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ABSTRACT 

  

Histone deacetylases (HDACs) are key mediators of gene expression and, thus, 

major regulators of cell function. As such, HDACs play a role in orchestrating tumor 

biology, and the use of small inhibitors targeting theses proteins is attractive for the field 

of cancer therapy. Indeed, several HDAC inhibitors have received FDA-approval for the 

treatment of malignancies, while a myriad of these compounds continue to be evaluated 

in clinical trials. Besides their direct impact on tumor growth, HDAC inhibitors have been 

shown to increase immunogenicity of cancer cells, facilitating generation of a productive 

immune response against tumors. Immunotherapeutic approaches take advantage of 

the intrinsic ability of the immune system to manifest an anti-tumor response. 

Mechanisms of immune escape are often developed by cancer cells, neutralizing 

activity of the immune system. For example, upregulation of the PD1 ligands PDL1 and 

PDL2 by tumor cells negatively regulates the anti-tumor functions of PD1-expressing 

infiltrating T-cells. Importantly, strategies targeting this inhibitory axis have shown 

outstanding clinical benefit for the treatment of solid and hematological malignancies. 

 The mechanisms by which HDAC inhibitors modulate tumor and immune cells 

biology were explored herein. Initially, treatment of melanoma cells with pan- and class 

I-selective HDAC inhibitors resulted in upregulation of PDL1 and PDL2 molecules. 

These effects were observed in mouse and human cell lines, as well as in tumor cells 
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resected from metastatic melanoma patients. This upregulation was robust and 

sustained, lasting at least 96 hours in vitro, and validated in vivo using a B16F10 

syngeneic mouse model. Enhanced expression of PDL1 mediated by HDAC inhibitors 

was found to result from enhanced histone acetylation at the PDL1 gene promoter 

region. Combination therapy of HDAC inhibition and PD1 blockade was explored in the 

tumor setting, leading to synergistic effects in terms of reducing melanoma progression 

and increasing survival of B16F10 melanoma-bearing mice. These data provide a 

clinical rationale for combination therapy of epigenetic modifiers (e.g. HDAC inhibitors) 

and PD1 blockade as means to augment cancer immunotherapy, improving patient 

outcomes. 

 As a second pillar of this research, the impacts of HDAC-selective inhibition 

were explored on immune cell biology, since the broad nature of pan-HDAC inhibitors 

was shown to be detrimental to T-cells in vitro and in vivo. Based on screening assay 

results, novel implications of treating melanoma patient T-cells ex vivo with the HDAC6-

selective inhibitor ACY1215 were investigated. Treatment with this compound was 

unique among pan- and isotype-selective HDAC inhibitors in modulating T-cell cytokine 

production and showing minimal impact of T-cell viability. ACY1215 tempered Th2 

cytokine production (i.e. IL-4, IL-6 and IL-10), and maintained Th1 effector cytokines 

(e.g. IFNγ and IL-2). Furthermore, ACY1215 increased expression of surface markers, 

including CD69 activation marker and ICOS co-stimulatory molecule.  In addition, 

ACY1215 treatment enhanced accumulation of central memory T-cells during ex vivo 

expansion of tumor infiltrating T-cells harvested from resected tumors of metastatic 



	 ix 

melanoma patients. Importantly, ACY1215-mediated inhibition improved tumor-killing 

capacity of T-cells.  

These results highlight an unexplored ability of selective HDAC inhibitor 

ACY1215 to augment T-cell expansion during protocols of adoptive cell therapy. While 

the discoveries presented here warrant further investigation of cellular and molecular 

mechanisms associated with ACY1215-treated T-cells, the clinic implications are clear 

and rapidly translatable. 



	 1 

 

 

 

CHAPTER ONE: 

INTRODUCTION 

 

Introduction to Cancer 

Cancer is characterized by an uncontrolled division of autologous cells. Instead 

of being defined as one homogeneous disease, cancer is a collection of diseases highly 

different and heterogeneous among and within patients. Reflective of that, new 

approaches to target malignancies are constantly being explored and developed. As a 

result, in a one-year interval between 2014 and 2015, the FDA approved 17 new drugs 

and products for treatment, prevention and imaging of cancer, including nine novel anti-

cancer therapies and six new uses for previously approved anti-tumor treatments1. 

The occurrence of malignant cells and subsequent development and progression 

of cancer involve a variety of molecular and cellular modifications, initially described as 

hallmarks of cancer. Hanahan and Weinberg were pioneers in defining the multiple 

acquired capabilities of tumor cells required for cancers to establish and progress2. 

These hallmarks involve the capacity of cancer cells to sustain proliferation and 

indefinite proliferative capacity, resist apoptosis, induce angiogenesis in the tumor 

surroundings, being unresponsive to tumor growth suppressive molecules, modify 

cellular metabolism as means of self-preservation, evade an immune response, and 

ultimately, being able to invade and metastasize3. The identification and description of 
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these mechanisms contributed to the development of drugs targeting pathways and 

molecules involved in these hallmarks. 

Even though cancer research has experienced progress through the years, as 

indicated by a reduction of the overall cancer death rates in the United States from the 

years of 2002 to 2011 and an increase of 5-year relative survival rate for all cancers 

combined from 49% in 1975 to 68% in 20101, cancer is an ongoing challenge, still 

accounting for one in four or one in seven deaths in United States4 or worldwide5, 

respectively1. 

 

Melanoma 

 Skin cancers have the highest incidence of all cancers and are usually not 

fatal, with the exception of melanoma. Melanoma is the most lethal type of skin cancers, 

having a high mortality associated with the occurrence of metastasis to the lungs, brain, 

liver, small bowel etc6. Even though melanoma has an incidence around 2% among all 

skin cancers, according to the American Cancer Society, there will be around 73,780 

new diagnosed cases of melanoma in 2015, with an expected mortality of 13.4%. 

 The first resection of melanoma was reported in 17877, reflective of 

melanoma being a long-known type of solid cancer. Until the past decade, the standard 

treatment for advanced melanoma was limited to the administration of dacarbazine, an 

FDA-approved chemotherapy drug, not only restricted to the treatment of melanoma but 

also other types of cancer, such as sarcomas, neuroblastoma, Hodgkin’s lymphoma, 

islet cell carcinoma etc8. Dacarbazine is a DNA alkylating agent and acts by adding 

alkyl groups to proteins forming the DNA double helix structure, thus resulting in 
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breakage of DNA strands, genetically instability and cell death. Until recently, the only 

FDA-approved treatment of unresectable melanoma consisted on the use of 

hydroxyurea as a cytotoxic drug, recombinant interleukin (IL)-2 as an immune regulator, 

or recombinant IFNα-2b as an adjuvant therapy in cases of high risk of cancer 

recurrence9,10. However, none of these lines of treatment resulted in overall survival 

benefit. Overall response rates are also low and not sustained, reaching 10% benefit 

with dacarbazine administration for stage IV melanoma11,12. 

 One of the main hindrances to chemotherapy is the development of drug 

resistance, contributing to the failure of around 90% of patients treated for metastatic 

cancer13. Melanoma is similar in this regard, yet the mechanisms of resistance are not 

fully elucidated. After prolonged treatment, cancer cells can acquire resistance or cross-

resistance to other drugs14,15 by a variety of mechanisms, including disruption of 

apoptotic pathways by upregulation of survival molecules (e.g. BCL-e, BCL-X/L and 

survivin)16, enhanced DNA repair ability17, or reduced drug uptake capacity and 

increased expelling ability of the drug from the interior of the cell, through P-glycoprotein 

pumps commonly found on the tumor cell membrane18. Dacarbazine-treated melanoma 

cells can minimize the chemotherapy effects by increasing the levels of the DNA repair 

enzyme O6-alkylguanine DNA alkyltransferase16, or inhibiting drug transport into the 

cell, as previously mentioned18. Also, dacarbazine treatment may result in activation of 

RAF, MEK and ERK pathways and consequent secretion of IL-8 and vascular 

endothelial growth factor (VEGF)19,20, selecting for tumor cells more tolerant or 

insensitive to the chemotherapy. Furthermore, conventional chemotherapy affects high 
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proliferative cells, an aspect characteristic of tumor cell biology, but also present in 

some healthy cells.  

Under normal circumstances, extracellular signals provided by cytokines, growth 

factors, or hormones are known to activate the mitogen activated protein kinase (MAPK) 

pathway, regulating cell proliferation. However, mutations resulting in alteration and 

constitutive activation of the MAPK signaling pathway are found in 90% of melanoma 

tumors21. The three members of RAS family of GTPases comprise the oncogenes 

NRAS, KRAS and HRAS, which are usually mutated in different types of cancers and 

lead to activation of the MAPK pathway22. In melanoma, activating mutations in NRAS 

represent nearly 25% of tumors21, while KRAS and HRAS mutations are found at lower 

rates of 2% and 1%, respectively23. Downstream of RAS signaling is BRAF protein, 

mutated in approximately 50% of cutaneous melanomas24. In the majority of 

melanomas, BRAF is altered due to a V600E mutation25, resulting in activation of the 

MAPK signaling through a phosphorylation cascade activating MEK and ERK26.  MAPK 

signaling can also be inappropriately activated as the result of loss of NF1 function, 

found in 15% of melanomas, activating mutations of KIT gene, and translocations or 

fusions of ALK or ROS with other genes27.  

Another pathway important for sustained proliferation is the PI3K/AKT/mTOR 

signaling cascade. Approximately 70% of melanomas have this pathway upregulated21, 

as a result of mutated molecules involved in this signaling activation, such as c-KIT and 

PTEN28,29. Inactivation of PTEN, as well as upregulation of cyclin-D1, also results in 

melanoma evasion of growth suppression. Similarly, inactivation of the cyclin dependent 

kinase inhibitor 2A (CDKN2A) locus in melanoma, through hypermethylation-mediated 
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gene silencing, leads to disruption of the tumor suppressor p53 stabilization and of cell 

cycle regulation30. Mutations directly on p53 protein are also found in 5-25% of 

melanoma patients, and mediate apoptosis resistance on tumor cells31. 

 

Targeted Therapies in Melanoma 

 The rationale of targeting pathways involved in melanoma cell growth led to 

the development of inhibitors of the RAS signaling pathway. Vemurafenib acts by 

blocking mutated BRAF kinase and was approved by the FDA in 2011 for the treatment 

of unresectable, metastatic BRAF V600E-positive melanoma32. In a randomized phase 

III clinical trial for the treatment of metastatic melanoma, vemurafenib showed 48% 

response rate compared to 5% with dacarbazine administration, with median overall 

survival of 13.6 versus 9.7 months, respectively33,34. Dabrafenib is also a selective 

mutant-BRAF inhibitor and received FDA approval in 2013, as it reached 53% response 

rate versus 5% with dacarbazine treatment35. 

 Alternatively, MEK inhibitors can be used in order to prevent tumors growth, 

as they also impair RAS signaling cascade downstream of BRAF protein. The MEK1/2 

small molecule inhibitor trametinib was FDA-approved in 2013 for the treatment of 

metastatic, unresectable BRAF-mutated melanoma. Trametinib also showed clinical 

benefit over dacarbazine chemotherapy, as indicated by 22% versus 8% response rate, 

respectively, in a randomized phase III trial36. 

Combination therapies of BRAF and MEK inhibitors were also explored in phase 

III clinical trials during the past years. Combining dabrafenib with trametinib versus 

dabrafenib or vemurafenib alone resulted in a superior response rate of 64-67% versus 
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51% for the single-treatment groups37,38. Furthermore, treatment of vemurafenib plus 

cobimetinib – a MEK inhibitor – reached 64% response rate compared to 41% for 

administration of vemurafenib as a single agent. While targeted therapies for melanoma 

are very promising compared to standard dacarbazine treatment, they show limited 

clinical benefit in the vast majority of patients, as response lasts for six to eight months 

before tumors progress39, resulting from tumor resistance33,35. 

In the past six years, melanoma therapy approaches targeting the tumor directly 

using small inhibitors in a personalized and rational manner have resulted in clinical 

benefit, especially relative to dacarbazine as the main line of treatment for over 30 

years. Unfortunately, targeted therapies for melanoma have been limited to improving 

patient survival rather than generating durable responses, a reflection of resistance 

selection. Recently, the focus of melanoma therapy has expanded to new approaches, 

not only involving direct target of the tumor, but also boosting the immune. Indeed, 

recent advances in melanoma immunotherapy have been unprecedented.  

 

Role of the Immune System in Melanoma 

 The immune system is responsible for neutralizing and eliminating infectious 

agents, which is accomplished by the recognition of antigens associated with 

pathogens. In a similar manner, both the innate and adaptive immune systems can 

recognize and combat tumor cells in a process termed immunosurveillance. The 

adaptive immune system can detect cancer cell antigens and mount an anti-tumor 

response, through a process involving antigen recognition and activation of dendritic 

cells (DCs), followed by antigen presentation in the lymph nodes to T and B 
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lymphocytes by major histocompatibility complex proteins (MHC), and, ultimately, T cell 

activation, clonal expansion and migration to the tumor in order to generate a productive 

response40.   

In melanoma, an association between the presence of a tumor infiltrate 

composed of reactive T-cells and an improved patient prognosis was first evidenced in 

198941. Initial studies have demonstrated that high levels of CD8+ tumor-infiltrating 

lymphocytes (TILs) promoted prolonged patient survival compared to patients lacking 

infiltrate41,42. Furthermore, evidence suggests that it is crucial that reactive T-cells 

infiltrate the tumor milleu, as the solely presence of circulating reactive T-cells does not 

suffice to improve survival43. Beyond melanoma, especially in the setting of 

immunogenic tumors, effector immune cells such as T-cells and NK can infiltrate solid 

tumors. For instance, tumor infiltration of CD8+ T-cells is associated with a favorable 

prognosis in epithelial ovarian carcinoma44. 

There are multiple ways in which immune cells can detect cancer antigens. 

Tumor associated antigens (TAAs) vary in their nature and can be recognized by T-

cells. In melanoma, tumor infiltrating T-cells often recognize the non-mutated 

melanocyte differentiation proteins MART-1 and gp100 with low affinity binding, also 

expressed on normal cells derived from a common lineage (e.g. healthy 

melanocytes)45,46. However, studies have shown that those antigens are unlikely 

melanoma-specific targets of T-cell, as demonstrated by high toxicity against healthy 

tissues sharing the same antigens, after infusion of T-cells modified to express high 

affinity TCRs against MART-1 and gp10047. Furthermore, the ubiquitously expressed 

antigens survivin and hTERT are usually upregulated in cancer cells, while expressed at 
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low levels on healthy cells48,49. Also comprising TAAs are cancer/testis antigens, 

typically expressed on germline tissues, but frequently upregulated in tumor cells 

through epigenetic dysregulation. Examples include MAGE, BAGE GAGE and NY-ESO-

1, having the latter being targeted in melanoma by adoptive transfer of genetic 

engineered T-cells with a NY-ESO-1 reactive TCR. In melanoma, results have 

demonstrated objective clinical response of 11 out of 20 patients undergoing T-cell 

therapy50. 

Antigens can also be tumor-specific (TSAs), and they may derive from viral 

genomes (e.g. EBV and HPV) or originate from non-synonymous mutations. 

Transcriptome analyses of tumor versus normal tissues of a variety of cancer patients 

have demonstrated that multiple tumor types express several neo-antigens generated 

by mutagenesis. Melanoma presents the highest frequency of non-synonymous 

mutations among all the cancers evaluated, achieving an average of 100 mutations per 

megabase51. Strategies involving whole-exome sequencing as means to screen for 

tumor neo-antigens and redirect the immune response against new targets open a new 

horizon for cancer therapy, especially in the setting of a highly mutated tumor such as 

melanoma. While identification of targetable antigens demands extensive screening and 

labor, these approaches are paving a new avenue for personalized medicine. 

Research involving the intricate relationship between the immune system and 

cancer is constantly leading to new developments in cancer therapy redirecting immune 

components against tumor cells. Evidence shows that immunosuppressed mice and 

humans are more susceptible to the development of neoplasias52-54. Indeed, the 

concept of immunoediting explains the general process by which tumor and immune 
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system interact during cancer initiation, establishment and progression. In the setting of 

a productive immune response, immune cells can recognize and completely eradicate 

tumor cells, a process called elimination phase. Initial tumor development involves an 

inflammatory microenvironment, usually detected by the innate immune system, such 

as natural killer cells (NK), dendritic cells (DC) and macrophages. An orchestrated 

response involving the innate and adaptive immune systems arises, leading to death of 

tumor cells through effector cytokines (e.g. IFNγ, perforin) produced by NK and/or T-

cells. Cytokines such as IFNγ and IL-12 are present in an inflammatory milieu, 

facilitating a type 1-like response and triggering direct tumor killing from CD8+ cytotoxic 

T-cells55,56. 

In the case of incomplete clearance of cancer cells, a temporary equilibrium 

phase occurs, in which the immune system exert a selective pressure to control tumor 

growth. Genetic instability and accumulation of DNA mutations may select for more 

resistant and immunosuppressive tumor cells. The immune system may succumb to this 

new microenvironment, where tumor is no longer visible and effector functions of 

immune cells are suppressed, and fail to mount a productive response. Tumor escape 

allows cancer to progress. 

 

Immune Escape 

 Multiple factors contribute to tumor escape, mainly consisting of promoting a 

suppressive microenvironment in which the immune system is no longer able of 

properly respond against cancer cells. Many of these mechanisms involve reducing the 

recognition capacity and effector functions of cytotoxic T-cells. Commonly resulting from 
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selective pressure exerted by the immune system, melanoma and other cancer cells 

may lack appropriate T-cell activation signaling through downregulation of MHC 

molecule or loss of the MHC I invariant subunit b2-microglobulin57,58. Additionally, 

ineffective or weak T-cell signaling can result in T-cell anergy, impairing a productive 

response against the target59. 

 A proper T-cell response is dependent on three signals, derived from initial 

engagement of the T-cell receptor (TCR) with the antigen-loaded MHC, subsequent 

expression and activation of costimulatory molecules, and stimuli by cytokines produced 

in the microenvironment to determine T-cell fate and function. Briefly, antigen 

stimulation of TCR leads to phosphorylation of tyrosine residues on the immunoreceptor 

tyrosine-based activation motifs (ITAMs), forming anchoring sites for activating 

molecules, such as ZAP-70, and leading to TCR signal transduction via the three main 

T-cell pathways of MAPK, protein kinase C (PKC) and calcineurin60. Costimulatory 

signaling is provided shortly after TCR engagement through two main groups of 

costimulatory receptors. One comprises the family of immunoglobulins, such as CD28 

and ICOS, and the other is formed by the tumor necrosis factor family, including 4-1BB, 

OX40, CD27, CD30 and HVEM. Most costimulatory receptors are upregulated after T-

cell activation via TCR and interact with ligands on the membrane of presenting cells. 

CD28 receptor is constitutively expressed on T-cell surface and is known to recognize 

CD80 and CD86 ligands61. In a type 1-like response, preferable in the setting of cancer, 

IL-2, IFNγ and TNF cytokines contribute to T-cell maintenance, proliferation and effector 

function. 
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As stated, an ideal T-cell response depend on a myriad of factors, including 

proper TCR stimulation and costimulatory signaling, as well as secretion of homeostatic 

cytokines. Tumors, on the contrary, display a suppressive microenvironment resultant 

from production of anti-inflammatory cytokines, attraction of suppressive immune cells, 

T-cell inhibitory signaling, induction of T-cell apoptosis, etc. Thus, an 

immunosuppressive environment frequently induces a state of unresponsiveness of 

tumor-specific T-cells and represents a hurdle for immunotherapy. In melanoma 

patients, T regulatory cells (Treg) can be found in primary62,63 and metastatic 

lesions64,65, as well as in affected lymph nodes64. The local chemokine setting found in 

the tumor milieu attracts CD4+CD25+Foxp3+ Tregs66, which can mediate peripheral 

tolerance of effector T-cells. Moreover, tumor derived factors such as IL-10, TGFβ and 

indoleamine 2,3-dioxygenase (IDO) can induce Treg differentiation, tumor infiltration or 

proliferation67,68, ultimately affecting melanoma patient survival69. Among their 

suppressive mechanisms, Tregs constitutively express cytotoxic T-lymphocyte-

associated protein 4 receptor (CTLA4), which competes against CD28 receptor on the 

surface of T-cells for ligation to CD80/CD86 on the membrane of antigen presenting 

cells (e.g. DCs or tumor cells), increasing the threshold of activation of cytotoxic T-

cells70,71 and leading to degradation of CD80/CD86 ligands72. Moreover, CTLA4 

engagement can recruit inhibitory proteins to the T-cell synapse and interfere with TCR 

and CD28 signaling73, or even stimulates production of TGFβ inhibitory cytokine74. In 

the cancer setting, CTLA4 blockade has demonstrated efficacy in vivo as a single 

agent, as well as in combination with vaccines, antibody treatment, chemotherapy, 
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radiation, surgery etc75. Indeed, the use of CTLA4 blockade for melanoma treatment 

was recently approved by the FDA76,77. 

 Furthermore, myeloid-derived suppressor cells (MDSC) or tumor-modulated 

immature DCs can accumulate in cancer lesions. They can downregulate T-cell activity 

and function through multiple mechanisms, including improper TCR signaling, arginase 

depletion as a result of arginase enzyme expression78,  production of reactive oxygen 

species (ROS)79 and upregulation of inducible nitric oxide synthase (iNOS)80. 

Macrophages are also frequently present in the tumor infiltrate. As cancer develops, 

tumor associated macrophages (TAM) can polarize from a M1 to M2-like phenotype, in 

which they stop producing inflammatory factors and shift towards an anti-inflammatory 

and pro-tumorigenic setup through secretion on a variety of factors, including TGFβ, IL-

10 and VEGF, ultimately inhibiting effector response and inducing angiogenesis81-83. 

 Also among mechanisms of immune evasion, cancer cells can modulate the 

reactive immune infiltrate by production of inhibitory cytokines. IL-10 can be secreted by 

solid84 and hematological85 tumor cells, hindering production of pro-inflammatory 

cytokines, T-cell proliferation and cytotoxicity. It has been demonstrated that low doses 

of IL-10 can prevent T-cell apoptosis86 and elicit CD8+ T-cell memory formation by 

insulating T-cells from signaling provided by inflammatory cytokines87. However, in the 

tumor setting, production of IL-10 and reduced levels of IL-12, coupled with the 

presence of DCs expressing low amounts of costimulatory molecules, can induce 

anergy of cytotoxic T-cells and prime a Th2 phenotype88,89. In melanoma, IL-10 

production is predicative of prognosis, as higher levels of this cytokine are associated 

with reduced survival90,91. Also a major player in malignancies is IL-6, as it can inhibit 
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apoptosis of tumor cells and induce angiogenesis92,93. Even though IL-6 may have dual 

roles depending on the stage of tumor development, increased levels of IL-6 in the 

serum have been negatively associated with prognosis in multiple cancer types, 

including melanoma90,94,95. Besides these cytokines, melanoma frequently secretes 

transforming growth factor (TGFβ), a suppressive cytokine able to reduce T-cell effector 

function and modulate tumor motility and invasiveness96. TGFβ also presents growth 

inhibitory properties, although melanoma cells are not susceptible to this effect97. The 

presence of TGFβ in the tumor microenvironment can skew T-cell subsets into a Th2 

phenotype, resulting in a less inflammatory response characterized by secretion of IL-4, 

IL-5, IL-6, IL-10, IL-12 and IL-13 cytokines98. These cytokines are associated with tumor 

promotion, as they temper the immune response. IL-4, for instance, facilitates the 

polarization of T-cells into a Th2 subset, and promotes the skewing of M1 to M2 

macrophages. While M1 macrophages boost Th1 responses and enhance secretion of 

pro-inflammatory cytokines, M2 macrophages produce anti-inflammatory cytokines (e.g. 

IL-10, TGFβ), thus participating in immune suppression99-101. Generally, a Th2 

phenotype is developed during response against extracellular pathogens, and is 

inappropriate in contexts necessitating a cellular response (e.g. viral infections, 

neoplasms). In the context of cancer, this type of response reduces tumor immunity, 

since it polarizes immune cells away from functions of the ultimately required Th1, 

effector phenotype. 

The multifunctional role of cytokines in the tumor milieu is complex and 

comprises factors with described growth-promoting properties, including tumor necrosis 

factor (TNF), colony stimulating factor-1 (CSF1), IL-8 (also knows as CXCL8) and IL-
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190,102,103. In summary, mechanisms of tumor evasion cripple a responsive immune 

system through modulation of both cancer and immune cells, ultimately allowing 

progression of disease. 

 

Immunotherapy in Melanoma 

 Immunotherapeutic approaches consist in manipulating components of the 

immune system to treat or control tumor cells or other diseases, such as infections. In 

the cancer setting, diverse strategies aiming to boost or redirect immune cells against 

the target have been developed, including the use of cytokines, monoclonal antibodies, 

vaccines, immune checkpoint blockade (e.g. PD1 and CTLA4) and adoptive transfer of 

immune cells. 

 Cytokine-directed therapy for melanoma, in which purified cytokines are 

systemically administered, is currently restricted to IFNα-2b9 and IL-210. Therapy using 

IFNα-2b was FDA-approved in 1995 as an adjuvant for completely resected melanoma 

stages II and III, when there is an intermediate or high risk of recurrence104,105. The use 

of IFNα-2b leads to an overall response rate of 22%, with an improved, but not 

consistent, overall survival. The toxicity derived from treatment is often high, and in 

some cases patients can experience serious side effects such as liver dysfunction and 

myelosuppression106-108. To reduce adverse effects, a long-acting pegylated (PEG) form 

of IFNα-2b105 received FDA approval in 2011. Administration of IL-2 to metastatic 

melanoma patients was approved by the FDA in 1998, and it aims to stimulate and 

maintain activity of effector immune cells (e.g. T-cells and NKs). Also associated with 
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severe toxicity, IL-2 has shown a 16 to 23% overall response rate, coupled with durable 

responses in 5 to 10% of patients109,110. 

 The understanding that cancer cells present tumor associated or specific 

antigens led to the development of another line of immunotherapy – patient vaccination. 

Cancer vaccines are mainly based on the strategy of eliciting CD8+ cytotoxic T-cell 

(CTL) response. As previously mentioned, melanoma presents tumor associated 

antigens that can be explored as targets of cancer vaccines. Several trials have studied 

vaccination based on the melanosomal protein gp100 in combination with other 

immunotherapy approaches (e.g. CTLA4 blockade and recombinant IL-2). In advanced 

melanoma patients, simultaneously administration of gp100 vaccine with IL-2 showed 

increased response rate and progression-free survival than treatment with IL-2 as a 

single agent111.  However, when g100 vaccine administrated concomitantly with CTLA4 

blockade – an immunotherapy approach potent as a single agent –, the benefits 

achieved were not significantly different to CTLA- blockade alone112. This may be a 

reflection of an already tolerant and exhausted subset of tumor-specific T-cells. As 

cancer progresses, mechanisms of immune evasion account for the generation of low 

quality T-cells lacking the capacity to respond against tumor. In this sense, approaches 

to recover CD4+ and CD8+ effector and memory T-cells are warranted. Recently, 

interest was placed in studies developing vaccines based on screened tumor neo-

antigens. As part of personalized medicine, individualized vaccines would be produced 

targeting epitopes predicted by bioinformatics research, resulting from the mutatome of 

tumors from the patients themselves113,114. 
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 The use of oncolytic virus for the treatment of advanced melanoma has also 

been explored and has demonstrated clinical efficacy. This approach involves local 

administration of the virus on melanoma lesions. For instance, Talimogene 

laherparepvec, or T-VEC, is an attenuated form of herpes simplex virus 1 (HSV-1), 

engineered to lyse cancer cells and secrete GM-CSF in order to attract DCs to the 

tumor site. Although T-VEC infects both normal and cancer cells, it maintains its 

replication capabilities only on dividing cells, while sparing most of differentiated, non-

dividing healthy tissues. A clinical trial has shown that T-VEC treatment of patients with 

stage III/IV unresectable melanoma promotes reduction of melanoma lesions on skin 

and lymph nodes, sustained at least for six months. In 2015, T-VEC received FDA 

approval for treatment of recurrent, unresectable melanoma115. 

 Strategies seeking to induce a productive immune system are vastly explored 

in the tumor setting. The use of immunoregulatory antibodies targeting T-cell inhibitory 

molecules (e.g. PD1, PDL1 and CTLA4) has shown profound efficacy for the treatment 

of some cancers, especially melanoma. The immune checkpoint blockade antibodies 

consist of targeting either the CTLA4 receptor, reducing competition with CD28 

costimulatory receptor on the surface of T-cells, or blocking PD1/PDL1 axis, thus 

minimizing negative regulation of activated T-cells. Clinical trials using these antibodies 

will be further discussed in detailed below. 

 As previously illustrated, the majority of immunotherapy approaches in the 

context of melanoma consist of modulating and enhancing activity of cytotoxic tumor-

specific T-cells. A related strategy of melanoma therapy with profound impact in 

prolonged response and survival of some patients involves adoptive transfer of 
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autologous T-cells. These lymphocytes can be harvested from the tumor site (i.e. TILs) 

or genetically engineered to recognize the tumor. Both cases will be discussed in more 

details further in the chapter. 

 

Immune Checkpoint Blockade 

 After approximately two decades since CTLA4 being described for the first 

time, a monoclonal antibody targeting this inhibitory receptor was assessed in a clinical 

setting. Ipilimumab, a human IgG1 monoclonal antibody against CTLA4, was approved 

by the FDA in 2011 for the treatment of metastatic melanoma. Initial phase I/II studies 

using scaled doses of ipilimumab for the treatment of advanced melanoma showed one 

partial, one complete responses, and seven patients with stable disease out of 88 

individuals76. Furthermore, the efficacy of the drug was found to be dependent on dose 

with higher overall response rate of 11% followed administration of 10mg/kg of antibody, 

reaching one-year survival rate of 47%116-118. In a phase III clinical trial for the treatment 

of melanoma in stages III and IV, efficacy of ipilimumab plus dacarbazine was 

compared to dacarbazine alone. Results demonstrated prolonged overall survival for 

ipilimumab arm, at a dose of 10mg/kg77. Additionally, data from a meta-analysis of 

multiple clinical trials indicated durable response, with 3-year overall survival rate of 

22% and a lower death rate during seven years after trial was ended119,120. The extent 

of ipilimumab applications continues to rise, as the FDA approved it in 2015 for the use 

as an adjuvant for treatment of cutaneous melanoma of patients with above one 

millimeter of pathology in the regional lymph nodes, or following complete resection. An 

ongoing phase III clinical trial for treatment of resected stage III melanoma patients has 
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reached a median recurrence-free survival of 26 versus 17 months with ipilimumab or 

placebo administration, respectively, reducing the risk of recurrence or decease by 25% 

(ClinicalTrials.gov Identifier: NCT00636168). 

 Tremelimumab is the second human monoclonal antibody developed 

targeting CTLA4, and not yet FDA-approved for melanoma treatment. Tremelimumab 

has a plasma half-life higher than ipilimumab, resulting in a scheduled dose significantly 

more sparse (once every three months at a dose of 15mg/kg)121-123. A phase II clinical 

trial for advanced melanoma reached 7% response rate and one- and two-year survival 

of 40% and 22%, respectively. When studies progressed to a phase III clinical trial, no 

benefit in overall survival was observed. Although promising, further research is 

warranted for melanoma treatment with tremelimumab. 

 Another strategy to target immune checkpoints consists of blocking PD1 

receptor or the PD1 ligand, PDL1, the latter commonly found on the surface of tumor 

and stromal cells124. When the PD1 receptor interacts with its ligands, it triggers 

dephosphorylation of TCR signaling, thus downregulating T-cell activation. 

Pembrolizumab is a human IgG4 monoclonal antibody targeting PD1 and was FDA-

approved for advanced or unresectable melanoma treatment in 2014. In a phase I 

clinical trial with a median follow-up time of eight months, treatment with pembrolizumab 

led to a overall response rate of 26%, regardless of the tested doses125. Nivolumab, 

also a human IgG4 monoclonal antibody against PD1, received approval by the FDA 

shortly after a phase I/II clinical trial for diverse types of solid cancers, such as 

melanoma, non-small-cell lung, renal-cell, prostate and colorectal carcinomas. In 

melanoma, 26 out of 94 patients presented clinical response at all doses evaluated126. 
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In a follow-up, melanoma patients reached a 31% objective response rate, coupled with 

rates of 62% and 43% for one- and two-year survival, respectively127. This study 

attributed the likelihood of clinical benefit to the presence of PDL1 expression in 

immunohistochemical (IHC) slides derived from patient biopsies. However, this type of 

analysis is susceptible to limitations, as PDL1 evaluation is restricted to the tumor sites 

surgically removed and IHC technique provides low resolution of PDL1 staining. It is 

worth mentioning that this study did not account for expression of PDL2, the other 

known inhibitory ligand of the PD1 receptor. Research has demonstrated upregulation 

of PDL2 in the tumor milieu, frequently expressed on APCs, but also on tumor 

cells128,129. Moreover, a clinical trial defining the cutoff for PDL1 expression as the 

amounts of 5% or greater, or 1% or greater, demonstrated that objective responses 

were present in both groups with positive or negative PDL1 IHC staining130. Regardless, 

expression of PDL1, even though negative from the point of view of reducing T-cell 

function, may be a reflection of an active and productive immune response. This is 

demonstrated by a higher incidence of objective response and clinical benefit when 

PDL1 expression is present other than absent131. 

 In a phase III clinical trial for the treatment of melanoma with nivolumab at a 

dose of 3mg/kg, durable responses were achieved, with an observed objective 

response rate of 32%132. In terms of adverse reactions, toxicity was manifested in all 

approaches targeting immune checkpoint blockade. Interestingly, a higher severity 

appears to be associated with enhanced objective response133, potentially a reflection of 

an active and productive immune system. Moreover, the toxicity experienced by 

blockade of the PD1/PDL1 axis appears less severe adverse effects derived from 
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CTLA4 blockade. This may be a reflection of the outcome resultant from PD1/PDL1 

blockade mainly being restricted to interfering with reactive T-cells immersed in the 

tumor milieu, while CTLA4 blockade is also occurring in lymphoid organs, a less 

focused location134. 

 Clinical trials for the treatment of a variety of solid tumors were also designed 

for evaluation of developed compounds targeting PDL1 molecules. For instance, one of 

the compounds consists of a human IgG4 monoclonal antibody targeting PDL1 and was 

assessed in a phase I trial for the treatment of advanced melanoma. Nine out of fifty-two 

patients, or 17%, achieved an objective response, for which five lasted at least one 

year135. While these results represent a significant improve over standard 

chemotherapy, they were not as striking as PD1 blockade. This could be a reflection of 

blocking solely PDL1 ligand, still allowing interaction of PD1 receptor with PDL2, or it 

could be due to the avidity and affinity differences of the different antibodies, or other 

unknown mechanisms. Regardless, work is needed to continue improving efficacy of 

immune checkpoint blockade in melanoma and other types of cancer. 

 Research exploring the synergistic effects of combining PD1 and CTLA4 

blockade is also under development. In a phase I clinical trial, a concomitant regimen of 

ipilimumab and nivolumab resulted in 11.5 months of median progression-free survival, 

compared to 6.9 and 2.9 months with nivolumab or ipilimumab treatment as single 

agents, respectively. Toxicity associated with a combinatory regimen was also higher, 

reaching 55% of patients in comparison to 16-27% of individuals undergoing 

monotherapy. These promising results led to the very recent FDA-approval of 

combination therapy of nivolumab plus ipilimumab for the treatment of metastatic or 
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unresectable melanoma136. Following a similar rationale, and aiming to reduce toxicity, 

ongoing research is exploring the effects of sequential administration of nivolumab and 

ipilimumab. Surprisingly, nivolumab being administrated prior to ipilimumab led to an 

objective response in 40 to 50% of patients, while the contrary (i.e. ipilimumab followed 

by nivolumab) resulted in less than half of this rate137. So far, the mechanisms 

responsible for this impaired response in the arm of ipilimumab-first treated patients are 

not fully elucidated. 

Finally, immunotherapy blocking immune checkpoint brings a promising, exciting, 

perspective to melanoma treatment. As such, studies understanding the molecular and 

cellular biology behind treatment, and novel approaches exploring these agents in 

combination with other anti-melanoma strategies, are warranted. 

 

Adoptive T-cell Therapy 

 The ability to grow T-cells ex vivo was first evidenced in 1976 with the 

discovery of IL-2 as a cytokine capable of expanding T-cells in vitro, while maintaining 

effector function138. Initial studies in melanoma demonstrated that CD4+ and CD8+ TILs 

could be harvested from tumor biopsies and specifically recognize autologous 

melanoma in vitro139. In 1988, adoptive T-cell transfer (ACT) using harvested TILs was 

able to trigger tumor regression in metastatic melanoma patients140. A growing body of 

data has taken place since then, with constant improvements in ACT regimens. Even 

though TIL therapy is not approved by the FDA for the treatment of melanoma, it has a 

profound impact in cancer immunotherapy, in some cases reaching object responses in 

up to 72% of metastatic melanoma patients141. 
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 There are a few approaches in the field of ACT, including harvesting and 

expanding pre-existent autologous tumor-reactive T-cell populations for subsequent 

infusion (i.e. TIL therapy), but also genetically engineering T-cells to recognize tumor 

cells (e.g. TCR or CAR transfer). Both strategies count on the ability of T-cells to 

successfully exert an anti-tumor, cytolytic function. In order to redirect the immune 

system against tumors, artificial T-cell receptors such chimeric antigen receptors 

(CARs) can be introduced in the membrane of T lymphocytes to recognize a specific 

antigen present on the tumor surface142,143. Currently, most CARs consist of an 

extracellular binding moiety, a transmembrane region and a signaling endodomain to 

trigger activation. These receptors recognize the target antigen on the tumor surface 

with high affinity and in a MHC-independent manner, leading to activation of T-cells 

through the same pathways triggered by TCR and costimulatory molecules. Typically 

CAR signaling endodomains are composed of a CD3-zeta tail to initiate signal 1 of T-

cell activation coupled to a costimulatory molecule to trigger signal 2. CAR-modified T-

cells are able to overcome mechanisms of tumor evasion, such as downregulation of 

MHC I by the tumor cells, in addition to not being susceptible to mechanisms of central 

tolerance. The clinical use of CARs has thus far been applied to leukemias144-146 and 

lymphomas147,148, renal carcinoma149, neuroblastoma150 and colon carcinoma151. The 

results from these clinical trials have been encouraging, with rapid tumor eradication 

and complete remission in patients with poor diagnosis of chronic lymphocytic leukemia 

(CLL) or acute lymphoblastic leukemia (ALL) through the use of CARs against CD19. 

However, a major concern in respect to CAR therapies is that generation of a potent 

anti-tumor response often leads to off-target function of the modified T-cells. In a study 



	 23 

of CAR therapy for the treatment of CLL, clinical responses were accompanied by a 

long-term depletion of normal B-cells that shared the CD19 antigen147. Adverse effects 

significantly more severe against normal lung tissues were observed in a clinical trial 

using a CAR against ERBB2 for the treatment of colon carcinoma151. Despite the 

promising results reported so far, some aspects of treatments using CARs should still 

be improved to make the therapy as safe and effective as possible. Surface molecules 

shared by tumors and healthy tissues are not suitable targets to CARs with current used 

design, since they could promote off-target immune reactions. 

 Alternatively, genes encoding alpha and beta chains of TCR can be 

transferred to T-cells in order to redirect response against tumor152. Research has 

shown that TCR genes can be isolated from patients with a successful clinical profile 

resultant from ACT therapy, or from immunized mice47,153. Research has shown that T-

cells genetically engineered with MART-1-specific TCR produce IFNγ in the presence of 

HLA-matched melanoma cell lines in vitro154. Moreover, preclinical studies 

demonstrated higher T-cell proliferation, increased cytolytic capacity and prolonged 

persistence in vivo of TCR-transgenic T-cell in an artificial model using ovalbumine 

(OVA) peptide155. A clinical trial for the treatment of metastatic melanoma using TCR-

transgenic T-cells demonstrated that infusion of less differentiated T-cells (e.g. 

expressing naïve markers such as CD45RA+CD45RO-) led to an objective response in 

30% of patients, with prolonged T-cell survival in vivo and acquisition of memory 

phenotype (e.g. CD45RA-CD45RO+)47. Furthermore, approaches involving genetically 

engineering of T-cells with a CAR or TCR specific for the melanoma antigen NY-ESO-1 

were explored as well in preclinical models and clinical trials. Both approaches involve 
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laborious work, since they add an extra step of artificially modifying those cells with TCR 

or CAR transgenes156,157. 

 

TIL Therapy in Melanoma 

 Adoptive transfer of autologous TILs in the setting of metastatic melanoma 

has proven exceptional success. Especially in the case of melanoma, a highly 

immunogenic type of cancer, reactive T-cells can sometimes be yielded from tumor 

biopsies. Initial clinical trials using TILs in combination with high dose of IL-2 for the 

treatment of metastatic melanoma were considered a failure due to lack of in vivo 

persistence of the transferred T-cells. Short-term responses were characteristic of 

treatment, a result of the inability to maintain viability of infused TILs140. Almost ten 

years later, a phase I clinical trial demonstrated that a non-myeloablative, temporary 

lymphopenia was essential for efficacy of TIL therapy158. This conditioned regimen 

reduces T-cell competition for homeostatic cytokines, minimizes Treg suppression and 

augments the presentation and stimulation capacity of APCs159. Clinical trials involving 

TIL therapy for metastatic melanoma patients have adopted a chemotherapy-based 

lymphodepletion regimen, followed by increasing doses of total-body irradiation, prior 

autologous TIL infusion combined with systemic administration of a high dose of IL-2. 

According to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, 

objective responses were achieved in 49-72% patients, varying among conditioned-

lymphodepleting regimens, yet not statistically different. Among 93 patients enrolled in 

these trials, 22% reached complete regression and 20% presented sustained 

responses, lasting for five to ten years, and possibly cured from the disease160. 
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Furthermore, TIL therapy conducted across four independent research institutes also 

demonstrated substantial efficacy, reaching objective responses in 55, 48, 40 and 38% 

of patients, depending on the study161-163. 

 The protocol of harvesting, expanding and infusing TILs has been optimized 

over the years since its first description in 1988140. Currently, surgically removed 

melanoma samples are cultured in high dose of IL-2 (i.e. 6000IU/mL) either as multiple 

small fragments or as a single-cell suspension through digestion of extracellular 

proteins (e.g. collagenase, hyaluronidase). Within two to three weeks, TIL clones are 

usually the only cells that yield from the tumor cultures. Harvested TILs are then 

assessed for reactivity against HLA-matched melanoma cell lines or patient-derived 

tumor, usually with IFNγ production used as readout. This step is called pre-rapid 

expansion (pre-REP) and, even though it promotes TIL expansion, the resultant number 

of cells are insufficient for ACT therapy. TIL cultures are then rapidly expanded, a 

process aided by irradiated feeder cells and activation via CD3 complex of the TCR by 

antibody use (i.e. OKT3 antibody clone), in the presence of high dose IL-2. This step 

also takes two to three weeks and generates up to 1011 lymphocytes. Following this 

protocol of activation and expansion, TILs are referred as post-REP and can be infused 

back into patients. Prior to ACT, patients undergo a lymphodepletion regimen through 

administration of two days of cyclophosphamide and five days of fludarabine treatment. 

TILs are then adoptively transferred to patients, concomitantly with high dose IL-2164. 

TIL therapy has proven to be highly effective and even curative in some cases. 

However, a major hurdle of immunotherapy involving adoptive T-cell transfer is lack of 

persistence in vivo following infusion. Indeed populations of T-cells able to maintain a 
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high proliferative capacity are sought to mediate a robust response against tumor165,166. 

In this regard, exploring mechanisms to facilitate a less differentiated, memory-like, 

reactive phenotype is attractive in the field of immunotherapy. 

 

Introduction to Epigenetics 

 Epigenetic modulation refers to reversible, heritable changes regulating gene 

expression by mechanisms other than directly altering the sequence of nucleotides. 

Dysregulated expression of genes is an intrinsic characteristic of tumors cells. Such 

dysregulation can derive from point mutations, translocations, amplification and 

deletions, as a reflection of genetic instability of transformed cells. Alternatively, gene 

expression is also often modulated by epigenetic changes interfering with chromatin 

structure, including acetylation of histones and methylation of CpG islands proceeding 

promoter regions. Not defined as epigenetics per se, post-translation modifications such 

as acetylation of non-histone proteins and gene silencing through microRNA also 

influence gene regulation, and may utilize of component originally described as part of 

epigenetic machinery (e.g. histone deacetylases). In eukaryotic cells, nuclear DNA is 

wrapped around histones, which are grouped into five classes (i.e. H1, H2A, H2B, H3 

and H4). The structural and functional unit of chromatin is formed by two sets of the four 

histones H2A, H2B, H3 and H4, the nucleosome, while H1 histone facilitates DNA 

packaging outside of the nucleosome core. Epigenetic modifications occurring on the 

DNA or histone tails trigger conformational changes in the chromatin, allowing for a 

more relaxed or condensed DNA, and lead to gene activation or repression, 

respectively167-169. The acetylation status of histones is a major contributor of chromatin 
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conformation and can be oppositely regulated through histone acetyltransferases (HAT) 

and histone deacetylases (HDAC). While HATs act by transferring an acetyl group from 

acetyl-CoA molecule to the ε-amino group at the N-terminal at histones tail, HDACs 

remove N-acetyl lysine amino acid on the tail on histones. Deacetylated histones result 

in electrostatic attraction of positively charged lysine residue to negatively charged, 

nearby DNA. Usually, histone acetylation leads to a structurally open and 

transcriptionally active chromatin (i.e. euchromatin), in opposition to HDAC-mediated 

histone deacetylation, associated with a repressed chromatin and gene transcription 

(i.e. heterochromatin)170-172. Furthermore, post-translational regulation of histone 

proteins is not restricted to acetylation and methylation, in the sense they are 

susceptible to modifications involving ubiquitination, phosphorylation, sumoylation, 

citrullitation, among others173,174. 

 

Histone Deacetylases in Cancer and Immune System 

 Histones modification as a result of acetylation and deacetylation processes 

has been demonstrated as part of cancer development and other abnormalities, 

including immune disorders, diabetes and neurodegenerative diseases175. In this 

regard, studies involving therapies to reverse epigenetic modifications (e.g. acetylation) 

are attractive in the field of cancer research. A total of eighteen human HDACs have 

been described so far, phylogenetically grouped in four classes (i.e. classes I, IIa, IIb, III 

and IV) according to their homology to yeast orthologs, and varying in structure, cellular 

localization, tissue distribution, specificity and enzymatic mechanism. Classes I, IIa, IIb 

and IV comprise the classically described HDACs, presenting a conserved catalytic 
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domain of approximately 390 amino acids and zinc-dependency for deacetylases 

activity. Class III is composed by seven members of the sirtuin family (i.e. SIRT1 

through SIRT7), also displaying a conserved catalytic domain of around 275 amino 

acids, unrelated to the classical HDACs, and being instead dependent of NAD+ 

enzyme176,177. HDACs 1, 2, 3 and 8 belong to class I and are ubiquitously expressed, 

mainly exerting their function in the nucleus. With exception of HDAC8, class I HDACs 

participate in chromatin remodeling as components of multiprotein complexes, as 

genuine epigenetic mediators. HDACs 4, 5, 6, 7, 9 and 10 are members of class IIa and 

IIb of HDACs and have a broad array of substrates, not only limited to histone proteins. 

In fact, HDAC function lies outside of chromatin remodeling, as they can promote 

deacetylation of non-histone proteins178. Several of these substrates participate in 

diverse biological events influencing both tumor and normal cells, and include 

molecules such as α-tubulin, β-catenin, chaperon HSP90, p53 tumor suppressor, the 

transcription factors c-Myc, NFkB, E2F, etc179. Finally, the most recently identified 

HDAC11 is the sole member of class IV of HDACs and it is shown to be involved in 

regulation of tumor and immune cell biology180,181. Classification and characteristics of 

the eleven HDACs are illustrated in figure 1. 

 In the cancer setting, research involving a comprehensive panel of histone H4 

post-translational modifications in both normal and cancer cells has identified loss of 

monoacetylated lysine 16 in malignant cell lines and primary tumors as a hallmark of 

human cancer cells182. Accordingly, multiple types of cancer display aberrant HDAC 

expression. For instance, upregulation of class I HDACs is observed in several solid 

tumors, as indicated by overexpression of HDAC1 in breast, colon, prostate and gastric 
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carcinomas, HDAC2 in colorectal, cervical and also gastric cancers, and HDAC3 in 

colon carcinoma as well183-188. Moreover, HDAC6 is present at high levels in breast 

cancer and HDAC11 expression is elevated in colon, prostate, breast and ovarian 

tumors180,189. Conversely, downregulation or lack of HDACs 1 and 2 were reported in 

cancer cells190,191. In melanoma, expression of class I HDACs is associated with 

increased survival of patients with advanced disease. A descriptive study demonstrated 

upregulation of HDAC8 in BRAF-mutated melanoma samples, as well as correlation 

with HDAC1 expression and p65 phosphorylation, a subunit of NFkB complex that can 

be associated with drug resistance to MAPK inhibition192,193. Indeed, protein acetylation 

is reported as an important mediator of resistance to targeted therapies, as HDAC 

inhibitors directly alter cell growth pathways (e.g. MAPK) involved in drug resistance. 

For instance, HDAC-mediated inhibition promotes hyperacetylation of the chaperone 

HSP90, triggering degradation of downstream proteins and upstream tyrosine kinase 

receptors involved on RAF and AKT pathways194,195. 

 The role of several HDACs has been demonstrated in immune cells, but 

implications on a tumor context are still being explored. It is documented that both 

HDACs 1 and 2 have overlapping functions during T-cell development, and are capable 

of promoting compensatory mechanisms to avoid dysregulation of this process. Indeed, 

T-cell development is arrested in HDACs 1 and 2 double knockout (KO) mice. This is 

likely resulted from genomic instability generated by loss of HDACs and 2, as well as 

disruption of TCR signaling196. Furthermore, HDAC1 is suggested to inhibit cytokine 

production from activated effector T-cells, since abrogation of HDAC1 on T-cells in a 

mouse model of asthma triggers an enhanced Th2-type response, as indicated by 
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increased production of IL-4, IL-5 and IL-10197. A recent study exploring the role of 

HDAC1 on T-cell activation demonstrated that HDAC1 and mSIN3A function in a protein 

complex to repress IL-2 production. During T-cell activation, mSIN3A is phosphorylated 

by CDK5, disrupting this complex and triggering IL-2 expression198. 

The role of HDAC6 has been studied in a specific T-cells subset, defined as 

CD4+CD25+FoxP3+ Tregs, through in vitro treatment of Tregs with the HDAC6-specific 

inhibitor tubacin or by harvesting Tregs from HDAC6 KO mice. As a consequence of 

downregulation or lack of HDAC6, expression of the transcription factor Foxp3, CTLA4 

inhibitory molecule, and IL-10 production were increased, resulting in enhanced Treg 

suppressive capacity and prevention of colitis development in vivo in a dextran sulfate 

induced mouse models. Moreover, inhibition of HDAC6 or its downstream target (i.e. 

HSP90) was able to minimize autoimmunity and transplant rejection, as a reflection of 

enhanced Treg suppression199. HDAC6 has also been implicated in deacetylation of 

molecules involved in the immunological synapse between T-cells and APCs. Induced 

overexpression of HDAC6 results in disruption of CD3 and LFA-1 in the contact site, 

and impairs IL-2 production200. 

 HDAC7 is expressed in high levels on CD4+CD8+ double-positive 

thymocytes and participate on T-cell development, in a process involving its recruitment 

to Nur77 promoter by interaction with the transcription factor MEF2D. As a regulator of 

Nur77, HDAC7 inhibition results in increased apoptosis during TCR activation of 

developing thymocytes201. The role of HDAC9 was evaluated on Tregs and, similarly to 

the aforementioned HDAC6 studies, HDAC9KO mouse Tregs displayed enhanced 

suppressive capacity in a colitis mouse model. Mechanistically, expression of the heat-
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shock protein HSP70 in Tregs lacking HDAC9 was enhanced, and HSP70 was found to 

interact with Foxp3, leading to a more suppressive T-cell phenotype202. Research has 

also been conducted to assess functions of HDAC11 on immune cells. Studies using 

KO mouse models or HDAC in vitro inhibition have demonstrated that HDAC11 

abrogation triggers upregulation of IL-10 production on APCs and macrophages, 

impairing T-cell effector response in an antigen-specific context and inducing immune 

tolerance181,203. Furthermore, inhibition of HDAC11 expression in vitro through the use 

of small interfering RNAs (siRNA) induced apoptosis of hodgkin’s lymphoma tumor cells 

and upregulation of OX40L, a costimulatory T-cell ligand. Also reported was inhibition of 

IL-10-producing Tregs generation, reflective of an enhanced OX40L expression204. 

 

Figure 1. Scheme of HDAC Classification and Catalytic Domains. The eleven HDACs are 
phylogenetically classified in four classes. Class I comprises HDACs 1, 2, 3 and 8, class IIa members are 
HDACs 4, 5, 7 and 9, class IIb is composed by HDACs 6 and 10, and the sole member of class IV is 
HDACs. 
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HDAC Inhibitors 

 The development of HDAC inhibitors (HDACi) became attractive with the 

understanding of epigenetics effects in tumor biology, especially considering the 

aberrant pattern of HDAC expression in cancer cells. HDACi directly target tumor 

growth by inducing cell cycle arrest during transition from G1 to S phase. 

Mechanistically, alteration of the chromatin structure results in G1/S arrest, as well as 

changes in molecules involved in cell cycle, including CDKN1A-mediated 

retinoblastoma protein dephosphorylation, and cyclin A and D repression. Furthermore, 

HDACi can directly trigger apoptosis of tumor cells through distinct pathways, including 

ROS-induced mitochondria dysfunction, downregulation of Bcl-2, upregulation of Bim, 

and enhanced expression of Fas and FasL205-207. Intriguingly, tumor cells are more 

vulnerable to apoptosis and senescence mediated by HDACi than normal tissues. A 

postulated explanation is that maintenance of gene expression on tumor cells heavily 

relies on epigenetic regulators, lacking compensatory pathways to overcome any major 

epigenetic disruption208. Not solely restricted to effects on tumor cells, HDACi also 

impact on the tumor microenvironment. A variety of HDACi interfere with molecules 

involved in the process of angiopoieses, such as VEGF, angiopoetin and HIF-1a, 

therefore negatively regulating angiogenesis209-211. 

 The broad effects of HDACi also extend to immunoregulatory modulation. 

HDAC inhibition triggers upregulation of MHC I, MHC II, CD80, CD86 and CD40 

molecules, increasing immunogenicity of tumor cells212-214. Conversely, HDACi has 

shown to reduce inflammatory response, by decreasing the circulating levels of IFNγ, 

TNF, IL-1β and IL-6 in autoimmunity context215. Moreover, HDACi can impair IL-12p70 
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secretion and, thus, DC maturation216, as well as reduce IL-2 production in T-cells217. 

Interestingly, signal transducer and activator of transcription (STAT) proteins are shown 

to interact with HDACs. STAT signaling is downstream of cytokine receptors (e.g. IFN, 

IL-2 and IL-4 receptors) and lead to transcription of a myriad of genes, often involved in 

T-cell function and fate. A study has demonstrated that association of HDAC1 with 

STATs 1 and 2 enhance IFNα-mediated gene expression, and that this is impaired after 

HDAC inhibition218. HDACi also interferes with STA3-dependent gene transcription, and 

research has demonstrated involvement of HDACs 1, 2 and 3 in IFNγ/STAT1 

signaling219. Furthermore, STAT5 transcription recruits HDAC1, resulting in acetylation 

of histones and other proteins forming the transcription complex220. Moreover, HDAC3 

inhibition reduces phosphorylation and promotes hyperacetylation of STAT3, an effect 

not reversible by exogenous IL-6, which is a cytokine upstream of STAT3 signaling221. 

These studies demonstrate the importance of class I HDACs in contributing to an 

inflammatory response, at least in a STAT-dependent fashion. With a few exceptions, 

most of the aforementioned anti-tumor and immunoregulatory HDACi effects are due to 

pan- rather than specific-inhibition. However, the impacts of HDAC pan-inhibition in 

directly impairing tumor growth could also extend to the immune cells, thus being 

detrimental. 

HDACi are generally classified in five different groups, depending on chemical 

structure and specificity. As such, the classes include hydroxyamic acids, benzamides, 

cyclic tetrapeptides, ketones and aliphatic acids222. Several HDACi have been 

developed and described as pan-, class-, or isotype-specific. Examples of HDACi with a 

broad specificity include panobinostat (LBH589)223, belinostat (PDX101)224, trichostatin 
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A (TSA)225, vorinostat (SAHA)226 and quisinostat (JNJ26481585)223. Some of the HDACi 

reported as class I selective are sodium butyrate227, valproic acid (VPA)228, mocetinostat 

(MGCD0103)223, etinostat (MS275)229 and romidepsin (FK228)230. A few HDACi have 

been described as class IIa selective, such as TMP195 and TMP269225. Due to the 

similarity across HDACs, there are fewer isotype-selective HDACi available. As such, 

PCI34051 has been described as an HDAC8 potent inhibitor over other HDAC 

isoforms231, while activity of RGFP966 has been reported to be selective for HDAC3232. 

Particularly HDAC6 is unique in containing two catalytic domains, allowing for the 

development of a greater variety of isotype-specific inhibitors. For instance, tubacin233, 

tubastatin A233, nexturastat A234 and rocilinostat (ACY1215)235 have been described as 

HDAC6 specific- or selective-inhibitors. The HDACi ACY1215, however, also displays 

some activity against class I HDACs. A semi-comprehensive description of HDAC 

inhibitors specificity is illustrated in table I. 

Currently, there are four HDACi approved by the FDA. A clinical trial using 

vorinostat for the treatment of cutaneous T-cell lymphoma (CTCL) resulted in 30% rate 

of objective response, leading to its FDA approval in 2006236. Approximately three years 

later, romidepsin was approved by the FDA also for the treatment of CTCL, reaching 

34% of overall response rate as a single agent237,238. Another HDACi, belinostat, 

received FDA-approval in 2014 for the treatment of relapsed or refractory peripheral T-

cell lymphoma (PTCL), demonstrating 26% overall response rate239. Finally, 

panobinostat was approved by the FDA for the treatment of patients with multiple 

myeloma, in combination with bortezomib, a proteasome inhibitor prescribed for multiple 

myeloma and mantle cell lymphoma therapy. In a phase II clinical trial, simultaneous 
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treatment with panobinostat and bortezomib promoted 59% of tumor shrinkage rate and 

a median progression-free survival of 10.6 months. Both results were higher than the 

other arm of the study, in which patients received bortezomib and dexamethasone, 

without panobinostat administration (i.e. 41% tumor shrinkage rate and 5.8 months 

median progression-free survival)240. 

Unfortunately, approaches addressing the hindrances of HDACi treatment to 

inflammatory and desirable immunoregulatory effects are still needed. Herein, 

mechanisms to overcome such limitations and improve immune response in the cancer 

setting are explored. 

 

Table 1. Specificity of HDAC Inhibitors. Table describes the reported selectivity of commercially 
available HDAC inhibitors, and their current FDA approval status. 
 

 

  

HDAC	Inhibitor Reported	Selectivity FDA	Status
Panobinostat	(LBH589) Pan-selectivity Approved
Belinostat	(PDX101) Pan-selectivity Approved
Quisinostat	(JNJ26481585) Pan-selectivity,	with	minimal	effect	on	HDAC6,	HDAC7	and	HDAC9 -
Tricostatin	A	(TSA) Class	I,	class	Iib,	and	class	IV	selective	 -
Vorinostat	(SAHA) Class	I	selective,	with	minimal	effect	of	HDAC3 Approved
Valproic	acid	(VPA) Class	I	selective -
Sodium	butyrate Class	I	selective -
Mocetinostat	(MGCD0103) Class	I	selective,	with	low	effect	on	HDAC3,	HDAC4,	HDAC5	and	HDAC11 -
Etinostat	(MS275) Class	I	selective,	with	minimal	effect	on	HDAC8 -
Romidepsin	(FK228) Class	I	selective Approved
TMP195 Class	IIa	selective -
TMP269 Class	IIa	selective -
RGFP966 HDAC3	selective -
Ricolinostat	(ACY1215) HDAC6	selective,	with	low	effect	on	class	I	HDAC -
Tubacin HDAC6	selective -
Tubastatin	A HDAC6	selective -
Nexturastat	A HDAC6	selective -
PCI34051 HDAC8	selective -
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CHAPTER TWO: 

THE USE OF PAN-HDAC INHIBITOR LBH589 (PANOBINOSTAT) AS AN 

ADJUVANT TO MELANOMA IMMUNOTHERAPY AUGMENTS PD1 BLOCKADE 

 

Background and Rationale 

The antitumor activity of LBH589 has been vastly studied, comprising research 

on both hematological malignancies and solid tumors. For instance, a phase I clinical 

trial using escalating doses of LBH589 was conducted for the treatment of Japanese 

patients with advanced solid cancers, including colon, stomach, gall bladder, lung, 

oesophagus, ovary, and others. As a single agent, LBH589 treatment failed in 

promoting partial or complete responses. However, six out of fourteen patients 

presented stable disease for at least four months241. In a phase II clinical trial, LBH589 

demonstrated modest tumor reduction and maintained disease stable in patients with 

small-cell lung cancer242. Another phase II clinical trial based on LBH589 treatment for 

patients with relapse or refractory Hodgkin’s lymphoma promoted tumor shrinkage in 

74% of patients and 78% rate of 1-year survival243. 

Experiments evaluating LBH589 treatment in vitro of melanoma cells, in 

combination BRAF inhibition, demonstrated synergistic effects of double-treatment 

resulting in tumor cell death through necrosis244. Moreover, preclinical studies assessed 

anti-tumor and immunoregulatory functions of LBH589 in vitro and in a mouse model of 
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B16F10 melanoma. As expected, melanoma cell growth was delayed, as a result of cell 

cycle arrest and apoptosis mediated by LBH589 treatment. Corroborating previously 

published data, LBH589-treated human and mouse melanoma cell lines upregulated 

expression of immunologically relevant surface markers, such as MHC I, MHC II, CD40, 

CD80 and CD86, as well as melanoma antigens, including gp100 and MART-1. 

Possibly as a result of both direct and indirect effects on the cancer cells, melanoma 

growth in vivo was delayed and B16F10 tumor-bearing mice displayed prolonged 

survival after systemic LBH589 administration214. 

There is an increasing body of evidence demonstrating the activity of HDACi in 

upregulating immunogenic and antigenic molecules. However, whether these 

immunomodulatory effects are extended to regulation of inhibitory molecules remains 

unclear. The importance of such studies lays on the fact that attenuation of immune 

response through expression of inhibitory molecules, such as PDL1/PDL2, hinders 

response against tumor. In order to maintain homeostasis, expression of PDL1, also 

known as CD274, negatively modulates T-cell activation and tempers immune 

response. Mechanistically, phosphatases are recruited upon ligation of PDL1 to its 

receptor PD1 on the surface of T-cells, reducing downstream phosphorylation of 

molecules involved in the TCR-mediated signaling (e.g. ZAP-70, Akt and PKCtheta) 

and, thus, attenuating immune response245,246. While disruption of PDL1 signaling often 

triggers autoimmunity, its upregulation in the setting of cancer represents a well-

established mechanism of immune evasion, frequently generating tolerance and non-

reactive T-cells124,247,248. Moreover, PDL2, also known as CD274, is another ligand for 
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PD1 receptor and it has also been described as a negative regulator of T-cell 

response128. 

Herein, an unexplored role of LBH589 in modulating expression of PDL1 and 

PDL2 on melanoma cells is described, as well as inhibitory immune effects of several 

HDACi249. Class I HDAC inhibition through MS275 and MGCD0103 were shown to 

upregulate PDL1 and PDL2. MS275 is selective for HDACs 1 and 3229, while 

MGCD0103 is most potent against HDACs 1, 2, 3 and 11223. PDL1 and PDL2 

expression on melanoma cells was upregulated in vitro and in vivo in response to 

HDACi, in a dose-dependent fashion. This sustained upregulation was a result of 

increased gene expression triggered by HDACi-mediated acetylation of the promoter 

regions of PDL1 and PDL2 genes. Despite the benefits promoted by HDACi in a cancer 

context, upregulation of the inhibitory molecules PDL1 and PDL2 may represent a 

limitation to T-cell mediated anti-tumor response. Thus, combination therapy of LBH589 

and PD1 blockade using a melanoma mouse model was reported here as able to 

overcome this hindrance, creating a rationale for their simultaneous use in the clinical 

setting. 

 

Materials and Methods 

 

Cell Lines and Patient Samples 

The mouse melanoma cell line B16F10, and the human cell lines WM983A, 

WM793, WM1366 and WM35 were acquired from ATCC (Manassass, VA). The cell line 

SkMel21 was provided by Dr. Keiran Smalley, and Mel-624 and Mel-888 by Dr. Shari 
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Pilon-Thomas, both researches at H. Lee Moffitt Cancer Center (Tampa, FL). Primary 

melanoma samples were obtained from resected biopsies from patients undergoing the 

clinical trial MCC15375 at H. Lee Moffitt Cancer Center, and provided by Dr. Amod 

Sarnaik (IRB approval protocol number 106509). All cells were cultured in RPMI 1640, 

in the presence of 10% fetal bovine serum, non-essential amino acids, streptomycin, 

penicillin, and amphotericin B. 

 

Mouse Models 

All animal research was performed according to the IACUC protocols approved 

at University of South Florida (protocols 4380R and 4100M). C57BL/6 mice were 

acquired from NCI Laboratories and Charles River Laboratories (Wilmington, MA), and 

maintained at H. Lee Moffitt Cancer Center animal facility. Subcutaneous inoculation of 

1x105 B16F10 melanoma cells was performed for in vivo experiments assessing tumor 

growth and mouse survival outcomes. After seven days, intraperitoneal treatment of 

15mg/kg of LBH589 thrice weekly as a single agent or combined with 3mg/kg of PD1 

blocking antibody from BioXCell (West Lebanon, NH) twice weekly, for a total of three 

weeks. The control group received injections with drug vehicle (i.e. dextrose 5%). For 

tumor volume analysis, caliper measurements were calculated using the formula (width2 

x length)/2. Expression of PDL1 and PDL2 was also evaluated in vivo. Mice were 

subcutaneously injected with 1x105 B16F10 cells and, following ten days, treated with 

15mg/kg of LBH589 or dextrose 5% for three consecutive days. Within two hours after 

the last treatment was performed, tumors were harvested and assessed by flow 

cytometry. 
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HDAC Inhibitors 

Novartis (Basel, Switzerland) provided LBH589 for in vitro and in vivo 

experiments. MS275, MGCD0103, ACY1215, PCI34051, and PXD101 were obtained 

from Selleck Chemicals (Houston, TX). All HDACi were reconstituted in DMSO for in 

vitro use, and stored in aliquots at -80oC. Stock dilution was performed immediately 

prior to use, as indicated. For in vivo experiments, 5% dextrose was used as vehicle for 

LBH589, and drug dissolution was aided by sonication. 

 

Flow Cytometry Analyses 

For in vitro experiments evaluating expression of surface molecules, melanoma 

cells were treated with HDACi, at indicated concentrations and time-points. Accutase 

was used to harvest cells and surface flow cytometry staining was performed in the 

presence of FACS buffer (PBS, 2mM EDTA, 2% FBS). For analysis of surface 

molecules, cells were stained with antibodies against PDL1 and PDL2 for 30 minutes at 

4°C. Antibodies were purchased from eBioscienece (San Diego, CA) and were 

conjugated with phycoerythryn, fluorescein isothiocyanate (FITC) or allophycocyanin 

(APC). Viability was assessed through the use of 50ng/mL DAPI. Intracellular staining 

was performed for validation of melanoma cells derived from patients, using the 

transcription factor staining buffer set from eBioscience (San Diego, CA) and 

instructions provided by the manufacture. Antibodies against S100 and Mart-1, 

conjugated to FITC and alexa fluor 405, were purchased from Abcam (Cambridge, MA) 

and Novusbio (Littleton, CO), respectively. Acquisition of cells was performed in a LSR 
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II flow cytometer instrument from BD Biosciences (San Jose, CA). FlowJo software was 

used for data analyses. 

 

Western Blot 

Protein was extracted through the use of lysis buffer (1% SDS, 4M Urea, 100nM 

dithiothrietol in 100nM Tris) and sonication, in the presence of proteinase inhibitors. Gel 

loading buffer (0.2% (weight/volume) bromophenol blue (200mM DTT, 20% glycerol) 

was then diluted in a ratio of 5:1 with the lysates, and boiled for 15 minutes. 

Electrophoresis was performed in a SDS-PAGA gel, protein was transferred to a 

nitrocellulose membrane, followed by primary antibody incubation overnight at 4°C. 

Antibodies were reactive against β-actin, total histone 3, acetylated histone 3 and 

acetylated α-tubulin, and obtained from Cell Signaling (Danvers, MA). At the next day, 

incubation with IRDYE secondary antibody was performed for two hours at room 

temperature. Immunoblots were then developed using a LI-COR instrument. 

 

Chromatin Immunoprecipitation 

The protocol for chromatin immunoprecipitation (ChIP) was previously described 

in Desai, S. et al.250. The protocol was corrected for cell numbers and used a 

concentration of 0.5mM EGTA for buffers containing this reagent. Briefly, 5x106 

melanoma cells were treated with 12.5nM LBH589 or DMSO control for two hours. The 

primary antibodies for acetylated histone 3 and rabbit control IgG were purchased from 

Active Motif (Carlsbad, CA) and from Fisher Scientific (Waltham, MA), respectively, and 

each immunoprecipitation was incubated with 5ug overnight at 4oC. Samples were then 
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incubated with 50uL of A/G plus beads obtained from Santa Cruz Biotechnology (Santa 

Cruz, CA), for two hours at 4oC. For DNA purification, MiniElute PCR Purification Kit 

purchased from Qiagen (Valencia, CA) was used according to the manufacturer’s 

instructions. SYBERGreen-based quantitative real-time PCR from BioRad Laboratories 

(Hercules, CA) was used for analysis of the chromatin immunoprecipitates, using a 

BioRad CFX96 PCR instrument and software. ChIP primers covered a region of 1800bp 

upstream the start codon of either PDL1 or PDL2 human genes, generating amplicons 

between 60 to 150bp. NCBI-Blast database was used for primer design, and sequences 

are as follow. 

PDL-1 promoter region: Fw 5’- GGCAAATTCCGTTTGCCTCA-3’ Rv 5’- 

TCCTCCTAGATGGCCTGGAT-3’, Fw 5’- GCTGGGCCCAAACCCTATT-3’ Rv 5’- 

TTTGGCAGGAGCATGGAGTT-3’, Fw 5’- CTAGAAGTTCAGCGCGGGAT-3’ Rv 5’- 

GGCCCAAGATGACAGACGAT-3’, Fw 5’- ATGGGTCTGCTGCTGACTTT-3’ Rv 5’- 

GGCGTCCCCCTTTCTGATAA-3’, Fw 5’- GGGGGACGCCTTTCTGATAA-3’ Rv 5’- 

AAGCCAACATCTGAACGCAC-3’, Fw 5’- ACTGAAAGCTTCCGCCGATT-3’ Rv 5’- 

CCCAAGGCAGCAAATCCAGT-3’, Fw 5’- AGGACGGAGGGTCTCTACAC-3’ Rv 5’- 

ATTGGCTCTACTGCCCCCTA-3’, Fw 5’- GTAGGGAGCGTTGTTCCTCC-3’ Rv 5’- 

GTGTAGAGACCCTCCGTCCT-3’, Fw 5’- TAGGGGGCAGTAGAGCCAAT-3’ Rv 5’- 

CAAAACTGAATCGCGCCTGG-3’; 

PDL2 promoter region: Fw 5’-CCTGGCACAGCACTAAGACA-3’, Rv 5’-

CTTCCCCATTGTCCCTGGAG-3’, Fw 5’- GGCAGCAGGAGAAGGATTGA-3’, Rv 5’- 

GCCCCACTATACCTTCAGGC-3’, Fw 5’- TGGCTGTTCATTTTGGTGGC-3’, Rv 5’- 
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ATGAGGACTTGCCACAGCTC-3’, Fw 5’- AAGGGTGGCCTACCTTCTCT-3’, Rv 5’- 

TCTGGGGCAGGAGGACATTA-3’.  

 

Quantitative Real Time PCR 

Cells were lysed using TRIzol, following manufacture’s instructions. Isolation of 

RNA was performed using a standard phenol-chloroform separation protocol, and cDNA 

was generated by an iScript kit from Bio-Rad, according to the provided instructions. 

SYBERGreen-based quantitative real-time PCR was used for expression analyses, on a 

Bio-Rad CFX96 platform and software. Relative mRNA expression was calculated using 

the formula 2^[-(delta delta Ct)]. The reference gene of choice was 18S ribosomal RNA. 

NCBI-Blast database was also used for the design of primers, which are as follow. 

PDL1: Fw 5’-TCCTGAGGAAAACCATACAGC-3’ Rv 5’-

GATGGCTCCCAGAATTACCA-3’. 18S: Fw 5’-GTAACCCGTTGAACCCCATT-3’ Rv 5’-

CCATCCAATCGGTAGTAGCG-3’. 

 

Melanoma Cytokine Production  

 Melanoma cells were plated and cultured in the presence of DMSO control or 

the HDACi LBH589, MGDC0103 or MS275, at the indicated concentrations. 

Supernatant was harvested 72 hours after treatment started, and cytokine production 

was evaluated by cytokine bead assay (CBA), according to the manufacture’s 

instructions. Sample acquisition was performed in a LSR II flow cytometer instrument 

and analyzed using FCAP software from BD Biosciences. 
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Statistical Analysis 

Statistical analysis based on unpaired, two-tailed, student’s t-test determined 

significance of PDL1 and PDL2 expression. Differences in tumor growth were assessed 

by one-way analysis of variance, at indicated time-points. Kaplan-Meier survival 

analysis log rank test evaluated mouse survival. Analyses of correlation significance, 

Pearson’s R-square values and linear regression were performed for data correlation of 

gene expression, gene acetylation and PDL1 surface expression. GraphPad Prism 6.0 

software was used to all statistical analyses, and p-values lower than 0.05 were 

considered significant. 

 

Results 

 

Expression of PDL1 is Increased by HDAC Inhibitors on Melanoma Cell 

Lines 

To initially evaluate specificity of HDAC inhibitors on melanoma cells, the B16F10 

cell line was treated in vitro with LBH589, MGCD0103, MS275, ACY1215 and 

PCI34051 for 2 or 24 hours, at the indicated concentrations. A few protein targets for 

HDACs have been previously described in the literature251,252. As a result of class I 

HDAC inhibition, with exception of HDAC8, the levels of histone acetylation became 

increased. Moreover, acetylation of α-tubulin is reported as consequence of HDAC6 

activity. As demonstrated in figure 2A, immunoblot analyses revealed that as early as 

two hours of treatment with LBH589 (pan-HDACi) or MGCD0103 (class I selective), 

histone 3 (H3) acetylation was enhanced. After 24 hours, MS275 (class I selective) was 
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able to increase the levels of acetylated H3, and LBH589 still maintained its activity. As 

expected, no effects were seen following treatment with ACY1215 (HDAC6 selective) 

and PCI34051 (HDAC8 selective). Furthermore, ACY1215 treatment led to an increase 

of α-tubulin acetylation at 24 hours after HDAC inhibition. Staining for total H3 and β-

actin were used as loading control of the experiment, and no major differences in 

protein levels were observed. 

The immunoregulatory effects of pan- and class I selective HDACi have been 

previously described in melanoma214,253. To expand on these findings, the human cell 

lines WM983A, WM793, WM35, WM1366, Mel-624, Mel-888, SkMel-21, and the mouse 

lines B16F10 and B78H1 were treated with HDACi and evaluated for PDL1 expression. 

The human cell lines used in this study comprise diverse mutational status254-258, listed 

in table II. Briefly, melanoma cells were treated with 10nM LBH589, 500nM MGCD0103 

and 500nM MS275 for 72 hours, and then harvested using Accutase in order to avoid 

loss of membrane protein. Expression of PDL1 was performed by flow cytometry. 

Histograms in figure 2B demonstrate that treatment with the aforementioned HDACi 

upregulated PDL1 expression in all cell lines at various degrees, compared to DMSO 

control treatment. Interestingly, basal expression of PDL1 in the presence of DMSO 

control varied among all the cell lines tested, in comparison with autofluorescence, 

which was determined by fluorescence minus one (FMO). The mean fluorescence 

intensity (MFI) values for all samples are listed in table III. Additionally, a dose 

dependency of PDL1 upregulation was observed when WM793 cells were treated with 

twice as much LBH589, MGCD0103 and MS275 inhibitors. By doubling the 
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concentration of these HDACi, PDL1 expression increased even further, as 

demonstrated in figure 2C. 

 To determine kinetics of PDL1 expression, the cell lines WM983A, WM793 

and B16F10 were treated with 10nM LBH589, 500nM MGCD0103 and 500nM MS275 

for 24, 48, 72 or 96 hours. Cells were once more collected using Accutase and PDL1 

expression was evaluated by flow cytometry. Graphs in figure 2D represent MFI of 

PDL1 expression subtracted from autofluorescence for each time-point. The zero-hour 

value was determined by MFI results obtained following treatment with DMSO control. 

PDL1 upregulation was seen as early as 24 hours after HDAC inhibition, and continue 

to increase at least until 96 hours, when the later time-point was calculated. Depending 

on the cell line or HDACi used, peaks of expression were observed at 48 or 96 hours, 

and once more, the degree of expression varied as well. In B16F10, MGCD0103 

induced the most robust upregulation of PDL1 in all time-points assessed, while MS275 

showed the least impressive effect. In WM983A, PDL1 upregulation was very consistent 

among all HDACi, with a peak of expression at 72 hours in the presence of MS275. 

Finally, LBH589 was able to upregulate PDL1 to higher levels than the other two 

inhibitors in WM793, which was least affected by MS275 treatment. 

 
Table 2. Mutational Status of Melanoma Cell Lines. Table describes the reported mutations present on 
established human melanoma cell lines. 
 

 

HumanMelanoma	Cell	Line Mutational	Status
WM983A BRAF	and	p53
WM793 BRAF,	PTEN	and	CDK4
WM35 BRAF	and	PTEN

WM1366 NRAS
Mel-624 BRAF
Mel-888 BRAF
SkMel-21 NRAS



	 47 

 

Figure 2. HDAC Inhibitors Upregulate PDL1 in Melanoma. (A) B16F10 melanoma cells were cultured 
for 2 and 24 hours in the presence of indicated HDAC inhibitors. Cells were washed, lysed and analyzed 
by immunoblotting for acetylated histone 3, total histone 3, acetylated α-tubulin and β-actin. (B) Indicated 
melanoma cell lines were treated with 500nM MS275 (red), 10nM LBH589 (orange), 500nM MGCD0103 
(purple) or DMSO control (black) for 72 hours in vitro and PDL1 expression was evaluated. (C) WM793 
cells were treated with DMSO or the indicated HDAC inhibitors and concentrations for 72 hours. Cells 
were then washed and evaluated for expression of PDL1 by flow cytometry. Values are graphed as mean 
fluorescent intensity (MFI). (D) Indicated melanoma cell lines were plated and treated with 500nM MS275 
(triangles), 10nM LBH589 (squares), or 500nM MGCD0103 (diamonds) at 96, 72, 48, or 24 hours prior to 
evaluation of PDL1. Expression of DMSO- treated cells was graphed as zero hour treatment. All values 
are graphed as mean fluorescence intensity (MFI) with autofluorescence values subtracted. Results 
shown are representative of 2-3 independent experiments.  
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Table 3. PDL1 Expression in Melanoma Cell Lines as a Result of HDAC Inhibition. Mean fluorescent 
intensity (MFI) and percent (%) change over DMSO control are illustrated for various melanoma cell lines 
treated for 72 hours with LBH589, MS275 and MGCD0103 HDAC inhibitors, at indicated concentrations. 
 

 

Cell Line Treatment PDL1 MFI % Change over DMSO
WM983A Autofluorescence 328 NA

DMSO 386 NA
LBH589 (10nM) 835 216%
MS275 (500nM) 546 141%
MGCD0103 (500nM) 1151 298%

WM793 Autofluorescence 1568 NA
DMSO 1744 NA
LBH589 (10nM) 2361 135%
MS275 (500nM) 2730 157%
MGCD0103 (500nM) 2108 121%

B78H1 Autofluorescence 651 NA
DMSO 9044 NA
LBH589 (10nM) 13839 153%
MS275 (500nM) 13051 144%
MGCD0103 (500nM) 18364 203%

SkMel21 Autofluorescence 1404 NA
DMSO 3686 NA
LBH589 (10nM) 10616 288%
MS275 (500nM) 16508 448%
MGCD0103 (500nM) 7171 195%

WM35 Autofluorescence 698 NA
DMSO 1095 NA
LBH589 (10nM) 1654 151%
MS275 (500nM) 1693 155%
MGCD0103 (500nM) 1261 115%

WM1366 Autofluorescence 648 NA
DMSO 4788 NA
LBH589 (10nM) 8184 171%
MS275 (500nM) 6999 146%
MGCD0103 (500nM) 10169 212%

B16 Autofluorescence 206 NA
DMSO 1297 NA
LBH589 (10nM) 4139 319%
MS275 (500nM) 2480 191%
MGCD0103 (500nM) 7350 567%

624 Autofluorescence 1337 NA
DMSO 4241 NA
LBH589 (10nM) 6211 146%
MS275 (500nM) 6446 152%
MGCD0103 (500nM) 7142 168%

888 Autofluorescence 1027 NA
DMSO 2097 NA
LBH589 (10nM) 2999 143%
MS275 (500nM) 3608 172%
MGCD0103 (500nM) 3281 156%
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Expression of PDL1 and PDL2 is Enhanced on Melanoma Patient Samples 

Treated with Inhibitors with Specificity for Class I HDACs 

 To build upon these results and address whether the effects of HDACi on 

PDL1 expression were also extended to patient samples, several primary human 

melanomas were treated with a more comprehensive panel of HDACi. Briefly, 

melanoma cells from surgically removed biopsies were culture in vitro. To verify whether 

expanded cells were indeed melanoma instead of tumor fibroblasts or other adherent 

cells, expression of the melanoma markers S100 and Mart1259 was assessed by flow 

cytometry. Histograms for patient samples tested are shown in figure 3. Melanoma cells 

were then treated for 24 hours with DMSO control or HDACi at the indicated doses, and 

then washed twice for drug removal. Fresh media was added and cells were cultured for 

additional 48 hours prior flow cytometry analysis of PDL1 and PDL2 expression. 

Evaluation of PDL2 expression on patient samples was performed due to its emerging 

importance as a negative regulator of T-cell response128,129,260. Results are graphed in 

figure 4 and represent acquired MFI values subtracted for autofluorescence. As 

expected, all doses of LBH589, MGCD0103 and MS275 triggered PDL1 upregulation on 

melanoma patient samples. In addition, the pan-HDACi PDX101 similarly enhanced 

PDL1 expression. Moreover, a dose-dependent effect was observed for all pan- and 

class I selective HDACi, as illustrated by increasing concentrations resulting in higher 

levels of PDL1 expression. Interestingly, LBH589 generated the most impressive 

effects, reaching the highest peak of PDL1 expression in a much lower dose than the 

other HDACi. Similar to the effects described above, treatment of patient melanomas 

with pan- and class I selective HDACi also increased PDL2 expression in a dose-
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dependent manner, yet at a lesser degree. Conversely, neither ACY1215, Nexturastat A 

nor PCI34051 seemed to have any substantial effect on PDL1 and PDL2 (figure 4A and 

B). ACY1215 and Nexturastat A have reported HDAC6-selectivity, while PCI34051 is 

described as selective for HDAC8. These findings suggest that PDL1 upregulation is 

mainly due to inhibition of the class I HDACs 1, 2 and/or 3. 

 

 

 

 
Figure 3. Verification of Patient Melanomas. Patient derived tumor cells were stained for intracellular 
(A) MART-1 and (B) S100, and expression was evaluated by flow cytometry. 
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Figure 4. Inhibition of Class I HDACs Increases PDL1 and PDL2 Expression in Patient Melanomas 
in a Dose Dependent Manner. Patient melanomas obtained from biopsies and expanded in culture were 
plated and treated with indicated HDAC inhibitors and concentrations for 24 hours. Cells were then 
washed and cultured for a further 48 hours. At 72 hours past initial treatment, melanomas were evaluated 
for expression of (A) PDL1 and (B) PDL2. DMSO controls were run in triplicate. MFI values are graphed 
with autofluorescence values subtracted. 
 

 

Systemic HDAC Inhibition Upregulates PDL1 and PDL2 on Tumor Cells 

in vivo 

 Considering the high potency of LBH589 in the described in vitro experiments 

and its clinical relevance on ongoing clinical trials, this HDACi was chosen for further 

investigation. The effects of LBH589 on PDL1 and PDL2 expression on tumor cells in 
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vivo were evaluated using a B16F10 mouse model. In order to determine the ideal dose 

of LBH589 for in vivo treatment, several concentrations ranging from to 1 to 25mg/kg 

were addressed. Loss of body mass was assessed as a surrogate of toxicity, and is 

reported in figure 5. Since no differences in mouse weight were observed for any of the 

doses, in comparison with vehicle control (5% dextrose), the previously described 

concentration of 15mg/kg for a mouse model214 was chosen for in vivo studies. Briefly, a 

total of 105 B16F10 melanoma cells were subcutaneously inoculated in C57BL/6 mice 

and tumors were allowed to grow for 10 days, when they become visible or palpable. 

LBH589 (15mg/kg) or vehicle were intraperitoneally administered for three consecutive 

days. Tumors were then resected and physically dissociated by passing the mass 

repeatedly through a 70µm sterile filter. Expression of PDL1 and PDL2 was performed 

by flow cytometry and assessed on viable CD45- cells. Graphs on figures 6A and B 

illustrate the acquired average of MFI ± the standard error of the mean (SEM). In 

summary, PDL1 was upregulated following in vivo treatment with LBH589, reaching an 

average MFI of twice as the value in the dextrose control group. Additionally, PDL2 

expression was also enhanced on tumor cells when mice were treated with LBH589, in 

comparison with dextrose administration. However, similar to results obtained in vitro, 

the magnitude of PDL2 upregulation was inferior than the effects observed on PDL1 

expression.  
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Figure 5. In vivo LBH589 Toxicity Assessment. B16F10 bearing mice (5 per group) were treated with 
indicated doses of LBH589 or dextrose by intraperitoneal injection three times weekly (Monday, 
Wednesday, Friday) beginning on day 10. Mouse body mass was monitored.  
 

 

 

 

 

 
Figure 6.  HDAC Inhibitors Upregulate PDL1 and PDL2 Expression in vivo.  C57BL/6 mice were 
inoculated subcutaneously with B16F10 melanoma. When tumors were visible, 10 days post inoculation, 
mice received treatment with 15mg/kg LBH589 or dextrose control (five mice per group) for three 
consecutive days. On the third day of treatment, tumors were harvested. (A) PDL1 and (B) PDL2 
expression were evaluated by flow cytometry. *P<0.05, **P<0.01. 
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LBH589 Treatment Augments Histone Acetylation at the PDL1 and PDL2 

Gene Promoters 

 HDACs play an important role in modulating the acetylation status of 

histones, and thus, chromatin structure. As such, changes in histone acetylation as a 

result of LBH589 treatment were evaluated at the promoter regions of PDL1 and PDL2 

genes. The melanoma cell line WM983A was treated with 12.5nM LBH589 or DMSO 

control for two hours, prior to cell fixation for chromatin immunoprecipitation (ChIP) 

analysis. Fixed cells were then pulled-down for pan-acetylated histone 3, as described 

in the methods section. Primers covering the promoter regions of PDL1 and PDL2 were 

designed in order to evaluate histone 3 acetylation in these areas. As demonstrated in 

figure 7A, LBH589 in vitro treatment resulted in increased histone acetylation in the 

PDL1 promoter region in comparison to DMSO control, reaching a peak around 455bp 

upstream the first exon of human PDL1 gene. Such acetylation was also observed into 

the gene region and up to approximately 1700bp upstream the first exon. Furthermore, 

histone 3 acetylation was marginally enhanced on PDL2 promoter region after in vitro 

treatment with LBH589, and may be a reflection of the low basal acetylation observed 

upon DMSO control treatment (figure 7B). To build upon these findings, histone 3 

acetylation at the PDL1 and PDL2 promoters was assessed in several melanoma cell 

lines, including WM793, Mel-624, Mel-888 and SkMel-21. As demonstrated in figures 

7C and D, higher levels of acetylated histone 3 were observed at the gene promoters 

after in vitro treatment with LBH589, in comparison with DMSO control. In accordance 

with the previous results, increase in acetylation of histone 3 at the PDL2 gene was 

modest for the majority of the cell lines. 
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Figure 7. HDAC Inhibition Increases Histone Acetylation at the PDL1 and PDL2 Promoters. 
Indicated melanoma cell lines were treated in vitro for two hours with 12.5nM LBH589 (squares) or DMSO 
control (circles). Cells were then fixed and chromatin immunoprecipitated for acetylated histone 3 or IgG 
control. DNA pull-down was quantified by qRT-PCR. Fold enrichment over corresponding IgG pull-down 
at the (A) PDL1 and (B) PDL2 gene regions for WM983A are graphed. Results shown are representative 
of two independent experiments. Five other cell lines were assessed once for acetylation at the (C) -455 
gene region of PDL1 and (D) +307 gene region of PDL2. For all graphs, error bars are representative of 
technical replicates.  
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Acetylated Chromatin Status Resulted from LBH589 Treatment Leads to 

Enhanced PDL1 Gene Expression 

 Increased levels of histone acetylation usually promote relaxation of the 

chromatin structure and, thus, gene expression. Since LBH589 in vitro treatment of 

melanoma cells resulted in substantial differences in the levels of acetylated histone 3 

at the PDL1 promoter region, impacts on gene expression were explored. First, kinetics 

of mRNA levels of PDL1 were assessed by qRT-PCR in LBH589 or DMSO treated 

WM983A cells for 6, 14, 24 or 48 hours. As demonstrated in figure 8A, PDL1 mRNA 

expression was upregulated as early as 6 hours and continued to increase at least until 

48 hours after inhibition through 12.5nM LBH589 treatment, in comparison to DMSO 

control. The earliest time-point assessed was chosen for further evaluation of PDL1 

expression in additional melanoma cell lines, represented on figure 8B. Indeed, 

LBH589-treated cells displayed higher levels of PDL1 mRNA at 6 hours, largely variable 

among the cell lines. 

 Gene transcriptional activity is often modulated through the acetylation status 

of histones. Considering that all the melanoma cell lines tested displayed varied levels 

of acetylation of histone 3 at the promoter region of PDL1, protein and mRNA 

expression, the association of these three observed values was explored at a basal 

level for the cell lines WM983A, WM793, Mel-624, Mel-888, SkMel-21 and WM1366. 

Correlations across the autofluorescence-adjusted MFI values of PDL1 surface 

expression shown in figure 2C, the relative fold units of PDL1 mRNA from figure 8B, 

and the PDL1 gene associated acetylated histone 3 fold enrichment values graphed on 

figure 7C were assessed. As shown in figures 8C-E, correlations were identified 
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between PDL1 gene acetylation and mRNA expression (R2=0.861), PDL1 surface 

expression and mRNA expression (R2=0.5649), and PDL1 surface expression and 

acetylation (R2=0.5958). 

 In order to address whether PDL1 transcription was mainly due to a direct 

epigenetic effect on the chromatin structure or other indirect mechanism were involved, 

IFNγ secretion was evaluated on melanoma cells treated with pan- or class I HDACi. 

IFNγ is an inflammatory cytokine capable of stimulating PDL1 expression on tumor 

cells261,262. Since HDAC inhibitors can alter the chromatin structure and thus regulate 

gene expression, the levels of IFNγ were assessed after HDACi treatment, even though 

melanoma cells are not known to secrete this cytokine. For analysis of cytokine 

secretion, melanoma cells were treated in vitro with 12.5nM LBH589, 250nM 

MGCD0103 or 250nM MS275 for 72 hours, and assessed for IFNγ present on 

supernatant. The pan- and class I selective inhibitors failed to induce IFNγ production 

melanoma cells from a patient, and on the cell lines WM983A, Mel-624 and Mel-888. 

Since the amount of secreted IFNγ was undetectable for DMSO and HDACi treated 

cells, this datum was not graphed. To verify the reliability of the technique and whether 

the melanoma cells were capable of cytokine production, the levels of other cytokines 

were also assessed, including TNF, IL-2, IL-4, IL-6 and IL-10. While no measurable 

amounts of TNF, IL-2 and IL-4 were detected, IL-10 and IL-6 production were observed 

at basal levels (DMSO control treatment) and following HDAC inhibition for 72 hours. 

The cell line Mel-624 and melanoma cells derived from two patient samples were 

evaluated. The levels of IL-10 and IL-6 secretion ranged from 50 to 2500 and 20 to 800 

pg/mL, respectively, and variations were dependent on the sample and treatment. 
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Interestingly, there was no distinguished pattern in the regulation of these cytokines 

across LBH589, MGCD0103 and MS275 treatments. The acquired values for cytokine 

secretion were consistent among sample triplicates for each treatment, but largely 

varied between cell lines and treatment. The results herein described indicate that 

HDACi-mediated PDL1 upregulation was likely due to a direct mechanism facilitating 

gene expression. 

 

 

 

Figure 8. PDL1 mRNA Expression Increased Following HDAC Inhibition, Correlating with Protein 
Expression and Gene Acetylation. (A) WM983A cells were treated with DMSO or 12.5nM LBH589 for 
indicated time points. Cells were assessed by qRT-PCR for PDL1 expression. (B) Indicated cell lines 
were treated with DMSO or 12.5nM LBH589 for six hours and subsequently assessed by qRT-PCR for 
PDL1 expression. For all graphs, error bars are representative of technical replicates. Correlations of (C) 
PDL1 surface expression versus gene acetylation, (D) PDL1 surface expression versus gene expression 
and (E) PDL1 gene acetylation versus gene expression were assessed for various melanoma cell lines at 
basal state (DMSO control). Acetylated H3 was graphed as fold enrichment over corresponding IgG pull-
down at the -455 region of PDL1 gene. Gene expression was determined by qRT-PCR and calculated as 
fold units relative to 18S endogenous ribosomal RNA. Flow cytometry analysis of PDL1 surface 
expression was indicated as mean fluorescence intensity (MFI). 
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Systemic Treatment of LBH589 in Combination with PD1 Blockade Delays 

Tumor Growth and Increases Mouse Survival 

As an attempt to disrupt the upregulation of PD1 ligands mediated by HDAC 

inhibition, while maintaining the anti-tumor effects promoted by HDAC inhibitors, 

combination therapy of PD1 blockade and LBH589 treatment was explored in vivo. 

Initially, B16F10 melanoma cells were subcutaneously inoculated in C57BL/6 mice. 

After tumors established, ten mice per group were treated with intraperitoneal injections 

of 15mg/kg LBH589, 3mg/kg PD1 blocking antibody, a combination of both compounds, 

or vehicle control (5% dextrose). As reported in figure 9A, combinatory therapy of 

LBH589 and PD1 blockade significantly reduced tumor progression in comparison to 

the control group (p<0.05 at days 21, 24 and 27). As a single agent, neither LBH589 nor 

PD1 blockade reached significance over control, although a trend towards minimizing 

tumor burden was observed in LBH589-treated mice. No discernable differences in 

melanoma growth over the control group were seen during treatment solely with PD1 

blocking antibody. As demonstrated on figure 9B, mouse survival was also improved as 

a result of combination therapy of LBH589 and PD1 blockade versus vehicle control 

(p<0.05). The median survival times were greater than 37 days for combination therapy, 

34.5 days for LBH589, 30.5 days for PD1 blocking antibody, and 29 days for dextrose. 
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Figure 9. Combining HDAC Inhibition with PD1 Blockade in vivo Results in Delayed Tumor Growth 
and Enhanced Survival. C57BL/6 mice were inoculated subcutaneously with B16F10 melanoma. Seven 
days after inoculation mice began treatment with LBH589 (15mg/kg, triangles) (Monday, Wednesday and 
Friday), PD1 blocking antibody (3mg/kg, squares) (Tuesday and Thursday), a combination of these 
agents (diamonds) or dextrose control (circles) for three weeks. (A) Tumor growth was measured and (B) 
survival monitored. Log rank test of survival curve differences was p<0.05. Ten mice were assessed per 
group and results shown are representative of two independent experiments. *p<0.05.  
 

 

Discussion 

 The ability of pan- and class I-HDAC inhibitors to upregulate the PD1 ligands 

PDL1 and PDL2 on melanoma cells was demonstrated here in experiments both in vitro 

and in vivo. PDL2 expression was enhanced at a lesser degree than PDL1, with the 

latter being robust and sustained. Moreover, all murine and human melanoma cells 

lines evaluated, as well as tumor cells obtained from melanoma patients, displayed 

HDAC inhibition mediated upregulation of PDL1 and PDL2 regardless of the mutational 

status (table II; figures 2 and 4). Mechanistically, enhanced PDL1 expression was 

associated with higher levels of histone acetylation at its gene promoter region, as a 

reflection of HDAC inhibition. In line with acetylated histone relaxing chromatin 

structure, the amounts of PDL1 mRNA were also elevated, suggesting a link between 
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increased expression of this protein and the HDAC inhibitor-mediated histone 

acetylation. Supportive of this hypothesis, correlations at basal levels between 

acetylated histone 3 at the gene promoter region, PDL1 message, and protein 

expression, were found to be significant (figure 8). Interestingly, PDL2 gene displayed 

lower histone acetylation than PDL1 promoter region at basal levels, and this may be 

the reason for the observed reduced degree of PDL2 expression. Moreover, LBH589-

mediated inhibition resulted in only a mild increase of histone acetylation at the gene 

promoter region of PDL2 (figure 7). Collectively, these results suggest a direct 

mechanism of HDAC inhibition in upregulating PDL1, through relaxation of chromatin at 

the gene promoter region mediated by increased acetylation of histone 3. 

 In the cell lines and patient samples evaluated, expression of PDL1 was 

detectable at a basal level, and proven to be upregulated following class I HDAC 

inhibition. For instance, WM793 cell line displayed low amounts of PDL1 protein at a 

basal state, and HDAC inhibition induced the lowest levels of acetylated histone 3 at the 

gene promoter among all the cell lines tested. Intriguingly, the ability of HDAC inhibition 

to enhance PDL1 surface expression was still present, although the basal levels of this 

protein were minimally above background (fluorescence minus one). In contrast, PDL1 

upregulation induced by HDAC inhibition on the mouse cell line B78H1 did not seem to 

be related to the initial expression of the protein. This may be a result of dysfunctional 

gene transcripts often present in B78H1 cell line263. Therefore, further studies need to 

be conducted in order to elucidate whether the reported upregulation is dependent on 

initial expression of PDL1. While the effects mediated by HDAC inhibitors granted 

enhanced accessibility of the transcriptional machinery to PDL1 promoter, upregulation 
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of this molecule might still rely on functional transcription factors, such as STATs 

proteins. While beyond the focus of this work, research exploring the differences in the 

machinery regulating PDL1 expression among the diverse melanoma cell lines is 

relevant for the basic understanding of this molecule. Answering these questions will 

provide a strong rationale regarding strategies to target the immune-tumor interactions 

in the clinical setting. 

 The results herein presented demonstrated the ability of HDAC inhibitors to 

modulate PD1 expression. However, further investigation of the specific HDACs 

orchestrating this effect is necessary to increase specificity and minimize undesirable 

events. Here, the pan-HDAC inhibitor LBH589 was able to increase expression of 

PDL1, an effect also extended to treatment with the class I HDAC inhibitors MGCD0103 

and MS275. These inhibitors display most potency against HDACs 1, 2, 3, 11, and 

HDACs 1, 3, respectively. As the class I HDAC8 is not reported targeted by these 

inhibitors, it is postulated that the impacts on PDL1 expression induced by HDAC 

inhibition were likely due to the activity of HDACs 1, 2 and/or 3. Indeed, the HDAC8-

selective inhibitor PCI34051, and also HDAC6-selective inhibitors, failed to modulate 

PDL1 or PDL2 expression, at least at the evaluated concentrations. In support to this 

hypothesis, HDACs 1, 2 and 3 are mainly localized in the cell nucleus, in contrast to the 

generally cytoplasm localization of the remaining classical HDACs. It is likely that 

alterations on the acetylation levels of histones induced by the use of pan- and class I-

HDAC inhibitors partially control their transcriptional activity. However, further 

identification of the particular HDACs regulating expression of PD1 ligands and 
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contribution of other epigenetic mechanisms (e.g. DNA methylation) to modulation of 

these molecules need to be fully addressed. 

 In the clinical setting, the presence of PDL1 on tumor cells has been 

associated with improved objective response of patients undergoing PD1 blockade 

therapy131,264. This is likely a reflection of an active and productive immune system, 

resulting in upregulation of PDL1 as means to temper reactive immune cells. Lack of 

PDL1 may reflect the absence of a pro-inflammatory immune response, in which no 

stimuli for PDL1 and PDL2 expression (e.g. IFNγ and TNF secretion) are provided265. 

Hence, the benefits of PD1 blockade may be irrelevant in a milieu where T-cells are 

unable to properly respond against tumor. The herein model demonstrates that 

upregulation of PDL1 and PDL2 is a direct effect of HDAC inhibition, other than 

associated with an active immune system. In this case, PDL1 expression is an 

undesirable effect mediated by HDAC inhibitors, and can be circumvent by the use to 

PD1 blockade therapy. Indeed, blocking this pathway concomitantly with HDAC 

inhibition for the treatment of B16F10 melanoma in a mouse model resulted in 

synergistic response, providing rationale for combining these agents as an 

immunotherapeutic strategy. Indeed, concomitant in vivo administration of the pan-

HDAC inhibitor LBH589 and PD1 blocking antibody improved response against tumor in 

comparison with either drug alone or vehicle control, leading to reduced tumor burden 

and enhanced overall survival of melanoma-bearing mice (figure 9). 

 The relevance of an intact immune system for the treatment of melanoma 

using LBH589 monotherapy has been previously shown in mouse models. Under these 

models, overall survival of melanoma-bearing mice was improved following LBH589 in 
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vivo, but the HDAC inhibitor failed to generate an anti-tumor response in 

immunodeficient mice214. Accordingly, treatment of B16F10-bearing mice with LBH589 

as a single agent resulted in a mild reduction of tumor burden and increased survival in 

the herein studies, while PD1 blockade alone did not improve anti-tumor response in 

comparison to the control group (figure 9). In support of these results, PD1 blockade 

has been shown to be unable to provide benefits as a single agent in mouse B16F10 

melanoma models, reaching anti-tumor response only in combination with vaccine 

therapy266. Interestingly, combining PD1 blocking antibody with LBH589 in vivo resulted 

in improved outcome, even in the absence of adjuvant vaccination (figure 9). It is 

postulated that HDAC inhibitors activities confer superior T-cell activation, as they are 

known to augment tumor antigens and MHC expression in melanoma cells214, thus 

acting as an adjuvant for PD1 blockade therapy. 

 Finally, these data corroborate previous evidence demonstrating the ability of 

HDAC inhibitors to influence the immune landscape in the context of cancer, through 

changes including cytokine secretion from tumor cells, as wells as expression of 

differentiation antigens, MHC and costimulatory molecules. Furthermore, the intimate 

relationship between epigenetic regulation and immune outcome is highlighted herein, 

supporting the assessment of HDAC inhibition and PD1 blockade in the clinical setting. 
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CHAPTER THREE: 

SELECTIVE HDAC INHIBITION IMPROVES T-CELL FUNCTION IN THE SETTING 

OF MELANOMA IMMUNOTHERAPY 

 

Background and Rationale 

Epigenetic modifications are key players in regulating gene expression. In this 

regard, modulation of histone deacetylases (HDACs) has raised attention for its 

implications in tumor biology. While HDAC pan-inhibition directly affects tumor growth, 

the immune system may succumb to its broad nature. Recently developed HDAC-

selective inhibitors can minimize undesirable effects, being attractive for cancer 

immunotherapies. Adoptive transfer of T-cells (ACT) has been used in several clinical 

trials and has demonstrated potent responses against tumor141,144-147. ACT therapy is 

especially effective treatment for metastatic melanoma, achieving objective clinical 

responses as high as 72% of patients undergoing tumor infiltration lymphocyte (TIL) 

therapy141. However, lack of persistence of reactive T-cells is a major reason why 

patients fail to sustain long term responses to treatment. Acquisition of T-cell memory 

characteristics contributes to the effectiveness of ACT, as illustrated in preclinical and 

clinical studies160,166,267-270. Indeed, a meta-analysis study involving 16 publications and 

4248 cancer patients with diverse types of tumors correlated the presence of memory 

TILs with prediction of disease prognosis. An association between accumulation of 
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memory-defined TILs in the tumor sites and favorable clinical outcomes of overall 

survival and disease-free survival was observed271. 

Research has shown the importance of the level of differentiation of CD8+ and 

CD4+ T-cells for an effective response against tumor. There is no clear cut in terms of a 

defined T-cell population capable of the most potent anti-tumor activity, however, a 

growing body of evidence suggests that the presence of early differentiation markers 

may confer improved responses. In a preclinical study of ACT therapy for melanoma-

bearing mouse model, transfer of naïve T-cells promoted superior anti-tumor activity 

than transfer of T-cells comprising more advanced stages of differentiation. This may be 

due to reduced homing to lymphoid organs, lower production of IL-2 and increased 

susceptibility to apoptosis272. Subsequent preclinical studies showed that both naïve 

and central memory T-cells were effective for ACT protocols. Interestingly, low 

expression of the terminal differentiation and senescence marker KLRG1 was 

associated with higher proliferative capacity and cytokine production following ACT273. 

Moreover, several other parameters may confer increased T-cell proliferation, such as 

low levels of CD57 and longer telomeres274. In murine and primate animal models, 

infusion of central memory T-cells presented superior persistence in vivo when 

compared to transfer of effector memory T-cells. Furthermore, central memory T-cells 

maintained their phenotypic and functional characteristics, including expression of 

lymphoid homing molecules275,276. While phenotypic markers of differentiation are 

constantly being explored and there is no strict classification of T-cell subsets, 

differences in expression of CD45RA and CD45RO lineage markers, and CD62L and 
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CCR7 molecules can aid in distinguishing between naïve, central memory, effector 

memory and effector cells277. 

The results described herein highlight benefits in modulation of T-cells through 

the HDAC6 selective inhibitor ACY1215, including upregulation of a central memory 

phenotype, reduced production of type-2 T-cell response, enhanced expression of 

activation and costimulatory proteins, as well as effector molecules, ultimately leading to 

improved cytotoxicity against tumor cells. 

ACY1215 has been used as a single agent and in combination with 

pomalidomide, lenalidomide or bortezomib in several ongoing clinical trials for the 

treatment of hematological malignancies (ClinicalTrials.gov Identifiers: NCT01323751, 

NCT01997840, NCT02091063, NCT01583283, NCT02189343). Preliminary results of a 

phase I clinical trial using ACY1215 combined with either lenalidomide or 

dexamethasone for the treatment of multiple myeloma demonstrated safety and 

biological activity of ACY1215 administration278. Also for the treatment of multiple 

myeloma, ACY1215 was given in combination with bortezomib or dexamethasone. 

Once more, all doses assessed were well tolerated279. Furthermore, preclinical studies 

using ACY1215 in combination with bortezomib demonstrated synergistic effects on the 

treatment of human multiple myeloma on immunodeficient mice, as indicated by 

reduced tumor burden and increased overall survival235. Although administration of 

ACY1215 has demonstrated direct impact on tumor viability and growth, its effects on 

immune cells remain to be investigated in the cancer setting. 
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Materials and Methods 

 

Human Samples 

Peripheral blood mononuclear cells (PBMC) were obtained from apheresis of 

healthy donors and isolated from buffy coats, or collected in heparin tubes from blood 

samples of melanoma patients. Samples derived from healthy donors were provided 

from OneBlood (Tampa, FL) and samples derived from melanoma patients were 

obtained from clinical trials performed at H. Lee Moffitt Cancer Center. All studies 

involving the use of primary human cells were in agreement with protocols approved by 

the IRB at H. Lee Moffitt Cancer Center and University of South Florida (IRB approval 

protocol number 106509). Briefly, PBMC samples were separated via centrifugation in a 

density gradient using 1.077g/mL Ficoll Histopaque. CD3+ T-cells were then harvested 

through negative-isolation using magnetic columns. For experiments involving tumor 

infiltrating lymphocytes (TILs), melanoma patient samples were obtained from surgical 

biopsies. Tumor fragments were cultured in media containing 6000IU/mL recombinant 

human IL-2. Yielded reactive TILs were either frozen at this step or rapidly expanded 

(REP) through activation with 30ng/mL OKT3 antibody and irradiated (5000 rads) feeder 

cells in a ratio of 200:1 of feeders:TILs. All human T-cells were cultured in RPMI media, 

supplemented with 10% human serum, 55μM beta-mercaptoethanol, non-essential 

amino acids, HEPES, penicillin, streptomycin and gentamicin.  
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HDAC Inhibitors 

HDACi were obtained and utilized as described previously on chapter 2. 

Additionally, the inhibitors SAHA, quisinostat, LMK235, TMP269, nexturastat A, 

tubastatin A, RGFP966 and BG45 were also purchased from Selleck Chemicals 

(Houston, TX). 

 

T-cell Cytokine Production 

 T-cells from healthy donors and melanoma patients were plated, activated via 

CD3/CD28 dynabeads (ThermoFisher Scientific, Waltham, MA), and cultured for 72 

hours in the presence of DMSO control or HDACi, at the indicated concentrations. 

Supernatant was then collected for evaluation of cytokine production by luminex 

multiplex assay, performed as indicated by the manufacture. A Luminex 100 instrument 

was used for sample acquisition. 

 

Flow Cytometry Analyses 

 For surface analyses, cells were stained in the presence of FACS buffer 

(PBS, 2nM EDTA, 2% FBS), as described previously in chapter 2. Antibodies against 

CD3, CD8, CD4, CD69, CD278 (ICOS), CD45RA, CD45RO, CD62L, and/or CCR7 that 

were conjugated to a variety of fluorochromes and purchased from BD Biosciences 

(San Jose, CA) or eBioscience (San Diego, CA). For evaluation of acetylated histone 3 

and acetylated α-tubulin, intracellular staining was performed using the transcription 

factor staining buffer set from eBioscience (San Diego, CA), as indicated by the 

manufacture. Briefly, a two-step protocol was performed for intracellular staining with 
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the primary antibodies alexa fluor 647-conjugated acetylated histone 3 (Novusbio, 

Littleton, CO) and unconjugated acetylated α-tubulin, followed by secondary staining 

with PE-conjugated anti-Fab2 (Cell Signaling, Danvers, MA). To assess T-cell 

production of effector molecules, intracellular staining was also performed as described 

above, using fluorochrome-conjugated antibodies against IFNγ and CD107a purchased 

from BD Biosciences. All human T-cells used for in vitro studies were cultured in the 

presence of 6000IU/mL IL-2, and either not activated or stimulated via aCD3/CD28 or 

phorbol myristate acetage (PMA)/ionomycin (Cell Stimulation Cocktail; eBioscience; 

San Diego, CA), as indicated.  

 

T-cell Viability Assays in vitro 

 Viability analyses were performed by flow cytometry of DAPI (50ng/mL) 

labeled cells or by MTS colorimetric assay obtained from Promega (Fitchburg, WI), 

according to the manufacture’s instructions. Briefly, mouse or human T-cells were 

cultured for 72 hours in the presence of HDACi or DMSO control. Cells were then 

incubated with MTS reagent for three hours, and reduction of MTS tetrazolium 

compound by the live cells was measured by the Synergy HTX spectrophotometer 

(BioTek, Winooski, VT). Absorbance was set at 490nM and background subtraction, at 

670nM. Acquired values were represented as relative percentage of DMSO control 

treated cells. 
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T-cell Cytotoxicity Against Melanoma 

 To assess T-cell cytotoxicity capabilities, pre-REP TILs were thawed and 

cultured in the presence of 500nM ACY1215 and 6000IU/mL IL-2 for seven days. Cells 

were washed with PBS and cultured for five more days with fresh media containing 

6000IU/mL IL-2, 1ug/mL OKT3 and 500nM ACY1215. HLA-matched melanoma cell line 

(Mel-624) was labeled with Cell Trace Far Red (ThermoFisher Scientific, Waltham, MA), 

plated and co-cultured with TILs for 48 hours, at indicated ratios. Melanoma cell death 

was then evaluated by flow cytometry analysis of annexin V and propidium iodide (PI).  

 

Microarray Analysis 

 For microarray analysis, TILs were cultured for seven days in the presence of 

6000IU/mL IL-2 and 500nM ACY1215 or DMSO control and then lysed for RNA was 

extraction. Briefly, RNA was converted into cDNA, amplified and biotin-labeled, using 

the Ambion Message Amp Premier RNA Amplification Kit (Life Technologies, Grand 

Island, NY). The protocol was adapted from Van Gelder et al280. For Affymetrix-based 

array, biotin-labeled RNA hybridization, staining and chip scanning was performed, as 

previously described in Warrington et al281. The Human Genome U133 Plus 2.0 

oligonucleotide probe arrays were used, containing probes for transcripts designed 

based on GenBank, dbEST and RefSeq sequences. For microarray data analysis, 

hybridization artifacts were inspected on the output files and subsequently analyzed 

through the Affymetrix GeneChip Operating Software (GCOS), using the MAS 5.0 

algorithm for background correction. Statistical analysis based on paired, student’s t-test 

determined significant probes, and considered p-value and q-value, 50% false discovery 
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rate cut-off, and p-value<0.001. The selected significant probes averaged fold 

change>1.5x and the probe sets were mapped to known single gene. For pathway 

analysis, gene set enrichment analysis (GSEA) computational methods was used. 

 

Mouse Studies in vitro and in vivo 

 To evaluate tumor immune infiltrate in a melanoma-bearing mouse model, 

C57BL/6 mice were subcutaneously inoculated with 105 B16F10 cells. After seven days 

from injections, intraperitoneal administration of 15mg/kg LBH589 or vehicle control (5% 

dextrose) was performed, thrice weekly for one week. At the last day of treatment, 

tumors were harvested and physically dissociated through repeated passages in a 

70um filter. Flow cytometry analysis of live cells stained for CD45, CD8, CD4, PD1, 

PDL1 and PDL2 was performed using a LSR II instrument (BD Biosciences) and FlowJo 

software. Antibodies were obtained from BD Bioscience (San Jose, CA) or eBioscience 

(San Diego, CA). Viability was determined by the use of 50ng/mL DAPI dye. For 

evaluation of circulating lymphocytes, mice were treated with LBH589 or 5% dextrose, 

as described above, and cell numbers were determined by complete blood count 

(CBC).  

For in vitro experiments, lymph nodes and spleens were harvested from 

C57BL/6, and CD3+ T-cells were negatively isolated through magnetic columns. T-cells 

were plated and cultured for 72 hours in the presence of increasing doses of LBH589 

(0.3 to 20nM) or DMSO control. Analysis of live cells was performed by flow cytometry 

of DAPI-stained cells, as described above. 
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Statistical Analysis 

Statistical analysis based on paired, two-tailed, student’s t-test determined 

significance of DMSO control versus ACY1215-treated primary human T-cells. 

Differences in DMSO control versus ACY1215-treated mouse T-cells during in vitro and 

in vivo experiments were assessed by unpaired, two-tailed, student’s t-test. GraphPad 

Prism 6.0 software was used for all statistical analyses, and p-values lower than 0.05 

were considered significant. 

 

Results 

 

Pan-HDAC Inhibition through LBH589 Upregulates PDL1 and PDL2 on 

Immune Cells, with no Impact on PD1 Expression 

 To build upon the previous results of LBH589 effects on PDL1 and PDL2 

expression by melanoma cells, the immune infiltrate of tumor-bearing mice was 

assessed for expression of these inhibitory proteins. To this end, 105 B16F10 

melanoma cells were subcutaneously injected on mice flanks. After tumors were 

established, treatment with 15mg/kg LBH589 or 5% dextrose began, thrice weekly for 

one week. Resected melanoma was then evaluated for expression of PDL1 and PDL2 

on non-tumor cells, and PD1 on T-cells. As demonstrated in figure 10A, systemic 

treatment with LBH589 resulted in upregulation of PDL1 and PDL2 on CD45+ non-T-

cells (CD8-CD4-) immune cells (p<0.01 and p<0.05, respectively). Interestingly, no 

detectable changes on PD1 receptor expression occurred (figure 10B). All MFI values 

for PDL1, PDL2 and PD1 expression were above background (fluorescence minus 
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one), and are illustrated in table IV. Intriguingly, the percent of CD45+ cells out of live 

cells was reduced in LBH589-treated group, in comparison to control (p<0.05), as 

illustrated in figure 10C. This could be a result from skewing of a specific immune 

subset or of stromal cells.  Another possible explanation is that HDACi cytotoxic effects 

may be detrimental to immune cells viability. 

 

Pan-HDAC Inhibitors Impact T-cell Viability in vitro and in vivo 

Although HDAC inhibitors have established anti-tumor properties282, impairment 

of the class I HDACs 1 and 2 is known to promote apoptosis on activated and 

proliferating T-cells283. To address the effects of pan-HDAC inhibition through LBH589, 

mouse CD3+ T-cells were cultured in vitro for 72 hours in the presence of maintenance 

dose of IL-2 (100IU/mL) and increasing concentrations of LBH589, ranging from 0.3nM 

to 20nM. The 0 (zero) point on the x axis represents treatment with DMSO control. As 

shown in figure 11A, LBH589 doses ranging from 2.5nM to 20nM resulted in 

approximately 20 to 50% of cell viability. The graph is representative of three to four 

experiments, and cell death is usually variable and/or higher than 50% from 

concentrations raging from 2.5nM to 20nM. To evaluate the impact of LBH589 on T-

cells following in vivo treatment, melanoma-bearing mice were injected with 15mg/kg 

LBH589, as described in the methods section. After LBH589 treatment, the number of 

circulating total lymphocytes was reduced to about 50% in comparison to the control 

group (p<0.01), as demonstrated in figure 11B. 

To further these results, human T-cells obtained from PBMC of melanoma patients were 

treated in vitro with an expanded panel of HDACi. Isolated CD3+ T-cells were treated 
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with several HDACi or DMSO control for 72 hours. As illustrated in figure 11C, all pan-

HDAC inhibitors tested, including LBH589, SAHA, belinostat and quisinostat, enhanced 

T-cell death. At the doses evaluated, the class I HDAC inhibitors MS275 and 

MGCD0103 promoted minimal effects on T-cell viability. Similarly, the class IIa HDAC 

selective inhibitors LMK235 and TMP269, the HDAC6 selective inhibitors ACY1215, 

nexturastat A and tubastatin A, the HDAC3 specific inhibitors RGFP966 and BG45, and 

the HDAC8 selective inhibitor PCI34051 displayed low impact on T-cell viability, at least 

at the assessed concentrations. The concentration of DMSO used as control for the in 

vitro studies was calculated based on the highest amount used for the HDACi 

treatments. This amount had no effect on T-cell viability, being similar to media only 

condition for all parameters evaluated (data not shown). 

 

 

Table 4. Expression of PD1, PDL1 and PDL2 on Mouse Tumor Infiltrating Immune Cells. Mean 
fluorescent intensity (MFI) values obtained from 9-10 mice treated with dextrose or LBH589 are illustrated 
as mean + SEM. 

 

 

 

CD8+ CD4+
Treatment PD1	MFI PD1	MFI PDL1	MFI PDL2	MFI

Autofluorescence 114 109 265 268
Dextrose	Control 559.3	(	+	25.1) 359.2	(	+	17.5) 952.9	(	+	11.7) 715.4	(	+	14.1)
LBH589	(15mg/kg) 532.4	(	+	48.5) 349.5	(	+	15.1) 1131.7	(	+	17.0) 879.7	(	+	17.4)

Non	T-cells	CD45+
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Figure 10. Pan-HDAC Inhibition in vivo through LBH589 Promotes Diverse Effects on Tumor 
Infiltrating Immune Cells. B16F10-bearing mice were treated in vivo with 15mg/kg LBH589 or dextrose 
control and evaluated by flow cytometry for expression of (A) PDL1 and PDL2 on CD45+CD8-CD4- cells, 
(B) PD1 on CD45+CD8+ or CD45+CD4+ T-cells, and (C) percent of CD45+ cells. *p<0.05, **p<0.01, two-
tailed student’s t test. 
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Figure 11. Pan-HDAC Inhibition Reduces T-cell Viability. (A) CD3+ T-cells harvested from lymph 
nodes and spleens of C57BL/6 were treated with LBH589 for 72 hours at the indicated doses. The 
percent of viable T-cells was assessed through DAPI staining by flow cytometry. (B) B16F10-bearing 
mice were treated in vivo with 15mg/kg LBH589 and the number circulating lymphocytes was evaluated 
by complete blood count (CBC). **p<0.01, two-tailed student’s t test. (C)  CD3+ T-cells were negatively 
isolated from PBMC of melanoma patients and treated with pan- or isotype-selective HDAC inhibitors for 
72 hours, at the indicated doses. Viability was determined by MTS colorimetric assay. 
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HDAC Inhibitors Have Disparate Effects on T-cell Cytokine Production 

 The next step was to evaluate the effects of these HDACi on global T-cell 

cytokine production in the setting of cancer. Human T-cells obtained from PBMC of 

melanoma patients were activated via CD3/CD28 stimulation and treated in vitro with 

several HDACi with diverse selectivity. Samples from seven to twelve patients were 

assessed for cytokines commonly produced by T-cells, including IFNγ, IL-2, IL-4, IL-6, 

IL-10 and IL-17A. These cytokines determine T-cell function and are important during 

response against tumors. High levels of Th2 cytokines (e.g. IL-4, IL-10) are usually 

present in cancers at advanced stages and associated with worse 

prognosis284. Conversely, a Th1 response is characterized by the production of effector 

cytokines, such as IFNγ and IL-2, and is preferable for a productive response against 

the tumor. Indeed, these cytokines have been used over the past 30 years to augment 

cancer immunotherapy285. In addition to the classic Th1 and Th2 phenotypes, T-cells 

can polarize to a Th17 phenotype, characterized by secretion of IL-17. The roles of IL-

17 are complex and note fully understood. Indeed IL-17 has been shown to be context-

dependent, and capable of suppressing or promoting tumor progression286,287. Although 

the mechanisms underlying these effects are not elucidated, the importance of IL-17-

expressing T-cells in the cancer context is becoming evident. 

Representative data are illustrated in figure 12, and the standard error of the 

mean (SEM) was calculated based on independent treatments of the same patient 

samples. With exception of IL-2, treatment with pan-HDAC inhibitors resulted in 

decreased levels of most cytokines. In fact, IL-2 secretion was induced regardless of 

HDACi treatment, reaching amounts of 2000pg/mL. Inhibition of class I HDACs, class 
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IIa HDACs, HDAC3 and HDAC8 led to an unclear pattern of cytokine production, with 

variable effects especially in IL-17A, IL-4, IL-6 and IL-10. Induction of IL-17A was 

indeed inconsistent or minimal following HDAC inhibition through all the tested 

compounds. Surprisingly, the HDAC6 selective inhibitors nexturastat A and tubastatin A 

displayed similar behavior on production of IL-4, IL-6 and IL-10, while the HDAC6 

selective inhibitor ACY1215 resulted in distinct effects. That is, IL-4 secretion was 

downregulated in the presence of nexturastat A, tubastatin A and ACY1215, but the 

levels of IL-10 were higher following inhibition with the first two and lower in ACY1215-

treated samples. 

It is important to note that these studies did not assess the percentages of CD4+ 

and CD8+ T-cells expressing the aforementioned cytokines. Although interesting to 

couple cytokine production data with T-cell subset analyses, the percentages of CD4+ 

and CD8+ T-cells were similar between ACY1215 and DMSO treatment in previous 

experiments. For this reason, it is not anticipated that the observed differences are 

attributed to skewing of the numbers of CD4+ and CD8+ T-cells after ACY1215 

treatment. Future work utilizing intracellular cytokine staining may be warranted to 

address these questions, but remains out of the scope of the current study.  

 

ACY1215 Reduces T-cell Type-2 Cytokine Production, in Contrast to Other 

HDAC6 Selective Inhibitors 

 To determine the significance of HDAC6 selective inhibition on cytokine 

production, T-cells from PBMC of at least seven melanoma patients were evaluated for 

IL-4, IL-6, IL-10, IL-17A, IL-2 and IFNγ secretion after HDACi or DMSO control 
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treatment (figure 13). Each dot plotted on the graph represents one melanoma patient. 

Following ACY1215-mediated inhibition, the levels of IL-4, IL-6 and IL-10 were reduced, 

reaching statistical difference for IL-4 and IL-6 amounts (p<0.001 and p<0.05, 

respectively). No major changes occurred in IFNγ, IL-2 and IL-17A production. While 

other HDAC6 selective inhibitors, such as nexturastat A and tubastatin A also led to a 

significant decrease on IL-4 levels (p<0.01 and p<0.001, respectively), mixed effects 

were observed on IL-6, and IL-10 was secreted in higher amounts (p<0.001 and p<0.01, 

respectively) comparing to DMSO control. Considering that lower levels of Th2-

cytokines are preferable in a tumor setting, and that ACY1215 caused minimal impacts 

on secreted IFNγ and IL-2, as well as on cell viability, this inhibitor was pursued for 

further study. 

 In order to determine ACY1215 specificity, T-cells obtained from PBMC of 

healthy donors were treated with class I HDAC and HDAC6 selective inhibitors, 

including ACY1215, MGCD0103, nexturastat A and tubastatin A. As a surrogate of 

class I HDAC and HDAC6 inhibition, respectively, acetylated histone 3 and acetylated 

α-tubulin were evaluated by flow cytometry after HDACi or DMSO in vitro treatment for 2 

and 24 hours. As demonstrated in figure 14A, inhibition mediated by three HDAC6 

selective drugs resulted in enhanced acetylation of α-tubulin as early as 2 hours and as 

late as 24 hours. This effect was dependent on the dose, and the HDAC inhibitors 

appeared to have similar potency in regards to the HDAC6 target. The graphs indicate 

MFI values for all treatments, and the standard error of the mean (SEM) was calculated 

based on independent treatments of the same donor samples. As expected, the levels 

of acetylated α-tubulin following MGCD0103 treatment were comparable to DMSO 
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control. Interestingly, the impact of ACY1215 was also extended to acetylation of 

histone 3, as shown in figure 14B. The class I HDAC inhibitor MGCD0103 led to time-

dependent histone 3 acetylation, and treatment with ACY1215 displayed similar MFI 

levels, indicating that the drug specificity is not solely restricted to HDAC6 at this 

concentration on T-cells. Nexturastat A also generated a mild upregulation of acetylated 

histone 3. Finally, the impacts of tubastatin A on acetylation of histone were minimal, as 

the MFI levels were similar to DMSO control in both 2 and 24 hours after in vitro 

treatment. 

 

T-cells from Melanoma Patients Display Sustained Upregulation of 

Activation and Costimulatory Markers Following ACY1215 in vitro Treatment 

 To address ACY1215 effects on phenotype, T-cells isolated from PBMC of 

melanoma patients were treated with this compound or DMSO, activated via 

CD3/CD28, and assessed for kinetics of expression of CD69 and ICOS. The former is a 

molecule upregulated in early stages of activation and the latter is a costimulatory 

receptor expressed following T-cell activation. Each graph in figure 15 represents the 

results obtained from each of the four evaluated patients. Displayed are the MFI values, 

acquired in 4, 24 and 72 hours. The standard error of the mean (SEM) was calculated 

based on independent treatments of the same patient samples, and p-values are 

*<0.05, ***<0.001, ****<0.0001. As illustrated in figure 15A, CD69 expression is 

increased in later time-points (24 and 72 hours) after ACY1215 treatment in comparison 

with DMSO. Intriguingly, most of the patients assessed also expressed higher levels of 

ICOS at 72 hours after activation and HDAC inhibition through ACY1215, as indicated in 
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figure 15B. Other co-stimulatory molecules were also evaluated, including 4-1BB and 

OX40, but no notable changes in expression resulting from ACY1215 treatment were 

observed (data not shown). 

 

 

Figure 12. HDAC Inhibitors Have Disparate Effects on Cytokine Production. CD3+ T-cells were 
negatively isolated form PBMC of melanoma patients, treated with pan- and isotype-selective HDAC 
inhibitors at the indicated doses, and activated with aCD3/28 dynabeads for 72 hours. Supernatant was 
then harvested and the secreted cytokines IL4, IL-6, IL-10, IL-17A, IL-2, IFNγ were evaluated by luminex. 
The graphs represent Representative data of cytokine production following treatment with diverse HDAC 
inhibitors, as described above. 
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Figure 13.	 The HDAC Inhibitor ACY1215 is Unique in Reducing Th2 Cytokine Production, with 
Minimal Impact on Other Cytokines. CD3+ T-cells were negatively isolated form PBMC of melanoma 
patients and treated HDAC inhibitors, as described in figure 12. Graphs represent patient samples treated 
with the HDAC6-selective inhibitors ACY1215, nexturastast A and tubastatin A at 500nM concentration. 
All experiments were performed in triplicates. Nine to eleven patients were assessed. *p<0.05, 
***p<0.001; two-tailed student’s t-test. 
 
 

 

Figure 14. Specificity of HDAC Inhibitors. PBMC was collected from healthy donors and treated with 
MGCD0103, ACY1215, nexturastat A, tubastatin A or DMSO control, at the indicated concentrations, for 
2 and 24 hours. Analysis of acetylated α-tubulin and acetylated histone 3 on CD3+ T-cells was performed 
by flow cytometry. 
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Figure 15. ACY1215 Enhances Expression of Surface Molecules on Activated T-cells. CD3+ T-cells 
were negatively isolated from PBMC of melanoma patients, treated with ACY1215 and activated with 
aCD3/28 dynabeads. Expression of (A) CD69 activation marker and (B) ICOS co-stimulatory molecule 
were evaluated by flow cytometry after 4, 24 and 72 hours, as indicated. *p<0.05, ***p<0.001, 
****p<0.0001; two-tailed student’s t-test. 
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ACY1215-mediated Inhibition Increases Central Memory Accumulation of T-

cells 

 Since ACY1215 treatment altered surface T-cell molecules, the next step was 

to investigate whether other phenotypic changes occurred following inhibition using this 

drug. T-cells harvested from PBMC of melanoma patients were treated with DMSO 

control or ACY1215 and expanded in high dose of IL-2. After one week of treatment, 

expression of CD45RO, CD45RA, CD62L and CCR7 was evaluated by flow cytometry 

to determine any changes on T-cell subsets. Differences in the levels of these markers 

are characteristic of distinct T-cell populations. The phenotype CD45RA+CD45RO-

CCR7+CD62L+ is present on naïve T-cells, CD45RA-CD45RO+CCR7+CD62L+ on 

central memory, CD45RA-CD45RO+CCR7-CD62L- on effector memory, and 

CD45RA+CD45RO+CCR7-CD62L- on effector T-cells277. Paired analyses in figure 16 

illustrate the percent of central memory CD45RA-CD45RO+CCR7+CD62L+ T-cells for 

each patient (black dots) after treatment. As demonstrated in figure 16A, an enhanced 

percentage of central memory CD8+ and CD4+ T-cells from melanoma patients was 

observed following inhibition by ACY1215, in comparison with DMSO treatment (p<0.05 

for CD8+ and p<0.01 for CD4+). This increase was also reported on T-cells derived 

from healthy donors (figure 16B; p<0.05 for CD8+ and p<0.01 for CD4+), suggesting 

that ACY1215 effects occur on T-cells in general. 

Due to the importance of central memory phenotypes in protocols of ACT, the 

impact of ACY1215 in vitro treatment was further evaluated on TILs harvested from 

tumor biopsies of melanoma patients. As shown in figure 16C, TIL treatment with 

ACY1215 resulted in an enhance in central memory percent of CD4+ and CD8+ 
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lymphocytes (p<0.05 and p<0.01, respectively), regardless of the initial percent of this 

population. In order to illustrate changes also occurring in the other evaluated T-cell 

subsets (i.e. naïve, effector memory and effector), the percent of these populations after 

TIL treatment with ACY1215 versus DMSO were graphed in figure 17. While there is a 

consistent increase on central memory T-cells percent, there is no clear pattern on 

alterations occurring in the other T-cell populations. For instance, the percent of effector 

memory T-cells was found unaltered or increased (TIL 1 CD4+ and CD8+, respectively), 

or even decreased (TILs 2 and 3) after ACY1215 in vitro treatment. Several TIL 

samples displayed lower percent of effector T-cells, but a mild increase on this subset 

was also observed (CD8+ TIL 1). Finally, the naïve T-cell percentage remained largely 

unchanged in the majority of samples, being reduced on CD8+ TIL 1 and increased on 

CD8+ TIL 2. 

 

Accumulation of Central Memory and Phenotypic Alterations on TILs 

Mediated by ACY1215 Treatment are Maintained after Rapid Expansion ex vivo 

 To further evaluate whether phenotypic changes as a result of ACY1215 

treatment were maintained after rapid expansion phase (REP), TILs were treated with 

ACY1215 or DMSO control and activated via CD3/CD28 using Dynabeads, in order to 

mimic REP protocols. After one week, central memory percent was higher in both CD8+ 

and CD4+ TILs treated with ACY1215 inhibitor (15% vs 20% for CD8+, p<0.05, and 

22% vs 32% for CD4+, p<0.05; figure 18B), suggesting these alterations are sustained 

even following T-cell activation. To address whether other phenotypic changes 

previously observed were also maintained after activation and expansion, ICOS 
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expression was evaluated. Surprisingly, ICOS levels were higher on post-REP CD4+ 

TILs (p<0.0001), but no impact was observed on CD8+ lymphocytes (figure 18B). In all 

graphs, the standard error of the mean (SEM) was calculated based on independent 

treatments of the same patient sample. 

 

Figure 16. ACY1215 Increases Accumulation of Central Memory T-cells. CD3+ T-cells were 
negatively isolated from (A) PBMC of melanoma patients or (B) healthy donors, or (C) harvested from 
tumor biopsies. T-cells were treated with 500nM ACY1215 and expanded with 6000IU/mL IL-2 for one 
week. Expression of the memory markers CD62L, CD45RO, CD45RA and/or CCR7 was assessed by 
flow cytometry. Graphed dots indicate individual patient samples. *p<0.05, **p<0.01, ****p<0.0001; two-
tailed, paired student’s t-test. 
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Figure 17. Effects of ACY1215-mediated Inhibition on TIL Populations. TILs were obtained from 
resected melanoma tumors, treated and evaluated as described in figure 16. Pie graphs are 
representative of TILs from three patients. 
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Figure 18. Post-REP TILs Maintain Phenotypic Changes Induced by ACY1215 Treatment in vitro. 
TILs isolated from melanoma biopsies were treated with ACY1215, activated via CD3/CD28 and 
expanded for one week with 6000IU/mL IL-2. Analyses of (A) expression of CD45RO+CD62L+ double-
positive T-cells and (B) levels of ICOS were performed by flow cytometry. *p<0.05, ****p<0.0001; two-
tailed, paired student’s t-test. 

 

 

ACY1215-treated Post-REP TILs Produce Higher Levels of Effector 

Molecules and Confer Superior Cytotoxicity Against Melanoma 

 To build upon these results and assess T-cell function after ACY1215-

mediated inhibition, TILs harvested from melanoma patients were treated with ACY1215 

or DMSO and underwent an adapted TIL protocol, using CD3/CD28 Dynabeads for 

activation. Intracellular production of IFNγ and expression of the degranulation marker 

CD107a were evaluated, as readout of effector function. Figure 19A illustrates that 

CD8+ post-REP TILs produced higher percent of double-positive IFNγ and CD107a 

after treatment with ACY1215 in comparison to DMSO control (p<0.05). Furthermore, 

the percent of IFNγ-expressing CD8+ and CD4+ post-REP TILs were also increased 

after ACY1215-mediated inhibition (p<0.05 and p<0.01, respectively). Calculation of 
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standard error of the mean (SEM) was based on independent treatments of the same 

patient sample. To address whether this result was generally extended to T-cells, CD3+ 

lymphocytes isolated from PBMC of healthy donors were evaluated for expression of 

IFNγ and CD107a. As expected, the percent of CD8+ T-cells expressing these 

molecules were enhanced after treatment with ACY1215 and high dose of IL-2 for one 

week, and subsequent pharmacological activation using PMA and ionomycin, as seen 

in figure 19B (p<0.05). Each dot on the graph represents paired analysis of one patient. 

 The aforementioned results suggest that ACY1215-mediated inhibition may 

improve cytolytic capacity of T-cells. Thus, post-REP TILs treated with ACY1215 or 

DMSO during in vitro expansion were co-cultured with the HLA-matched melanoma cell 

line Mel-624 for 48 hours, at the ratios of 0.2:1 and 0.8:1 (TIL:Melanoma). Melanoma 

cells were previously labeled with a cell tracker and the calculated percent of cell death 

was relative to viability of melanoma cells in the absence of TILs. As demonstrated in 

figure 19C, TILs harvested from a melanoma patient were capable of improving tumor 

cell killing from approximately 50 to 70% or 70 to 80% depending on the cell ratio, after 

treatment with DMSO or ACY1215, respectively. This enhanced ACY1215-mediated 

response against melanoma seemed to be dose-dependent, as TIL treatment with 

250nM ACY1215 resulted in reduced melanoma death in comparison to 500nM 

ACY1215, while still presenting superior cytotoxicity than DMSO control. 
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Microarray Analysis Reveals Enhanced Expression of Genes Associated 

with Inflammatory Response and T-cell Memory Following TIL Treatment with 

ACY1215  

Finally, to mechanistically investigate whether the ACY1215-medited effects 

were impacting gene expression, microarray analyses were performed in TILs 

harvested from four melanoma patients following treatment with ACY1215 or DMSO for 

one week, in the presence of high dose of IL-2. After normalization for gene expression, 

paired TILs samples (DMSO versus ACY1215) of each patient were graphed in a 

scatter plot, as shown in figure 20A. A linear behavior was observed for all patients, with 

the presence of a few probesets differently expressed between the matched pairs. 

Accordingly, the principal component analysis (PCA) seen in figure 20B demonstrates 

that the separation reached for the first three evaluated components (t[1], t[2] and t[3]) is 

based on the patient samples, while the forth component (t[4]) separates samples 

regarding the treatment received (DMSO versus ACY1215). This indicates that patient 

samples substantially vary among each other, with modulation of gene expression 

mediated by ACY1215 being a less differentiating factor. In order to illustrate gene 

expression, the results obtained from the four TIL samples are displayed in a heat map 

(figure 20C). The microarray analysis revealed 163 significant probesets (p<0.001), in 

which 153 were unique genes. TIL treatment with ACY1215 resulted in downregulation 

of 55 genes, while 108 genes were found upregulated. Furthermore, gene set 

enrichment analysis (GSEA) was performed to evaluate the impacts on pathways. 

Interestingly, genes involved in inflammatory response were altered following ACY1215 

treatment, and are described in table V. 



	 92 

 In order to explore whether changes in gene expression could be involved on 

the cellular alterations described previously, a specific set of genes governing memory 

T-cells phenotypes was assessed. Evaluation of gene expression of sell, lef1 and 

cd300a demonstrated that the first two were upregulated (+1.57 and +1.32 fold 

difference, respectively, in comparison with DMSO control), while the latter was 

downregulated (-1.06 fold difference compared to DMSO treatment). According to 

published literature, upregulation of sell and lef1 genes, and downregulation of cd300a 

gene, is found in a central memory phenotype rather than effector memory268. These 

results are in agreement with the ACY1215-mediated phenotypic changes on T-cells 

leading to accumulation of a central memory phenotype. 

 

 

Table 5. Differential Expression of Genes Involved in Inflammatory Signaling. GSEA pathway 
analysis identified nine overlapping genes defining inflammatory response. p-value 1.18E-08, false 
discovery rate (FDR) q-value 5.88-07. 

 

 
 

Gene	Symbol Description Fold	Difference p(paired)
SELL selectin	L 1.57 0.0036
TNFRSF9 tumor	necrosis	factor	receptor	superfamily,	member	9 0.85 0.0025
SRI sorcin 0.80 0.0071
GPR183 G-protein-coupled	receptor	183 0.66 0.0034
CCL20 chemokine	(C-C	motif)	ligand	20 0.63 0.0055
GNA15 guanine	nucleotide	binding	protein	(G-protein),	alpha	15	(Gq	class) -0.73 0.0015
IRF7 interferon	regulatory	factor	7 -0.77 0.0083
P2RX4 purinergic	receptor	P2X,	ligand-gated	ion	channel,	4 -0.81 0.0036
CXCL8 chemokine	(C-X-C	motif)	ligand	8 -1.36 0.0068
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Figure 19. Post-REP TILs Treated with ACY1215 Produce Increased Levels of Effector Molecules 
and Mediate Enhanced Tumor Cytotoxicity. (A) TILs were harvested from melanoma biopsies, treated 
with 500nM ACY1215 or DMSO control, activated via CD3/CD28 and expanded in vitro. IFNγ-producing 
T-cells and double expression of IFNγ and CD107a were assessed by flow cytometry. (B) CD3+ T-cells 
were negatively isolated from PBMC of healthy donors, treated with 500nM ACY1215 or DMSO and 
expanded for one weeks. T-cells were then activated with PMA/ionomycin and monensin-treated for two 
hours, prior analysis of CD107a and IFNγ expression by flow cytometry. (C) Pre-REP TILs were 
expanded, treated with 500nM ACY1215 or DMSO, and activated. TILs were then co-cultured with HLA-
matched melanoma for 48 hours. Relative melanoma death was assessed by flow cytometry, determined 
by expression of annexin V and viability marker incorporation. *p<0.05, **p<0.01; two-tailed student’s t-
test. 
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Figure 20. Culturing TILs in the Presence of ACY1215 Enhances Expression of Genes Associated 
with Inflammatory Response and T-cell Memory. TILs were harvested from tumor fragments from 
melanoma patients, cultured for one week with 500nM ACY1215 and 6000IU/mL IL-2, and evaluated for 
gene expression by Affimetrix-based microarray. (A) Scatter plots of gene probesets from paired analysis 
(DMSO vs ACY1215) of each patient TILs are shown. (B) Principal component analyses separating 
samples based on patient variability (t[1], t[2], t[3]) or DMSO vs ACY1215 treatment (t[4]) were performed. 
(C) Heat map is representative of relative gene expression obtained from DMSO or ACY1215 treated 
TILs. (D) Graphs demonstrate expression of genes associated with memory and effector T-cell 
phenotypes, relative to DMSO control (sell, p=0.0036; lef1, p=0.0008; cd300a, p=0.0026). 
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Discussion 

The research presented herein sought to explore the role of HDAC inhibitors in 

regulating the immune response. In the first section of these studies a mechanism by 

which LBH589 inhibitor upregulates PDL1 and PDL2 expression on melanoma cells 

was elucidated. Tumor infiltrating immune cells were also evaluated for expression of 

these inhibitory molecules. Considering that class I and pan-HDAC compounds were 

found to lead to acetylation of histone 3 at the promoter regions of PDL1 and PDL2 

genes and thus lead to gene expression, it was not surprising that immune cells were 

also susceptible to their effects. Indeed, LBH589 treatment in vivo using a B16F10 

melanoma mouse model led to enhanced expression of PDL1 and PDL2 on CD45+ non 

T-cells (figure 10). While the mechanism for this upregulation remains to be validated, it 

is likely similar to the gene regulation described for melanoma cells in chapter 2. 

Because combinatory therapy in vivo using LBH589 and PD1 blockade for the 

treatment of melanoma resulted in synergistic effects (chapter 2), expression of PD1 

was assessed on tumor infiltrating T-cells on a B16F10 mouse model. Although LBH589 

did not alter PD1 expression, this receptor was detected on T-cells (MFI values were 

higher than fluorescence minus one technical control; table IV). This highlights the 

importance of blocking PD1 and PDL1/PDL2 axis as means to improve therapy using 

HDAC inhibitors. However, as a result of LBH589 treatment, the percentage of CD45+ 

immune infiltrating cells was reduced (figure 10). This could be due to higher 

susceptibility of immune cells to the cytotoxic effects of HDAC inhibitors, lower migration 

of immune cells in general or of a specific subset to the tumor sites, or even decreased 

percent of immunosuppressive cells. HDAC inhibition has been shown to decrease the 
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number of CD4+Foxp3+CD25+ Tregs in vivo in a mouse model288. Nonetheless 

interesting, this study focused on the impacts of pan-HDAC inhibitors on immune cells 

viability, specifically T-cells, and investigated whether negative effects could be 

circumvented by the use of selective HDAC inhibitors. Indeed, LBH589, SAHA, 

belinostat and quisinostat (pan-HDAC inhibitors) treatments reduced T-cell viability to 

approximately 50% at low concentrations (figure 11). Conversely, all the class- or 

isotype-selective HDAC inhibitors promoted minimal impacts on T-cell viability. Although 

inhibition of class I HDACs196 or HDAC8 through the use of PCI34051231 are shown to 

promote T-cell death, the doses tested were sufficiently low to not impact viability and 

still exert an effect. 

As exposure to cytokines can determine T-cells function, investigative research 

evaluating the effects of several HDAC inhibitors was performed (figures 12 and 13). 

Likely due to the negative effects of pan-HDAC inhibitors on T-cell viability, treatment 

with these inhibitors decreased production of IL-4, IL-6, IL-10, IFNγ and IL-17A to some 

degree. Interestingly, the compounds targeting class I HDACs, class IIa HDACs, 

HDAC3 and HDAC8 had disparate effects of T-cells cytokine production. This may be 

due to the fact that HDAC inhibitors display different potency. Furthermore, HDAC 

selectivity assays are usually performed in cell-free assays, which may fail to represent 

the variability according to cell types. Nevertheless, HDACs are shown to be involved 

with cytokine production, such as IL-4197, IL-6289, IL-10181, IL-17A290, IL-2291 and IFNγ292, 

and the results presented here corroborate their role in orchestrating production of 

these cytokines. Interestingly, the HDAC6 selective nexturastat A and tubastatin A 

displayed a clear role in decreasing IL-4 levels, while increasing IL-10 production. The 
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other HDAC6 selective inhibitor, ACY1215, was unique in reducing the levels of IL-4, IL-

6 and IL-10. Tempering type-2 T-cell response is advantageous in the tumor setting, 

since it can reduce a suppressive environment. IL-4 stimuli promote Th2 

differentiation293 and a balance of more IFNγ and less IL-4 is preferred in the context of 

cancer. Although the role of IL-6 is dependent on the stage of tumor, decreased levels 

of this cytokine can aid anti-tumor response92. Moreover, IL-10 is an anti-inflammatory 

cytokine, capable of inhibiting antigen presentation and Th1 cytokine production293. 

These unique effects of ACY1215 contrasting with other HDAC6 selective inhibitors are 

possibly due to the dual ability of this compound to inhibit HDAC6 and promote 

acetylation of histone 3 on T-cells, at the assessed concentrations (figure 14). 

The presented results described an unexplored role of ACY1215-mediated 

inhibition in improving T-cell function, while sparing them from cytotoxic effects 

promoted by pan- and class I HDAC inhibitors244,294. T-cell treatment with ACY1215 at 

concentrations of 250nM or 500nM displayed minimal effects on viability, however, 

these doses were sufficient to alter the phenotype and functions of T-cells. Besides 

dampening Th2 cytokine production, ACY1215 treatment of circulating T-cells or TILs of 

melanoma patients led to an accumulation of a central memory subset (figures 16 and 

18). Here, central memory subset was defined based on expression of CD45RO, 

CD45RA, CD62L and CCR7. While no striking differences were observed in CD127, a 

marker of long-living T-cells295 (data not shown), an expanded panel of molecules 

defining less differentiated, stem-memory cells (e.g. 

CD45RA+CD95+CD122+CCR7+CD62L+)296 can still be explored in the context of 

ACY1215 treatment. The phenotype skewing to this population may be a result of a 
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decrease distributed along other subsets (i.e. naïve, effector memory and/or effector) 

rather than a shift occurring solely in a specific population (figure 17). Possibly, a 

reduction on effector memory, effector or even naïve T-cells may be allowing for central 

memory T-cells to preferentially expand. Regardless, accumulation of central memory 

TILs can optimize adoptive T-cell therapy, since the presence of memory T-lymphocytes 

is associated with prorogued in vivo persistence and, thus, improved patient outcome 

and survival271. In this regard, strategies to improve ex vivo expansion of TILs are 

warranted and can be explored with the use of ACY1215.  

Furthermore, treatment of circulating T-cells and TILs with ACY1215 resulted in 

higher levels of the costimulatory molecule ICOS (figures 15 and 18). Expression of 

ICOS has been shown to be associated with improved anti-tumor response in 

melanoma mouse models. Engagement of ICOS receptor with its ligand (ICOSL) is 

necessary to induce a type-1 response during CTLA4 blockade in B16F10-bearing 

mice297,298. Indeed, ICOS expression on CD4+ T-cells is required for orchestration of 

Th1-response against tumor in mice undergoing anti-CTLA4 immunotherapy299. In 

humans, expression of ICOS and the proliferation marker Ki67 is associated with 

ipilimumab treatment of melanoma patients300. Based on these preclinical and clinical 

studies, ACY1215-mediated ICOS upregulation represents an attractive route to 

enhance TIL therapy, especially when it concerns to combination therapies using 

ipilimumab in the setting of melanoma. The levels of the activation marker CD69 were 

also upregulated as a result of ACY1215-mediated inhibition (figure 15), and may be 

indicative of prolonged activated status of these T-cells. However, evaluation of other 
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activation molecules (e.g. CD44, CD25), or costimulatory receptors remains to be 

investigated. 

Functionally, the percent of TILs producing IFNγ and CD107a was increased 

following treatment with ACY1215 in comparison to control. In line with this result, an 

enhanced cytotoxicity in vitro activity against HLA-matched melanoma cell line was 

observed (figure 19). While evaluation of these effects on TILs from multiple patients, as 

well as TIL response against other reactive and non-reactive cell lines or even 

melanoma cells derived from resected tumors is warranted, these data indicate the 

ability of ACY1215 to generate optimal characteristics for T-cell response in the cancer 

setting. Most importantly, the aforementioned impacts of ACY1215 were maintained 

following ex vivo expansion of TILs (post-REP). Although the protocols used in this 

study were an adapted version of REP protocols utilized for TIL therapy of melanoma 

patients, the results suggest that ACY1215-mediated inhibition can promote benefits 

even after massive expansion of TILs for infusion into patients. Furthermore, these 

effects seem to be unrestricted to diseased patients, as they were also observed in T-

cells derived from healthy donors (figures 16 and 19), suggesting that ACY1215 

treatment approach is not limited to the context of melanoma. 

In line with the observed phenotypic changes, ACY1215 treatment of TILs altered 

gene expression (figure 20). Only a small set of genes were differentially modulated by 

ACY1215 compared to control, which is in agreement with the subtle alterations seen in 

expression of surface molecules and cytokine production. Corroborating the reported 

accumulation of central memory T-cells, ACY1215 treatment upregulated sell and lef1 

genes and downregulated cd300a expression. A similar gene expression pattern has 
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been shown to be associated with a central memory phenotype268. Also in accordance 

with the observed tempering of the anti-inflammatory cytokines IL-4, IL-6 and IL-10, and 

enhanced percent of IFNγ-producing T-cells, GSEA pathway analysis revealed a role of 

ACY1215 in modulating inflammatory response. While exact pathway(s)/mechanism(s) 

by which ACY1215 exerts these T-cell anti-tumor enhancing characteristics remain to 

be fully elucidated, these results create a rationale of using this compound as mean to 

augment T-cell response in immunotherapy approaches, especially concerning TIL 

therapy for melanoma. 
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CHAPTER FOUR: 

CONCLUSIONS & FUTURE PERSPECTIVES 

 

The data generated from these studies elucidated a mechanism by which HDAC 

inhibitors modulate tumor biology, thus impacting on T-cell response. Upregulation of 

the inhibitory molecules PDL1 and PDL2 as a result of HDAC inhibition is detrimental to 

generation of a productive T-cell response against tumor. Understanding these negative 

effects in the context of cancer grants rationale to combinatory therapies able to 

circumvent such limitations. Furthermore, both LBH589 and PD1-blockade are 

approved by the FDA (as separate agents with different indications), facilitating the 

translation from the presented preclinical investigation to clinical investigation. 

Upregulation of PDL1 was found to be a result of class I inhibition. In fact, HDAC1, 

HDAC2 and HDAC3, with the exception of HDAC8, appear to be the major modulators 

of the observed results, as inhibitors with specificity for these HDACs were able to 

induce PDL1 expression. Studies addressing the role of individual HDACs are in 

progress. Elucidating whether PDL1 and PDL2 upregulation results from HDAC1, 

HDAC2 or HDAC3, or a combination of these, are relevant to modulate these molecules 

with more specific inhibitors in order to avoid undesired effects. Indeed, being able to 

promote the anti-tumor effects mediated by HDAC inhibitors, while circumventing 

upregulation of inhibitory molecules is attractive for the setting of cancer. In contrast, 
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targeting the specific HDACs involved in upregulation of PDL1 is attractive for treatment 

of autoimmunity. 

These studies also highlight the advantages of using ACY1215 HDAC-selective 

inhibitor to improve T-cell function and response against melanoma. Previous research 

has demonstrated the ability of pan- and class I HDAC inhibitors to promote tumor cell 

death214,301. However, if extended to immune cells, these effects can be 

disadvantageous during a productive immune response against tumor. The unique 

impacts of ACY1215 on T-cell biology are advantageous to adoptive T-cell therapy 

approaches, and should be leveraged to translate these results to a clinical setting. The 

data herein described provide rationale to incorporate the use of ACY1215 during 

protocols of ex vivo TIL expansion. Hence, this extra step would require little additional 

effort and possibly significant benefits to patient outcomes. The fact of ACY1215 being 

already used in several clinical trials also facilitates its transition from translational to 

clinical research. Since the herein reported improvements on T-cell response were 

solely based on in vitro treatment, systemic administration may not be necessary, thus 

avoiding undesirable side effects often accompanying chemotherapy. Regardless, 

future work is warranted to elucidate the mechanisms by which ACY1215 is modulating 

T-cell molecular and cellular biology. Ultimately, these studies revealed novel functions 

and mechanisms of pan-, class I- and isotype-selective HDAC inhibitors in both tumor 

and immune cells. 
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