
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2015

High-throughput Screening of Age-related
Changes in Caenorhabditis elegans
Neil Copes
University of South Florida, ncopes@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Copes, Neil, "High-throughput Screening of Age-related Changes in Caenorhabditis elegans" (2015). Graduate Theses and
Dissertations.
http://scholarcommons.usf.edu/etd/5668

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholarcommons.usf.edu%2Fetd%2F5668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


High-throughput Screening of Age-related Changes in Caenorhabditis elegans 

 

 

 

by 

 

 

 

Neil Copes 

 

 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

Department of Cell Biology, Microbiology and Molecular Biology 

College of Arts and Sciences 

University of South Florida 

 

 

 

Major Professor: Patrick Bradshaw, Ph.D. 

Meera Nanjundan, Ph.D. 

Stanley Stevens, Ph.D. 

Sandy Westerheide, Ph.D. 

 

 

Date of Approval: 

June 17, 2015 

 

 

 

Keywords: aging, genetics, respiration, ATP, redox 

 

Copyright © 2015, Neil Copes 

 



ACKNOWLEDGMENTS 

 I would like to thank my mentor, Dr. Patrick Bradshaw, for all of the help and guidance 

he has given me over these past few years.  I would also like to thank the members of my Ph.D. 

committee – Dr. Nanjundan, Dr. Stevens, and Dr. Westerheide – for their helpful advice and their 

investment of time.  I would like to thank my parents and my sister for their love and support.  

Finally, I would like to thank Clare Canfield for being my friend all these years. 

 



i 
 

TABLE OF CONTENTS 

 

List of Tables  ...................................................................................................................................v 

 

List of Figures  .............................................................................................................................. vii 

 

Abbreviations  ................................................................................................................................ ix 

 

Abstract  ......................................................................................................................................... xi 

 

Chapter 1:  Introduction and Background  .......................................................................................1 

 1.1 Maximal Lifespans.........................................................................................................1 

 1.2 Aging..............................................................................................................................1 

  1.2.1 Changes in Tissue Composition and Function  ...............................................2 

  1.2.2 Genomic Changes  ..........................................................................................4 

  1.2.3 Mitochondrial Dysfunction  ............................................................................6 

  1.2.4 Macromolecular Damage  ...............................................................................8 

  1.2.5 Hormonal Dyscrasia  .....................................................................................14 

  1.2.6 Immune System Dysfunction  .......................................................................16 

  1.2.7 Nutrient Sensing ...........................................................................................17 

 1.3 Caenorhabditis elegans as an Accelerated Aging Model ............................................17 

 1.4 C. elegans and High-throughput Screening .................................................................22 

 1.5 Hypothesis and Objectives ...........................................................................................23 

 1.6 Impact and Significance  ..............................................................................................25 

 1.7 References  ...................................................................................................................26 

 

Chapter 2:  Metabolome and proteome changes with aging in Caenorhabditis elegans ...............45 

 2.1 Abstract ........................................................................................................................45 

 2.2 Introduction  .................................................................................................................46 

 2.3 Materials and Methods .................................................................................................48 

  2.3.1 Chemicals and Strains ...................................................................................48 

  2.3.2 C. elegans Culture .........................................................................................48 

  2.3.3 Alkaline Bleach Synchronization .................................................................48 

  2.3.4 Metabolomics Culturing and Sample Preparation  .......................................49 

  2.3.5 Protein Assay  ...............................................................................................50 

  2.3.6 Proteomics Culturing  ...................................................................................51 

  2.3.7 Proteomics Sample Preparation and LC-MS/MS  ........................................52 

  2.3.8 Analysis ........................................................................................................54 

 2.4 Results  .........................................................................................................................55



ii 
 

  2.4.1 Metabolomic Analysis of C. elegans Identifies Widespread 

   Metabolite Changes with Age  .........................................................................55 

  2.4.2 Altered Amino Acid Pools with Age Reflect Changes in  

   Cell Volume  ....................................................................................................56 

  2.4.3 Purine Metabolite Levels Are Decreased in Older Nematodes  ...................58 

  2.4.4 S-Adenosyl Methionine and Altered Lipid Content  ....................................60 

  2.4.5 D-sorbitol Increases in Aged C. elegans ......................................................62 

  2.4.6 Altered Ascorbate Metabolism and Redox Imbalance with Age .................63 

  2.4.7 Proteomic Investigation  ...............................................................................65 

  2.4.8 Changes Associated with Histone Methylation and Acetylation  

   with Age  ..........................................................................................................66 

  2.4.9 Poly(ADP-ribose) Polymerase Levels Decrease with Age  ..........................67 

  2.4.10 Decreased Levels of Enzymes Involved in Fatty Acid  

   Synthesis and Breakdown with Age  ...............................................................68 

  2.4.11 Evidence for Muscle Dysfunction and Altered Ca
2+

  

   Homeostasis with Aging  .................................................................................69 

  2.4.12 Changes in RNA Metabolism and Translation with Age  

  2.4.13 Aging Decreased the Abundance of RPN-3, a Regulator  

   of Proteasome Function  ..................................................................................73 

 2.5 Discussion ....................................................................................................................73 

  2.6 Conclusions ..................................................................................................................80 

 2.7 Acknowledgements  .....................................................................................................80 

 2.8 References ....................................................................................................................81 

 2.9 Figures..........................................................................................................................95 

 2.10 Tables .......................................................................................................................100 

  

Chapter 3: An automated 96-well plate RNAi screen identifies EF-hand mediators  

 of Ca
2+

 toxicity in C. elegans ...........................................................................................117 

 3.1 Abstract  .....................................................................................................................117 

 3.2 Introduction  ...............................................................................................................118 

 3.3 Materials and Methods  ..............................................................................................122 

  3.3.1 Evaporation Assay ......................................................................................122 

  3.3.2 Construction of Gasket-Attached FEP Teflon® Film 96-Well  

   Plate Lids .......................................................................................................123 

  3.3.3 C. elegans Culture and Alkaline Bleach Synchronization ..........................123 

  3.3.4 GFP Fluorescence and Live Nematode Volume .........................................124 

  3.3.5 High Ca
2+

 Toxicity Assays .........................................................................125 

  3.3.6 Anthranilate Comparison to Live Nematodes in Culture ...........................126 

  3.3.7 RNAi Gene Knockdown Screen .................................................................126 

  3.3.8 Analysis.......................................................................................................127 

 3.4 Results  .......................................................................................................................128 

  3.4.1 Fluorinated Ethylene–Propylene (FEP) Teflon® Film Limits  

   Evaporation in Long-Term C. elegans Liquid Cultures ................................128 

  3.4.2 Fluorescence of the GFP-expressing Strain BC12907 is Associated  

   with Both Number and Volume of Live C. elegans in Liquid Culture..........129 

   



iii 
 

  3.4.3 An Altered GFP Fluorescence Profile is a Marker of Shortened 

   Lifespan in C. elegans Treated with 100 mM CaCl2 .....................................131 

  3.4.4 GFP Slope and AUC Identify Genetic Targets as Potential  

   Effectors of High Ca
2+

 Toxicity in C. elegans ...............................................132 

  3.4.5 Increased Anthranilate Fluorescence is Associated with 100 mM  

   CaCl2-treatment of C. elegans in Culture ......................................................133 

 3.5 Discussion ..................................................................................................................134 

  3.5.1 Novel Methods for Long Term Culture and Automated Monitoring  

   of Worm Viability  .........................................................................................134 

  3.5.2 An Automated RNAi Screen Identifies Mediators of Ca
2+

-Induced  

   Worm Death  ..................................................................................................137 

  3.5.3 Anthranilate Fluorescence as a Marker of Worm Death  ...........................139 

  3.5.4 Bacterial Autofluorescence Significantly Contributes to  

   Microplate Reader Fluorescence Measurements  ..........................................140 

 3.6 Conclusion  ................................................................................................................141 

 3.7 Acknowledgements ....................................................................................................142 

 3.8 References  .................................................................................................................143 

 3.9 Figures........................................................................................................................146 

 3.10 Tables .......................................................................................................................154 

 

Chapter 4: Development of high-throughput RNAi screens for the identification of gene  

 knockdowns that increase oxygen consumption, ATP, and redox status in  

 Caenorhabditis elegans ...................................................................................................173 

 4.1 Abstract  .....................................................................................................................173 

 4.2 Introduction  ...............................................................................................................174 

 4.3 Materials and Methods  ..............................................................................................176 

  4.3.1 C. elegans Culture .......................................................................................176 

  4.3.2 Viability Assay............................................................................................177 

  4.3.3 Low-throughput ATP Assays .....................................................................178 

  4.3.4 Clark Oxygen Electrode Measurements .....................................................178 

  4.3.5 C. elegans Protein Assay ............................................................................178 

  4.3.6 Measuring Total Corrected Worm Fluorescence (TCWF) .........................179 

  4.3.7 Preparation of 9:1 mix of dead:live HT115(DE3) E. coli ...........................180 

  4.3.8 Setup of the High Throughput RNAi Screen ..............................................181 

  4.3.9 ATP Assay for the RNAi High Throughput Screen ...................................182 

  4.3.10 Redox Assay for the RNAi High Throughput Screen ..............................182 

  4.3.11 Oxygen Saturation Assay for the RNAi High Throughput Screen ...........183 

  4.3.12 Data Analysis for the High-throughput Screen .........................................183 

 4.4 Results  .......................................................................................................................184 

  4.4.1 Acetone Treatment Kills Bacteria and Preserves RNAi Knockdown ........184 

  4.4.2 Fluconazole Prevents Fungal Contamination of Liquid C. elegans  

   Cultures without Affecting Mean Lifespan ...................................................186 

  4.4.3 The Addition of a Small Amount of Live E. coli to the Acetone- 

   Killed E. coli Promotes Full C. elegans Larval Development .......................188 

  4.4.4 Ciprofloxacin Treatment Kills Stationary Phase E. coli but a  

   Resazurin Signal Persists ...............................................................................190 



iv 
 

  4.4.5 Screens for ATP content and Oxygen Consumption ..................................193 

  4.4.6 Genetic Mediators of ATP Content, Oxygen Consumption, and  

   Reductive Capacity ........................................................................................198 

 4.5 Discussion  .................................................................................................................200 

 4.6 Acknowledgements  ...................................................................................................203 

 4.7 References  .................................................................................................................203 

 4.8 Figures .......................................................................................................................207 

 4.9 Tables ........................................................................................................................216 

 

Chapter 5: The Significance of the Factors Associated with Age-related Changes and of   

 the Developed Methods ...................................................................................................230 

 5.1 Summary ....................................................................................................................230 

 5.2 Identified Genetic Factors ..........................................................................................230 

  5.21 Genes Related to Ca
2+

 Signaling ..................................................................230 

  5.2.2 Genes Related to ATP and O2 Decline with Age .......................................233 

 5.3 Identified Proteomic Factors ......................................................................................234 

  5.3.1 Histone Modifications and DNA Repair.....................................................234 

  5.3.2 RNA Metabolism and Translation ..............................................................236 

  5.3.3 Fatty Acid Metabolism ...............................................................................236 

 5.4 Identified Metabolomic Factors .................................................................................237 

  5.4.1 Free Amino Acids .......................................................................................237 

  5.4.2 Purine and Pyrimidine Metabolism ............................................................238 

  5.4.3 The SAM Cycle ..........................................................................................239 

  5.4.4 Free Fatty Acids ..........................................................................................240 

  5.4.5 Sorbitol ........................................................................................................241 

  5.4.6 Redox ..........................................................................................................242 

 5.5 Significance of the Age-related Factors .....................................................................243 

 5.6 Novel Methods ...........................................................................................................244 

  5.6.1 Long-term Maintenance of C. elegans Liquid Cultures .............................244 

  5.6.2 Assaying Live C. elegans Volume in Culture ............................................245 

  5.6.3 High-throughput Assaying of C. elegans Metabolic Parameters  

   While Using Bacteria-based RNAi Gene Knockdown ..................................247 

 5.7 Significance of Novel Methods .................................................................................250 

 5.8 References ..................................................................................................................250 

 
 



v 
 

LIST OF TABLES 

 

Table 2.1: Pathways assigned to metabolites  .............................................................................100 

 

Table 2.2: Metabolomics: total weighted change for all pathways .............................................107 

 

Table 2.3: Glycerophospholipids and fatty acids ........................................................................111 

 

Table 2.4: Proteins showing a significant increase or decrease in abundance with age .............113 

 

Table 2.5: Proteomics: total weighted change for all pathways..................................................114 

 

Table 3.1: GFP viability measurements to find EF-hand effectors of high Ca
2+

 toxicity in 

 C. elegans ...................................................................................................................154 

 

Table 3.2: The effect of EF-hand gene knockdowns in the absence of CaCl2 on GFP 

measurement z-scores ................................................................................................159 

 

Table 3.3: Anthranilate measurements to find EF-hand effectors of high Ca
2+

 toxicity in  

 C. elegans ...................................................................................................................163 

 

Table 3.4: The effect of EF-hand gene knockdowns in the absence of CaCl2 on  

 anthranilate measurement z-scores ............................................................................168 

 

Table 4.1: Bacterial viability after various treatments .................................................................216 

 

Table 4.2: Resulting RNAi knockdown of GFP produced from bacteria treated by various 

conditions ...................................................................................................................219 

 

Table 4.3: Nematode size and/or developmental rate varies among the bacterial treatments ....220 

 

Table 4.4: Comparison of size-adjusted GFP fluorescence resulting from each bacterial 

treatment ....................................................................................................................222 

 

Table 4.5: Microbial growth is restricted by common antifungal drugs .....................................223 

 

Table 4.6: The mean survival times of C. elegans treated with antifungal drugs .......................224 

 

Table 4.7: Interpretation of SSMD values ..................................................................................225



vi 
 

 

Table 4.8: Summary of SSMD values.........................................................................................225 

 

Table 4.9: Genes identified as hits in the screens for ATP content, oxygen consumption,  

 and reductive capacity................................................................................................225 

 

Table 4.10: Gene ontology categories for screen hits ..................................................................227 



vii 
 

LIST OF FIGURES 

 

Figure 2.1:  When grown at 25 °C, N2 and glp-4(bn2) C. elegans both have similar mean 

lifespans .......................................................................................................................95 

 

Figure 2.2: Principal component analysis of metabolites shows separation of young and  

 aged samples ................................................................................................................96 

 

Figure 2.3: Top 10 changed pathways based on metabolome analysis .........................................96 

 

Figure 2.4: Age-related changes in free amino acid levels ............................................................97 

 

Figure 2.5: Age-related decreases in hypoxanthine and nitrogenous base levels ..........................97 

 

Figure 2.6: Dietary supplementation with 10 mM hypoxanthine extends the lifespan of  

 N2 C. elegans ...............................................................................................................98 

 

Figure 2.7: Age-related changes in monoacylglycerol and fatty acid levels .................................98 

 

Figure 2.8: Age-related changes in D-sorbitol content and redox state .........................................99 

 

Figure 2.9: Proteomic analysis of young vs. aged C. elegans using stable isotope labeling .........99 

 

Figure 2.10: The top 10 altered pathways with age based on proteomic analysis .......................100 

 

Figure 3.1: Effect of different 96-well plate seals on the rate of evaporation .............................146 

 

Figure 3.2: Photograph of gasket-attached FEP film lids ............................................................147 

 

Figure 3.3: The average length (mm) of live C. elegans in liquid culture ...................................148 

 

Figure 3.4: The average width (mm) of live C. elegans in liquid culture....................................148 

 

Figure 3.5: The estimated volume (μm
3
) of individual live C. elegans in liquid culture ............149 

 

Figure 3.6: The rise and fall of the cumulative volume of live C. elegans in culture over  

 the course of 21 days..................................................................................................149 

 

Figure 3.7: Association between GFP and both the number and volume of C. elegans in  

 liquid culture ..............................................................................................................150



viii 
 

 

 

Figure 3.8: Dead C. elegans possess a lower degree of GFP fluorescence .................................150 

 

Figure 3.9: 100 mM CaCl2 treatment decreases lifespan and alters the GFP profile of  

 BC12907 C. elegans ..................................................................................................151 

 

Figure 3.10: Consistency between z-scores of slopes and AUCs ................................................152 

 

Figure 3.11: Anthranilate fluorescence increases with decreasing nematode population  

 over time ....................................................................................................................152 

 

Figure 3.12: Anthranilate Fluorescence Profile ...........................................................................153 

 

Figure 3.13: RNAi gene knockdowns treated with CaCl2 have reduced variation  

 compared to CaCl2-treated controls ...........................................................................153 

 

Figure 3.14: Bacterial autofluorescence ......................................................................................154 

 

Figure 4.1: Acetone treatment kills E. coli and preserves capacity for RNAi knockdown .........207 

 

Figure 4.2: Microbial Growth in Liquid is Inhibited by the Presence of Antifungal Drugs........208 

 

Figure 4.3: Using a 9:1 dead:live mix of HT115(DE3) E. coli for RNAi allows full  

 C. elegans larval development and preserves ability for gene knockdown ...............209 

 

Figure 4.4: Ciprofloxacin treatment reduces both E. coli ATP content, and viability as 

determined by resazurin, and does not affect C. elegans lifespan .............................210 

 

Figure 4.5: HT115(DE3) E. coli does not significantly consume oxygen in long-term 

 S-medium cultures .....................................................................................................211 

 

Figure 4.6: Oxygen consumption, ATP content, and reductive capacity decline with age 

  in C. elegans..............................................................................................................212 

 

Figure 4.7: Various treatment conditions for disrupting the C. elegans cuticle ..........................213 

 

Figure 4.8: Ciprofloxacin-treated 9:1 dead:live mix of E. coli allows adequate  

 measurement of ATP content, oxygen saturation, and reductive capacity 

 between 3- and 6-day-old C. elegans .........................................................................214 

 

Figure 4.9: An RNAi screen of the X chromosome reveals genes affecting ATP  

 content, oxygen consumption, and reductive capacity ..............................................215 



ix 
 

ABBREVIATIONS 

 

AA: Ascorbic acid 

ACDH-13: Acyl CoA dehydrogenase 13 

AD: Alzheimer’s disease 

AGEs: Advanced-glycation end-products 

AGXT-2: Alanine-glyoxylate aminotransferase-2 

AIPL-1: Actin interacting protein 1-like protein 1 

AMPK: AMP-activated protein kinase 

AR: Aldose reductase 

ATP: Adenosine triphosphate 

AUC: Area under curve 

βHB: beta-hydroxybutyrate 

CI: Confidence interval 

CSRP: Cysteine and glycine-rich protein 

DAF-2: Dauer formation-2 

DHA: Dehydroascorbic acid 

DNMT: DNA methyltransferase 

DPH-2: Diphthamide biosynthesis protein 2 

EA: Erythronic acid   

ER: Endoplasmic reticulum 

ETC: Electron transport chain 

FADH2: Flavin adenine dinucleotide 

FEP: Fluorinated ethylene–propylene 

FSH: Follicle stimulating hormone 

FUdR: 5-fluoro-2′-deoxyuridine 

GABA: Gamma-aminobutyric acid 

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase 

GC-MS: Gas chromatography-mass spectroscopy 

GFP: Green fluorescent protein 

GH: Growth hormone 

GLOD-4: Glyoxalase-1 enzyme 

GnRH: Gonadotropin-releasing hormone 

GO: Gene ontology 

HDAC: Histone deacetylases 

HPG: Hypothalamus-pituitary-gonadal axis 

HPLC: High performance liquid chromatography 

IDH2: Isocitrate dehydrogenase 2 

IGF-1: Insulin and insulin-like growth factor 1 

IIS: Insulin and insulin-like growth factor 1 signaling 

iTRAQ: Isobaric Tags for Relative and Absolute Quantitation 



x 
 

KEGG: Kyoto Encyclopedia of Genes and Genomes 

LD: Lipid droplet 

LH: Luteinizing hormone 

MG: α-dicarbonyl methylglyoxal 

MLC-2: Myosin regulatory light chain 2 

MLP-1: Muscle LIM protein 1 

MSR-A: Methionine sulfoxide reductase-A 

NAD: Nicotinamide adenine dinucleotide 

NADPH: Nicotinamide adenine dinucleotide phosphate-oxidase 

NAG: N-acetylglucosamine 

NGM: Nematode growth medium 

NRA-2: Nicotinic receptor associated protein 2 

NRF2: Nuclear factor erythroid 2–related factor 2 

PAB-2: Poly(A) binding protein 2 

PC: Phosphatidylcholine 

PCA: Principal component analysis 

PE: Phosphatidylethanolamine 

PEAMT: Phosphomethylethanolamine N-methyltransferase 

PD: Parkinson’s disease 

PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1α 

PINK1: PTEN induced putative kinase 1 

PME-1: Poly(ADP-ribose) polymerase-1 

PP1: Protein phosphatase 1 

PRMT-3: Protein arginine methyltransferase-3 

RAGE: Receptor for advanced glycation end-products 

RNAi: RNA interference 

RNS: Reactive nitrogen species 

ROC: Receiver operating characteristic 

ROS: Reactive oxygen species 

RPE:  Retinal pigment epithelium 

RSP-6: Arginine/serine-rich protein 6 

SAMS-1: S-adenosyl methionine synthetase 

SASP: Senescence-associated secretory phenotype 

SCA-1: Sarco-endoplasmic reticulum calcium ATPase 1 

SEM: Standard error of the mean 

Sir2: Sirtuin 2 

SSMD: Strictly standardized mean difference 

TCA: Tricarboxylic acid cycle 

TCWF: Total corrected worm fluorescence 

TOR: Target of rapamycin 

XRN-2: 5’-3’ exoribonuclease 2 homolog 

8OHdG: 8-hydroxy-2' -deoxyguanosine 

 



xi 
 

ABSTRACT 

 This project was developed to identify novel methods for high-throughput culturing and 

screening of C. elegans to investigate age-related metabolic changes and to survey the proteomic 

and metabolomic factors associated with age-related changes.  To accomplish these goals we 

developed a novel way to grow C. elegans in liquid culture in 96-well microplates for several 

weeks without suffering significant fluid loss due to evaporation and without needing to shake or 

unseal the plates for aeration.  We also developed methods for assaying the total volume of live 

C. elegans in microplate cultures using a fluorescence microplate reader and for performing 

RNAi experiments with dead instead of live bacteria, which allows for the measurement of 

nematode metabolic parameters without bacterial interference.  Using these methods, along with 

established methods for the global identification of metabolites and proteins by mass 

spectroscopy, we observed an integrated pattern of changes that occurred at the molecular level 

in aged C. elegans.  Specifically, we found protein changes suggesting muscle dysfunction and 

sarcopenia, an increase in free fatty acids, a decrease in the S-adenosylmethionine cycle, altered 

or impaired protein synthesis, changes in free amino acid levels consistent with an increase in 

cell size, indications of epigenetic changes and alteration of DNA repair, and a shift toward a 

more oxidizing cellular environment, as well as a decrease in NAD
+
 relative to NADH.  Through 

the use of an automated RNAi screen targeting potential EF-hand Ca
2+

 binding proteins, we 

identified genes that are associated with high culture medium Ca
2+

 toxicity.  In addition, from a 

screen of X chromosome RNAi clones, we identified clones that partially prevented the age-

dependent decline in nematode ATP levels, oxygen consumption, and reductive capacity.  The 
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set of genes targeted by these RNAi clones is enriched in both anti-longevity genes and negative 

regulators of cellular processes and are potential targets for anti-aging interventions. 
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CHAPTER 1: 

INTRODUCTION AND BACKGROUND 

1.1 Maximal Lifespans 

There is enormous variability among animal lifespans.  The maximum lifespan of the east 

African fish, Nothobranchius furzeri, is only three months, whereas radiocarbon dating suggests 

members of the newly-discovered species of deep sea oyster, Neopycnodonte zibrowii, can live 

in excess of 500 years [1, 2].  In addition, specific mutations have been shown to dramatically 

extend the lifespans of model organisms.  There are now more than 200 single gene mutations 

known to extend the lifespans of nematodes and fruit flies and more than 20 single gene 

mutations capable of extending the lifespans of laboratory mice [3].  Taken together, these facts 

show that lifespans are subject to genetic control, and amenable to manipulation.  However, even 

though the genetic composition of a species determines its maximal lifespan, there is still a lack 

of consensus regarding the extent to which the process of aging is part of a species’ evolved 

developmental program versus a stochastic process more governed by a failure to adequately 

repair all molecular and cellular damage. 

 

1.2 Aging 

 In the broadest sense, aging can be defined as the physical decline in fitness and stress 

tolerance of an organism.  All multicellular eukaryotic organisms age in a manner specific to 
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their species, however several recurring traits are common (for a review of mammalian aging see 

López-Otín et al., [4]).  These traits can be summarized as changes in tissue composition and 

function, genomic changes, mitochondrial dysfunction, the accumulation of macromolecular 

damage, hormonal dyscrasia, and immune system dysfunction.  Notably, these traits appear to be 

interdependent, providing for a large degree of overlap among the categories.  Nutrient sensing 

also plays a major role in the aging process and has been studied extensively in model 

organisms. 

 

1.2.1 Changes in Tissue Composition and Function 

 Animals experience an age-related shift in the population of cell types within tissues.  

Stem cell pools within tissues are exhausted with age, by both a loss in stem cell number and 

function, leading to a decrease in regenerative capacity [5].  This cell loss correlates with the 

accumulation of DNA damage [6], with the up-regulation of cell-cycle inhibitory proteins such 

as p16
INK4a

, which is a marker for cellular senescence [7], and with an exhaustion of function due 

to excess signaling for proliferation [8, 9].  Stem cell attrition has been identified in aging mouse 

and human tissues including the brain and muscle [10-17], as well as with hematopoietic and 

mesenchymal stem cells [6, 18-20].  Furthermore, the loss of stem cells function in myosatellite 

cells has been identified as a contributing factor for sarcopenia, the age-related loss of muscle 

strength and mass [21, 22].  The benefits of stem cells may also extend beyond their intrinsic 

regenerative capacity.  Muscle-derived stems cells from young wild-type mice have been shown 

to promote neovascularization and tissue regeneration when injected into progeroid mice, even in 

tissues where the transplanted stem cells are not detected [23].  The benefits also extended to a 
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restoration of endogenous stem cells function and an extension of lifespan, suggesting that 

secreted factors from the younger stem cells contributed to the therapeutic effect. 

The loss of stem cell function with age is possibly a combination of cell signaling 

changes [22], and the loss of a portion of the stem cell pool to cellular senescence or apoptosis.  

Cellular senescence can be defined as a permanent exit from the cell-cycle accompanied by the 

acquirement of a characteristic cellular and secretory phenotype.  This cellular state was initially 

observed by Hayflick in 1961 as the exit from the cell-cycle of serially-passaged human 

fibroblasts in culture [24], and was later identified to be attributed to the gradual shortening of 

telomeres (repetitive regions of DNA at the ends of chromosomes) upon somatic cell division 

[25].  This shortening can be counteracted by the expression of the enzyme telomerase, however 

since most somatic cells lack telomerase, telomere length tends to decrease over time in 

populations of dividing somatic cells.  It has since been shown that cellular senescence also can 

be induced by DNA damage and sustained activation of the DNA damage response [26].  

Telomeres are shortened by oxidative damage from such sources as reactive oxygen species 

(ROS), and the cellular response to excessively short telomeres is similar to the response to 

double-strand breaks.  Notably, telomeric DNA is especially prone to oxidative damage due to its 

high guanine content, which has the lowest oxidation potential among the nucleobases and forms 

8-oxoguanine upon oxidation.  In addition to exiting from the cell-cycle, senescent cells acquire 

a specific phenotype that includes an enlarged and flattened morphology, increased ROS 

production, an increased lysosomal accumulation of lipofuscin (oxidatively cross-linked proteins 

and lipids), decreased mitochondrial membrane potential, increased mitochondrial mass, 

decreased PGC1-α driven mitochondrial biogenesis, the formation of heterochromatin foci, and 

increased expression of the cell cycle inhibitor p16
INK4a

 and the lysosomal hydrolase β-
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galactosidase [26-31].  Additionally, senescent cells secrete proinflammatory cytokines and 

matrix metalloproteinases, collectively referred to as the senescence-associated secretory 

phenotype (SASP) [32, 33].  Evidence suggests that the presence of senescent cells contributes to 

the aging process, as the chemical removal of senescent from progeroid mice extends lifespan 

[34]. 

One likely result of the SASP is signaling to the immune system to remove senescent 

cells, and evidence indicates that senescent tumor cells are selectively removed by the immune 

system by phagocytosis [35-37].  Estimates of senescent cell accumulation in mouse livers, skin, 

lung, and spleen based on markers such as β-galactosidase expression and DNA damage suggest 

an approximate doubling of senescent cell content with age in these tissues, with ~8% of livers 

cells appearing senescent in young mice versus ~17%  in very old mice [38].  Interestingly, the 

heart, skeletal muscle, and kidneys showed no obvious accumulation of senescent cells, 

suggesting that senescent cell accumulation may be tissue specific. 

 

1.2.2 Genomic Changes 

 As mentioned above, telomeres shorten within somatic cells due to repeated cell division 

or the presence of genotoxic stress such as that caused by ROS.  As a consequence, telomere 

length has been demonstrated to shorten over time within mouse and human tissues [39], and 

shortened telomeres progressively predispose cells to apoptosis and senescence.  Additional 

changes include a specific age-dependent change in the pattern of DNA methylation, which 

progresses at different rates in individual human tissues [40].  This change seems to consist of 

global hypomethylation with local islands of hypermethylation occurring at least partially at sites 

of tumor suppressor genes and Polycomb target genes in mice [41].  Chromatin remodeling has 
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also been observed as a typical age-related change, characterized by heterochromatin loss and 

redistribution [42].  Widespread chromatin restructuring should be expected to affect cellular 

gene expression patterns, and notably these age-dependent changes have been linked to changes 

in the functionality of stem cells [43].  More specifically histones, the protein complexes that 

bind and package DNA within chromatin, have been found to play a role in the aging of various 

species.  Deletion of components of histone methylation enzymes have been shown to extend the 

lifespan of both flies and nematodes [44, 45], and inhibition of histone demethylases specific for 

H3K27 have been also shown to extend the lifespan of nematodes [46].  Histone deacetylase 

(HDAC) enzyme family members appear also to affect the aging process in at least nematodes, 

flies, and mice.   Specifically the sirtuin enzyme SIR2, which is a member of the class III HDAC 

family, was identified to extend the lifespan of yeast when overexpressed [47].  There is still 

some debate about the applicability of this finding to other model organisms [48], but the 

nematode ortholog SIR-2.1 appears to at least produce a small extension of lifespan when 

overexpressed in this organism [49].  Furthermore, the transgenic overexpression of the 

mammalian homolog Sirt1 failed to extend the lifespan of mice, but did lower the age-dependent 

incidence of DNA damage, p16
INK4a

 expression, and spontaneous carcinoma and sarcoma 

formation [50].  The activity of the mammalian sirtuin SIRT6 appears to be more pertinent to 

aging, and overexpression of SIRT6 extends the lifespan of male transgenic mice [51], while 

mice deficient in SIRT6 exhibit a high degree of DNA damage and die by approximately 4 

weeks of age [10].  Finally, transposable elements (transposons) become active during normal 

brain again in Drosophila and likely contribute to the age-dependent loss of neuronal cells in that 

organism [52].  Transposons have been also shown to become active in the tissues of older mice 
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as a consequence of chromatin remodeling, and a similar remodeling pattern accompanied by 

transposon activation has been observed in human senescent cells maintained in culture [53]. 

 

1.2.3 Mitochondrial Dysfunction 

 The number of dysfunctional mitochondria in postmitotic tissue increases with age.  

These mitochondria generally exhibit a large number of distinct changes, including decreased 

membrane potential, decreased respiration, increased mitochondrial DNA damage such as point 

mutations, deletions, and 8OHdG, structural changes such as the loss of cristae and 

mitochondrial enlargement or swelling, and the oxidation and subsequent loss of cardiolipin, 

which is an inner membrane phospholipid that interacts with the complexes of the electron 

transport chain [54-57].  General reductions in membrane potential and respiratory capacity 

imply that ATP production through oxidative phosphorylation likely decreases with age in 

postmitotic tissue, and this reduction may be accompanied by a cellular shift to anaerobic 

metabolism in an attempt to meet energy needs [58]. 

 Under normal conditions, the biogenesis of mitochondria is balanced by their elimination 

through autophagy (termed mitophagy), resulting in a mostly constant number of mitochondria 

within cells [59].  Few studies have sought to determine mitochondrial turnover rates, however 

depending on the tissue and technique used, turnover estimates for rodents have ranged from 

roughly one week to two months [60, 61], and a study in mice indicates that mitochondrial half-

lives in some tissues of that organism may be as short as 1 – 2 days [62].  Mitophagy is up-

regulated in cells under conditions of low nutrient availability, and starvation-induced mitophagy 

in isolated hepatocytes has been shown to be entirely nonselective [63-67].  However, under 

normal conditions damaged mitochondria can be selectively eliminated based on their lowered 
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membrane potential [68, 69].  The protein PINK1 accumulates specifically on the membranes of 

mitochondria with lowered, or nonexistent membrane potential, where it recruits the action of 

Parkin [70, 71].  This protein then serves to ubiquitinate the mitochondrial fusion-promoting 

protein mitofusin, rendering the mitochondrion incapable of fusing with other mitochondria, and 

signaling the cell to degrade the mitochondrion through autophagy.  This PINK1/Parkin system 

of selective mitochondrial degradation has been demonstrated in multiple tissues and cell types, 

in humans, mice, C. elegans, and Drosophila [72-75]. 

Mitochondria are morphologically active organelles that regularly fuse together to create 

tubular networks, or fission into separate discrete structures [59].  Through fusion, oxidatively-

damaged mitochondrial components can be diluted throughout a cell, whereas fission allows the 

spreading of components to daughter cells during cellular division.  Fusion events between 

mitochondria are often followed by fission events that create separate mitochondria that are 

structurally and metabolically unequal.  In these cases mitochondrial fission produces one larger 

mitochondrion with higher membrane potential, and one smaller mitochondrion with lower 

membrane potential [59, 76].  The smaller of the two new mitochondria generally differs in 

membrane structure [77].  Furthermore, the smaller mitochondrion generally has a greatly 

reduced ability to fuse with other mitochondria, and is much more likely to be eliminated 

through autophagy, suggesting that it is prone to PINK1/Parkin membrane potential-dependent 

mitophagic degradation [78].  The facts that mitochondrial fission can be induced through 

oxidative stress, and that, under normal conditions, the inhibition of mitochondrial fission results 

in an intracellular accumulation of oxidatively-damaged mitochondrial proteins, additionally 

suggest that mitochondrial fission can function to segregate oxidatively damaged components for 

disposal through mitophagy [77, 78]. In addition stem cells exclude dysfunctional mitochondria 



8 
 

by asymmetric apportioning of dysfunctional mitochondria between daughter cells and this is 

required to maintain stemness. This process may be altered with age leading to stem cell 

exhaustion and senescence [79]. 

 One of the characteristics of mitochondria in long-lived postmitotic tissues, such as the 

myocardium, skeletal muscle and the brain, is the accumulation of enlarged mitochondria, often 

referred to as giant mitochondria [80, 81].  The factors that affect the accumulation of giant 

mitochondria are still not fully understood, but they appear to form partly by a failure of 

fission/fusion and the mitophagy system of mitochondrial turnover [80, 82].  In support of this 

connection, the appearance of giant mitochondria are one consequence of inhibition of 

autophagy following in vitro treatment with 3-methyladenine [82, 83].  It is interesting that the 

increased mass and decreased membrane potential associated with giant mitochondria mirror the 

same mitochondrial changes that occur within senescent cells, and that conditions that up-

regulate autophagy, such as endurance training and intermittent fasting, also protect against 

mitochondrial dysfunction [84-86]. 

 

1.2.4 Macromolecular Damage 

 Damaging agents are generated endogenously within cells.  Ionizing radiation is capable 

of splitting water molecules within cells, generating, in the process reactive hydrogen peroxide, 

and two types of unstable molecules with unpaired electrons – superoxide anion radicals and 

hydroxyl radicals [87].  These compounds are capable of reacting with biological 

macromolecules, such as lipids, through peroxidation reactions, and DNA, primarily through the 

oxidation of guanosine into 8-hydroxyguanosine.  Reactions with proteins occur through either 

the oxidation of amino acid residues to form reactive carbonyls, or through the oxidative 
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cleavage of peptide backbones [88, 89].  It was found in 1954 that living cells naturally contain 

these reactive compounds, categorized as ROS, and in 1956 Denham Harman proposed that 

these compounds contribute to the macromolecular damage that occurs in aging (known as the 

free radical theory of aging) [90, 91].  After details of the ROS-generating nature of the 

mitochondrial electron transport chain (ETC) became clear, Harman updated his theory in 1972 

to implicate mitochondria as the major contributor to the aging process (known as the 

mitochondrial theory of aging) [92].  In support of Harman’s theories, the rates of mitochondrial 

hydrogen peroxide production and superoxide anion production have been found to be inversely 

proportional to the maximum lifespans of a variety of species [93, 94]. 

Mitochondria are the major consumers of molecular oxygen within eukaryotic cells.  

Electrons are supplied by the carrier molecules NADH and FADH2 to ETC complexes I and II, 

respectively, on the inner membrane of mitochondria.  The electrons are then passed across the 

complexes and deposited onto molecular oxygen, converting it to water and supplying energy to 

move protons across the inner membrane.  As electrons are passed among the complexes, the 

potential exists for single electrons to exit the ETC early and to be deposited on molecular 

oxygen forming superoxide anion radicals.  Thermodynamically, each of the ETC complexes 

have the potential to generate superoxide, however studies with isolated mitochondria have 

indicated complexes I and III as the major physiological suppliers of cellular superoxide.  It is 

generally accepted that Complex I releases superoxide on the matrix side of the inner membrane, 

whereas Complex III releases superoxide on both sides of the membrane.  The exact contribution 

of Complex III is still in debate [95-98]. 

Between 0.1% and 2% of the total oxygen consumed by animal cells is converted into 

superoxide, and estimates suggest that this total may raise to 10% during vigorous exercise [87, 
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99].  Once it is generated superoxide is capable of damaging mitochondrial DNA, lipids, and 

proteins, and if it reacts with the signaling molecule nitric oxide it can generate peroxynitrite 

anions (a reactive nitrogen species or RNS) [100-103].  Most superoxide though is converted 

both enzymatically and nonenzymatically into hydrogen peroxide.  Left on its own, superoxide 

will undergo dismutation into hydrogen peroxide, with a half-life of 10
-6

 seconds [59].  However, 

in a cellular environment most superoxide is enzymatically converted into hydrogen peroxide by 

superoxide dismutases (SODs), and the presence of SODs, which are found in almost every 

known living organism, increase the rate of dismutation by approximately 1,000-fold.  The fact 

that enzymes evolved that dramatically increase the rate of an already rapid and spontaneous 

process can be interpreted as an indication of how dangerous superoxide may be to cells, and this 

interpretation is supported by the observation that the mitochondrial superoxide production rate, 

when measured as a proportion of respiration rate, is inversely correlated with lifespan in both 

closely and distantly-related species [59, 87, 104-107]. 

Once formed, hydrogen peroxide is transformed by eukaryotic cells into water.  This 

transformation is mediated by the peroxiredoxin/thioredoxin system and glutathione peroxidase 

in mitochondria, and by glutathione peroxidase and catalase in the cytosol and peroxisomes [59, 

108].  Hydrogen peroxide is more stable than superoxide, and unlike superoxide, it can readily 

cross cellular membranes, allowing hydrogen peroxide to diffuse throughout cells [109].  This 

combination of relative stability and mobility enable hydrogen peroxide to function as an 

important signaling molecule that affects most cytosolic redox activity [110].  If not eliminated 

however, hydrogen peroxide can react with cellular Fe(II), in what is known as a Fenton reaction 

to generate Fe(III) and the highly-reactive hydroxyl radical [59, 87].  Furthermore, superoxide 

can regenerate Fe(II) from Fe(III), additionally fueling hydroxyl radical production. 
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 The incidence of oxidatively damaged DNA, proteins, and lipids increases in an age-

dependent manner [111].  One consequence of this increase is that oxidized methionine residues 

causes an increase in the surface hydrophobicity of proteins [112, 113], which has been observed 

in the liver proteins of older rats [114], and in human skin collagen over the range of 10 – 80 

years [115].  Methionine oxidation is reversible through the action of methionine sulfoxide 

reductase-A (MSR-A), which also declines in an age-related manner in rats [114, 116].  

Furthermore, deficiency in MSR-A activity in mice leads to a ~40% reduction in lifespan [117], 

and overexpression of MSR-A in flies produces an approximate doubling of lifespan [118].  

Oxidative modifications have been observed to accrue in key metabolic enzymes, such as 

GAPDH [119], aconitase, and α-ketoglutarate [120], and both oxidative and nitrosative 

modification to key signaling proteins may contribute directly to aging [121, 122].  Furthermore, 

several of the cellular mechanisms that are capable of removing oxidatively damaged proteins, 

such as chaperone-mediated autophagy and the proteasome, decrease in function with age and 

within senescent cells [86, 123-126]. 

 Aldose sugars, such as glucose, are another source of macromolecular damage.  When in 

their acyclic open-chain form, aldose sugars have a reactive aldehyde chemical group at the end 

of their carbon backbone.  This aldehyde group can act as a reducing agent in redox reactions, 

and can form covalent bonds with nitrogen atoms on protein residues, forming a Schiff base.  

Ketose sugars such as fructose, which are sugars with a ketone group in place of an aldehyde 

group, are also capable of participating in these reactions, but they do so by first undergoing a 

series of tautomeric shifts that result in the generation of an aldehyde group.  Once formed, 

Schiff bases are unstable and easily reversible, however they can also re-arrange through an 

enaminol intermediate into a more-stable ketoamine, termed an Amadori product.  Multiple 
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reaction pathways are then possible for the Amadori product, depending on the structure of the 

initial reacting sugar and the presence or absence of an oxidizing agent.  The diverse array of  

sugar-derived protein adducts are collectively referred to as advanced-glycation end-products 

(AGEs), and the entire progression from sugar to AGE is called the Maillard reaction [127]. 

 AGE formation is largely irreparable and has been found to accumulate over time within 

long-lived proteins such as collagen [111] and lens crystallins [128], and in tissues such as the 

dura mater, skin, and cartilage [111].  Furthermore, the protein cross-linking structures of some 

AGEs have been found to decrease collagen elasticity and contribute to arterial stiffening [129, 

130].  The AGE carboxymethyl lysine also has been found to act as a chelating agent that is 

capable of promoting the metal-catalyzed oxidation of surrounding residues in proteins [131].  

The α-dicarbonyl methylglyoxal (MG) is an especially reactive glycating agent that forms from 

the nonoxidative degradation of the glycolytic intermediates glyceraldehyde and 

dihydroxyacetone phosphate, and as a by-product of the metabolism of ketone bodies acetone 

and aminoacetone, and the metabolism of threonine [132].  MG has been linked to age-related 

damage to proteins, lipids, and DNA, and it has been implicated in mitochondrial dysfunction 

[111].  Notably, the chronic hyperglycemia of diabetes leads to an increased rate of AGE 

formation that contributes to the etiology of the disease [133].  Physiological changes commonly 

seen in aging, such as atherosclerosis, the stiffening of joints, arteries, and the lung, loss of bone 

mass and lens accommodation, cataract formation, systemic inflammation, and cardiovascular 

disease, progress faster or more severely for diabetics [134, 135]. 

Besides directly modifying macromolecules, AGEs bind to the receptor for advanced 

glycation end-products (RAGE), which is a 35 kDa transmembrane, cell-surface receptor of the 

immunoglobulin superfamily present at low levels in a wide range of tissues [136-138].  RAGE-
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ligand binding has been shown to activate numerous intracellular signaling cascades through the 

short cytoplasmic tail of the receptor.  Activation of ERK1/2 (p44/p42) and SAPK/JNK MAP 

kinases has been observed to follow RAGE-ligand binding in various cells types, and the PI3K 

and JAK/STAT pathways have been implicated in RAGE signaling [139-141].  RAGE-ligand 

binding may also directly stimulate the production of reactive oxygen species (ROS) through the 

activation of NADPH oxidases [142].  Activation of these pathways through ligand-RAGE 

binding has been further linked to the activation of the pro-inflammatory transcription factor NF-

κB [139-141].  Since the initial discovery of RAGE, the link between RAGE activation, NF-κB, 

and inflammation has been firmly established, and it now appears that the activation of RAGE 

serves both to initiate and prolong inflammatory responses [137, 138, 143-147].  It is easy to 

speculate then that AGE accumulation and its signaling through RAGE may contribute to the 

general increase in tissue inflammation observed in mammalian aging. 

 One consequence of the production of cellular macromolecular damage is that the 

lysosomes progressively accumulate lipofuscin, a brownish-yellow, polymorphous, electron-

dense, autofluorescent mix of oxidatively cross-linked proteins and lipids [148].  The 

accumulation of lipofuscin begins at birth and continues nearly linearly in postmitotic cells 

[149].  Additionally, the rate of lipofuscin accumulation in postmitotic cells appears to be 

inversely correlated with lifespan, indicating that this accumulation may be harmful to an 

organism [150-152].  Lipofuscin collects within postmitotic cells because it cannot be degraded 

or removed by exocytosis; it is essentially a non-degradable, non-excretable polymer [153-155].  

Furthermore, actively dividing cells avoid this unimpeded accumulation only because they are 

able to dilute their stored lipofuscin among daughter cells [156]. 
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 The accumulation of lipofuscin is capable of reaching astounding levels, with one study 

showing lipofuscin occupying up to 75% of the cellular volume of aged neurons in some human 

centenarians [157].  Such a dramatic morphological change should be expected to affect cellular 

function, especially with functions pertaining to lysosomal activity.  Indeed, lipofuscin 

accumulation in RPE cells was found to interfere with heterophagocytosis [158].  Lipofuscin-

loaded cultured human fibroblasts show diminished autophagocytosis and decreased survival 

during amino acid starvation, and lipofuscin-containing aged mouse hepatocytes display reduced 

autophagic vacuole formation and elimination [159, 160]. 

 

1.2.5 Hormonal Dyscrasia 

 In mammals, the hypothalamus-pituitary-gonadal axis (HPG) changes with age as sex 

hormone levels decline in the post-reproductive portion of the lifespan.  The hypothalamus, 

which is located in the middle of the brain between the thalamus and the pituitary gland, secretes 

gonadotropin-releasing hormone (GnRH).  The presence of GnRH causes the anterior pituitary 

gland to release follicle stimulating hormone (FSH) and luteinizing hormone (LH) into the blood 

stream.  In both males and females, FSH and LH affect growth, development, germ cell 

maturation, and the release of the protein complex inhibin from the gonads.  In ovaries, FSH 

triggers follicular growth while LH supports the production of both estradiol and progesterone in 

a manner dependent of the phase of the reproductive cycle.  In testis, FSH promotes 

spermatogenesis, and LH signals for the release of testosterone from the Leydig cells.  

Progesterone and testosterone inhibit the release of GnRH from the hypothalamus, thus 

completing a negative feed-back loop that regulates the release of FSH and LH from the pituitary 

gland.  Furthermore, inhibin directly inhibits the pituitary gland from releasing FSH and LH, and 



15 
 

estradiol either inhibits or stimulates the release of LH depending on the phase of the 

reproductive cycle.  However, receptors for the hormones of the HPG axis are found in various 

tissues throughout the body, implying that the true effects of the HPG axis are widespread [161, 

162]. 

 During the post-reproductive life-stage in female mammals (following menopause in 

humans), the release of progesterone and estradiol becomes erratic and begins to steeply decline.  

This change is mirrored by a gradual decrease in testosterone in human males beginning at about 

middle age [163], and a loss of inhibin production in both sexes [164].  This decline in gonadal 

hormone production disrupts the negative feed-back of the HPG, potentially affecting the entire 

organism.  The pattern of effect seems to be a short-term increase in GnRH, FSH, and LH in 

women as gonadal hormone levels drop, followed by a more long-term decrease in FSH and LH 

in women and in GnRH in both sexes [165, 166].  In mice, the re-establishment of the HPG feed-

back loop by the transplantation of viable ovaries from young mice into older post-reproductive 

mice has been demonstrated to lead to a ~40% increase in lifespan [167, 168].  A negative 

correlation also has been identified both between serum estradiol levels in women and the 

incidence of Alzheimer’s disease (AD) [169] and between serum testosterone levels in men with 

AD [170].  Additionally, a decline in GnRH in mice contributes to reduced neurogenesis, skin 

thickness, and muscle and bone mass, as well as an increase in collagen cross-linking [166], and 

supplementation with GnRH was shown to prevent these changes in neurons, skin, and muscle. 

 

1.2.6 Immune System Dysfunction 

 Aging of the immune system (termed immunosenescence) is characterized by a loss of 

functional hematopoietic stem cells, involution of the thymus and an associated decrease in the 
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number of circulating naive T cells, increased levels of pro-inflammatory cytokines, such as 

interleukin (IL)-6 and TNF-α, an increased number of differentiated memory CD28
−
 T cells with 

a diminished capacity for proliferation, a decreased CD4/CD8 cell ratio, and an increase in 

systemic inflammation [171-174].  The immediate effect of immunosenescence is a reduction in 

the body’s capacity to fight parasites and infectious agents and to remove infected cells.  

However, since the immune system also functions to remove both senescent and hyperploid 

cells, immunosenescence may also contribute to the increased incidence of cancer and the 

accumulation of senescent cells observed in the aging process [35-37, 175, 176].  Additionally, 

the increase in pro-inflammatory cytokines and inflammation seen with age may result from a 

decreased ability to fight infection, as well as the SASP produced by senescent cells and the 

continual activation of RAGE by the accumulation of AGEs within tissues.  Interestingly, the 

inflammation associated with aging has also been shown to have the downstream effect of 

inhibiting stem cell function in the epidermis [177], and conditional over-expression of an 

inhibitor of the pro-inflammatory transcription factor NF-κB in the skin of transgenic mice 

resulted in a restoration of a more youthful skin phenotype [178].  Also, age-related 

inflammation has been shown to activate NF-κB in the hypothalamus, leading to a reduction in 

the release of GnRH, and prevention of this inflammatory effect extends the lifespan of mice 

[166].  Finally, SIRT1 and SIRT6 have been shown to have an anti-inflammatory function, 

which may partially explain their observed effects on health and lifespan [179-184]. 

 

1.2.7 Nutrient Sensing 

 The insulin and insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway is the most 

conserved aging-associated pathway identified among species [4, 185-187].  In mammals, 
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growth hormone (GH) is secreted by the anterior pituitary gland in response to a complex array 

of stimulatory signals, including sleep, hunger, nutrition, stress, exercise, and developmental 

state [188-192].  The release of GH induces the production of IGF-1, primarily from hepatocytes.  

Receptors for IGF-1 are present in many tissues and cell types, and affect the same intracellular 

signally pathway as insulin, which informs cells of the presence of glucose, and which activate 

downstream targets such as AKT and the mTOR complex, and inhibit nuclear translocation of 

the FOXO family of transcription factors.  Multiple polymorphisms, mutations, and genetic 

alterations linked to longevity have been identified that decrease GH and IGF-1 function, or that 

attenuate intracellular signaling of the IIS pathway in humans and model organisms [185, 187, 

193-195].  Furthermore, dietary restriction (DR) is the most consistent treatment found to extend 

the lifespan of model organisms, and the genetic analysis of worms and flies has shown the IIS 

pathway to contribute to at least part of this effect [193].  Interestingly, GH and IGF-1 levels 

have been shown to decline with age in both wild-type mice and progeroid mice, suggesting that 

pro-longevity signaling changes may gradually occur with normal mammalian aging [196]. 

 

1.3 Caenorhabditis elegans as an Accelerated Aging Model 

 C. elegans are free-living 1 mm-long nematodes found in the soil of temperate climates.  

Interest in the laboratory use of C. elegans as a model organism began in the 1970s with the 

work of Sidney Brenner [197], and the popularity of the organism continues to grow.  Among the 

laboratory benefits of the organism are its ease of cultivation and its tractability for genetic 

analysis.  Additionally, homologs of many human genes are present within the nematode 

genome.  C. elegans can be maintained on solid agar plates or in liquid cultures, and they readily 

eat common non-pathogenic strains of laboratory bacteria [198].  Large volumes of the 
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nematodes also can be grown without much additional labor or expense.  C. elegans are mostly 

hermaphroditic, with only 0.1 – 0.2% of normal populations consisting of males, and individual 

hermaphrodites can lay up to ~300 self-fertilized genetically-identical eggs during their 

reproductive period, which begins after ~3 – 4 days in culture [199, 200].  Experiments involving 

analyses of lifespan can be performed quickly with C. elegans given their short lifespan.  

Developmental rate and lifespan of the nematode are highly temperature sensitive across the 16 – 

25 °C optimal temperature range for cultivation, with individuals grown at 16 °C attaining a 

mean lifespan of 23 days and individuals grown at 25 °C living for a mean of only 9 days [201].   

 Much of the interest in C. elegans aging research began in the late 1980s with the 

identification in the nematode of the first genetic mutation found to directly extend the lifespan 

of an organism [202].  Thomas Johnson identified a mutant recessive allele in the catalytic 

subunit of the C. elegans phosphoinositide 3-kinase gene age-1 (a downstream target of 

intracellular IGF-1 signaling) that produces a decrease in fertility and a ~40% increase in mean 

lifespan.  Interest in C. elegans aging research grew even further after the 1993 publication by 

Cynthia Kenyon of a mutation in the C. elegans IGF-1 receptor gene daf-2 that resulted in a 

doubling of lifespan dependent on the activity of the FOXO transcription factor ortholog daf-16 

[203].  Since this time, much of the research into dissecting the lifespan-affecting aspects of the 

IIS pathway has been performed in this organism [204-211].  Many of the age-related changes 

discussed above are present in C. elegans and appear in a relatively accelerated fashion matching 

the organism’s shorter lifespan, and appear mostly after then end of the reproductive period 

(starting at about the end of the first week of adulthood when grown at the standard temperature 

of 20 °C). 
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All 959 C. elegans adult somatic cells are post-mitotic.  Only the germ cells actively 

divide, and only the distal tip cells at either end of the two U-shaped uterine projections function 

as stem cells, generating a supply of germ cells during the reproductive period [212].  The fate of 

these cells during post-reproductive aging has not been adequately addressed, however senescent 

cells have been shown to develop within older C. elegans [213].  These cells have been identified 

by β-galactosidase staining, which indicates that senescent cells accumulate with age, starting 

primarily at the head and tail of nematodes.  Given the post-mitotic nature of adult C. elegans 

somatic cells, it is likely that the onset of cellular senescence is driven by sustained DNA 

damage, and indeed extensive changes to C. elegans DNA have been observed with age.  At the 

beginning of the post-reproductive period, muscle cells begin to develop small dark nuclear 

patches, and the nucleus and nucleolus become misshapen [214].  Nematodes also begin to lose 

nuclei from their tail and experience a dysregulation and heterogeneity of cellular genome copy 

number [215].  The capacity for DNA repair also begins to decline with age, starting as early as 

the first day of adulthood [216].  Additionally, normal aging C. elegans is associated with a 

number of histone modification changes, including an increase in demethylase activity and a 

decline in H3K27me3 methylation [46, 217], and treatment with a histone deacetylase inhibitor 

has been shown to increase C. elegans lifespan [218]. 

 Sarcopenia is another prominent feature of the C. elegans aging process.  The nematodes 

begin experiencing defects in locomotion by about day 9 – 10 of adulthood (at 20 °C) [214].  

This change is then followed by muscle shrinkage due to cytoplasmic loss, myocyte plasma 

membrane invagination and fragmentation, sarcomere disorganization, and a reduction in the 

number of myosin thick filaments.  This muscular dysfunction extends beyond just the body wall 

of the nematode.  In C. elegans, food is ground and forced into the intestine by the rhythmic 
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contraction of a set of 20 muscle cells and 20 neuronal cells, termed the pharyngeal pump.  As C. 

elegans age, the pumping rate gradually slows, and the loss of pump structure and function can 

be nearly total by late in the C. elegans lifespan [219].   

Obstruction of the pharyngeal pump by bacteria can also occur in older nematodes, which 

can form a plug blocking passage of substances into the intestine.  Bacterial colonization of the 

intestine is also a common feature observed in older C. elegans and appears to slightly limit the 

lifespan of colonized nematodes [220].  Given that younger C. elegans are more resistant to 

bacterial infection that older nematodes [221, 222], and that longer-lived C. elegans strains are 

more resistant than shorter-lived strains [220], suggests that immunosenescence of the innate 

immune system is a factor in C. elegans aging.  

 During the first week of adulthood, C. elegans experience a dramatic decrease in 

mitochondrial function.  Over this time period, oxygen consumption, ATP content, and 

metabolic heat production drop by between approximately 50 to 75% [223].  Total enzymatic 

reductive capacity also has been shown to decline to a similar extent during this interval, 

possibly indicating the cellular transition to a more oxidized state.  Giant mitochondria have been 

reported to accumulate with age in the body wall muscle of C. elegans as determined by electron 

microscopy [224], although a second group using a fluorescence based approach failed to 

replicate the observation, instead finding an age-dependent accumulation of smaller, fragmented, 

circular mitochondria [225].  By the end of the first week of adulthood, nematode ETC Complex 

I activity declines by ~60%, and Complex II activity declines by ~30% [224], and mitochondrial 

carbonylated protein content (indicative of ROS-mediated protein oxidation) increases 4-fold 

compared to carbonylated cytoplasmic proteins. 
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 Global levels of AGE-modified proteins have been shown to increase over time in C. 

elegans [226].  Specifically, carboxymethyllysine, which is derived from the α-dicarbonyl 

glyoxal, was shown to increase ~11-fold over the first 12 days of adulthood.  Additionally, MG-

derived carboxymethyllysine increases ~1.2-fold over the same period, during which MG itself 

appears to increase ~5-fold fold.  Interestingly, the C. elegans glyoxalase-1 enzyme GLOD-4, 

which can remove MG by enzymatically converting it to D-lactate, is susceptible to modification 

and deactivation by both ROS and MG.  During this same 12-day time period, GLOD-4 activity 

has been observed to decrease 10-fold, likely contributing to the age-dependent increase in MG 

and MG-derived modifications.  Additionally, over-expression of GLOD-4 decreases MG 

content and increases C. elegans lifespan, indicating that under normal conditions MG 

production limits nematode lifespan. 

 Until recently it was assumed that lipofuscin accumulated with age in C. elegans in 

lysosome-like intestinal organelles called gut granules.  Lipofuscin is autofluorescent in vivo 

with a peak fluorescence in the yellow range (540–640 nm) [227], however in vitro extracted 

lipofuscin often emits a blue peak fluorescence (340 nm) [227, 228].  Gut granules possess a blue 

autofluorescence, which has been attributed to lipofuscin [229, 230], and studies of entire C. 

elegans populations have indicated that blue-range autofluorescence increases in an age-

dependent manner [148, 201, 229, 231, 232].  A recent report examining individual nematodes, 

however, observed that this blue autofluorescence stays relatively constant over the C. elegans 

lifespan, but increases by ~400% for an ~8-hour period surrounding a nematode’s death [233].  

The blue autofluorescence now has been identified as anthranilic acid, which is released by the 

gut granules upon activation of the cellular necrosis pathway, and the resulting spike in blue 

fluorescence is a product of concentration and pH changes to anthranilic acid upon reaching the 
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cytosol.  The question of whether lipofuscin accumulation actually occurs within aging C. 

elegans, however, has not been fully resolved. 

 

1.4 C. elegans and High-throughput Screening 

 Due largely to their small size, ease of growth, and susceptibility to RNA interference 

when fed bacteria containing dsRNA, C. elegans have proven to be a valuable organism for 

high-throughput genetic screens.  Furthermore, C. elegans are largely transparent, which allows 

for the development of assays based on the incorporation of fluorescent transgenes or 

luminescent or fluorescent compounds.  Through the extensive work invested in C. elegans, 

especially over the last 20 years, methods of high-throughput screening with this organism have 

become fairly standardized, but usually require labor-intensive manual observation of 

phenotypes [234].  However, difficulties still exist in the logistics of performing many types of 

screen, use of agar in microplates usually negates the ability for many types of optical 

measurements, and maintenance of nematodes in long-term liquid cultures suffers from 

systematic biases in measurements due evaporation along the outside edges of microplates 

(termed “edge effects”) [235].  Furthermore, assays involving the investigation of metabolites or 

metabolic parameters are complicated by the presence of bacteria as a food source.  Axenic 

liquid media (growth media that does not require the addition of bacteria as a food source) has 

been developed to overcome this difficulty [236], however the preparation of axenic C. elegans 

cultures is elaborate.  Also, the elimination of bacteria from liquid cultures serves as an obstacle 

to nematode RNAi gene knockdown, which traditionally has been performed through feeding C. 

elegans bacteria expressing gene-targeted dsRNA, and it is incompatible with currently-available 

RNAi libraries.  Methods have been established for  killing dsRNA-expressing Escherichia coli 
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prior to experimentation, using either ultraviolet light or γ-irradiation [237], but these methods 

damage dsRNA needed for RNAi, require dedicated equipment, and are difficult to scale to the 

quantities necessary for high-throughput screening.  Given the interest in C. elegans use for 

aging research, whole-genome large-scale RNAi knockdown screens have been performed to 

identify genetic factors regulating lifespan [238-241].  Due to the difficulties in assaying 

metabolic parameters though, similar screens have not been performed to identify genes 

associated with many age-related changes.  Therefore, we set out to investigate the broader 

physiological context of C. elegans aging (through metabolomic and proteomic analysis  of 

young and old nematodes) and to develop novel high-throughput RNAi knockdown assays for 

measuring relevant age-dependent metabolic parameters. 

 

1.5 Hypothesis and Objectives 

 Broad-scale biological screening itself generally serves as a hypothesis-generating 

procedure, however for the work reported here we hypothesize that the protein and metabolite 

changes observed between young and old C. elegans will reflect the overall age-related changes 

discussed above, and that through the use of optimized experimental techniques semi-automated 

96-well plate RNAi screens can be used to identify genes responsible for the aging-related loss 

of mitochondrial function and those responsible for limiting viability in the presence of toxic 

calcium levels in the culture media. 

Specific aim 1 (Chapter 2):  Determine age-related changes in metabolite composition and 

protein levels in C. elegans. 
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Aim 1.1 Perform a metabolomic analysis of young and old C. elegans and determine aging-

induced changes.  Age-synchronization of the culture will be maintained using the conditionally-

sterile SS104 strain of C. elegans, which expresses a temperature-sensitive mutant allele of glp-4 

(abnormal germ line proliferation 4) that restricts germ cell development when cultured at 25 °C.  

Days 4 and 10 of culture will be sampled as the young and aged groups, respectively. 

Aim 1.2 Perform a proteomic analysis of young and old C. elegans and determine aging-induced 

changes.  To allow adequate comparison to the proteomic results, days 4 and 10 of culture will 

be sampled as representative of young and aged nematodes.  A stable-isotope incorporation 

strategy will be employed to improve proteomic quantitation, utilizing 
15

N4-
13

C6-arginine and 

15
N2-

13
C6-lysine.  Furthermore, to prevent the complicating enzymatic conversion of isotopically-

labeled arginine into isotopically-labeled proline, expression of the ornithine transaminase 1 gene 

ORN-1 will be knocked-down using RNAi. 

Specific aim 2 (Chapter 3):  Investigate long-term microplate C. elegans liquid culturing 

methods that reduce or prevent evaporation, and determine an appropriate normalizing parameter 

for the number of live C. elegans in culture that is required due to the high variation in numbers 

per well when pipetting nematodes into microplates. 

Aim 2.1 Determine the effectiveness of several microplate sealing methods, and examine both 

the correspondence of green fluorescence of several GFP-expressing strains of C. elegans to the 

total volume of live nematodes in culture and the anthranilate autofluorescence to the rate of 

nematode death in culture. 
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Aim 2.2 As a proof of principle for assay culture conditions and normalization methods, perform 

a small-scale RNAi screen of Ca
2+

-binding EF-hand genes in the presence of toxic high Ca
2+

 

levels to identify genes mediatingCa
2+

-induced nematode death. 

Specific aim 3 (Chapter 4):  Determine ideal bacterial treatment methods and conditions for 

performing RNAi gene knockdown using dead E. coli, and perform a small-scale RNAi screen 

for genes affecting the age-related decline in C. elegans oxygen consumption, ATP content, and 

reductive capacity. 

Aim 2.3 Perform a screen of E. coli treatment methods and conditions that preserves dsRNA for 

adequate RNAi gene knockdown. 

Aim 2.4  Perform a small-scale screen using dead E. coli and RNAi knockdown of genes on the 

C. elegans X chromosome, assaying for RNAi clones that delay the age-related decline in 

oxygen consumption, ATP content, and reductive capacity in C. elegans. 

 

1.6 Impact and Significance 

 The overall goal of this project is to develop a better understanding of factors affecting 

specific age-related changes.  Due to the many similarities between C. elegans and mammalian 

aging, insights obtained through these experiments will shed light on the factors behind similar 

age-related changes in humans. 
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CHAPTER 2: 

METABOLOME AND PROTEOME CHANGES WITH AGING IN CAENORHABDITIS 

ELEGANS 

 

2.1 Abstract 

 To expand the understanding of aging in the model organism Caenorhabditis elegans, 

global quantification of metabolite and protein levels in young and aged nematodes was 

performed using mass spectrometry.  With age there was a decreased abundance of proteins 

functioning in transcription termination, mRNA degradation, mRNA stability, protein synthesis, 

and proteasomal function.  Furthermore there was altered S-adenosyl methionine metabolism as 

well as a decreased abundance of the S-adenosyl methionine synthetase (SAMS-1) protein.  

Other aging-related changes included alterations in free fatty acid levels and composition, 

decreased levels of protein arginine methyltransferase-3 (PRMT-3) and poly(ADP-ribose) 

polymerase-1 (PME-1), a shift in the cellular redox state, an increase in sorbitol content, 

alterations in free amino acid levels, and indications of altered muscle function and sarcoplasmic 

reticulum Ca
2+

 homeostasis.  There were also decreases in pyrimidine and purine metabolite 

levels, most markedly nitrogenous bases.  Supplementing the culture medium with cytidine (a 

pyrimidine nucleoside) or hypoxanthine (a purine base) increased lifespan suggesting that aging-

induced alterations in RNA or ribonucleotide metabolism may be limiting lifespan.  An age-

related increase in body size, lipotoxicity from ectopic yolk lipoprotein accumulation, and 

mitochondrial electron transport chain dysfunction altering the cellular NAD
+
/NADH ratio may 
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explain many of these changes.  In addition, dietary restriction in aged worms resulting from 

sarcopenia of the pharyngeal pump likely decreases the abundance of SAMS-1, possibly leading 

to decreased phosphatidylcholine levels, larger lipid droplets, and ER and mitochondrial stress.  

The complementary use of proteomics and metabolomics yielded unique insights into the 

molecular processes altered with age in C. elegans. 

 

2.2 Introduction 

 The nematode Caenorhabditis elegans is used extensively as a model organism for 

investigating the molecular mechanisms of aging.  The popularity of C. elegans as an aging 

model is largely due to its short lifespan (approximately 1.5 – 4 weeks depending on the 

temperature of incubation), and the ease at which it can be cultivated under laboratory 

conditions.  C. elegans aging is characterized by a severe loss of muscle mass and function 

(sarcopenia), which gradually interferes with movement and the ingestion of food [1].  In 

addition aging results in an increased size of lipid droplets (LD) as egg yolk lipoproteins 

continue to be produced after reproduction ceases [2], and the appearance of enlarged 

dysfunctional mitochondria within cells [3].  Accordingly, aged C. elegans experience a dramatic 

decline in mitochondrial oxygen consumption, and ATP and ADP content, starting as early as the 

onset of adulthood [4, 5].  Aged C. elegans have also been shown to experience a loss of 

proteostasis and an accumulation of protein aggregates [6, 7], as well as oxidatively damaged 

proteins and lipids [8, 9].  Macromolecular damage in the form of the non-enzymatic formation 

of advanced glycation end-products are a part of normal C. elegans aging, with the reactive 

molecule methylglyoxal likely playing a role in limiting the C. elegans lifespan. 
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In 1988 the first genetic mutation resulting in increased longevity, the C. elegans 

phosphoinositide 3-kinase gene age-1, was identified [10].  Since that time, knowledge of 

genetic factors affecting the aging process has greatly expanded, and a search of the GenAge 

database (http://genomics.senescence.info/genes/) currently lists 741 C. elegans genes known to 

impact lifespan.  Two conserved signaling pathways known to increase lifespan have been 

characterized in C. elegans [11-15]; one involves disruption of the insulin/IGF-1 receptor, DAF-

2 (abnormal dauer formation-2) signaling pathway, while the other involves activation of the 

NAD
+
-dependent histone deacetylase SIR-2.1.  C. elegans loss-of-function mutations in daf-2 

have an extended lifespan, which is dependent on the activation of the transcription factor DAF-

16 (homologous to human FOXO proteins) [16-18].   Dietary restriction is one of the most 

consistent methods for producing lifespan extension in model organisms, activates DAF-16 

through a decrease in PI3K/AKT signaling [19].  Activation of SIR-2.1, the C. elegans homolog 

of human SIRT1 also results in lifespan extension through partially overlapping mechanisms, 

including activation of DAF-16 [20]. 

The genetic dissection of the C. elegans aging process has progressed in part due to the 

widespread application of transcriptome analysis [21] and through the ease with which RNAi 

gene knockdown experiments can be performed [22].  Despite these advancements in the field, 

there have been few global proteomic investigations of the C. elegans aging process, and even 

fewer metabolomic investigations of aging.  Based on our previous findings regarding the role 

that dietary metabolites play in C. elegans lifespan extension and in an effort to add to the 

understanding of aging in this model organism [23-25], we chose to employ a mass 

spectroscopy-based approach to global endogenous metabolite identification in young versus 

aged C. elegans.  We also pursued a mass spectrometry-based heavy isotope labeling approach 
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for global protein quantification, with the goal of contextualizing the results from both “–omic” 

investigations using the C. elegans aging literature. 

 

2.3 Materials and Methods 

2.3.1 Chemicals and Strains 

The SLE1 HT115(DE3) Escherichia coli bacterial strain was used as described in [26].  

15
N4-

13
C6-arginine was purchased from Thermo Scientific Pierce.  

15
N2-

13
C6-lysine was 

purchased from Cambridge Isotope Laboratories, Incorporated. 

 

2.3.2 C. elegans Culture 

 Between assays, glp-4(bn2) C. elegans (strain SS104) were grown at 15 °C on 10 cm 

NGM (nematode growth medium) plates containing a lawn of HT115 (DE3) E. coli.  Prior to use 

in the assays, several plates of C. elegans were washed into a 750 mL liquid culture of  glp-

4(bn2) C. elegans containing HT115(DE3) E. coli (6.9 X 10
9
 CFU/mL) and grown at 15 °C 

using standard liquid culturing techniques [27].  After becoming gravid adults, nematodes from 

this culture were used for experimentation. 

 

2.3.3 Alkaline Bleach Synchronization 

A liquid culture was chilled for 10 minutes on ice, and pelleted by centrifugation (~1150 

x g for 4 minutes).  The majority of the supernatant was carefully decanted, leaving behind a 

concentrated slurry of nematodes.  Eggs were collected by alkaline bleach synchronization as 

follows:  6% NaOCl (Clorox®) was combined with 5 M NaOH in a 2:1 ratio by volume, and 

added to the concentrated slurry in a ratio of 0.4 mL of alkaline bleach solution per 1 mL of 
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slurry.  The resulting C. elegans suspension was then shaken for 4–7 minutes until the carcasses 

dissolved, as monitored by microscopy, leaving behind only eggs.  The egg-containing solution 

was then diluted 5-fold with 0.1 M NaCl, and centrifuged at ~1,150 x g for 2 minutes at room 

temperature.  The supernatant was removed by aspiration, and the resulting pellet of eggs was 

washed 3 times by the addition of a similar volume 0.1 M NaCl, and centrifuged at ~1,150 x g 

for 2 minutes at room temperature.  The final pellet of eggs was then used to establish age-

synchronized liquid cultures. 

 

2.3.4 Metabolomics Culturing and Sample Preparation 

 Eggs obtained by alkaline bleach synchronization were used to start two 1.5 L liquid 

cultures, containing HT115(DE3) E. coli (6.9 X 10
9
 CFU/mL), and grown at 25 °C to induce 

sterility in the glp-4(bn2) C. elegans.  On the fourth and tenth days of culture, one of the 1.5 L 

cultures was filtered through a 10 micron filter to separate C. elegans from bacteria.  The 

collected nematodes were then washed into 1.5 L of M9 buffer and shaken for 20 minutes to 

allow the C. elegans time to empty the contents of their intestinal tract.  The C. elegans M9 

suspension was then divided among 500 mL bottles and centrifuged at ~1,100 x g for 4 minutes 

at room temperature.  The supernatants were aspirated and the resulting pellets were combined in 

50 mL of M9 buffer.  At this point, three 1 mL portions of the suspension were set aside for 

protein determination assays (described in a section below).  The remaining suspension was 

divided among five 15 mL conical vials and centrifuged at ~1,100 x g for 4 minutes at room 

temperature.  The supernatants were aspirated and the pellets were frozen in liquid nitrogen.  The 

pellets were then each ground to a fine powder using a pre-cooled mortar and pestle.  The 

individual ground pellets were suspended in 5 mL of 80% methanol, and the resulting slurries 
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were sonicated on ice using a Heat Systems Ultrasonics W-380 sonicator (5-second pulses, 50% 

duty cycle, max power, 12 pulses total).  Each slurry was centrifuged at 10,000 x g for 30 

minutes at 4 °C, and the resulting supernatant was saved on ice.  The pellets were then washed 

twice more in a similar manner, once with 5 mL of HPLC grade water and once with 70% 

ethanol, and the resulting supernatants were combined with the 80% methanol supernatant on 

ice.  The remaining pellets were then suspended in 5 mL of chloroform and shaken at 250 rpm 

for 15 minutes at 37 °C.  A separate syringe fitted with a 0.45 micron filter was used to collect 

the bottom organic layer of each conical vial, which was then saved separately on ice.  The five 

polar fractions (combined methanol, water, and ethanol supernatants), and the five nonpolar 

fractions (chloroform supernatants) were each dried in a centrifugal vacuum evaporator at 50 °C 

for 2.5 hours.  The samples from days 4 and 10 (5 polar and 5 nonpolar samples each) were sent 

to the University of Illinois Biotechnology Center for metabolite identification using GC-MS, 

and normalization based on total protein content. 

 To guarantee that the C. elegans grown until day 10 did not deplete their bacterial food 

source or accumulate an unwanted amount of waste products in the culture media, on the sixth 

day the nematodes were pelleted by centrifugation at ~1,100 x g for 4 minutes at room 

temperature and the supernatant was removed by decanting and by aspiration.  The C. elegans 

were then suspended in 1.5 L of fresh S-medium containing HT115(DE3) E. coli (6.9 X 10
9
 

CFU/mL), and returned to incubation at 25 °C. 

 

2.3.5 Protein Assay 

 The total C. elegans protein content of each sample was assayed using a similar protocol 

as described by Braeckman et al. [28].  Briefly, 1 mL of a sample was snap frozen in liquid 
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nitrogen and stored at -10 °C until analysis.  For the analysis, 500 μL of the sample was 

transferred to a new 2 mL microcentrifuge tube and sonicated on ice using a Heat Systems 

Ultrasonics W-380 sonicator (5-second pulses, 50% duty cycle, max power, 12 pulses total).  A 

1.5 mL portion of 1:1 ethanol:acetone was added, vortexed briefly, and incubated at 4 °C for 30 

minutes to facilitate protein precipitation.  The tube was then centrifuged at 15,000 x g for 10 

minutes at room temperature.  The supernatant was decanted and the tube was left open and 

inverted on a paper towel for 5 – 10 minutes while the pellet dried.   The pellet was then 

suspended in 180 µL of 1 N NaOH, vortexed, and incubated at 70 °C for 25 minutes to degrade 

any remaining lipids within the sample. A 1.26 mL portion of deionized water was added to 

dilute the NaOH and 360 µL of 10% sodium dodecyl sulfate (SDS) was added to facilitate the 

solubilization of the proteins. The tube was then mixed by inversion and centrifuged at 1,500 x g 

for 2 minutes at room temperature. The protein content of the supernatant was then analyzed by 

the BCA protein assay (Pierce) according to the manufacturer’s protocol, using bovine serum 

albumin protein standards with a similar pH and SDS content as the assayed samples. 

 

2.3.6 Proteomics Culturing 

 Cultures of SLE1 HT115(DE3) E. coli, containing a pAG608 plasmid for dsRNA 

generation targeting the orn-1 gene, were grown overnight with vigorous shaking at 37 °C in M9 

media (12.8 mg/mL Na2HPO4, 3 mg/mL KH2PO4, 0.5 mg/mL NaCl, 1 mg/L NH4Cl, 2 mg/mL 

glucose, 49.4 μg/mL MgSO4 • 7H2O, 1.52 μg/mL CaCl2 • 2H2O, 1 μg/mL thiamine, 1 μg/mL 

FeSO4 • 7H2O, and 100 μg/mL of ampicillin).  For bacteria grown for isotope labeling, 50 μg/mL 

15
N4-

13
C6-arginine and 50 μg/mL 

15
N2-

13
C6-lysine were incorporated into the buffer (final 

concentration), otherwise 50 μg/mL unlabeled arginine and 50 μg/mL unlabeled lysine were 
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used.  After ~16 hours (OD600 nm = ~1), dsRNA expression was induced by the addition 1 mM 

IPTG (final concentration).  The bacteria were then incubated for an additional 4 hours at 37 °C 

with shaking, and collected by pelleting at 3,000 x g for 20 minutes. 

For both the labeled and unlabeled samples, C. elegans were grown as follows: eggs were 

obtained by alkaline bleach synchronization and used to start a 100 mL liquid culture containing 

SLE1 HT115(DE3) E. coli (6.9 x 10
9
 CFU/mL).  Isotope label-incorporated E. coli was used 

exclusively for the C. elegans culture designated for label incorporation.  The nematodes were 

grown at 15 °C until the culture contained primarily gravid adults, at which point eggs were 

obtained by alkaline bleach synchronization.  This pattern was repeated through two more 

generations to ensure adequate incorporation of 
15

N4-
13

C6-arginine and 
15

N2-
13

C6-lysine into the 

nematodes.  Eggs from the fourth generation were grown at 25 °C.  C. elegans containing 
15

N4-

13
C6-arginine and 

15
N2-

13
C6-lysine were harvested on the fourth day.  C. elegans containing 

unlabeled arginine and lysine were harvested on the tenth day.  As with the metabolomics assay, 

on the sixth day the S-medium and bacteria were replaced (see above). 

 

2.3.7 Proteomics Sample Preparation and LC-MS/MS 

Harvesting consisted of pelleting the C. elegans at ~1,100 x g for 4 minutes at room 

temperature, aspirating the supernatant, and then suspending the nematodes in M9 buffer.  The 

C. elegans were washed twice more using this method and then suspended in ~1 mL of 6:4 M9 

buffer/Percoll®.  Living and dead nematodes were separated by carefully layering the C. elegans 

suspension on top of 10 mL of ice-cold 6:4 M9 buffer/Percoll®.  The nematodes were then 

centrifuged at 1,500 x g for 10 minutes at room temperature (living C. elegans pellet to the 

bottom of the solution; dead C. elegans stay suspended at the top).  The supernatant (and dead 
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nematodes) were aspirated, and the resulting pellet was washed twice in 10 mL of M9 buffer 

(~1,100 x g for 4 minutes at room temperature).  The pellet was then snap-frozen in liquid 

nitrogen and ground into a fine powder using a pre-cooled mortar and pestle.  The ground C. 

elegans were suspended in 10 mL of the following buffer: 50 mM ammonium bicarbonate at pH 

8, 2% SDS, 100 mM dithiothreitol, 150 mM NaCl, and 1x Halt™ Protease Inhibitor (from Life 

Technologies).  The slurry was then sonicated on ice using a Heat Systems Ultrasonics W-380 

sonicator (5-second pulses, 50% duty cycle, max power, 12 pulses total).  1 mL samples were 

taken from each group (day 4 and day 10) for assaying total protein (see above; n = 3).  The 

slurries from days 4 and 10 were combined in a 1:1 ratio based on total protein content. 

A protein precipitation was performed on the slurry by the addition of 3 volumes of 1:1 

ethanol:acetone (incubated for 30 minutes at 4 °C, followed by centrifugation at 15,000 x g for 

10 minutes at room temperature).  The supernatant was decanted, and the sample was allowed to 

dry before being suspended in our buffer solution (described above).  A 15 minute water bath 

sonication was performed to aid in solubilization of the precipitated proteins.  The proteins were 

then digested using a filter-aided sample preparation (FASP) kit (from Protein Discovery), 

according to the manufacturer’s instructions.  Five separate digestions were performed, using 

approximately 100 μg of protein per digestion.  The samples were digested with trypsin at a ratio 

of 1:100 w/w trypsin:protein, and incubated overnight at 37 °C.  The resulting eluted peptides 

were de-salted using a vacuum manifold and Supelco Discovery® DSC-18 solid phase extraction 

columns. The de-salted peptides were then dried in a centrifugal vacuum evaporator at 50 °C, 

and suspended in 20 μL of 0.1% formic acid. 

The peptides were pooled and then separated by high performance liquid chromatography 

(HPLC) using a Dionex Ultimate 3000 HPLC system and  a strong cation-exchange (SCX) 
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column loaded with 5 μm 300 angstrom polySULFOETHYL A-SCX material.  Fractions were 

collected once per minute using a 1 hour gradient (5 mM to 500 mM ammonium formate, pH 3 

to pH 6).  Fractions selected for mass spectroscopy (LC-MS/MS) were mixed with 250 μL of 

98% acetonitrile:2% formic acid and again dried using a centrifugal vacuum evaporator at 50 °C.  

The dried peptides were then suspended in 200 μL of 50% acetonitrile: 2% formic acid.  Tandem 

mass spectrometric analysis was then performed using a hybrid linear ion trap-Orbitrap 

instrument (LTQ Orbitrap XL, Thermo). 

 

2.3.8 Analysis 

 Outliers of metabolite spectral counts were removed using the Tukey boxplot method, 

and the remaining counts were range scaled [29].  Statistical significance was determined using 

unpaired two-tailed t-tests between the young and aged groups with a threshold of 0.05.  

Metabolites with p-value greater than the threshold were scored as unchanged.  Principal 

component analysis was performed for the identified metabolites using XLSTAT.  Metabolic 

pathways were assigned to each metabolite by manually searching the KEGG database.  The 

pathway designated as “Metabolic Pathways” (map01100) was excluded since it encompasses 

most other pathway information.  Proteomic results were checked for adequate incorporation of 

the labeled isotopes and RAW files were searched using MaxQuant version 1.4.1.2 (default 

settings) [30] and C. elegans and E. coli Uniprot databases.  Searched parameters included 

modifications of cysteine by carbamidomethylation and methionine oxidation as well as 

modifications corresponding to the weights of incorporated 
15

N4-
13

C6-arginine, 
15

N2-
13

C6-lysine, 

and 
15

N-
13

C5-proline.  Proteomic statistical analysis was performed using Perseus version 1.4.1.3.  

Log2-fold change values were calculated for aged/young (unlabeled/labeled), and centered on a 
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median of zero.  Statistical significance was determined using the Significance B method 

(Benjamini-Hochberg corrected p-value; threshold = 0.05).  Associated KEGG pathways were 

assigned to significantly up- and down-regulated proteins using the STRING database. 

 

2.4 Results 

2.4.1 Metabolomic Analysis of C. elegans Identifies Widespread Metabolite Changes 

with Age 

 One liter liquid cultures of glp-4(bn2) C. elegans were grown at 25 °C.  This strain of C. 

elegans was chosen because it contains a temperature-sensitive mutant allele of glp-4 (abnormal 

germ line proliferation-4), which completely restricts germ cell development when the 

nematodes are cultured 25 °C [31], maintaining the age-synchronized population throughout the 

course of the experiment.  When cultured at 25 °C, adult glp-4(bn2) C. elegans contain ~12 

prophase-arrested germ cell nuclei, as opposed to the 700 – 1000 non-arrested nuclei present in 

wild-type adults.  Temperature is a major factor affecting developmental rate and lifespan in C. 

elegans, and in agreement with published findings we found that growth at 25 °C produced a 

mean liquid culture lifespan of ~10 days (Figure 2.1) [32].  We chose to compare metabolite 

profiles of young adult nematodes at day 4 of their lifespan with aged nematodes at day 10 of 

their lifespan (the mean length of their lifespan).  Our choice of ages was based on a desire to 

select an early time point of measurement that would exclude metabolite changes from larval 

development and a later time point of measurement for investigating metabolite changes from an 

organism near the end of its lifespan, while still guaranteeing enough surviving C. elegans within 

the culture for adequate measurement. 
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The assay of metabolites from these two population pools was performed by gas 

chromatography-mass spectroscopy (GC-MS) and normalized to total protein content.  The assay 

resulted in the successful identification of 186 metabolites within the samples.  The data was 

analyzed by principal component analysis (PCA) to identify major factors affecting the 

distribution of metabolite levels.  When graphed two dimensionally as a plane defined by the two 

largest factors the young and old samples separated along the primary (F1) axis showing that the 

majority of the underlying variation in metabolites levels was attributable to differences in age 

(Figure 2.2A).  When similarly graphed, the individual metabolites showed separation along the 

same age-related axis (Figure 2.2B). 

Log2-fold change values were calculated for each metabolite by comparing metabolite 

levels on day 4 and day 10 and relevant affected pathways were identified by matching 

metabolites to known C. elegans enzymes using the KEGG (Kyoto Encyclopedia of Genes and 

Genomes) database (http://www.genome.jp/kegg/) [33].  Pathways were assigned to a metabolite 

if that pathway contained a known C. elegans enzyme that either produces or consumes the 

metabolite (Table 2.1).   The total observed change for all pathways was calculated as the sum of 

the absolute log2-fold change of each metabolite associated with that pathway (Figure 2.3 and 

Table 2.2).   

 

2.4.2 Altered Amino Acid Pools with Age Reflect Changes in Cell Volume 

 The pathway found to be most changed with age was the biosynthesis of amino acids, 

primarily because of the large degree of overlap within that pathway with other metabolic 

processes, including the pentose phosphate pathway, S-adenosyl methionine metabolism, the 

urea cycle, and the citric acid cycle.  Of the 24 metabolites identified within this pathway, 14 
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were significantly altered with age, including 7 free amino acids.  A total of 11 identified 

metabolites were significantly decreased in older nematodes, also giving this pathway a large 

negative total observed log2-fold change. 

 Changes in the relative concentrations of identified free amino acids, including the two 

aromatic amino acids phenylalanine and tryptophan, which are associated with separate 

pathways, reflect known age-related changes in nematode cell-to-volume ratios.   During larval 

development, the increase in body size greatly outpaces the increase in cell number.  During this 

period, C. elegans body size increases ~32-fold, yet the total cell number increases by only ~3.5-

fold [34, 35].  By adulthood, all 959 somatic cells are postmitotic, but the C. elegans body size 

continues to increase [36].  Growth at this point is accomplished entirely by expanding cells 

volumes, which result in shrinking membrane-surface/cell-volume ratios for individual cells.   

This continuous change in cell surface-to-volume has been found to be associated with a 

specific change in protein content.  In 2009, Swire et al., performed H
1 

NMR on young and old 

C. elegans to assay free amino acid pools and analyzed a previously published transcriptome 

dataset to determine age-related changes in membrane- and cytoplasm-associated genes [37, 38].  

Their conclusion was that cytoplasmic genes showed a large and significant increase in 

expression during larval development compared to membrane-associated genes.  The resulting 

relative increase in cytoplasmic protein production causes an increased incorporation of 

hydrophilic amino acid residues compared to hydrophobic residues, and the cellular supply of 

free amino acids should change to match the demand.  Accordingly, their H
1 

NMR analysis 

revealed a general age-related increase in the hydrophilic/hydrophobic ratio of free amino acids, 

with the extent of increase or decrease of individual amino acids corresponding approximately to 

their hydrophobicity.  We found a similar correlation with the 9 significantly changed free amino 
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acids we identified (Figure 2.4), with a Pearson product-moment correlation coefficient of -0.665 

(p-value = 0.05) using a glycine normalized scale of hydrophobicity [39].  Overall, relatively 

hydrophobic free amino acids tended to decrease in concentration with age, and the few 

hydrophilic free amino acids detected tended to increase in concentration, in accordance with the 

requirements for cells increasing in size. 

 

2.4.3 Purine Metabolite Levels Are Decreased in Older Nematodes 

 Purine metabolite levels showed the largest total decrease in log2-fold change with age 

with adenine, guanine, adenosine, adenosine monophosphate, ribose, ribose 5-phosphate, 

hypoxanthine, and inosine (a nucleoside  consisting of hypoxanthine bound to a ribose sugar) all 

being decreased by day 10.  To validate these results, we chose to further assay hypoxanthine 

concentrations in young (day 5) and old (day 12) wild type N2 C. elegans grown at 20 °C.  The 

selection of our nematode strain and growth conditions, which necessitated the use of 5-fluoro-

2′-deoxyuridine (FUdR) to prevent egg-laying, was intended to expose any strain- or condition-

specific effects present in our measurements.  The administration of FUdR between the L4 and 

adult developmental stages is an alternative method to maintain the age-synchronous population.  

FUdR is a nucleotide analog and an inhibitor of DNA synthesis.  Since only the germ cells are 

mitotically active in adult C. elegans, FUdR selectively restricts germ cell production.  From our 

measurements, we determined that the hypoxanthine concentration decreased ~30% between 

days 5 and 12 (Figure 2.5A), which matched our metabolomics results in the direction of change, 

but with a smaller magnitude.  To determine if purine levels may be limiting lifespan, we 

supplemented hypoxanthine to the culture medium and monitored the lifespan.  As shown in 

Figure 2.6A, 10 mM hypoxanthine supplementation increased lifespan by 18%. 
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Pyrimidine metabolite levels were also largely decreased with age, however the 

nitrogenous base cytosine – the sixth most decreased metabolite overall – was not associated 

with pyrimidine metabolism using our method since C. elegans apparently lacks a cytidine 

phosphorylase enzyme to salvage cytosine bases, so no enzymes are directly associated with 

cytosine in the KEGG database.  If cytosine had been associated with pyrimidine metabolism for 

calculations of total log2-fold change calculations, it would have been the fourth most decreased 

pathway and the fourth most changed pathway overall.  To determine if pyrimidine levels may 

be limiting lifespan, we supplemented cytidine (the ribonucleoside of cytosine) to the culture 

medium.  As shown in Figure 2.6B, 10 mM cytidine increased lifespan by 11%. 

The nitrogenous bases showed a distinct age-related decrease in abundance (Figure 

2.5B).  Uracil, adenine, guanine, and cytosine as well as the nucleoside uridine were each 

decreased in the older C. elegans.  Thymine, a nitrogenous base found in DNA, failed to achieve 

a significant p-value when evaluating young and old metabolite levels (p-value = 0.076), so it 

was scored as unchanged during analysis, but it also appeared to decrease with age (log2-fold 

change = -3.18).  Furthermore, a product of pyrimidine catabolism, specifically dihydrouracil 

catabolism, β-alanine increased with age.  It is unclear if the levels of nitrogenous bases 

decreased with age as a result of (1) decreased de novo synthesis due to decreased S-adenosyl 

methionine (SAM) levels; (2) decreased ingestion due to the sarcopenic pharyngeal pump; (3) an 

increased rate of the nucleotide salvage pathway draining nitrogenous base pools; or (4) a 

decreased rate of RNA and nucleotide degradation, or some combination of these mechanisms.  

Since supplementing back a purine or a pyrimidine to the culture medium extended lifespan 

however, the decreased purine and pyrimidine levels that occur with aging appear to be limiting 

lifespan.  
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2.4.4 S-Adenosyl Methionine and Altered Lipid Content 

 Four metabolites were identified as part of cysteine and methionine metabolism and all of 

these decreased in abundance with age.  Of these, three were found to be directly associated with 

the SAM cycle; specifically, L-methionine and L-homocysteine, and the downstream product 5-

methylthioadenosine.  SAM is the universal methyl donor in eukaryotic cells, and it is capable of 

acting as a cofactor in the transfer of methyl groups to DNA, RNA, proteins, and lipids [40].  

SAM is an important part of phospholipid metabolism, and is used during the synthesis of 

phosphatidylcholine (PC), which is a major component of cell membranes [41].  In bacteria, 

fungi, and mammals, PC is synthesized from choline by the de novo choline pathway, also 

known as the Kennedy pathway [42-44].  Yeast and mammalian liver cells use the CDP-

diacylglycerol pathway, which begins with the conversion of phosphatidylserine into 

phosphatidylethanolamine (PE), and uses SAM to sequentially methylate the molecule into PC 

[45, 46].  Plasmodium falciparum (one of the species of Plasmodium that cause malaria) and C. 

elegans have been shown to utilize an alternative method of PC synthesis, known as the 

phosphomethylethanolamine N-methyltransferase (PEAMT) pathway, which begins with the 

conversion of serine to phosphoethanolamine [47-49].  C. elegans then use two 

phosphomethylethanolamine N-methyltransferase enzymes, PMT-1 and PMT-2, to sequentially 

methylate phosphoethanolamine into phosphocholine, which then enters the Kennedy pathway to 

yield PC. 

 Lipid droplets (LDs) have been identified within cells of a wide range of species, 

including humans.  In general, LDs consist of a hydrophobic core composed of cholesterol esters 

and triacylglycerols, surrounded by a phospholipid monolayer that is primarily made of PC and 
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PE [50].  The LD PC phospholipid monolayer appears to act as a surfactant that prevents LDs 

from coalescing, and the knockdown of genes involved in PC synthesis has been shown to 

produce larger LDs [51].  Knockdown of either C. elegans pmt-1 or S-adenosyl methionine 

synthetase (sams-1), which uses ATP and L-methionine to produce SAM, leads to decreased 

production of PC and increased LD size [52, 53].  Furthermore, the resulting enlargement of C. 

elegans LDs was found to be associated with impaired reduction of LD size during starvation, 

presumably due to hindered accessibility of triacylglyceride-hydrolyzing lipases given the 

changed surface-to-volume ratio of the droplets [53].  Large LDs have been shown to accumulate 

in C. elegans as they age [2], and their ectopic accumulation has been theorized to contribute to 

the age-related dysfunction in the nematode [54]. 

 We found a decrease in monoacylglycerols with age and a concurrent increase in free 

fatty acids in older nematodes (Figure 2.7 and Table 2.3).  We also found an increased level of 

glycerol in the older nematodes (log2-fold change = 1.948; p-value = 0.017) and a dramatic 

increase in the level of the ketone body β-hydroxybutyrate (log2-fold change = 7.370; p-value = 

0.003), which can form from excess acetyl-CoA under conditions of either fatty acid breakdown 

(β-oxidation) or fatty acid synthesis.  Interestingly, citrate was also increased in older nematodes 

(log2-fold change = 1.973; p-value = 0.0003).  Mitochondrially derived citrate is exported into 

the cytoplasm and converted into acetyl-CoA by the enzyme ATP citrate lyase [55], which can 

then either be used for fatty acid synthesis or ketone body production.  The increased levels of 

free fatty acids in the aged nematodes could be partially due to a decreased rate of fatty acid β-

oxidation resulting from mitochondrial dysfunction, in addition to any increased rate of 

hydrolysis from monoacylglycerols. 
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2.4.5 D-sorbitol Increases in Aged C. elegans 

 Strikingly, fructose and mannose metabolism was identified as one of the most changed 

pathways solely due to an increase in a single age-related metabolite – sorbitol (log2-fold change 

= 8.316; p-value = 0.001).  Sorbitol is produced from glucose by aldose reductase (AR) in 

response to elevated glucose levels [56-58], and both increased sorbitol levels and increased AR 

activity have been associated with diabetes in multiple species and tissues [59-61].  Sorbitol is 

strongly hydrophilic, does not readily cross cell membranes, and under conditions of high 

glucose availability, such as diabetes, it may possibly accumulate to an adequate concentration to 

cause osmotic stress [56].  AR also uses reduced nicotinamide adenine dinucleotide phosphate 

(NADPH) as a cofactor, and increased metabolic flux through AR has been identified as a 

possible source of lowered cellular levels of NADPH [58, 62].  Additionally, sorbitol is 

converted to fructose by sorbitol dehydrogenase, which uses reduced nicotinamide adenine 

dinucleotide (NAD
+
) as a cofactor, and excess metabolic flux through sorbitol dehydrogenase 

has been associated with a lowered NAD
+
 level [63, 64].  Taken together, the activities of AR 

and sorbitol dehydrogenase (collectively known as the polyol pathway) may affect intracellular 

redox state though changes in NAD(P)
+
/NAD(P)H ratios.  Given that cellular redox state is a 

factor in protecting against oxidative stress, some evidence links the diabetic flux of glucose 

through the polyol pathway with diminished levels of the reduced antioxidants glutathione and 

ascorbate [65-68], increased lipid peroxidation, nitrosative stress [67, 68], and DNA damage as 

identified through the activation of poly(ADP-ribose) polymerase [68].  Other sugars upregulated 

with age included glucose, galactose, and sucrose as well as glucose-6-phosphate, suggesting 

that glycolysis could be impaired in the older worms.  To validate the observed increase in D-

sorbitol levels, and to investigate whether the effect was strain or condition specific, we chose to 
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assay D-sorbitol levels using the same conditions as stated above for the assay of hypoxanthine 

(wild-type N2 C. elegans grown at 20 °C).  Under these conditions, we found a significant 

~360% increase in D-sorbitol levels from day 5 to day 12 (Figure 2.8A).   

 

2.4.6 Altered Ascorbate Metabolism and Redox Imbalance with Age 

We were able to use some of the identified metabolite levels to estimate a general age-

related change in redox state.  Ascorbic acid (vitamin C) is capable of behaving as an antioxidant 

in a cellular environment [69-71].  In its fully oxidized form as dehydroascorbic acid (DHA), it 

can be reduced by glutathione back to ascorbate, thus making the ratio of DHA to ascorbate an 

indicator of the available glutathione pool and the general cellular redox state [72].  Figure 2.8B 

shows a shift from reduced ascorbate to oxidized DHA in older C. elegans, with the ratio of 

DHA/ascorbate increasing 7.65 fold (log2-fold change = 2.935; p-value = 0.0243).  Furthermore, 

both erythronic acid (EA) and N-acetylglucosamine (NAG) were identified among the 

metabolites of young and old C. elegans.  NAG is a peptidoglycan monomer and a component of 

chitin and hyaluronic acid.  When oxidized, NAG has been found to degrade into EA [73].  

Figure 2.8B shows an increase in the ratio of EA to NAG in older nematodes.  The EA/NAG 

ratio showed a dramatic ~17-fold change from day 4 to day 10 (log2-fold change = 4.122; p-

value<0.0001). 

The metabolite that decreased in abundance to the greatest extent with age was galactonic 

acid-1,4-lactone, which in plants is the direct precursor of ascorbate in the ascorbate biosynthesis 

pathway.  However, it is unknown if C. elegans can convert galactonic acid-1,4-lactone into 

ascorbate as bioinformatic analysis did not detect an L-galactonic acid-1,4-lactone 

dehydrogenase in the C. elegans genome [74], but invertebrates may have evolved a unique, as 
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of yet unidentified enzyme to catalyze this reaction.  In support of this hypothesis C. elegans has 

been shown to synthesize both ascorbate and an unidentified hydrogenated lactone precursor to 

ascorbate, but the ascorbate synthesis pathway appears to be different from the pathways present 

in animals, plants, or protists, while ascorbate is not synthesized by E. coli [74].  In C. elegans 

ascorbate levels were highest in eggs, levels declined throughout larval growth, and were lowest 

in mixed age adults.  In addition ascorbate levels were higher when worms were grown in liquid 

media compared to when they were cultured on agar plates, but ascorbate levels did not increase 

when worms were exposed to the free radical generator paraquat [74].  We predict that the 

decreased level of galactonic acid-1,4-lactone with age is partially due to its conversion into 

ascorbate, as we measured ascorbate and DHA levels to increase during aging.  However, 

identification of a novel enzyme in C. elegans with galactonic acid-1,4-lactone dehydrogenase 

activity is needed to confirm this hypothesis.     

Neither NAD
+
 nor NADH were identified in our metabolomics screen, but we were able 

to use the ratio of pyruvate to lactate as an estimator of relative NAD
+
 and NADH 

concentrations, respectively, as the cellular levels of these metabolites are held in equilibrium by 

the activity of lactate dehydrogenase [75].  Figure 2.8B also shows this, with the ratio of 

NAD
+
/NADH decreasing approximately 69% from day 4 to day 10 (log2-fold change = -1.672; 

p-value < 0.0001).  While our results are only an estimate, a similar age-related decrease in 

NAD
+
/NADH ratio has been observed in aging Wistar rats [76], and the NAD

+
 level was found 

to be negatively correlated with age in human brain [77] and pelvic skin samples [78]. The 

decreased NAD
+
/NADH could slow glycolysis, mitochondrial fatty acid β-oxidation, and citric 

acid cycle function possibly explaining some of the metabolite level changes observed with age.  

We attempted to estimate the relative cellular ratios of NADP
+
/NADPH using identified levels of 
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pyruvate and malate, respectively, based on the activity of NADP-malic enzyme [79].  The 

resulting day 4 and day 10 ratios showed a decline, but the result lacked statistical significance 

(p-value = 0.1417). 

 

2.4.7 Proteomic Investigation 

 To supplement our metabolomic analysis of young vs. aged C. elegans, we performed a 

global mass spectroscopy-based proteomic investigation under similar conditions (day 4 and day 

10 liquid cultures of glp-4(bn2) C. elegans grown at 25 °C).  To increase our capability for 

quantitation, we chose to follow the general 
15

N-
13

C stable isotope labeling strategy outlined by 

Larance et al. [26].  In short, we grew a lysine- and arginine-auxotrophic strain of E. coli (SLE1 

HT115) in minimal media supplemented with 
15

N4-
13

C6-arginine (heavy arginine) and 
15

N2-
13

C6-

lysine (heavy lysine).  Three successive generations of glp-4(bn2) C. elegans were fed the heavy 

labeled bacteria, in order to ensure complete incorporation of the heavy isotopes into the 

nematodes.  A potential complication with labeling using this approach is that orn-1 (ornithine 

transaminase 1), which is one of the enzymes of the urea cycle, is capable of converting arginine 

into proline.  To prevent the accumulation of heavy-labeled proline from confounding the 

subsequent analysis, we fed C. elegans SLE1 E. coli expressing dsRNA targeting orn-1.  

Samples for mass spectroscopy were taken from the fourth generation of heavy isotope-labeled 

glp-4(bn2) C. elegans, grown to day 4 (young sample) in liquid culture at 25 °C.  The older 

sample was taken from a similar RNAi-treated culture grown to day 10, but lacking the heavy 

isotopes.  Following high performance liquid chromatography (HPLC)-mass spectroscopy of the 

samples and data analysis a total of 1,937 proteins were identified as present in both age groups. 
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After centering the median of the old/young log2-fold change, a total of 54 proteins were 

determined to be significantly increased or decreased in abundance in the aged sample (Figure 

2.9 and Table 2.4).  To help identify relevant connections to the metabolomics data set, we used 

the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) online database 

(http://www.string-db.org/) to match significant proteins to KEGG database metabolites [80].  

We then calculated the total observed change for each pathway as the sum of the absolute log2-

fold change of each identified protein within that pathway (Figure 2.10 and Table 2.5). 

 

2.4.8 Changes Associated with Histone Methylation and Acetylation with Age 

 In agreement with the observed changes in methionine cycle metabolites, the level of 

SAMS-1, which catalyzes the synthesis of SAM from ATP and L-methionine, was found to be 

decreased in aged nematodes (log2-fold change = -1.837; p-value = 1.8 x 10
-5

).  Since the levels 

of both substrates for SAMS-1, L-methionine and ATP also decline dramatically with age, it is 

likely that SAM levels decrease dramatically with age, although we did not detect SAM in our 

metabolomics analysis.  In addition, the level of PRMT-3 (protein arginine methyltransferase 3) 

was dramatically decreased with age (log2-fold change = -7.636; p-value = 1.8 x 10
-20

).  This 

protein possesses SAM-specific monomethyltransferase activity and is capable of transferring a 

methyl group from SAM onto arginine residues present in histone proteins [81].  Evidence 

indicates that C. elegans lack methylated DNA, suggesting that methylation events primarily 

modulate gene expression through histone modification [82]. 

 Histone deacetylases are enzymes that remove acetyl groups from lysine residues within 

core histones.  C. elegans histone deacetylase-1 (HDA-1), which is orthologous to human 

HDAC-1, affects gene expression during larval development in many tissues including neurons, 
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muscles, hypodermis, intestines, and the extracellular matrix.  Among its many genetic targets, 

HDA-1 appears to be a strong repressor of the cysteine protease inhibitor CPI-1 expression 

(homologous to human cystatin D), and RNAi knockdown of HDA-1 leads to an 8.5-fold 

increase in CPI-1 levels [83].  We found a ~6.4-fold (2.67 log2-fold) increase in CPI-1 levels 

with age, along with a similar increase in several genes known to have a high confidence of co-

expression with CPI-1 (correlation > 0.7; STRING database), including C53B7.2, Y62H9A.6, 

CPG-1, and TTR-51.  Interestingly, a bacterial ortholog of TTR-51 was shown to play a role in 

the degradation of uric acid to allantoin as a part of purine catabolism [84].  Furthermore, we 

recently found β-hydroxybutyrate (βHB) to inhibit class I histone deacetylases to extend lifespan 

in C. elegans, and it is possible that the endogenous increase of βHB observed in older 

nematodes  inhibits HDA-1 to induce this effect [24], although the level of -hydroxybutyrate, 

another endogenous histone deacetylase inhibitor [85], declined with age. 

 

2.4.9 Poly(ADP-ribose) Polymerase Levels Decrease with Age 

The C. elegans poly(ADP-ribose) polymerase PME-1 decreased in abundance with age 

(log2-fold change = -5.991; p-value = 2.9 x 10
-13

) (Table 2.4).  C. elegans PME-1 is orthologous 

to human PARP1, which functions to detect DNA single-strand breaks and signals to proteins 

responsible for single-strand break repair [86, 87].  As part of this process, PME-1/PARP-1 uses 

NAD
+
 to attach ADP-ribose monomers to target proteins, forming chains of poly(ADP-ribose).  

Under conditions of genotoxic stress, PME-1/PARP-1 can significantly reduce cellular NAD
+
 

reserves [87].  Deletion of PARP-1 in mice has been shown to elevate NAD
+
 levels of brown 

adipose tissue and muscle leading to aerobic respiration and increased SIRT1 activity [88].  The 
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evidence for both a lowered abundance of PME-1 and a lowered NAD
+
/NADH ratio in the aged 

C. elegans suggests that PME-1 may be down-regulated with age to conserve NAD
+
 levels. 

   

2.4.10 Decreased Levels of Enzymes Involved in Fatty Acid Synthesis and 

Breakdown with Age 

 Three key enzymes involved in fatty acid metabolism showed decreased abundance in 

aged C. elegans, cytosolic NADP
+
-dependent isocitrate dehydrogenase, an acyl-CoA 

dehydrogenase, and a putative ER carboxylesterase (Table 2.4).  The enzyme IDH-1 (isocitrate 

dehydrogenase-1) is homologous to human IDH1 and functions in the cytoplasm to convert 

isocitrate into α-ketoglutarate, reducing an NADP
+
 cofactor to NADPH in the process.  We 

found decreased abundance of IDH-1 in older C. elegans (log2-fold change = -2.349; p-value = 

6.8 x 10
-8

), which may account for the increased citrate level found in the aged worms.  

Cytosolic aconitase is a regulator of fatty acid synthesis and is capable of converting citrate into 

isocitrate, which would otherwise be available for entering the fatty acid synthesis pathway 

through the activity of ATP citrate lyase [89]. 

The C. elegans enzyme ACDH-13 (acyl CoA dehydrogenase 13) is one member of a 

family of long-chain-acyl-CoA dehydrogenase enzymes identified to function in the first steps of 

mitochondrial fatty acid β-oxidation.  These enzymes act to form a trans double-bond in fatty 

acids, reducing the cofactor flavin adenine dinucleotide (FAD
+
) in the process.  Our observed 

age-related decrease in ACDH-13 abundance (log2-fold change = -4.318; p-value = 1.75 x 10
-5

) 

may play a role in the increased levels of free fatty acids found in aged C. elegans.  Interestingly, 

ACDH-13 is homologous to human acyl-CoA dehydrogenase 9 (ACAD9; BLAST e-value = 

8.9e
-28

; % length = 69.7%).  ACAD9 has been determined to be necessary for proper assembly of 
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the mitochondrial electron transport chain complex I, although no such role has yet been 

investigated or identified in C. elegans [90]. 

C. elegans C23H4.3 encodes an ortholog of human carboxylesterase-2, which is known 

to play an important role in xenobiotic metabolism, such as catalyzing the breakdown of amide 

and ester containing drugs.  However, carboxylesterase-2 also plays an important role in lipid 

metabolism by hydrolyzing long-chain fatty acid esters and thioesters. C23H4.3 levels decreased 

with age (log2-fold change = -4.487; p-value = 1.37 x 10
-5

), so this enzyme does not likely play a 

role in the aging-induced increase in free fatty acids levels. 

With aging, we also found decreased abundance of the RME-2 protein that functions as a 

yolk receptor on oocytes [91].  Yolk is present in C. elegans as vitellogenin lipoprotein particles 

that carry high levels of cholesterol and other lipids [54]. Yolk is produced in the intestine and 

must be carried across the body cavity to the gonad, where it binds and provides nourishment for 

developing oocytes [92].  Following the reproductive period, yolk levels increase and become 

distributed throughout the body [54], releasing fatty acids and other lipids that may damage 

tissues contributing to aging-induced physiological dysfunction.  The decreased abundance of 

RME-2 in the gonad with age likely facilitates the non-specific distribution of lipid to other 

locations resulting in lipotoxicity. 

 

2.4.11 Evidence for Muscle Dysfunction and Altered Ca
2+

 Homeostasis with Aging 

 Five distinct proteins known to be involved in muscle function were present at a lower 

abundance in aged nematodes in our analysis; SCA-1 (sarco-endoplasmic reticulum calcium 

ATPase 1, or SERCA), NRA-2 (nicotinic receptor associated protein 2), MLP-1 (muscle LIM 

protein 1), MLC-2 (myosin regulatory light chain 2), and AIPL-1 (actin interacting protein 1-like 
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protein 1) (Table 2.4).  The C. elegans protein SCA-1 is orthologous to the human SERCA 

protein ATP2A1, which utilizes the hydrolysis of ATP to pump cytosolic Ca
2+

 into the lumen of 

the sarcoplasmic reticulum in cardiac and slow twitch skeletal muscle [93, 94].  In C. elegans, 

SCA-1 is expressed in all major muscle types, including body wall, pharyngeal, and uterine 

muscle [95].  Reduction of SERCA function is associated with muscle dysfunction, and 

SERCA2 heterozygous mutant mice display deficits of muscle relaxation as a consequence of 

reduced rates of sarcoplasmic Ca
2+

 sequestration [96].  Another protein involved in Ca
2+

 

signaling, CAL-4, one of five C. elegans calmodulin homologs, was increased in abundance with 

age.  It is possible that this could occur in response to increased cytoplasmic Ca
2+

 levels resulting 

from lower SCA-1 activity. 

The C. elegans gene NRA-2 (ortholog of human nicalin) encodes a transmembrane 

endoplasmic reticulum protein that functions as a molecular chaperone [97]. It contains an EF-

hand motif, so it is likely regulated by changes in Ca
2+

 levels.  Expression of NRA-2 occurs 

largely in neurons, body wall muscle, and pharyngeal muscle, where it helps regulate 

acetylcholine receptor subunit composition, and RNAi knockdown of NRA-2 expression has 

been shown to sensitize C. elegans touch receptor neurons to Ca
2+

-mediated necrotic cell death 

[98].  The next protein decreased in abundance MLP-1 is a LIM domain-containing cysteine-rich 

protein (CRP) expressed in a wide range of cell types in both larva and adults (including 

intestine, spermatheca, gonad sheath, hypodermis, body wall muscle, pharynx, and neurons) [99, 

100].  In humans, the homologous CSRP (cysteine and glycine-rich protein) family of proteins is 

expressed in cardiac and skeletal muscle, and predominantly localizes to cardiac Z disc structures 

[101-103].  Abnormal expression of CSRP has been linked to cardiomyopathy and heart failure 

in patients [104], and mice with deficient CSRP function exhibit progressive enlargement of 
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cardiac chambers, thinning of the ventricular walls, and defects in sarcoplasmic reticulum Ca
2+

 

storage [101, 105, 106]. 

MLC-2 is expressed in body wall, vulval, and pharyngeal muscles and together with 

MLC-1 and MLC-4 make up the three C. elegans regulatory myosin light chains.  These proteins 

function as regulators of myosin ATPase activity [107].  In the pharyngeal muscles, MLC-2 is 

essential for proper muscle function, with 90% of MLC-2 mutants arresting at the L1 larval stage 

due to pharyngeal defects.  Therefore the decreased levels of MLC-2 that occur with age may 

contribute to pharyngeal sarcopenia.  AIPL-1 is a WD40 repeat-containing protein homologous 

to UNC-78 and functions with UNC-60B/ADF/cofilin to regulate the ordered assembly of actin 

in muscle myofibrils necessary for proper larval development, but its expression was reported to 

diminish in adulthood [108] as we have confirmed here by measuring protein level changes. 

 

2.4.12 Changes in RNA Metabolism and Translation with Age 

  From the proteomics data the pathway with the largest total observed changes with age 

was RNA degradation (Figure 2.10 and Table 2.5), which is the result of the cumulative 

observed lower abundance of XRN-2 (5’-3’ exoribonuclease 2 homolog) and PAB-2 (poly(A) 

binding protein 2) (Table 2.4).  The exonuclease XRN-2 is involved in transcription termination, 

where it is capable of dislodging RNA polymerase II from DNA following its binding to 5’-

uncapped RNA and degrading the RNA until it reaches the polymerase [109].  Furthermore, 

XRN-2 also degrades mature microRNAs regulating their cellular levels, and the activity of 

XRN-2 is necessary for proper larval molting and reproduction [54, 110, 111].  Expression of 

xrn-2 is ubiquitous and continues past the larval stages into adulthood.  The decreased levels of 

XRN-2 in aged nematodes may prevent efficient transcription termination and/or RNA 
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degradation resulting in decreased levels of nucleotides and nucleotide degradation products 

such as nitrogenous bases, possibly explaining the depleted nitrogenous base levels measured in 

the metabolome analysis. 

Most eukaryotic mRNAs of nuclear origin, including microRNAs, possess poly(A) tails, 

which consist of a series of adenosine nucleotides up to ~300 bases in length.  Poly(A) binding 

proteins, such as PAB-2, bind along the length of this polyadenylated mRNA region and serve to 

regulate translation through both their interaction with the 5’-cap eukaryotic initiation factor 

complex eIF4F and their recruitment of the 40S and 60S ribosomal subunits [104].  Furthermore, 

depletion of the human poly(A) binding protein PABP decreases mRNA translation in vitro, 

suggesting that the decreased abundance of PAB-2 with age may decrease protein synthesis, 

perhaps in response to the reduced capacity of the protein-folding chaperone systems in aged 

worms.   

The proteins ZK512.2 (a probable ATP-dependent DEAD-box RNA helicase DDX55 

homolog) and RSP-6 (splicing factor, arginine/serine-rich protein 6) were identified as being 

present at a significantly lower abundance with age (Table 2.4).  C. elegans RSP-6 is a splicing 

factor that contributes to nuclear pre-mRNA processing [106, 110, 111].  However, not much is 

known regarding the function of ZK512.2, but if its predicted function as an ATP-dependent 

RNA helicase holds, it may play a role in pre-mRNA splicing or the initiation of translation.  The 

C. elegans 60S ribosomal subunit L11 (RPL-11.2) and the 40S ribosomal subunit (RPS-26) as 

well as DPH-2 (diphthamide biosynthesis protein 2) were observed to be down-regulated with 

age.  Diphthamide is a non-standard amino acid found exclusively in translation elongation 

factor 2 (eEF2).  The conversion of L-histidine to diphthamide, in which DPH-2 participates, 
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requires four SAM molecules and the transfer of three methyl groups, thus representing a direct 

link between protein translation and SAM [105].   

The proteomics data also suggest that translation of mitochondrial DNA-encoded 

components of oxidative phosphorylation may be compromised in aged nematodes because there 

was a decreased abundance of PUS-1, pseudouridine synthase (Table 2.4).  PUS-1 is responsible 

for post-transcriptional modifications of mitochondrial and cytoplasmic tRNA essential for 

translation.  Humans with PUS-1 mutations have mitochondrial myopathy and sideroblastic 

anemia (MLASA) [112]. 

 

2.4.13 Aging Decreased the Abundance of RPN-3, a Regulator of Proteasome 

Function 

 The RPN-3 protein was found to be present at lower levels in aged nematodes (Table 

2.4).  Proper RPN-3 levels are critical for proteasome function as either overexpression or 

deletion of rpn-3 disrupted the function of the proteasome [113].  Irisflorentin, an isoflavone 

isolated from the roots of the traditional Chinese herbal, Belamcanda chinensis, was shown to 

specifically upregulate rpn-3 expression, which directly increased the chymotrypsin-like activity 

of the proteasome [114].  The increased proteasome activity led to decreased α-synuclein 

accumulation and toxicity in a nematode model of Parkinson’s disease. 

 

2.5 Discussion 

 The metabolomics results indicate that aged C. elegans contain decreased levels of 

specific purine and pyrimidine metabolites, altered free amino acid pools (attributable to a 

decrease in the cell surface-to-volume ratio), altered S-adenosyl methionine metabolism, 
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increased sorbitol content, increased free fatty acid levels, and a shift in cellular redox balance 

toward oxidation.  Proteomic analysis of C. elegans showed age-related decreases in the levels of 

the protein arginine methyltransferase protein PRMT-3, and a poly(ADP-ribose) polymerase 

PME-1, decreased abundance of muscle proteins including SCA-1, the C. elegans SERCA 

homolog, suggesting muscle dysfunction.  There was also decreased abundance of proteins 

involved in transcription termination, RNA stability, proteasomal function, and protein synthesis, 

as well as those involved in the regulation of fatty acid synthesis and breakdown.  These two data 

sets yield important clues regarding the molecular mechanisms of aging-induced physiological 

dysfunction. 

 Several groups have investigated C. elegans metabolite and protein abundance changes 

with age.  Liang et al. performed a mass spectrometry-based proteomic analysis with isotopically 

labeled protein samples using the iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) 

technique to study young, middle-aged, and aged N2 C. elegans grown at 20 °C (approximately 

days 3.5, 9, and 14 counting from the first day of culture) [115].  For a comparison, the mean 

lifespan of C. elegans grown at 25 °C, as was done in this report, is approximately 9-10 days, 

whereas the mean wild-type lifespan at 20 °C lies somewhere between 14 and 21 days with a 

large degree of variability.  Still, there was a large degree of overlap between our results and 

those using the iTRAQ approach.  Liang et al. identified a decrease in ribosomal proteins, 

poly(A) binding protein (PAB-1), myosin-related proteins, and fatty acid synthesis and 

degradation associated proteins (fatty acid CoA synthetase 2 and acyl CoA dehydrogenase 1) in 

aged nematodes.  Furthermore, Pontoizeau et al. performed an NMR-based metabolomic study 

of C. elegans subjected to dietary restriction (a consistent method for extending lifespan in 

model organisms) and found that the phosphocholine level was significantly lowered by the DR 
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condition [116].  High phosphocholine levels were also found to be associated with shorter C. 

elegans lifespan.  Similarly, high vitamin B12 (cobalamin) and folate levels have been found to 

shorten C. elegans lifespan [117, 118].  Notably, both dietary vitamin B12 and folate are 

required for the synthesis of tetrahydrofolate, which is a necessary part of the metabolic cycle 

that produces SAM. 

 Phenotypically, C. elegans aging is defined by sarcopenia (loss of muscle mass and 

function) [1], the accumulation of ectopic fat as yolk lipoprotein production continues beyond 

the cessation of egg production [2], and a dramatic collapse of aerobic respiration and ATP 

content as enlarged dysfunctional mitochondria accumulate within cells [3].  Free fatty acid 

accumulation outside of adipocytes has been associated with ER stress [119], insulin resistance 

[120, 121], and cardiomyopathy [122, 123].  Evidence suggests that the accumulation of fatty 

acids as triglycerides sequestered within LDs acts as a preventative measure against lipotoxicity 

[54, 119, 124].  Deficiencies in SAM lead to decreased PC levels and enlarged LDs. These 

enlarged LDs sequester fatty acids and likely protect against lipotoxicity extending C. elegans 

lifespan.  However, decreased PC levels are not a prerequisite for enlarged LDs or an extended 

lifespan as several long-lived C. elegans strains have enlarged LDs with increased PC:PE ratios 

[125].  However, increased PE levels have been linked with longevity as well [126], so the 

specific subcellular localization of these phospholipids may likely control their effects on 

lifespan.   

We also found an aging-related decline in the C. elegans homolog of phospholipase D3, 

an ER membrane protein that hydrolyzes PC into choline and phosphatidic acid. This enzyme 

may be down-regulated with age to preserve PC levels to decrease LD size and increase LD 

surface area so lipases can better remove fatty acids for energy production when pharyngeal 
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pumping slows and energy substrate levels decline.  Alternatively, decreased phospholipase D3 

activity could be functioning to decrease TOR function, protein synthesis, and proteotoxicity in 

aged worms, as TOR requires a bound phosphatidic acid for optimal activity [127].  

Furthermore, phospholipase D3 activity has been shown to protect against amyloid-β production 

in Alzheimer’s disease brain [128].  A meta-analysis of metabolomics data from several long-

lived C. elegans mutants found alterations in PC and niacin levels as a common theme [129].  

Additionally, PC accounts for about one-third of the phospholipids in the mitochondrial inner 

membrane.  Research is lacking regarding a direct relationship between PC levels and 

mitochondrial size, but it would be interesting to determine if the same dynamics of surface-to-

volume ratio that result in larger LDs when PC is low would also contribute to the accumulation 

of enlarged mitochondria that might become damaged and resist degradation through the 

autophagosomal/lysosomal pathway to produce high amounts of reactive oxygen species 

contributing to the aging process. 

 The connection between aging-induced changes in lipid metabolism and ER stress is also 

especially pertinent.  The ER stress response declines with age, which may contribute to the 

aging process and the development of aging-related disease [130].  The ER stress response is 

normally activated under conditions of increased protein misfolding, but it can also be induced 

by decreased PC levels in the ER induced by sams-1 RNAi [131].  Part of the ER stress response 

is a down-regulation of protein synthesis, which gradually decreases the total protein content of 

the ER, increasing the number of free chaperones.  Accordingly, the down-regulation in the 

activity of the translation machinery that is consistently observed in aged C. elegans [132] may 

be partially induced by an aging-related decline in SAMS-1 level, which decreases PC levels in 
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the ER, which induces ER stress and the ER stress response pathway to slow the rate of protein 

synthesis. 

 The finding by Liang et al. of an age-related decrease in the levels of myosin-related 

proteins, as well as our identification of protein changes associated with decreased muscle 

function seem to fit with the observations of sarcopenia in aged C. elegans.  In addition to body 

wall muscle, the C. elegans pharyngeal pump is greatly affected by sarcopenia.  In C. elegans, 

food is consumed through the rhythmic contraction of a set of 20 muscle cells and 20 neuronal 

cells, termed the pharyngeal pump located between the mouth and the start of the intestine.  As 

C. elegans age, the pumping rate gradually slows, and bacteria will often form a plug within the 

structure, blocking the passage of food to the intestine.  The muscle cells of the pharyngeal pump 

also lose their shape and organization and by late in the C. elegans lifespan the loss of structure 

and function can be rather extreme [133].  The most common C. elegans model of dietary 

restriction is the eat-2 mutant, which has slowed pharyngeal pumping resulting in a reduced rate 

of food intake [134].  Dietary restriction appears to work partially through the inhibition of 

SAMS-1, which down-regulates the expression of the eIF4H gene drr-2 [135], and RNAi 

knockdown of SAMS-1 fails to further extend the lifespan of eat-2 mutants [136].  Given that 

vitamin B12 and folate are both necessary for SAM metabolism and are both obtained by C. 

elegans only through diet, loss of pharyngeal pump function in aged C. elegans likely results in a 

late-life dietary restriction phenotype.  This sarcopenia-induced dietary restriction in aged worms 

likely contributes to lowering SAM and PC levels, and increasing the size of LDs in intestine, 

hypodermis, and muscle [2, 137].  LDs are known to increase in size in aged human muscle as 

well, perhaps in response to increased fatty acid levels from decreased mitochondrial β-oxidation 
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rates due to electron transport chain dysfunction [138]. It will be interesting to determine if 

similar mechanisms exist to regulate LD size in humans and nematodes.  

 The age-related decrease in monoacylglycerols and increase in free fatty acids and the 

ketone body βHB have at least two possible non-exclusive explanations.  First, the increase in 

free fatty acids and βHB may be the byproduct of increased LD-directed autophagy, up-regulated 

either as a mechanism for dealing with increased LD accumulation, or as an attempt to meet 

energy demands under conditions of dietary restriction.  Or second, an up-regulation of fatty acid 

synthesis may result in an increased conversion of citrate into acetyl-CoA (a fatty acid 

precursor), which is converted into βHB when present in excess, and the increased citrate levels 

observed in older C. elegans may be indicative of this.  The enzyme aconitase can divert 

metabolism away from fatty acid synthesis by converting citrate into isocitrate, which is then 

converted into α-ketoglutarate by isocitrate dehydrogenase.  Notably, mitochondrial aconitase is 

highly susceptible to impairment by reactive oxygen species (ROS) [139, 140].  Increases in 

ROS production or decreased antioxidant capacity within mitochondria could lead to an increase 

in mitochondrial citrate, which would then be exported to the cytoplasm and made available for 

fatty acid synthesis.  Furthermore, the decreased abundance in IDH-1 levels that we observed 

would help to promote the use of cytosolic citrate for fatty acid synthesis, since the alternate 

conversion of citrate to isocitrate and α-ketoglutarate would be restricted. However, fatty acid 

synthesis relies on NADPH, which may be in short supply when IDH-1 protein levels decline 

with age.  We also previously reported that the dietary supplementation of citrate to C. elegans 

produced ER stress [25]. 

 The mechanisms behind the findings of decreased abundance of the poly(ADP-ribose) 

polymerase PME-1 with aging are unknown.  There are six members of the PME family of C. 
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elegans poly(ADP-ribose) polymerases.  Our proteomic analysis only identified two of these 

proteins, the second of which (PME-5) was unchanged with age, but interestingly poly(ADP-

ribosylation) capacity in PBMCs declines with age in humans and rodents [141].  In addition 

poly(ADP-ribosylation) capacity was shown to be directly proportional to lifespan when 

comparing 13 species [142] and also very high in human centenarians [143].  This is likely due 

to the important role that poly(ADP-ribose) polymerases play in genomic stability, but it could 

also be due to the important role they play in regulating chromatin structure [144]. 

The increased level of sorbitol with aging is striking in that its accumulation, along with 

increased flux through the polyol pathway, is associated with diabetes [56, 59-61].  Sorbitol is 

likely formed as a result of increased glucose levels when glycolysis is slowed due to low NAD
+
 

levels or possibly due to oxidative damage to glycolytic enzymes such as GAPDH [145] or 

enolase [146].  The low NAD
+
 levels in aged cells would likely slow the conversion of sorbitol 

to fructose and re-entry into glycolysis, leading to sorbitol build up.  As mentioned previously, 

ectopic fat and lipotoxicity have been associated with the onset of insulin resistance [120, 121], 

suggesting that the observed alterations in fat metabolism and the accumulation of sorbitol may 

be linked.  However, in some yeasts and fungi, as well as in mammalian kidney cells, sorbitol 

has been identified as an osmolyte for adjusting the intracellular environment to osmotic stress 

[147-149].  The age-related increase in sorbitol may be a cellular strategy for combating water 

loss, or simply to balance the dilution of cellular contents that would occur as C. elegans increase 

their volume as the animal grows in size. 
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2.6 Conclusions 

  We observed an age-related change in fatty acid metabolism, a decreased abundance of 

proteins involved in protein synthesis as well as decreases in the levels of many purine and 

pyrimidine metabolites, changes in free amino acids likely associated with the decreased surface-

to-volume ratio of aged C. elegans cells, signs of muscle dysfunction and altered SR Ca
2+

 

homeostasis, decreased abundance of SAMS-1 and altered SAM metabolism, indicators of a 

redox shift toward an oxidizing cellular environment likely due to mitochondrial dysfunction, 

and a large increase in sorbitol levels.  We hypothesize that the ectopic accumulation of lipids 

possibly through the accumulation of yolk lipid proteins that occurs after the cessation of egg-

laying likely contributes to lipotoxicity that may account for some of the observed changes with 

age.  We further hypothesize that the age-related reduction in SAM synthesis may be a 

consequence of dietary restriction caused by age-related pharyngeal pump dysfunction and may 

act to counter some of the effects of the lipotoxicity. 
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 2.9 Figures 

 
 

Figure 2.1.  When grown at 25 °C, N2 and glp-4(bn2) C. elegans both have similar mean 

lifespans.  Age-synchronized 100 μL liquid cultures of C. elegans were maintained at 25 °C in 

96-well plates (n = 4 wells for SS104; n = 2 wells for N2).  Nematodes were observed every 

other day, starting on the third day of culture, using a dissecting microscope, and individual 

nematodes were scored as either alive or dead based on movement and body rigidity (n = 430 for 

SS104; n = 306 for N2).  The mean lifespan was 10.84 days for glp-4(bn2) (standard error ± 

0.334 days) and 10.02 days for N2 (standard error ± 0.369 days).  The difference between the 

two mean lifespans was not significantly different (log-rank p-value = 0.185). 
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Figure 2.2.  Principal component analysis of metabolites shows separation of young and 

aged samples.  (A) When graphed as the 2D relationship between the two top explanatory 

factors (F1 = 59.92% of the variation; F2 = 10.20% of the variation), the scaled young day 5 

samples (n = 5) and the scaled aged day 10 sample (n = 5) are separated primarily linearly along 

the F1 axis, showing that the major variation in the distribution of metabolite levels is explained 

by the difference in ages between the groups.  (B) When similarly graphed using the same two 

factors, the identified metabolites (n = 186) visibly congregate at two poles along the F1 axis. 

 

 
 

Figure 2.3.  Top 10 changed pathways based on metabolome analysis.  The total observed 

change for each identified pathway was calculated as the total of the absolute log2-fold change 

for each identified metabolite found within the pathway (n = 50 pathways).  The top 10 changed 

pathways are shown in this figure.  The width of each pie wedge is equivalent to the percent 

change of that pathway out of the total absolute log2-fold change of all pathways.  Numbers 

shown on each pie wedge are the total absolute log2-fold change for that pathway.  The KEGG 

pathway designated as “Metabolic Pathways” (map01100) was omitted from the list since it 

encompasses most other pathway information. 
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Figure 2.4.  Age-related changes in free amino acid levels.  The levels of hydrophobic amino 

acids decreased and the levels of hydrophilic amino acids increased on day 10 compared to day 4 

(Pearson correlation -0.67; p-value = 0.05).  At pH 7.0 the relative hydrophobicity (on a scale 

from -100 to +100 normalized to glycine) is as follows: Met = 74, Phe = 100, Leu = 97, Trp = 

97, Val = 76, Ile = 99, Thr = 13, Gly = 0, Ala = 41. 

 

 
 

Figure 2.5.  Age-related decreases in hypoxanthine and nitrogenous base levels.  (A)  The 

concentration of hypoxanthine fell from a mean of 100.37 pmol/mg of protein (SEM ± 3.48) on 

day 5 (n = 6 samples; ~100 nematodes/sample), to a mean of 70.22 pmol/mg of protein (SEM ± 

2.65) on day 12 (n = 6 samples; ~100 nematodes/sample; unpaired two-tailed t-test p-value = 4.2 

x 10
-5

).  (B) Uracil, adenine, guanine, and cytosine levels were all decreased with age.  Thymine 

also showed a -3.18 log2-fold decrease, but the p-value of the two-tailed t-test between young 

and aged levels failed to indicate significance (p-value = 0.074). 
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Figure 2.6.  Dietary supplementation with 10 mM hypoxanthine extends the lifespan of N2 

C. elegans.  Several liquid cultures were grown for lifespan assays (as described in Edwards et 

al., 2015).  (A)  The addition of 10 mM hypoxanthine to the S-medium (n = 120 nematodes) 

resulted in a mean lifespan increase of 18% compared to the untreated N2 control (log-rank p-

value < 0.001).  (B)  The addition of 10 mM cytidine (n = 163 nematodes) resulted in a mean 

lifespan increase of 11% compared to the untreated N2 control (log-rank p-value = 0.012). 

 

 
 

Figure 2.7.  Age-related changes in monoacylglycerol and fatty acid levels.  

Monoacylglycerols primarily decreased with age, while fatty acids primarily increased.  For 

brevity, we’ve only listed fatty acids with a log2-fold change above 1 or below -1.  For a 

complete list, see Table S3. 
*
16-methylheptadecanoic acid. 
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Figure 2.8.  Age-related changes in D-sorbitol content and redox state.  (A)  Whole-

nematode D-sorbitol levels increased ~360% from day 5 to day 10 (day 5 mean = 63.28 nmol/mg 

protein, SEM ± 8.29, n = 4 samples, ~100 nematodes/sample; day 12 mean = 229.95 nmol/mg 

protein, SEM ± 6.60, n = 4 samples, ~100 nematodes/sample; unpaired two-tailed t-test p-value 

= 4.19 x 10
-6

).  (B)  Aged/young log2-fold changes for NAD/NADH (log2-fold change = -1.67; 

young vs. aged unpaired two-tailed t-test < 0.0001), dehydroascorbic acid/ascorbic acid 

(DHA/AA; log2-fold change = 2.94; young vs. aged unpaired two-tailed t-test = 0.024) and 

erythronic acid (EA)/ N-acetylglucosamine (NAG).  NAD and NADH levels were estimated 

using relative detected levels of pyruvate and lactate. 

 

 
 

Figure 2.9.  Proteomic analysis of young vs. aged C. elegans using stable isotope labeling.  

The y-axis represents the log2 of the detected abundance, as determined by adding together the 

total detected intensities of both the heavy (
15

N4-
13

C6-arginine and 
15

N2-
13

C6-lysine) labeled 

proteins (young day 4 nematodes) and the light non-labeled proteins (aged day 10 nematodes).  

The x-axis indicates the relative fold-change in abundance of individual proteins from the aged 

nematodes as compared to the young nematodes.  The unfilled circles represent proteins with a 

significantly changed abundance, as determined by the Significance B method (Benjamini-

Hochberg corrected p-value) with a threshold of 0.05.  The dark gray circles are proteins without 

a significant change in abundance. 
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Figure 2.10.  The top 10 altered pathways with age based on proteomic analysis.  The total 

observed change for each identified pathway was calculated as the total of the absolute log2-fold 

change for each identified protein found within the pathway (n = 20 pathways).  The top 10 

changed pathways are shown in this figure.  The width of each pie wedge is equivalent to the 

percent change of that pathway out of the total absolute log2-fold change of all pathways.  

Numbers shown on each pie wedge are the total absolute log2-fold change for that pathway. 

 

2.10 Tables 

 

Table 2.1.  Pathways assigned to metabolites.  The day 10 log2-fold change was calculated for 

each metabolite.  Metabolites with p-values > 0.05 for day 10 versus day 5 were considered to be 

unchanged (log2-fold change = 0).  Pathways were assigned to each metabolite by searching the 

Kyoto Encyclopedia of Genes and Genomes database.  A pathway was assigned to a metabolite 

if that pathway contained a C. elegans enzyme that produces or consumes that metabolite. 
 

 

 

 

    
Metabolite KEGG ID Log2 p-value C. elegans Pathways 

Galactonic acid-1,4-lactone C01115 -11.962 0.000   

Hypoxanthine C00262 -8.323 0.024 Purine metabolism 

9-Octadecenoylglycerol   -7.568 0.009   

4-hydroxybutanoic acid C00989 -7.063 0.001   

5-Methylthioadenosine C00170 -7.041 0.000 Cysteine and methionine metabolism 

Cytosine C00380 -6.986 0.000   

Xylose C00181 -6.867 0.002 Pentose and glucuronate interconversions 

2-Ketogluconic acid C15673 -6.512 0.000   

Uridine C00299 -5.573 0.005 Pyrimidine metabolism 

Guanine C00242 -5.417 0.000 Purine metabolism 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

3-hydroxypropyl-2-oxo-phosphate C00111 -5.218 0.000 Glycolysis / Gluconeogenesis 

        Fructose and mannose metabolism 

        Glycerolipid metabolism 

        Inositol phosphate metabolism 

        Glycerophospholipid metabolism 

        Carbon metabolism 

        Biosynthesis of amino acids 

6-Hydroxynicotinic acid C01020 -4.342 0.000   

1-hexadecanoylglycerol   -4.194 0.001   

7-tetradecenoic acid   -3.468 0.000   

Cadaverine C01672 -3.412 0.001 Glutathione metabolism 

2-Aminoadipic acid C00956 -3.376 0.004 Lysine biosynthesis 

        Lysine degradation 

        Biosynthesis of amino acids 

Ribose C00121 -3.313 0.000   

1-Heptadecanoylglycerol   -3.289 0.000   

2-hydroxyadipic acid C02360 -3.276 0.000   

Glycolic acid C00160 -3.037 0.008 Glyoxylate and dicarboxylate metabolism 

Homocysteine C00155 -2.812 0.017 Cysteine and methionine metabolism 

        Biosynthesis of amino acids 

Methionine C00073 -2.709 0.001 Cysteine and methionine metabolism 

        Aminoacyl-tRNA biosynthesis 

        Biosynthesis of amino acids 

3-methyl-3-hydroxybutanoic acid   -2.576 0.000   

Ethyl phosphoric acid   -2.261 0.000   

1-octadecanoylglycerol   -2.214 0.006   

Ribose-5-p C00117 -2.201 0.004 Pentose phosphate pathway 

        Purine metabolism 

        Carbon metabolism 

        Biosynthesis of amino acids 

Inositol-phosphate C01177 -2.040 0.000 Inositol phosphate metabolism 

        Phosphatidylinositol signaling system 

Altro-2-Heptulose-7-p   -2.011 0.000   

Phenylalanine C00079 -1.956 0.000 Phenylalanine metabolism 

        Phenylalanine, tyrosine and tryptophan biosynthesis 

        Aminoacyl-tRNA biosynthesis 

Fumaric acid C00122 -1.955 0.001 Citrate cycle (TCA cycle) 

        Oxidative phosphorylation 

        Alanine, aspartate and glutamate metabolism 

        Tyrosine metabolism 

        Pyruvate metabolism 

        Carbon metabolism 

Gluconic acid C00257 -1.925 0.000 Pentose phosphate pathway 

        Carbon metabolism 

Cholesterol C00187 -1.912 0.000 Steroid biosynthesis 

Mannitol-6-p C00644 -1.889 0.036   

1,3-Propanediamine C00986 -1.746 0.000   

Glutaric acid C00489 -1.621 0.000   

Glucuronic acid C00191 -1.590 0.023 Pentose and glucuronate interconversions 

        Ascorbate and aldarate metabolism 

        Starch and sucrose metabolism 

Table 2.1 (Continued) 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

        Inositol phosphate metabolism 

Nicotinic acid C00253 -1.508 0.000 Nicotinate and nicotinamide metabolism 

Adenosine C00212 -1.418 0.003 Purine metabolism 

Leucine C00123 -1.338 0.000 Valine, leucine and isoleucine degradation 

        Valine, leucine and isoleucine biosynthesis 

        Aminoacyl-tRNA biosynthesis 

        2-Oxocarboxylic acid metabolism 

        Biosynthesis of amino acids 

Gulose C15923 -1.312 0.023   

Lanosterol C01724 -1.295 0.000 Steroid biosynthesis 

Tryptophan C00078 -1.275 0.001 Tryptophan metabolism 

        Aminoacyl-tRNA biosynthesis 

Inosine C00294 -1.259 0.000 Purine metabolism 

Pyruvic acid C00022 -1.218 0.000 Glycolysis / Gluconeogenesis 

        Citrate cycle (TCA cycle) 

        Alanine, aspartate and glutamate metabolism 

        Glycine, serine and threonine metabolism 

        Cysteine and methionine metabolism 

        Pyruvate metabolism 

        Butanoate metabolism 

        Carbon metabolism 

        Biosynthesis of amino acids 

Adenine C00147 -1.167 0.000 Purine metabolism 

Ornithine C00077 -1.111 0.002 Arginine and proline metabolism 

        Glutathione metabolism 

        2-Oxocarboxylic acid metabolism 

        Biosynthesis of amino acids 

Pyroglutamic acid C01879 -1.091 0.001 Glutathione metabolism 

2-hydroxybutanoic acid C05984 -0.976 0.011 Propanoate metabolism 

Maltose C00208 -0.961 0.000 Starch and sucrose metabolism 

Adenosine-5-monophosphate C00020 -0.954 0.006 Purine metabolism 

        FoxO signaling pathway 

        mTOR signaling pathway 

Malic acid C00149 -0.929 0.000 Citrate cycle (TCA cycle) 

        Pyruvate metabolism 

        Glyoxylate and dicarboxylate metabolism 

        Carbon metabolism 

1-Pentadecanoylglycerol   -0.879 0.000   

Gluconic acid-1,4-lactone C03107 -0.869 0.048   

Eicosanoic acid C06425 -0.852 0.000   

Uracil C00106 -0.843 0.044 Pyrimidine metabolism 

        β-Alanine metabolism 

        Pantothenate and CoA biosynthesis 

Monomethylphosphate   -0.759 0.000   

2-Aminobutyric acid C02261 -0.752 0.030   

Valine C00183 -0.719 0.000 Valine, leucine and isoleucine degradation 

        Valine, leucine and isoleucine biosynthesis 

        Propanoate metabolism 

        Pantothenate and CoA biosynthesis 

        Aminoacyl-tRNA biosynthesis 

        2-Oxocarboxylic acid metabolism 

Table 2.1 (Continued) 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

        Biosynthesis of amino acids 

Isoleucine C00407 -0.708 0.001 Valine, leucine and isoleucine degradation 

        Valine, leucine and isoleucine biosynthesis 

        Aminoacyl-tRNA biosynthesis 

        2-Oxocarboxylic acid metabolism 

        Biosynthesis of amino acids 

Galacturonic acid C00333 -0.693 0.001   

Threonine C00188 -0.659 0.000 Glycine, serine and threonine metabolism 

        Valine, leucine and isoleucine biosynthesis 

        Aminoacyl-tRNA biosynthesis 

        Biosynthesis of amino acids 

Dodecanoic acid C02679 -0.655 0.002   

Pyrophosphate C00013 -0.513 0.000 Oxidative phosphorylation 

N-acetylglutamic acid   -0.493 0.048   

Arabitol C00532 -0.462 0.013 Pentose and glucuronate interconversions 

2-Hydroxyglutaric acid C02630 -0.462 0.003 Butanoate metabolism 

5,8,11,14-Eicosatetraenoic acid C00219 -0.459 0.007 Arachidonic acid metabolism 

13-octadecenoic acid   -0.424 0.005   

Heptadecanoic acid   -0.416 0.007   

9-Octadecenoic acid C01712 -0.414 0.015   

9,12-Octadecadienoic acid   -0.331 0.000   

Tetradecanoic acid C06424 -0.327 0.000 Fatty acid biosynthesis 

Glucose (ambiguous)   -0.229 0.028   

1,6-Anhydroglucose   0 0.068   

11,14,17-Eicosatrienoic acid C16522 0 0.617   

11-eicosenoic acid C16526 0 0.564   

12-methyltridecanoic acid   0 0.199   

12-Nonadecenoic acid   0 0.085   

13-eicosenoic acid   0 0.313   

13-Hexadecenoic acid   0 0.126   

13-nonadecenoic acid   0 0.201   

15-eicosenoic acid   0 0.275   

2-Phosphoglycerate C00631 0 0.075 Glycolysis / Gluconeogenesis 

        Glycine, serine and threonine metabolism 

        Carbon metabolism 

        Biosynthesis of amino acids 

3-hydroxybenzoic acid C00587 0 0.095   

3-phosphoglycerate C00197 0 0.170 Glycolysis / Gluconeogenesis 

        Glycine, serine and threonine metabolism 

        Glycerolipid metabolism 

        Glyoxylate and dicarboxylate metabolism 

        Carbon metabolism 

        Biosynthesis of amino acids 

4,5-dimethyl-2,6-dihydroxypyrimidine   0 0.083   

4-Aminobutyric acid C00334 0 0.331 Alanine, aspartate and glutamate metabolism 

        Arginine and proline metabolism 

        Butanoate metabolism 

4-methyl-2-hydroxypentanoic acid   0 0.068   

5,8,11,14,17-Eicosapentaenoic acid   0 0.999   

6,9,12-Octadecatrienoic acid C06426 0 0.953   

α-glycerophosphorylglycerol   0 0.216   

Table 2.1 (Continued) 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

Aminomalonic acid C00872 0 0.055   

Aspartic acid C00049 0 0.586 Alanine, aspartate and glutamate metabolism 

        β-Alanine metabolism 

        Aminoacyl-tRNA biosynthesis 

        Carbon metabolism 

        2-Oxocarboxylic acid metabolism 

        Biosynthesis of amino acids 

        Neuroactive ligand-receptor interaction 

b-Aminoisobutyric acid C05145 0 0.089 Pyrimidine metabolism 

Cysteine C00097 0 0.829 Glycine, serine and threonine metabolism 

        Cysteine and methionine metabolism 

        Taurine and hypotaurine metabolism 

        Glutathione metabolism 

        Thiamine metabolism 

        Pantothenate and CoA biosynthesis 

        Sulfur metabolism 

        Aminoacyl-tRNA biosynthesis 

        Carbon metabolism 

        Biosynthesis of amino acids 

Decanoic acid C01571 0 0.495   

Docosanoic acid C08281 0 0.475   

Dopamine C03758 0 0.067 Tyrosine metabolism 

        Neuroactive ligand-receptor interaction 

Erythritol C00503 0 0.072   

Ethanolamine C00189 0 0.555 Glycerophospholipid metabolism 

Fructose-6-p C05345 0 0.525 Glycolysis / Gluconeogenesis 

        Pentose phosphate pathway 

        Fructose and mannose metabolism 

        Starch and sucrose metabolism 

        Amino sugar and nucleotide sugar metabolism 

        Carbon metabolism 

        Biosynthesis of amino acids 

Galactose C00124 0 0.862 Galactose metabolism 

Gluconic acid-1,5-lactone C00198 0 0.490   

Glucuronic acid-6-p   0 0.180   

Glutamic acid C00025 0 0.631 Alanine, aspartate and glutamate metabolism 

        Arginine and proline metabolism 

        D-Glutamine and D-glutamate metabolism 

        Glutathione metabolism 

        Glyoxylate and dicarboxylate metabolism 

        Butanoate metabolism 

        Porphyrin and chlorophyll metabolism 

        Aminoacyl-tRNA biosynthesis 

        Nitrogen metabolism 

        2-Oxocarboxylic acid metabolism 

        Biosynthesis of amino acids 

        Neuroactive ligand-receptor interaction 

Glyceric acid C00258 0 0.679 Glycine, serine and threonine metabolism 

        Glycerolipid metabolism 

        Glyoxylate and dicarboxylate metabolism 

Glycerol-3-p C00093 0 0.183 Glycerolipid metabolism 

Table 2.1 (Continued) 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

        Glycerophospholipid metabolism 

Hexadecanoic acid C00249 0 0.395 Fatty acid biosynthesis 

        Fatty acid degradation 

        Fatty acid metabolism 

Lysine C00047 0 0.083 Lysine degradation 

        Aminoacyl-tRNA biosynthesis 

Maltotriose C01835 0 0.075   

N-Acetyl galactosamine C01132 0 0.180   

N-Acetyl-Lysine   0 0.087   

Octadecanoic acid C01530 0 0.300   

p-Aminobenzoic acid C00568 0 0.528   

Proline C00148 0 0.181 Arginine and proline metabolism 

        Aminoacyl-tRNA biosynthesis 

        Biosynthesis of amino acids 

Ribitol C00474 0 0.109   

Sedoheptulose C02076 0 0.434   

Sedoheptulose-7-p C05382 0 0.080 Pentose phosphate pathway 

        Carbon metabolism 

        Biosynthesis of amino acids 

Serine C00065 0 0.285 Glycine, serine and threonine metabolism 

        Cyanoamino acid metabolism 

        Sphingolipid metabolism 

        Glyoxylate and dicarboxylate metabolism 

        Aminoacyl-tRNA biosynthesis 

        Carbon metabolism 

        Biosynthesis of amino acids 

Succinic acid C00042 0 0.573 Citrate cycle (TCA cycle) 

        Oxidative phosphorylation 

        Alanine, aspartate and glutamate metabolism 

        Propanoate metabolism 

        Butanoate metabolism 

        Carbon metabolism 

Threonic acid-1,4-lactone   0 0.096   

Thymine C00178 0 0.074 Pyrimidine metabolism 

Trehalose C01083 0 0.062 Starch and sucrose metabolism 

Trehalose-6-p   0 0.392   

Tyrosine C00082 0 0.064 Ubiquinone and other terpenoid-quinone biosynthesis 

        Tyrosine metabolism 

        Phenylalanine, tyrosine and tryptophan biosynthesis 

        Aminoacyl-tRNA biosynthesis 

        Biosynthesis of amino acids 

Urea C00086 0 0.114   

Uridine-5'-monophosphate C00105 0 0.059 Pyrimidine metabolism 

12-methyltetradecanoic acid C16665 0.219 0.021   

Tridecanoic acid C17076 0.364 0.018   

9-Heptadecenoic acid   0.377 0.000   

1-Methyl-α-D-glucopyranoside   0.380 0.047   

9-hexadecenoic acid C08362 0.418 0.000   

15-methyl-11-Hexadecenoic acid   0.437 0.001   

Lactic acid C00186 0.455 0.000 Glycolysis / Gluconeogenesis 

        Pyruvate metabolism 

Table 2.1 (Continued) 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

11-Octadecenoic acid C08367 0.519 0.000   

Glucose-6-p C00668 0.534 0.004 Glycolysis / Gluconeogenesis 

        Pentose phosphate pathway 

        Galactose metabolism 

        Starch and sucrose metabolism 

        Amino sugar and nucleotide sugar metabolism 

        Carbon metabolism 

8,11,14,17-eicosatetraenoic acid   0.538 0.018   

14-methylpentadecanoic acid   0.550 0.001   

15-methylhexadecanoic acid   0.629 0.000   

11-heptadecenoic acid   0.660 0.001   

2,4,6-Tri-tert.-butylbenzenethiol   0.676 0.008   

11-Hexadecenoic acid   0.729 0.000   

Gluconic acid-6-p   0.764 0.012   

14-methylhexadecanoic acid   0.768 0.000   

9,12-heptadecadienoic acid   0.769 0.001   

Undecanoic acid C17715 0.846 0.003   

Putrescine C00134 0.859 0.001 Arginine and proline metabolism 

        Glutathione metabolism 

Panthotenic acid   0.869 0.002   

6,9,12,15-Octadecatetraenoic acid  C16300 0.876 0.000   

11,14-Octadecadienoic acid   0.892 0.001   

Nonadecanoic acid C16535 0.975 0.001   

Glycerol-2-p C02979 0.989 0.000   

Sucrose C00089 1.063 0.003 Galactose metabolism 

        Starch and sucrose metabolism 

10-Pentadecenoic acid   1.077 0.000   

Glycine C00037 1.085 0.000 Glycine, serine and threonine metabolism 

        Cyanoamino acid metabolism 

        Glutathione metabolism 

        Glyoxylate and dicarboxylate metabolism 

        Aminoacyl-tRNA biosynthesis 

        Carbon metabolism 

        Biosynthesis of amino acids 

        Neuroactive ligand-receptor interaction 

16-methylheptadecanoic acid   1.112 0.000   

Alanine C00041 1.140 0.006 Alanine, aspartate and glutamate metabolism 

        Selenocompound metabolism 

        Aminoacyl-tRNA biosynthesis 

        Carbon metabolism 

        Biosynthesis of amino acids 

9,12,15-Octadecatrienoic acid C06427 1.144 0.004 α-Linolenic acid metabolism 

Phosphoric acid C00009 1.197 0.014 Oxidative phosphorylation 

Pyrrole-2-carboxylic acid   1.261 0.000   

11-nonadecenoic acid   1.292 0.000   

Ascorbic acid C00072 1.334 0.013   

Pentadecanoic acid C16537 1.365 0.000   

Inositol C00137 1.459 0.000 Inositol phosphate metabolism 

        Ascorbate and aldarate metabolism 

        Phosphatidylinositol signaling system 

Threonic acid C01620 1.590 0.000   

Table 2.1 (Continued) 
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Metabolite KEGG ID Log2 p-value C. elegans Pathways 

11-Tetradecenoic acid   1.785 0.000   

N-Acetyl glucosamine C00140 1.854 0.004 Amino sugar and nucleotide sugar metabolism 

Glycerol C00116 1.948 0.017 Glycerolipid metabolism 

Citric acid C00158 1.973 0.000 Citrate cycle (TCA cycle) 

        Glyoxylate and dicarboxylate metabolism 

        Carbon metabolism 

        2-Oxocarboxylic acid metabolism 

        Biosynthesis of amino acids 

b-alanine C00099 2.017 0.049 Pyrimidine metabolism 

        β-Alanine metabolism 

        Propanoate metabolism 

        Pantothenate and CoA biosynthesis 

        Neuroactive ligand-receptor interaction 

Glucopyranose (ambiguous)   2.243 0.001   

2-O-Glycerol-alfa-galactopyranoside   2.264 0.000   

Galactopyranose C00124 2.406 0.015 Galactose metabolism 

11,14 Eicosadienoic acid C16525 2.494 0.000   

Galactofuranose   4.161 0.028   

9-Tetradecenoic acid C08322 4.243 0.000   

Dehydroascorbic acid C05422 4.269 0.035   

Erythronic acid   5.976 0.000   

Aminoethyl-glycerol-3-p   6.499 0.006   

N-Acetylglucosylamine   6.683 0.001   

Aminoethyl-phosphate C00346 7.105 0.006 Glycerophospholipid metabolism 

        Sphingolipid metabolism 

3-Hydroxybutanoic acid C01089 7.370 0.003   

3-desoxy-pentitol   7.485 0.000   

6-heptadecenoic acid   7.992 0.001   

Sorbitol C00794 8.316 0.001 Fructose and mannose metabolism 

1-Methyl-β-D-galactopyranoside C03619 11.188 0.000   

 
 

Table 2.2.  Metabolomics: total weighted change for all pathways.  The absolute weights 

were calculated for all pathways as the sum of the absolute log2-fold change of each metabolite 

within that pathway.  Absolute weights for down-regulated pathways and up-regulated pathways 

were determined as the sum of the absolute negative and positive log2-fold changes, respectively.  

Pathways were scored as unchanged if every metabolite within that pathway was scored as 

unchanged (p-value ≥ 0.05). 

 
 
 

 
 

Pathways Absolute Weights 

All Pathways 

Biosynthesis of amino acids 26.27 

Purine metabolism 20.74 

Carbon metabolism 17.25 

Table 2.1 (Continued) 
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Pathways Absolute Weights 

Cysteine and methionine metabolism 13.78 

Fructose and mannose metabolism 13.53 

Glycerolipid metabolism 12.78 

Glycerophospholipid metabolism 12.32 

Aminoacyl-tRNA biosynthesis 11.59 

Inositol phosphate metabolism 10.31 

Pentose and glucuronate interconversions 8.92 

Pyrimidine metabolism 8.43 

Glycolysis / Gluconeogenesis 7.42 

Sphingolipid metabolism 7.11 

Glyoxylate and dicarboxylate metabolism 7.02 

Citrate cycle (TCA cycle) 6.07 

2-Oxocarboxylic acid metabolism 5.85 

Pentose phosphate pathway 4.66 

Pyruvate metabolism 4.56 

Alanine, aspartate and glutamate metabolism 4.31 

Starch and sucrose metabolism 4.15 

Galactose metabolism 4.00 

Propanoate metabolism 3.71 

Oxidative phosphorylation 3.66 

Pantothenate and CoA biosynthesis 3.58 

Phosphatidylinositol signaling system 3.50 

Valine, leucine and isoleucine biosynthesis 3.42 

Lysine biosynthesis 3.38 

Lysine degradation 3.38 

Steroid biosynthesis 3.21 

Neuroactive ligand-receptor interaction 3.10 

Glycine, serine and threonine metabolism 2.96 

beta-Alanine metabolism 2.86 

Valine, leucine and isoleucine degradation 2.77 

Amino sugar and nucleotide sugar metabolism 2.39 

alpha-Linolenic acid metabolism 2.29 

Arginine and proline metabolism 1.97 

Phenylalanine metabolism 1.96 

Phenylalanine, tyrosine and tryptophan biosynthesis 1.96 

Tyrosine metabolism 1.95 

Glutathione metabolism 1.94 

Butanoate metabolism 1.68 

Table 2.2 (Continued) 
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Pathways Absolute Weights 

Nicotinate and nicotinamide metabolism 1.51 

Tryptophan metabolism 1.27 

Selenocompound metabolism 1.14 

Ascorbate and aldarate metabolism 1.11 

Cyanoamino acid metabolism 1.09 

FoxO signaling pathway 0.95 

mTOR signaling pathway 0.95 

Arachidonic acid metabolism 0.46 

Fatty acid biosynthesis 0.33 

Up-regulated Pathways 

Fructose and mannose metabolism 8.32 

Glycerophospholipid metabolism 7.11 

Sphingolipid metabolism 7.11 

Carbon metabolism 4.73 

Biosynthesis of amino acids 4.20 

Galactose metabolism 4.00 

Neuroactive ligand-receptor interaction 3.10 

Glyoxylate and dicarboxylate metabolism 3.06 

Amino sugar and nucleotide sugar metabolism 2.39 

alpha-Linolenic acid metabolism 2.29 

Aminoacyl-tRNA biosynthesis 2.23 

beta-Alanine metabolism 2.02 

Pantothenate and CoA biosynthesis 2.02 

Propanoate metabolism 2.02 

Pyrimidine metabolism 2.02 

2-Oxocarboxylic acid metabolism 1.97 

Citrate cycle (TCA cycle) 1.97 

Glycerolipid metabolism 1.95 

Glutathione metabolism 1.94 

Starch and sucrose metabolism 1.60 

Ascorbate and aldarate metabolism 1.46 

Inositol phosphate metabolism 1.46 

Phosphatidylinositol signaling system 1.46 

Oxidative phosphorylation 1.20 

Alanine, aspartate and glutamate metabolism 1.14 

Selenocompound metabolism 1.14 

Cyanoamino acid metabolism 1.09 

Glycine, serine and threonine metabolism 1.09 

Table 2.2 (Continued) 
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Pathways Absolute Weights 

Glycolysis / Gluconeogenesis 0.99 

Arginine and proline metabolism 0.86 

Pentose phosphate pathway 0.53 

Pyruvate metabolism 0.45 

Down-regulated Pathways 

Biosynthesis of amino acids 22.07 

Purine metabolism 20.74 

Cysteine and methionine metabolism 13.78 

Carbon metabolism 12.52 

Glycerolipid metabolism 10.83 

Aminoacyl-tRNA biosynthesis 9.36 

Pentose and glucuronate interconversions 8.92 

Inositol phosphate metabolism 8.85 

Glycolysis / Gluconeogenesis 6.44 

Pyrimidine metabolism 6.42 

Fructose and mannose metabolism 5.22 

Glycerophospholipid metabolism 5.22 

Pentose phosphate pathway 4.13 

Citrate cycle (TCA cycle) 4.10 

Pyruvate metabolism 4.10 

Glyoxylate and dicarboxylate metabolism 3.97 

2-Oxocarboxylic acid metabolism 3.88 

Valine, leucine and isoleucine biosynthesis 3.42 

Lysine biosynthesis 3.38 

Lysine degradation 3.38 

Steroid biosynthesis 3.21 

Alanine, aspartate and glutamate metabolism 3.17 

Valine, leucine and isoleucine degradation 2.77 

Starch and sucrose metabolism 2.55 

Oxidative phosphorylation 2.47 

Phosphatidylinositol signaling system 2.04 

Phenylalanine metabolism 1.96 

Phenylalanine, tyrosine and tryptophan biosynthesis 1.96 

Tyrosine metabolism 1.95 

Glycine, serine and threonine metabolism 1.88 

Propanoate metabolism 1.70 

Butanoate metabolism 1.68 

Ascorbate and aldarate metabolism 1.59 

Table 2.2 (Continued) 
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Pathways Absolute Weights 

Pantothenate and CoA biosynthesis 1.56 

Nicotinate and nicotinamide metabolism 1.51 

Tryptophan metabolism 1.27 

Arginine and proline metabolism 1.11 

FoxO signaling pathway 0.95 

mTOR signaling pathway 0.95 

beta-Alanine metabolism 0.84 

Arachidonic acid metabolism 0.46 

Fatty acid biosynthesis 0.33 

Unchanged Pathways 

D-Glutamine and D-glutamate metabolism 0.00 

Fatty acid degradation 0.00 

Fatty acid metabolism 0.00 

Nitrogen metabolism 0.00 

Porphyrin and chlorophyll metabolism 0.00 

Sulfur metabolism 0.00 

Taurine and hypotaurine metabolism 0.00 

Thiamine metabolism 0.00 

Ubiquinone and other terpenoid-quinone biosynthesis 0.00 

 

 

Table 2.3.  Glycerophospholipids and fatty acids.  Changes in glycerophospholipids (5 out of 

54 identified fatty acid-containing metabolites) and fatty acid levels are shown. 

 
 

 
 

    

Metabolite KEGG ID Log2 p-value Free or monoacylglycerol 

9-Octadecenoylglycerol 
 

-7.568 0.009 monoacylglycerol 

1-hexadecanoylglycerol 
 

-4.194 0.001 monoacylglycerol 

7-tetradecenoic acid 
 

-3.468 0.000 free 

1-Heptadecanoylglycerol 
 

-3.289 0.000 monoacylglycerol 

1-octadecanoylglycerol 
 

-2.214 0.006 monoacylglycerol 

1-Pentadecanoylglycerol 
 

-0.879 0.000 monoacylglycerol 

Dodecanoic acid C02679 -0.655 0.002 free 

5,8,11,14-Eicosatetraenoic acid C00219 -0.459 0.007 free 

13-octadecenoic acid 
 

-0.424 0.005 free 

Heptadecanoic acid 
 

-0.416 0.007 free 

9-Octadecenoic acid C01712 -0.414 0.015 free 

Table 2.2 (Continued) 
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Metabolite KEGG ID Log2 p-value Free or monoacylglycerol 

9,12-Octadecadienoic acid 
 

-0.331 0.000 free 

Tetradecanoic acid C06424 -0.327 0.000 free 

11,14,17-Eicosatrienoic acid C16522 0 0.617 free 

11-eicosenoic acid C16526 0 0.564 free 

12-methyltridecanoic acid 
 

0 0.199 free 

12-Nonadecenoic acid 
 

0 0.085 free 

13-eicosenoic acid 
 

0 0.313 free 

13-Hexadecenoic acid 
 

0 0.126 free 

13-nonadecenoic acid 
 

0 0.201 free 

15-eicosenoic acid 
 

0 0.275 free 

5,8,11,14,17-Eicosapentaenoic acid 
 

0 0.999 free 

6,9,12-Octadecatrienoic acid C06426 0 0.953 free 

Decanoic acid C01571 0 0.495 free 

Docosanoic acid C08281 0 0.475 free 

Hexadecanoic acid C00249 0 0.395 free 

Octadecanoic acid C01530 0 0.300 free 

12-methyltetradecanoic acid C16665 0.219 0.021 free 

Tridecanoic acid C17076 0.364 0.018 free 

9-Heptadecenoic acid 
 

0.377 0.000 free 

9-hexadecenoic acid C08362 0.418 0.000 free 

15-methyl-11-Hexadecenoic acid 
 

0.437 0.001 free 

11-Octadecenoic acid C08367 0.519 0.000 free 

8,11,14,17-eicosatetraenoic acid 
 

0.538 0.018 free 

14-methylpentadecanoic acid 
 

0.550 0.001 free 

15-methylhexadecanoic acid 
 

0.629 0.000 free 

11-heptadecenoic acid 
 

0.660 0.001 free 

11-Hexadecenoic acid 
 

0.729 0.000 free 

14-methylhexadecanoic acid 
 

0.768 0.000 free 

9,12-heptadecadienoic acid 
 

0.769 0.001 free 

Undecanoic acid C17715 0.846 0.003 free 

6,9,12,15-Octadecatetraenoic acid C16300 0.876 0.000 free 

11,14-Octadecadienoic acid 
 

0.892 0.001 free 

Nonadecanoic acid C16535 0.975 0.001 free 

10-Pentadecenoic acid 
 

1.077 0.000 free 

16-methylheptadecanoic acid 
 

1.112 0.000 free 

9,12,15-Octadecatrienoic acid C06427 1.144 0.004 free 

11-nonadecenoic acid 
 

1.292 0.000 free 

Pentadecanoic acid C16537 1.365 0.000 free 

Table 2.3 (Continued) 
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Metabolite KEGG ID Log2 p-value Free or monoacylglycerol 

11-Tetradecenoic acid 
 

1.785 0.000 free 

11,14 Eicosadienoic acid C16525 2.494 0.000 free 

9-Tetradecenoic acid C08322 4.243 0.000 free 

6-heptadecenoic acid 
 

7.992 0.001 free 

 

 

Table 2.4. Proteins showing a significant increase or decrease in abundance with age.  

Significance was determined using Perseus version 1.4.1.3 based on the Significance B method 

(Benjamini-Hochberg corrected p-value; threshold = 0.05).  Log2-fold change values 

(aged/young) are sorted from lowest to highest. 

 

     Log2-fold change 

(old/young) 

Significance B 

p-value 
Protein IDs Protein name/description 

Gene 

names 

-10.045 4.314E-34 G5EDN3 Regulator of chromatid cohesion tim-1 

-7.636 1.787E-20 O02325 Protein methyltransferase prmt-3 

-6.851 1.119E-11 Q93699 Ortholog of human glutathione S-transferase alpha 3 gst-17 

-6.324 1.409E-14 O01876 
Glutamine/asparagine (Q/N)-rich ('prion') domain 

protein 
pqn-24 

-5.991 2.990E-13 Q9N4H4 Poly(ADP-ribose) polymerase pme-1 pme-1 

-5.675 4.693E-12 Q22467;B7WN92 CRAL/TRIO and GOLD domain containing protein ctg-2 

-5.440 1.244E-33 Q18409 Probable splicing factor, arginine/serine-rich 6 rsp-6 

-5.363 8.971E-08 Q09454 Diphthamide biosynthesis protein 2 dph-2 

-5.262 1.385E-10 Q2HQL8 Uncharacterized protein Y43F8B.1 Y43F8B.1 

-5.246 1.708E-07 O17157;Q95X81 DEAD-box helicase required for larval development C24H12.4 

-4.828 3.740E-09 O44191 Yolk receptor required for yolk uptake during oogenesis rme-2 

-4.682 5.375E-06 G5ECP5 Uncharacterized protein T02E9.6 T02E9.6 

-4.635 3.963E-06 P19626 
Myosin regulatory light chain 2 required for pharyngeal 

pump 
mlc-2 

-4.592 1.170E-24 O17726 Uncharacterized protein D1086.1 D1086.1 

-4.487 1.373E-05 Q93254 Ortholog of human carboxylesterase 2 C23H4.3 

-4.345 1.551E-05 Q95QV3;Q94986 
Ras-related protein Rab-3 involved in synaptic 

transmission 
rab-3 

-4.318 1.754E-05 H2KYN3 Acyl-CoA dehydrogenase domain-containing protein acdh-13 

-4.259 1.882E-07 Q20199 Ortholog of human sperm autoantigenic protein 17 F39H12.3 

-4.134 6.792E-05 Q9XXN0;B1V8I7 Pseudouridine synthase, mitochondrial and cytoplasmic pus-1 

-4.111 7.504E-05 Q9U299 
5'->3' exoribonuclease 2 involved in transcription 

termination 
xrn-2 

-3.907 1.776E-04 Q09488 
Ser/thr-protein kinase sma-6 orthologous to TGF-beta 

receptors 
sma-6 

-3.734 3.566E-04 P34640;H2FLF4 
Probable ATP-dependent RNA helicase DDX55 

homolog 
ZK512.2 

-3.463 2.112E-05 Q09237 Ortholog of human GRB10 interacting GYF protein 2 C18H9.3 

-3.424 2.602E-05 Q9BPN8 Uncharacterized protein Y92H12BR.3 
Y92H12B

R.3 

Table 2.3 (Continued) 
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     Log2-fold change 

(old/young) 

Significance B 

p-value 
Protein IDs Protein name/description 

Gene 

names 

-3.352 3.803E-05 A5JYX8;O18033 Ortholog of human nicalin; localized to the ER nra-2 

-3.230 1.382E-03 G5EEK8;A8WI68 SR Ca2+ ATPase homolog required for muscle function sca-1 

-3.206 8.032E-05 Q19162 Large ribosomal subunit L11 protein rpl-11.2 

-3.131 1.166E-04 O62416 One of ten lysozyme genes involved in immune function lys-2 

-2.896 3.564E-04 G5EE42 Uncharacterized protein ZK1098.11 
ZK1098.1

1 

-2.803 5.432E-04 Q19579;Q19581 
Homolog of human polyadenylate-binding protein 1 

(PABP 1) 
pab-2 

-2.689 8.960E-04 Q21874 Ortholog of human sushi domain containing 2 protein R09E10.5 

-2.657 1.028E-03 O17939 
Functions in assembly of actin filaments in embryonic 

muscle 
aipl-1 

-2.623 1.187E-03 Q19056 
 Ortholog of human phospholipase D3; ER membrane 

protein 
E04F6.4 

-2.349 6.810E-08 H9G2T4;Q21032 Isocitrate dehydrogenase [NADP-dependent] idh-1 

-1.837 1.804E-05 O17680 Probable S-adenosylmethionine synthase 1 sams-1 

-1.794 2.731E-05 Q09248 
Probable dynactin subunit 2 involved in spindle 

assembly 
dnc-2 

-1.515 3.295E-04 Q04908 26S proteasome non-ATPase regulatory subunit 3 rpn-3 

-1.454 5.424E-04 
Q9GP96;H2KZV8;Q9

GP94 
LIM domain-containing protein; member of the 

MLP/CRP family 
mlp-1 

-1.363 1.107E-03 O45499 40S ribosomal protein S26 rps-26 

2.093 9.552E-04 Q9N5N3 
Extracellular protein; C. elegans SCP/TAPS domain 

family member 
scl-12 

2.249 3.600E-04 Q9XWT3 Uncharacterized protein Y62H9A.6 
Y62H9A.

6 

2.390 6.855E-04 Q18805 Putative secreted TIL-domain protease inhibitor C53B7.2 

2.553 4.445E-05 O62289 
TransThyretin-Related family domain-containing 

protein 
ttr-51 

2.571 3.896E-05 O44145 PERMeable eggshell perm-2 

2.622 2.669E-05 B9WRT3;O01260 
Ortholog of human piezo-type mechanosensitive ion 

channel component 2 
C10C5.1 

2.674 1.802E-05 G5EDZ9 Homolog of cysteine protease inhibitors (cystatins) cpi-1 

2.719 1.275E-05 Q17802 Chondroitin proteoglycan 1 cpg-1 

2.749 1.009E-05 G5EF93 
One of five predicted C. elegans calcium-binding 

calmodulin homologs 
cal-4 

2.774 8.287E-06 Q09607 
Glutathione S-transferase-36; ortholog of human 

prostaglandin D synthase 
gst-36 

2.874 1.550E-04 Q9TZ69 Ortholog of human ubiquitin-conjugating enzyme E2K ubc-20 

3.191 2.759E-05 Q9XVQ3 Uncharacterized protein F15D3.5 F15D3.5 

3.577 2.716E-06 Q22038 Ras-like GTP-binding protein rhoA rho-1 

4.191 2.369E-06 Q93289 Uncharacterized protein C27D8.2 C27D8.2 

5.679 6.513E-21 Q8WQC4;O18147 Ortholog of human kelch-like family member 18 kel-3 

 

 

Table 2.5.  Proteomics: total weighted change for all pathways.  Associated KEGG pathways 

were identified for significantly up- and down-regulated proteins using the STRING database.  

The absolute weights were calculated for all pathways as the sum of the absolute log2-fold 

change of each protein within that pathway.  Absolute weights for down-regulated pathways and 

Table 2.4 (Continued) 
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up-regulated pathways were determined as the sum of the absolute negative and positive log2-

fold changes, respectively. 

 

  

All Pathways Absolute Weights 

All Pathways 

RNA degradation 6.91 

Base excision repair 5.99 

Calcium signaling pathway 5.98 

Spliceosome 5.44 

Glutathione metabolism 5.12 

Ribosome 4.57 

Metabolic pathways 4.19 

Ribosome biogenesis in eukaryotes 4.11 

Endocytosis 3.58 

TGF-beta signaling pathway 3.58 

Wnt signaling pathway 3.58 

Ubiquitin mediated proteolysis 2.87 

mRNA surveillance pathway 2.80 

RNA transport 2.80 

Drug metabolism - cytochrome P450 2.77 

Metabolism of xenobiotics by cytochrome P450 2.77 

Phosphatidylinositol signaling system 2.75 

Peroxisome 2.35 

Citrate cycle (TCA cycle) 2.35 

Cysteine and methionine metabolism 1.84 

Proteasome 1.51 

Up-regulated Pathway 

Endocytosis 3.58 

TGF-beta signaling pathway 3.58 

Wnt signaling pathway 3.58 

Ubiquitin mediated proteolysis 2.87 

Glutathione metabolism 2.77 

Drug metabolism - cytochrome P450 2.77 

Metabolism of xenobiotics by cytochrome P450 2.77 

Calcium signaling pathway 2.75 

Phosphatidylinositol signaling system 2.75 

Down-regulated Pathway 

RNA degradation 6.91 

Base excision repair 5.99 

Spliceosome 5.44 
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All Pathways Absolute Weights 

Ribosome 4.57 

Metabolic pathways 4.19 

Ribosome biogenesis in eukaryotes 4.11 

Calcium signaling pathway 3.23 

mRNA surveillance pathway 2.80 

RNA transport 2.80 

Glutathione metabolism 2.35 

Peroxisome 2.35 

Citrate cycle (TCA cycle) 2.35 

Cysteine and methionine metabolism 1.84 

Proteasome 1.51 
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CHAPTER 3: 

AN AUTOMATED 96-WELL PLATE RNAi SCREEN IDENTIFIES EF-HAND 

MEDIATORS OF Ca
2+

 TOXICITY IN C. ELEGANS 

 

3.1 Abstract 

 Automated high-throughput measurement of Caenorhabditis elegans viability is difficult 

without expensive equipment and presents special challenges.  For example, long-term liquid 

culture microplate-based growth of C. elegans suffers from media evaporation, when standard 

microplate lids or gas-permeable seals are used, or suffers from oxygen limitation when gas-

impermeable microplate seals are used.  To solve these problems, nematode microplate cultures 

were covered with oxygen-permeable 12.7 micron fluorinated ethylene–propylene (FEP) 

Teflon® film, which almost completely prevented media evaporation and allowed for culture for 

the entire adult lifespan without removal of the film.  The optical clarity of the FEP film also 

allowed for the endogenous fluorescence of the nematodes in each well to be measured easily 

without film removal as an indicator of viability for high-throughput screening.  To this end, the 

C. elegans green fluorescent protein (GFP)-expressing strain BC12907 was identified as having 

a fluorescence that corresponds to total live nematode volume.  Likewise, endogenous 

anthranilate fluorescence in culture was utilized as an indicator of C. elegans death.  Anthranilate 

is released from C. elegans gut granules during necrotic cell death resulting in an increase in the 

blue fluorescence over an ~8 hour period surrounding the death of the nematode.  Both GFP and 
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anthranilate fluorescence measurements were effective for monitoring the increased rate of 

nematode death when culturing C. elegans in a medium containing toxic Ca
2+

 levels.  To test the 

throughput of these assays, a targeted knockdown screen of 191 EF-hand Ca
2+

-binding domain-

containing genes was performed using the toxic Ca
2+

 culture conditions. This led to the 

identification of 7 genes as potential mediators of Ca
2+

 toxicity. 

 

3.2 Introduction 

The nematode Caenorhabditis elegans has the potential to be an excellent model 

organism for high-throughput screening [1-3].  Its small size and high fecundity make it an easy 

organism to cultivate in the laboratory, and its susceptibility to RNA interference makes it an 

excellent target for studies involving reverse genetics [2, 4].  C. elegans have a nearly transparent 

body, and the availability of strains expressing inducible fluorescent reporter genes has added to 

the utility of the organism.  We sought to adapt current screening methods to long term 

investigations of C. elegans viability using both liquid culturing techniques and automated 

fluorescence measurements.  We also sought to incorporate the use of the endogenous 

fluorescent  marker of cell death in C. elegans, anthranilate, as an additional parameter for 

assaying survival [5]. 

Liquid culturing techniques for C. elegans have several advantages over solid agar 

culturing methods.  Using liquid cultures, nematodes can be easily transferred by pipette, and the 

transparency of liquid media allows for a broader range of optically-based assays.  These 

advantages are especially desirable when designing large scale projects, and a set of standardized 

procedures for liquid culture screening have already been established [6].  As with cell culture, 

however, liquid cultures of C. elegans are subject to evaporation and screens involving liquid 
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cultures of C. elegans in 96- and 384-well plates are prone to well-to-well variations produced by 

systematic evaporation (edge effect), which is often notably pronounced along the outer wells 

[7].  Current methods to correct for this evaporation include complex data transformations, 

incubating plates in humid environments such as sealed containers with wet paper towels, and 

limiting the duration of screens to just past the C. elegans larval stages (~3 – 4 days).  Covering 

96-well plates with gas impermeable sealing tape and venting every other day to oxygenate the 

cultures has also been performed with success, but with a maximum of 18 worms per well [8], 

which is typically not enough animals per well to reliably monitor differences in worm GFP or 

anthranilate fluorescence in a microplate reader, which was one goal of our current investigation.  

Therefore, we investigated the efficacy of several gas-permeable microplate sealers at limiting 

evaporation, and in the process we discovered that fluorinated ethylene–propylene (FEP) 

Teflon® film is capable of outperforming commercially-available alternatives.  

FEP film is permeable to O2 and CO2, and acts as strong barrier against both liquids and 

microbes [9].  The film is also transparent, meaning that optical measurements can occur without 

its removal.  FEP has already been adapted for use in the long-term culture of neural cells, and 

has successfully been employed at protecting cell cultures from evaporation and contamination 

for periods longer than 9 months [9].  With proper sealing of the film to microplates, we have 

used it to dramatically restrict evaporation under arid conditions, and we have maintained liquid 

cultures of C. elegans without the necessity of shaking for aeration for the duration of the 

approximate mean wild-type lifespan of 21 days. 

Due to the utility of assaying C. elegans lifespan and the frequency of its use in 

experimentation [10-12], we also sought to develop a fluorescence-based method for estimating 

the lifespan of a culture.  We pursued the duel strategy of using the bright and ubiquitous 
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expression of green fluorescent protein (GFP) as a marker of live nematode volume and of using 

anthranilate fluorescence as an indicator of recent nematode death.  To this end, we identified the 

strain BC12907 as a candidate strain for experimentation.  BC12907 have the gene for GFP 

inserted as a stable transgene, with expression driven by the T09B4.8 promoter.  T09B4.8 is the 

C. elegans homolog of the human mitochondrial alanine-glyoxylate aminotransferase 2 gene, 

and is highly-expressed in cells of the head, hypodermis, nervous system, intestine, and body 

wall musculature of both larva and adults.  The resulting GFP expression pattern creates a bright 

green fluorescence throughout the majority of the C. elegans body.  We show that this 

fluorescence corresponds closely to the volume of individual live nematodes, and that the 

estimated total nematode volume of a culture closely corresponds to the fluorescence profiles 

obtained each day from microplate reader measurements. 

It has been known for some time that blue fluorescence increases with age in C. elegans 

cultures (peak λex = 340 nm and λem = 430 nm).  This fluorescence has been variously associated 

with increases in substances such as flavins [13], tryptophan metabolites [14], and lipofuscin (the 

oxidatively cross-linked proteins and lipids found to accumulate in lysosomes) [15, 16].  Like 

lipofuscin, this fluorescence originates primarily in specialized lysosome-like organelles in C. 

elegans, called gut granules, which are located within intestinal cells [16, 17].  The rise in 

fluorescence has been reported as biphasic, with a pronounced acceleration occurring after the 

cessation of the reproductive period when the C. elegans mortality rate begins to increase [16].  

For these reasons, the age-dependent rise in blue fluorescence has a history of use in C. elegans 

research as a marker of heath and lifespan, and has been reported to be negatively correlated with 

longevity in both long- and short-lived strains [18, 19].   
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Whether or not lipofuscin accumulates in C. elegans to an appreciable extent remains a 

matter of debate, but in 2013 Coburn et al. used HPLC and genetic analysis to identify the 

fluorescence substance as anthranilate, in the form of anthranilic acid glucosyl ester [5, 20].  

Anthranilate is a fluorescent product of the kynurenine pathway and a downstream metabolite of 

tryptophan.  In C. elegans, anthranilate accumulates in the gut granules.  Upon activation of the 

necrotic cell death pathway, increased intracellular Ca
2+

 levels activate Ca
2+

-dependent cysteine 

proteases (calpains) [21].  Activated calpains promote lysosomal lysis, which in turn lowers 

cellular pH and releases lysosomal cathepsin proteases.  Coburn et al. found that the activity of 

calpains and cathepsins led to the rupture of C. elegans gut granules, and that the altered pH and 

dilution of anthranilate into the cytosol resulted in a ~400% increase of anthranilate fluorescence 

during an ~8 hour time period surrounding the death of the organism.    

 In light of the evidence that cultures of C. elegans show an age-dependent increase in 

blue fluorescence, but individual C. elegans only show a sizable increase in the time period 

following death, the overall blue fluorescence of a culture is likely an aggregate of the recently 

deceased members.  As such, endogenous anthranilate fluorescence is likely a useful metric for 

the rate of death of C. elegans in culture.  We show that fluorescence in the blue range (λex = 360 

nm and λem = 460 nm) is correlated with the death of C. elegans in liquid culture over time.  We 

also show that profiles of anthranilate fluorescence from days 5 to 10 in culture have a tendency 

for increasing under conditions that decrease GFP fluorescence profiles, further suggesting that 

an increase in anthranilate fluorescence is associated with a loss of total live nematode volume 

for a culture.  These two finding suggest that under the right conditions, anthranilate fluorescence 

is likely a useful endogenous parameter for gaining information regarding the viability of a 

nematode culture.  
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 To demonstrate the above methods, we designed and performed a small-scale screen 

individually knocking down 191 of the Ca
2+

-binding EF-hand domain-containing genes [22] in 

the C. elegans genome by feeding RNAi technology and determining the viability of the worms 

when grown in media containing toxic levels of CaCl2.  Through these assays, we identified 7 

genes as potential mediators of the Ca
2+

 toxicity. 

 

3.3 Materials and Methods 

3.3.1 Evaporation Assay 

Every well of six 96-well plates were filled with 100 μL each of S-medium.  Three of the 

plates were covered with commercially available adhesive seals, designed to delay evaporation 

while allowing the passage of O2 (Corning® Breathable Sealing tape; AeraSeal® film; and 

Mepore® film, produced by Mölnlycke Health Care).  As positive and negative controls, one 

plate was left uncovered to represent the maximal rate of evaporation, and one plate was covered 

using Corning® CoStar™ aluminum sealing tape to prevent the passage of water vapor and O2.  

An additional plate was covered with a cut section of 0.0005 inch (12.7 micron) thick FEP 

Teflon® film, purchased from CS Hyde Company (product # 23-1/2FEP-24), and adhered to the 

top of the plate by applying rubber cement around the edges (although a 3.5 inch x 0.25 inch 

rubber band around the edge of the plate also works for FEP membrane attachment).  Once 

sealed, the plates were initially weighed, and then incubated at 20°C and 30% humidity.  The 

plates were weighed every ~24 hours for 12 days, and the change in weight per day for each 

plate was used to estimate the average loss of media volume per day due to evaporation. 

 

 



123 
 

3.3.2 Construction of Gasket-Attached FEP Teflon® Film 96-Well Plate Lids 

A scalpel was heated over a Bunsen burner, and used to remove the majority of plastic 

from the top of 96-well plate lids, leaving only a ~5 mm area around the perimeter.  A series of 

thin, rectangular gaskets were then cut from standard plastic folders.  The gaskets were coated on 

one side with Elmer’s Spray Adhesive, and pressed onto cut sections of FEP Teflon® film.  

Once dried, the gasket-attached FEP film was cut from the larger sheet, and glued to the 

underside of the prepared 96-well plate lids. 

 

3.3.3 C. elegans Culture and Alkaline Bleach Synchronization 

Prior to the assays, BC12907 (T09B4.8::GFP) C. elegans were cultured on 10 cm NGM 

agar plates seeded with HT115(DE3) bacteria.  When eggs were required to begin a new age-

synchronized culture, BC12907 C. elegans eggs were attained by alkaline bleach 

synchronization as follows:  2 mL of 6% NaOCl (Clorox®) were mixed with 1 mL of 5 M 

NaOH per 7.5 mL of concentrated C. elegans suspension, and shaken for 4 – 7 minutes until the 

carcasses dissolved, as monitored by microscopy, leaving behind eggs.  The solution was then 

diluted 5-fold with 0.1 M NaCl, and centrifuged at ~1150 x g for 2 minutes at room temperature.  

The supernatant was removed by aspiration, and the resulting pellet of eggs was washed 3 times 

by the addition of ~50 mL of 0.1 M NaCl, and centrifugation at ~1150 x g for 2 minutes at room 

temperature.  The final pellet of eggs was suspended in 15 mL of S-medium and egg 

concentration was determined by averaging the number of eggs counted in ten 10 µL drops. 
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3.3.4 GFP Fluorescence and Live Nematode Volume 

 BC12907 C. elegans eggs were then used to start a full 96-well plate liquid culture 

(Corning Costar® plates; black with clear bottoms), with ~100 eggs per well, in 90 µL of S-

medium (final volume) containing 10 mg/mL of HT115(DE3) E. coli (6.9 X 10
9
 CFU/mL).  The 

plate was then covered with a gasket-attached FEP film lid, and the sides of the plate were 

wrapped with vinyl tape to prevent evaporation through the air gap between the lid and the base.  

The plate was incubated at 20°C without shaking, and the nematodes were observed daily 

through the lid, using a dissecting microscope, in order to track the development of the larva.  

After the nematodes entered the L4 larval stage (after ~3 days) the lid and tape were temporarily 

removed and 10 µL of 4 mM 5-fluoro-2′-deoxyuridine (FUdR) was added (400 µM final 

concentration) to prevent egg-laying.  Starting on the fifth day of incubation, a single well was 

chosen and the GFP fluorescence of that well was measured using a Biotek Synergy 2 microplate 

reader (λex = 485 nm and λem = 530 nm).  The lid and tape were temporarily removed and the 

number of nematodes within the well was counted by transferring ten 10 µL drops into an empty 

10 cm plate and counting the number of C. elegans per drop using a dissecting microscope.  

Fluorescence microscope images were then taken of the drops using an EVOS® microscope 

(Advanced Microscopy Group) and a λex = 470 nm, λem = 525 nm filter set.  Movement of the 

nematodes was reduced by chilling the plate for a few minutes at -10°C.  The image processing 

software ImageJ was used to measure the length and width in millimeters of each nematode and 

calibrated based on the scale bar included in the images.  The volume for each nematode was 

calculated as for a cylinder, Length x π x 0.5 x Width
2
, and the total volume of C. elegans for the 

sample was calculated as the Average Number of Worms x the Average Volume.  ImageJ 

software was also used to measure the total corrected worm fluorescence (TCWF), using the 
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method for total corrected cell fluorescence outlined in [23].  In short, each image was converted 

to gray-scale, then every selected C. elegans was outlined, and its area and integrated density 

(IntDen) were recorded.  An area of background immediately beside the C. elegans was then 

outlined and the mean gray value for the area was recorded.  The TCWF for the C. elegans was 

calculated as IntDen – (Area x Mean of Gray Value of Background). 

 

3.3.5 High Ca
2+

 Toxicity Assays 

Eggs were collected from BC12907 C. elegans by alkaline bleach synchronization as 

described above.  The eggs were used to start 96-well plate liquid cultures (Corning Costar® 

microplates; black with clear bottoms), containing ~100 eggs/well with 10 mg/mL of 

HT115(DE3) E. coli (6.9 X 10
9
 CFU/mL) in 90 μL total volume of Ca

2+
-compatible S-medium 

(made with 10 mM HEPES buffer as a substitute for the standard phosphate buffer to prevent the 

loss of buffering capacity due to the precipitation of calcium phosphate).  The plate was then 

covered with a gasket-attached FEP film lid, wrapped with vinyl tape, and incubated at 20°C.  

After the nematodes entered into the L4 larval stage, 5 μL of 7.6 mM FUdR was added to give a 

final concentration of 400 μM FUdR.  On the fifth day, 5 μL of 2 M CaCl2 was added to the 

treated wells (versus 5 μL of H2O to the untreated wells) to yield a final concentration of 100 

mM CaCl2 in 100 μL of total volume.  A Biotek Synergy 2 microplate reader was used to 

measure GFP fluorescence (λex = 485 nm and λem = 530 nm) and anthranilate fluorescence (λex = 

360 nm and λem = 460 nm) every day until the tenth day. 
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3.3.6 Anthranilate Comparison to Live Nematodes in Culture 

Eggs were obtained as described above and used to start a full 96-well plate of liquid 

culture using a black microplate with a clear bottom. Each well contained ~300 eggs with 10 

mg/mL of HT115(DE3) E. coli (6.9 X 10
9
 CFU/mL) in 90 μL of S-medium.  The plate was 

covered with a gasket-attached FEP film lid, the periphery was sealed with vinyl tape, and the 

plate was incubated without shaking at 20°C.  A separate 96-well plate was prepared with liquid 

culture in only 10 wells, with a similar bacterial concentration and volume, but with only 1/10th 

the number of eggs-per-well (~30 eggs/well).  The plate was covered, wrapped, and incubated in 

a similar manner.  10 μL of 4 mM FUdR was added to both plates (400 µM final concentration) 

upon the larva reaching the L4 stage (~day 3).  On the fifth day, by which time the worms had 

substantially visually reduced the bacterial concentration in each well, anthranilate fluorescence 

was measured for the full plate of liquid cultures, using a Biotek Synergy 2 microplate reader 

(λex = 360 nm and λem = 460 nm), and the number of live worms in each well of the remaining 10 

wells of culture were counted.  The average of this count was then used to estimate the live 

nematodes per well in the entire plate by multiplying the average number of live C. elegans per 

well by 10.  This procedure was then performed on days 6, 7, 9, and 11. 

 

3.3.7 RNAi Gene Knockdown Screen 

RNAi clones of 131 EF-hand containing genes were obtained from the Ahringer RNAi 

library [24]. The other 60 RNAi clones to EF-hand containing genes used in this report were 

constructed in the laboratory of Dr. Monica Driscoll as outlined in [22]. The EF-hand RNAi 

library has been used previously to screen for modulators of necrosis [25].  A total of 191 

glycerol stocks of HT115(DE3) bacterial clones from the EF-hand RNAi library were used to 
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start cultures in 500 μL of LB broth, containing 100 μg/mL ampicillin, in the wells of 1 mL 

deep-well 96-well plates (n = 12; 55 clones were used for the first screen; 191 clones were used 

for the second and third screens).   Additionally, two plates were prepared as controls with 

HT115(DE3) bacteria lacking an inserted plasmid.  The plates were covered with a gasket-

attached FEP film lid and the sides were wrapped with vinyl tape.  All plates were then incubated 

at 37°C for 16 hours with shaking.  IPTG was then added to all wells at a concentration of 1 mM 

and incubated at 37°C with shaking for an additional 4 hours to induce dsRNA expression.  

Afterward, the plates were spun down for 30 minutes to pellet the bacteria and the supernatant 

was decanted.  The resulting pellets were suspended in 90 μL of Ca
2+

 compatible S-medium (see 

above) containing ~100 eggs/mL.  Once mixed, the cultures were transferred to 96-well black, 

clear-bottom plates.  The liquid cultures were then treated as outlined above for the high Ca
2+

 

toxicity assay such that half of the plated cultures (n = 6) received 100 mM CaCl2 and the other 

half received deionized H2O.   

 

3.3.8 Analysis 

Normalized fluorescence profiles were generated by dividing each fluorescence 

measurement by the fluorescence on the fifth day of liquid culture incubation.  Slopes were 

calculated as (Normalized Day 10 Fluorescence – 1)/5.  Trapezoidal integration was used to 

calculate area under curves based on normalized profiles.  GraphPad Prism version 5.01 was 

used to calculate the area under receiver operating characteristic curves, and the strictly 

standardized mean differences were calculated in Microsoft Excel as β = (μ1 – μ2)/√(σ1
2
 + σ2

2
).  

For the six replicates of each RNAi knockdown on each day, the Tukey boxplot method was 
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used to identify and remove outliers.  Graphs and r
2
 values were generated in SigmaPlot version 

11.0. 

 

3.4 Results 

3.4.1 Fluorinated Ethylene–Propylene (FEP) Teflon® Film Limits Evaporation in 

Long-Term C. elegans Liquid Cultures 

We began by examining the efficacy of several commercially available adhesive plate 

sealing films at preventing evaporation.  The selected sealers were advertised as being capable of 

limiting evaporation while allowing gas exchange between the plate and the surrounding 

environment.  Also, inspired by the success of Potter and DeMarse [9] in using 12.7 micron FEP 

Teflon® film as a protective barrier during long-term neural cell culture, we adapted this non-

adhesive film for use with 96-well plates.  Figure 3.1 shows the results of a 12-day evaporation 

assay.  A series of 96-well plates were filled with 100 μL per well of S-medium, covered with a 

specific type of seal, and weighed.  The plates were then stored at 20°C in an arid location (an 

incubator with an internal environment of 30% humidity) for 12 days.  The plates were weighed 

each day to assess the total amount of liquid lost per plate.  For comparison, one plate was 

covered with aluminum sealing tape, which acts as a complete barrier against the transfer of 

liquid or gas.  Of the commercially available sealers, Mepore® film from Mölnlycke Health Care 

proved to be the most effective, limiting evaporation to just 7.6% (730 μL per plate) per day.  

However, the application of FEP film, sealed around the outside edges of the plate with rubber 

cement, was 19 times more effective than Mepore® film, limiting evaporation to just 0.4% per 

day (38.4 μL for the entire plate, or 0.4 μL per well if distributed evenly), and was nearly as 

effective as aluminum sealing tape.  This low rate of evaporation was for an arid environment, 
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and represents a much worse case than our average non-regulated incubator humidity of 50–

80%. 

Given this result, we developed a gasket-attached FEP film lid design that we 

subsequently employed in our C. elegans assays (Figure 3.2), and adhered to plates by sealing 

the edges with vinyl tape.  12.7 micron FEP film has the extra benefit of being highly permeable 

to both O2 and CO2, and the film is commonly used as a water-proof barrier in dissolved-oxygen 

probes.  FEP is also optically transparent, meaning that it can be left in place during optical 

measurements of 96-well plates, and it is also impermeable to microbes.  As a consequence, we 

found that liquid cultures of C. elegans can grow successfully in a 12.7 micron FEP covered 

plate for the approximate mean C. elegans lifespan (~3 weeks) with only negligible evaporation.   

Furthermore, the cultures can be maintained without shaking the plate for aeration, as long as the 

per-well culture volume is not overly deep (we successfully use 100 μL) and the number of C. 

elegans per well is not above 300 nematodes. With shaking, we have successfully used 200 μL 

volumes. 

 

3.4.2 Fluorescence of the GFP-expressing Strain BC12907 is Associated with Both 

Number and Volume of Live C. elegans in Liquid Culture 

 The two to three week mean lifespan of wild-type C. elegans make them a desirable 

model for quickly investigating factors that affect health and aging.  However, both manual and 

automated methods for scoring living C. elegans currently require microscopy [26-28] and 

incorporating lifespan analysis into high-throughput screens can be labor intensive [8].  In an 

effort to simplify the process, we investigated the use of fluorescence markers that might 

correspond to the quantity of living or dead C. elegans in a culture at a variety of ages.  As an 
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initial step, we searched the Caenorhabditis elegans Expression Pattern database 

(http://gfpweb.aecom.yu.edu/) for promoter::GFP fusion-expressing strains that strongly and 

ubiquitously exhibit both larval and adult GFP fluorescence.  After ordering several candidate 

strains form the Caenorhabditis Genetics Center, we chose to focus on an especially bright strain, 

BC12907 dpy-5(e907) with GFP expression driven by the promoter for T09B4.8 (a homolog for 

human mitochondrial AGXT-2 alanine-glyoxylate aminotransferase-2 gene) as an integrated 

transgene [29, 30].   

 Fluorescence microscope images, GFP microplate reader fluorescence measurements, 

and a visual count were taken of live and dead C. elegans from an age-synchronized liquid 

culture daily for 3 weeks.  The image processing software ImageJ was use to estimate the length 

and width of each imaged live C. elegans, which was used to calculate an estimated average 

body volume for each day, assuming the body shape for C. elegans to be approximately 

cylindrical (Figure 3.3, Figure 3.4, and Figure 3.5).  ImageJ was also used to calculate the total 

corrected worm fluorescence (TCWF) as adapted from [23] for both live and dead C. elegans, 

and was used as an estimate for both group’s average relative GFP fluorescence.  The total 

volume of live C. elegans for each daily sample was estimated as the average body volume per 

nematode multiplied by the total number of living nematodes scored in that sample (Figure 3.6).  

Figure 3.7A shows the positive association between GFP fluorescence measured in the 

microplate reader and the total estimated C. elegans body volume per sample (volume per 

nematode x live nematodes per sample).  Figure 3.7B shows a similar positive relationship 

between GFP fluorescence and the total number of live nematodes per sample after the fifth day 

of the lifespan.  Prior to the fifth day (which approximately corresponds to the second day of C. 

elegans adulthood) the small size of the nematodes causes the relationship to degrade.  
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Fluorescence microscopy revealed C. elegans scored as dead to have a non-negligible GFP 

fluorescence (TCWF/volume), but their average GFP fluorescence was significantly less than 

that measured in live nematodes (Figure 3.8). 

 

3.4.3 An Altered GFP Fluorescence Profile is a Marker of Shortened Lifespan in C. 

elegans Treated with 100 mM CaCl2. 

Lifespan reduction by treatment with high levels of CaCl2 is an easy and inexpensive 

demonstration of metal toxicity in C. elegans [31].  The addition of 100 mM CaCl2 to adult C. 

elegans on the fifth day of culture results in a nearly 40% reduction in mean lifespan, with 98% 

of the initial fifth-day population dead by the tenth day (Figure 3.9A).  We followed the changes 

in GFP fluorescence from days 5 to 10 for a series of CaCl2-treated and untreated liquid cultures 

of C. elegans (n = 58 for both groups, with ~100 nematodes per well).  The resulting mean 

profiles show a distinct difference in the trajectory of GFP fluorescence for both groups over the 

course of 5 days (Figure 3.9B).  This difference can be quantitated as both slope (from day 5 to 

day 10), and as the area under the curve (AUC) as shown in Figure 3.9C and Figure 3.9D.  Slope 

and AUC appear to be relatively robust methods of differentiating between treated and untreated 

samples, with the slopes of both groups showing a strictly standardized mean difference (SSMD) 

of 2.75, suggesting a strong effect size, and a receiver operating characteristic (ROC) curve area 

of 0.98 (standard error ± 0.013; p-value < 0.0001), indicating a low false-positive rate for 

differentiation between the two groups at 3.4%.  Likewise, comparison of AUC yields an SSMD 

of 2.1 and an ROC area of 0.96 (standard error ± 0.024; p-value < 0.0001), with no significant 

difference in the false-positive rate between the slope and AUC methods of comparing GFP 

profiles. 
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3.4.4 GFP Slope and AUC Identify Genetic Targets as Potential Effectors of High 

Ca
2+

 Toxicity in C. elegans. 

Using an RNAi library of 191 bacterial clones targeting Ca
2+

-binding EF-hand-containing 

genes, we performed a screen for targets that might mediate high Ca
2+

 toxicity in C. elegans.  

RNAi bacterial clones were grown and fed to C. elegans in liquid culture and 100 mM CaCl2 

was added on the fifth day of the lifespan.  The GFP fluorescence profiles from days 5 to 10 

were used to calculate mean slopes and AUCs for gene knockdown, which were then evaluated 

by z-score based on the non-RNAi CaCl2-treated controls.  Higher positive z-score values were 

interpreted as likely representing more live worms in culture during the 5 day period.  As 

expected, slope and AUC calculations produced similar z-scores for individual knockdowns 

(Figure 3.10).   

Initially to test the efficacy of the screen, a subset of 55 RNAi clones were randomly 

chosen and screened.  Then the complete 191 clone CaCl2-treated RNAi gene knockdown library 

was screened twice, each time with a different 96-well plate location to guard against residual 

systematic errors due to an edge effect (Table 3.1).  An average z-score was calculated for each 

knockdown from the three screens for both GFP slope and GFP AUC resulting in a refined list of 

knockdowns associated with a z-score greater than +2 (6 genes based on slope and 11 genes 

based on AUC).  The list was also further refined by calculating the average z-scores for all three 

screens for the slope and AUC combined in an attempt to identify the strongest overall effects.  

The resulting list of the RNAi targets with a z-score of greater than +2 was reduced to 7 genes: 

T04F8.6, ZK673.7 (tnc-2), C09H5.7, C04B4.2, C47A4.3, F53F4.14, and K04F1.10 (irld-40). 
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A similar group of RNAi-fed C. elegans were screened without CaCl2 to identify any 

potentially toxic gene knockdowns and to determine if any gene knockdown increased viability 

independently of the added CaCl2.  Results are shown in Table 3.2.  In the absence of CaCl2, we 

show that F53F4.14 knockdown led to a total averaged z-score of 1.66, the second largest value 

for any gene knockdown.  Knockdown of C47A4.3 also led to the ninth highest total averaged z-

score of 1.38. This suggests that when these genes are knocked down some of the protection 

from Ca
2+

 toxicity may be Ca
2+

-independent and result from a general increase in lifespan.  An 

analysis of the total averaged z-scores for all knockdowns comparing the effect in the presence 

of CaCl2 to the effect in the absence of CaCl2 only showed a modest correlation (r
2 

= 0.28).  If 

only examining the averaged GFP AUC z-score results (not the GFP slope z-score results) in the 

absence of CaCl2, knockdown of the rsef-1 (Ras and EF-hand domain containing homolog, 

C33D12.6) gene increased fluorescence over the z-score threshold of 2.0 (z-score=2.20).  C. 

elegans rsef-1 is an ortholog of human RAB44, a member of the Ras oncogene family. Future 

studies should be conducted to verify the effect of knockdown of rsef-1 on lifespan.  

 

3.4.5 Increased Anthranilate Fluorescence is Associated with 100 mM CaCl2-

treatment of C. elegans in Culture 

 In an effort to benefit from another potentially useful marker of nematode viability for 

high throughput screening purposes, we examined the utility of measuring anthranilate 

fluorescence.  Anthranilate is a metabolic product of tryptophan that is stored in C. elegans 

intestinal organelles known as gut granules.  Upon activation of the necrotic cell death pathway, 

gut granule membrane integrity is compromised and the resulting change in cellular anthranilate 

localization (as well as a change in the pH of anthranilate) activates the natural blue fluorescence 
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of the molecule (peak λex = 340 nm and λem = 430 nm).  In culture, individual nematodes 

experience a ~400% increase in anthranilate-associated fluorescence that begins ~2 hours before 

death, and ends ~6 hours after death [5].  The 8 hours total spike in fluorescence can be 

measured as a trend toward increasing blue fluorescence over the lifespan of an entire C. elegans 

culture, presumably as an aggregate of the fluorescence of recently dead members.   

Accordingly, the fluorescence of C. elegans liquid cultures is inversely associated with the 

number of living nematodes over time (r
2
 = 0.95; Pearson correlation = -0.97; Figure 3.11). 

 We measured the blue fluorescence on days 5 through 10 during the high Ca
2+

 RNAi 

screen described above using a blue fluorescence filter set (λex = 360 nm and λem = 460 nm) 

under the assumption that a shallower slope and a smaller AUC than controls would be 

indicative of a lower rate of death for the cultured C. elegans.  The resulting differences in 

fluorescence profiles for slope and AUC (Figures 3.12A) revealed a promising degree of 

sensitivity for the differentiation between treated and untreated cultures (an ROC area of 0.95 ± 

0.2 for slope comparisons, and 0.97 ± 0.1 for AUC comparisons), but a moderate effect size as 

indicated by SSMD calculations (1.2 for both slope and AUC).  Furthermore, the variation in 

anthranilate profiles among the CaCl2-treated RNAi knockdowns was small in comparison to the 

non-RNAi group (Figure 3.13), and while the majority of knockdowns had lower slopes and 

smaller AUCs than the mean CaCl2-treated controls, none of the knockdowns achieved a z-score 

greater than 2 standard deviations from the control mean (Table 3.3).  However, averaging the 

absolute z-scores for anthranilate fluorescence for each gene knockdown with the z-scores for 

GFP fluorescence yielded a similar ordering of knockdowns with respect to overall effect with 

all 7 hits from the GFP screen being in the top 8 hits in the averaged data set (Table 3.1).  

Interestingly, the relationship between GFP fluorescence and anthranilate fluorescence followed 
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the hypothesized pattern (smaller GFP fluorescence slopes and AUCs were associated with 

larger anthranilate fluorescence slopes and AUCs), but there was large variation between the two 

parameters for individual gene knockdowns (r
2
 = 0.29; Figure 3.12B). 

 We then performed a similar screen, once again monitoring anthranilate fluorescence, but 

this time adding deionized water instead of CaCl2 to the wells to determine the Ca
2+

 dependence 

of the viability measurements (Table 3.4).  The knockdown yielding the largest increase in 

viability according to this analysis (total averaged z-score = -1.66), although not reaching the -2 

cutoff for being classified as a hit, was the C24H11.2 serine/threonine protein phosphatase gene.  

Strikingly many of the same knockdowns were observed to be among the best at increasing 

viability as determined by decreased anthranilate fluorescence in the presence and absence of 

CaCl2, suggesting that knockdown of these clones may extend lifespan independently of the 

CaCl2.  These knockdown clones include Y105E8A.7 (eat-18), C02F4.2 (tax-6 or calcineurin A), 

C47C12.4 (mitochondrial rho GTPase miro-2), Y9D1A.2 (predicted RNA helicase) and C36E6.5 

(myosin light chain mlc-2).  Supporting this data, RNAi to calcineurin A (tax-6) is known to 

extend lifespan [32].  It is also likely that eat-18 and mlc-2 knockdowns increase lifespan 

through dietary restriction as these genes are known to be essential for normal pharyngeal 

pumping.  A little unexpectedly, there was almost no overall correlation when comparing the 

total average z-scores from anthranilate fluorescence measurements in the absence and presence 

of CaCl2 (r
2
 = 0.04).  In addition, when comparing the total averaged z-scores for the GFP 

measurements versus those from the anthranilate measurements in the absence of CaCl2, there 

was also not much correlation (r
2
 = 0.03; Pearson correlation = 0.17).  However, one noticeable 

feature was the presence of the proline dehydrogenase gene, B0513.5 near the top of both lists, 

suggesting increased viability with this knockdown.  When examining the total averaged z-score 
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including GFP and anthranilate as shown on Table 3.2, in addition to the proline dehydrogenase 

gene knockdown, the knockdowns giving the biggest increases in viability in the absence of 

CaCl2 included the mitochondrial rho GTPase miro-2, and cal-1, one of five C. elegans 

calmodulin homologs.   

 

3.5 Discussion 

3.5.1 Novel Methods for Long Term Culture and Automated Monitoring of Worm 

Viability 

We successfully adapted a method previously used in the long term culture of neural cells 

for use in maintaining microplate cultures of C. elegans nematodes.  Once sealed onto a 

microplate, 12.7 micron FEP Teflon® film acts as a waterproof barrier that allows O2 and CO2 to 

permeate well enough to maintain aerobic cultures.  From our comparisons, we determined that 

FEP film greatly outperforms several common commercially available brands of waterproof 

plate sealers at reducing evaporation in arid environments.  We were reliably able to maintain C. 

elegans cultures at 20°C for the approximate length of a C. elegans lifespan (3 weeks) without 

substantial evaporation.  Furthermore, with moderate liquid culture volumes (below ~150 μL per 

well in 96-well plates), we were able to grow cultures of between 100 and 300 nematodes 

without shaking the microplate for aeration and only removing the FEP film when adding 

reagents to the wells.  The optical transparency of FEP film also allowed us to take periodic 

fluorescence measurements of liquid cultures while leaving the film in place, which greatly 

reduces the potential introduction of contamination into the cultures. 

By simply browsing the Caenorhabditis elegans Expression Pattern database 

(http://gfpweb.aecom.yu.edu/), we were able to identify multiple strains of C. elegans with 
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ubiquitous expression of GFP in both larva and adults.  We chose to work with one particular 

strain, BC12907, due to its large magnitude of fluorescence.  We found that the overall GFP 

fluorescence of BC12907 positively corresponds to the approximate total volume of live 

nematodes in liquid culture as determined by both microscopy and microplate reader 

measurements.  We used this fluorescence measurement as an approximation of the volume of 

worms in a culture, but presumably it could also be used as a normalizing factor for comparing 

other parameters across multiple cultures.  These findings likely apply to any C. elegans strain 

exhibiting bright and ubiquitous fluorescence in adulthood and should not be limited to the 

BC12907 strain. 

 

3.5.2 An Automated RNAi Screen Identifies Mediators of Ca
2+

-Induced Worm 

Death 

We then setup a small scale screen to examine the profile of GFP fluorescence over time 

and compared normal and toxic conditions.  We used 100 mM CaCl2 treatment as an established 

model of metal toxicity in C. elegans [33], but high Ca
2+

 may also induce a type of premature 

aging in the nematodes, as a Ca
2+

 wave spreads down the intestine as part of the normal 

organismal death program [5].  To avoid issues such as low total fluorescence, the potential 

interfering aspects of initially high E. coli concentrations, and altered developmental rates in 

toxic conditions, we chose to start CaCl2 treatment and GFP fluorescence measurements on the 

fifth day of each culture.  Daily GFP fluorescence measurements from the start of treatment until 

the tenth day of culture revealed fluorescence profiles that matched expectations.  The 100 mM 

CaCl2-treated group exhibited significantly decreased slopes and AUCs compared to untreated 

nematodes (p < 0.0001 for both parameters), which suggests a decrease in the total volume of 
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live C. elegans in the treated cultures due to a higher rate of death.  RNAi knockdowns from a 

library of EF-hand domain-containing genes resulted in the improvement of these two metrics 

(increased GFP slope and AUC) by more than 2 standard deviations (z-score greater than 2) for 7 

RNAi clones. 

Further investigation is needed for the 7 genes targeted by these clones as many of these 

genes likely play a role in mediating Ca
2+

-induced toxicity in C. elegans.  Notably, of these 

seven, three are uncharacterized and lack a strong human homolog (T04F8.6, C04B4.2, and 

F53F4.14), although F53F4.14 shows a weak homology with human UPF0667 protein C1orf55.  

However, results suggest that a portion of the viability afforded by F53F4.14 knockdown was 

independent of the presence of CaCl2.  Two genes (C47A4.3 and C09H5.7) encode catalytic 

subunits of serine/threonine-protein phosphatases that are homologous to those from human 

protein phosphatase 1 (PP1-β and PP1-γ respectively), protein complexes implicated in a broad 

range of activities, including mitosis, muscle contraction, glycogen metabolism, protein 

synthesis, and the progression of apoptosis [34, 35].  However, the increased viability observed 

with C47A4.3 knockdown may also be partially independent of CaCl2. Another protein 

phosphatase gene, Y40H4A.2, a C. elegans homolog of the catalytic subunit of human PP1-α, 

was also nearly a hit in our screen monitoring GFP fluorescence (total averaged z-score of 1.79 

in Table 3.1), but did not make the final list due to the z-score criteria of 2 chosen to avoid false 

positives.  Therefore, protein phosphatases may play an especially important role in mediating 

Ca
2+

-induced worm death, but this is not all that surprising since 21% (41 out of the 191) of the 

genes targeted in the EF-hand RNAi library are predicted to be protein phosphatases or subunits 

of these complexes. This is highly overrepresented as protein phosphatase genes only compose 

around 1% of the genes in the C. elegans genome. 
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One of the hits K04F1.10 (irld-40 or Insulin/EGF-Receptor L Domain protein) contains 

an EGF receptor domain.  EGF receptor signaling has been shown to control lifespan in C. 

elegans through Ca
2+

/IP3 receptor and phospholipase C-3 (PLC-3) dependent mechanisms [36].  

Another phospholipase C isoform, plc-2 (Y75B12B.6), was very close to being a hit in our 

screen monitoring GFP fluorescence (total averaged z-score of 1.77 as shown in Table 3.1). The 

remaining hit in the screen, ZK673.7 (tnc-2, encodes a pharyngeal-specific form of troponin C.  

It is conceivable that knockdown of tnc-2 could interfere with contraction of the C. elegans 

pharyngeal pump, which would in turn slow the ingestion of CaCl2 from the surrounding media, 

thus lessening the severity of Ca
2+

-induced toxicity. It is striking that knockdown of the pat-

10/tnc-1 gene (F54C1.7) encoding body wall muscle troponin C had the opposite effect, strongly 

trending toward increasing worm death in the presence of CaCl2. 

 

3.5.3 Anthranilate Fluorescence as a Marker of Worm Death 

Anthranilate fluorescence likely serves as an endogenous indicator of worms that have 

recently died in culture and attempts to utilize anthranilate fluorescence in a similar manner as 

GFP fluorescence initially looked promising.  100 mM CaCl2-treated cultures had profiles of 

daily anthranilate fluorescence with slopes and AUCs significantly greater than untreated 

cultures, suggesting a higher rate of C. elegans death, which is in agreement with our GFP 

results.  RNAi knockdown of EF-hand-containing genes on average produced fluorescence 

profiles with lower slopes and AUCs, indicative of a decreased rate of death, but the magnitude 

of the effect proved to be small.  None of the calculated slopes or AUCs showed an improvement 

beyond 2 standard deviations from the mean, although averaging the z-scores from these 

parameters with the z-scores obtained from GFP measurements indicated the 7 hits when only 
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measuring GFP are all included in the top 8 hits when averaging both data sets together.  The 

additional averaged top hit in this set of 8 genes is the W08D2.7, the mtr-4 RNA helicase gene 

(see Table 3.1).  It is possible that the anthranilate fluorescence of a culture, being an aggregate 

of only the recently-dead members, is not as sensitive of an indicator of toxicity as is the GFP-

based fluorescence of live nematode volume.  In hindsight, anthranilate fluorescence might also 

not have been ideal for use with assays of Ca
2+

-induced toxicity and knockdowns of Ca
2+

-

binding genes.  The release of anthranilate from C. elegans gut granules, which is a necessary 

precursor to the ~400% burst of fluorescence, is reliant on functional Ca
2+

 signaling within the 

nematode [5].  Possible manipulation of that signaling through both high Ca
2+

 levels and the 

knockdown of Ca
2+

-binding genes may alter the release of anthranilate from the intestinal gut 

granules and compromise its use as an indicator of organismal death. 

 

3.5.4 Bacterial Autofluorescence Significantly Contributes to Microplate Reader 

Fluorescence Measurements 

A downside to the use of microplate reader measurements for high-throughput screening 

with C. elegans is the reliance on bacteria as a food source, especially for traditional feeding 

RNAi-based assays.  E. coli exhibits autofluorescence in both the blue and green fluorescence 

ranges, which greatly undermines efforts to accurately assess GFP and anthranilate fluorescence 

using microplate-based detection methods.  To make matters worse, depending on the 

concentration of bacteria present and the size and number of live nematodes in culture, the 

autofluorescence of E. coli can completely dominate the fluorescence measurements obtained.  

Additionally, this autofluorescence often increases for a given concentration of E. coli over the 

course of several days as the bacteria adjust to the conditions of the S-medium (see Figure 3.14).  
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We initially attempted to design protocols for correcting measurements to compensate for the 

fluorescence of bacteria in C. elegans liquid cultures using bacterial standards of known 

concentrations and the absorbance at 600 nm of the culture (which is equivalent to an OD600 nm 

measurement for bacterial turbidity).  These efforts were complicated by the changing 

absorbance of E. coli over time in S-medium and by the changing contribution of C. elegans to 

600 nm absorbance as they increased in size with age (data not shown).  Ultimately, we settled 

on adjusting the initial concentration of bacteria and C. elegans in our cultures such that the 

wells were nearing a visual clearance of bacteria during the first fluorescence measurement on 

day 5 of the lifespan.  The major drawback to this compromise is that the worms may likely have 

undergone dietary restriction during the of the fluorescence measurements.  C. elegans is quite 

hardy and can live its entire adulthood without food as long as it is well-fed during the larval 

stages [37].  But, E. coli can also easily be re-added to the wells in between fluorescence 

measurements.  The restoration of C. elegans to the fully fed state would likely reverse any 

temporary effects that the dietary restriction had on metabolism or stress resistance as the effects 

of dietary restriction have been shown to be reversible [38].  A goal of future work is to develop 

automated techniques to measure viability of worms feeding ad libitum.  Perhaps this could be 

accomplished by growing E. coli in media that minimizes autofluorescence or by using a C. 

elegans strain expressing a different fluorescent protein, one which emits at a wavelength where 

E. coli autofluorescence does not so readily interfere with the measurements.  

 

3.6 Conclusion 

We demonstrated that liquid cultures of C. elegans can be maintained for long term with 

negligible evaporation by covering and sealing microplates with 12.7 micron FEP Teflon® film.  
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The film permits the passage of gasses, which when combined with a low culture volume per 

well allows for adequate aeration without shaking.  The transparency of FEP also permits optical 

measurements to be performed on the sealed plates.  Daily measurement of the green 

fluorescence of the GFP-expressing strain BC12907 was shown to correspond to the total 

volume of live nematodes per well and is reflective of the viability of the entire culture under 

conditions of Ca
2+

-induced toxicity.  Through the analysis of the loss of GFP fluorescence 

following CaCl2 addition and by screening an RNAi knockdown library of genes containing an 

EF-hand Ca
2+

-binding motif, we were able to identify gene knockdowns having a z-score greater 

than 2.0 to identify genes that potentially mediate Ca
2+

 toxicity.  Anthranilate fluorescence, 

although clearly showing promise as an indicator of nematode death, did not show as large of 

changes in fluorescence on average in the knockdown clones following CaCl2 addition as 

compared to the changes observed in GFP fluorescence.  Therefore the anthranilate 

measurements were not as informative in identifying clones protecting from Ca
2+

 toxicity. 
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3.9 Figures 

 

 
 

Figure 3.1.  Effects of different 96-well plate seals on the rate of evaporation.  Five different 

methods were examined for sealing 96-well plates.  Each plate was filled with an approximate 

mass of 9.6 g of S-media, and incubated in an arid environment (30% humidity).  The average 

percent evaporation per day was calculated by measuring the difference in weight of each plate 

per day over a period of 12 days.  FEP® Teflon film allowed the least amount of evaporation of 

the gas-permeable seals. 
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Figure 3.2.  Photograph of gasket-attached FEP film lids.  The lids were constructed fixing a 

rectangular gasket (cut from sheets of thick plastic) to a square of FEP film with adhesive.  The 

gasket-film combinations were then glued onto the underside of 96-well plate lids, from which 

the majority of the top plastic surface had been removed with a hot scalpel.  Once placed on top 

of a microplate, air flow could be completely restricted to the plate, except by passage through 

the FEP film by, by wrapping the outside edges of the plates with vinyl tape.  The durability of 

FEP film makes it amenable to cleaning by washing with deionized water, and sterilization by 

cleansing with 70% ethanol.  Cleaned plates could then be dried in a sterile environment and 

reused. 
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Figure 3.3.  The average length (mm) of live C. elegans in liquid culture.  Each day the image 

processing software ImageJ was used to calculate the lengths of C. elegans in liquid culture 

based on photographs of microscope images.  For each daily series of images a microscope-

generated scale bar of 1 mm was used to calibrate the length measurements.  The number of 

worms measured each day varied between 3 and 13, with a mode of 8.  Error bars represent the 

standard error of the mean. 

 

 
 

Figure 3.4.  The average width (mm) of live C. elegans in liquid culture.  As with the length 

measurements, the average C. elegans width for each day was determined by using ImageJ to 

measure the width of multiple nematodes.  ImageJ measurements were done on microscope-

generated images containing a 1 mm scale bar for daily software calibration.  The number of 

worms measured each day varied between 3 and 13, with a mode of 8.  Error bars represent the 

standard error of the mean. 
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Figure 3.5.  The estimated volume (μm
3
) of individual live C. elegans in liquid culture.  The 

daily estimate of the average volume of a C. elegans from that sample was calculate using the 

average length and average width from that day (length x π x 0.5 x width
2
).  This estimate 

assumes an approximately cylindrical C. elegans body shape.  Error bars represent the standard 

error of the mean. 

 

 
 

Figure 3.6.  The rise and fall of the cumulative volume of live C. elegans in culture over the 

course of 21 days.  On each day, the total volume of live C. elegans in that sample 

(corresponding to an estimate of the total mass of nematodes in that sample) was estimated by 

multiplying the estimated volume of a C. elegans worm in that sample by the number of live 

worms counted in that sample.  The black line represents the fourth order polynomial trend line 

(20222x
4
-622952x

3
-342367x

2
+104484730x-128931789). 
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Figure 3.7.  Association between GFP and both the number and volume of C. elegans in 

liquid culture.  Individual samples were assessed from day 1 (24 hours after alkaline bleach 

synchronization) to day 23 in liquid cultures of C. elegans.  (A)  Total estimated volume per 

sample (μm
3
) was calculated as the average volume per nematode on each day (length x π x ½ 

width
2
) multiplied by the number of live worms scored in that day’s sample (volume x number of 

live C. elegans).  There is a strong positive association between GFP fluorescence (λex = 485 nm 

and λem = 530 nm) and the total estimated volume per sample for each day (r
2
 = 0.81; Pearson 

correlation = 0.90).  (B)  Similarly, as the total number of live nematodes per sample declined 

over the 23 day period, GFP fluorescence and the number of live worms per sample showed a 

strong positive association (r
2
 = 0.83; Pearson correlation=0.91), but only for C. elegans from 

day 5 and beyond.  Before day 5, the high number of live C. elegans per sample and the small 

size of the nematodes did not fit the same linear trend. 

 

 
 

Figure 3.8.  Dead C. elegans possess a lower degree of GFP fluorescence.  The average GFP 

fluorescence per nematode (λex=470 nm and λem=525 nm) for the entire 21 day period, for both 

live and dead C. elegans, was estimated by averaging the TCWF/volume for both groups (p < 

0.001). 
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Figure 3.9.  100 mM CaCl2 treatment decreases lifespan and alters the GFP profile of 

BC12907 C. elegans.  (A) 100 mM CaCl2 treatment at day 5 (day 2 of adulthood) decreased 

mean lifespan by 37% compared to the untreated control (7.8 days mean CaCl2-treated lifespan; 

12.4 days mean untreated lifespan; Log-Rank p < 0.001).  (B)  Mean GFP fluorescence (λex = 

485 nm and λem = 530 nm) profiles expressed as percent of day 5 fluorescence.  CaCl2-treatment 

resulted in a pronounced decrease in GFP fluorescence over the 5 day period as compared to the 

untreated samples.  The dotted lines represent the upper and lower 99% confidence intervals for 

both groups (n = 58 wells for both groups; ~100 nematodes per well).  (C)  Boxplot comparison 

of the slopes for each of the CaCl2-treated and untreated samples, calculated as (GFP Day 10 – 

GFP Day 5)/5 (p < 0.0001).  (D)  Boxplot comparison of the area under the curve (AUC) for 

each of the CaCl2-treated and untreated samples (p < 0.0001). 
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Figure 3.10.  Consistency between z-scores of slopes and AUCs.  The differences among z-

scores of slopes and AUCs among CaCl2-treated RNAi gene knockdowns compared to non-

RNAi CaCl2-treated nematodes varies linearly across the observed range (r
2
 = 0.93; Pearson 

correlation=0.97).  This linear relationship indicates a high degree of similarity between the two 

methods of describing GFP fluorescence profiles (λex=485 nm and λem=530 nm). 

 

 
 

Figure 3.11.  Anthranilate fluorescence increases with decreasing nematode population 

over time.  The number of live C. elegans in liquid culture decreased over a period of 7 days 

(day 5 – day 11) as blue fluorescence increased (λex=360 nm and λem=460 nm; n = 10 wells for 

visual scoring of live nematodes; n = 96 wells for fluorescence measurements by the microplate 

reader).  Error bars represent the standard error of the mean. 
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Figure 3.12.  Anthranilate Fluorescence Profile.  (A) The change in anthranilate fluorescence 

(λex = 360 nM and λem = 460 nm) on each day, from days 5 through 10, normalized to the 

fluorescence on day 5 for each group (n = 58 wells; ~100 nematodes per well).  Anthranilate 

fluorescence increased with time in both groups, but increased at a faster rate in the group treated 

with 100 mM CaCl2, presumably as an indication of an increased rate of death for the C. elegans 

in those cultures.  (B) The relationship between the slope of GFP fluorescence and the slope of 

anthranilate fluorescence (r
2
 = 0.29; Pearson correlation = -0.54; n = 58 wells; ~100 worms per 

well).  Lower GFP fluorescence slopes, which correspond to a faster decrease of live C. elegans 

volume in culture, tend to have greater anthranilate slopes, although a large degree of variation 

per well was observed between the two parameters. 

 

 
 

Figure 3.13.  RNAi gene knockdowns treated with CaCl2 have reduced variation compared 

to CaCl2-treated controls.  A comparison of the normal curves for each of the four treatment 

groups.  RNAi gene knockdown C. elegans exhibited only ~26% of the variation (σ = 0.0095) of 

the non-RNAi CaCl2-treated controls (σ = 0.0371).  Furthermore, all but one of the 191 CaCl2-

treated RNAi knockdowns exhibited a lower anthranilate fluorescence slope than the mean of the 

non-RNAi CaCl2-treated control. 
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Figure 3.14.  Bacterial autofluorescence.  The bacterial autofluorescence in the green (λex=485 

nm and λem=530 nm) and blue ranges (λex=360 nm and λem=460 nm) for 10 mg/mL E. coli tend 

to increase over the first several days in S-media cultures. 

 

3.10 Tables 

 

Table 3.1.  GFP viability measurements to find EF-hand effectors of high Ca
2+

 toxicity in C. 

elegans.  To determine hits the z-score for both GFP slope and GFP AUC were calculated (n = 6 

wells per RNAi clone; ~100 nematodes per well; λex=485 nm and λem=530 nm).  Averages were 

calculated as the average z-score of the three screens utilizing 191 genes, 191 genes, and 55 

genes, respectively. For GFP measurements, higher z-scores indicate increased viability.  When 

calculating the total averaged z-scores including anthranilate, the z-scores from GFP were added 

to (-1) times the z-scores for anthranilate slope and anthranilate AUC since negative z-scores 

indicate increased viability in the anthranilate measurements.  Z-scores highlighted in yellow are 

greater than ± 2 standard deviations from the mean of the control. 
 
 
  

    
  

  GFP - CaCl2 added     

Gene name 
Averaged 

AUC z-
score 

Averaged 
slope z-

score 

Total 
averaged z-

score 

Total averaged z-
score including 

anthranilate 
Gene description 

T04F8.6 2.63 2.43 2.53 1.41 Similar to F59A2.6 

C09H5.7 2.56 2.15 2.35 1.32 Serine/threonine protein phosphatase 

ZK673.7 2.50 2.05 2.27 1.56 Troponin C 

F53F4.14 2.13 2.34 2.23 1.28 Similar to F36H12.3 (major sperm protein) 

C47A4.3 2.28 2.13 2.21 1.42 Serine/threonine protein phosphatase 

C04B4.2 2.25 2.03 2.14 1.32 Similar to C04B4.4 and LIN-66 

K04F1.10 2.36 1.89 2.12 1.31 IRLD-40 (Insulin/EGF-Receptor L Domain protein ) 

W08D2.7 2.16 1.78 1.97 1.35 yeast MTR (mRNA transport) homolog 

Y40H4A.2 2.25 1.50 1.88 1.08 Serine/threonine-protein phosphatase 

Y75B12B.6 2.08 1.66 1.87 1.08 Phospholipase C 

C03A7.13 2.08 1.53 1.81 1.22 
UDP-glucuronosyl/UDP-glucosyltransferase domain 

containing protein 

C27B7.6 1.93 1.57 1.75 1.27 Putative serine/threonine-protein phosphatase 
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  GFP - CaCl2 added     

Gene name 
Averaged 

AUC z-
score 

Averaged 
slope z-

score 

Total 
averaged z-

score 

Total averaged z-
score including 

anthranilate 
Gene description 

T06E6.1 1.78 1.64 1.71 1.14 Similar to human WDR-74 

F11C7.4 1.96 1.44 1.70 1.27 Drosophila Crumbs homolog 

F38H4.9 1.79 1.57 1.68 1.24 LET-92 homolog of protein phosphatase PP2AC 

B0513.5 1.53 1.84 1.68 0.98 Proline dehydrogenase, mitochondrial 

B0348.4 1.84 1.41 1.62 0.72 
Egg Laying defective; EGL-8 encodes a phospholipase C 

beta 

F23B12.1 1.65 1.58 1.61 0.97 Serine/threonine protein phosphatase 

C56G7.1 1.67 1.37 1.52 0.89 MLC-4 Myosin Light Chain 

C54E10.2 1.46 1.31 1.39 0.88 NCS-5 (Neuronal Calcium Sensor family ) 

F23B12.7 1.54 1.24 1.39 0.85 Homolog of human CAATT-binding protein 

C36E6.5 1.29 1.43 1.36 1.25 MLC-2 Myosin Light Chain 

F58G11.1 1.64 1.07 1.35 0.86 
LETM1 (Leucine zipper, EF-hand, Transmembrane 

mitochondrial protein) homolog 

Y73B3A.12 1.55 1.13 1.34 1.08 CAL-6 encodes an ortholog of human calmodulin-like 3 

Y69E1A.4 1.50 1.11 1.30 0.95 Serine/threonine protein phosphatase 

F40F9.8 1.52 1.07 1.30 0.89 CAL-7 encodes an ortholog of human calmodulin-like 4 

Y67H2A.4 1.39 1.20 1.29 0.60 MICU-1 (MItochondrial Calcium Uptake protein ) 

T08D2.1 1.40 0.99 1.20 0.93 Transmembrane emp24 domain-containing protein 

K08E3.3 1.35 1.03 1.19 0.75 
TOCA (Transducer Of Cdc42-dependent Actin assembly) 

homolog 

F42G8.8 1.57 0.80 1.18 0.88 Serine/threonine protein phosphatase 

F08B6.3 1.14 1.17 1.15 0.82 CALU-2 (CALUmenin (calcium-binding protein) homolog) 

T27C10.4 1.39 0.88 1.13 0.80 BTB and MATH domain containing 

T04F3.4 1.48 0.77 1.13 0.57 Multiple coagulation factor deficiency protein 2 homolog 

T07G12.1 1.34 0.89 1.11 0.80 CAL-4 (CALmodulin related genes ) 

F55A3.7 0.84 1.38 1.11 0.95 FACT complex subunit SPT16 homolog 

C34D4.2 1.32 0.87 1.09 0.74 Serine/threonine protein phosphatase 

C44C1.3 1.06 1.10 1.08 0.69 NCS-1 (Neuronal Calcium Sensor family ) 

ZK856.8 1.17 0.99 1.08 0.91 Calcium-binding protein p22 homolog 

ZC477.2 1.33 0.76 1.05 0.88 Serine/threonine-protein phosphatase 

F13G11.2 1.00 1.05 1.03 0.74 IRLD-4 (Insulin/EGF-Receptor L Domain protein) 

K08F11.5 0.64 1.40 1.02 1.03 Mitochondrial Rho GTPase Miro-1 

C24H10.5 1.27 0.72 1.00 0.65 CAL-5 (CALmodulin related genes ) 

ZK1248.3 1.19 0.80 0.99 0.53 Eps15 (endocytosis protein) Homologous Sequence 

C33D12.6 0.98 0.95 0.97 0.80 RSEF-1 encodes an ortholog of human RAB44 

4R79.2 0.96 0.89 0.92 0.65 Similar to RSEF-1 

T22D1.5 1.07 0.75 0.91 0.70 
Probable serine/threonine protein phosphatase 2A 

regulatory subunit 

W09C3.6 0.93 0.89 0.91 0.88 GSP-3 (GLC7 (yeast Glc Seven) like Phosphatase ) 

F25B3.4 1.05 0.76 0.91 0.63 Serine/threonine protein phosphatase 

F58E6.1 1.16 0.65 0.91 0.56 Signal transducer and activator of transcription b 

M18.5 1.01 0.80 0.90 0.46 DDB1 (UV-Damaged DNA Binding protein) homolog 

R05G6.8 0.86 0.93 0.90 0.96 Phospholipase C 

Y51H4A.17 1.05 0.61 0.83 0.66 STAT transcription factor family 

C36E6.3 1.01 0.61 0.81 0.81 MLC-1 Myosin Light Chain 

C06A1.5 1.00 0.60 0.80 0.91 RNA Polymerase II (B) subunit 

K11C4.5 0.77 0.82 0.80 0.70 Uncoordinated UNC-68; Ryanodine receptor homolog 

F43C9.2 0.95 0.65 0.80 0.87 Homologous to Isoform 1 of Calcium-binding protein 4 

F55C10.1 0.71 0.88 0.80 0.69 Calcineurin B 
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  GFP - CaCl2 added     

Gene name 
Averaged 

AUC z-
score 

Averaged 
slope z-

score 

Total 
averaged z-

score 

Total averaged z-
score including 

anthranilate 
Gene description 

K07C5.1 0.96 0.50 0.73 0.75 ARX-2; ARp2/3 complex component 

Y37A1B.1 0.67 0.76 0.71 0.39 
LST-3 (Lateral Signaling Target ); ortholog of human 

CCAR2 

C02F4.2 0.68 0.67 0.68 0.88 Calcineurin A/TAX-6 

C47C12.4 0.62 0.70 0.66 0.87 Mitochondrial Rho GTPase Miro-2 

Y116A8C.36 0.85 0.46 0.66 0.56 ITSN (intersectin) family 

T25B9.2 0.81 0.48 0.65 0.52 Serine/threonine protein phosphatase 

T10H9.8 0.73 0.56 0.64 0.67 Similar to CAL-4 

K03E6.3 0.73 0.55 0.64 0.57 NCS-3 (Neuronal Calcium Sensor family ) 

M02A10.3 0.71 0.53 0.62 0.44 
SLI-1 (Suppressor of LIneage defect ); Cbl family of 

ubiquitin ligases 

K10B3.10 0.56 0.69 0.62 0.60 Spectrin 

F44A6.1 0.80 0.44 0.62 0.58 Nucleobindin homolog 

T12D8.6 0.69 0.52 0.61 0.67 MLC-5 (Myosin Light Chain ) 

C24H11.1 0.78 0.42 0.60 0.65 Serine/threonine protein phosphatase 

M02B7.6 0.87 0.29 0.58 0.41 CAL-3 (CALmodulin related genes ) 

C18E9.1 0.83 0.33 0.58 0.62 CAL-2 (CALmodulin related genes ) 

C29E4.14 0.72 0.42 0.57 0.61 Multiple coagulation factor deficiency protein 2 homolog 

C44B12.2 0.69 0.42 0.55 0.47 Osteonectin (SPARC) related 

T04F3.2 0.73 0.37 0.55 0.60 
similar to SPARC-related modular calcium-binding protein 

2 

F31B12.1 0.60 0.49 0.55 0.37 PhosphoLipase C 

F25B3.3 0.76 0.33 0.54 0.62 Rap Guanine nucleotide Exchange Factor homolog 

ZK354.9 0.68 0.40 0.54 0.38 Serine/threonine protein phosphatase 

M03F4.7 0.83 0.25 0.54 0.51 Calumenin (calcium-binding protein) homolog 

R09H10.6 0.52 0.56 0.54 0.56 R09H10.6 Similar to F23F1.2 

K03A1.4 0.74 0.34 0.54 0.77 Similar to Calmodulin-1 

K04C1.4 0.75 0.31 0.53 0.55 MLC-6 (Myosin Light Chain ) 

Y39B6A.38 0.44 0.60 0.52 0.60 
REPS (RalBP1-associated Eps domain-containing protein) 

homolog 

F29F11.6 0.68 0.36 0.52 0.54 GSP-1 (GLC7 (yeast Glc Seven) like Phosphatase ) 

C54E4.2 0.54 0.48 0.51 0.72 Similar to Testican-3 

F56D1.6 0.64 0.38 0.51 0.69 Calexcitin 

C56C10.9 0.56 0.46 0.51 0.57 Similar to human 45 kDa calcium-binding protein 

Y73C8B.5 0.67 0.35 0.51 0.57 Similar to calmodulin-3 

Y43F4B.3 0.36 0.64 0.50 0.60 Set-25 (SET (trithorax/polycomb) domain containing ) 

T09B4.4 0.64 0.36 0.50 0.48 Similar to Calmodulin-like protein 4 

E02A10.3 0.63 0.29 0.46 0.47 Similar to calmodulin 

F53G12.3 0.67 0.23 0.45 0.57 DUOX-2 (DUal OXidase ) 

ZC116.3 0.46 0.42 0.44 0.52 Probable cubilin 

T09F5.10 0.36 0.45 0.40 0.37 Similar to F36D3.16 

F59D6.7 0.32 0.44 0.38 0.64 Calcineurin B homolog 

Y45F10A.6 0.33 0.37 0.35 0.43 TBC (Tre-2/Bub2/Cdc16) domain family 

H10E21.4 0.30 0.34 0.32 0.60 Calmodulin-like protein 6 

K08E3.10 0.49 0.15 0.32 0.43 MLC-7 (Myosin Light Chain ) 

K01A2.11 0.31 0.33 0.32 0.54 Calcium Binding protein homolog 

F33C8.4 0.33 0.22 0.27 0.53 Similar to Y41D4A.7 

W02B9.1 0.26 0.28 0.27 0.63 Hammerhead embryonic lethal; cadherin homolog 
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  GFP - CaCl2 added     

Gene name 
Averaged 

AUC z-
score 

Averaged 
slope z-

score 

Total 
averaged z-

score 

Total averaged z-
score including 

anthranilate 
Gene description 

R08F11.1 0.22 0.32 0.27 0.37 Non-lysosomal glucosylceramidase 

C16H3.1 0.37 0.15 0.26 0.55 NCS-7 (Neuronal Calcium Sensor family ) 

B0252.3 0.30 0.22 0.26 0.50 Putative transporter B0252.3 

F55A11.4 0.17 0.33 0.25 0.45 
Calcium-binding mitochondrial carrier protein SCaMC-2 

homolog; non-coding 

K02F3.2 0.46 0.03 0.25 0.35 
Probable calcium-binding mitochondrial carrier K02F3.2; 

Similar to Aralar1 

ZK1151.1 0.22 0.27 0.24 0.63 Variable abnormal morphology 

F16F9.3 0.32 0.16 0.24 0.33 F16F9.3 

T10G3.5 0.14 0.33 0.24 0.39 EEA1 (Early Endosome Antigen, Rab effector) homolog 

Y47G6A.27 0.12 0.35 0.23 0.24 Mitochondrial Rho GTPase Miro-3 

C06G1.5 0.32 0.12 0.22 0.26 
Serine/threonine-protein phosphatase 2A regulatory 

subunit 

R08D7.5 0.16 0.26 0.21 0.46 Human Centrin-2 homolog 

F17E5.2 0.05 0.34 0.20 0.44 
Probable calcium-binding mitochondrial carrier F17E5.2; 

SCaMC-2 

W06H8.1 0.29 0.08 0.18 0.64 
RME-1 (Receptor Mediated Endocytosis ); EH domain 

containing protein 

C50C3.5 0.20 0.13 0.16 0.48 Similar to calmodulin 1 

R08C7.8 0.50 -0.19 0.16 0.36 Serine/threonine-protein phosphatase 

M03C11.8 0.22 0.09 0.15 0.45 Putative SMARCAL1-like protein; Protein archease-like 

Y32G9A.6 0.31 0.00 0.15 0.45 
NPHP-2 (NePHronoPhthisis (human kidney disease) 

homolog ) 

C48A7.1 0.32 -0.02 0.15 0.34 Egg Laying defective 

T21H3.3 0.16 0.08 0.12 0.39 Calmodulin 

C13C12.1 0.21 0.01 0.11 0.37 CAL-1 (CALmodulin related genes ) 

W04D2.1 0.14 0.05 0.10 0.26 Actinin 

C07A9.5 -0.07 0.23 0.08 0.36 Similar to alpha-actinin-2 

Y71H2AL.1 0.24 -0.09 0.08 0.17 
PBO-1 (PBOc defective (defecation) ) calcineurin B 

homolog 

Y49E10.3 0.24 -0.14 0.05 0.35 Protein Phosphatase 

C11G6.4 0.02 0.04 0.03 0.29 NHR-28 (Nuclear Hormone Receptor family ) 

F25H2.2 0.08 -0.02 0.03 0.21 SNX-27 (Sorting NeXin ) 

T02G5.2 0.14 -0.14 0.00 0.36 EF-hand calcium-binding domain-containing protein 7 

T04D3.2 -0.07 0.07 0.00 0.40 SDZ-30 (SKN-1 Dependent Zygotic transcript ) 

Y26E6A.2 0.10 -0.16 -0.03 0.09 F-box protein 

T03F1.5 0.01 -0.07 -0.03 0.37 GSP-4 (GLC7 (yeast Glc Seven) like Phosphatase ) 

T02C5.5 0.22 -0.29 -0.03 0.23 
Uncoordinated; UNC-2 encodes a calcium channel alpha 

subunit 

K03A1.2 0.05 -0.12 -0.04 0.25 lron-7 (eLRR (extracellular Leucine-Rich Repeat) ONly ) 

C24H11.2 -0.05 -0.07 -0.06 0.24 Serine/threonine protein phosphatase 

F26B1.5 0.00 -0.14 -0.07 0.34 Serine/threonine protein phosphatase 

Y105E8A.7 0.01 -0.18 -0.09 0.56 EAT-18 (EATing: abnormal pharyngeal pumping ) 

F56C9.1 -0.14 -0.10 -0.12 0.37 GSP-2 (GLC7 (yeast Glc Seven) like Phosphatase ) 

R10E11.6 0.20 -0.45 -0.13 0.36 Similar to Synergin-gamma 

R08A2.2 -0.06 -0.27 -0.16 0.25 Serine/threonine protein phosphatase 

F53F8.1 -0.01 -0.33 -0.17 0.24 Kruppel-Like Factor (zinc finger protein) 

T09A5.1 -0.12 -0.23 -0.17 0.42 Calexcitin 

C06A1.3 0.03 -0.39 -0.18 0.17 Putative serine/threonine-protein phosphatase 

C48B4.2 0.01 -0.47 -0.23 0.34 Rhomboid (Drosophila) related 
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  GFP - CaCl2 added     

Gene name 
Averaged 

AUC z-
score 

Averaged 
slope z-

score 

Total 
averaged z-

score 

Total averaged z-
score including 

anthranilate 
Gene description 

F21A3.5 -0.12 -0.44 -0.28 0.22 
PRDE-1 (PiRNA-DEpendent silencing defective ) casein 

kinase-1 homolog 

F55A11.1 -0.31 -0.25 -0.28 0.28 Similar to Multiple coagulation factor deficiency protein 2 

B0563.7 -0.10 -0.49 -0.29 0.18 Similar to calmodulin 

DH11.1 -0.15 -0.44 -0.29 0.24 Putative glutaminase 

C56A3.6 -0.02 -0.57 -0.30 0.23 Mitochondrial calcium uptake protein-3 (MICU-3) 

ZK328.1 -0.22 -0.43 -0.33 0.23 
CYK-3 (CYtoKinesis defect ); Ubiquitin C-terminal 

hydrolase 

C50C3.2 -0.32 -0.46 -0.39 0.14 Spectrin alpha chain 

B0511.1 -0.27 -0.56 -0.42 0.23 FK506-Binding protein family 

T16G12.7 -0.37 -0.47 -0.42 0.20 Serine/threonine protein phosphatase 

ZK899.5 -0.41 -0.43 -0.42 0.25 ZK899.5 

B0336.11 -0.21 -0.63 -0.42 0.13 HPO-28 (Hypersensitive to POre- forming toxin ) 

ZK686.2 -0.32 -0.58 -0.45 0.08 Putative ATP-dependent RNA helicase ZK686.2 

ZK1307.8 -0.45 -0.46 -0.45 0.12 Glucosidase 2 subunit beta 

F56C11.1 -0.40 -0.56 -0.48 0.27 Blistered cuticle; BLI-3 (DUal OXidase ) 

Y75B8A.30 -0.34 -0.63 -0.49 -0.12 Protein phosphatase 

B0511.1 -0.51 -0.48 -0.49 0.08 FK506-Binding protein family 

Y9D1A.2 -0.61 -0.41 -0.51 0.22 Putative RNA helicase 

C23G10.1 -0.58 -0.49 -0.54 -0.08 Putative serine/threonine-protein phosphatase C23G10.1 

F12A10.5 -0.50 -0.59 -0.54 0.13 CAL-8 (CALmodulin related genes ) 

K10F12.3 -0.43 -0.70 -0.57 0.10 Phospholipase C Like 

R13A5.11 -0.53 -0.70 -0.62 -0.08 Serine/threonine protein phosphatase 

C36F7.2 -0.65 -0.58 -0.62 0.10 SWAH-1 (SoWAH (Drosophila) homolog ) 

T05F1.1 -0.62 -0.70 -0.66 -0.07 NRA-2 (Nicotinic Receptor Associated ) nicalin homolog 

C47D12.1 -0.62 -0.71 -0.66 -0.09 
TRRAP-like (transcription/transformation domain-

associated protein) 

C34C12.3 -0.68 -0.68 -0.68 0.04 Protein Phosphatase 

F10G8.5 -0.54 -0.85 -0.70 0.06 NCS-2 (Neuronal Calcium Sensor family ) 

F09F7.2 -0.57 -0.82 -0.70 0.06 MLC-3 Myosin Light Chain 

F23H11.8 -0.51 -0.91 -0.71 -0.06 Phosphatase with EF hands 

K07G5.4 -0.61 -0.83 -0.72 -0.02 K07G5.4 

F25H2.8 -0.81 -0.65 -0.73 0.00 UBC-25 (UBiquitin Conjugating enzyme ) 

C25A1.9 -0.68 -0.78 -0.73 -0.10 
RSA-1 (Regulator of Spindle Assembly ); protein 

phosphatase 2A (PP2A) regulatory subunit 

F23F1.2 -0.61 -0.89 -0.75 -0.01 Similar to R09H10.6 

C36C9.6 -0.78 -0.73 -0.76 -0.34 C36C9.6 

T09E8.2 -0.84 -0.69 -0.76 -0.11 
High Incidence of Males (increased X chromosome loss) 

HIM-17 

W09G10.3 -0.53 -1.15 -0.84 -0.05 NCS-6 (Neuronal Calcium Sensor family ) 

F54G8.2 -0.92 -0.76 -0.84 -0.11 Diacylglycerol Kinase 

F19B10.1 -0.91 -0.84 -0.88 -0.06 MEL-26 binding protein 

T03F1.11 -0.83 -1.08 -0.95 -0.13 Similar to CALM-1 

F58G1.3 -0.89 -1.04 -0.96 -0.19 Serine/threonine protein phosphatase 

Y48B6A.6 -1.01 -0.95 -0.98 -0.10 EFHD-1 (EF Hand calcium binding protein) 

ZK938.1 -0.85 -1.12 -0.99 -0.28 Serine/threonine protein phosphatase 

F52H3.6 -0.77 -1.21 -0.99 -0.21 Serine/threonine protein phosphatase 

F22D6.9 -0.93 -1.09 -1.01 -0.07 Serine/threonine protein phosphatase 

T25G3.4 -1.11 -1.07 -1.09 -0.22 Probable glycerol-3-phosphate dehydrogenase, 
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  GFP - CaCl2 added     

Gene name 
Averaged 

AUC z-
score 

Averaged 
slope z-

score 

Total 
averaged z-

score 

Total averaged z-
score including 

anthranilate 
Gene description 

mitochondrial 

F21A10.1 -1.04 -1.20 -1.12 -0.31 NCS-4 (Neuronal Calcium Sensor family ) 

F30A10.1 -1.16 -1.26 -1.21 -0.18 
CALM-1 (CALMyrin (Calcium and Integrin Binding protein) 

homolog ) 

M04F3.4 -1.49 -0.95 -1.22 -0.26 Probable cysteine protease 

F54C1.7 -1.19 -1.37 -1.28 -0.23 
PAT-10 (Paralysed Arrest at Two-fold) Body wall muscle 

troponin C 

 

 

Table 3.2.  The effect of EF-hand gene knockdowns in the absence of CaCl2 on GFP 

measurement z-scores.  The conditions were the same as in S1 Table except deionized water 

was added to the wells instead of CaCl2. 
 
 

  

    

  

 
GFP - no CaCl2 

  

Gene names 

Averaged 

AUC z-

score 

Averaged 

slope z-

score 

Total 

averaged 

z-score 

Total averaged z-

score including 

anthranilate 

Gene description 

C33D12.6 2.20 1.29 1.75 0.84 RSEF-1 encodes an ortholog of human RAB44 

F53F4.14 1.39 1.94 1.66 0.79 Similar to F36H12.3 (major sperm protein) 

K03E6.3 1.82 1.41 1.62 0.15 NCS-3 (Neuronal Calcium Sensor family ) 

B0513.5 1.38 1.83 1.61 1.39 Proline dehydrogenase, mitochondrial 

M03F4.7 1.88 1.28 1.58 0.18 Calumenin (calcium-binding protein) homolog 

F55A11.1 1.86 1.26 1.56 0.29 Similar to Multiple coagulation factor deficiency protein 2 

C34D4.2 1.45 1.58 1.51 0.58 Serine/threonine protein phosphatase 

K03A1.4 1.63 1.19 1.41 0.13 Similar to Calmodulin-1 

C47A4.3 1.38 1.37 1.38 0.84 Serine/threonine protein phosphatase 

T07G12.1 1.62 0.90 1.26 0.56 CAL-4 (CALmodulin related genes ) 

K10B3.10 1.64 0.77 1.21 0.10 Spectrin 

F33C8.4 1.67 0.74 1.21 0.02 Similar to Y41D4A.7 

F58G11.1 1.13 1.27 1.20 0.58 
LETM1 (Leucine zipper, EF-hand, Transmembrane 

mitochondrial protein) homolog 

T10G3.5 1.06 1.31 1.19 0.31 EEA1 (Early Endosome Antigen, Rab effector) homolog 

C13C12.1 1.44 0.92 1.18 0.98 CAL-1 (CALmodulin related genes ) 

E02A10.3 1.49 0.83 1.16 0.75 Similar to calmodulin 

C47C12.4 1.47 0.84 1.15 1.26 Mitochondrial Rho GTPase Miro-2 

B0348.4 1.04 1.25 1.14 0.55 
Egg Laying defective; EGL-8 encodes a phospholipase C 

beta 

K02F3.2 1.22 0.92 1.07 0.25 
Probable calcium-binding mitochondrial carrier K02F3.2; 

Similar to Aralar1 

F43C9.2 1.37 0.75 1.06 0.32 Homologous to Isoform 1 of Calcium-binding protein 4 

T12D8.6 1.34 0.78 1.06 0.37 MLC-5 (Myosin Light Chain ) 

ZC477.2 0.99 1.12 1.06 0.58 Serine/threonine-protein phosphatase 

C04B4.2 1.08 1.03 1.06 0.46 Similar to C04B4.4 and LIN-66 

C06G1.5 1.44 0.65 1.05 0.18 
Serine/threonine-protein phosphatase 2A regulatory 

subunit 

R08F11.1 1.26 0.81 1.03 0.44 Non-lysosomal glucosylceramidase 

F53G12.3 1.29 0.66 0.98 0.38 DUOX-2 (DUal OXidase ) 
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GFP - no CaCl2 

  

Gene names 

Averaged 

AUC z-

score 

Averaged 

slope z-

score 

Total 

averaged 

z-score 

Total averaged z-

score including 

anthranilate 

Gene description 

C09H5.7 0.94 0.94 0.94 0.47 Serine/threonine protein phosphatase 

Y69E1A.4 0.88 0.96 0.92 0.75 Serine/threonine protein phosphatase 

C44C1.3 1.01 0.80 0.90 0.38 NCS-1 (Neuronal Calcium Sensor family ) 

T06E6.1 0.70 1.09 0.89 0.30 Similar to human WDR-74 

F16F9.3 0.98 0.77 0.87 0.26 F16F9.3 

F58E6.1 1.05 0.69 0.87 0.60 Signal transducer and activator of transcription b 

F23B12.1 0.91 0.82 0.86 -0.26 Serine/threonine protein phosphatase 

4R79.2 0.88 0.83 0.85 0.51 Similar to RSEF-1 

C16H3.1 1.03 0.56 0.79 0.13 NCS-7 (Neuronal Calcium Sensor family ) 

C54E4.2 1.23 0.32 0.78 0.56 Similar to Testican-3 

T09B4.4 1.26 0.27 0.76 -0.09 Similar to Calmodulin-like protein 4 

T03F1.5 1.22 0.28 0.75 0.36 GSP-4 (GLC7 (yeast Glc Seven) like Phosphatase ) 

Y75B12B.6 0.56 0.93 0.74 0.45 Phospholipase C 

K04F1.10 0.72 0.71 0.72 0.63 IRLD-40 (Insulin/EGF-Receptor L Domain protein ) 

W09C3.6 1.02 0.41 0.71 0.21 GSP-3 (GLC7 (yeast Glc Seven) like Phosphatase ) 

F25B3.4 0.60 0.82 0.71 0.03 Serine/threonine protein phosphatase 

Y40H4A.2 0.84 0.55 0.70 0.26 Serine/threonine-protein phosphatase 

F56C11.1 0.98 0.39 0.68 0.24 Blistered cuticle; BLI-3 (DUal OXidase ) 

T04F3.2 1.00 0.35 0.68 -0.27 
similar to SPARC-related modular calcium-binding 

protein 2 

F25H2.2 1.09 0.21 0.65 0.24 SNX-27 (Sorting NeXin ) 

F26B1.5 1.13 0.14 0.64 0.72 Serine/threonine protein phosphatase 

Y73B3A.12 0.61 0.65 0.63 0.28 CAL-6 encodes an ortholog of human calmodulin-like 3 

ZK673.7 0.42 0.83 0.63 0.14 Troponin C 

T09F5.10 0.92 0.33 0.62 -0.26 Similar to F36D3.16 

C03A7.13 0.40 0.83 0.62 0.61 
UDP-glucuronosyl/UDP-glucosyltransferase domain 

containing protein 

K07C5.1 0.98 0.24 0.61 0.85 ARX-2; ARp2/3 complex component 

F42G8.8 0.54 0.66 0.60 0.67 Serine/threonine protein phosphatase 

T08D2.1 0.40 0.72 0.56 0.38 Transmembrane emp24 domain-containing protein 

Y43F4B.1 0.54 0.47 0.50 -0.07 Set-25 (SET (trithorax/polycomb) domain containing ) 

F11C7.4 0.46 0.52 0.49 0.59 Drosophila Crumbs homolog 

Y116A8C.36 0.65 0.23 0.44 0.58 ITSN (intersectin) family 

F55A11.4 0.38 0.46 0.42 0.44 
Calcium-binding mitochondrial carrier protein SCaMC-2 

homolog; non-coding 

F13G11.2 0.85 -0.03 0.41 0.36 IRLD-4 (Insulin/EGF-Receptor L Domain protein) 

C18E9.1 0.63 0.18 0.40 0.15 CAL-2 (CALmodulin related genes ) 

T04F8.6 0.12 0.60 0.36 0.55 Similar to F59A2.6 

C02F4.2 0.32 0.34 0.33 0.91 Calcineurin A/TAX-6 

F40F9.8 0.23 0.39 0.31 -0.09 CAL-7 encodes an ortholog of human calmodulin-like 4 

C50C3.5 0.41 0.12 0.26 0.09 Similar to calmodulin 1 

K07G5.4 0.52 -0.03 0.25 -0.10 K07G5.4 

ZK856.8 0.48 -0.07 0.20 0.50 Calcium-binding protein p22 homolog 

C27B7.6 0.23 0.14 0.19 0.11 Putative serine/threonine-protein phosphatase 

T21H3.3 0.15 0.21 0.18 0.21 Calmodulin 

F17E5.2 0.26 0.10 0.18 0.08 
Probable calcium-binding mitochondrial carrier F17E5.2; 

SCaMC-2 

M02A10.3 0.25 0.11 0.18 -0.44 
SLI-1 (Suppressor of LIneage defect ); Cbl family of 

ubiquitin ligases 

K11C4.5 0.30 0.00 0.15 -0.01 Uncoordinated UNC-68; Ryanodine receptor homolog 
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GFP - no CaCl2 

  

Gene names 

Averaged 

AUC z-

score 

Averaged 

slope z-

score 

Total 

averaged 

z-score 

Total averaged z-

score including 

anthranilate 

Gene description 

T05F1.1 0.41 -0.18 0.12 -0.20 NRA-2 (Nicotinic Receptor Associated ) nicalin homolog 

T09A5.1 0.33 -0.11 0.11 0.15 Calexcitin 

K08F11.5 -0.22 0.38 0.08 -0.15 Mitochondrial Rho GTPase Miro-1 

C56A3.6 0.47 -0.35 0.06 -0.35 Mitochondrial calcium uptake protein-3 (MICU-3) 

C54E10.2 0.24 -0.14 0.05 0.15 NCS-5 (Neuronal Calcium Sensor family ) 

Y67H2A.4 0.10 -0.01 0.05 -0.34 MICU-1 (MItochondrial Calcium Uptake protein ) 

ZK1151.1 0.24 -0.17 0.04 0.30 Variable abnormal morphology 

ZK1307.8 0.01 0.03 0.02 -0.24 Glucosidase 2 subunit beta 

C36C9.6 -0.04 0.08 0.02 -0.06 C36C9.6 

R09H10.6 -0.17 0.21 0.02 0.15 R09H10.6 Similar to F23F1.2 

B0252.3 0.16 -0.14 0.01 0.05 Putative transporter B0252.3 

F59D6.7 0.11 -0.15 -0.02 0.06 Calcineurin B homolog 

F58G1.3 0.18 -0.23 -0.02 -0.17 Serine/threonine protein phosphatase 

Y37A1B.1 -0.07 0.02 -0.03 -0.16 
LST-3 (Lateral Signaling Target ); ortholog of human 

CCAR2 

T04D3.2 0.00 -0.08 -0.04 0.62 SDZ-30 (SKN-1 Dependent Zygotic transcript ) 

T04F3.4 -0.04 -0.06 -0.05 0.07 Multiple coagulation factor deficiency protein 2 homolog 

ZK1248.3 -0.02 -0.09 -0.06 0.16 Eps15 (endocytosis protein) Homologous Sequence 

H10E21.4 -0.04 -0.10 -0.07 0.45 Calmodulin-like protein 6 

Y71H2AL.1 -0.14 0.00 -0.07 -0.53 
PBO-1 (PBOc defective (defecation) ) calcineurin B 

homolog 

F31B12.1 -0.20 0.05 -0.07 0.57 PhosphoLipase C 

Y39B6A.38 -0.21 0.04 -0.08 0.00 
REPS (RalBP1-associated Eps domain-containing protein) 

homolog 

K01A2.11 0.00 -0.20 -0.10 0.46 Calcium Binding protein homolog 

M18.5 -0.13 -0.08 -0.11 -0.12 DDB1 (UV-Damaged DNA Binding protein) homolog 

W08D2.7 -0.17 -0.04 -0.11 -0.01 yeast MTR (mRNA transport) homolog 

F23B12.7 -0.18 -0.07 -0.12 0.33 Homolog of human CAATT-binding protein 

C07A9.5 0.10 -0.36 -0.13 0.40 Similar to alpha-actinin-2 

F56D1.6 0.13 -0.40 -0.13 -0.40 Calexcitin 

F29F11.6 -0.21 -0.09 -0.15 -0.04 GSP-1 (GLC7 (yeast Glc Seven) like Phosphatase ) 

T02G5.2 0.02 -0.32 -0.15 0.01 EF-hand calcium-binding domain-containing protein 7 

F55C10.1 -0.14 -0.20 -0.17 0.31 Calcineurin B 

Y32G9A.6 -0.19 -0.17 -0.18 0.05 
NPHP-2 (NePHronoPhthisis (human kidney disease) 

homolog ) 

C56C10.9 -0.05 -0.31 -0.18 0.09 Similar to human 45 kDa calcium-binding protein 

F53F8.1 0.20 -0.57 -0.19 -0.09 Kruppel-Like Factor (zinc finger protein) 

K04C1.4 -0.13 -0.30 -0.21 -0.20 MLC-6 (Myosin Light Chain ) 

DH11.1 0.02 -0.49 -0.23 -0.19 Putative glutaminase 

Y75B8A.30 -0.19 -0.30 -0.25 -0.27 Protein phosphatase 

T22D1.5 -0.33 -0.17 -0.25 -0.21 
Probable serine/threonine protein phosphatase 2A 

regulatory subunit 

F08B6.3 -0.46 -0.05 -0.25 0.15 
CALU-2 (CALUmenin (calcium-binding protein) 

homolog) 

C25A1.9 -0.10 -0.41 -0.25 -0.91 
RSA-1 (Regulator of Spindle Assembly );  protein 

phosphatase 2A (PP2A) regulatory subunit 

W02B9.1 -0.17 -0.38 -0.27 0.34 Hammerhead embryonic lethal; cadherin homolog 

Y47G6A.27 -0.59 0.01 -0.29 -1.13 Mitochondrial Rho GTPase Miro-3 

W04D2.1 -0.39 -0.21 -0.30 -0.52 Actinin 

T25B9.2 -0.25 -0.36 -0.31 -0.04 Serine/threonine protein phosphatase 

F23F1.2 0.00 -0.61 -0.31 -0.27 Similar to R09H10.6 
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GFP - no CaCl2 

  

Gene names 

Averaged 

AUC z-

score 

Averaged 

slope z-

score 
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averaged 

z-score 

Total averaged z-

score including 

anthranilate 

Gene description 

B0511.1 -0.08 -0.58 -0.33 0.06 FK506-Binding protein family 

C06A1.5 -0.42 -0.29 -0.36 0.12 RNA Polymerase II (B) subunit 

K08E3.3 -0.35 -0.37 -0.36 -0.03 
TOCA (Transducer Of Cdc42-dependent Actin assembly) 

homolog 

C24H11.1 -0.32 -0.44 -0.38 -0.02 Serine/threonine protein phosphatase 

R05G6.8 -0.66 -0.14 -0.40 0.06 Phospholipase C 

B0563.7 -0.13 -0.67 -0.40 -0.20 Similar to calmodulin 

T02C5.5 -0.62 -0.19 -0.41 -0.09 
Uncoordinated; UNC-2 encodes a calcium channel alpha 

subunit 

F09F7.2 -0.28 -0.55 -0.42 0.05 MLC-3 Myosin Light Chain 

Y26E6A.2 -0.51 -0.35 -0.43 -0.70 F-box protein 

C36E6.5 -0.87 -0.04 -0.45 0.22 MLC-2 Myosin Light Chain 

ZK328.1 -0.34 -0.59 -0.46 -0.18 
CYK-3 (CYtoKinesis defect ); Ubiquitin C-terminal 

hydrolase 

C36E6.3 -0.69 -0.35 -0.52 -0.70 MLC-1 Myosin Light Chain 

F12A10.5 -0.25 -0.79 -0.52 -0.24 CAL-8 (CALmodulin related genes ) 

K03A1.2 -0.71 -0.36 -0.53 -0.31 lron-7 (eLRR (extracellular Leucine-Rich Repeat) ONly ) 

Y45F10A.6 -0.54 -0.55 -0.55 -0.33 TBC (Tre-2/Bub2/Cdc16) domain family 

ZK899.5 -0.74 -0.39 -0.57 -0.07 ZK899.5 

K08E3.10 -0.59 -0.58 -0.58 -0.59 MLC-7 (Myosin Light Chain ) 

C06A1.3 -0.52 -0.73 -0.63 -0.40 Putative serine/threonine-protein phosphatase 

F30A10.1 -0.37 -0.88 -0.63 -0.03 
CALM-1 (CALMyrin (Calcium and Integrin Binding 

protein) homolog ) 

C47D12.1 -0.53 -0.74 -0.63 -0.40 
TRRAP-like (transcription/transformation domain-

associated protein) 

F23H11.8 -0.42 -0.87 -0.65 -0.52 Phosphatase with EF hands 

F38H4.9 -0.71 -0.62 -0.66 -0.07 LET-92 homolog of protein phosphatase PP2AC 

M03C11.8 -0.59 -0.74 -0.67 -0.22 Putative SMARCAL1-like protein; Protein archease-like 

C23G10.1 -0.53 -0.82 -0.68 -0.66 Putative serine/threonine-protein phosphatase C23G10.1 

T10H9.8 -0.92 -0.49 -0.70 -0.71 Similar to CAL-4 

F10G8.5 -0.48 -0.95 -0.71 -0.45 NCS-2 (Neuronal Calcium Sensor family ) 

Y49E10.3 -0.49 -0.96 -0.72 -0.58 Protein Phosphatase 

C48B4.2 -0.47 -0.99 -0.73 -0.18 Rhomboid (Drosophila) related 

C24H11.2 -0.75 -0.73 -0.74 0.53 Serine/threonine protein phosphatase 

ZK938.1 -0.65 -0.85 -0.75 -0.60 Serine/threonine protein phosphatase 

F54C1.7 -0.62 -0.89 -0.75 -0.39 
PAT-10 (Paralysed Arrest at Two-fold) Body wall muscle 

troponin C 

C50C3.2 -0.45 -1.10 -0.78 -0.45 Spectrin alpha chain 

ZC116.3 -0.82 -0.74 -0.78 0.02 Probable cubilin 

C44B12.2 -0.72 -0.85 -0.78 -0.53 Osteonectin (SPARC) related 

F25B3.3 -1.03 -0.57 -0.80 -0.39 Rap Guanine nucleotide Exchange Factor homolog 

ZK686.2 -0.79 -0.81 -0.80 -0.35 Putative ATP-dependent RNA helicase ZK686.2 

F21A3.5 -0.85 -0.76 -0.81 -0.05 
PRDE-1 (PiRNA-DEpendent silencing defective ) casein 

kinase-1 homolog 

R08A2.2 -0.82 -0.96 -0.89 -0.14 Serine/threonine protein phosphatase 

R08C7.8 -0.82 -0.97 -0.89 0.06 Serine/threonine-protein phosphatase 

C56G7.1 -1.09 -0.71 -0.90 -0.21 MLC-4 Myosin Light Chain 

F55A3.7 -1.06 -0.76 -0.91 -0.17 FACT complex subunit SPT16 homolog 

T16G12.7 -0.86 -1.00 -0.93 -0.44 Serine/threonine protein phosphatase 

T03F1.11 -0.75 -1.11 -0.93 -0.22 Similar to CALM-1 

K10F12.3 -0.70 -1.19 -0.95 -0.31 Phospholipase C Like 
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Total averaged z-
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anthranilate 

Gene description 

R08D7.5 -0.92 -0.99 -0.95 -0.35 Human Centrin-2 homolog 

W06H8.1 -1.02 -0.89 -0.96 -0.89 
RME-1 (Receptor Mediated Endocytosis ); EH domain 

containing protein 

C11G6.4 -1.18 -0.83 -1.00 -0.45 NHR-28 (Nuclear Hormone Receptor family ) 

F52H3.6 -0.82 -1.20 -1.01 -0.66 Serine/threonine protein phosphatase 

Y73C8B.5 -1.17 -0.85 -1.01 -0.57 Similar to calmodulin-3 

C48A7.1 -1.22 -0.94 -1.08 -0.40 Egg Laying defective 

T09E8.2 -1.08 -1.09 -1.08 -0.51 
High Incidence of Males (increased X chromosome loss) 

HIM-17 

F22D6.9 -0.88 -1.29 -1.09 -0.78 Serine/threonine protein phosphatase 

F56C9.1 -1.05 -1.14 -1.09 -0.30 GSP-2 (GLC7 (yeast Glc Seven) like Phosphatase ) 

F19B10.1 -0.93 -1.28 -1.11 -0.97 MEL-26 binding protein 

Y9D1A.2 -1.12 -1.13 -1.12 0.14 Putative RNA helicase 

R13A5.11 -1.07 -1.18 -1.13 -0.51 Serine/threonine protein phosphatase 

C29E4.14 -1.45 -0.80 -1.13 -0.85 Multiple coagulation factor deficiency protein 2 homolog 

R10E11.6 -1.00 -1.25 -1.13 -0.28 Similar to Synergin-gamma 

F44A6.1 -1.36 -0.93 -1.15 -0.95 Nucleobindin homolog 

ZK354.9 -1.07 -1.23 -1.15 -0.70 Serine/threonine protein phosphatase 

Y48B6A.6 -0.94 -1.37 -1.15 -0.51 EFHD-1 (EF Hand calcium binding protein) 

F54G8.2 -1.12 -1.24 -1.18 -0.37 Diacylglycerol Kinase 

C36F7.2 -1.09 -1.29 -1.19 -0.33 SWAH-1 (SoWAH (Drosophila) homolog ) 

T25G3.4 -1.12 -1.42 -1.27 -0.74 
Probable glycerol-3-phosphate dehydrogenase, 

mitochondrial 

F21A10.1 -1.08 -1.47 -1.27 -0.80 NCS-4 (Neuronal Calcium Sensor family ) 

F25H2.8 -1.01 -1.55 -1.28 -0.43 UBC-25 (UBiquitin Conjugating enzyme ) 

C24H10.5 -1.53 -1.07 -1.30 -0.55 CAL-5 (CALmodulin related genes ) 

Y105E8A.7 -1.33 -1.36 -1.35 0.01 EAT-18 (EATing: abnormal pharyngeal pumping ) 

Y51H4A.17 -1.69 -1.01 -1.35 -1.00 STAT transcription factor family 

W09G10.3 -0.87 -1.88 -1.38 -0.50 NCS-6 (Neuronal Calcium Sensor family ) 

B0511.1 -1.11 -1.71 -1.41 -0.81 FK506-Binding protein family 

C34C12.3 -1.24 -1.64 -1.44 -0.37 Protein Phosphatase 

M02B7.6 -1.68 -1.23 -1.45 -0.55 CAL-3 (CALmodulin related genes ) 

T27C10.4 -1.89 -1.14 -1.51 -1.09 BTB and MATH domain containing 

B0336.11 -1.44 -2.02 -1.73 -0.37 HPO-28 (Hypersensitive to POre- forming toxin ) 

M04F3.4 -2.24 -2.14 -2.19 -1.31 Probable cysteine protease 

 

Table 3.3.  Anthranilate measurements to find EF-hand effectors of high Ca
2+

 toxicity in C. 

elegans.  The conditions were the same as in S1 Table except anthranilate fluorescence was 

monitored instead of GFP.  The more negative the z-score the less anthranilate is present 

indicating a higher viability.  
 

 
 

  

   
  

  Anthranilate- CaCl2 added   

Gene Name 

Averaged 

AUC z-

score 

Averaged 

Slope z-

score 

Total 

Averaged 

z-score 

Gene Description 

Y105E8A.7 -1.23 -1.17 -1.20 EAT-18 (EATing: abnormal pharyngeal pumping ) 
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Slope z-
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Gene Description 

C36E6.5 -1.16 -1.12 -1.14 MLC-2 Myosin Light Chain 

W06H8.1 -1.17 -1.01 -1.09 RME-1 (Receptor Mediated Endocytosis ); EH domain containing protein 

C02F4.2 -1.13 -1.02 -1.08 Calcineurin A/TAX-6 

C47C12.4 -1.07 -1.08 -1.07 Mitochondrial Rho GTPase Miro-2 

K08F11.5 -1.11 -0.98 -1.04 Mitochondrial Rho GTPase Miro-1 

ZK1151.1 -1.07 -0.98 -1.03 Variable abnormal morphology 

R05G6.8 -1.06 -0.99 -1.02 Phospholipase C 

C06A1.5 -1.04 -1.00 -1.02 RNA Polymerase II (B) subunit 

F56C11.1 -1.05 -0.98 -1.01 Blistered cuticle; BLI-3 (DUal OXidase ) 

T09A5.1 -1.15 -0.88 -1.01 Calexcitin 

K03A1.4 -1.08 -0.92 -1.00 Similar to Calmodulin-1 

W02B9.1 -1.08 -0.90 -0.99 Hammerhead embryonic lethal; cadherin homolog 

Y9D1A.2 -1.03 -0.87 -0.95 Putative RNA helicase 

F43C9.2 -0.96 -0.93 -0.94 Homologous to Isoform 1 of Calcium-binding protein 4 

C54E4.2 -0.96 -0.89 -0.93 Similar to Testican-3 

ZK899.5 -0.86 -0.97 -0.92 ZK899.5 

C48B4.2 -0.93 -0.87 -0.90 Rhomboid (Drosophila) related 

F59D6.7 -0.96 -0.83 -0.89 Calcineurin B homolog 

B0511.1 -1.00 -0.77 -0.88 FK506-Binding protein family 

H10E21.4 -0.95 -0.82 -0.88 Calmodulin-like protein 6 

F22D6.9 -0.92 -0.84 -0.88 Serine/threonine protein phosphatase 

F56D1.6 -0.96 -0.80 -0.88 Calexcitin 

F56C9.1 -0.89 -0.83 -0.86 GSP-2 (GLC7 (yeast Glc Seven) like Phosphatase ) 

F30A10.1 -0.91 -0.80 -0.86 CALM-1 (CALMyrin (Calcium and Integrin Binding protein) homolog ) 

ZK673.7 -0.89 -0.82 -0.85 Troponin C 

W09C3.6 -0.87 -0.83 -0.85 GSP-3 (GLC7 (yeast Glc Seven) like Phosphatase ) 

C16H3.1 -0.84 -0.85 -0.84 NCS-7 (Neuronal Calcium Sensor family ) 

R10E11.6 -0.86 -0.82 -0.84 Similar to Synergin-gamma 

F11C7.4 -0.75 -0.93 -0.84 Drosophila Crumbs homolog 

F55A11.1 -0.86 -0.80 -0.83 Similar to Multiple coagulation factor deficiency protein 2 

Y73B3A.12 -0.80 -0.85 -0.83 CAL-6 encodes an ortholog of human calmodulin-like 3 

F09F7.2 -0.89 -0.76 -0.82 MLC-3 Myosin Light Chain 

F54C1.7 -0.87 -0.77 -0.82 PAT-10 (Paralysed Arrest at Two-fold) Body wall muscle troponin C 

F10G8.5 -0.90 -0.73 -0.82 NCS-2 (Neuronal Calcium Sensor family ) 

C36E6.3 -0.87 -0.76 -0.82 MLC-1 Myosin Light Chain 

C36F7.2 -0.88 -0.74 -0.81 SWAH-1 (SoWAH (Drosophila) homolog ) 

T16G12.7 -0.86 -0.76 -0.81 Serine/threonine protein phosphatase 

F38H4.9 -0.82 -0.80 -0.81 LET-92 homolog of protein phosphatase PP2AC 

F12A10.5 -0.87 -0.74 -0.80 CAL-8 (CALmodulin related genes ) 

T04D3.2 -0.89 -0.71 -0.80 SDZ-30 (SKN-1 Dependent Zygotic transcript ) 

C50C3.5 -0.82 -0.78 -0.80 Similar to calmodulin 1 

F55A3.7 -0.89 -0.70 -0.80 FACT complex subunit SPT16 homolog 

C27B7.6 -0.84 -0.74 -0.79 Putative serine/threonine-protein phosphatase 

ZK328.1 -0.83 -0.75 -0.79 CYK-3 (CYtoKinesis defect ); Ubiquitin C-terminal hydrolase 

F33C8.4 -0.84 -0.73 -0.78 Similar to Y41D4A.7 

T03F1.5 -0.79 -0.77 -0.78 GSP-4 (GLC7 (yeast Glc Seven) like Phosphatase ) 

DH11.1 -0.77 -0.77 -0.77 Putative glutaminase 
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K10F12.3 -0.83 -0.71 -0.77 Phospholipase C Like 

Y48B6A.6 -0.80 -0.74 -0.77 EFHD-1 (EF Hand calcium binding protein) 

K07C5.1 -0.83 -0.70 -0.77 ARX-2; ARp2/3 complex component 

C56A3.6 -0.71 -0.81 -0.76 Mitochondrial calcium uptake protein-3 (MICU-3) 

M03C11.8 -0.81 -0.70 -0.76 Putative SMARCAL1-like protein; Protein archease-like 

K01A2.11 -0.79 -0.72 -0.75 Calcium Binding protein homolog 

C34C12.3 -0.83 -0.68 -0.75 Protein Phosphatase 

F19B10.1 -0.81 -0.70 -0.75 MEL-26 binding protein 

B0252.3 -0.78 -0.71 -0.75 Putative transporter B0252.3 

W09G10.3 -0.74 -0.75 -0.75 NCS-6 (Neuronal Calcium Sensor family ) 

F26B1.5 -0.75 -0.74 -0.75 Serine/threonine protein phosphatase 

Y32G9A.6 -0.75 -0.74 -0.74 NPHP-2 (NePHronoPhthisis (human kidney disease) homolog ) 

F23F1.2 -0.77 -0.71 -0.74 Similar to R09H10.6 

ZK856.8 -0.78 -0.70 -0.74 Calcium-binding protein p22 homolog 

T12D8.6 -0.80 -0.67 -0.73 MLC-5 (Myosin Light Chain ) 

F25H2.8 -0.78 -0.68 -0.73 UBC-25 (UBiquitin Conjugating enzyme ) 

F21A3.5 -0.77 -0.69 -0.73 PRDE-1 (PiRNA-DEpendent silencing defective ) casein kinase-1 homolog 

T02G5.2 -0.76 -0.69 -0.72 EF-hand calcium-binding domain-containing protein 7 

W08D2.7 -0.62 -0.82 -0.72 yeast MTR (mRNA transport) homolog 

ZC477.2 -0.72 -0.72 -0.72 Serine/threonine-protein phosphatase 

R08D7.5 -0.79 -0.64 -0.72 Human Centrin-2 homolog 

M04F3.4 -0.73 -0.69 -0.71 Probable cysteine protease 

Y43F4B.1 -0.76 -0.64 -0.70 Set-25 (SET (trithorax/polycomb) domain containing ) 

F53G12.3 -0.72 -0.67 -0.70 DUOX-2 (DUal OXidase ) 

ZK1307.8 -0.68 -0.72 -0.70 Glucosidase 2 subunit beta 

C24H11.1 -0.74 -0.65 -0.70 Serine/threonine protein phosphatase 

T10H9.8 -0.69 -0.70 -0.69 Similar to CAL-4 

T03F1.11 -0.64 -0.74 -0.69 Similar to CALM-1 

F25B3.3 -0.69 -0.69 -0.69 Rap Guanine nucleotide Exchange Factor homolog 

F17E5.2 -0.77 -0.60 -0.69 Probable calcium-binding mitochondrial carrier F17E5.2; SCaMC-2 

Y39B6A.38 -0.69 -0.66 -0.68 REPS (RalBP1-associated Eps domain-containing protein) homolog 

B0336.11 -0.72 -0.63 -0.68 HPO-28 (Hypersensitive to POre- forming toxin ) 

K07G5.4 -0.76 -0.58 -0.67 K07G5.4 

C50C3.2 -0.75 -0.59 -0.67 Spectrin alpha chain 

C18E9.1 -0.71 -0.61 -0.66 CAL-2 (CALmodulin related genes ) 

T08D2.1 -0.70 -0.62 -0.66 Transmembrane emp24 domain-containing protein 

R08A2.2 -0.66 -0.65 -0.66 Serine/threonine protein phosphatase 

T04F3.2 -0.64 -0.67 -0.66 similar to SPARC-related modular calcium-binding protein 2 

T21H3.3 -0.70 -0.61 -0.66 Calmodulin 

B0563.7 -0.64 -0.67 -0.65 Similar to calmodulin 

C29E4.14 -0.74 -0.56 -0.65 Multiple coagulation factor deficiency protein 2 homolog 

B0511.1 -0.68 -0.62 -0.65 FK506-Binding protein family 

F53F8.1 -0.72 -0.58 -0.65 Kruppel-Like Factor (zinc finger protein) 

Y49E10.3 -0.70 -0.60 -0.65 Protein Phosphatase 

F55A11.4 -0.66 -0.62 -0.64 Calcium-binding mitochondrial carrier protein SCaMC-2 homolog; non-coding 

T25G3.4 -0.68 -0.61 -0.64 Probable glycerol-3-phosphate dehydrogenase, mitochondrial 

Y73C8B.5 -0.65 -0.62 -0.64 Similar to calmodulin-3 
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C13C12.1 -0.63 -0.64 -0.63 CAL-1 (CALmodulin related genes ) 

C07A9.5 -0.81 -0.45 -0.63 Similar to alpha-actinin-2 

F54G8.2 -0.68 -0.57 -0.63 Diacylglycerol Kinase 

C33D12.6 -0.69 -0.57 -0.63 RSEF-1 encodes an ortholog of human RAB44 

C03A7.13 -0.69 -0.56 -0.63 UDP-glucuronosyl/UDP-glucosyltransferase domain containing protein 

C56C10.9 -0.66 -0.59 -0.62 Similar to human 45 kDa calcium-binding protein 

C47A4.3 -0.68 -0.57 -0.62 Serine/threonine protein phosphatase 

ZK686.2 -0.59 -0.64 -0.61 Putative ATP-dependent RNA helicase ZK686.2 

ZC116.3 -0.65 -0.56 -0.61 Probable cubilin 

Y69E1A.4 -0.57 -0.62 -0.60 Serine/threonine protein phosphatase 

K11C4.5 -0.65 -0.54 -0.59 Uncoordinated UNC-68; Ryanodine receptor homolog 

F55C10.1 -0.57 -0.61 -0.59 Calcineurin B 

K10B3.10 -0.64 -0.53 -0.58 Spectrin 

R09H10.6 -0.59 -0.58 -0.58 R09H10.6 Similar to F23F1.2 

F23H11.8 -0.62 -0.54 -0.58 Phosphatase with EF hands 

F58G1.3 -0.64 -0.51 -0.58 Serine/threonine protein phosphatase 

F52H3.6 -0.57 -0.58 -0.57 Serine/threonine protein phosphatase 

T06E6.1 -0.53 -0.62 -0.57 Similar to human WDR-74 

F29F11.6 -0.67 -0.47 -0.57 GSP-1 (GLC7 (yeast Glc Seven) like Phosphatase ) 

F42G8.8 -0.58 -0.56 -0.57 Serine/threonine protein phosphatase 

K04C1.4 -0.67 -0.47 -0.57 MLC-6 (Myosin Light Chain ) 

R08C7.8 -0.62 -0.48 -0.55 Serine/threonine-protein phosphatase 

T10G3.5 -0.54 -0.56 -0.55 EEA1 (Early Endosome Antigen, Rab effector) homolog 

C11G6.4 -0.61 -0.48 -0.55 NHR-28 (Nuclear Hormone Receptor family ) 

K08E3.10 -0.56 -0.53 -0.55 MLC-7 (Myosin Light Chain ) 

T09E8.2 -0.60 -0.49 -0.54 High Incidence of Males (increased X chromosome loss) HIM-17 

K03A1.2 -0.53 -0.55 -0.54 lron-7 (eLRR (extracellular Leucine-Rich Repeat) ONly ) 

C24H11.2 -0.54 -0.54 -0.54 Serine/threonine protein phosphatase 

C25A1.9 -0.55 -0.53 -0.54 
RSA-1 (Regulator of Spindle Assembly ); protein phosphatase 2A (PP2A) 

regulatory subunit  

F44A6.1 -0.59 -0.49 -0.54 Nucleobindin homolog 

C48A7.1 -0.58 -0.48 -0.53 Egg Laying defective 

T05F1.1 -0.60 -0.45 -0.52 NRA-2 (Nicotinic Receptor Associated ) nicalin homolog 

C06A1.3 -0.60 -0.44 -0.52 Putative serine/threonine-protein phosphatase 

F21A10.1 -0.62 -0.41 -0.51 NCS-4 (Neuronal Calcium Sensor family ) 

Y45F10A.6 -0.49 -0.52 -0.50 TBC (Tre-2/Bub2/Cdc16) domain family 

K03E6.3 -0.55 -0.46 -0.50 NCS-3 (Neuronal Calcium Sensor family ) 

T02C5.5 -0.57 -0.44 -0.50 Uncoordinated; UNC-2 encodes a calcium channel alpha subunit  

C04B4.2 -0.48 -0.52 -0.50 Similar to C04B4.4 and LIN-66 

K04F1.10 -0.49 -0.50 -0.50 IRLD-40 (Insulin/EGF-Receptor L Domain protein ) 

F08B6.3 -0.51 -0.48 -0.49 CALU-2 (CALUmenin (calcium-binding protein) homolog) 

M03F4.7 -0.51 -0.46 -0.48 Calumenin (calcium-binding protein) homolog 

T22D1.5 -0.54 -0.43 -0.48 Probable serine/threonine protein phosphatase 2A regulatory subunit 

C47D12.1 -0.54 -0.43 -0.48 TRRAP-like (transcription/transformation domain-associated protein) 

T07G12.1 -0.44 -0.52 -0.48 CAL-4 (CALmodulin related genes ) 

Y51H4A.17 -0.50 -0.46 -0.48 STAT transcription factor family 

R08F11.1 -0.56 -0.40 -0.48 Non-lysosomal glucosylceramidase 

F40F9.8 -0.43 -0.52 -0.48 CAL-7 encodes an ortholog of human calmodulin-like 4 
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T27C10.4 -0.50 -0.45 -0.48 BTB and MATH domain containing 

T09B4.4 -0.47 -0.47 -0.47 Similar to Calmodulin-like protein 4 

E02A10.3 -0.47 -0.47 -0.47 Similar to calmodulin 

Y116A8C.36 -0.43 -0.50 -0.46 ITSN (intersectin) family 

R13A5.11 -0.42 -0.50 -0.46 Serine/threonine protein phosphatase 

K02F3.2 -0.45 -0.46 -0.46 Probable calcium-binding mitochondrial carrier K02F3.2; Similar to Aralar1 

F13G11.2 -0.55 -0.36 -0.45 IRLD-4 (Insulin/EGF-Receptor L Domain protein) 

ZK938.1 -0.48 -0.37 -0.42 Serine/threonine protein phosphatase 

W04D2.1 -0.46 -0.38 -0.42 Actinin 

F16F9.3 -0.39 -0.44 -0.41 F16F9.3 

F25H2.2 -0.42 -0.37 -0.39 SNX-27 (Sorting NeXin ) 

C23G10.1 -0.40 -0.38 -0.39 Putative serine/threonine-protein phosphatase C23G10.1 

C34D4.2 -0.29 -0.49 -0.39 Serine/threonine protein phosphatase 

C44B12.2 -0.36 -0.41 -0.39 Osteonectin (SPARC) related 

T25B9.2 -0.38 -0.40 -0.39 Serine/threonine protein phosphatase 

4R79.2 -0.48 -0.28 -0.38 Similar to RSEF-1 

C54E10.2 -0.41 -0.35 -0.38 NCS-5 (Neuronal Calcium Sensor family ) 

F58G11.1 -0.38 -0.37 -0.37 
LETM1 (Leucine zipper, EF-hand, Transmembrane mitochondrial protein) 

homolog 

F25B3.4 -0.28 -0.44 -0.36 Serine/threonine protein phosphatase 

T09F5.10 -0.41 -0.25 -0.33 Similar to F36D3.16 

F23B12.1 -0.20 -0.44 -0.32 Serine/threonine protein phosphatase 

F53F4.14 -0.33 -0.31 -0.32 Similar to F36H12.3 (major sperm protein) 

K08E3.3 -0.52 -0.11 -0.31 TOCA (Transducer Of Cdc42-dependent Actin assembly) homolog 

F23B12.7 -0.10 -0.53 -0.31 Homolog of human CAATT-binding protein 

C06G1.5 -0.36 -0.24 -0.30 Serine/threonine-protein phosphatase 2A regulatory subunit 

C24H10.5 -0.28 -0.32 -0.30 CAL-5 (CALmodulin related genes )  

C44C1.3 -0.33 -0.26 -0.30 NCS-1 (Neuronal Calcium Sensor family ) 

T04F8.6 -0.29 -0.29 -0.29 Similar to F59A2.6 

C09H5.7 -0.25 -0.33 -0.29 Serine/threonine protein phosphatase 

Y75B12B.6 -0.38 -0.20 -0.29 Phospholipase C 

B0513.5 -0.28 -0.29 -0.29 Proline dehydrogenase, mitochondrial 

Y40H4A.2 -0.25 -0.31 -0.28 Serine/threonine-protein phosphatase 

Y71H2AL.1 -0.38 -0.16 -0.27 PBO-1 (PBOc defective (defecation) ) calcineurin B homolog 

M02A10.3 -0.31 -0.22 -0.26 SLI-1 (Suppressor of LIneage defect ); Cbl family of ubiquitin ligases 

C56G7.1 -0.33 -0.19 -0.26 MLC-4 Myosin Light Chain 

Y75B8A.30 -0.22 -0.28 -0.25 Protein phosphatase 

Y47G6A.27 -0.36 -0.14 -0.25 Mitochondrial Rho GTPase Miro-3 

M02B7.6 -0.21 -0.28 -0.25 CAL-3 (CALmodulin related genes ) 

F58E6.1 -0.29 -0.15 -0.22 Signal transducer and activator of transcription b 

ZK354.9 -0.20 -0.21 -0.21 Serine/threonine protein phosphatase 

Y26E6A.2 -0.27 -0.13 -0.20 F-box protein 

F31B12.1 -0.19 -0.17 -0.18 PhosphoLipase C 

ZK1248.3 -0.14 -0.01 -0.08 Eps15 (endocytosis protein) Homologous Sequence 

Y37A1B.1 -0.10 -0.05 -0.08 LST-3 (Lateral Signaling Target ); ortholog of human CCAR2 

C36C9.6 -0.08 -0.07 -0.07 C36C9.6 

M18.5 -0.15 0.10 -0.03 DDB1 (UV-Damaged DNA Binding protein) homolog 

T04F3.4 -0.10 0.05 -0.02 Multiple coagulation factor deficiency protein 2 homolog 
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Y67H2A.4 0.09 0.09 0.09 MICU-1 (MItochondrial Calcium Uptake protein ) 

B0348.4 0.28 0.08 0.18 Egg Laying defective; EGL-8 encodes a phospholipase C beta 

 

Table 3.4.  The effect of EF-hand gene knockdowns in the absence of CaCl2 on anthranilate 

measurement z-scores.  The conditions were the same as in S3 Table except deionized water 

was added to the wells instead of CaCl2. 
  

 

 
   

  

  Anthranilate- no CaCl2   

Gene name 

Averaged 

AUC z-

score 

Averaged 

slope z-
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Total 

averaged 

z-score 

Gene description 

C24H11.2 -1.88 -1.73 -1.81 Serine/threonine protein phosphatase 

C02F4.2 -1.80 -1.19 -1.50 Calcineurin A/TAX-6 

Y9D1A.2 -1.51 -1.30 -1.40 Putative RNA helicase 

C47C12.4 -1.29 -1.45 -1.37 Mitochondrial Rho GTPase Miro-2 

Y105E8A.7 -1.09 -1.63 -1.36 EAT-18 (EATing: abnormal pharyngeal pumping ) 

T04D3.2 -1.28 -1.27 -1.27 SDZ-30 (SKN-1 Dependent Zygotic transcript ) 

F31B12.1 -1.24 -1.20 -1.22 PhosphoLipase C 

B0513.5 -1.26 -1.08 -1.17 Proline dehydrogenase, mitochondrial 

K07C5.1 -0.94 -1.24 -1.09 ARX-2; ARp2/3 complex component 

K01A2.11 -0.98 -1.07 -1.03 Calcium Binding protein homolog 

R08C7.8 -0.73 -1.29 -1.01 Serine/threonine-protein phosphatase 

B0336.11 -1.07 -0.89 -0.98 HPO-28 (Hypersensitive to POre- forming toxin ) 

H10E21.4 -1.06 -0.89 -0.97 Calmodulin-like protein 6 

W02B9.1 -0.80 -1.12 -0.96 Hammerhead embryonic lethal; cadherin homolog 

C07A9.5 -0.73 -1.11 -0.92 Similar to alpha-actinin-2 

C36E6.5 -1.09 -0.71 -0.90 MLC-2 Myosin Light Chain 

ZC116.3 -0.99 -0.65 -0.82 Probable cubilin 

ZK856.8 -0.78 -0.83 -0.80 Calcium-binding protein p22 homolog 

F26B1.5 -0.89 -0.71 -0.80 Serine/threonine protein phosphatase 

F55C10.1 -0.83 -0.74 -0.79 Calcineurin B 

C13C12.1 -0.55 -1.00 -0.77 CAL-1 (CALmodulin related genes ) 

F23B12.7 -0.85 -0.70 -0.77 Homolog of human CAATT-binding protein 

F42G8.8 -0.66 -0.84 -0.75 Serine/threonine protein phosphatase 

T04F8.6 -0.80 -0.69 -0.74 Similar to F59A2.6 

Y116A8C.36 -0.70 -0.74 -0.72 ITSN (intersectin) family 

F21A3.5 -0.63 -0.80 -0.71 PRDE-1 (PiRNA-DEpendent silencing defective ) casein kinase-1 homolog 

F11C7.4 -0.80 -0.60 -0.70 Drosophila Crumbs homolog 

C34C12.3 -0.58 -0.81 -0.70 Protein Phosphatase 

R08A2.2 -0.59 -0.63 -0.61 Serine/threonine protein phosphatase 

C03A7.13 -0.80 -0.39 -0.60 UDP-glucuronosyl/UDP-glucosyltransferase domain containing protein 

C06A1.5 -0.58 -0.60 -0.59 RNA Polymerase II (B) subunit 

Y69E1A.4 -0.51 -0.67 -0.59 Serine/threonine protein phosphatase 

ZK1151.1 -0.40 -0.75 -0.57 Variable abnormal morphology 

R10E11.6 -0.46 -0.69 -0.57 Similar to Synergin-gamma 
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F55A3.7 -0.52 -0.62 -0.57 FACT complex subunit SPT16 homolog 

F30A10.1 -0.36 -0.77 -0.56 CALM-1 (CALMyrin (Calcium and Integrin Binding protein) homolog ) 

F08B6.3 -0.33 -0.77 -0.55 CALU-2 (CALUmenin (calcium-binding protein) homolog) 

C36F7.2 -0.66 -0.42 -0.54 SWAH-1 (SoWAH (Drosophila) homolog ) 

K04F1.10 -0.64 -0.43 -0.53 IRLD-40 (Insulin/EGF-Receptor L Domain protein ) 

F38H4.9 -0.41 -0.63 -0.52 LET-92 homolog of protein phosphatase PP2AC 

R05G6.8 -0.27 -0.78 -0.52 Phospholipase C 

F09F7.2 -0.34 -0.70 -0.52 MLC-3 Myosin Light Chain 

F56C9.1 -0.40 -0.59 -0.50 GSP-2 (GLC7 (yeast Glc Seven) like Phosphatase ) 

T03F1.11 -0.29 -0.68 -0.49 Similar to CALM-1 

C56G7.1 -0.60 -0.36 -0.48 MLC-4 Myosin Light Chain 

F55A11.4 -0.42 -0.51 -0.47 Calcium-binding mitochondrial carrier protein SCaMC-2 homolog; non-coding 

B0511.1 -0.51 -0.38 -0.44 FK506-Binding protein family 

F54G8.2 -0.27 -0.60 -0.44 Diacylglycerol Kinase 

F25H2.8 -0.27 -0.58 -0.42 UBC-25 (UBiquitin Conjugating enzyme ) 

ZK899.5 -0.48 -0.36 -0.42 ZK899.5 

ZK1248.3 -0.62 -0.16 -0.39 Eps15 (endocytosis protein) Homologous Sequence 

W09G10.3 -0.24 -0.53 -0.39 NCS-6 (Neuronal Calcium Sensor family ) 

C48B4.2 -0.26 -0.47 -0.37 Rhomboid (Drosophila) related 

C56C10.9 -0.44 -0.28 -0.36 Similar to human 45 kDa calcium-binding protein 

E02A10.3 -0.09 -0.60 -0.35 Similar to calmodulin 

C54E4.2 -0.20 -0.49 -0.35 Similar to Testican-3 

M02B7.6 -0.37 -0.32 -0.35 CAL-3 (CALmodulin related genes ) 

C24H11.1 -0.36 -0.32 -0.34 Serine/threonine protein phosphatase 

F58E6.1 -0.51 -0.14 -0.32 Signal transducer and activator of transcription b 

K10F12.3 -0.33 -0.31 -0.32 Phospholipase C Like 

K08E3.3 -0.35 -0.26 -0.30 TOCA (Transducer Of Cdc42-dependent Actin assembly) homolog 

F13G11.2 -0.08 -0.53 -0.30 IRLD-4 (Insulin/EGF-Receptor L Domain protein) 

C47A4.3 -0.26 -0.34 -0.30 Serine/threonine protein phosphatase 

R09H10.6 -0.29 -0.27 -0.28 R09H10.6 Similar to F23F1.2 

Y32G9A.6 -0.39 -0.17 -0.28 NPHP-2 (NePHronoPhthisis (human kidney disease) homolog ) 

C48A7.1 -0.47 -0.08 -0.27 Egg Laying defective 

R08D7.5 -0.24 -0.29 -0.26 Human Centrin-2 homolog 

T21H3.3 -0.57 0.08 -0.24 Calmodulin 

C54E10.2 -0.12 -0.36 -0.24 NCS-5 (Neuronal Calcium Sensor family ) 

M03C11.8 -0.36 -0.11 -0.23 Putative SMARCAL1-like protein; Protein archease-like 

T02C5.5 -0.67 0.21 -0.23 Uncoordinated; UNC-2 encodes a calcium channel alpha subunit  

T25B9.2 -0.27 -0.17 -0.22 Serine/threonine protein phosphatase 

T08D2.1 -0.67 0.28 -0.20 Transmembrane emp24 domain-containing protein 

T09A5.1 -0.19 -0.19 -0.19 Calexcitin 

C24H10.5 -0.15 -0.23 -0.19 CAL-5 (CALmodulin related genes )  

T04F3.4 -0.30 -0.07 -0.19 Multiple coagulation factor deficiency protein 2 homolog 

T02G5.2 -0.17 -0.18 -0.18 EF-hand calcium-binding domain-containing protein 7 

4R79.2 -0.28 -0.07 -0.17 Similar to RSEF-1 

Y75B12B.6 -0.51 0.19 -0.16 Phospholipase C 

F59D6.7 0.00 -0.28 -0.14 Calcineurin B homolog 

Y48B6A.6 0.02 -0.28 -0.13 EFHD-1 (EF Hand calcium binding protein) 

C11G6.4 -0.08 -0.11 -0.10 NHR-28 (Nuclear Hormone Receptor family ) 
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R13A5.11 -0.04 -0.17 -0.10 Serine/threonine protein phosphatase 

ZK328.1 0.08 -0.29 -0.10 CYK-3 (CYtoKinesis defect ); Ubiquitin C-terminal hydrolase 

ZK686.2 0.07 -0.26 -0.09 Putative ATP-dependent RNA helicase ZK686.2 

W08D2.7 0.07 -0.26 -0.09 yeast MTR (mRNA transport) homolog 

ZC477.2 -0.13 -0.06 -0.09 Serine/threonine-protein phosphatase 

B0252.3 -0.27 0.09 -0.09 Putative transporter B0252.3 

Y39B6A.38 -0.09 -0.08 -0.09 REPS (RalBP1-associated Eps domain-containing protein) homolog 

F29F11.6 -0.09 -0.07 -0.08 GSP-1 (GLC7 (yeast Glc Seven) like Phosphatase ) 

T09E8.2 0.08 -0.20 -0.06 High Incidence of Males (increased X chromosome loss) HIM-17 

T16G12.7 1.00 -1.10 -0.05 Serine/threonine protein phosphatase 

F12A10.5 0.02 -0.10 -0.04 CAL-8 (CALmodulin related genes ) 

C27B7.6 0.04 -0.10 -0.03 Putative serine/threonine-protein phosphatase 

F25B3.3 -0.11 0.09 -0.01 Rap Guanine nucleotide Exchange Factor homolog 

B0563.7 0.00 -0.02 -0.01 Similar to calmodulin 

F53F8.1 -0.11 0.11 0.00 Kruppel-Like Factor (zinc finger protein) 

C09H5.7 -0.10 0.11 0.01 Serine/threonine protein phosphatase 

F17E5.2 0.26 -0.22 0.02 Probable calcium-binding mitochondrial carrier F17E5.2; SCaMC-2 

F54C1.7 0.23 -0.18 0.03 PAT-10 (Paralysed Arrest at Two-fold) Body wall muscle troponin C 

B0348.4 0.08 -0.01 0.03 Egg Laying defective; EGL-8 encodes a phospholipase C beta 

T03F1.5 0.22 -0.15 0.04 GSP-4 (GLC7 (yeast Glc Seven) like Phosphatase ) 

F58G11.1 0.07 0.02 0.04 
LETM1 (Leucine zipper, EF-hand, Transmembrane mitochondrial protein) 

homolog 

C33D12.6 0.49 -0.35 0.07 RSEF-1 encodes an ortholog of human RAB44 

Y73B3A.12 -0.13 0.29 0.08 CAL-6 encodes an ortholog of human calmodulin-like 3 

C50C3.5 0.14 0.05 0.09 Similar to calmodulin 1 

K03A1.2 0.01 0.17 0.09 lron-7 (eLRR (extracellular Leucine-Rich Repeat) ONly ) 

F53F4.14 0.25 -0.06 0.09 Similar to F36H12.3 (major sperm protein) 

C18E9.1 0.15 0.07 0.11 CAL-2 (CALmodulin related genes ) 

Y45F10A.6 0.01 0.21 0.11 TBC (Tre-2/Bub2/Cdc16) domain family 

Y73C8B.5 0.05 0.18 0.12 Similar to calmodulin-3 

C50C3.2 -0.01 0.25 0.12 Spectrin alpha chain 

C04B4.2 -0.01 0.26 0.13 Similar to C04B4.4 and LIN-66 

T07G12.1 0.42 -0.15 0.13 CAL-4 (CALmodulin related genes ) 

M18.5 0.07 0.20 0.14 DDB1 (UV-Damaged DNA Binding protein) homolog 

C36C9.6 0.09 0.20 0.14 C36C9.6 

C44C1.3 0.17 0.12 0.14 NCS-1 (Neuronal Calcium Sensor family ) 

DH11.1 0.27 0.03 0.15 Putative glutaminase 

F25H2.2 0.34 -0.02 0.16 SNX-27 (Sorting NeXin ) 

R08F11.1 0.28 0.04 0.16 Non-lysosomal glucosylceramidase 

C47D12.1 0.14 0.18 0.16 TRRAP-like (transcription/transformation domain-associated protein) 

Y40H4A.2 0.11 0.23 0.17 Serine/threonine-protein phosphatase 

T22D1.5 0.17 0.19 0.18 Probable serine/threonine protein phosphatase 2A regulatory subunit 

C06A1.3 0.12 0.25 0.18 Putative serine/threonine-protein phosphatase 

K11C4.5 0.34 0.01 0.18 Uncoordinated UNC-68; Ryanodine receptor homolog 

K04C1.4 0.19 0.17 0.18 MLC-6 (Myosin Light Chain ) 

F10G8.5 0.51 -0.14 0.19 NCS-2 (Neuronal Calcium Sensor family ) 

F56C11.1 0.34 0.06 0.20 Blistered cuticle; BLI-3 (DUal OXidase ) 

T25G3.4 0.23 0.17 0.20 Probable glycerol-3-phosphate dehydrogenase, mitochondrial 

Table 3.4 (Continued) 
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  Anthranilate- no CaCl2   

Gene name 

Averaged 

AUC z-

score 

Averaged 

slope z-

score 

Total 

averaged 

z-score 

Gene description 

B0511.1 0.33 0.08 0.21 FK506-Binding protein family 

F53G12.3 0.32 0.11 0.21 DUOX-2 (DUal OXidase ) 

F23F1.2 0.44 0.02 0.23 Similar to R09H10.6 

ZK354.9 0.17 0.33 0.25 Serine/threonine protein phosphatase 

C44B12.2 0.26 0.28 0.27 Osteonectin (SPARC) related 

T06E6.1 -0.08 0.66 0.29 Similar to human WDR-74 

W09C3.6 0.43 0.15 0.29 GSP-3 (GLC7 (yeast Glc Seven) like Phosphatase ) 

Y37A1B.1 0.40 0.18 0.29 LST-3 (Lateral Signaling Target ); ortholog of human CCAR2 

Y75B8A.30 0.43 0.17 0.30 Protein phosphatase 

F52H3.6 0.30 0.30 0.30 Serine/threonine protein phosphatase 

F58G1.3 0.40 0.24 0.32 Serine/threonine protein phosphatase 

F21A10.1 0.48 0.16 0.32 NCS-4 (Neuronal Calcium Sensor family ) 

T12D8.6 0.44 0.21 0.32 MLC-5 (Myosin Light Chain ) 

ZK673.7 0.14 0.54 0.34 Troponin C 

C34D4.2 0.26 0.43 0.34 Serine/threonine protein phosphatase 

F16F9.3 0.31 0.39 0.35 F16F9.3 

K08F11.5 0.48 0.29 0.39 Mitochondrial Rho GTPase Miro-1 

F23H11.8 0.73 0.05 0.39 Phosphatase with EF hands 

F43C9.2 0.79 0.05 0.42 Homologous to Isoform 1 of Calcium-binding protein 4 

M04F3.4 0.43 0.42 0.42 Probable cysteine protease 

Y49E10.3 0.42 0.45 0.43 Protein Phosphatase 

K07G5.4 0.56 0.33 0.44 K07G5.4 

ZK938.1 0.54 0.37 0.45 Serine/threonine protein phosphatase 

F22D6.9 0.62 0.33 0.47 Serine/threonine protein phosphatase 

F40F9.8 0.12 0.85 0.48 CAL-7 encodes an ortholog of human calmodulin-like 4 

ZK1307.8 0.38 0.61 0.50 Glucosidase 2 subunit beta 

T05F1.1 0.53 0.50 0.51 NRA-2 (Nicotinic Receptor Associated ) nicalin homolog 

C16H3.1 0.75 0.32 0.53 NCS-7 (Neuronal Calcium Sensor family ) 

K02F3.2 0.73 0.40 0.57 Probable calcium-binding mitochondrial carrier K02F3.2; Similar to Aralar1 

C29E4.14 0.42 0.72 0.57 Multiple coagulation factor deficiency protein 2 homolog 

T10G3.5 0.38 0.77 0.58 EEA1 (Early Endosome Antigen, Rab effector) homolog 

K08E3.10 0.25 0.95 0.60 MLC-7 (Myosin Light Chain ) 

C23G10.1 0.67 0.61 0.64 Putative serine/threonine-protein phosphatase C23G10.1 

Y43F4B.1 0.73 0.57 0.65 Set-25 (SET (trithorax/polycomb) domain containing ) 

F25B3.4 0.71 0.59 0.65 Serine/threonine protein phosphatase 

Y51H4A.17 0.73 0.59 0.66 STAT transcription factor family 

T27C10.4 0.60 0.73 0.66 BTB and MATH domain containing 

F56D1.6 0.80 0.54 0.67 Calexcitin 

C06G1.5 0.93 0.43 0.68 Serine/threonine-protein phosphatase 2A regulatory subunit 

T10H9.8 0.57 0.86 0.71 Similar to CAL-4 

Y67H2A.4 0.49 0.95 0.72 MICU-1 (MItochondrial Calcium Uptake protein ) 

W04D2.1 0.74 0.75 0.74 Actinin 

F44A6.1 0.58 0.92 0.75 Nucleobindin homolog 

C56A3.6 0.69 0.84 0.77 Mitochondrial calcium uptake protein-3 (MICU-3) 

F19B10.1 0.90 0.74 0.82 MEL-26 binding protein 

W06H8.1 0.94 0.72 0.83 RME-1 (Receptor Mediated Endocytosis ); EH domain containing protein 

C36E6.3 0.80 0.96 0.88 MLC-1 Myosin Light Chain 

T09B4.4 1.00 0.88 0.94 Similar to Calmodulin-like protein 4 

Table 3.4 (Continued) 
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Y26E6A.2 0.84 1.10 0.97 F-box protein 

F55A11.1 0.93 1.03 0.98 Similar to Multiple coagulation factor deficiency protein 2 

Y71H2AL.1 0.81 1.17 0.99 PBO-1 (PBOc defective (defecation) ) calcineurin B homolog 

K10B3.10 1.11 0.90 1.00 Spectrin 

M02A10.3 0.83 1.28 1.06 SLI-1 (Suppressor of LIneage defect ); Cbl family of ubiquitin ligases 

T09F5.10 1.09 1.21 1.15 Similar to F36D3.16 

K03A1.4 1.15 1.16 1.15 Similar to Calmodulin-1 

F33C8.4 1.48 0.84 1.16 Similar to Y41D4A.7 

T04F3.2 1.20 1.22 1.21 similar to SPARC-related modular calcium-binding protein 2 

M03F4.7 1.16 1.27 1.22 Calumenin (calcium-binding protein) homolog 

K03E6.3 1.40 1.23 1.31 NCS-3 (Neuronal Calcium Sensor family ) 

F23B12.1 1.34 1.43 1.38 Serine/threonine protein phosphatase 

C25A1.9 1.83 1.30 1.57 
RSA-1 (Regulator of Spindle Assembly );  protein phosphatase 2A (PP2A) 

regulatory subunit  

Y47G6A.27 1.78 2.15 1.96 Mitochondrial Rho GTPase Miro-3 

 

Table 3.4 (Continued) 
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CHAPTER 4: 

DEVELOPMENT OF HIGHT-THROUGHPUT RNAi SCREENS FOR THE 

IDENTIFICATION OF GENE KNOCKDOWNS THAT INCREASE OXYGEN 

CONSUMPTION, ATP, AND REDOX STATUS IN CAENORHABDITIS ELEGANS 

 

4.1 Abstract 

 Caenorhabditis elegans exhibit a dramatic decrease in aerobic metabolism with age as 

evidenced by large declines in ATP content, oxygen consumption, and reductive capacity during 

the first week of their adult lifespan.  Assays for measuring these changes during high throughput 

RNAi feeding screens are complicated by the co-culturing of C. elegans with its bacterial food 

source.  With the exception of a few fluorescent protein sensors, C. elegans-specific 

measurements of metabolic activity currently require the use of axenic media or the killing or 

removal of bacteria, which currently preclude the use of feeding RNAi.  Therefore, we have 

developed a high-throughput 96-well feeding RNAi method that allows for a fluorescent or 

luminescent measurement of a specific C. elegans enzymatic activity or metabolite level.  These 

methods were facilitated by the finding that treatment of dsRNA-expressing bacteria with 40% 

or more of acetone or ethanol maintained a high level of gene knockdown in C. elegans, while 

denaturing bacterial proteins.  However, this bacterial solvent treatment prevented C. elegans 

larval development, so to allow development 5-10% live E. coli were provided, which were later 
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killed by the addition of the antibiotic ciprofloxacin allowing for specific measurement of C. 

elegans metabolic activity.   To demonstrate the utility of these methods RNAi screening of 

2,688 X-chromosome genes was performed followed by either oxygen consumption analysis 

with fluorescent oxygen-sensing microplates, fluorescent measurement of redox status using the 

redox-sensitive indicator resazurin, or luminescent determination of ATP levels following 

freeze-thaw through the use of firefly luciferase. 

 

4.2 Introduction 

 Several major conserved longevity-promoting signaling pathways have been 

characterized in the nematode Caenorhabditis elegans [1-5].  One pathway involves the 

activation of the NAD
+
-dependent histone deacetylase SIR-2.1, and another involves disruption 

of insulin/IGF-1 receptor, DAF-2 (abnormal dauer formation-2) signaling.  Loss-of-function 

mutations in the C. elegans DAF-2 gene confer an extended lifespan through the activation of the 

transcription factor DAF-16, which is homologous to human FOXO genes [6-8] and through the 

activation of SKN-1, the C. elegans homolog of mammalian Nrf2.  Dietary restriction, which is 

currently the most consistent and universal method for producing lifespan extension in model 

organisms, decreases PI3K/AKT signaling, in turn activating DAF-16 [9].  Furthermore, 

although it functions through a separate upstream mechanism, the SIR-2.1-dependent lifespan 

extension pathway partially overlaps with the DAF-2/DAF-16 pathway, including the activation 

of DAF-16 [10]. 

Mitochondrial function decreases dramatically during the first week of adulthood in C. 

elegans.  The rate of oxygen consumption falls steeply over this interval, accompanied by a 

similar drop in cellular ATP content [11-13].  Wild-type N2 C. elegans maintain slightly higher 
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oxygen consumption levels with age when cultured under conditions of dietary restriction, and 

long-lived daf-2 mutants similarly possess higher cellular ATP levels.  The 

calorimetric/respirometric (C/R) ratio, which is a measure of the heat produced per oxygen 

consumed, correlates to the degree of proton leakage across the inner mitochondrial membrane 

[14], and is also lower in daf-2 mutants during the first two weeks of adulthood, indicating a 

tighter coupling between electron transport and ATP production [13].  In contrast, daf-16 mutant 

C. elegans exhibit slightly lower rates of oxygen consumption during this time frame compared 

to wild-type N2 and they similarly show decreased cellular ATP levels. 

Both Braeckman et al. [12] and Houthoofd et al. [13] have successfully used the 

colorimetric redox-sensitive viability dye XTT to assay the metabolic reductive capacity of C. 

elegans, demonstrating that XTT reductive capacity declines with age.  Encouraged by this 

finding, we investigated the ability of C. elegans to reduce another redox-sensitive viability dye 

resazurin, which is irreversibly converted into the fluorescent compound resorufin upon chemical 

reduction.  Resazurin has a long history of use as a bacterial viability indicator, dating back to at 

least 1929, being used to test for bacterial contamination in milk [15].  We found that the 

reductive capacity, as indicated by resazurin reduction, also exhibits a similar decline with age. 

C. elegans are especially susceptible to RNA interference (RNAi) of gene expression, 

making them a desirable model organism for studies involving reverse genetics [16, 17].  Genes 

affecting lifespan have been identified in C. elegans using high-throughput screening approaches 

[18], however genes affecting individual age-related changes have been much less studied.  The 

prospect of performing a high-throughput RNAi screen looking for changes in metabolic 

attributes is complicated by the usual presence of live dsRNA-expressing bacteria in the media of 

C. elegans during typical RNAi feeding studies.  Live bacteria potentially contribute to 
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measurements assaying aerobic respiration, ATP content, and enzymatic activity.  Both 

ultraviolet light (UV) and γ-irradiation killing of bacteria have been developed as methods for 

performing RNAi with metabolically inactive bacteria [19], but these treatments potentially 

damage the dsRNA present making the RNAi-mediated gene knockdown less effective.  In 

addition, we found UV-treatment to be difficult to scale to the quantities necessary for high-

throughput screening and resulted in inconsistent effects on bacterial reductive capacity (data not 

shown).  Therefore, we set out to find an alternative method to kill E. coli and preserve RNAi 

knockdown potential and to investigate the feasibility of developing high-throughput assays for 

assaying age-related changes in C. elegans oxygen consumption, ATP content, and reductive 

capacity using dead E. coli as an RNAi source. 

 

4.3 Materials and Methods 

4.3.1 C. elegans Culture 

 Prior to individual experiments, C. elegans were grown at 20 °C in 10 cm dishes 

containing nematode growth medium (NGM) and streaked with HT115(DE3) E. coli.  To 

prepare C. elegans for experimentation, eggs were obtained by alkaline bleach synchronization.  

In short, nematodes were washed off plates with 0.1 M NaCl and combined with a 2:1 mixture of 

5 M NaOH and 6% Clorox bleach, in a ratio of 0.4 mL of alkaline-bleach solution per 1 mL of 

suspended nematodes.  The mixture was then rocked for 4 – 7 minutes until the C. elegans 

carcasses dissolved as monitored by microscopy.  The resulting eggs were then diluted 5-fold 

with 0.1 M NaCl, pelleted by centrifugation at 1150 x g for 2 minutes at room temperature, and 

the supernatant was aspirated.  The egg pellet was then washed three times each with 50 mL of 

0.1 M NaCl, using centrifugation at 1150 x g for 2 minutes at room temperature and aspiration to 
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remove the supernatant.  The final pellet was suspended in 15 mL of fresh S-medium (containing 

the appropriate concentration of antifungal or antibiotic drugs), and then left to rock overnight at 

20 °C.  The next day (approximately 12 hours later) the concentration of live L1 larvae were 

determined by counting the number of nematodes in ten 10 μL drops. 

 For all assays utilizing C. elegans, the nematodes were cultured in 100 μL of S-medium 

in black, clear-bottom CoStar® 96-well plates with bacteria and antifungal and antibiotic drugs 

present at appropriate concentrations.  The plates were covered with 12.7 micron (0.0005 inch) 

FEP Teflon (CS Hyde Company) membrane gasket-attached lids sealed along the edges of the 

plates with vinyl tape.  All assays consisted of either N2 or BC12907 C. elegans (both purchased 

from the Caenorhabditis Genetics Center at the University of Minnesota).  The strain BC12907 

dpy-5(e907) expresses an integrated GFP transgene driven by the T09B4.8 promoter.  T09B4.8 is 

a homolog of the human mitochondrial AGXT-2 (alanine-glyoxylate aminotransferase-2) gene 

[20, 21].  Unpublished data from our lab has shown that the bright and ubiquitous GFP 

fluorescence of the BC12907 strain corresponds well to live C. elegans volume per well after the 

fifth day of culture (Chapter 3). 

 

4.3.2 Viability Assay 

 The redox-sensitive viability dye resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide; 

obtained from Acros Organics) was added to 96-well plate liquid cultures at a concentration of 

20 μM per well and then incubated in the dark for 90 minutes at 20 °C.  Resazurin is converted 

to the fluorescent compound resorufin through an irreversible reduction, which was assayed at 

the end of the incubation period by measuring the fluorescence (λex/λem 528/590 nm filter set) in 

a BioTek Synergy 2 microplate reader. 
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4.3.3 Low-throughput ATP Assays 

 For bacteria and C. elegans, microcentrifuge tube samples were prepared by submerging 

the tubes in liquid nitrogen followed by a 5 minute thaw at 37 °C and sonication on ice using a 

Heat Systems Ultrasonics W-380 sonicator (5-second pulses, 50% duty cycle, max power, 12 

pulses total).  The samples were then briefly vortexed and transferred to the wells of white, solid-

bottom 96-well plates at 50 μL per sample.  An equal volume of CellTiter Glo® (Promega), a 

reagent for ATP determination consisting of a mixture of luciferin and luciferase was added to 

each well.  The plates were shaken for 2 minutes and then incubated at room temperature for 10 

minutes.  ATP content was determined by measuring the luminescence in a BioTek Synergy 2 

microplate reader and comparing it to a standard curve made using the measurements from a 

similarly prepared series of ATP standards. 

 

4.3.4 Clark Oxygen Electrode Measurements 

 The rate of oxygen consumption for bacteria and C. elegans was determined by placing 

300 μL of a sample into the chamber of a Clark oxygen electrode (MT200A chamber, 

Strathkelvin Instruments).  The level of dissolved oxygen in the sealed chamber was then 

recorded over the span of 10 minutes and the rate of the decline in dissolved oxygen was 

determined per minute using a linear segment of the recording. 

 

4.3.5 C. elegans Protein Assay 

 The total protein of C. elegans samples was determined by using a similar method as 

described by Braeckman et al. [12].  In short, a 1 mL sample to be assayed was frozen in liquid 
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nitrogen and then stored at -10 °C until analysis.  For the protein assay 500 μL of the thawed 

sample was transferred to a fresh 2 mL microcentrifuge tube and sonicated on ice using a Heat 

Systems Ultrasonics W-380 sonicator (5-second pulses, 50% duty cycle, max power, 12 pulses 

total).  Three times the volume of 1:1 ethanol:acetone was added to promote protein 

precipitation, vortexed briefly, and incubated at 4 °C for 30 minutes.  The tube was then 

centrifuged at 15,000 x g for 10 minutes at room temperature to pellet the protein precipitates.  

The resulting supernatant was decanted and the microcentrifuge tube was left open and inverted 

on a paper towel in an isolated enclosure for 5 – 10 minutes while any remaining ethanol:acetone 

evaporated.   The protein was then suspended in 180 µL of 1 N NaOH, vortexed, and incubated 

at 70 °C for 25 minutes to degrade any remaining lipids within the sample.  1.26 mL of 

deionized water was added to dilute the NaOH, and 360 µL of 10% sodium dodecyl sulfate 

(SDS) was added to assist in solubilizing the proteins.  The contents of the tube were then mixed 

by inversion and centrifuged at 1,500 x g for 2 minutes at room temperature.  The protein 

concentration of the supernatant was analyzed by the BCA assay (Pierce) according to the 

manufacturer’s protocol using bovine serum albumin protein standards with a similar pH and 

SDS content as the assayed samples. 

 

4.3.6 Measuring Total Corrected Worm Fluorescence (TCWF) 

 Fluorescence microscope images were taken of GFP-expressing BC12907 C. elegans in 

drops of S-medium by using an EVOS® microscope (Advanced Microscopy Group) and a 

λex/λem 470/525 nm filter set.  The C. elegans were chilled prior to microscopy by placing the 

slide at -10 °C for a few minutes to reduce movement.  The image analysis software ImageJ was 

used to manually calculate an estimate of the relative green fluorescence of individual nematodes 
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by using the method for total corrected cell fluorescence outlined by McCloy et al., [22].  

Briefly, each image was converted to gray-scale; each C. elegans in the image was outlined and 

its area and integrated density (IntDen) were recorded.  An empty area of the image immediately 

beside that C. elegans was then outlined, and the mean gray value for that area was recorded.  

The total corrected worm fluorescence (TCWF) for that C. elegans was then calculated as IntDen 

– (Area X Mean of Gray Value of Background). 

 

4.3.7 Preparation of 9:1 mix of dead:live HT115(DE3) E. coli 

 E. coli was suspended in 40% acetone/60% 0.1 M NaCl (v/v) at a concentration of 6.9 x 

10
9
 cells/mL and incubated for 2 hours at 37 °C.  The bacteria was then pelleted by 

centrifugation at 3,000 x g for 30 minutes at 4 °C and the supernatant was decanted.  The pellet 

was then allowed to dry in an isolated enclosure for ~30 minutes before being suspended in fresh 

S-medium (containing the appropriate antifungal or antibiotic drugs).  Nine portions of the 

bacteria were then mixed with one portion (v/v) of a suspension of an identical concentration of 

live HT115(DE3) E. coli to yield a 9:1 mix.   

For the RNAi genome screen, individual clones were grown in 500 L of LB, in 1.3 mL 

96-well deep-well plates (Thermo Scientific Nunc #260251 or #260252) covered with sealed 

FEP Teflon gasket-attached membrane lids, and shaken at 37 °C for 24 hours.  Optimal growth 

time was determined by optical density measurements at 600 nm and dilution plating so as to 

produce a minimum of >1.24 x 10
9
 cells/mL.  The expression of dsRNA was then induced by the 

addition of a 1 mM concentration of isopropyl β-D-1-thiogalactopyranoside (IPTG) followed by 

a 4 hour incubation at 37 °C with shaking.  500 L of 100% acetone was then added to each well 

(~50% acetone final concentration) and the plates were incubated.  Given the large volume of 
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plates being prepared for the high-throughput screen, incubating the plates with acetone in closed 

incubators at 37 °C for 2 hours, as we had done in preliminary experiments, was determined to 

be unsafe.  As such, plates were covered with 96-well plate lids and then placed in a container 

covered with aluminum foil inside of a sealed fumehood overnight (~16 hours).  On the 

following day, the bacteria were pelleted in the wells of the 96-well plates by centrifugation at 

~1,000 x g for 30 minutes at 4 °C.  The supernatant was decanted, and the plates were allowed to 

dry in an isolated enclosure for ~30 minutes.  The bacteria were then suspended in 90 μL of S-

medium (pH 6.0) containing ~200 BC12907 C. elegans L1 larvae, 4 μg/mL of fluconazole, 50 

μg/mL of ciprofloxacin, and 6.9 x 10
8
 cells/mL of fresh, live HT115(DE3) E. coli (lacking a 

plasmid).  The individual cultures were then transferred to black, clear-bottom CoStar® 96-well 

plates.  

 

4.3.8 Setup of the High Throughput RNAi Screen 

 Bacteria and L1 larvae were prepared in black, clear-bottom CoStar® 96-well plates as 

described above.  The plates were then covered with oxygen permeable 12.7 micron FEP Teflon 

gasket-attached membrane lids and sealed around the edges of the plate with vinyl tape.  The 

plates were then incubated at 20 °C and the growth of nematodes within the plates was checked 

by microscopy.  Because RNAi treatment can potentially alter the growth rate of C. elegans, it 

was not practical to use the visual confirmation that individual cultures had entered the L4/adult 

stage before adding 5-fluorodeoxyuridine (FUdR) to sterilize the nematodes.  Therefore, a single 

time point was chosen for treatment that should allow the majority of cultures to reach the proper 

developmental stage. A 10 μL portion of FUdR (400 μg/mL final concentration; 100 μL final 

culture volume) was added on the fourth day of culture with the reasoning that any second-
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generation hatched larva would arrest and die in the presence of the drug.  The plates were then 

assayed on the sixth day of culture.  The X chromosome RNAi clones present in the original 

Ahringer RNAi library, consisting of 2,688 clones, was investigated in triplicate for each of three 

separate RNAi screens.  This resulted in the use of 28 plates for each replicate, 84 plates for each 

assay, and 252 plates overall. 

 

4.3.9 ATP Assay for the RNAi High Throughput Screen  

 CellTiter Glo® was added at 10 μL per well to plates from the RNAi genome screen 

(prepared as described above).  The plates were then immediately placed in a shallow pan of 

liquid nitrogen in order to freeze the contents of the wells.  The plates were then incubated at 37 

°C for 20 minutes to thaw the samples, and then placed at 20 °C for 10 minutes to equilibrate to 

room temperature.  The luminescence of each plate was measured in a BioTek Synergy 2 

microplate reader, with a white plain index card placed below the clear-bottom plates to aid in 

luminescence detection.  ATP standards were measured using an identical protocol in order to 

convert the measurements to pmol ATP. 

 

4.3.10 Redox Assay for the RNAi High Throughput Screen  

 Resazurin was added at a final concentration of 20 μM per well along with 1 mM of the 

protease inhibitor phenylmethanesulfonyl fluoride (PMSF) to plates from the RNAi genome 

screen (prepared as described above).  The plates were then immediately placed in a shallow pan 

of liquid nitrogen in order to freeze the contents of the wells.  Following the freeze, the plates 

were incubated for 20 minutes at 37 °C to thaw the samples, and then incubated at 90 minutes at 
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room temperature (20 °C).  The fluorescence of each plate was measured in a BioTek Synergy 2 

microplate reader using an λex/λem 528/590 nm filter set. 

 

4.3.11 Oxygen Saturation Assay for the RNAi High Throughput Screen  

 On day 6 of the lifespan the contents of each well for each 96-well plate from the RNAi 

screen was transferred to a freshly opened 96-well OXOPlate® (PreSens, Regensburg, 

Germany).  The plates were incubated in the dark at 20 °C for 30 minutes.  Following this step, 

the oxygen saturation of each well was measured according to the manufacturer’s instructions, 

using a BioTek Synergy 2 microplate reader with an λex/λem 528/590 nm filter set for the 

reference dye, and an λex/λem 528/620 nm filter set for the indicator dye.  Calibration and 

conversion to nmol O2 saturation was performed according to the manufacturer’s instructions 

using oxygen-free and highly-oxygenated deionized water. 

 

4.3.12 Data Analysis for the High-throughput Screen 

 The measurements taken from the OXOPlates® were first converted to nmol O2 based on 

the manufacturer’s instructions, otherwise inter-plate normalization was performed on the raw 

measurements from each plate in each screen by calculating the robust z-score for each well.  

Robust z-score calculations use the median measured value of each plate (as opposed to the 

mean) and the median absolute deviation (MAD) of each plate (as opposed to the standard 

deviation), with the formula z-score = (x – MEDIAN)/MAD.  This method is more robust against 

outliers than the standard z-score and compensates for per-plate variation by exploiting the 

assumption that the majority of RNAi knockdowns should not have a significant effect on the 

attribute measured. 
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 For each RNAi knockdown the both the mean robust z-score and standard error of the 

mean (SEM) were calculated based on the three replicates.  The upper and lower 95% confidence 

intervals (CI) were calculated by respectively adding and subtracting 1.96 x SEM from the mean.  

A p-value was also calculated for each knockdown by performing an unpaired two-tailed t-test 

between the knockdown and the theoretical population mean robust z-score of zero.  A 

knockdown was scored as a hit in the screen if its lower 95% CI was greater than 2 (in the case 

of ATP content and reductive capacity) or less than -2 (in the case of O2 saturation), and if its p-

value was less than 0.05. 

 Receiver operating characteristic (ROC) calculations were performed in GraphPad 

Prism® version 5.01.  Otherwise all calculations and statistical tests were performed using either 

SigmaPlot® version 11.0 or Microsoft Excel 2010. 

 

4.4 Results 

4.4.1 Acetone Treatment Kills Bacteria and Preserves RNAi Knockdown 

 One of the major complicating factors when performing high-throughput respiratory 

assays or metabolic assays of C. elegans is typically the presence of their food source – living 

bacteria.  In an attempt to overcome this complication, we attempted to find a convenient method 

of culturing C. elegans in liquid culture with dead HT115(DE3) E. coli, while still guaranteeing 

adequate larval development and adequate gene knockdown when performing RNAi feeding 

studies.  As part of this search, we subjected HT115(DE3) E. coli cultures to 111 different 

treatment conditions (selected by surveying protocols from the literature), varying the treatment 

time and temperature.  We then washed and pelleted the individual bacterial cultures, suspended 

them in S-medium at a concentration appropriate for ad libitum feeding of C. elegans liquid 
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cultures (6.9 x 10
9
 cells/mL), and assayed bacterial viability with the redox-sensitive dye 

resazurin (Table 4.1).  We also performed a similar screen of treatment conditions using 

HT115(DE3) E. coli containing an L4440 plasmid designed to target green fluorescent protein 

(GFP) for RNAi knockdown.  We washed and pelleted the bacteria and used it to feed ad libitum 

age-synchronized GFP-expressing (strain BC12907) C. elegans in liquid culture for 3 days at 20 

°C.  We then determined the effectiveness of gene knockdown using fluorescence microscopy 

and calculated the total corrected worm fluorescence (TCWF) based on the method described by 

McCloy et al. (Table 4.2) [22].  During the examination of the data from the different treatment 

conditions, we noticed that nematode size and developmental stage varied among the treatments 

(Table 4.3).  Since TCWF is partially dependent on nematode size, we normalized our 

measurements to size, as determined by the image area in pixels, using the image processing 

software ImageJ (Table 4.4).  From these measurements we were able to determine that although 

heat-treatment of E. coli (exposure to temperatures at or above 50 °C) seems to be an effective 

method for killing the bacteria, it appears to disrupt or degrade the dsRNA content of the bacteria 

preventing efficient gene knockdown upon consumption by the nematodes.  Furthermore, based 

on these comparisons we decided to focus our attention on acetone treatment as a possible 

method for rapidly killing E. coli while preserving dsRNA for RNAi, although ethanol treatment 

appeared promising as well. 

 We performed an additional assay measuring the extent of GFP RNAi knockdown based 

on the minimum effective acetone treatment conditions as indicated by the bacterial resazurin-

based viability screen (40% acetone treatment for 2 hours at 37 °C).  As shown in Figure 4.1A, 

RNAi against GFP resulted in a ~75 – 80% decrease in GFP fluorescence in the BC12907 strain 

of C. elegans fed both the acetone-treated and non-treated E. coli (two-way Holm-Sidak analysis 
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of variance p-value < 0.001 for GFP RNAi vs. control).  However, acetone treated bacteria 

appeared to cause delayed C. elegans larval development as indicated by a smaller mean 

area/nematode as indicated by ImageJ software analysis (Figure 4.1B; two-way Holm-Sidak 

analysis of variance p-value < 0.001 for acetone-treated vs. non-treated E. coli).  Compensating 

for the differences in nematode size, as seen in Figure 4.1C, indicates an RNAi induced decrease 

in GFP fluorescence from the acetone-treated bacteria is still comparable to that from the non-

treated E. coli (~80% of fluorescence in C. elegans fed non-treated E. coli; two-way Holm-Sidak 

analysis of variance p-value = 0.122 for acetone-treated vs. non-treated E. coli).  An additional 

check of bacterial lethality for our treatment conditions can be seen in Figure 4.1D, showing a 60 

minute timecourse using resazurin as a viability indicator.  Furthermore, dilution plating of 

similarly acetone-treated HT115(DE3) E. coli (40% and higher) on LB agar-containing plates 

failed to produce bacterial colonies (data not shown). 

 

4.4.2 Fluconazole Prevents Fungal Contamination of Liquid C. elegans Cultures 

without Affecting Mean Lifespan 

 Besides the issue of restricted C. elegans larval development when grown using acetone-

treated E. coli as food, we observed that dead E. coli are especially susceptible to microbial 

contamination in liquid S-medium cultures.  Figure 4.2A shows one instance of microbial 

contamination that occurred when using 40% acetone-treated (2 hours at 37 °C) HT115(DE3) E. 

coli  that were washed and suspended at an ad libitum concentration and then cultured in S-

medium for one week.  The C. elegans and E. coli suspensions were maintained at 20 °C in 96-

well plates sealed with oxygen permeable FEP Teflon membranes.  The seal was only briefly 

removed once every 24 hours to apply resazurin to several of the wells to assay viability.  Due to 
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the transparency of FEP Teflon, the resulting fluorescence viability measurements were 

performed without removing the seal.  As is observed in Figure 4.2, the microbial contamination 

is refractory to antibiotic treatment (kanamycin in this instance) but minimized by the presence 

of FUdR.  Similar occurrences of microbial growth were detected in the presence of other 

antibiotics such as ampicillin (50 – 200 μg/mL) and streptomycin (50 – 200 μg/mL), a 1X 

concentration of commercial algaecide (Silvertrine® containing colloidal silver; data not shown), 

and surprisingly, the antifungals amphotericin B (5 – 25 μg/mL) and nystatin (concentration 

range; data not shown).  Even though FUdR, which arrests mitotically active cells is commonly 

used in age-synchronized C. elegans cultures to prevent egg laying, its presence in the media 

before the L4 larval stage (~3 – 4 days at 20 °C) restricts development.  The sporadic microbial 

contamination was often easily detectable by the third day of culture, which led us to believe that 

FUdR treatment on its own was not an adequate solution for preventing contamination. 

 Amphotericin B has a history of use as an antifungal agent in mammalian cell and C. 

elegans cultures [23, 24].  However, likely due to the ease at which amphotericin B precipitates 

from aqueous solutions, we found that it did not adequately prevent microbial contamination 

under our growth conditions.  Therefore, we performed a screen of 26 different antifungal agents 

to test their effectiveness at preventing microbial contamination in S-medium solutions of dead 

E. coli (Table 4.5).  In short, a 96-well plate containing S-medium and 40% acetone-treated E. 

coli was left exposed to the open air for 30 minutes.  Afterwards, the appropriate concentration 

of the various antifungal drugs was added to wells in triplicate and the plate was sealed with an 

FEP Teflon-containing lid fastened with vinyl tape.  The plate was then incubated at 20 °C and 

on the seventh day a resazurin viability assay was performed.  The presence of a high viability-

associated resazurin fluorescence on the seventh day within the control (no antifungal drug ) 
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wells and much lower or absent fluorescence (comparable to wells containing only S-medium) in 

almost all of the other antifungal drug-containing wells supports our suspicion that amphotericin 

B was failing to prevent sporadic fungal contamination within C. elegans liquid cultures. 

Of the 26 antifungal drugs tested, eight were selected based on antifungal capability and 

low predicted toxicity and added to liquid cultures containing ad libitum levels of live 

HT115(DE3) E. coli and age-synchronized wild-type N2 C. elegans in an attempt to determine if 

any of the antifungal agents significantly perturbed C. elegans lifespan.  Figure 4.2B shows the 

Kaplan-Meier survival curves of the eight antifungal agents along with an antifungal-free control 

culture.  Of these, three appeared to significantly affect C. elegans mean lifespan Methylene blue 

and acriflavine increased lifespan, while sodium benzoate decreased lifespan (Table 4.6).  The 

remaining five antifungal agents showed no effect on mean survival time (fluconazole, 

ketoconazole, malachite green, propionic acid, and sodium sulfite).  Due to its established history 

of safe and non-toxic clinical use in humans [25-29], we decided to pursue the use of 4 μg/mL 

fluconazole as an inhibitor of fungal contamination in C. elegans liquid cultures containing dead 

E. coli. 

 

4.4.3 The Addition of a Small Amount of Live E. coli to the Acetone-Killed E. coli 

Promotes Full C. elegans Larval Development 

 We next investigated whether the failure of the C. elegans to develop to adulthood when 

fed acetone-treated E. coli was due to the loss of soluble bacterial metabolites during the wash 

step prior to suspending the bacteria in S-medium.  As an alternative protocol, we incubated 

HT115(DE3) E. coli for 2 hours at 37 °C suspended in 100% acetone and then allowed the 

acetone to evaporate completely in a fume hood at room temperature.  The bacteria were then 
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suspended to a concentration of 6.9 x 10
9
 cells/mL in S-medium containing 4 μg/mL fluconazole 

and ~100 L1 age-synchronized N2 C. elegans.  After 3 days in culture at 20 °C, no nematodes 

had developed to adulthood (scored based on a length greater than 1 mm as determined by 

microscopy).  The majority of the C. elegans were between 0.3 and 0.5 mm (data not shown).  

Therefore the acetone treatment appears to be leading to the degradation of a nutrient required 

for nematode development. 

 Next we sought to determine the minimum percentage of live non-treated E. coli that 

would promote full larval development in the majority of C. elegans culture.  A series of liquid 

C. elegans cultures was prepared using age-synchronized L1 larvae, 4 μg/mL fluconazole, and 

6.9 x 10
9
 cells/mL of combined HT115(DE3) E. coli.  The bacterial content of each culture was 

prepared as a mixture of live E. coli and 40% acetone-treated E. coli, in percentages of 1% - 10% 

live bacteria (in increments of 1%).  The cultures were then sealed with FEP Teflon membrane-

containing lids secured with vinyl tape.  After 3 days of incubation at 20 °C, nematode 

development was scored by measuring C. elegans length through microscopy and the use of 

ImageJ analysis software.  The culture containing 96% acetone-treated E. coli and 4% live E. 

coli was the culture with the lowest percentage of live bacteria that contained mostly adult C. 

elegans after 3 days.  As a point of reference, 4% E. coli corresponds to 2.76 x 10
8
 cells/mL of 

live bacteria.  Kenyon et al. [30] found that C. elegans fed only 2.6 x 10
8
 arrested at the L1 larval 

stage.  Given that our C. elegans developed to adulthood at this concentration of live bacteria 

suggests that the nematodes are likely still capable of obtaining nutrients from the acetone-

treated E. coli, with the small amount of live E. coli providing the other source of the 

developmentally-essential nutrient. 
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 A second test of GFP knockdown by RNAi was performed using acetone-treated 

HT115(DE3) E. coli supplemented with 10% live E. coli (6.9 x 10
8
 cells/mL live E.coli).  The 

higher concentration of live E. coli was chosen as a buffer to ensure proper larval development.  

Similarly-treated 1:9 live:dead HT115(DE3) E. coli lacking a plasmid as well as non-treated 

dsRNA-expressing bacteria were prepared as controls.  Age-synchronized L1 larval (strain 

BC12907) C. elegans were grown in culture for 3 days at 20 °C using the bacteria as a food 

source and their resulting GFP fluorescence was measured using fluorescence microscopy and 

the TCWF was calculated (Figure 4.3A).  The average nematode size at day 3 (Figure 4.3B) as 

determined by the pixel area showed no significant difference among the types of bacteria tested  

as determined by unpaired two-tailed t-tests and one-way analysis of variance comparisons (p-

value > 0.05).  The TCWF/area of C. elegans fed treated and non-treated dsRNA-expressing E. 

coli (Figure 4.3C and 4.3D) showed a statistically significant decrease in GFP fluorescence (p-

value < 0.05 with one-way analysis of variance using Dunn’s method), even though the GFP 

fluorescence of both RNAi-fed groups only decreased by ~40% compared to the non-RNAi fed 

controls. 

 

4.4.4 Ciprofloxacin Treatment Kills Stationary Phase E. coli but a Resazurin Signal 

Persists 

 Liquid S-medium is a nutrient-poor growth environment for E. coli and once placed in 

this medium E. coli likely enters stationary phase.  Once in stationary phase, bacteria tend to 

become more resistant to the activity of antibiotics, many of which are bactericidal due to their 

interference with mechanisms of cell growth or division, such as protein translation or cell wall 

synthesis.  Antibiotic compounds of the quinolone family, however, have been shown to be 
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effective against stationary phase bacteria [31-33], with ciprofloxacin and ofloxacin specifically 

showing high potency.  We examined ciprofloxacin and ofloxacin as options for removing the 

residual metabolic activity of the remaining live bacteria in the C. elegans liquid cultures.  Figure 

4.4A shows the ATP content of fresh, live HT115 (DE3) E. coli suspended in S-medium at a 

concentration of 6.9 x 10
9
 cells/mL and treated with either 50 μg/mL ciprofloxacin, 50 μg/mL 

ofloxacin, or left non-treated and assayed after 0, 12, or 24 hours.  The presence of ciprofloxacin 

or ofloxacin in the media, which are most soluble in aqueous solutions at a low pH, necessitated 

the adjustment of the pH of the S-medium to 6.0, still well within the range for optimal growth 

[34].  The ATP content for the ciprofloxacin and ofloxacin treated bacteria decreased by 32% 

and 37% respectively of the initial non-treated time point at 12 hours and decreased by 18% and 

25% respectively at 24 hours.  Furthermore, streaking E. coli from both treatments onto 

antibiotic-free LB agar plates after 48 hours of treatment did not result in the formation of 

colonies after an overnight incubation at 37 °C, whereas streaking similar non-treated E. coli 

resulted in a lawn of growth. 

 We then performed lifespan analysis of N2 C. elegans cultured under similar conditions 

(6.9 x 10
9
 cells/mL of E. coli in S-medium containing 4 μg/mL fluconazole and incubated at 20 

°C) as shown in Figure 4.4B.  The log-rank p-value showed a difference among the groups (p = 

0.026).  Pair-wise comparison using the Holm-Sidak method showed a significant difference 

between the control lifespan (mean of 15.2 days ± 0.4; n = 141 nematodes), and the ofloxacin-

treated lifespan (mean of 14.1 days ± 0.4; n = 147 nematodes; p-value = 0.0103), but not 

between the control lifespan and the ciprofloxacin-treated lifespan (mean of 14.7 days ± 0.4; n = 

209; p-value = 0.572).  Given the lack of statistical effect on C. elegans lifespan, we chose 

ciprofloxacin for additional investigation.  Figure 4.4C shows the effect of 50 μg/mL 
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ciprofloxacin on the viability of 6.9 x 10
9
 cells/mL HT115(DE3) E. coli in S-medium with 4 

μg/mL fluconazole incubated for 8 days at 20 ˚C.  Viability was measured at intervening time 

points using resazurin.  On the eighth day of treatment ciprofloxacin-treated E. coli displayed a 

75% reduction in viability signal as opposed to the 49% reduction of signal observed for non-

treated E. coli.  However, by the eighth day the ciprofloxacin-treated E. coli still responded to the 

dye to a significantly greater extent than samples containing only S-medium and 4 μg/mL 

fluconazole (~9.2 fold higher).  A similar experiment using 6.9 x 10
8
 cells/mL of HT115(DE3) 

E. coli (10% of the previous concentration and an equal amount as used in Figure 4.3) gave a 

similar profile for 50 μg/mL ciprofloxacin treatment with an approximately 5-fold lower viability 

signal.  However, at 153 hours (~6.4 days) the ciprofloxacin-treated E. coli displayed a viability 

signal comparable to that of the S-medium only control (unpaired two-tailed t-test p-value = 

0.066; n = 3) and it remained comparable at 192 hours (8 days; unpaired two-tailed t-test p-value 

= 0.090; n = 3).  As expected, an investigation of lower concentrations of ciprofloxacin-treated 

E. coli (9% to 1% of the full 6.9 x 10
8
 cells/mL concentration) revealed a similar pattern of 

indistinguishability of the resazurin reduction signal compared to the control by ~6.4 days post 

antibiotic treatment (data not shown).  Therefore, it appears that the presence of ciprofloxacin 

can completely kill the bacteria by the sixth day if the percent of live bacteria in the culture is 

10% or less. 

Interestingly, an investigation of the rate of aerobic respiration of non-treated and 

ciprofloxacin-treated E. coli at similar concentrations (6.9 x 10
9
 cells/mL and 6.9 x 10

8
 cells/mL) 

revealed that respiration is minimal for live E. coli in 100 μL S-medium cultures (Figure 4.5).  A 

one-way analysis of variance of the respiratory rate of all groups revealed no significant 

difference between live E. coli in culture and an S-medium-only control (p-value = 0.202). 
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 Given that 50 μg/mL ciprofloxacin-treated E. coli showed a roughly 5-fold drop in ATP 

content after 24 hours, failed to form colonies after 48 hours, but continued to reduce resazurin 

for ~6 days at 6.9 x 10
8
 cells/mL and for at least 8 days at 6.9 x 10

9
 cells/mL was unexpected and 

may represent a gradual decay of functional enzymatic activity in dead or dying E. coli.  

Furthermore, we found that C. elegans develop fully to adulthood when fed a 9:1 dead:live mix 

of HT115(DE3) E. coli as used in Figure 4.3 (6.21 x 10
9
 cells/mL of 40% acetone-treated E. coli 

and 6.9 x 10
8
 cells/mL of fresh, live E. coli) and treated with 50 μg/mL ciprofloxacin while in the 

L1 larval stage. Therefore these culture conditions were chosen and day 6 was chosen for 

measurements for RNAi screens demonstrating the feasibility of this approach.  

 

4.4.5 Screens for ATP content, Oxygen Consumption, and Reductive Capacity 

 C. elegans experience a dramatic decline in oxygen consumption and ATP content over 

their adult lifespan [11-13].  Our results with N2 C. elegans support this respiratory decline with 

ATP exhibiting a steep decline starting on the third day of culture (approximately the first day of 

adulthood) as measured per nematode (Figure 4.6A) and per ng of C. elegans protein (Figure 

4.6B).  When oxygen consumption was normalized per nematode, we found the rate of oxygen 

consumption to start to decline sharply by the seventh day of culture (Figure 4.6C), but when 

normalized per ng of C. elegans protein, it started to decline sharply on the third day of culture 

(Figure 4.6D).  Inspired by the success reported by Braeckman et al., using the redox-sensitive 

viability dye XTT to assay metabolic reductive capacity, which was found to decline with age 

[12], we sought to apply the viability dye resazurin, which has the advantage of a fluorescent 

signal, for a similar purpose.  Figures 4.6E and 4.6F show the results of assaying resazurin 

reduction on days 4 through 8 using samples of age-synchronized N2 C. elegans that were 
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physically disrupted by freezing in liquid nitrogen, thawing, and then sonication.  Our findings 

were similar to those found by Braeckman et al.  with worms showing a decrease in reductive 

capacity with age as evidenced by the rate of resazurin reduction falling sharply beginning with 

the first measurement as assayed per nematode (Figure 4.6E) and per ng C. elegans protein 

(Figure 4.6F).  We also found that intact nematodes reduced resazurin well at young ages, but 

not quite as well as freeze-thawed nematodes at older ages.  This suggests that resazurin may 

have limited permeability though the cuticle of the nematode and the decreased rate of 

pharyngeal pumping in aged nematodes might contribute to a decreased resazurin reduction 

signal independent of the redox status of the worm.   

Because of our success in developing a functional RNAi feeding protocol that uses 

dsRNA-expressing bacteria that are dead by day 6 of the lifespan, we decided to examine the 

feasibility of performing high-throughput screens to identify genes preventing the age-related 

decline in aerobic respiration, ATP content, and redox status.  We began by attempting to modify 

our ATP and redox measurements, which require the disruption of the C. elegans cuticle, for 

high-throughput screening.   Figure 4.7 shows the results of ATP assays performed following 

several different disruption methods involving rapid freezing and/or boiling.  From these results 

we decided that a single freeze/thaw cycle using liquid nitrogen was adequate to disrupt the C. 

elegans cuticle for ATP analysis.  We then examined quality of our overall method of 

differentiating between physiologically relevant levels of ATP by examining 3-day-old and 6-

day-old BC12907 C. elegans, both grown on a 9:1 dead:live mix of 40% acetone-treated and 

non-treated HT115(DE3) E. coli (6.9 x 10
9
 cells/mL total) in S-medium with 4 μg/mL 

fluconazole and 50 μg/mL ciprofloxacin.  Prior to these assays the nematodes were washed three 

times with 0.1 M NaCl and then added at a concentration of ~200 nematodes/well to 96-well 
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plates containing 9:1 dead:live bacteria that had been incubated for 6 days in S-medium 

(prepared with 4 μg/mL fluconazole and 50 μg/mL ciprofloxacin; n = 60 wells for each plate).  

CellTiter Glo® was added to both plates, which were then placed in a shallow pan of liquid 

nitrogen until entirely frozen.  The plates were then thawed at 37 °C for 20 minutes and then 

placed at room temperature (20 °C) for 10 minutes.  Figure 4.8A shows a comparison of the 

pmol ATP distribution for both groups as determined by well luminescence.  An analysis of the 

potential quality of this assay method for investigating values within the tested physiological 

range was performed by calculation of the strictly standardized mean difference (SSMD) 

between the two groups.  The resulting SSMD value for the use of this assay with C. elegans was  

β = 2.180 (Table 4.7 and Table 4.8 for a summary and an interpretation of SSMD values [35]).  

SSMD value interpretation depends on a subjective assessment of the strength of the controls; 

however, based on the calculated β value, the assay is rated as either “good” for a strong pair of 

controls, or “excellent” for a moderate pair of controls.  An investigation of the receiver 

operating characteristic (ROC) yielded an area under the curve (AUC) of 0.998 ± 0.002 (Table 

4.8), indicating a high capacity to differentiate between the day 3 and day 6 groups with a 

minimal error rate.  Interestingly, normalizing the pmol ATP measurements to the GFP 

fluorescence of each well (an indication of the total nematode volume per well; Figure 4.8B) 

slightly lowered the SSMD and ROC values (β = 1.652; AUC = 0.932 ± 0.024) possibly due to 

the high green autofluorescence of concentrated bacteria at their initial concentration of 6.9 x 10
9
 

cells/mL. 

 We used a similar method to investigate the potential for high-throughput measurements 

of redox status.  Again we used 3-day-old and 6-day-old C. elegans that were washed and plated 

at a concentration of ~200 nematodes/well in 96-well plates containing a 9:1 dead:live mix of 
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40% acetone-treated and non-treated HT115(DE3) E. coli (6.9 x 10
9
 cells/mL total) that had been 

incubated for 6 days in S-medium (prepared with 4 μg/mL fluconazole and 50 μg/mL 

ciprofloxacin; n = 60 wells for each plate).  Resazurin was added to each well at a final 

concentration of 20 μM with 1 mM PMSF to inhibit proteases activated by the subsequent 

freeze-thaw step.  The plates were then immediately frozen in a shallow pan of liquid nitrogen 

and allowed to thaw and equilibrate to room temperature as described above.  The plates were 

then incubated at room temperature for an additional 90 minutes before measuring fluorescence.  

The results (shown in Figure 4.8C) were analyzed by calculating the SSMD for the 3 and 6-day-

old C. elegans indicating a scoring of “excellent” for the assay for controls assessed to be 

moderate, strong, or very strong (β = 5.809), and the ROC was determined to have an AUC of 

1.00 ± 0.00 indicating a complete capacity to differentiate between the two groups.  Normalizing 

the measurements to GFP fluorescence, however, completely negated the utility of the assay 

(reversing the relative measurements of the 3- and 6-day-old groups; β = -8.297; Figure 4.8D). 

 The oxygen-sensing 96-well OXOPlates® (from PreSens) have been used successfully 

for the assay of C. elegans respiration [36].  We used OXOPlates® to measure the oxygen 

saturation per well of 3 and 6-day-old C. elegans grown as indicated above.  Prior to assaying 

oxygen saturation, the nematodes were combined in OXOPlates® with 9:1 dead:live HT115 

(DE3) E. coli that had been incubated for 6 days in S-medium (prepared with 4 μg/mL 

fluconazole and 50 μg/mL ciprofloxacin; n = 60 wells for each plate; ~200 nematodes/well).  

The plates were allowed to equilibrate for 30 minutes at room temperature (20 °C) and then 

measured according to the manufacturer’s instructions.  Figure 4.8E shows the difference 

between the 3 and 6-day-old C. elegans. In this assay lower nmol oxygen saturation corresponds 

to a higher rate of oxygen consumption.  SSMD and ROC were calculated as before indicating a 
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robust assay (β = 3.197; “excellent” for moderate or strong controls, and “good” for very strong 

controls) with complete ability to differentiate between the assayed groups (AUC = 1.00 ± 0.00).  

In contrast to the previous two assays, normalizing the measurements to the GFP fluorescence of 

the C. elegans slightly increased the quality of the oxygen saturation assay (β = 3.960; Figure 

4.8F). 

 Given these results we used our novel method to investigate ATP content, oxygen 

consumption, and redox status of 6-day-old C. elegans fed dsRNA-expressing bacterial clones 

from X chromosome plates of the Ahringer C. elegans RNAi genome library (2,688 clones total; 

supplied by Source BioScience) to individually knockdown gene expression.  For each assay, C. 

elegans (strain BC12907) were grown from the L1 stage for 6 days at 20 °C in 96-well plate 

liquid cultures containing 4 μg/mL fluconazole, 50 μg/mL ciprofloxacin, and a 9:1 dead:live 

mixture of HT115(DE3) E. coli (prepared as previously described) and performed in triplicate.  

On the sixth day GFP fluorescence was measured in a microplate reader to give the option for 

normalizing measurements to C. elegans GFP fluorescence (data not used in our analysis).  

Depending on the assay, measurements were then taken as described above (OXOplate® 

measurements for oxygen saturation determination or a liquid nitrogen freeze/thaw cycle 

followed by either CellTiter Glo® for ATP level analysis or resazurin reduction for redox 

measurements).  Figure 4.9A, 4.9B, and 4.9C show the distribution of measurements for each of 

the three screens.  Hits were determined for each screen by calculating the mean and 95% 

confidence interval associated with the z-score for each gene knockdown as well as the unpaired 

two-tailed t-test p-value of each knockdown compared to a theoretical population z-score mean 

of zero.  A knockdown was determined to be a hit if its lower 95% confidence interval was more 

than 2 standard deviations above the mean (for ATP content and reductive capacity), or if its 
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upper 95% confidence interval was 2 standard deviations below the mean (for oxygen saturation) 

and if it had an associated p-value less than 0.05 (Figure 4.9D, 4.9E, and 4.9F).  In other words, 

hits were selected that showed a significant increase in ATP content, oxygen consumption, or 

reductive capacity – similar to a younger C. elegans phenotype – on the sixth day of liquid 

culture.  

 The results from our 3 RNAi screens of 2,688 clones targeting genes on the C. elegans X 

chromosome identified 55 total gene knockdowns identified as hits.  Of these hits, 10 gene 

knockdowns were associated with increased ATP content, 8 gene knockdowns were associated 

with increased oxygen consumption, and 37 gene knockdowns were associated with increased 

reductive capacity (representing 0.37%, 0.30%, and 1.38% of the total number of genes 

screened, respectively). 

 

4.4.6 Genetic Mediators of ATP Content, Oxygen Consumption, and Reductive 

Capacity 

 The genes identified as hits from the three screens are relatively diverse in function 

(Table 4.9).  To further investigate the roles of these genes, we used the STRING (Search Tool 

for the Retrieval of Interacting Genes/Proteins) online database (http://www.string-db.org/) to 

identify gene ontology categories (GO) enriched in the hits for each screen (Table 4.10).  There 

were not enough genes selected from the oxygen consumption screen for any of the gene 

ontology categories to reach statistical significance (α < 0.05), but 16 GO categories were found 

to be enriched among the ATP content screen hits, and 50 GO categories were significantly 

enriched among the reductive capacity screen hits.  For both of these screens, categories relating 

to the negative regulation of cellular processes were the most representative (10 GO categories 
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for the ATP content screen, or 62.5% of the categories; and 25 of the GO categories for the 

reductive capacity screen, or 50% of the categories).  Additionally, four cellular component-

related GO categories were found to be enriched among the reductive capacity screen hits, all 

four which are related to vesicles and synapses. 

 For each hit from the three screens, we used the Human Aging Genomic Resources 

(HAGR) GenAge database (http://genomics.senescence.info/genes/) to determine reported 

effects on C. elegans lifespan.   Of the 55 identified genes, 4 were reported to affect lifespan (lin-

2, lin-14, F42G10.1, and daf-6) with all of them showing an anti-longevity effect, meaning that 

RNAi knockdown or attenuation of function results in an increase in lifespan.  For the remaining 

genes, WormBase (https://www.wormbase.org/) was used to identify the number of orthologous 

gene members within the same gene class, and the GenAge database was searched to identify 

individual members of each gene class reported to affect lifespan.  Using the total number of 

known C. elegans genes (19,762) and the number of pro- and anti-longevity C. elegans genes 

currently reported through GenAge (474 and 254 respectively), we were able to use χ
2
 analysis to 

identify gene classes that are significantly enriched for both pro- and anti-longevity genes (α < 

0.05).  Five of these remaining hits were found to be members of gene classes that are 

significantly enriched in anti-longevity genes (unc-2, hpl-1, sid-5, nac-1, and set-12).  No similar 

genes were found to be members of pro-longevity enriched gene classes.  In total, 9 of our 55 

hits (16.36%) were found to be either anti-longevity genes, or members of gene classes enriched 

for anti-longevity genes. 
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4.5 Discussion 

 We effectively used the RNAi-mediated knockdown of GFP expression to demonstrate 

that HT115(DE3) E. coli can be effectively killed through the use of a 40% acetone solution in a 

manner that preserves RNAi-mediated gene knockdown.  The use of acetone-treated bacteria as 

sole food source resulted in the knockdown of GFP expression as determined by fluorescence 

microscopy, but restricted the proper larval development of the nematodes.  We were able to 

compensate for this restriction by including a small amount of live bacteria to our liquid cultures, 

which proved to be effective down to 4% of the total bacterial content.  Treatment of these mixed 

dead:live E. coli cultures with ciprofloxacin, which is bactericidal against stationary phase 

bacteria, resulted in a ~5-fold drop in bacterial ATP levels after 48 hours at which time streaking 

of the ciprofloxacin-treated cultures failed to produce colonies.  The ability of the ciprofloxacin-

treated bacteria to reduce resazurin decreased but lingered for ~6 days after ciprofloxacin 

treatment, a full four days past the point at which the culture failed to produce plated bacterial 

colonies.  This continuation of resazurin reductive capacity may represent the residual enzymatic 

activity of dead or dying E. coli.  The inclusion of ciprofloxacin from the beginning of an age-

synchronized L1 C. elegans liquid culture fed with a 9:1 acetone-treated dead:live mixture of E. 

coli still permitted proper larval development.  Since larvae develop under these culture 

conditions, but fail to properly develop on purely acetone-treated E. coli, the initial inclusion of 

live bacteria likely provides an essential nutrient that is destroyed or rendered unusable by the 

acetone treatment. 

 Miscellaneous troubleshooting with using resazurin reduction as a marker of viability led 

to the discovery that long-term cultures of dead E. coli in S-medium showed sporadic recovery 

of viability/reductive capacity.  This restored viability was restricted by the inclusion of the DNA 
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replication inhibitor FUdR in the media, but was otherwise resistant to a variety of antibiotic 

agents.  Despite the use of sterile equipment and reagents and limiting the exposure of cultures 

and reagents to the open air, the sporadic occurrence of this phenomenon suggested fungal 

contamination, possibly facilitated by the rich food source of dead bacteria.  Amphotericin B and 

nystatin are antifungal agents with a history of use in C. elegans agar and liquid cultures, 

however the inclusion of these compounds in our S-medium failed to prevent the apparent 

contamination, possibly due to the limited solubility of the drugs.  Therefore, screens of 

antifungal agents were performed, examining both the efficacy of preventing contamination and 

their effect on C. elegans lifespan.  Given the unknown nature of the contaminant we used a long 

exposure to open air as a positive control.  Under these conditions contamination did not occur in 

the majority of the antifungal-treated samples, while contamination was detectable in the non-

treated samples.  This is admittedly not completely conclusive evidence of efficacy, but it is 

highly suggestive of adequate prevention.  Given the results of the screen, fluconazole was 

selected for inclusion in liquid cultures as a nontoxic antifungal agent and has so far proven to be 

a more effective prophylactic agent against fungal contamination than amphotericin B or nystatin 

under our liquid culture conditions. 

 Initial testing of the newly developed high-throughput screening protocol for ATP 

content, rate of oxygen consumption, and reductive capacity revealed that the physiological 

change in these parameters between young (day 3) and older (day 6) C. elegans is measurable 

and highly distinguishable, even in the presence of the full initial concentration (6.9 x 10
9
 

cells/mL) of the mixture of 9:1 acetone-treated dead:live ciprofloxacin-treated E. coli.  

Unfortunately with this necessary high concentration of bacteria, normalizing the measurements 

to the amount of nematodes per well, as indicated by total GFP fluorescence, decreased (and in 
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one instance, completely removed) the sensitivity of the assays likely due to two contributing 

factors.  First, as unpublished work from our lab has suggested, the GFP fluorescence of the 

BC12907 strain of C. elegans does not correlate to total nematode volume per well before at 

least the fifth day of culture (approximately the first or second day of adulthood), suggesting that 

the GFP fluorescence measurements of the day 3 sample is likely a poor attribute for 

normalization.  And second, even when dead, E. coli can show a very high amount of 

autofluorescence in the green range, which likely overwhelmed the fluorescence emitted by the 

nematodes.  However, given that our criteria for hit detection for screening consists of 

identifying gene knockdowns associated with significantly higher measured values, which would 

exclude knockdowns that proved toxic enough to decrease the number of live nematodes per well 

and that z-scores are calculated on a per-plate basis to correct for variation among batches, the 

lack of a normalizing factor for C. elegans mass did not dramatically alter the results of our 

screens.  We believe the methods developed here can be applied to dozens of other screening 

strategies and will be an invaluable contribution to the C. elegans research community. 

 Approximately 1/6th of the hits from the three screens can be classified as either anti-

longevity genes, or belonging to gene classes that are significantly enriched for anti-longevity 

genes.  It is noteworthy then that the majority of the identified gene ontology categories are 

associated with the negative regulation of cellular processes.  RNAi knockdown of these genes 

may be attenuating cellular processes that restrict lifespan.  Given that our method for detecting 

hits was based on the identification of metabolic attributes that most significantly resemble a 

younger phenotype, we believe it is an acceptable hypothesis that the resulting hits may be 

enriched for genes that negatively affect lifespan.  Many of the lifespan effects reported through 

the GenAge database are themselves the products of high-throughput screens.  Based on our 
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results, we believe that a more thorough investigation is warranted for the effect of these genes 

on C. elegans lifespan. 
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4.8 Figures 

 
 

Figure 4.1.  Acetone treatment kills E. coli and preserves capacity for RNAi knockdown.  
After screening various treatment conditions, we decided to investigate acetone treatment for 

killing HT115(DE3) E. coli prior to performing RNAi.  We pretreated E. coli with 40% acetone 

for 2 hours at 37 °C, before washing, pelleting, and feeding the bacteria to developing GFP-

expressing BC12907 C. elegans.  The nematodes were grown for ~3.5 days and their 

fluorescence was determined by fluorescence microscopy (λex/λem 470/525 nm filter set) and 

ImageJ analysis software using the total corrected worm fluorescence method (TCWF).  (A) C. 

elegans fed E. coli expressing dsRNA targeted to GFP showed a ~75 – 80% decreased in mean 

GFP fluorescence (n = 10 nematodes from each group; two-way Holm-Sidak ANOVA p-value < 

0.001).  (B)  However, the average size on day ~3.5 of the C. elegans fed acetone-treated E. coli 

was approximately 50% smaller than the C. elegans fed non-treated E. coli (two-way Holm-

Sidak ANOVA p-value < 0.001).  (C)  Correcting for the size differences by dividing average  

TCWF (which is partially dependent on nematode size) by the average area per nematode, 

showed a consistent RNAi-induced decrease in GFP fluorescence of ~80% for both acetone-

treated and non-treated E. coli (two-way Holm-Sidak ANOVA p-value = 0.122).  (D)  

HT115(DE3) E. coli treated with 40% acetone for 2 hours at 37 °C, washed and suspended in S-

medium at ad libitum concentration (6.9 x 10
9
 cells/mL), compared to an identical concentration 

of non-treated live HT115(DE3), and bacteria-free S-medium.  Each time point represents the 

viability as indicated by total fluorescence (in arbitrary fluorescence units) from the respiratory 

conversion of resazurin to resorufin. 
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Figure 4.2.  Microbial Growth in Liquid is Inhibited by the Presence of Antifungal Drugs.  
(A) One instance of microbial contamination from a series of microplates sealed with FEP 

Teflon film and incubated for one week at 20 °C.  The wells of the plates contained 100 μL of S-

medium with 6.9 x 10
9
 cells/mL of 40% acetone-treated HT115(DE3) E. coli (incubated with 

40% acetone for 2 hours at 37 °C, then washed, pelleted, and suspended in S-medium).  Enough 

wells were treated with either 200 μg/mL kanamycin or 400 μg/mL FUdR for six days of 

resazurin viability assays to be performed in quadruplicate (n = 24 wells total for each 

treatment).  An identical concentration of fresh live HT115(DE3) E. coli was used as a positive 

control for viability (n = 24) and S-medium was used as a negative control (n = 24).  The y-axis 

represents the presence of respiring microbes, as indicated by the fluorescence of the viability 

indicator resazurin (λex/λem 528/590 nm filter set), given in arbitrary fluorescence units (AFU).  

(B) Kaplan-Meier survival curves of age-synchronized C. elegans grown in the presence of live 

HT115(DE3) E. coli (6.9 x 10
9
 cells/mL) and eight different antifungal drugs.  FUdR was added 

to all groups once the nematodes reached the L4/adult stage in order to prevent egg-laying.  

Compared to the untreated control (n = 143 nematodes), methylene blue treatment (2 μg/mL) 

showed a small but significant extension of the mean C. elegans lifespan by ~7% ± 4% SEM 

(log-rank p-value = 0.002; n = 119 nematodes).  Acriflavin treatment (7 μg/mL) showed a ~13% 

± 5% SEM increase in mean lifespan (log-rank p-value = 0.0000102; n = 91 nematodes), and 

sodium benzoate showed a ~30% ± 2% SEM decrease in mean lifespan (log-rank p-value < 

0.0000001; n = 60 nematodes).  The remaining antifungal drugs displayed no significant 

deviation from the mean control lifespan (log-rank > 0.05). 
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Figure 4.3. Using a 9:1 dead:live mix of HT115(DE3) E. coli for RNAi allows full C. elegans 

larval development and preserves ability for gene knockdown.  HT115(DE3) E. coli 

expressing dsRNA targeted to GFP was pre-treated with 40% acetone for 2 hours at 37 °C, 

washed, pelleted, and suspended at 6.21 x 10
9
 cells/mL in S-medium containing 4 μg/mL 

fluconazole, along with 6.9 x 10
8
 cells/mL of live HT115(DE3) E. coli lacking a plasmid (a 9:1 

dead:live total mix of E. coli, labeled as “treated RNAi”), and a small population of age-

synchronized L1 BC12907 GFP-expressing C. elegans (n = 18 nematodes).  Similar cultures 

were prepared using either 9:1 dead:live E. coli with no plasmid present in either the live or dead 

portion (labeled as “control”; n = 35 nematodes), or 100% (6.9 x 10
9
 cells/mL) of plasmid 

containing bacteria (labeled as “non-treated RNAi”; n = 36 nematodes).  The cultures were 

incubated for 3 days at 20 °C, after which C. elegans size (in pixels) and GFP fluorescence (as 

TCWF) were assessed by fluorescence microscopy (λex/λem 470/525 nm filter set) and ImageJ 

analysis software.  (A) The size in pixels was not significantly different among any of the 

treatment groups, as determined by one-way analysis of variance.  (B) The difference in GFP 

fluorescence (as TCWF) between the RNAi groups (treated RNAi and non-treated RNAi) 

approached significance (one-way analysis of variance rank p-value = 0.073), (C) and attained 

significance when normalized to the average area in pixels per group (one-way analysis of 

variance rank p-value = 0.013). 
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Figure 4.4.  Ciprofloxacin treatment reduces both E. coli ATP content, and viability as 

determined by resazurin, and does not affect C. elegans lifespan.  (A) Live HT115(DE3) E. 

coli were suspended at 6.9 x 10
9
 cells/mL in S-medium containing 4 μg/mL fluconazole, treated 

with either 50 μg/mL ciprofloxacin, 50 μg/mL ofloxacin, or left non-treated (n = 16 per group).  

ATP was then assayed (using n = 8 per assay) at 0, 12, or 24 hours using CellTiter Glo®.  (B) N2 

C. elegans grown in liquid culture at 20 °C and fed 6.9 x 10
9
 cells/mL of live HT115(DE3) E. 

coli were treated with either 50 μg/mL ciprofloxacin (n = 209 nematodes), 50 μg/mL ofloxacin 

(n = 147 nematodes), or left non-treated (n = 141 nematodes).  FUdR was added to all groups 

once the nematodes reached the L4/adult stage in order to prevent egg-laying.  Starting on the 

fifth day of culture, surviving C. elegans were visually scored every 1 – 3 days using a dissecting 

microscope.  The resulting lifespans were then compared using Kaplan-Meier survival curves 

and log-rank analysis.  Pair-wise comparison using the Holm-Sidak method showed that 

ciprofloxacin treatment was statistically similar to the control (p-value = 0.572), whereas 

ofloxacin treatment resulted in a significantly shorter lifespan (p-value = 0.0103).  (C)  Live 

HT115(DE3) E. coli were suspended at 100% concentration (6.9 x 10
9
 cells/mL) in S-medium 

containing 4 μg/mL fluconazole and either treated with 50 μg/mL ciprofloxacin (n = 15) or left 

non-treated (n = 15).  The samples were incubated at 20 °C along with samples of just S-medium 

with 4 μg/mL fluconazole (n = 15).  At five different time points over the course of 8 days, a 

resazurin viability assay was performed on samples from each group (n = 3 per group).  (D)  A 

similar assay was setup using 10% E. coli (6.9 x 10
8
 cells/mL).  By approximately the sixth day, 

the resulting resazurin fluorescence of the ciprofloxacin-treated group was similar to that of the 

S-medium only control (p-value > 0.05). 
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Figure 4.5.  HT115(DE3) E. coli does not significantly consume oxygen in long-term S-

medium cultures.  Live HT115(DE3) E. coli was suspended at either 100% (6.9 x 10
9
 cells/mL) 

or 10% (6.9 x 10
8
 cells/mL) in S-medium with 4 μg/mL fluconazole (n = 15 each), and incubated 

at 20 °C.  S-medium only samples (containing 4 μg/mL fluconazole) were similarly incubated as 

a negative control (n = 15).  For each group, at each time point, three samples were combined in 

the chamber of a Clark oxygen electrode, and the rate of oxygen consumption was calculated 

over the course of 10 minutes.  A one-way analysis of variance of the respiratory rate of all 

groups revealed no significant difference between live E. coli in culture and an S-medium-only 

control (p-value = 0.202). 
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Figure 4.6.  Oxygen consumption, ATP content, and reductive capacity decline with age in 

C. elegans.  Age-synchronized C. elegans were grown in S-medium at 20 °C in 2L flasks with 

moderate shaking, and fed 6.9 x 10
9
 cells/mL HT115(DE3) E. coli.  Additional bacteria were 

added over the course of the incubation as deemed necessary by visual examination of the media.  

FUdR was added once the nematodes reached the L4/adult stage in order to prevent egg-laying.  

For each time point, a sample was removed from the culture, washed and pelleted 4 times to 

remove bacteria, and suspended in M9 buffer at a concentration of 2 nematodes/μL.  A portion 

was saved for assaying protein content and the remaining was used for ATP assays (using 

CellTiter Glo®; panels A and B), oxygen consumption measurements (using a Clark oxygen 

electrode; panels C and D), and resazurin-based viability measurements (panels E and F).  Note: 

panels B, D, and F are shown with the y-axis in log scale. 
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Figure 4.7.  Various treatment conditions for disrupting the C. elegans cuticle.  A liquid 

culture of age-synchronized N2 C. elegans was prepared using L1 larva, 6.9 x 10
9
 cells/mL 

HT115(DE3) E. coli and 4 μg/mL fluconazole.  On the third day of culture, samples of C. 

elegans were removed and washed 4 times to remove bacteria.  The C. elegans were then 

suspended in 100 μL of fresh S-medium at a concentration of 1 nematode/μL, and subjected to 

either a snap freeze in liquid nitrogen, followed by a 20 minute thaw at 37 °C, followed by 10 

minutes of incubation at room temperature at 20 °C (labeled “freeze/thaw”); incubation at 100 

°C for 1 minute, followed by cooling to room temperature for 10 minutes (labeled “boiled”); 

snap frozen in liquid nitrogen, followed by a rapid thaw at 100 °C, where it was then left for 1 

minute once liquid, and then allowed to cool for 10 minutes at room temperature (labeled 

“frozen/boiled”); or incubated at 100 °C for 1 minute, followed by a snap freeze in liquid 

nitrogen, a 20 minute thaw at 37 °C, and a 10 minute adjustment to room temperature (labeled 

“frozen/boiled”). 
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Figure 4.8.  Ciprofloxacin-treated 9:1 dead:live mix of E. coli allows adequate 

measurement of ATP content, oxygen saturation, and reductive capacity between 3- and 6-

day-old C. elegans.  Three- and six-day-old BC12907 C. elegans were washed free of bacteria, 

and placed at ~200 nematodes/well in S-medium with 6.9 x 10
9
 cell/mL HT115(DE3) E. coli, 

which had been treated for 6 days with 4 μg/mL fluconazole and 50 μg/mL ciprofloxacin.  (A) 

CellTiter-Glo® was used to measure ATP content after a single freeze/thaw cycle in liquid 

nitrogen.  (B) ATP content normalized to the GFP fluorescence of the C. elegans gave worse 

separation between the ATP content of the two groups.  (C) Reductive capacity measured by 

resazurin fluorescence, after a similar freeze/thaw cycle in liquid nitrogen.  (D)  Reductive 

capacity normalized to the GFP fluorescence of the C. elegans.  (E) Rate of oxygen consumption 

as measured by the level of oxygen saturation in wells of OXOPlates®.  (F) Oxygen saturation 

normalized to C. elegans GFP fluorescence. 
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Figure 4.9.  An RNAi screen of the X chromosome reveals genes affecting ATP content, 

oxygen consumption, and reductive capacity.  All three screens produced a Gaussian 

distribution of standardized mean measurements (upper panels A, B, and C).  The lower panels 

(D, E, and F) show individual standardized mean measurements (shaded gray circles), sorted z-

score (x-axis), and significance indicated by the negative log of the p-value obtained by 

comparing the three replicates for each measurement to the overall theoretical population mean 

(zero) by an unpaired two-tailed t-test.  The vertical line indicates standard deviation value used 

for hit determination, and the horizontal line indicates the –log associated with a p-value 

threshold of 0.05.  Circles shaded in white represent individual standardized mean measurements 

regarded as hits.  In other words, the white shaded circles are gene knockdowns that were more 

than 2 standard deviations beyond the mean (+2 for ATP content and reductive capacity, and -2 

for oxygen saturation) as determined by the 95% confidence interval for that set of 

measurements, with a p-value less than 0.05. 
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4.9 Tables 

Table 4.1.  Bacterial viability after various treatments.  A total of 111 different treatment 

conditions were investigated for their potential to kill E. coli, varying in chemical treatment, 

incubation time, and incubation temperature.  Prior to the assays, the bacteria were washed and 

suspended in S-medium at an ad libitum feeding concentration.  The % control viability column 

lists the resulting viability as determined by the fluorescence of the reporter dye resazurin 

(λex/λem 528/590 nm filter set), given as a percentage of the fluorescence of an assayed 

untreated bacterial control for that specific trial.  Statistical significance was investigated by the 

comparison of each treatment to the untreated bacterial control, and to S-medium lacking 

bacteria (unpaired two-tailed t-test; p-values < 0.05 are displayed in bold). 

 
 

 
      

Treatment 
Temperature 

(°C) 
Incubation % Control viability ± SEM 

vs. Untreated 

E. coli p-value 

vs. S-medium 

Only p-value 

S-medium only N/A N/A 3% 0% 4.373E-03 1.000E+00 

30% ethanol with 1 mM IPTG 50 3 days 4% 0% 1.923E-04 3.926E-03 

30% ethanol with 25 mM citrate 

and 10 mM EDTA at pH 5.2 
50 3 days 5% 0% 1.961E-04 5.643E-04 

30% ethanol with 25 mM citrate, 
10 mM EDTA, and 1 mM IPTG 

at pH 5.2 

50 3 days 5% 0% 1.971E-04 2.132E-04 

untreated 50 24 hrs 6% 0% 2.195E-05 7.673E-05 

25 mM citrate and 10 mM 
ETDA at pH 5.2 

50 24 hrs 7% 0% 2.495E-05 1.024E-05 

100% ethanol 37 2 hrs 7% 0% 1.038E-04 6.744E-06 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 
EDTA at pH 5.2 

50 24 hrs 7% 0% 2.468E-05 5.270E-06 

30% ethanol 50 3 days 7% 0% 1.981E-04 5.187E-05 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 

EDTA at pH 5.2 

37 24 hrs 8% 0% 2.472E-05 3.038E-06 

40% ethanol 37 2 hrs 8% 0% 1.037E-04 4.926E-06 

40% acetone 37 2 hrs 8% 0% 1.082E-04 1.446E-06 

70% acetone 37 2 hrs 8% 0% 1.098E-04 8.890E-07 

30% ethanol 50 3 days 8% 1% 1.697E-03 4.225E-06 

100% acetone 37 2 hrs 8% 0% 1.087E-04 1.267E-06 

70% ethanol 37 2 hrs 8% 0% 1.072E-04 1.932E-06 

100 μM potassium cyanide 50 3 days 8% 1% 1.680E-03 3.207E-05 

30% ethanol with 25 mM citrate, 
10 mM EDTA, and 1 mM IPTG 

at pH 5.2 

37 3 days 9% 1% 1.930E-04 3.838E-05 

100 μM potassium cyanide 50 2 days 9% 1% 2.490E-04 6.318E-05 

46.6% ammonium sulfate 50 2 days 9% 1% 2.773E-04 6.466E-06 

30% ethanol 50 2 days 9% 0% 2.917E-04 7.907E-07 

46.6% ammonium sulfate 50 3 days 10% 1% 1.754E-03 1.049E-05 

100 μM zinc sulfate 50 2 days 10% 1% 2.749E-04 8.225E-06 

30% ethanol 20 3 days 12% 2% 1.627E-03 5.077E-03 

40% acetone with 25 mM citrate 

and EDTA at pH 5.2 
37 2 hrs 14% 1% 1.653E-04 3.165E-06 

40% acetone 50 2 hrs 14% 1% 1.756E-04 1.557E-06 

40% acetone 37 2 hrs 14% 1% 7.964E-07 9.892E-04 

40% acetone with 25 mM citrate 
and EDTA at pH 5.2 

50 2 hrs 15% 1% 2.130E-04 3.632E-08 

100 μM zinc sulfate 50 3 days 15% 2% 1.986E-03 9.728E-06 
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Treatment 
Temperature 

(°C) 
Incubation % Control viability ± SEM 

vs. Untreated 

E. coli p-value 

vs. S-medium 

Only p-value 

40% ethanol 50 2 hrs 15% 1% 2.205E-04 2.013E-08 

40% ethanol with 25 mM citrate 
and EDTA at pH 5.2 

50 2 hrs 15% 1% 1.974E-04 3.079E-07 

46.6% ammonium sulfate 20 2 days 16% 1% 2.664E-04 5.488E-06 

40% ethanol with 25 mM citrate 

and EDTA at pH 5.2 
37 2 hrs 18% 1% 1.017E-06 4.812E-04 

46.6% ammonium sulfate 4 2 days 19% 1% 3.965E-04 1.268E-07 

30% ethanol with 25 mM citrate 
and 10 mM EDTA at pH 5.2 

37 3 days 19% 1% 2.897E-04 5.640E-08 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 
EDTA at pH 5.2 

50 3 days 20% 2% 2.062E-06 8.844E-04 

30% ethanol 37 3 days 21% 1% 2.316E-04 8.253E-07 

30% ethanol with 1 mM IPTG 37 3 days 24% 1% 3.176E-04 4.929E-08 

46.6% ammonium sulfate with 

25 mM citrate, 10 mM EDTA, 
and 1 mM IPTG at pH 5.2 

50 3 days 24% 1% 2.712E-04 2.592E-07 

46.6% ammonium sulfate with 

25 mM citrate, 10 mM EDTA, 
and 1 mM IPTG at pH 5.2 

37 3 days 28% 2% 5.031E-06 8.291E-04 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 

EDTA at pH 5.2 

20 24 hrs 30% 1% 7.111E-08 2.422E-08 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 

EDTA at pH 5.2 

37 3 days 30% 2% 4.052E-06 8.514E-05 

46.6% ammonium sulfate with 
25 mM citrate and 10 mM 

EDTA at pH 5.2 

4 24 hrs 40% 2% 4.467E-07 9.645E-05 

40% ethanol 37 2 hrs 48% 3% 3.141E-05 3.026E-04 

25 mM citrate and 10 mM 
ETDA at pH 5.2 

37 24 hrs 62% 3% 3.769E-05 2.243E-04 

40% ethanol 20 90 min 69% 7% 6.891E-03 2.588E-03 

40% acetone 20 90 min 75% 3% 7.049E-04 1.219E-04 

46.6% ammonium sulfate 20 3 days 76% 6% 6.622E-02 3.002E-11 

100% methanol 20 90 min 83% 5% 2.108E-02 4.741E-04 

25 mM citrate and 10 mM 
ETDA at pH 5.2 

4 24 hrs 87% 5% 5.763E-02 4.855E-04 

25 mM citrate and 10 mM 

EDTA at pH 5.2 
20 2 hrs 89% 5% 8.161E-02 2.002E-04 

100 μM potassium cyanide 4 2 days 89% 10% 3.129E-01 2.457E-03 

100 μM potassium cyanide 20 2 days 90% 9% 3.143E-01 1.700E-03 

untreated 60 20 hrs 90% 5% 1.173E-01 3.769E-04 

untreated 60 14 hrs 91% 9% 3.332E-01 1.729E-03 

46.6% ammonium sulfate 4 3 days 91% 9% 3.884E-01 2.255E-04 

100 μM potassium cyanide 20 3 days 91% 13% 5.370E-01 3.007E-03 

untreated 60 22 hrs 92% 5% 1.954E-01 3.035E-04 

100 μM zinc sulfate 20 2 days 92% 6% 2.489E-01 1.712E-04 

untreated 60 18 hrs 92% 4% 1.139E-01 9.010E-05 

25 mM citrate and 10 mM 

EDTA at pH 5.2 
4 2 hrs 92% 6% 2.586E-01 3.286E-04 

untreated 60 16 hrs 93% 5% 2.569E-01 2.603E-04 

25 mM citrate and 10 mM 

ETDA at pH 5.2 
20 24 hrs 95% 6% 3.824E-01 3.914E-04 

80% methanol 20 90 min 95% 13% 7.360E-01 4.695E-03 

1:1 40% ethanol:acetone 20 90 min 96% 5% 4.225E-01 1.536E-04 

30% ethanol 20 2 days 100% 5% 9.803E-01 1.791E-05 

Table 4.1 (Continued) 
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Treatment 
Temperature 

(°C) 
Incubation % Control viability ± SEM 

vs. Untreated 

E. coli p-value 

vs. S-medium 

Only p-value 

125 mM propionic acid 20 90 min 106% 8% 5.040E-01 4.003E-02 

100 μM potassium cyanide 4 3 days 107% 10% 4.713E-01 4.581E-05 

untreated 4 24 hrs 108% 5% 1.914E-01 2.078E-04 

25 mM citrate and 10 mM 
EDTA at pH 5.2 

37 2 hrs 109% 7% 2.201E-01 2.725E-04 

untreated 20 24 hrs 109% 4% 5.254E-02 5.279E-05 

125 mM lactic acid 20 90 min 110% 8% 3.016E-01 4.086E-03 

100 μM zinc sulfate 4 2 days 113% 6% 5.238E-02 3.220E-05 

70% methanol 20 90 min 114% 16% 4.829E-01 4.984E-03 

40% acetone 4 2 hrs 114% 7% 9.484E-02 3.112E-04 

40% acetone 20 90 min 116% 9% 1.524E-01 4.807E-03 

90% methanol 20 90 min 116% 14% 3.121E-01 1.402E-02 

untreated 37 24 hrs 117% 3% 1.529E-03 1.641E-05 

40% acetone with 25 mM citrate 

and EDTA at pH 5.2 
20 2 hrs 118% 5% 1.759E-02 3.657E-12 

30% ethanol 4 2 days 121% 8% 2.343E-02 1.928E-04 

30% ethanol 4 3 days 122% 11% 6.634E-02 1.504E-04 

60% ethanol 20 90 min 123% 7% 1.945E-02 1.432E-04 

25 mM citrate and 10 mM 
EDTA at pH 5.2 

50 2 hrs 124% 9% 2.779E-02 5.150E-04 

100 μM zinc sulfate 20 3 days 125% 14% 8.575E-02 8.399E-04 

40% ethanol 20 90 min 127% 20% 1.831E-01 9.857E-02 

100% methanol 20 90 min 131% 18% 1.836E-01 4.585E-03 

70% ethanol 20 90 min 131% 12% 4.980E-02 5.368E-02 

6 M urea with 1 mM DTT and 1 
mM iodoacetomide 

37 2 hrs 132% 17% 4.923E-02 3.805E-05 

100% ethanol with 1 mM DTT 

and 1mM iodoacetomide 
37 2 hrs 138% 17% 5.628E-02 6.260E-12 

100 μM zinc sulfate 4 3 days 143% 13% 4.534E-03 9.360E-05 

60% acetone 20 90 min 145% 14% 2.732E-02 7.745E-03 

100% acetone with 1 mM DTT 
and 1 mM iodoacetomide 

37 2 hrs 149% 19% 9.459E-03 3.431E-05 

40% acetone 20 2 hrs 151% 9% 7.485E-04 2.349E-04 

50%ethanol 20 90 min 152% 22% 9.691E-02 5.968E-03 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 
EDTA at pH 5.2 

50 2 hrs 158% 9% 3.183E-04 1.902E-04 

50% acetone 20 90 min 163% 18% 2.021E-02 1.029E-02 

40% ethanol 4 2 hrs 164% 10% 3.099E-04 2.311E-04 

40% ethanol with 25 mM citrate 

and EDTA at pH 5.2 
20 2 hrs 166% 11% 5.482E-04 3.704E-04 

46.6% ammonium sulfate with 

25 mM citrate and 10 mM 

EDTA at pH 5.2 

20 2 hrs 179% 10% 1.032E-04 1.979E-04 

46.6% ammonium sulfate with 
25 mM citrate and 10 mM 

EDTA at pH 5.2 

37 2 hrs 192% 12% 1.058E-04 2.749E-04 

46.6% ammonium sulfate with 
25 mM citrate and 10 mM 

EDTA at pH 5.2 

4 2 hrs 193% 8% 1.391E-06 9.321E-06 

46.6% sodium sulfate 0 2 hrs 197% 35% 3.863E-03 7.719E-04 

40% ethanol with 25 mM citrate 
and EDTA at pH 5.2 

4 2 hrs 205% 9% 1.035E-06 1.012E-05 

40% acetone with 25 mM citrate 

and EDTA at pH 5.2 
4 2 hrs 208% 9% 2.056E-06 2.355E-05 

20% ammonium sulfate 20 2 hrs 215% 47% 1.743E-02 6.640E-03 
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Treatment 
Temperature 

(°C) 
Incubation % Control viability ± SEM 

vs. Untreated 

E. coli p-value 

vs. S-medium 

Only p-value 

40% ethanol 20 2 hrs 216% 12% 1.238E-05 1.112E-04 

46.6% ammonium sulfate 0 2 hrs 237% 42% 1.125E-03 8.364E-04 

46.6% sodium sulfate 20 2 hrs 239% 63% 3.765E-02 1.782E-02 

20% sodium sulfate 20 2 hrs 245% 53% 1.003E-02 6.539E-03 

20% sodium sulfate 0 2 hrs 256% 53% 5.568E-03 4.706E-03 

20% ammonium sulfate 0 2 hrs 267% 45% 2.198E-04 2.997E-04 

46.6% ammonium sulfate 20 2 hrs 344% 80% 6.363E-03 9.466E-03 

 

Table 4.2.  Resulting RNAi knockdown of GFP produced from bacteria treated by various 

conditions.  A total of 36 different treatment conditions were investigated using bacteria 

expressing dsRNA targeted for knockdown of GFP expression.  Several conditions were 

investigated with bacteria lacking the associated plasmid as controls (14 treatments).  Prior to the 

assays, the bacteria were washed and suspended in S-medium at an ad libitum feeding 

concentration.  An age-synchronized culture of GFP-expressing C. elegans (BC12907 strain) 

was then grown for ~3.5 days in each of the pre-treated bacterial samples.  The resulting C. 

elegans GFP expression was determined by fluorescence microscopy (λex/λem=470/525 nm filter 

set) and quantitated by calculating the average total corrected worm fluorescence (TCWF) in 

each sample (n = 3 to 14 nematodes per sample, with a mode of 6 nematodes).  The column 

labeled “% Control TCWF” represents the resulting percentage of average TCWF for each 

treatment divided by the average TCWF of BC12907 C. elegans fed ad libitum HT115(DE3) E. 

coli lacking the plasmid for RNAi.  The p-values are from unpaired two-tailed t-test, with p-

values < 0.05 displayed in bold. 

 
 

 
       

RNAi Treatment 
Temperature 

(°C) 
Incubation 

% Control 

TCWF 

± 

SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

Yes GFP RNAi positive control N/A N/A 20% 3% N/A N/A 

yes no treatment 60 20 hrs 19% 2% 4.673E-04 8.702E-01 

yes propionic acid 20 90 min 17% 11% 1.261E-03 8.486E-01 

yes 80% methanol  20 90 min 19% 3% 2.916E-04 8.308E-01 

yes 40% ethanol  20 90 min 21% 6% 2.956E-04 8.006E-01 

yes 90% methanol  20 90 min 22% 5% 3.209E-04 6.879E-01 

yes 70% acetone  20 90 min 17% 4% 2.095E-04 6.204E-01 

yes 60% ethanol  20 90 min 23% 5% 3.793E-04 4.988E-01 

yes 1:1 40% ethanol:acetone 20 90 min 16% 2% 4.317E-04 3.318E-01 

no propionic acid  20 90 min 42% 22% 3.174E-02 3.143E-01 

yes no treatment 60 22 hrs 12% 3% 2.207E-04 2.987E-01 

yes 40% acetone 20 90 min 23% 3% 5.829E-04 2.943E-01 

yes 50% ethanol  20 90 min 30% 10% 8.804E-04 2.807E-01 

yes 100% methanol  20 90 min 27% 5% 5.419E-04 2.483E-01 

yes 70% ethanol  20 90 min 29% 8% 6.313E-04 1.729E-01 

yes 60% acetone  20 90 min 28% 7% 5.807E-04 1.521E-01 

yes 50% acetone  20 90 min 29% 8% 7.102E-04 1.495E-01 

yes 100% methanol 20 90 min 14% 2% 3.066E-04 1.384E-01 

yes no treatment 60 14 hrs 7% 3% 1.401E-04 9.520E-02 

no 100% methanol  20 90 min 43% 13% 1.157E-02 9.463E-02 

Table 4.1 (Continued) 



220 
 

 

 
 

       

RNAi Treatment 
Temperature 

(°C) 
Incubation 

% Control 

TCWF 

± 

SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

yes 40% acetone  20 90 min 40% 12% 4.274E-03 8.461E-02 

no 70% ethanol  20 90 min 52% 15% 4.219E-02 5.324E-02 

yes 
30% EtOH with citrate and EDTA, 

pH 5.2 
50 3 days 33% 5% 2.023E-05 4.469E-02 

yes no treatment 60 16 hrs 11% 2% 2.525E-04 2.385E-02 

no 60% acetone  20 90 min 56% 15% 3.179E-02 1.974E-02 

yes 
30% EtOH with citrate, EDTA, and 

IPTG, pH 5.2 
50 3 days 35% 4% 2.231E-05 1.911E-02 

no 80% methanol  20 90 min 56% 15% 3.924E-02 1.829E-02 

no 70% acetone  20 90 min 64% 16% 9.895E-02 1.645E-02 

yes 
46.6% ammonium sulfate with 

citrate, EDTA, and IPTG, pH 5.2 
37 3 days 135% 33% 3.152E-01 1.285E-02 

no 60% ethanol  20 90 min 42% 11% 3.195E-02 1.204E-02 

no 70% methanol  20 90 min 58% 14% 3.960E-02 9.617E-03 

yes 
30% ethanol with citrate, EDTA, and 

IPTG, pH 5.2 
37 3 days 72% 14% 9.487E-02 8.068E-03 

no 90% methanol  20 90 min 69% 16% 1.463E-01 5.675E-03 

yes 70% methanol  20 90 min 42% 10% 6.877E-03 4.533E-03 

no 40% acetone  20 90 min 87% 19% 5.388E-01 3.098E-03 

no 50% acetone  20 90 min 80% 17% 3.619E-01 2.759E-03 

yes 
46.6% ammonium sulfate with 

citrate and EDTA, pH 5.2 
50 3 days 160% 28% 5.946E-02 2.120E-03 

yes no treatment 60 18 hrs 8% 1% 2.618E-04 1.717E-03 

yes 
30% ethanol with citrate, EDTA, and 

IPTG, pH 5.2 
37 3 days 177% 28% 2.232E-02 1.134E-03 

yes 30% ethanol with IPTG 37 3 days 146% 25% 8.041E-02 9.557E-04 

yes 30% ethanol 50 3 days 48% 8% 7.617E-04 4.388E-04 

yes 
30% ethanol with citrate and EDTA, 

pH 5.2 
37 3 days 121% 17% 2.245E-01 1.796E-04 

yes 
46.6% ammonium sulfate with 

citrate and EDTA, pH 5.2 
37 3 days 174% 22% 2.320E-03 1.592E-04 

yes lactic acid 20 90 min 103% 20% 8.803E-01 1.520E-04 

yes 30% ethanol with IPTG 50 3 days 53% 9% 2.352E-03 1.174E-04 

no 50% ethanol  20 90 min 65% 17% 1.787E-01 7.743E-05 

yes 
46.6% ammonium sulfate with 

citrate, EDTA, and IPTG, pH 5.2 
50 3 days 244% 27% 2.536E-05 4.034E-05 

no lactic acid  20 90 min 106% 19% 7.643E-01 1.117E-05 

yes 40% ethanol 20 90 min 59% 7% 6.543E-03 7.084E-06 

no 40% ethanol  20 90 min 96% 15% 8.294E-01 4.440E-10 

 

Table 4.3.  Nematode size and/or developmental rate varies among the bacterial 

treatments.  The size of the nematodes grown in each sample of bacteria was assessed by 

dividing the average area (in pixels) of the nematodes by the average area (in pixels) of 

nematodes grown without RNAi, and is listed in the column labeled “% Control Area.”  The p-

values are from unpaired two-tailed t-test, with p-values < 0.05 displayed in bold. 

 

 
 

       

RNAi Treatment 
Temperature 

(°C) 
Incubation 

% 

Control 

Area 

± 

SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

Yes GFP RNAi positive control N/A N/A 44% 5% N/A N/A 
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RNAi Treatment 
Temperature 

(°C) 
Incubation 

% 

Control 

Area 

± 

SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

yes no treatment 60 16 hrs 45% 10% 6.888E-03 9.553E-01 

yes 100% methanol 20 90 min 43% 6% 6.416E-03 9.306E-01 

yes no treatment 60 22 hrs 45% 10% 1.268E-02 9.163E-01 

yes 90% methanol  20 90 min 46% 8% 1.486E-03 8.268E-01 

yes 40% ethanol  20 90 min 47% 8% 1.819E-03 7.809E-01 

yes no treatment 60 18 hrs 48% 9% 1.745E-03 6.926E-01 

yes no treatment 60 14 hrs 51% 11% 2.211E-02 6.121E-01 

no propionic acid  20 90 min 62% 20% 1.011E-01 3.727E-01 

yes propionic acid 20 90 min 30% 13% 2.059E-03 2.767E-01 

yes no treatment 60 20 hrs 56% 9% 1.096E-02 2.629E-01 

yes 
30% ethanol with citrate and EDTA, 
pH 5.2 

50 3 days 52% 5% 1.749E-04 2.281E-01 

yes 100% methanol  20 90 min 58% 12% 2.483E-02 2.086E-01 

yes 60% acetone  20 90 min 58% 12% 1.368E-02 1.826E-01 

yes 1:1 40% ethanol:acetone 20 90 min 65% 12% 1.189E-01 1.719E-01 

yes 70% acetone  20 90 min 53% 7% 3.617E-03 1.665E-01 

yes 80% methanol  20 90 min 55% 8% 4.840E-03 1.117E-01 

yes 40% acetone  20 90 min 76% 18% 2.418E-01 8.469E-02 

yes 50% ethanol  20 90 min 66% 15% 7.130E-02 7.113E-02 

yes 50% acetone  20 90 min 65% 12% 4.977E-02 6.893E-02 

yes 
30% ethanol with citrate, EDTA, and 

IPTG, pH 5.2 
50 3 days 65% 7% 3.764E-03 5.991E-02 

no 70% ethanol  20 90 min 67% 14% 9.090E-02 5.663E-02 

yes 
46.6% ammonium sulfate with 

citrate, EDTA, and IPTG, pH 5.2 
37 3 days 156% 44% 2.467E-01 4.487E-02 

no 100% methanol  20 90 min 72% 17% 1.551E-01 3.513E-02 

yes 60% ethanol  20 90 min 66% 11% 3.095E-02 3.118E-02 

no 90% methanol  20 90 min 105% 23% 8.379E-01 2.082E-02 

yes 70% methanol  20 90 min 74% 16% 1.840E-01 1.904E-02 

yes 40% acetone 20 90 min 80% 19% 3.639E-01 1.713E-02 

yes 70% ethanol  20 90 min 88% 18% 5.539E-01 1.350E-02 

no 80% methanol  20 90 min 75% 15% 1.791E-01 1.092E-02 

yes 30% ethanol with IPTG 50 3 days 76% 8% 2.758E-02 6.783E-03 

yes 30% ethanol 50 3 days 78% 9% 5.822E-02 5.354E-03 

yes 
30% ethanol with citrate, EDTA, and 
IPTG, pH 5.2 

37 3 days 81% 12% 1.727E-01 3.801E-03 

no 70% methanol  20 90 min 78% 14% 2.012E-01 3.468E-03 

yes 
46.6% ammonium sulfate with 

citrate and EDTA, pH 5.2 
50 3 days 166% 26% 3.340E-02 2.561E-03 

no 60% ethanol  20 90 min 101% 27% 9.626E-01 1.499E-03 

yes 30% ethanol 37 3 days 159% 23% 1.866E-02 1.451E-03 

no 60% acetone  20 90 min 80% 13% 1.969E-01 1.139E-03 

yes lactic acid  20 90 min 130% 22% 1.488E-01 4.374E-04 

no 70% acetone  20 90 min 93% 17% 6.990E-01 3.752E-04 

yes 40% ethanol 20 90 min 95% 13% 7.347E-01 2.152E-04 

no 50% ethanol  20 90 min 100% 14% 9.860E-01 2.954E-05 

yes 
30% ethanol with citrate and EDTA, 

pH 5.2 
37 3 days 101% 13% 9.494E-01 2.358E-05 

no 50% acetone  20 90 min 101% 14% 9.395E-01 2.203E-05 

yes 30% ethanol with IPTG 37 3 days 102% 12% 8.638E-01 1.307E-05 

no 40% acetone  20 90 min 110% 17% 5.505E-01 2.296E-06 

no lactic acid  20 90 min 118% 17% 2.560E-01 2.661E-08 
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RNAi Treatment 
Temperature 

(°C) 
Incubation 

% 

Control 

Area 

± 

SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

no 40% ethanol  20 90 min 145% 23% 3.595E-02 1.839E-08 

yes 
46.6% ammonium sulfate with 

citrate and EDTA, pH 5.2 
37 3 days 166% 21% 4.671E-03 1.286E-09 

yes 
46.6% ammonium sulfate with 

citrate, EDTA, and IPTG, pH 5.2 
50 3 days 265% 24% 8.050E-07 4.268E-16 

 

Table 4.4.  Comparison of size-adjusted GFP fluorescence resulting from each bacterial 

treatment.  Since TCWF partially depends on the size of the measured nematode, we 

normalized each average TCWF by the associated average nematode area (in pixels).    The 

column labeled “% Control TCWF/Area” represents the percentage resulting from dividing the 

TCWF/area of each treatment by the TCWF/area of BC12907 C. elegans fed ad libitum 

HT115(DE3) E. coli lacking the plasmid for RNAi.  The p-values are from unpaired two-tailed t-

test, with p-values < 0.05 displayed in bold. 

 

 
 

       

RNAi Treatment 
Temperature 

(°C) 
Incubation 

% Control 

TCWF/Area 
± SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

Yes GFP RNAi positive control N/A N/A 48% 8% N/A N/A 

yes 60% acetone  20 90 min 48% 5% 1.026E-07 9.599E-01 

yes 90% methanol  20 90 min 46% 6% 1.969E-07 8.603E-01 

yes 50% acetone  20 90 min 45% 7% 2.066E-06 8.373E-01 

no 50% ethanol  20 90 min 44% 16% 1.534E-02 8.292E-01 

no 60% ethanol  20 90 min 44% 5% 5.753E-06 8.278E-01 

yes 40% acetone  20 90 min 50% 6% 7.644E-07 8.175E-01 

yes 100% methanol  20 90 min 51% 6% 3.986E-06 7.823E-01 

no propionic acid  20 90 min 52% 9% 8.763E-05 7.487E-01 

yes 40% ethanol  20 90 min 44% 5% 2.577E-07 7.142E-01 

yes propionic acid 20 90 min 42% 9% 9.331E-06 7.131E-01 

yes 50% ethanol  20 90 min 42% 6% 1.324E-07 5.959E-01 

yes 
30% ethanol with citrate, EDTA, 
and IPTG, pH 5.2 

50 3 days 54% 3% 5.132E-06 4.973E-01 

yes 40% acetone 20 90 min 32% 7% 1.290E-05 4.196E-01 

yes 
30% ethanol with citrate and 

EDTA, pH 5.2 
50 3 days 63% 7% 7.122E-04 3.251E-01 

yes 70% methanol  20 90 min 57% 4% 1.756E-06 2.883E-01 

no 100% methanol  20 90 min 58% 5% 5.172E-06 2.613E-01 

no 60% acetone  20 90 min 65% 11% 1.028E-02 2.232E-01 

yes 30% ethanol with IPTG 50 3 days 69% 9% 1.018E-02 1.890E-01 

yes 30% ethanol 50 3 days 61% 6% 1.614E-04 1.792E-01 

yes 60% ethanol  20 90 min 35% 4% 1.709E-09 1.768E-01 

yes 80% methanol  20 90 min 35% 3% 4.942E-10 1.694E-01 

yes 40% ethanol 20 90 min 61% 5% 1.130E-04 1.584E-01 

no 70% acetone  20 90 min 69% 9% 2.367E-03 1.543E-01 

no 40% ethanol  20 90 min 72% 9% 4.578E-03 1.203E-01 

yes no treatment 60 20 hrs 34% 3% 4.700E-08 1.169E-01 

yes 70% acetone  20 90 min 31% 5% 6.833E-09 1.036E-01 

no 70% methanol  20 90 min 72% 10% 2.252E-02 9.179E-02 

yes 100% methanol 20 90 min 31% 4% 1.107E-07 7.463E-02 

Table 4.3 (Continued) 



223 
 

 

 
 

       

RNAi Treatment 
Temperature 

(°C) 
Incubation 

% Control 

TCWF/Area 
± SEM 

vs. Control 

p-value 

vs. Knockdown 

p-value 

no 70% ethanol  20 90 min 80% 15% 2.207E-01 7.119E-02 

yes 70% ethanol  20 90 min 30% 3% 1.467E-11 5.733E-02 

no 50% acetone  20 90 min 80% 7% 1.597E-02 4.956E-02 

no 40% acetone  20 90 min 80% 11% 5.820E-02 4.478E-02 

yes no treatment 60 22 hrs 26% 5% 1.871E-06 2.725E-02 

no 80% methanol  20 90 min 72% 7% 1.022E-03 2.664E-02 

yes 
30% ethanol with citrate, EDTA, 

and IPTG, pH 5.2 
37 3 days 86% 10% 2.011E-01 2.611E-02 

no 90% methanol  20 90 min 69% 4% 4.099E-05 2.214E-02 

yes 1:1 40% ethanol:acetone 20 90 min 25% 3% 6.059E-06 1.828E-02 

yes no treatment 60 16 hrs 24% 4% 2.169E-07 1.490E-02 

yes lactic acid  20 90 min 83% 8% 4.690E-02 1.152E-02 

yes 
46.6% ammonium sulfate with 

citrate, EDTA, and IPTG, pH 5.2 
50 3 days 92% 9% 4.097E-01 8.875E-03 

yes 
46.6% ammonium sulfate with 

citrate and EDTA, pH 5.2 
50 3 days 97% 12% 7.910E-01 6.139E-03 

yes 
46.6% ammonium sulfate with 

citrate, EDTA, and IPTG, pH 5.2 
37 3 days 95% 9% 6.148E-01 5.766E-03 

yes no treatment 60 18 hrs 16% 1% 1.175E-06 1.157E-03 

yes 
46.6% ammonium sulfate with 
citrate and EDTA, pH 5.2 

37 3 days 106% 9% 5.094E-01 1.074E-03 

yes 30% ethanol 37 3 days 113% 16% 4.667E-01 9.452E-04 

yes no treatment 60 14 hrs 12% 4% 4.326E-07 8.677E-04 

no lactic acid  20 90 min 90% 7% 1.729E-01 2.042E-04 

yes 
30% ethanol with citrate and 

EDTA, pH 5.2 
37 3 days 120% 12% 1.398E-01 7.973E-05 

yes 30% ethanol with IPTG 37 3 days 143% 21% 6.858E-02 1.526E-05 

 

Table 4.5.  Microbial growth is restricted by common antifungal drugs.  A total of 26 

different antifungal drugs were screened for the presence of microbe growth seven days after a 

30 minute exposure to the open air.  The drugs were present in triplicate in 100 μL microplate S-

medium suspensions of 40% acetone-treated HT115 (DE3) E. coli (treated with 40% acetone for 

2 hours at 37 °C, washed, pelleted, and suspended in S-medium at a concentration of 6.9 x 10
9
 

cells/mL).  To account for the possible fluorescence of each drug in the wavelength range of the 

viability dye (λex/λem=528/590 nm filter set), fluorescence measurements were taken before the 

addition of the dye, and then subtracted from the fluorescence measurement of the assay.  The 

mean fluorescence measurement for each drug is given the column labeled “Mean AFU.”  An 

identical concentration of 40% acetone-treated bacteria was used as a positive control for 

microbial contamination.  The % Range was calculated for each drug by subtracting the mean 

AFU measurement for the S-medium only negative control, and then dividing the remainder by 

the mean AFU of the positive control – the AFU of the negative control. 

 

 
 

     

Concentration Antifungal Mean SEM % Range SEM 

2 μg/mL Miconazole 23.67 1.20 -1% 5% 

4 μg/mL Fluconazole  24.67 0.67 2% 3% 

1 μg/mL Ketoconazole 24.00 0.58 0% 3% 

2 μg/mL Methylene blue  21.33 0.33 -10% 6% 

Table 4.4 (Continued) 
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Concentration Antifungal Mean SEM % Range SEM 

100 ng/mL Malachite green  23.67 0.33 -1% 3% 

7 μg/mL Acriflavin -0.33 2.03 -88% 50% 

2 μg/mL Crystal (gentian) violet  19.33 0.33 -17% 10% 

4.1 mg/mL Phenoxyethanol 25.33 0.33 5% 4% 

2.4 mg/mL 2-phenylethanol  26.00 0.58 7% 5% 

2 mg/mL Beta-phenylethylamine  19.67 0.33 -16% 9% 

3 μg/mL Propionic acid  25.33 0.33 5% 4% 

200 μg/mL Cyclosporin A 23.67 0.33 -1% 3% 

125 μg/mL Sodium sulfite  24.00 0.00 0% 2% 

150 μg/mL Sodium benzoate  24.67 0.33 2% 3% 

3 mg/mL Sodium nitrite  15.33 0.33 -31% 18% 

3 mg/mL Potassium sorbate  22.67 0.33 -5% 4% 

7.2 mg/mL Caprylic (octanoic) acid  24.67 0.33 2% 3% 

250 μg/mL Propyl 4-hydroxybenzoate  23.00 0.00 -4% 3% 

50 μg/mL Chitosan  25.67 0.33 6% 4% 

4 μg/mL 5-fluorocytosine  23.33 0.33 -2% 3% 

1X Pima-Fix  aquarium antifungal  24.67 0.33 2% 3% 

1X Rid-Fungus aquarium antifungal  37.33 11.84 48% 51% 

1 mg/mL Triacetin (triacetyl glycerol) 26.00 2.00 7% 9% 

1.4 mg/mL Dimethylfumarate  25.00 0.00 4% 3% 

5.8 mg/mL Fumaric acid  24.67 0.67 2% 3% 

3 mg/mL Boric acid  24.67 0.67 2% 3% 

- no antifungal 51.67 15.52 100% 79% 

- S-medium only 24.00 0.58 0% 3% 

 

Table 4.6.  The mean survival times of C. elegans treated with antifungal drugs.  Eight of 

the antifungal drugs were chosen based on lack of microbial growth and predicted low toxicity.  

These drugs were used to treat age-synchronized N2 C. elegans in an assay of lifespan.  The 

mean lifespan survival times, number of nematodes (n), and log-rank p-values are listed. 

 

 

 
 

      

Concentration Antifungal n Mean Survival Time (days) SEM % Control SEM Log-rank p-value 

- Control 143 14.538 0.339 100% 3% - 

4 μg/mL Fluconazole 68 14.779 0.383 102% 4% 9.10E-01 

1 μg/mL Ketoconazole 137 14.175 0.351 98% 3% 9.68E-01 

2 μg/mL Methylene Blue 119 15.597 0.496 107% 4% 2.07E-03 

100 ng/mL Malachite Green 171 14.070 0.294 97% 3% 9.68E-01 

7 μg/mL Acriflavin 91 16.407 0.594 113% 5% 1.02E-05 

3 μg/mL Propionic Acid 147 14.429 0.338 99% 3% 9.93E-01 

125 μg/mL Sodium Sulfite 145 14.814 0.349 102% 3% 9.82E-01 

150 μg/mL Sodium Benzoate 60 10.200 0.066 70% 2% 0.00E+00 
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Table 4.7. Interpretation of SSMD values.  Strictly standardized mean difference (SSMD) 

values are reported as β.  The table shows the ranges of β values associated with excellent, good, 

inferior, and poor assay types, based on the subjectively evaluated strength of the positive and 

negative controls. 

 

 

 
    

Assay Quality Moderate Control Strong Control Very Strong Control Extremely Strong Control 

Excellent β ≥ 2 β ≥ 3 β ≥ 5 β ≥ 7 

Good 2 > β ≥ 1 3 > β ≥ 2 5 > β ≥ 3 7 > β ≥ 5 

Inferior 1 > β ≥ 0.5 2 > β ≥ 1 3 > β ≥ 2 5 > β ≥ 3 

Poor β < 0.5 β < 1 β < 2 β < 3 

 

Table 4.8.  Summary of SSMD values.  The SSMD (β value), and the receiver operating 

characteristic (ROC) area under the curve (AUC) for each assay, with and without normalization 

to GFP fluorescence.  

 

 
 

    

Attribute Assayed SSMD 
ROC 

AUC 
ROC AUC Standard Error p-value 

pmol ATP 2.180 0.998 0.002 < 0.0001 

pmol ATP/GFP fluorescence 1.652 0.923 0.024 < 0.0001 

viability 5.809 1.000 0.000 < 0.0001 

viability/GFP fluorescence -8.297 1.000 0.000 < 0.0001 

nmol O2 saturation 3.197 1.000 0.000 < 0.0001 

nmol O2 saturation/GFP fluorescence 3.960 1.000 0.000 < 0.0001 

 

Table 4.9.  Genes identified as hits in the screens for ATP content, oxygen consumption, 

and reductive capacity.  Genes are sorted by mean robust z-score (highest to lowest for ATP 

content and reductive capacity; lowest to highest for oxygen saturation), and –log(p-values) > 1.3 

correspond to p-values less than 0.05. 
 
 

 
      

Measured 

Parameter 

Mean 

z-score 
 ̶  log(p-value) Gene 

Gene 

Name 
Description Human Homolog 

ATP 

content 
3.772 1.598 W07E11.2 flp-3 FMRF-Like Peptide   

ATP 

content 
3.570 1.569 F09E10.8 toca-1 

TOCA (Transducer Of Cdc42- 

dependent Actin assembly) 
homolog 

Isoform 3 of Formin-binding 

protein 1-like 

ATP 

content 
3.225 1.676 C37E2.1 idhb-1 Isocitrate DeHydrogenase Beta 

Isocitrate dehydrogenase [NAD] 

subunit beta, mitochondrial 
precursor 

ATP 

content 
3.146 2.232 T25C12.1 lin-14 abnormal cell LINeage   

ATP 
content 

3.072 2.311 F42G10.1   neprilysin   

ATP 

content 
2.904 2.367 T25C12.4 spp-21 SaPosin-like Protein family    

ATP 
content 

2.841 2.058 F13D11.4   
NAD(P) dependent steroid 

dehydrogenase-like 
Sterol-4-alpha-carboxylate 3-

dehydrogenase, decarboxylating 
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Measured 

Parameter 

Mean 

z-score 
 ̶  log(p-value) Gene 

Gene 

Name 
Description Human Homolog 

ATP 
content 

2.787 3.238 F46C3.1 pek-1 human PERK kinase homolog 
Eukaryotic translation initiation 

factor 2-alpha kinase 3 

ATP 
content 

2.703 2.214 T02C5.5 unc-2 UNCoordinated 

voltage-dependent P/Q-type 

calcium channel subunit alpha-

1A isoform 5 

ATP 

content 
2.543 2.110 C35C5.8   uncharacterized   

O2 

Saturation 
-3.99 1.372 C47C12.6 deg-1 DEGeneration of certain neurons 

Amiloride-sensitive sodium 

channel subunit gamma 

O2 

Saturation 
-3.83 2.064 C18B12.1   uncharacterized   

O2 

Saturation 
-3.58 1.891 Y81B9A.2   uncharacterized   

O2 

Saturation 
-3.50 1.838 Y12A6A.1   uncharacterized   

O2 

Saturation 
-3.11 1.598 F22E10.1 pgp-12 P-GlycoProtein related 

Isoform 2 of Multidrug 

resistance protein 3 

O2 

Saturation 
-2.97 1.708 T01B10.1 grd-4 

GRounDhog (hedgehog-like 

family) 
  

O2 

Saturation 
-2.56 2.050 R01E6.3 cah-4 Carbonic AnHydrase Carbonic anhydrase 7 

O2 

Saturation 
-2.51 3.827 C11H1.4 prx-1 PeRoXisome assembly factor Peroxisome biogenesis factor 1 

Reductive 
Capacity 

6.35 1.384 K08H2.5   
predicted kinase activity and ATP 

binding activity 
Isoform 3 of Tau-tubulin kinase 

2 

Reductive 

Capacity 
5.83 1.853 C49F8.3   uncharacterized   

Reductive 
Capacity 

5.67 2.482 ZK455.3 npr-9 NeuroPeptide Receptor family Galanin receptor type 2 

Reductive 

Capacity 
5.46 1.316 C36B7.5   Semaphorin-5A Semaphorin-5A 

Reductive 
Capacity 

5.44 1.731 F08G12.8   uncharacterized   

Reductive 

Capacity 
5.25 1.658 C55B6.2 dnj-7 

DNaJ domain (prokaryotic heat 

shock protein) 

DnaJ homolog subfamily C 

member 3 

Reductive 
Capacity 

5.09 2.602 F19H6.3   uncharacterized   

Reductive 

Capacity 
5.05 1.337 F55A4.4   pseudogene   

Reductive 
Capacity 

4.88 1.414 H28G03.6 mtm-5 MTM (myotubularin) family Myotubularin-related protein 13 

Reductive 

Capacity 
4.87 3.816 W04G3.6 sulp-7 SULfate Permease family Isoform 1 of Prestin 

Reductive 
Capacity 

4.61 1.762 K08H2.6 hpl-1 
HP1 Like (heterochromatin 

protein) 
Chromobox protein homolog 3 

Reductive 

Capacity 
4.55 1.572 T21B6.2 pho-7 intestinal acid PHOsphatase 

Isoform 2 of Prostatic acid 

phosphatase 

Reductive 

Capacity 
4.19 1.401 T02C5.5 unc-2 UNCoordinated 

voltage-dependent P/Q-type 
calcium channel subunit alpha-

1A isoform 5 

Reductive 

Capacity 
4.18 1.343 F55A4.5 stau-1 

STAUfen (dsRNA binding 

protein) homolog 

double-stranded RNA-binding 
protein Staufen homolog 1 

isoform c 

Reductive 

Capacity 
4.02 1.753 K08H2.7   uncharacterized   

Reductive 

Capacity 
3.95 1.383 F14B8.2 sid-5 

Systemic RNA Interference 

Defective 
  

Reductive 

Capacity 
3.92 1.396 T24C12.3   predicted glycosyl hydrolase   

Reductive 

Capacity 
3.79 2.453 F19H6.6   uncharacterized   

Reductive 

Capacity 
3.72 2.417 F31F6.6 nac-1 

NADC (Na+-coupled 

dicarboxylate transporter) family 

Solute carrier family 13 member 

2 

Table 4.9 (Continued) 
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Measured 

Parameter 

Mean 

z-score 
 ̶  log(p-value) Gene 

Gene 

Name 
Description Human Homolog 

Reductive 

Capacity 
3.68 2.361 E01G6.1   

predicted serine-type 
endopeptidase inhibitor activity 

and chitin binding activity 

tissue factor pathway inhibitor 
(lipoprotein-associated 

coagulation inhibitor) 

Reductive 

Capacity 
3.58 2.385 K09C8.2   uncharacterized   

Reductive 

Capacity 
3.53 3.020 F20D1.1   predicted calcium channel activity uncharacterized protein 

Reductive 

Capacity 
3.46 1.859 F19H6.5   uncharacterized   

Reductive 

Capacity 
3.19 1.482 R04E5.2   

may participate in metal 

homoeostasis 

Isoform 1 of Metal transporter 

CNNM2 

Reductive 

Capacity 
3.18 1.915 C49F5.3   uncharacterized   

Reductive 

Capacity 
3.17 1.542 F31F6.5 daf-6 abnormal DAuer Formation 

Patched domain-containing 

protein 3 

Reductive 

Capacity 
3.16 1.507 F13D2.1   

ortholog of human complement 

component 5 
Complement C5 

Reductive 

Capacity 
3.15 1.738 C18B12.1   uncharacterized   

Reductive 

Capacity 
3.15 1.721 F40E10.3 csq-1 CalSeQuestrin 44 kDa protein 

Reductive 

Capacity 
3.14 1.635 F49H12.3   

potassium channel tetramerization 

domain containing 

Isoform 2 of BTB/POZ domain-

containing protein KCTD17 

Reductive 
Capacity 

3.14 1.854 T04C10.4 atf-5 
ATF (cAMP-dependent 

transcription factor) family 
Cyclic AMP-dependent 

transcription factor ATF-5 

Reductive 

Capacity 
3.10 1.597 F58A3.5 ttr-31 

TransThyretin-Related family 

domain 
  

Reductive 
Capacity 

2.74 3.031 F17E5.1 lin-2 abnormal cell LINeage 
Isoform 1 of Peripheral plasma 

membrane protein CASK 

Reductive 

Capacity 
2.72 1.796 T13G4.5   uncharacterized   

Reductive 

Capacity 
2.58 2.214 K09F5.5 set-12 

SET (trithorax/polycomb) domain 
containing; putative histone H3 

lysine-9 methyltransferase 

  

Reductive 

Capacity 
2.56 4.763 T05A10.1 sma-9 SMAll Zinc finger protein 853 

Reductive 

Capacity 
2.35 2.788 K04G11.1   uncharacterized   

 

Table 4.10.  Gene ontology categories for screen hits.  Gene ontology categories enriched for 

the ATP content and reductive capacity screens.  No gene ontology categories were determined 

to be significant for the oxygen consumption screen. 

 
 

 
     

Measured 

Parameter 

Gene Ontology 

Type 

Gene 

Ontology ID 
Gene Ontology Category 

# of 

Genes 

p-

value 

ATP content cellular processes GO:0048519 negative regulation of biological process 4 0.000 

ATP content cellular processes GO:0048523 negative regulation of cellular process 3 0.001 

ATP content cellular processes GO:2000113 
negative regulation of cellular macromolecule biosynthetic 

process 
2 0.001 

ATP content cellular processes GO:0010558 negative regulation of macromolecule biosynthetic process 2 0.001 

ATP content cellular processes GO:0031327 negative regulation of cellular biosynthetic process 2 0.001 

ATP content cellular processes GO:0009890 negative regulation of biosynthetic process 2 0.001 

ATP content cellular processes GO:0031324 negative regulation of cellular metabolic process 2 0.004 

ATP content cellular processes GO:0010629 negative regulation of gene expression 2 0.005 

ATP content cellular processes GO:0007399 nervous system development 2 0.007 
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Measured 

Parameter 

Gene Ontology 

Type 

Gene 

Ontology ID 
Gene Ontology Category 

# of 

Genes 

p-

value 

ATP content cellular processes GO:0048583 regulation of response to stimulus 2 0.009 

ATP content cellular processes GO:0010605 negative regulation of macromolecule metabolic process 2 0.010 

ATP content cellular processes GO:0009892 negative regulation of metabolic process 2 0.011 

ATP content cellular processes GO:0040008 regulation of growth 2 0.016 

ATP content cellular processes GO:0007610 behavior 2 0.020 

ATP content cellular processes GO:0055114 oxidation-reduction process 2 0.029 

ATP content cellular processes GO:1901362 organic cyclic compound biosynthetic process 2 0.048 

Reductive 

Capacity 
cellular processes GO:0048523 negative regulation of cellular process 7 0.000 

Reductive 
Capacity 

cellular processes GO:0048519 negative regulation of biological process 8 0.000 

Reductive 

Capacity 
cellular processes GO:0010605 negative regulation of macromolecule metabolic process 5 0.000 

Reductive 
Capacity 

cellular processes GO:0009892 negative regulation of metabolic process 5 0.000 

Reductive 

Capacity 
cellular processes GO:0031324 negative regulation of cellular metabolic process 4 0.000 

Reductive 
Capacity 

cellular processes GO:0050789 regulation of biological process 12 0.002 

Reductive 

Capacity 
cellular processes GO:0065007 biological regulation 13 0.002 

Reductive 
Capacity 

cellular processes GO:0060255 regulation of macromolecule metabolic process 7 0.003 

Reductive 

Capacity 
cellular processes GO:0000122 

negative regulation of transcription from RNA polymerase 

II promoter 
2 0.004 

Reductive 
Capacity 

cellular processes GO:0050794 regulation of cellular process 10 0.004 

Reductive 

Capacity 
cellular processes GO:0019222 regulation of metabolic process 7 0.005 

Reductive 
Capacity 

cellular processes GO:0098656 anion transmembrane transport 2 0.005 

Reductive 

Capacity 
cellular processes GO:0009966 regulation of signal transduction 3 0.005 

Reductive 
Capacity 

cellular processes GO:0045892 negative regulation of transcription, DNA-templated 2 0.007 

Reductive 

Capacity 
cellular processes GO:1902679 negative regulation of RNA biosynthetic process 2 0.007 

Reductive 
Capacity 

cellular processes GO:1903507 negative regulation of nucleic acid-templated transcription 2 0.007 

Reductive 

Capacity 
cellular processes GO:0051253 negative regulation of RNA metabolic process 2 0.007 

Reductive 

Capacity 
cellular processes GO:0010629 negative regulation of gene expression 3 0.008 

Reductive 

Capacity 
cellular processes GO:0051172 

negative regulation of nitrogen compound metabolic 

process 
2 0.009 

Reductive 

Capacity 
cellular processes GO:0045934 

negative regulation of nucleobase-containing compound 

metabolic process 
2 0.009 

Reductive 

Capacity 
cellular processes GO:0023051 regulation of signaling 3 0.009 

Reductive 

Capacity 
cellular processes GO:0009968 negative regulation of signal transduction 2 0.009 

Reductive 

Capacity 
cellular processes GO:0010646 regulation of cell communication 3 0.009 

Reductive 

Capacity 
cellular processes GO:0023057 negative regulation of signaling 2 0.009 

Reductive 

Capacity 
cellular processes GO:0010648 negative regulation of cell communication 2 0.009 

Reductive 

Capacity 
cellular processes GO:2000113 

negative regulation of cellular macromolecule biosynthetic 

process 
2 0.011 

Reductive 

Capacity 
cellular processes GO:0010558 negative regulation of macromolecule biosynthetic process 2 0.011 
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Measured 

Parameter 

Gene Ontology 

Type 

Gene 

Ontology ID 
Gene Ontology Category 

# of 

Genes 

p-

value 

Reductive 
Capacity 

cellular processes GO:0031327 negative regulation of cellular biosynthetic process 2 0.011 

Reductive 

Capacity 
cellular processes GO:0009890 negative regulation of biosynthetic process 2 0.011 

Reductive 
Capacity 

cellular processes GO:0043086 negative regulation of catalytic activity 2 0.012 

Reductive 

Capacity 
cellular processes GO:0048585 negative regulation of response to stimulus 2 0.012 

Reductive 
Capacity 

cellular processes GO:0044092 negative regulation of molecular function 2 0.013 

Reductive 

Capacity 
cellular processes GO:0032269 negative regulation of cellular protein metabolic process 2 0.016 

Reductive 

Capacity 
cellular processes GO:0051248 negative regulation of protein metabolic process 2 0.016 

Reductive 

Capacity 
cellular processes GO:0048583 regulation of response to stimulus 3 0.016 

Reductive 
Capacity 

cellular processes GO:0006820 anion transport 2 0.017 

Reductive 

Capacity 
cellular processes GO:0010628 positive regulation of gene expression 2 0.021 

Reductive 
Capacity 

cellular processes GO:0044700 single organism signaling 6 0.021 

Reductive 

Capacity 
cellular processes GO:1902580 single-organism cellular localization 2 0.023 

Reductive 
Capacity 

cellular processes GO:0010468 regulation of gene expression 5 0.023 

Reductive 

Capacity 
cellular processes GO:0007154 cell communication 6 0.024 

Reductive 
Capacity 

cellular processes GO:0080090 regulation of primary metabolic process 5 0.027 

Reductive 

Capacity 
cellular processes GO:0031323 regulation of cellular metabolic process 5 0.028 

Reductive 
Capacity 

cellular processes GO:0010604 positive regulation of macromolecule metabolic process 2 0.035 

Reductive 

Capacity 
cellular processes GO:0034220 ion transmembrane transport 3 0.037 

Reductive 
Capacity 

cellular processes GO:0030001 metal ion transport 2 0.040 

Reductive 

Capacity 
cellular processes GO:0044763 single-organism cellular process 12 0.045 

Reductive 
Capacity 

cellular 
component 

GO:0044456 synapse part 2 0.011 

Reductive 

Capacity 

cellular 

component 
GO:0031410 cytoplasmic vesicle 2 0.019 

Reductive 
Capacity 

cellular 
component 

GO:0031982 vesicle 2 0.019 

Reductive 

Capacity 

cellular 

component 
GO:0045202 synapse 2 0.029 

 

Table 4.10 (Continued) 



230 
 

CHAPTER 5: 

THE SIGNIFICANCE OF THE FACTORS ASSOCIATED WITH AGE-RELATED 

CHANGES AND OF THE DEVELOPED METHODS 

 

5.1 Summary 

 This project was divided into two broad and overlapping parts.  One consisted of 

determining the specific genetic, proteomic, and metabolomic factors associated with age-related 

changes in C. elegans.  The other consisted of developing novel methods for high-throughput 

culturing and screening of C. elegans to investigate age-related changes.  Both parts proved to be 

fruitful.  As with any protocol however, the methods we developed were found to have 

limitations as well as strengths. 

 

5.2 Identified Genetic Factors 

 5.2.1 Genes related to Ca
2+

 signaling 

 Calcium plays a very central role in several parts of C. elegans aging.  Ca
2+

 is necessary 

for muscle contraction, where it is released by the sarcoplasm upon muscular innervation and 

binds to troponin within actin filaments, allowing myosin to bind and pull the filaments, 

contracting the muscle.  As muscle relaxes, Ca
2+

 is then actively pumped back into the 

sarcoplasm by membrane-bound ATPases.  Through our proteomic investigation (Chapter 2), we 

identified significant age-dependent changes in the expression four C. elegans genes related to 

this entire process.  SCA-1 (sarco-endoplasmic reticulum calcium ATPase 1 or SERCA) is 
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orthologous to the human SERCA protein ATP2A1, which utilizes the hydrolysis of ATP to 

transport cytosolic Ca
2+

 into the lumen of the sarcoplasmic reticulum [1, 2].  A decline in 

SERCA function is associated with muscular dysfunction, and mice that are heterozygous for a 

mutant version of Serca2 exhibit deficits of muscle relaxation as a consequence of impaired 

sarcoplasmic Ca
2+

 uptake [3].  We observed an approximately 10-fold down-regulation of sca-1 

with age.  Given that C. elegans express sca-1 in all major muscle types, the observed down-

regulation is likely indicative of a body-wide impairment of muscle function. 

The C. elegans protein NRA-2 (ortholog of human nicalin) also showed an 

approximately 10-fold down-regulation with age.  nra-2 encodes a transmembrane endoplasmic 

reticulum protein that acts as a molecular chaperone [4], and it contains an EF-hand motif 

indicating that the activity of the protein is possibly regulated by changes in Ca
2+

 levels.  

Significantly, RNAi knockdown of nra-2 expression has been shown to sensitize C. elegans 

touch receptor neurons to Ca
2+

-mediated necrotic cell death [5].  The expression of nra-2 in 

neurons, body wall muscle, and pharyngeal muscle suggests that these cell types may be 

sensitized to necrotic cell death in older nematodes. 

The C. elegans gene mlp-1 encodes a LIM domain-containing cysteine-rich protein 

(CRP) expressed fairly ubiquitously in both larva and adults [6, 7], and MLP-1 levels were 

observed to decline in older C. elegans.  Members of the homologous CSRP (cysteine and 

glycine-rich protein) human family of proteins are expressed in cardiac and skeletal muscle [8-

10], and abnormal expression of CSRP has been associated with both cardiomyopathy and heart 

failure [11].  Furthermore, mice with deficient CSRP function experience pathological changes 

in their heart muscle structure as well as defects in sarcoplasmic reticulum Ca
2+

 storage [8, 12, 

13]. 
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 The gene cal-4 is one member of the C. elegans CAL gene family (8 genes total), which 

are homologous to human calmodulin.  Proteins of the calmodulin family bind directly to Ca
2+

 

and act as intermediaries in numerous Ca
2+

-mediated signaling processes within cells.  In 

addition to this role, calmodulin is necessary for Ca
2+

 to permit myosin binding to actin in 

smooth muscle.  We observed an up-regulation of CAL-4 expression with age, possibly as a 

response to extra-sarcoplasmic Ca
2+

 within dysfunctional C. elegans muscle cells.  Overall, the 

increase in CAL-4 expression, together with the decrease in expression of MLP-1, NRA-2, and 

SCA-1 indicate a large age-dependent change in Ca
2+

 homeostasis that likely contributes to 

muscular dysfunction. 

 As part of the proof-of-principle application of our developed methods (Chapter 3), we 

uncovered several genes that appear to contribute to the toxicity in C. elegans of high Ca
2+

 levels 

(100 mM) in the liquid media.  These genes were identified through a series of screens using 

RNAi of 191 genes encoding EF-hand domains, which express proteins that are likely to bind to 

Ca
2+

.  Populations of green fluorescent protein (GFP)-expressing C. elegans were fed individual 

clones from the 191 genes, and assayed for live nematode volume (as determined by GFP 

fluorescence) and rate of death (as determined by anthranilate fluorescence).  RNAi knockdowns 

that resulted in an average increase of live worm volume above 2 standard deviations, or a 

decrease in the rate of death below 2 standard deviations, were scored as mediating the toxic 

effects of high Ca
2+

 in culture. 

Seven genes were identified using this criteria; T04F8.6, ZK673.7 (tnc-2), C09H5.7, 

C04B4.2, C47A4.3, F53F4.14, and K04F1.10 (irld-40).  Of these genes, three are 

uncharacterized and lack strong human homologs (T04F8.6, C04B4.2, and F53F4.14).  Of the 

remaining four genes, ZK673.7 (tnc-2), encodes a pharyngeal-specific form of troponin C, and it 
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is feasible that the associated increase in live nematode volume seen under the condition of high 

Ca
2+

 toxicity may be due to reduced pharyngeal pump contractibility caused by a decreased 

expression of troponin C.  A reduced ability of the pharyngeal pump to contract could limit the 

intake of Ca
2+

, resulting in a higher rate of survival for the effected C. elegans.  The gene 

K04F1.10 (irld-40 or Insulin/EGF-Receptor L Domain protein) contains an EGF receptor 

domain, and EGF receptor signaling has been shown to affect C. elegans lifespan through 

Ca2+/IP3 receptor and phospholipase C-3 (PLC-3) dependent mechanisms [14].  The final two 

identified genes, (C47A4.3 and C09H5.7) encode catalytic subunits of serine/threonine-protein 

phosphatases homologous to human protein phosphatase 1 (PP1-β and PP1-γ respectively).  

These protein complexes are associated with numerous activities, including mitosis, muscle 

contraction, glycogen metabolism, protein synthesis, and the progression of apoptosis [15, 16].  

However, 41 out of the 191 of the genes targeted in the EF-hand RNAi library (~21%) are 

predicted to be protein phosphatases or subunits of these complexes, meaning that the presence 

of two protein phosphatase subunits within the hits is not necessarily meaningful in a broader 

sense as ~2 such subunits should be expected to appear among a list of seven randomly selected 

genes from our starting library strictly by chance. 

 

5.2.2 Genes Related to ATP and O2 Decline with Age 

We designed and performed three screens of metabolic parameters that decline with age 

in C. elegans – ATP content, oxygen consumption, and cellular reductive capacity (Chapter 4).  

For each screen, each gene of the C. elegans X chromosome was knocked-down in triplicate by 

RNAi.  Hits were identified as 6-day-old C. elegans that expressed significantly less of a decline 

in these parameters, as determined by the mean robust z-score, and by unpaired two-tailed t-tests 



234 
 

using a theoretical mean robust z-score of zero as comparison.  Using these methods, a total of 

55 genes were identified among the three screens, with two genes present in more than one 

screen (unc-2 was identified in the ATP and reductive capacity screens, and C18B12.1 was 

identified in the oxygen consumption and reductive capacity screens).  An analysis of gene 

ontology (GO) was performed using the STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) online database, as well as an analysis of associations to C. elegans lifespan 

using the Human Aging Genomic Resources (HAGR) GenAge database.  The results of these 

analyses revealed that the majority of GO categories significantly enriched among the hits are 

negative regulators of cellular processes.  Furthermore, 16.36% of the hits are either anti-

longevity genes (lin-2, lin-14, F42G10.1, and daf-6), or members of gene classes enriched with 

anti-longevity genes (unc-2, hpl-1, sid-5, nac-1, and set-12).  We interpreted these results as 

suggesting that a large portion of the hits might be negative repressors of cellular processes that 

limit lifespan.  This interpretation would explain why RNAi knockdown resulted in the measured 

age-dependent parameters (ATP content, oxygen consumption, and cellular reductive capacity) 

being maintained at levels more similar to those of younger C. elegans.  Given that a large 

portion of the lifespan effects reported through GenAge are themselves the results of high-

throughput screens, be believe that a more thorough investigation of the lifespan associated 

effects of these genes is warranted. 

 

5.3 Identified Proteomic Factors 

 5.3.1 Histone Modifications and DNA Repair 

 C. elegans lack methylated cytosine nucleobases in their DNA, meaning that methylation 

primarily regulates gene expression through histone modification [17], with the caveat that there 



235 
 

is recent evidence for adenine methylation of the DNA [18].  Our proteomics investigation 

(Chapter 2) revealed that S-adenosyl methionine synthetase (SAMS-1) is significantly down 

regulated in older C. elegans.  The enzyme SAMS-1 is responsible for generating S-adenosyl 

methionine (SAM) from ATP and L-methionine.  Since SAM is the primary intracellular methyl 

donor, decreased in SAMS-1 levels likely restrict the occurrence of methylation events, 

including those on histones.  Additionally, PRMT-3 (protein arginine methyltransferase 3) was 

observed to be dramatically decreased with age.  PRMT-3 is one member of a family of six 

related C. elegans methyltransferase enzymes capable of transferring a methyl group from SAM 

onto arginine residues within histones [19], and the nearly 200-fold decrease in PRMT-3 levels 

found in older C. elegans is further evidence supporting an age-related change to histone 

methylation. 

 We also identified indirect evidence for decreased expression of C. elegans histone 

deacetylase-1 (HDA-1), which functions to remove acetyl groups from lysine residues within 

core histones.  HDA-1 has been demonstrated to be a strong repressor of expression of the 

cysteine protease inhibitor CPI-1 [20].  We observed a ~6.4-fold age-related increase in CPI-1 

levels, as well as an increase the levels of several proteins known to have a high confidence of 

co-expression with CPI-1 (C53B7.2, Y62H9A.6, CPG-1, and TTR-51), all of which support the 

hypothesis that HDA-1 is down-regulated with age in C. elegans. 

 The C. elegans poly(ADP-ribose) polymerase PME-1 also exhibited an approximately 6-

fold decrease with age.  This enzyme is orthologous to human PARP1, which functions to detect 

DNA single-strand breaks and signals to proteins responsible for single-strand break repair [21, 

22].  Decreased levels of PME-1 could indicate a reduced capacity for DNA repair, which 

sensitized cells to apoptosis and senescence.  Overall, these observations provide direct and 
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indirect evidence for age-dependent alterations to histone methylation and acetylation, as well as 

a reduced capacity for the identification and correction of DNA single-strand breaks. 

 

 5.3.2 RNA Metabolism and Translation 

 In total, we observed a significant decrease in the levels 8 proteins involved in 

transcription and translation (XRN-2, RSP-6, ZK512.2, PAB-2, RPL-11.2, RPS-26, DPH-2, and 

PUS-1).  XRN-2 (5’-3’ exoribonuclease 2 homolog) is an exonuclease involved in transcription 

termination, where it dislodges RNA polymerase II from DNA.  RSP-6 (splicing factor, 

arginine/serine-rich protein 6) contributes to nuclear pre-mRNA processing [13, 23, 24], and 

ZK512.2 is largely uncharacterized but may play a role in pre-mRNA splicing or the initiation of 

translation as an ATP-dependent RNA helicase.  PAB-2 (poly(A) binding protein 2) regulates 

translation by interacting with the 5’-cap eukaryotic initiation factor complex eIF4F and by 

recruiting the 60S and 40S ribosomal subunits [11], and RPL-11.2 and RPS-26 are components 

of the 60S and 40S ribosomal subunits respectively.  DPH-2 (diphthamide biosynthesis protein 

2) transfers three methyl groups from SAM molecules to form diphthamide, which is a non-

standard amino acid found exclusively in translation elongation factor 2 (eEF2) [12], and PUS-1 

(pseudouridine synthase 1) is essential for a post-transcriptional modification of tRNA essential 

for translation.  Ultimately, the decreased levels of these 8 proteins could hinder multiple aspects 

of the progression from transcription, to splicing, to translation. 

 

5.3.3 Fatty Acid Metabolism 

 Two important enzymes for fatty acid metabolism were observed to decrease in 

abundance in older C. elegans, IDH-1 (isocitrate dehydrogenase-1) and ACDH-13 (acyl CoA 
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dehydrogenase 13).  Aconitase is a cytosolic and mitochondrial enzyme that serves a key role in 

both the TCA cycle and fatty acid synthesis.  In the cytosol, aconitase functions to concert citrate 

into isocitrate thus diverting citrate away from entry into the metabolic pathway for fatty acid 

synthesis.  IDH-1 then continues the process by converting cytosolic isocitrate into α-

ketoglutarate.  Decreased levels of IDH-1 could potentially serve as a bottleneck in the removal 

of cytosolic citrate, allowing more citrate to enter into fatty acid synthesis. 

 Likewise, the enzyme ACDH-13 is one member of a family of long-chain-acyl-CoA 

dehydrogenase enzymes that function in mitochondrial fatty acid breakdown through β-

oxidation.  ACDH-13 was also observed to decrease with age, reflecting a possible decline in 

free fatty acid breakdown.  Of note, ACDH-13 is also an ortholog of human acyl-CoA 

dehydrogenase 9, which has been shown to play a role in the proper assembly of ETC complex I 

[25].  Two other proteins were found to have decreased with age, C23H4.3 and RME-2 (receptor 

mediated endocytosis 2).  C23H4.3 is a homolog of human carboxylesterase-2 (CES-2), which 

contributes to the hydrolysis of long-chain fatty acid esters and thioesters, and RME-2 is a yolk 

receptor that regulated the uptake of yolk (vitellogenin lipoprotein particles) into C. elegans 

oocytes [26].  A decrease in RME-2 specifically could contribute to the ectopic accumulation of 

vitellogenin known to occur in older C. elegans. 

 

5.4 Identified Metabolomic Factors 

 5.4.1 Free Amino Acids 

 By using GC/MS for metabolite identification (Chapter 2), we were able to identify a 

total of 186 metabolites present in both our young and older C. elegans populations.  Of these 

metabolites, the levels of 9 free amino acids were observed to be significantly altered with age.  
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A trend toward the increase of hydrophilic amino acids, and the decrease of hydrophobic amino 

acids was observed, based on a glycine normalized scale of hydrophobicity [27].  This trend 

mirrors previously reported observations that attribute the changes to the altered surface-to-

volume ratio of expanding C. elegans cells [28, 29].  Once cell division stops in C. elegans, 

growth continues by cell volume expansion, during which time cytoplasmic volume expands at a 

faster rate than membrane area, due to the geometry of the cells.  This disequilibrium in rate then 

requires the greater synthesis of hydrophilic cytosolic proteins as compared to hydrophobic 

membrane bound proteins, and the change in demand is reflected in the free amino acid pool. 

 

 5.4.2 Purine and Pyrimidine Metabolism 

 Purine metabolism was found to be the pathway with the largest total decrease (and 

overall change) among the identified metabolites, due to a large age-dependent decrease in the 

levels of adenine, guanine, adenosine, adenosine monophosphate, ribose, ribose 5-phosphate, 

hypoxanthine, and inosine.  We further validated the decline in hypoxanthine in older nematodes 

by performing an independent colorimetric assay.  Pyrimidine metabolism was also largely 

decrease with age, with a large decline in uridine and uracil.  Cytosine was also the sixth most 

decreased metabolite overall, but was not initially associated with the C. elegans pyrimidine 

metabolism pathway in our analysis since C. elegans lack a cytidine phosphorylase enzyme to 

salvage cytosine bases.  Thymine also appeared to decrease with age, although the comparison of 

thymine levels in young and old C. elegans fell short of statistical significance (p-value = 0.076). 

The overall decline in free nucleobases is surprising, and it may represent several 

possible overlapping cellular conditions.  First, a decline in free nucleobases may be a 

consequence of a prolonged adjustment to a post-mitotic state.  The somatic cells of an adult C. 
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elegans do not divide, and the cells may gradually limit their free nucleobase pools to reflect the 

decreased demand for DNA synthesis.  Conversely, the decline could equally be attributed to a 

dysregulated increase in DNA synthesis.  Older C. elegans cells often exhibit a heterogeneity of 

cellular genome copy number [30], and they often experience an age-dependent aggregation of 

transcriptionally active DNA masses within their uterus, both of which could deplete the free 

nucleobase pool if the appropriate metabolic pathways weren’t up-regulated to meet the demand.  

Additionally, since a decline in nucleobase levels could potentially slow or impair mRNA 

transcription by reducing the availability of RNA bases, this finding could be viewed as either a 

cause or a consequence of the altered RNA metabolism discussed above.  Either a decrease in 

available RNA bases contributes to a down-regulation of the cellular components of 

transcription, or one aspect of a cellular down-regulation of transcription is a restriction of the 

free nucleobase pools.  Interestingly, we found that supplementing C. elegans media with 

cytidine or hypoxanthine extends lifespan, suggesting that the decline purine and pyrimidine 

metabolism may limit nematode lifespan. 

 

5.4.3 The SAM Cycle 

Three metabolites directly associated with the SAM cycle (the pathway responsible for 

the enzymatic production of S-adenosylmethionine) were found to decrease with age in C. 

elegans; L-methionine and L-homocysteine, and the downstream product 5-methylthioadenosine.  

Combined with the age-dependent down-regulation of SAMS-1 discussed above, SAM and the 

cellular methylation capability are expected to decline with age.  This decline could then impact 

the various anabolic and epigenetic processes that rely on methylation.  Other than the 

methylation of histones and the synthesis of diphthamide mentioned above, SAM is necessary 
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for the synthesis of phosphatidylcholine (PC), which is a common cellular membrane 

phospholipid and accounts for a large portion of the phospholipid content of lipid droplets 

membranes and mitochondrial inner membranes.  For lipid droplets at least, a decrease in SAM 

content has been linked to a corresponding drop in lipid droplet PC content, which promotes the 

coalescence of smaller droplets into larger one [31, 32].  Decreased PC content through sams-1 

RNAi has also been associated with the activation of the endoplasmic reticulum (ER) stress 

response [33], which can lead to decreased protein synthesis if prolonged.  SAM is also an 

important component in the synthesis of ubiquinone, and notably dietary restriction, which also 

decreases SAM levels, has been linked to both larger lipid droplets and decreased ubiquinone in 

C. elegans [31, 32, 34]. 

 

5.4.4 Free Fatty Acids 

We observed an age-related increase in free fatty acids in C. elegans, as well as a 

decrease in monoacylglycerols.  These two observations suggest the possibility for an age-

dependent increase in free fatty acid formation from monoacylglycerol hydrolysis, and possibly a 

decrease in fatty acid β-oxidation.  Interestingly, we also observed an increase in glycerol, which 

is a byproduct of acylglycerol (glyceride) hydrolysis, and a large increase in β-hydroxybutyrate, 

which is a ketone body produced from excess acetyl-CoA under conditions of either fatty acid β-

oxidation or fatty acid synthesis.  Citrate was also observed to increase in older C. elegans.  As 

discussed above, cytosolic citrate is required to initiate fatty acid synthesis, and increased 

cytosolic citrate can be indicative of either a metabolic shift towards fatty acid synthesis, or the 

inactivation of mitochondrial aconitase by reactive oxygen species (ROS).  Taken together, these 

metabolic changes suggest that C. elegans aging is characterized by the hydrolysis of cellular 
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glycerides, as well as alterations to fatty acid synthesis and/or β-oxidation.  Notably, excess free 

fatty acids can also lead to (ER) stress [35]. 

 

5.4.5 Sorbitol 

The sorbitol content of older C. elegans was found to be dramatically increased, which 

we further verified by an independent colorimetric assay.  Sorbitol is produced by the activity of 

aldose reductase in response to elevated glucose levels [36-38], and it has been shown to be 

present at elevated concentrations in the tissues of diabetics [39-41].  Due to its hydrophilic 

nature and its inability to diffuse through cell membranes, sorbitol has even been theorized to 

contribute to the progression of diabetes by accumulating within cells to the point of causing 

osmotic stress [36].  Sorbitol can be further converted to fructose by the enzyme sorbitol 

dehydrogenase and the cofactor nicotinamide adenine dinucleotide (NAD
+
).  Therefore, the high 

concentrations of sorbitol detected in older C. elegans may be due to multiple factors, including 

a limited supply of NAD
+
, or a defect of glycolysis such as through oxidative damage to 

glycolytic enzymes such as GAPDH [42].  Sorbitol has been identified as an osmolyte in some 

yeasts and fungi, as well as in mammalian kidney cells, where it adjusts the intracellular 

environment to compensate for osmotic stress [43-45].  The age-related increase in sorbitol may 

be employed by C. elegans as an osmolyte to counteract the tendency for water loss and to 

balance the dilution of cellular contents that would occur as C. elegans increase their volume 

during growth. 
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5.4.6 Redox 

Several age-related changes in metabolite concentrations support the conclusion that the 

C. elegans intracellular environment transitions to a more oxidized state during aging.  Ascorbic 

acid (vitamin C) can be oxidized under physiological conditions to form the compound 

dehydroascorbate (DHA), which can then be recycled back into ascorbic acid by the reductive 

capacity of glutathione.  The ratio of DHA to ascorbic acid then represents both the available 

glutathione pool and the overall cellular redox state [46].  We observed an increase in the 

DHA/ascorbic acid ratio, suggesting a depletion of reduced glutathione and/or a shift toward a 

more oxidizing intracellular environment.  Likewise, erythronic acid (EA) and N-

acetylglucosamine (NAG) were both observed to be altered with age in C. elegans.  NAG is a 

peptidoglycan monomer and a component of chitin and hyaluronic acid, and under physiological 

conditions NAG has been found to oxidatively degrade into EA [47].  We similarly detected an 

increase in the EA/NAG ratio, further indicating a more oxidizing cellular environment in older 

C. elegans.  We did not to observe glutathione directly in our metabolomic analysis, nor did we 

observe NAD
+
 or NADH.  However, we were able to use the ratio of pyruvate to lactate as an 

estimator of relative NAD
+
 and NADH concentrations, respectively, since these metabolites are 

held in equilibrium by the activity of the enzyme lactate dehydrogenase [48].  This estimation 

supports an age-dependent decrease in the NAD
+
/NADH ratio, which is similar to what has been 

observed in both rats and humans [49-51].  Notably, the decreased NAD
+
/NADH could restrict 

glycolysis, mitochondrial fatty acid β-oxidation, and the activity of the TCA cycle, since these 

cellular processes require a steady supply of NAD
+
.  The poly(ADP-ribose) polymerase PME-1 

and sorbitol dehydrogenase both also rely on NAD
+
 availability and may be affected by an age-

dependent decrease in the ratio. 
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5.5 Significance of the Age-related Factors 

 Calcium plays many important biological roles, including the coordination of muscle 

contraction and the regulation of cell death through apoptosis or necrosis.  Using our method for 

screening RNAi gene knockdowns in the presence of a toxic level of Ca
2+

, we were able to 

identify calcium-binding genes that may play a role in mediating Ca
2+

-induced cell death.  

Furthermore, our proteomic analysis of young and old C. elegans identified a down-regulation of 

muscle-specific genes involved in Ca
2+

 homeostasis, which supports previous observations of 

sarcopenia and impaired locomotion in older nematodes.  The combination of our proteomic and 

metabolomic investigations further revealed evidence of age-dependent changes multiple 

physiological aspects, including altered amino acid concentrations, which are consistent with 

previous reports linking the change to the expansion of C. elegans cell size; an increase in free 

fatty acids and a decrease in the activity of the SAM cycle, both of which have been linked to ER 

stress; altered or impaired protein synthesis, which may limit lifespan and may also be indicative 

of ER stress; epigenetic changes and evidence of a change in DNA repair; a shift toward a more 

oxidizing cellular environment and an increase in NAD
+
 relative to NADH; and an increase in 

sorbitol. 

 Yolk lipoproteins accumulate ectopically with age in C. elegans, and may contribute to 

some of these age-related changes, including an increase in free fatty acids.  Also, sarcopenia of 

the pharyngeal pump progresses to an extreme level in older C. elegans, which likely results in 

late-life dietary restriction.  Decreased SAM synthesis is one downstream effect of dietary 

restriction, and the relationship between these factors may explain our observations of an age-

related decrease in SAM cycle activity. 
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 Our RNAi gene knockdown screens for genetic contributors to the age-related declines in 

ATP content, oxygen consumption, and reductive capacity identified a diverse set of genes.  

Common attributes among the set appear to be a negative regulation of cellular processes and 

anti-longevity activity in C. elegans.  It may be that the screens identified genetic factors limiting 

C. elegans lifespan, explaining their connection to age-related changes in the nematode. 

 

5.6 Novel Methods 

 The methods that we developed to help perform our screens can be divided into three 

categories: (1) long-term maintenance of C. elegans liquid cultures, (2) assaying live C. elegans 

volume in culture, and (3) high-throughput assaying of C. elegans metabolic parameters while 

using bacteria-based RNAi gene knockdown.  All three categories were valuable in obtaining the 

results discussed in the previous sections, although each has its own unique caveats. 

 

 5.6.1 Long-term Maintenance of C. elegans Liquid Cultures 

 Growing C. elegans for extended periods of time in microplate liquid cultures is 

challenging.  Largely, the effort that goes into maintaining the culture involves finding a balance 

between assuring proper aeration and preventing excess evaporation.  We began by investigating 

several commercially available microplate sealers (Chapter 3), as well as 12.7 micron fluorinated 

ethylene–propylene (FEP) Teflon® film, in an effort to find a suitable method for preventing 

liquid culture evaporation.  FEP Teflon® film has been previously used to successfully seal and 

maintain neuronal cell cultures for periods in excess of 9 months [52], and under our conditions 

we found FEP Teflon® film to almost completely restrict media evaporation, even when tested 

in an arid environment.  In addition to preventing fluid loss, FEP Teflon® film is an effective 
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barrier against microbes, and it is transparent enough to avoid interfering with optical 

measurements, meaning that microplates can remain sealed with the film during optically-based 

assays.  We additionally discovered that the gas-permeable film allowed enough aeration to 

permit us to grow 96-well microplate liquid cultures without shaking, and with up to 300 

nematodes per well, as long as the volume of media in each well was kept relatively low (~100 

μL).  Based on this finding, we developed and constructed a series of gasket-attached FEP 

Teflon® film 96-well plate lids, which we then used exclusively for all of our microplate-based 

liquid cultures. 

 

 5.6.2 Assaying Live C. elegans Volume in Culture 

 Both manual and automated methods for scoring living C. elegans currently require 

microscopy.  In an effort to simplify the process and to possibly make lifespan analysis more 

available for high-throughput, we investigated the use of fluorescence markers that might 

correspond to the quantity of living or dead C. elegans in a culture at a variety of ages (Chapter 

3).  To test whether ubiquitously-expressed GFP could be used as an appropriate marker, we 

selected the bright C. elegans strain BC12907 dpy-5(e907), with GFP expression driven by the 

promoter for T09B4.8 (a homolog for human mitochondrial AGXT-2 alanine-glyoxylate 

aminotransferase-2 gene) [6, 53].  By examining BC12907 C. elegans cultures through 

microplate reader-based fluorescence, as well as fluorescence microscopy and manual image 

analysis, we found that the total green-range fluorescence measured per microplate well exhibits 

a linear correspondence to the total volume of live C. elegans per well.  We also found that dead 

BC12907 C. elegans exhibit a non-negligible, but greatly reduced fluorescence that should only 

marginally contribute to the total fluorescence per well. 
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 This finding applied across most of the C. elegans 21-day maximum lifespan at 20 °C, 

and could be used to estimate the number or volume of live nematodes in each separate culture, 

and to normalize additional assay measurement to a per-nematode quantity.  The restrictions that 

we discovered for this method however, limit its application in certain circumstances.  First, the 

correspondence between GFP fluorescence and the number or volume of live nematodes per 

culture does not hold before the first or second day of C. elegans adulthood (approximately the 

fifth day of culture at 20 °C).  Prior to that point, the relationship between GFP and nematode 

content is nonlinear and likely complicated by the small but rapidly-changing size of the 

organism.  Second, E. coli possess autofluorescence in the green range that often increases with 

time, and change in ways that are difficult to predict.  In early liquid cultures, E. coli present as a 

food source can account for nearly all of the fluorescence detected when assaying GFP.  At later 

points the concentration of E. coli is usually lower, but increases in bacterial autofluorescence 

can still potentially interfere with measurements.  When conducting the RNAi screen for Ca
2+

-

binding genes mediating high Ca
2+

 toxicity, our solution was to perform GFP fluorescence 

measurements on adult C. elegans at later time points when the nematodes were likely to have 

consumed the majority of the E. coli in culture.   

Since endogenous anthranilate increases in C. elegans over an ~8 hour period 

surrounding the death of an individual nematode, we attempted to use anthranilate blue-range 

autofluorescence in a similar manner as a marker for the rate of death in a culture.  The results 

were promising given that there was a strong inverse linear relationship between the total blue-

range fluorescence and the number of live C. elegans in a culture.  Furthermore, we were able to 

differentiate between high Ca
2+

-treated and non-treated cultures based on the higher blue-range 

fluorescence (and presumable a higher rate of death) in the Ca
2+

-treated sample.  E. coli also 
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possess autofluorescence in the blue range that can increase over time, so it can be assumed that 

the same limitations for assaying GFP also apply to assaying anthranilate under our culture 

conditions.  It should be noted however that there was only a weak correspondence between our 

GFP-based results and our blue-range fluorescence-based results when evaluating the RNAi 

screen of Ca
2+

-binding genes.  In hindsight, we suspect that this lack of correspondence was due 

to the confounding effects of Ca
2+

 in our screen.  The increase in anthranilate autofluorescence at 

the time of C. elegans death is itself mediated by the intracellular release of Ca
2+

.  Given that we 

were investigating the knockdown of Ca
2+

-binding genes under conditions of high Ca
2+

, it is 

reasonable to assume that the role of Ca
2+

 in both the treatment and the measurement likely 

introduced variation in the measurement of anthranilate. 

 

5.6.3 High-throughput Assaying of C. elegans Metabolic Parameters While Using 

Bacteria-based RNAi Gene Knockdown 

 One of the strengths of C. elegans as a model organism is its susceptibility to 

RNAi.  Currently, the most common methods of gene knockdown in C. elegans is to simply feed 

the nematodes bacteria expressing dsRNA targeted to the gene of interest, and the simplicity of 

this method has led to the development of commercially available bacterial clone RNAi libraries.  

The presence of live bacteria in the C. elegans media presents challenges when assaying 

nematode metabolic parameters however, especially under high-throughput conditions when 

removing the bacteria prior to assaying is difficult or impossible.  Methods have been developed 

to kill E. coli while preserving dsRNA for gene knockdown, using treatment with ultraviolet 

light or γ-irradiation, but these methods require expensive or dedicated equipment, likely damage 

the dsRNA, and are difficult to scale to the quantities necessary for high-throughput screening.   
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To address these limitations, we decided to screen for simple and scalable treatments and 

conditions capable of killing E. coli while preserving dsRNA content (Chapter 4).  We 

discovered that treating E. coli with acetone prior to starting a C. elegans liquid culture meets 

these requirements and maintains RNAi knockdown.  In the process, we also discovered that C. 

elegans fed acetone-killed E. coli have slowed growth and fail to develop past the larval stage.  

To overcome this growth restriction, we found that supplementing the acetone-killed E. coli with 

10% live E. coli is enough to maintain proper larval development.  Under our standard culture 

conditions, 10% live E. coli is also a low enough concentration to be easily killed by 

ciprofloxacin treatment.  Once in C. elegans liquid culture media, E. coli enter a stationary phase 

of growth that makes them resistant to many forms of antibiotic eradication.  Ciprofloxacin is an 

antibiotic capable of killing stationary phase bacteria, and treatment of 10% live, stationary 

phase E. coli with ciprofloxacin results in a dramatic decrease in bacterial ATP after 48 hours, 

and the complete eradication of bacterial reductive capacity after 6 days.  We also discovered 

that treatment with ciprofloxacin immediately upon starting a culture with acetone-killed E. coli, 

10% live E. coli, and L1 larval stage C. elegans is still sufficient to allow proper larval 

development.  This finding suggest that a nutrient vital for nematode development may be lost in 

the acetone-treatment process, which can then be supplemented back into the culture with live 

bacteria. 

 We were able to use these methods to perform RNAi knockdown screens of C. elegans X 

chromosome genes, in an effort to detect genes that mediate the age-related decline in ATP 

content, oxygen consumption, and reductive capacity.  Our investigations revealed that live 

HT115(DE3) E. coli does not significantly respire in long-term C. elegans liquid cultures, 

suggesting that acetone and ciprofloxacin treatment of bacteria may not be necessary for high-
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throughput measurements of C. elegans oxygen consumption.  The acetone and ciprofloxacin 

system appears helpful for ATP content measurements, however, and it seems absolutely vital 

for meaningful measurements of C. elegans reductive capacity using resazurin, which is 

especially sensitive to the presence of live bacteria. 

 Initially when constructing our screens, we planned to use the GFP fluorescence of 

BC12907 C. elegans to normalize our ATP, oxygen, and reductive capacity measurements to the 

amount of living nematodes in each separate culture.  Acetone- and ciprofloxacin-treated 

bacteria still possesses autofluorescence in the green range, however, which confounded the 

measurements enough that we abandoned the strategy.  Instead, we decided that the use of non-

normalized measurements was adequate based on three assumptions.  Specifically, (1) the initial 

number of C. elegans added to a 96-well plate would not vary significantly among the wells; (2) 

since we were interested in knockdowns that increased specific metabolic parameters, the death 

of C. elegans from toxic knockdowns would not affect our selection of hits; and (3) the 

calculation of robust z-scores for knockdowns on a per-plate basis should compensate for any 

variation in the initial number of C. elegans among individual 96-well plates.   

One restriction resulting from these assumptions is that the decrease of a metabolic 

parameter could not be used as a criterion for hit selection since measured decreases in that 

parameter could not differentiate between a legitimate down-regulation of the parameter and the 

loss of C. elegans due to toxic gene knockdowns.  For example, before we fully settled on this 

approach, we performed a full RNAi screen of X chromosome genes, in triplicate, measuring 

BC12907 C. elegans β-galactosidase activity, which increases with age due to the accumulation 

of senescent cells.  Our original strategy was to use a decrease in β-galactosidase as a criterion 

for determining hits, and to use BC12907 GFP fluorescence to disregard gene knockdowns that 
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appeared lethal.  The unavailability of GFP fluorescence as a normalizing factor limits the hit 

criteria for that screen to RNAi knockdowns that increase β-galactosidase – the results of which 

will appear in future work. 

 

5.7 Significance of Novel Methods 

 The methods we developed make the long-term liquid culturing of C. elegans easier and 

more amenable to high-throughput applications.  Specifically, we developed a way to grow 

liquid cultures in microplates for the full duration of an average C. elegans lifespan without 

suffering significant fluid loss due to evaporation, and without the need to shake or unseal the 

plates for aeration.  We also developed a method for measuring the total volume of live C. 

elegans in microplate cultures using only a fluorescence microplate reader, and we have a similar 

method at least partially established for estimating the rate of C. elegans death.  Finally we 

developed a novel method for performing RNAi using dead bacteria, for the purpose of assaying 

metabolic parameters without bacterial interference. 
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