered a miRNA to normally 

be downregulated by HSF-1 during HS if a significant difference existed between the hsf-

1(+);+HS and hsf-1(-);+HS treatment conditions as determined by the Benjamini-

Hochberg correction for multiple testing.  After taking these parameters into account, 2 

miRNAs were determined to normally be downregulated by HSF-1 during HS (Figure F5c, 

see Appendix F). Through this method of data analysis, we found that miR-48 and miR-

228 are normally downregulated by HSF-1 upon HS.  

We were next interested in determining the known functions of the miRNAs we found 

to normally be downregulated by HSF-1 upon HS. The description according to 

WormBase, along with the log2-fold change of each miRNA, is listed (Table 7.1, 

downregulated). miR-228 is upregulated in aging worms, and a miR-228 deletion has 

been shown to increase longevity and heat stress resistance (361,366). miR-48 belongs 

to the let-7 miRNA family that is well-known to control developmental timing events at the 
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larval-to-adult transition, and mutations in miR-48 can result in developmental timing 

defects (367,368). Thus, HSF-1 may normally suppress miR-228 and miR-48 expression 

during HS to promote longevity and stress resistance, and to control developmental timing 

events during stress conditions. 

To uncover potential mRNA targets of the miRNAs we found to be downregulated by 

HSF-1 upon HS, we again used the prediction tools mirWIP and TargetScan followed by 

an integrated miRNA/mRNA analysis (Figure 7.2d). We compared the predicted mRNA 

targets to genes we previously determined by mRNA-seq, performed in parallel to this 

study, to be upregulated by HSF-1 during HS (357). Overall, 31 potential mRNA targets 

are predicted to be upregulated by the miRNAs that we determined to normally be 

downregulated by HSF-1 upon HS 

Next, we used DAVID to uncover the biological processes predicted to be induced by 

HSF-1-regulated miRNAs during HS (Figure 7.2e). The category with the largest 

enrichment score (1.57) is cuticle collagen, followed by reproduction and signaling, with 

enrichment scores of 1.28 and 1.23, respectively. These processes encompass aging 

and signaling associated pathways, which are likely the main physiological processes 

induced by HSF-1-regulated miRNAs during HS.  

HSF-1 regulates miRNA expression independently of HS 

miRNAs normally upregulated by HSF-1 independently of HS 

To uncover a HS-independent role for HSF-1 in regulating miRNA expression, we next 

focused on the miRNAs normally regulated by HSF-1 independently of HS (Figure 7.3). 

By separating out the upregulated vs. downregulated miRNAs via Venn diagram, we 

determined that 2 miRNAs are downregulated in response to hsf-1 RNAi independently 
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of HS, thus these miRNAs would normally be upregulated by HSF-1 (Figure F6a, yellow 

shading, see Appendix F). The log2-fold change of these 2 miRNAs are plotted in the 

absence of HSF-1 and in the presence and absence of HS (Figure F6b, grey and yellow 

bars, respectively, see Appendix F). To determine the normal regulatory role of HSF-1 on 

miRNA expression, we reversed our data comparison (control vs. indicated treatment 

conditions). We considered a miRNA to be regulated by HSF-1 independently of HS if no 

significant difference existed between the hsf-1(-);+HS and hsf-1(-);-HS treatment 

conditions using the Benjamini-Hochberg correction for multiple testing. After taking these 

parameters into account, 1 miRNA was determined to normally be upregulated by HSF-

1 independently of HS (Figure F6c, see Appendix F). Through this method of data 

analysis, we found that miR-72 is normally upregulated by HSF-1 independently of HS.  

Next, we determined the known functions of the miRNA we found to normally be 

upregulated by HSF-1 independently of HS. The description according to WormBase, 

along with the log2-fold change of each miRNA, is listed (Table 2, upregulated). We again 

reversed our data comparison [control vs. hsf-1(-);-HS] in order to represent the normal 

degree of HSF-1 regulation on miRNA expression. However, the function of miR-72 is 

unknown, thus warranting future studies regarding miR-72.  

To uncover potential mRNA targets of the miRNAs regulated by HSF-1 independently 

of HS, we performed integrated prediction-based analysis by comparing predicted mRNA 

targets to genes we previously determined to be regulated by HSF-1 independently of HS 

via mRNA-seq (Figure 7.3a) (357). Due to the inhibitory nature of miRNAs on target 

mRNA expression, predicted mRNA targets were inversely correlated to the mRNA-seq 

data. The resulting integrated miRNA/mRNA prediction output predicted to be suppressed 
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by HSF-1 independently of HS is shown in Figure 7.3b. Overall, 101 potential mRNA 

targets are predicted to be downregulated by HSF-1-regulated miRNAs independently of 

HS. 

We next used DAVID to uncover the biological processes predicted to be suppressed 

by HSF-1-regulated miRNAs independently of HS (Figure 7.3c). The category with the 

largest enrichment score (3.48) is growth, followed by development, cuticle collagen, 

epithelium development, and cytoskeleton organization with enrichment scores between 

2.63-2.19. These processes all contribute to development, which is likely the main 

process suppressed by HSF-1-regulated miRNAs independently of HS. 

miRNAs normally downregulated by HSF-1 independently of HS 

We were next interested in determining a HS-independent role for HSF-1 in 

downregulating miRNA expression (Figure 7.3d-e). By separating out the upregulated vs. 

downregulated miRNAs via Venn diagram, we have determined that 5 miRNAs are 

upregulated in response to hsf-1 RNAi independently of HS, thus these miRNAs would 

normally be downregulated by HSF-1 (Figure F7a, yellow shading, see Appendix F). The 

log2-fold change of these 5 miRNAs are plotted in the absence of HSF-1 and in the 

presence and absence of HS (Figure F7b, grey and yellow bars, respectively, see 

Appendix F). To determine the normal regulatory role of HSF-1 on miRNA expression, 

we reversed our data comparison (control vs. indicated treatment conditions). We 

considered a miRNA to be regulated by HSF-1 independently of HS if no significant 

difference existed between the hsf-1(-);+HS and hsf-1(-);-HS treatment conditions using 

the Benjamini-Hochberg correction for multiple testing. After taking these parameters into 

account, 3 miRNAs were determined to normally be downregulated by HSF-1 
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independently of HS (Figure F7c, see Appendix F). Through this method of data analysis, 

we have determined that miR-239b, miR-1820, and miR-228 are normally downregulated 

by HSF-1 independently of HS.  

Next, we determined the known functions of the miRNAs we found to normally be 

downregulated by HSF-1 independently of HS. The description according to WormBase, 

along with the log2-fold change of each miRNA, is listed (Table 7.2, downregulated). We 

again reversed our data comparison [control vs. hsf-1(-);-HS] in order to represent the 

normal degree of HSF-1 regulation. miR-239b is known to be highly upregulated upon 

aging, and mutants lacking miR-239a/b exhibit an increased lifespan and resistance to 

stress (360,369). One mechanism utilized by miR-239b to control longevity is through 

regulation of the insulin-like signaling pathway.  miR-239b functions upstream of daf-16 

to control the expression of the daf-16 target genes age-1 and pdk-1 (360). Another 

miRNA we found to normally be downregulated by HSF-1 independently of HS is miR-

1820. Although the function of miR-1820 is currently unknown, dauer worms show 

increased expression of miR-1820 suggesting a possible link to metabolism and longevity 

(370). miR-228 is another miRNA downregulated by HSF-1 independently of HS, however 

this miRNA is also downregulated by HSF-1 during HS. miR-228 is thus likely an 

important HSF-1 target that may be regulated by HSF-1 to regulate longevity in both a 

stress-dependent and -independent fashion. Overall, we have determined that HSF-1 

normally suppresses miR-239b, miR-1820, and miR-228, which may regulate longevity 

and metabolic processes independently of HS. 

To uncover potential mRNA targets of the miRNAs downregulated by HSF-1 

independently of HS, we used the prediction tools mirWIP and TargetScan followed by 
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integrated miRNA/mRNA analysis (Figure 7.3d). We compared the predicted mRNA 

targets to genes we previously determined by mRNA-seq, performed in parallel to this 

study, to be upregulated by HSF-1 independently of HS (357). Overall, 39 potential mRNA 

targets are predicted to be induced by HSF-1-regulated miRNAs independently of HS. 

 We next used DAVID to uncover the biological processes predicted to be induced by 

HSF-1-regulated miRNAs independently of HS (Figure 7.3e). The category with the 

largest enrichment score (0.83) is signaling, followed by ion binding and development, 

with enrichment scores between 0.5-0.28. These processes encompass developmental 

and signaling processes, which are likely the main processes induced by HSF-1-

regulated miRNAs independently of HS.  

Discussion 

HSF-1 post-transcriptionally regulates gene expression by controlling miRNA 

abundance  

miRNAs are emerging as a group of post-transcriptional modulators of gene expression 

that often function through translational repression or mRNA degradation. We show here 

that HSF-1 controls the expression of miRNAs, suggesting a post-transcriptional role for 

HSF-1 in regulating gene expression. Interestingly, the number of mRNAs predicted to 

be post-transcriptionally suppressed by HSF-1 during HS is twice as large as those 

predicted to be induced by HSF-1 during HS. Similarly, the number of mRNAs predicted 

to be post-transcriptionally suppressed by HSF-1 independently of HS is three times as 

large as those predicted to be induced by HSF-1 independently of HS. Overall, these data 

suggest that miRNAs may primarily be utilized by HSF-1 to suppress gene expression. 
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Global biological processes impacted during HS by HSF-1-regulated miRNAs  

Oxidative stress response factors link miRNA/mRNA networks regulated by HSF-1 during 

HS 

To determine a broad impact for HSF-1 in post-transcriptionally regulating gene 

expression during HS, the network-building software Cytoscape and the Agilent literature 

search tool were used to build an interaction network with the integrated miRNA/mRNA 

network that we determined to be regulated by HSF-1 upon HS (Figure 7.4). Predicted 

mRNA targets were overlaid with the expression changes obtained from mRNA-seq, 

performed in parallel to this study (357), where blue corresponds to negative regulation 

and red corresponds to positive regulation by HSF-1 upon HS. Uncolored mRNA genes 

were not affected in our dataset but are neighbors shared by at least two genes that were 

affected. This method of network generation thus allows for the determination of a broad 

network of genes predicted to be post-transcriptionally regulated by HSF-1 during HS. 

To uncover important links between the induced and suppressed networks, we 

grouped together the upregulated and downregulated interaction groups to visualize 

connecting mRNAs (Figure 7.4, represented as bold connecting lines). We have identified 

the oxidative stress response factors mdt-15, skn-1, and aip-1 as a link between the 

induced and suppressed networks regulated by HSF-1 upon HS. miR-34, a miRNA 

induced by HSF-1 upon HS, is predicted to suppress mdt-15. In C. elegans, MDT-15 is 

an evolutionary conserved subunit of a mediator complex that is required for the SKN-1-

mediated oxidative stress response (371). The downregulation of mdt-15 by miR-34 may 

therefore be one method of suppressing the oxidative stress response during a heat 

stress. This may be advantageous for heat stress survival, as the oxidative stress 
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response has been shown to impair the HSR (372-374). We also see that miR-48, a 

miRNA we identified to be suppressed by HSF-1 upon HS, may result in upregulation of 

aip-1, a known SKN-1 and HSF-1 target gene (110,375). Aip-1 is a component of the 

proteasome that functions to increase the accessibility of a protein substrate to the 

proteasome, ultimately assisting in adaptation to proteotoxic stressors (376). Overall, 

these data suggest that the ability of HSF-1 to control miRNA expression upon heat stress 

may be one method utilized by organisms to regulate stress-specific gene expression that 

may confer stress-specific adaptation.  

Cytoprotection, development, metabolism, and longevity are predicted to be 

impacted during HS by HSF-1-regulated miRNAs  

Next, DAVID was used to determine the globally enriched biological processes impacted 

by the miRNAs regulated by HSF-1 during HS (Figure F8, see Appendix F).  Induction of 

miR-784, miR-231, miR-86, miR-53, miR-47, and miR-34 by HSF-1 during HS is predicted 

to have the largest impact on the suppression of genes encoding proteins involved in the 

regulation of transcription and behavior, as these processes have enrichment scores of 

5.49 and 4.93, respectively (Figure F8a, see Appendix F). Other suppressed processes 

in this category, with enrichment scores between 4.29-2.7, include the regulation of 

intracellular signaling, phosphorylation, reproductive behavior, RNA-metabolic 

processes, cytoskeletal organization, enzyme linked receptor signaling, post-embryonic 

development, fatty acid metabolic processes, cell death, epithelium development, and 

aging. These biological processes encompass development, metabolism, and longevity, 

which are likely the main physiological processes normally suppressed during HS by 

HSF-1-regulated miRNAs.  
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We next determined the top biological processes upregulated in response to 

suppression of miR-48 and miR-228 by HSF-1 during HS (Figure F8b). The induction of 

genes encoding proteins involved in cellular homeostasis and reproductive behavior 

constitute the top induced processes with enrichment scores of 2.71 and 2.01, 

respectively. Other induced processes in this category, with enrichment scores between 

1.68 and 1.41, include genes encoding proteins involved in cuticle formation and post-

embryonic development. These processes can be linked to cytoprotection, thus 

cytoprotective processes are normally induced by HSF-1-regulated miRNAs during HS.  

Global biological processes impacted independently of HS by HSF-1-regulated 

miRNAs  

Insulin-like signaling factors link miRNA/mRNA networks regulated by HSF-1 

independently of HS 

To determine a broad impact for HSF-1 in post-transcriptionally regulating gene 

expression independently of HS, we again used the software Cytoscape and the Agilent 

literature search tool to build an interaction network with the integrated miRNA/mRNA 

network we determined to be regulated by HSF-1 independently of HS (Figure 7.5). 

Predicted mRNA targets were overlaid with the expression changes obtained from 

mRNA-seq, performed in parallel to this study (357), where blue corresponds to negative 

regulation and red corresponds to positive regulation by HSF-1 independently of HS. 

Uncolored genes were not affected in our dataset, but are neighbors shared by at least 

two genes that were affected. This method of network generation thus allows for the 

determination of a broad network of genes predicted to be post-transcriptionally regulated 

by HSF-1 independently of HS. 
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To uncover important linkages between the induced and suppressed networks, we 

grouped upregulated and downregulated processes in order to visualize connecting 

mRNAs (Figure 7.5, represented as bold connecting lines). Interestingly, we uncovered 

the insulin-like signaling factors daf-16 and dao-4 as a link between the induced and 

suppressed miRNAs regulated by HSF-1 independently of HS. We identified miR-72, a 

miRNA we show to normally be induced by HSF-1 independently of HS, as a daf-16 

suppressor. Controlling daf-16 may be one mechanism utilized by HSF-1 to fine-tune 

metabolism and longevity independently of HS. The daf-16 target gene dao-4 is predicted 

to be upregulated in response to suppression of miR-1820 and miR-228 by HSF-1. HSF-

1 has previously been linked to having a non-stress role in controlling metabolism, where 

caloric restriction, metabolic factors, and insulin-like signaling factors have been linked to 

HSF-1 and the HSR (72,110,135,377,378). Recent studies suggest that the insulin-like 

signaling factor and FOXO transcription factor DAF-16 has a stress-independent role in 

controlling HSF-1-mediated lifespan extension (379). Overall, these data suggest that 

HSF-1-regulated miRNA networks may be connected through insulin-like signaling 

factors to control metabolism and lifespan in a heat-stress independent fashion. 

Development, metabolism, and longevity are predicted to be impacted by HSF-1-

regulated miRNAs independently of HS 

Next, DAVID was used to determine the globally enriched biological processes impacted 

by the miRNAs regulated by HSF-1 independently of HS (Figure F9, see Appendix F). 

Induction of miR-72 by HSF-1 is predicted to have the largest impact on suppressing 

genes encoding proteins involved in the regulation of post-embryonic development and 

cell migration, as these processes have enrichment scores of 13.68 and 10.14, 
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respectively (Figure F9a, see Appendix F). Other suppressed processes in this category, 

with enrichment scores between 8.28-2.48, include the regulation of phosphorylation, sex 

differentiation, apoptosis, growth, epithelium development, axis specification, cell 

adhesion, reproductive development, behavior, aging, neuron development, cuticle 

development, and RNA metabolic processes. These processes are involved in 

development, further supporting our previous work suggesting HSF-1 as a global 

regulator of developmental processes independently of HS (357).  

We next determined the biological processes upregulated in response to suppression 

of miR-1820 and miR-228 by HSF-1 independently of HS (Figure F9b, see Appendix F). 

Each upregulated process has a relatively low enrichment score (under 1.02), suggesting 

that suppression of biological processes is the primary role of HSF-1-regulated miRNAs. 

However, the most highly upregulated processes are phosphate metabolic processes and 

growth, with enrichment scores of 1.02 and 0.74, respectively. The other induced process 

in this category, with an enrichment score of 0.61, is epithelium development. Overall, 

genes encoding proteins involved in regulating developmental processes may be induced 

by HSF-1-regulated miRNAs independently of HS. 

HSF-1 may impact longevity through the post-transcriptional control of collagen 

and cytoskeletal genes 

In this study, we show that cuticle processes are enriched by HSF-1 upon HS and 

suppressed by HSF-1 independently of HS. Collagen genes, which encode cuticle 

proteins, were recently shown to impact lifespan and to be regulated by HSF-1 during 

and independently of HS (380). The oxidative stress factor SKN-1 may also regulate the 

expression of specific collagen genes to control longevity, supporting a role for collagen 
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genes in regulating longevity during stress (380). These data suggest a post-

transcriptional role for HSF-1 in regulating specific cuticle collagen genes, further 

supporting our previous work suggesting HSF-1 as a regulator of collagen gene 

expression. Ultimately, the regulation of collagens may influence aging and longevity 

during stressors. 

 Cytoskeletal organization may be another process impacted by HSF-1-regulated 

miRNAs, and may be one method to promote cytoprotection and longevity during HS. 

HSF-1 was recently shown to regulate genes that control cytoskeletal stability which 

extended lifespan and promoted stress resistance in C. elegans (343). Thus, these data 

suggest HSF-1 may post-transcriptionally control cytoskeletal processes and ultimately 

influence longevity. 

Conclusion 

The miRNA-sequencing experiment performed in this study has allowed us to uncover a 

possible post-transcriptional role for HSF-1 in regulating heat stress-dependent and -

independent processes in C. elegans. During HS, HSF-1 is predicted to post-

transcriptionally promote specific genes encoding proteins involved in cytoprotection and 

development, while suppressing other genes encoding proteins involved in development, 

metabolism, and longevity. Independently of HS, HSF-1 is predicted to post-

transcriptionally promote specific genes encoding proteins involved in development and 

metabolism, while suppressing other genes encoding proteins involved in development, 

metabolism, and longevity. Integrated miRNA/mRNA network analyses point to HSF-1-

regulated miRNAs as a link between the oxidative stress response and the insulin-like 

signaling pathway to HSF-1-regulated processes, suggesting a mechanism for cross-talk 
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between stress responses (For a model, see Figure 7.6). Additionally, this work further 

highlights a role for HSF-1 in regulating the expression of cuticle collagen genes which 

may control longevity. Overall, our work has uncovered a potential role for HSF-1 in post-

transcriptionally controlling gene expression in C. elegans, and suggests a mechanism 

for cross-talk between stress responses. 

Methods 

C. elegans maintenance 

Wild-type N2 worms were maintained at 23°C on standard NGM plates seeded with 

Escherichia coli OP50 (345). Age synchronization was accomplished by standard 20% 

hypochlorite treatment, and a 24-hour rotation at 220 rpm in M9 buffer without food. 

RNA interference and heat shock treatment 

RNAi was carried out using standard plates supplemented with 50 µg/mL ampicillin and 

1 mM isopropyl-beta-ᴅ-thiogalactopyranoside seeded with HT115 bacteria containing an 

empty plasmid (L4440, empty vector control) or sequence-verified hsf-1 RNAi isolated 

from the Ahringer RNAi library (146). Bacteria were allowed to induce on the RNAi plates 

overnight at room-temperature prior to plating synchronous L1 larval stage worms. 

Worms remained on RNAi plates until the L4 larval-stage before being heat shocked by 

submerging plates in a 33°C water bath for 30 minutes. The time and duration of heat 

shock was previously optimized for our studies (357). 

miRNA preparation for miRNA-seq 

miRNA was prepared from biological duplicates using TRIzol reagent (Life Technologies, 

cat# 15596-026) following the manufacturer’s protocol, and then cleaned up on miRNeasy 

columns (Qiagen, cat.# 217004) with on-column DNA digestion. Sample integrity, 
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preparation, and sequencing was performed at the Yale Center for Genome Analysis 

(West Haven, CT) using the Illumina Hi-Seq 2000 sequencing system. The miRNA-seq 

data has been deposited in the BioProject repository (Bio Project ID: PRJNA357087).  

miRNA-sequencing data analysis 

The miRDeep2 software package was used to identify known miRNAs from the miRNA-

sequencing data (381). Low quality reads, and reads shorter than 18 nucleotides, were 

removed to obtain clean reads after adapter trimming. The unique sequences were 

mapped to the C. elegans reference genome (WS200) with the read aligner Bowtie2 using 

default parameters (382). Alignments with no mismatches in the first 18 nucleotides of a 

read sequence, up to two mismatches after 18 nucleotides, and reads that did not map 

more than five times to the genome, were the miRNAs used in our analyses. 

Volcano plot generation 

Volcano plots were made in Excel, where the Y-axis represents the -log10 q-value (FDR-

adjusted p-value), and the X-axis represents the log2-fold change of each miRNA after 

normalization to the hsf-1(+);-HS control.  

miRNA-seq data normalization and statistical analysis 

The fold change of each miRNA was obtained by averaging the reads of the hsf-1(+);-HS 

control and normalizing each corresponding miRNA, for each treatment condition, to the 

control prior to transforming into log2 values. miRNAs that did not have reads in each 

biological replicate were removed from subsequent analyses. The Benjamini-Hochberg 

correction for multiple testing was then used to determine significantly altered miRNAs 

between each treatment condition. 

 



166 

Computational target prediction and network visualization 

mirWIP was used as a primary tool for determining miRNA/mRNA target predictions 

(365). For miRNAs not yet listed in the mirWIP database, TargetScan was used to 

predicted miRNA/mRNA interactions (383). To consolidate the predicted mRNA targets, 

the output from mirWIP or TargetScan was compared to corresponding mRNA-seq data, 

performed in parallel to this miRNA-seq experiment. The mRNA-seq data  is available in 

the NCBI SRA database (Access ID: PRJNA311958) (357). The network building 

software Agilent was then used to determine interacting partners shared between at least 

two predicted mRNA targets, and the miRNA/mRNA interaction network was generated 

using Cytoscape (v3.1.1) (384).  

Gene ontology analysis  

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used 

to determine over-represented gene ontology terms associated with the predicted 

miRNA/mRNA networks (385). The Functional Annotation Clustering tool was then used 

to group gene ontology terms. The significance of each group was determined with the 

enrichment score, as provided by DAVID, which uses p-values for a cluster of genes to 

determine the geometric mean of that cluster in a negative log scale. 
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Figure 7.1. Scheme for miRNA-sequencing 
experimental setup and data normalization. (a) 
Schematic depicting miRNA-sequencing 
conditions. miRNA samples were generated from 
wild-type (N2) C. elegans treated with the four 
indicated conditions, where “hsf-1(+)” refers to 
worms treated with control (empty vector) RNAi, 
and “hsf-1(-)” refers to worms treated with hsf-1 
RNAi. Synchronous worms were given RNAi from 
the L1 larval stage to the L4 larval stage. At the 
L4 larval stage, worms were left untreated (-HS) 
or given a 30 minute 33°C heat shock (+HS). 
miRNA-sequencing was performed in biological 
duplicates on the Illumina Hi-Seq 2000 platform 
and analyzed using miRDeep2. (b) Scheme for 
data normalization. Each treatment condition was 
compared relative to the empty vector control 
[hsf-1(+);-HS] to determine the relative fold 
change in expression of each miRNA. The 
Benjamini-Hochberg correction test was used to 
identify all differentially expressed genes 
compared relative to the hsf-1(+);-HS control, and 
also between treatment conditions. (c) Separating 
miRNAs regulated by HSF-1 during and 
independently of HS. The Venn diagram shows 
the total number of miRNAs that were found to be 
significantly altered (q-value<0.05), as compared 
to the hsf-1(+);-HS control, for each of the 
indicated comparisons between samples. The q-
value is the FDR-adjusted p-value of the test 
statistic, as determined by the Benjamini-
Hochberg correction for multiple testing. 
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Figure 7.2. Networks and biological processes 
impacted by HSF-1-regulated miRNAs during HS. 
(a) Schematic depicting integrated miRNA/mRNA 
network generation. The miRNAs determined via 
miRNA-seq to be regulated by HSF-1 during HS were 
run through the target prediction tools mirWIP or 
TargetScan to uncover predicted mRNA targets. Due 
to the inhibitory nature of miRNAs, predicted mRNA 
targets were inversely correlated to mRNAs found to 
be regulated by HSF-1 during HS via mRNA-seq 
performed in parallel to this study.  (b) Predicted 
network suppressed by HSF-1-regulated miRNAs 
upon HS. The miRNAs that we found to normally be  

induced by HSF-1 during HS via miRNA-seq (rectangles) were compared to mRNAs previously 
determined to normally be suppressed by HSF-1 during HS via mRNA-seq (circles). (c) Biological 
processes predicted to be suppressed by HSF-1-regulated miRNAs during HS. DAVID was used to 
uncover biological processes predicted to be suppressed by HSF-1 upon HS using the network in (b). 
(d) Predicted network induced by HSF-1-regulated miRNAs upon HS. The miRNAs that we found to 
normally be suppressed by HSF-1 during HS via miRNA-seq (rectangles) were compared to mRNAs 
previously determined to normally be induced by HSF-1 via mRNA-seq (circles). (e) Biological 
processes predicted to be induced by HSF-1-regulated miRNAs during HS. DAVID was used to uncover 

biological processes predicted to be induced by HSF-1 upon HS using the network in (d). 
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Figure 7.3. Networks and biological processes 
impacted by HSF-1-regulated miRNAs 
independently of HS. (a) Schematic depicting 
integrated miRNA/mRNA network generation. The 
miRNAs determined via miRNA-seq to be regulated 
by HSF-1 independently of HS were run through 
target prediction tools to uncover predicted mRNA 
targets. RNA targets were inversely correlated to 
mRNAs found to be regulated by HSF-1 
independently of HS via mRNA-seq performed in 
parallel to this study. (b) Predicted network  
 suppressed by HSF-1-regulated miRNAs independently of HS. The miRNAs that we found to normally 

be induced by HSF-1 independently of HS via miRNA-seq (rectangles) were compared to mRNAs 
previously determined to normally be suppressed by HSF-1 independently of HS via mRNA-seq (circles). 
(c) Biological processes predicted to be suppressed by HSF-1-regulated miRNAs independently of HS. 
DAVID was used to uncover biological processes predicted to be suppressed by HSF-1 independently 
of HS using the network in (b). (d) Predicted network induced by HSF-1-regulated miRNAs independently 
of HS. The miRNAs that we found to normally be suppressed by HSF-1 independently of HS via miRNA-
seq (rectangles) were compared to mRNAs previously determined to normally be induced by HSF-1 
independently of HS via mRNA-seq (circles). (e) Biological processes predicted to be induced by HSF-
1-regulated miRNAs independently of HS. DAVID was used to uncover biological processes predicted 
to be induced by HSF-1 independently of HS using the network in (d). 
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Figure 7.4. Integrated target prediction analysis uncovers miRNA/mRNA interaction networks 
regulated by HSF-1 during HS. The miRNAs (rectangles) that we determined to be regulated by 
HSF-1 during HS were used for target prediction analysis carried out by mirWIP or TargetScan. The 
mRNA targets (circles) were consolidated by comparing the predicted mRNAs to those determined 
by mRNA-sequencing, performed in parallel to miRNA sequencing, to be regulated by HSF-1 during 
HS. Interactions were predicted using the Agilent literature search tool, and network generation was 
done with Cytoscape. Transcripts that are not colored were not affected in our dataset, but are 
neighbors shared by at least two transcripts that were affected. The color of each miRNA or mRNA 
corresponds to the degree of HSF-1 regulation, where red represents induction and blue represents 
suppression. Bold connecting lines represent connections between upregulated and downregulated 
clusters. 
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Figure 7.5. Integrated target prediction analysis uncovers miRNA/mRNA interaction networks 
regulated by HSF-1 independently of HS. The miRNAs (rectangles) that we determined to be 
regulated by HSF-1 independently of HS were used for target prediction analysis carried out by 
mirWIP or TargetScan. The mRNA targets (circles) were consolidated by comparing the predicted 
mRNAs to those determined by mRNA-sequencing, performed in parallel to miRNA sequencing, to 
be regulated by HSF-1 independently of HS. Interactions were predicted using the Agilent literature 
search tool, and network generation was done with Cytoscape. Transcripts that are not colored were 
not affected in our dataset, but are neighbors shared by at least two transcripts that were affected. 
The color of each miRNA or mRNA corresponds to the degree of HSF-1 regulation, where red 
represents induction and blue represents suppression. Bold connecting lines represent connections 
between upregulated and downregulated clusters. 
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Figure 7.6. A model for heat stress-dependent and -independent processes controlled by HSF-
1-regulated miRNAs. HSF-1 controls miRNA expression during and independently of HS.  During HS, 
HSF-1 is predicted to post-transcriptionally regulate genes involved in cytoprotection, development, 
metabolism, and longevity.  These processes may be connected through the oxidative stress response 
transcription factor SKN-1. Independently of HS, HSF-1 is predicted to post-transcriptionally regulate 
genes involved in development, metabolism, and longevity. These processes may be connected 
through the insulin-like signaling transcription factor DAF-16. This work highlights a possible role for 
HSF-1 in post-transcriptionally regulating gene expression and various biological processes, and 
provides a possible mechanism for cross-talk between stress responses.  
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Table 7.1. miRNAs normally regulated by HSF-1 upon HS.  

The log2-fold change of each miRNA is listed along with a description adapted from WormBase. 

  

miRNA 
Fold Change (log

2
)            

  hsf-1(+);+HS vs. control 
Description 

(WormBase) 
 Normally upregulated by hsf-1 upon heat shock 

miR-784 1.35 
miR-784 is expressed in head neurons and the 
vulva, however the precise function of miR-784 
is unknown. 

miR-231 0.67 

miR-231 may have a potential ortholog in C. 
briggsae. miR-231 is strongly expressed at all 
stages of development in wild-type worms, 
however the precise function of miR-231 is 
unknown. 

miR-86 0.58 

miR-86 is conserved in the nematode C. 
briggsae. mir-86 is strongly expressed at all 
developmental stages in wild-type worms, 
however the precise function of miR-86 is 
unknown. 

miR-53 0.38 
miR-53 is expressed constitutively throughout 
development, however the precise function is 
unknown. 

miR-47 0.22 
miR-47 is conserved in C. briggsae. mir-47 is 
expressed constitutively throughout 
development, however the precise function of 
miR-47 is unknown.  

miR-34 0.15 

miR-34 is conserved in C. briggsae, 
Drosophila, and humans. mir-34 can regulate 
adult lifespan along with resistance to heat and 
oxidative stress. miR-34 functions via negative 
regulation of autophagy. 

Normally downregulated by hsf-1 upon heat shock 

miR-228 -0.13 

miR-228 appears to be conserved in C. 
briggsae. miR-228 belongs to the miR-124 
family of microRNAs along with human miR-
124a-1, miR-124a-2, miR-124-a-3, miR-183, 
and Drosophila miR-268.  miR-228 is 
upregulated during aging, and a deletion of 
miR-228 increases longevity and stress 
resistance. 

miR-48 -0.13 
miR-48 belongs to the let-7 family of 
microRNAs. miR-48 can act with other let-7 
family members to control developmental 
timing events.  
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Table 7.2. miRNAs normally regulated by HSF-1 independently of HS 

The log2-fold change of each miRNA is listed along with a description adapted from WormBase. 

 

 

 

  

miRNA 
Fold Change (log

2
)     

control vs. hsf-1(-);-HS 
Description (WormBase)  

Normally upregulated by hsf-1 independently of heat shock 

miR-72 0.12 
miR-72 is a member of the mir-31 microRNA family that 
includes human miR-31. However, the precise function of 
miR-72 is unknown. 

Normally downregulated by hsf-1 independently of heat shock 

miR-239b -5.70 
miR-239b is highly upregulated during aging.  Deletion of 
miR-239 can result in lifespan extension, while 
overexpression can lead to a reduction in lifespan. 

miR-1820 -0.57 mir-1820 is upregulated in dauer worms.  

miR-228 -0.11 

miR-228 appears to be conserved in C. briggsae. miR-228 
belongs to the miR-124 family of microRNAs along with 
human miR-124a-1, miR-124a-2, miR-124-a-3, miR-183, and 
Drosophila miR-268.  miR-228 is upregulated during aging, 
and a deletion of miR-228 increases longevity and stress 
resistance. 
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CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

Summary: Compound, genetic, and environmental regulation and transcriptional 

targets of HSF-1 in C. elegans 

In these studies, we have uncovered compound, genetic, and environmental regulators 

of the HSR in C. elegans, while also identifying genome-wide HSF-1 targets. Our data 

suggest that treatment with the DNA-synthesis inhibitor Fluorodeoxyuridine, and the 

compounds caffeine and coffee, activate the HSR in an HSF-1-dependent manner and 

lead to an increase in proteostasis in a C. elegans Huntington’s disease model. Also, we 

have uncovered that the nematode protein LST-3 is the ancestor of mammalian cell cycle 

and apoptosis regulator CCAR2. Mammalian CCAR2 negatively regulates the 

prolongevity factor SIRT1 and the HSR, and we have determined that this regulation is 

conserved in C. elegans and mediated by LST-3. Using C. elegans as a model has also 

allowed us to determine the negative impact LST-3 has on longevity, proteostasis, and 

fitness, suggesting that enhancing Sir-2.1 activity and the HSR would be beneficial for 

these processes. Furthermore, we have determined the global impact of HSF-1 in 

regulating transcriptional processes during and independently of HS by globally profiling 

HSF-1 mRNA and miRNA targets. Interestingly, we uncovered a large role for HSF-1 in 

regulating collagen gene expression during and independently of HS. These studies have 

uncovered regulators of the HSR in C. elegans, and have determined stress-dependent 
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and independent roles for HSF-1 in regulating longevity, transcription, proteostasis, and 

cytoprotection. Modulating the HSR thus promotes thermotolerance and longevity and 

may be beneficial for diseases of protein dysfunction (for a model, see Figure 8.1). 

Modulating the HSR to promote longevity and healthy aging 

A global increase in life expectancy has also resulted in an increase of age-associated 

diseases. Aging is currently thought to be the largest risk factor for many fatal diseases, 

including neurodegenerative disorders and cancer (386). Increasing longevity is therefore 

only beneficial when health, and the ability to handle stress, is also promoted during the 

aging process. Identifying the molecular events that impact natural cellular defense 

mechanisms may therefore uncover therapeutic targets to prevent chronic diseases of 

aging. 

The HSR is a cellular defense mechanism that protects against stressors by promoting 

cryoprotection and longevity. Aging is associated with attenuation of the HSR in 

mammalian and non-mammalian systems (112,387-389). It has also been suggested that 

small-molecule intervention of the HSR may promote protection against age-associated 

diseases such as neurodegenerative diseases (163). Thus, uncovering HSR modulators 

may assist in preventing diseases of aging and protein dysfunction.  

Fluorodeoxyuridine, coffee, and caffeine treatment may protect against aging-

related diseases through activation of the HSR 

The studies performed here provide insight into compound activation of the HSR via 

treatment with Fluorodeoxyuridine, and coffee and caffeine, in C. elegans. The problem 

with existing HSR modulators is bioavailability and toxicity (127). However, 

Fluorodeoxyuridine, coffee, and caffeine are currently bioavailable and approved for 
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consumption by the population, thus these compounds may overcome current boundaries 

for existing HSR activators. It will be interesting to see if future studies in mammals will 

also associate Fluorodeoxyuridine, coffee, and caffeine treatment as beneficial therapies 

for aging-related disorders through activation of the HSR.  

Enhancing sirtuin activity to promote longevity 

Another mechanism thought to be beneficial for enhancing longevity is through 

enhancement of the prolongevity factor SIRT1. The HSR is enhanced by SIRT1, as 

SIRT1 prevents attenuation of the HSR by promoting increased transcription of hsp genes 

(58). SIRT1 has numerous interacting partners, including the cell cycle and apoptosis 

regulator CCAR2 (73,192). CCAR2 negatively regulates SIRT1 activity by preventing 

substrate binding through competitive inhibition (77). Our lab has recently uncovered 

CCAR2 as a negative regulator of the HSR, possibly through its inhibitory interaction with 

SIRT1 (67). By using C. elegans as a model organism, we have shown that negative 

regulation of the HSR by CCAR2 is conserved and negatively impacts proteostasis, 

fitness, and longevity. Thus, uncovering inhibitors of CCAR2 may enhance SIRT1 activity 

and ultimately promote longevity and healthy aging in a mammalian system.  

A role for HSF-1 in promoting longevity through the induction of collagen gene 

expression 

The HSR is not only essential for regulating stress-dependent process in promoting 

adaptation and survival during stressful insults, but is also required for the stress-

independent process such as longevity and development. Using next generation 

sequencing, we uncovered a novel role for HSF-1 in regulating collagen gene expression 

during and independently of HS in C. elegans. Collagen has been implicated to play a 
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role in modulating disease states and longevity (380,390,391). Thus, it will be interesting 

to further examine the relationship between collagen, HSF-1, and longevity. 

Future Study 1: Collagens as Modulators of the HSR and Longevity 

Rationale: Collagen genes are regulated by HSF-1 during and independently of HS 

and may impact longevity 

HSF-1 has been uncovered as the master regulator of the HSR, but also as a 

developmental and lifespan regulating transcription factor. Our next generation 

sequencing data has led to the hypothesis that HSF-1 controls the expression of a variety 

of collagen genes in a HS-dependent and -independent manner (357). Our preliminary 

studies show that knockdown of the collagen gene, col-123, results in enhancement of 

hsp-70 promoter activity in a tissue specific manner (357). We expect that other collagen 

genes will also modulate hsp-70 promoter activity and the HSR. Regulation of collagen 

gene expression by HSF-1 may therefore ultimately impact proteostasis and longevity, 

which are two areas the HSR is known to promote.  

In C. elegans, collagen genes are major constituents of the cuticle of the worm. In 

humans, collagens are long-lived proteins that can accumulate during the aging process, 

ultimately leading to a decline in tissue health. Collagens are also known to be involved 

in numerous diseases including osteoporosis and musculoskeletal diseases. 

Interestingly, collagen is also associated with aging, as mice expressing cleavage-

resistant type I collagen experience an accelerated aging process. Also, collagen 

production was determined to be essential for longevity in C. elegans (380). Thus, 

regulation of collagen genes by HSF-1, and regulation of the HSR by collagens, may be 

one mechanism utilized by HSF-1 to promote longevity.  
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AIM 1: Uncovering collagen genes as modulators of the HSR 

Our interest is in further determining the role HSF-1 in regulating collagen gene 

expression, and assessing how collagen genes affect the HSR and aging. By performing 

RNA-seq, we found 85 collagen genes to be regulated by HSF-1 during HS, while 32 

collagen genes were found to be regulated by HSF-1 independently of HS (Table 8.1 and 

8.2, respectively) (357). The known C. elegans HSF-1 binding site (TTCnnGAA) was 

identified in the promoters of these select collagen genes. Of the 85 collagen genes found 

to be regulated by HSF-1 during HS via RNA-seq, 59 have known HSF-1-binding sites in 

their promoters. Of the 32 collagen genes found to be regulated by HSF-1 independently 

of HS via RNA-seq, 22 have known HSF-1-binding sites in their promoters. Due to our 

interest in determining a direct role for HSF-1 in regulating collagen gene expression, our 

studies will focus on the collagen genes we found to be regulated by HSF-1 during and 

independently of HS, and that also contain known HSF-1 binding sites in their promoters. 

To determine which of the collagens regulated by HSF-1 would also affect the HSR, 

a small-scale genetic RNAi screen will be performed using a worm construct with the hsp-

70 promoter fused to GFP, and fluorescence will be used as a marker for induction of the 

HSR (Figure 8.2). Collagen RNAi’s would first be isolated from our RNAi library, and each 

clone would be sequence verified. Next, worms would be fed control, and collagen gene-

specific RNAi’s, through-out their larval stages. Once the last larval stage is reached, 

worms would be left untreated or given a minor 33°C 30-minute HS. Fluorescence 

intensity would then be measured and used to determine which collagen genes affect the 

HSR. To verify the RNAi screen, qRT-PCR would also be performed to measure hsp-70 

mRNA expression in wild-type worms in response to collagen RNAi treatment, and in the 
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presence and absence of HS. This experimental set-up would thus allow for the 

determination of the specific collagen genes that influence induction of the HSR, and 

which collagen genes should be assessed for future studies.  

AIM 2: Determining a direct role for HSF-1 in regulating collagen gene expression 

We would next be interested in determining a direct role for HSF-1 in regulating collagen 

gene expression. Chromatin immunoprecipitation (ChIP) would be performed to assess 

HSF-1-binding to the promoters of the collagen genes determined from AIM1 to regulate 

the HSR (Figure 8.3). Using a worm construct that contains HSF-1 tagged GFP that has 

been generated by the CRISPR/Cas9 system, ChIP would be performed using a ChIP-

grade GFP antibody alongside an IgG antibody as a control. Next, qRT-PCR would be 

performed probing for HSF-1 binding to collagen gene promoters. This experimental set-

up would thus further establish a direct role for HSF-1 in regulating collagen production 

by measuring the binding of HSF-1 to collagen gene promoters. 

AIM 3: Uncovering a role for HSF-1-regulated collagen genes in modulating 

longevity, healthy aging, and proteostasis 

The effects of collagen gene expression on proteostasis, healthspan, and longevity would 

next be assessed (Figure 8.4). First, lifespan assays would performed in wild-type worms 

using RNAi knockdown of the collagen genes determined from AIMS 1 and 2 to affect the 

HSR and be regulated by HSF-1. However, measuring lifespan is not a complete 

representation of aging, thus healthspan assays would also be done throughout the aging 

process. These healthspan assays include measuring pharyngeal pumping, movement, 

brood size, and body length. To measure proteostasis, polyglutamine aggregation would 

be observed in an aging C. elegans Huntington’s disease in response to collagen RNAi 
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treatment. As another measure of proteostasis, the ability of wild-type worms to respond 

to a lethal heat-stress in response to collagen RNAi treatment would also be performed. 

These experiments would thus allow for the determination of the role of collagen genes 

in modulating longevity, healthy aging, and proteostasis in C. elegans.   

 Next, the role of HSF-1 in regulating proteostasis and healthy aging through the 

modulation of collagen gene expression would be determined. First, an HSF-1 null C. 

elegans strain would be generated using CRISPR/Cas9 technology. This strain would 

then be used in parallel to a wild-type strain for all longevity and proteostasis studies. To 

examine proteostasis in the Huntington’s disease model, the CRISPR generated HSF-1 

null worm strain would be crossed to the Huntington’s disease model strain. This design 

would allow for the determination of the role of HSF-1 in regulating collagen gene 

expression to modulate longevity, healthy aging, and proteostasis.  

Conclusion: Manipulating collagen gene expression may be one mechanism 

utilized by HSF-1 to promote longevity during and independently of heat-stress 

Uncovering a role for collagen-mediated modulation of the HSR is a novel and interesting 

concept that may lead to future mammalian studies linking the HSR to increasing 

longevity through collagen production. This may have impacts in uncovering therapies to 

increase collagen production to promote healthy aging, proteostasis, and longevity 

through modulation of the HSR.   

Future Study 2: Uncovering a Sirtuin/HSF-1 longevity-associated network 

Rationale: Modulating sirtuin activity enhances the HSR and promotes longevity  

SIRT1 belongs to a conserved family of deacetylases known to promote longevity. 

Mammalian cells have seven sirtuin family members, SIRT1-7, whereas C. elegans have 
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four, Sir-2.1-2.4 (280). The most actively studied sirtuin is SIRT1, which corresponds to 

Sir-2.1 in C. elegans. Enhancing the activity of SIRT1 enhances longevity in mammalian 

and C. elegans systems (392,393). Thus, uncovering modulators of SIRT1 activity is an 

active area of research with the underlying goal being to promote health and longevity. 

 SIRT1 promotes the mammalian HSR and is required for many longevity-promoting 

pathways (58,280). The HSR is enhanced by SIRT1 via deacetylation of the DNA-binding 

domain of HSF-1, resulting in enhanced hsp-70 gene expression (58). Among 

enhancement of the HSR, SIRT1 is also implicated as a mediator of the numerous health 

benefits obtained by caloric restriction (280). Using C. elegans as a model organism, our 

lab has shown that the ability of caloric restriction to work through SIRT1 to enhance the 

HSR and fitness is conserved (72). In the studies performed here, we have uncovered 

that modulating Sir-2.1 activity promotes stress-resistance, fitness, longevity, and 

proteostasis. Altogether, our studies suggest that regulation of the HSR by modulating 

SIRT1 activity is conserved and may impact longevity and healthy aging.  

AIM 1. Determine the genome-wide targets of Sir-2.1 during and independently of 

heat- stress 

Our lab has previously established a role for Sir-2.1 in enhancing the C. elegans HSR. 

To gain insight into the genome-wide role of Sir-2.1 in regulating the HSR, RNA-

sequencing would be performed in control worms, and a Sir-2.1 deletion strain generated 

by CRISPR/Cas9 technology, and worms would either be left untreated or given a minor 

30 minute 33°C heat-stress (Figure 8.5a). After RNA-sequencing is completed and the 

data is analyzed as shown in Figure 8.5b, Venn diagrams would be used to compare 

each experimental condition (Figure 8.5c). This would allow for the separation of genes 



183 

regulated by Sir-2.1 during heat-stress and independently of heat-stress. Overall, this 

experimental design would allow for the determination of the genome-wide role of Sir-2.1 

in regulating gene expression during and independently of heat-stress. 

AIM 2. Determine the global HSF-1/Sir-2.1 network  

To determine the HSF-1/Sir-2.1 regulated network, the genes found in AIM 1 to be 

regulated by Sir-2.1 during and independently of heat-stress would be compared to genes 

we previously determined to be regulated by HSF-1 (Figure 8.6). This would allow for the 

identification of an HSF-1/Sir-2.1 regulated network on a genome-wide scale. 

 The biological processes affected by the HSF-1/Sir-2.1 network would next be 

assessed. The list of genes determined to be regulated by HSF-1/Sir-2.1 in AIM 1 would 

be run through the Database for Annotation, Visualization, and Integrated Discovery tool. 

This method of analyses would uncover enriched cellular processes affected by the HSF-

1/Sir-2.1 network. Based on our previous studies, we expect that longevity would be one 

of the top processes regulated by this network of genes, and would further confirm a role 

for both HSF-1 and Sir-2.1 in regulating longevity. 

AIM 3. Determine the role of HSF-1/Sir-2.1 regulated genes in modulating the HSR 

and longevity 

The impact of genes regulated by HSF-1 and Sir-2.1 during and independently of heat-

stress would next be assessed for effects on the HSR and longevity (Figure 8.7). An RNAi 

screen would be performed for the genes found to be associated with HSF-1 and Sir-2.1, 

and their impacts on the HSR and longevity would be determined. First, the induction of 

the HSR in response to RNAi knockdown of all HSF-1/Sir-2.1 regulated genes would be 

done with a worm construct containing the hsp-70 promoter fused to GFP. First, RNAi’s 
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would be isolated from our RNAi library, and each clone would be sequence verified. 

Worms would then be fed control, and gene-specific RNAi’s, through-out their larval 

stages. Once the last larval stage is reached, worms would be left untreated or given a 

minor 33°C 30-minute HS. Fluorescence intensity would then be measured and used to 

determine which collagen genes affect the HSR. To verify the RNAi screen, qRT-PCR 

would also be performed to measure hsp-70 mRNA expression in wild-type worms in 

response to gene-specific RNAi treatment, and in the presence and absence of HS. This 

experimental set-up would determine the impact of the genes involved in the HSF-1/Sir-

2.1 network on the HSR.  

Next, lifespan assays would be performed to determine effects on longevity. Worms 

would be fed control or gene-specific RNAi corresponding to the genes found in AIM 2 to 

be regulated by Sir-2.1 and HSF-1. To maintain the parental population, approximately 

200 worms/condition would be transferred to fresh plates daily until progeny production 

ceased. Dead/live worms would be scored every other day until no survivors remained. 

This experimental design would therefore assess the impact of genes associated with the 

HSF-1/Sir-2.1 network on regulating longevity. 

Conclusion: Identifying a role for Sir-2.1 in regulating longevity during and 

independently of heat-stress 

Uncovering a role for the genetic targets of HSF-1 and Sir-2.1 will not only lead to the 

identification of novel targets in an important longevity-associated pathway, but may also 

lead to future studies linking sirtuins to the HSR and longevity. This work may also have 

future impacts determining genes essential for longevity and their roles in mammalian 

systems.  
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Figure 8.1. Modulating the HSR to promote thermotolerance and longevity, and to prevent 
neurodegenerative diseases.  In these studies, we have uncovered environmental, compound, and 
genetic regulators of the HSR, and have determined global HSF-1 mRNA/miRNA targets. We have 
found that enhancing the HSR upon treatment with FUdR, coffee, and caffeine, or through enhancing 
Sir-2.1 activity, protects against polyglutamine aggregate formation in a C. elegans Huntington’s 
disease model. These data suggest that compound intervention of the HSR may be beneficial for 
neurodegenerative diseases. Additionally, enhancing Sir-2.1 activity promotes longevity and 
thermotolerance. Similarly, we have uncovered HSF-1 as a regulator of collagen gene expression and 
miRNA expression, and have predicted these targets to play a role in regulating longevity. Overall, we 
have found that enhancing the HSR through genetic intervention, compound treatment, and 
environmental stress may promote longevity, thermotolerance, and may be beneficial for aggregate-
associated neurodegenerative disorders.  
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AIM 1.  UNCOVER COLLAGEN GENES AS 
MODULATORS OF THE HSR 

Figure 8.2. Uncovering collagens as 
modulators of the HSR.  A C. elegans 
promoter fusion construct containing a 
hsp-70 promoter fused to GFP (phsp-
70::GFP) will be used to assess 
activation of the HSR. Collagen RNAi’s 
that we previously determined to be 
regulated by HSF-1 during and 
independently of HS, and that contain 
HSF-1 binding sites in their promoters, 
will be isolated from an RNAi library and 
fed to phsp-70::GFP worms from their L2 
larval stage to the L4 larval stage and left 
untreated or given a minor HS. 
Fluorescence will then be measured for 
each collagen RNAi and compared to the 
control to determine positive or negative 
regulation of the HSR.  

hsf-1 GFP 

HSF-1::GFP Worms 

Chromatin Immunoprecipitation 

qRT-PCR to Determine HSF-1  
Binding to Collagen Promoters 

hsf-1 

col-x,y,z.. 

AIM 2.  DETERMINE A DIRECT ROLE FOR 
HSF-1 IN REGULATING COLLAGEN GENE 

EXPRESSION 

Figure 8.3. Determine HSF-1 binding 
to collagen gene promoters.  A worm 
strain containing HSF-1 fused to GFP 
under the control of its own 
endogenous promoter will be fed 
collagen RNAi’s determined from AIM 1 
to regulate the HSR prior to performing 
ChIP followed by qRT-PCR to 
determine HSF-1 binding to collagen 
gene promoters.  
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AIM 3.  UNCOVER A ROLE FOR HSF-1-REGULATED 
COLLAGEN GENES IN MODULATING LONGEVITY, 

HEALTHY AGING, AND PROTEOSTASIS 

Figure 8.4. The role of HSF-1-regulated collagen genes in controlling longevity, healthy aging, 
and proteostasis.  The collagen genes determined from AIMS 1 and 2 to be regulated by HSF-1 and 
influence the HSR will be assessed in wild-type worms (N2), and a CRISPR generated hsf-1 null worm 
[hsf-1(-)] for their effects on lifespan, healthy aging, and proteostasis.  
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Gene ID 
log2 Fold hsf-
1(+);+HS vs. 

control 
Description 

col-149 3.01 Function unknown. 

col-143 2.55 Function unknown. 

col-80 2.44 Function unknown. 

col-129 2.43 Function unknown. 

col-140 2.40 Function unknown. 

col-139 2.37 Function unknown. 

col-169 2.37 Function unknown. 

col-147 2.35 Function unknown. 

col-142 2.34 Function unknown. 

col-93 2.32 Function unknown. 

col-160 2.30 Function unknown. 

col-170 2.29 Function unknown. 

col-159 2.22 Function unknown. 

col-19 2.17 
col-19 encodes a member of the collagen superfamily containing collagen triple helix repeats 
(20 copies) that is required for normal structure of the alae; expressed during the L2-to-dauer 

and L4-to-adult molts with strongest expression in adult animals. 

col-124 2.17 Function unknown. 

col-81 2.16 Function unknown. 

col-94 2.14 Function unknown. 

col-122 2.13 Function unknown. 

col-92 2.11 Function unknown. 

col-20 2.11 col-20 encodes a collagen; its expression pattern and mutant phenotypes are unknown. 

col-179 2.08 Function unknown. 

col-178 2.07 Function unknown. 

col-7 2.06 
col-7 encodes a member of the collagen superfamily containing collagen triple helix repeats (20 

copies); expressed during the L2-to-dauer molt and the L4-to-adult molt. 

col-146 2.06 Function unknown. 

col-62 2.03 Function unknown. 

col-181 2.02 
col-181 is homologous to the human gene PRO ALPHA 1(I) COLLAGEN (COL1A1; 

OMIM:120150) 

col-167 2.02 Function unknown. 

col-168 2.01 Function unknown. 

col-127 2.01 Function unknown. 

col-98 1.99 Function unknown. 

col-8 1.99 Function unknown. 

col-126 1.99 Function unknown. 

col-184 1.99 Function unknown. 
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col-101 1.98 
col-101 encodes a cuticle collagen; loss of col-101 via large-scale RNAi screens results in 

animals that are pale and slow growing. 

col-144 1.91 Function unknown. 

col-117 1.89 Function unknown. 

col-3 1.88 col-3 encodes a collagen protein that affects body morphogenesis 

col-10 1.88 Function unknown. 

col-133 1.84 Function unknown. 

col-106 1.82 col-106 encodes a predicted cuticular collagen. 

col-125 1.74 Function unknown. 

col-180 1.64 Function unknown. 

col-145 1.62 Function unknown. 

col-107 1.59 Function unknown. 

col-157 1.59 Function unknown. 

col-71 1.54 Function unknown. 

col-12 1.53 
col-12 encodes a member of the collagen superfamily containing collagen triple helix repeats 
(20 copies); expressed throughout development but expression peaks after each larval molt 

when new cuticle is being secreted and deposited 

col-88 1.53 Function unknown. 

col-166 1.50 Function unknown. 

col-38 1.50 
col-38 encodes a member of the collagen superfamily containing collagen triple helix repeats 

(20 copies) required for normal body morphology. 

col-138 1.47 Function unknown. 

col-66 1.47 Function unknown. 

col-48 1.47 col-48 encodes a cuticle collagen. 

col-130 1.46 Function unknown. 

col-17 1.45 col-17 encodes a collagen which is expressed in all developmental stages except eggs 

col-13 1.44 col-13 encodes a collagen which is expressed in all stages of development 

col-63 1.44 Function unknown. 

col-104 1.44 Function unknown. 

col-175 1.41 Function unknown. 

col-96 1.39 Function unknown. 

col-152 1.39 Function unknown. 

col-77 1.38 
col-77 encodes a cuticular collagen; as loss of col-77 activity via RNAi screens results in no 

obvious defects 

col-156 1.38 Function unknown. 

col-141 1.38 Function unknown. 

col-161 1.37 Function unknown. 

col-65 1.34 Function unknown. 

col-73 1.33 Function unknown. 

col-60 1.32 Function unknown. 

col-46 1.29 col-46 encodes a cuticle collagen. 
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col-162 1.28 Function unknown. 

col-154 1.28 Function unknown. 

col-120 1.28 Function unknown. 

col-97 1.26 
col-97 encodes a cuticular collagen; loss of col-97 activity via large-scale RNAi screens results 

in defects in body morphology and locomotion. 

col-91 1.23 
col-91 encodes a cuticle collagen; loss of col-91 via large-scale RNAi results in no obvious 

defects. 

col-58 1.18 Function unknown. 

col-14 1.17 
col-14 encodes a collagen protein that affects vulval morphology in a large-scale RNAi screen; 

mRNA expressed in embryos and transcript levels peak during each larval stage. 

col-49 1.16 col-49 encodes a cuticle collagen. 

col-89 1.13 Function unknown. 

col-34 1.09 
col-34 encodes a cuticle collagen protein and is a critical component of male tail cuticle 

organization affecting ray morphology. 

col-155 1.08 Function unknown. 

col-150 1.07 Function unknown. 

col-137 1.05 Function unknown. 

col-109 1.03 
col-109 encodes a cuticular collagen; loss of col-109 via large-scale RNAi screens results in no 

obvious defects. 

col-68 1.02 Function unknown. 

col-118 1.02 Function unknown. 
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Gene ID 
log2 Fold hsf-1(-);-HS 

vs. control 
Description 

col-135 2.52 Function unknown. 

col-68 1.87 Function unknown. 

col-120 1.79 Function unknown. 

col-88 1.71 Function unknown. 

col-175 1.62 Function unknown. 

col-60 1.54 Function unknown. 

col-138 1.51 Function unknown. 

col-63 1.49 Function unknown. 

col-49 1.49 col-49 encodes a cuticle collagen. 

col-71 1.48 Function unknown. 

col-182 1.45 Function unknown. 

col-38 1.42 
col-38 encodes a member of the collagen superfamily containing collagen triple 

helix repeats (20 copies) required for normal body morphology. 

col-77 1.39 
col-77 encodes a cuticular collagen; as loss of col-77 activity via RNAi screens 

results in no obvious defects 

col-91 1.22 
col-91 encodes a cuticle collagen; loss of col-91 via large-scale RNAi results in 

no obvious defects. 

col-170 1.22 Function unknown. 

col-130 1.17 Function unknown. 

col-162 1.16 Function unknown. 

col-76 1.13 Function unknown. 

col-161 1.09 Function unknown. 

col-65 1.08 Function unknown. 

col-104 1.07 Function unknown. 

col-73 0.97 Function unknown. 

col-137 0.95 Function unknown. 

col-61 0.95 Function unknown. 

col-97 0.94 
col-97 encodes a cuticular collagen; loss of col-97 activity via large-scale RNAi 

screens results in defects in body morphology and locomotion. 

col-133 0.93 Function unknown. 

col-58 0.90 Function unknown. 

col-96 0.89 Function unknown. 

col-123 -4.37 
col-123 is homologous to the human gene A TYPE IV COLLAGEN (COL6A1; 

OMIM:303631) 

col-84 -4.95 
col-84 encodes a nematode cuticular collagen; RNAi experiments that target 

col-84 (as well as neighboring genes) result in defects in embryonic and larval 
development 

col-158 -5.00 Function unknown. 

col-185 -5.79 Function unknown. 
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AIM 1. Determine the genome-wide targets of Sir-2.1 during and 
independently of heat- stress 

Figure 8.5. Determining genome-wide Sir-2.1 targets. (a) Schematic for RNA-sequencing conditions. 
RNA samples from wild-type L4 larval worms will be generated in two biological replicates under the 
four indicated conditions. “sir-2.1(+)” refers to worms that will be treated with empty vector control RNAi, 
and “sir-2.1(-)” refers to worms that will be treated with sir-2.1 RNAi. “-HS” indicates worms that will be 
left at growth temperature, while “+HS” indicates worms that will be treated with a 33°C 30 minute HS. 
RNA-sequencing would be performed on the Illumina Hi-Seq 2000 platform. (b) Schematic of data 
normalization. Each experimental treatment condition will be normalized relative to the untreated control. 
Differentially expressed mRNAs will then be determined using the Benjamini-Hochberg correction for 
multiple testing. (c) Separating Sir-2.1 regulated mRNAs. A Venn diagram will be used to compare each 
treatment condition in order to separate mRNAs regulated by Sir-2.1 during and independently of HS.  
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Figure 8.6. Determining HSF-1/Sir-2.1 
regulated networks. The mRNAs found from 
AIM 1 to be regulated by Sir-2.1 during and 
independently of HS will be compared to those we 
previously found to be regulated by HSF-1 during 
and independently of HS. These mRNAs will then 
be run through the Database for Annotation, 
Visualization, and Integration tool to determine 
enriched biological processes influenced by the 
HSF-1/Sir-2.1 network.  
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Figure 8.7. Determine a role for the HSF-1/Sir-2.1 network in regulating the HSR and longevity. A 
C. elegans promoter fusion construct containing a hsp-70 promoter fused to GFP (phsp-70::GFP) will 
be used to assess activation of the HSR. RNAi’s of genes we found to be regulated by HSF-1/Sir-2.1 
will be isolated from an RNAi library and fed to phsp-70::GFP worms from their L1 larval stage to the L4 
larval stage and left untreated or given a minor HS. Fluorescence will then be measured for each RNAi 
and compared to the control to determine positive or negative regulation of the HSR. qRT-PCR will then 
be done to confirm regulation, followed by lifespan analyses to determine the effects of modulating the 
HSF-1/Sir-2.1 network on lifespan.  
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APPENDIX A: SUPPORTING FIGURES FOR CHAPTER 2. FLUORODEOXYURIDINE 

ENHANCES THE HEAT SHOCK RESPONSE AND DECREASES POLYGLUTAMINE 

AGGREGATION IN AN HSF-1-DEPENDENT MANNER IN CAENORHABDITIS  

ELEGANS 
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Figure A1. Treatment with 25 µM of FUdR from L1 to day 3 does not affect worm growth while 
still inhibiting egg hatching similarly to 100 µM or 200 µM of FUdR from the L4 stage to day 3 of 
adulthood. Images are representative of day 3 nematodes given 25 µM of FUdR at the L1 stage until 
day 3 of adulthood, or 100 µM or 200 µM of FUdR given at the L4 stage until day 3 of adulthood. 
Nematodes that were not grown in the presence of FUdR were picked to new plates daily. The box 
outline contains eggs that have not hatched, while the ^ points to a larval nematode. 
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APPENDIX B: SUPPORTING FIGURES AND TABLES FOR CHAPTER 3. COFFEE 

EXTRACT AND CAFFEINE ENHANCE THE HEAT SHOCK RESPONSE AND 

PROMOTE PROTEOSTASIS IN AN HSF-1-DEPENDENT MANNER IN 

CAENORHABDITIS ELEGANS 
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Figure B1. High-dose caffeine treatment stunts 
development. (a) Phase-contrast images of synchronous 
wild-type worms left untreated (control), or supplemented 
with various doses of pure caffeine, as indicated, from the 
L1 larval stage until day 1 of adulthood. (b) The percent of 
worms that reached adulthood was assessed for 100 
worms per condition in biological triplicates, and 
significance was determined using the Bonferroni post-hoc 
test, compared to the control, where *,p<0.05; ***, p<0.001.  
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APPENDIX C: SUPPORTING FIGURES AND TABLES FOR CHAPTER 4. 

DBC1/CCAR2 AND CCAR1 HAVE EVOLVED FROM ONE COMMON ANCESTOR 

 

  

Figure C1.  Sequence alignment of CCAR2 domains from various species. 
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Figure C2.  Sequence alignment of CCAR1 domains from various species. 

Figure C3.  Alignment of the C-terminal domain between human DBC1 (hDBC1, CCAR2) and 

human CCAR1 (hCCAR1). 
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Figure C4. Sequence alignment between zebrafish CCAR1 (Uniprot ID: F1QV66) and C. elegans 

CCAR1 (Uniprot ID: G5EFJ2). 
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Figure C5. Sequence alignment between zebrafish CCAR1 (Uniprot ID: F1QV66) and zebrafish 

CCAR2 (Uniprot ID: E9QH28). 
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Table C1. All CCAR2, CCAR1, and LST-3 sequences used in this study and their 
Uniprot IDs.   

Species CCAR2 CCAR1 LST-3 

Homo sapiens (Human) Q8N163 Q8IX12 ― 

Pongo abelii (Orangutan) Q5R8S0 H2NAQ9 ― 

Pan troglodytes (Chimpanzee) H2QVV3 H2Q1Z8 ― 

Macaca mulatta (Rhesus Monkey) F6RJW4 F6TNW6 ― 

Nomascus leucogenys (Gibbon) G1S0U2 G1RM48 ― 

Gorilla gorilla gorilla (Lowland Gorilla) G3QJ10 G3QJY0 ― 

Rattus norvegicus (Rat) D3ZG47 F1LM55 ― 

Mus musculus (Mouse) Q8VDP4 Q8CH18 ― 

Pteropus alecto (Black flying fox) L5L6J0 L5KGF7 ― 

Spermophilus tridecemlineatus (Ground squirrel) I3MHS6 I3LYS6 ― 

Mustela putorius furo (European domestic ferret) M3XWK6 M3XZT2 ― 

Cavia porcellus (Guinea pig) H0VI64 H0V2G0 ― 

Otolemur garnettii (Garnett’s greater bushbaby) H0X308 H0X8T3 ― 

Sarcophilus harrisii (Tasmanian devil) G3X2S1 G3VZQ7 ― 

Myotis lucifugus (Little brown bat) G1P531 G1NV87 ― 

Felis catus (Cat) M3W4H2 M3WHD5 ― 

Canis familiaris (Dog) E2RKJ1 E2QS34 ― 

Ailuropoda melanoleuca (Giant panda) G1L8L0 G1MI35 ― 

Loxodonta africana (African elephant) G3TKV2 G3SXP2 ― 

Bos taurus (Bovine) E1B9H3 Q17R04 ― 

Bos mutus (Wild yak) L8INM1 L8HXX6 ― 

Equus caballus (Horse) F6VJ81 F6XN96 ― 

Oryctolagus cuniculus (Rabbit) G1T501 G1T536 ― 

Anolis carolinensis (Green anole) H9GUP4 H9GFZ8 ― 

Pelodiscus sinensis (Chinese softshell turtle) K7GJ39 K7FC21 ― 

Takifugu rubripes (Japanese pufferfish) H2UA38 H2UA36 ― 

Latimeria chalumnae (West Indian ocean 
coelacanth) 

H3ATA1 H3B750 ― 

Danio rerio (Zebrafish) E7FGT1 F1QV66 ― 

Sus scrofa (Pig) F1RMA3 ― ― 

Macaca fascicularis (Crab-eating macaque) G7PCV6 ― ― 
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Table C1. (Continued)    

Cricetulus griseus (Chinese hamster) G3GUY5 ― ― 

Callithrix jacchus (White-tufted-ear marmoset) ― F7I8T1 ― 

Tupaia chinensis (Chinese tree shrew) ― L9JR90 ― 

Monodelphis domestica (Gray short-tailed 
opossum) 

― F6VYZ1 ― 

Myotis davidii (David’s myotis) ― L5M3R6 ― 

Ornithorhynchus anatinus (Duckbill platypus) ― F6V6B0 ― 

Columba livia (Domestic pigeon) ― R7VNX9 ― 

Gallus gallus (Chicken) ― F1P4X5 ― 

Taeniopygia guttata (Zebra finch) ― H0Z024 ― 

Meleagris gallopavo (Common turkey) ― G1MYH8 ― 

Xenopus laevis (African clawed frog) ― Q641G3 ― 

Xenopus tropicalis (Western clawed frog) ― F6RQZ6 ― 

Gasterosteus aculeatus (Three-spined 
stickleback) 

― G3NYR2 ― 

Xiphophorus maculatus (Southern platyfish) ― M3ZKQ0 ― 

Tetraodon nigroviridis (Spotted green pufferfish) ― H3CTD1 ― 

Oreochromis niloticus (Nile tilapia) ― I3KPZ5 ― 

Chelonia mydas (Green sea-turtle) ― M7CHZ7 ― 

Apis mellifera (Honeybee) ― H9KE07 ― 

Nasonia vitripennis (Parasitic wasp) ― K7J0P2 ― 

Culex quinquefasciatus (Southern house 
mosquito) 

― B0XGS6 ― 

Bombyx mori (Silk moth) ― H9JSF9 ― 

Pediculus humanus subsp. corporis (Body louse) ― E0W1T1 ― 

Camponotus floridanus (Florida carpenter ant) ― E1ZZH2 ― 

Harpegnathos saltator (Jumping ant) ― E2BXL7 ― 

Acromyrmex echinatior (Panamanian leafcutter 
ant) 

― F4WLM0 ― 

Crassostrea gigas (Pacific oyster) ― K1QFN3 ― 

Strongylocentrotus purpuratus (Purple sea urchin) ― H3JG74 ― 

Schistosoma japonicum (Blood fluke) ― C1LHT1 ― 

Loa loa (Eye worm)   E1FKS7   

Caenorhabditis briggsae ― ― A8XU29 

Caenorhabditis brenneri (Nematode worm) ― ― G0P9M6 

Caenorhabditis elegans ― ― G5EFJ2 
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APPENDIX D: SUPPORTING FIGURES AND TABLES FOR CHAPTER 5: LST-3 IS A 

NEGATIVE REGULATOR OF SIR-2.1 AND THE HEAT SHOCK RESPONSE IN 

CAENORHABDITIS ELEGANS 

  

Figure D1. lst-3 and hsf-1 mRNA levels are decreased roughly 50% in response to RNAi 

treatment. (a) qRT-PCR was used to measure lst-3 mRNA expression in synchronous wild-
type (N2) worms fed control RNAi or lst-3 RNAi [lst-3(-)] from the L1 larval stage to the L4 larval 
stage. (b) qRT-PCR was used to measure hsf-1 mRNA expression in synchronous wild-type 
(N2) worms fed control RNAi or hsf-1 RNAi [hsf-1(-)] from the L1 larval stage to the L4 larval 
stage. For (a-b), significance was determined using the Bonferroni post-hoc test where *** p< 
0.001. 
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Figure D2. lst-3 RNAi enhances a family of hsp-70 
mRNAs in a sir-2.3-independent manner upon HS. (a-c) 
qRT-PCR was used to measure the expression of the hsp-
70 family members C12C8.1, F44E5.5, and F44E5.4 in 
synchronous sir-2.3Δ (RB654) worms fed control RNAi, hsf-
1 RNAi [hsf-1(-)], or lst-3 RNAi [lst-3(-)] from the L1 larval 
stage to the L4 larval stage prior to treatment with or without 
a 15 minute 33°C HS followed by a 15 minute recovery. For 
(a-c), significance was determined using the Bonferroni 
post-hoc test where ** p< 0.01, *** p< 0.001. 
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Figure D3. The ability of lst-3 RNAi to enhance hsp-70 promoter activity and mRNA expression 
during HS is dependent on the deacetylase activity of Sir-2.1. (a) phsp-70::GFP worms were fed 
control RNAi, or lst-3 RNAi [lst-3(-)] in combination with 1 µM EX-527 (Sir-2.1 inhibitor) from the L1 larval 
stage to the L4 larval stage prior to treatment with or without a 15 minute HS followed by a 6 hour 
recovery. (b-d) Wild-type (N2) worms were fed control RNAi, or lst-3 RNAi [lst-3(-)] in combination with 
1 µM EX-527 from the L1 larval stage to the L4 larval stage prior to treatment with or without a 15 minute 
HS followed by a 15 minute recovery. For (b-d), significance was determined using the Bonferroni post-
hoc test where *** p< 0.001. 
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APPENDIX E: SUPPORTING FIGURES AND TABLES FOR CHAPTER 6. THE 

GENOME-WIDE ROLE OF HSF-1 IN THE REGULATION OF GENE EXPRESSION IN 

CAENORHABDITIS ELEGANS 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E1. Scheme and validation of 
experimental conditions for RNA-seq 
experiments. (a) Experimental scheme for 
RNA-seq. RNA samples from wild-type L4 larval 
worms were generated, in two biological 
replicates, under the four indicated conditions, 
with “hsf-1(+)” referring to worms treated with 
empty vector (EV) RNAi control and “hsf-1(-)” 
referring to worms treated with hsf-1 RNAi. “-HS” 
indicates that worms were left at growth 
temperature, while “+HS” indicates treatment - 
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Figure E2. Dendogram clustering of the biological duplicates for each RNA-seq condition 
reveals conserved alignment between replicates. The dendogram was generated with the program 
CummeRbund to provide insight into the relationships between different conditions. Significant 
differentially expressed genes used to draw the dendrograms are based on Jensen-Shannon 
distances.  
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Figure E1. Scheme and validation of experimental conditions for RNA-seq experiments 

(Continued). with a 30 minute 33C heat shock. RNA-sequencing was performed on the Illumina Hi-

Seq 2000 platform. (b) C12C8.1 (hsp-70) mRNA is robustly induced by a 33C HS over a 15-120 minute 
time window. Synchronous wild-type (N2) L1 nematodes were treated with RNAi against hsf-1 or with 
an empty vector (EV) control, indicated as hsf-1(-) or hsf-1(+), respectively. At the L4 larval stage, worms 
were either left at growth temperature or treated with a 33°C HS for the indicated times before RNA 
extraction. hsp-70 mRNA levels were quantified with qRT-PCR and the results represent the average 
fold change from a set of biological duplicates and technical triplicates. (c-d) hsf-1 RNAi decreases HS-
induced hsp promoter activity. Fluorescent images of synchronous phsp-70::GFP or phsp-16.2::GFP 
worms fed EV RNAi (control) or hsf-1 RNAi from the L1 larval stage to the L4 larval stage prior to 
treatment with or without a 33°C 30 minute heat shock (HS) followed by a 12 hour recovery. (e-f) hsf-1 
RNAi decreases HSF-1 protein abundance. A transgenic worm strain containing GFP tagged HSF-1 
under the control of its own endogenous promoter (HSF-1::GFP) was given the same RNAi feeding 
strategy in (c-d) prior to protein extraction and immunoblotting for GFP or actin (as a control). Image J 
was then used to quantify the band intensity of the immunoblot in (e). For (b) and (f), significance was 
determined using the Bonferroni post-hoc test where *** p< 0.001. 
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Figure E3. Scheme for RNA-seq data normalization. Each treatment condition was compared 
relative to the hsf-1(+);-HS control in order to determine fold changes in mRNA expression. 
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Figure E4. Volcano plots show the global 
expression profile for each RNA-seq condition 
relative to the control. (a) Volcano plot for hsf-
1(+);+HS vs. the hsf-1(+);-HS control. 
Significantly altered genes (q-value<0.05), 
including several highly induced hsp genes are 
indicated in grey. (b) Volcano plot for hsf-1(-);-HS 
vs. hsf-1(+);-HS control. Significantly altered 
genes (q-value<0.05), including the vitellogenin 
genes vit-1, vit-3, vit-4 and vit-5, are indicated. (c) 
Volcano plot for hsf-1(-);+HS vs. hsf-1(+);-HS 
control. Significantly altered genes (q-
value<0.05), including the vitellogenin genes vit-
1, vit-3, vit-4 and vit-5, are indicated. For all, the 
q-value is the FDR-adjusted p-value of the test 
statistic, as determined by the Benjamini-
Hochberg correction for multiple testing. 
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Figure E6. The Venn diagram shows the total number of genes that were found to be significantly 
altered (q-value<0.05) for each of the indicated comparisons between samples. The q-value is the 
FDR-adjusted p-value of the test statistic, as determined by the Benjamini-Hochberg correction for 
multiple testing. The red area of the Venn diagram indicates genes that are regulated by HSF-1 upon 
HS, whereas the pink portion of the Venn diagram indicates genes that are regulated by HSF-1 
independently of HS. 

Figure E5. Genes regulated by development and molting share a similar expression profile 
between each RNA-seq treatment condition. The log2 fold change from our RNA-seq data for the 
indicated transcripts that are known to oscillate during development shows that no significant expression 
profile changes occur between datasets, indicating that treatment with hsf-1 RNAi and/or HS did not 
affect the synchronicity of worms between our treatment conditions. 
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Top genes that are normally upregulated by HSF-1 in response to HS  

Figure E7. Validation of top RNA-seq hits for genes normally upregulated by HSF-1 during HS 
via qRT-PCR. (a) Fold changes of a subset of the top 15 upregulated genes as measured by RNA-seq 
analysis. (b) Validation of the same genes in (a) as measured by qRT-PCR analysis. 
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Figure E8. Collagen genes may control tissue specific regulation of the HSR. To verify that the 
presence of cuticle collagen genes in our dataset was not due to developmental timing differences 
between our treatment conditions, we tested the effects of col-123 on induction of the HSR. (a) The log2 
fold change of col-123 mRNA expression based on RNA-seq data between each treatment condition. 
(b) Fluorescent images of synchronous phsp-70::GFP worms fed EV RNAi (control) or col-123 RNAi 
[col-123(-)] from the L1 larval stage to the L4 larval stage prior to treatment with or without a 33°C 30 
minute heat shock (HS) followed by a 12 hour recovery. (c) The anterior of phsp-70::GFP worms given 
the same treatment conditions as in (b) shows a decrease and shift in hsp-70 promoter activity in 
response to treatment with col-123 RNAi as compared to the control. 
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Top genes that are normally downregulated by HSF-1 in response to HS 

hsf-1(+);+HS 
vs. control 

hsf-1(-);+HS 
vs. control 

Figure E9. Validation of top RNA-seq hits for genes normally downregulated by HSF-1 during HS 
via qRT-PCR. (a) Fold changes of a subset of the top 15 downregulated genes as measured by RNA-

seq analysis. (b) Validation of the same genes in (b) as measured by qRT-PCR analysis. 
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control vs. 
 hsf-1(-);+HS 

control vs.  
hsf-1(-);-HS 

a b 

c d 

Top genes that are normally upregulated by HSF-1 independently of HS 

Top genes that are normally downregulated by HSF-1 independently of HS 

Figure E10. Validation of the top RNA-seq hits for genes normally regulated by HSF-1 
independently of HS via qRT-PCR. (a) Fold changes of a subset of the top 15 normally upregulated 
genes as measured by RNA-seq analysis. (b) Validation of the same genes in (a) as measured by qRT-
PCR analysis. (c)  Fold changes of a subset of the top 15 downregulated genes as measured by RNA-
seq analysis. (d) Validation of the same genes in (c) as measured by qRT-PCR analysis. For (a-d) the 
data comparison was reversed [control vs. hsf-1(-);-HS or +HS] to obtain the fold change of these genes, 
in order to gain insight into the normal HSF-1-regulatory role of these HS-independent genes.   
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Figure E11. A model for major HSF-1 regulated processes in HS-dependent and -independent 
mechanisms. HSF-1 regulates a variety of processes during HS, but also has unique roles outside of 
the HSR. During HS, HSF-1 regulates development, cytoprotection, and aging, which may be regulated 
by the nuclear hormone receptor NHR-111. These processes are likely affected in order to promote 
survival to stress. The functions of HSF-1 outside of stress include roles in regulating development, 
metabolism, and aging, which may be regulated by a transmembrane tyrosine kinase LET-23. This 
highlights a role for HSF-1 in regulating both HS-dependent and –independent processes in C. elegans. 
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Gene 
Name 

log2 
Fold  

F44E5.5 8.06 

F44E5.4 7.87 

hsp-16.2 7.53 

hsp-16.41 7.41 

R11A5.3 7.37 

hsp-16.11 7.31 

hsp-70 7.15 

hsp-16.1 6.90 

hsp-16.48 6.77 

nspe-1 6.54 

hsp-16.49 6.50 

MTCE.7 5.84 

fil-2 4.26 

nurf-1 4.15 

MTCE.33 3.95 

Y53F4B.8 3.94 

ZC21.10 3.84 

col-102 3.81 

scp-1 3.68 

nspe-7 3.66 

F18E3.13 3.66 

col-36 3.60 

grl-23 3.57 

F18E3.11 3.53 

col-85 3.52 

col-50 3.47 

col-51 3.38 

R107.5 3.30 

linc-6 3.29 

col-40 3.27 

C13A2.12 3.23 

F22F7.8 3.21 

F19B2.5 3.21 

F59C12.4 3.18 

col-2 3.11 

his-51 3.10 

col-149 3.01 

col-37 2.91 

cut-1 2.88 

Y43F8B.2 2.87 

pqn-75 2.81 

Gene 
Name 

log2 
Fold  

F41C3.2 2.79 

fbxa-151 2.77 

C45B2.8 2.76 

Y48E1B.8 2.75 

grl-20 2.70 

col-183 2.69 

fbxa-18 2.67 

K02E2.8 2.67 

fbxa-78 2.66 

grl-25 2.61 

F47B7.7 2.58 

F08G2.5 2.58 

ZC250.4 2.57 

his-50 2.57 

lips-15 2.56 

col-143 2.55 

T20D4.7 2.54 

comt-5 2.53 

dgat-2 2.53 

C13G3.1 2.49 

col-43 2.48 

col-176 2.47 

T20B6.3 2.44 

col-80 2.44 

M01G12.8 2.43 

col-129 2.43 

unc-23 2.42 

M04G7.1 2.42 

M162.5 2.42 

col-140 2.40 

Y47D3B.6 2.39 

Y54G9A.4 2.39 

Y39F10A.
1 

2.39 

cut-2 2.37 

col-139 2.37 

col-169 2.37 

C52D10.1 2.37 

his-38 2.36 

col-147 2.35 

col-142 2.34 

Gene 
Name 

log2 
Fold  

T10C6.15 2.33 

col-93 2.32 

col-103 2.31 

F59C6.18 2.31 

col-160 2.30 

F49E12.9 2.29 

col-170 2.29 

T04B2.3 2.25 

C30C11.4 2.25 

his-28 2.25 

cnc-4 2.25 

F53B3.6 2.24 

col-159 2.22 

flp-33 2.21 

his-21 2.20 

col-119 2.19 

F46F2.3 2.18 

Y94H6A.1
0 

2.18 

col-19 2.17 

col-124 2.17 

col-81 2.16 

col-94 2.14 

fat-5 2.13 

col-122 2.13 

ugt-63 2.13 

T01G5.1 2.12 

C29G2.6 2.11 

col-92 2.11 

col-20 2.11 

col-179 2.08 

T27F6.8 2.08 

F10D7.3 2.07 

linc-44 2.07 

col-178 2.07 

K08D12.6 2.07 

col-7 2.06 

col-146 2.06 

Y38E10A.
28 

2.05 

Y71G12B.
18 

2.05 

Gene 
Name 

log2 
Fold  

Y53F4B.2
3 

2.03 

col-62 2.03 

col-95 2.03 

col-181 2.02 

cysl-2 2.02 

col-167 2.02 

aqp-8 2.01 

col-168 2.01 

nlp-25 2.01 

col-127 2.01 

col-98 1.99 

col-8 1.99 

col-126 1.99 

col-184 1.99 

col-101 1.98 

nhr-114 1.98 

F42A8.1 1.96 

myo-2 1.96 

Y41C4A.1
1 

1.96 

K01C8.1 1.95 

F45D11.3 1.94 

T28C12.4 1.94 

nspc-6 1.94 

C02E7.6 1.94 

nspc-3 1.94 

vap-1 1.93 

his-53 1.93 

nspc-2 1.93 

his-7 1.93 

C52D10.3 1.92 

col-144 1.91 

nspc-7 1.90 

dpy-3 1.90 

C30E1.9 1.89 

Y37E11B.
7 

1.89 

F45D11.4 1.89 

col-117 1.89 

C08E8.10 1.89 

F08D12.2 1.89 
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Gene 
Name 

log2 
Fold  

pepm-1 1.89 

tni-3 1.89 

col-3 1.88 

col-10 1.88 

his-6 1.87 

F45D11.2 1.86 

clh-4 1.85 

F41E6.12 1.85 

fbxa-72 1.85 

col-133 1.84 

K01D12.9 1.84 

T21B6.3 1.84 

dnj-13 1.83 

R05H10.1 1.82 

col-106 1.82 

B0457.6 1.82 

C03G6.17 1.81 

nhr-53 1.81 

F07C6.6 1.80 

C53C9.2 1.80 

fbxa-88 1.80 

nspc-5 1.80 

T10G3.3 1.80 

mdt-26 1.80 

F08F3.4 1.79 

his-5 1.78 

nspc-4 1.78 

his-18 1.78 

W09G12.9 1.77 

his-27 1.77 

ttll-12 1.76 

T20D4.10 1.76 

sptl-2 1.76 

R07E3.4 1.76 

twk-42 1.76 

his-19 1.75 

unc-95 1.75 

col-54 1.75 

twk-16 1.75 

F13E9.12 1.75 

fipr-9 1.74 

col-125 1.74 

Gene 
Name 

log2 
Fold  

dpy-5 1.74 

inx-18 1.73 

W08F4.5 1.73 

B0238.12 1.73 

Y39B6A.2
1 

1.73 

ins-33 1.72 

myo-1 1.72 

Y59E9AR.
1 

1.72 

srh-71 1.71 

his-40 1.71 

mua-6 1.71 

ech-7 1.70 

alh-6 1.70 

his-22 1.70 

nac-1 1.70 

fbxa-54 1.69 

math-14 1.69 

B0454.5 1.69 

Y47G6A.3
3 

1.69 

K09C4.5 1.69 

F41B4.1 1.68 

C49G7.3 1.68 

F43C9.1 1.68 

T25B9.1 1.67 

K09C6.9 1.67 

nspc-9 1.67 

pgp-1 1.67 

col-45 1.66 

Y38C1AA.
9 

1.66 

C05C8.7 1.65 

K01A11.1 1.65 

msp-58 1.65 

F11E6.3 1.64 

phat-3 1.64 

T10B5.8 1.64 

decr-1.1 1.64 

msp-51 1.64 

tdo-2 1.64 

twk-33 1.64 

Gene 
Name 

log2 
Fold  

arrd-14 1.64 

gale-1 1.64 

C53D6.7 1.64 

col-180 1.64 

dpy-4 1.64 

ins-27 1.64 

Y17G9A.2 1.63 

F39D8.7 1.62 

sams-1 1.62 

col-145 1.62 

his-49 1.62 

pqn-94 1.62 

C02E7.7 1.61 

mxl-3 1.61 

Y49G5A.1 1.61 

W03F9.1 1.61 

W02D9.10 1.60 

nlp-26 1.60 

Y71D11A.
3 

1.60 

math-15 1.60 

ZC116.1 1.60 

nspc-14 1.60 

C39D10.8 1.59 

col-107 1.59 

ldh-1 1.59 

nlp-34 1.59 

nspc-1 1.59 

sup-9 1.59 

col-157 1.59 

C18D4.6 1.58 

hmit-1.2 1.58 

F41D9.2 1.58 

F36A2.3 1.57 

C39B5.5 1.57 

kin-15 1.56 

F08D12.3 1.56 

far-2 1.56 

his-52 1.55 

F31A3.3 1.55 

Y67H2A.9 1.55 

R12E2.6 1.55 

Gene 
Name 

log2 
Fold  

fipr-10 1.55 

cdd-1 1.54 

col-71 1.54 

K01A6.7 1.54 

F29C6.1 1.54 

dpy-13 1.54 

gst-24 1.54 

sqt-1 1.54 

haao-1 1.53 

kvs-5 1.53 

C14B4.2 1.53 

srx-58 1.53 

col-12 1.53 

col-88 1.53 

hsp-4 1.53 

C47E8.11 1.53 

C45B2.2 1.52 

T19C4.1 1.52 

far-1 1.52 

fipr-7 1.52 

fipr-5 1.51 

aqp-7 1.51 

F13C5.5 1.51 

col-166 1.50 

fipr-4 1.50 

C56E6.2 1.50 

cor-1 1.50 

Y50D4B.6 1.50 

T12D8.9 1.50 

col-38 1.50 

H05L03.3 1.50 

R12E2.14 1.49 

daf-21 1.49 

tatn-1 1.49 

Y53H1B.2 1.49 

F56H9.2 1.49 

srp-2 1.48 

Y54E10A.
17 

1.48 

unc-15 1.48 

bli-6 1.48 

T22F7.4 1.48 
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Gene 
Name 

log2 
Fold  

msp-55 1.48 

F58G6.3 1.48 

Y37A1B.7 1.47 

col-138 1.47 

F57H12.6 1.47 

C54D10.1
0 

1.47 

fkb-4 1.47 

col-66 1.47 

C31B8.8 1.47 

mlc-2 1.47 

col-48 1.47 

R09E12.9 1.46 

grsp-1 1.46 

ZK1307.1 1.46 

hrg-4 1.46 

grd-13 1.46 

col-130 1.46 

rol-1 1.46 

lgc-34 1.46 

Y15E3A.4 1.45 

col-17 1.45 

F40A3.2 1.45 

F46H5.3 1.45 

grl-27 1.44 

col-13 1.44 

F23D12.11 1.44 

chw-1 1.44 

D1005.2 1.44 

gly-8 1.44 

col-63 1.44 

col-104 1.44 

grd-3 1.43 

C48D1.7 1.42 

Y43C5A.7 1.42 

ZC449.5 1.42 

C18B2.3 1.42 

R102.2 1.42 

crt-1 1.42 

sodh-2 1.42 

C18D11.1 1.42 

M03B6.1 1.42 

Gene 
Name 

log2 
Fold  

rol-8 1.42 

B0507.3 1.41 

dur-1 1.41 

Y9C9A.8 1.41 

dpy-9 1.41 

T21G5.2 1.41 

col-175 1.41 

col-33 1.40 

F21F8.11 1.40 

C36C5.12 1.40 

C11H1.9 1.40 

sdz-6 1.40 

fipr-6 1.40 

R12C12.1
0 

1.40 

W02B3.4 1.40 

mup-2 1.39 

nspc-12 1.39 

cyp-14A5 1.39 

col-96 1.39 

nspc-19 1.39 

srr-4 1.39 

K09H9.8 1.39 

col-152 1.39 

fat-6 1.38 

col-77 1.38 

his-61 1.38 

col-156 1.38 

rol-6 1.38 

col-141 1.38 

K08E7.8 1.38 

cah-4 1.37 

T06E6.10 1.37 

tnt-2 1.37 

F41E7.2 1.37 

col-161 1.37 

ahcy-1 1.37 

T25F10.6 1.37 

fipr-21 1.37 

T21F4.1 1.36 

srp-1 1.36 

F37H8.5 1.36 

Gene 
Name 

log2 
Fold  

C50A2.3 1.36 

F52B11.2 1.36 

best-21 1.36 

K12B6.11 1.36 

nas-9 1.36 

F53F1.4 1.35 

nspc-15 1.35 

atgp-2 1.35 

hsp-1 1.35 

mtp-18 1.35 

set-18 1.35 

nspc-10 1.35 

nspb-1 1.35 

Y47D7A.1
3 

1.34 

csq-1 1.34 

elo-8 1.34 

nspc-13 1.34 

best-14 1.34 

msp-53 1.34 

ram-2 1.34 

lgc-45 1.34 

col-65 1.34 

Y47D7A.1
5 

1.34 

ugt-13 1.33 

VF13D12L
.3 

1.33 

col-73 1.33 

msp-42 1.33 

flu-2 1.33 

R13D11.4 1.33 

dao-2 1.33 

dpy-7 1.33 

F25E5.8 1.33 

C06A8.3 1.32 

nlp-30 1.32 

gyg-1 1.32 

ZK546.7 1.32 

F36D1.7 1.32 

col-60 1.32 

upb-1 1.32 

perm-2 1.32 

Gene 
Name 

log2 
Fold  

ndx-1 1.32 

unc-54 1.32 

K08A2.1 1.31 

his-3 1.31 

pdi-2 1.31 

Y50E8A.1
2 

1.31 

aip-1 1.30 

F18E3.12 1.30 

gcsh-1 1.30 

lgc-26 1.30 

Y43F8B.1 1.30 

Y73F4A.1 1.29 

Y71H2AM.
15 

1.29 

F45D3.3 1.29 

ZK909.3 1.29 

sqt-2 1.29 

T28A11.6 1.29 

fipr-8 1.29 

dim-1 1.29 

C05D9.3 1.29 

Y71F9B.1
3 

1.29 

col-46 1.29 

best-17 1.28 

col-162 1.28 

tni-1 1.28 

pck-1 1.28 

col-154 1.28 

K02E7.6 1.28 

ZK84.1 1.28 

Y39D8A.1 1.28 

K03E5.2 1.28 

lpr-6 1.28 

aldo-1 1.28 

tag-18 1.28 

col-120 1.28 

F32A5.4 1.28 

T05C1.3 1.27 

pfn-3 1.27 

ttr-59 1.27 

unc-87 1.27 
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Gene 
Name 

log2 
Fold  

osm-11 1.27 

ZK896.3 1.27 

F22E5.1 1.27 

sqt-3 1.26 

Y59E9AR.
7 

1.26 

col-97 1.26 

dpy-18 1.26 

ZK1058.9 1.25 

tsp-8 1.25 

C36C5.5 1.25 

nrf-5 1.25 

Y37D8A.5 1.25 

pmt-2 1.25 

F31D4.8 1.24 

pho-14 1.24 

Y51A2D.1
8 

1.24 

sqrd-1 1.24 

C23H5.15 1.24 

ugt-45 1.23 

cpn-3 1.23 

rps-21 1.23 

R13H4.2 1.23 

C51E3.9 1.23 

col-91 1.23 

swt-7 1.23 

F47B3.3 1.23 

F17C8.9 1.23 

T13F3.6 1.23 

Y48C3A.1
8 

1.23 

F38B7.2 1.23 

mlc-3 1.22 

C45B2.1 1.22 

dpy-2 1.22 

msp-59 1.22 

ost-1 1.21 

nspc-16 1.21 

ttr-18 1.21 

rpl-34 1.21 

T05E7.1 1.21 

Gene 
Name 

log2 
Fold  

Y45F10B.
13 

1.21 

F09E10.1 1.21 

pqn-60 1.21 

osm-7 1.21 

ptps-1 1.21 

rps-16 1.21 

lon-2 1.21 

Y71H2B.4 1.20 

B0205.13 1.20 

his-58 1.20 

B0222.5 1.20 

ZK185.3 1.20 

F20A1.1 1.20 

F08D12.7 1.20 

ugt-60 1.20 

H40L08.2 1.19 

tnt-4 1.19 

Y53G8B.1 1.19 

T09B4.8 1.19 

act-1 1.19 

pcbd-1 1.19 

gpd-3 1.19 

F41F3.3 1.18 

tag-320 1.18 

F22F4.5 1.18 

col-58 1.18 

C14F11.6 1.18 

rla-1 1.18 

R05D7.1 1.18 

rpl-11.2 1.17 

grl-15 1.17 

gpd-2 1.17 

F36A2.7 1.17 

T22B7.7 1.17 

kel-8 1.17 

act-2 1.17 

col-14 1.17 

F57G8.5 1.17 

F49F1.1 1.17 

F36H9.4 1.17 

rps-9 1.16 

Gene 
Name 

log2 
Fold  

fip-5 1.16 

D1086.1 1.16 

M03B6.2 1.16 

col-49 1.16 

F28H1.4 1.16 

C49F5.7 1.16 

ZC328.2 1.16 

C01B10.3 1.15 

perm-4 1.15 

rncs-1 1.15 

nlp-31 1.15 

F44E5.1 1.15 

Y19D10B.
6 

1.14 

F25E2.2 1.14 

rpl-18 1.14 

F22F7.1 1.14 

R05F9.6 1.14 

lec-5 1.14 

mlc-1 1.14 

rps-18 1.14 

F46C8.8 1.14 

gst-27 1.14 

Y57A10A.
23 

1.14 

R13A5.10 1.13 

rps-13 1.13 

his-35 1.13 

C31C9.2 1.13 

col-89 1.13 

T02B11.3 1.13 

gpx-5 1.13 

Y47G6A.2
1 

1.13 

unc-52 1.13 

T04G9.4 1.13 

mec-5 1.13 

rps-22 1.12 

T06E4.5 1.12 

nspc-20 1.12 

CC8.2 1.12 

ttr-6 1.12 

nlp-27 1.12 

Gene 
Name 

log2 
Fold  

F19F10.3 1.12 

mec-7 1.12 

F20G2.2 1.11 

atf-8 1.11 

C29F5.1 1.11 

rps-7 1.11 

B0228.7 1.11 

lev-11 1.11 

ttr-10 1.11 

ubq-2 1.10 

lec-2 1.10 

rps-14 1.10 

catp-3 1.10 

rps-27 1.10 

dpy-10 1.10 

C26F1.1 1.10 

rps-26 1.09 

dpy-8 1.09 

rpl-33 1.09 

ZK180.5 1.09 

unc-27 1.09 

col-34 1.09 

msp-19 1.08 

col-155 1.08 

elo-5 1.08 

brp-1 1.08 

ttr-16 1.08 

spp-14 1.08 

C11E4.7 1.08 

ttr-20 1.08 

gstk-1 1.08 

Y82E9BR.
13 

1.08 

mrpl-17 1.07 

rpl-31 1.07 

F49C12.6 1.07 

cnc-3 1.07 

R07E5.4 1.07 

F20A1.10 1.07 

rpl-5 1.07 

col-150 1.07 

elo-2 1.07 
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Gene 
Name 

log2 
Fold  

F54D5.16 1.07 

R12E2.15 1.07 

C04G6.2 1.06 

rpl-28 1.06 

rrn-2.1 1.06 

rpl-21 1.06 

B0034.1 1.06 

Y1A5A.1 1.06 

hsp-3 1.06 

ndk-1 1.06 

T01H8.2 1.06 

cpg-9 1.06 

clec-146 1.06 

twk-34 1.06 

F45H10.3 1.05 

immp-1 1.05 

rps-3 1.05 

rps-12 1.05 

gst-1 1.05 

col-137 1.05 

F29C4.2 1.05 

cpn-4 1.05 

pvf-1 1.05 

T04A11.1 1.04 

aldo-2 1.04 

Y105C5B.
5 

1.04 

C33A12.1
9 

1.04 

aat-5 1.04 

F58E6.13 1.04 

ttr-31 1.04 

mboa-3 1.03 

msp-81 1.03 

fbxa-61 1.03 

F37C4.5 1.03 

rpl-36 1.03 

col-109 1.03 

pat-4 1.03 

C42D4.3 1.03 

H06A10.1 1.03 

C54E4.5 1.03 

Gene 
Name 

log2 
Fold  

F36H9.5 1.03 

C16A3.10 1.02 

cpin-1 1.02 

Y37A1A.2 1.02 

col-68 1.02 

cyp-29A2 1.02 

F40H3.2 1.02 

col-118 1.02 

W01D2.1 1.02 

ubl-1 1.02 

ptr-18 1.02 

spp-17 1.02 

fmo-3 1.02 

sti-1 1.01 

K10H10.4 1.01 

nhr-31 1.01 

F58F12.1 1.01 

F26E4.6 1.01 

fkb-3 1.01 

ZC239.6 1.00 

gst-36 1.00 

tba-1 1.00 

F14B8.4 1.00 

gln-1 1.00 

gst-13 1.00 

bli-2 1.00 

ras-2 1.00 

hsp-12.1 1.00 

lin-33 1.00 

D1054.8 1.00 

F53F8.4 0.99 

har-1 0.99 

gst-26 0.99 

lips-10 0.99 

K02E11.10 0.99 

C46C11.3 0.99 

rpl-25.1 0.99 

alp-1 0.99 

T28H10.2 0.99 

rpl-26 0.98 

inx-12 0.98 

eif-3.J 0.98 

Gene 
Name 

log2 
Fold  

umps-1 0.98 

fip-2 0.98 

mif-2 0.98 

cyn-5 0.98 

B0457.2 0.98 

T19B10.2 0.98 

F58G6.9 0.98 

his-41 0.98 

F13D12.3 0.98 

K05C4.2 0.98 

grsp-4 0.97 

Y51F10.7 0.97 

Y37D8A.2 0.97 

elks-1 0.97 

cnc-8 0.97 

mec-12 0.97 

tag-174 0.97 

K11H12.7 0.97 

F26G1.5 0.97 

Y38H8A.3 0.97 

F53F10.3 0.97 

F16B4.4 0.97 

msp-57 0.96 

pfk-1 0.96 

cdo-1 0.96 

pdi-1 0.96 

ZK909.6 0.96 

cls-2 0.96 

R07E4.3 0.96 

Y54G2A.1
8 

0.95 

odc-1 0.95 

sucl-1 0.95 

F45H10.2 0.95 

F15B9.8 0.95 

pqn-44 0.95 

H42K12.3 0.95 

C33G8.4 0.95 

C15F1.1 0.95 

sdz-24 0.95 

Y54G11A.
17 

0.94 

Gene 
Name 

log2 
Fold  

E01G4.3 0.94 

C44C1.1 0.94 

gst-42 0.94 

C41H7.1 0.94 

ncx-2 0.93 

myo-3 0.93 

nkat-3 0.93 

Y51H7C.1
3 

0.93 

F58A6.9 0.93 

mrps-28 0.93 

nlp-24 0.93 

fkb-5 0.93 

M02D8.1 0.93 

grd-10 0.93 

aagr-4 0.92 

rpl-41 0.92 

ife-2 0.92 

far-6 0.92 

F07A11.2 0.92 

ckb-2 0.92 

pat-12 0.92 

ifa-1 0.92 

D2092.4 0.92 

Y59C2A.1 0.91 

ZK1290.5 0.91 

eef-1B.1 0.90 

sucl-2 0.90 

Y54G2A.4
5 

0.90 

heh-1 0.89 

Y22D7AL.
10 

0.89 

ugt-44 0.89 

R12E2.7 0.89 

dhs-9 0.89 

prdx-3 0.88 

mbf-1 0.88 

asg-2 0.88 

cdr-4 0.88 

ZK1321.4 0.88 

Y39G8B.1 0.88 

gst-20 0.87 
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Gene 
Name 

log2 
Fold  

F20D1.3 0.87 

prdx-6 0.87 

B0491.5 0.87 

cct-1 0.86 

F09B12.3 0.86 

Y55F3AM.
13 

0.86 

T05B11.1 0.86 

pah-1 0.85 

F34D10.4 -0.84 

C27A12.6 -0.87 

ZK863.4 -0.88 

ego-1 -0.89 

Y32F6A.4 -0.89 

polk-1 -0.89 

nrde-2 -0.90 

cpt-1 -0.90 

nfm-1 -0.90 

ppk-2 -0.91 

prg-2 -0.91 

let-502 -0.91 

puf-9 -0.91 

acy-3 -0.91 

swsn-7 -0.91 

F17C11.4 -0.91 

lipl-2 -0.91 

lin-45 -0.92 

T01C3.3 -0.92 

cyb-2.2 -0.92 

F16D3.4 -0.92 

toe-2 -0.92 

duo-3 -0.92 

cpsf-2 -0.92 

sax-1 -0.92 

F20D12.2 -0.93 

syx-17 -0.93 

let-413 -0.93 

nhx-2 -0.93 

M163.1 -0.93 

T19A6.1 -0.94 

fbxa-215 -0.94 

F19F10.9 -0.95 

Gene 
Name 

log2 
Fold  

cul-5 -0.95 

C06A5.3 -0.95 

T24B1.1 -0.95 

ZK550.2 -0.95 

T13F2.6 -0.96 

ZC239.22 -0.96 

D1046.3 -0.96 

rga-4 -0.96 

C56C10.1
1 

-0.96 

M03C11.8 -0.96 

C17H12.2 -0.96 

R10E8.8 -0.97 

nhr-90 -0.97 

K09H11.7 -0.97 

kin-20 -0.97 

clec-218 -0.97 

lin-49 -0.97 

ztf-15 -0.97 

imp-3 -0.98 

mtk-1 -0.98 

F10D11.2 -0.98 

R90.1 -0.98 

Y71F9AL.
10 

-0.98 

daao-1 -0.98 

plc-3 -0.99 

F40F12.7 -0.99 

T04B2.5 -0.99 

lin-23 -0.99 

tps-2 -0.99 

atg-9 -0.99 

F46F11.1 -0.99 

Y42H9AR.
4 

-0.99 

pgp-5 -0.99 

nhr-176 -1.00 

W03F9.4 -1.00 

dcp-66 -1.00 

K02D7.1 -1.00 

smc-5 -1.00 

C25A1.5 -1.01 

tag-253 -1.01 

Gene 
Name 

log2 
Fold  

T03E6.8 -1.01 

K09H11.1 -1.01 

T12G3.2 -1.01 

cpr-1 -1.01 

hlh-30 -1.01 

F18F11.5 -1.01 

F21A3.11 -1.02 

smk-1 -1.02 

bath-12 -1.02 

aex-3 -1.02 

R09H10.5 -1.02 

Y50D7A.8 -1.03 

mig-1 -1.03 

F15A8.6 -1.03 

T10E9.2 -1.03 

mes-3 -1.03 

wrm-1 -1.04 

crml-1 -1.04 

cam-1 -1.04 

C13F10.6 -1.04 

C31C9.6 -1.04 

F49C12.7 -1.04 

F13B12.6 -1.04 

Y44A6C.1 -1.04 

C18A11.1 -1.04 

clec-54 -1.04 

F56C9.10 -1.04 

tax-6 -1.04 

ogt-1 -1.04 

mys-4 -1.04 

dhs-18 -1.04 

hrdl-1 -1.04 

F17C11.10 -1.05 

pkc-1 -1.05 

tre-1 -1.05 

daf-3 -1.05 

amx-1 -1.05 

ppm-2 -1.05 

zip-12 -1.05 

tat-2 -1.06 

ZK822.5 -1.06 

lem-3 -1.06 

Gene 
Name 

log2 
Fold  

icl-1 -1.06 

F14H3.6 -1.06 

daf-2 -1.06 

mbk-1 -1.06 

fli-1 -1.06 

Y105C5A.
1 

-1.07 

T01E8.1 -1.07 

K09F6.9 -1.07 

mel-26 -1.07 

evl-14 -1.07 

ZC376.6 -1.07 

ZK632.2 -1.07 

hum-1 -1.08 

taf-1 -1.08 

Y19D10A.
16 

-1.08 

F31C3.3 -1.08 

mom-4 -1.08 

K03H1.5 -1.08 

F33G12.6 -1.09 

K07B1.7 -1.09 

nhr-88 -1.09 

clec-4 -1.09 

C17E4.3 -1.09 

C34D10.1 -1.09 

kin-29 -1.09 

T01D3.6 -1.09 

F02H6.2 -1.09 

fnci-1 -1.10 

sox-2 -1.10 

T02B5.3 -1.10 

F22H10.2 -1.10 

F02H6.3 -1.10 

oac-20 -1.10 

asm-2 -1.10 

nhr-117 -1.11 

K12B6.9 -1.11 

C06G8.3 -1.11 

gck-1 -1.11 

F55C12.5 -1.11 

cca-1 -1.11 
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Gene 
Name 

log2 
Fold  

C16H3.3 -1.12 

pek-1 -1.12 

T04C4.1 -1.12 

plc-2 -1.12 

F55H12.3 -1.12 

C30G12.6 -1.12 

xpg-1 -1.12 

msi-1 -1.12 

Y58A7A.4 -1.13 

F28B3.5 -1.13 

B0001.2 -1.13 

nhr-96 -1.13 

csnk-1 -1.13 

maco-1 -1.13 

math-45 -1.13 

rcn-1 -1.13 

glo-4 -1.13 

Y55F3BR.
2 

-1.14 

Y38C1AA.
6 

-1.15 

gon-4 -1.15 

T28B8.1 -1.15 

rev-1 -1.15 

C10C5.5 -1.15 

mans-1 -1.15 

math-27 -1.16 

acs-17 -1.16 

C06A5.1 -1.16 

DH11.2 -1.16 

nhr-99 -1.16 

C53A3.2 -1.16 

K02C4.3 -1.16 

nhr-134 -1.17 

Y82E9BR.
19 

-1.17 

eri-7 -1.17 

cec-2 -1.17 

Y97E10AR
.1 

-1.17 

rabx-5 -1.18 

mtm-5 -1.18 

F07B7.12 -1.19 

Gene 
Name 

log2 
Fold  

ccch-1 -1.19 

F43C11.7 -1.19 

scd-2 -1.19 

M106.2 -1.19 

cyp-13A2 -1.19 

lin-12 -1.20 

nhr-112 -1.20 

ZK809.5 -1.20 

daf-5 -1.20 

K09F6.10 -1.20 

sid-1 -1.20 

C38C3.4 -1.20 

F32D8.12 -1.21 

egrh-1 -1.21 

frpr-11 -1.21 

crtc-1 -1.21 

imp-1 -1.22 

C30G4.7 -1.22 

F47B8.4 -1.22 

C34D4.10 -1.22 

mom-5 -1.22 

C53A5.6 -1.23 

del-5 -1.23 

ugt-51 -1.23 

F16B3.3 -1.23 

T04H1.2 -1.23 

pap-1 -1.23 

cyp-37B1 -1.23 

pamn-1 -1.24 

K10C3.4 -1.24 

atg-18 -1.24 

C18D4.8 -1.25 

irld-53 -1.25 

gad-3 -1.25 

rde-1 -1.25 

C33D9.5 -1.25 

R166.6 -1.25 

Y57A10A.
1 

-1.25 

dpf-6 -1.26 

fbxa-124 -1.26 

F28A12.4 -1.27 

Gene 
Name 

log2 
Fold  

F13C5.1 -1.27 

clec-7 -1.27 

C13E3.1 -1.27 

C10C5.4 -1.27 

C26E1.2 -1.27 

Y6G8.2 -1.28 

K07B1.8 -1.28 

F47B10.9 -1.28 

T09E11.11 -1.28 

atg-13 -1.29 

Y7A9C.1 -1.29 

K10D3.6 -1.29 

let-23 -1.29 

M04C3.1 -1.29 

fmo-1 -1.30 

Y19D10B.
4 

-1.30 

F56E10.1 -1.30 

Y69A2AR.
12 

-1.30 

T23B12.6 -1.30 

C27H5.4 -1.30 

C34F6.5 -1.31 

C44H9.4 -1.31 

tag-52 -1.31 

K02D10.4 -1.31 

C17E4.20 -1.32 

hda-4 -1.32 

gem-4 -1.32 

dve-1 -1.32 

F56C9.8 -1.32 

olrn-1 -1.32 

T28F4.5 -1.33 

C36B1.9 -1.33 

Y75B8A.2
8 

-1.34 

M02E1.1 -1.34 

ace-2 -1.35 

Y32F6B.1 -1.35 

F47H4.2 -1.35 

hpk-1 -1.35 

D1086.5 -1.35 

rgef-1 -1.35 

Gene 
Name 

log2 
Fold  

ets-4 -1.36 

rad-50 -1.36 

C06A6.2 -1.36 

gon-2 -1.36 

R05D3.12 -1.36 

ndnf-1 -1.36 

aakg-1 -1.37 

C03B1.7 -1.37 

F42G2.2 -1.37 

F11E6.11 -1.38 

D2030.2 -1.39 

F47A4.5 -1.39 

nhl-2 -1.40 

F53B2.8 -1.40 

ZK896.5 -1.40 

C08F11.13 -1.40 

nhr-206 -1.41 

oac-6 -1.41 

C04G6.6 -1.41 

C02F5.7 -1.42 

Y20C6A.1 -1.43 

glt-5 -1.43 

sma-9 -1.43 

pef-1 -1.43 

oac-14 -1.43 

nhr-128 -1.43 

atg-11 -1.43 

catp-7 -1.44 

F13H6.1 -1.44 

F28C1.3 -1.45 

K03A11.5 -1.45 

F53H2.3 -1.45 

C35E7.4 -1.45 

C06B3.6 -1.45 

Y70C5A.3 -1.45 

R05G6.10 -1.46 

atg-2 -1.46 

T14B1.1 -1.46 

attf-5 -1.46 

pgp-2 -1.46 

mdt-15 -1.46 

Y71H2B.8 -1.47 
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Gene 
Name 

log2 
Fold  

spp-2 -1.48 

Y105C5A.
15 

-1.49 

F16A11.1 -1.49 

F35G2.1 -1.49 

sul-2 -1.50 

nhr-59 -1.50 

egl-44 -1.50 

C52E2.4 -1.50 

R193.2 -1.51 

set-15 -1.51 

nhr-56 -1.51 

F34H10.3 -1.52 

C32D5.6 -1.53 

best-5 -1.53 

T01H10.8 -1.53 

F38E9.1 -1.54 

T28H10.3 -1.54 

btb-21 -1.56 

C23H4.6 -1.57 

C03A7.12 -1.58 

F10E9.12 -1.59 

Y71H2AM.
3 

-1.59 

C34D10.2 -1.61 

F16G10.1
5 

-1.61 

Y43F8B.9 -1.62 

ubc-8 -1.64 

Y32B12C.
5 

-1.64 

nhx-6 -1.66 

R07E4.1 -1.67 

ist-1 -1.68 

btb-1 -1.68 

C52E2.5 -1.68 

T28F4.4 -1.70 

F21D12.3 -1.70 

F26A1.13 -1.70 

C50F7.5 -1.70 

clec-47 -1.70 

C03A7.13 -1.71 

C04E7.3 -1.72 

Gene 
Name 

log2 
Fold  

fbxa-24 -1.72 

lgg-2 -1.72 

gcl-1 -1.73 

gld-2 -1.73 

ugt-54 -1.75 

irg-2 -1.75 

ugt-4 -1.77 

sma-10 -1.77 

Y51A2D.1
3 

-1.78 

coel-1 -1.79 

lys-3 -1.79 

tsp-2 -1.80 

T16G1.7 -1.82 

clec-223 -1.84 

mfb-1 -1.85 

F53F4.8 -1.85 

pho-9 -1.88 

Y69A2AR.
7 

-1.89 

W03D8.8 -1.90 

F57C12.6 -1.90 

F07C4.12 -1.91 

gbh-2 -1.92 

C03A7.2 -1.93 

C44H9.5 -1.94 

clec-2 -1.96 

ZC443.3 -1.96 

T24C4.4 -1.96 

nhr-83 -1.97 

K03H1.10 -1.97 

F18G5.6 -1.98 

math-38 -2.00 

Y94H6A.2 -2.00 

M01B2.13 -2.00 

R12E2.2 -2.04 

T19C4.5 -2.04 

cpt-3 -2.05 

C06B3.7 -2.05 

C24G7.1 -2.06 

K08F9.1 -2.07 

glc-1 -2.07 

Gene 
Name 

log2 
Fold  

nep-26 -2.12 

npr-20 -2.12 

Y47H10A.
5 

-2.14 

T05E12.3 -2.15 

F25B3.5 -2.15 

fkh-7 -2.15 

ech-9 -2.16 

F26A1.14 -2.21 

F33H12.7 -2.30 

dod-3 -2.34 

T12A7.6 -2.42 

ugt-18 -2.46 

C49G7.7 -2.52 

Y43F8B.2
3 

-2.54 

K08D9.4 -2.54 

fbxa-21 -2.55 

nep-14 -2.60 

fbxa-66 -2.63 

ftn-1 -2.68 

tsp-1 -2.81 

dct-1 -2.84 

C07A4.2 -2.85 

W09G12.7 -3.28 

acs-2 -3.71 

srh-2 -3.90 
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Gene 
Name 

log2 
Fold 

rab-11.2 6.39 

col-36 6.21 

grl-23 6.13 

K10G4.13 6.05 

col-85 6.02 

ZK863.10 5.96 

col-50 5.93 

col-51 5.92 

col-102 5.88 

T22F3.11 5.85 

col-2 5.84 

C13A2.12 5.80 

col-40 5.69 

col-37 5.59 

col-84 5.53 

col-183 5.53 

grl-20 5.51 

T26F2.3 5.38 

grl-25 5.36 

cut-1 5.32 

B0348.2 5.32 

Y47H10A.5 5.17 

col-158 5.17 

grl-9 5.16 

F56F11.1 5.11 

fbxa-163 4.95 

col-185 4.93 

F07E5.9 4.90 

clec-174 4.89 

sri-70 4.87 

srg-31 4.84 

clec-60 4.81 

Y75B8A.39 4.77 

ZK355.3 4.67 

B0507.8 4.64 

Y50E8A.19 4.61 

ZK355.8 4.60 

C17H1.6 4.54 

clec-13 4.50 

ZK228.10 4.38 

T08E11.1 4.37 

Gene 
Name 

log2 
Fold 

C25F9.2 4.36 

F22G12.1 4.35 

sri-36 4.17 

col-43 4.16 

grl-3 4.12 

W08D2.11 4.12 

B0284.2 4.09 

F10A3.1 4.08 

clec-15 4.05 

F42C5.3 4.04 

T05H10.3 3.94 

sdz-35 3.92 

dod-20 3.92 

fbxa-165 3.89 

dct-3 3.84 

C25F9.16 3.82 

F13E9.9 3.80 

Y39B6A.24 3.78 

W07B8.4 3.77 

col-163 3.77 

ZK666.13 3.74 

W08A12.4 3.73 

C17H1.4 3.72 

anr-30 3.63 

fbxa-161 3.63 

grl-17 3.58 

F09C12.2 3.52 

H39E23.3 3.50 

oac-24 3.49 

C25F9.11 3.45 

fat-5 3.44 

C54D10.12 3.43 

fbxa-30 3.40 

F33H12.7 3.36 

hsf-1 3.36 

F57G4.1 3.35 

F22E5.7 3.32 

C08E8.4 3.31 

col-45 3.30 

Y26D4A.3 3.30 

ZK185.4 3.29 

Gene 
Name 

log2 
Fold 

F57G4.11 3.26 

ugt-15 3.25 

fbxa-158 3.23 

col-123 3.19 

C17H1.8 3.14 

C23H5.12 3.13 

tbb-6 3.11 

F23B2.10 3.10 

C54D10.14 3.10 

Y40C5A.3 3.09 

C10F3.7 3.08 

Y37H2A.14 3.08 

Y82E9BL.3 3.07 

B0563.9 3.04 

F22E5.6 2.99 

srh-195 2.98 

ver-1 2.98 

arrd-11 2.97 

C49G7.12 2.97 

C23G10.11 2.96 

C54D10.8 2.95 

F01G10.4 2.95 

clec-42 2.95 

W02A2.9 2.94 

F08G2.5 2.94 

ZC196.6 2.91 

wrt-7 2.91 

clec-71 2.89 

B0284.1 2.89 

jmjd-3.3 2.87 

F15D4.5 2.87 

cnc-9 2.85 

C50F7.5 2.85 

R03H10.6 2.85 

F16B4.6 2.83 

F49H6.5 2.80 

sri-39 2.78 

clec-61 2.78 

F07C4.12 2.76 

W09C3.3 2.73 

dmd-10 2.70 

Gene 
Name 

log2 
Fold 

F26D11.13 2.70 

F46A8.1 2.69 

acs-2 2.69 

Y17D7C.2 2.69 

C17H1.14 2.67 

B0507.10 2.66 

H02F09.3 2.66 

math-15 2.63 

fmo-2 2.60 

ZC47.11 2.59 

W01C9.2 2.58 

C17H1.7 2.58 

bro-1 2.56 

K11H12.6 2.56 

C30H6.12 2.54 

B0462.5 2.54 

F15B9.6 2.52 

B0507.7 2.51 

R07C12.1 2.49 

arrd-9 2.48 

E02H4.4 2.43 

C38D9.2 2.41 

F26F2.1 2.41 

B0507.6 2.38 

F59C12.4 2.36 

F46A8.7 2.36 

Y6E2A.5 2.34 

C15C7.4 2.34 

clec-167 2.33 

F18E3.12 2.33 

F46A8.13 2.32 

C28G1.2 2.32 

Y6G8.5 2.32 

Y58A7A.5 2.31 

T28F3.5 2.30 

F44G3.10 2.29 

ZK896.1 2.28 

C08E3.1 2.27 

skr-5 2.25 

Y71G12B.
32 

2.22 
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Gene 
Name 

log2 
Fold 

B0507.3 2.22 

dsl-3 2.20 

ZC239.14 2.20 

C15H11.16 2.18 

Y34F4.2 2.16 

C17H1.5 2.15 

F53H2.1 2.15 

C06E7.88 2.14 

oac-14 2.12 

hot-5 2.11 

W02D7.11 2.10 

rrf-2 2.10 

F18E3.11 2.10 

clec-17 2.10 

F53F4.4 2.07 

tsp-2 2.07 

F56D2.3 2.07 

math-10 2.07 

ZC196.2 2.06 

Y9C9A.16 2.05 

Y6E2A.4 2.05 

zip-6 2.05 

T24E12.5 2.03 

T08B6.2 2.03 

M28.8 2.02 

fbxa-162 2.01 

fbxa-164 2.01 

Y43B11AL.
1 

1.97 

F20G2.5 1.96 

best-1 1.96 

fbxa-144 1.95 

C31B8.4 1.95 

zip-10 1.94 

T19C9.8 1.94 

C08E3.13 1.93 

Y17G9B.1 1.92 

tsp-1 1.92 

srw-86 1.92 

T26H5.8 1.90 

bath-46 1.90 

K08D9.6 1.90 

Gene 
Name 

log2 
Fold 

fkh-5 1.89 

F59B1.10 1.89 

T10D4.15 1.88 

irg-1 1.88 

fbxa-135 1.88 

Y105C5B.7 1.87 

srbc-20 1.87 

best-2 1.86 

Y57G11B.
1 

1.86 

F54B8.4 1.85 

C17H1.10 1.85 

Y71G12B.
2 

1.84 

F53E10.5 1.84 

fbxa-166 1.83 

sodh-1 1.82 

Y54G2A.3
6 

1.81 

mtl-1 1.78 

C54D2.1 1.78 

sip-1 1.77 

F37D6.3 1.77 

daf-7 1.76 

Y34F4.6 1.76 

gcy-15 1.76 

C17F4.3 1.75 

F46C5.1 1.75 

lea-1 1.75 

Y75B7AL.2 1.75 

linc-123 1.74 

math-37 1.74 

pgp-8 1.74 

F10C2.7 1.74 

ilys-2 1.72 

oac-18 1.72 

nlp-18 1.72 

clec-82 1.72 

K05C4.8 1.71 

F43C11.8 1.71 

F53B2.8 1.71 

Y51B9A.9 1.71 

F07G11.4 1.70 

Gene 
Name 

log2 
Fold 

col-41 1.70 

mxl-3 1.70 

W03D2.6 1.70 

C18G1.6 1.70 

bath-47 1.69 

B0294.1 1.69 

F18E3.13 1.69 

cpt-3 1.69 

Y43F8B.25 1.68 

F35E12.4 1.68 

Y39H10B.3 1.68 

K09H11.11 1.68 

F25D1.4 1.67 

T06E6.15 1.67 

trpl-5 1.67 

col-33 1.67 

valv-1 1.67 

grsp-3 1.67 

B0205.13 1.66 

B0403.3 1.66 

twk-31 1.65 

F53C3.6 1.64 

H43E16.1 1.64 

F08A8.5 1.63 

fbxc-19 1.63 

srr-2 1.62 

fbxc-23 1.61 

ZC449.5 1.61 

K10G4.5 1.60 

Y48G8AR.
2 

1.60 

clec-106 1.60 

ZC190.10 1.60 

C06E4.8 1.60 

Y46G5A.2
0 

1.59 

ZC376.1 1.59 

Y37H2B.1 1.58 

B0238.13 1.57 

F19B10.13 1.56 

Y51H4A.25 1.55 

ceh-62 1.54 

Gene 
Name 

log2 
Fold 

C10C5.2 1.54 

C44B12.6 1.54 

lipl-3 1.53 

C46G7.5 1.53 

dpf-6 1.53 

ZK596.1 1.53 

tts-1 1.52 

ZK402.1 1.52 

arf-1.1 1.52 

F57B9.3 1.51 

F47B8.4 1.51 

T22F3.10 1.50 

Y41C4A.11 1.49 

C25F9.12 1.49 

Y19D10A.1
1 

1.49 

F25D1.3 1.49 

Y47H9C.1 1.48 

F26G5.1 1.47 

ckr-1 1.47 

far-7 1.47 

F55F3.4 1.46 

hpo-38 1.46 

F46F3.3 1.45 

linc-72 1.45 

T19D12.4 1.44 

R03H10.7 1.44 

T10C6.7 1.44 

R11E3.2 1.43 

zip-7 1.43 

fbxa-115 1.42 

fbxa-48 1.42 

C25F9.6 1.42 

cpg-1 1.41 

rnt-1 1.41 

sptf-2 1.40 

T23F4.3 1.40 

fog-3 1.39 

lin-41 1.39 

phg-1 1.39 

C44H9.7 1.39 

fbxa-54 1.38 
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Gene 
Name 

log2 
Fold 

C23H4.6 1.38 

C02B8.3 1.38 

R07C12.4 1.38 

fbxa-59 1.38 

clec-81 1.38 

C01A2.6 1.38 

Y105C5A.1
3 

1.37 

T08E11.8 1.37 

M01H9.2 1.37 

Y46H3A.5 1.37 

puf-5 1.37 

dpy-1 1.36 

C09G5.7 1.36 

K09C6.9 1.36 

pho-14 1.36 

mesp-1 1.36 

T24E12.1 1.35 

pgp-1 1.35 

M151.3 1.35 

lrx-1 1.35 

B0554.5 1.35 

T28B11.1 1.35 

F17B5.1 1.34 

gst-24 1.34 

Y43F8B.15 1.34 

clec-72 1.34 

F22B3.4 1.34 

flp-33 1.33 

C34H4.2 1.33 

srz-85 1.32 

Y71A12B.1
9 

1.32 

cyd-1 1.32 

C23H5.15 1.32 

Y37D8A.5 1.32 

K08D10.9 1.32 

gem-4 1.32 

T05F1.9 1.32 

nas-3 1.31 

puf-7 1.31 

cpg-2 1.30 

Gene 
Name 

log2 
Fold 

egg-1 1.30 

math-14 1.30 

set-12 1.29 

clec-76 1.29 

K10D11.3 1.29 

puf-3 1.28 

meg-2 1.28 

cpb-1 1.28 

C46C2.3 1.28 

K10G4.3 1.28 

puf-10 1.27 

dgat-2 1.27 

meg-1 1.27 

C27H2.2 1.27 

rme-2 1.27 

M01G12.8 1.26 

hacd-1 1.25 

tyr-5 1.25 

col-95 1.25 

linc-17 1.25 

Y53G8AL.
4 

1.24 

cysl-2 1.24 

col-176 1.24 

T11F9.1 1.24 

C06A5.8 1.24 

T24D1.3 1.24 

nhr-57 1.24 

Y52B11A.1
4 

1.24 

skr-15 1.23 

Y73B3A.13 1.23 

Y9C9A.8 1.23 

gln-5 1.23 

C08F11.3 1.23 

C03G6.17 1.23 

F53G2.2 1.22 

T02G6.1 1.22 

F25E5.8 1.22 

tth-1 1.22 

twk-14 1.22 

F08F3.9 1.21 

Gene 
Name 

log2 
Fold 

T12G3.1 1.21 

C39F7.1 1.21 

Y22D7AL.1
5 

1.21 

T26H5.9 1.21 

F11E6.6 1.21 

C34B7.1 1.21 

K02D3.1 1.20 

D1007.19 1.20 

sru-40 1.20 

F28F8.7 1.20 

F40F12.9 1.19 

Y2H9A.6 1.19 

mltn-1 1.19 

Y55F3AM.
10 

1.19 

F20G4.2 1.18 

gly-14 1.18 

W05F2.3 1.18 

C50A2.3 1.18 

ncs-6 1.18 

dod-19 1.18 

F26G1.10 1.18 

C17C3.5 1.17 

fbxa-151 1.17 

C29A12.2 1.17 

fbxa-25 1.17 

B0024.4 1.17 

F59B10.4 1.17 

ift-74 1.16 

T11F9.10 1.16 

bath-26 1.16 

Y54G9A.4 1.16 

F23D12.2 1.16 

Y39A3A.4 1.16 

F53G12.4 1.15 

fbxa-141 1.15 

let-99 1.15 

fbxa-95 1.15 

pqn-82 1.15 

cnp-3 1.15 

K01F9.2 1.15 

Gene 
Name 

log2 
Fold 

T23B3.6 1.14 

cdc-25.2 1.14 

pie-1 1.14 

egg-6 1.13 

ztf-14 1.13 

F54F7.6 1.13 

nhr-21 1.13 

pos-1 1.12 

C36C9.1 1.12 

M151.7 1.12 

C41G7.8 1.12 

arrd-3 1.12 

F46A8.11 1.12 

C04B4.2 1.12 

puf-6 1.11 

C25E10.5 1.11 

set-28 1.11 

oma-1 1.11 

Y47G7B.2 1.11 

fbxa-78 1.11 

ZK1055.7 1.10 

C45H4.14 1.10 

C01G8.1 1.10 

wdr-5.3 1.10 

M02E1.2 1.10 

ZK858.10 1.10 

cyp-35B1 1.09 

cgt-1 1.09 

F21F8.11 1.09 

Y54G2A.1
0 

1.08 

T05F1.2 1.08 

pgp-5 1.08 

F21C10.10 1.08 

cin-4 1.08 

math-38 1.08 

str-7 1.07 

M01F1.9 1.07 

Y53G8AL.
1 

1.07 

gst-3 1.07 

zig-4 1.07 
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Gene 
Name 

log2 
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mex-1 1.07 

M116.2 1.06 

gln-6 1.06 

ptc-2 1.06 

F58G11.4 1.06 

cyp-34A10 1.06 

tba-7 1.06 

C16C8.12 1.06 

fbxa-24 1.06 

chs-1 1.06 

clec-87 1.05 

oac-57 1.05 

C39H7.2 1.05 

F25E2.1 1.05 

lip-1 1.05 

cav-2 1.05 

fkb-7 1.05 

R12C12.5 1.04 

bath-21 1.04 

F52D1.2 1.04 

syx-2 1.04 

T09B4.1 1.04 

puf-11 1.03 

ced-3 1.03 

C06B8.2 1.03 

daf-18 1.03 

tbc-4 1.03 

F22B7.9 1.03 

C40A11.8 1.03 

Y39A1A.9 1.03 

F28E10.5 1.03 

C39D10.2 1.03 

F25A2.1 1.02 

rnp-8 1.02 

mex-5 1.01 

R09A8.1 1.01 

spn-4 1.01 

K11D12.9 1.01 

F10D7.3 1.01 

C14B4.2 1.01 

C28G1.5 1.01 

T27F6.8 1.01 

Gene 
Name 

log2 
Fold 

F14H12.2 1.00 

BE0003N1
0.3 

1.00 

math-50 1.00 

nhr-6 1.00 

F31F6.2 1.00 

Y54G2A.3
2 

1.00 

ham-1 1.00 

Y116F11B.
10 

0.99 

C24G7.1 0.99 

acd-2 0.99 

dhs-15 0.99 

gpd-1 0.99 

T06D4.1 0.99 

clh-3 0.99 

F15D3.8 0.98 

C44B7.6 0.98 

Y45G5AM.
3 

0.98 

srp-8 0.98 

hmit-1.2 0.98 

Y37D8A.4 0.98 

K08D10.14 0.98 

flh-1 0.98 

C38D4.7 0.98 

oma-2 0.98 

M01B2.6 0.98 

M01G12.9 0.97 

his-58 0.97 

F59C6.18 0.97 

Y41G9A.5 0.97 

F59H5.1 0.97 

fbxc-20 0.97 

cdt-2 0.97 

ZK637.6 0.97 

ins-19 0.97 

gyg-2 0.97 

Y59A8B.21 0.97 

trcs-1 0.96 

flr-4 0.96 

C14A6.16 0.96 

Gene 
Name 

log2 
Fold 

bath-19 0.96 

lips-15 0.96 

mex-6 0.96 

R07A4.2 0.96 

C33B4.4 0.95 

F58E2.3 0.95 

ZC15.10 0.95 

Y20F4.8 0.95 

nhr-7 0.95 

math-20 0.95 

F47H4.2 0.94 

ZK673.4 0.94 

clec-75 0.94 

C44C1.6 0.94 

Y17G7B.2
1 

0.94 

B0205.14 0.94 

Y37D8A.16 0.94 

H05L03.3 0.94 

ceh-91 0.94 

cyp-33C8 0.94 

lec-11 0.94 

wee-1.3 0.94 

F41C3.2 0.93 

oac-29 0.93 

hpo-24 0.93 

acly-2 0.93 

F38A5.7 0.93 

K11H12.11 0.93 

mrp-4 0.93 

K06A9.1 0.93 

xtr-1 0.93 

C35C5.8 0.93 

egg-4 0.92 

T26F2.2 0.92 

Y82E9BR.
25 

0.92 

Y38H6C.9 0.92 

wago-5 0.92 

lex-1 0.92 

Y36E3A.2 0.92 

sqv-5 0.92 

Gene 
Name 

log2 
Fold 

oac-47 0.92 

Y22D7AL.9 0.91 

polq-1 0.91 

Y38C1AA.
9 

0.91 

CE7X_3.2 0.91 

hrde-1 0.91 

T20F5.4 0.91 

T14B1.1 0.91 

hsp-17 0.91 

B0393.6 0.91 

R02F2.4 0.91 

K08D8.4 0.91 

Y56A3A.16 0.90 

cyp-13A5 0.90 

peb-1 0.90 

Y37E11B.3 0.90 

pup-2 0.90 

egg-3 0.90 

ZC239.22 0.90 

perm-1 0.90 

ceh-37 0.90 

F59H6.3 0.90 

rig-4 0.90 

Y49G5B.1 0.90 

Y37B11A.2 0.89 

C36A4.5 0.89 

ptr-2 0.89 

R102.5 0.89 

T01C8.2 0.89 

C06E1.1 0.89 

T02G5.11 0.89 

Y55D9A.2 0.89 

glp-1 0.89 

C09E7.8 0.89 

rfc-3 0.89 

F54E12.2 0.89 

smp-1 0.89 

Y32B12B.4 0.88 

Y102A11A.
9 

0.88 

pme-1 0.88 
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Gene 
Name 

log2 
Fold 

szy-4 0.88 

gei-12 0.88 

ZC204.12 0.88 

C34E10.8 0.88 

vab-1 0.88 

fog-1 0.88 

fbxa-121 0.88 

kgb-1 0.88 

Y54G11A.
4 

0.88 

oac-58 0.88 

sox-4 0.88 

C13A2.3 0.88 

tpxl-1 0.88 

C30G12.1 0.88 

B0393.3 0.88 

pme-6 0.88 

mex-3 0.88 

spsb-2 0.88 

myo-2 0.87 

gld-3 0.87 

tbx-36 0.87 

dna-2 0.87 

F11E6.7 0.87 

C50F4.9 0.87 

ora-1 0.87 

hmit-1.1 0.87 

C29F9.4 0.87 

T22F7.4 0.87 

T02B5.1 0.87 

ZK1053.4 0.87 

T13H5.6 0.87 

ZC190.4 0.87 

F59C6.14 0.86 

tdc-1 0.86 

E01G4.5 0.86 

F44F1.4 0.86 

Y34F4.4 0.86 

mnp-1 0.86 

abi-1 0.86 

apx-1 0.86 

Y50D4A.6 0.86 

Gene 
Name 

log2 
Fold 

nlp-2 0.86 

F21F3.3 0.86 

inx-22 0.86 

nspc-19 0.86 

ugt-16 0.86 

lon-2 0.86 

del-10 0.85 

Y60A3A.8 0.85 

fbxa-199 0.85 

F11A5.9 0.85 

F49F1.5 0.85 

K10G6.5 0.85 

fbxa-3 0.85 

his-40 0.85 

bath-4 0.85 

pef-1 0.85 

clec-233 0.84 

Y110A2AL.
3 

0.84 

ZK384.4 0.84 

C01B4.7 0.84 

T26H5.10 0.84 

lrg-1 0.84 

rga-3 0.84 

hke-4.1 0.84 

lys-3 0.84 

oac-31 0.84 

K01G5.3 0.84 

C39E9.10 0.84 

F55A4.4 0.84 

ZC47.8 0.83 

gar-3 0.83 

W02F12.3 0.83 

Y57A10A.3
1 

0.83 

ugt-18 0.83 

K03H4.2 0.83 

C09H10.5 0.83 

maco-1 0.83 

Y73B3A.1 0.83 

vhp-1 0.83 

sma-1 0.83 

Gene 
Name 

log2 
Fold 

vap-1 0.83 

flp-19 0.83 

fbxa-209 0.83 

K02F6.7 0.83 

egg-5 0.83 

C41D11.4 0.83 

Y22D7AR.
2 

0.83 

R09A1.3 0.83 

F16H6.10 0.83 

M02D8.6 0.83 

clec-91 0.83 

C08G5.7 0.83 

mod-5 0.83 

ZC443.4 0.82 

col-54 0.82 

F14H3.5 0.82 

srr-6 0.82 

C27D9.1 0.82 

gld-4 0.82 

C05C10.5 0.82 

fbxa-88 0.82 

Y87G2A.7 0.82 

tat-3 0.82 

Y48G1BM.
6 

0.82 

F12A10.8 0.82 

Y39E4B.5 0.82 

Y34F4.1 0.82 

rhy-1 0.82 

rog-1 0.82 

cya-1 0.82 

pzf-1 0.82 

pad-2 0.82 

hmbx-1 0.82 

F44E7.5 0.81 

egal-1 0.81 

F52D2.12 0.81 

acs-13 0.81 

K09F6.10 0.81 

ttx-1 0.81 

egg-2 0.81 

Gene 
Name 

log2 
Fold 

Y102A11A.
3 

0.81 

fbxa-98 0.81 

mca-1 0.81 

nspc-17 0.81 

nipi-3 0.81 

Y48G1BL.
6 

0.81 

F27D9.2 0.81 

K08F11.1 0.81 

T11F9.12 0.81 

dyf-3 0.81 

B0035.6 0.81 

spd-2 0.81 

dyf-17 0.81 

F11C7.6 0.80 

dpy-6 0.80 

unc-71 0.80 

Y48E1B.8 0.80 

Y65A5A.2 0.80 

mcm-3 0.80 

set-3 0.80 

Y71F9AR.
2 

0.80 

F42A6.3 0.80 

K01A2.9 0.80 

M04C3.2 0.80 

cul-6 0.80 

lag-1 0.80 

Y110A7A.4 0.80 

Y70G10A.
3 

0.80 

hpl-1 0.80 

twk-33 0.80 

zig-3 0.80 

aqp-7 0.80 

T13F2.6 0.80 

mre-11 0.80 

K08D8.12 0.80 

C47G2.7 0.80 

Y57G11C.
51 

0.80 

C25F9.5 0.80 
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Gene 
Name 

log2 
Fold 

age-1 0.80 

Y38H8A.3 0.79 

Y43F8C.3 0.79 

sas-6 0.79 

ttm-4 0.79 

C14B1.7 0.79 

F59A6.5 0.79 

clc-1 0.79 

F49E2.5 0.79 

his-38 0.79 

rskn-1 0.79 

igcm-1 0.79 

F48G7.2 0.79 

mei-2 0.79 

D1044.6 0.79 

Y17G7B.1
3 

0.79 

ZK177.1 0.79 

Y71H2AM.
14 

0.79 

daf-2 0.79 

unc-34 0.79 

F22F7.8 0.78 

Y71A12C.2 0.78 

pvf-1 0.78 

C49G7.7 0.78 

fbxa-60 0.78 

bath-1 0.78 

R11H6.2 0.78 

glt-5 0.78 

pri-2 0.78 

best-24 0.78 

K10C8.1 0.78 

com-1 0.78 

lrr-1 0.78 

B0238.9 0.78 

mom-2 0.78 

C06A1.4 0.78 

nop-1 0.78 

gpd-4 0.78 

trr-1 0.77 

C39H7.4 0.77 

Gene 
Name 

log2 
Fold 

par-3 0.77 

Y46H3C.7 0.77 

glct-6 0.77 

klf-1 0.77 

rom-1 0.77 

AC8.9 0.77 

xpc-1 0.77 

ergo-1 0.77 

hmg-20 0.77 

skr-3 0.77 

nhr-2 0.77 

klp-19 0.77 

aakg-5 0.77 

K01A12.4 0.77 

ptc-1 0.77 

skpt-1 0.77 

scl-2 0.77 

C52A10.2 0.77 

fsn-1 0.77 

C42D8.1 0.77 

F28B3.4 0.77 

mcm-5 0.76 

gadr-6 0.76 

C05G5.2 0.76 

T08B2.11 0.76 

mel-28 0.76 

vrk-1 0.76 

C01F1.6 0.76 

pitr-3 0.76 

Y41D4B.4 0.76 

Y51F10.2 0.76 

magu-2 0.76 

mes-1 0.76 

ZK418.13 0.76 

H02I12.5 0.76 

fbxc-2 0.76 

hpo-42 0.76 

T24B8.7 0.75 

skr-4 0.75 

rin-1 0.75 

plk-3 0.75 

tag-89 0.75 

Gene 
Name 

log2 
Fold 

aat-5 0.75 

rod-1 0.75 

tir-1 0.75 

fbxa-150 0.75 

myo-1 0.75 

F07A11.2 0.75 

die-1 0.75 

scc-1 0.75 

flp-27 0.75 

atm-1 0.75 

K10D3.10 0.75 

tftc-1 0.75 

C45B11.2 0.75 

C34B4.2 0.75 

ZC190.5 0.75 

math-24 0.75 

lpin-1 0.75 

vps-39 0.75 

hpo-11 0.74 

T01D3.1 0.74 

zwl-1 0.74 

ani-2 0.74 

F09A5.2 0.74 

snf-6 0.74 

scav-2 0.74 

hex-4 0.74 

C27C12.3 0.74 

1-Apr 0.74 

Y41C4A.8 0.74 

cku-70 0.74 

Y43F8B.14 0.74 

ulp-4 0.74 

T22D1.5 0.74 

W02G9.4 0.74 

fbxa-11 0.74 

math-42 0.74 

F33H2.5 0.74 

K10C3.4 0.74 

elt-2 0.73 

prg-1 0.73 

nac-1 0.73 

flh-2 0.73 

Gene 
Name 

log2 
Fold 

Y53F4B.45 0.73 

K11D2.1 0.73 

nmy-2 0.73 

F28B3.1 0.73 

C50B6.3 0.73 

C14C11.2 0.73 

lst-1 0.73 

F27E5.9 0.73 

npp-14 0.73 

T24F1.2 0.73 

F29G9.2 0.73 

VY35H6BL
.1 

0.73 

spd-5 0.73 

rsa-2 0.73 

Y46G5A.4
3 

0.73 

F19B2.5 0.73 

fli-1 0.73 

C34C12.2 0.72 

polg-1 0.72 

gana-1 0.72 

Y53F4B.13 0.72 

W02D9.10 0.72 

sys-1 0.72 

C44B9.3 0.72 

cyp-36A1 0.72 

C27D9.2 0.72 

hcp-1 0.72 

nas-9 0.72 

Y54G2A.2
1 

0.72 

Y68A4A.13 0.72 

fbxa-107 0.72 

Y116F11B.
6 

0.72 

R08E3.2 0.71 

C04F12.1 0.71 

mop-25.3 0.71 

nlp-14 0.71 

ksr-2 0.71 

syd-9 0.71 

R102.2 0.71 
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Gene 
Name 

log2 
Fold 

Y45G12C.
16 

0.71 

mei-1 0.71 

F01D5.5 0.71 

C01G6.3 0.71 

dgtr-1 0.71 

kel-8 0.71 

H11E01.2 0.71 

swt-1 0.71 

B0281.3 0.71 

nep-1 0.71 

MTCE.33 0.71 

ZK863.8 0.71 

lec-7 0.71 

F13H8.1 0.71 

nhr-178 0.70 

F49F1.1 0.70 

Y17G7B.2
0 

0.70 

mes-4 0.70 

capg-2 0.70 

T19C4.1 0.70 

srh-2 0.70 

T27A3.7 0.70 

H31G24.3 0.70 

fbxc-5 0.70 

ugt-8 0.70 

isw-1 0.70 

F10E9.3 0.70 

clk-2 0.70 

cdh-10 0.70 

dgk-4 0.70 

Y56A3A.36 0.70 

F39B2.1 0.70 

Y57A10A.1 0.70 

dod-6 0.70 

srw-85 0.70 

C39E9.7 0.70 

sgo-1 0.70 

F25E5.4 0.70 

Y50D4C.5 0.70 

F59E12.1 0.70 

Gene 
Name 

log2 
Fold 

math-39 0.70 

C39E9.12 0.70 

cyb-3 0.70 

aap-1 0.70 

nos-2 0.70 

F28C6.2 0.70 

swsn-4 0.70 

C25A1.1 0.70 

knl-1 0.70 

obr-3 0.69 

Y54G2A.1
9 

0.69 

K07B1.8 0.69 

F54D5.5 0.69 

F58D5.5 0.69 

fbxa-182 0.69 

W03A5.1 0.69 

EEED8.2 0.69 

T01C3.3 0.69 

F26G1.1 0.69 

his-48 0.69 

igdb-1 0.69 

H11L12.1 0.69 

duox-2 0.69 

tlp-1 0.69 

F15D4.2 0.69 

dpy-26 0.69 

1-Sep 0.69 

wrm-1 0.69 

tyr-1 0.69 

C33D9.13 0.69 

par-4 0.69 

H14E04.1 0.69 

his-72 0.69 

lin-36 0.69 

B0511.12 0.69 

F55A11.7 0.69 

ape-1 0.69 

Y76B12C.6 0.69 

arid-1 0.69 

best-17 0.69 

chs-2 0.69 

Gene 
Name 

log2 
Fold 

nhl-2 0.69 

C48B4.7 0.69 

C05A9.2 0.69 

F54D5.9 0.69 

F19C7.2 0.69 

F32D1.7 0.69 

C17D12.5 0.68 

drp-1 0.68 

B0507.2 0.68 

cebp-1 0.68 

mpst-5 0.68 

F13C5.5 0.68 

otpl-3 0.68 

W09G12.9 0.68 

C29F9.3 0.68 

secs-1 0.68 

mcm-7 0.68 

Y53H1B.2 0.68 

ppw-1 0.68 

lat-1 0.68 

nekl-1 0.68 

cdt-1 0.68 

W02G9.10 0.68 

nspc-12 0.68 

C07E3.3 0.68 

pes-5 0.68 

T04F8.7 0.68 

exc-4 0.68 

smc-4 0.68 

C13B7.6 0.68 

crn-2 0.68 

C25D7.12 0.68 

T08D2.3 0.68 

rig-3 0.68 

aka-1 0.67 

srsx-34 0.67 

C27F2.7 0.67 

efa-6 0.67 

Y111B2A.3 0.67 

tag-120 0.67 

hmr-1 0.67 

Y75B8A.25 0.67 

Gene 
Name 

log2 
Fold 

cyk-4 0.67 

Y48G1C.1 0.67 

bir-2 0.67 

Y43F8B.24 0.67 

tol-1 0.67 

set-2 0.67 

tag-278 0.67 

hmp-1 0.67 

K11D2.4 0.67 

T04F3.2 0.67 

F35D2.3 0.67 

mfb-1 0.66 

H21P03.2 0.66 

cogc-3 0.66 

ikke-1 0.66 

pqn-20 0.66 

Y69A2AR.
32 

0.66 

fbxa-61 0.66 

ptr-13 0.66 

sas-4 0.66 

cec-2 0.66 

K11H3.8 0.66 

Y54G2A.7
3 

0.66 

F08F3.8 0.66 

W09D6.1 0.66 

rfc-1 0.66 

ugt-25 0.66 

F45F2.11 0.66 

gras-1 0.66 

sup-26 0.66 

F29G9.1 0.66 

clec-146 0.66 

wrn-1 0.66 

swsn-9 0.66 

Y48G1BL.
5 

0.66 

Y39A3CR.
3 

0.66 

R02D5.3 0.66 

K07H8.9 0.66 

lin-24 0.66 
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Gene 
Name 

log2 
Fold 

T04D3.5 0.66 

Y54F10BM
.9 

0.66 

sax-7 0.66 

ZK1290.14 0.66 

F28C6.4 0.66 

gmeb-4 0.65 

D1043.1 0.65 

fbn-1 0.65 

athp-2 0.65 

H04D03.3 0.65 

rcor-1 0.65 

ife-5 0.65 

Y73B6BL.1
2 

0.65 

C37C3.9 0.65 

nspc-3 0.65 

ugt-13 0.65 

C36B1.13 0.65 

pck-1 0.65 

nspc-15 0.65 

acs-19 0.65 

swsn-7 0.65 

tag-52 0.65 

F52H3.4 0.65 

srgp-1 0.65 

H04M03.3 0.65 

C48D1.5 0.65 

C30F12.3 0.65 

K11G9.5 0.65 

W03F9.2 0.65 

F45F2.10 0.65 

Y57G11C.
5 

0.65 

F45D3.4 0.65 

Y97E10AR
.1 

0.65 

igeg-1 0.65 

M116.5 0.65 

rom-4 0.64 

dom-3 0.64 

ZK973.1 0.64 

F14F9.8 0.64 

Gene 
Name 

log2 
Fold 

Y67H2A.10 0.64 

nhr-23 0.64 

F32A7.5 0.64 

sur-2 0.64 

viln-1 0.64 

osta-3 0.64 

T27A1.2 0.64 

ets-6 0.64 

mat-2 0.64 

F14D7.2 0.64 

R03H10.2 0.64 

C06A1.12 0.64 

sas-5 0.64 

duo-1 0.64 

C41H7.4 0.64 

F30F8.10 0.64 

lec-8 0.64 

M04F3.5 0.64 

npp-21 0.64 

scl-3 0.64 

ifp-1 0.64 

F52B11.5 0.64 

Y38E10A.1
4 

0.64 

Y110A7A.9 0.64 

ebp-2 0.64 

Y39A3CL.1 0.64 

rrc-1 0.64 

Y52B11A.1
1 

0.64 

Y48A6C.1 0.64 

nhl-1 0.64 

Y41E3.1 0.63 

F52C12.1 0.63 

sup-17 0.63 

T16G1.4 0.63 

nhr-15 0.63 

gei-14 0.63 

Y48G1C.1
0 

0.63 

Y38F2AR.
6 

0.63 

hsp-12.3 0.63 

Gene 
Name 

log2 
Fold 

lin-13 0.63 

R13H4.5 0.63 

anr-34 0.63 

dsh-2 0.63 

unc-17 0.63 

cpsf-4 0.63 

F46B6.5 0.63 

shc-2 0.63 

srr-4 0.63 

zim-1 0.63 

pak-2 0.63 

H10D18.5 0.63 

gon-1 0.63 

R01H10.7 0.63 

mdt-28 0.63 

rabx-5 0.63 

gon-4 0.63 

F25D7.4 0.63 

F13G3.6 0.63 

let-756 0.63 

R11D1.1 0.63 

Y50D4C.3 0.63 

aly-1 0.63 

met-1 0.63 

rilp-1 0.63 

Y39B6A.43 0.62 

his-45 0.62 

T23B5.3 0.62 

tag-343 0.62 

ZC250.4 0.62 

mboa-3 0.62 

nprl-3 0.62 

K06A5.1 0.62 

unc-40 0.62 

nasp-2 0.62 

enu-3 0.62 

ubxn-6 0.62 

nspc-14 0.62 

gon-14 0.62 

npr-28 0.62 

athp-1 0.62 

C17E4.3 0.62 

Gene 
Name 

log2 
Fold 

hlh-2 0.62 

Y71F9B.13 0.62 

nlp-16 0.62 

C49A9.3 0.62 

F57H12.5 0.62 

top-2 0.62 

C27F2.8 0.62 

rbr-2 0.62 

drsh-1 0.62 

Y48G8AL.
10 

0.62 

smc-6 0.62 

C08F8.3 0.62 

ect-2 0.62 

pdf-1 0.61 

egrh-1 0.61 

C40H1.8 0.61 

set-14 0.61 

dcr-1 0.61 

epg-6 0.61 

T24H10.4 0.61 

trcs-2 0.61 

best-13 0.61 

sygl-1 0.61 

F59A7.5 0.61 

cpb-3 0.61 

W09G12.7 0.61 

ZC317.7 0.61 

Y51A2D.7 0.61 

C31H1.8 0.61 

daam-1 0.61 

glh-2 0.61 

odd-2 0.61 

dvc-1 0.61 

dhhc-1 0.61 

C41C4.18 0.61 

math-41 0.61 

F44G3.2 0.61 

zyg-9 0.60 

F56F11.4 0.60 

H05L14.2 0.60 

F33H2.3 0.60 
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Gene 
Name 

log2 
Fold 

flcn-1 0.60 

svop-1 0.60 

nspc-9 0.60 

B0336.5 0.60 

deps-1 0.60 

C41H7.5 0.60 

C16C8.11 0.60 

C34C6.2 0.60 

cpg-4 0.60 

C48B6.3 0.60 

tbc-2 0.60 

eps-8 0.60 

hyl-1 0.60 

ptp-2 0.60 

aqp-8 0.60 

F14B4.2 0.60 

K06B9.4 0.60 

F23H11.4 0.60 

Y55F3AM.
14 

0.60 

hcp-4 0.60 

egl-18 0.60 

F35F11.2 0.60 

D1081.7 0.60 

W02B8.2 0.60 

nhr-231 0.60 

C02F12.5 0.60 

lin-54 0.60 

jmjc-1 0.60 

F37A8.5 0.60 

R13D7.2 0.60 

fbxa-67 0.60 

Y10G11A.
90 

0.60 

T24D1.2 0.60 

unc-26 0.60 

Y53F4B.9 0.60 

F35G12.4 0.60 

M57.1 0.59 

K05F1.1 0.59 

Y104H12D
.2 

0.59 

CC8.2 0.59 

Gene 
Name 

log2 
Fold 

T19A5.1 0.59 

F15A8.6 0.59 

kca-1 0.59 

arrd-13 0.59 

cpna-5 0.59 

snf-11 0.59 

alx-1 0.59 

R07E3.4 0.59 

mbk-2 0.59 

dct-17 0.59 

C13G3.1 0.59 

max-1 0.59 

klp-15 0.59 

zen-4 0.59 

orc-1 0.59 

T07D1.2 0.59 

smg-9 0.59 

K11D12.12 0.59 

Y19D10A.4 0.59 

ugt-43 0.59 

gck-2 0.59 

pqn-15 0.59 

B0432.7 0.59 

M60.4 0.59 

dnj-5 0.59 

F55H2.5 0.59 

gna-2 0.59 

swp-1 0.59 

dmd-6 0.59 

brd-1 0.59 

D1007.5 0.59 

slr-2 0.59 

B0212.3 0.59 

ztf-6 0.59 

hpo-4 0.58 

F31D4.5 0.58 

H06I04.1 0.58 

R08E3.1 0.58 

cye-1 0.58 

glna-1 0.58 

dmsr-2 0.58 

scrm-1 0.58 

Gene 
Name 

log2 
Fold 

rde-4 0.58 

nhr-3 0.58 

pig-1 0.58 

C06G4.1 0.58 

B0432.8 0.58 

ZC328.2 0.58 

cpr-3 0.58 

zag-1 0.58 

igeg-2 0.58 

C28A5.1 0.58 

riok-1 0.58 

mbtr-1 0.58 

C27D8.4 0.58 

hoe-1 0.58 

poml-4 0.58 

asd-1 0.58 

F14F9.4 0.58 

cdl-1 0.58 

gpdh-1 0.57 

farl-11 0.57 

xpo-1 0.57 

sqrd-1 0.57 

F55G1.15 0.57 

cnk-1 0.57 

F54D10.5 0.57 

Y82E9BR.
23 

0.57 

spe-5 0.57 

nspd-6 0.57 

rict-1 0.57 

pptr-2 0.57 

C09D4.4 0.57 

C42C1.8 0.57 

C55B6.1 0.57 

ZC477.5 0.57 

hum-6 0.57 

sam-10 0.57 

mtm-9 0.57 

F33H2.2 0.57 

B0041.11 0.57 

mys-2 0.57 

egl-27 0.57 

Gene 
Name 

log2 
Fold 

pqn-62 0.57 

R02D3.8 0.57 

ckk-1 0.57 

ceh-21 0.57 

unc-53 0.57 

Y51F10.4 0.57 

F40F8.4 0.57 

C49C8.5 0.57 

hst-1 0.57 

osm-11 0.57 

T04C4.1 0.57 

F30F8.1 0.57 

D2096.11 0.57 

pkc-3 0.57 

hcp-3 0.57 

panl-2 0.57 

R06C7.2 0.57 

F35C11.5 0.57 

chaf-2 0.57 

T19B4.5 0.56 

K10D3.4 0.56 

cyp-34A2 0.56 

F17C11.7 0.56 

icp-1 0.56 

larp-5 0.56 

siah-1 0.56 

mig-5 0.56 

ifd-2 0.56 

try-1 0.56 

sos-1 0.56 

gad-1 0.56 

Y55F3AM.
6 

0.56 

Y48C3A.18 0.56 

Y17G7B.1
0 

0.56 

pif-1 0.56 

ssl-1 0.56 

T02B11.4 0.56 

sqv-6 0.56 

Y54F10BM
.1 

0.56 

hsr-9 0.56 
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Gene 
Name 

log2 
Fold 

Y51H7C.3 0.56 

czw-1 0.56 

bre-3 0.56 

nspc-13 0.56 

lin-37 0.56 

Y55F3BR.
2 

0.56 

C31E10.6 0.56 

mpst-6 0.56 

snet-1 0.56 

C50E3.13 0.56 

ceh-38 0.56 

klp-16 0.56 

T20F5.6 0.56 

utx-1 0.56 

msh-5 0.56 

M04F3.6 0.56 

eri-9 0.56 

deg-3 0.56 

wnk-1 0.55 

kin-18 0.55 

kle-2 0.55 

mlh-1 0.55 

atx-3 0.55 

C34C12.7 0.55 

sin-3 0.55 

gadr-5 0.55 

Y54F10AM
.11 

0.55 

tat-2 0.55 

F52D2.7 0.55 

ZK131.11 0.55 

air-1 0.55 

T07F8.4 0.55 

Y43E12A.3 0.55 

tbc-9 0.55 

exoc-8 0.55 

sago-2 0.55 

F19F10.11 0.55 

spc-1 0.55 

C18B2.4 0.55 

dog-1 0.55 

Gene 
Name 

log2 
Fold 

hpo-16 0.55 

rde-11 0.55 

C18H2.2 0.55 

chtl-1 0.55 

clec-90 0.55 

Y65B4BL.4 0.55 

Y71F9AR.
3 

0.55 

B0205.9 0.55 

F35G12.5 0.55 

comt-3 0.55 

cdh-4 0.55 

nlp-9 0.55 

sup-35 0.55 

F53F8.5 0.55 

F25E5.1 0.55 

T01C3.9 0.54 

F54D11.2 0.54 

F30A10.3 0.54 

Y55B1AR.
2 

0.54 

tim-1 0.54 

lin-49 0.54 

mig-22 0.54 

btf-1 0.54 

F16B4.2 0.54 

B0524.6 0.54 

C44B7.10 0.54 

hda-10 0.54 

F59A3.4 0.54 

F21A10.2 0.54 

fncm-1 0.54 

Y116A8C.1
3 

0.54 

flt-1 0.54 

plrg-1 0.54 

smgl-2 0.54 

ceh-100 0.54 

sydn-1 0.54 

ctns-1 0.54 

ZK418.7 0.54 

nprl-2 0.54 

R06A4.2 0.54 

Gene 
Name 

log2 
Fold 

pcn-1 0.54 

F33E11.2 0.54 

nfyb-1 0.54 

Y73B6BL.4 0.54 

evl-18 0.54 

K07D4.9 0.54 

T01D3.3 0.54 

Y73B3A.4 0.54 

aly-2 0.54 

capg-1 0.54 

W01A8.5 0.54 

ubc-18 0.54 

F36D4.5 0.54 

cdc-25.1 0.54 

rad-26 0.54 

usp-48 0.54 

fbxc-45 0.54 

tag-77 0.54 

F13A7.14 0.54 

C52A10.1 0.54 

nud-2 0.54 

mes-2 0.54 

F17C11.10 0.54 

C47D12.2 0.54 

ZC239.13 0.54 

F09A5.4 0.53 

daf-19 0.53 

pqn-85 0.53 

F45D11.16 0.53 

C33C12.9 0.53 

Y57G11C.
36 

0.53 

Y58A7A.4 0.53 

H19M22.3 0.53 

let-418 0.53 

Y82E9BR.
13 

0.53 

fdps-1 0.53 

F09C8.2 0.53 

cdc-42 0.53 

mrt-1 0.53 

unc-5 0.53 

Gene 
Name 

log2 
Fold 

W02B3.4 0.53 

Y106G6G.
4 

0.53 

C34B7.2 0.53 

Y48C3A.12 0.53 

Y39B6A.42 0.53 

D2096.7 0.53 

C27A12.6 0.53 

C24H12.5 0.53 

nhr-31 0.53 

C06A5.1 0.53 

rnf-1 0.53 

cpn-1 0.53 

Y39D8A.1 0.53 

spe-41 0.53 

clr-1 0.53 

gmn-1 0.53 

Y37E11B.2 0.53 

lin-45 0.53 

plk-1 0.53 

T05E8.3 0.53 

rep-1 0.53 

Y62E10A.1
4 

0.53 

R07E4.5 0.53 

clp-3 0.53 

ztf-28 0.53 

T03F1.7 0.53 

F53B3.5 0.53 

K10D11.6 0.53 

T04A11.1 0.53 

Y56A3A.28 0.53 

scc-3 0.53 

T12G3.7 0.53 

Y69H2.7 0.53 

F38B7.2 0.53 

K10C8.3 0.52 

wapl-1 0.52 

M02B7.2 0.52 

asfl-1 0.52 

aat-9 0.52 

tps-1 0.52 
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Gene 
Name 

log2 
Fold 

dpy-21 0.52 

Y17G9B.9 0.52 

lem-3 0.52 

Y73B3B.5 0.52 

bath-42 0.52 

acs-4 0.52 

cash-1 0.52 

akt-1 0.52 

pis-1 0.52 

xnd-1 0.52 

ctg-2 0.52 

src-1 0.52 

eak-7 0.52 

Y71H2B.5 0.52 

set-5 0.52 

pqn-41 0.52 

rpa-1 0.52 

unc-22 0.52 

ttll-5 0.52 

ire-1 0.52 

vps-37 0.52 

T21C9.13 0.52 

msh-6 0.52 

C38C10.2 0.52 

Y69A2AR.
1 

0.52 

F08F3.6 0.52 

ubc-25 0.52 

lig-1 0.52 

zif-1 0.52 

gck-1 0.52 

crml-1 0.52 

F21D5.1 0.52 

Y37H9A.3 0.52 

C50F2.2 0.51 

srap-1 0.51 

Y71H2AM.
2 

0.51 

C36B1.11 0.51 

twk-34 0.51 

W05F2.7 0.51 

thoc-3 0.51 

Gene 
Name 

log2 
Fold 

Y71H2AM.
15 

0.51 

pgp-9 0.51 

cls-1 0.51 

syp-1 0.51 

F57B10.9 0.51 

Y50D4C.6 0.51 

lin-9 0.51 

Y22D7AR.
6 

0.51 

ifet-1 0.51 

fbxa-123 0.51 

rbg-3 0.51 

R04D3.3 0.51 

Y73B3A.3 0.51 

nfya-2 0.51 

H18N23.2 0.51 

spe-29 0.51 

prom-1 0.51 

C14C11.7 0.51 

dhc-1 0.51 

K11G12.6 0.51 

C06A5.3 0.51 

smg-8 0.51 

bub-1 0.51 

top-3 0.51 

cls-3 0.51 

K06G5.1 0.51 

klp-11 0.51 

tag-115 0.51 

cyn-4 0.51 

dut-1 0.51 

lev-1 0.51 

ubc-23 0.51 

Y48A5A.1 0.51 

Y6B3B.4 0.51 

edc-3 0.51 

wago-1 0.51 

Y59C2A.3 0.51 

W02D7.6 0.51 

spat-1 0.50 

nspc-16 0.50 

Gene 
Name 

log2 
Fold 

zip-5 0.50 

tlk-1 0.50 

Y65B4BR.
1 

0.50 

Y58A7A.3 0.50 

C02F12.8 0.50 

Y34D9A.3 0.50 

plst-1 0.50 

hda-1 0.50 

sdc-1 0.50 

T08B6.9 0.50 

C32D5.11 0.50 

rae-1 0.50 

Y2H9A.4 0.50 

F39G3.5 0.50 

pmp-3 0.50 

tftc-3 0.50 

dnj-8 0.50 

ppfr-1 0.50 

ehs-1 0.50 

sorb-1 0.50 

rcq-5 0.50 

F36G3.1 0.50 

Y6D1A.1 0.50 

daf-25 0.50 

far-8 0.50 

car-1 0.50 

cah-4 0.50 

F10C2.4 0.50 

brf-1 0.50 

R03G5.6 0.50 

Y48E1C.2 0.50 

unc-76 0.50 

C05C10.2 0.50 

set-9 0.50 

zyg-11 0.50 

klp-7 0.50 

Y67D8B.4 0.50 

ghi-1 0.50 

npp-3 0.50 

ima-2 0.50 

phf-10 0.50 

Gene 
Name 

log2 
Fold 

lst-4 0.50 

W05H7.1 0.50 

Y40D12A.1 0.50 

cyp-31A3 0.50 

M01E5.3 0.50 

C32D5.3 0.50 

nlg-1 0.50 

cand-1 0.50 

Y111B2A.2
4 

0.50 

C27C7.1 0.50 

mab-20 0.50 

C18F10.7 0.50 

itsn-1 0.50 

F42G9.6 0.50 

T05G5.9 0.50 

rbc-2 0.50 

spr-5 0.50 

dbr-1 0.49 

lin-53 0.49 

ttn-1 0.49 

tnt-3 0.49 

attf-6 0.49 

C39F7.5 0.49 

B0261.7 0.49 

cdk-2 0.49 

C10G11.7 0.49 

pab-2 0.49 

T23H2.3 0.49 

T04A8.7 0.49 

C36E8.4 0.49 

hex-3 0.49 

F52C12.3 0.49 

sptl-2 0.49 

tep-1 0.49 

F26H9.2 0.49 

smgl-1 0.49 

ced-5 0.49 

fhod-1 0.49 

H11E01.3 0.49 

gld-1 0.49 

sax-2 0.49 
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Gene 
Name 

log2 
Fold 

H05C05.2 0.49 

hse-5 0.49 

bath-28 0.49 

M4.1 0.49 

C27B7.2 0.49 

C35A11.2 0.49 

ubxn-4 0.49 

M57.2 0.49 

hpo-20 0.49 

flp-9 0.49 

C14A4.12 0.49 

F08B12.4 0.49 

pqn-89 0.49 

imb-2 0.49 

T10H10.2 0.49 

B0024.13 0.49 

wrb-1 0.49 

cogc-8 0.49 

emr-1 0.49 

daz-1 0.49 

F52C9.1 0.49 

T02B11.3 0.49 

ric-8 0.49 

F49E2.2 0.49 

ZK809.5 0.49 

R07C12.2 0.49 

Y45G5AM.
7 

0.48 

H03A11.2 0.48 

wht-7 0.48 

C50F4.1 0.48 

haf-2 0.48 

F49E8.7 0.48 

npp-8 0.48 

gpa-16 0.48 

F45D3.3 0.48 

dnj-14 0.48 

bath-29 0.48 

C14A4.11 0.48 

dlk-1 0.48 

spe-15 0.48 

tag-218 0.48 

Gene 
Name 

log2 
Fold 

F45D3.2 0.48 

aho-3 0.48 

T19B10.8 0.48 

M01G5.1 0.48 

Y69A2AL.2 0.48 

phf-15 0.48 

K09D9.1 0.48 

bath-43 0.48 

Y48G1C.1
2 

0.48 

thoc-2 0.48 

unc-57 0.48 

C49F5.6 0.48 

F55A3.7 0.48 

set-25 0.48 

C08B11.8 0.48 

rad-51 0.48 

Y22D7AL.7 0.48 

C54D10.13 0.48 

cyp-31A5 0.48 

sel-8 0.48 

Y53G8B.2 0.48 

ess-2 0.48 

D2096.12 0.48 

Y77E11A.7 0.48 

cdh-7 0.48 

ave-1 0.48 

mdt-6 0.48 

F52H3.2 0.48 

taf-6.1 0.48 

glh-3 0.48 

sop-2 0.48 

pac-1 0.48 

T07D4.2 0.48 

F47B8.2 0.48 

tli-1 0.48 

clp-2 0.48 

T04H1.2 0.48 

jmjd-2 0.48 

sop-3 0.47 

Y41E3.7 0.47 

C53C9.2 0.47 

Gene 
Name 

log2 
Fold 

F58F9.3 0.47 

mdt-30 0.47 

Y82E9BL.1
8 

0.47 

nrd-1 0.47 

orc-2 0.47 

T08G11.1 0.47 

Y24D9B.1 0.47 

nca-2 0.47 

Y48G1A.2 0.47 

bath-13 0.47 

Y48A6B.10 0.47 

Y67D8C.9 0.47 

cmk-1 0.47 

F53H1.4 0.47 

H34C03.2 0.47 

swsn-1 0.47 

Y50D7A.2 0.47 

K07H8.1 0.47 

kin-4 0.47 

F45D11.15 0.47 

ZK1025.1 0.47 

F07C6.4 0.47 

mdt-27 0.47 

Y39G10AR
.9 

0.47 

npl-4.1 0.47 

dkf-2 0.47 

vps-11 0.47 

C41H7.3 0.47 

M01B12.4 0.47 

gei-17 0.47 

K09H9.7 0.47 

pitr-1 0.47 

zfp-2 0.47 

F40F8.11 0.47 

vbh-1 0.47 

C05C8.7 0.47 

plk-2 0.47 

dnc-4 0.47 

vps-35 0.47 

csb-1 0.47 

Gene 
Name 

log2 
Fold 

sel-10 0.46 

K10B4.3 0.46 

F33H1.4 0.46 

rabn-5 0.46 

C25H3.11 0.46 

mut-7 0.46 

set-24 0.46 

csk-1 0.46 

C50E3.5 0.46 

puf-8 0.46 

dkf-1 0.46 

npp-9 0.46 

noca-1 0.46 

D2045.2 0.46 

pqn-31 0.46 

W08G11.3 0.46 

dur-1 0.46 

fbxa-157 0.46 

trim-9 0.46 

wip-1 0.46 

M01A10.1 0.46 

K03B4.2 0.46 

M01H9.3 0.46 

T05F1.4 0.46 

cab-1 0.46 

cil-1 0.46 

pqn-21 0.46 

sdc-2 0.46 

cyb-2.1 0.46 

ZK688.5 0.46 

dcaf-1 0.46 

vps-4 0.46 

T12C9.7 0.46 

vacl-14 0.46 

cdc-6 0.46 

tbp-1 0.46 

cyp-34A4 0.46 

ppfr-2 0.46 

kcc-1 0.46 

W03G9.3 0.46 

F01G4.4 0.46 
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Gene 
Name 

log2 
Fold 

Y69A2AR.
22 

0.46 

daf-16 0.46 

mys-1 0.45 

orc-3 0.45 

Y76A2B.4 0.45 

F59E12.9 0.45 

F59A7.8 0.45 

fozi-1 0.45 

inft-2 0.45 

lsy-12 0.45 

B0353.1 0.45 

C34C6.7 0.45 

smg-3 0.45 

nra-1 0.45 

npp-7 0.45 

Y43F8C.6 0.45 

F33E11.3 0.45 

Y37A1A.2 0.45 

him-6 0.45 

Y67D2.2 0.45 

hmp-2 0.45 

ztf-8 0.45 

Y37E11AM
.2 

0.45 

cogc-5 0.45 

B0304.2 0.45 

F55A3.3 0.45 

klp-20 0.45 

sid-1 0.45 

K06B9.2 0.45 

ZC308.4 0.45 

mig-38 0.45 

Y87G2A.1 0.45 

cki-1 0.45 

clp-4 0.45 

snx-14 0.45 

Y102A11A.
2 

0.45 

ncr-1 0.45 

F53F4.12 0.45 

col-103 0.45 

tyr-4 0.45 

Gene 
Name 

log2 
Fold 

pdfr-1 0.45 

F25H2.6 0.45 

fnci-1 0.45 

abts-4 0.45 

fer-1 0.45 

C25A8.5 0.45 

flp-18 0.45 

R05H10.3 0.45 

Y105E8A.1
4 

0.45 

T09F3.5 0.45 

C50C3.2 0.45 

F49C12.9 0.45 

E01A2.6 0.45 

panl-3 0.45 

nars-1 0.45 

pbrm-1 0.45 

F58G11.3 0.45 

rba-1 0.45 

T04C9.1 0.45 

C30F12.4 0.45 

Y38F2AR.
13 

0.45 

Y54E2A.8 0.45 

C16A11.3 0.45 

pqn-47 0.45 

B0403.5 0.45 

tag-341 0.45 

ccpp-1 0.44 

K04G7.1 0.44 

pgl-3 0.44 

Y65B4A.1 0.44 

mom-4 0.44 

rsks-1 0.44 

atf-6 0.44 

npp-19 0.44 

K01A2.10 0.44 

cyb-1 0.44 

H40L08.1 0.44 

Y73B3A.21 0.44 

let-502 0.44 

lem-2 0.44 

Gene 
Name 

log2 
Fold 

Y54E10A.1
2 

0.44 

rmd-1 0.44 

ceh-20 0.44 

pqe-1 0.44 

ztf-23 0.44 

T28H10.3 0.44 

K12D12.5 0.44 

Y54F10AR
.1 

0.44 

linc-6 0.44 

ttr-26 0.44 

swsn-6 0.44 

F54D1.6 0.44 

Y42H9AR.
4 

0.44 

F20C5.3 0.44 

pdr-1 0.44 

C37A2.8 0.44 

C35D10.7 0.44 

klp-18 0.44 

F36A2.13 0.44 

aex-3 0.44 

T01E8.1 0.44 

clec-86 0.44 

C14B1.3 0.44 

prp-3 0.44 

C16C10.1 0.44 

W07E11.1 0.44 

him-18 0.44 

ifd-1 0.44 

W03G9.2 0.44 

chd-1 0.44 

Y54E2A.4 0.44 

tcc-1 0.44 

sac-1 0.44 

Y67D2.6 0.44 

T23G11.7 0.44 

D1081.9 0.43 

F39E9.7 0.43 

gei-6 0.43 

MTCE.7 0.43 

T08A11.1 0.43 

Gene 
Name 

log2 
Fold 

ZK524.4 0.43 

dcp-66 0.43 

C25G4.2 0.43 

K12H6.2 0.43 

W07A8.2 0.43 

szy-20 0.43 

Y65B4BL.3 0.43 

acs-16 0.43 

M110.3 0.43 

sms-1 0.43 

nhx-5 0.43 

R04F11.3 0.43 

mrp-7 0.43 

rsd-2 0.43 

ing-3 0.43 

unc-69 0.43 

cec-10 0.43 

rrf-3 0.43 

F31C3.3 0.43 

rsd-6 0.43 

hum-7 0.43 

F45D11.14 0.43 

let-526 0.43 

F30B5.4 0.43 

F54B3.1 0.43 

max-2 0.43 

ccr-4 0.43 

C33A12.19 0.43 

cyl-1 0.43 

rec-8 0.43 

K07H8.2 0.43 

nhr-5 0.43 

fkh-9 0.43 

C06B8.7 0.43 

wsp-1 0.43 

him-17 0.43 

C10G11.6 0.43 

C06A5.6 0.43 

cul-2 0.42 

mon-2 0.42 

npl-4.2 0.42 

npp-4 0.42 
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Gene 
Name 

log2 
Fold 

cyb-2.2 0.42 

F14B8.5 0.42 

T25D10.4 0.42 

ima-1 0.42 

cas-2 0.42 

Y73F8A.24 0.42 

attf-3 0.42 

tbc-14 0.42 

fbxa-156 0.42 

nfx-1 0.42 

F28H6.4 0.42 

otub-2 0.42 

Y82E9BR.
21 

0.42 

Y57A10A.2
5 

0.42 

pad-1 0.42 

fbxc-43 0.42 

lam-2 0.42 

R05D11.9 0.42 

C27A12.9 0.42 

C38H2.2 0.42 

ZK813.4 0.42 

F15E6.3 0.42 

bath-44 0.42 

K02B12.5 0.42 

clec-205 0.42 

C14F11.6 0.42 

moa-2 0.42 

hda-2 0.42 

Y54G11A.
1 

0.42 

F08F8.10 0.42 

fbxa-79 0.42 

F33H1.3 0.42 

Y73F4A.2 0.42 

eea-1 0.42 

M70.4 0.42 

Y47D3A.29 0.42 

dcap-1 0.42 

crn-1 0.42 

selb-1 0.42 

mel-11 0.42 

Gene 
Name 

log2 
Fold 

lin-15B 0.41 

Y47G6A.2
9 

0.41 

arrd-7 0.41 

F10E7.11 0.41 

tbc-15 0.41 

F58G1.2 0.41 

tmd-2 0.41 

bath-41 0.41 

tsp-12 0.41 

mak-1 0.41 

M01E11.3 0.41 

mrck-1 0.41 

uba-1 0.41 

T28F3.4 0.41 

ZK484.3 0.41 

atgp-2 0.41 

F01G12.6 0.41 

gap-3 0.41 

nhr-48 0.41 

sem-5 0.41 

ced-2 0.41 

hda-6 0.41 

T09B9.4 0.41 

R10F2.6 0.41 

swt-6 0.41 

dpf-5 0.41 

F53F4.14 0.41 

him-10 0.41 

spr-2 0.41 

C35C5.6 0.41 

F26F2.7 0.41 

C04G6.4 0.41 

seu-1 0.41 

lgl-1 0.41 

tag-232 0.41 

C26G2.2 0.41 

C25F9.4 0.41 

pqm-1 0.41 

F54A3.6 0.41 

K05F1.10 0.41 

T10B11.8 0.41 

Gene 
Name 

log2 
Fold 

F07H5.10 0.41 

E01G4.3 0.41 

F20D12.2 0.41 

col-119 0.41 

K01G5.9 0.41 

Y44E3A.6 0.41 

hmg-11 0.41 

T09F5.12 0.41 

C36E8.1 0.41 

ZK616.5 0.41 

fbxa-27 0.41 

clec-62 0.41 

K08A2.1 0.41 

Y54G2A.2
6 

0.40 

W03A5.4 0.40 

set-21 0.40 

C18H9.3 0.40 

cpsf-1 0.40 

F22G12.5 0.40 

F54D10.3 0.40 

ntl-9 0.40 

ubxn-3 0.40 

K08A2.4 0.40 

sbp-1 0.40 

fzy-1 0.40 

unc-94 0.40 

dpl-1 0.40 

rad-54 0.40 

bet-1 0.40 

T12A7.2 0.40 

lin-26 0.40 

pme-5 0.40 

F42H10.6 0.40 

unc-80 0.40 

F08F8.9 0.40 

clp-7 0.40 

Y52B11A.9 0.40 

C07A4.2 0.40 

jmjd-1.2 0.40 

cdh-1 0.40 

zim-2 0.40 

Gene 
Name 

log2 
Fold 

unc-23 0.40 

C01G5.5 0.40 

set-30 0.40 

egl-9 0.40 

Y73B3B.1 0.40 

F59A3.2 0.40 

T03F1.12 0.40 

cid-1 0.40 

gen-1 0.40 

Y73B6BL.2
7 

0.40 

R11A8.7 0.40 

sinh-1 0.40 

ncx-2 0.40 

hpo-3 0.40 

tag-65 0.40 

mog-3 0.40 

gfi-2 0.40 

rha-1 0.40 

ttm-5 0.40 

wdfy-2 0.40 

ZC504.3 0.40 

B0019.2 0.40 

ZC262.7 0.40 

R74.8 0.39 

F25E2.3 0.39 

R119.1 0.39 

K04C2.3 0.39 

ncl-1 0.39 

Y41C4A.9 0.39 

F34H10.3 0.39 

mep-1 0.39 

B0303.11 0.39 

W05F2.4 0.39 

F37D6.2 0.39 

F55F8.9 0.39 

F36D3.1 0.39 

F37A4.1 0.39 

B0412.3 0.39 

F27C1.2 0.39 

inx-21 0.39 

thoc-1 0.39 
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Gene 
Name 

log2 
Fold 

pqn-51 0.39 

Y40C5A.1 0.39 

ketn-1 0.39 

let-765 0.39 

ptr-8 0.39 

Y51F10.10 0.39 

taf-1 0.39 

T05F1.11 0.39 

F35G12.12 0.39 

cbp-1 0.39 

mcm-6 0.39 

vps-33.1 0.39 

fbxa-192 0.39 

W04D2.6 0.39 

Y50D7A.8 0.39 

R148.4 0.39 

C41H7.6 0.39 

C49C3.9 0.39 

eftu-2 0.39 

cul-3 0.39 

tat-4 0.39 

tbc-20 0.39 

emb-5 0.38 

ric-19 0.38 

F46B6.4 0.38 

btbd-10 0.38 

mage-1 0.38 

M163.1 0.38 

F55A11.8 0.38 

dph-1 0.38 

F43G6.3 0.38 

F19B10.10 0.38 

bmk-1 0.38 

nasp-1 0.38 

ubc-15 0.38 

mel-47 0.38 

C02F5.7 0.38 

pqn-96 0.38 

nspc-20 0.38 

tag-30 0.38 

hcp-2 0.38 

K08F4.1 0.38 

Gene 
Name 

log2 
Fold 

hpo-40 0.38 

clec-88 0.38 

sto-1 0.38 

sec-8 0.38 

zfp-1 0.38 

cpna-1 0.38 

unc-61 0.38 

Y82E9BR.
18 

0.38 

cec-6 0.38 

snrp-200 0.38 

C23H3.3 0.38 

pat-3 0.38 

M05B5.2 0.38 

myo-3 0.38 

Y71G10AR
.4 

0.38 

tes-1 0.38 

K09F6.9 0.38 

wdr-5.1 0.38 

B0261.1 0.38 

mmaa-1 0.38 

Y48G1C.1
1 

0.37 

C09G9.1 0.37 

eri-5 0.37 

Y106G6H.
5 

0.37 

csn-6 0.37 

F59E12.11 0.37 

DC2.8 0.37 

ulp-1 0.37 

Y69A2AR.
28 

0.37 

xpo-2 0.37 

tpa-1 0.37 

exc-5 0.37 

T25B9.6 0.37 

dgn-1 0.37 

F47A4.5 0.37 

mcm-2 0.37 

emb-27 0.37 

W06B4.2 0.37 

Gene 
Name 

log2 
Fold 

Y69A2AR.
31 

0.37 

nspc-10 0.37 

exos-4.2 0.37 

C56E6.2 0.37 

mog-4 0.37 

ula-1 0.37 

eri-3 0.37 

K08D8.3 0.37 

C56C10.11 0.37 

dpf-3 0.37 

sun-1 0.37 

M01F1.8 0.37 

R06F6.8 0.37 

M01F1.4 0.37 

F10D7.5 0.37 

fbxa-63 0.37 

Y37E11AL.
3 

0.37 

T13H5.8 0.37 

arx-2 0.37 

lam-1 0.37 

fbxa-66 0.37 

F13E9.1 0.37 

F25E5.5 0.37 

rskd-1 0.37 

sap-49 0.37 

C14B1.9 0.37 

wve-1 0.37 

Y39G8B.9 0.37 

mdt-8 0.37 

mut-15 0.37 

Y105E8A.8 0.37 

F58B3.6 0.37 

sulp-2 0.37 

spdl-1 0.37 

egl-26 0.37 

B0454.9 0.37 

pfn-1 0.37 

pld-1 0.37 

C08H9.3 0.36 

ztf-9 0.36 

Gene 
Name 

log2 
Fold 

spas-1 0.36 

pop-1 0.36 

T05B9.1 0.36 

Y92H12A.5 0.36 

fem-2 0.36 

F10D11.2 0.36 

spr-4 0.36 

haf-3 0.36 

lin-65 0.36 

set-16 0.36 

ced-4 0.36 

T07E3.4 0.36 

ubxn-1 0.36 

F13E6.4 0.36 

W03F11.4 0.36 

air-2 0.36 

C31C9.2 0.36 

F13B12.6 0.36 

tat-5 0.36 

Y94H6A.3 0.36 

pyp-1 0.36 

rab-8 0.36 

F14E5.2 0.36 

gei-8 0.36 

catp-8 0.36 

lin-40 0.36 

bre-4 0.36 

Y53G8AM.
8 

0.36 

fbxa-4 0.36 

F20A1.10 0.36 

M04D5.3 0.36 

trpa-2 0.36 

fbxa-53 0.36 

T23F2.3 0.36 

plx-1 0.36 

gls-1 0.36 

ztf-15 0.36 

ifb-2 0.36 

ubh-2 0.36 

Y54E10A.6 0.36 

F53H1.3 0.36 
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Gene 
Name 

log2 
Fold 

ulp-5 0.36 

smc-3 0.36 

bicd-1 0.36 

F34D10.4 0.36 

lin-5 0.36 

Y44E3A.4 0.36 

hop-1 0.36 

F10B5.2 0.36 

hpo-22 0.36 

mes-3 0.36 

rap-1 0.36 

set-26 0.35 

cup-5 0.35 

C49A9.9 0.35 

M02B1.3 0.35 

W04A8.1 0.35 

coel-1 0.35 

pms-2 0.35 

clec-5 0.35 

lgc-34 0.35 

Y48E1C.1 0.35 

T03F6.3 0.35 

B0432.6 0.35 

F44B9.8 0.35 

dpy-28 0.35 

ccz-1 0.35 

F22B5.4 0.35 

T16G12.6 0.35 

F55D12.5 0.35 

K03E6.7 0.35 

F17C11.11 0.35 

ced-7 0.35 

T23G7.3 0.35 

hmg-4 0.35 

Y119D3B.1
4 

0.35 

evl-14 0.35 

cdf-2 0.35 

Y34D9A.7 0.35 

K07A3.3 0.35 

C42C1.4 0.35 

C07H6.4 0.35 

Gene 
Name 

log2 
Fold 

Y11D7A.7 0.35 

R07B7.2 0.35 

ZC434.8 0.35 

F52H3.6 0.35 

ash-2 0.35 

egrh-3 0.35 

T26A5.2 0.35 

F14B8.6 0.35 

F09F7.7 0.35 

flp-16 0.35 

ZK1067.3 0.34 

math-18 0.34 

F25B5.6 0.34 

Y15E3A.4 0.34 

F25B4.5 0.34 

acl-12 0.34 

hum-4 0.34 

lit-1 0.34 

unc-59 0.34 

W03D8.10 0.34 

prp-8 0.34 

T08B6.4 0.34 

R10H1.1 0.34 

C05D11.8 0.34 

F32D1.6 0.34 

pisy-1 0.34 

W03C9.2 0.34 

T21B6.3 0.34 

hpr-17 0.34 

mpk-1 0.34 

pme-2 0.34 

lsl-1 0.34 

F10C1.8 0.34 

arx-3 0.34 

Y50D4A.1 0.34 

E04F6.9 0.34 

dcar-1 0.34 

mus-101 0.34 

Y110A2AR
.1 

0.34 

snt-4 0.34 

dpf-7 0.34 

Gene 
Name 

log2 
Fold 

cpr-4 0.34 

sbt-1 0.34 

mek-1 0.34 

frl-1 0.34 

rnp-1 0.34 

catp-6 0.34 

cki-2 0.34 

sdc-3 0.34 

C50D2.7 0.34 

pghm-1 0.34 

ifg-1 0.34 

T05E7.3 0.34 

zip-4 0.34 

C06E1.9 0.34 

K09H9.2 0.34 

npp-10 0.34 

Y59E9AL.3
6 

0.34 

pha-4 0.34 

ida-1 0.34 

H25P19.1 0.34 

F18A1.7 0.34 

ubr-1 0.33 

sut-2 0.33 

W05F2.6 0.33 

rgs-7 0.33 

adm-2 0.33 

Y50D7A.3 0.33 

T21B10.3 0.33 

T05A7.6 0.33 

K09E4.2 0.33 

Y75B8A.13 0.33 

C32E8.3 0.33 

mys-4 0.33 

F57H12.6 0.33 

ZK930.1 0.33 

mom-5 0.33 

F36A2.2 0.33 

mtm-3 0.33 

C17D12.7 0.33 

F25H5.5 0.33 

K08E4.3 0.33 

Gene 
Name 

log2 
Fold 

Y92H12A.4 0.33 

ZK938.1 0.33 

tag-53 0.33 

gex-3 0.33 

mig-14 0.33 

W01C8.5 0.33 

R17.2 0.33 

smg-2 0.33 

F52C12.4 0.33 

unc-68 0.33 

coh-4 0.33 

Y39B6A.37 0.33 

C04G2.8 0.33 

cyh-1 0.33 

frm-7 0.33 

taf-2 0.33 

nab-1 0.33 

hpo-27 0.33 

ztf-18 0.33 

F53C3.13 0.33 

Y40B1B.8 0.33 

F53H1.1 0.33 

rnp-5 0.33 

T02G5.12 0.33 

efl-1 0.33 

num-1 0.33 

Y47G6A.2
5 

0.32 

prx-10 0.32 

tars-1 0.32 

Y119C1A.1 0.32 

pde-2 0.32 

fkb-8 0.32 

tat-1 0.32 

D2030.8 0.32 

ani-3 0.32 

egl-3 0.32 

cls-2 0.32 

prp-38 0.32 

M02B7.5 0.32 

taf-8 0.32 

T08A11.2 0.32 
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Gene 
Name 

log2 
Fold 

C13F10.6 0.32 

D2096.1 0.32 

C18E9.9 0.32 

Y39G10AR
.18 

0.32 

rnr-2 0.32 

sli-1 0.32 

F58B3.7 0.32 

ptp-3 0.32 

C56A3.8 0.32 

cyld-1 0.32 

Y37E3.1 0.32 

T24B8.3 0.32 

hcf-1 0.32 

math-40 0.32 

pqn-65 0.32 

wrt-10 0.32 

pct-1 0.32 

E03H4.8 0.32 

ZK1010.5 0.32 

suds-3 0.32 

Y54F10AR
.2 

0.32 

F20A1.1 0.32 

ppw-2 0.32 

vglu-2 0.32 

C13F10.4 0.32 

rme-8 0.32 

lst-2 0.32 

htp-3 0.32 

har-2 0.32 

C13C4.5 0.32 

F58D2.2 0.32 

grsp-2 0.32 

F48E8.4 0.32 

eor-1 0.32 

C41D11.3 0.31 

ZC443.3 0.31 

sand-1 0.31 

ogt-1 0.31 

Y71H2B.2 0.31 

dpff-1 0.31 

Gene 
Name 

log2 
Fold 

F11G11.5 0.31 

pry-1 0.31 

C17E4.6 0.31 

such-1 0.31 

ima-3 0.31 

C49C3.7 0.31 

jac-1 0.31 

mix-1 0.31 

T28D9.4 0.31 

spe-39 0.31 

klp-4 0.31 

let-711 0.31 

lsy-2 0.31 

prp-21 0.31 

pmr-1 0.31 

snx-3 0.31 

F26F4.5 0.31 

C49G7.10 0.31 

cids-1 0.31 

H14A12.3 0.31 

C43E11.12 0.31 

dnj-25 0.31 

nhr-49 0.31 

chd-7 0.31 

gcn-2 0.31 

F17C11.2 0.31 

fic-1 0.31 

gly-9 0.31 

mig-15 0.31 

nstp-4 0.31 

sel-2 0.31 

F32B5.7 0.30 

Y67D8A.2 0.30 

mlk-1 0.30 

C38D4.4 0.30 

tbx-2 0.30 

mdf-2 0.30 

hda-3 0.30 

jhdm-1 0.30 

B0361.8 0.30 

wago-2 0.30 

R07E5.1 0.30 

Gene 
Name 

log2 
Fold 

C36A4.4 0.30 

R02D3.4 0.30 

pph-4.2 0.30 

mtm-6 0.30 

F13B12.1 0.30 

K07E3.1 0.30 

Y92H12BL.
1 

0.30 

Y37H9A.1 0.30 

ubc-1 0.30 

swsn-2.2 0.30 

C18E3.5 0.30 

R10H10.7 0.30 

apd-3 0.30 

wago-4 0.30 

W06B4.1 0.30 

gex-2 0.30 

ldh-1 0.30 

vps-18 0.30 

let-858 0.30 

mtk-1 0.30 

T09F3.2 0.30 

ego-2 0.30 

F15D3.6 0.29 

pnc-1 0.29 

arl-8 0.29 

T12B3.4 0.29 

F36D3.4 0.29 

F32B5.4 0.29 

ZC239.6 0.29 

T22C1.6 0.29 

Y105E8A.2
3 

0.29 

sma-5 0.29 

uba-2 0.29 

agef-1 0.29 

T10D4.3 0.29 

egl-19 0.29 

hgrs-1 0.29 

unc-37 0.29 

F18A1.6 0.29 

M03C11.8 0.29 

Gene 
Name 

log2 
Fold 

Y92H12BR
.7 

0.29 

vps-16 0.29 

F22G12.4 0.29 

swan-2 0.29 

Y79H2A.3 0.29 

cdtl-7 0.29 

nipa-1 0.29 

jamp-1 0.29 

pkc-1 0.29 

lact-3 0.29 

aspm-1 0.29 

epc-1 0.29 

Y48G1C.8 0.29 

T02C12.2 0.29 

jph-1 0.29 

gst-22 0.29 

clh-6 0.29 

Y45G5AL.
1 

0.29 

C24G6.8 0.29 

F44E2.4 0.29 

F10C5.2 0.28 

taf-6.2 0.28 

F57C9.1 0.28 

C33G8.4 0.28 

xrn-1 0.28 

msh-2 0.28 

epi-1 0.28 

rde-2 0.28 

Y47D9A.1 0.28 

F41G3.6 0.28 

C15C6.2 0.28 

nfm-1 0.28 

F56D12.6 0.28 

vha-7 0.28 

H28O16.2 0.28 

Y66D12A.1
5 

0.28 

btb-16 0.28 

pfs-2 0.28 

ubc-16 0.28 

toca-1 0.28 
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Gene 
Name 

log2 
Fold 

ZK1067.2 0.28 

acl-9 0.28 

F48E8.6 0.28 

nhr-66 0.28 

atg-7 0.28 

cul-1 0.28 

T07A9.14 0.28 

syx-18 0.28 

F47B3.7 0.28 

mafr-1 0.28 

C46C2.2 0.28 

wdr-23 0.27 

R02D3.3 0.27 

prl-1 0.27 

C36B1.9 0.27 

F14H3.6 0.27 

cyk-3 0.27 

C56E6.9 0.27 

exoc-7 0.27 

eri-1 0.27 

Y48G10A.
2 

0.27 

R07E5.7 0.27 

smg-6 0.27 

Y77E11A.2 0.27 

mog-1 0.27 

K08E4.6 0.27 

ppk-3 0.27 

F54D8.6 0.27 

rhi-1 0.27 

tbc-3 0.27 

Y106G6D.
7 

0.27 

F08G5.1 0.27 

tsg-101 0.27 

arp-1 0.27 

cyp-31A2 0.27 

C18H7.11 0.27 

F46F11.9 0.26 

tag-325 0.26 

Y67H2A.7 0.26 

mat-3 0.26 

Gene 
Name 

log2 
Fold 

pgs-1 0.26 

pqn-27 0.26 

Y17G9B.5 0.26 

C41G7.3 0.26 

T26A8.1 0.26 

C33F10.11 0.26 

K08F9.4 0.26 

dod-22 0.26 

sym-4 0.26 

ZC376.6 0.26 

skih-2 0.26 

ymel-1 0.26 

egl-21 0.26 

C56G2.1 0.26 

F35A5.1 0.26 

Y97E10C.1 0.25 

D2023.6 0.25 

C01G5.6 0.25 

usp-5 0.25 

F52B5.3 0.25 

W08F4.3 0.25 

M03B6.2 0.25 

C34D10.2 0.25 

lbp-1 0.25 

abt-2 0.25 

C27A12.2 0.25 

C32E8.5 0.25 

dhs-13 0.25 

M88.5 0.25 

bli-3 0.25 

mdt-17 0.25 

suf-1 0.25 

T11G6.5 0.24 

hlh-30 0.24 

nsf-1 0.24 

snap-29 0.24 

sel-11 0.24 

ndc-80 0.24 

lin-42 0.24 

T23B12.4 0.24 

ain-1 0.24 

Gene 
Name 

log2 
Fold 

Y48G8AL.
5 

0.24 

tag-196 0.24 

ify-1 0.24 

plc-4 0.24 

npp-11 0.24 

Y71H2AM.
11 

-0.24 

elo-2 -0.24 

W07G4.5 -0.24 

cup-2 -0.24 

ska-1 -0.25 

Y48G10A.
1 

-0.25 

msp-45 -0.25 

mrpl-19 -0.25 

K02F3.9 -0.25 

cdc-7 -0.25 

ZK632.11 -0.25 

fbxa-210 -0.25 

C54G4.9 -0.25 

inx-17 -0.25 

mif-3 -0.25 

Y7A5A.1 -0.25 

C02D5.4 -0.26 

ZC434.4 -0.26 

vps-26 -0.26 

vps-22 -0.26 

mdt-19 -0.26 

Y38F2AR.
3 

-0.26 

vha-9 -0.26 

dnj-10 -0.26 

F40E10.6 -0.26 

apm-1 -0.26 

rnh-2 -0.26 

Y39G10AR
.32 

-0.26 

C11D2.4 -0.26 

msp-64 -0.26 

wah-1 -0.26 

K07C5.2 -0.26 

dhs-24 -0.26 

Gene 
Name 

log2 
Fold 

mrpl-41 -0.26 

F26A1.1 -0.26 

Y73B3A.2 -0.26 

fln-2 -0.27 

F13H10.3 -0.27 

pkc-2 -0.27 

nxf-2 -0.27 

B0280.9 -0.27 

pde-6 -0.27 

sti-1 -0.27 

mboa-2 -0.27 

C33H5.13 -0.27 

M05D6.6 -0.27 

Y51H4A.7 -0.27 

Y106G6A.
1 

-0.27 

C31H5.6 -0.27 

D1046.3 -0.27 

nlp-33 -0.27 

mecr-1 -0.27 

Y53F4B.18 -0.27 

F07F6.8 -0.27 

spp-15 -0.27 

col-118 -0.28 

Y119C1B.5 -0.28 

T20B12.3 -0.28 

spp-2 -0.28 

F54A3.5 -0.28 

F29B9.8 -0.28 

cec-1 -0.28 

Y51H4A.15 -0.28 

gop-2 -0.28 

blmp-1 -0.28 

Y71G12B.
6 

-0.28 

K12H4.3 -0.28 

F01F1.11 -0.28 

fgt-1 -0.28 

rabs-5 -0.28 

F30F8.9 -0.28 

ZC239.15 -0.28 

col-34 -0.28 



Table E2 (Continued) 

261 

Gene 
Name 

log2 
Fold 

dve-1 -0.29 

C28C12.12 -0.29 

K07C5.3 -0.29 

mrps-14 -0.29 

glo-4 -0.29 

E03H12.5 -0.29 

Y47G6A.7 -0.29 

msp-142 -0.29 

Y62E10A.6 -0.29 

F45H10.3 -0.29 

C01F6.9 -0.29 

M04B2.4 -0.29 

F44G4.1 -0.29 

F10G2.1 -0.29 

C44C10.9 -0.29 

Y66D12A.9 -0.29 

C34B2.5 -0.29 

E02H1.2 -0.29 

C30G12.6 -0.29 

C01B10.11 -0.29 

ZK742.2 -0.29 

F55A12.2 -0.29 

prmt-7 -0.29 

plc-2 -0.29 

idhb-1 -0.29 

ZK686.2 -0.29 

T03D8.6 -0.29 

C31H1.5 -0.29 

ZC317.6 -0.29 

col-170 -0.29 

phip-1 -0.29 

Y54G11A.
2 

-0.29 

F59F4.1 -0.30 

F08B4.7 -0.30 

tpst-1 -0.30 

F58H1.3 -0.30 

M142.5 -0.30 

F33D4.4 -0.30 

Y18D10A.1
6 

-0.30 

F42G2.2 -0.30 

Gene 
Name 

log2 
Fold 

Y32F6A.4 -0.30 

M02H5.8 -0.30 

cah-3 -0.30 

F35B3.4 -0.30 

acdh-7 -0.30 

Y55B1AL.2 -0.30 

dnc-2 -0.30 

F59D6.3 -0.30 

mett-10 -0.30 

B0303.7 -0.30 

C53A3.2 -0.30 

B0361.6 -0.30 

hda-5 -0.30 

mrpl-4 -0.30 

sec-22 -0.30 

lon-8 -0.30 

dhhc-3 -0.30 

T08D2.1 -0.30 

btb-20 -0.30 

ugt-58 -0.30 

ctl-3 -0.31 

msp-33 -0.31 

T21C9.4 -0.31 

C24D10.6 -0.31 

tag-304 -0.31 

klf-3 -0.31 

Y48A6B.3 -0.31 

C14H10.1 -0.31 

T28B4.1 -0.31 

T06D8.7 -0.31 

Y54G2A.2
3 

-0.31 

F48C1.6 -0.31 

T05A7.1 -0.31 

F29A7.6 -0.31 

F10C1.9 -0.31 

pxd-1 -0.31 

rpl-41 -0.31 

ykt-6 -0.31 

Y38C1AA.
14 

-0.31 

ugt-6 -0.31 

Gene 
Name 

log2 
Fold 

Y55F3BR.
11 

-0.31 

C49F8.3 -0.31 

lron-7 -0.31 

Y53G8AR.
6 

-0.31 

bed-3 -0.31 

T10E9.1 -0.31 

Y40C5A.4 -0.31 

apm-3 -0.31 

F58F12.1 -0.31 

T17H7.7 -0.32 

vars-1 -0.32 

vab-19 -0.32 

col-133 -0.32 

rpb-11 -0.32 

npp-23 -0.32 

pcyt-1 -0.32 

dsbn-1 -0.32 

clk-1 -0.32 

F48A9.1 -0.32 

emb-1 -0.32 

T27A10.6 -0.32 

dylt-1 -0.32 

dnj-19 -0.32 

T13F2.2 -0.32 

C35B1.5 -0.32 

F15E6.6 -0.32 

msp-19 -0.32 

Y47D3A.21 -0.32 

T28D6.7 -0.32 

pqn-70 -0.32 

ZK353.9 -0.32 

Y71F9B.2 -0.32 

ccdc-47 -0.32 

ZK643.2 -0.32 

K01D12.15 -0.32 

R144.6 -0.32 

K07C5.4 -0.32 

ubl-1 -0.32 

T28D9.1 -0.32 

lipl-1 -0.32 

Gene 
Name 

log2 
Fold 

Y57E12AL.
3 

-0.32 

mrpl-46 -0.32 

JC8.2 -0.32 

T13H5.4 -0.32 

nhr-122 -0.32 

T24C4.5 -0.32 

hif-1 -0.32 

col-96 -0.33 

C18B2.5 -0.33 

K02B7.3 -0.33 

T02H6.11 -0.33 

K11H3.3 -0.33 

K09C4.10 -0.33 

hint-1 -0.33 

W04C9.4 -0.33 

F53A9.8 -0.33 

F53B6.4 -0.33 

bmy-1 -0.33 

sars-2 -0.33 

nra-4 -0.33 

C48E7.7 -0.33 

C06G3.6 -0.33 

ZK792.5 -0.33 

F39E9.10 -0.33 

mboa-6 -0.33 

C05D10.4 -0.33 

F49H12.5 -0.33 

rpl-30 -0.33 

ska-3 -0.33 

C06A6.4 -0.33 

K02B12.7 -0.33 

rpl-10 -0.33 

R151.10 -0.33 

C07H6.2 -0.33 

C27A7.6 -0.33 

F54C4.4 -0.33 

lec-3 -0.33 

W09C5.1 -0.33 

fbxa-203 -0.33 

Y45F10C.2 -0.33 

otub-3 -0.33 
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Gene 
Name 

log2 
Fold 

F37B12.1 -0.33 

F09E8.2 -0.33 

T11G6.4 -0.33 

F44E5.1 -0.33 

ceh-93 -0.33 

upb-1 -0.33 

R10E4.1 -0.33 

mrpl-47 -0.33 

prx-6 -0.33 

C05D11.9 -0.33 

syp-2 -0.33 

tag-18 -0.33 

dnj-30 -0.33 

F22F4.4 -0.33 

Y69E1A.2 -0.33 

M02D8.1 -0.33 

F36A2.14 -0.33 

lars-2 -0.33 

rbd-1 -0.33 

F35C8.5 -0.34 

gst-20 -0.34 

vps-45 -0.34 

C46A5.6 -0.34 

F53A9.1 -0.34 

kbp-5 -0.34 

ZK1225.4 -0.34 

ran-4 -0.34 

Y73E7A.6 -0.34 

R07E5.13 -0.34 

Y105E8A.1
1 

-0.34 

K07F5.15 -0.34 

F43G6.8 -0.34 

T22C1.5 -0.34 

ZK822.5 -0.34 

ftr-1 -0.34 

K07H8.3 -0.34 

F18G5.6 -0.34 

fbxa-101 -0.34 

gpc-2 -0.34 

ZK1307.1 -0.34 

lgg-1 -0.34 

Gene 
Name 

log2 
Fold 

smc-5 -0.34 

C05C12.4 -0.34 

fmo-1 -0.34 

skr-16 -0.34 

mrpl-18 -0.34 

C13F10.7 -0.34 

F40A3.2 -0.34 

gei-13 -0.34 

ttr-14 -0.34 

R12E2.11 -0.34 

nxt-1 -0.34 

T10F2.5 -0.34 

exos-7 -0.34 

Y71G12B.
17 

-0.34 

F56A8.3 -0.34 

W04G3.5 -0.34 

stdh-1 -0.34 

dhs-28 -0.34 

T27E7.1 -0.34 

C37C3.2 -0.34 

F28H7.8 -0.34 

R10E4.9 -0.34 

moma-1 -0.34 

dnc-3 -0.34 

K02E2.6 -0.34 

C45G9.13 -0.34 

ugt-64 -0.34 

cct-4 -0.34 

Y54G2A.4
5 

-0.35 

B0035.16 -0.35 

dnc-5 -0.35 

Y20C6A.1 -0.35 

K01G5.5 -0.35 

abcf-1 -0.35 

rpia-1 -0.35 

C10C5.5 -0.35 

pinn-1 -0.35 

T12B3.3 -0.35 

clec-50 -0.35 

acl-7 -0.35 

Gene 
Name 

log2 
Fold 

C46C2.7 -0.35 

hpo-17 -0.35 

cct-5 -0.35 

nhr-203 -0.35 

dld-1 -0.35 

pars-1 -0.35 

tpra-1 -0.35 

atg-13 -0.35 

srf-3 -0.35 

C32F10.8 -0.35 

bir-1 -0.35 

cyp-31A1 -0.35 

Y47G6A.2
6 

-0.35 

cyn-9 -0.35 

pat-12 -0.35 

T21C9.9 -0.35 

F42G10.1 -0.35 

F46A9.1 -0.35 

F32A11.1 -0.35 

madf-5 -0.35 

pes-22 -0.35 

mrps-35 -0.35 

fut-8 -0.35 

F59B1.8 -0.35 

R13H9.6 -0.35 

lap-1 -0.35 

mrpl-36 -0.35 

mec-12 -0.35 

Y71H10B.1 -0.35 

vha-10 -0.35 

C08F11.12 -0.35 

rpl-11.1 -0.35 

gld-2 -0.35 

T08B2.12 -0.35 

R09B3.3 -0.35 

smn-1 -0.35 

pgp-3 -0.35 

K01C8.7 -0.35 

C11E4.7 -0.35 

mdt-20 -0.35 

C49H3.4 -0.35 

Gene 
Name 

log2 
Fold 

Y54E5A.5 -0.35 

sel-9 -0.35 

C17E4.11 -0.35 

K07G5.6 -0.36 

Y73B6BL.3
1 

-0.36 

ttr-41 -0.36 

vha-14 -0.36 

C50F2.5 -0.36 

F22H10.3 -0.36 

clec-170 -0.36 

F26E4.6 -0.36 

cysl-3 -0.36 

F45F2.9 -0.36 

D1054.3 -0.36 

col-131 -0.36 

F55F3.2 -0.36 

rpl-23 -0.36 

F15B9.8 -0.36 

H28O16.1 -0.36 

Y38A10A.2 -0.36 

prdx-2 -0.36 

ucr-1 -0.36 

Y49E10.18 -0.36 

K01A2.5 -0.36 

ooc-5 -0.36 

F16B3.3 -0.36 

F10A3.17 -0.36 

B0286.3 -0.36 

rnf-5 -0.36 

F48D6.4 -0.36 

F20H11.4 -0.36 

let-23 -0.36 

W02D9.4 -0.36 

ttr-31 -0.36 

lap-2 -0.36 

tnt-2 -0.36 

B0491.5 -0.36 

atf-5 -0.36 

F55A3.2 -0.36 

F55G11.4 -0.36 

ctl-1 -0.36 
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Gene 
Name 

log2 
Fold 

heh-1 -0.36 

C06G1.1 -0.36 

C41H7.1 -0.36 

mnat-1 -0.36 

C41D11.9 -0.36 

Y48G1C.6 -0.36 

E03H12.7 -0.36 

immt-1 -0.36 

C47A4.1 -0.36 

sir-2.1 -0.37 

Y39B6A.1 -0.37 

got-1.2 -0.37 

ril-1 -0.37 

F44E2.10 -0.37 

R07B7.8 -0.37 

C16A11.7 -0.37 

F13D12.5 -0.37 

F28C6.8 -0.37 

fbxa-64 -0.37 

trx-3 -0.37 

mans-2 -0.37 

fbxc-47 -0.37 

sfxn-2 -0.37 

Y53C12A.3 -0.37 

xbp-1 -0.37 

cyp-37B1 -0.37 

F15G9.1 -0.37 

kin-5 -0.37 

ned-8 -0.37 

Y50D4A.5 -0.37 

K11G12.5 -0.37 

nhr-210 -0.37 

Y51H1A.3 -0.37 

tag-321 -0.37 

mrps-18B -0.37 

gna-1 -0.37 

C41D11.5 -0.37 

pcp-3 -0.37 

F21D5.5 -0.37 

F33H2.6 -0.37 

hut-1 -0.37 

ivd-1 -0.37 

Gene 
Name 

log2 
Fold 

T20D3.2 -0.37 

atg-16.1 -0.37 

Y17D7B.4 -0.37 

T15B12.1 -0.37 

B0250.5 -0.37 

hpo-34 -0.37 

F10D11.6 -0.37 

nhr-256 -0.37 

K10D11.5 -0.37 

T04F3.3 -0.37 

K09C6.7 -0.37 

Y110A7A.6 -0.37 

nhr-100 -0.37 

ptr-14 -0.37 

C28A5.6 -0.37 

cep-1 -0.37 

sqt-2 -0.37 

K01C8.1 -0.37 

M28.5 -0.37 

ZK856.5 -0.37 

T23B12.11 -0.37 

C33H5.17 -0.37 

Y4C6B.7 -0.37 

T23F6.3 -0.37 

F36H12.9 -0.37 

pfn-2 -0.37 

pamn-1 -0.37 

F36D4.2 -0.37 

swt-7 -0.38 

F15D3.7 -0.38 

T13G4.4 -0.38 

F09E5.14 -0.38 

F33D11.10 -0.38 

C34B2.10 -0.38 

ath-1 -0.38 

F09E5.2 -0.38 

ZK637.2 -0.38 

C05C8.1 -0.38 

ZK1320.11 -0.38 

T28A8.5 -0.38 

F56C11.6 -0.38 

fard-1 -0.38 

Gene 
Name 

log2 
Fold 

K06H7.2 -0.38 

cpi-2 -0.38 

asp-5 -0.38 

K01D12.7 -0.38 

C35D10.13 -0.38 

F26G1.5 -0.38 

F53A2.7 -0.38 

F20G2.2 -0.38 

T16G12.8 -0.38 

chch-3 -0.38 

Y71H2AR.
1 

-0.38 

C14F11.4 -0.38 

fbxa-206 -0.38 

F25B4.7 -0.38 

C30F8.3 -0.38 

F42A9.8 -0.38 

tni-1 -0.38 

pdhb-1 -0.38 

Y60A3A.14 -0.38 

C18E9.2 -0.38 

K11D9.3 -0.38 

dad-1 -0.38 

F41C3.11 -0.38 

hsp-60 -0.38 

Y54G2A.5
2 

-0.38 

F40F9.5 -0.38 

F21D5.7 -0.38 

nduf-5 -0.38 

josd-1 -0.38 

Y76B12C.3 -0.38 

T19C4.5 -0.38 

syx-7 -0.38 

Y37E11AM
.3 

-0.38 

tram-1 -0.38 

C26D10.6 -0.38 

Y25C1A.13 -0.38 

ZK795.2 -0.38 

ZK287.7 -0.38 

nkat-3 -0.39 

C45B2.2 -0.39 

Gene 
Name 

log2 
Fold 

msp-71 -0.39 

rpb-9 -0.39 

atp-5 -0.39 

C17G10.7 -0.39 

K09H9.8 -0.39 

Y25C1A.14 -0.39 

K11G9.2 -0.39 

M01A8.2 -0.39 

gst-7 -0.39 

cpt-6 -0.39 

sqt-1 -0.39 

rpl-12 -0.39 

abu-12 -0.39 

C48B4.8 -0.39 

K10C2.1 -0.39 

fbxa-211 -0.39 

C34B2.8 -0.39 

C44C10.11 -0.39 

rps-22 -0.39 

Y16B4A.2 -0.39 

R53.4 -0.39 

C51E3.6 -0.39 

bath-5 -0.39 

stc-1 -0.39 

C01H6.6 -0.39 

F14H3.12 -0.39 

F25H8.1 -0.39 

R107.5 -0.39 

col-145 -0.39 

D1046.2 -0.39 

tag-260 -0.39 

toc-1 -0.39 

rpb-4 -0.39 

dhs-20 -0.39 

C10C5.3 -0.39 

F46G10.4 -0.39 

C56G2.3 -0.39 

Y67H2A.5 -0.39 

B0280.11 -0.39 

F59E11.5 -0.39 

Y37B11A.3 -0.39 

C15B12.1 -0.39 
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Gene 
Name 

log2 
Fold 

F08A8.2 -0.39 

nstp-1 -0.39 

vha-4 -0.39 

glna-3 -0.39 

idh-1 -0.39 

F10E7.5 -0.39 

ttr-34 -0.39 

C26F1.3 -0.39 

fkb-5 -0.39 

ric-4 -0.39 

nhr-13 -0.39 

rpl-15 -0.40 

C25H3.10 -0.40 

fbxa-167 -0.40 

T04B8.5 -0.40 

F14D2.11 -0.40 

ZC477.3 -0.40 

lin-44 -0.40 

snx-27 -0.40 

Y50D4B.3 -0.40 

M88.7 -0.40 

sptl-1 -0.40 

vha-15 -0.40 

W03C9.5 -0.40 

C18G1.9 -0.40 

tag-344 -0.40 

lbp-3 -0.40 

C27F2.4 -0.40 

F28C1.3 -0.40 

C34E7.4 -0.40 

F40G9.17 -0.40 

hhat-1 -0.40 

C25F6.1 -0.40 

F08G5.3 -0.40 

snu-23 -0.40 

vha-17 -0.40 

T09B4.8 -0.40 

cyc-1 -0.40 

col-113 -0.40 

dnj-12 -0.40 

pfd-2 -0.40 

Y95B8A.2 -0.40 

Gene 
Name 

log2 
Fold 

B0280.13 -0.40 

nhr-115 -0.40 

cyp-37A1 -0.40 

osr-1 -0.40 

acl-13 -0.40 

dif-1 -0.40 

sec-10 -0.40 

cutl-26 -0.40 

F55F8.3 -0.40 

dhp-1 -0.40 

gly-19 -0.40 

cpr-1 -0.40 

stl-1 -0.40 

gst-27 -0.40 

T01D3.6 -0.40 

fbxa-80 -0.40 

cpin-1 -0.40 

C28D4.4 -0.41 

vha-8 -0.41 

C14C6.5 -0.41 

ZK1098.3 -0.41 

T06A4.3 -0.41 

Y69E1A.5 -0.41 

F20D1.1 -0.41 

sfxn-1.5 -0.41 

icln-1 -0.41 

F32B6.10 -0.41 

F25H5.7 -0.41 

C30B5.4 -0.41 

F37H8.3 -0.41 

EEED8.16 -0.41 

emb-8 -0.41 

C37A2.7 -0.41 

exos-9 -0.41 

cyp-33C9 -0.41 

F40F12.3 -0.41 

memb-2 -0.41 

rpoa-12 -0.41 

inx-16 -0.41 

ZK550.6 -0.41 

mans-3 -0.41 

tag-170 -0.41 

Gene 
Name 

log2 
Fold 

T01H8.2 -0.41 

R07E5.4 -0.41 

ZK180.6 -0.41 

C17H12.3 -0.41 

jmjd-5 -0.41 

mfap-1 -0.41 

C48B4.11 -0.41 

C27F2.9 -0.41 

T01H10.8 -0.41 

AC3.5 -0.41 

apc-10 -0.41 

K11H12.1 -0.41 

K11H12.4 -0.41 

K10D6.2 -0.41 

C34D4.3 -0.41 

K07A1.5 -0.41 

erd-2 -0.41 

T20H4.5 -0.41 

btb-4 -0.41 

C01B10.9 -0.41 

F54D5.16 -0.41 

sucl-2 -0.41 

D2030.11 -0.41 

crn-7 -0.41 

col-172 -0.41 

W03F8.3 -0.41 

msd-2 -0.41 

F45H10.2 -0.41 

C54C6.6 -0.41 

ram-2 -0.42 

C24A3.2 -0.42 

dhhc-14 -0.42 

drr-1 -0.42 

ubc-7 -0.42 

ZK1320.7 -0.42 

eif-3.F -0.42 

gbh-1 -0.42 

cdr-7 -0.42 

D2030.2 -0.42 

ZK546.2 -0.42 

Y57G11C.
22 

-0.42 

Gene 
Name 

log2 
Fold 

lab-1 -0.42 

elt-7 -0.42 

smg-5 -0.42 

Y49F6C.8 -0.42 

col-141 -0.42 

B0416.5 -0.42 

F14D2.8 -0.42 

F54H5.2 -0.42 

ucr-2.1 -0.42 

fbxa-193 -0.42 

nhx-9 -0.42 

R03E1.2 -0.42 

kmo-1 -0.42 

pqbp-1.1 -0.42 

mpz-4 -0.42 

C48B6.10 -0.42 

mrpl-16 -0.42 

aat-6 -0.42 

Y111B2A.1
3 

-0.42 

B0310.2 -0.42 

set-1 -0.42 

nmgp-1 -0.42 

F13B6.2 -0.42 

ZK593.3 -0.42 

D2030.4 -0.42 

D2023.4 -0.42 

F37B4.10 -0.42 

F02A9.4 -0.42 

F22F7.1 -0.42 

asb-2 -0.42 

lron-8 -0.42 

msp-113 -0.42 

tps-2 -0.42 

col-58 -0.42 

pgl-2 -0.42 

arl-1 -0.42 

Y38F2AR.
12 

-0.42 

C44H9.6 -0.42 

spo-7 -0.42 

C45G9.5 -0.42 
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Gene 
Name 

log2 
Fold 

D1007.4 -0.42 

Y62F5A.12 -0.42 

hsp-16.11 -0.42 

R151.2 -0.43 

nhr-96 -0.43 

Y67D2.5 -0.43 

K05C4.5 -0.43 

Y17D7C.3 -0.43 

gst-36 -0.43 

nhr-204 -0.43 

Y53G8AL.
2 

-0.43 

F41C3.5 -0.43 

sox-2 -0.43 

R02D3.1 -0.43 

aly-3 -0.43 

lipl-5 -0.43 

Y119C1B.1
0 

-0.43 

sut-1 -0.43 

tag-280 -0.43 

ugt-28 -0.43 

F18C12.3 -0.43 

F59C6.16 -0.43 

nhr-108 -0.43 

mrpl-12 -0.43 

C44F1.1 -0.43 

F56C9.8 -0.43 

mrpl-11 -0.43 

Y39B6A.13 -0.43 

acn-1 -0.43 

nhr-58 -0.43 

C43H6.3 -0.43 

adt-1 -0.43 

dpy-5 -0.43 

ech-4 -0.43 

cpt-2 -0.43 

asp-4 -0.43 

add-2 -0.43 

dnj-2 -0.43 

nhr-228 -0.43 

F48C1.5 -0.43 

Gene 
Name 

log2 
Fold 

henn-1 -0.43 

ZK354.6 -0.43 

rpl-27 -0.43 

fut-1 -0.43 

nuo-2 -0.43 

ZK1058.5 -0.43 

F22D6.9 -0.43 

F09F9.2 -0.44 

B0495.9 -0.44 

B0334.4 -0.44 

Y44A6D.3 -0.44 

F55B11.4 -0.44 

fbxa-14 -0.44 

T25B9.9 -0.44 

Y41D4B.11 -0.44 

F43D2.6 -0.44 

C09H5.7 -0.44 

his-11 -0.44 

ZK1248.11 -0.44 

nhx-3 -0.44 

R05D11.4 -0.44 

snr-1 -0.44 

T13F3.8 -0.44 

csn-2 -0.44 

ceeh-1 -0.44 

F26B1.8 -0.44 

T12B3.2 -0.44 

gsr-1 -0.44 

aman-1 -0.44 

F28F5.6 -0.44 

dnj-22 -0.44 

M02B7.7 -0.44 

cyp-13A2 -0.44 

Y56A3A.19 -0.44 

pbo-1 -0.44 

F21D9.2 -0.44 

R151.6 -0.44 

agt-1 -0.44 

T21G5.1 -0.44 

hrg-1 -0.44 

Y53G8AR.
9 

-0.44 

Gene 
Name 

log2 
Fold 

phb-2 -0.44 

vhl-1 -0.44 

nhr-184 -0.44 

F42G8.10 -0.44 

Y67D2.3 -0.44 

B0285.4 -0.44 

F53B2.5 -0.44 

ZK792.1 -0.44 

nlp-4 -0.44 

Y51A2D.14 -0.44 

Y57G11C.
42 

-0.44 

gska-3 -0.44 

alh-11 -0.44 

F29C4.2 -0.44 

Y47H10A.4 -0.44 

rhr-1 -0.44 

ragc-1 -0.45 

F32B6.3 -0.45 

moag-4 -0.45 

ugt-50 -0.45 

C30H6.5 -0.45 

C30H6.8 -0.45 

sur-5 -0.45 

C27C12.4 -0.45 

W03A5.2 -0.45 

unc-62 -0.45 

F23D12.11 -0.45 

men-1 -0.45 

ehbp-1 -0.45 

catp-5 -0.45 

smd-1 -0.45 

tag-320 -0.45 

inx-15 -0.45 

erv-46 -0.45 

cyn-5 -0.45 

cyn-12 -0.45 

Y47D7A.13 -0.45 

qdpr-1 -0.45 

gipc-1 -0.45 

trx-4 -0.45 

nhr-143 -0.45 

Gene 
Name 

log2 
Fold 

ZK1248.19 -0.45 

tag-146 -0.45 

pas-2 -0.45 

T09A5.5 -0.45 

C23H3.5 -0.45 

R09E10.6 -0.45 

K11B4.2 -0.45 

best-14 -0.45 

Y105C5B.5 -0.45 

atad-3 -0.45 

B0035.15 -0.45 

tatn-1 -0.45 

haf-6 -0.45 

ncx-7 -0.45 

dhs-6 -0.45 

Y73B6BL.4
4 

-0.45 

F32B5.6 -0.45 

C31H2.4 -0.45 

B0238.11 -0.45 

Y60A3A.9 -0.45 

Y22D7AL.1
0 

-0.45 

nhr-98 -0.45 

scav-1 -0.46 

mam-3 -0.46 

M153.1 -0.46 

ifb-1 -0.46 

msd-3 -0.46 

R10D12.8 -0.46 

rbx-1 -0.46 

K08C9.2 -0.46 

plc-3 -0.46 

col-65 -0.46 

K08H2.10 -0.46 

C55B7.3 -0.46 

rsp-6 -0.46 

F55B11.1 -0.46 

hgo-1 -0.46 

nol-5 -0.46 

C01A2.3 -0.46 

rmd-3 -0.46 
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Gene 
Name 

log2 
Fold 

Y47G6A.3
3 

-0.46 

amt-4 -0.46 

Y11D7A.9 -0.46 

F11E6.8 -0.46 

ugt-61 -0.46 

col-173 -0.46 

Y7A9C.1 -0.46 

nlp-27 -0.46 

F25E2.2 -0.46 

T27A3.5 -0.46 

lsm-6 -0.46 

lgc-44 -0.46 

nlp-17 -0.46 

aex-6 -0.46 

R10D12.13 -0.46 

F25B5.3 -0.46 

F20D6.6 -0.46 

C28H8.14 -0.46 

nhr-55 -0.46 

gdh-1 -0.46 

C18B12.6 -0.46 

msd-1 -0.46 

rpb-7 -0.46 

R07B1.13 -0.46 

T06A1.5 -0.46 

Y45F3A.1 -0.46 

math-35 -0.46 

oxy-5 -0.46 

R12C12.1 -0.46 

C06G3.8 -0.46 

pcm-1 -0.46 

ras-2 -0.46 

C50D2.3 -0.46 

B0393.9 -0.47 

hsp-12.1 -0.47 

M01H9.4 -0.47 

mrps-12 -0.47 

ant-1.4 -0.47 

C33E10.4 -0.47 

ugt-29 -0.47 

F30A10.9 -0.47 

Gene 
Name 

log2 
Fold 

C01G5.3 -0.47 

T20B12.1 -0.47 

mrps-2 -0.47 

F49E2.1 -0.47 

F42F12.4 -0.47 

lbp-2 -0.47 

F11F1.6 -0.47 

ZK1248.13 -0.47 

C15C6.1 -0.47 

ZK792.7 -0.47 

F33D4.5 -0.47 

acs-12 -0.47 

T21G5.4 -0.47 

ceh-88 -0.47 

dct-9 -0.47 

F25H9.7 -0.47 

ech-8 -0.47 

fmo-5 -0.47 

nhr-78 -0.47 

ahcy-1 -0.47 

C44E4.4 -0.47 

vha-11 -0.47 

rpc-25 -0.47 

msp-53 -0.47 

pbs-4 -0.47 

K08D8.6 -0.47 

H23N18.5 -0.47 

R04A9.6 -0.47 

gfl-1 -0.47 

C01A2.5 -0.48 

ttr-8 -0.48 

ZK1025.3 -0.48 

F55C5.2 -0.48 

ads-1 -0.48 

snr-4 -0.48 

C02F5.5 -0.48 

mpst-4 -0.48 

F33G12.7 -0.48 

F32D8.4 -0.48 

F57C2.5 -0.48 

Y105C5B.9 -0.48 

ZK512.4 -0.48 

Gene 
Name 

log2 
Fold 

ZC434.3 -0.48 

K10C9.7 -0.48 

K07H8.10 -0.48 

hst-2 -0.48 

ttr-17 -0.48 

flap-1 -0.48 

C03H12.1 -0.48 

set-22 -0.48 

lpd-9 -0.48 

ccch-3 -0.48 

C47E12.7 -0.48 

F54H5.5 -0.48 

syp-3 -0.48 

C34C12.6 -0.48 

F08F8.4 -0.48 

Y17G7B.1
2 

-0.48 

nuo-1 -0.48 

W04B5.2 -0.48 

asg-1 -0.48 

chn-1 -0.48 

F26E4.3 -0.48 

C55B7.11 -0.48 

math-26 -0.48 

C13C4.4 -0.48 

ZK856.8 -0.48 

C26B2.2 -0.48 

T09B4.4 -0.48 

Y34B4A.7 -0.48 

T26E3.4 -0.48 

bus-4 -0.48 

faah-2 -0.48 

ger-1 -0.48 

taf-13 -0.48 

C14A6.13 -0.48 

K12B6.11 -0.48 

C14C10.6 -0.49 

Y97E10AL.
3 

-0.49 

C18A3.3 -0.49 

F28B4.3 -0.49 

his-15 -0.49 

Gene 
Name 

log2 
Fold 

aps-1 -0.49 

ddo-1 -0.49 

Y51H7C.1
3 

-0.49 

T23F2.5 -0.49 

hpo-19 -0.49 

lsm-1 -0.49 

R05G6.10 -0.49 

Y71F9AL.1
2 

-0.49 

F19B10.2 -0.49 

F25F8.1 -0.49 

Y26E6A.3 -0.49 

F33D11.2 -0.49 

dpy-4 -0.49 

mrps-15 -0.49 

R11A8.5 -0.49 

apy-1 -0.49 

clec-258 -0.49 

vha-2 -0.49 

Y44A6D.5 -0.49 

F27D4.1 -0.49 

Y71G12B.
27 

-0.49 

gss-1 -0.49 

asg-2 -0.49 

mrpl-9 -0.49 

ges-1 -0.49 

Y22D7AR.
10 

-0.49 

acdh-11 -0.49 

T14F9.2 -0.49 

cpg-9 -0.49 

ZK596.2 -0.49 

mec-7 -0.49 

bra-2 -0.49 

pir-1 -0.49 

daf-36 -0.49 

C54E4.2 -0.49 

F55F8.2 -0.49 

Y54F10AM
.8 

-0.49 

nhr-101 -0.49 
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Gene 
Name 

log2 
Fold 

math-3 -0.49 

Y73C8B.3 -0.49 

C54G4.2 -0.49 

F42G4.6 -0.50 

C55A6.12 -0.50 

F49C12.12 -0.50 

E01B7.2 -0.50 

T22C8.3 -0.50 

dhfr-1 -0.50 

F29B9.11 -0.50 

F53E10.6 -0.50 

Y47G6A.1
9 

-0.50 

F35H8.2 -0.50 

kat-1 -0.50 

gst-26 -0.50 

T02G5.7 -0.50 

fib-1 -0.50 

cgt-2 -0.50 

F59A6.2 -0.50 

F36H12.4 -0.50 

E04D5.5 -0.50 

F52H2.3 -0.50 

dnj-7 -0.50 

C05G5.1 -0.50 

F42A8.1 -0.50 

T15H9.2 -0.50 

nhr-134 -0.50 

dnj-3 -0.50 

clec-227 -0.50 

C36B7.6 -0.50 

K02D10.4 -0.50 

gln-3 -0.50 

B0272.3 -0.50 

C25G4.3 -0.50 

msp-51 -0.50 

F49E7.2 -0.50 

ttr-24 -0.50 

F10D11.3 -0.50 

clec-49 -0.50 

D1044.1 -0.50 

T20D3.3 -0.50 

Gene 
Name 

log2 
Fold 

art-1 -0.50 

C25H3.9 -0.50 

Y37F4.1 -0.50 

Y54F10AM
.5 

-0.50 

aqp-4 -0.50 

F53E10.1 -0.50 

hyl-2 -0.50 

F26B1.5 -0.50 

nlp-40 -0.50 

fbxa-216 -0.50 

F35H10.6 -0.50 

ech-5 -0.51 

ZC239.17 -0.51 

C23G10.7 -0.51 

his-26 -0.51 

F58E6.13 -0.51 

nhr-126 -0.51 

dhhc-12 -0.51 

F37A4.2 -0.51 

tag-124 -0.51 

M02F4.3 -0.51 

F37F2.2 -0.51 

R03D7.2 -0.51 

far-5 -0.51 

nhr-151 -0.51 

EEED8.3 -0.51 

mam-1 -0.51 

spe-4 -0.51 

ZK418.8 -0.51 

rps-15 -0.51 

F52H2.5 -0.51 

F41F3.8 -0.51 

F36G9.3 -0.51 

clec-84 -0.51 

vha-1 -0.51 

lips-7 -0.51 

D2092.1 -0.51 

C06A6.2 -0.51 

wrt-5 -0.51 

nhr-8 -0.51 

che-14 -0.51 

Gene 
Name 

log2 
Fold 

F39H11.1 -0.51 

bus-8 -0.51 

Y113G7B.
12 

-0.51 

C28G1.6 -0.51 

suca-1 -0.51 

Y37E11B.6 -0.51 

F55H2.7 -0.51 

Y59E9AL.6 -0.51 

C27D8.3 -0.51 

grd-5 -0.51 

gst-1 -0.51 

Y71H2B.11 -0.51 

Y39E4B.6 -0.51 

acdh-8 -0.51 

F09E5.3 -0.51 

C48B6.2 -0.51 

F55C12.4 -0.52 

mtss-1 -0.52 

F23C8.5 -0.52 

odd-1 -0.52 

rnp-2 -0.52 

R09H10.5 -0.52 

hsp-1 -0.52 

ZK287.9 -0.52 

hst-6 -0.52 

C06E2.1 -0.52 

fbxa-197 -0.52 

cpi-1 -0.52 

C08B6.11 -0.52 

B0252.1 -0.52 

col-174 -0.52 

ethe-1 -0.52 

C53D6.6 -0.52 

gstk-2 -0.52 

W02F12.2 -0.52 

mel-32 -0.52 

spd-3 -0.52 

tag-297 -0.52 

D1086.17 -0.52 

hke-4.2 -0.52 

R02F2.9 -0.52 

Gene 
Name 

log2 
Fold 

T19C3.2 -0.52 

dpy-13 -0.52 

snr-6 -0.52 

C14A4.6 -0.52 

C48B4.10 -0.52 

del-6 -0.52 

eef-1B.2 -0.52 

C02E7.6 -0.52 

K07H8.5 -0.52 

F57B10.14 -0.52 

C46A5.1 -0.52 

F54D7.7 -0.52 

clec-57 -0.52 

C35A5.6 -0.52 

cco-2 -0.52 

vha-13 -0.52 

Y71F9B.9 -0.52 

ZK1236.5 -0.52 

F55H12.3 -0.52 

ugt-41 -0.52 

asns-2 -0.52 

ets-9 -0.52 

ugt-39 -0.52 

nstp-2 -0.52 

K08F4.5 -0.52 

T12G3.6 -0.52 

F01D4.5 -0.52 

F44F1.3 -0.52 

B0035.3 -0.53 

F53B6.7 -0.53 

daf-14 -0.53 

ttr-47 -0.53 

C10H11.7 -0.53 

ZC204.14 -0.53 

mif-2 -0.53 

dlc-2 -0.53 

R05D11.5 -0.53 

F25H9.2 -0.53 

wrt-6 -0.53 

clec-85 -0.53 

bah-1 -0.53 

C49F5.7 -0.53 
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Gene 
Name 

log2 
Fold 

pmp-1 -0.53 

T07A9.15 -0.53 

nhr-144 -0.53 

F38B6.4 -0.53 

sucl-1 -0.53 

fshr-1 -0.53 

vha-19 -0.53 

C04E6.7 -0.53 

D1053.4 -0.53 

W03D8.5 -0.53 

T03F7.7 -0.53 

har-1 -0.53 

Y53C12A.6 -0.53 

T20F10.2 -0.53 

pept-2 -0.53 

chp-1 -0.53 

F57B10.8 -0.53 

cpr-5 -0.53 

K06H7.7 -0.53 

R04F11.2 -0.53 

mutd-1 -0.53 

cey-3 -0.53 

C37H5.2 -0.53 

Y63D3A.7 -0.53 

R10H10.6 -0.53 

nspa-5 -0.53 

ptr-21 -0.53 

ugt-1 -0.53 

gpx-2 -0.53 

npa-1 -0.53 

H12D21.10 -0.53 

msp-65 -0.53 

rpl-39 -0.53 

C35D10.17 -0.53 

ttr-3 -0.53 

lon-3 -0.53 

F54C9.3 -0.53 

T25B9.4 -0.53 

F13A7.7 -0.53 

Y7A9A.79 -0.53 

nhx-4 -0.54 

rla-2 -0.54 

Gene 
Name 

log2 
Fold 

Y57A10A.2
3 

-0.54 

C46H11.6 -0.54 

blos-4 -0.54 

R09F10.5 -0.54 

R10E4.3 -0.54 

F55G1.9 -0.54 

ZK563.5 -0.54 

cgr-1 -0.54 

cut-2 -0.54 

R12C12.7 -0.54 

lact-8 -0.54 

C04F12.6 -0.54 

ZK970.8 -0.54 

C15H7.3 -0.54 

C47E12.11 -0.54 

F45H11.8 -0.54 

T07D3.9 -0.54 

C55A6.6 -0.54 

F39H2.3 -0.54 

C17F4.7 -0.54 

glrx-10 -0.54 

sulp-4 -0.54 

Y116A8C.3
0 

-0.54 

gspd-1 -0.54 

C34E10.10 -0.54 

sss-1 -0.54 

C43E11.5 -0.54 

C08B6.8 -0.54 

nuo-4 -0.54 

T19B4.3 -0.54 

R144.12 -0.54 

T14B4.2 -0.54 

T15H9.5 -0.54 

pas-5 -0.54 

F21C3.6 -0.54 

cex-1 -0.54 

K09E2.3 -0.54 

F53F4.10 -0.54 

rnh-1.2 -0.54 

C17E4.20 -0.54 

Gene 
Name 

log2 
Fold 

apc-11 -0.54 

C09D4.3 -0.54 

ZK105.1 -0.54 

Y60A3A.25 -0.55 

C16C8.16 -0.55 

ddo-3 -0.55 

C09D4.1 -0.55 

fbxa-189 -0.55 

C44C10.3 -0.55 

glna-2 -0.55 

F22D6.8 -0.55 

R07E5.11 -0.55 

mboa-7 -0.55 

T14B4.3 -0.55 

pho-11 -0.55 

twk-26 -0.55 

nhr-92 -0.55 

C06C3.10 -0.55 

F42G8.8 -0.55 

Y53C12A.1
1 

-0.55 

nspa-4 -0.55 

gad-3 -0.55 

asm-1 -0.55 

col-153 -0.55 

F21A3.5 -0.55 

K12H4.5 -0.55 

F42H10.2 -0.55 

Y54G2A.4
9 

-0.55 

Y47G6A.1
5 

-0.55 

acl-5 -0.55 

Y71F9AL.9 -0.55 

pgrn-1 -0.55 

cnc-8 -0.55 

R05G6.7 -0.55 

pqn-74 -0.55 

lec-10 -0.55 

F10D2.10 -0.56 

twk-25 -0.56 

nhr-59 -0.56 

K07F5.16 -0.56 

Gene 
Name 

log2 
Fold 

vha-16 -0.56 

aps-3 -0.56 

frh-1 -0.56 

ttr-12 -0.56 

eif-1.A -0.56 

cut-4 -0.56 

K12C11.3 -0.56 

C36B1.14 -0.56 

K08C7.7 -0.56 

T22C8.6 -0.56 

ZK688.11 -0.56 

F54F3.4 -0.56 

mrps-21 -0.56 

dlc-1 -0.56 

F58D5.2 -0.56 

mrps-26 -0.56 

acdh-12 -0.56 

F55A4.8 -0.56 

dpm-1 -0.56 

iftb-1 -0.56 

mccc-1 -0.56 

K06A4.7 -0.56 

C35D10.8 -0.56 

nhr-153 -0.56 

T23C6.4 -0.56 

fipr-21 -0.56 

app-1 -0.56 

K09G1.1 -0.56 

C55F2.1 -0.56 

F10C1.3 -0.56 

nucb-1 -0.56 

C03A7.2 -0.56 

ZK546.14 -0.56 

cdk-4 -0.56 

wrt-1 -0.56 

ceh-79 -0.56 

rps-2 -0.56 

MTCE.31 -0.56 

ZK686.1 -0.56 

T02B11.9 -0.56 

glrx-22 -0.56 

nuo-6 -0.56 
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Gene 
Name 

log2 
Fold 

K02E10.6 -0.56 

Y39A1A.14 -0.56 

ncs-3 -0.56 

col-130 -0.56 

F26F4.8 -0.56 

gas-1 -0.56 

col-48 -0.57 

ZK896.5 -0.57 

ZK809.8 -0.57 

ifa-1 -0.57 

M04C9.1 -0.57 

gst-42 -0.57 

K08D12.3 -0.57 

AH6.3 -0.57 

H41C03.3 -0.57 

F08G12.3 -0.57 

nhr-109 -0.57 

lpd-5 -0.57 

C16C10.4 -0.57 

daf-22 -0.57 

ttr-30 -0.57 

EEED8.13 -0.57 

C50F4.4 -0.57 

tag-234 -0.57 

T21H3.1 -0.57 

F17C11.6 -0.57 

D1086.5 -0.57 

ctb-1 -0.57 

clec-10 -0.57 

R08C7.8 -0.57 

F30A10.2 -0.57 

C48B6.4 -0.57 

C01H6.4 -0.57 

kqt-3 -0.57 

K04C1.5 -0.57 

F58B3.4 -0.57 

F56F4.3 -0.57 

ZK856.18 -0.57 

tre-2 -0.57 

ZK84.5 -0.57 

msp-57 -0.58 

K01D12.9 -0.58 

Gene 
Name 

log2 
Fold 

ver-2 -0.58 

W03G9.8 -0.58 

rnp-4 -0.58 

F32B4.2 -0.58 

ZK20.4 -0.58 

mrps-31 -0.58 

F14D7.6 -0.58 

acs-3 -0.58 

F36F2.1 -0.58 

vha-3 -0.58 

aos-1 -0.58 

msp-52 -0.58 

daf-5 -0.58 

F57B10.5 -0.58 

glrx-21 -0.58 

C26E6.12 -0.58 

ZC373.5 -0.58 

F49E12.12 -0.58 

aps-2 -0.58 

hil-3 -0.58 

F47E1.4 -0.58 

ugt-9 -0.58 

R08A2.2 -0.58 

ttll-15 -0.58 

F09F7.4 -0.58 

ZK1127.13 -0.58 

dnpp-1 -0.58 

Y59E9AR.
7 

-0.58 

F31E9.3 -0.58 

grl-7 -0.58 

T27A3.6 -0.58 

F10E9.5 -0.58 

hmit-1.3 -0.58 

C25H3.3 -0.58 

snr-3 -0.58 

oig-2 -0.58 

K12B6.2 -0.58 

C25A1.16 -0.59 

C14B9.10 -0.59 

C33G3.4 -0.59 

ech-3 -0.59 

Gene 
Name 

log2 
Fold 

Y71H2B.1 -0.59 

F54F7.3 -0.59 

K04G11.3 -0.59 

fbxa-202 -0.59 

urm-1 -0.59 

phf-30 -0.59 

C49A9.6 -0.59 

twk-24 -0.59 

C18E9.4 -0.59 

K08E3.10 -0.59 

msp-55 -0.59 

F56B3.11 -0.59 

ZC239.16 -0.59 

dnj-13 -0.59 

F09E5.11 -0.59 

F09G2.1 -0.59 

lpr-7 -0.59 

acp-5 -0.59 

C49A9.2 -0.59 

Y49E10.16 -0.59 

ard-1 -0.59 

Y53F4B.3 -0.59 

lbp-4 -0.59 

B0205.12 -0.59 

R07E4.3 -0.59 

Y39B6A.3 -0.59 

F57C12.6 -0.59 

T10B11.5 -0.59 

Y37A1B.5 -0.59 

K04G7.11 -0.59 

acdh-4 -0.59 

Y65B4BL.6 -0.60 

F27C1.3 -0.60 

Y44F5A.1 -0.60 

cyp-25A3 -0.60 

Y73F4A.1 -0.60 

grl-5 -0.60 

his-70 -0.60 

ZK185.5 -0.60 

nhx-2 -0.60 

nhr-177 -0.60 

nhr-36 -0.60 

Gene 
Name 

log2 
Fold 

kbp-4 -0.60 

R12C12.6 -0.60 

E02H1.6 -0.60 

nhr-232 -0.60 

Y69A2AR.
21 

-0.60 

nol-1 -0.60 

C47E8.11 -0.60 

tiar-3 -0.60 

htp-1 -0.60 

hsp-43 -0.60 

prx-11 -0.60 

Y55B1AR.
4 

-0.60 

Y95D11A.1 -0.60 

C54G4.3 -0.60 

F31F7.1 -0.60 

F37C4.4 -0.60 

W06A11.4 -0.60 

Y19D10B.6 -0.60 

B0334.3 -0.60 

F18F11.5 -0.60 

nhr-106 -0.60 

Y51A2B.6 -0.60 

T08B1.1 -0.60 

R09F10.1 -0.60 

T01G5.7 -0.60 

ZC374.2 -0.60 

best-20 -0.61 

W09G12.1
0 

-0.61 

his-25 -0.61 

C17C3.1 -0.61 

K08C9.1 -0.61 

pho-1 -0.61 

acdh-9 -0.61 

T14G8.3 -0.61 

F55C10.5 -0.61 

T06E4.5 -0.61 

Y57G7A.5 -0.61 

ZC477.2 -0.61 

T05E7.1 -0.61 

col-109 -0.61 
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Gene 
Name 

log2 
Fold 

F38A5.6 -0.61 

mrpl-50 -0.61 

Y43D4A.5 -0.61 

alh-9 -0.61 

T24C12.3 -0.61 

C14A11.6 -0.61 

ZK1225.5 -0.61 

R09B3.2 -0.61 

E01G4.6 -0.61 

bus-18 -0.61 

F16F9.4 -0.61 

mrps-7 -0.61 

psmd-9 -0.61 

K02G10.15 -0.61 

T24D3.2 -0.61 

lon-1 -0.62 

F58F12.4 -0.62 

T05B4.14 -0.62 

Y37E3.11 -0.62 

exos-3 -0.62 

F31F4.1 -0.62 

F42A9.7 -0.62 

M7.8 -0.62 

spp-16 -0.62 

R193.2 -0.62 

T10G3.3 -0.62 

F11C1.5 -0.62 

elo-6 -0.62 

F28E10.4 -0.62 

nlt-1 -0.62 

irk-3 -0.62 

set-15 -0.62 

hsp-16.1 -0.62 

F54H5.3 -0.62 

R11H6.4 -0.62 

C04F1.1 -0.62 

oac-50 -0.62 

tre-1 -0.62 

CD4.10 -0.62 

R04F11.5 -0.62 

F56D5.3 -0.62 

col-73 -0.62 

Gene 
Name 

log2 
Fold 

F55B11.2 -0.62 

M79.2 -0.62 

grd-14 -0.62 

etf-1 -0.62 

F02E9.3 -0.62 

Y75B8A.31 -0.62 

col-14 -0.62 

R09D1.11 -0.62 

C47B2.2 -0.63 

F09E5.8 -0.63 

nlp-47 -0.63 

ugt-44 -0.63 

M01B2.13 -0.63 

B0281.4 -0.63 

C35D10.10 -0.63 

coq-5 -0.63 

F56C4.4 -0.63 

F37C4.6 -0.63 

Y62E10A.2 -0.63 

aco-1 -0.63 

C04F12.16 -0.63 

C55C2.4 -0.63 

fbxa-196 -0.63 

nas-7 -0.63 

smp-2 -0.63 

acs-7 -0.63 

Y39A3CL.3 -0.63 

ZK1127.5 -0.63 

ugt-33 -0.63 

F56A8.4 -0.63 

tkt-1 -0.64 

sulp-7 -0.64 

ZK84.2 -0.64 

C30B5.6 -0.64 

F56F10.1 -0.64 

T08G11.2 -0.64 

F41F3.3 -0.64 

Y47D7A.16 -0.64 

ZK180.5 -0.64 

F49D11.6 -0.64 

T21C9.6 -0.64 

dhs-7 -0.64 

Gene 
Name 

log2 
Fold 

ZK669.4 -0.64 

T10F2.2 -0.64 

cyc-2.2 -0.64 

hsp-3 -0.64 

gon-2 -0.64 

F22E5.1 -0.64 

dpm-3 -0.64 

zip-12 -0.64 

T28B8.6 -0.64 

D1014.4 -0.64 

Y48G1C.1
3 

-0.64 

aex-1 -0.64 

fbxc-32 -0.64 

rpl-22 -0.64 

W06D11.3 -0.64 

F45H11.5 -0.64 

twk-46 -0.64 

Y66D12A.1
3 

-0.64 

K08D8.5 -0.64 

faah-3 -0.64 

mdt-11 -0.64 

C15F1.1 -0.64 

repo-1 -0.65 

C43E11.9 -0.65 

T05C12.1 -0.65 

col-104 -0.65 

F23F1.6 -0.65 

prx-5 -0.65 

K04G2.7 -0.65 

ubxn-5 -0.65 

ent-4 -0.65 

cdo-1 -0.65 

gst-12 -0.65 

col-175 -0.65 

asp-6 -0.65 

mrps-24 -0.65 

C07E3.9 -0.65 

F58A6.5 -0.65 

rhr-2 -0.65 

gst-6 -0.65 

Gene 
Name 

log2 
Fold 

ucr-2.2 -0.65 

acs-5 -0.65 

ptr-24 -0.65 

ZC123.1 -0.65 

npr-20 -0.65 

C02E7.7 -0.65 

nlp-29 -0.65 

his-13 -0.65 

F34D10.9 -0.65 

perm-2 -0.65 

fip-5 -0.65 

math-32 -0.65 

nhr-107 -0.65 

Y34B4A.5 -0.65 

chhy-1 -0.65 

fip-6 -0.65 

C04E6.5 -0.65 

K02A6.3 -0.65 

ddp-1 -0.65 

nhr-16 -0.65 

F19G12.9 -0.65 

Y43F8B.23 -0.65 

F26G1.11 -0.65 

pdi-2 -0.65 

F58F9.7 -0.65 

C05C10.3 -0.66 

Y48G10A.
6 

-0.66 

C41G11.1 -0.66 

try-7 -0.66 

F36H5.14 -0.66 

ZK795.3 -0.66 

C08F11.10 -0.66 

F53A9.2 -0.66 

nex-3 -0.66 

C55A6.11 -0.66 

D1007.15 -0.66 

T09A5.7 -0.66 

col-91 -0.66 

F57F4.4 -0.66 

B0207.7 -0.66 

R53.2 -0.66 
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Gene 
Name 

log2 
Fold 

Y39B6A.7 -0.66 

lys-1 -0.66 

M05B5.4 -0.66 

F58D5.6 -0.66 

ttr-48 -0.66 

T19H5.6 -0.66 

F10G8.2 -0.66 

ZK84.1 -0.66 

Y105E8B.7 -0.66 

B0496.1 -0.66 

C06H5.6 -0.66 

K10D2.5 -0.66 

nlp-24 -0.66 

K09A11.1 -0.66 

his-42 -0.66 

Y75B8A.4 -0.66 

F59D12.5 -0.66 

cuc-1 -0.66 

ZC190.8 -0.67 

Y58A7A.1 -0.67 

mrpl-24 -0.67 

sfxn-1.3 -0.67 

ttr-44 -0.67 

fbxa-70 -0.67 

F25H5.8 -0.67 

C04G2.5 -0.67 

lpd-8 -0.67 

W01B11.6 -0.67 

F20G2.7 -0.67 

K07C11.7 -0.67 

vha-6 -0.67 

T05F1.13 -0.67 

C39B5.5 -0.67 

Y57A10A.3 -0.67 

mrp-3 -0.67 

gpa-7 -0.67 

tsp-10 -0.67 

F58H1.8 -0.67 

ugt-23 -0.67 

C28D4.8 -0.67 

Y105C5B.1
8 

-0.67 

Gene 
Name 

log2 
Fold 

decr-1.1 -0.67 

F36A4.5 -0.67 

nhr-220 -0.67 

F01G10.9 -0.67 

ugt-21 -0.67 

F10E9.12 -0.67 

C07H4.1 -0.67 

gst-35 -0.67 

ctl-2 -0.67 

ZK809.9 -0.67 

mai-2 -0.67 

Y6G8.2 -0.67 

C34B2.9 -0.67 

C25E10.8 -0.67 

elo-9 -0.67 

gfi-1 -0.67 

F52A8.5 -0.67 

Y43C5B.3 -0.67 

Y69E1A.8 -0.68 

Y18D10A.2
1 

-0.68 

F47B8.8 -0.68 

col-38 -0.68 

perm-4 -0.68 

Y47D7A.7 -0.68 

D1086.10 -0.68 

K02A11.4 -0.68 

tag-173 -0.68 

F58B4.5 -0.68 

col-97 -0.68 

clec-51 -0.68 

B0207.2 -0.68 

H12D21.5 -0.68 

F17H10.2 -0.68 

lbp-5 -0.68 

C32C4.3 -0.68 

W09C3.2 -0.68 

acs-1 -0.68 

C53H9.3 -0.68 

nhr-110 -0.68 

T16G1.6 -0.68 

C35C5.10 -0.69 

Gene 
Name 

log2 
Fold 

mdt-9 -0.69 

tni-4 -0.69 

pes-9 -0.69 

mrpl-32 -0.69 

fbxa-224 -0.69 

D2062.7 -0.69 

tag-345 -0.69 

pqn-68 -0.69 

Y67H2A.9 -0.69 

Y39E4A.3 -0.69 

nas-36 -0.69 

F16G10.15 -0.69 

thn-2 -0.69 

ZK512.8 -0.69 

H10E21.4 -0.69 

C30G12.2 -0.69 

glo-3 -0.69 

C06A12.3 -0.69 

mrpl-51 -0.69 

K02E11.10 -0.69 

F32B6.4 -0.69 

K03B4.6 -0.69 

ssp-31 -0.69 

C44B7.7 -0.69 

asp-2 -0.69 

sma-10 -0.69 

fbxa-57 -0.69 

C24A3.4 -0.69 

T11F8.1 -0.69 

spe-11 -0.69 

W01A8.8 -0.69 

D1007.3 -0.69 

F37C12.3 -0.69 

Y47D7A.6 -0.69 

F35H12.5 -0.70 

best-23 -0.70 

F36H12.3 -0.70 

oat-1 -0.70 

C35E7.10 -0.70 

K04F10.1 -0.70 

K08C7.6 -0.70 

F26E4.5 -0.70 

Gene 
Name 

log2 
Fold 

ZK666.8 -0.70 

F36A4.4 -0.70 

dct-5 -0.70 

best-12 -0.70 

zip-3 -0.70 

C09B7.2 -0.70 

T14B4.5 -0.70 

gcst-1 -0.70 

B0228.6 -0.70 

C01G10.8 -0.70 

pps-1 -0.70 

tsp-18 -0.70 

ZK1128.3 -0.70 

K04G2.11 -0.70 

lsm-3 -0.70 

hrg-4 -0.70 

C08H9.2 -0.70 

ZK354.3 -0.70 

spp-5 -0.70 

bli-6 -0.70 

C26C6.9 -0.70 

lpd-2 -0.70 

T01D1.3 -0.70 

M04C9.4 -0.70 

nhr-168 -0.71 

F56F4.4 -0.71 

R144.11 -0.71 

C01H6.8 -0.71 

F07H5.3 -0.71 

kbp-2 -0.71 

F42A9.3 -0.71 

ttr-50 -0.71 

snr-7 -0.71 

C35E7.9 -0.71 

K11D12.13 -0.71 

ubl-5 -0.71 

gta-1 -0.71 

Y106G6H.
1 

-0.71 

Y106G6E.
3 

-0.71 

K09H11.1 -0.71 
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Gene 
Name 

log2 
Fold 

F39H12.3 -0.71 

R03G8.6 -0.71 

C30G12.4 -0.71 

C04F12.7 -0.71 

K07F5.12 -0.71 

ZK1127.4 -0.71 

lgc-32 -0.71 

T04C12.8 -0.71 

W03G9.5 -0.71 

T10B10.8 -0.71 

T06G6.6 -0.71 

F55D12.6 -0.71 

C40C9.3 -0.71 

C29F3.7 -0.71 

ugt-17 -0.71 

col-161 -0.71 

lsm-8 -0.72 

Y67A6A.1 -0.72 

R09E10.2 -0.72 

nspd-9 -0.72 

F11D5.7 -0.72 

F53F4.16 -0.72 

tut-2 -0.72 

MTCE.3 -0.72 

C28D4.7 -0.72 

acs-22 -0.72 

F14B6.6 -0.72 

B0545.4 -0.72 

M60.2 -0.72 

mdt-10 -0.72 

ndx-8 -0.72 

K09F6.4 -0.72 

C46F2.1 -0.72 

rpl-29 -0.72 

col-63 -0.72 

tkr-3 -0.72 

C06G8.3 -0.72 

fbxa-69 -0.72 

lbp-7 -0.72 

R186.8 -0.72 

F42C5.5 -0.72 

gstk-1 -0.72 

Gene 
Name 

log2 
Fold 

F31D4.9 -0.72 

math-45 -0.72 

R08B4.3 -0.72 

F23C8.8 -0.72 

F52H2.6 -0.72 

clec-150 -0.72 

flu-2 -0.72 

H22K11.2 -0.72 

W04E12.7 -0.72 

col-162 -0.72 

F17A9.4 -0.73 

F36A2.11 -0.73 

lips-9 -0.73 

F35E12.10 -0.73 

T10E9.6 -0.73 

irld-6 -0.73 

col-71 -0.73 

F23F1.10 -0.73 

F34D10.6 -0.73 

T22A3.12 -0.73 

Y43B11AR
.1 

-0.73 

C28D4.5 -0.73 

ZC250.5 -0.73 

C07D8.6 -0.73 

T10B5.4 -0.73 

F35G12.11 -0.73 

lys-2 -0.73 

cth-2 -0.73 

fkb-3 -0.73 

ttr-45 -0.73 

nspd-4 -0.73 

C52E2.5 -0.73 

C26B9.5 -0.73 

aagr-1 -0.73 

clec-230 -0.73 

nhr-10 -0.73 

C49A9.10 -0.73 

ugt-12 -0.73 

vps-25 -0.73 

hil-2 -0.73 

C05C10.7 -0.73 

Gene 
Name 

log2 
Fold 

ZK858.8 -0.73 

elo-5 -0.74 

H29C22.1 -0.74 

lipl-2 -0.74 

clec-117 -0.74 

ugt-7 -0.74 

ZK265.9 -0.74 

bli-2 -0.74 

nas-22 -0.74 

acdh-5 -0.74 

F27E5.1 -0.74 

kvs-4 -0.74 

snrp-27 -0.74 

R12E2.14 -0.74 

F49C12.11 -0.74 

rpb-8 -0.74 

Y51F10.7 -0.74 

F59A2.5 -0.74 

D1014.2 -0.74 

ptps-1 -0.74 

ZK673.1 -0.74 

msp-63 -0.74 

ttr-51 -0.74 

fbxa-33 -0.74 

fbxc-42 -0.74 

ZK1290.5 -0.74 

Y42H9AR.
2 

-0.75 

Y47D9A.5 -0.75 

C10C5.4 -0.75 

mrpl-54 -0.75 

pqn-88 -0.75 

C29F7.10 -0.75 

F20D1.9 -0.75 

madf-10 -0.75 

ssp-32 -0.75 

F59C6.11 -0.75 

ZK1248.5 -0.75 

F58A6.1 -0.75 

cyp-34A9 -0.75 

T27C10.8 -0.75 

K03H6.2 -0.75 

Gene 
Name 

log2 
Fold 

nhr-104 -0.75 

W05E10.1 -0.75 

Y69H2.9 -0.75 

Y82E9BR.
22 

-0.75 

nhr-76 -0.75 

F12B6.2 -0.75 

F11A10.7 -0.75 

dmd-8 -0.75 

F54D5.12 -0.75 

F32A5.3 -0.75 

nhr-12 -0.75 

col-137 -0.75 

clec-54 -0.75 

ZK1193.2 -0.75 

tin-13 -0.75 

C17G10.3 -0.75 

ZC581.7 -0.75 

F57B1.5 -0.76 

F45G2.8 -0.76 

F54D1.1 -0.76 

T01C3.2 -0.76 

clec-151 -0.76 

clec-147 -0.76 

gpx-6 -0.76 

T10E9.3 -0.76 

C15H9.9 -0.76 

F09C8.1 -0.76 

F14H3.3 -0.76 

C01B10.10 -0.76 

Y87G2A.2
0 

-0.76 

F13B12.2 -0.76 

M05B5.7 -0.76 

hog-1 -0.76 

tomm-7 -0.76 

C03F11.4 -0.76 

decr-1.3 -0.76 

R09D1.10 -0.76 

F13D12.6 -0.76 

R09B5.12 -0.76 

acy-4 -0.76 
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Gene 
Name 

log2 
Fold 

D2021.4 -0.76 

ZK822.2 -0.77 

pes-23 -0.77 

ZK512.1 -0.77 

F22D3.6 -0.77 

acox-1 -0.77 

B0041.1 -0.77 

F52E1.14 -0.77 

mlp-1 -0.77 

ent-2 -0.77 

tag-147 -0.77 

C33G8.2 -0.77 

F53F1.4 -0.77 

F56H1.3 -0.77 

F54C1.8 -0.77 

ZC477.7 -0.77 

C46G7.1 -0.77 

ttr-53 -0.77 

ile-2 -0.77 

C44H9.5 -0.77 

F36H9.5 -0.77 

irld-57 -0.77 

K08E7.8 -0.77 

his-37 -0.77 

Y11D7A.5 -0.77 

F18F11.1 -0.77 

fbxa-97 -0.77 

C03B1.13 -0.77 

ttr-9 -0.77 

F23C8.3 -0.77 

C23G10.1 -0.77 

gut-2 -0.77 

C03B1.7 -0.77 

T28C6.5 -0.77 

C45B11.9 -0.78 

Y81G3A.1 -0.78 

Y38A10A.7 -0.78 

acbp-1 -0.78 

T09A5.15 -0.78 

Y51H7C.1 -0.78 

grl-16 -0.78 

nhr-42 -0.78 

Gene 
Name 

log2 
Fold 

F10G8.1 -0.78 

K08H10.9 -0.78 

spl-1 -0.78 

C10A4.9 -0.78 

F18A1.1 -0.78 

ZK265.6 -0.78 

C35B1.4 -0.78 

ndg-4 -0.78 

D1086.7 -0.78 

T07D4.5 -0.78 

Y40B1B.7 -0.78 

F53B7.3 -0.78 

F52F12.8 -0.78 

R09H10.3 -0.78 

C33A12.1 -0.78 

F14D7.10 -0.78 

F40H6.1 -0.78 

mrpl-53 -0.78 

F37A8.1 -0.78 

ckb-2 -0.78 

F59B1.2 -0.79 

tomm-22 -0.79 

T10B5.7 -0.79 

pmp-2 -0.79 

fbxa-125 -0.79 

K11C4.1 -0.79 

nbet-1 -0.79 

T22B3.3 -0.79 

T04F3.4 -0.79 

mec-5 -0.79 

C23H4.2 -0.79 

Y43F4B.10 -0.79 

ZK813.2 -0.79 

F19C7.4 -0.79 

C03A7.13 -0.79 

B0272.4 -0.79 

dsc-4 -0.79 

tag-261 -0.79 

C23H4.4 -0.79 

Y71G12B.
3 

-0.79 

F31E9.11 -0.79 

Gene 
Name 

log2 
Fold 

R12E2.15 -0.79 

W02B12.4 -0.79 

lbp-6 -0.80 

ZK616.3 -0.80 

ZK899.2 -0.80 

C16C10.8 -0.80 

F55B11.7 -0.80 

F59C6.3 -0.80 

R06C1.4 -0.80 

ZK512.7 -0.80 

Y49E10.29 -0.80 

C48B4.1 -0.80 

F25H5.2 -0.80 

F43C11.7 -0.80 

tin-10 -0.80 

F25G6.8 -0.80 

C12D8.9 -0.80 

R07E4.1 -0.80 

F13H6.3 -0.80 

F44A6.4 -0.80 

F27C1.1 -0.80 

C55C2.3 -0.80 

K07E1.1 -0.80 

dct-18 -0.80 

rol-1 -0.80 

skr-7 -0.80 

ZC395.10 -0.80 

Y57G11C.
46 

-0.80 

Y47D3B.12 -0.80 

C02F5.14 -0.80 

nhr-136 -0.80 

mltn-12 -0.81 

C01G12.3 -0.81 

F56B3.6 -0.81 

nspd-2 -0.81 

mrpl-13 -0.81 

F40G9.5 -0.81 

C07A9.9 -0.81 

fpn-1.1 -0.81 

Y59H11AM
.4 

-0.81 

Gene 
Name 

log2 
Fold 

nhr-179 -0.81 

Y54E2A.9 -0.81 

cdr-1 -0.81 

abu-15 -0.81 

F58H1.6 -0.81 

wrt-4 -0.81 

C56C10.6 -0.81 

syx-6 -0.81 

C50F7.3 -0.81 

B0554.4 -0.81 

efn-4 -0.81 

col-60 -0.81 

smf-3 -0.81 

col-76 -0.81 

pfd-4 -0.81 

col-138 -0.82 

F21A3.4 -0.82 

ets-4 -0.82 

C28C12.11 -0.82 

C14A4.9 -0.82 

clec-52 -0.82 

F53G12.8 -0.82 

F54H12.5 -0.82 

mbr-1 -0.82 

mpst-3 -0.82 

C29E4.12 -0.82 

F14B8.4 -0.82 

F10E7.6 -0.82 

spe-12 -0.82 

F36A2.12 -0.82 

trap-4 -0.82 

T13A10.1 -0.82 

prx-3 -0.82 

W06D4.2 -0.82 

nspd-7 -0.82 

nspd-1 -0.82 

ZK1251.3 -0.82 

D1081.12 -0.82 

M03B6.1 -0.82 

T01D1.4 -0.82 

ugt-52 -0.82 

B0035.13 -0.82 
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Gene 
Name 

log2 
Fold 

T10E9.8 -0.82 

C52E4.7 -0.82 

W10G11.2 -0.82 

ZC434.7 -0.82 

F14H3.4 -0.83 

C15C8.3 -0.83 

R02E4.3 -0.83 

cyp-33E2 -0.83 

nhr-237 -0.83 

col-77 -0.83 

Y23H5B.1 -0.83 

C10C6.3 -0.83 

fbxa-32 -0.83 

ztf-26 -0.83 

K07F5.14 -0.83 

col-49 -0.83 

F22F4.5 -0.83 

Y47D3A.13 -0.83 

clec-206 -0.83 

F39G3.2 -0.83 

Y48G8AL.
12 

-0.83 

nhr-142 -0.83 

C15A11.2 -0.83 

C07D10.5 -0.84 

B0207.11 -0.84 

F21D5.4 -0.84 

H27M09.5 -0.84 

ZC412.10 -0.84 

fbxa-187 -0.84 

MTCE.25 -0.84 

ZC376.3 -0.84 

T25B9.1 -0.84 

F38B2.6 -0.84 

mrps-18A -0.84 

spp-1 -0.84 

cyp-14A2 -0.84 

W08E3.4 -0.84 

B0491.7 -0.84 

nspd-5 -0.84 

T12D8.5 -0.84 

linc-19 -0.84 

Gene 
Name 

log2 
Fold 

linc-4 -0.84 

F10E9.11 -0.84 

F01F1.2 -0.84 

W09D6.4 -0.84 

cdr-6 -0.84 

C06A8.8 -0.84 

acd-5 -0.84 

ttr-46 -0.84 

ech-6 -0.84 

K08E4.7 -0.85 

dod-3 -0.85 

gst-28 -0.85 

MTCE.16 -0.85 

Y51B9A.5 -0.85 

F55B11.5 -0.85 

ret-1 -0.85 

peel-1 -0.85 

C05D2.8 -0.85 

ZK550.2 -0.85 

C42D4.1 -0.85 

tag-267 -0.85 

F07D3.3 -0.85 

F46F5.6 -0.85 

F44G4.5 -0.85 

ZC155.2 -0.85 

W10G11.3 -0.85 

F43E2.6 -0.85 

R12E2.7 -0.85 

Y106G6D.
8 

-0.85 

K08C7.1 -0.85 

rnh-1.3 -0.85 

C06A8.6 -0.85 

C26B2.7 -0.85 

C32D5.4 -0.85 

F09E10.1 -0.85 

K07A1.10 -0.86 

fipr-6 -0.86 

ZK813.7 -0.86 

D1022.4 -0.86 

C53D6.10 -0.86 

F14F7.5 -0.86 

Gene 
Name 

log2 
Fold 

C47A4.3 -0.86 

C08F11.11 -0.86 

C24B9.3 -0.86 

C39D10.7 -0.86 

R07B7.10 -0.86 

F14E5.1 -0.86 

R13A1.3 -0.86 

R102.4 -0.86 

ZK354.7 -0.86 

cyp-29A2 -0.86 

Y45F10C.4 -0.86 

ZK622.1 -0.86 

F02C9.1 -0.87 

C14C11.4 -0.87 

T28H11.7 -0.87 

F28A10.1 -0.87 

cln-3.1 -0.87 

spe-10 -0.87 

dnj-21 -0.87 

rpac-19 -0.87 

ZK1098.6 -0.87 

pqn-54 -0.87 

ttr-15 -0.87 

C04F12.12 -0.87 

Y69A2AR.
3 

-0.87 

ZK813.1 -0.87 

sft-4 -0.87 

Y48A6B.7 -0.87 

F07A11.5 -0.87 

F53F4.18 -0.87 

mrps-17 -0.87 

C54D10.4 -0.87 

klo-2 -0.87 

C30G7.4 -0.88 

F52F12.5 -0.88 

nlp-26 -0.88 

D2062.6 -0.88 

ZK484.6 -0.88 

W09C3.7 -0.88 

F13A7.12 -0.88 

B0416.4 -0.88 

Gene 
Name 

log2 
Fold 

mrpl-23 -0.88 

pfd-5 -0.88 

ZK909.6 -0.88 

F53C11.3 -0.88 

spe-17 -0.88 

ZK228.3 -0.88 

D1054.8 -0.88 

mrps-33 -0.88 

lin-10 -0.89 

K01D12.8 -0.89 

C47D12.5 -0.89 

npax-4 -0.89 

R01H2.4 -0.89 

btb-21 -0.89 

snb-7 -0.89 

W01A8.10 -0.89 

M04C9.3 -0.89 

C23H4.3 -0.89 

ZC373.2 -0.89 

Y53F4B.36 -0.89 

T21E12.5 -0.89 

F37E3.3 -0.89 

pgp-11 -0.89 

EEED8.15 -0.89 

F10E9.4 -0.89 

AC3.9 -0.90 

F21C3.7 -0.90 

spds-1 -0.90 

T08H10.1 -0.90 

B0252.5 -0.90 

M153.2 -0.90 

nhr-244 -0.90 

C29F7.3 -0.90 

K04A8.10 -0.90 

ZC21.10 -0.90 

C49H3.3 -0.90 

F55F10.3 -0.90 

C01G6.2 -0.90 

dhs-21 -0.90 

C53B4.3 -0.90 

tsp-19 -0.90 

pfd-6 -0.90 
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Gene 
Name 

log2 
Fold 

B0496.6 -0.90 

cyp-33E1 -0.91 

C17H12.4 -0.91 

msd-4 -0.91 

F36H9.2 -0.91 

ftn-2 -0.91 

T16G12.7 -0.91 

Y40D12A.2 -0.91 

T28A11.2 -0.91 

Y73B3B.3 -0.91 

R102.15 -0.91 

F40G9.2 -0.91 

htas-1 -0.91 

ZK973.4 -0.91 

nhr-176 -0.91 

F17E9.4 -0.91 

asm-2 -0.91 

irld-8 -0.91 

Y22D7AR.
7 

-0.91 

K05F1.8 -0.91 

spp-8 -0.92 

C55C3.4 -0.92 

C53B4.2 -0.92 

clec-65 -0.92 

F57B1.9 -0.92 

K09G1.2 -0.92 

C38C6.3 -0.92 

D2045.8 -0.92 

ZK673.6 -0.92 

C10G8.8 -0.92 

C29F7.1 -0.92 

F54D7.6 -0.92 

ZK930.4 -0.92 

F58B4.7 -0.92 

acs-14 -0.92 

ZC416.6 -0.92 

D1081.3 -0.92 

C03C11.1 -0.93 

cpz-1 -0.93 

spp-3 -0.93 

Y87G2A.2 -0.93 

Gene 
Name 

log2 
Fold 

C06B3.7 -0.93 

C55A6.4 -0.93 

C35A11.4 -0.93 

C03C10.2 -0.93 

Y40C7B.1 -0.93 

Y47D3A.32 -0.93 

spp-22 -0.93 

dhs-25 -0.93 

F53F8.3 -0.93 

fbxa-74 -0.93 

hpo-18 -0.93 

Y57G11B.
3 

-0.93 

T06E4.9 -0.93 

Y106G6A.
4 

-0.93 

gst-15 -0.93 

dao-4 -0.93 

C04G6.2 -0.93 

W03F8.2 -0.94 

T09A12.1 -0.94 

C05B5.5 -0.94 

F56F3.4 -0.94 

W02D9.7 -0.94 

C45B2.1 -0.94 

W02D9.6 -0.94 

W09C3.8 -0.94 

F13G11.3 -0.94 

ZC412.9 -0.94 

F47B10.9 -0.94 

T20D4.5 -0.94 

R12C12.9 -0.95 

F44E2.9 -0.95 

C17H12.8 -0.95 

F37C12.18 -0.95 

trap-2 -0.95 

C28C12.1 -0.95 

inx-9 -0.95 

R102.11 -0.95 

F17B5.8 -0.95 

F02H6.3 -0.95 

T13F2.9 -0.95 

Gene 
Name 

log2 
Fold 

F35H10.2 -0.95 

Y71H2B.8 -0.95 

mocs-1 -0.95 

twk-37 -0.95 

T04B2.7 -0.95 

C06A6.7 -0.95 

mtl-2 -0.95 

T28A11.6 -0.95 

F08F1.4 -0.95 

E01G6.3 -0.95 

F45E4.6 -0.95 

K07G5.5 -0.95 

F57C2.4 -0.96 

C16C8.20 -0.96 

R09E10.1 -0.96 

col-110 -0.96 

F33D11.7 -0.96 

F56G4.7 -0.96 

F08A8.4 -0.96 

clec-232 -0.96 

T24C4.4 -0.96 

fbxa-51 -0.96 

C25B8.8 -0.96 

Y23H5B.8 -0.96 

wrt-8 -0.96 

Y69E1A.4 -0.96 

F16C3.4 -0.96 

F55C10.4 -0.96 

F36A4.2 -0.96 

dct-11 -0.96 

sup-10 -0.96 

ssp-37 -0.96 

dpyd-1 -0.96 

clec-223 -0.96 

C10A4.4 -0.96 

K02B12.2 -0.96 

clec-166 -0.96 

F46F5.11 -0.96 

C50F4.10 -0.97 

col-182 -0.97 

afmd-1 -0.97 

aqp-10 -0.97 

Gene 
Name 

log2 
Fold 

K07A1.6 -0.97 

C46C2.5 -0.97 

T04F8.2 -0.97 

cyp-25A2 -0.97 

W02B12.1 -0.97 

clec-236 -0.97 

col-61 -0.97 

Y62H9A.3 -0.97 

Y51A2D.18 -0.97 

D1054.11 -0.97 

M162.7 -0.97 

F33D4.7 -0.97 

fbl-1 -0.97 

pcp-2 -0.97 

R05D7.2 -0.97 

elp-1 -0.97 

D2062.5 -0.97 

hpd-1 -0.97 

R06A10.5 -0.97 

F20D6.5 -0.98 

fbxa-190 -0.98 

nhr-112 -0.98 

nsy-7 -0.98 

irld-7 -0.98 

lys-8 -0.98 

F46A9.2 -0.98 

F25B4.8 -0.98 

F21D5.3 -0.98 

maoc-1 -0.98 

F58G6.9 -0.98 

F34D10.8 -0.98 

Y119D3B.1
3 

-0.99 

Y69A2AR.
27 

-0.99 

best-7 -0.99 

gbh-2 -0.99 

T16G1.7 -0.99 

C07A4.3 -0.99 

C24D10.2 -0.99 

B0563.5 -0.99 

gcsh-1 -0.99 
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Gene 
Name 

log2 
Fold 

dhs-3 -0.99 

F44D12.6 -0.99 

ser-7 -0.99 

Y47D7A.15 -0.99 

F58A4.12 -0.99 

C23H4.7 -0.99 

msra-1 -1.00 

C10G8.4 -1.00 

Y39H10B.2 -1.00 

ttr-40 -1.00 

C34B2.3 -1.00 

T11B7.1 -1.00 

F36H9.4 -1.00 

linc-15 -1.00 

Y38F2AR.
10 

-1.00 

nuc-1 -1.00 

fipr-13 -1.00 

gpx-7 -1.00 

Y62H9A.15 -1.00 

fbxa-83 -1.00 

W05H9.3 -1.01 

K07A1.4 -1.01 

haao-1 -1.01 

C31H1.2 -1.01 

ZK1240.5 -1.01 

mig-1 -1.01 

C05C12.6 -1.01 

C18A3.7 -1.01 

Y37D8A.19 -1.01 

pmt-2 -1.01 

C34G6.3 -1.01 

asp-1 -1.01 

M7.12 -1.01 

F07F6.2 -1.01 

hsp-16.48 -1.01 

F59A6.12 -1.01 

F42A9.6 -1.01 

F53H4.2 -1.01 

T25B9.2 -1.01 

C27D6.3 -1.01 

C25H3.17 -1.02 

Gene 
Name 

log2 
Fold 

Y73F8A.14 -1.02 

Y14H12A.1 -1.02 

T28A11.16 -1.02 

K08F9.1 -1.02 

C05D12.2 -1.02 

hrg-3 -1.02 

Y46G5A.1
4 

-1.02 

ttr-35 -1.02 

K04G2.10 -1.02 

linc-36 -1.02 

C46C11.2 -1.02 

hrg-6 -1.02 

C40H1.2 -1.03 

ZK813.3 -1.03 

ZK1240.9 -1.03 

Y69H2.3 -1.03 

lys-5 -1.03 

Y38H6C.1
5 

-1.03 

F54H12.7 -1.03 

C04E12.2 -1.03 

gpx-1 -1.03 

nhr-263 -1.03 

cpt-4 -1.04 

F55B11.3 -1.04 

clec-210 -1.04 

F32H5.1 -1.04 

T02B11.8 -1.04 

cdd-1 -1.04 

btb-2 -1.04 

F45B8.5 -1.04 

T01H3.5 -1.04 

Y38E10A.2
8 

-1.04 

F30A10.12 -1.04 

C01G12.9 -1.04 

F43H9.4 -1.04 

R09D1.6 -1.04 

F40H3.2 -1.04 

F55C12.6 -1.04 

B0416.11 -1.04 

C15H7.2 -1.04 

Gene 
Name 

log2 
Fold 

F56D6.13 -1.04 

dhs-18 -1.04 

Y66H1A.5 -1.05 

Y43F8C.13 -1.05 

R13A5.10 -1.05 

MTCE.23 -1.05 

F08G5.6 -1.05 

C43G2.3 -1.05 

Y32F6B.1 -1.05 

comt-2 -1.05 

T20D4.3 -1.05 

Y70C5A.3 -1.05 

C32H11.3 -1.05 

F20D6.11 -1.05 

C29E4.14 -1.05 

T04A8.5 -1.05 

ZC376.2 -1.05 

C01B10.4 -1.05 

trap-3 -1.05 

F44A6.5 -1.05 

C43H6.1 -1.05 

nrf-6 -1.05 

B0034.7 -1.05 

C05E7.2 -1.06 

emo-1 -1.06 

C03A7.12 -1.06 

B0379.2 -1.06 

R105.1 -1.06 

C55A6.7 -1.06 

irg-3 -1.06 

clec-155 -1.06 

skr-14 -1.06 

lips-6 -1.06 

F55D12.2 -1.06 

dod-17 -1.07 

D1081.11 -1.07 

asp-3 -1.07 

clec-56 -1.07 

ZC449.8 -1.07 

Y38F1A.7 -1.07 

clec-222 -1.07 

C45B11.8 -1.07 

Gene 
Name 

log2 
Fold 

alh-12 -1.07 

ZK1248.20 -1.07 

ZC581.10 -1.07 

cpt-5 -1.07 

hsp-16.49 -1.07 

tag-10 -1.08 

C25A8.4 -1.08 

dhs-14 -1.08 

K02A11.2 -1.08 

kin-26 -1.08 

C44C1.5 -1.08 

Y105E8B.9 -1.08 

T02D1.8 -1.08 

nhr-147 -1.08 

grd-6 -1.08 

Y23H5B.12 -1.08 

C05D12.3 -1.08 

ZK185.3 -1.09 

F41H10.2 -1.09 

R07H5.9 -1.09 

ttr-37 -1.09 

dylt-3 -1.09 

sesn-1 -1.09 

T05C3.6 -1.09 

ugt-49 -1.09 

amx-3 -1.09 

asah-1 -1.09 

R08E5.3 -1.10 

T12B5.15 -1.10 

T22C1.9 -1.10 

F38E1.3 -1.10 

F18C12.4 -1.10 

ZC404.2 -1.10 

K07F5.8 -1.10 

ZK688.12 -1.10 

F55H12.2 -1.11 

T18D3.9 -1.11 

Y54G9A.9 -1.11 

Y53C10A.1
5 

-1.12 

F07G6.10 -1.12 

R10H10.3 -1.12 



Table E2 (Continued) 

277 

Gene 
Name 

log2 
Fold 

Y62H9A.4 -1.12 

F12A10.1 -1.12 

F30A10.14 -1.12 

sth-1 -1.12 

W04A4.2 -1.12 

ugt-53 -1.13 

lact-4 -1.13 

F42G4.5 -1.13 

oac-42 -1.13 

Y40C7B.3 -1.13 

spp-23 -1.13 

Y38F2AR.
9 

-1.13 

F35F10.1 -1.13 

col-88 -1.13 

R12E2.6 -1.13 

F23A7.8 -1.13 

F54D5.4 -1.13 

R04A9.9 -1.14 

nspb-2 -1.14 

Y119D3B.2
1 

-1.14 

Y62H9A.6 -1.14 

rap-3 -1.14 

cpr-6 -1.14 

T28F4.4 -1.14 

ssp-33 -1.14 

F59F4.2 -1.14 

W04E12.2 -1.15 

prmt-6 -1.15 

F30A10.13 -1.15 

mec-3 -1.15 

W07B8.1 -1.15 

C31H2.14 -1.15 

B0207.9 -1.15 

M7.7 -1.15 

F41F3.1 -1.15 

F57F5.1 -1.16 

T04G9.7 -1.16 

Y47D9A.4 -1.16 

pyk-2 -1.16 

Y51A2D.13 -1.17 

Gene 
Name 

log2 
Fold 

ZK228.4 -1.17 

cyp-33E3 -1.17 

Y105C5B.1
7 

-1.17 

oac-8 -1.17 

F58B6.1 -1.17 

R11H6.7 -1.17 

F29B9.7 -1.17 

col-120 -1.17 

ugt-46 -1.18 

C35B1.8 -1.18 

nep-4 -1.18 

K08B5.2 -1.18 

F41C3.7 -1.18 

ugt-26 -1.18 

R09D1.8 -1.18 

Y45G12C.
1 

-1.18 

twk-6 -1.18 

F48E3.4 -1.18 

F13H8.12 -1.19 

Y59E9AL.8 -1.19 

Y57G11C.
15 

-1.19 

acbp-3 -1.19 

gst-10 -1.19 

Y57A10A.1
4 

-1.19 

C52A10.3 -1.19 

T05B11.4 -1.19 

E02C12.8 -1.19 

R04B5.11 -1.19 

F46F5.9 -1.20 

F49E12.1 -1.20 

F56A4.3 -1.20 

Y105E8B.5 -1.20 

C36C9.10 -1.20 

W08E12.4 -1.20 

T03F6.10 -1.21 

pqn-8 -1.21 

C05D12.4 -1.21 

C53D6.11 -1.21 

H23N18.6 -1.21 

Gene 
Name 

log2 
Fold 

Y53F4B.11 -1.21 

C26C6.6 -1.21 

W03F11.1 -1.22 

F21F8.4 -1.22 

F23F12.3 -1.22 

cah-5 -1.22 

nid-1 -1.22 

Y105C5B.2
0 

-1.22 

T12B5.14 -1.22 

Y39B6A.21 -1.22 

H20E11.2 -1.22 

dhs-2 -1.22 

trap-1 -1.23 

K08F4.13 -1.23 

T13F3.6 -1.23 

C02C2.4 -1.23 

oac-6 -1.23 

clec-66 -1.23 

col-68 -1.24 

C27H5.4 -1.24 

C04H5.7 -1.24 

pho-9 -1.24 

F22G12.7 -1.24 

clec-8 -1.24 

D1054.10 -1.24 

T24A6.20 -1.25 

C18D4.8 -1.25 

math-48 -1.25 

frpr-11 -1.25 

try-3 -1.25 

W08E12.3 -1.26 

K07E12.2 -1.26 

F36A4.3 -1.26 

ZK418.2 -1.26 

spp-17 -1.26 

C14A6.6 -1.26 

C47G2.6 -1.26 

Y57G11C.
14 

-1.26 

F23A7.4 -1.26 

ZK616.1 -1.27 

Gene 
Name 

log2 
Fold 

T25E12.16 -1.27 

ZK686.5 -1.27 

F13H10.1 -1.27 

F55G11.8 -1.27 

frm-9 -1.27 

C08F11.13 -1.27 

F23F12.13 -1.27 

C17E7.12 -1.28 

col-152 -1.28 

C44B7.11 -1.28 

cyp-35A4 -1.28 

F01D5.2 -1.29 

C31G12.1 -1.29 

E04F6.15 -1.29 

T19H5.7 -1.29 

ugt-32 -1.29 

nep-15 -1.29 

F33D11.1 -1.30 

T05E12.6 -1.30 

F16H6.7 -1.30 

K02E7.6 -1.30 

R12E2.8 -1.30 

F28H7.3 -1.31 

T20D4.11 -1.31 

ttr-36 -1.31 

grd-2 -1.31 

fbxa-175 -1.31 

lys-4 -1.32 

crn-6 -1.32 

C05B5.9 -1.32 

F22H10.2 -1.32 

W02D7.4 -1.32 

gst-5 -1.32 

ech-1 -1.33 

aat-4 -1.33 

F58G6.3 -1.33 

C04E7.5 -1.34 

F13H8.3 -1.34 

ugt-47 -1.34 

F25D1.5 -1.34 

fbxa-180 -1.34 

gst-4 -1.34 
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Gene 
Name 

log2 
Fold 

C04E12.5 -1.34 

anr-33 -1.35 

nas-20 -1.35 

C17B7.5 -1.35 

oac-10 -1.35 

F40A3.7 -1.35 

ZK1240.8 -1.35 

grl-27 -1.35 

C52E12.6 -1.35 

D1086.3 -1.35 

Y57G11C.
40 

-1.36 

F12E12.11 -1.36 

F41E6.1 -1.36 

C48D1.7 -1.36 

ttr-49 -1.36 

gst-13 -1.36 

ZC395.5 -1.37 

T22F3.7 -1.37 

R04E5.2 -1.37 

K04F1.9 -1.37 

fbxa-178 -1.37 

ZK822.8 -1.37 

Y102E9.5 -1.38 

F15A4.2 -1.38 

C35A5.3 -1.38 

inx-8 -1.38 

K12H4.7 -1.38 

cutl-18 -1.39 

Y50E8A.1 -1.39 

T28F4.6 -1.39 

ugt-62 -1.39 

sdz-27 -1.39 

F26F12.4 -1.39 

T09E11.11 -1.39 

D1086.11 -1.40 

F10E7.3 -1.40 

C34F6.5 -1.40 

snf-4 -1.40 

K10C2.3 -1.40 

Y4C6A.4 -1.40 

cpl-1 -1.41 

Gene 
Name 

log2 
Fold 

W03D8.8 -1.41 

cbl-1 -1.41 

ceeh-2 -1.41 

efn-3 -1.42 

C01B10.44 -1.42 

clec-97 -1.42 

Y27F2A.8 -1.42 

Y57G11C.
52 

-1.42 

C05B5.12 -1.42 

ugt-5 -1.43 

clec-186 -1.43 

pcp-1 -1.43 

linc-61 -1.44 

ugt-51 -1.44 

str-168 -1.44 

R09D1.9 -1.44 

F07C6.6 -1.44 

ugt-54 -1.44 

C35A5.5 -1.44 

gst-33 -1.45 

Y73F8A.15 -1.45 

T01G5.8 -1.45 

K09H11.4 -1.45 

F49B2.4 -1.45 

F31D5.1 -1.45 

pho-13 -1.46 

nas-27 -1.46 

ZK287.3 -1.47 

H20E11.3 -1.47 

F22E12.3 -1.47 

fipr-23 -1.47 

gst-30 -1.47 

T20D4.4 -1.48 

B0563.10 -1.48 

T28F4.5 -1.48 

Y62H9A.5 -1.48 

Y19D10A.1
6 

-1.49 

C55C3.8 -1.49 

C09B8.5 -1.49 

B0454.8 -1.49 

Gene 
Name 

log2 
Fold 

Y39A1A.2 -1.50 

T25B9.12 -1.50 

E02H9.7 -1.50 

C01B4.6 -1.50 

M01G12.1
4 

-1.51 

nas-21 -1.51 

nspa-8 -1.51 

calu-1 -1.51 

nep-14 -1.52 

F26C11.1 -1.52 

W03F9.4 -1.52 

C14E2.12 -1.52 

Y32F6A.5 -1.52 

F58G6.7 -1.53 

Y39F10A.3 -1.53 

C32D5.6 -1.54 

lact-1 -1.54 

clec-209 -1.54 

hsd-2 -1.54 

F15H9.8 -1.55 

linc-84 -1.55 

C14C6.2 -1.55 

Y38F1A.6 -1.55 

H06H21.8 -1.55 

cyp-25A1 -1.56 

F56A4.2 -1.56 

Y43F8B.9 -1.57 

clec-3 -1.57 

Y57G11B.
5 

-1.58 

Y54G2A.3 -1.58 

W02H3.1 -1.58 

C53D6.5 -1.58 

C17G1.2 -1.59 

F14H12.7 -1.59 

K07H8.7 -1.59 

T20D4.10 -1.60 

cyp-35A5 -1.60 

bas-1 -1.60 

ttr-42 -1.60 

E02C12.6 -1.60 

Gene 
Name 

log2 
Fold 

dct-16 -1.61 

F53F4.8 -1.62 

Y73B6BL.2
88 

-1.63 

fbxa-92 -1.63 

irld-35 -1.63 

cyp-35C1 -1.63 

dod-24 -1.63 

pgp-2 -1.63 

D1054.18 -1.63 

F54B11.11 -1.64 

hsp-16.2 -1.65 

H12D21.3 -1.65 

R08F11.4 -1.65 

C18A11.4 -1.65 

D1086.20 -1.65 

B0416.10 -1.65 

lips-14 -1.65 

F56D6.12 -1.66 

F56D6.17 -1.67 

F45D11.1 -1.67 

T24C2.5 -1.67 

F18E2.1 -1.67 

skr-10 -1.68 

F42A10.7 -1.68 

fbxa-91 -1.68 

clec-4 -1.68 

F49C12.7 -1.69 

cyp-35A2 -1.69 

tbh-1 -1.69 

W08E12.2 -1.69 

F48G7.8 -1.69 

F22G12.8 -1.70 

ftn-1 -1.70 

C08A9.11 -1.70 

C33G8.3 -1.71 

fipr-22 -1.71 

ugt-4 -1.71 

Y40H7A.11 -1.71 

clec-118 -1.72 

ech-9 -1.72 

clec-218 -1.73 
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Gene 
Name 

log2 
Fold 

K09E3.6 -1.73 

F22H10.6 -1.75 

F17A2.13 -1.76 

Y57G11C.
41 

-1.76 

cyp-35A3 -1.76 

F07E5.7 -1.76 

dhs-23 -1.76 

R10E4.6 -1.76 

irld-53 -1.77 

nhr-68 -1.77 

F01D5.3 -1.78 

col-135 -1.78 

T16G12.1 -1.80 

pmp-5 -1.80 

clec-28 -1.81 

sri-40 -1.81 

cdr-4 -1.82 

clec-7 -1.82 

F28A12.4 -1.83 

Y105C5B.1
5 

-1.83 

T28A11.19 -1.84 

T02B5.3 -1.85 

K07A1.13 -1.85 

clec-26 -1.86 

F08A8.3 -1.86 

B0281.5 -1.86 

fut-5 -1.86 

cat-4 -1.86 

F41C6.4 -1.86 

F35F10.6 -1.87 

C44B7.5 -1.88 

str-144 -1.90 

Y17D7B.2 -1.91 

F15E11.15 -1.91 

clec-160 -1.91 

ugt-30 -1.92 

fbxa-84 -1.93 

F55G11.2 -1.93 

Y94H6A.10 -1.95 

K09A9.8 -1.99 

Gene 
Name 

log2 
Fold 

F25C8.1 -1.99 

R07C3.13 -2.00 

Y19D10B.7 -2.01 

F15E11.13 -2.01 

K10C2.8 -2.03 

C32H11.4 -2.05 

catp-2 -2.07 

npr-13 -2.08 

clec-53 -2.09 

srh-237 -2.09 

ugt-10 -2.11 

C23H5.8 -2.12 

C05D9.12 -2.12 

F15E11.12 -2.14 

spp-4 -2.15 

C36C5.5 -2.16 

Y40C7B.4 -2.16 

srh-70 -2.17 

hsp-16.41 -2.19 

gba-4 -2.19 

Y43D4A.2 -2.21 

C42D4.2 -2.24 

asm-3 -2.28 

W06G6.20 -2.28 

F22E5.8 -2.29 

F15E11.1 -2.34 

F15E11.14 -2.34 

vit-2 -2.37 

nhx-6 -2.41 

Y19D10B.4 -2.42 

ZK742.3 -2.42 

K10C2.7 -2.42 

oac-32 -2.43 

F54F7.2 -2.44 

ugt-22 -2.44 

oac-20 -2.46 

Y52E8A.4 -2.46 

K10B2.2 -2.55 

clec-2 -2.58 

fat-7 -2.64 

F48G7.5 -2.73 

F35F10.5 -2.76 

Gene 
Name 

log2 
Fold 

ZC266.1 -2.76 

clec-190 -2.89 

T05E12.3 -2.99 

ilys-5 -2.99 

clec-31 -3.04 

folt-2 -3.06 

K11G9.3 -3.15 

Y40H7A.10 -3.37 

vit-1 -3.38 

vit-5 -3.39 

vit-4 -3.47 

vit-3 -3.52 

Y40H7A.14
7 

-4.01 

acdh-1 -4.62 
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Gene 
Name 

log2 
Fold 

rab-11.2 7.72 

col-108 7.40 

Y47H10A.5 7.27 

T22F3.11 6.47 

Y60C6A.1 6.15 

col-37 6.00 

F11D11.3 6.00 

ZK863.10 6.00 

clec-101 5.96 

col-183 5.95 

col-51 5.94 

col-85 5.85 

col-164 5.81 

ZK355.3 5.80 

F33H12.7 5.80 

col-185 5.79 

grl-25 5.77 

grl-9 5.73 

col-2 5.67 

col-72 5.66 

grl-20 5.60 

col-50 5.56 

Y75B8A.39 5.54 

Y40C5A.3 5.50 

col-44 5.47 

grl-23 5.43 

cut-1 5.42 

col-40 5.40 

ZK638.1 5.39 

fbxa-163 5.38 

grl-19 5.37 

C13A2.12 5.36 

col-35 5.35 

T26F2.3 5.33 

col-36 5.31 

hsf-1 5.29 

srg-31 5.26 

B0563.9 5.22 

col-102 5.18 

ZK355.8 5.09 

col-158 5.00 

Gene 
Name 

log2 
Fold 

col-84 4.95 

T08E11.1 4.92 

grd-7 4.88 

grl-3 4.81 

dct-3 4.80 

clec-60 4.80 

F49H12.12 4.79 

col-114 4.79 

F42C5.3 4.75 

clec-174 4.68 

B0507.8 4.62 

F22G12.1 4.61 

col-45 4.59 

acs-2 4.56 

tsp-1 4.55 

sdz-35 4.52 

F07E5.9 4.51 

C25F9.2 4.49 

grl-17 4.46 

B0284.1 4.43 

B0348.2 4.42 

M6.11 4.41 

W07B8.4 4.40 

col-123 4.37 

col-43 4.35 

R05A10.1 4.33 

clec-13 4.32 

T23F1.5 4.31 

W08A12.4 4.31 

C08E8.4 4.28 

F07G11.1 4.26 

F10A3.1 4.22 

fbxa-165 4.19 

tyr-3 4.16 

cnc-9 4.14 

C53A5.9 4.14 

Y37H2A.14 4.13 

fbxa-30 4.11 

C54D10.8 4.08 

dmd-10 4.06 

C54D10.14 4.05 

Gene 
Name 

log2 
Fold 

C11D2.2 4.05 

Y39B6A.24 4.01 

B0284.2 3.96 

C50F7.5 3.94 

grd-9 3.93 

R07C12.1 3.91 

K01D12.10 3.90 

Y71H2AR.
2 

3.85 

F57G4.11 3.81 

ins-35 3.74 

ZK285.2 3.74 

tsp-2 3.69 

W01C9.2 3.68 

B0462.5 3.67 

F09C12.2 3.66 

W02A2.9 3.62 

F26D11.13 3.59 

C54D10.12 3.58 

pgp-8 3.58 

clec-15 3.58 

C49G7.12 3.55 

fbxa-158 3.53 

F49H6.5 3.49 

ZK896.1 3.48 

C38D9.2 3.47 

B0284.5 3.46 

T24E12.5 3.46 

B0507.10 3.45 

F15D4.5 3.45 

F22E5.6 3.41 

B0507.6 3.38 

tbb-6 3.35 

F15B9.6 3.35 

K08D9.6 3.33 

C17H1.7 3.32 

fbxa-161 3.29 

dod-20 3.24 

col-33 3.21 

W09C3.3 3.18 

zip-6 3.15 

Gene 
Name 

log2 
Fold 

E02H4.4 3.14 

F23B2.10 3.13 

F53F4.4 3.13 

H02F09.3 3.07 

clec-71 3.05 

skr-5 3.05 

Y9C9A.16 3.03 

C25F9.11 3.01 

R03H10.6 3.01 

F46A8.1 2.98 

C17H1.10 2.97 

fbxa-162 2.94 

F46C5.1 2.93 

T19D12.4 2.92 

rrf-2 2.91 

F26F2.1 2.90 

C49G7.7 2.89 

C23H5.12 2.89 

T14B1.1 2.86 

F07C4.12 2.85 

ugt-27 2.84 

fbxa-66 2.83 

ZC239.14 2.81 

F53B2.8 2.80 

W09G12.8 2.79 

C17H1.5 2.79 

cpt-3 2.78 

C44B12.6 2.77 

F55F3.4 2.76 

R11E3.2 2.75 

wrt-7 2.74 

fmo-2 2.74 

Y34F4.2 2.74 

C06E7.88 2.73 

B0507.7 2.71 

W09G12.7 2.70 

Y6E2A.5 2.70 

Y43F8B.15 2.69 

T06E6.15 2.69 

T28F3.5 2.69 

jmjd-3.3 2.69 



Table E3 (Continued) 

281 

Gene 
Name 

log2 
Fold 

C10C5.2 2.68 

Y6E2A.4 2.68 

srw-71 2.68 

gem-4 2.64 

B0403.3 2.64 

mod-5 2.63 

C24G7.1 2.61 

Y26D4A.3 2.61 

W07A12.4 2.61 

oac-24 2.60 

F14H12.2 2.60 

clec-167 2.58 

oac-14 2.57 

C08F11.3 2.57 

fbxa-135 2.57 

fbxa-144 2.56 

fbxa-138 2.55 

F32G8.2 2.54 

tsp-6 2.53 

F20D6.2 2.52 

F08A8.5 2.51 

lys-3 2.49 

F07G11.4 2.48 

F20G2.5 2.48 

B0238.13 2.45 

F47B8.4 2.43 

F01D4.8 2.39 

srr-6 2.38 

C23H4.6 2.33 

C25F9.12 2.33 

Y58A7A.5 2.32 

K07E8.2 2.32 

K03D3.2 2.32 

Y43F8B.25 2.32 

best-2 2.32 

K07B1.8 2.30 

fat-5 2.28 

F16B4.6 2.28 

cut-6 2.26 

dsl-3 2.25 

fbxa-199 2.24 

T21D12.7 2.23 

Gene 
Name 

log2 
Fold 

pgp-5 2.20 

kin-6 2.20 

Y38H8A.8 2.19 

Y71G12B.2 2.19 

Y105C5A.1
271 

2.19 

K08D10.9 2.18 

ugt-14 2.18 

dos-3 2.18 

bath-47 2.17 

bro-1 2.17 

F47H4.2 2.17 

F44F1.4 2.13 

F54B8.4 2.12 

Y110A2AL.
4 

2.12 

T28B11.1 2.12 

C06E4.8 2.11 

F44G3.10 2.10 

F59B1.10 2.10 

F53G2.2 2.10 

Y55F3BR.7 2.10 

irg-2 2.09 

gpx-8 2.09 

F31E3.2 2.07 

trpl-5 2.07 

mtl-1 2.07 

F08G2.5 2.05 

M01G12.9 2.05 

F56D2.3 2.05 

C23G10.11 2.04 

lin-41 2.04 

ZC443.2 2.04 

F43C11.8 2.04 

acdh-2 2.03 

fbxc-23 2.02 

C44H9.7 2.02 

Y2H9A.6 2.02 

pef-1 2.02 

inx-20 2.01 

numr-1 2.01 

gst-3 1.99 

Gene 
Name 

log2 
Fold 

btb-12 1.99 

tbc-4 1.99 

K10G4.3 1.98 

W02G9.10 1.97 

puf-10 1.97 

M28.8 1.97 

C31B8.4 1.97 

ptc-2 1.96 

best-1 1.96 

clec-61 1.95 

F28F8.7 1.94 

F08F3.9 1.94 

F48B9.1 1.94 

C13A2.3 1.93 

meg-2 1.93 

M01B2.13 1.93 

clec-17 1.91 

B0024.4 1.91 

T08E11.8 1.91 

dpy-1 1.89 

F57B9.3 1.88 

irg-1 1.88 

C13A2.1 1.87 

ZK596.1 1.87 

Y6G8.5 1.87 

Y71G12B.3
2 

1.86 

clec-47 1.85 

oac-29 1.85 

Y73B3A.13 1.85 

W03D2.6 1.84 

K01G12.3 1.84 

nhr-21 1.84 

T21D12.11 1.84 

Y52B11A.1
1 

1.83 

Y46H3C.7 1.83 

twk-32 1.83 

ZK177.1 1.83 

rnt-1 1.82 

C08E3.1 1.82 

cdc-25.2 1.81 

Gene 
Name 

log2 
Fold 

zig-3 1.80 

fkb-7 1.80 

F28E10.5 1.80 

zig-4 1.79 

T02G5.11 1.79 

K03H4.2 1.79 

col-116 1.79 

F26F12.3 1.79 

EEED8.4 1.79 

R09A8.1 1.79 

ins-4 1.78 

srp-8 1.78 

Y47H9C.1 1.78 

math-37 1.77 

rog-1 1.77 

Y59A8B.21 1.77 

set-12 1.77 

ceh-86 1.76 

Y105E8A.2
9 

1.76 

fbxa-25 1.75 

tat-2 1.75 

K09F6.10 1.75 

F22B3.4 1.74 

srw-86 1.74 

daf-2 1.74 

F26G5.1 1.74 

F58E2.3 1.74 

wdr-5.3 1.74 

Y43F8B.12 1.73 

syx-2 1.73 

linc-84 1.73 

fbxa-48 1.73 

fbxa-59 1.72 

C41D11.4 1.71 

K10C3.4 1.70 

Y57A10A.1 1.70 

bath-26 1.70 

Y51B9A.9 1.70 

tts-1 1.70 

C04G6.6 1.69 

dex-1 1.68 
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Gene 
Name 

log2 
Fold 

daf-18 1.67 

nekl-1 1.67 

F35E12.4 1.67 

ZC443.3 1.67 

C08E3.13 1.67 

C34C6.2 1.67 

zip-10 1.67 

peb-1 1.66 

mex-3 1.66 

nhr-2 1.65 

ulp-4 1.65 

F26A1.14 1.64 

flh-1 1.64 

puf-6 1.64 

bath-21 1.64 

Y58A7A.4 1.64 

ceh-37 1.64 

Y73B3A.4 1.64 

daf-7 1.63 

Y105C5A.1
3 

1.63 

C34B7.1 1.62 

far-7 1.62 

cpr-3 1.62 

F28B3.4 1.62 

egg-1 1.61 

xpc-1 1.61 

T06D4.1 1.61 

ptr-13 1.61 

C14A6.16 1.60 

maco-1 1.60 

hsp-12.6 1.60 

Y55F3AM.
14 

1.60 

col-176 1.59 

unc-34 1.59 

hpo-24 1.58 

F54E2.4 1.58 

rig-4 1.58 

ced-3 1.58 

T01D3.3 1.57 

clec-82 1.57 

Gene 
Name 

log2 
Fold 

F34D10.4 1.57 

oac-34 1.57 

fbxa-53 1.56 

Y49G5B.1 1.56 

tyr-5 1.56 

T24B8.7 1.55 

egl-18 1.55 

T09B4.1 1.55 

sys-1 1.55 

T28C6.10 1.55 

gon-4 1.55 

F19B10.13 1.54 

Y56A3A.16 1.54 

hot-5 1.54 

igcm-1 1.54 

math-38 1.54 

chs-1 1.54 

gld-4 1.53 

srw-85 1.53 

Y17G7B.21 1.53 

sma-1 1.53 

nhl-2 1.51 

1-Apr 1.51 

ZC443.4 1.51 

F53H2.3 1.51 

F37A8.5 1.51 

puf-5 1.50 

C46C2.3 1.50 

sodh-1 1.50 

Y65B4BL.3 1.50 

R08E3.2 1.50 

ZC239.22 1.50 

F29G9.1 1.50 

K11H12.9 1.49 

H43E16.1 1.48 

C49F5.6 1.48 

fbxa-24 1.48 

C27H2.2 1.48 

cec-2 1.48 

fbxa-127 1.48 

C44B9.3 1.47 

T13F2.6 1.47 

Gene 
Name 

log2 
Fold 

linc-72 1.47 

apx-1 1.47 

oma-1 1.46 

Y116F11B.
10 

1.46 

F58D5.5 1.46 

Y53G8AL.1 1.46 

clec-233 1.46 

let-99 1.45 

cah-1 1.45 

T04F3.2 1.45 

gei-12 1.45 

C17E4.3 1.45 

gln-5 1.45 

tdc-1 1.45 

Y22D7AR.
2 

1.45 

C50B6.3 1.45 

linc-56 1.44 

B0205.14 1.44 

fbxa-166 1.44 

puf-7 1.44 

math-15 1.44 

Y34F4.4 1.44 

par-4 1.44 

F54E12.2 1.43 

C16C8.12 1.43 

F34H10.3 1.43 

C48D1.5 1.43 

lip-1 1.43 

polq-1 1.43 

T04F8.7 1.43 

F42H10.5 1.43 

ugt-8 1.43 

sqv-5 1.42 

Y37B11A.2 1.42 

F59A6.5 1.42 

oac-56 1.42 

M03A1.3 1.42 

nhr-6 1.42 

cpg-1 1.42 

cpb-1 1.42 

Gene 
Name 

log2 
Fold 

T08D2.8 1.42 

T05F1.2 1.41 

swt-3 1.41 

dpy-6 1.41 

rod-1 1.41 

tbc-14 1.41 

egg-6 1.41 

gap-3 1.40 

mltn-1 1.40 

tth-1 1.40 

inx-22 1.40 

rhy-1 1.40 

C27D9.1 1.40 

F14H3.5 1.40 

cdk-2 1.40 

T12G3.1 1.40 

F14F9.4 1.39 

pqn-20 1.39 

T04C4.1 1.39 

C33D9.13 1.39 

dhs-16 1.39 

cya-1 1.38 

age-1 1.38 

glt-5 1.38 

duox-2 1.38 

cdh-10 1.37 

arid-1 1.37 

Y39H10A.4 1.37 

exc-4 1.37 

pos-1 1.37 

Y105E8A.2
5 

1.37 

tba-7 1.36 

K03H1.10 1.36 

sam-10 1.36 

ceh-39 1.36 

flcn-1 1.36 

fbxa-60 1.36 

frm-3 1.35 

Y54F10BM
.1 

1.35 

daam-1 1.35 
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Gene 
Name 

log2 
Fold 

cebp-1 1.35 

C04B4.2 1.35 

F31D4.5 1.35 

clec-72 1.35 

F07B7.12 1.35 

B0554.5 1.34 

rom-1 1.34 

Y76B12C.1
1 

1.34 

math-50 1.34 

egg-2 1.34 

tag-199 1.34 

B0212.3 1.34 

Y76B12C.6 1.34 

wrm-1 1.34 

K08D8.4 1.33 

olrn-1 1.33 

K09F6.9 1.33 

ncs-6 1.33 

ZK809.5 1.33 

gap-1 1.33 

mex-5 1.33 

F09E5.10 1.33 

twk-2 1.33 

pad-2 1.33 

trcs-1 1.32 

C04E7.3 1.32 

hpo-11 1.32 

fli-1 1.32 

Y48A6C.1 1.32 

cpg-2 1.32 

dod-19 1.32 

H05L14.2 1.32 

die-1 1.32 

F43D2.2 1.32 

nep-1 1.32 

cbp-1 1.32 

C06A5.1 1.32 

C34D10.2 1.32 

C36B1.9 1.32 

rabx-5 1.31 

linc-17 1.31 

Gene 
Name 

log2 
Fold 

swsn-7 1.31 

crml-1 1.31 

C29F9.3 1.31 

T01C3.3 1.31 

C28G1.5 1.30 

egg-3 1.30 

Y102A11A.
9 

1.30 

pqn-15 1.30 

set-2 1.30 

Y34D9A.7 1.30 

snf-6 1.30 

C07E3.3 1.30 

fbxa-150 1.30 

mes-3 1.30 

R102.5 1.30 

Y39A1A.9 1.29 

cul-6 1.29 

T24D1.3 1.29 

pup-2 1.29 

F19C7.2 1.29 

fbxa-182 1.29 

tag-343 1.29 

lin-13 1.29 

T05F1.9 1.29 

spd-5 1.29 

trr-1 1.29 

lat-1 1.29 

ptc-1 1.29 

F20C5.3 1.29 

egl-2 1.28 

Y48G1C.1
0 

1.28 

F39B2.1 1.28 

vrk-1 1.28 

nhr-25 1.28 

T28H10.3 1.28 

plst-1 1.28 

C27A12.6 1.27 

sip-1 1.27 

M04C3.2 1.27 

C34E10.8 1.27 

Gene 
Name 

log2 
Fold 

C37C3.9 1.27 

dct-1 1.27 

rbc-2 1.26 

Y60A3A.8 1.26 

srap-1 1.26 

mex-6 1.26 

W03F11.5 1.26 

sptf-2 1.26 

fncm-1 1.26 

C06A1.4 1.26 

nhr-23 1.26 

R03G5.6 1.26 

ztf-20 1.26 

cyb-2.2 1.26 

Y48G1BL.6 1.26 

K11H3.8 1.25 

mfb-1 1.25 

egg-4 1.25 

F54D1.6 1.25 

Y55F3BR.2 1.25 

Y50D4C.5 1.25 

fog-3 1.25 

F11E6.7 1.25 

smp-1 1.25 

F17C11.10 1.25 

Y39E4B.5 1.25 

zag-1 1.25 

sid-1 1.25 

tftc-1 1.24 

T21C9.13 1.24 

F02H6.2 1.24 

Y105C5A.1 1.24 

F54D5.5 1.24 

puf-11 1.24 

hum-6 1.24 

Y57A10A.3
1 

1.24 

F47B8.2 1.24 

spn-4 1.24 

Y54G2A.19 1.24 

hex-3 1.24 

glp-1 1.24 

Gene 
Name 

log2 
Fold 

swt-1 1.24 

T08B2.11 1.23 

T05E7.3 1.23 

Y48G1C.1 1.23 

Y82E9BR.
19 

1.23 

Y67H2A.10 1.23 

vps-39 1.23 

M04F3.6 1.23 

C05D11.8 1.22 

gst-41 1.22 

smk-1 1.22 

cyp-13A5 1.22 

C49G7.10 1.22 

F31F6.2 1.22 

Y20F4.4 1.22 

pac-1 1.22 

M151.7 1.22 

dgk-4 1.22 

Y71H2AM.
2 

1.22 

rskn-1 1.22 

tbc-15 1.22 

H41C03.1 1.22 

ptr-2 1.22 

C06E1.1 1.22 

pqn-47 1.21 

ZC239.1 1.21 

C44H9.4 1.21 

lig-1 1.21 

ksr-2 1.21 

lex-1 1.21 

ptr-10 1.21 

F35C11.5 1.21 

F16H6.10 1.21 

cil-1 1.20 

gld-3 1.20 

igdb-1 1.20 

mtk-1 1.20 

F55A3.7 1.20 

sru-40 1.20 

R03H10.7 1.20 
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Gene 
Name 

log2 
Fold 

perm-1 1.20 

unc-103 1.20 

Y111B2A.9 1.20 

capg-2 1.20 

ZC190.4 1.20 

unc-77 1.20 

gpa-16 1.20 

C01F1.6 1.20 

par-3 1.20 

Y42H9AR.
4 

1.20 

C05C10.2 1.20 

sur-2 1.19 

Y97E10AR
.1 

1.19 

fbxa-115 1.19 

C13F10.6 1.19 

Y47G7B.2 1.19 

atm-1 1.19 

flh-3 1.19 

sup-17 1.19 

Y102A11A.
3 

1.19 

pme-1 1.19 

meg-1 1.19 

puf-3 1.19 

fox-1 1.19 

dpy-21 1.18 

C09F9.2 1.18 

max-1 1.18 

pak-2 1.18 

oac-57 1.18 

Y54G2A.11 1.18 

clec-81 1.18 

nos-2 1.18 

C06A5.8 1.18 

flh-2 1.18 

Y54G11A.1 1.18 

T04H1.2 1.18 

ham-1 1.18 

T28B4.4 1.18 

R10E4.11 1.17 

tlp-1 1.17 

Gene 
Name 

log2 
Fold 

T08A11.1 1.17 

kin-4 1.17 

T23B3.6 1.17 

F52H3.4 1.17 

Y38H6C.9 1.17 

C16C8.2 1.17 

cdh-1 1.17 

rme-2 1.17 

Y43F8C.6 1.17 

imp-1 1.17 

grl-22 1.17 

polg-1 1.17 

C36C9.1 1.17 

Y73B3B.1 1.17 

F26A1.13 1.17 

ergo-1 1.17 

mys-4 1.17 

K02C4.3 1.16 

ztf-15 1.16 

plx-1 1.16 

Y48A6B.10 1.16 

C36B1.11 1.16 

clr-1 1.16 

ZK1055.7 1.16 

Y22D7AL.9 1.16 

lea-1 1.16 

aakg-1 1.16 

M01G5.1 1.16 

fozi-1 1.16 

C42D8.1 1.16 

C13E3.1 1.16 

dcp-66 1.16 

sos-1 1.15 

F26G1.1 1.15 

Y71H2AM.
3 

1.15 

Y54G2A.36 1.15 

pha-4 1.15 

Y47G6A.29 1.15 

T26H5.9 1.15 

flt-1 1.15 

lin-49 1.15 

Gene 
Name 

log2 
Fold 

F15A8.6 1.15 

srd-53 1.14 

sta-2 1.14 

R12C12.5 1.14 

ubc-23 1.14 

acd-2 1.14 

H11L12.1 1.14 

Y56A3A.28 1.14 

Y50D7A.2 1.14 

clec-76 1.14 

mei-2 1.14 

acly-2 1.14 

dcr-1 1.14 

Y6B3B.4 1.14 

mig-38 1.14 

F56E10.1 1.14 

ZK637.6 1.14 

sax-7 1.14 

C06B8.7 1.14 

ZK973.1 1.13 

egg-5 1.13 

C10G11.6 1.13 

M4.1 1.13 

unc-71 1.13 

gon-1 1.13 

bath-19 1.13 

C05A9.2 1.13 

fbxa-141 1.13 

W05F2.3 1.13 

spsb-1 1.13 

C33D9.5 1.13 

igeg-2 1.13 

puf-8 1.13 

ppt-1 1.13 

athp-2 1.13 

Y41D4B.4 1.13 

oma-2 1.12 

rig-3 1.12 

Y17D7C.2 1.12 

cyb-2.1 1.12 

pab-2 1.12 

szy-4 1.12 

Gene 
Name 

log2 
Fold 

F31C3.3 1.12 

gln-6 1.12 

C11H1.5 1.12 

ubc-8 1.12 

Y48G1BM.
6 

1.12 

F52D2.12 1.12 

T11F9.12 1.12 

plx-2 1.12 

F18A1.7 1.12 

tat-3 1.12 

gon-14 1.11 

Y51A2D.15 1.11 

F12A10.8 1.11 

sydn-1 1.11 

H34C03.2 1.11 

R02F2.4 1.11 

Y50D7A.11 1.11 

tbx-36 1.11 

W01A11.7 1.11 

ZK970.7 1.11 

F13E6.4 1.11 

Y44E3A.4 1.11 

T07C12.12 1.11 

rga-3 1.11 

Y41G9A.5 1.10 

chs-2 1.10 

C14A4.12 1.10 

str-7 1.10 

F13D2.1 1.10 

Y50D7A.8 1.10 

F33H2.5 1.10 

Y48G1BL.5 1.10 

cyp-34A2 1.10 

egrh-1 1.10 

Y38F2AR.6 1.10 

hlh-2 1.10 

epg-6 1.09 

fil-2 1.09 

lag-1 1.09 

vps-11 1.09 

mre-11 1.09 
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Gene 
Name 

log2 
Fold 

far-3 1.09 

sas-4 1.09 

T19B10.8 1.09 

tsg-101 1.09 

F45D3.2 1.09 

zim-2 1.09 

gst-24 1.09 

lec-11 1.08 

csb-1 1.08 

gck-4 1.08 

fbxa-95 1.08 

F47D12.9 1.08 

F20C5.6 1.08 

mom-4 1.08 

dpf-6 1.08 

cyp-23A1 1.08 

F21A10.2 1.08 

F45D3.4 1.08 

rad-50 1.08 

cpb-3 1.08 

mbk-2 1.08 

cash-1 1.08 

rad-26 1.08 

Y105E8A.2
4 

1.08 

hop-1 1.08 

C05G5.2 1.08 

pqn-62 1.08 

Y58A7A.3 1.07 

mel-28 1.07 

gcl-1 1.07 

F36A2.13 1.07 

F16B4.2 1.07 

srgp-1 1.07 

rrf-3 1.07 

ttm-4 1.07 

M106.2 1.07 

C17H12.6 1.07 

F44E2.4 1.07 

F13B6.1 1.07 

har-2 1.07 

ZC308.4 1.07 

Gene 
Name 

log2 
Fold 

D1044.6 1.07 

tftc-3 1.07 

gyg-2 1.07 

C34B7.2 1.07 

C09E7.8 1.07 

F11A5.9 1.07 

panl-2 1.07 

mel-26 1.07 

C23H5.15 1.07 

ulp-1 1.07 

com-1 1.07 

rbg-3 1.06 

Y48C3A.12 1.06 

evl-14 1.06 

wee-1.3 1.06 

chk-2 1.06 

T26H5.10 1.06 

sup-35 1.06 

ZC449.5 1.06 

swsn-9 1.06 

plk-3 1.06 

lsy-12 1.06 

C06A5.3 1.06 

Y43F8C.3 1.06 

evl-18 1.06 

sdc-3 1.06 

ifet-1 1.06 

cyh-1 1.06 

lin-12 1.06 

sqv-6 1.05 

ceh-38 1.05 

M01F1.9 1.05 

T22D1.5 1.05 

sel-8 1.05 

sem-5 1.05 

atg-9 1.05 

unc-53 1.05 

Y73B3A.1 1.05 

C36A4.5 1.05 

ztf-6 1.05 

hmr-1 1.05 

ubc-25 1.05 

Gene 
Name 

log2 
Fold 

fnci-1 1.05 

F57B10.9 1.05 

sas-5 1.05 

bath-30 1.05 

aka-1 1.04 

B0511.12 1.04 

cdh-7 1.04 

K02B12.5 1.04 

K03A11.5 1.04 

C02B8.6 1.04 

brd-1 1.04 

pqn-21 1.04 

toca-1 1.04 

T19C3.3 1.04 

wnk-1 1.04 

F46B6.5 1.04 

let-765 1.04 

gck-1 1.04 

chd-7 1.04 

cyp-35B1 1.03 

scc-3 1.03 

dnj-5 1.03 

ZK1025.1 1.03 

npp-14 1.03 

tol-1 1.03 

bet-1 1.03 

cdh-3 1.03 

C49C3.9 1.03 

Y37E11AM
.2 

1.03 

egal-1 1.03 

cgh-1 1.03 

K10B4.3 1.03 

lrp-1 1.03 

C39F7.5 1.03 

E03H4.8 1.03 

K06A9.1 1.03 

anoh-2 1.03 

bath-42 1.03 

R04F11.3 1.03 

lin-36 1.03 

F13E9.1 1.03 

Gene 
Name 

log2 
Fold 

daf-12 1.03 

Y71F9AR.3 1.03 

T08D2.3 1.02 

F21C10.7 1.02 

D1043.1 1.02 

spr-4 1.02 

pap-1 1.02 

vhp-1 1.02 

M04F3.5 1.02 

sgo-1 1.02 

F35G2.1 1.02 

W02B8.2 1.02 

mesp-1 1.02 

H02I12.5 1.02 

nhr-41 1.02 

F59H5.1 1.02 

zyg-11 1.02 

vet-2 1.01 

egl-15 1.01 

F30F8.10 1.01 

F10D11.2 1.01 

H03A11.2 1.01 

ace-2 1.01 

met-1 1.01 

lin-45 1.01 

mcm-3 1.01 

Y53F4B.13 1.01 

F36H2.3 1.01 

nhr-211 1.01 

mom-5 1.01 

frm-8 1.01 

Y54G2A.21 1.01 

ess-2 1.01 

pme-6 1.01 

T23F4.2 1.01 

F18E3.12 1.01 

clec-90 1.01 

kgb-1 1.01 

tim-1 1.00 

F47G3.1 1.00 

ubc-1 1.00 

F44E7.5 1.00 
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Gene 
Name 

log2 
Fold 

C31H1.8 1.00 

C35A11.2 1.00 

zyg-9 1.00 

clh-4 1.00 

C06A5.6 1.00 

smc-6 1.00 

odd-2 1.00 

dna-2 1.00 

Y48G1C.8 1.00 

knl-1 1.00 

lrg-1 1.00 

xbx-5 1.00 

B0205.13 1.00 

czw-1 1.00 

isw-1 1.00 

mys-1 1.00 

1-Sep 1.00 

K08D10.1 1.00 

trcs-2 1.00 

srh-71 0.99 

swsn-4 0.99 

let-502 0.99 

rpm-1 0.99 

scav-2 0.99 

pdk-1 0.99 

clec-87 0.99 

F14D7.2 0.99 

phf-10 0.99 

cin-4 0.99 

clp-2 0.99 

ceh-91 0.99 

otpl-3 0.99 

C14B1.9 0.99 

daf-19 0.99 

smc-4 0.99 

hum-1 0.99 

lin-9 0.99 

dpy-26 0.99 

C29F9.4 0.98 

B0393.3 0.98 

kin-18 0.98 

ZC317.7 0.98 

Gene 
Name 

log2 
Fold 

C27F2.8 0.98 

lem-3 0.98 

rev-1 0.98 

Y87G2A.7 0.98 

F47A4.5 0.98 

cdt-1 0.98 

egl-27 0.98 

aex-3 0.98 

viln-1 0.98 

K09D9.1 0.98 

unc-68 0.98 

unc-80 0.98 

M70.5 0.98 

pdfr-1 0.98 

msi-1 0.98 

Y119C1A.1 0.98 

cgt-1 0.97 

nmy-2 0.97 

Y22D7AL.1
5 

0.97 

pqn-65 0.97 

ugt-24 0.97 

ZK154.5 0.97 

ced-7 0.97 

M57.1 0.97 

asfl-1 0.97 

Y75B8A.28 0.97 

oac-31 0.97 

pld-1 0.97 

atg-18 0.97 

pop-1 0.97 

pho-14 0.97 

mes-4 0.97 

R05D3.12 0.97 

hmg-20 0.97 

C13F10.4 0.97 

Y75B8A.3 0.97 

pad-1 0.96 

M01E11.3 0.96 

M01E5.3 0.96 

Y92H12A.4 0.96 

Gene 
Name 

log2 
Fold 

Y55F3AM.
6 

0.96 

Y17G7B.13 0.96 

nop-1 0.96 

clec-91 0.96 

mex-1 0.96 

T05E8.3 0.96 

C48B6.3 0.96 

cogc-5 0.96 

T09F5.12 0.96 

hlh-30 0.96 

lam-2 0.96 

orc-1 0.96 

pis-1 0.96 

ZK484.4 0.96 

hex-4 0.95 

csnk-1 0.95 

pkc-1 0.95 

C08G5.7 0.95 

dhc-1 0.95 

hcp-1 0.95 

cpg-4 0.95 

hsr-9 0.95 

C16C8.11 0.95 

gex-3 0.94 

tes-1 0.94 

Y55D9A.2 0.94 

fmi-1 0.94 

ZC376.6 0.94 

cbn-1 0.94 

Y111B2A.3 0.94 

F28H6.4 0.94 

hmbx-1 0.94 

F13B12.6 0.94 

T19B4.5 0.94 

K06A5.1 0.94 

R11D1.1 0.94 

rde-2 0.94 

tag-294 0.94 

K11D12.9 0.94 

F01G4.4 0.94 

math-24 0.94 

Gene 
Name 

log2 
Fold 

adpr-1 0.94 

best-13 0.93 

fbxa-98 0.93 

mdt-15 0.93 

taf-1 0.93 

F09C8.2 0.93 

ntl-9 0.93 

tag-77 0.93 

scc-1 0.93 

grd-4 0.93 

cye-1 0.93 

dlg-1 0.93 

sox-4 0.93 

Y55F3BL.2 0.93 

F14H3.6 0.93 

M60.4 0.93 

src-1 0.93 

Y55F3AM.
10 

0.93 

Y92H12A.5 0.93 

Y54F10AR.
1 

0.93 

ZK863.4 0.92 

lin-59 0.92 

C36E8.1 0.92 

duo-1 0.92 

fbxa-107 0.92 

tir-1 0.92 

eri-9 0.92 

sli-1 0.92 

C14B1.7 0.92 

C35D10.7 0.92 

C41H7.4 0.92 

ccpp-1 0.92 

abi-1 0.92 

F02E8.4 0.92 

F59E12.1 0.92 

tag-278 0.92 

C56G2.1 0.92 

bus-1 0.92 

efa-6 0.92 

R10H10.7 0.92 
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Gene 
Name 

log2 
Fold 

fbxa-11 0.92 

smg-2 0.92 

egl-19 0.92 

smg-1 0.92 

R11A8.7 0.92 

Y82E9BL.1
8 

0.92 

T23B12.6 0.92 

F33H1.4 0.92 

C39H7.4 0.91 

lpin-1 0.91 

C30F12.4 0.91 

F33G12.6 0.91 

C31C9.7 0.91 

capg-1 0.91 

rga-4 0.91 

R07E3.6 0.91 

mig-15 0.91 

C01G8.1 0.91 

W06B4.1 0.91 

farl-11 0.91 

mrp-2 0.91 

Y53F4B.45 0.91 

B0507.2 0.91 

C26G2.2 0.91 

pitr-1 0.91 

Y65A5A.2 0.91 

F16A11.1 0.91 

daz-1 0.91 

set-14 0.91 

C05C10.5 0.91 

set-26 0.91 

him-18 0.91 

B0393.6 0.90 

K02F6.7 0.90 

rme-8 0.90 

dct-17 0.90 

set-9 0.90 

F52C12.4 0.90 

Y48G1C.1
1 

0.90 

ani-2 0.90 

Gene 
Name 

log2 
Fold 

ima-3 0.90 

ketn-1 0.90 

C04F12.1 0.90 

vbh-1 0.90 

D1081.7 0.90 

rcor-1 0.90 

dnj-8 0.89 

adm-2 0.89 

D1007.5 0.89 

ppfr-1 0.89 

ifd-2 0.89 

let-653 0.89 

mcm-7 0.89 

gck-2 0.89 

haf-2 0.89 

alx-1 0.89 

cku-80 0.89 

spc-1 0.89 

ima-1 0.89 

pkc-3 0.89 

drp-1 0.89 

sea-2 0.89 

npp-21 0.89 

C18H7.11 0.89 

rcq-5 0.88 

F33E11.3 0.88 

nrd-1 0.88 

vglu-3 0.88 

T10B11.7 0.88 

Y69A2AL.2 0.88 

rfc-1 0.88 

C02F5.7 0.88 

hcf-1 0.88 

Y56A3A.7 0.88 

rde-1 0.88 

atg-2 0.88 

R17.2 0.88 

K03H1.11 0.88 

W06E11.1 0.88 

fic-1 0.88 

B0205.1 0.88 

abt-2 0.88 

Gene 
Name 

log2 
Fold 

F27E5.9 0.87 

Y62E10A.1
4 

0.87 

nasp-2 0.87 

bli-3 0.87 

set-5 0.87 

mes-2 0.87 

F23H11.4 0.87 

obr-3 0.87 

F45F2.10 0.87 

aakg-5 0.87 

athp-1 0.87 

gcy-28 0.87 

F56C9.10 0.87 

fbxa-215 0.87 

M03C11.8 0.87 

Y15E3A.5 0.87 

ctg-2 0.87 

bet-2 0.87 

mcm-5 0.87 

T08G11.1 0.86 

gcy-12 0.86 

ZK688.5 0.86 

gfi-2 0.86 

F29G9.2 0.86 

mig-5 0.86 

emb-5 0.86 

C06G4.1 0.86 

ain-2 0.86 

ZK131.11 0.86 

R05D3.2 0.86 

ubr-1 0.86 

eea-1 0.86 

rtel-1 0.86 

tlk-1 0.86 

F42G9.6 0.86 

ntl-4 0.85 

mec-15 0.85 

gmeb-1 0.85 

Y32H12A.8 0.85 

dsh-2 0.85 

skpt-1 0.85 

Gene 
Name 

log2 
Fold 

rec-8 0.85 

cdc-42 0.85 

C27A12.2 0.85 

hcp-4 0.85 

R09A1.3 0.85 

ani-1 0.85 

zfp-1 0.85 

F22B7.9 0.85 

F10C2.4 0.85 

B0464.6 0.84 

prg-1 0.84 

cogc-3 0.84 

ced-5 0.84 

tep-1 0.84 

C06B3.6 0.84 

K08F4.1 0.84 

C25F9.5 0.84 

mom-2 0.84 

C09D4.4 0.84 

F36D4.5 0.84 

dig-1 0.84 

hda-3 0.84 

gras-1 0.84 

D2030.8 0.84 

F49E2.5 0.84 

mtm-3 0.84 

cyp-31A2 0.84 

gls-1 0.84 

Y45G5AM.
3 

0.84 

D2096.12 0.84 

ego-1 0.84 

ire-1 0.83 

hda-2 0.83 

T20F5.6 0.83 

R01H10.7 0.83 

toe-2 0.83 

M02B7.5 0.83 

T26A8.4 0.83 

F45F2.11 0.83 

mut-7 0.83 

mus-101 0.83 
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Gene 
Name 

log2 
Fold 

cdc-6 0.83 

B0205.9 0.83 

set-16 0.83 

Y37D8A.16 0.83 

R12E2.2 0.83 

tam-1 0.83 

ZK524.4 0.83 

ogt-1 0.82 

mat-2 0.82 

sac-1 0.82 

dpy-28 0.82 

Y65B4BL.1 0.82 

B0261.7 0.82 

Y17G7B.20 0.82 

T11G6.5 0.82 

fsn-1 0.82 

hrdl-1 0.82 

attf-6 0.82 

R02D3.8 0.81 

msh-6 0.81 

F52B5.3 0.81 

T24F1.2 0.81 

W04D2.4 0.81 

F38A5.7 0.81 

Y47D3A.29 0.81 

Y54E2A.4 0.81 

gei-6 0.81 

clec-88 0.81 

tag-325 0.81 

larp-5 0.81 

lem-2 0.81 

nasp-1 0.81 

T24D1.2 0.81 

M01H9.3 0.80 

epi-1 0.80 

rad-51 0.80 

abt-4 0.80 

msh-2 0.80 

F55C12.5 0.80 

F20D12.2 0.80 

pgp-9 0.80 

nfx-1 0.80 

Gene 
Name 

log2 
Fold 

T19A5.1 0.80 

C17H12.2 0.80 

rpa-1 0.80 

ptp-2 0.79 

unc-94 0.79 

npp-7 0.79 

uri-1 0.79 

tat-5 0.79 

gna-2 0.79 

C01G6.5 0.79 

ubxn-3 0.78 

pct-1 0.78 

lpr-5 0.78 

edc-3 0.78 

mon-2 0.78 

ikke-1 0.78 

F45D3.3 0.78 

F11A10.5 0.78 

ttll-5 0.78 

M05D6.2 0.78 

gld-1 0.78 

plk-1 0.78 

C32D5.3 0.78 

C25A1.5 0.77 

exoc-8 0.77 

clec-180 0.77 

F55H12.2 0.77 

daf-16 0.77 

hgrs-1 0.77 

rap-1 0.76 

top-2 0.76 

pde-2 0.75 

pptr-2 0.75 

klp-18 0.75 

ama-1 0.75 

C10G8.8 -0.73 

mtss-1 -0.75 

clec-48 -0.75 

faah-3 -0.76 

acs-5 -0.76 

fkb-6 -0.76 

mrpl-50 -0.76 

Gene 
Name 

log2 
Fold 

Y54G2A.45 -0.76 

mlp-1 -0.77 

F53B7.3 -0.77 

K07C5.4 -0.77 

D1086.6 -0.77 

grd-14 -0.77 

Y53G8AL.2 -0.77 

dnj-12 -0.77 

Y97E10AL.
3 

-0.77 

heh-1 -0.77 

cct-7 -0.77 

ZK795.3 -0.78 

T23B3.5 -0.78 

msp-49 -0.78 

mdt-11 -0.78 

mdt-9 -0.78 

C14C6.5 -0.78 

Y25C1A.13 -0.78 

umps-1 -0.79 

T09B4.8 -0.79 

tag-267 -0.79 

tag-18 -0.79 

asg-1 -0.79 

C48E7.7 -0.79 

C05C8.1 -0.79 

aps-3 -0.79 

ldh-1 -0.79 

C01H6.4 -0.79 

B0454.5 -0.80 

acs-14 -0.80 

tba-4 -0.80 

ZK484.5 -0.80 

ucr-1 -0.80 

gas-1 -0.80 

glrx-10 -0.80 

Y58A7A.1 -0.81 

W07G4.5 -0.81 

rps-29 -0.81 

mrpl-47 -0.81 

fkb-3 -0.81 

hpo-19 -0.81 

Gene 
Name 

log2 
Fold 

ZK669.4 -0.81 

rpia-1 -0.81 

lpd-5 -0.81 

ubl-5 -0.81 

H29C22.1 -0.81 

F53B6.4 -0.81 

dnj-19 -0.81 

D1086.10 -0.82 

gln-2 -0.82 

E04A4.5 -0.82 

Y69E1A.5 -0.82 

pgp-2 -0.82 

F08G5.6 -0.82 

aat-6 -0.82 

tag-174 -0.82 

Y38C1AA.
14 

-0.82 

nuc-1 -0.82 

ugt-23 -0.82 

nduf-7 -0.82 

ZC239.16 -0.82 

B0491.5 -0.83 

mecr-1 -0.83 

C17H12.8 -0.83 

Y39A1A.14 -0.83 

F10C1.9 -0.83 

F10E9.4 -0.83 

ZK632.9 -0.83 

asns-2 -0.83 

T12B3.2 -0.83 

aco-1 -0.83 

grd-5 -0.83 

cct-5 -0.83 

cdo-1 -0.83 

ssp-16 -0.84 

F58H1.8 -0.84 

F56A8.3 -0.84 

spp-14 -0.84 

catp-3 -0.84 

acdh-11 -0.84 

par-5 -0.84 

K08D12.3 -0.84 
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Gene 
Name 

log2 
Fold 

F54D5.7 -0.84 

K09E2.3 -0.84 

F26B1.8 -0.84 

mrpl-24 -0.84 

R53.2 -0.84 

ugt-6 -0.84 

lsm-1 -0.84 

ZC376.2 -0.84 

atp-5 -0.85 

C04G2.8 -0.85 

F42A9.6 -0.85 

F44G4.2 -0.85 

dhs-18 -0.85 

F43C11.7 -0.85 

M162.7 -0.85 

rpl-41 -0.85 

R09B3.2 -0.85 

F56F10.1 -0.85 

F35H10.6 -0.85 

nuo-6 -0.85 

art-1 -0.85 

C30H6.8 -0.85 

F35D11.4 -0.85 

acs-22 -0.85 

T21G5.4 -0.85 

sqt-2 -0.85 

F55B11.2 -0.85 

R12E2.13 -0.85 

W10G11.1
9 

-0.85 

snrp-27 -0.86 

F47B8.8 -0.86 

isp-1 -0.86 

F54C9.3 -0.86 

sptl-2 -0.86 

F15D3.7 -0.86 

R02F2.9 -0.86 

Y67D2.3 -0.86 

snr-3 -0.86 

pes-23 -0.86 

C29F3.7 -0.86 

rps-13 -0.86 

Gene 
Name 

log2 
Fold 

ZK84.1 -0.87 

wrt-4 -0.87 

ivd-1 -0.87 

Y51H1A.3 -0.87 

F10E9.5 -0.87 

C25H3.9 -0.87 

nspc-13 -0.87 

grd-6 -0.87 

W04G3.5 -0.87 

spl-1 -0.87 

ugt-44 -0.87 

Y43F8C.5 -0.87 

ZK180.5 -0.87 

msp-78 -0.87 

gipc-1 -0.88 

tdo-2 -0.88 

mrpl-16 -0.88 

F38B7.3 -0.88 

vha-2 -0.88 

hpo-15 -0.88 

sdhd-1 -0.88 

M153.1 -0.88 

C43E11.5 -0.88 

trx-4 -0.88 

M88.7 -0.89 

ssq-4 -0.89 

T24C12.3 -0.89 

C04G2.9 -0.89 

cpt-4 -0.89 

T06G6.6 -0.89 

R09B3.3 -0.89 

F42C5.5 -0.89 

nhr-109 -0.89 

lec-10 -0.89 

F37H8.3 -0.89 

col-96 -0.89 

msp-77 -0.89 

Y54F10AM
.5 

-0.89 

Y105E8A.1
1 

-0.89 

R151.2 -0.90 

Gene 
Name 

log2 
Fold 

asp-5 -0.90 

Y62E10A.1
3 

-0.90 

col-58 -0.90 

T20H4.5 -0.90 

pcp-2 -0.90 

F27D4.1 -0.90 

C15H11.1 -0.90 

C15F1.1 -0.90 

cyn-2 -0.90 

sur-5 -0.90 

rpl-33 -0.90 

rpl-26 -0.90 

rpl-30 -0.91 

ram-2 -0.91 

C35C5.10 -0.91 

his-59 -0.91 

msp-50 -0.91 

Y39B6A.3 -0.91 

cpi-1 -0.91 

Y39E4A.3 -0.91 

tin-9.1 -0.91 

ZK858.8 -0.91 

W06D4.2 -0.91 

rpl-43 -0.91 

gta-1 -0.91 

rpl-38 -0.91 

nlp-28 -0.92 

C50F2.5 -0.92 

C01G10.8 -0.92 

drr-1 -0.92 

nrf-6 -0.92 

unc-23 -0.92 

Y62E10A.2 -0.92 

dhs-14 -0.92 

Y71H2B.4 -0.92 

clec-10 -0.92 

sucl-2 -0.92 

acdh-4 -0.92 

B0457.2 -0.92 

C47B2.9 -0.92 

lbp-4 -0.92 

Gene 
Name 

log2 
Fold 

F53F4.16 -0.92 

R05G6.7 -0.92 

afmd-1 -0.93 

glrx-22 -0.93 

rhr-1 -0.93 

ugt-7 -0.93 

F20H11.4 -0.93 

rpl-31 -0.93 

cpt-5 -0.93 

grl-16 -0.93 

F08F3.4 -0.93 

ZK1127.13 -0.93 

dhs-9 -0.93 

mig-1 -0.93 

cgt-2 -0.93 

T01D1.3 -0.93 

col-133 -0.93 

C52B11.5 -0.93 

rps-3 -0.93 

clec-65 -0.93 

cpr-1 -0.93 

kat-1 -0.94 

tag-261 -0.94 

erd-2 -0.94 

Y105C5B.9 -0.94 

Y19D10A.1
6 

-0.94 

nlp-27 -0.94 

B0228.7 -0.94 

gst-42 -0.94 

nlp-24 -0.94 

col-97 -0.94 

Y57A10A.2
3 

-0.94 

gst-7 -0.94 

C42D4.1 -0.94 

Y81G3A.1 -0.94 

R08A2.2 -0.94 

lpd-8 -0.94 

hda-5 -0.94 

C05C12.5 -0.94 

best-21 -0.94 
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Gene 
Name 

log2 
Fold 

E03H12.7 -0.95 

F28F5.6 -0.95 

hpo-8 -0.95 

gln-3 -0.95 

Y71H2AR.
1 

-0.95 

ver-2 -0.95 

col-61 -0.95 

R04A9.9 -0.95 

col-137 -0.95 

C53B4.3 -0.95 

R05F9.6 -0.95 

sss-1 -0.95 

rps-26 -0.95 

Y50D4B.6 -0.95 

F38B7.2 -0.95 

F09E5.11 -0.95 

msp-45 -0.95 

Y17D7B.4 -0.95 

rab-19 -0.95 

F08D12.7 -0.95 

F20D6.6 -0.96 

clec-83 -0.96 

K09H9.8 -0.96 

Y43F4B.10 -0.96 

nspc-20 -0.96 

dod-17 -0.96 

rps-30 -0.96 

asp-6 -0.96 

sft-4 -0.96 

rnp-4 -0.96 

mbf-1 -0.96 

B0491.7 -0.96 

Y71F9B.9 -0.96 

cco-1 -0.96 

rrn-2.1 -0.96 

D1014.4 -0.96 

C47D12.5 -0.96 

T08H10.3 -0.96 

T04F3.3 -0.96 

R53.4 -0.96 

col-73 -0.97 

Gene 
Name 

log2 
Fold 

C01G10.14 -0.97 

hpd-1 -0.97 

ZK616.3 -0.97 

lon-1 -0.97 

grsp-1 -0.97 

F34D10.9 -0.97 

F42H11.1 -0.97 

F16F9.4 -0.97 

W09C5.8 -0.97 

ugt-63 -0.97 

Y63D3A.7 -0.97 

nlp-30 -0.97 

his-60 -0.97 

T04A8.13 -0.97 

K08C7.6 -0.97 

ZK1240.5 -0.97 

elo-9 -0.97 

F53F4.10 -0.97 

Y50D4A.5 -0.97 

W01A8.8 -0.97 

nlp-31 -0.97 

Y37E11B.6 -0.97 

F23C8.5 -0.97 

Y105C5B.5 -0.98 

lpd-9 -0.98 

upb-1 -0.98 

F31D4.8 -0.98 

F44A6.4 -0.98 

Y43B11AR
.1 

-0.98 

mel-32 -0.98 

nspc-14 -0.98 

ttr-47 -0.98 

ZK856.5 -0.98 

K02A11.4 -0.98 

ZK265.6 -0.98 

mrps-28 -0.98 

C01B10.10 -0.98 

D1086.17 -0.98 

F27E5.1 -0.98 

ZK899.2 -0.98 

R04F11.5 -0.98 

Gene 
Name 

log2 
Fold 

ndg-4 -0.98 

dlc-1 -0.98 

F22H10.2 -0.98 

K07A1.5 -0.98 

R07E3.4 -0.98 

E02H1.6 -0.98 

ttr-48 -0.99 

rpl-34 -0.99 

sqt-1 -0.99 

Y87G2A.20 -0.99 

B0250.5 -0.99 

nbet-1 -0.99 

C34B2.8 -0.99 

aqp-4 -0.99 

K08F4.5 -0.99 

F58D5.2 -0.99 

C55C3.4 -0.99 

ril-1 -0.99 

ubq-2 -0.99 

rps-19 -0.99 

F36A4.4 -0.99 

C35D10.17 -0.99 

AC3.9 -0.99 

T21G5.2 -0.99 

R06B10.1 -0.99 

F45G2.8 -0.99 

F13G3.10 -0.99 

ubl-1 -0.99 

C27H5.4 -0.99 

rps-12 -0.99 

clec-150 -0.99 

C34D4.2 -0.99 

acdh-5 -1.00 

W03D8.5 -1.00 

ugt-52 -1.00 

acdh-9 -1.00 

ttr-41 -1.00 

D2023.4 -1.00 

H22K11.2 -1.00 

F59A2.5 -1.00 

Y69A2AR.
21 

-1.00 

Gene 
Name 

log2 
Fold 

D1086.7 -1.00 

F40F12.3 -1.00 

cyn-5 -1.00 

F57B10.14 -1.00 

MTCE.33 -1.01 

lact-1 -1.01 

tba-9 -1.01 

C55B7.3 -1.01 

C26F1.1 -1.01 

ins-33 -1.01 

C07D8.6 -1.01 

lbp-3 -1.01 

his-53 -1.01 

chch-3 -1.01 

nspc-15 -1.01 

daf-22 -1.01 

cyn-7 -1.01 

F55E10.6 -1.01 

chw-1 -1.01 

K07H8.5 -1.01 

Y43C5B.3 -1.01 

F59D6.3 -1.01 

his-70 -1.01 

pgrn-1 -1.01 

Y67H2A.5 -1.01 

apy-1 -1.01 

dpy-5 -1.01 

kbp-4 -1.01 

acox-1 -1.01 

cln-3.1 -1.02 

C33H5.13 -1.02 

K08C9.2 -1.02 

aldo-2 -1.02 

R12C12.1 -1.02 

F54F7.3 -1.02 

rmd-3 -1.02 

C26B9.5 -1.02 

nkat-3 -1.02 

F32B6.10 -1.02 

ssq-1 -1.02 

C16C10.8 -1.02 

clec-4 -1.02 
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Gene 
Name 

log2 
Fold 

nspc-3 -1.02 

rps-23 -1.02 

mlc-2 -1.03 

F35C8.5 -1.03 

F36A2.3 -1.03 

rps-16 -1.03 

acdh-8 -1.03 

tap-1 -1.03 

T11F8.1 -1.03 

rpl-36 -1.03 

T01B11.2 -1.03 

Y51A2D.18 -1.03 

F10D2.10 -1.03 

hsp-12.1 -1.03 

rpl-28 -1.03 

C26B2.2 -1.03 

Y45F10C.2 -1.03 

K01D12.15 -1.03 

C30G7.4 -1.03 

ceh-88 -1.03 

F28E10.4 -1.03 

C48B6.10 -1.03 

R09E10.2 -1.03 

daao-1 -1.04 

T27E7.1 -1.04 

gstk-1 -1.04 

F41G3.18 -1.04 

K01C8.1 -1.04 

ard-1 -1.04 

T27E4.7 -1.04 

Y62H9A.4 -1.04 

ZK1010.8 -1.04 

asp-2 -1.04 

ZC376.3 -1.04 

ZC449.8 -1.04 

T06A1.5 -1.04 

C39D10.7 -1.04 

klo-2 -1.04 

F52H2.6 -1.04 

F20G2.2 -1.04 

F41F3.3 -1.04 

C35A5.3 -1.04 

Gene 
Name 

log2 
Fold 

C02B10.6 -1.04 

T04B2.7 -1.04 

mrpl-12 -1.04 

mrps-12 -1.05 

C16A11.7 -1.05 

acl-1 -1.05 

his-19 -1.05 

C28D4.8 -1.05 

T09A5.15 -1.05 

msp-40 -1.05 

rps-14 -1.05 

Y102A5C.3
6 

-1.05 

R12E2.7 -1.05 

C25A8.4 -1.05 

K07G5.5 -1.05 

Y47D3B.12 -1.05 

F42G8.10 -1.05 

Y48A6B.3 -1.05 

rps-15 -1.05 

F36H12.10 -1.05 

alh-6 -1.05 

ZK512.4 -1.05 

F21C3.6 -1.06 

C35D10.8 -1.06 

ssq-2 -1.06 

ddp-1 -1.06 

nlp-29 -1.06 

Y54G2A.49 -1.06 

F13H6.3 -1.06 

C16A3.10 -1.06 

F25H5.2 -1.06 

F36H12.5 -1.06 

fbxa-92 -1.06 

F23F1.10 -1.06 

Y71G12B.2
7 

-1.06 

C05D11.5 -1.06 

F54A3.5 -1.06 

F43G6.17 -1.06 

rps-18 -1.06 

Y105C5A.2
5 

-1.06 

Gene 
Name 

log2 
Fold 

cnc-4 -1.06 

cyp-37B1 -1.06 

Y71H2AM.
5 

-1.07 

rps-9 -1.07 

ZK930.6 -1.07 

nspc-19 -1.07 

mec-5 -1.07 

W01D2.1 -1.07 

col-104 -1.07 

Y45F3A.1 -1.07 

frh-1 -1.07 

pho-1 -1.07 

dnj-21 -1.07 

ZC196.5 -1.07 

C15H7.3 -1.07 

Y57A10A.3 -1.07 

dpy-13 -1.07 

moag-4 -1.07 

ZK795.2 -1.08 

C29E4.12 -1.08 

F23H11.5 -1.08 

ugt-4 -1.08 

R12E2.15 -1.08 

ZK686.1 -1.08 

C35B1.5 -1.08 

ant-1.3 -1.08 

ugt-33 -1.08 

clec-49 -1.08 

fbl-1 -1.08 

dnpp-1 -1.08 

T27A3.5 -1.08 

bli-2 -1.08 

fbxa-202 -1.08 

F23F12.12 -1.08 

C15B12.1 -1.08 

pfd-2 -1.08 

msp-10 -1.08 

H32K16.2 -1.08 

col-65 -1.08 

glrx-21 -1.08 

trap-4 -1.08 

Gene 
Name 

log2 
Fold 

rps-22 -1.08 

dpy-4 -1.08 

T09A5.7 -1.08 

grd-2 -1.08 

ZC395.10 -1.09 

fbxa-91 -1.09 

gcst-1 -1.09 

F09E5.8 -1.09 

rpb-8 -1.09 

nep-4 -1.09 

tkt-1 -1.09 

col-161 -1.09 

F14D7.6 -1.09 

F37F2.2 -1.09 

maoc-1 -1.09 

ger-1 -1.09 

W04B5.1 -1.09 

T02G5.7 -1.09 

twk-26 -1.09 

T10C6.10 -1.09 

Y54E2A.9 -1.10 

Y82E9BR.
3 

-1.10 

rps-25 -1.10 

gst-12 -1.10 

E01G4.7 -1.10 

F43G9.8 -1.10 

gst-26 -1.10 

F59A6.2 -1.10 

F07F6.1 -1.10 

ZC190.8 -1.10 

atp-4 -1.10 

sti-1 -1.10 

col-8 -1.10 

F52E1.14 -1.10 

F22F7.1 -1.10 

E03H12.5 -1.10 

clec-85 -1.10 

K08C7.1 -1.10 

snr-7 -1.10 

tmem-135 -1.10 

F45H10.3 -1.10 
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Gene 
Name 

log2 
Fold 

Y69E1A.2 -1.10 

ethe-1 -1.10 

ant-1.4 -1.10 

F44A6.5 -1.10 

mrpl-41 -1.10 

spe-4 -1.10 

T22A3.12 -1.10 

F46F2.3 -1.10 

msp-71 -1.11 

Y56A3A.19 -1.11 

Y18D10A.2
1 

-1.11 

ttr-46 -1.11 

F40G9.5 -1.11 

F25G6.8 -1.11 

F36F2.1 -1.11 

rpl-23 -1.11 

R13A1.3 -1.11 

R04F11.2 -1.11 

F18F11.1 -1.11 

T02H6.11 -1.11 

C25E10.8 -1.11 

C05D12.3 -1.12 

nep-20 -1.12 

F58F12.1 -1.12 

col-184 -1.12 

mpst-3 -1.12 

F33D11.2 -1.12 

F35C11.3 -1.12 

H27M09.5 -1.12 

cTel55X.1 -1.12 

F22D3.4 -1.12 

nhr-193 -1.12 

F56B3.11 -1.12 

fat-6 -1.12 

daf-21 -1.12 

ech-9 -1.12 

F46A9.1 -1.13 

B0272.3 -1.13 

K04G2.10 -1.13 

rps-21 -1.13 

C10H11.7 -1.13 

Gene 
Name 

log2 
Fold 

ZC373.5 -1.13 

Y53F4B.23 -1.13 

C08F11.12 -1.13 

K12H4.5 -1.13 

C10C5.4 -1.13 

D2062.6 -1.13 

F37E3.3 -1.13 

acs-1 -1.13 

F53C3.1 -1.13 

ttr-45 -1.13 

K08E4.7 -1.13 

col-76 -1.13 

T10E9.6 -1.13 

F44E5.1 -1.14 

C35A5.6 -1.14 

R05D7.1 -1.14 

Y62H9A.3 -1.14 

F45E4.6 -1.14 

Y41E3.22 -1.14 

scrm-8 -1.14 

mrps-18A -1.14 

mif-2 -1.14 

spe-10 -1.14 

F42A9.7 -1.14 

C08A9.10 -1.14 

F23C8.3 -1.14 

Y40D12A.2 -1.14 

dao-4 -1.14 

K06H7.8 -1.14 

mrpl-32 -1.15 

B0035.13 -1.15 

T12D8.5 -1.15 

T01C3.2 -1.15 

ddo-3 -1.15 

K01D12.9 -1.15 

C35E7.10 -1.15 

ZK354.3 -1.15 

F17C11.6 -1.15 

amt-4 -1.15 

R07B7.10 -1.15 

T05F1.11 -1.15 

msp-36 -1.15 

Gene 
Name 

log2 
Fold 

T22D1.11 -1.16 

erv-46 -1.16 

ttr-53 -1.16 

his-37 -1.16 

F58A6.1 -1.16 

F12B6.2 -1.16 

R12C12.10 -1.16 

msp-56 -1.16 

Y59E9AL.6 -1.16 

col-162 -1.16 

H25K10.1 -1.16 

C34F11.2 -1.16 

gst-27 -1.16 

C32C4.3 -1.16 

fipr-4 -1.16 

ZK1251.5 -1.17 

msp-142 -1.17 

F17E9.4 -1.17 

F36A2.7 -1.17 

kvs-4 -1.17 

F33D4.7 -1.17 

T13F3.8 -1.17 

col-106 -1.17 

Y38F1A.1 -1.17 

col-130 -1.17 

W08D2.9 -1.18 

C46C11.2 -1.18 

nspd-3 -1.18 

C28D4.7 -1.18 

T08G11.2 -1.18 

C46H11.6 -1.18 

F29C6.1 -1.18 

F26E4.6 -1.18 

spe-11 -1.18 

Y66H1A.5 -1.18 

F13E9.13 -1.18 

nspc-1 -1.18 

F42G8.8 -1.18 

T05C12.1 -1.18 

Y106G6H.
1 

-1.18 

T05B11.4 -1.18 

Gene 
Name 

log2 
Fold 

F43E2.6 -1.18 

C28C12.1 -1.18 

Y45F10C.4 -1.19 

R05D7.7 -1.19 

F26B1.1 -1.19 

mrps-7 -1.19 

ZK484.6 -1.19 

C04E12.2 -1.19 

ent-2 -1.19 

C29F7.3 -1.19 

Y95D11A.1 -1.19 

swt-7 -1.19 

Y23H5B.1 -1.19 

R11.1 -1.19 

flu-2 -1.19 

ugt-53 -1.19 

M04C9.3 -1.19 

F32A5.3 -1.19 

R09H10.3 -1.19 

frm-9 -1.19 

elo-2 -1.19 

cyp-29A2 -1.20 

K09C6.8 -1.20 

T21H3.1 -1.20 

C33A12.19 -1.20 

Y119D3B.2
1 

-1.20 

F14E5.1 -1.20 

C40H1.2 -1.20 

nspc-16 -1.20 

fbxa-72 -1.20 

C56C10.6 -1.20 

har-1 -1.21 

W08F4.5 -1.21 

Y44A6D.5 -1.21 

ttr-51 -1.21 

srx-58 -1.21 

C55A6.4 -1.21 

F25H9.7 -1.21 

cpg-9 -1.21 

Y82E9BR.
22 

-1.21 
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Gene 
Name 

log2 
Fold 

F29B9.11 -1.21 

F25H5.8 -1.21 

ZK84.2 -1.21 

lipl-2 -1.22 

C17D12.5 -1.22 

his-7 -1.22 

ttr-37 -1.22 

cyc-2.2 -1.22 

mrpl-23 -1.22 

T25B9.1 -1.22 

W05E10.1 -1.22 

C33G8.2 -1.22 

tag-281 -1.22 

oat-1 -1.22 

col-170 -1.22 

W08E12.8 -1.22 

fipr-21 -1.22 

col-91 -1.22 

F37C4.6 -1.22 

T01H8.2 -1.22 

F10E7.6 -1.22 

F14B8.4 -1.22 

pdi-2 -1.22 

Y43F8B.2 -1.22 

T11F8.4 -1.23 

F10E9.11 -1.23 

nhr-114 -1.23 

ZC581.7 -1.23 

F54D5.16 -1.23 

mrpl-54 -1.23 

dct-9 -1.23 

Y50E8A.12 -1.23 

F11C1.1 -1.23 

msd-2 -1.23 

Y116A8C.3
0 

-1.23 

Y57G11C.
15 

-1.23 

D1022.4 -1.23 

F07H5.3 -1.23 

C28D4.5 -1.23 

Y43C5B.2 -1.24 

Gene 
Name 

log2 
Fold 

T14G8.3 -1.24 

T08H10.1 -1.24 

nspc-18 -1.24 

Y73F4A.1 -1.24 

F45H10.2 -1.24 

idh-1 -1.24 

R05D7.2 -1.24 

acr-11 -1.24 

W03F9.1 -1.24 

C15H9.9 -1.24 

T10B5.7 -1.24 

F45H11.5 -1.24 

clec-52 -1.24 

Y54G2A.23 -1.25 

F07C6.6 -1.25 

F36D1.7 -1.25 

aqp-10 -1.25 

F13A7.7 -1.25 

F08A8.4 -1.25 

C23H4.7 -1.25 

C25H3.17 -1.25 

C05C10.7 -1.25 

fipr-10 -1.25 

mrpl-13 -1.25 

pfd-6 -1.25 

trap-2 -1.25 

ZK909.6 -1.25 

lbp-5 -1.25 

F01F1.2 -1.25 

R02F2.6 -1.25 

gst-6 -1.25 

T23B7.2 -1.25 

R10E9.3 -1.25 

cyp-14A2 -1.25 

C34B2.3 -1.25 

mrps-21 -1.25 

D1086.3 -1.25 

F58H1.6 -1.25 

K06A4.7 -1.25 

oac-50 -1.25 

wrt-5 -1.26 

gst-36 -1.26 

Gene 
Name 

log2 
Fold 

Y32F6A.5 -1.26 

Y62H9A.15 -1.26 

K11C4.1 -1.26 

pmt-2 -1.26 

M04C9.4 -1.26 

fipr-6 -1.26 

K02E11.10 -1.26 

T09B4.4 -1.26 

nspc-9 -1.26 

B0272.4 -1.26 

irld-8 -1.26 

msd-1 -1.26 

C26C6.9 -1.27 

hsp-16.2 -1.27 

C02F5.5 -1.27 

Y40B1B.7 -1.27 

rpl-29 -1.27 

F13D12.6 -1.27 

F23B12.1 -1.27 

cnc-8 -1.27 

cpz-1 -1.27 

fbxb-36 -1.27 

nid-1 -1.27 

msd-3 -1.27 

D2030.4 -1.27 

nurf-1 -1.27 

Y47D3A.13 -1.28 

ZK688.12 -1.28 

col-179 -1.28 

rla-2 -1.28 

msra-1 -1.28 

M02E1.3 -1.28 

C34B2.9 -1.28 

ahcy-1 -1.28 

C07E3.9 -1.28 

acbp-3 -1.28 

F57B1.5 -1.28 

T02E1.7 -1.29 

tin-10 -1.29 

F37C12.3 -1.29 

ttr-44 -1.29 

hil-2 -1.29 

Gene 
Name 

log2 
Fold 

spe-12 -1.29 

Y54G2A.41 -1.29 

lbp-7 -1.29 

F48D6.4 -1.29 

C17H12.11 -1.29 

F42G4.6 -1.29 

C49H3.3 -1.29 

ZK84.5 -1.29 

Y51H7C.13 -1.29 

B0496.1 -1.30 

B0218.5 -1.30 

asg-2 -1.30 

C53D6.10 -1.30 

C33G8.3 -1.30 

C04G2.5 -1.30 

H06I04.5 -1.30 

ech-1 -1.30 

T13A10.1 -1.30 

F32B6.4 -1.30 

K10D2.5 -1.30 

W09D6.4 -1.30 

F29C4.2 -1.30 

R08B4.3 -1.30 

C26B2.7 -1.31 

aip-1 -1.31 

H09G03.1 -1.31 

K08E7.8 -1.31 

Y53C10A.1
5 

-1.31 

gst-28 -1.31 

msp-81 -1.31 

fipr-13 -1.31 

C43H6.1 -1.31 

ZK1307.1 -1.31 

crt-1 -1.31 

irg-3 -1.31 

decr-1.1 -1.31 

T16G12.7 -1.31 

C44C1.5 -1.31 

C32E8.4 -1.31 

Y51H7C.1 -1.31 
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Gene 
Name 

log2 
Fold 

Y59H11AM
.1 

-1.31 

C01B4.6 -1.31 

K07A1.10 -1.32 

dhs-3 -1.32 

K12C11.5 -1.32 

Y54G11A.1
7 

-1.32 

C04F12.7 -1.32 

nspd-4 -1.32 

F52B11.2 -1.32 

msp-38 -1.32 

nhr-143 -1.32 

F49E12.10 -1.32 

ZK822.2 -1.32 

R105.1 -1.32 

ZK666.8 -1.32 

ugt-49 -1.32 

mtp-18 -1.32 

lsm-6 -1.33 

K10C2.7 -1.33 

ugt-21 -1.33 

spp-5 -1.33 

T23F6.3 -1.33 

F54D7.6 -1.33 

ftn-2 -1.33 

C01B10.4 -1.33 

F23D12.11 -1.33 

ugt-26 -1.33 

C01G12.3 -1.33 

Y37A1B.5 -1.33 

rpl-39 -1.33 

nspd-5 -1.33 

thn-2 -1.33 

msp-152 -1.34 

D2062.7 -1.34 

Y57G7A.5 -1.34 

F14F7.4 -1.34 

C14A4.6 -1.34 

daf-36 -1.34 

AH6.3 -1.34 

ttr-35 -1.34 

Gene 
Name 

log2 
Fold 

Y39B6A.34 -1.34 

aat-4 -1.34 

B0207.11 -1.34 

H12D21.5 -1.34 

W03F9.4 -1.34 

F59A3.13 -1.34 

pyk-2 -1.34 

haao-1 -1.34 

F11D5.7 -1.35 

math-32 -1.35 

mrpl-36 -1.35 

tsp-18 -1.35 

F54D1.1 -1.35 

alh-12 -1.35 

K04G2.11 -1.35 

Y71A12B.2
3 

-1.35 

C02E7.6 -1.35 

pfd-5 -1.35 

F46A9.2 -1.35 

C03C10.2 -1.35 

F57G8.5 -1.35 

C45B2.1 -1.36 

msp-64 -1.36 

C46C2.5 -1.36 

ugt-54 -1.36 

Y47G6A.33 -1.36 

Y57G11B.3 -1.36 

D1005.4 -1.36 

mai-2 -1.36 

fbxa-196 -1.36 

B0416.11 -1.36 

C01G6.2 -1.36 

decr-1.3 -1.36 

F07F6.2 -1.36 

Y22D7AL.1
0 

-1.36 

C10C6.3 -1.36 

T02B11.8 -1.36 

Y69A2AR.
8 

-1.36 

Y43F8C.13 -1.36 

T19B4.3 -1.36 

Gene 
Name 

log2 
Fold 

K11D12.13 -1.36 

amx-3 -1.36 

C47A4.5 -1.36 

ugt-46 -1.36 

clec-223 -1.37 

M7.7 -1.37 

F27C1.1 -1.37 

F54D5.4 -1.37 

T19H5.7 -1.37 

C31G12.1 -1.37 

F32H5.1 -1.37 

ZC21.10 -1.37 

MTCE.3 -1.37 

linc-15 -1.37 

C50D2.3 -1.37 

F58B4.5 -1.37 

R11H6.4 -1.37 

hsp-4 -1.38 

nspc-10 -1.38 

C34G6.3 -1.38 

ZK622.1 -1.38 

F54D7.7 -1.38 

rpl-22 -1.38 

ttr-36 -1.38 

cuc-1 -1.38 

clec-57 -1.38 

tag-344 -1.38 

R08E5.1 -1.38 

gale-1 -1.38 

ZK813.7 -1.38 

kin-15 -1.38 

mrps-17 -1.38 

rpac-19 -1.38 

C48D1.9 -1.38 

col-77 -1.39 

dnj-13 -1.39 

btb-21 -1.39 

F40G9.2 -1.39 

ZK1248.20 -1.39 

F52F12.8 -1.39 

C04G2.12 -1.39 

R160.3 -1.39 

Gene 
Name 

log2 
Fold 

C50E10.1 -1.39 

T28B8.6 -1.39 

ZK265.9 -1.39 

F21F8.4 -1.39 

pqn-68 -1.39 

F28H1.5 -1.39 

cpr-6 -1.40 

sth-1 -1.40 

tsp-10 -1.40 

nspc-7 -1.40 

T25B9.2 -1.40 

B0496.6 -1.40 

spp-8 -1.40 

fip-5 -1.40 

F56A4.3 -1.40 

cco-2 -1.40 

hsp-3 -1.40 

skr-14 -1.40 

dpm-3 -1.40 

F58F12.4 -1.40 

acbp-1 -1.40 

F18C12.4 -1.40 

K09H9.9 -1.41 

ugt-51 -1.41 

C49F5.7 -1.41 

Y1A5A.1 -1.41 

F56H9.2 -1.41 

F39D8.7 -1.41 

C18E9.4 -1.41 

C18G1.3 -1.41 

msp-33 -1.41 

F19G12.9 -1.41 

C35A11.4 -1.41 

Y39E4B.11 -1.41 

F58A6.5 -1.41 

ech-7 -1.41 

T03F6.10 -1.42 

C28G1.10 -1.42 

C06A6.7 -1.42 

ttr-15 -1.42 

C44B7.11 -1.42 

C02E7.7 -1.42 
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Gene 
Name 

log2 
Fold 

Y38H6C.15 -1.42 

F59C6.3 -1.42 

col-38 -1.42 

fpn-1.2 -1.42 

Y47G6A.26 -1.42 

C03C11.1 -1.42 

F30A10.13 -1.42 

F58B4.7 -1.43 

C04F12.12 -1.43 

Y69E1A.8 -1.43 

F52F12.5 -1.43 

F07G6.10 -1.43 

dnj-7 -1.43 

C08F11.10 -1.43 

ZK228.3 -1.43 

ZK686.5 -1.43 

bli-6 -1.43 

trap-1 -1.43 

tag-320 -1.43 

nspd-10 -1.43 

C02C2.4 -1.43 

Y69A2AR.
23 

-1.44 

ddo-1 -1.44 

F36F12.7 -1.44 

C52E4.7 -1.44 

C32D5.4 -1.44 

fipr-7 -1.44 

Y69H2.3 -1.44 

C17G10.3 -1.45 

ZK512.8 -1.45 

col-182 -1.45 

F53G12.8 -1.45 

rmo-1 -1.45 

C34D4.3 -1.45 

Y71H2B.1 -1.45 

R07E4.3 -1.45 

F13G11.3 -1.45 

cdr-6 -1.45 

zip-3 -1.45 

msp-52 -1.45 

nspc-4 -1.45 

Gene 
Name 

log2 
Fold 

F28H7.3 -1.45 

T24C2.5 -1.45 

mrps-24 -1.46 

lys-2 -1.46 

trap-3 -1.46 

F13E9.12 -1.46 

Y48G1C.1
3 

-1.46 

F22E5.1 -1.46 

F41F3.1 -1.46 

R09E10.1 -1.46 

ZC262.10 -1.46 

lbp-6 -1.46 

Y106G6E.3 -1.46 

ncx-7 -1.46 

tin-13 -1.47 

T12B5.14 -1.47 

D1054.11 -1.47 

ceh-63 -1.47 

his-46 -1.47 

emo-1 -1.47 

ZK185.3 -1.47 

C47A4.3 -1.47 

elo-8 -1.47 

T02B11.9 -1.47 

linc-44 -1.47 

C39B5.5 -1.47 

C14B9.10 -1.47 

scp-1 -1.48 

ZC250.5 -1.48 

C30G12.2 -1.48 

F59B1.2 -1.48 

cbs-2 -1.48 

C33A12.1 -1.48 

dhs-25 -1.48 

tomm-22 -1.48 

T10G3.3 -1.48 

Y47D9A.3 -1.48 

asp-1 -1.48 

F23F12.3 -1.48 

col-71 -1.48 

C03B1.13 -1.48 

Gene 
Name 

log2 
Fold 

R102.3 -1.49 

C54G4.3 -1.49 

col-49 -1.49 

F55B11.3 -1.49 

nas-20 -1.49 

mrps-10 -1.49 

ZC416.6 -1.49 

C44B7.7 -1.49 

Y42H9AR.
2 

-1.49 

F10E9.2 -1.49 

F40H3.2 -1.49 

mtl-2 -1.49 

col-63 -1.49 

C49F5.9 -1.49 

pho-13 -1.49 

cbl-1 -1.49 

oac-10 -1.49 

C07A4.3 -1.49 

C33C12.7 -1.49 

ZK945.6 -1.49 

F07A11.5 -1.50 

nlp-26 -1.50 

F53F1.4 -1.50 

ZK930.4 -1.50 

T20D4.7 -1.50 

F46F5.6 -1.50 

nspd-7 -1.50 

R03D7.5 -1.50 

Y69H2.9 -1.50 

Y71G12B.3 -1.50 

cpr-5 -1.50 

T22E5.1 -1.50 

F36H12.4 -1.50 

R10H10.3 -1.50 

F58A6.9 -1.50 

F36H9.2 -1.50 

Y51F10.7 -1.51 

prmt-6 -1.51 

C08F11.11 -1.51 

M7.12 -1.51 

F28H7.4 -1.51 

Gene 
Name 

log2 
Fold 

dct-18 -1.51 

K09C4.1 -1.51 

hsp-16.49 -1.51 

ech-6 -1.51 

col-138 -1.51 

T04F3.4 -1.51 

F56B3.6 -1.51 

T06E4.10 -1.51 

F35F10.5 -1.52 

nspc-5 -1.52 

K08C9.1 -1.52 

ZK354.7 -1.52 

R13A5.10 -1.52 

fbxa-183 -1.52 

F25B4.8 -1.52 

C04F12.6 -1.52 

ZC477.2 -1.52 

immp-1 -1.52 

Y14H12A.1 -1.53 

F15H9.1 -1.53 

best-7 -1.53 

C35B1.4 -1.53 

fipr-8 -1.53 

F45D11.1 -1.54 

F56F4.4 -1.54 

Y62H9A.6 -1.54 

clec-166 -1.54 

mrps-33 -1.54 

lys-8 -1.54 

col-60 -1.54 

F17B5.8 -1.54 

calu-1 -1.54 

C09B8.5 -1.54 

T20D4.10 -1.54 

msp-113 -1.54 

gst-1 -1.55 

clec-54 -1.55 

bas-1 -1.55 

hsp-16.48 -1.55 

F53H4.2 -1.55 

T24A6.20 -1.55 

B0252.5 -1.56 
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Gene 
Name 

log2 
Fold 

sdz-6 -1.56 

clec-227 -1.56 

C04G2.3 -1.56 

W09C3.7 -1.56 

F46F5.9 -1.56 

hsp-1 -1.56 

R09E12.9 -1.56 

linc-61 -1.57 

C50F4.10 -1.57 

R04B5.11 -1.57 

F13H8.3 -1.57 

ssp-37 -1.57 

hsp-16.1 -1.57 

H01G02.4 -1.58 

C47E8.1 -1.58 

pho-7 -1.58 

ceeh-2 -1.58 

ZK287.3 -1.58 

dhs-2 -1.58 

D1054.8 -1.58 

C26C6.6 -1.58 

Y51B9A.5 -1.58 

ZK1098.6 -1.58 

ZC477.7 -1.58 

C18A3.7 -1.58 

F22F4.5 -1.58 

dylt-3 -1.59 

F08F1.4 -1.59 

nas-27 -1.59 

R12E2.14 -1.59 

C55C2.3 -1.59 

C45B11.8 -1.59 

hpo-18 -1.59 

C35E7.9 -1.59 

smf-3 -1.59 

F21A3.4 -1.60 

asp-3 -1.60 

ugt-62 -1.60 

twk-6 -1.60 

Y53F4B.36 -1.60 

perm-2 -1.60 

F44E2.9 -1.60 

Gene 
Name 

log2 
Fold 

pqn-63 -1.60 

peel-1 -1.60 

perm-4 -1.61 

snb-7 -1.61 

F26F12.8 -1.61 

W03D8.3 -1.61 

M162.5 -1.61 

msp-57 -1.61 

F54C1.8 -1.61 

C05D12.4 -1.61 

Y23H5B.12 -1.61 

C55C3.8 -1.62 

cyp-34A9 -1.62 

Y38F1A.7 -1.62 

Y48G8AL.1
2 

-1.62 

pfd-4 -1.62 

F19B2.5 -1.62 

C50F7.3 -1.62 

col-175 -1.62 

C55A6.7 -1.62 

ZK813.3 -1.62 

C45B11.9 -1.62 

F57F5.1 -1.62 

W04H10.1 -1.63 

urm-1 -1.63 

dsc-4 -1.63 

W09C3.8 -1.63 

Y38E10A.2
8 

-1.63 

T28H11.7 -1.63 

F38E1.3 -1.63 

Y54G9A.9 -1.63 

C04G6.2 -1.63 

rol-1 -1.63 

Y38F2AR.1
0 

-1.63 

R02C2.7 -1.64 

Y37E11AL.
12 

-1.64 

linc-6 -1.64 

ZC155.2 -1.64 

F10D11.3 -1.64 

Gene 
Name 

log2 
Fold 

Y67A6A.1 -1.64 

Y69E1A.4 -1.64 

msp-59 -1.64 

ZK813.2 -1.65 

C53H9.3 -1.65 

K06A4.6 -1.65 

W03F11.1 -1.65 

T20B6.3 -1.65 

hsp-16.11 -1.65 

F32B4.2 -1.65 

F36H12.3 -1.65 

F36H9.4 -1.65 

msp-65 -1.65 

F49E12.1 -1.65 

C04E6.5 -1.66 

C12D8.9 -1.66 

R04E5.2 -1.66 

F33D11.7 -1.66 

W10G11.2 -1.66 

clec-66 -1.66 

F37C12.18 -1.66 

ptps-1 -1.67 

F48E3.4 -1.67 

F56F3.4 -1.67 

C14C11.4 -1.67 

W02D9.6 -1.67 

W08E3.4 -1.67 

B0205.12 -1.67 

ZK287.9 -1.67 

ZK1248.5 -1.67 

K07A1.4 -1.68 

gst-10 -1.68 

C28C12.11 -1.68 

gpx-7 -1.68 

cpl-1 -1.68 

fbxa-180 -1.68 

sdz-27 -1.68 

Y37D8A.19 -1.68 

Y54G2A.24 -1.68 

htas-1 -1.68 

ZK849.6 -1.68 

H20E11.3 -1.68 

Gene 
Name 

log2 
Fold 

F55G11.8 -1.69 

W03D8.8 -1.69 

C40H1.7 -1.69 

gpx-1 -1.69 

R186.8 -1.69 

msp-19 -1.69 

H06H21.8 -1.69 

lact-4 -1.69 

T22B3.3 -1.69 

T06E4.12 -1.69 

dhs-7 -1.69 

ZC262.1 -1.69 

tsp-19 -1.69 

F10D11.4 -1.69 

E02C12.6 -1.69 

math-48 -1.70 

Y47G6A.15 -1.70 

Y34B4A.5 -1.70 

F41H10.2 -1.70 

F36D1.4 -1.70 

ZK1290.5 -1.70 

ZK1251.3 -1.71 

W02D9.7 -1.71 

K09H11.4 -1.71 

ZC373.2 -1.71 

R08E5.3 -1.71 

F36A2.12 -1.71 

ZK813.1 -1.71 

Y62E10A.3 -1.71 

Y22D7AR.
10 

-1.71 

Y39H10B.2 -1.71 

F55D12.6 -1.71 

col-88 -1.71 

ssp-31 -1.72 

dhhc-12 -1.72 

M02G9.4 -1.72 

F10G8.2 -1.72 

tag-10 -1.72 

F38A5.6 -1.72 

T01H3.5 -1.73 

C46F2.1 -1.73 
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C38C3.7 -1.73 

ugt-32 -1.73 

spe-17 -1.74 

gst-5 -1.74 

mpst-4 -1.74 

Y51H7C.8 -1.74 

T22C1.9 -1.74 

cyp-35A4 -1.74 

R107.5 -1.74 

F21D5.3 -1.74 

F36A4.3 -1.74 

F43C1.5 -1.74 

nspb-3 -1.74 

F36A2.11 -1.75 

pcp-1 -1.75 

Y73F8A.15 -1.75 

F10C1.3 -1.75 

cyp-33E3 -1.76 

F10G7.12 -1.76 

clec-97 -1.76 

C14A6.13 -1.76 

T05C3.6 -1.76 

ugt-17 -1.76 

C03A7.12 -1.76 

D1081.12 -1.76 

T13F2.9 -1.76 

T02D1.8 -1.77 

fbxa-125 -1.77 

ZK970.8 -1.77 

cdd-1 -1.77 

R102.4 -1.78 

F31E9.11 -1.78 

C24D10.2 -1.78 

col-120 -1.79 

F07E5.7 -1.79 

F56D6.17 -1.79 

F59A6.12 -1.79 

cah-5 -1.79 

Y106G6A.4 -1.79 

W04A4.2 -1.79 

nspc-6 -1.79 

clec-117 -1.79 

Gene 
Name 

log2 
Fold 

cyp-25A2 -1.80 

F55C5.2 -1.80 

Y105E8B.5 -1.80 

gcsh-1 -1.80 

F38B2.6 -1.80 

K09G1.2 -1.80 

catp-2 -1.80 

F31D4.9 -1.81 

Y38F2AR.9 -1.81 

Y45G12C.
1 

-1.81 

K12H4.7 -1.81 

F08A8.3 -1.81 

T24D3.2 -1.81 

W07B8.1 -1.81 

dod-24 -1.82 

ttr-9 -1.82 

K04F1.9 -1.82 

hsp-16.41 -1.82 

D1014.2 -1.82 

C10G8.4 -1.82 

B0207.9 -1.83 

Y4C6A.4 -1.83 

C55C2.4 -1.83 

W10G11.3 -1.83 

F26C11.1 -1.83 

T09A12.1 -1.83 

nspc-2 -1.83 

C18D4.8 -1.83 

K07A1.6 -1.83 

ZK673.6 -1.84 

Y59E9AR.
7 

-1.84 

H23N18.6 -1.84 

rnh-1.3 -1.84 

clec-186 -1.84 

Y47D7A.15 -1.84 

clec-222 -1.84 

ugt-5 -1.85 

C23H4.3 -1.85 

snb-6 -1.85 

D1054.10 -1.85 

Gene 
Name 

log2 
Fold 

nspb-2 -1.85 

asah-1 -1.85 

T05E7.1 -1.86 

K11C4.14 -1.86 

spp-23 -1.86 

col-68 -1.87 

B0379.2 -1.87 

K02E7.6 -1.87 

F39G3.2 -1.87 

dct-11 -1.87 

hrg-1 -1.88 

C15C8.3 -1.88 

Y57G11C.
14 

-1.88 

inx-8 -1.88 

best-11 -1.89 

ZK973.4 -1.89 

msd-4 -1.89 

F30A10.12 -1.89 

D1086.11 -1.90 

F59F4.2 -1.90 

fipr-5 -1.90 

nspd-1 -1.90 

his-21 -1.90 

C43G2.3 -1.90 

F36A4.2 -1.91 

clec-210 -1.91 

gst-4 -1.91 

F23F12.13 -1.91 

nspd-2 -1.91 

F18E2.1 -1.92 

F15A4.2 -1.92 

ZC581.10 -1.92 

btb-2 -1.92 

F30A10.14 -1.92 

Y67H2A.9 -1.92 

D1081.10 -1.92 

F57C2.4 -1.93 

F56D6.13 -1.93 

col-70 -1.93 

ZK546.7 -1.93 

C17E7.12 -1.94 

Gene 
Name 

log2 
Fold 

T16G12.1 -1.94 

Y102E9.5 -1.94 

C53B4.2 -1.94 

nlp-25 -1.94 

T04G9.7 -1.95 

C27D6.3 -1.95 

F55F10.3 -1.95 

Y57A10B.7 -1.95 

msp-53 -1.96 

msp-55 -1.96 

R11H6.7 -1.96 

fipr-9 -1.97 

Y69A2AR.
3 

-1.97 

Y43D4A.2 -1.97 

F42F12.4 -1.98 

F44G4.5 -1.98 

dhs-21 -1.98 

F54H12.7 -1.98 

F25D1.5 -1.99 

sfxn-1.3 -1.99 

F35H10.2 -1.99 

spp-3 -1.99 

nspd-9 -1.99 

fbxa-84 -1.99 

Y52E8A.4 -1.99 

Y41C4A.18 -2.00 

ZK418.2 -2.00 

ZK228.4 -2.00 

F56D6.12 -2.00 

D1054.18 -2.00 

F55B11.5 -2.00 

Y57G11C.
40 

-2.01 

M05B5.7 -2.01 

K10C2.3 -2.01 

gst-13 -2.01 

Y47D3A.32 -2.01 

B0034.7 -2.02 

W05B10.3 -2.02 

R08F11.4 -2.02 

F42A9.3 -2.02 
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Gene 
Name 

log2 
Fold 

T05E12.6 -2.02 

Y105C5B.1
5 

-2.02 

F28A10.7 -2.03 

comt-5 -2.03 

B0563.10 -2.03 

F44D12.6 -2.03 

D2062.4 -2.04 

F40H6.1 -2.04 

cut-2 -2.04 

T02B5.3 -2.05 

clec-209 -2.05 

F41E6.1 -2.05 

cyp-35A3 -2.05 

Y59E9AR.
1 

-2.05 

Y57G11B.5 -2.06 

E02H9.7 -2.07 

W02D7.4 -2.07 

F56A4.2 -2.07 

W03F8.2 -2.08 

clec-56 -2.08 

B0281.5 -2.08 

ttr-56 -2.08 

Y39G8C.2 -2.08 

str-144 -2.09 

Y73F8A.14 -2.09 

F42A10.7 -2.10 

T25E4.1 -2.10 

Y47D3B.6 -2.10 

rncs-1 -2.10 

fat-7 -2.10 

F55G11.2 -2.11 

elo-6 -2.11 

C18A11.4 -2.11 

ttr-40 -2.11 

ssp-32 -2.11 

C32H11.3 -2.12 

F21C3.7 -2.12 

Y105C5B.1
8 

-2.12 

C15H7.4 -2.12 

B0041.1 -2.12 

Gene 
Name 

log2 
Fold 

C47E8.10 -2.12 

ugt-30 -2.13 

srh-70 -2.13 

Y119D3B.1
3 

-2.13 

C17G1.2 -2.13 

C52E12.6 -2.13 

ttr-12 -2.14 

Y37E11B.7 -2.14 

F37A8.1 -2.14 

Y71G12B.1
8 

-2.15 

F38A5.8 -2.15 

K08F4.13 -2.15 

ZK616.1 -2.15 

Y57G11C.
52 

-2.15 

spp-17 -2.15 

ssp-33 -2.15 

E04F6.15 -2.16 

msp-58 -2.17 

Y53F4B.11 -2.18 

ugt-47 -2.19 

abu-1 -2.19 

clec-160 -2.19 

irld-35 -2.20 

C14A6.6 -2.20 

nspe-5 -2.21 

Y62H9A.5 -2.21 

K07H8.7 -2.22 

cyp-25A1 -2.22 

C26B2.8 -2.22 

tbh-1 -2.22 

D1081.3 -2.22 

irld-53 -2.23 

ttr-49 -2.23 

D1081.11 -2.23 

K07E12.2 -2.23 

ckb-2 -2.24 

linc-36 -2.24 

elo-5 -2.25 

F25C8.1 -2.25 

F22F7.8 -2.25 

Gene 
Name 

log2 
Fold 

ZC373.3 -2.27 

F28A12.4 -2.27 

K03B4.6 -2.27 

F49C12.7 -2.27 

F22G12.8 -2.28 

R05D3.5 -2.28 

R12E2.6 -2.28 

K01D12.8 -2.30 

cyp-35A2 -2.31 

Y39B6A.21 -2.32 

R09D1.11 -2.33 

R09D1.6 -2.33 

F41C6.4 -2.33 

F49E12.9 -2.34 

pqn-54 -2.35 

clec-190 -2.35 

K07F5.8 -2.35 

clec-8 -2.35 

msp-51 -2.36 

T06E4.14 -2.37 

dct-16 -2.37 

C15H11.13 -2.38 

C36C9.10 -2.38 

T13F3.6 -2.38 

C48D1.7 -2.38 

K12B6.11 -2.39 

F58G6.9 -2.39 

sri-40 -2.39 

hrg-4 -2.39 

ttr-42 -2.40 

cdr-4 -2.40 

T12B5.15 -2.40 

F29B9.7 -2.40 

Y54G2A.3 -2.40 

cyp-35A5 -2.41 

Y38F1A.6 -2.41 

F10G8.1 -2.42 

T19H5.6 -2.42 

F15E11.15 -2.43 

T06E4.8 -2.44 

F22H10.6 -2.44 

Y47D9A.4 -2.45 

Gene 
Name 

log2 
Fold 

dhs-23 -2.47 

clec-229 -2.47 

C27F2.6 -2.48 

C04E7.5 -2.48 

C04H5.7 -2.49 

C45B2.8 -2.50 

F54B11.11 -2.50 

ugt-22 -2.51 

col-135 -2.52 

C47E8.11 -2.52 

C14C6.2 -2.52 

R07C3.13 -2.53 

K10B2.2 -2.54 

T06E4.9 -2.55 

F09E10.1 -2.55 

asm-3 -2.58 

efn-3 -2.58 

Y105C5B.1
7 

-2.58 

msp-42 -2.59 

F53F4.18 -2.60 

F15E11.13 -2.61 

C36C5.5 -2.61 

Y19D10B.7 -2.61 

F58G6.7 -2.62 

lys-4 -2.63 

clec-7 -2.63 

Y69A2AR.
27 

-2.64 

T25E12.16 -2.66 

lips-14 -2.66 

cyp-35C1 -2.67 

C17C3.9 -2.69 

Y40H7A.11 -2.70 

K07A1.13 -2.74 

C17B7.4 -2.74 

gba-4 -2.75 

F15E11.12 -2.80 

C32H11.4 -2.82 

folt-2 -2.84 

srh-237 -2.84 

C44B7.5 -2.85 
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Gene 
Name 

log2 
Fold 

F44E7.3 -2.86 

F23A7.4 -2.86 

C14E2.12 -2.88 

clec-53 -2.90 

hrg-3 -2.92 

F58G6.3 -2.93 

F13H8.12 -2.94 

W08E12.2 -2.95 

C42D4.2 -2.96 

oac-32 -2.96 

F15E11.1 -2.97 

oac-20 -2.97 

F15E11.14 -2.98 

K05F1.8 -3.00 

F01D5.3 -3.00 

pmp-5 -3.02 

K10C2.8 -3.04 

K11G9.3 -3.04 

C05B5.12 -3.05 

spp-4 -3.05 

clec-118 -3.07 

C31H1.2 -3.11 

Y73B6A.3 -3.12 

R11A5.3 -3.15 

grl-27 -3.18 

nhr-68 -3.22 

C23H5.8 -3.25 

nspe-7 -3.27 

clec-26 -3.30 

F23A7.8 -3.34 

E01G6.3 -3.34 

clec-218 -3.36 

F28A10.1 -3.39 

K02E2.8 -3.43 

Y94H6A.10 -3.44 

F22E5.8 -3.54 

vit-5 -3.55 

T05E12.3 -3.60 

C36C5.12 -3.62 

F54F7.2 -3.65 

linc-1 -3.66 

vit-3 -3.69 

Gene 
Name 

log2 
Fold 

vit-1 -3.72 

vit-4 -3.72 

Y53F4B.8 -3.84 

ZC266.1 -4.39 

Y40H7A.10 -4.48 

ilys-5 -4.64 

acdh-1 -6.98 
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Annotation Cluster 1 Enrichment Score: 96.97 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Collagen triple helix repeat 101 3.70E-103 1.90E-100 

  INTERPRO 
Nematode cuticle collagen, N-

terminal 
92 2.00E-100 5.20E-98 

  GOTERM_MF_FAT structural constituent of cuticle 94 1.60E-89 4.60E-87 

Annotation Cluster 2 Enrichment Score: 11.87 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS ribosomal protein 25 1.60E-15 9.10E-14 

  KEGG_PATHWAY Ribosome 28 3.30E-15 1.60E-13 

  GOTERM_CC_FAT ribosome 30 3.50E-13 3.50E-11 

  SP_PIR_KEYWORDS ribonucleoprotein 24 1.30E-12 4.40E-11 

  GOTERM_MF_FAT structural constituent of ribosome 30 6.30E-12 5.90E-10 

  GOTERM_CC_FAT ribonucleoprotein complex 30 3.00E-10 1.50E-08 

  GOTERM_BP_FAT translation 32 1.90E-09 4.60E-07 

Annotation Cluster 3 Enrichment Score: 5.32 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
collagen and cuticulin-based cuticle 

development 
15 4.00E-06 3.20E-04 

  GOTERM_BP_FAT protein-based cuticle development 15 5.20E-06 3.60E-04 

  GOTERM_BP_FAT cuticle development 15 5.20E-06 3.60E-04 

Annotation Cluster 4 Enrichment Score: 5.01 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
endoplasmic reticulum unfolded 

protein response 
7 4.40E-07 7.10E-05 

  GOTERM_BP_FAT ER-nuclear signaling pathway 7 4.40E-07 7.10E-05 

  GOTERM_BP_FAT 
response to endoplasmic reticulum 

stress 
7 4.40E-07 7.10E-05 

  GOTERM_BP_FAT 
cellular response to unfolded 

protein 
7 1.80E-06 2.20E-04 

  GOTERM_BP_FAT response to unfolded protein 7 3.30E-06 3.20E-04 

  GOTERM_BP_FAT response to protein stimulus 7 3.30E-06 3.20E-04 

  GOTERM_BP_FAT response to organic substance 7 4.50E-04 9.90E-03 

  GOTERM_BP_FAT cellular response to stress 8 1.00E-01 5.20E-01 

Annotation Cluster 5 Enrichment Score: 4.55 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Heat shock protein Hsp70 6 1.30E-05 1.70E-03 

  INTERPRO Heat shock protein 70 6 1.30E-05 1.70E-03 

  INTERPRO 
Heat shock protein 70, conserved 

site 
6 2.20E-05 2.20E-03 

  PIR_SUPERFAMILY PIRSF002581:chaperone HSP70 5 1.80E-04 1.50E-02 

Annotation Cluster 6 Enrichment Score: 4.44 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT regulation of growth 105 1.80E-05 1.10E-03 

  GOTERM_BP_FAT positive regulation of growth 101 3.90E-05 1.60E-03 

  GOTERM_BP_FAT positive regulation of growth rate 93 5.00E-05 1.90E-03 

  GOTERM_BP_FAT regulation of growth rate 93 5.10E-05 1.80E-03 

Annotation Cluster 7 Enrichment Score: 3.92 GO Term/Keyword Count P-Value Benjamini 
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  GOTERM_BP_FAT 
cellular amino acid catabolic 

process 
8 3.10E-05 1.40E-03 

  GOTERM_BP_FAT amine catabolic process 8 8.40E-05 2.50E-03 

  GOTERM_BP_FAT organic acid catabolic process 8 2.90E-04 6.90E-03 

  GOTERM_BP_FAT carboxylic acid catabolic process 8 2.90E-04 6.90E-03 

Annotation Cluster 8 Enrichment Score: 3.85 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT endoplasmic reticulum lumen 7 9.90E-07 2.40E-05 

  SP_PIR_KEYWORDS endoplasmic reticulum 8 8.60E-04 1.10E-02 

  GOTERM_CC_FAT endoplasmic reticulum part 8 3.20E-03 5.20E-02 

Annotation Cluster 9 Enrichment Score: 3.53 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT actin cytoskeleton organization 10 2.10E-05 1.10E-03 

  GOTERM_BP_FAT actin filament-based process 10 3.10E-05 1.50E-03 

  GOTERM_BP_FAT cytoskeleton organization 12 4.10E-02 3.00E-01 

Annotation Cluster 10 Enrichment Score: 3.45 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT growth 76 1.30E-04 3.70E-03 

  GOTERM_BP_FAT post-embryonic development 92 2.80E-04 7.20E-03 

  GOTERM_BP_FAT larval development 90 5.20E-04 1.00E-02 

  GOTERM_BP_FAT nematode larval development 89 8.20E-04 1.50E-02 

Annotation Cluster 11 Enrichment Score: 3.05 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT actomyosin structure organization 6 2.10E-04 5.50E-03 

  GOTERM_BP_FAT myofibril assembly 6 2.10E-04 5.50E-03 

  GOTERM_BP_FAT 
cellular component assembly 
involved in morphogenesis 

6 2.10E-04 5.50E-03 

  GOTERM_BP_FAT striated muscle cell differentiation 6 3.80E-04 8.70E-03 

  GOTERM_BP_FAT striated muscle cell development 6 3.80E-04 8.70E-03 

  GOTERM_BP_FAT muscle cell development 6 5.00E-04 1.00E-02 

  GOTERM_BP_FAT muscle cell differentiation 6 1.30E-03 2.20E-02 

  GOTERM_BP_FAT cellular component morphogenesis 6 5.10E-01 9.70E-01 

Annotation Cluster 12 Enrichment Score: 2.7 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Glutathione S-transferase/chloride 

channel, C-terminal 
8 1.30E-03 6.30E-02 

  INTERPRO 
Glutathione S-transferase, N-

terminal 
8 1.30E-03 6.30E-02 

  INTERPRO 
Glutathione S-transferase, C-

terminal 
7 5.00E-03 1.90E-01 

Annotation Cluster 13 Enrichment Score: 2.7 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
molting cycle, collagen and 

cuticulin-based cuticle 
20 2.00E-03 3.10E-02 

  GOTERM_BP_FAT molting cycle, protein-based cuticle 20 2.00E-03 3.10E-02 

  GOTERM_BP_FAT molting cycle 20 2.10E-03 3.20E-02 

Annotation Cluster 14 Enrichment Score: 2.68 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
cellular macromolecular complex 

assembly 
11 7.40E-04 1.40E-02 
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  GOTERM_BP_FAT 
cellular macromolecular complex 

subunit organization 
11 2.10E-03 3.20E-02 

  GOTERM_BP_FAT macromolecular complex assembly 12 2.50E-03 3.50E-02 

  GOTERM_BP_FAT 
macromolecular complex subunit 

organization 
12 4.90E-03 6.20E-02 

Annotation Cluster 15 Enrichment Score: 2.56 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Thioredoxin-like 8 1.20E-04 8.90E-03 

  GOTERM_BP_FAT cell redox homeostasis 9 2.50E-03 3.60E-02 

  GOTERM_BP_FAT homeostatic process 11 1.00E-02 1.10E-01 

  GOTERM_BP_FAT cellular homeostasis 9 1.90E-02 1.70E-01 

Annotation Cluster 16 Enrichment Score: 2.43 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT aging 19 3.70E-03 4.80E-02 

  GOTERM_BP_FAT determination of adult life span 19 3.70E-03 4.80E-02 

  GOTERM_BP_FAT multicellular organismal aging 19 3.70E-03 4.80E-02 

Annotation Cluster 17 Enrichment Score: 2.34 GO Term/Keyword Count P-Value Benjamini 

  PIR_SUPERFAMILY 
PIRSF036514:alpha-crystallin-
related small heat shock protein 

5 9.40E-04 5.20E-02 

  INTERPRO Alpha crystallin/Heat shock protein 5 1.10E-03 5.90E-02 

  INTERPRO Heat shock protein Hsp20 5 1.40E-03 6.30E-02 

  GOTERM_BP_FAT response to heat 5 1.80E-02 1.70E-01 

  GOTERM_BP_FAT response to temperature stimulus 5 7.80E-02 4.50E-01 

Annotation Cluster 18 Enrichment Score: 2.08 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT endoplasmic reticulum lumen 7 9.90E-07 2.40E-05 

  GOTERM_CC_FAT organelle lumen 9 1.60E-01 6.50E-01 

  GOTERM_CC_FAT intracellular organelle lumen 9 1.60E-01 6.50E-01 

  GOTERM_CC_FAT membrane-enclosed lumen 9 1.90E-01 6.90E-01 

Annotation Cluster 19 Enrichment Score: 1.84 GO Term/Keyword Count P-Value Benjamini 

  UP_SEQ_FEATURE 
cross-link:Glycyl lysine isopeptide 
(Lys-Gly) (interchain with G-Cter in 

ubiquitin) 
4 5.00E-03 3.60E-01 

  SP_PIR_KEYWORDS isopeptide bond 4 1.60E-02 9.70E-02 

  SP_PIR_KEYWORDS ubl conjugation 4 3.80E-02 2.00E-01 

Annotation Cluster 20 Enrichment Score: 1.84 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS nucleosome core 6 1.50E-04 2.60E-03 

  INTERPRO Histone core 6 2.60E-04 1.70E-02 

  GOTERM_CC_FAT nucleosome 6 4.50E-03 6.20E-02 

  GOTERM_BP_FAT nucleosome organization 6 5.80E-03 7.00E-02 

  GOTERM_BP_FAT nucleosome assembly 6 5.80E-03 7.00E-02 

  GOTERM_BP_FAT chromatin assembly 6 5.80E-03 7.00E-02 

  GOTERM_CC_FAT protein-DNA complex 6 6.90E-03 7.30E-02 

  SP_PIR_KEYWORDS chromosomal protein 6 8.90E-03 6.90E-02 

  GOTERM_BP_FAT protein-DNA complex assembly 6 1.10E-02 1.20E-01 

  INTERPRO Histone-fold 5 1.50E-02 3.60E-01 
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  GOTERM_BP_FAT DNA packaging 6 1.80E-02 1.70E-01 

  GOTERM_BP_FAT chromatin assembly or disassembly 6 4.80E-02 3.30E-01 

  GOTERM_CC_FAT chromatin 6 5.30E-02 3.30E-01 

  GOTERM_BP_FAT chromatin organization 7 1.20E-01 5.80E-01 

  GOTERM_CC_FAT chromosomal part 6 1.60E-01 6.70E-01 

  GOTERM_CC_FAT chromosome 6 4.00E-01 9.10E-01 

  GOTERM_BP_FAT chromosome organization 7 4.20E-01 9.40E-01 

Annotation Cluster 21 Enrichment Score: 1.83 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 
single donors with incorporation of 

molecular oxygen 
5 7.40E-03 4.10E-01 

  SP_PIR_KEYWORDS dioxygenase 4 1.10E-02 7.90E-02 

  GOTERM_MF_FAT 

oxidoreductase activity, acting on 
single donors with incorporation of 
molecular oxygen, incorporation of 

two atoms of oxygen 

4 3.80E-02 6.30E-01 

Annotation Cluster 22 Enrichment Score: 1.82 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Pyridoxal phosphate-dependent 

transferase, major region, 
subdomain 1 

6 5.40E-03 1.90E-01 

  GOTERM_MF_FAT pyridoxal phosphate binding 8 1.10E-02 4.00E-01 

  GOTERM_MF_FAT vitamin B6 binding 8 1.10E-02 4.00E-01 

  GOTERM_MF_FAT vitamin binding 9 7.90E-02 7.90E-01 

Annotation Cluster 23 Enrichment Score: 1.61 GO Term/Keyword Count P-Value Benjamini 

  UP_SEQ_FEATURE 
site:Lowers pKa of C-terminal Cys 

of second active site 
3 6.60E-03 3.70E-01 

  SP_PIR_KEYWORDS Redox-active center 4 7.60E-03 6.80E-02 

  GOTERM_MF_FAT protein disulfide isomerase activity 3 1.10E-02 3.30E-01 

  GOTERM_MF_FAT 
intramolecular oxidoreductase 
activity, transposing S-S bonds 

3 1.10E-02 3.30E-01 

  GOTERM_MF_FAT 
intramolecular oxidoreductase 

activity, interconverting keto- and 
enol-groups 

3 1.10E-02 3.30E-01 

  UP_SEQ_FEATURE domain:Thioredoxin 1 3 1.30E-02 5.30E-01 

  UP_SEQ_FEATURE domain:Thioredoxin 2 3 1.30E-02 5.30E-01 

  INTERPRO Disulphide isomerase 3 1.40E-02 3.70E-01 

  UP_SEQ_FEATURE 
site:Contributes to redox potential 

value 
3 2.10E-02 6.00E-01 

  PIR_SUPERFAMILY 
PIRSF001487:protein disulfide-

isomerase 
3 2.20E-02 6.10E-01 

  INTERPRO Thioredoxin-like subdomain 3 8.10E-02 8.00E-01 

  GOTERM_MF_FAT 
intramolecular oxidoreductase 

activity 
3 1.40E-01 9.00E-01 

  INTERPRO Thioredoxin, conserved site 3 1.70E-01 9.40E-01 

  INTERPRO Thioredoxin domain 3 2.00E-01 9.60E-01 

Annotation Cluster 24 Enrichment Score: 1.56 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT alcohol catabolic process 6 1.20E-02 1.30E-01 
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  GOTERM_BP_FAT 
cellular carbohydrate catabolic 

process 
6 1.40E-02 1.40E-01 

  GOTERM_BP_FAT glycolysis 5 1.40E-02 1.40E-01 

  GOTERM_BP_FAT carbohydrate catabolic process 7 2.40E-02 2.10E-01 

  SP_PIR_KEYWORDS glycolysis 4 3.00E-02 1.70E-01 

  GOTERM_BP_FAT monosaccharide catabolic process 5 3.50E-02 2.80E-01 

  GOTERM_BP_FAT hexose catabolic process 5 3.50E-02 2.80E-01 

  GOTERM_BP_FAT glucose catabolic process 5 3.50E-02 2.80E-01 

  GOTERM_BP_FAT glucose metabolic process 5 1.20E-01 5.70E-01 

Annotation Cluster 25 Enrichment Score: 1.51 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT actin cytoskeleton 6 1.00E-02 9.40E-02 

  GOTERM_CC_FAT myosin complex 5 1.10E-02 9.40E-02 

  GOTERM_MF_FAT motor activity 5 2.60E-01 9.60E-01 

Annotation Cluster 26 Enrichment Score: 1.26 GO Term/Keyword Count P-Value Benjamini 

  SMART DoH 3 1.50E-02 6.70E-01 

  INTERPRO DOMON 3 3.20E-02 5.30E-01 

  GOTERM_MF_FAT 
dopamine beta-monooxygenase 

activity 
3 5.90E-02 7.60E-01 

  INTERPRO DOMON related 3 6.30E-02 7.40E-01 

  GOTERM_BP_FAT 
histidine family amino acid 

metabolic process 
3 7.00E-02 4.30E-01 

  GOTERM_BP_FAT 
histidine family amino acid catabolic 

process 
3 7.00E-02 4.30E-01 

  GOTERM_BP_FAT histidine catabolic process 3 7.00E-02 4.30E-01 

  GOTERM_BP_FAT histidine metabolic process 3 7.00E-02 4.30E-01 

  GOTERM_MF_FAT 

oxidoreductase activity, acting on 
paired donors, with incorporation or 

reduction of molecular oxygen, 
reduced ascorbate as one donor, 
and incorporation of one atom of 

oxygen 

3 9.80E-02 8.20E-01 

Annotation Cluster 27 Enrichment Score: 1.08 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS actin-binding 6 1.10E-02 7.90E-02 

  GOTERM_MF_FAT actin binding 6 1.70E-01 9.30E-01 

  GOTERM_MF_FAT cytoskeletal protein binding 6 3.10E-01 9.80E-01 

Annotation Cluster 28 Enrichment Score: 1 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Troponin 3 5.90E-03 1.80E-01 

  GOTERM_BP_FAT defecation 4 1.70E-01 6.90E-01 

  GOTERM_BP_FAT excretion 4 1.90E-01 7.20E-01 

  GOTERM_BP_FAT secretion 4 5.30E-01 9.70E-01 

Annotation Cluster 29 Enrichment Score: 0.95 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 
heme group of donors, oxygen as 

acceptor 
3 1.10E-01 8.50E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

heme group of donors 
3 1.10E-01 8.50E-01 
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  GOTERM_MF_FAT 
heme-copper terminal oxidase 

activity 
3 1.10E-01 8.50E-01 

  GOTERM_MF_FAT cytochrome-c oxidase activity 3 1.10E-01 8.50E-01 

Annotation Cluster 30 Enrichment Score: 0.9 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
negative regulation of multicellular 

organismal process 
7 1.20E-01 5.80E-01 

  GOTERM_BP_FAT 
negative regulation of multicellular 

organism growth 
7 1.20E-01 5.80E-01 

  GOTERM_BP_FAT negative regulation of growth 7 1.30E-01 6.00E-01 

Annotation Cluster 31 Enrichment Score: 0.88 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
hydrogen ion transmembrane 

transporter activity 
7 7.00E-02 7.90E-01 

  GOTERM_MF_FAT 
monovalent inorganic cation 

transmembrane transporter activity 
7 7.90E-02 8.10E-01 

  KEGG_PATHWAY Oxidative phosphorylation 8 4.10E-01 7.80E-01 

Annotation Cluster 32 Enrichment Score: 0.85 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT oviposition 17 6.50E-02 4.10E-01 

  GOTERM_BP_FAT 
reproductive behavior in a 

multicellular organism 
17 7.10E-02 4.30E-01 

  GOTERM_BP_FAT reproductive behavior 17 7.80E-02 4.50E-01 

  GOTERM_BP_FAT behavior 21 1.20E-01 5.70E-01 

  GOTERM_BP_FAT 
reproductive process in a 

multicellular organism 
19 4.20E-01 9.40E-01 

  GOTERM_BP_FAT multicellular organism reproduction 19 4.20E-01 9.40E-01 

Annotation Cluster 33 Enrichment Score: 0.82 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Uncharacterised protein family 

UPF0376 
4 8.10E-02 8.10E-01 

  PIR_SUPERFAMILY PIRSF015697:UCP015697 4 2.10E-01 1.00E+00 

  INTERPRO Protein of unknown function DUF19 4 2.10E-01 9.60E-01 

Annotation Cluster 34 Enrichment Score: 0.78 GO Term/Keyword Count P-Value Benjamini 

  SMART LIM 3 7.60E-02 7.60E-01 

  SP_PIR_KEYWORDS LIM domain 3 2.30E-01 6.70E-01 

  INTERPRO Zinc finger, LIM-type 3 2.60E-01 9.90E-01 

Annotation Cluster 35 Enrichment Score: 0.74 GO Term/Keyword Count P-Value Benjamini 

  UP_SEQ_FEATURE domain:GST N-terminal 3 1.30E-01 9.90E-01 

  UP_SEQ_FEATURE domain:GST C-terminal 3 1.40E-01 9.90E-01 

  PIR_SUPERFAMILY 
PIRSF000503:glutathione 

transferase 
3 3.30E-01 1.00E+00 

Annotation Cluster 36 Enrichment Score: 0.73 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Concanavalin A-like 

lectin/glucanase, subgroup 
5 4.40E-02 6.20E-01 

  SMART GLECT 3 4.80E-02 7.00E-01 

  INTERPRO 
Galectin, carbohydrate recognition 

domain 
3 1.80E-01 9.50E-01 

  SP_PIR_KEYWORDS Lectin 4 7.00E-01 9.70E-01 

  GOTERM_MF_FAT sugar binding 4 8.40E-01 1.00E+00 
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Annotation Cluster 37 Enrichment Score: 0.64 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS calcium binding 3 1.20E-02 8.40E-02 

  SP_PIR_KEYWORDS EF hand 4 5.50E-02 2.50E-01 

  SP_PIR_KEYWORDS myosin 3 1.10E-01 4.10E-01 

  COG_ONTOLOGY 

Signal transduction mechanisms / 
Cytoskeleton / Cell division and 

chromosome partitioning / General 
function prediction only 

3 1.90E-01 7.50E-01 

  SMART EFh 3 2.40E-01 9.20E-01 

  UP_SEQ_FEATURE domain:EF-hand 1 3 2.60E-01 1.00E+00 

  UP_SEQ_FEATURE domain:EF-hand 2 3 2.60E-01 1.00E+00 

  SP_PIR_KEYWORDS motor protein 3 3.90E-01 8.20E-01 

  INTERPRO EF-Hand type 4 5.50E-01 1.00E+00 

  INTERPRO Calcium-binding EF-hand 3 6.10E-01 1.00E+00 

  INTERPRO EF-HAND 2 3 7.60E-01 1.00E+00 

  INTERPRO EF-HAND 1 3 8.70E-01 1.00E+00 

Annotation Cluster 38 Enrichment Score: 0.54 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Tubulin/FtsZ, GTPase domain 3 9.10E-02 8.30E-01 

  INTERPRO 
Tubulin/FtsZ, 2-layer sandwich 

domain 
3 9.10E-02 8.30E-01 

  INTERPRO Tubulin, conserved site 3 1.00E-01 8.50E-01 

  INTERPRO Tubulin 3 1.00E-01 8.50E-01 

  GOTERM_BP_FAT protein polymerization 3 1.40E-01 6.20E-01 

  SP_PIR_KEYWORDS microtubule 3 5.00E-01 8.90E-01 

  GOTERM_BP_FAT microtubule-based movement 3 5.20E-01 9.70E-01 

  GOTERM_CC_FAT microtubule 3 6.60E-01 9.80E-01 

  GOTERM_MF_FAT GTPase activity 4 7.30E-01 1.00E+00 

  GOTERM_CC_FAT microtubule cytoskeleton 3 8.20E-01 1.00E+00 

  GOTERM_BP_FAT microtubule-based process 3 9.70E-01 1.00E+00 

Annotation Cluster 39 Enrichment Score: 0.52 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS neuropeptide 4 9.20E-02 3.60E-01 

  GOTERM_BP_FAT neuropeptide signaling pathway 4 3.00E-01 8.60E-01 

  GOTERM_BP_FAT 
G-protein coupled receptor protein 

signaling pathway 
5 1.00E+00 1.00E+00 

Annotation Cluster 40 Enrichment Score: 0.41 GO Term/Keyword Count P-Value Benjamini 

  SMART IG 3 1.30E-01 8.10E-01 

  INTERPRO Immunoglobulin I-set 3 3.70E-01 1.00E+00 

  INTERPRO Immunoglobulin subtype 3 3.90E-01 1.00E+00 

  INTERPRO Immunoglobulin-like fold 3 6.70E-01 1.00E+00 

  INTERPRO Immunoglobulin-like 3 7.10E-01 1.00E+00 

Annotation Cluster 41 Enrichment Score: 0.38 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT proteinaceous extracellular matrix 3 3.80E-01 9.10E-01 

  GOTERM_CC_FAT extracellular matrix 3 3.90E-01 9.10E-01 



Table E4 (Continued) 

307 

  GOTERM_CC_FAT extracellular region part 3 4.90E-01 9.50E-01 

Annotation Cluster 42 Enrichment Score: 0.33 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS potassium 3 2.70E-01 7.10E-01 

  GOTERM_MF_FAT potassium ion binding 3 4.70E-01 1.00E+00 

  GOTERM_MF_FAT alkali metal ion binding 3 8.20E-01 1.00E+00 

Annotation Cluster 43 Enrichment Score: 0.32 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT nucleotide biosynthetic process 7 4.50E-01 9.50E-01 

  GOTERM_BP_FAT 
nucleobase, nucleoside and 

nucleotide biosynthetic process 
7 5.00E-01 9.60E-01 

  GOTERM_BP_FAT 
nucleobase, nucleoside, nucleotide 

and nucleic acid biosynthetic 
process 

7 5.00E-01 9.60E-01 

Annotation Cluster 44 Enrichment Score: 0.27 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
serine-type endopeptidase inhibitor 

activity 
5 4.50E-01 1.00E+00 

  GOTERM_MF_FAT endopeptidase inhibitor activity 5 5.20E-01 1.00E+00 

  GOTERM_MF_FAT peptidase inhibitor activity 5 5.70E-01 1.00E+00 

  GOTERM_MF_FAT enzyme inhibitor activity 5 6.20E-01 1.00E+00 

Annotation Cluster 45 Enrichment Score: 0.21 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
nucleoside triphosphate 

biosynthetic process 
4 5.30E-01 9.70E-01 

  GOTERM_BP_FAT 
ribonucleoside triphosphate 

biosynthetic process 
4 5.30E-01 9.70E-01 

  GOTERM_BP_FAT 
purine ribonucleoside triphosphate 

biosynthetic process 
4 5.30E-01 9.70E-01 

  GOTERM_BP_FAT 
purine nucleoside triphosphate 

biosynthetic process 
4 5.30E-01 9.70E-01 

  GOTERM_BP_FAT 
purine nucleoside triphosphate 

metabolic process 
4 5.40E-01 9.70E-01 

  GOTERM_BP_FAT 
ribonucleoside triphosphate 

metabolic process 
4 5.40E-01 9.70E-01 

  GOTERM_BP_FAT 
purine ribonucleoside triphosphate 

metabolic process 
4 5.40E-01 9.70E-01 

  GOTERM_BP_FAT 
nucleoside triphosphate metabolic 

process 
4 5.50E-01 9.70E-01 

  GOTERM_BP_FAT 
purine ribonucleotide biosynthetic 

process 
4 6.20E-01 9.90E-01 

  GOTERM_BP_FAT 
purine ribonucleotide metabolic 

process 
4 6.40E-01 9.90E-01 

  GOTERM_BP_FAT ribonucleotide biosynthetic process 4 6.40E-01 9.90E-01 

  GOTERM_BP_FAT ribonucleotide metabolic process 4 6.70E-01 9.90E-01 

  GOTERM_BP_FAT ATP biosynthetic process 3 7.40E-01 1.00E+00 

  GOTERM_BP_FAT ATP metabolic process 3 7.50E-01 1.00E+00 

  GOTERM_BP_FAT 
purine nucleotide biosynthetic 

process 
4 8.00E-01 1.00E+00 

  GOTERM_BP_FAT 
purine nucleotide metabolic 

process 
4 8.20E-01 1.00E+00 

Annotation Cluster 46 Enrichment Score: 0.17 GO Term/Keyword Count P-Value Benjamini 
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  SP_PIR_KEYWORDS transit peptide 4 5.10E-01 8.90E-01 

  SP_PIR_KEYWORDS mitochondrion 5 7.40E-01 9.80E-01 

  UP_SEQ_FEATURE transit peptide:Mitochondrion 4 8.10E-01 1.00E+00 

Annotation Cluster 47 Enrichment Score: 0.15 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT morphogenesis of an epithelium 12 6.80E-01 9.90E-01 

  GOTERM_BP_FAT epithelium development 12 7.00E-01 9.90E-01 

  GOTERM_BP_FAT tissue morphogenesis 12 7.30E-01 1.00E+00 

Annotation Cluster 48 Enrichment Score: 0.15 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Potassium channel, two pore-

domain 
3 4.10E-01 1.00E+00 

  INTERPRO Ion transport 2 3 4.80E-01 1.00E+00 

  GOTERM_BP_FAT potassium ion transport 4 8.20E-01 1.00E+00 

  GOTERM_MF_FAT potassium channel activity 4 8.90E-01 1.00E+00 

  SP_PIR_KEYWORDS ionic channel 5 8.90E-01 1.00E+00 

  GOTERM_MF_FAT cation channel activity 4 9.90E-01 1.00E+00 

Annotation Cluster 49 Enrichment Score: 0.13 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT mitochondrial inner membrane 4 6.30E-01 9.80E-01 

  GOTERM_CC_FAT organelle inner membrane 4 6.30E-01 9.80E-01 

  GOTERM_BP_FAT oxidative phosphorylation 3 7.10E-01 9.90E-01 

  GOTERM_CC_FAT mitochondrial membrane 4 7.40E-01 9.90E-01 

  GOTERM_CC_FAT mitochondrial envelope 4 7.50E-01 9.90E-01 

  GOTERM_CC_FAT envelope 5 7.90E-01 9.90E-01 

  GOTERM_CC_FAT organelle envelope 4 8.60E-01 1.00E+00 

  GOTERM_CC_FAT organelle membrane 5 9.40E-01 1.00E+00 

Annotation Cluster 50 Enrichment Score: 0.11 GO Term/Keyword Count P-Value Benjamini 

  SMART TyrKc 4 2.40E-01 9.40E-01 

  INTERPRO Tyrosine protein kinase 4 7.20E-01 1.00E+00 

  INTERPRO Protein kinase, core 4 1.00E+00 1.00E+00 

  GOTERM_MF_FAT protein tyrosine kinase activity 4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT protein amino acid phosphorylation 4 1.00E+00 1.00E+00 

  GOTERM_MF_FAT 
protein serine/threonine kinase 

activity 
4 1.00E+00 1.00E+00 

  GOTERM_MF_FAT protein kinase activity 4 1.00E+00 1.00E+00 

Annotation Cluster 51 Enrichment Score: 0.09 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS gtp-binding 6 5.40E-01 9.10E-01 

  GOTERM_MF_FAT GTP binding 6 9.30E-01 1.00E+00 

  GOTERM_MF_FAT guanyl ribonucleotide binding 6 9.40E-01 1.00E+00 

  GOTERM_MF_FAT guanyl nucleotide binding 6 9.40E-01 1.00E+00 

Annotation Cluster 52 Enrichment Score: 0.04 GO Term/Keyword Count P-Value Benjamini 

  KEGG_PATHWAY MAPK signaling pathway 3 8.70E-01 9.90E-01 

  KEGG_PATHWAY Endocytosis 3 9.20E-01 9.90E-01 

  KEGG_PATHWAY Spliceosome 3 9.90E-01 1.00E+00 
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Annotation Cluster 53 Enrichment Score: 0.03 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
hermaphrodite genitalia 

development 
21 9.00E-01 1.00E+00 

  GOTERM_BP_FAT genitalia development 21 9.10E-01 1.00E+00 

  GOTERM_BP_FAT sex differentiation 21 9.70E-01 1.00E+00 

  GOTERM_BP_FAT 
reproductive developmental 

process 
21 9.90E-01 1.00E+00 

Annotation Cluster 54 Enrichment Score: 0.02 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS nucleotide-binding 23 7.40E-01 9.70E-01 

  SP_PIR_KEYWORDS atp-binding 17 8.20E-01 9.90E-01 

  GOTERM_MF_FAT ATP binding 22 1.00E+00 1.00E+00 

  GOTERM_MF_FAT adenyl ribonucleotide binding 22 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ribonucleotide binding 28 1.00E+00 1.00E+00 

  GOTERM_MF_FAT purine ribonucleotide binding 28 1.00E+00 1.00E+00 

  GOTERM_MF_FAT adenyl nucleotide binding 23 1.00E+00 1.00E+00 

  GOTERM_MF_FAT purine nucleoside binding 23 1.00E+00 1.00E+00 

  GOTERM_MF_FAT purine nucleotide binding 29 1.00E+00 1.00E+00 

  GOTERM_MF_FAT nucleoside binding 23 1.00E+00 1.00E+00 

  GOTERM_MF_FAT nucleotide binding 33 1.00E+00 1.00E+00 

Annotation Cluster 55 Enrichment Score: 0.01 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT cytokinesis 3 9.50E-01 1.00E+00 

  GOTERM_BP_FAT cell division 3 9.90E-01 1.00E+00 

  GOTERM_BP_FAT cell cycle 4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT cell cycle process 3 1.00E+00 1.00E+00 

Annotation Cluster 56 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
passive transmembrane transporter 

activity 
7 9.90E-01 1.00E+00 

  GOTERM_MF_FAT channel activity 7 9.90E-01 1.00E+00 

  GOTERM_MF_FAT substrate specific channel activity 6 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ion channel activity 6 1.00E+00 1.00E+00 

Annotation Cluster 57 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT metallopeptidase activity 3 1.00E+00 1.00E+00 

  GOTERM_MF_FAT peptidase activity 5 1.00E+00 1.00E+00 

  GOTERM_MF_FAT 
peptidase activity, acting on L-

amino acid peptides 
4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT proteolysis 4 1.00E+00 1.00E+00 

Annotation Cluster 58 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT protein transport 3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT establishment of protein localization 3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT protein localization 4 1.00E+00 1.00E+00 

Annotation Cluster 59 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT phosphorylation 7 1.00E+00 1.00E+00 

  GOTERM_BP_FAT phosphorus metabolic process 7 1.00E+00 1.00E+00 
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  GOTERM_BP_FAT phosphate metabolic process 7 1.00E+00 1.00E+00 

Annotation Cluster 60 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT transition metal ion binding 36 1.00E+00 1.00E+00 

  GOTERM_MF_FAT metal ion binding 46 1.00E+00 1.00E+00 

  GOTERM_MF_FAT cation binding 46 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ion binding 46 1.00E+00 1.00E+00 

Annotation Cluster 61 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
regulation of transcription, DNA-

dependent 
4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT 
regulation of RNA metabolic 

process 
4 1.00E+00 1.00E+00 

  GOTERM_MF_FAT transcription factor activity 3 1.00E+00 1.00E+00 

  GOTERM_MF_FAT transcription regulator activity 5 1.00E+00 1.00E+00 
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Annotation Cluster 1 Enrichment Score: 9.65 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Nematode cuticle collagen, N-

terminal 
34 4.40E-11 3.50E-08 

  INTERPRO Collagen triple helix repeat 38 6.50E-11 2.60E-08 

  GOTERM_MF_FAT structural constituent of cuticle 35 3.80E-09 4.80E-07 

Annotation Cluster 2 Enrichment Score: 6.03 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT mitochondrial envelope 25 2.90E-08 1.30E-06 

  GOTERM_CC_FAT mitochondrial membrane 24 7.50E-08 2.50E-06 

  GOTERM_CC_FAT mitochondrial inner membrane 21 3.10E-07 8.50E-06 

  GOTERM_CC_FAT organelle inner membrane 21 3.80E-07 8.70E-06 

  GOTERM_CC_FAT organelle envelope 25 1.70E-06 3.30E-05 

  GOTERM_CC_FAT envelope 26 3.80E-06 6.50E-05 

  GOTERM_CC_FAT organelle membrane 27 3.40E-04 4.20E-03 

Annotation Cluster 3 Enrichment Score: 5.83 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Acyl-CoA oxidase/dehydrogenase, 

central region 
11 3.70E-07 4.30E-05 

  INTERPRO 
Acyl-CoA oxidase/dehydrogenase, 

type1/2, C-terminal 
11 6.10E-07 6.10E-05 

  INTERPRO 
Acyl-CoA dehydrogenase/oxidase, N-

terminal 
10 4.20E-06 3.10E-04 

  GOTERM_MF_FAT acyl-CoA dehydrogenase activity 11 4.80E-06 3.70E-04 

Annotation Cluster 4 Enrichment Score: 4.97 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Peptidase A1 10 3.30E-07 4.40E-05 

  INTERPRO Peptidase aspartic, catalytic 10 3.30E-07 4.40E-05 

  GOTERM_MF_FAT aspartic-type endopeptidase activity 10 3.40E-04 1.20E-02 

  GOTERM_MF_FAT aspartic-type peptidase activity 10 3.40E-04 1.20E-02 

Annotation Cluster 5 Enrichment Score: 4.79 GO Term/Keyword Count P-Value Benjamini 

  PIR_SUPERFAMILY PIRSF001187:Pepsin 7 2.60E-06 8.30E-04 

  SP_PIR_KEYWORDS Aspartyl protease 7 4.60E-06 2.00E-04 

  INTERPRO Peptidase aspartic, active site 7 3.50E-04 1.20E-02 

Annotation Cluster 6 Enrichment Score: 4.58 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Glutathione S-transferase, N-terminal 14 1.00E-05 6.20E-04 

  INTERPRO Glutathione S-transferase, C-terminal 13 3.50E-05 2.00E-03 

  INTERPRO 
Glutathione S-transferase/chloride 

channel, C-terminal 
13 5.30E-05 2.50E-03 

Annotation Cluster 7 Enrichment Score: 4.21 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

NADH or NADPH 
11 4.40E-05 2.40E-03 

  GOTERM_MF_FAT 
NADH dehydrogenase (quinone) 

activity 
9 6.70E-05 3.20E-03 

  GOTERM_MF_FAT NADH dehydrogenase activity 9 6.70E-05 3.20E-03 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

NADH or NADPH, quinone or similar 
compound as acceptor 

9 6.70E-05 3.20E-03 
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  GOTERM_MF_FAT 
NADH dehydrogenase (ubiquinone) 

activity 
9 6.70E-05 3.20E-03 

Annotation Cluster 8 Enrichment Score: 4.08 GO Term/Keyword Count P-Value Benjamini 

  SMART Pept_C1 10 4.80E-07 4.20E-05 

  INTERPRO Peptidase C1A, papain 10 3.70E-05 2.00E-03 

  INTERPRO Peptidase C1A, papain C-terminal 10 6.70E-05 3.00E-03 

  GOTERM_MF_FAT cysteine-type peptidase activity 13 4.00E-02 3.50E-01 

Annotation Cluster 9 Enrichment Score: 3.64 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT ribonucleoprotein complex 31 1.30E-05 1.90E-04 

  GOTERM_CC_FAT ribosome 25 4.80E-05 6.60E-04 

  GOTERM_MF_FAT structural constituent of ribosome 25 1.30E-04 5.00E-03 

  GOTERM_BP_FAT translation 25 3.60E-02 4.20E-01 

Annotation Cluster 10 Enrichment Score: 3.58 GO Term/Keyword Count P-Value Benjamini 

  SMART SapB 8 1.60E-05 7.30E-04 

  INTERPRO Saposin B 8 7.30E-04 2.30E-02 

  INTERPRO Saposin-like type B, 2 6 1.50E-03 3.90E-02 

Annotation Cluster 11 Enrichment Score: 3.35 GO Term/Keyword Count P-Value Benjamini 

  UP_SEQ_FEATURE domain:GST N-terminal 8 9.10E-06 1.80E-03 

  UP_SEQ_FEATURE domain:GST C-terminal 8 1.70E-05 2.30E-03 

  GOTERM_MF_FAT glutathione transferase activity 7 9.20E-04 2.50E-02 

  PIR_SUPERFAMILY PIRSF000503:glutathione transferase 8 3.20E-03 1.90E-01 

  GOTERM_MF_FAT 
transferase activity, transferring alkyl 

or aryl (other than methyl) groups 
7 3.90E-02 3.50E-01 

Annotation Cluster 12 Enrichment Score: 3.14 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Acyl-CoA oxidase/dehydrogenase, 

type 1 
7 2.40E-04 9.00E-03 

  INTERPRO Acyl-CoA dehydrogenase, N-terminal 6 1.10E-03 3.00E-02 

  INTERPRO 
Acyl-CoA dehydrogenase, conserved 

site 
6 1.50E-03 3.90E-02 

Annotation Cluster 13 Enrichment Score: 3.03 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Pyridoxal phosphate-dependent 

transferase, major region, subdomain 
1 

10 2.40E-04 9.40E-03 

  GOTERM_MF_FAT vitamin B6 binding 13 4.90E-04 1.60E-02 

  GOTERM_MF_FAT pyridoxal phosphate binding 13 4.90E-04 1.60E-02 

  GOTERM_MF_FAT vitamin binding 15 1.40E-02 1.60E-01 

Annotation Cluster 14 Enrichment Score: 2.7 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Cytosolic fatty-acid binding 6 4.60E-04 1.50E-02 

  INTERPRO Calycin 5 2.10E-03 5.20E-02 

  PIR_SUPERFAMILY 
PIRSF002390:lipid binding protein, 

FABP type 
5 2.90E-03 2.10E-01 

  PIR_SUPERFAMILY 
PIRSF500199:intracellular lipid-

binding protein 
4 5.60E-03 2.60E-01 

Annotation Cluster 15 Enrichment Score: 2.46 GO Term/Keyword Count P-Value Benjamini 

  SMART CLECT 23 2.90E-05 8.40E-04 

  INTERPRO C-type lectin-like 22 2.60E-02 3.50E-01 



Table E5 (Continued) 

313 

  INTERPRO C-type lectin 23 5.50E-02 5.30E-01 

Annotation Cluster 16 Enrichment Score: 2.34 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT multicellular organismal aging 28 4.60E-03 1.40E-01 

  GOTERM_BP_FAT determination of adult life span 28 4.60E-03 1.40E-01 

  GOTERM_BP_FAT aging 28 4.60E-03 1.40E-01 

Annotation Cluster 17 Enrichment Score: 2.31 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS respiratory chain 7 2.60E-03 3.10E-02 

  SP_PIR_KEYWORDS electron transport 8 4.10E-03 4.70E-02 

  GOTERM_CC_FAT respiratory chain 6 1.10E-02 6.10E-02 

Annotation Cluster 18 Enrichment Score: 2.29 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Peptidase, cysteine peptidase active 

site 
10 3.00E-04 1.10E-02 

  GOTERM_MF_FAT cysteine-type endopeptidase activity 11 1.10E-02 1.60E-01 

  GOTERM_MF_FAT cysteine-type peptidase activity 13 4.00E-02 3.50E-01 

Annotation Cluster 19 Enrichment Score: 2.19 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Peptidase S10, serine 

carboxypeptidase 
5 1.40E-03 3.70E-02 

  GOTERM_MF_FAT serine-type exopeptidase activity 5 4.20E-03 8.50E-02 

  GOTERM_MF_FAT serine-type carboxypeptidase activity 5 4.20E-03 8.50E-02 

  INTERPRO 
Peptidase S10, serine 

carboxypeptidase, active site 
4 1.40E-02 2.40E-01 

  GOTERM_MF_FAT carboxypeptidase activity 6 3.20E-02 3.10E-01 

Annotation Cluster 20 Enrichment Score: 2.14 GO Term/Keyword Count P-Value Benjamini 

  SMART LPD_N 4 6.90E-04 1.50E-02 

  SMART VWD 4 1.80E-03 2.30E-02 

  INTERPRO Vitellinogen, superhelical 4 3.90E-03 8.60E-02 

  INTERPRO Vitellinogen, beta-sheet N-terminal 4 3.90E-03 8.60E-02 

  INTERPRO Lipid transport protein, N-terminal 4 3.90E-03 8.60E-02 

  INTERPRO Vitellinogen, open beta-sheet 4 3.90E-03 8.60E-02 

  SP_PIR_KEYWORDS storage protein 4 4.40E-03 4.80E-02 

  UP_SEQ_FEATURE domain:Vitellogenin 4 5.80E-03 3.20E-01 

  GOTERM_MF_FAT nutrient reservoir activity 4 6.60E-03 1.10E-01 

  UP_SEQ_FEATURE domain:VWFD 4 9.70E-03 4.20E-01 

  INTERPRO von Willebrand factor, type D 4 1.00E-02 1.90E-01 

  GOTERM_MF_FAT lipid transporter activity 4 1.40E-01 7.00E-01 

  GOTERM_BP_FAT lipid transport 4 2.10E-01 8.40E-01 

Annotation Cluster 21 Enrichment Score: 2.1 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT prefoldin complex 5 9.40E-04 8.50E-03 

  GOTERM_CC_FAT cytosolic part 6 4.50E-03 3.00E-02 

  GOTERM_CC_FAT cytosol 6 1.20E-01 4.00E-01 

Annotation Cluster 22 Enrichment Score: 2.08 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT fatty acid beta-oxidation 5 2.80E-03 1.10E-01 

  GOTERM_BP_FAT fatty acid catabolic process 5 2.80E-03 1.10E-01 

  GOTERM_BP_FAT fatty acid oxidation 5 4.10E-03 1.40E-01 
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  GOTERM_BP_FAT lipid oxidation 5 4.10E-03 1.40E-01 

  GOTERM_BP_FAT cellular lipid catabolic process 6 6.40E-03 1.70E-01 

  INTERPRO Acyl-CoA oxidase 4 6.60E-03 1.30E-01 

  INTERPRO Acyl-CoA oxidase, C-terminal 4 1.00E-02 1.90E-01 

  PIR_SUPERFAMILY PIRSF000168:acyl-CoA oxidase 4 1.00E-02 2.90E-01 

  GOTERM_MF_FAT acyl-CoA oxidase activity 4 1.60E-02 1.90E-01 

  PIR_SUPERFAMILY PIRSF000168:Acyl-CoA_oxidase 4 1.70E-02 3.70E-01 

  KEGG_PATHWAY alpha-Linolenic acid metabolism 5 2.30E-02 1.70E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on the 
CH-CH group of donors, oxygen as 

acceptor 
4 3.20E-02 3.10E-01 

Annotation Cluster 23 Enrichment Score: 1.89 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
response to endoplasmic reticulum 

stress 
5 2.80E-03 1.10E-01 

  GOTERM_BP_FAT 
endoplasmic reticulum unfolded 

protein response 
5 2.80E-03 1.10E-01 

  GOTERM_BP_FAT ER-nuclear signaling pathway 5 2.80E-03 1.10E-01 

  GOTERM_BP_FAT cellular response to unfolded protein 5 5.90E-03 1.60E-01 

  GOTERM_BP_FAT response to protein stimulus 5 8.10E-03 1.90E-01 

  GOTERM_BP_FAT response to unfolded protein 5 8.10E-03 1.90E-01 

  GOTERM_BP_FAT response to organic substance 5 1.10E-01 6.90E-01 

  GOTERM_BP_FAT cellular response to stress 5 9.30E-01 1.00E+00 

Annotation Cluster 24 Enrichment Score: 1.86 GO Term/Keyword Count P-Value Benjamini 

  PIR_SUPERFAMILY 
PIRSF036514:alpha-crystallin-related 

small heat shock protein 
5 7.50E-03 2.60E-01 

  INTERPRO Alpha crystallin/Heat shock protein 5 1.10E-02 2.00E-01 

  INTERPRO Heat shock protein Hsp20 5 1.40E-02 2.30E-01 

  GOTERM_BP_FAT response to heat 6 3.30E-02 4.40E-01 

Annotation Cluster 25 Enrichment Score: 1.85 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT catechol metabolic process 7 8.30E-03 1.90E-01 

  GOTERM_BP_FAT phenol metabolic process 7 8.30E-03 1.90E-01 

  GOTERM_BP_FAT diol metabolic process 7 8.30E-03 1.90E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on the 

CH-CH group of donors, NAD or 
NADP as acceptor 

7 9.70E-03 1.50E-01 

  GOTERM_BP_FAT 
siderophore biosynthetic process 

from catechol 
6 1.50E-02 2.80E-01 

  GOTERM_BP_FAT siderophore biosynthetic process 6 1.50E-02 2.80E-01 

  GOTERM_BP_FAT 
nonribosomal peptide biosynthetic 

process 
6 1.50E-02 2.80E-01 

  GOTERM_BP_FAT siderophore metabolic process 6 1.50E-02 2.80E-01 

  GOTERM_BP_FAT enterobactin biosynthetic process 6 1.50E-02 2.80E-01 

  GOTERM_BP_FAT enterobactin metabolic process 6 1.50E-02 2.80E-01 

  GOTERM_MF_FAT 
2,3-dihydro-2,3-dihydroxybenzoate 

dehydrogenase activity 
6 2.30E-02 2.50E-01 

  GOTERM_BP_FAT peptide metabolic process 7 2.40E-02 3.80E-01 

  GOTERM_BP_FAT peptide biosynthetic process 6 2.50E-02 3.80E-01 
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Annotation Cluster 26 Enrichment Score: 1.81 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT membrane-enclosed lumen 20 2.70E-03 2.00E-02 

  GOTERM_CC_FAT organelle lumen 16 3.70E-02 1.60E-01 

  GOTERM_CC_FAT intracellular organelle lumen 16 3.70E-02 1.60E-01 

Annotation Cluster 27 Enrichment Score: 1.79 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT peptidase activity 44 1.10E-02 1.60E-01 

  GOTERM_MF_FAT 
peptidase activity, acting on L-amino 

acid peptides 
41 1.30E-02 1.60E-01 

  GOTERM_BP_FAT proteolysis 46 3.00E-02 4.20E-01 

Annotation Cluster 28 Enrichment Score: 1.39 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT regulation of growth rate 131 3.40E-02 4.40E-01 

  GOTERM_BP_FAT positive regulation of growth rate 131 3.50E-02 4.40E-01 

  GOTERM_BP_FAT positive regulation of growth 143 3.70E-02 4.30E-01 

  GOTERM_BP_FAT regulation of growth 145 6.10E-02 5.40E-01 

Annotation Cluster 29 Enrichment Score: 1.34 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
ubiquinol-cytochrome-c reductase 

activity 
3 4.60E-02 3.70E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

diphenols and related substances as 
donors 

3 4.60E-02 3.70E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

diphenols and related substances as 
donors, cytochrome as acceptor 

3 4.60E-02 3.70E-01 

Annotation Cluster 30 Enrichment Score: 1.31 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT cell redox homeostasis 10 2.50E-02 3.70E-01 

  GOTERM_BP_FAT cellular homeostasis 12 3.50E-02 4.30E-01 

  GOTERM_BP_FAT homeostatic process 12 1.40E-01 7.30E-01 

Annotation Cluster 31 Enrichment Score: 1.29 GO Term/Keyword Count P-Value Benjamini 

  SMART Sm 4 1.80E-02 1.50E-01 

  INTERPRO 
Like-Sm ribonucleoprotein, eukaryotic 

and archaea-type, core 
4 8.10E-02 6.60E-01 

  INTERPRO Like-Sm ribonucleoprotein, core 4 9.30E-02 7.00E-01 

Annotation Cluster 32 Enrichment Score: 1.28 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Ctr copper transporter 4 1.40E-02 2.40E-01 

  GOTERM_MF_FAT 
copper ion transmembrane 

transporter activity 
4 4.10E-02 3.50E-01 

  GOTERM_MF_FAT 
transition metal ion transmembrane 

transporter activity 
4 7.70E-02 5.00E-01 

  GOTERM_MF_FAT 
di-, tri-valent inorganic cation 

transmembrane transporter activity 
4 1.60E-01 7.40E-01 

Annotation Cluster 33 Enrichment Score: 1.26 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT mitochondrial intermembrane space 4 7.50E-03 4.40E-02 

  GOTERM_CC_FAT organelle envelope lumen 4 7.50E-03 4.40E-02 

  INTERPRO Zinc finger, Tim10/DDP-type 3 3.30E-02 4.00E-01 

  INTERPRO 
Mitochondrial inner membrane 

translocase complex, Tim8/9/10/13-
zinc finger-like 

3 3.30E-02 4.00E-01 
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  GOTERM_CC_FAT 
mitochondrial intermembrane space 

protein transporter complex 
3 3.60E-02 1.60E-01 

  GOTERM_BP_FAT 
protein import into mitochondrial inner 

membrane 
3 3.70E-02 4.20E-01 

  GOTERM_BP_FAT mitochondrial membrane organization 3 3.70E-02 4.20E-01 

  GOTERM_BP_FAT 
inner mitochondrial membrane 

organization 
3 3.70E-02 4.20E-01 

  UP_SEQ_FEATURE 
short sequence motif:Twin CX3C 

motif 
3 4.30E-02 8.90E-01 

  GOTERM_BP_FAT protein localization in mitochondrion 3 1.40E-01 7.40E-01 

  GOTERM_BP_FAT protein targeting to mitochondrion 3 1.40E-01 7.40E-01 

  GOTERM_BP_FAT mitochondrial transport 3 1.80E-01 8.10E-01 

  GOTERM_BP_FAT mitochondrion organization 3 3.80E-01 9.50E-01 

  GOTERM_BP_FAT protein import 3 4.00E-01 9.60E-01 

Annotation Cluster 34 Enrichment Score: 1.23 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
protein disulfide oxidoreductase 

activity 
5 4.50E-02 3.70E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

sulfur group of donors 
6 6.40E-02 4.60E-01 

  GOTERM_MF_FAT disulfide oxidoreductase activity 5 7.20E-02 4.80E-01 

Annotation Cluster 35 Enrichment Score: 1.19 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Cytochrome P450, E-class, group I 11 1.50E-02 2.40E-01 

  INTERPRO Cytochrome P450 11 1.80E-02 2.80E-01 

  INTERPRO Cytochrome P450, C-terminal region 10 3.60E-02 4.10E-01 

  COG_ONTOLOGY 
Secondary metabolites biosynthesis, 

transport, and catabolism 
11 3.80E-02 2.10E-01 

  SP_PIR_KEYWORDS Monooxygenase 11 5.20E-02 2.80E-01 

  INTERPRO Cytochrome P450, conserved site 9 8.60E-02 6.70E-01 

  SP_PIR_KEYWORDS heme 12 1.60E-01 5.40E-01 

  GOTERM_MF_FAT heme binding 14 2.60E-01 8.70E-01 

  GOTERM_MF_FAT tetrapyrrole binding 14 2.80E-01 8.80E-01 

Annotation Cluster 36 Enrichment Score: 1.14 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
cotranslational protein targeting to 

membrane 
4 2.40E-02 3.80E-01 

  SP_PIR_KEYWORDS signal recognition particle 3 5.10E-02 2.80E-01 

  GOTERM_CC_FAT 
signal recognition particle, 

endoplasmic reticulum targeting 
3 5.20E-02 2.10E-01 

  GOTERM_MF_FAT 7S RNA binding 3 6.60E-02 4.50E-01 

  GOTERM_CC_FAT signal recognition particle 3 6.90E-02 2.60E-01 

  GOTERM_BP_FAT protein targeting to ER 3 1.10E-01 7.00E-01 

  GOTERM_BP_FAT 
SRP-dependent cotranslational 
protein targeting to membrane 

3 1.10E-01 7.00E-01 

  KEGG_PATHWAY Protein export 3 2.10E-01 6.00E-01 

Annotation Cluster 37 Enrichment Score: 1.12 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT 
proton-transporting ATP synthase 

complex 
7 8.80E-04 8.50E-03 
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  GOTERM_CC_FAT 
proton-transporting two-sector 

ATPase complex, proton-transporting 
domain 

6 7.30E-03 4.40E-02 

  GOTERM_BP_FAT hydrogen transport 9 1.30E-02 2.60E-01 

  GOTERM_CC_FAT 
proton-transporting two-sector 

ATPase complex 
8 2.80E-02 1.40E-01 

  GOTERM_BP_FAT proton transport 8 3.50E-02 4.20E-01 

  GOTERM_BP_FAT ion transmembrane transport 8 3.90E-02 4.20E-01 

  GOTERM_BP_FAT 
energy coupled proton transport, 
down electrochemical gradient 

7 7.10E-02 5.70E-01 

  GOTERM_BP_FAT 
ATP synthesis coupled proton 

transport 
7 7.10E-02 5.70E-01 

  GOTERM_BP_FAT ATP biosynthetic process 9 8.50E-02 6.20E-01 

  GOTERM_BP_FAT ATP metabolic process 9 9.70E-02 6.60E-01 

  GOTERM_BP_FAT 
purine nucleoside triphosphate 

biosynthetic process 
9 1.20E-01 7.00E-01 

  GOTERM_BP_FAT 
nucleoside triphosphate biosynthetic 

process 
9 1.20E-01 7.00E-01 

  GOTERM_BP_FAT 
purine ribonucleoside triphosphate 

biosynthetic process 
9 1.20E-01 7.00E-01 

  GOTERM_BP_FAT 
ribonucleoside triphosphate 

biosynthetic process 
9 1.20E-01 7.00E-01 

  GOTERM_BP_FAT ribonucleotide biosynthetic process 10 1.30E-01 7.20E-01 

  GOTERM_BP_FAT 
purine nucleoside triphosphate 

metabolic process 
9 1.30E-01 7.30E-01 

  GOTERM_BP_FAT 
purine ribonucleoside triphosphate 

metabolic process 
9 1.30E-01 7.30E-01 

  GOTERM_BP_FAT 
ribonucleoside triphosphate 

metabolic process 
9 1.30E-01 7.30E-01 

  GOTERM_BP_FAT 
nucleoside triphosphate metabolic 

process 
9 1.40E-01 7.40E-01 

  GOTERM_BP_FAT ribonucleotide metabolic process 10 1.50E-01 7.50E-01 

  GOTERM_BP_FAT 
purine ribonucleotide biosynthetic 

process 
9 2.00E-01 8.40E-01 

  GOTERM_BP_FAT 
purine ribonucleotide metabolic 

process 
9 2.30E-01 8.60E-01 

  GOTERM_BP_FAT 
purine nucleotide biosynthetic 

process 
9 4.80E-01 9.80E-01 

  GOTERM_BP_FAT purine nucleotide metabolic process 9 5.20E-01 9.80E-01 

Annotation Cluster 38 Enrichment Score: 1.1 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Thiolase 3 4.70E-02 4.90E-01 

  PIR_SUPERFAMILY PIRSF000429:Ac-CoA_Ac_transf 3 8.80E-02 8.40E-01 

  INTERPRO Thiolase-like, subgroup 3 1.20E-01 7.70E-01 

Annotation Cluster 39 Enrichment Score: 1.03 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
aromatic amino acid family catabolic 

process 
3 5.40E-02 5.10E-01 

  GOTERM_BP_FAT 
aromatic compound catabolic 

process 
3 7.20E-02 5.70E-01 

  GOTERM_BP_FAT 
aromatic amino acid family metabolic 

process 
3 2.10E-01 8.40E-01 
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Annotation Cluster 40 Enrichment Score: 1.02 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
nucleobase, nucleoside, nucleotide 

and nucleic acid biosynthetic process 
16 7.50E-02 5.80E-01 

  GOTERM_BP_FAT 
nucleobase, nucleoside and 

nucleotide biosynthetic process 
16 7.50E-02 5.80E-01 

  GOTERM_BP_FAT nucleotide biosynthetic process 14 1.60E-01 7.60E-01 

Annotation Cluster 41 Enrichment Score: 0.99 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Uncharacterised protein family 

UPF0376 
6 4.30E-02 4.60E-01 

  PIR_SUPERFAMILY PIRSF015697:UCP015697 6 1.40E-01 9.30E-01 

  INTERPRO Protein of unknown function DUF19 6 1.80E-01 8.80E-01 

Annotation Cluster 42 Enrichment Score: 0.96 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS dioxygenase 4 7.70E-02 3.40E-01 

  GOTERM_MF_FAT 

oxidoreductase activity, acting on 
single donors with incorporation of 
molecular oxygen, incorporation of 

two atoms of oxygen 

4 1.20E-01 6.60E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 
single donors with incorporation of 

molecular oxygen 
4 1.40E-01 7.00E-01 

Annotation Cluster 43 Enrichment Score: 0.93 GO Term/Keyword Count P-Value Benjamini 

  SMART DnaJ 5 1.90E-02 1.40E-01 

  INTERPRO Heat shock protein DnaJ, N-terminal 5 1.20E-01 7.70E-01 

  GOTERM_MF_FAT heat shock protein binding 5 2.80E-01 8.90E-01 

  INTERPRO 
Molecular chaperone, heat shock 

protein, Hsp40, DnaJ 
4 3.10E-01 9.70E-01 

Annotation Cluster 44 Enrichment Score: 0.93 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Chaperone DnaJ, C-terminal 3 3.30E-02 4.00E-01 

  INTERPRO Heat shock protein DnaJ 3 1.60E-01 8.60E-01 

  INTERPRO 
Molecular chaperone, heat shock 

protein, Hsp40, DnaJ 
4 3.10E-01 9.70E-01 

Annotation Cluster 45 Enrichment Score: 0.88 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT growth 113 4.50E-03 1.50E-01 

  GOTERM_BP_FAT nematode larval development 119 3.90E-01 9.60E-01 

  GOTERM_BP_FAT larval development 119 4.00E-01 9.60E-01 

  GOTERM_BP_FAT post-embryonic development 119 4.50E-01 9.70E-01 

Annotation Cluster 46 Enrichment Score: 0.69 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT pyridine nucleotide metabolic process 4 7.00E-02 5.70E-01 

  GOTERM_BP_FAT 
oxidoreduction coenzyme metabolic 

process 
4 2.10E-01 8.40E-01 

  GOTERM_BP_FAT 
nicotinamide nucleotide metabolic 

process 
3 2.10E-01 8.40E-01 

  GOTERM_BP_FAT nicotinamide metabolic process 3 2.10E-01 8.40E-01 

  GOTERM_BP_FAT alkaloid metabolic process 3 2.10E-01 8.40E-01 

  GOTERM_BP_FAT cellular amide metabolic process 3 2.60E-01 8.80E-01 

  GOTERM_BP_FAT secondary metabolic process 3 4.30E-01 9.60E-01 

Annotation Cluster 47 Enrichment Score: 0.64 GO Term/Keyword Count P-Value Benjamini 
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  SMART PTPc 9 1.20E-02 1.30E-01 

  INTERPRO 
Protein-tyrosine phosphatase, 

receptor/non-receptor type 
9 2.10E-01 9.10E-01 

  GOTERM_BP_FAT protein amino acid dephosphorylation 9 5.80E-01 9.90E-01 

  GOTERM_MF_FAT protein tyrosine phosphatase activity 9 6.20E-01 9.90E-01 

  GOTERM_BP_FAT dephosphorylation 9 6.60E-01 1.00E+00 

Annotation Cluster 48 Enrichment Score: 0.64 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT fatty acid binding 3 1.90E-01 7.70E-01 

  GOTERM_MF_FAT acyl-CoA binding 3 1.90E-01 7.70E-01 

  GOTERM_MF_FAT monocarboxylic acid binding 3 3.30E-01 9.10E-01 

Annotation Cluster 49 Enrichment Score: 0.62 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT nucleotide kinase activity 3 1.10E-01 6.30E-01 

  GOTERM_MF_FAT 
phosphotransferase activity, 
phosphate group as acceptor 

3 3.00E-01 8.90E-01 

  GOTERM_MF_FAT 
nucleobase, nucleoside, nucleotide 

kinase activity 
3 4.10E-01 9.50E-01 

Annotation Cluster 50 Enrichment Score: 0.61 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
heme-copper terminal oxidase 

activity 
3 2.50E-01 8.50E-01 

  GOTERM_MF_FAT cytochrome-c oxidase activity 3 2.50E-01 8.50E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

heme group of donors 
3 2.50E-01 8.50E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 
heme group of donors, oxygen as 

acceptor 
3 2.50E-01 8.50E-01 

Annotation Cluster 51 Enrichment Score: 0.54 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT protein targeting 9 1.90E-03 8.60E-02 

  GOTERM_BP_FAT intracellular protein transport 12 3.80E-01 9.50E-01 

  GOTERM_BP_FAT cellular macromolecule localization 12 5.00E-01 9.80E-01 

  GOTERM_BP_FAT cellular protein localization 12 5.00E-01 9.80E-01 

  GOTERM_BP_FAT intracellular transport 12 6.50E-01 1.00E+00 

  GOTERM_BP_FAT protein transport 16 6.60E-01 1.00E+00 

  GOTERM_BP_FAT establishment of protein localization 16 6.90E-01 1.00E+00 

  GOTERM_BP_FAT protein localization 17 9.20E-01 1.00E+00 

Annotation Cluster 52 Enrichment Score: 0.47 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
water-soluble vitamin biosynthetic 

process 
3 3.10E-01 9.10E-01 

  GOTERM_BP_FAT vitamin biosynthetic process 3 3.10E-01 9.10E-01 

  GOTERM_BP_FAT 
water-soluble vitamin metabolic 

process 
3 3.80E-01 9.50E-01 

  GOTERM_BP_FAT vitamin metabolic process 3 3.80E-01 9.50E-01 

Annotation Cluster 53 Enrichment Score: 0.45 GO Term/Keyword Count P-Value Benjamini 

  PIR_SUPERFAMILY PIRSF000675:tyrosine-protein kinase 5 5.30E-02 6.90E-01 

  SMART TyrKc 6 3.40E-01 8.90E-01 

  SP_PIR_KEYWORDS tyrosine-protein kinase 6 5.00E-01 9.00E-01 

  INTERPRO Tyrosine protein kinase, active site 5 7.40E-01 1.00E+00 
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  INTERPRO Tyrosine protein kinase 6 8.40E-01 1.00E+00 

Annotation Cluster 54 Enrichment Score: 0.43 GO Term/Keyword Count P-Value Benjamini 

  SMART CHK 3 2.20E-01 7.80E-01 

  INTERPRO CHK kinase-like 3 4.80E-01 1.00E+00 

  INTERPRO Uncharacterised kinase D1044.1 3 5.00E-01 1.00E+00 

Annotation Cluster 55 Enrichment Score: 0.4 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Acyl-CoA N-acyltransferase 4 1.60E-01 8.60E-01 

  INTERPRO GCN5-related N-acetyltransferase 3 3.50E-01 9.80E-01 

  GOTERM_MF_FAT acetyltransferase activity 4 4.20E-01 9.50E-01 

  GOTERM_MF_FAT N-acetyltransferase activity 3 6.40E-01 9.90E-01 

  GOTERM_MF_FAT N-acyltransferase activity 3 6.60E-01 9.90E-01 

Annotation Cluster 56 Enrichment Score: 0.39 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
positive regulation of multicellular 

organism growth 
24 3.60E-01 9.40E-01 

  GOTERM_BP_FAT 
positive regulation of multicellular 

organismal process 
24 4.10E-01 9.60E-01 

  GOTERM_BP_FAT 
regulation of multicellular organism 

growth 
29 4.60E-01 9.70E-01 

Annotation Cluster 57 Enrichment Score: 0.39 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT nucleosome 5 1.20E-01 4.00E-01 

  GOTERM_BP_FAT nucleosome organization 5 1.50E-01 7.50E-01 

  GOTERM_BP_FAT chromatin assembly 5 1.50E-01 7.50E-01 

  GOTERM_BP_FAT nucleosome assembly 5 1.50E-01 7.50E-01 

  GOTERM_CC_FAT protein-DNA complex 5 1.60E-01 4.60E-01 

  GOTERM_BP_FAT protein-DNA complex assembly 5 2.20E-01 8.50E-01 

  SP_PIR_KEYWORDS chromosomal protein 5 2.90E-01 7.40E-01 

  GOTERM_BP_FAT DNA packaging 5 2.90E-01 9.10E-01 

  GOTERM_CC_FAT chromatin 5 4.70E-01 8.80E-01 

  GOTERM_BP_FAT chromatin assembly or disassembly 5 4.70E-01 9.70E-01 

  GOTERM_CC_FAT chromosomal part 5 7.30E-01 9.80E-01 

  GOTERM_BP_FAT 
cellular macromolecular complex 

assembly 
5 7.90E-01 1.00E+00 

  GOTERM_BP_FAT chromatin organization 5 8.60E-01 1.00E+00 

  GOTERM_BP_FAT 
cellular macromolecular complex 

subunit organization 
5 8.70E-01 1.00E+00 

  GOTERM_CC_FAT chromosome 5 9.30E-01 1.00E+00 

  GOTERM_BP_FAT macromolecular complex assembly 5 9.40E-01 1.00E+00 

  GOTERM_BP_FAT 
macromolecular complex subunit 

organization 
5 9.60E-01 1.00E+00 

  GOTERM_BP_FAT chromosome organization 5 9.90E-01 1.00E+00 

Annotation Cluster 58 Enrichment Score: 0.22 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT establishment of nucleus localization 5 4.00E-01 9.60E-01 

  GOTERM_BP_FAT nucleus localization 5 4.00E-01 9.60E-01 

  GOTERM_BP_FAT pronuclear migration 4 5.90E-01 9.90E-01 

  GOTERM_BP_FAT nuclear migration 4 6.20E-01 9.90E-01 
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  GOTERM_BP_FAT single fertilization 4 6.70E-01 1.00E+00 

  GOTERM_BP_FAT fertilization 4 6.70E-01 1.00E+00 

  GOTERM_BP_FAT 
establishment of organelle 

localization 
5 8.00E-01 1.00E+00 

  GOTERM_BP_FAT organelle localization 5 8.20E-01 1.00E+00 

Annotation Cluster 59 Enrichment Score: 0.21 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT peroxidase activity 3 5.60E-01 9.90E-01 

  GOTERM_MF_FAT 
oxidoreductase activity, acting on 

peroxide as acceptor 
3 5.60E-01 9.90E-01 

  GOTERM_MF_FAT antioxidant activity 3 7.80E-01 1.00E+00 

Annotation Cluster 60 Enrichment Score: 0.19 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT alcohol catabolic process 4 4.60E-01 9.70E-01 

  GOTERM_BP_FAT 
cellular carbohydrate catabolic 

process 
4 4.70E-01 9.70E-01 

  GOTERM_BP_FAT glucose catabolic process 3 6.60E-01 1.00E+00 

  GOTERM_BP_FAT hexose catabolic process 3 6.60E-01 1.00E+00 

  GOTERM_BP_FAT monosaccharide catabolic process 3 6.60E-01 1.00E+00 

  GOTERM_BP_FAT hexose metabolic process 4 8.10E-01 1.00E+00 

  GOTERM_BP_FAT glucose metabolic process 3 8.60E-01 1.00E+00 

Annotation Cluster 61 Enrichment Score: 0.13 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
negative regulation of multicellular 

organism growth 
6 7.30E-01 1.00E+00 

  GOTERM_BP_FAT 
negative regulation of multicellular 

organismal process 
6 7.30E-01 1.00E+00 

  GOTERM_BP_FAT negative regulation of growth 6 7.50E-01 1.00E+00 

Annotation Cluster 62 Enrichment Score: 0.12 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT phosphate metabolic process 41 7.40E-01 1.00E+00 

  GOTERM_BP_FAT phosphorus metabolic process 41 7.40E-01 1.00E+00 

  GOTERM_BP_FAT phosphorylation 31 7.70E-01 1.00E+00 

Annotation Cluster 63 Enrichment Score: 0.12 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
molting cycle, collagen and cuticulin-

based cuticle 
15 7.60E-01 1.00E+00 

  GOTERM_BP_FAT molting cycle, protein-based cuticle 15 7.60E-01 1.00E+00 

  GOTERM_BP_FAT molting cycle 15 7.60E-01 1.00E+00 

Annotation Cluster 64 Enrichment Score: 0.11 GO Term/Keyword Count P-Value Benjamini 

  SP_PIR_KEYWORDS Sodium 3 6.80E-01 9.70E-01 

  GOTERM_MF_FAT sodium ion binding 3 7.50E-01 1.00E+00 

  SP_PIR_KEYWORDS Sodium transport 3 8.10E-01 9.90E-01 

  GOTERM_BP_FAT sodium ion transport 3 9.10E-01 1.00E+00 

Annotation Cluster 65 Enrichment Score: 0.09 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO 
Potassium channel, voltage 

dependent, Kv, tetramerisation 
4 6.40E-01 1.00E+00 

  GOTERM_CC_FAT 
voltage-gated potassium channel 

complex 
4 7.20E-01 9.80E-01 

  GOTERM_CC_FAT potassium channel complex 4 7.20E-01 9.80E-01 

  GOTERM_CC_FAT cation channel complex 4 7.70E-01 9.90E-01 
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  GOTERM_CC_FAT ion channel complex 4 8.30E-01 9.90E-01 

  GOTERM_MF_FAT voltage-gated channel activity 5 8.50E-01 1.00E+00 

  GOTERM_MF_FAT voltage-gated ion channel activity 5 8.50E-01 1.00E+00 

  GOTERM_MF_FAT 
voltage-gated potassium channel 

activity 
4 8.60E-01 1.00E+00 

  GOTERM_MF_FAT voltage-gated cation channel activity 4 8.90E-01 1.00E+00 

  GOTERM_CC_FAT integral to plasma membrane 4 9.10E-01 1.00E+00 

  GOTERM_CC_FAT intrinsic to plasma membrane 4 9.20E-01 1.00E+00 

  GOTERM_MF_FAT gated channel activity 5 1.00E+00 1.00E+00 

Annotation Cluster 66 Enrichment Score: 0.08 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_CC_FAT endoplasmic reticulum membrane 3 7.60E-01 9.90E-01 

  GOTERM_CC_FAT 
nuclear envelope-endoplasmic 

reticulum network 
3 7.60E-01 9.90E-01 

  GOTERM_CC_FAT endomembrane system 3 9.90E-01 1.00E+00 

Annotation Cluster 67 Enrichment Score: 0.07 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
negative regulation of macromolecule 

biosynthetic process 
3 8.00E-01 1.00E+00 

  GOTERM_BP_FAT 
negative regulation of cellular 

biosynthetic process 
3 8.10E-01 1.00E+00 

  GOTERM_BP_FAT 
negative regulation of biosynthetic 

process 
3 8.10E-01 1.00E+00 

  GOTERM_BP_FAT 
negative regulation of macromolecule 

metabolic process 
3 9.60E-01 1.00E+00 

Annotation Cluster 68 Enrichment Score: 0.07 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
collagen and cuticulin-based cuticle 

development 
5 8.40E-01 1.00E+00 

  GOTERM_BP_FAT cuticle development 5 8.60E-01 1.00E+00 

  GOTERM_BP_FAT protein-based cuticle development 5 8.60E-01 1.00E+00 

Annotation Cluster 69 Enrichment Score: 0.04 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT reproductive cellular process 5 7.80E-01 1.00E+00 

  GOTERM_BP_FAT oogenesis 4 9.70E-01 1.00E+00 

  GOTERM_BP_FAT female gamete generation 4 9.80E-01 1.00E+00 

Annotation Cluster 70 Enrichment Score: 0.03 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT hermaphrodite genitalia development 39 8.90E-01 1.00E+00 

  GOTERM_BP_FAT genitalia development 39 9.00E-01 1.00E+00 

  GOTERM_BP_FAT sex differentiation 40 9.70E-01 1.00E+00 

  GOTERM_BP_FAT reproductive developmental process 42 9.80E-01 1.00E+00 

Annotation Cluster 71 Enrichment Score: 0.03 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT 
ATPase activity, coupled to 

transmembrane movement of ions 
3 8.10E-01 1.00E+00 

  GOTERM_MF_FAT 
ATPase activity, coupled to 
movement of substances 

4 9.40E-01 1.00E+00 

  GOTERM_MF_FAT 
ATPase activity, coupled to 

transmembrane movement of 
substances 

4 9.40E-01 1.00E+00 

  GOTERM_MF_FAT hydrolase activity, acting on acid 
anhydrides, catalyzing 

4 9.60E-01 1.00E+00 
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transmembrane movement of 
substances 

  GOTERM_MF_FAT ATPase activity, coupled 5 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ATPase activity 5 1.00E+00 1.00E+00 

Annotation Cluster 72 Enrichment Score: 0.02 GO Term/Keyword Count P-Value Benjamini 

  SMART EGF 3 8.70E-01 1.00E+00 

  INTERPRO EGF-like, type 3 3 9.80E-01 1.00E+00 

  INTERPRO EGF-like 3 9.90E-01 1.00E+00 

Annotation Cluster 73 Enrichment Score: 0.02 GO Term/Keyword Count P-Value Benjamini 

  SMART RRM 3 8.80E-01 1.00E+00 

  INTERPRO Nucleotide-binding, alpha-beta plait 3 9.90E-01 1.00E+00 

  INTERPRO RNA recognition motif, RNP-1 3 9.90E-01 1.00E+00 

Annotation Cluster 74 Enrichment Score: 0.01 GO Term/Keyword Count P-Value Benjamini 

  INTERPRO Protein kinase, core 20 9.10E-01 1.00E+00 

  GOTERM_BP_FAT protein amino acid phosphorylation 20 9.80E-01 1.00E+00 

  GOTERM_MF_FAT 
protein serine/threonine kinase 

activity 
20 9.90E-01 1.00E+00 

  GOTERM_MF_FAT protein kinase activity 21 1.00E+00 1.00E+00 

Annotation Cluster 75 Enrichment Score: 0.01 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT potassium ion transport 6 9.00E-01 1.00E+00 

  GOTERM_MF_FAT potassium channel activity 6 9.20E-01 1.00E+00 

  GOTERM_MF_FAT cation channel activity 7 9.90E-01 1.00E+00 

  GOTERM_MF_FAT substrate specific channel activity 8 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ion channel activity 8 1.00E+00 1.00E+00 

  GOTERM_MF_FAT 
passive transmembrane transporter 

activity 
8 1.00E+00 1.00E+00 

  GOTERM_MF_FAT channel activity 8 1.00E+00 1.00E+00 

Annotation Cluster 76 Enrichment Score: 0.01 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT enzyme inhibitor activity 4 9.70E-01 1.00E+00 

  GOTERM_MF_FAT endopeptidase inhibitor activity 3 9.90E-01 1.00E+00 

  GOTERM_MF_FAT peptidase inhibitor activity 3 9.90E-01 1.00E+00 

Annotation Cluster 77 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
negative regulation of post-embryonic 

development 
3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT 
negative regulation of vulval 

development 
3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT 
regulation of post-embryonic 

development 
3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT regulation of vulval development 3 1.00E+00 1.00E+00 

Annotation Cluster 78 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
modification-dependent 

macromolecule catabolic process 
3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT 
modification-dependent protein 

catabolic process 
3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT 
cellular macromolecule catabolic 

process 
4 1.00E+00 1.00E+00 
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  GOTERM_BP_FAT 
proteolysis involved in cellular protein 

catabolic process 
3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT cellular protein catabolic process 3 1.00E+00 1.00E+00 

  GOTERM_BP_FAT protein catabolic process 3 1.00E+00 1.00E+00 

Annotation Cluster 79 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  SMART ZnF_C4 3 1.00E+00 1.00E+00 

  SMART HOLI 3 1.00E+00 1.00E+00 

  INTERPRO 
Zinc finger, nuclear hormone 

receptor-type 
3 1.00E+00 1.00E+00 

  INTERPRO Zinc finger, NHR/GATA-type 3 1.00E+00 1.00E+00 

  INTERPRO 
Nuclear hormone receptor, ligand-

binding, core 
3 1.00E+00 1.00E+00 

  GOTERM_MF_FAT steroid hormone receptor activity 3 1.00E+00 1.00E+00 

  GOTERM_MF_FAT 
ligand-dependent nuclear receptor 

activity 
3 1.00E+00 1.00E+00 

Annotation Cluster 80 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT morphogenesis of an epithelium 9 1.00E+00 1.00E+00 

  GOTERM_BP_FAT epithelium development 9 1.00E+00 1.00E+00 

  GOTERM_BP_FAT tissue morphogenesis 9 1.00E+00 1.00E+00 

Annotation Cluster 81 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT cation binding 108 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ion binding 108 1.00E+00 1.00E+00 

  GOTERM_MF_FAT metal ion binding 100 1.00E+00 1.00E+00 

Annotation Cluster 82 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT adenyl nucleotide binding 47 1.00E+00 1.00E+00 

  GOTERM_MF_FAT purine nucleoside binding 47 1.00E+00 1.00E+00 

  GOTERM_MF_FAT nucleoside binding 47 1.00E+00 1.00E+00 

  GOTERM_MF_FAT purine nucleotide binding 47 1.00E+00 1.00E+00 

  GOTERM_MF_FAT nucleotide binding 56 1.00E+00 1.00E+00 

Annotation Cluster 83 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT oviposition 4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT 
reproductive behavior in a 

multicellular organism 
4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT reproductive behavior 4 1.00E+00 1.00E+00 

  GOTERM_BP_FAT behavior 5 1.00E+00 1.00E+00 

Annotation Cluster 84 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_MF_FAT ATP binding 33 1.00E+00 1.00E+00 

  GOTERM_MF_FAT adenyl ribonucleotide binding 33 1.00E+00 1.00E+00 

  GOTERM_MF_FAT ribonucleotide binding 33 1.00E+00 1.00E+00 

  GOTERM_MF_FAT purine ribonucleotide binding 33 1.00E+00 1.00E+00 

Annotation Cluster 85 Enrichment Score: 0 GO Term/Keyword Count P-Value Benjamini 

  GOTERM_BP_FAT 
regulation of transcription, DNA-

dependent 
9 1.00E+00 1.00E+00 

  GOTERM_BP_FAT regulation of RNA metabolic process 9 1.00E+00 1.00E+00 

  GOTERM_MF_FAT transcription factor activity 7 1.00E+00 1.00E+00 
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  GOTERM_BP_FAT regulation of transcription 9 1.00E+00 1.00E+00 
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Gene Name 

  log2 Fold 
[hsf-

1(+);+HS  
vs.  

control] 

F44E5.5 8.06 

F44E5.4 7.87 

R11A5.3 7.37 

hsp-16.11 7.31 

hsp-70 7.15 

hsp-16.1 6.90 

hsp-16.49 6.50 

col-149 3.01 

col-143 2.55 

col-80 2.44 

col-129 2.43 

col-140 2.40 

col-139 2.37 

col-142 2.34 

col-93 2.32 

col-160 2.30 

F49E12.9 2.29 

cnc-4 2.25 

col-159 2.22 

F46F2.3 2.18 

col-19 2.17 

col-81 2.16 

col-94 2.14 

col-122 2.13 

ugt-63 2.13 

col-92 2.11 

col-20 2.11 

col-179 2.08 

col-178 2.07 

col-7 2.06 

col-146 2.06 

col-62 2.03 

col-181 2.02 

col-168 2.01 

col-98 1.99 

col-8 1.99 

col-126 1.99 

col-184 1.99 

col-101 1.98 

K01C8.1 1.95 

Gene Name 

  log2 Fold 
[hsf-

1(+);+HS  
vs.  

control] 

col-144 1.91 

dpy-3 1.90 

col-117 1.89 

tni-3 1.89 

col-10 1.88 

col-133 1.84 

col-125 1.74 

B0238.12 1.73 

C49G7.3 1.68 

T25B9.1 1.67 

phat-3 1.64 

C53D6.7 1.64 

col-180 1.64 

dpy-4 1.64 

sams-1 1.62 

col-145 1.62 

nlp-26 1.60 

col-107 1.59 

col-157 1.59 

far-2 1.56 

dpy-13 1.54 

sqt-1 1.54 

haao-1 1.53 

col-12 1.53 

col-88 1.53 

col-38 1.50 

unc-15 1.48 

col-138 1.47 

ZK1307.1 1.46 

col-130 1.46 

col-17 1.45 

F46H5.3 1.45 

col-13 1.44 

col-63 1.44 

grd-3 1.43 

T21G5.2 1.41 

col-175 1.41 

fat-6 1.38 

col-77 1.38 

col-156 1.38 

Gene Name 

  log2 Fold 
[hsf-

1(+);+HS  
vs.  

control] 

col-141 1.38 

tnt-2 1.37 

col-161 1.37 

T25F10.6 1.37 

T21F4.1 1.36 

srp-1 1.36 

F37H8.5 1.36 

csq-1 1.34 

flu-2 1.33 

dpy-7 1.33 

C06A8.3 1.32 

col-60 1.32 

sqt-2 1.29 

dim-1 1.29 

col-154 1.28 

tag-18 1.28 

col-120 1.28 

pfn-3 1.27 

col-97 1.26 

ZK1058.9 1.25 

C36C5.5 1.25 

pmt-2 1.25 

cpn-3 1.23 

R13H4.2 1.23 

col-91 1.23 

T13F3.6 1.23 

ttr-18 1.21 

T05E7.1 1.21 

F09E10.1 1.21 

gpd-3 1.19 

T22B7.7 1.17 

col-14 1.17 

fip-5 1.16 

C49F5.7 1.16 

C01B10.3 1.15 

F25E2.2 1.14 

lec-5 1.14 

ttr-6 1.12 

nlp-27 1.12 

F20G2.2 1.11 
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Gene Name 

  log2 Fold 
[hsf-

1(+);+HS  
vs.  

control] 

lec-2 1.10 

catp-3 1.10 

dpy-8 1.09 

unc-27 1.09 

col-34 1.09 

col-155 1.08 

elo-5 1.08 

ttr-16 1.08 

ttr-20 1.08 

gstk-1 1.08 

cnc-3 1.07 

elo-2 1.07 

C16A3.10 1.02 

col-68 1.02 

col-118 1.02 

ptr-18 1.02 

gst-36 1.00 

gst-13 1.00 

D1054.8 1.00 

mif-2 0.98 

T19B10.2 0.98 

Y37D8A.2 0.97 

cnc-8 0.97 

F16B4.4 0.97 

cdo-1 0.96 

R07E4.3 0.96 

gst-42 0.94 

M02D8.1 0.93 

far-6 0.92 

ckb-2 0.92 

ifa-1 0.92 

heh-1 0.89 

ugt-44 0.89 

ZK1321.4 0.88 

F09B12.3 0.86 

pah-1 0.85 

W09G12.7 -3.28 

tsp-1 -2.81 

lys-3 -1.79 

irg-2 -1.75 

Gene Name 

  log2 Fold 
[hsf-

1(+);+HS  
vs.  

control] 

fbxa-24 -1.72 

C50F7.5 -1.70 

T28H10.3 -1.54 

best-5 -1.53 

dpf-6 -1.26 

rde-1 -1.25 

DH11.2 -1.16 

B0001.2 -1.13 

T04C4.1 -1.12 

F02H6.2 -1.09 

icl-1 -1.06 

C18A11.1 -1.04 

K02D7.1 -1.00 

K09H11.7 -0.97 
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Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

col-158 5.00 

B0507.8 4.62 

tsp-1 4.55 

B0284.1 4.43 

fbxa-30 4.11 

C50F7.5 3.94 

F15B9.6 3.35 

C17H1.7 3.32 

H02F09.3 3.07 

T19D12.4 2.92 

W09G12.7 2.70 

lys-3 2.49 

T28B11.1 2.12 

ZC443.4 1.51 

sodh-1 1.50 

fbxa-24 1.48 

T12G3.1 1.40 

fbxa-60 1.36 

F20C5.3 1.29 

T28H10.3 1.28 

ZK1055.7 1.16 

Y56A3A.16 1.54 

F22E5.6 3.41 

dod-19 1.32 

F18A1.7 1.12 

ugt-8 1.43 

T04F3.2 1.45 

fbxa-182 1.29 

ZC308.4 1.07 

vhp-1 1.02 

T04C4.1 1.39 

ttm-4 1.07 

B0238.13 2.45 

C49C3.9 1.03 

unc-53 1.05 

nhr-2 1.65 

clec-87 0.99 

Y43F8C.6 1.17 

clec-91 0.96 

dct-17 0.90 

Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

cyp-35B1 1.03 

tag-278 0.92 

clec-88 0.81 

tbb-6 3.35 

scav-2 0.99 

best-13 0.93 

zfp-1 0.85 

rec-8 0.85 

npp-7 0.79 

dpf-6 1.08 

ntl-9 0.93 

str-7 1.10 

attf-6 0.82 

F29G9.1 1.50 

gna-2 0.79 

acdh-1 -6.98 

Y40H7A.10 -4.48 

vit-1 -3.72 

F54F7.2 -3.65 

vit-5 -3.55 

spp-4 -3.05 

pmp-5 -3.02 

F15E11.1 -2.97 

folt-2 -2.84 

lips-14 -2.66 

lys-4 -2.63 

C36C5.5 -2.61 

F09E10.1 -2.55 

K10B2.2 -2.54 

ugt-22 -2.51 

Y38F1A.6 -2.41 

T13F3.6 -2.38 

cyp-35A2 -2.31 

elo-5 -2.25 

ckb-2 -2.24 

tbh-1 -2.22 

cyp-25A1 -2.22 

clec-160 -2.19 

ugt-47 -2.19 

elo-6 -2.11 

Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

fat-7 -2.10 

F42A10.7 -2.10 

clec-56 -2.08 

Y57G11B.5 -2.06 

cyp-35A3 -2.05 

T05E12.6 -2.02 

gst-13 -2.01 

K10C2.3 -2.01 

spp-3 -1.99 

dhs-21 -1.98 

F18E2.1 -1.92 

gst-4 -1.91 

C15C8.3 -1.88 

dct-11 -1.87 

col-68 -1.87 

T05E7.1 -1.86 

clec-186 -1.84 

dod-24 -1.82 

K12H4.7 -1.81 

cyp-25A2 -1.80 

col-120 -1.79 

R102.4 -1.78 

clec-97 -1.76 

pcp-1 -1.75 

tag-10 -1.72 

col-88 -1.71 

F36A2.12 -1.71 

ZC373.2 -1.71 

W02D9.7 -1.71 

F55G11.8 -1.69 

H20E11.3 -1.68 

cpl-1 -1.68 

clec-66 -1.66 

F49E12.1 -1.65 

hsp-16.11 -1.65 

F57F5.1 -1.62 

ZK813.3 -1.62 

col-175 -1.62 

pfd-4 -1.62 

cyp-34A9 -1.62 
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Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

C05D12.4 -1.61 

hpo-18 -1.59 

D1054.8 -1.58 

hsp-16.1 -1.57 

F13H8.3 -1.57 

F53H4.2 -1.55 

col-60 -1.54 

Y62H9A.6 -1.54 

col-138 -1.51 

ech-6 -1.51 

hsp-16.49 -1.51 

C08F11.11 -1.51 

cpr-5 -1.50 

nlp-26 -1.50 

cbl-1 -1.49 

col-63 -1.49 

C30G12.2 -1.48 

lbp-6 -1.46 

lys-2 -1.46 

F28H7.3 -1.45 

cdr-6 -1.45 

R07E4.3 -1.45 

col-38 -1.42 

ttr-15 -1.42 

C49F5.7 -1.41 

fip-5 -1.40 

spp-8 -1.40 

cpr-6 -1.40 

col-77 -1.39 

clec-57 -1.38 

F32H5.1 -1.37 

F54D5.4 -1.37 

haao-1 -1.34 

ftn-2 -1.33 

C44C1.5 -1.31 

irg-3 -1.31 

ZK1307.1 -1.31 

F48D6.4 -1.29 

msra-1 -1.28 

D1086.3 -1.25 

Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

trap-2 -1.25 

pfd-6 -1.25 

aqp-10 -1.25 

clec-52 -1.24 

T10B5.7 -1.24 

C15H9.9 -1.24 

F07H5.3 -1.23 

F37C4.6 -1.22 

col-91 -1.22 

elo-2 -1.19 

R09H10.3 -1.19 

flu-2 -1.19 

C29F7.3 -1.19 

Y66H1A.5 -1.18 

F15E11.12 -2.80 

asp-3 -1.60 

lys-8 -1.54 

daf-36 -1.34 

cnc-8 -1.27 

amx-3 -1.36 

T25B9.1 -1.22 

B0272.3 -1.13 

ttr-46 -1.11 

clec-222 -1.84 

spp-5 -1.33 

Y40D12A.2 -1.14 

ssp-37 -1.57 

thn-2 -1.33 

gst-36 -1.26 

amt-4 -1.15 

clec-49 -1.08 

F42G8.10 -1.05 

pmt-2 -1.26 

col-130 -1.17 

Y62H9A.3 -1.14 

acs-1 -1.13 

C39D10.7 -1.04 

col-76 -1.13 

C35B1.5 -1.08 

C25A8.4 -1.05 

Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

F20G2.2 -1.04 

Y62H9A.4 -1.04 

apy-1 -1.01 

F08A8.4 -1.25 

pgrn-1 -1.01 

daf-22 -1.01 

mif-2 -1.14 

K01C8.1 -1.04 

F13H6.3 -1.06 

gstk-1 -1.04 

C26B9.5 -1.02 

F13D12.6 -1.27 

lbp-3 -1.01 

C07D8.6 -1.01 

F32A5.3 -1.19 

Y45F10C.4 -1.19 

D1086.7 -1.00 

B0281.5 -2.08 

K04G2.10 -1.13 

nlp-29 -1.06 

frh-1 -1.07 

lpd-9 -0.98 

col-161 -1.09 

sqt-1 -0.99 

nlp-27 -0.94 

ant-1.4 -1.10 

asp-2 -1.04 

ZK899.2 -0.98 

F23C8.5 -0.97 

dpy-13 -1.07 

ttr-47 -0.98 

F37C12.3 -1.29 

dpy-4 -1.08 

erd-2 -0.94 

C04E12.2 -1.19 

gst-42 -0.94 

C46C11.2 -1.18 

sur-5 -0.90 

clec-65 -0.93 

Y45F10C.2 -1.03 
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Gene Name 

 log2 Fold 
[control vs. 

hsf-1(-
);+HS] 

R12C12.1 -1.02 

ugt-44 -0.87 

F56F10.1 -0.85 

col-97 -0.94 

cpt-4 -0.89 

C29F3.7 -0.86 

dod-17 -0.96 

C42D4.1 -0.94 

F27E5.1 -0.98 

C31G12.1 -1.37 

C17H12.8 -0.83 

sqt-2 -0.85 

F08G5.6 -0.82 

gta-1 -0.91 

F37H8.3 -0.89 

grd-5 -0.83 

Y69E1A.5 -0.82 

asg-1 -0.79 

T24C12.3 -0.89 

cdo-1 -0.83 

F44A6.5 -1.10 

nuc-1 -0.82 

T21H3.1 -1.20 

F10E9.5 -0.87 

F47B8.8 -0.86 

tag-18 -0.79 

col-133 -0.93 

ugt-23 -0.82 

pes-23 -0.86 

asp-5 -0.90 

C01H6.4 -0.79 

ZC376.2 -0.84 

acs-5 -0.76 

heh-1 -0.77 

C14C6.5 -0.78 
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APPENDIX F: SUPPORTING FIGURES AND TABLES FOR CHAPTER 7. HSF-1 IS A 

REGULATOR OF MIRNA EXPRESSION IN CAENORHABDITIS ELEGANS 

 

confirms that hsf-1 RNAi blunts hsp-70 promoter activity upon HS. Quantification of the fluorescent 
images in (a) demonstrate hsf-1 RNAi decreases hsp-70 promoter activity by ~80%. (c) hsf-1 RNAi 
blunts hsp-16.2 promoter activity upon HS. Fluorescent images are shown of synchronous 
pY46H3A.3(hsp-16.2)::GFP worms fed control RNAi [hsf-1(+)] or hsf-1 RNAi [hsf-1(-)] from the L1 larval 
stage to the L4 larval stage prior to treatment with a 33°C 30 minute heat shock (+HS) followed by a 12 
hour recovery. (d) Quantification of fluorescence intensity confirms that hsf-1 RNAi blunts hsp-16.2 
promoter activity upon HS. Quantification of the fluorescent images in (c) demonstrate hsf-1 RNAi 
decreases hsp-16.2 promoter activity ~60%. (e) Heat shock protein genes are the top genes induced 
during a 30 minute 33°C HS. mRNA-seq performed in parallel to miRNA-seq shows that hsp genes--  

Figure F1. Validation of RNAi treatment conditions for 
miRNA-seq experiments. (a) hsf-1 RNAi blunts hsp-70 
promoter activity upon HS. Fluorescent images are shown 
of synchronous pC12C8.1(hsp-70)::GFP worms fed 
control RNAi [hsf-1(+)] or hsf-1 RNAi [hsf-1(-)] from the L1 
larval stage to the L4 larval stage prior to treatment with a 
33°C 30 minute heat shock (+HS) followed by a 12 hour 
recovery. (b) Quantification of fluorescence intensity 



 

332 

 

  

Figure F1. Validation of RNAi treatment conditions for miRNA-seq experiments. (Continued) are 
the highest induced group of genes in response to HS, and shows these genes are dependent on HSF-
1, further validating our experimental conditions. For (b,d), error bars represent standard deviation and 
significance was determined with the Bonferroni post-test where ‘***’;q-value<0.001. 
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Figure F2. 
Dendogram analysis 
and differential 
expression between 
miRNA-seq biological 
duplicates shows a 
correlation between 
biological replicates. 
(a) Dendogram 
correlation between 
biological duplicates. 
Clustering of the 
biological duplicates for 
each mRNA-seq 
condition reveals 
conserved alignment 
between replicates. 
The dendogram was 
generated by the 
program 
CummeRbund to 
provide insight into the 
relationships between 
different conditions. -- 
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  Figure F2. Dendogram analysis and differential expression between miRNA-seq biological 
duplicates shows a correlation between biological replicates. (Continued) (b-e) Differential 
expression analysis shows little deviation between biological duplicates. Scatter plots of the miRNA-seq 
reads for each biological replicate, for each condition, shows similarities between biological duplicates. 
The x-axis is representative of the reads from the first biological replicate, and the y-axis represents 

reads from the second biological replicate. The closer the R
2
 value is to 1, and the closer each point is 

to the line, is representative of similarity between replicates. 
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Figure F3. Volcano plots for each miRNA-seq condition 
relative to the control. Volcano plots show all unchanged (q-
value>0.05) and significantly altered (q-value<0.05) miRNAs, 
relative to the hsf-1(+);-HS control. The q-value is the FDR-
adjusted p-value of the test statistic as determined by the 
Benjamini-Hochberg correction for multiple testing. 
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Figure F4. miRNAs normally upregulated by HSF-1 during 
HS. (a) Venn diagram of the miRNAs significantly upregulated 
as compared to the control. The Venn diagram shows the 
overlap among miRNAs that were found to be significantly 
upregulated (q-value<0.05) as compared to the hsf-1(+);-HS 
control for each of the indicated comparisons between 
samples. The blue shaded region represents miRNAs that are 
regulated by hsf-1 during HS. The q-value is the FDR-adjusted 
p-value of the test statistic as determined by the Benjamini-
Hochberg correction for multiple testing (b) Relative 
abundance of the miRNAs normally upregulated by HSF-1 
upon HS. The log2 fold change from the miRNA-seq data, of 

the miRNAs determined via Venn diagram to be regulated by 
HSF-1 upon HS as compared to the hsf-1(+);-HS control, 
shows the miRNAs determined to be significantly different 
compared to each treatment condition. Significance was 
determined with the Benjamini-Hochberg correction where 
‘*’;q-value<0.05. (c) miRNAs determined to normally be 
upregulated by HSF-1 during HS. The miRNAs that had a 
significant difference between the hsf-1(+);+HS and hsf-1(-
);+HS treatment conditions in (b), as determined by the 
Benjamini-Hochberg correction for multiple testing, are listed.  
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Figure F5. miRNAs normally downregulated by HSF-
1 during HS. (a) Venn diagram of the miRNAs 
significantly downregulated compared to the control. The 
Venn diagram shows the overlap among miRNAs that 
were found to be significantly downregulated (q-
value<0.05) as compared to the hsf-1(+);-HS control for 
each of the indicated comparisons between samples. The 
blue shaded region represents miRNAs that are normally 
downregulated by hsf-1 during HS. The q-value is the 
FDR-adjusted p-value of the test statistic as determined 
by the Benjamini-Hochberg correction for multiple testing 
(b) Relative abundance of the miRNAs normally 
downregulated by HSF-1 upon HS. The log2 fold change 

from the miRNA-seq data, of the miRNAs determined via 
Venn diagram to be regulated by HSF-1 upon HS as 
compared to the hsf-1(+);-HS control, shows the miRNAs 
determined to be significantly different compared to each 
treatment condition. Significance was determined with the 
Benjamini-Hochberg correction where ‘*’;q-value<0.05. 
(c) miRNAs determined to normally be downregulated by 
HSF-1 during HS. The miRNAs that had a significant 
difference between the hsf-1(+);+HS and hsf-1(-);+HS 
treatment conditions in (b) as determined by the 
Benjamini-Hochberg correction for multiple testing are 
listed.  
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Figure F6. miRNAs normally upregulated by HSF-1 
independently of HS. (a) Venn diagram of the miRNAs 
significantly upregulated as compared to the control. The 
Venn diagram shows the overlap among miRNAs that were 
found to be significantly downregulated (q-value<0.05) as 
compared to the hsf-1(+);-HS control for each of the 
indicated comparisons between samples. A miRNA that is 
downregulated in response to hsf-1 RNAi is considered to 
normally be upregulated by HSF-1. The yellow shaded 
region thus represents miRNAs that are normally 
upregulated by hsf-1 independently of HS. The q-value is the 
FDR-adjusted p-value of the test statistic as determined by 
the Benjamini-Hochberg correction for multiple testing (b) 
Relative abundance of the miRNAs normally upregulated by 
HSF-1 independently of HS. The log2 fold change from the 

miRNA-seq data, of the miRNAs determined via Venn 
diagram to be regulated by HSF-1 independently of HS as 
compared to the hsf-1(+);-HS control, shows the miRNAs 
determined to be significantly different compared to each 
treatment condition. Significance was determined with the 
Benjamini-Hochberg correction where ‘*’;q-value<0.05. (c) 
miRNAs determined to normally be upregulated by HSF-1 
independently of HS. The miRNAs that did not have a 
significant difference between the hsf-1(-);+HS and hsf-1(-);-
HS treatment conditions in (b), as determined by the 
Benjamini-Hochberg correction for multiple testing, are 
listed.  
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Figure F7. miRNAs normally downregulated by 
HSF-1 independently of HS. (a) Venn diagram of the 
miRNAs significantly downregulated as compared to 
the control. The Venn diagram shows the overlap 
among miRNAs that were found to be significantly 
upregulated (q-value<0.05) as compared to the hsf-
1(+);-HS control for each of the indicated comparisons 
between samples. A miRNA that is upregulated in 
response to hsf-1 RNAi is considered to normally be 
downregulated by HSF-1. The yellow shaded region 
thus represents miRNAs that are normally 
downregulated by hsf-1 independently of HS. The q-
value is the FDR-adjusted p-value of the test statistic as 
determined by the Benjamini-Hochberg correction for 
multiple testing (b) Relative abundance of the miRNAs 
normally downregulated by HSF-1 independently of HS. 
The log2 fold change from the miRNA-seq data, of the 

miRNAs determined via Venn diagram to be regulated 
by HSF-1 independently of HS as compared to the hsf-
1(+);-HS control, shows the miRNAs determined to be 
significantly different compared to each treatment 
condition. Significance was determined with the 
Benjamini-Hochberg correction where ‘*’;q-value<0.05. 
(c) miRNAs determined to normally be downregulated 
by HSF-1 independently of HS. The miRNAs that did 
not have a significant difference between the hsf-
1(+);+HS and hsf-1(-);+HS treatment conditions in (b), 
as determined by the Benjamini-Hochberg correction 
for multiple testing, are listed.  
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Figure F8. Biological processes enriched by HSF-1-regulated miRNAs during HS. (a) Processes 
normally downregulated by HSF-1-regulated miRNAs during HS. The genes predicted to be suppressed 
by HSF-1-regulated miRNAs during HS were classified by Gene Ontology terms using DAVID. 
Processes with an enrichment score>~2.5 are listed. (b) Processes normally upregulated by HSF-1-
regulated miRNAs during HS. The genes predicted to be induced by HSF-1-regulated miRNAs during 
HS were classified by Gene Ontology terms using DAVID. The top 4 processes are listed.  
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Figure F9. Biological processes enriched by HSF-1-regulated miRNAs independently of HS. (a) 
Processes normally downregulated by HSF-1-regulated miRNAs independently of HS. The genes 
predicted to be suppressed by HSF-1-regulated miRNAs independently of HS were classified by Gene 
Ontology terms using DAVID. Processes with an enrichment score>~2.48 are listed. (b) Processes 
normally upregulated by HSF-1-regulated miRNAs independently of HS. The genes predicted to be 
induced by HSF-1-regulated miRNAs during HS were classified by Gene Ontology terms using DAVID. 
The top 3 processes are listed.  



Table F1. Significantly altered miRNAs in the hsf-1(+);+HS treatment condition 
compared to the control.  
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Name 
log2 Fold hsf-
1(+);+HS vs 

control 

miR-784 1.35 

miR-355 1.13 

miR-1829c 0.83 

miR-62 0.80 

miR-794 0.74 

miR-46 0.72 

miR-5592 0.68 

miR-231 0.67 

miR-65 0.62 

miR-86 0.58 

miR-84 0.58 

miR-232 0.57 

miR-63 0.56 

miR-2212 0.50 

miR-229 0.50 

miR-66 0.45 

lin-4 0.40 

miR-52 0.39 

miR-53 0.38 

miR-237 0.34 

miR-1022 0.27 

miR-4816 0.27 

miR-239a 0.23 

miR-47 0.22 

miR-242 0.21 

miR-240 0.21 

miR-5551 0.20 

miR-34 0.15 

miR-80 0.11 

miR-259 0.08 

miR-228 -0.13 

miR-48 -0.13 

miR-50 -0.13 

miR-241 -0.14 

miR-1817 -0.19 

miR-1829a -0.23 

let-7 -0.31 

miR-57 -0.33 

miR-51 -0.41 

miR-64 -0.50 

Name 
log2 Fold hsf-
1(+);+HS vs 

control 

miR-61 -0.55 

miR-75 -0.70 

miR-252 -0.70 

miR-83 -0.83 

miR-56 -1.01 

miR-36 -1.04 

miR-58 -1.08 

miR-795 -1.29 

miR-82 -1.69 

miR-2214 -1.72 

miR-55 -1.81 

miR-90 -1.82 

miR-235 -1.99 

miR-4926 -2.03 

miR-45 -2.06 

miR-73 -2.11 

miR-74 -2.13 

miR-77 -2.21 

miR-35 -2.24 

miR-4813 -2.34 

miR-87 -2.43 

miR-44 -2.43 

miR-238 -2.53 

miR-250 -2.56 

miR-42 -2.67 

miR-40 -2.69 

miR-54 -2.69 

miR-39 -2.74 

miR-41 -3.07 

miR-37 -3.15 

miR-246 -3.49 

miR-67 -3.78 



Table F2. Significantly altered miRNAs in the hsf-1(-);+HS treatment condition 
compared to the control  
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Name 

log2 Fold 
hsf-1(-

);+HS vs 
control 

miR-239b 3.21 

miR-239a 1.02 

miR-1830 0.84 

miR-84 0.60 

miR-1820 0.55 

miR-63 0.49 

miR-230 0.48 

miR-229 0.46 

miR-65 0.32 

miR-62 0.32 

miR-1829c 0.23 

miR-236 0.18 

miR-48 0.16 

miR-66 0.15 

miR-228 0.11 

miR-241 -0.11 

miR-72 -0.19 

miR-47 -0.31 

miR-34 -0.39 

miR-355 -0.43 

miR-795 -0.45 

miR-75 -0.51 

miR-71 -0.53 

miR-790 -0.66 

miR-83 -0.87 

miR-79 -0.95 

miR-61 -1.00 

miR-90 -1.21 

miR-235 -1.46 

miR-38 -1.49 

miR-2214 -1.58 

miR-250 -1.70 

miR-74 -1.79 

miR-73 -1.97 

miR-35 -2.00 

miR-77 -2.08 

miR-45 -2.30 

miR-54 -2.51 

miR-41 -2.51 

Name 

log2 Fold 
hsf-1(-

);+HS vs 
control 

miR-44 -2.93 

miR-4813 -3.26 

miR-246 -3.33 

miR-67 -3.74 

miR-39 -3.83 

miR-40 -4.53 

  



Table F3. Significantly altered miRNAs in the hsf-1(-);-HS treatment condition 
compared to the control 

342 

Name 
log2 Fold 

hsf-1(-);-HS 
vs control 

miR-239b 5.70 

miR-85 4.84 

miR-243 4.03 

miR-5592 3.88 

miR-1020 2.88 

miR-4926 2.53 

miR-239a 2.49 

miR-238 2.13 

miR-1 2.05 

miR-62 1.59 

miR-59 1.41 

miR-84 1.31 

miR-80 1.25 

miR-794 1.21 

miR-4816 1.19 

miR-46 1.08 

miR-230 1.08 

miR-355 0.83 

lin-4 0.81 

miR-1022 0.80 

miR-66 0.80 

miR-232 0.76 

miR-1829b 0.74 

miR-63 0.64 

miR-1820 0.57 

miR-83 0.52 

miR-52 0.52 

miR-237 0.47 

miR-54 0.41 

miR-259 0.39 

miR-48 0.28 

miR-228 0.11 

miR-72 -0.12 

miR-252 -0.23 

let-7 -0.27 

miR-51 -0.27 

miR-71 -0.28 

miR-57 -0.38 

miR-77 -0.53 

miR-50 -0.63 

Name 
log2 Fold 

hsf-1(-);-HS 
vs control 

miR-45 -0.74 

miR-4812 -0.83 

miR-250 -0.84 

miR-246 -0.90 

miR-358 -0.92 

miR-41 -0.95 

miR-58 -1.07 

miR-44 -1.16 

miR-64 -1.19 

miR-75 -1.22 

miR-795 -1.49 

miR-39 -1.80 

miR-42 -1.85 
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APPENDIX G: EXTENDED PROTOCOLS 

Preparing Nematode Growth Medium (NGM) Plates 

Purpose: To make agar plates for the maintenance of C. elegans 

1. Make the recipe below in a flask that is 2x/per volume of media  

NaCl 1.5 g 

Bacto-Peptone 1.25 g 

Agar 10 g 

diH2O 500  mL 

*Autoclave a stir bar in the media 

2. Autoclave for 45 minutes and set a hotplate to 55°C 

3. Allow NGM to cool to the touch on a hot plate while stirring at medium speed to 

prevent bubbles 

4. Light a flame and sterilely add the following/500 mL of NGM: 

Cholesterol (5 mg/mL) 0.5 mL 

1 M CaCl2 0.5 mL 

1 M MgSO4 0.5 mL 

KH2PO4, pH 6.0 12.5 mL 

5. Fill 100 mM plates with 20 mL or 60 mM plates with 10 mL of liquefied medium 

6. Allow to dry for 10 minutes and then flip over to prevent condensation on the 

plate 

 

C. elegans OP50 Protocol 

Purpose: To grow and prepare E. coli as a C. elegans a food source 

Day 1. Streak OP50 

1. Obtain a glycerol stock of OP50 E. coli and keep on ice 

2. Using a sterile inoculating loop, scratch off a layer of the frozen stock and spread 

onto an LB plate with the goal being to spread out the cells to create single 

colonies 

3. Place the plate, lid down, at 37°C overnight 

Day 2. Inoculate OP50 

1. Determine the amount of OP50 required for the number of plates needed 

*50 mL will become 5 mL which will be enough for 25 100 mM 

plates 

2. Obtain a flask 2x the volume being made 

3. Light a flame, and sterilely add LB to the flask  
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*Always flame the lid before and after opening a bottle of LB to 

prevent contamination 

4. Using an inoculating loop, pick a single colony from the plate previously streaked  

5. Allow to grow over night in a 37°C shaker 12-16 hours 

Day 3: Seeding NGM plates with OP50 

1. Place 50 mL of turbid OP50 into a 50 mL conical and centrifuge for 10 minutes at 

3,500 rpm 

2. Remove enough supernatant to make a 10x stock 

*For 50 mL, leave 5 mL of supernatant 

3. Resuspend the pelleted bacteria by vortexing 

4. Light a flame, and sterilely add 200 µL of bacteria to each 100 mM plate and 100 

µL of bacteria to each 60 mM plate 

5. Using a glass spreader, make a circular bacterial lawn in the center of the plate  

6. Allow the plates to remain on the bench over night at room temperature and store 

at 4°C for up to 1 month 

 

Freezing and Thawing C. elegans 

Purpose: To preserve C. elegans strains 

Freezing: 

1. Chunk worms onto standard NGM plates seeded with OP50 

2. Allow the worms to propagate for about 5 days until most of the population 

represents L1 and L2 worms  

*The early larval stages survive upon freezing 

3. Wash the plate with 5 mL of M9 

4. Swirl the M9 on the plate and then tilt the plate to allow pooling to one side 

5. Collect the worms in a 15 mL conical 

6. Pellet the worms for 1 minute at 5,000 rpm  

7. Aspirate the M9, and do at least one more 5 mL wash 

*If the liquid is cloudy due to an uptake of OP50 bacteria, do one or 

more 10 mL washes until clear 

8. Aspirate all but 2 mL of M9 

9. Re-suspend and distribute 0.5 mL to four 1.8 mL cryovials 

10. Add an equal amount 30% glycerol  

11. Place the cyrovials in a Styrofoam container at -80˚C over night before 

transferring to a cryobox 

Thawing: 
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1. Remove a vial from the freezer and allow to thaw completely at room 

temperature 

2. Allow worms to collect at the bottom of the tube, and pipette drops of worms onto 

a seeded NGM plate  

3. After 2-3 days, transfer the surviving animals to separate plates and ensure that 

they reproduce 

 

C. elegans Synchronization via Bleaching 

Purpose: To obtain a synchronous population of worms  

Day 1. Synchronizing a Mixed-stage Population 

1. Ensure that there are plenty of worms and gravid adults on the plates to be 
bleach synced 

2. Add 5 mL of M9 onto the plate and begin washing the worms off of the plate 
3. Transfer the worms to a 15 mL conical tube 

*Do not use a 50 mL conical as the pellet will not be compact 
4. Centrifuge for 1 minute at 5,000 rpm to pellet the worms 
5. Aspirate most of the M9 without disturbing the worm pellet 
6. Repeat 2-5 until all eggs are detached from the plate 
7. Add about 15 mL of 20% alkaline hypochlorite solution to the 15 mL conical 

 

Sterile Water 8.25 mL 

1M NaOH 3.75 mL 

Bleach 3 mL 

 
8. Mix the tube gently by inverting for approximately 4 minutes  

*Do not bleach for longer than this or you will kill the eggs 
9. Centrifuge for 1 minute at 5000 rpm  
10. Aspirate most of the 20% alkaline hypochlorite solution without disturbing the 

worm pellet 
11. Add 15 mL of M9 to the tube and mix well 
12. Centrifuge for about 1 minute on high  
13. Aspirate most of the M9 without disturbing the worm pellet. 
14. Repeat M9 wash 2x 
15. Add about 7mL of fresh M9 and agitate to re-suspend the pellet 
16. Transfer to a 50 mL flask and place a rotator   
17. Let the eggs hatch over night with gentle rocking (24-34 hours) 

*Since there is no food the larvae should be halted at the L1 stage 

Day 2. Plating the Synchronous Worms 

1. Check the life stage of the worms, the eggs should be hatched and all worms 
should at the  L1 stage 

2. Decant all of the liquid into a 15 mL conical 
3. Centrifuge for 1 minute at 5,000 rpm and remove all but 200 μL of M9 
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*Amount to leave varies on how many plates you will be adding the 
worms to or how many worms you want/plate 

4. Distribute drops of the concentrated worm pellet onto the top of plates to be used 
for experiment 

*Ensure that there is enough liquid for each plate that needs worms 

 

C. elegans RNAi Feeding Protocol 

Purpose: To make agar plates that will be used for C. elegans gene knockdown via 
RNAi feeding 

Tip: Make fresh plates prior to each experiment 

 

RNAi Plates 

1. Make standard NGM agar in a 1000 mL flask 

NaCl 1.5 g 

Bacto-Peptone 1.25 g 

Agar 10 g 

diH2O 500 mL 

2. Autoclave for 45 minutes on the liquid cycle with a stir bar in the media 
3. Set a hot plate or water bath to 55°C 
4. Cool while gently stirring on the hot plate for about 45 minutes 

*Liquid must be cool enough before adding the supplements 
because heat may cause inactivation of Ampicillin 

5. Light a flame and sterilely add the following/500 mL: 

Cholesterol (5mg/ml) 0.5 mL 

1M CaCl2 0.5 mL 

1M MgSO4 0.5 mL 

KH2PO4, pH 6.0 12.5 mL 

1 mM IPTG (1M stock) 500 µL 

50 µg/mL Ampicillin 
(100 mg/mL stock) 

250 µL 

6. Fill 100 mM plates with 20 mL and 60 mM plates with 10 mL  
7. Allow to dry overnight at room temperature prior to seeding with bacteria 

RNAi Bacteria 

Day 1. Streaking RNAi bacteria 

1. Streak bacteria onto a LB agar plate containing 50 µg/mL Ampicillin and incubate 
at 37°C overnight 

Day 2. Inoculating RNAi bacteria 

1. Obtain a sterile flask, fill 50% of the flask with LB supplemented with 50 µg/mL 
Ampicillin 

2. BE VERY STERILE- Inoculate a single colony into the LB-Ampicillin solution 
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3. Place onto a 37°C shaker between 12-16 hours  

Day 3. Seeding RNAi plates 

1. Concentrate the bacteria 10x and seed the RNAi plates (200 µl for a 100 mM 
plate). 

2. Allow the bacteria to induce on the plates over night at room temperature. 

*Store seeded plates at 4°C in a dark fridge (Ampicillin is light 
sensitive) 

  

C. elegans RNA Extraction 

Purpose: To extract pure RNA from C. elegans using the RNeasy Kit from Qiagen 

Prior to performing RNA extraction:  

- Set a centrifuge to 4°C 

- Spray work area and pipettes with ethanol and RNase away 

- Use filter pipette tips and ice at all times 

1. To prevent OP50 contamination, pick 10-20 worms to a 20 µl drop of M9 in an 

RNase-free Eppendorf tube  

2. Pellet the worms by brief centrifugation  

3. In a fume hood, add 250 µL of Trizol  

4. Vortex by hand ~30 sec then vortex at 4°C for 20 minutes until the worms have 

dissolved 

5. In a fume hood, add 150 µL of chloroform  

6. Briefly vortex 

7. Let tube sit at room temp for 3 mins until layers separate  

8. Move to Qiagen RNeasy kit, picks up at step 4 of the protocol for animal cells 

using spin technology outlined below 

9. Ensure ethanol has been added to RPE buffer 

10. Transfer the clear aqueous layer of the samples to another tube  

11. Add 1 volume of 70% and mix well by pipetting  

12. Add all of the lysate to an RNeasy spin column, centrifuge for 15 sec at >8000g 

or >10,000 rpm, and discard flow through 

13. Add 700 µL of buffer RW1 to the column, centrifuge for 15 sec at >8000 g or 

>10,000 rpm, and discard the flow through 

14. Add 500 µL of buffer RPE to the column, centrifuge for 15 sec at >8000 g or 

>10,000 rpm, and discard the flow through 

15. Add 500 µL of buffer RPE to the column, centrifuge for 15 sec at >8000 g or 

>10,000 rpm, and discard the flow through 

16. Move the RNeasy spin column to a new collection tube, centrifuge for 1 min at 

max speed, and discard the collection tube 

17. Place the RNeasy spin column in an RNase free centrifuge tube, add 10-20 µL of 

RNase-free water directly to the column filter for 1 minute, and centrifuge at max 

speed to elute the RNA 

18. (Optional) Add another 10-20 µL RNase-free water to elute more RNA  



 

348 

19. Proceed immediately to quantification with Nanodrop  

20. After quantification, proceed immediately to cDNA synthesis or freeze samples at 

-80°C 

 

cDNA Synthesis 

Purpose: To make cDNA from RNA typically used for qRT-PCR 

1. Make up Master Mix in a centrifuge tube 

 *make half of a reaction more than needed 
 
 
 
 
 
 
 
 
 
 
 

2. Transfer 10 μL of MM to a PCR tube  
3. Add 10 μL of the appropriate RNA + dH2O to all sample tubes 

*RNA concentration should not exceed 2 μg 
4.  Vortex, blip spin, and place into a thermocycler with the following conditions: 

 

 

 

 

 

 

 

qRT-PCR using SYBR Green 

Purpose: To perform transcript level analysis in response to various conditions 

-Spray bench and pipettes with ethanol  

-Use filter tips and ice for each step 

-Label all tubes (1 tube/sample/primer set + 1 MM tube/primer set) 

-Thaw SYBR green, primers, and cDNA on ice 

1.  Add appropriate amount of SYBR green, nuclease free water, and primers to 
each Master Mix (MM) tube: 
 

Master Mix 1 reaction 

10x RT buffer 2.0  μL 

25x dNTPs 0.8  μL 

10x RT random primers 2.0  μL 

RT enzyme 1.0  μL 

dH2O 4.2  μL 

Total: 10 μL 

Temp Time 

25˚C 10 minutes 

37˚C 120 minutes 

85˚C 5 minutes 

4˚C Until retrieved 
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2.  Vortex and blip spin the MM 
3. Transfer 63 µL of the MM centrifuge tubes 

*Use consistent pipetting techniques 
4. Vortex and blip spin the cDNA and add 3.3 µL to the appropriate tube  
5. Vortex and blip spin all samples  
6. Obtain a qPCR tray and pipette 20 µL into 3 vertical wells while avoiding bubbles 
7. Place a cover on the qPCR tray and centrifuge no short for 6 seconds 
8. Hold short for 6 seconds 
9. Use suggested cycle settings/thermocycler 
10. Analyze the data by the correlative method. The delta Ct is normalized by 

subtracting the Ct of the gene of interest by the Ct of GAPDH. The delta Ct of the 
normalized sample is then subtracted from the delta Ct of the control. 

 

C. elegans Chromatin Immunoprecipitation (%IP method) 

Purpose: To determine the binding of a transcription factor to the promoter of a gene 

of interest 

Day 1. Obtain a synchronous population 

1. Bleach synchronize worms-- at least 4 150 mM plates/condition 

Day 2. Plating worms 

1. Place worms onto NGM or RNAi plates 

Day 4. Collection and cross-linking 

Worms should be at the last larval (L4) stage 

1. Wrap worm plates in parafilm and heat shock at 33°C  

*This protocol has been adapted for heat shocking 

2. After HS, collect the worms with M9 into a 15 mL conical 

3. centrifuge at 5,000 rpm for 1 minute and remove the supernatant  

4. Re-suspend the pellet in 1 mL of M9 and transfer to a spin column to separate 

worms from bacteria (Thermo Scientific Cat# 69725).  Blip spin to allow bacteria 

to pass through and clean the worms 

Recipe 
1 Reaction 

(3 wells) 

SYBR green (with ROX) 33.0  μL 

F primer (0.9 μM) 0.66  μL 

R primer (0.9 μM) 0.66  μL 

DNA template 

(50 ng/ μL) 
3.3  μL 

Nuclease free water 28.38  μL 

Total: 66 μL 
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*Throughout this step- coat the pipette tip in LB to avoid worm loss from sticking 

to the pipette tips 

5. Re-suspend worm pellet on top of the filter with 1 mL of 1% formaldehyde 

6. Transfer to a 15 mL conical. Centrifuge at 5,000 rpm for 1 minute  

7. Using a mortor and pestle, gently ‘grind’ the worm pellet (20 turns) with intentions 

of slightly disturbing the cuticle 

8. Add 5 mL more of 1% formaldehyde 

9. Rock on nutator at room temperature for 10 minutes 

10. Snap freeze in liquid nitrogen, and allow to thaw by holding under running water  

11. Add 5 mL more of 1% formaldehyde and allow to rock for 10 more minutes 

12. Quench the reaction with 125 mM Glycine and incubate on the nutator at RT for 

an additional 15 minutes 

13. Pellet the worms by centrifuging at 5,000 rpm for 1 minute, remove the 

supernatant, and freeze at -80°C 

Day 5. Chromatin shearing and complex formation 

1. Thaw the worm pellet, re-suspend in 1 mL cold HLB with the addition of a 

protease inhibitor cocktail, and transfer to 1.5 mL centrifuge tubes 

2. Incubate on ice for 10 minutes 

3. Sonicate each tube on high for 10 minutes, 30 seconds on, 30 seconds off using 

a BioRuptor® 

*This step must be optimized for ~500 bp chromatin shearing. 

Optimization: Purify the DNA with Qiaquick PCR purification kit 

(Qiagen). Elute with 50 µl water. Run 5 µL of the input DNA on a 

1.5% agarose gel to check the extent of shearing. Most of 

the DNA fragments should be 200-800 bp 

4. Centrifuge the lysate at 12,000 g at 4°C for 10 minutes 

5. Transfer the supernatant to a new tube  

6. Keep 100 µL of the supernatant as the INPUT 

*Freeze at -20°C 

7. Aliquot 500 µL to 1 tube/antibody 

*This protocol has been adapted for 2 antibodies, a ChIP antibody 

and an IgG (negative control) antibody 

8. Dilute to 1.5 mL with dilution buffer 

9. Add 50 µL of pre-washed salmon sperm DNA/protein-A agarose beads to the 

diluted supernatant and rotate for 30 minutes at 4°C   

10. Pellet the beads by centrifuging 400 g for 2 minutes 

11. Transfer the supernatant to fresh tube and discard the beads 

12. Add 5 µL of the appropriate ChIP antibody and 0.5 µL of IgG to the supernatant 

and incubate over night at 4°C  on a nutator  

*Antibody amount varies and should be optimized 
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Day 6: Immunoprecipitation  

1. Add 50 µL of salmon sperm DNA/protein-A agarose beads to each sample and 

incubate at 4°C for 1 hour on a nutator  

2. Centrifuge at 400 g for 3 minutes 

3. Wash the beads-AB-TF-DNA complex using 1 mL of WB1 for 3 minutes at 4°C  

on the nutator shaker 

4. Centrifuge at 400 g for 2 minutes and discard the supernatant  

5. Repeat steps 4 and 5 

6. Wash the beads using 1 mL of WB2 for 3 minutes at °C on the nutator shaker 

7. Centrifuge at 400 g for 2 minutes and discard the supernatant 

8. Repeat steps 7 and 8 

9. Wash the beads with 1 mL of WB3 for 5 minutes at 4°C  on the nutator shaker 

10. Remove the supernatant 

11. Wash the beads 1x using 1 mL of 1xTE 

12. Add 500 µL of elution buffer to the beads 

13. Rotate 15 min at RT and centrifuge for 1 minute at 2,000 g 

14. Transfer the supernatant (protein/DNA complex) to a new tube 

-ALL OF THE FOLLOWING STEPS WILL INCLUDE THE INPUT AND IP SAMPLES- 

15. Add 2 µL of RNase A (0.5mg/mL) 

16. Heat at 65°C  for 4-5 hours to reverse crosslink the samples 

17. Purify DNA using PCR purification kit according via manufacturer’s instructions 

*When diluting DNA, keep in mind that IP DNA concentration may 

be low, while input DNA should be very high.  Dilute accordingly. 

Other. qRT-PCR Primer design 

Design primers to amplify 75-150 bp in the promoter region of the target gene 

encompassing the predicted transcription factor binding site.   
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C. elegans Immunoprecipitation 

Purpose: To pull down a protein of interest and perform WB analysis to probe for 

binding partners/PTMs 

For solutions, refer to ChIP protocol 

Day 1. Obtain a synchronous population 

1. Bleach Sync worms-- at least 4 150mM plates/condition 

Day 2. Plate worms 

1. Place worms into liquid culture or onto plates 

Day 4. Worm collection  

Worms should be at L4 stage 

1. Wrap worm plates in parafilm and heat shock at 33°C for given time points 

2. After HS, collect worms with M9 and centrifuge at 5,000 rpm for 1 minute and 

remove supernatant  

ChIP Working Solutions 

1% Formaldehyde 

*Make fresh before 
each use 

1xTE Dilution Buffer Elution Buffer 

36 mL of PBS 
10 mM Tris-Cl, pH 

8 
50 mM HEPES-

KOH, pH 7.5 
1% SDS 

1 mL of 37% 

Formaldehyde 

1 mM EDTA in 
water 

150 mM NaCl 0.1M NaHCO3 

WB1 –Low Salt WB2—High Salt HLB WB3 

50 mM HEPES-KOH, 
pH 7.5 

50 mM HEPES-
KOH, pH 7.5 

50 mM HEPES-
KOH, pH 7.5 

50 mM Tris-Cl, 
pH 8 

150 mM NaCl 1 M NaCl 150 mM NaCl 0.25 mM LiCl 

1 mM EDTA pH 8 1 mM EDTA pH 8 1 mM EDTA 1 mM EDTA 

1% Sodium 
deoxycholate 

1% Sodium 
deoxycholate 

0.1% Sodium 
deoxycholate 

0.5% NP-40 

1% Triton X-100 1% Triton X-100 1% Triton X-100 
0.5% sodium 
deoxycholate 

0.1% SDS 0.1% SDS 0.1% SDS -- 

1 mM Protease 
inhibitor 

1 mM Protease 
inhibitor 

1 mM HALT 
Protease inhibitor 

-- 
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3. Re-suspend the pellet in 1 mL of M9 and transfer to a spin column (Thermo 

Scientific Cat# 69725).  Blip spin to allow bacteria to pass through and clean the 

worms 

*Throughout this step- coat the pipette tip in LB to avoid worm loss 

from sticking to pipette tips 

4. Pellet the worms by centrifuging at 5000 rpm for 1 minute, remove the 

supernatant, and freeze at -80°C 

Day 5. Chromatin shearing/ antibody-protein complex formation 

1. Thaw the worm pellet, re-suspend in 1 mL cold HLB supplemented with a 

protease inhibitor cocktail, phosphate inhibitors, and the deacetylase inhibitors 

nicotinimide and TSA, and transfer to 1.5mL centrifuge tubes 

*This procotol has been adapted to examine acetylation 

2. Incubate on ice for 10 minutes 

3. Sonicate each tube on high for 10 minutes, 30 seconds on, 30 seconds off using 

a BioRuptor®  

*Sonication step should be optimized 

4. Centrifuge the lysate at 12,000 g at 4°C for 10 minutes 

5. Transfer the supernatant to a new tube  

6. Keep 100 µL of the supernatant as the INPUT 

*Freeze at -20°C 

7. Dilute to 1.5 mL with dilution buffer 

8. Add 50 µL of prewashed salmon sperm DNA/protein-A agarose beads to the 

diluted supernatant and rotate for 30 minutes at 4°C   

9. Pellet the beads by centrifuging 400 g for 2 minutes 

10. Transfer the supernatant to fresh tube and discard the beads 

11. Add 5 µL of pull-down antibody to the supernatant and incubate over night at 4°C 

on nutator  

*Antibody amount varies and should be optimized 

Day 6: Immunoprecipitation  

1. Add 50 µL of salmon sperm DNA/protein-A agarose beads to each sample and 

incubate at 4°C for  1 hour on a nutator  

2. Centrifuge 400 g for 3 minutes  

*Save the supernatant and save as ‘Supernatant’ leaving behind 

the bead-TF-AB complex 

3. Wash the beads-AB-TF-DNA complex using 1 mL of WB1 for 3 minutes at 4°C 

on the nutator  

4. Centrifuge at 400g for 2 minutes and discard the supernatant  

5. Repeat steps 3 and 4 

6. Wash the beads using 1 mL of WB2 for 3 minutes at 4°C on the nutator 

7. Centrifuge at 400g for 2 minutes and discard the supernatant 
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8. Repeat steps 6 and 7 

9. Wash the beads with 1 mL of WB3 for 5 minutes at 4°C on the nutator  

10. Remove the supernatant 

11. Wash the beads 1 time using 1 mL of 1xTE 

12. Add 25 µL of 1x Laemmli buffer to each sample and boil for 10 minutes and 

begin immunoblot protocol 

 

C. elegans Protein Extraction 

Purpose: To obtain protein from C. elegans for Western blotting 

Day 1. Obtain a synchronous population 

1. Bleach synchronize worms 

Day 2. Plate worms 

1. Place worms onto NGM or RNAi plates 

Day 4. Worm collection  

*Worms should be at L4 stage 

1. Wrap worm plates in parafilm and heat shock at 33°C for given time points 

2. After HS, collect worms with RT M9 and centrifuge at 5,000 rpm for 1 minute and 

remove supernatant  

3. Re-suspend the pellet in 1 mL of M9 and transfer to a spin column (Thermo 

Scientific Cat# 69725).  Blip spin to allow bacteria to pass through and clean the 

worms 

*Throughout this step- coat the pipette tip in LB to avoid worm loss from sticking 

to the pipette tip 

4. Pellet the worms by centrifuging at 5000 rpm for 1 minute, remove the 

supernatant, and freeze at -80°C 

Day 5. Protein Extraction 

1. Allow the frozen worm pellet to thaw, re-suspend the pellet in 250µl Buffer C 

(20mM HEPES pH 7.9, 25% (v/v) glycerol, 0.42M NaCl, 1.5 mM MgCl2, 0.2 mM 

EDT, and 0.5mM DTT) + Protease inhibitors  

2. Sonicate for 15 minutes with 30 second pulsing ON/OFF on high using a 

BioRuptor® 

*Change water every 5 minutes to keep it ice cold 

3. Centrifuge at 4°C for 10 minutes at 13,000 g 

4. Transfer supernatant to new tubes and quantify via Bradford Assay prior to 

beginning immunoblot protocol 

 

Bradford Assay 

Purpose: To determine protein concentrations to use for Western blotting 
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1. Make up the 1X Bradford reagent by diluting the 5X stock with dIH2O (1 mL 

reagent + 4 mL H2O) 

2. Add 1 μL of your protein sample to the appropriate wells of a clear 96 well plate 

3. Add the appropriate amount of BSA standard (in 0.5 µL increments) in order to 

achieve the standard curve 

4. For each well, add 200 μL of 1X Bradford reagent using the automated pipette 

Read 
on the 
plate 

reader 
at 595 
nm:  

1 2 3 4 5 6 7 8 9 10 11 12 

A 
0 μg 
BSA 

1 μg 
BSA 

2 μg 
BSA 

3 μg 
BSA 

4 μg 
BSA 

5 μg 
BSA 

6 μg 
BSA 

7 μg 
BSA 

8 μg 
BSA 

 

   

B 
0 μg 
BSA 

1 μg 
BSA 

2 μg 
BSA 

3 μg 
BSA 

4 μg 
BSA 

5 μg 
BSA 

6 μg 
BSA 

7 μg 
BSA 

8 μg 
BSA 

      

C 1 2 3 4  5 6             

D 1 2 3 4  5 6              

E 1 2 3 4  5 6             

*each experimental sample should be added in triplicate 

 

Western Blot 

Purpose: To identify specific proteins 

Day 1. Making gels, transferring, and primary antibody staining  

1. Cast the separating gel by pipetting into the Biorad gel apparatus using a P1000 

and quickly overlay with 1 mL of hydrated Butanol  (Leave ¼ space for the 

stacking gel) 

2. Let sit for 30 min 

3. After polymerization, remove the Butanol overlay via gravity and rinse with dIH2O 

4. Make up the stacking gel and pipet over the separating gel 

5. Insert the comb and let sit to polymerize for at least 30 min 

Standard 

Samples 1-6 
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Separating Gel  Stacking Gel 

Component 6% 8% 10% 12% 15%  Component 4% 

15 M Tris (pH 88) 25 
mL 

25 mL 25 
mL 

25 
mL 

25 mL  1 M Tris (pH 68) 125 
mL 

40% Acrylamide 15 
mL 

20 mL 25 
mL 

30 
mL 

38 mL  40% 
Acrylamide 

125 
mL 

10% SDS 100 
μL 

100 μL 100 
μL 

100 
μL 

100 
μL 

 10% SDS 100 
μL 

10% APS 100 
μL 

100 μL 100 
μL 

100 
μL 

100 
μL 

 10% APS* 100 
μL 

TEMED 4 μL 4 μL 4 μL 4 μL 4 μL  TEMED* 10 μL 

dH2O 58 
mL 

53 mL 48 
mL 

43 
mL 

35 mL  dH2O 73 mL 

kDa Range: 60-200 

 

16-70 

  

12-45    

6. Place the gel in the electrophoresis chamber, cover with running buffer, remove 

the comb, and rinse the wells with buffer to remove unpolymerized acrylamide 

7. Add Laemmli buffer to aliquoted samples and to empty wells 

8. Incubate the protein samples at 95°C for 5 minutes  

9. Mix by vortexing, blip spin, and load onto the gel  

10. Run the gel at 180V until the dye front has emerged from the gel (about 1 hour)  

*If smaller kDa proteins are being analyzed, the gel may be 

stopped before the dye front has run off 

11. Remove the stacking layer from the gel 

12. Activate a PVDF membrane in 100% methanol or wet a nitrocellulose membrane 

in a tray filled with dH2O 

13. Fill a large tray with transfer buffer and assemble the blot  as shown below: 

*Place the gel so that the marker is on the right. Use 1 piece of         

thick blotting paper or 2 pieces of thin blotting paper  

 

Blotting paper 

Membrane 

Gel 

Blotting paper 

 

14. Flip the blot assembly over and place in a semi-dry blotter membrane-side down 

15. Set to 10 V  and blot for 30 minutes 
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*Add more time to transfer large kDa proteins or for multiple gels on 

the blotter 

16. Stain with  Ponceau S in order to visualize protein bands 

17. Rinse the blot with dIH2O to remove background staining 

18. Scan or photograph the blot to confirm equal loading in each lane  

*The Ponceau rinses off of nitrocellulose membranes with TBST, 

for PVDF membranes, add NaOH dropwise into TBST until staining 

dissipates 

19. Block in 5% non-fat dry milk or BSA, depending on antibody specifications, 

diluted in TBST at RT for 30 minutes-1 hour 

20. Rinse briefly in TBST and proceed to immunostaining   

21. Incubate the blot at 4°C ON with primary antibody diluted in 1% milk or BSA   

Day 2. Secondary antibody and developing 

1. Wash the blot with TBST for 15 min x 5 

2. Incubate the blot with secondary antibody diluted in 5% milk in TBST for 2 hours 

at RT 

3. Wash the blot with TBST for 5 min x 5 

4. Prepare the ECL reagent according to manufacturer’s instructions  

*Note: Wash steps and antibody dilutions may vary 

depending on ECL reagent used. Refer to manufacture’s 

guide for proper handling.  

5. Remove the blot to a transparency sheet in a cassette and quickly pipette 1 mL 

ECL per blot 

6. Incubate for 5 minutes at RT 

7. Sandwich the blot between a second transparency and expose to film   

 

Western Blot Working Solutions 

1X SDS Running Buffer 1X Transfer buffer 
1X TBST (0.05% 

Tween) 

100 mL 10X tris/glycine 
buffer 

100 mL 10X tris/glycine 
buffer 

100 mL 10X TBS 

895 mL dIH20 100 mL methanol 890 mL dIH2O 

5 mL 20% SDS 800 mL dIH2O 5 mL 10% Tween-20 

 

C. elegans RNAi Lifespan Assay Protocol 

Purpose: To determine the effect of various conditions on the lifespan of the worm 

Day 1. Synchronizing Worms 

1. Bleach synchronize worms 
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Day 2. Plating Worms 

1. Plate synchronized worms onto appropriate plates 

Day 4. Transferring Worms to Fresh Plates 

1. Pick 150 worms/condition to 3 100 mM NGM or RNAi plates for a total of 150 
worms/condition 

*3 plates are used to make counting the worms easier and to avoid 
progeny contamination by picking 

Days 5-9. Maintaining a Synchronous Population 

1. Pick worms to new plates daily during the reproductive period in order to 
maintain the same parental generation of worms 

Days 10-End. Scoring Worms 
1. After the reproductive period, draw 4 separate quadrants on the back of the plate 

to assist in counting worms. Dead worms are not moving, and remain still even 
when gently poked with platinum wire.  If worms intestines have fallen out, or 
some worms are lost in the agar, these can be scored as censored. Count live 
worms every other day until no worms are left 

Thermotolerance Assay 

Purpose: To determine if various conditions promote survival to a lethal stress 

Day 1. Synchronizing Worms 

1. Bleach synchronize worms 

Day 2. Plating Worms 

1. Plate synchronized worms onto appropriate plates 

Days 4-5. Transferring Worms to Fresh Plates 

1. Each day, transfer 150 worms/condition to 3 100 mM NGM or RNAi plates for a 
total of 150 worms/condition 

Day 6. Thermotolerance Assay 

1. [PM] Transfer 100 worms/condition to 1 NGM or RNAi plate 
2. Wrap the plate in parafilm and submerge into a water bath with a temperature 

and time previously determined to kill ~50% of the control population 

*This protocol has been adapted for a lethal heat stress 

3. Return the plate to growth temperature and allow the worms to recover over night 

Day 7. Scoring Dead/Alive Worms  

1. Draw 4 separate quadrants on the back of the plate to assist in counting worms. 
Dead worms are not moving, and remain still even when gently poked with 
platinum wire 
 

Thrashing Assay 

Purpose: To determine if various conditions affect organismal fitness after a lethal 
stress 

-Perform thrashing assay in parallel to thermotolerance assay  

Day 1. Synchronizing Worms 

1. Bleach synchronize worms 
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Day 2. Plating Worms 

1. Plate synchronized worms onto appropriate plates 

Days 4-5. Transferring Worms to Fresh Plates 

1. Each day, transfer 100 worms/condition to 100 mM NGM or RNAi plates  

Day 6. Heat Shocking Worms 

1. [PM] Transfer 50 worms/condition to 1 NGM or RNAi plate 
2. Wrap the plate in parafilm and submerge into a water bath with a temperature 

and time previously determined to kill ~50% of the control population 

*This protocol has been adapted for a lethal heat stress 

3. Return the plate to growth temperature and allow the worms to recover over night 

Day 7. Thrashing Assay  

1. Pick dead worms, as determined by lack of movement in response to poking with 
a platinum wire, off of the plate 

2. Pick 1 live worm to a drop of M9 on a glass slide 
3. Allow ~10 seconds to adjust to the new environment 
4. Count thrashes, or a complete worm bend, for 30 seconds for each worm 

 

Polyglutamine Aggregate Assay 

Purpose: To determine if various conditions prevent polyglutamine aggregate formation 
in a Huntington’s disease model 

Day 1. Synchronizing Worms 

1. Bleach synchronize worms 

Day 2. Plating Worms 

1. Plate synchronized worms onto appropriate plates 

Days 4-5. Transferring Worms to Fresh Plates 

1. Each day, transfer 50 worms/condition to 100 mM NGM or RNAi plates  

Day 6. Heat Shocking Worms 

1. [PM] Transfer 50 worms/condition to 1 NGM or RNAi plate 
2. Wrap plates to be heat shocked in parafilm and submerge into a water bath with 

a temperature and time previously determined to induce the heat shock response 
without killing any worms 

3. Return the plate to growth temperature and allow the worms to recover over night 

Day 7. Imaging Worms  

1. Obtain a clean NGM plate (no bacteria) 
2. Place a drop of 1 mM Levamisole onto the NGM plate and allow to dissolve into 

the agar 
3. Pick 5 worms to the Levamisole spot. After 30 seconds, the worms should be 

paralyzed 
4. Place the worms side by side so that the anterior of each worm is aligned 
5. Photograph on a low GFP setting in order to visualize punctuate aggregates 

 

Polyglutamine Toxicity Assay 
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Purpose: To determine if various conditions affect the toxicity associated with 
polyglutamine aggregates in a C. elegans Huntington’s disease model 

-Perform polyglutamine toxicity assay in parallel to polyglutamine aggregate assay 

Day 1. Synchronizing Worms 

1. Bleach synchronize worms 
Day 2. Plating Worms 

1. Plate synchronized worms onto appropriate plates 
Day 4-5. Transferring Worms to Fresh Plates 

1. Each day, transfer 50 worms/condition to 100 mM NGM or RNAi plates  
Day 6. Heat Shocking Worms 

1. [PM] Transfer 50 worms/condition to 1 NGM or RNAi plate 
2. Wrap plates to be heat shocked in parafilm and submerge into a water bath with 

a temperature and time previously determined to induce the heat shock response 
without killing any worms 

3. Return the plate to growth temperature and allow the worms to recover over night 
Day 7. Imaging Worms  

1. Obtain a NGM plate seeded with bacteria 
2. Place an Eppendorf lid labeling sticker on the bottom of the plate 
3. Pick 10 worms to the middle of the area outlined by the sticker  
4. Allow the worms 3 minutes to move outside of the circle. Worms that do not 

move are considered paralyzed, whereas worms that move are not paralyzed 
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