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Automated test generation techniques for graphical user interfaces include model-based

approaches that generate tests from a graph or state machine model of the interface,

capture-replay methods that require the user to specify and demonstrate each test case

individually, and modeling-language approaches that provide templates for abstract

test cases. There has been little work, however, in automated goal-based testing,

where the goal is a realistic user task, a function, or an abstract behavior. Recent

work in human performance regression testing (HPRT) has shown that there is a need

for generating multiple test cases that execute the same user task in different ways,

however that work is limited in that it lacks efficient test generation techniques and

only a single type of goal has been considered.

In this thesis we expand the notion of goal based interface testing to generate tests

for a variety of goals. We develop a direct test generation technique, EventFlowSlicer,

that is more efficient than that used in human performance regression testing, reducing

run times by 92.5% on average for test suites between 9 to 26 steps and 63.1% across

all test suites. EventFlowSlicer generates test cases for additional types of abstract

goals beyond those used in HPRT and contains new logical constraints to support

those.

Our evaluation on 21 realistic tasks shows that EventFlowSlicer can generate test

cases based on a user goal, and that the number generated for each goal is non-trivial,



more than can be easily captured manually. It generates on average 38 and as many

as 200 test cases which all achieve the same goal for a specified task.
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Chapter 1

Introduction

Passions to develop software drive different goals of what a software developer wants

a product to accomplish. Often this is achieved with only a casual blueprint and the

lack of formal specifications. Yet systems must still work without failing and the user

should be able to perform tasks that are intuitive for him or her. Failures in software

have been shown to cost the US Economy up to 5.9 Billion dollars annually [1], while

the lack of an efficient user interface can harm the quality and negatively impact of

most systems [2,3]. And so these systems must be tested to validate correctness [4]

and usability [2], and techniques should be developed to provide workflow guidance

for users [5]. To achieve this we can generate and run cases to exercise the system

from its interface.

Many of our systems today use graphical user interfaces (GUIs) as their front

ends. In these systems the user iteratively interacts with elements of the interface to

perform a task, which consists of a sequence of events to achieve some end-goal. For

instance, to open a new file in most editors the user will click on the file menu item,

select the open menu choice and then browse for the specified file, eventually double

clicking on the file that they wish to open. Often, the same task may be performed in
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multiple ways. Instead of opening the file using a menu, there may be a button that

provides a single click to open the browse file widget, or the user may be able to type

in a file name as a shortcut instead. Each variant of this task can be thought of as

one way of achieving a user goal (an end state in the application achieved through

a series of steps). Goals represent behaviors of a typical user and are the basis for

system validation, usability evaluation and for providing workflow help for users who

want to navigate the system.

While goals are often functional (e.g. open file), how this functionality is achieved

may vary. For instance, in recent work on human performance regression testing,

Swearngin et al. found that there were 81 ways to enter text, make it bold, and

then center it in a common word processor using different combinations of buttons,

menu items and keyboard shortcuts. LibreOffice [6]. For that particular goal the

functionality of each of these tasks is the same, however how each different method to

achieve that goal differs slightly. Goals may also be more abstract. For instance, a

goal might be to change the appearance of a text box and the exact change may be

undefined. In this case any method that changes the end-state of the text box satisfies

this goal.

While there has been a large body of work on software testing (and test case

generation) for GUIs [7, 8, 9, 10,11,12,13,14,15,16,17], there has been little work for

generating test cases that target specific user goals. Techniques for testing include

manually capturing and replaying test cases to satisfy some use case, however in the

situation described above it would be almost impossible for a user to identify and define

all 81 test cases for a single task. Random generation is also a common technique,

however this will not achieve a particular goal. Systematic testing techniques (our

focus here) are often called model-based and these fall into different categories that we

discuss later, graph or state-based techniques and domain language based techniques
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that utilize customized languages and patterns to generate tests. However, none of

these techniques can generate goal-based test cases as we describe in this thesis.

Figure 1.1: Microsoft Word Menus versus Toolbars

(a)	

(c)	

(b)	

Figure 1.2: Dr. Java Search and Replace Options

1.1 Motivating Example

We begin by showing a few examples of the types of goals that we might encounter in a

GUI application. Figure 1.1 shows the interface of the MS Word application. Suppose

we want to bold and center some text. This can be achieved either by clicking buttons
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(left side of the figure) or by using menus (right side). Of course the same task can also

be achieved by a combination of menus and toolbars. This type of task is a concrete,

functional task, however if this was a use case for a functional test case generator, one

test case that achieves this goal would satisfy the use case. We call the different tests

in this task, structurally different, meaning that they achieve their goal using different

structural elements of the interface (buttons versus menus). In the work of Swearngin

et al. [2, 6, 18] the notion of generating test cases for human performance showed that

indeed there is a need to generate test cases that perform this task in all possible

ways. This is because user interface designers need to understand how long it takes a

user to perform each task and which elements of the interface are more/less efficient.

If adding buttons to the interface, provides paths that increase the time it takes a

user to make text bold and centered, then this may mean that their application has

declined in quality and competitors may instead select other editors. In the case of

safety-critical applications (such as a cockpit screen) the time taken to perform a task

can mean success or failure of a life-saving maneuver [6].

Swearngin et al. [6] developed a technique to generate test cases for this type of

scenario, however they did not directly generate tests for a goal – instead they generate

all possible test cases that use the same sets of widgets that the task defines and

constraints to remove tests that do not actually perform the given task. While this

has a similar effect as the test case generator presented in this thesis, their generator

does not scale (we show this comparison in our study section). Prior work using AI

planning by Memon et al. [19] performed goal-based testing, but did not consider

structural differences when generating tests (e.g. fewer test cases would be generated

from that technique).

Figure 1.2 shows another example of a user goal. In this scenario we see the search

and replace function within the Dr. Java Editor. In this screen there are multiple
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ways to find and replace text. On the left part of this figure you see that we can enter

text into the box to find and replace a word. We can select specific options (such as

matching case) or not, and on the right we can find and replace multiple instances by

selecting the find and replace multiple times or by simply clicking Find all. While also

structurally different, we believe that the tests generated for this task amount to very

different sets of task, even though the final state will be the same. We view these as

having the same Functional Goal, but different steps are performed in different ways

to get there. We differentiate this difference from the prior type of task which differed

only in structure.

The last type of task that we identify in this work are those which have Abstract

Goals. This type of test case is loosely defined. We might say that we want to generate

tests to change the background but do not have a complete specification for what that

means. In this case the user can change the background color, pattern, transparency,

etc. All achieve the same goal, but are very different.

Our audience for this thesis includes software testers tasked with testing GUI

interfaces, who may or may not be familiar with the fact that every interface has a

state, (formally named “the preconditions and effects” in the work of Memon et. al.),

in which properties exist that describe what the interface looks like and how changes

have manifested. Measures of how this state is manipulated during a test case is what

state of the art GUI testing has focused on within much of today’s literature. In

respect to the trends of the literature, our generator helps to solve the following goals

regarding how test cases transform the state of the application:

As the tester plans their strategy to use a generator, a goal in mind for the use

of this generator may be to first categorize a set of “wanted” or “expected” test cases

into categories, and then look to generate test cases using our generator that create all

possible test cases to achieve this task
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We support the following types of tasks and for each genearte all possible ways to

perform that task.

Structural Differences Only Different test cases per category are differentiated

by only the type of widgets used to access each test step in the interface. All

steps in one category do the same thing functionally to perform the same steps

to access the main goal from the initial state. Some test cases perform steps

with, perhaps menus. Others perform steps with toolbars. What matters is that

function of each step itself does not differ.

Same Functional Goal All test cases in a test suite of this type must lead from the

same initial state to a single end state at the very least. However, in this type

of test suite, the steps to get to that single state might differ greatly in both the

amount of steps taken and the type of steps taken, given the route through the

GUI used to get there. The steps to reach the end goal are not similar at all in

their function, while the goals are.

Same Abstract Goal A tester’s end goal for each test case might be defined more

coarsely than what differentiates the state of two instances. Different test cases

in this generated suite type all stem from the same initial state, but the point

signifying the end of every test case will be based on a more abstract definition

of how the interface state should change in the tester’s overall goal for the test

case. The initial state and the final state are not equivalent of course, but the

abstract goal the tester has in mind is still met via every single test case due to

some change in state.
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1.2 Contributions of this Thesis

In this thesis we present EventFlowSlicer, a test case generation strategy for GUIs

that generates test cases based on user goals which are defined as tasks. We support

three types of goals moving from the highest (structural differences) to the lowest

(abstract goals) precision. Generation is achieved through a combination of user input

to select events involved in the task and the definition of task constraints. All possible

test cases (methods) are then generated that satisfy the goal and its constraints. We

present a feasibility study followed by an empirical study in this thesis to show that (1)

Our test case generation technique performs as well as that of Swearngin et al. with

respect to effectiveness (we generate the same sets of test cases) however, it is more

efficient reducing the time for generation by as much as 95% and allowing scalability

to longer tasks (2) We can also generate test cases for a set of tasks that represent

real user goals obtained from an online forum. We see that to generate all tasks for

these goals is non-trivial (and not feasible by manual capture) since we have as many

as 200 test cases in one task. In summary the contributions of this thesis is:

1. EventFlowSlicer, a technique for goal based testing in graphical user interfaces;

2. A case study showing that EventFlowSlicer is as effective, yet more efficient

than another state of the art tool, can can handle more types of goal; and

3. An empirical study showing that EventFlowSlicer can generate a variety of tasks

(satisfying all types of tasks we have defined) based on real user requests.

The remainder of this thesis is laid out as follows: In the next chapter we present

background and related work. We follow this with a description of EventFlowSlicer in

Chapter 3. We then present a feasibility study using EventFlowSlicer on a few tasks
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in Chapter 5 and then follow this with a more formal empirical study in Chapter 6.

We conclude and present future work in Chapter 7.
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Chapter 2

Background and Related Work

We begin with some definitions that will be used in the rest of this work.

2.1 Definitions

Event – A GUI widget on an interface paired with some associated action. Widgets

can be buttons, menu items, text boxes, containers, etc. Widgets on an interface

are associated with one or more (possibly null) event handlers. A single widget

can have more than one action, and each combination is considered a unique

event.

State – A collection of GUI widgets and their properties. The state of a GUI is

the complete set of widgets and their properties on the interface. States can

get quite large and some elements of a state (such as the current date/time)

may change dynamically, therefore some techniques will prune and define the

essential state of an interface.

GUI test case – A sequence of events that can be executed on an application. An

example of a test case is the sequence <Cut, Copy, Paste> where each of these
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events has an associated widget (e.g. a cut button or paste menu item) and an

event handler (e.g. double click, right click, etc.).

Step – A single event (or group of events) within a test case that performs some

function on the interface. Steps can be a single event such as <Cut> or it can

be a longer subsequence of the test case.

Task– A definition of the user goal as it should be achieved on the interface A user

task is a way to achieve a particular goal on the interface. Usually there is more

than one way to perform a given task such as “bold and center”.

Method – A single test case that performs a task. Each task may have many test

cases or methods that achieve the same goal.

2.2 An Overview of GUI Testing

GUI applications are more complicated than their CLI-based (command-line-interface-

based) counterparts. Users in today’s world expect GUI’s to be responsive to many

more actions than CLIs. Unlike CLI’s, GUI’s contain widgets that accept keyboard

input and additionally buttons, menus and menu items. The widgets included in the

interface must remain responsive and perform concrete tasks according to specification

for the tool in order for it to be perceived to function properly. The actual functions

in GUI’s today often depend on the ordered sequences in which groups of events are

activated. We describe several testing strategies next.
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2.3 Model-Based Testing

Model-based testing provides a systematic way for GUI testers to find bugs. It uses

a model. A model represents the interface as a graph or state machine (or in some

other abstract representation). The model is then used to define what elements of the

interface should be covered during testing and can be used for test case generation

(generation of sequences of events). The primary model-based testing strategy we

will focus on in this thesis is called reverse engineering-based (RE-based) GUI

testing, in which the interface can be reverse engineered by executing the application

and observing which events are found on the interface and which events can follow

others. However, models are built primarily for automated test case generators and

do not have a human-based goal (as we require).

2.3.1 RE-based Testing

RE-based GUI testing is a fairly new technology, gaining its strongest popularity as

an alternative to manual GUI testing. RE-testing has historical roots in model-based

testing. White et al. introduced the concept of generating test cases from interactions

with the GUI, strung together to form “complete interaction sequences (CIS’s).” The

concept of the CIS can be used to establish a modelling of the reliability of how well

the interface works. One can test combinations and interlacings of various CIS’s to

expose states of the application, be they “expected”, or “surprise” or “defect” states.

State based testing the way defined by White et al. has been replicated in many

forms, especially in much of the work done in RE testing. Memon et al. pioneered

the concept of reverse engineering tests on an interface [4,10,11,14,20,21]. Memon

applies testing of GUI oracles - using “GUI state” and “GUI event model coverage” as

a guide. In his words from [10] he reduced his scope to include the following definition
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of GUI’s that are testable:

“A GUI is a hierarchical, graphical front-end to a software system that accepts as input

user-generated and system-generated events and produces deterministic graphical

output. A GUI contains graphical objects; each object has a fixed set of properties.

At any time during the execution of the GUI, these properties have discrete values,

the set of which constitutes the state of the GUI.”

Memon et al. refers to a subset of all GUI interfaces available in today’s market.

In summary, a GUI is at any given time: A) A pair of two sets: graphical objects

and B) the properties of those objects made visible or kept invisible by the system,

from which can be derived C) the state, or an account of all discrete values of the

interface’s properties. Given our conditions of a GUI are met, then according to

Memon et al.’s specifications, we can begin testing by attaching preconditions and

effects to interactions: the effects change the state after each event or action on a

widget fully executes, and the preconditions define what of the complete set of events

available may be executed at any given time. The key takeaway of Memon’s work on

fundamentals of testing GUI’s this way: as we measure the effects of actions on GUI’s,

the events we carry out on its objects, we test the application.

2.3.2 The Event Flow Model

Memon et al. also found that if we keep track of some things but not others we can use

an abstraction of preconditions and events to over-approximate all possible interactions

with the interface. Memon developed the concept of the event flow model, a stateless
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(effectless) model of interface interaction, created by tracking the preconditions in

which events may be executed on an actively running interface, but not tracking any

further information about the effects [10]. Memon et al. also developed techniques to

dynamically extract and EFG with little user input and created a testing framework

called GUITAR [22] [7]. GUITAR dynamically reverse engineers interfaces using a

breadth first search as it automatically gains information about GUI properties, events,

and preconditions, and inserts this information into persistent testing assets called

“model files” that are designed to be used together as a basis to develop test cases and

automate their execution. The events for each test case come from the Event Flow

Graph (EFG) file, while the GUI forest (GUI) file helps gather enough information

about the structure of the interface to help the test case execution tool (called the

“replayer”) automate each test case. GUITAR has gained popularity as a prominent

tool in RE testing, and has several great advantages over previous model generation

strategies due to its ability to find, automate and test thousands of GUI test cases at

a time.

2.3.3 Domain Specification Language Based Testing

Our mission is to identify what kinds of testing tools aim to solve problems related

to user goals, or tools that locate instances where bugs are preventing users from

achieving an end to intended tasks.

A form of tester-specified “natural-language based” GUI testing came to the

forefront in the literature. This is still an up-and-coming strategy in which testers use

language(s) recognized and constrained to the domain of testing to specify tests. This

field of languages are fitly called domain-specific languages. This field of testing is fitly

called domain specific language-based (DSL-based) testing. DSL based testing is highly
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reliant on the use of models to generate tests [23], and thus is a modelled-generation

strategy. In DSL-based testing, testers use the DSL chosen by the model creator

to specify the model, and then reuse components of the DSL to specify the tests

themselves. DSL tests are known to be highly configurable.

The takeaway from the impact DSL-based testing has had on GUI testing is that

testers are given the ability to define directly the kinds of things in need of testing. In

practice this has shown to be effective when design of the language is allowed to take

place from the ground up [24]. The test cases that back certain goals users have in

mind when using a software application are generated much quicker.

Work by Paiva [12] [25] [26] has gained attention. She noted in her work that

event flow models are hard to change, they are hard to break down and modify to

meet the needs testers have in exacting specific functionalities out of the system. She

advocated for a modelled-testing strategy that received more input from the tester

on what oracles needed to be tested. Work by Bae et al. [13] shows further evidence

that raw RE testing on large interfaces may not be as effective as other efforts to test

GUI’s that go directly after events in the interface themselves, efforts which lie outside

of the realm of model-based testing.

However, for a DSL-based tool to be effective, it requires that a developer be well

versed in how to specify a model [25]. No matter what GUI tool we end up using,

the tool still needs to know how to automate the tests, and thus needs directions

on how to interface with the system or the system’s replacement. “Operators” in

DSL-based testing are what help the tool that’s doing the modeling interface with the

system [12]. It is up to the developer to provide these and extend these when needed

when more features are added. EFG based systems come with operators supported by

default: testers nor developers need to define these to get the modelled-generation

automator to generate tests or even to get it to run, because these operators are
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reverse-engineered from the runtime state of the interface. There is another key with

DSL’s. They require that the creates the cases where faults may lie in the interface.

Hence the lack of a model may bre problematic.

2.3.4 RE-testing with a Focus on Goals

Swearngin et al. [6] proposed a body of work that focused on goals users with respect

to the efficiency of performing tasks on an interface (human performance testing).

Their goal was to generate tasks that an expert users performs. Their work is

undergirded by the fundamentals of RE-testing, drawing from knowledge on how

GUITAR measures state using RE techniques. Unlike GUITAR however, the Human

Performance Regression Testing (HPRT) generator focuses on generating results that

denote tasks ending in a finite goal state. As for the basis, the tool generates test

cases primarily based on user defined test cases that the tester can capture on the real

interface with keystrokes and mouse clicks, not a set of GUI structure or event flow

assets like GUITAR, and not (solely) based on GUI state. A string of information

about the events the user executed on the interface is saved and set aside for future

modeling as events are captured. Multiple strings of events can be saved and set aside

as separate concrete “methods” for achieving the same “task.” Having completed the

user capture phase, model generator reopens the application on its own and replays

each method recorded by the tester on the real interface. The generator adds a bit

of state from the application back into the process, but at a time only after the

user-captured tests have been generated. HPRT, having gotten snapshots of states

from its replay phase, does not use state to determine when a test case has failed as

in older modelling-generation strategies, but instead uses state to determine whether

new states have been entered during the task the user captured.
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Constructs built into the generation technique then allow for the generator (now in

the true modelling phase) to find and denote strategies to reach the end goal that the

tester initially did not input to the program, and present them to the tester as added

test cases in the test suite. This is a huge advantage of this generator unforeseen in the

field. The HPRT generator can gather such information when multiple event strings

with crossing paths through similar states are captured and sent to the generator for

modelling. The study performed by Swearngin and Cohen primarily focuses on how

tasks become less or more efficient as the development of an interface advances out

of an older state to a new state. Swearngin also completed work on a second test

case generator based on GUITAR model assets used for modelling test cases using

constraint-based techniques [18]. We’ll cover this generator much more in future

sections.

2.4 How to RE-Test an Interface

To show how to test an interface using RE-Testing, we are going to walk through the

operation procedure of perhaps the most popular tool in the software testing research

community available, GUITAR, which stands for the “GUI Testing Architecture.” The

steps used to generate test cases using GUITAR are listed next. These steps are very

similar to the process we use to operate our generator. We will now explain the details

behind each step.

Rip Capture a snapshot of all the GUI objects visible on the interface and their

hierarchy and their visible/invisible children. Each GUI object are captured in

the snapshot is called a widget.

Model Conversion Convert the output of the rip into an event flow graph.
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Generation Generate test cases from paths that flow through items in the event flow

graph.

Replay Automate the execution of each test case using the application under test.

During this process the application is open and actively running, while subproce-

dures running alongside the application probe the running code to manipulate the

interface in an algorithmic fashion, presenting a rather vibrant visual of the application

“unfolding” at each step in the process.

GUITAR’s ripping algorithms are generic enough to recognize differences between

how applications running under two different frameworks must be traversed for

information, ensuring that we gather and store properties and other information

common across all GUI’s. GUITAR accomplishes this using its modular architecture,

allowing the same tool to connect to and manipulate applications running under

separate platforms of interest using platform plugins. Platform plugins specialized

for a platform insert code into the algorithm at specific places where platform API

must be called to obtain GUI properties. While it is optional to customize the model

generator and test case generation in other steps with custom platform-based plugins,

selecting a platform plugin built for the platform the application under test uses is

required when dealing with the rip and replay steps.

GUITAR starts from the root components of a GUI, which is by definition hierar-

chical, and works its way down from the root (typically an application “window”), to

the components it can find which are visible within the root. For components that

might expand to contain hidden children (such as menus), the algorithm attempts to

expand the container, treating the container as the new root, and repeats the process

to fully exhaust the contents of the container’s items, before moving to the next sibling

it finds adjacent.
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The GUI Ripping algorithm is very akin to a typical Depth-First-Search algorithm,

being run on a real GUI as a basis. Using this process, the order in which GUITAR

finds information about how widgets are nested and exposed to the user, also helps to

expose a hierarchy in how elements may be made legally accessible to the user. This

information about hierarchy stemming down from the main window of the application

is quite useful, and is the first list of facts that gets stored in the output, a model

asset called the “GUI Forest.” It is called a forest not a tree, because the end of this

list of facts will also contain other rooted trees GUITAR finds while ripping buttons

that expose new windows.

We use JFC Guitar as a backend for our new tool, a platform plugin that comes

standard with GUITAR that is built to reverse engineer applications that rely upon

GUI components from the Java Foundation Classes (the Java Swing/AWT) platform.
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2.4.1 Model Conversion: Derive an Event Flow Graph from

the Structural Model

Stored in the GUI model are strings of information about the interface’s hierarchical

structure. As data from the GUI model is read in by the model converter, it is queried

for widgets that contain properties useful for event execution. The generator can

determine from the information provided where widgets fall in the hierarchy, whether

widgets are hidden by their parents, and what kinds of actions we may invoke on the

widget to activate its primary function or functions. Since we are not just ripping

buttons, but also text boxes and widgets requiring more than one type of input to fully

operate (table cells, select-from lists, and combo boxes), this information about widget

operation is essential for test case generation and will be stored in the EFG file as

each event is queried. it can also tell the size of the widget and the location of where

each widget can be located (relative to the parent container). Such information is

kept out of the EFG file, and referenced by the test case generator only when needed,

since these are properties of state, unrelated to the execution of the test case steps

applicable to the widget.

Given such rich information about the flow of control needed to legally access wid-

gets, GUITAR gives access to a flow graph, capturing a stateless over approximation

about how the interface may be legally traversed since the last rip took place. Since

this depiction is a stateless over approximation, certain widgets (such as ones that are

disabled) may in reality be inaccessible to the user upon startup, though flow may

pass through these widgets to other widgets in the EFG, as if they were.

The standard EFG converter GUITAR provides creates a one-to-one association

between each widget found in the GUI file that is likely to respond to peripheral input

from the user, and one event in the generated event flow graph. As for the edges, we
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e788311116:menu_View_CLICK

e3623512572_0:menu_item_ViewColumn_and_Row_Headers_CLICK

e3936947756:menu_Insert_CLICK

e3347143604:table_cell_Cell_A1__SELECT

e3623512572_1:menu_item_ViewColumn_and_Row_Headers_KEYSTROKE

e2687322660_1:menu_item_InsertCells_KEYSTROKE

e134571088_1:menu_item_InsertFunction_KEYSTROKE

e2687322660_0:menu_item_InsertCells_CLICKe134571088_0:menu_item_InsertFunction_CLICK

e3272565820:radio_button_Shift_cells_right_CLICK

e2092403404:push_button_OK_CLICK

e99717980467:text_Number_SELECT

e997179804:push_button_Next_CLICK

e375958232:push_button_OK_CLICK

Figure 2.1: EFG depicting Absolute Value MK task.

can see from the example that an edge always reaches from the parent of every widget

to the widget itself (or if the widget resides in the main window, then a self edge

is created), and an edge going to and from every two widgets that coexist together

simultaneously on the open interface.

An event flow graph is depicted in figure 2.1. In this depiction, shaded-nodes are

the nodes discovered first by the rip called “initial nodes”, accessible upon application

startup from the application’s main window. Edges leaving gray nodes lead to some

events that are accessible only from within subcontainers of the main window, and

thus only legally accessible after initial input from the user. This particular EFG

depicts the absolute value task EFG, related to a spreadsheet application. The nodes

depicted re-enact what is required to perform the subtasks of the goal, which include

inserting data into a table cell and shifting data one cell to the right. We can see in

the bottom right corner in this depiction, white unshaded-nodes adjacent to parent
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events that open the “Insert Cells” menu, namely a keystroke event, and a menu item

event. The white unshaded represent events that are only accessible from within

subcontainers of the main window, hence depicted in the figure is that it is necessary

to open the Insert Menu before confirming the option to shift cells to the right and

click OK. Likewise, in the top left corner, it is implied that the “Insert Function”

wizard must be first opened, to give access to the [Number text box] and the [OK

button] used to confirm and insert the function into the cell. The [Next button] is also

available throughout this substep, but upon further inspection, this button is actually

disabled after it is clicked the first time.

2.4.2 Generation

GUITAR contains several test case generators and the tool can be extended to add

more. By default, GUITAR’s built in generator is designed to traverse the EFG in a

manner congruent to how the ripper traverses GUI’s. It starts from the top, an initial

node in the EFG, and works its way down until stopping criteria are reached, and

then moves on to other initial nodes. The user can select the length of test cases (i.e.

generate all length 2 test cases), or a random selection (generate X random tests of

length N). Note that the random generator actually does an exhaustive generation

at the given length and then randomly selects a subset for the user. This limits

scalability.

2.4.3 Replay

In the end, we can automate the execution of each test case. The GUITAR replayer

features both the use of a platform-plugin used to interface with widgets, and also

behavior plugins that can be used to capture information about application state such
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as code coverage and properties of certain widgets of interest. If any test case fails to

execute, due to a change between rips in how the application works, one can return to

the initial step, generate a new rip and EFG for the application, and create a suite of

new test cases.

2.4.4 Summary of RE-Testing

The GUITAR tool implements all the algorithms that reverse engineer information

from interfaces to generate tests and walks the tester through each step of using their

strategy to generate tests. With the stock replayer found in GUITAR, many many

test cases are generated and replayed based on whatever information is supplied to the

EFG through the ripping process, the size of the suite being on the order of magnitude

equivalent to the amount of edges present in the EFG and number of widgets we pull

from the rip and the GUI asset to create it. In short, with no configuration and stock

plugins, every possible test case of a given length that can be generated on the entire

interface is outputted as a test case and is immediately replayable upon relaunch of

the application via the replayer. The tester can observe the state records outputted

by the replayer, or view the outputs recorded by replayer behavior plugins, to detect

bugs.

2.5 Related Work

We explain work related to the current state of GUI testing. To help group together

content across the field by make two cases for the need to improve the state of the art

of GUI testing, and how GUI testers aim to solve these problems. Hereby, we define a

basis for why new GUI test case generators are needed. In the final section are key

points describing the body of research being done in GUI testing currently, and how
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this generator proposes or doesn’t propose state of the art technological advances in

the areas covered by other technologies.

2.5.1 Case 1: Time Spent Computing Test Cases

Model-based generators generate and automate test cases that exercise the interface in

an exhaustive manner, so as to thwart possible bugs in a matter of time that a human

cannot feasibly. This has proved to serve very important roles in a variety of domains.

Smartphone model-based generators, for instance, have been written to test suspicious

executions of code as the user navigates through the interface, as simply clicking the

buttons of a smartphone can lead to information being leaked to unknown remote

sources [27]. Model generation stops researchers from having to manually navigate

interfaces to test them saving resources on the time and personell necessary to test

the application. [10] [3] [28] [6].

Memon brings up the fact in a seminal paper on EFG flow models, that models

constructed for the model based generator can be used and reused to generate multiple

test suites of varying qualities on an application [10], but he fairly pointed out the

caveats in work earlier than and leading up to his, regarding the amount of time it

takes to get back test cases that can be used. Early iterations of these “event flow

model”-based generators suffered from a problem in order to get test cases that would

run: test suites were based on “modellette” miniature models of events themselves,

called operators, which needed to be hand-coded by humans in order to get the

replayer up and running. The replayer would use these operators to actually press

the buttons on the interface, and interact with the software. The process involved a

model checking process to verify that the software correctly responded to operator

input. The process of building these models added hours and even days to the process
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of generating tests, and was considered to take up in the words of the author “a

significant portion of the time” spent on the overall testing process.

In later envisionings of model-based testing, the time taken to create useful test

cases has gone down, but in reality the time has shifted from operator coding to other

aspects of the generation, most importantly the time taken to compute the test case

sequences to be outputted. The generator cited in the seminal paper by Memon,

indeed, took a minimum of 100 and a maximum of 820 seconds (aprrox 13 minutes)

to completely generate a test suite for an applicaiton, not including the weeks that it

was reported to have taken to encode and test operators.

Memon and Nguyen later improved this process in an implementation of a new

tool implementing much of his work, GUITAR [22], a tool that could reverse-engineer

interface operators rather than requiring the need for humans to hand code them.

In studies performed on the performance on this new tool, the generator was tasked

with generating thousands of test cases to uncover seeded faults. Memon and Nguyen

reported their technique to be quite successful. The process taken to generate test

cases and execute them however, still took a long time.

Other authors of similar tools followed suit. The authors of another test case

generation tool AutoBlackTest [17], in a comparison study, cited that GUITAR takes

a between a hard minimum 6 and an average of 10 hours to completely generate test

cases of length 5, while reporting 12 hours for its own tool to run. EXSYST, a tool

that uses a finite state machine to model test suites, and that creates and evolves test

suites using a genetic algorithm, reported their tool takes 15 minutes to completely

generate test suites. [9]

If a tester doesn’t have hours to days at their expense left in the budget for both

creating a test suite and exercising simple functions, modern state-of-the-art test

generation techniques may not measure up to be suitable.
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2.5.2 Case 2: Test Cases Generated Are Irrelevant to the

Goal

Memon also brings up in his seminal paper that the tests, while having some qualities,

might not possess all the qualities a test case needs to be useful.

Memon hypothesized in [10]:

“On one hand, since a human tester is involved in creating test cases with capture/replay

tools, the tester can make intelligent choices, resulting in effective test cases. On the

other hand, an automated technique has the advantage of being comprehensive, in that

requirements such as ’cover every event with at least five test cases’ can be implemented

into the [event-space exploration sequence] algorithms.”

This is an important point made in a paper supporting many modern ideas behind

model-based testing, and moreover a statement which is essential to the cause behind

our work and the work of many researchers in the testing community to date. It

is true that exhaustively generating models through the use of small-length smoke

testing will cover all possible combinations of events length at most “x”, and will

exhaustively test most widgets within the interface. While smoke testing on an

interface can exercise many faults based on small-length sequences, such testing can

create non-sensible sequences.

In [6], Swearngin et. al. point out that typically not all test cases generated using

a model-based approach serve useful afterward from a usability tester’s perspective.

True, in the culture developed around software usability in applications, GUI’s that

involve using say toggle buttons to turn modes on and off do not typically require
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that such a button be repeatedly mouse-clicked to engage the key function. Thus

smoke tests involving two or three presses of a “boldface this text” button hovering

over a document opened in a rich-text editor, won’t meet needs for a tester aiming

to test whether the feature works. Neither will a case involving three or four entries

of the same text into a text field help a tester decide whether the submit button for

that form field works. However, these are the kinds of test cases we get back from a

model-based generator, unconstrained to generate whatever test cases it wants.

The problem with the output, however, exercising not enough functionality in an

interface or exercising the same functionality repeatedly is a double-edged sword. Test

cases need to be long enough an consist of just the right amount of steps, or else tasks

that require lots of interaction, yet that are still serve as a crucial part of the typical

user’s normal workflow, will never show up in the output. Thus another drawback for

unconstrained test suites is that such a strategy cannot feasibly test event sequences

that long, or long enough to exercise goals that are “complex enough” to involve a

wide variety of events executed in just the right sequence (and even repeatedly if

necessary).

An outcome of smoke testing, DART [11], was used to generate test cases on

applications in which faults were seeded into AUT source code. They found their

method to be quite effective at finding faults. The authors were forthcoming about an

observation they note while reviewing their efforts:

“Finally, there are events in the GUI that are enabled only after some other event

sequence has been executed. If the required event sequence is longer than three events,

the smoke test cases cannot execute the code associated with the disabled events.”

Often test cases may involve a wide variety of unique events, say 9 or more,

thwarting any attempt to run to completion algorithm attempting to exhaustively

search an exponential number of paths.
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We will explore this problem in greater depth. Some of the goals we aim to achieve

using our test suites involve closely-tailored orders (Type search parameters in the

“Search For:” and “Replace With:” text boxes before clicking “Find”). To generate

many members of these test suites with 16 to 25 steps each as we demonstrate in our

results, using state-of-the-art testing methods, would take infeasibly long amounts of

time to do.

To date, we don’t know of any other GUI testing technology that aims to compute

test suites this long.

2.6 State-of-the-Art Technologies

Not all testing tools for GUI applications are based on flow models as ours is, and in

fact use completely different techniques to detect problems in applications. FlowFixer,

by Zhang, Lü, & Ernst, is a program-analysis based tool that recommends fixes

based on an analysis of two source code versions of the same application, where

GUI application features may have been removed in the second, or reimplemented in

such a way where the older workflow no longer functions as normal. The FlowFixer

tool simply recommends fixes to workflows. The FlowFixer tool, however, is not a

replacement for a true test case generator, as it only recomments widgets that are

potentially missing within broken test cases.

Mariani, et. al. in [17] focus on “ant-colony optimization” techniques, which

are search techniques that generating relevant GUI test cases using reinforcement

learning. They compared their tool, AutoBlackTest with Memon’s GUITAR, and

found the running time is comparable to GUITAR’s in generating small test suites of

length-5 and below. Carino et. al. [16](CarinoAntQ) also published a selection of tools

“Ant System” and “AntQ” that utilize ant-colony optimization rather than models to
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generate GUI-based test cases. Test cases done using this method take a long time to

generate, and the algorithms are nondeterministic.

2.6.0.1 Domain Language Driven Techniques

Micallef did a study on the advantages of using Domain Specific Language based

testing tools for testing GUI applications [24], specifically using a modelling-language

testing suite called Gherkin [29]. The authors performed a real-world industry study,

and found interesting findings when installing and studying an implementation of a

domain specific language for a gaming company and international publishing house.

They found that a direct benefit of using a modeling is that, after its initial design, a

testing strategy using them can easily be imported into a team’s workflow without

interrupting team productivity. Another finding was that the sharing of a DSL’s

specifications from partner to partner across a testing sector can inadvertently “blow

up” the testing language when strict standards on how and how not to extend the

language aren’t in effect. Thus the test suites built using DSL’s can become redundant,

a notable drawback for companies whose priorities may be focused on reducing the

cost and thus the number of test cases to be executed before product release.

Interestingly Ana Paiva’s Pattern Based GUI Testing tool (PBGT-Tool) is perhaps

the model-based testing tool recently released to the community that most closely

resembles ours in terms of purpose. Testers model their interfaces using patterns based

on operators coded into the platform: the user simply uses a sequences of mouse clicks

to indicate how the testing procedure will ensue, and will utilize constraints to bind

those behaviors to real sequences, the most prominent constraint being “Sequence.”

PBGT-Tool does not use a reverse engineered event model, but instead PBGT testers

can hand-code the model of the the interactive flow through the interface themselves

in a modeling launguage built specifically for the PBGT tool called PARADIGM.
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Models reverse-engineered from the interface are easier to create than hand-coded

models. They are less prone to user error, and easy to quickly generate and reuse.

PBGT-Tool is also a plugin reliant on other testing software, such as a constraint-format

generator, Alcoa for its Alloy-format constraint inputs, and a runtime platform, Eclipse

IDE, to fully operate. Our tool on the ohter hand is standalone. The user simply

requires an updated version of the Java runtime (Java SE 7) and their application’s

compiled class files to create, constrain, and replay tests.

2.6.0.2 Model Based Strategies

Much work has been done on model-based test case generation, especially in the

volatile arena of today in GUI testing. There are other generators besides ours that

work from the basis of a model of the GUI interface to generate and replay test cases.

GUITAR, our star of the show for most of this thesis so far, was published by Nguyen

and Memon. Extensive work on extending the functionality and scope of problems

that guitar can solve has been carried on in work done by Gao, including a recently

released newly developed workflow-based generator called testPatch.

Like tools built into guitar itself, work on test patch focuses on “oracle-backed”

testing, or testing of an interface with a focus on whether the effects produced by

executions of replays on the interface produce a desired result according to an oracle.

However, as reported in results from test suites generated on applications GUITAR

has been used on, [17](MarianiABT) [10], test cases GUITAR generates tend to be

quite small (often reported by studies are test cases containing 5 events or fewer).

Gross, Fraser, and Zeller authored EXSYST, a dynamic, program analysis tool

deviating from the use of event flow models in favor of finite state machines. They

use genetic programming to dynamically generate test cases for a software system or

a GUI interface, namely ones that quickly point to faults in application, and conclude
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that their idea lands the blame quickly on test cases that exercise real faults in the

application. The key here is to generate test cases that give high code coverage, and

ones that exercise the interface in a manner less likely to report test cases that are

false positives not behind the cause cause of real application faults. Our generator

wishes to return the entire scope of test cases covering a particular task, not only the

ones that cause or don’t cause failures. The tests returned by the algorithm, being a

search-based algorithm with a random seed, are non-deterministic. Our algorithm, on

the other hand, is deterministic.

Swearngin et al. devised the HPRT generator, a constraining test case generator

that implements functionality in the closest similarity to ours, by allowing users to

constrain every test case to follow “Required”, “Exclusion”, “Order”, and “Repeat” rules.

The HPRT generator, as it was dubbed, effectively reduces the amount of test suites

we would retrieve from an unconstrained RE-model-based testing method, in order

that we might gain test cases that are useful from a usability perspective.
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Chapter 3

EventFlowSlicer

In this chapter we present EventFlowSlicer, our strategy for goal-based test case

generation in GUIs. A tester or software developer needs to have a bit of world

knowledge about how the application, and what features lie within it, are designed to

be used. Testers are either trained how to work with the application themselves, or

come to the table with such information, so the idea that this knowledge is available

remains a given assumption throughout our process. With that information, our tester,

Tim, could use EventFlowSlicer to test specific features of his application in many

ways, use its constraints system to focus each test case on executing the goal that he

is trying to perform, and perform a focused test case generation instance using only

the widgets that are relavent to him.

3.1 An Overview

The EventFlowSlicer end-to-end generation strategy is a goal-based test case generation

strategy. We use a 4-step process called EventFlowSlicer that helps generate test cases

from an event-based flow model space, in which test cases not relevant to realistic
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Figure 3.1: EventFlowSlicer

Extract and reduce EFG Capture relevant steps 
for goal 

Define constraints 

•  Required 
•  Order 
•  Repeat 
•  Exclude 
•  Atomic 

Generate Test Cases 

1	 2	 3	

4	

user behavior are brought under control both by general “given” global constraints

imposed by the generation platform, and by rules the user can specify. Figure 3.1

shows the process which allows for (optional iteration) back to the first step since we

have learned that the modeling sometimes is an iterative process.

In step 1, the tester captures relevant steps for a goal using a GUI interface, where

each event captured will become a node in the EFG, and given space to define as an

element of a constraint step 2. In step 2, the tester defines the constraints, selecting

from widgets captured and placing them in the constraints groups, thus devising a

logical plan on how widgets may or may not be implicated by events in certain test

cases. In steps 3 and 4, a ripping process occurs and the interface is reverse engineered

and then reduced using the events captured and the constraints. If the user is not
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satisfied with the structure of the test cases, the tester can return to the beginning of

the process to recapture new widgets and constraints, or can skip the first step and

redesign constraints if the constraints defined don’t require a larger or smaller scope

of widgets. Finally, all test cases are generated from the reduced EFG given the set of

constraints.

We provide a walkthrough of how to use our generator, accompanied by a running

example brought in from a real-world use case of the editor JEdit we pulled from a

question on StackOverflow. We give the reader a walkthrough that ties explanations

on how this proposed generation platform works, together with expected inputs

and outputs on a real-world instance to generate a test suite conceived in order to

demonstrate and exercise as many aspects of the same task defined in the StackOverflow

question as our generator can provide.

3.2 Step 1: Capture the Events

The first step of every test case generation process is to indicate what objects on the

interface we wish to center our tests around. Only events pooled from the widgets we

indicate to the system will appear in the outputted test suite. In this step, the way

the tester indicates to the system which events should be included in the test suite is

via “capture”, via a point and click mechanism using a capture mechanism hosting

part of the actual interface as a backdrop. This capture mechanism will identify those

events that the user interfaced with (clicked or typed text into) back to the test case

generation platform, making it possible to focus tests suites to be generated specifically

referencing events the user feels are relevant.
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Figure 3.2: Snapshot of question and single response from users on StackOverflow.com

3.2.1 Running Example Introduction

To demonstrate motivation behind why generating test cases this way might be useful

for testers in the real world, we took a question from the website “www.StackOverflow.com”

and attempted to turn a question that a user asked into a question we could answer

using our test case generation process.

The original poster refers to a need to figure out how to perform a task in the

JEdit text editor, an open source text editor built in Java Swing that allows many

customizable options for editing text.
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3.2.1.1 The Definition of the Task

We’ll define a goal for ourselves to establish the focus of this walkthrough example:

The task will be

Quickly wrap four separate lined paragraphs in an opened text file with a “<p></p>”

tag, using only the “Search and Replace” text editing function (no HyperSearching or

opening multiple buffers or extraneous JEdit search options), all using the JEdit Text

Editor

For this real example of how the test case generation should proceed for the given

task, we have precompiled a test .txt file according to a few specifications which (given

the lack of an exact specification provided by the original poster of what a working

file to modify with search and replace looks like) match what an input file that we

could execute such a task on might look like. Specifically, our input simply contains

four paragraphs separated by line breaks. We wish to wrap “<p></p>” tags around

every one of these paragraphs.

Put formally, our goal is to generate a test suite that exercises as many realistic,

non-redundant behaviors on JEdit that bring the state of the application from its

initial state, to a state that accomplishes the mission of wrapping every line in the

input file with tags, using only the Search and Replace window built into JEdit’s GUI

interface.

We’ll be using the JEdit text editor, version 5.1.0, as our application under test

for this example.
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3.2.2 Steps to Capture

Using the JEdit text editor, our hypothetical tester wants to carry out the task stated

above by adhering to the following steps once opening an input .txt file containing

the input we want to work on.

1. Locate the Search menu in the menubar at the top of the window, and click the

“Search | Find...” menu item under the Search menu.

2. Type the text “.+” in the Search for text box.

3. Type replace text “<p>$0</p>" in the Replace with text box.

4. Click the regular expression checkbox.

5. Click the [Find] button to find the regex we need

6. Click the replace button.

7. Repeat steps 5 and 6 until we run out of regexes to search for.

8. Click the Close button to close the Search and Replace window.

3.2.2.1 Alternatives

Since we are trying to exercise all possible realistic ways a user might execute this

task using this window, it’s important to consider any of the reasonable alternatives

available to doing the same task.

Alternatively to steps 4 and 5: One can

• Having clicked Find initially, replace and find successive matched expressions

using the Replace & Find button repeatedly, and ending with clicking Replace

to replace the final matched expression.



37

Figure 3.3: Start.

Figure 3.4: Initial Window
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Figure 3.5: Find Window with various options configured: Nothing configured (left),
find/replace text changed (right), Regular Expressions, Direction, and AutoWrap
options changed (bottom).

• Change the direction at the start, select autowrap, before beginning either of

the above options (step 3 can come before or after this step)

• Find and replace each regex using the replace all button once, eliminating steps

4 and 5 entirely from the primary option.

3.2.3 The Events-in-scope for Our Running Example

We will capture the following events using a point-and-click capture system that will

be used to feed input to our generator. We will perform the following when the JEdit

interface is opened in a point-and-click capture mechanism:
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• Search menu (SM)

• Search | Find menu item (SFMI)

• Regular Expressions checkbox (REC)

• Typing into Search for: text box (SearchFor)

• Typing into Replace with: text box (ReplaceWith)

• Find push button (FB)

• Replace & Find push button (RFB)

• Replace push button (RB)

• Backward radio button (BR)

• Auto wrap checkbox (AWC)

• Replace All push button (RAB)

• Close button (CB)

We do not need to capture these events in any specific order while the point-and-

click mechanism is recording our events. When we are finished capturing, the point

and click capture mechanism will record what actions we’ve taken, and construct a

file called the “events in scope” file that will hold our results until we are done with

step C.

3.3 Step 2: Design a Logical Plan

After the tester can gather and visually lock in the names that the test case generator

outputs to the user as they are captured, and after the tester has captured all events

in scope, the next step is to design a logical plan that denotes constraints around

some of these events in scope wherever they may appear together in any of the test

cases in output.
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3.3.1 Given Rules: Global Constraints

These rules are a “given” that govern every test case we generate. They are the same

constraints used in HPRT [6]:

End in main window. The test case must complete with an action in the main

window that does not exit the main window (Swearngin refers to this a “system

interaction event”) or with a terminal event that results in the main window

remaining open.

Expand to Child. An event that expands a menu or a combo box must lead to the

immediate selection of that parent element’s child.

No repeat events. No event can reappear after appearing once in any test case (this

constraint can potentially be overriden with a few of our user-defined constraints

in special cases)

Window/tab open close will not happen. A window cannot be immediately opened

and closed without performing any actions on that window. Also after expanding

a tab, some other option other than the close button, must be selected within

that window or expanded tab.

All these global rules protect against redundant and non-constructive behavior in

test cases. In all our test cases, we want to focus on modeling the normal user who

foremost interest in progressing through the task.
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3.3.2 Introduction to Parameterized Rules: User-Specified

Constraints

The logical plan points you can specify to our generator total to 5 different named

constraint types that may be combined to generate a wide complexity of test suites.

They are Exclusion, Order, Repeat, Required, and Atomic. The first four were used

in the HPRT work [6]. The last constraint (Atomic) is new in EventFlowSlicer. From

the user point view, we start with simple easy constraints, and move to the facets:

Before looking at “harder” constraints such as the order events must appear in the

generated test suite and how they must appear together, we’ll begin with more obvious

constraints such as specifying which events must appear in every test case at least

once.

3.3.3 Required Constraint

Starting out in our logical plan is the required constraint. We define a single “Required”

rule to specify that one out of a certain set of events must appear in each test case.

As an example, consider that “Event A” and “Event B” were specified in the events-in-

scope. The tester specifies with the required rule that one outcome for the test suite

generated should be that for any given test case in the suite, either Event A or Event

B should occur at least once in each test case. Each single “Required-type” constraint

is specified as a set of events, and we may specify multiple of these required-type

constraints to the generator if more than one type of event is required. To meet the

tester’s output specifications for the example here-stated, we would specify a required

rule by creating a required rule

{A,B}REQ
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as input to the generator. If only event A must occur in every test case, we could

instead specify:

{A}REQ

3.3.3.1 Running Example

We’re going to specify our logical plan as a sequence of constraints, C = C(EXC),

C(ORD), C(REP), C(REQ), C(ATM).

(It should be briefly noted that the parameters are not shown in the logical rules

we state in our logical plan for this reason: at the time of specifying the events in scope

in the capture process, we bind the parameters we used to properly access widgets -

such as locations of the buttons we click, and the text we type into the text box upon

capture - to the events-in-scope and persist these along with the files we output. The

parameters are thus bound and inferred with alongside events we captured. When the

test case generator runs, it will then recognize these parameters and pair them with

the events in each test case to ensure that the test cases we can replay contain valid

parameters - as certain events in a test case such as text box events would not make

sense without valid parameters, such as what text the tester typed.)

In our running example, we need to ensure that a subset of six key events of the

ones stated above occur in each and every test case:

• The events of: Typing “.+” in the Search for: text box, and Typing “<p>$0</p>”

Replace with: text box, and Clicking on the Regular Expressions checkbox, need

to appear in every single test case.

• One of either the Replace Push button, Replace & Find push button, or Replace

All push button, must appear in every test case.
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Figure 3.6: Setting the Required Rule.

We can construct a logical plan containing the following rule to express this one

constraint to our generator as a constraint meeting all the properties stated above.

CREQ = {{SearchFor}, {ReplaceWith}, {REC}, {RB, RFB, RAB}}

3.3.4 Exclusion Constraint

Next in our logical plan, we should focus on whether events in our test space should

never share the same test case. We will now define formally the “Mutual Exclu-

sion” constraint CEXC . The Mutual Exclusion constraint is defined as a set of sets

X1, X2, ..., Xn<∞. Like the required constraint, each set X is a single rule containing

elements that are events, and a second rule (a second set of events-in-scope that may

not appear together) can be specified by simply adding a new set X to CREQ. The
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events in each set specified may not appear together in any outputted test case. The

rule stating events C and D cannot appear together, is formally specified:

CMEX = {{C,D}}

3.3.4.1 Running Example

In our running example, we need to ensure that Replace All push button doesn’t

appear alongside three other specific widgets in scope, the Find push button, the

Replace & Find push button, and the Backward radio button.

Inferring these rules requires some domain knowledge about the functionality of

JEdit: having typed text into the “Search for” and “Replace with:” text boxes first,

clicking the Replace All button takes care of all subtasks of replacing each of the

matched expressions in the document at once. Thus using the replace all button in

any test case makes the use of the Find button, Replace & Find button, and the

Backward radio button, no longer necessary.

To this end, the tester should add to the logical plan by specifying the constraint:

CMEX = {{FB, RAB}, {RFB, RAB}, {BR, RAB}}

3.3.5 Partial Order Rule

Often when there are many events in scope, the tester might require events in each

test case to have order and sequence. The tester should uncover all orders in which

the events in the test suite may appear, and specify them in the plan.

We might want a subset of events within a test case to appear in a certain order,

while others may either appear in the same order or not at all. We give this specification
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Figure 3.7: Setting the Exclusion Constraints.

the simple name of “Order” constraint. We will formally define the order constraint

in terms of sequences of event sets. A single order rule O is an ordered sequence of

sets each containing events. Each set in O is called an “ordering group” and contains

events that belong in that spot in the sequence if all or some of the events defined

in O ever appear together in the same test case. Given that the order rule properly

defines a partial order on some of the events from the set of events-in-scope, events

that come in latter sets of O must only occur after events that come in sets defined

earlier in O.

Say we have events D, E, F, and J all in events-in-scope W . We want test case

implied by the sequence (D, E, J) to be valid, but test cases such as (J, F), or (J,

E),(J, F),or (E, F) should not be valid. The rule we could formally specify could be:

CORD = ({D}, {E,F}, {J})

Note that test case J, E is made invalid according to the constraint, because J

comes after E in the order specified. Note that (assuming event A is also an event

∈ W , test cases (A, D, J), (A, F, J), (A), (J), and (A, E, J) are still valid. The
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test case (J,D) is an invalid test case because it does not follow the order of widgets

defined.

If we wish to define multiple orderings, in a manner similar to the previous rules,

we may do so. All test cases must adhere to all the order rules defined, and those that

don’t are considered invalid and omitted from the output.

3.3.5.1 Running Example

For our running example, we suggest attacking the problem of executing find and

replace properly with events in the correct order, by breaking some of the events in

scope down into classes.

In any given test case, we must first ensure that the “Search and Replace” window is

configured to search for the desired search text and configured to replace the expression

found with the desired replace text. We say the following events all belong to the

same order class - ergo they belong together - at the start of the test case: typing into

the Search for text box, typing into the Replace with text box, clicking the regular

expressions checkbox, and clicking the backward checkbox. Next before replacing any

text, we must click the find button if it is necessary to do so. The Find push button

comes in the next order class. At the end of the test case, we can begin to replace

the text using the replace buttons, until we finish the task and are ready to close the

window. The Replace & Find push button, and Replace All push button come in after

the final order class.

We only need one order rule to specify all this, as follows:

CORD = ({SearchFor,ReplaceWith,REC , BR}, {FB}, {RFB, RAB})
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3.3.6 Strict Sequences and Atomicity

The tester might require that if an event is to appear in any test case, that it only

appear in certain appropriate places within a given sequence. Such a constraint might

become the most useful of the five in filling holes other rules don’t adequately fill for

the purpose of generating test cases in your suite meeting very specific needs than the

order rule alone can handle.

We will formally define this constraint, called the “Atomic” rule, as a sequence

of event sets. Like order rules, we again use an N-tuple of the ordered components.

Taking from our generalized example for order rules, we could reuse E, F , and J to

create an atomic ordering (E,F, J), but this would mean that E, F , and J must occur

atomically in that same sequence, in any outputted test case, with no substitutions or

breaks in between. If any event element of this specification appears without the other

two, and not in the order specified, the test case is invalid and omitted from output.

Thus the sequence (E,F, J) must appear atomically if any one element is to appear

at all. Multiple unique event elements appear in the same atomic-ordering set within

the sequence as in order rules, however, only one of the events may be substituted for

the one first specified, in that spot in the sequence.

In other words, say we have events S1, S2, S3, S4 that are “steps to a recipe”. These

four events must be carried out in order. Omitting one step from the sequence is not

allowed.

Informally we can call the atomic rule a “recipe sequence” rule, where leaving out

a member of the recipe, or performing a step out of order invalidates a test case.

The atomic rule is a sequence Q = S1, S2, ..., Sn<∞, (n indicating the number of

the final step in the sequence), where S1...Sn may consist of events from the set of
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events-in-scope W . The rule specifies that each and every time an event of signature

Sj from Q, appears in a test case, the following must hold for that test case:

• if j > 1, Sj−1 from Q appears immediately before Sj in that same test case.

• if j < n, Sj+1 from Q appears immediately after Sj in that same test case.

3.3.6.1 Running Example

To add atomic rules to our logical plan of how to attack find and replace, the tester

needs some specific information about how the interface works. Note the alternatives

to clicking Find and Replace:

• Click the find button, then replace button, then repeat the previous two steps

until we run out of regexes to search for.

In our input file shown above, there are four paragraphs that need to be replaced.

Amongst the few alternatives we have to get this to happen, a subsequence is involved

in this alternatives requires the longest sequence of restricted activity among the three

alternatives presented. The test case must follow the click of the Find and Replace

push buttons, with three more Find-Replace back-and-forths before ending the test

case.

• Having clicked Find initially, replace and find successive matched expressions

using the Replace & Find button repeatedly, ending with clicking Replace to

replace the final matched expression.

This alternative requires that we have test cases that follow the use of Find, then

Replace & Find, with two successive clicks to Replace & Find, and a final click to

Replace before ending the test case.
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• Change the direction of the search and turn auto-wrap on before beginning

either of the previous alternatives (any of steps 1-3 can come before or after this

step)

This alternative requires that backward and autowrap accompany one another in

any test case where either is found. Thus two alternatives are possible, backward and

autowrap, or autowrap and backward.

(one could argue that backward and autowrap could potentially appear apart from

one another, however we assume that the normal user might honor the correspondence

between these two events, by clicking one right before the other. We argue that

stranding one from the other doesn’t make sense from a normal user standpoint in

light of the fact that the test case cannot continue beyond a certain point without

both.)

We can cover all these varied yet necessary alternatives with a set of three atomic

rules:

CATM = ({FB}, {RB}, {FB}, {RB}, {FB}, {RB}, {FB}, {RB})

({FB}, {RFB}, {RFB}, {RFB}, {RB})

({AWB}, {BR}),

({BR}, {AWC})

Atomic rules are quite expressive. We have shown how atomic rules can be

multiplexed by specifying two or more rules at once in CATM . There are special cases

implemented in our generator for atomic rules however that don’t apply elsewhere:

Two rules may contain the same event X. In this case, least one atomic rule



50

specifying X from the set of all atomic rules specified must be obeyed in that test case

for every time X appears in a new atomic subsequence.

3.3.7 Unbounded Repetition

Recall that is a global rule in our test case generator that if any event appears more

than once in any test case, the test case is invalid, as the test case exhibits redundant

behavior. Thus, by default, each event is bounded to only appear once in every test

case.

This rule can be overridden, however, in circumstances where the tester wishes to

output a test cases were repeating one or a few elements within the test case is not

redundant, but perhaps necessary to complete the task. We can specify a “Repeat”

rule to meet this need. The content of a repeat rule is a single element, specifying

which element of the events-in-scope may be repeated multiple times.

For instance, to click two separate menu items under a menu within the same test

case, a the test case may need to open the menu twice to reach either menu item. To

allow event A ∈ W (say a menu situated above two required menu items) to repeat

more than one time, we create the the repeat rule:

CREP = {A}

3.3.7.1 Running Example

In our running example, we specify no repeat constraints.

However, note that some of our atomic rules repeat certain events in their specified

sequences. Atomic rules can optionally override the No Repeat Global rule in a special

way: Widgets that are not specified in repeat constraints can only be repeated as
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Figure 3.8: Setting the Repeat Constraint.

their atomic rule specifies. Upon finishing that atomic sequence, those widgets cannot

be repeated again. This allows us to repeat the find button 4 times, but not an

unnecessary fifth time having completed the atomic sequence we specified.

3.3.8 “Omitted” Rules and Residual Effects

The reader may begin to notice that some widgets in scope have been left out of some

of these rules for reasons not immediately obvious, such as the replace button in our

plan’s order rule, or the Auto wrap checkbox in the order rule.

However, the presence of the auto-wrap button actually is implied as being in the

third class of the order rule (following the find button) even though we don’t specify

it. This is because in this example, we have a case of “implied rules”. Our atomic

constraint in our plan specifies that auto wrap must appear only when backward

appears, immediately before it or after it. Notice that this necessarily implies that

autowrap be in the same class as Backward in CORD. We don’t need to be redundant

in expanding the rule in the order constraint for class 1, because the constraint is

already taken care of by the atomic rule. Our plan’s Atomic rules also have an effect

on the order relationship between the two push buttons Find and Replace.

Implied rules can have an impact on the amount of time spent specifying rules.

It’s good to point these trends out when devising the logical plan. It makes the step of
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verifying the correctness of the test suite easier when there are fewer rules to consider

as the culprit of problems.

3.4 Step 3: Generating the inputs and Running the

Generator

In this step we devise and construct the “parameterized constraints”, a plan derived

from the logical plan constructed in step 2, that the generator can read in order to

assist in the future steps of the process.

In our technique, we use a constraints-construction program (CCP) to prepare a

“constraints file” from the events-in-scope output of the capture process and additional

user input where the user supplies the user-specified constraints. The constraints

file includes human-readable XML objects representing the events in scope, and the

optional user-specified constraints that may group them together. The CCP generally

makes it more easy to specify these constraints than hand-coding these XML files.

3.4.1 Generate Event Flow

The process of reading in constraints takes a few seconds. The next step is for the

system to derive the model from the application we’ve specified. Model based testing

literature calls this process: a “GUI rip”. After providing the system with a few more

arguments this time, such as the location of the Java application, the location of the

jar files, the required classpath information, application specific arguments about what

files to open during the rip, the system starts the process of mechanically opening the

application and activating each widget it can find until it exhaustively searches the

interface.
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A version of the GUITAR ripper for JFC Swing applications we have implemented

has been modified to take arguments that guide the ripper past certain widgets that

can cause operating system or file system related problems, such as widgets that

send documents to the printer, close the currently active application, or save random

documents to the file system.

This process can take time depending on how deep and large the window structure

of the application is. When the process is complete, our modified system prints out a

copy of the successfully ripped GUI hierarchy file containing only widgets necessary to

reach and activate the widgets we specified in our parameterized constraints plan. In

addition, the ripper uses both pieces of information to generate an EFG (event flow)

file that maps the allowed event flow between each of our widgets in scope. We’ll need

all these outputs later.

3.4.2 Verifying the Authenticity of Output

The tester will want to verify after this step that all the events that are connected in

the outputted event flow graphs match the events that are intended to be present in

generated test suites. For a sanity check, it would also be good to ensure that some of

the flow (a path or so through the graph), expected to be present in outputted test

cases, actually can be seen as present in the flow graph as a chain of directed edges.

As these flow graphs can be visualized using open source graph visualizers, this

is easy and painless to verify before proceeding. If the graphs don’t match what

you would expect, now would be a good time for the tester to return to step A, and

re-specify the events he actually wanted to see appear in the graph, depending on

whether some events appearing in the visualization of flow appear inside or outside

the scope of what test cases you plan to generate. As a rule of thumb however, there
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Figure 3.9: Our Generated EFG

are often events that may appear in the flow that the user might not expect to see,

but that are required to reach the event in question. It’s easier to see this when the

flow is visualized.

The tester should then step B after reifying the events in scope, to regenerate the

parameterized constraints for the system (the system needs all the events in scope to

be present when generating parameterized constraints.)

The edges that appear between the nodes are what the tester does not need

to worry about changing. The rules for generating these edges obey generally the

algorithms implemented in GUITAR, which are specified in MemonGuitarRipping

and NguyenGuitar.

Shown in figure 3.9 Here is a visualization of the EFG used in the running example.

While EFG’s typically come in a variety that doesn’t give good labeling to go with the

nodes shown in EFG visualizer’s, we have instrumented a visualizer to show helpful

names within event’s respective nodes. EFG construction occurs immediately after

the GUI rip, and typically takes a matter of under ten seconds to complete.



55

3.5 Step 4: Generate the Test Cases

It is at this point where the constraints are used to reduce the test case graph via

global and user specified exceptional cases, and generate test cases based on global

and user specified constraints. The system will take the parameterized constraints,

and the event flow graph, and the tester will actually be able to see the output of

the generator as it traverses a reduced portion of our test case graph to generate test

cases the user specified via consraints. There are a few outcomes of this.

If the test case generator does not terminate, then the tester must stop the generator

manually, and must go back and reify constraints in the logical plan. The constraints

specified may have allowed to many instances of the “repeat” constraint, and perhaps

mistakenly allowed a group of events in the graph to be repeated in a test case an

unlimited amount of times in a never-ending cyclic fashion (the tester has to watch

out for when a cyclic path exists in the visualized EFG from step D - the generator

could end up in this described situation if it were to go down this or other cyclic

paths). Having re-ified constraints, the tester can re-parameterize their logical plan,

generate a new event flow with new nodes (if necessary), and finally re-run step E.

Since it isn’t until this step where we actually use constraints from our plan to

reduce the EFG’s: the event flow graph generated previously may or may not change,

depending on whether or not the tester went back and changed the set of events in

scope. If not the tester does not need to re-run the GUI rip step C; time is thus saved

in this case.

The test case generator may successfully terminate. If the generator terminates,

the tester can be sure that the constraints specified were successful in giving the

generator something that it could use to generate a closed-ended set of valid test cases,

if any existed that the constraints would allow. The tester will want to then verify
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that the test cases generated and stored to disk, validly represent what the tester

would like to test.

There is text output that the generator prints to console, separated and in order

of discovery via the DFS traversal procedure, along with names of the steps emulating

the names within nodes from the overall event flow visualization that was optional

in step C. The tools to verify test cases in graphical format are simple and powerful

tools to use. They can visualize each test case individually as a "chain" flowing from

start to finish, and can be used to combine all the test cases into a “pseudo-flow-graph”

that shows how events flow from the first event in each test case, to the last event in

each test case.

The nice thing is that this can be done for any suite you generate, yet the best

choice between using visualizations and reading the text-based versions depends on

personal preference, on the number of test cases you generate, and the variety of steps

involved: in our validation of the test case generation method, text or graphical format

did not always turn out to be a wiser choice than the other.

Having verified the test cases do not match the tester’s intentions, the tester would

need to go back and reify the constraints, to see if they missed any events-in-scope, or

missed any constraints.

However, having verified the test cases do match the tester’s intentions, the tester

now has a full test suite. And coming soon, there will be a way to actually replay all

those test cases, and test your program.
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3.5.1 Our Running Example Output

Our running example produced a total of 114 test cases that represent how to use

the find and replace window to search through and replace 4 instances of text in the

JEdit text editor.

The process to create all this information is completely automated from the time

the input construction program has compiled the rules file. The whole process following

this point usually can take from 1 - 6 minutes to complete, depending on the complexity

of the application being ripped and the size of other input parameters.
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Chapter 4

Computing the Test Cases: A

“Depth-First-Search”-Based Solution

A key idea that sets our test case generator apart from others is embedded in how we

chose to improve on similar GUI test case generation algorithms. Inspired by modern

implementations of fast algorithms, our goal was to implement an algorithm that

traversed nodes in the EFG, while collecting information and parsing it in parallel, in

a manner as fast as possible from start to finish. Our idea manifested in a depth-first

search solution. It incorporates the use of all the consraints the user specifies as input,

an uses a recursive descent strategy to deterministically decide upon test cases that

match the user’s specified logical plan for widgets in the EFG.

4.1 Introduction: The EventFlowSlicer

“DFSGenerate” Algorithm

Swearngin in [6] modified the test case generator provided by the GUITAR GUI

testing framework to allow it to support a set of user-specified output modifiers called
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“constraints.” Constraints are generator rules that allow the user to express logical

bounds on the inclusion, exclusion, and moreover the order that events may appear in

every test case, by grouping together constructs that each represent a widget both

visible on the screen and relevant to the task while the task is occurring. In addition,

Swearngin added global rules the test case generator would compulsively expressed

as “a given”, which constrain all test cases to behave in a special fashion that avoids

redundant behaviour such as repeatedly clicking objects that can be toggled. While

this last point relieves the user from the need to build mundane constraints repetitively,

the ability to customize constraints gives the tester flexibility in controlling from the

top-down both the behavior of test cases generated, and the amount to some extent.

By allowing the user-tester to exercise different logical constraints amongst various

widgets, the tester can experiment with and create different modelings for various

situations where special behavior is needed, and let the flow remain unconstrainted

among widgets where it isn’t needed. Swearngin’s HPRT generator was designed to

capture the events and generate testcases only for software systems built upon the

StarOffice/LibreOffice UNO Framework, which has its own distinct set of accessibility

libraries for use by application developers of technologies based on LibreOffice.

In our work, we designed a new technique that takes the same inputs as the

GUITAR generator [22] that utilizes rules similar to the generator proposed in [6].

Our goal was to support a wider variety of applications - in particular Java-based

AWT/Swing applications. In addition, we wished to add rules that we believe make

this generator even more robust in its ability to capture more scenarios that people

wish to test that occur commonly in everyday applications, and to support the capture,

replay, and review of test suites on applicaitons that are popular in the real world,

using tasks that have real-world significance for these
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4.1.1 Reduction Step

We want the graph to be as small as possible before generating test cases. In our

implementation of EventFlowSlicer we brought together a set of pre-generation rules

that pacify the input EFG graph “in-situ”, just before running the generation algorithm.

We call the implementation step, the “Graph Reduction step”. Below is a shortlist

detailing what the reductions are, based on a mix of global “given” constraints, and

some information provided by the rules file passed in for the test case generation step

that we can use before test case generation even begins:

IllegalSelfEdges. (code RS) Remove self edges of widgets not in the repeat set.

MenuToNonMenuChild. (code EC) Remove edges leading from an event speci-

fying the opening of a menu to any event not a child of that menu.

FocusedWindowToTerminal. (code WO) Remove edges that lead directly from

an open-a-window event to one that closes the same window.

It is shown in [10] that the complexity of an application has direct correspondence

to the length of time it takes to generate test cases. We can also say that number

of edges in an EFG directly corresponds to the amount of “application complexity”.

The amount of events in an EFG, the nodes in the graph model, make the potential

size of that EFG larger due to the properties of the maximum edge set size of any

mathematical graph being a function on nodes. The algorithm Memon designed, which

builds an EFG based on the widgets available in a multi-window environment, implies

in its core pseudocode, a crucial corrollary.

For a simple interface that has buttons, say one single window interface, and

one with say one single button : suppose we want to add a single button to the

one-windowed button. Each widget like that button we add to that interface gains at
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least one edge leading from the old button to the new one, and from the new button

to the old one, provided that neither button closes their shared window. What this

means is that the number of edges is always growing with the number of nodes, and

that additional widgets we add, if they share only a few windows amongst them,

continuously grow the size of the edges, and if no windows are closed, grow the size of

the edge set at an exponential rate.

Adding one button to the one-button window creates an edge set of size 2, but

adding another creates one of size 4, another button creates 9 edges, the next 16,

the next 32. It should become obvious to the reader after understanding this simple

corrollary why EFG’s become so complex after 9 or so buttons exist in a window’s

interface. Memon’s method extends beyond single window interfaces, and thus the

EFG construct simply becomes more complicated from there. Extensions we’ve made

to GUITAR that build EFG’s from the ground up retain this basic property of

same-window edges between widgets.

Hypothesis: The EFG traversal must take at least |V |2 (number of nodes squared)

time to traverse and create test cases on widgets in a single windowed environment.

Base case: For a simple interface that has buttons, say one single window interface,

and one with say one single button. Traversal of this graph to generate all test cases

is 1 unit of time since 1 unit exists.

Induction step: We want to add an element to a graph with n nodes, an event, to

the interface, and traverse the corresponding EFG for all test cases.

Induction hypothesis: An EFG traversal must take at least |n+ 1|2 (number of

nodes squared) time to traverse and create test cases on widgets in a single windowed

environment.

Proof of Induction hypothesis: According to the EFG construction algorithm, for

each unit event we add as a node to the EFG, we must connect a directed edge from
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old nodes to the new node, and an edge going back from that node to that other

edge. For normal buttons (that don’t disappear when clicked), edges also lead from

that button to itself. We already had n2 edges in the graph. Thus we have n new

edges going out of the new node, n edges entering the new node, and finally an egde

leading from the node to itself. We’ve just added 2n + 1 edges to the graph. But

n2 + 2n+ 1 = (n+ 1)2. Thus we have just created a graph with (n+ 1)2 edges, and

we have our desired result.

From this formal proof, it should be clear to see that it should take longer to

generate test cases the more nodes (events) are detected in the reverse engineering of

the interface. Since the number of edges increases, the number of potential test case

paths for an exhaustive full search algorithm among these edges increases.

Thus the removal of edges should reduce the computation time of an unconstrained

algorithm, because there are fewer paths to consider.

4.1.2 Explanation: Graph Traversal Technique

The DFGen technique aims to solve the problem: Locate all test case paths beginning

at nodes in our EFG, call it GTC that adhere to all given constraints and all user

constraints.

The technique is a single pass algorithm that solves the problem stated above in

process containing 4 phases: Initialize, Validate, Branch, and Print. The recursion of

this DFS based algorithm occurs in the branch and validate phases.

The initialization and print stages are only concerned with preparing the variables

for branch and validation, and preparing test cases for output to whatever endpoint

the user has specified that test cases need to be sent to: the file system or as output

to the terminal. These two steps are shown in Algorithm 2.
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The algorithm finds each test case matching criteria as follows. First, leaving from

some “initial” element of GTC (marked with a boolean value in the input as an “initial

node”), call it node A we find a single new node at an edge endpoint leaving the root,

call it node B. We need data to pass to the first call to DFSVisitAndGenerate, where the

other two phases are executed, so just after initialization, we call DFSVisitAndGenerate

on these initial nodes along with the maps we created.

DFSVisitGenerate will then copy and use whatever information it got from the

parameters. We will explain what these parameters are used for. maps.eC is used

to hold records about what, if any, exclusion parameters are currently active on the

current path, indicated by p, that we’re working with now. maps.oC is used to handle

information about what order parameters in use, and maps.aC is used to handle

information about what atomic sequence parameters are in use.

In the validation phase, phase one, we decide whether the movement from A→ B,

the last node in the path to the current one, i_new, explicitly violates a constraint,

and if it does, we return from the call to visit that node B, and move to either that

child’s next sibling B2, or to visiting a different node according to depth-first order in

the EFG, and repeat the validation step. If we are currently visiting an initial node

in the EFG, then we move on to another initial node in the EFG, until there are no

more initial nodes to generate test cases from. That is: if the movement from A→ B

followsall exclusion rules AXB, Order rules, kA > kB, Atomic Rules, AprecedesB,

and Repeat rules, A = B → A > A, we continue on to the second phase, within the

same call to DFSVisitAndGenerate. Passing these initial tests guarantees that there

is no reason why continuing from p to reach b from p must generate only invalid test

cases.

In phase two (Branch), we check a few more requirements to discover whether the

path formed by adding i_new to pathp, and immediately branch off from the parent
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Algorithm: DFSGenerate
Input: GTC

Output: List(TestCase)
Let list of test case paths allTests be initialized to

[
.
]
;

Let integer e become |ExclusionSets|;
Let integer o become |OrderSets|;
Let integer a become |AtomicSequences|;
Let eC, oC, aC each be maps initialized with e, o, a keys respectively, (one for
each key in their respective set), each mapped to an initial value −1. Store all
maps in a unit collection of maps, call it maps. Each can be expressed as an
array over e cells, each cell mapping to an integer -1 or [1..e]. In addition there
is a final map in maps called aC_active, initialized with a keys, each key
mapping to an enumerated constant, which can take on any value of the
following:

{NOT_DEAD,DEAD,FINISHED,DEAD_FINISHED}

Each value in ac_active is initialized to NOT_DEAD

begin
for k ← 1 . . . |G.V | do

if k is an initial node in GTC then
allTests.add(DFSVisitAndGenerate(V[k],maps,

[
.
]
));

end
end
for k ← 1 . . . |allTests| do

printToF ileSystem(testCasesk)
end

end
Algorithm 1: Top-Level Operations: Initialization and Print
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DFSVisitAndGenerate
Input: Vertex i
Input: Map Collection maps
Input: List of Integers p
Output: List(TestCase)
• First: Copy all variables from maps into a fresh map variable in local-scope:
maps_new.
• Copy list p into new list variable p_new.
begin
� Phase One: Validate
for each GroupType in the set {EXC,ORD,ATM} do

if testAndMap(GroupType, i_new,maps) = false then
return empty list

[
.
]
;

end
� Check Repeat
if CheckForTooManyRepeats(i_new, p_new) then

return empty list
[
.
]

end
� Phase Two: Branch;
p_new.add(i_new);
Let testCases be an empty locally-scoped list of test case paths
if EndsInMainWindow(p_new) and CoversAllRequiredEvents(p_new) and
DoesNotOpenAndImmedCloseWindow(p_new) and
FulfillsAtomicRequirements(p_new) then

testCases.add(p_new)
end
for Vertex j ∈ outgoing do

testCases.appendAll(
DFSVisitAndGenerate(j, maps_new, p_new))

end
return testCases

end
Algorithm 2: DFSVisitAndGenerate function.
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to find more test cases along paths that include the pathp, or the ancestry we just

descended. We check to see if the atomic sequences are complete - if any were started

along that path - and that all of the global rules other than repeat are met: that the

path ends in the main window of the application, that the path meets the required

rules rules, that the path does not open and close a window or tab.

If we can answer yes to all these questions, we add the path traversed as a test

case to the output test suite. If no, we do not add the test case to the current path.

In either case, passing the first phase guarantees us access to branching out from

the current node B, to its children, and running phase one again for each child of the

current node.

At each call to DFSVisitAndGenerate, a copy of the parameters is set aside to run

tests on, and to then pass down to the new copy of DFSVisitAndGenerate that will

run the base of the second phase. This is done specifically due to a special invariant

that shall hold at the beginning of each call to DFSVisitAndGenerate: that each child

of a valid depth first path representing a test case, will be considered for inclusion in a

test case formed by appending that child to the path — based on constraints-related

information about itself and its ancestry, yet not its siblings.

To accomplish this, we hold active constraint data in maps we pass in the maps

parameter passed to the call. We hold data about ancestry in the list of integers, p.

We can simply create a copy of each map, store it locally within each activation record

and before calling DFSVisitAndGenerate on child node(B, and pass this copy

of the maps down to children. This copy we use for the children is thus held out of

reach from being modified by children of nodeB. We can reuse data about ancestry

of B, when calling DFSVisitAndGenerate on siblings of B. We can create new data

about test cases containing B in their ancestry, and pass it down to children of B. to

This is a source of memory savings for the implementation of the algorithm.
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Provided that all guarantees hold, this method efficiently uses DFS, proven to

exhaustively search a graph to find downstream nodes, to find all nodes that it can

find leaving initial nodes in GTC . It furthermore correctly records paths leaving those

nodes that represent valid test cases via its second phase. If we end up failing the first

phase in any call to DFSVisitAndGenerate, we are in effect pruning all path sub-trees

lying downstream of the current node. This adds up to be a substantial time savings

for the implementation of this algorithm.

However, there is a downside to being able to find all test cases adhering to

constraints without specifying a length. Due to the fact the tester is allowed freedom

to specify which nodes may be repeated indefinitely in a test case or not, the algorithm

may fail to terminate if a special condition holds where two nodes that may be repeated

indefinitely are joined by any cyclic path that obeys all other constraints.

4.1.3 Key Differences between EventFlowSlicer-Algorithm

Generator and HPRT-GUITAR Generator

Length Parameter Tradeoff The HPRT generator takes different parameters than

EFS. Using HPRT generator ensures that we enumerate all test cases that adhere

to constraints a given length from any root node in the EFG. However, since the

technique enumerates all possible test cases of a given length from a root, we are

essentially discovering all paths leading from root to leaf at depth n from root, and

repeating this process for however many roots there are in the EFG. This has the

effect of blowing up the running time of this algorithm when exploring spaces of all

possible ways to reach nodes in that graph using paths of length n, whenever n is very

large. This blow up can be seen reflected in our running times chart.

EventFlowSlicer takes all the parameters HPRT generator would take, minus the
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length parameter. We enumerate all test cases of many lengths at once, without the

need to run the program more than one time to get all test cases, and without the

need to know the length of each test case in advance.

However, since the generator is designed to enumerate all possible test cases obeying

constraints without that hard stopping criteria, it will not halt in the case of traversing

a cyclic path downstream from an initial node, in which all paths along that cyclic

path (or an infinite number of them), are also valid test cases according to constraints

specified. This has a sure effect of causing the call stack to overflow eventually, and in

the case of our implementation of the algorithm based on Java, no test cases will be

outputted to the file system, since the print phase takes place just prior to ending a

valid call to the generator.

More Required Constraint Freedoms Both the HPRT generator and EFS

generator take as input Required constraints, but the parameters allowed to be passed

into the different generators differ. The HPRT generator allows the tester to specify

that one or many elements must be required to appear in every test case. The DF

generator allows for this to be expressed, in addition to the ability to express that

each of the one or many elements required, may have up to two or more distinct

alternatives for each test case.

Addition of the Atomic Constraint The EFS generator accepts atomic con-

straints in addition to the constraints supported by HPRT generator, of the form

A1 = {S1, S2, S3, S4, ...Sn}, A2 = {...} where each S contains a set of alternative

events that can appear in the sequence at the nth spot in that sequence A. The only

limitation in our implementation is that we do not support any instance where S1 of

any defined atomic sequence overlaps SN of another sequence (where any two atomic

sequences defined as constraints form an overlapping chain).
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TestAndMap
Input: GroupType scenario
Input: Vertex i_new
Input: Map collection maps
Output: Boolean value true/false
begin

if scenario = EXC then
for Group k ∈ excludeGroupsOf(i) do

if maps.eC[k] 6= −1 and
maps.eC[k] 6= i_new then

return false;
else

eC[k]← i_new;
return true;

end
if scenario = ORD then

for GroupSet k ∈ orderSetsOf(i_new) do
let Group groupOfINew ← k.groupOf(i_new)
if maps.oC[k] 6= −1 and
oC[k] > groupOfINew then

return false;
else

eC ← groupOfINew;
return false;

end
Continued in Part 2

Procedure TestAndMap: Part 1.
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begin
Continued from part 1
if scenario = ATOMIC then

let booleansomeGood← false
let booleansomeBad← false
for SequenceSet k ∈ atomicSets do

if aC_active = DEAD,DEAD_REPEATING then
someBad = true;

end
if aC[k] = −1 then

if i_new 6∈ some Atomic Sequence then
if isEmptyMap(aC) then someBad← true;
else someGood← true;
continue loop

end
if i_new 6∈ AtomicSequencek then

someBad← true;
continue loop;

end
end
• let collection of integers iGroups
← GroupA ∈ AtomicSequenceskwherei_new ∈ A
if GroupaC[k] + 1 ∈ iGroups then

someBad← true
aC[k]← −1
if aC_active[k] = NDEAD then

aC_active[k]← DEAD
else if aC_active[k] = FINISHED then

ac_active[k]← DFINISHED
end
continue loop.

end
aC[k]← aC[k] + 1
someGood← true

end
return (!someGood and someBad)

end
end

Procedure TestAndMap, Part 2.
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Chapter 5

Feasibility Study

In this next set of discussions, we will examine three tasks, explaining what the target

test suite should consist of, and defend using combinatorial mathematics how each

test case should look.

For each goal we present, our test case generator created a certain amount of test

cases that each meet the goal. In addition to re-generating all goals specified in the

HPRT genertor paper [6], we generated a total of 498. Having provided snapshots

for the reader to understand specifics about the interfaces we’re dealing with, we will

defend why we believe the number of the test cases we retrieved from the generator

is correct in completely representing all feasible combinations of individual steps we

described earlier to achieve our goal.

5.1 JEdit “Four Paragraphs”

The task depicted in Figure 5.1 depicts the entry of search and replace parameters

using text boxes and other selection options visible in the “Search And Replace”

window to ensure that the paragraph text we’re looking for can be found. Following,
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Figure 5.1: Test Description of the Task “JEdit Four Paragraphs”. Snapshots of the
Task.

the user must proceed using document selection buttons to select and replace each

instance of paragraph encountered in the input file. All these widgets are accessible

from the “Search And Replace” window shown in Figure 5.1.

The task involves wrapping some text in formatting markup used to mark para-

graphs of text. Four buttons to the right of the text boxes are directly related to the

function of changing properties of the input file defining this task’s completion. Given

the right order of clicking these buttons, they change the text incrementally or all

at once from an initial state with no text marked-up, to a final state where all four

non-empty lines contain markup.

This task is complex in that it involves numerous alternative routes of user input

through this menu to achieve the goal. What makes this particular task special is

that it involves a multi-step process and involves a variety of types of widgets in each

version of the task. Performing this tasks modifies the beginning, middle, and end of

an entire text document. We predicted and found that, if done correctly, all 114 ways
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discovered by our test case generator should convert the document text from that of

the initial state, to the document text of text declared to be in our final state, each

and every time.

Finally, given the plethora of buttons in this particular window alone that aren’t

used, this task exemplifies our need to limit widgets-in-scope to those absolutely

necessary to complete our one task, in order to constrain the number of test cases

we must review later for correctness. Widgets left out of our selection were left out

intentionally, though they can potentially be included and omitted without affecting

the final state (such as [Ignore Case] checkbox). As a reminder, our intention is to

discover efficient ways to accomplish the task. Our test cases cannot be bothered with

widgets that do not lead to quick and efficient modification of the output, without

risking unnecessary blow up of output. [Ignore Case] offers little to no functional

advantage to any of our test cases, though it can be added in anywhere. We wish to

minimize the effort the user must exert in reaching the end goal state whereever we

can.

We’re going to denote the text box underneath the label entitled “Search for:” using

the symbol [Search for:] and likewise for that box under the label Replace with (using

the symbol [Replace with:]). We’re going to denote the regular expression checkbox

[REX], the Backward radio button as [B], the Auto Wrap checkbox as [W], and the

close button as [Close]. The document function buttons to the right of the text boxes,

that perform changes on the open document, will be specified using their labels [Find]

[Replace] [Replace & Find], and [Replace All]. Here are some variations on this task.

The user must utilize [Search for:],[Replace with:], and [REX] before utilizing the

document function buttons to manipulate the open document. The user can swap the

ordering of entering text into [Search for:], entering text into [Replace with:], and

clicking [REX].
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Figure 5.2: Sample Text Cases from the task “JEdit Four Paragraphs”

The user may utilize one of the following sequences to replace the four paragraphs

with the proper replace text.

• Click [Find], click [Replace], click [Find], click [Replace], click [Find], click

[Replace], click [Find], click [Replace]

• Click [Find], click [Replace & Find], click [Replace & Find], click [Replace &

Find], click [Replace]

• Click [Replace All]

The user may opt to reverse the order that JEdit finds and replaces text in the first

two alternatives above, by selecting both the [B] and [W] options

Finally we specify that each test case will complete by closing the “Search And

Replace” window, using the [Close] button below the document function buttons.

We provide just a few test cases below as an example: Each test case clicks the

[Search|Find...] menu item in the main window menubar, opening the “Search And

Replace” before moving on to the meat of the task. Immediately the test cases adjust

the parameters of the tasks using the [Search for:] [Replace with:] text boxes, and the

[REX] checkbox, and then ends by clicking [Replace All] and closing the window.

In our example, it is shown clearly three of the total ways how the orderings of

[Search for:], [Replace with:], and [REX] can be made concrete (two events represent
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each of either [Search for:] or [Replace with:] - representing the fact a text box must

be both selected then typed to in an atomic fashion). They are all valid orderings of

these three widgets, used to set up the find task.

We’ll note a few constraints we used in this task. We stipulate in the constraints

an order rule so that these three widgets will come before any invocation of the [Find]

or [Replace All] buttons. All three widgets are required to occur before searching for

text within the document, and so 3 added required rules ensure that the three widgets

occur first in each and every test case.

5.1.1 Defense of Test Suite Correctness

We do not specify a constraint for the order in which these events occur, as every

ordering of these three is fair. There are in total 8 ways to order [Search for:] [Replace

with:] and [REX], (in other words, 3P1 or 3!). If we opt to continue the task by

replacing each segment of text one by one in a “forward search”, moving forward

through the document to replace text, there are then 3 replacement strategies that

can follow each of the 8 setup strategies. If we were building our formula from the

bottom, we would then have the incomplete equation,

3! ∗ 3

for our current set of calculations.

Now recall that there exists mid-window a radio-button-checkbox pair ([B] and

[W]) that can cause the search to find and replace segments of text, to go in the

“reverse” dircection. This two button combo may be used at any time during task

setup. So we now have 24 (4!) ways in which to order all three of our setup widgets

plus our new pair - but since both [B][W] and [W][B] are both, we must account for
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all the ways that [B][W] or [W][B] might happen, and so we have 48 total ways (4! *

2) to reverse the direction during setup before jumping into a replacement strategy.

Our formula becomes:

3! ∗ 3 + 4! ∗ 2 ∗ (?)

Finallly note that the function of replacing all the text at once is omnidirectional

(the selection for replacement can really be said to move neither forwards nor back-

wards, because the button replaces all matching text at once). Test cases containing

occurrences of [W][B] or [B][W] alongside [Replace All] are considered invalid from

our standpoint, as [W][B] does nothing to functionally change the output of Replace

All, and thus is an inefficient use of the reversal feature) and are thus removed from

the output test suite using constraints. Instead of three replacement strategies for the

backward cases, we now have two. So our formula becomes.

3! ∗ 3 + 4! ∗ 2 ∗ 2 ways...

= 6 ∗ 3 + 24 ∗ 2 ∗ 2

= 18 + 96

= 114 ways.

And we have the final result justified.

Shown in Figure 5.3 is an EFG depicting the minimal test case graph, showing

the progression of all test cases from the first Search Menu event to the final replace

option chosen, down to the close button at the bottom.
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Figure 5.3: Test Case Graph with edges taken from test cases of Four Paragraphs

5.2 DrJava “Search Options”

This next discussion focuses on why we chose to generate the test suite specified in our

task “Search Options”, executable on the Dr. Java IDE. This task’s consraints specify

that certain options are to be used to demonstrate the removal of some text, and its

replacement by new text we provide as parameters to Dr. Java’s search-find-replace

functionality.

Our goal by defining the task using the events in scope as shown above, was

intentional. In the planning stages, we really wanted to seize the opportunity to

model a complex task in Dr. Java’s interface. A search and replace task with many

options, using DrJava’s search-find-replace functionality seemed like a readily availble

opportunity to do so at the time. On the other hand, we admit there are about 7 more
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Figure 5.4: Test Description of the Task “DrJava Search Options”. Snapshots of the
Task.
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widgets available depicted in Figure 5.4 that could be used to perhaps accomplish

the same task as the 7 we chose to include in scope for this task. The number of test

cases including all 14 would certainly get out of hand.

Search options still uses a find-and-replace search window, similar to JEdit. Unlike

JEdit however, Dr. Java’s search window opens up in the window opened during

startup. The bottom half of the window transforms to show a both a new tab and

panel, the “Find/Replace panel”, which accompanies the main editor within the editor’s

window. With this task, we wish to exemplify how our technique can generalize to

accommodate applications with windows that transform to show new content over

time. We believe that transform in Java Swing applications is a common thing, and

so design decisions for the replayer considered this. To appeal to this argument,

recall applications that have configurable options menus, tabbed panels that can be

hidden and shown, and moreover toolbar buttons whose positions can be configured at

runtime. JEdit, TerpWord, Dr. Java for example, all have tabbed panes; DrJava and

TerpWord both contained some that are key and essential to the tasks we’ve selected

for these applications. We’ve built functionality into our replayer implementation to

support this mighty trend among Swing applications.

We decited to constrain the space of possibilities in which this task could be

completed for reasons of brevity, our primary goal being to attempt to showcase our

test case generator’s ability to handle transforming interfaces. Even so, we found that

our constraints still led to the the generation of 64 test cases, and at the design stage,

we believed this to be plenty enough of a convincing argument for this being a complex

enough task. The options we did choose to include we found would collectively change

the outcome of the test case depending on the way each option independently works,

and in the way they work co-dependently. The requirements for finding the word “Edit”

in the input document file are met by any combination of the three checkbox inputs
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we use for this task: our search matches the word “Edit” in the input file because a)

“Edit” is a whole word found in the input file, b) we entered “Edit” in the “Find Next”

box with an alphabetic case matching the case of the term in the input file, and c)

the term “Edit” does not appear in a Java comment or Java string literal.

Though there are many possibilities for searching we generated, “Search Options”

has a simpler model than that of “JEdit Four Paragraphs” for generating test cases,

as reflected in the constraints we built for this task. We will explain the alternatives

within this test suite, and how we model all possible ways this test suite can be carried

out using the widgets selected. We’ll refer to the Find Next button at the left side of

the Find/Replace panel menu using the symbol [FN], the Replace button toward the

right with the symbol [R], the Match Case checkbox with the symbol [Ca], the Whole

Word checkbox with the symbol [Wo], and the No Comments/Strings checkbox as

[Co]. For the search parameter text box adjacent to the label “Find Next:”, we’ll use

the symbol, [Find Next:], and for that adjacent to the label “Replace With:”, we’ll use

the symbol [Replace With:]. To show the “Find/Replace” panel, the user can either

use the “Find/Replace...” menu option under the Edit menu, [EFM], or the Find

button on the application’s toolbar [EFB]. Here are the variations of the task:

We may choose to show the "Find/Replace" Panel using either [EFM] or [EFB]

We may fill out the [Find next:] text box first, then [Replace with:], or fill out

[Replace with:] followed by [Find Next:]. We always ensure this step precedes the

selection of any future search-parameter-modifier checkbox, or the [FN] and [R] buttons.

Before searching for text using [FN], we optionally may click either [Ca], [Co], or

[Wo], or a combination of any of the three to modify search parameters.

Each test case must end with clicking [FN] then clicking [R] to replace the search

text in the main window. All alternatives considered, we are led to consider a total of

64 test cases in our test suite.
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It might not seem obvious why there are 64 test cases. Let’s take a closer look.

We’ll break the problem down into parts. The first part we will consider is the fact

that we may begin the task by either clicking the "Find/ReplaceâĂę" menu option or

the Find toolbar button to open the panel and begin setting search parameters. Our

formula thus starts out:

2.

Now we need to either enter “Search parameters” followed by “Replacement text”

or vice versa, giving us two ways to follow either prior option we’ve just selected. Our

formula is now:

2 ∗ 2.

The final part of calculating our final test case count considers the variations of

the search options available before clicking the find button. There are 3 in total [Ca]

[Co] [Wo]. We may also click none of these options, proceeding directly to the Find

Next button - and we’ll call this option, option [e]. Our first choice consists of picking

from these first four choices.

We’ll follow this thread of thought to calculate how many choices we have remaining.

Upon picking option [e] and clicking [FN] we have no more choices âĂŞ we must

immediately progress to the final call to [R]. The second choice after picking any of the

other 3 options, is any 2nd button among the two left over that hasn’t been clicked

yet, and of course utilizing option [e] to just move on to the [FN] button. This makes

up for 4 concrete second choices after 4 concrete initial choices.

Following that second choice that does not progress directly to the Find Next
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Figure 5.5: Dr Java Search Options Test Case Graph

button, we must pick the only option left over, and then we must proceed to click the

find next button to finish the task. Our formula thus becomes

2 ∗ 2 ∗ (4 ∗ 4) ways.

= 4 ∗ (16)

= 64 ways.

And we have the final result justified.

In the special diagram depicted in Figure 5.5, we number each step as we progress

through each DrJava test case (each step from event to event is nnumbered only once),

to create a flow chart resulting from the combination of all the test cases into one

concrete graph. If we label each edge with a number we can clearly see that the user

starts with a certain step, then continues to another then another.
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Figure 5.6: Test Description of the Task “JEdit CommentedText”. Snapshots of the
Task.

5.3 JEdit “Commented Text”

This next discussion concerns the reasons behind why the test suite JEdit “Commented-

Text” became a good candidate to use for our experiments. Some elements of the task

this test suite is attempting to model are directly driven by the purpose of answering a

question taken from on StackOverflow during our motivating research phase, regarding

how to change the background color of all text meeting certain criteria within the

JEdit application. In this case, the original poster of the question had chosen a readily

available attribute assigned to certain text within a Java source code is opened within

the editor. By default, in the installation of JEdit, text that is preceded by a Java

Line Comment Marker (//) is colored orange and is given a transparent background

color. The original poster’s question regarded changing this default behavior of JEdit.

Our intent, following after the original poster, was to discover all the possible ways

that the background color of text marked as a line comment could be changed.

Our interests expanded after discovering a few answers via exploration. The

reader can clearly observe in Figure 5.6(b), there are more options available in this
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window than the ones stated in the user’s question in Figure 5.6(a). For two new

test suites we devised on our own, we expanded our focus beyond just exercising the

Background-Color selection feature, to exercising the Text-Color selection feature.

We also found the question prompt to be a bit ambiguous upon deeper study of the

question text. The original poster specifies that he wishes to change the background

color of commented text within JEdit documents, but does not specify that the

background color is the only thing he wishes to change. (Indeed the original poster

specified directly in the question that he “wants” to change “not just” the background

but also the text color.)

To answer all possible variants of what the user could want to accomplish from

an answer to this question, we decided to attack this problem from three different

angles. First we simply cover all possible ways the background color could be changed

on its own, as well as all possible ways it could be changed alongside other changes

that could additionally be made to the text. Since the user specified that they had

already enacted changes to the text color before asking the question, we generated our

second test suite without the background-color option in scope, but with text-color in

its place, and got back ways this could be changed alongside other changes. Finally

we created a test suite that included both the two coloration options amongst the

other two options, in test cases.

This final suite consisted of all one, two, three, and four-way combinations of

changing the state of background-color, text-color, font weight, or font-style (italiciza-

tion) of text using the Style Editor window available from the Quick Settings menu of

JEdit. This provided some very interesting output for our study, and it serves as the

largest test suite to date that we have focused on.
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Figure 5.7: Snapshot of JEdit Color Selection Process

5.3.1 Variations in the Planned Goal

We will define legal variations of how our task might be executed: upon opening the

Style Editor window:

The user may pick 1-4 of the following settings to change:

• The “Italic” setting checkbox.

• The “Bold” setting checkbox.

• The “Text Color” color picker button to the right of the Text Color label.

• The “Background color” color picker button (after first clicking the background-

color setting checkbox to enable the button to the right of the label.

Having picked either of the latter two options, the user must immediately
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• select a color swatch in the swatch palette that appears using the mouse or

• select a color swatch in the swatch palette using the keyboard arrow keys to

move the select and the Space Bar to confirm (the plan for this task is to always

choose the “gray” color swatch just below “white” in the top-left corner)

and following the choice, immediately click the close button of the “Select Color” window

to return to the Style Editor window.

Choosing the same kind of style option from above twice is not admissible in any

test case

The user must end the test case by clicking the final “Close” button at the bottom

of the Style Editor window. All means considered, we are led to a total of 200 test

cases that click the final close button at the end after changing the style of commented

text.

5.3.2 Defense of Test Suite Correctness

5.3.2.1 Setup

Complexity of the amount of test cases we get back from this suite stems from the

fact that they can be ordered in any way, and is also due to the fact that we must

consider all one, two, three, and four-way combinations of the widgets in the Style

Editor to achieve all possible methods of achieving the task. We’ll explain why 200 is

our target number for this test suite.

First, we enumerate all the options that the user can manipulate upon opening

the Style Editor. They are

1. Select the checkbox labeled “Italics” to change the commented text to be italic-

style [L]



87

2. Select the checkbox labeled “Bold” to change the font-weight to bold [B]

3. Change the color of the commented text by clicking the Text Color color picker

and continuing to select a swatch via a mouse click [TCM]

4. ... or by selecting a swatch via the arrow keys and space bar [TCK]

5. Change color of the background behind the commented text by clicking both the

checkbox in “Select Color” labeled “Background Color”, and clicking the color

picker to the right to select a swatch using a mouse click [BCM]

6. ... or by selecting a swatch via the arrow keys and space bar. [BCK]

There are 6 total events available to select options. We’ll rfer to the final color changing

options from here on as the “coloration options” of the kind Text Color and of the

kind Background color, noting that there are two types of ways to select an option

under each kind. We’ll refer to the first couple of event kinds as “simple options” that

each have one way to activate the option.

Since we are not allowed to repeat any of the options, a simple way to enumerate

all 200 is to count all the one-way, two-way, three-way, and four-way combinations of

the 4 types of options available in the style editor window in a build-from-the-bottom

fashion. We start by breaking the problem down into small parts.

Our formula starts out at:

6

For all the one way options we just enumerated that change the style. To start out

two-way, we consider all the ways we can lead out of the previous step, step 1. We

find this to be the simplest way of many to describe the process of mathematically

proving our total 200 ways.
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5.3.2.2 Finding All the Multi-way Combinations

We can next choose any option we have not picked, or immediately continue to the

OK button and end the editing session. Upon choosing not to continue to the OK

button after step 1, we continue to select a two-way option. If the test case starts for

instance with selecting the italic checkbox [L], a simple option, it can be followed by 5

different possibilities: the bold checkbox [B] or one of the four of the different types

of colorations stated above [TCM][TCK][BCM] or [BCK]. Likewise, if the test case

starts with [B], just replace bold with italic in the former five options mentioned for

italic to get 5 more types of possibilities.

For the colorations, say for a test case starting with [TCM], we can exit [TCM],

and enter only 4 other remaining options. We have excluded TCK from the 5 options

we have available we haven’t chosen, because [TCK] and [TCM] would repeat the use

of a Text Color option, which is not admissible in any test case.

We can likewise exit [TCK] and enter 4 other options, and we can exit [BCM] and

[BCK] with 4 and 4 other options respectively, as we want to avoid the use of the

same feature twice with any coloration.

In all 6 scenarios we have reviewed, there are 26 2-way combinations of widgets.

Our formula now becomes:

6 + 26

And we now continue to 3-way test cases by continuing to build a longer test case

beyond the test cases we now have. There are two cases we wish to consider amongst

the set of length-2 test cases we now have.

Case 2.1: Let’s take just those test cases that consist of two simple options [L] and

[B]. There are two such members: ([L],[B]) or ([B], [L]). The third choice must be a
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coloration, because we’ve run out of simple choices. We can exit either of these length

two test cases and enter any of the four coloration options, creating 8 new 3-way test

cases by doing so.

Our formula grows to 6 + 26 + 8+?+?.

Case 2.2: Let’s take just those length-2 test caes consisting of back-to-back

colorations. Since they must be selected one per kind, there are 8 such ordered

sequences

([TCM], [BCM]) ([TCK], [BCK])

([TCM], (BCK]) ([TCK], [BCM])

and their reverses.

Any of these 8 may be followed by one of the leftover simple choices that are yet

unselected, [L] or [B].

Case 2.3: Now fo rhte remaining part dealing with the choice of one coloration

and a simple choice. There are a larger number of these than in the previous cases:

([L], [TCM/K]) ([B],[TCM/K]), ([L],[BCM/K]) ([B],[BCM/K]), and the reverses of

these pairs. In total there are 16 possibilities. No matter what, there are 3 leftover

options that can follow this pairing, one of the simple options and the 2 types of a

single kind of coloration.

Our formula as it stands now accounts for all three-element combinations of options

from select color:

6 + 26 + (8 + 16 + 48).

Having already counted up all cases of 3-way possibilities makes it easier to move

forward to calculate all the 4-way possibilities.

In all eight 3-way members of case 2.1 above, we are solely left with the choice of
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picking one type of a single kind of coloration. Since there are two types, we simply

multiply 8 by 2 to get the 4-way possibilities that start with [It] and [Bo]. Likewise in

case 2.2 we get 16 more possibilities, because in all 16 3-way cases, we must pick a

simple option for our fourth choice.

In case 2.3, we do some simple math. Since for the third choice we only had

3 options, and we must have picked either a simple option or one of two leftover

coloration options to get the 48, exactly 1/3 of the members of case 2.3 must have

ended with a simple option, thus leaving us with a choice to pick one of the types of

coloration we didn’t pick earlier as our fourth choice (Multiply 16 of these test cases

by 2 to get these options). That leaves 2/3 of the members of 2.3 that must have

ended with a coloration. These must be followed by the lone simple option left over.

So our formula becomes

6 + 26 + (8 + 16 + 48) + (16 + 16 + 64) ways...

= 32 + 72 + 96

= 200 ways.

And we have the desired test case count.

Depicted in Figure 5.8 is a graph showing the flow of all test cases through a visual

flowchart. The tasks all start with opening menu, Utilities, and progressing down until

the choice can be made to pick one of the four options available in the style editor.

In table 5.1, we show how often certain rules were used for certain tasks, including

the ones we depict in this walkthrough.
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Figure 5.8: Constraints used in Each Test Case for Our Case Study
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Table 5.1: Constraints used in Each Test Case for Our Case Study

Application Category Rules Rules EFS Rule Types
HPRT EFS REQUIRE EXCLUDE ORDER REPEAT ATOMIC

Format Text M 4 7 4 - 2 1 -
MK 7 9 4 2 2 1 -
MKT 7 10 4 3 2 1 -

Insert Hyperlink M 6 7 5 - 2 - -
MK 8 9 5 2 2 - -
MKT 8 9 5 2 2 - -

Absolute Value M 6 8 5 - 2 1 -
MK 8 10 5 2 2 1 -
MKT 9 11 5 3 2 1 -

Insert Table M 4 6 4 - 1 1 -
MK 6 8 4 2 1 1 -
MKT 7 9 4 3 1 1 -

Comment Indent 5 8 3 3 1 1 -
Search Options 6 7 5 1 1 - -
Bold Center 6 8 4 2 1 1 -
Compile File NA 6 2 2 1 1 -
Commented Text TC NA 2 1 1 - - -

BG NA 3 1 1 - - 1
FULL NA 7 1 - - 4 2

Four Paragraphs WD NA 12 4 3 1 - 4
MD NA 16 6 3 2 1 4



93

Chapter 6

Empirical Study

In this section we describe an empirical study to evaluate EventFlowSlicer. We utilize

tasks that come from prior work on HPRT as well as new tasks that we have derived

from Online forums.

The research questions that we ask in this study are:

RQ1: How does EFS compare with the HPRT test generation algorithm in terms of

efficiency and effectiveness?

RQ2: Can we effectively generate test cases for the various classes of goals identified

using EFS?

RQ3: What is the impact of each step of the EventFlowSlicer EFG reduction phase

both on the EFG’s complexity and overall generator runtime?

Experimental artifacts and results can be found online at http://cse.unl.edu/

~myra/artifacts/EventFlowSlicer/

http://cse.unl.edu/~myra/artifacts/EventFlowSlicer/
http://cse.unl.edu/~myra/artifacts/EventFlowSlicer/
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6.1 Study Subjects

For RQ1, we use tasks and test cases from the work of Swearngin et al. [6]. We

were able to retrieve the EFG, GUI, and Constraints (Rules) artifacts down from a

running online repository hosting artifacts from the study. These include test cases for

four tasks in LibreOffice 3.4.3 suite, that utilize three of the LibreOffice applications

modules, Writer, Calc, and Impress. In order to compare running time and study

the effectiveness of our generator, we reuse the generator provided by Swearngin and

run both generators on a total of 15 tasks, including 3 tasks created for three more

applications to show generalization.

Three new tasks were tested on the following three platforms: JEdit version

5.1.0 [30], DrJava version 20140826-r5761 [31], and TerpWord 3 (2003 release) [32].

For RQ3, we utilize an additional 9 test suites, to create a demonstration of 21 test

suites total, that together demonstrate all the types of goals we set out to accomplish

examples for in this thesis. The additional 9 test cases are generated using two of our

new subjects, DrJava and JEdit, using new tasks.

Out of the additional 9 tasks we add to HPRT, 3 of these tasks, the tasks chosen

for our first study, were informally imagined and formed for the purposes of comparing

EFS with HPRT. RQ2 is concerned with finding real world applications for our

generators uses, so 3 questions were taken from an online forum, StackOverflow.com,

and broken down into 6 separate test suites in all for 2 that can be run on two of the

new applications we review from earlier. We explain how these three questions were

selected in the procedures (Section 6.3.2).
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Table 6.1: Applications Under Study, Their Sources, and Resulting Size of Test Suites
Key Goal Category Source Test Suite

Cases
1 Libre Office Format Text M SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 3
2 Libre Office Format Text MK SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 24
3 Libre Office Format Text MKT SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 81
4 Libre Office Insert Hyperlink M SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 2
5 Libre Office Insert Hyperlink MK SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 81
6 Libre Office Insert Hyperlink MKT SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 18
7 Libre Office Absolute Value M SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 4
8 Libre Office Absolute Value MK (AVMK) SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 32
9 Libre Office Absolute Value MKT (AVMKT) SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 72

10 Libre Office Insert Table M (ITM) SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 3
11 Libre Office Insert Table MK (ITMK) SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 12
12 Libre Office Insert Table MKT (ITMKT) SDO http://cse.unl.edu/~myra/artifacts/HPRT-2013 36
13 TerpWord Bold Center (TWBC) SDO * 8
14 DrJava Search Options (DJSO) SFG * 64
15 JEdit Comment Indent (JECI) SDO * 16
16 DrJava Compile File (DJCF) SDO http://stackoverflow.com/questions/26821167/how-to-determine-what-commands-drjava-is-executing 4
17 JEdit Commented Text TC (JECTTC) SAG http://stackoverflow.com/questions/27180136/highlight-comments-background-in-jedit 26
18 JEdit Commented Text BC (JECTBC) SAG http://stackoverflow.com/questions/27180136/highlight-comments-background-in-jedit 26
19 JEdit Commented Text FULL (JECTF) SAG http://stackoverflow.com/questions/27180136/highlight-comments-background-in-jedit 200
20 JEdit Four Paragraphs N (JEFPN) SFG http://stackoverflow.com/questions/33421810/finding-the-regular-expressions-search-in-jedit 114
21 JEdit Four Paragraphs MD (JEFPMD) SFG http://stackoverflow.com/questions/33421810/finding-the-regular-expressions-search-in-jedit 36

∗ Task has no online source

6.2 Study Metrics

First in RQ1, we wish to determine how effective we could be at using the HPRT

generator to generate test cases, and the amount of precision we can reach at replicating

the research of the Swearngin, et. al, in [6]. We collected data about the number of

runs performed to generate output, the time it took to complete each run, and the

factors that could have impacted the running time, such as number of nodes in the

input EFG, and the size of the graph in terms of the edges. We also recorded and

report on trends of running times across categories that we noticed, and also trends on

running times across the different tasks we generated, and the total rate of accuracy

we reached in replicating the test cases found on the study repository.

For this research question, we also measure the delta change from the size of the

rule sets provided by the HPRT study to the size of our rulesets, noting the exact

changes in the types of rules used, and provide observations about the dissimilarities,

and what was required in the new generator to overcome obstacles.

After successfully replicating the generator’s results, we wanted to find the runtime

of the two applications running side by side. In order to provide a fair comparison,

we executed both generators on the tasks input files, and measured the wall clock
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runtime of the amount of time it took each generator to finish processing and write all

its test case files to the file system. We took the times gathered from the replication

study in RQ1, and compared these for each task to an average over 5 separate runs

for the same task on the EFS generator. Since the HPRT generator required multiple

runs of the generator to generate all test cases, we take the sum of all times it took

each generation instance to process and generate test cases, minus the setup time

between separate runs of the generator for different lengths, and add up the wall clock

runtimes to get results for each task run using HPRT generator.

RQ2 allowed us more freedom to measure the strengths and weaknesses of our

generator on problems we didn’t know for sure our generator could solve. We note the

procedure we took in selecting questions from online forums, and set up the study by

measuring the number and varieties of constraints used to address each situation. We

verified that we collected at least one task to meet each type of goal defined, and then

after configuring the generator, verified whether each test suite validly represented

all ways to reach the goal by manually examining each test case. Additionally we

measure the lengths of each test suite, and the variety of constraints used, and the

varieties of types of widgets involved in each old and new task we added.

For RQ3, we needed ways to understand the effectiveness of our reduction technique.

The best measurement would seemingly be based on remaining edge count post

reduction, since our reduction removes edges from EFG’s. Since our reduction phases

only remove edges and not nodes, we’ll use the term graph edge-set size or graph size

to refer to the size of the graph based on the number of edges. Our main question we

aim to answer will then be this: Does the graph contain fewer edges after a reduction

step is applied?
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6.3 Study Procedures

6.3.1 Generator Comparison Study

All test cases were found at the URL’s shown in Table 6.1. All test cases were given a

key (1-21) to help identify them uniquely. Test cases 1-12 were used in our generator

comparison study. We will now discuss the details of the generator comparison study.

We use 12 tasks in this study, keyed 1-12 in Table 6.1 the data of which was downloaded

from the online repository hosting the artifacts from [6].

The first research question insists that we first properly reproduce the results from

HPRT. Our goal was to measure the efficiency (the runtime) and the effectiveness

(the capabilities) of either product and compare them to see whether there were stark

differences between the two in their performance. The data online, namely being an

assorted collection of model assets and the rules files for 12 separate tasks, directly

suited our purposes: we did not need the application since from the site we could

gain the assets, the only artifacts actually needed to run the generators. Following

this, we observed whether, given a certain application, a set of constraints, and a

certain length parameter y if required: A) the time it took to run the HPRT and

EFS test case generation algorithm, B) the capabilities of either generator to respond

to expressive set of user input to generate the same results, and C) the amount of

waiting time to see each generator compute complete results for the tester.

We have provided the reader with descriptions that serves as recipes, or exact

sequences of steps, that can be used to complete the task in Figure 6.2, in the order

they are listed in Table 6.1. HPRT presented different widget categories, but we group

these together in this table of goals to focus specifically on the goal groups of tasks

are attempting to accomplish perform, rather than on the model data. The tasks in

Table 6.2 are also ordered by complexity. Unlike the descriptions provided in [6], our
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Table 6.2: Table of Tasks Used in Our Study

Goal Name Description
LibreOffice Writer In Document Viewer: Type the word “Chapter.”
Format Text Make the text typed bold.
(Struct. Diffs. Only) Make the text centered.
LibreOffice Writer Open “Hyperlink” window.
Insert Hyperlink In Hyperlink window: type “www.amazin.com” in [Target] text box
(Struct. Diffs. Only) Type “Amazin” in [Text] text box.

Confirm the changes, then click [OK].
Change the case of the text in the document editor to be uppercase.

LibreOffice Calc Open “Function Wizard” window.
(Absolute Value) In Function Wizard window: Click [Next] then type “-87” in [Number] text box.
(Struct. Diff. Only) Confirm the changes, then shift the cell just edited one cell to the right.

Turn off column and row headers in the formatted document.
LibreOffice Impress Open the “Table” window.
Insert Table In the Table window: Type “6” in the columns spinner text box.
(Struct. Diff. Only) Confirm the changes, then add a new slide to the formatted presentation.

Hide the task pane in the open presentation.
JEdit (A pre-created .java file has been opened containing only the text “Edit the code here”)
Comment Indent Change the line of text into a java-source line comment.
(Struct. Diff. Only) Shift the line of text one tab stop to the right.
DrJava (A pre-created .java file has been opened containing only the text “Edit the code here”)
(Search Options) Open the “Find/Replace” panel in the Interactions pane.
(Same Functional Goal) In the Find/Replace panel: Enter “Edit” in the [Find Next] box

Enter “Replace” in the [Replace With] box.
Search for and replace the word specified in the open document.

TerpWord In the Document Viewer: Type the text “Jonathan” using the cursor and keyboard.
Bold Center Make the text typed bold.
(Struct. Diff. Only) Make the text typed centered in the document horizontally.
DrJava* (A pre-created .java file has been opened, containing a no-argument java program.)
Compile File Compile the document.
(Struct. Diff. Only) Run the compiled class file with no arguments. The output pane displays the text “Hello World”
JEdit* (A pre-created .java file has been opened containing the text “//Commented text.”)
CommentedText Open the “Style Editor” window.
(Same Abstract Goal) In Style Editor window: Change appearance of all comments in current doc using any option(s).

Confirm any changes, and exit the Style Editor.
Style(s) of the commented text in the open document are changed.

JEdit* (A pre-created .java file has been opened containing four separated lines of filler content.)
FourParagraphs Open the “Search and Replace” window.
(Same Functional Goal) In the Search and Replace window: Enter the JEdit regex “.+” in the [Search for] text box.

Enter the JEdit regex “<p>$0</p>.”
Find and replace the four lines of content in the document, with new text wrapped in <p></p> tags.
All four paragraphs in the document are now wrapped in markup.

descriptions focus less on the names of the widgets, but instead convey a general feel

for how complex the task is. Each step is given a single line. We take care to call

out each of the elements in scope within the task using some part of each description.

Due to space constraints, we do not list all the alternatives for each step, including

the orderings that some steps may be performed in to complete the task properly.

For most of these tasks where the effect is not obvious, the final line in the table
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cell specifies the final effect expected within the application, and where that effect is

expected to appear.

To answer questions about the comparability between HPRT and EFS, we setup

this study to use the first 7 of the 10 tasks described in this table for the following

reasons. The final two purposefully contained lots of events and edges in their models

(the most out of any other task in our study), and thus were reserved for the feasibility

study of our new generator rather than used in a comparison of our generator to an

older version. The 7th task, though seemingly not too complex, seemed extraneous

given the fact we already had a task for the new application DrJava prepared for use

by HPRT and EFS.

6.3.2 New Goal Generation

Our three-step approach was planned out into the following three phases:

• Phase 1: Uncover questions by searching the website StackOverflow.com using

StackOverflow’s search query interface based on search criteria that help target

our two applications in focus.

• Phase 2: Filter out a single question at a time according to specific criteria,

allowing us to focus on questions we might be able to answer with our generator.

• Phase 3: Make formal our interpretation of each question as a “task” and its

overall scope, and generate test cases that when replayed on the interface, achieve

the goal the original poster stated they want to achieve.

The tasks we selected for this portion of our study are indicated and marked in

Table 6.2.
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6.3.2.1 Phase 1

We took questions from stack overflow based on a few criteria. We first sorted

questions into a good-to-solve and not-good-to-solve column. Questions that we saw

as not-good-to-solve were immediately filtered out of our selection.

A question would be put into not-good-to-solve column for a particular product

because:

• the question regarded an installation issue that the user was having related to

the product,

• the question regarded a problem compiling source code containing errors that

the original poster simply wished to get fixed, (Dr. Java)

• the question regarded the problem of installing a plugin,

• the question regarded using a plugin relevant to the product, but the plugin was

too obscure for me to understand its purpose in the interface, and thus whether

we ourselves could answer the question using our generator,

• the only answers to the question regarded using a shell script that could be

used to code their way into a solution using a system interpreter or a backdoor

approach provided by the operating system,

• the original poster’s question was limited to simply asking for a better alternative

to the product itself, without referring to a specific problem with the interface,

• the question regarded an operating-system or JVM-related defect regarding the

product, but not related to the interface, or

• the user’s question was completely irrelevant to the product,
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Phase 1 was conducted by searching through all questions returned by a given

search query for the application, which we saved.

During our study we found it necessary to take multiple strides at finding the

right search query. For each application, JEdit for example, we first attempted using

a generic search term in StackOverflow’s whole-site search widget: “application-

name is:question”, to pick up every single question that contained a reference to the

applcation in the question text or answer text, and results pointing to questions only

(not answers to questions). We found that this returned 240 results in total for the

term “jedit is:question” JEdit application, and 196 results for “DrJava is:question”.

Later on we found that questions returned by our initial search term had too many

irrelevant results, and too many would quickly fall into the not-good-to-solve column.

Rather than spend time sifting through too many negative results appearing anew, we

set a cutoff. After we found the first 7 or so questions from our first query type fell

into the final not-good criterion (completely irrelevant) for each of our applications, we

tried another similar yet standardized search query for each application, that employed

StackOverflow “tag queries”. Upon further research in StackOverflow documentation,

and when trying the new queries ourselves, we found that tag queries forced our search

results to contain questions only, and also impose the constraint that a user logged

into the site, marked the question with the same tag we chose to use in the search

on our end - implying a mutual contract on search relevance. This proved useful to

reducing question results page size by over half.

In the case of JEdit, the new search term was revised “[jedit]”, and for DrJava,

the search term became “[drjava]”). A total of 45 out of 101 questions returned by

the new JEdit search query were sifted into the not-good-to-solve column for the

JEdit application in accordance with our initial criteria, and 42 out of a total 106

questions returned by the DrJava query made it into the not-good-to-solve column for



102

DrJava-related questions. Results were sorted by date entered. The cutoff date for

our Phase 1 study window when was the date of March 28, 2016. No new questions

submitted to StackOverflow after that date were considered. All search results returned

by our search on StackOverflow using these two terms, constitutes the entire corpus

of data collected for this phase.

6.3.2.2 Phase 2

For the 56 questions on the topic of JEdit, and 64 questions on the topic of DrJava

that made it into the good-to-solve column for the first round, we further reduced the

column using new criteria after an initial pass. This line of criteria tailored questions

to those that had to do more with our line of research in this study.

The new criteria were:

1. All plugins necessary for the task to be completeable are freely avail-

able and easily accessible and installable. Plugins to tools such as the

JEdit text editor may change the interface in various ways, and without access

to these plugins, we could not test the program in a way that would satisfy an

answer to the question as the answer might suggest.

2. Solutions could be effected using JEdit’s current version. Some original

posters asked questions regarding features that were for features removed from

the current version, or omitted or staged for later addition to JEdit’s platform,

which we could not tackle.

3. Solutions requiring additional configuration resources were available

to us during our study period. More than a few questions we reviewed

resulted in answers involving operating system API, remote file systems, or other

resources that were not available to us during our study window.
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Figure 6.1: Example Stack Overflow Question and Answer

We made it 30% through the list before selecting some tasks to actually try to

implement, based on how successful we predicted we’d be based on having studied

more carefully the title of the question, and the question prompt.

6.3.2.3 Phase 3

In the end, we formalized a total of four tasks that we could further analyze and

generate tests for, summarized in Table 6.2. Images of the original questions are given

in figure 6.1.

6.3.3 Reduction Algorithm Efficiency

RQ3 poses a challenge to whether our reduction algorithms were effective in helping

to reduce the size of the EFG’s before the reduction phase. We collected the outcomes

of test case generation reduction process midway through the computation process.
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Table 6.3: Statistics from HPRT Replication Study

Menus Only Menus + Keyboards Shortcuts MK + Toolbar Buttons
Nodes/ Rules Time Nodes/ Rules Time Nodes/ Rules Time
Edges Edges Edges

FTW 9/29 4/7 8(s) 12/55 7/9 107(s) 15/109 7/10 187(min)
IHW 9/37 6/7 7(s) 11/61 8/9 35(s) 13/99 8/9 295(s)
AVC 11/34 6/8 16(s) 14/57 8/10 280(s) 16/82 9/11 71(min)
ITI 7/17 4/6 4(s) 9/31 6/8 23(s) 11/53 7/9 45(s)

These outcomes are reduced EFG graphs, one produced after each reduction of the

EFG via our 3 reductions outlined in Chapter 4.

To measure the efficiency of our reduction algorithms, for each task we ran the

EFS generator one time. The output of the generator is defined such that for every

run, statistics are reported about various attributes of the graph: we went back to

older output from the other two studies, and then collected edge count and cyclomatic

number from the output files generated. We ran these through statistical analysis and

present in the results, bar charts summarizing the results of the reductions, and also

collected the mean amount of reduction of the EFG each reducer accomplished across

all 21 test cases. In addition, since cycles have been known to cause test suite blowup,

we report on the reduction of cyclomatic complexity of each edge reduced EFG.

6.4 Results

6.4.1 RQ1

Research Question 1 How does EFS compare with the HPRT test generation

algorithm in terms of efficiency and effectiveness?

Table 6.4 shows the lengths all of the test cases that we generated using Event-
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Table 6.4: Test Cases Lengths of All EventFlowSlicer Test Suites

Task Cat. Total breakdown average unique
TC’S (L) length/ (C) count length task tests

Format Text M SDO 3
L 10 - - - - - -

3 3
C 3 - - - - - -

MK SDO 24
L 6 7 8 9 10 - -

5.5 24
C 3 6 6 6 3 - -

MKT SDO 81
L 4 5 6 7 8 9 10

5.5 81
C 12 6 18 21 12 9 3

Insert Hyperlink M SDO 2
L 9 - - - - - -

9 2
C 2 - - - - - -

MK SDO 8
L 6 7 8 9 - - -

7.5 8
C 2 2 2 2 - - -

MKT SDO 18
L 6 7 8 9 - - -

7 18
C 8 4 4 2 - - -

Absolute Value M SDO 3
L 10 - - - - - -

10 4
C 3 - - - - - -

MK SDO 32
L 9 10 11 12 - - -

10.5 32
C 4 12 12 4 - - -

MKT SDO 72
L 7 8 9 10 11 12 -

9.5 72
C 8 12 12 20 16 4 -

Insert Table M SDO 3
L 8 - - - - - -

8.6 3
C 3 - - - - - -

MK SDO 12
L 6 7 8 - - - -

7 12
C 3 6 3 - - - -

MKT SDO 36
L 5 6 7 8 - - -

6.3 36
C 3 15 12 3 - - -

Comment Indent SDO 16
L 3 4 5 6 7 8 -

5.5 16
C 2 2 4 4 2 2 -

Search Options SFG 64
L 7 8 9 10 11 - -

8.6 64
C 2 8 18 24 12 - -

Bold Center SDO 8
L 8 9 11 12 - - -

10 8
C 2 2 2 2 - - -

Compile File SDO 4
L 2 3 4 - - - -

3 4
C 1 2 1 - - - -

Commented Text N SAG 26
L 5 6 9 10 11 - - 9.5

250

C 2 2 4 10 8 - -

BG SAG 26
L 5 6 9 10 11 12 - 10.1
C 2 2 1 5 10 6 -
L 5 6 8 9 10 11 12

FULL SAG 200 C 2 2 1 7 15 15 6 14.2
13 14 15 16 17 - -
3 16 50 59 24 - -

Four Paragraphs N SFG 114
L 9 13 15 16 18 - - 15.9

150
C 6 6 48 6 48 - -

MD
SFG 36

L 11 19 20 25 26 - - 21.4
C 4 4 12 4 12 - -

FlowSlicer for this research question. Beneath each “length” bin we record the number

of test cases that fit that category.

This table points out, for the first 12 test cases, the fact that for some categories,

the HPRT test case generator required passing not a single, but multiple length

parameters to the generator, to generate all output specified for the tasks specified.

It is important to point out in our discussion a benefit/drawback tradeoff of HPRT

related to this. The tester needs accurate information about the length of each test

case to verify whether or not the whole test suite initially targeted was generated after
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a single run. Given some oracle or world knowledge about the length of each test case

is available, the specifications of the generator ensure that all test cases of each length

specified that satisfy constraints are outputted. Thus with the right information, we

can generate the right test cases.

The report in [6] gave this number to be expected for each task, and the data on

the repository confirmed most of our efforts. Once this number was achieved, there

was no need to continue to run the generator for any more parameter inputs.

We used an XML file differencing tool to check the files we generated, and found

that we were successful able to replicate a total of 292 of the 295 test cases available

for replication on the HPRT study repository. The test suite we generated contained

an extra 3 test cases. In light of the perceived error from earlier, we proceeded to

compare these new files against the ones we had generated. We found that generating

the files missing from the FT MKT test suite could be done using both generators,

and were able to prove that these files could indeed replace the corrupted files in the

repository, by observing the task itself and verifying each of the extra three as ones

that address the leftover needs within a completed test suite that the corrupt three

would have addressed had they held valid data.

6.4.1.1 Constraint Deltas

We wanted to observe whether changes to constraints were complex or sizable for the

tasks studied in HPRT or for the tasks we added to the study as new application tasks.

Formally, our research hypothesis for this particular subquestion of question 1, was:

A significant amount of rules (10% of the original constraint space) must be modified

or created to originate new constraints for use by the new generator when generating

the same test suites created the old generator generated.

We found that on average, 30% of the constraint space was modified. 3 rules
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Table 6.5: Constraints Used for EFS Tasks taken from HPRT Study

Application Cate Addl. Required Rules MI = Menu Item, TBB = Toolbar Button
gory for EventFlowSlicer KS = Keyboard Shortuct

Format Text M SDO Select All MI,
Bold List Item,
Align Center MI

Format Text MK SDO (Select All MI OR Select All KS)
(Align Center MI OR Align Center TBB)

Format Text MKT SDO (Select All MI OR Select All KS OR Select All
TBB),
(Bold TBB or Bold List Item),
(Centered TBB or Centered MI or Centered KS)

Insert Hyperlink M SDO UPPERCASE MI
Insert Hyperlink MK SDO (UPPERCASE MI or UPPERCSASE KS)

Insert Hyperlink MKT SDO (UPPERCASE MI or UPPERCASE KS or UP-
PERCASE TBB)

Absolute Value M SDO Column & Row Headers MI,
Shift Cells Right Radio

Absolute Value MK SDO (Show Headers MI or Show Headers KS),
Shift Cells Right Radio

Absolute Value MKT SDO (Show Headers MI or Show Headers KS),
(Shift Cells Right Radio or Shift Cells Right
TBB)

Insert Table M SDO Insert Slide MI,
Show Task Pane MI

Insert Table MK SDO (Insert Slide MI or Insert Slide KS),
(Show Task Pane MI or Show Task Pane KS)

Insert Table MKT SDO (Insert Slide MI or Insert Slide KS, or Insert
Slide Dropdown List)
(Show Task Pane MI or Show Task Pane KS)

Table 6.6: Constraints Used for New EFS Tasks in Study 2

Application Cate Rules (MI = Menu Item, TBB = Toolbar Button, CHK = Checkbox Item)
gory REQUIRED EXCLUSION ORDER REPEAT

TW BC HPRT SDO Document Text Area,
Select All MI

(Bold List Item XOR
Bold TBB), (Align Cen-
ter MI XOR Align Cen-
ter TBB)

Document Text Area,
Select All MI, (For-
mat Menu, Align Cen-
ter TBB, Bold TBB)

Format Menu

EFS (Additional) SDO (Bold List Item OR
Bold TBB), (Align Cen-
ter MI OR Align Center
TBB)

– – –

JE CI HPRT SDO – (Line Comment MI
XOR Line Comment
TBB), (Shift Right
MI XOR Shift Right
TBB), (Select All MI
XOR Select All TBB)

(Select All MI and Se-
lect All Toolbar Button
TBB), (Shift Right MI
and TBB), (Line Com-
ment Menu Item and ...
Toolbar Button)

Edit Menu

EFS (Additional) SDO (Line Comment MI or
Line Comment TBB),
(Shift Right MI or Shift
Right TBB)

– – –

DJ SO HPRT SFG Find Next Text Box,
Replace With Text Box,
Find Next Button, Re-
place Button

Find/Replace MI XOR
Find TBB

(Find/Replace Menu
Item, Find TBB),
(Find Next Text Box,
Replace With TBB),
(No Comments CHK,
Whole Word CHK,
Match Case CHK),
Find Next Button,
Replace Button

–

EFS (Additional) SFG (Find/Replace MI OR
Find TBB)

– – –
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needed to be added for every 10 already specified in the file. In the end we need to

make sizable amounts of changes to the constraints set, however noting that the only

types of constraints we changed, across 15 test cases with varying amounts of widgets,

was using the (Mutually) Required rule, requiring that one of a set always be present

in an output test case. Our hypothesis of less than 10% modification was proven false.

We depict in Table 6.5 and depict in Table 6.6 the new rules defined in our study

of three new applications. For each we devised a set of new constraints. We show the

difference between HPRT (odd columns) and additional constraints we had to add to

EFS to get the same result. As is shown, the removal of the length parameter required

that we specify to the generator that a set widgets be included in the output. Cutting

off length of a test case, maintaining other rules proved to be effective in the test cases

studied in HPRT. We hypothesize that this technique of simply constraining length

without constraining other parameters will not work for more complicated tasks. At

this time we cannot attempt to prove this to be true using our current data set.

In Table 6.6, we also demonstrate our ability to generate new test cases using the

old generator. The time it took to devise these new constraints was not long (less

than one day to get the right test suite). We attribute this to the tight mapping

of the HPRT constraint sets to both real and common needs of the tester: it was

straightforward to determine how to set up the inputs. The document text area needed

to have text inserted, then the Select All button needed to be clicked and followed by

just one method of centering the text or bolding – all of which easily broken down

into exclusion, order, and required rules each maintaining part of the whole set of

constraints necessary. We found we were able to generate the right number of test

suites using the HPRT generator: we were able to, enter, centered and bold text it in

all possible ways within the scope of widgets selected for this exercise. We replicated

our success in the second and third instances, a task that commented some predefined
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text and shifted it right in the document using JEdit, and a task that executed a

search, find and replace operation on an open file using DrJava.

We quickly turned to EFS, and realized we again only needed to add 3, 1, and 2

rules to the constraint pool, which consisted of 22 rules total before adding new rules,

for each task we had generated to create exactly the same outputs as before using

the EFS strategy instead. Since the constraints files are mostly backward compatible

we used EFS capture to generate the constraints, and feed hand modified versions to

both generators.

6.4.1.2 Running Times

Further results of the replication study are explained in Table 6.3 which presents the

amount of time the application under test spent running for each task we fed to the

generator. To generate all the output the author provided, there are three parameters

we must provide to their system: testing target (class files and system-specific inputs),

testing model asset artifacts (GUI, EFG, and Rules file), and test case length y. To

generate all test cases, the generator is repeatedly run to provide test cases of various

lengths. There were 3 test cases that filled space in the repository under FT MKT,

but contained invalid event data that did not corroborate with events in the EFG

file or widgets in the GUI file for FT MKT. We posit these discrepancies were due

to repository upload error. Observations were made on the running time differences

between our generator and another generator like it in the same line of research,

making HPRT a perfect candidate for such a comparison. Our goal was initially to

improve upon the running time of this generator. Our research hypothesis was

The running times on the amount of time EFS and EventFlowSlicer spent running

and generating test cases was the same on average.

We measured the delta change in running time from EFS generator runs to HPRT
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Table 6.7: Cumulative Run Times: Sorted by Task Key (left) Sorted by EFS time
(right)

Key Goal Category EFS HPRT Diff % Reduct
time(s) time(s)

1 FTM SDO 9.2 8 -1.2 -13.0%*
2 FTMK SDO 12.6 107 94.4 88.2%
3 FTMKT SDO 19 11257 11238 99.8%
4 IHM SDO 6.6 7 0.4 5.7%
5 IHMK SDO 9.2 35 25.8 73.7%
6 IHMKT SDO 10.4 295 284.6 96.5%
7 AVM SDO 10 16 6 37.5%
8 AVMK SDO 12 280 268 95.7%
9 AVMKT SDO 18 4254 4236 99.6%
10 ITM SDO 7.2 4 -3.2 -44.4%*
11 ITMK SDO 8 23 15 65.2%
12 ITMKT SDO 15 45 30 66.7%
13 TWBC SDO 8.0 106 98.0 92.5%
14 DJSO SFG 14.8 261 246.2 94.3%
15 JECI SDO 5 45 40 88.9%
16 DJCF SDO 4.8 N/A N/A N/A
17 CTN SAG 10.8 N/A N/A N/A
18 CTBG SAG 11.6 N/A N/A N/A
19 CTF SAG 19.6 N/A N/A N/A
20 FPN SFG 15.8 N/A N/A N/A
21 FPMD SFG 10.4 N/A N/A N/A
Statistics

Average pct. Reduction All Instances 63.2%
Containing Test Cases w/ Lengths >9 92.5%

Key Goal Category EFS HPRT Max Nodes Edges
time(s) time(s) TCLen

16 DJ CF SDO 4.8 N/A 4 5 17
15 JE CI SDO 5 45 8 9 41
4 IH M SDO 6.6 7 9 9 37

10 IT M SDO 7.2 4 8 7 17
11 IT MK SDO 8 23 8 9 31
13 TW BC SDO 8.0 106 12 12 61
1 FT M SDO 9.2 8 10 9 29
5 IH MK SDO 9.2 35 9 11 61
7 AV M SDO 10 16 10 11 34
6 IH MKT SDO 10.4 295 8 11 99

21 FP MD SFG 10.4 N/A 26 12 35
17 JE CTTC SAG 10.8 N/A 11 11 35
18 JE CTBC SAG 11.6 N/A 12 12 44
8 AV MK SDO 12 280 12 14 57
2 FT MK SDO 12.6 107 10 12 55

14 DJ SO SFG 14.8 261 10 11 90
12 IT MKT SDO 15 45 8 11 53
20 FP WD SFG 15.8 N/A 18 12 113
9 AV MKT SDO 18 4254 12 16 82
3 FT MKT SDO 19 11257 10 12 55

19 JE CTF SAG 19.6 N/A 17 13 51

∗ For some very small test suites, the HPRT generator
beat EFS by less than 2 seconds.

generator runs. We saw a net 62.3% reduction in running time on average. We have

mentioned in the Algorithms section how and why EFS outranks HPRT generator in

terms of efficiency. For test suites that contained test cases of lengths 9 and above,

our generator outperformed HPRT via a 92.5% reduction in runtime on average across

these instances. The focus on these instances widens the gap: EFS runs on HPRT’s

longest test suites, and takes seconds to finish where HPRT took hours.

We depict statistics on the left in Figure 6.7 to show on average the reductions

in time to completion for HPRT generator to complete its execution versus the EFS

generator. Overall we saw an average of 63.1% reduction of runtime when comparing

HPRT results, when we include all the reduction percentages at once.

There were cases where the HPRT generator ran faster than DFGen generator,

in the cases of Format Text M, and Insert Table M. In these two cases, the HPRT

generator finished 1.2s and 3.2s faster than DFGen could across 5 runs.

The DFGen algorithm uses a different technique than the HPRT generator to

produce valid test cases adhering to constraints. The algorithm Memon designed,
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which builds an EFG based on the widgets available in a multi-window environment,

implies in its core pseudocode, a crucial corollary. We need this corollary to understand

why the running times between HPRT and EFS generator are different.

For a simple interface that has buttons, say one single window interface, and

one with say one single button : suppose we want to add a single button to the

one-windowed button. Each widget like that button we add to that interface gains at

least one edge leading from the old button to the new one, and from the new button

to the old one, provided that neither button closes their shared window. What this

means is that the number of edges is always growing with the number of nodes, and

that additional widgets we add, if they share only a few windows amongst them,

continuously grow the size of the edges, and if no windows are closed, grow the size of

the edge set at an exponential rate.

Adding one button to the one-button window creates an edge set of size 2, but

adding another creates one of size 4, another button creates 9 edges, the next 16,

the next 32. It should become obvious to the reader after understanding this simple

corollary why EFG’s become so complex after 9 or so buttons exist in a window’s

interface. Memon’s method extends beyond single window interfaces, and thus the

EFG construct simply becomes more complicated from there. Extensions we’ve made

to GUITAR that build EFG’s from the ground up retain this basic property of

same-window edges between widgets.

Observe the results in Table 6.7 on the right, that sort the results by the EFS

running time, compare that to the order of how the last 7 tasks in Table 6.2, the tasks

table. For HPRT, larger more complex test suite EFS means longer running time.

For EFS, this is still true. Larger, more complex test suites have more nodes, which

means paths to traverse are longer. But with tree pruning, less of these paths must

be traversed to get the right answer.
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Table 6.8: EventFlowSlicer: Widgets used per Task and Snapshot of JEdit FPWD

App and Cate Total EFS Breakdown Test
Task gory Events Rules Cases

P B M I T B C B C B R B F L K C
U U E T E O O O H O A U L I E O
S T N E X X M X E X D T A S Y M
H T U M T E B E C E I T T T M

O S S O S K S O O A
N N N
S D

FTM SDO 9 7 1 3 1 - - - 1 - 3
FTMK SDO 12 9 1 3 1 - - 1 3 24

FTMKT SDO 15 10 4 3 1 - - 1 3 81
IHM SDO 9 7 2 2 2 - 2

IHMK SDO 11 9 2 2 2 - 2 8
IHMKT SDO 13 9 4 2 2 - 2 18

AVM SDO 11 8 3 3 1 - 1 4
AVMK SDO 14 10 3 3 1 - 1 3 32

AVMKT SDO 16 11 5 3 1 - 1 3 72
IHM SDO 7 6 1 3 1 - 3

IHMK SDO 9 8 1 3 1 - 12
IHMKT SDO 11 9 1 3 1 2 2 36
TWBC SDO 8 2 2 3 1 - 1 8
DJSO SFG 11 7 4 1 2 - 3 64
DJCF SDO 9 7 3 2 - 1 4
JECI SAG 9 8 3 3 - - 16
JECT SDO 13 7 6 1 - 3 1 124

JEFPN SFG 12 12 5 1 2 1 1 114
JEFPMD SFG 12 13 1 7 2 1 1 36

From our results, we observe if we follow the corollary described in our factors in

efficiency discussion (Section 6.4.1.2), that problems incurred in running time should

be reduced on average across all applications, by not running traversals using EFG’s

with more edges and using a length parameter to bound the traversal(as would have

been done by HPRT).

Summary of RQ1: EventFlowSlicer is as effective as HPRT, and more efficient at

traversing paths.

6.4.2 RQ2

Research Question 2 Can we effectively generate test cases for the various classes

of goals identified using EFS?

In the introduction, we identified were three goals that testers aim for when

generating all possible ways to perform a tasks. Structural Differences Only, Same
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Figure 6.2: Variants of the JEdit FPWD task

Functional Goal, Same Abstract Goal. We were successful at finding real world

instances that fit each of these goals according to the method described above. We

proceeded to generate test suites for each of these and report on aspects of the output

in the tables that follow. We successfully generated test cases from all the task

specifications we defined in Table 6.2. We now show how our goals that deviate from

the norms presented in HPRT extend into Same Functional Goal and Abstract Goal

tasks.

The Commented Text task bears some explanation. Though we specify the user

can change anywhere fom 1 - 4 options presented, the user may only select a single

color from the 256-color palettes presented midway through each variant of the task.

Even still there are yet 200 test cases that came from this one instance. We have

broken down the Commented Text goal breaks down into three variants. The TC and

BC variants of JEdit Comment Text restrict the types of options to the set of options

{[TextColor], [Italics], and[Bold]}, and {[BackgroundColor], [Italics], and[Bold]} re-

spectively, while, the F (FULL) variant allows the selection of up to all four style

choices at once. The number may seem quite high: it is because there are two distinct
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ways select text color and two ways to select background color (via mouse and via

keyboard), plus the fact that all orders of 1-4 selections are allowed, that make this

our largest test suite in consideration.

It should be clear now why this goal is defined “abstract”: the application will

reside in a number of states depending on what options are selected. As for the Four

Paragraphs task and Search Options task, we turn to the data in Table 6.8 and a figure

depicting the FPN task 6.2. This table helps us understand the types of widgets that

are used to find and replace text. Completing the task requires at least two completely

separate routes through the JEdit Searching window to cover a complete the test suite.

Repeatedly clicking the Find and Replace buttons in alternation is one way requiring

8 distinct steps. However, the same effect of doing that is discoverable by clicking the

Find button, then the Replace&Find button three times, and clicking the replace

button, leading to an alternative 5-step process. Moreover each of the preceding ways

to accomplish can be preempted by clicking the [AutoWrap] and [Backward] options.

This may reverse the process of searching through the document, but the end result

is still the same, and thus the task defined in 6.2 of wrapping all four paragraphs

in markup is still completed. This task has many means of accomplishing the same

functional goal of wrapping four paragraphs of text in specified markup. It’s clear to

see from the table above the figure that a variety of types, and not just a single string

of usual types of widgets, were used both in the Window Dominant varian(marked

WD) of this task. The Menu Item Dominant (MD) is marked that way because it

utilizes more menu items as opposed to options from the Searching window of JEdit

to perform the meat of the task. Much of the options are available in the portion

of the search menu that are also available in the Searching window, and we wanted

to point this out as a separate task rather than combining the two. The end goal is
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still the same, yet the total change in the types of widgets used in both tasks can be

derived from the chart in 6.8.

Summary of RQ2: The answer to research question 2 has been answered. We do

support the creation of tasks that exemplify goals with test cases reaching beyond

structural differences only.

6.4.3 RQ3

Research Question 3 What is the impact of each step of the EventFlowSlicer EFG

reduction phase both on the EFG’s complexity and overall generator runtime?

Certain edges in every EFG get removed by our reductions. These are edges the

EFG generator preserves during its construction, but that are not useful in real user

tasks: they serve as the root cause in the generation of event sequences in test cases

that progress too slowly or not at all toward realistic user goals that are feasible in

the real world.

We evaluated our approach of removing these unhelpful edges by measuring the

“size” of our EFG (the number of edges remaining) after a reduction, and comparing

that size to a base size: the size of the “minimal” test case flow graph, containing

only the edges that were used in the test suites we generate for the task in question.

This graph is specific to the task, thus we constructed 21 minimal test case flow graphs,

one for each task. This “minimal EFG” tells us how many edges of the original EFG

were removed out of the total edges that were possible to remove without breaking any

test cases. If the ratio of the minimal TCG size to the reduced EFG size = 1, then we

have reduced the graph as much as it can be reduced. Otherwise, if less than 1, then

we know there were more edges remaining that could have been removed. We derive a

ratio from this comparison for each task. Then we derived a total reduced ratio.
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Figure 6.3: EFG Size Reductions out of Maximum Possible (black bar indicates the
mean)

We explain how this was calculated using the following formula. Let E be the

number of edges in the input EFG, let ERed be the number of edges remaining following

one or more reductions, and let EMin be the number of edges in the minimal EFG.

Then the percentage of edges reduced out of total possible is:

PCT =
E − ERed

E − EMin

We gathered statistics for the overall reduction of the size of the input graph, and

we depict the percentage reduction for each of our test case instances from key 1-21

in Figure 6.3. On average, the input graphs we fed to the generators started out at
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2.42 times of the size of the minimal flow graph on average. By the end of the third

reduction, we had reduced each graph to 1.83 times the size of the minimal flow graph,

our largest reduction yielding a reduced graph 1.14 times the size of its minimal graph.

Out of total possible edges we ended up removing 48% out of the total number of

edges that could possibly be removed.

From these results, we can see that our reduced graphs often contained more than

1.5 times the number of edges than were necessary to generate test cases. It often

became a task left to our deep traversal procedure and the constraint-based pruning

to help generate the right test cases that each followed the right paths along the edges,

and to help end generation quickly.

The state following the MenuToNonMenuChild reduction (reduction 2) saw the

greatest drop in edges on average across all 21 of our instances, forcing the mean

reduction overall up to be 11 points higher (from 21.2% to 42.1%) by the end of the

reduction step, as shown in Figure 6.3. The most edges any one graph lost from

this reduction step, which removed edges leading away from menus and combo box

revealers to items elsewhere on the interface that are not their children (to prevent

useless clicking of menus), was 17, the mode was 1 edge, and the median was 4.

The EFG reduction strategy worked better for some application instances than

it did for others. On average we only removed 45% out of the total possible egdes

we could have removed in order to create new test cases (our maximum was 75% for

instance Insert Table M from the HPRT study. That’s an effectively moderate number

of edges removed per instance, perhaps high enough to promise a decent speedup

using a test suite reduction algorithm.

We did not attempt to see whether an actual speedup could be gained however.

The EFS generator was designed with reductions built in. In the design process for

desigining the EFS generator’s specifications, it was decided that the reductions when
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Figure 6.4: EFG Cyclomatic Complexity Reductions out of Maximum Possible (black
bar indicates the mean)

used would help assist the tester in defining fewer constraints for test cases. Thus

we anticipated that when reductions are included versus not included, the amount

of constraints from our constraints pool that would remain necessary for the user to

specify would change. After running multiple tests on multiple instances, we quickly

found this to be true. Thus we assume that for all 21 instances, the constraints must

be reconfigured (or at least re-verified) to generate the correct amount and quality

of test cases we generated when the reductions are not in place. Due to the time

allotted to this section of the study, we have chosen to leave the reconfiguration of

new constraints in order to perform a fair comparison to a “no-reduction” EFS, up to

our future studies.
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6.4.3.1 Cyclomatic Complexity

For each measurement we took on graph size for each generation instance, we recorded

measurement of the cyclomatic complexity in parallel with that measurement, to

see how well cyclomatic complexity varied across each reduction. In accordance

with our minimal test case flow graph measurements for edges, we took time to

gather the cyclomatic complexities of all the minimal test case flow graphs, and we

modified the formula above to read C rather than E to derive the minimum cyclomatic

complexity measure in each test case graphs, and compare that to the complexity

of each stage of our reductions. Note that the cyclomatic complexity formula we

used takes into account the number of nodes, the number of edges, and the strongly

connected components detected per graph. It has traditionally been used to depict

the complexity of a graph network that may contain many cycles. The number of

nodes and strongly connected components (inner cycles) add to the complexity, while

the number of edges that don’t form new SCC’s reduce it.

Then the percentage of edges reduced out of total possible is:

PCT =
E − ERed

E − EMin

Depicted in Figure 6.4 are the results. The cyclomatic complexity of original

graphs were nearly 4.65 times that of their minimal counterparts on average, our

maximum readout topping out at over 10 times the complexity of the minimal EFG

for that instance. At maximum our reductions removed up to 75% of the possible

units of complexity that could be removed, and the algortihm reduced cyclomatic

complexity by 45.0% possible units on average.
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6.4.4 Statistical Correlations

Were there trends that we could report on between graph size and running time?

We drew statistical conclusions on whether there are notable and significant trends

connecting graph size cyclomatic complexity to running time. After finding out how

similar the trends between graph complexity and running time, we dug deeper to find

whether the two trends pose a noticeable difference from one another – thus comparing

the two correlations, in order that we might see whether one of these predictors could

be suitable as a substitute for the other when predicting running time.

We obtained a Pearson correlation between the running times from all 21 gener-

ations and various graph sizes obtained from all 21 input graphs from our previous

studies. Since we were able to run HPRT on 15 of these examples, the correlations

for HPRT time reflect trends across 15 of the examples – keys 1-15 in 6.1. We ran a

2-tailed statistical power test of significance to determine whether we could find any

statistical meaning behind the data.

Table 6.9 shows the results of statistics we gathered on these graphs, and also

provides data on relevant data collected across all suites. Our results indicate a few

trends that were expected, and a few unexpected trends: the size of the graph correlates

with the running time of the generator: as the number of edges in an input graph

decreases, so does the running time of the generator (rHPRT = .583, p = .022)(rEFS =

.583, p = .005). Since p < .05, our results indicate that both edge size and cyclomatic

complexity will reliably predict trends for both generators’ running times. The fact

that running time follows the rise of graph size is expected and confirms previous

findings in the literature, [10,22] while our findings regarding cyclomatic complexity on

inputs for these generators are new. Since the correlations are not equivalent the same,

We believe it might be interesting to see whether the two relationships significantly
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differ in their power to predict running time. Due to our time dedicated to revealing

statistics over our data sets being limited, we leave the discovery of differences in their

ability to predict running time to our work in the future.

Both generators use the same types of inputs, and we found that the running

time of either generator can be predicted equally well by either the edge count or

the cyclomatic complexity. EFG size and cyclomatic complexity are also very much

interchangeable in nearly any of measurements we attempted to measure at predict

running time amongst members of our data set. Although our results cannot be said

to generalize to all types of applications, our set of 21 tasks boasts a high mean and

wide standard deviation for initial edges in input graphs, giving us some confidence

that our results can generalize to unobserved EFG’s both larger and smaller than the

ones studied.

In summary

• We found that there is a statistically significant positive correlation between

running time, and graph size of the EFG used to generate test cases (post

the final reduction phase) for our technique. Thus, we can conclude test case

generation instances with longer running times tended to have higher reduction-3

graph sizes. Not only that, but the edge count is quite strong and accurate in

predicting running time. (r = .647, p = .002)

• We found that there is a statistically significant positive correlation between the

input EFG graph size and the running time of the HPRT generator. In addition

to those with larger sizes after reduction 3, instances with larger initial EFG

inputs, have longer running times. (r = .557, p = .031).

• We found that EFG size and cyclomatic complexity are equally reliable mea-

surements that help one to find among the running times of the generator on a
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Table 6.9: Correlations between Graph Size (Edge Count) and Running Time

Variable Mean Standard rEFStime rHPRTtime

Deviation (Significance) (Significance)
HPRT time 957.400 23.74 .714 (.003) -

EFS time 11.333 27.93 - .714 (.003)
Edges init 54.43 25.94 .654 (.001) .627 (.012)

Cyc. Comp. init 47.14 24.92 .585 (.005) .583 (.022)

given input EFG. There is a positive correlation, which means that higher edge

counts and higher cyclomatic complexities predict longer running times. This

may not hold as strongly for predicting the running time of the HPRT generator

as it might for EFS generator, according to the data we collected.

Summary of RQ3: We conclude that each of the steps of the EventFlowSlicer algortihm

reduce the number of edges in the graph, and conclude in accordance with earlier

results that edge counts at the start and end of the algorithm’s process may be useful

to predict how long it will take for the generator to finish, using statistical evidence

as our backing. We also conclude that a trend exists among cyclomatic complexity

measurements on the same graphs that can help predict this running time just as well.

6.4.5 Threats to Validity

As with all empirical studies there are some threats to validity of this work. First we

evaluated our techniques on a limited number of subjects. However, we used subjects

both from published research as well as from online forums, therefore we believe that

these are represenatitve.

A limitation of the end to end method we provide is that we do not currently

allow for the capture of keyboard shortcuts used on the interface, to create model files

containing keyboard shortcuts. The old method also did not allow for the capture of

these. In addition both generators will interpret input files and generate test case files
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containing keyboard shortcuts commands, though they can only capture test cases

for a GUITAR based replayer of a very select few keystrokes (namely arrow keys and

space bar), and only replay test cases containing those few keystrokes at this time via

its replay mechanism.

A certain amount of background knowledge on how to handcode these in EFG

and Rules files is necessary in order to properly generate models containing keyboard

shortcuts, since we don’t support capture using keyboard shortcuts.

After looking at the results, we admit that as compared to the constaraints

specified in the HPRT study on HPRT generator, the EventFlowSlicer often requires

the specification of more constraints than would be used for the HPRT generator to

get the same test cases. However, there is an added benefit: adding more control to

test case output, we effectively eliminate the need to constraint the test case generator

to only generate tests of a given length. Our test case generator does not accept

a length parameter, but in turn we have added more constraints to the base set of

constraints defined by the HPRT generator, to give the user added control.
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Chapter 7

Conclusions and Future Work

In this thesis, we presented EventFlowSlicer, a tool that extends the HPRT test

generation strategy for functional GUI testing by providing a way for a user to

generate all test cases that satisfy a particular user goal. EventFlowSlicer helps

testers generate GUI test cases for specific goals which can vary based on structural

differences, functional differences and for goals that are abstract.

We first performed a feasibility study to show that we can use EventFlowSlicer to

generate tests for a small number of tasks. We then performed an empirical study to

evaluate it more thoroughly. In that study we see that our generator produces the

same test cases as the HPRT method in a fraction of the time. We also find that

we can generate tests for a variety of other tasks which have different types of goals.

We find that the user goals have on average 38 test cases and as many as 200 which

indicates the need for an automated technique.

As for future work we will conduct larger scale studies for both functional testing

and human performance testing. We will implement our tool within the CogTool

Helper framework and extend the generator to more types of goals.
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