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Abstract 

 

Ovarian cancer is one of the most common causes of gynecological cancer related deaths in 

women. In 2014, the estimated number of deaths due to ovarian cancer is 14,270 with occurrence of over 

22, 240 new cases (National Cancer Institute, http://seer.cancer.gov/statfacts/html/ovary.html). Despite 

improvement in treatment strategies, the 5-year survival rate is still below 50% mainly due to 

chemoresistance and relapse. Amplification of chromosomal region 3q26 is a common characteristic in 

various epithelial cancers including ovarian cancer [9-12, 28-30]. This region harbors various oncogenes 

including the TGFβ signaling mediators EVI1 [10] and SnoN/SkiL [9], PKCι [31], and PIK3CA [11] 

amplified at 3q26.2 and 3q26.3, respectively, in ovarian cancers. Previous studies indicate that these 

genes can exhibit cooperative oncogenicity by cross-regulating one another and facilitating cancer 

development [32, 33]. Our earlier studies demonstrated that treatment of ovarian cancer cells with arsenic 

trioxide (As2O3) promotes cytoprotective autophagy regulated by induction of SnoN to antagonize the 

cytotoxic effects of As2O3 [1]. Since exact mechanisms underlying As2O3-induced SnoN expression and 

cytoprotective responses were unclear, we hypothesized that SnoN may be regulated by signaling 

pathways involving genes amplified at the 3q26 locus.    

Phospholipid scramblase 1 (PLSCR1) is located at 3q23 proximal to the amplified 3q26 region. It 

had been implicated in disruption of plasma membrane asymmetry by mediating phospholipid 

scrambling, a process critical for cellular events such as blood coagulation and apoptosis [34, 35]. 

However, recent findings have led to more investigations on the role and regulation of PLSCR1 in cancer 

development and immune responses [4-8, 21, 22, 36]. PLSCR1 expression is regulated by various stimuli 

including growth factors (EGF, G-CSF, and SCF) [19, 37], cytokines (IFN) [38, 39], and differentiation-

inducing agents (ATRA) [40]. Despite these studies, transcriptional regulation of PLSCR1 remains 

incompletely understood. Numerous studies have suggested a critical role for PLSCR1 in the 



 ix  

 

pathophysiology of various cancers including leukemia [16, 17, 41], ovarian cancer [15], colorectal 

cancer, and metastatic liver cancer [20-22, 36]. However, the precise contribution of PLSCR1 and its 

regulation in ovarian cancer development is unclear. Since PLSCR1 (at 3q23) is located in close 

proximity to SnoN/SkiL (at 3q26.2), we hypothesized that PLSCR1 expression in ovarian cancer cells 

could be regulated by SnoN. Herein, we present studies that primarily focus on understanding the role and 

regulation of SnoN/SkiL (a TGFβ pathway regulator) and PLSCR1 (an interferon-regulated gene), which 

are located at 3q26.2 and 3q23, respectively, in epithelial ovarian cancer. 

In Chapter 3, we determined that activation of the PI3K signaling pathway mediates SnoN 

expression and cytoprotective responses upon stimulation of ovarian cancer cells with As2O3. We first 

identified that As2O3 stimulation leads to activation of EGFR and its downstream signaling mediators as 

well as modulates its interaction with the adaptor proteins, ShcA and Grb2. Interestingly, while treatment 

with a general SFK inhibitor (PP2), reduced the As2O3-induced EGFR activation and SnoN induction, a 

more specific inhibitor SU6656 did not alter SnoN expression. Further, via studies utilizing specific 

inhibitors and siRNA targeting PI3K, we determined that inhibition of PI3K signaling pathway decreases 

SnoN induction and increases apoptosis in ovarian cancer cells in response to As2O3. This suggests that 

PI3K (PIK3CA) activity is required for the As2O3-mediated SnoN induction and the cell survival 

responses in ovarian cancer cells. Finally, we determined by siRNA-mediated knockdown that EGFR and 

MAPK1 alter As2O3-induced cell death response independently of SnoN induction. 

In Chapter 4, via bioinformatic analyses, we identified that PLSCR1 DNA copy number and 

mRNA expression is elevated in ovarian cancer patients and cell lines relative to immortalized 

(Tag/hTERT) normal ovarian surface epithelial (OSE) cells. Interestingly, altered PLSCR1 DNA and 

mRNA levels were correlated with SnoN in ovarian cancers. We next identified that SnoN knockdown 

leads to a significant (~35%, P<0.05) reduction of PLSCR1 mRNA levels and promoter activity 

suggesting that SnoN may transcriptionally regulate PLSCR1 expression. More importantly, SnoN 

knockdown ablated IFN-induced PLSCR1 mRNA expression. Together, these studies indicate an 

important role of SnoN in regulation of PLSCR1 expression in ovarian cancer cells. We also determined 
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that As2O3 transcriptionally downregulates PLSCR1 in a ROS-independent mechanism. Furthermore, 

PLSCR1 knockdown, similar to SnoN knockdown increases ovarian cancer cell sensitivity to As2O3. 

PLSCR1 knockdown increases cleaved PARP (marker of apoptosis) with a consequent reduction in LC3-

II levels (marker of autophagosomes). Collectively, these studies implicate PLSCR1 in the 

pathophysiology of ovarian cancers and in altering the chemotherapeutic responses in ovarian cancer 

cells. 

PLSCR1 is an IFN-regulated gene and mediates antiviral/immune responses [4-8]. More recent 

studies in plasmacytoid dendritic cells have implicated PLSCR1 in regulating TLR9 signaling upon 

stimulation with CpG ODN [42]. However, whether PLSCR1 could mediate the innate immune responses 

upon stimulation with dsDNA remained unclear. In Chapter 5, we identified that stimulation of normal 

ovarian and mammary epithelial cells with dsDNA (empty plasmid) markedly induces PLSCR1 

consequent with activation of IRF3, a downstream mediator of TLR signaling that transcriptionally 

regulates the expression of type 1 IFNs [43-45]. Interestingly, IRF3 knockdown ablates the dsDNA-

induced PLSCR1 expression suggesting that PLSCR1 induction in response to dsDNA could be mediated 

by IRF3. Additionally, we have determined that dsDNA stimulation induces nucleic acid sensing TLRs, 

TLR9 and TLR4 as well as IFN-α and IFN-β mRNAs. Interestingly, dsDNA stimulation did not induce 

PLSCR1 or IRF3 activation in ovarian cancer cells suggesting that the mechanisms of IRF3 activation 

and PLSCR1 induction in response to dsDNA might be dysregulated in ovarian cancers.  

Collectively, our studies demonstrate a possible synergistic role of SnoN and PLSCR1 in ovarian 

cancer pathophysiology and suggest a potentially dysregulated role of PLSCR1 in the dsDNA-induced 

immune responses of malignant epithelial cells relative to normal epithelial cells. These studies could 

potentially lead to development of a novel combinatorial therapeutic strategy that targets both these 

molecules for improving treatment of patients with ovarian carcinoma.     
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Chapter 1 

Introduction 

Ovarian Cancer 

Ovarian cancer is one of leading causes of death from gynecological cancers among women with 

14,270 deaths and 22,240 new cases estimated in 2014 in United States (National Cancer Institute, 

http://seer.cancer.gov/statfacts/html/ovary.html). Lack of effective early detection methods and resistance 

to chemotherapeutics make ovarian cancers deadly with a 5-year survival rate of less than 50% (National 

Cancer Institute, http://seer.cancer.gov/statfacts/html/ovary.html). The current treatment strategies for 

ovarian cancer include surgical debulking followed by chemotherapy and radiation therapy (NCI) [46]. 

Current FDA approved drugs in the treatment of ovarian cancer majorly include platinum-based drugs 

such as cisplatin, carboplatin, and paclitaxel [47].  

Epithelial ovarian cancer (EOC), one of the major types of ovarian cancers (NCI), is a 

heterogeneous disease composed of specific subtypes with distinctive morphology, molecular 

characteristics, pathogenesis, and progression [48-51]. EOC can be further classified into the following 

subtypes: (1) mucinous invasive ovarian cancer, proposed origin of which is still unclear [52]; (2) 

endometrioid carcinoma, (3) clear cell carcinoma,  proposed to be derived from endometriosis due to 

retrograde menstruation [53, 54], and (4) high-grade serous epithelial ovarian carcinoma (HGSC), 

proposed to be derived from the ovary surface epithelium and/or the distal fallopian tube [55, 56]. Of 

these subtypes, HGSC is the most commonly occurring, accounting for almost 70% of all the cases and 

most patients present with advanced stage disease [57]. Although HGSCs are sensitive to chemotherapy 

with platinum-based drugs and taxanes, disease recurrence often occurs leading to untreatable disease 

[57].     
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Current treatment strategies:  

Although there have been advances in the strategies of treatment of solid tumors in the last few 

decades, the survival rate of women with EOC has changed minimally [49]. Current treatment of EOC is 

based on the combination of surgery and chemotherapy. Over the past three decades, surgical tumor 

debulking and platinum/taxanes-based chemotherapy have been the standard treatments for advanced 

ovarian cancer [58, 59]. Platinum-based chemotherapeutics that were first introduced in late 1970s are 

still the major drugs used in the treatment of ovarian cancer [49, 59]. Pegylated liposomal doxorubicin is 

commonly used in association with carboplatin and paclitaxel and has been recently shown to improve the 

survival rate in platinum-sensitive EOC patients [60]. Another strategy used in treatment of ovarian 

cancer is the targeted therapies, which are aimed at inhibiting the activity of specific molecular factors 

involved in development of ovarian cancer. Although PARP (poly (ADP-ribose) polymerase) inhibitors 

[61, 62], angiogenesis inhibitors [63], and many such drugs targeting the specific molecular factors [62]  

appear effective, they have only yielded small increments in improving progression-free survival in 

ovarian cancers. Although the advances in surgery and chemotherapy have improved the 5-year survival 

rate to 50%, the cure rate of ovarian cancer has not improved concurrently. Hence, there is a need for the 

development of novel therapeutic strategies in the treatment of ovarian carcinoma.  

Common genetic aberrations:  

HGSCs are most commonly characterized by mutations in TP53 in almost 80% of the cases [51, 

64] in addition to inactivating mutations in BRCA in up to 50% of cases either via genetic or epigenetic 

mutations [51]. Endometrioid and clear cell carcinomas are commonly associated with PTEN mutations 

[65] along with activating mutations in PIK3CA [66] and KRAS [67]; whereas KRAS mutation at codon 

13 is reported to be an early occurrence in the pathogenesis of mucinous ovarian cancers [52, 68]. 

Alterations are also found in various mediators of important signaling pathways such as TGFβ signaling 

(transforming growth factor-β) pathway [69], EGFR/ErbB receptor signaling [70], and 

Ras/MAPK/Src/AKT pathways [70]. 
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Figure 1: Human chromosomal 3q region  

The chromosomal region 3q26 is highly amplified in various epithelial cancers including ovarian 

cancers. This region harbors many oncogenes including EVI1, SnoN/SkiL, PKCι at the locus 3q26.2 

and PIK3CA at 3q26.3 that are amplified in ovarian cancers [9-12]. Proximal to 3q26 region, PLSCR 

family members are clustered at loci 3q23 (PLSCR1) and 3q24 (PLSCR2, PLSCR4 and PLSCR5) 

(https://genome.ucsc.edu/, December 2013). (*Figure created by Madhav Karthik Kodigepalli) 

Amplification of chromosomal region 3q26:  

In addition to the above genetic aberrations, amplification of chromosomal region 3q26 is a 

frequent occurrence in most epithelial cancers including ovarian cancers [9-12, 31]. Various studies  

 

including our recent studies report that the chromosomal loci around 3q26 harboring various oncogenes 

such as MECOM (MDS1-EVI1 complex) [10], SnoN/SkiL, and PKCι at 3q26.2 [9, 31] as well as 

PIK3CA [catalytic subunit of phosphoinositide-3-kinase (PI3K)] at 3q26.3 [11] (shown in Figure 1) are 

highly amplified in ovarian cancers. EVI1 (ecotropic viral integration site) and SnoN (Ski related novel 

protein N) are negative transcriptional regulators of the TGFβ pathway. 
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TGFβ signaling:  

TGFβ is an ubiquitous and essential regulator of cellular and physiological processes including 

proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance [71]. TGFβ 

exerts its activity by binding to a family of transmembrane serine/threonine kinase receptors [72]. TGFβ 

binds initially to TGFβ type-II receptor (TGFβRII) and this ligand-receptor complex recruits and 

phosphorylates TGFβ type-I receptor (TGFβRI) by homodimerization. Activated TGFβRI initiates a 

signaling cascade by phosphorylating and activating the receptor SMAD proteins (SMAD2/3) [72] which 

form a complex with SMAD4 (Co-SMAD) and translocate into the nuclear compartment. This complex 

binds and activates/represses specific TGFβ responsive genes which play a prominent role in regulating 

various cellular responses including (1) differentiation, (2) proliferation, and (3) apoptosis [71, 73]. This 

pathway mediates both tumor promoting and tumor suppressing functions to repress transformation in 

normal cells while increasing aggressiveness of transformed cells by inducing epithelial-mesenchymal 

transition (EMT) [74]. Aberrations in the TGFβ signaling pathway, including mutations or loss of 

expression of mediators in the signaling pathway are noted in various human cancers [73, 74]. 

Specifically, in ovarian cancer, EVI1, SnoN/SkiL, TGFβRII, and PI3K/AKT [75] are dysregulated and 

lead to resistance to the growth inhibitory effects of TGFβ [9, 10, 69]. TGFβ signaling is negatively 

regulated by various proteins including EVI1, SnoN, and inhibitory SMADs (SMAD7) [71].  

 

SnoN 

SnoN (Ski related novel protein N) belongs to the Ski family of nuclear oncogenes; it is an 

important negative regulator of TGFβ signaling pathway. SnoN directly binds to SMAD2/3 as well as 

SMAD4 preventing them from binding to transcriptional co-activators; this leads to repression of TGFβ 

target genes and blockade of TGFβ-induced growth arrest [28, 76, 77]. SnoN, along with its closely 

related oncoprotein Ski, have been identified to induce cancer cell proliferation and transformation; this 

activity is dependent on their TGFβ signaling repressing function [78, 79]. In various cancers including 

ovarian [9], lung [80], breast [79], esophageal [28], and colorectal cancers [81], SnoN expression is 
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elevated due to gene amplification, altered transcription, and protein stability [9, 81]. SnoN also elicits 

tumor suppressor activity in various cancers including microsatellite unstable cancers which have a 

disrupted TGFβ signaling pathway due to reduced endogenous expression of SnoN [82, 83]. Interestingly, 

increased SnoN levels induces senescence via interaction with PML (promyelocytic leukemia) protein 

and stabilization of p53 leading to tumor suppression [84]. As shown in Figure 2, SnoN has various 

domains such as: (1) R-SMAD domain through which it binds to SMAD2/3; (2) Dachshund domain 

which binds to N-CoR, a transcriptional co-repressor; (3) SMAD domain which promotes interaction with 

SMAD4; and (4) oligomerization domain which is involved in heterodimeric formation with c-Ski 

(Figure 2). Additionally, SnoN contains sites for post-translational modifications such as phosphorylation, 

ubiquitination, and 

 

SUMOylation [85-88]. SnoN can also be phosphorylated by TAK1, a MAPKK protein which is required 

for TGFβ-induced degradation of SnoN [86]. Additionally, SnoN protein stability is regulated via 

ubiquitination by specific E3 ubiquitin ligases. Anaphase promoting complex (APC), a ring finger 

Figure 2: Structural organization of SnoN protein 

SnoN/SkiL is a 684 aa protein composed of the following structural domains. (1) R-SMAD domain 

which binds to TGFβ signaling mediator SMAD2/3; (2) Dachshund domain binds to transcriptional 

co-repressor N-CoR; (3) SMAD domain that facilitates interaction with activator SMAD4; and (4) 

oligomerization domain which is involved in heterodimeric formation with c-Ski [14]. (*Figure 

created by Madhav Karthik Kodigepalli) 
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containing E3 ligase enzyme recruited to SnoN by SMAD3 results in ubiquitination and degradation of 

SnoN [88]. Other E3 ligases, including Arkadia and Smurf2, also mediate TGFβ dependent SnoN 

ubiquitination and degradation [85, 87]. Studies indicate that SnoN expression, located at 3q26.2 is highly 

amplified in EOC patients and promotes ovarian epithelial and cancer cell proliferation [9]. More 

recently, our group has implicated SnoN in inducing cytoprotective autophagy in ovarian carcinoma cells 

following treatment with arsenic trioxide (As2O3) [1].   

 

Arsenic Trioxide (As2O3) 

Arsenic trioxide is a carcinogen of human skin, lung, liver, kidney, and urinary bladder cancers 

[89]. Paradoxically, it is also a clinically used chemotherapeutic agent in the treatment of acute 

promyelocytic leukemia (APL) [90]. APL is a subtype of acute myeloid leukemia (AML), characterized 

by a specific chromosomal translocation (t(15;17)) resulting in production of the leukemic PML-RAR 

fusion oncoprotein which drives APL cellular proliferation; As2O3 is an FDA approved drug which is 

used for patients that become resistant to the primary treatment agent, ATRA (all-trans retinoic acid) [90]. 

Many studies report that As2O3 exerts its therapeutic effect by promoting the degradation of the PML-

RAR fusion protein. The drug binds directly to the cysteine residues in the zinc fingers of the PML and 

PML-RAR proteins thereby increasing its interaction with small ubiquitin-like molecules leading to 

SUMOylation-mediated degradation [91].  As2O3 promotes cell death via apoptosis and beclin-1 

dependent autophagy in leukemia cells [92]. As2O3 can also decrease expression of TGFβ signaling 

pathway mediators including EVI1, TAK1, SMAD2/3, and TGFβRII as well as increase the expression of 

SnoN/SkiL in ovarian cancer cells [1]. Furthermore, As2O3 induces a beclin-1 independent autophagy 

pathway by modulating the expression of SnoN [1]. However, the exact mechanism by which SnoN is 

modulated by As2O3 remains unclear.  
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Programmed Cell Death 

Programmed cell death can be classified into three subgroups based on the morphological characteristics: 

(1) apoptosis, (2) autophagy, and (3) necroptosis [93]. 

Autophagy:  

Autophagy is a tightly regulated and complex catabolic process leading to intracellular 

degradation of its own cellular components involving lysosomal-mediated degradation.  Autophagic flux  

Figure 3: Schematic representation of autophagy pathway 

Induction of autophagy is regulated by mTOR (mammalian target of rapamycin), AMPK ((5′-AMP-

activated protein kinase) and class I and III members of PI3K family [2, 3]. ULK1 and Beclin-1 aid in 

the step of vesicle nucleation resulting in the formation of phagophore. The next step of vesicle 

elongation is facilitated by function of various ATG proteins (ATG12, ATG5, ATG7 and ATG10). 

Conversion of LC3-I to LC3-II via lipidation is facilitated by ATG7 and ATG3 resulting in formation 

of autophagosome that sequesters the damaged organelles and proteins. Finally, autophagosome fuses 

with the lysosomes to form autophagolysosome which results in degradation of damaged cargo [2, 3]. 

(*Model created by Madhav Karthik Kodigepalli) 
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is an important physiological pathway which occurs constantly in all cells at basal levels aiding in 

clearance and degradation of damaged proteins and cell organelles; the flux can be increased under 

conditions of stress and starvation [3]. Figure 3 shows the important steps and molecules that are involved 

in the process of autophagy. These include (1) vesicle nucleation which involves formation of the 

initiating membrane, (2) vesicle elongation which involves expansion of the isolation membrane (referred 

to as phagophore), and (3) vesicle completion which leads to fusion of the membrane forming the double 

membrane autophagosomes which sequester the cellular cargo to be degraded [3]. In the next step, fusion 

of the autophagosome with a lysosome leads to formation of the autophagolysosome which results in the 

degradation of the encapsulated damaged organelles/proteins; increased autophagic flux can lead to cell 

death when reached beyond a threshold level [3]. One of the major regulators of autophagy is the 

mammalian target of rapamycin (mTOR), which inhibits autophagic activation under nutrient-rich 

conditions (i.e. in the presence of growth factors) [2]. Autophagy is also regulated by class I and class III 

PI3K family members and AMPK (5′-AMP-activated protein kinase) [2, 3]. AMPK responds to various 

stress factors such as nutrient starvation and endoplasmic reticulum (ER) stress which then 

phosphorylates ULK1 which initiates the autophagic cascade. ULK1 (or named ATG1) is one of the 

many evolutionarily conserved effector autophagy molecules known as the ATG proteins, which is 

essential for the execution of autophagy (Figure 3) [2, 94]. Although autophagy can be defined as a cell 

death mechanism, it elicits dual function in cancer development: tumor suppressor at the initial/early 

stages and then as an oncogene in the late stages of cancer progression [95, 96]. In addition, radiotherapy 

and certain cytotoxic drugs can elevate levels of autophagy which promote cancer cell survival [95, 97].  

Apoptosis:  

Apoptosis is a form of cell death characterized by chromatin condensation, nuclear fragmentation, 

plasma membrane blebbing that occurs in response to various stimuli such as DNA damage and treatment 

with cytokines [98]. It is an energy-dependent process involving proteases known as caspases. Apoptosis 

occurs via two different pathways: (1) extrinsic and (2) intrinsic. The extrinsic pathway is mediated by 

transmembrane death receptors located at the plasma membrane (i.e. tumor necrosis factor (TNF) family 
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of receptors [98]) which upon activation results in a cascade of events leading to activation of caspases. 

On the other hand, the intrinsic pathway is activated primarily by internal stimuli such as DNA damage; it 

is mediated by the mitochondrial release of cytochrome c that contributes to the formation of the 

apoptosome and thus activation of effector caspases. In both the pathways, caspases initiate a cascade of 

proteolytic events leading to consumption of the apoptotic cells by macrophages [97]. The apoptotic 

process is antagonized by various anti-apoptotic members of the Bcl-2 family of regulatory proteins [99] 

including Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1 which bind to and suppress the function of the 

proapoptotic proteins Bax and Bak which are embedded in the mitochondrial outer membrane. Evasion of 

apoptosis is one of the hallmarks of cancer. Therefore, induction of apoptosis can be utilized as an 

efficient therapeutic strategy in the treatment of various cancers.      

Necroptosis: 

Necroptosis is another form cell death which was earlier considered as an accidental and non-

programed process referred to as necrosis. However, necroptosis is now defined to be a finely regulated 

process which is activated by various stimuli including tumor necrosis factor (TNF) family members 

[100], Fas ligand [101], lipopolysaccharides (LPS) (upon caspase inhibition) [102] in addition to physical 

and chemical stress conditions (i.e. treatment with chemotherapeutic drugs) [103]. For example, cellular 

stimulation with TNF-α leads to activation of TNF receptors (TNFR1 and TNFR2) which trigger a 

downstream signaling by forming a complex with death domain containing proteins including TNF-α 

receptor-associated death domain (TRADD), receptor interacting protein kinase 1 (RIP1), and other E3 

ubiquitin ligases that lead to activation of RIP1 [104]. Activated RIP1 forms a complex with receptor 

interacting protein kinase 3 (RIP3) [105] leading to necroptosis characterized by features similar to 

necrosis including plasma membrane permeabilization, lysosomal permeabilization, and mitochondrial 

hyperpolarization [106]. The complete mechanism involved in execution of necroptosis requires further 

investigation.   
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Phospholipid Scramblase: PLSCR Family Members, TMEM16F and Xkr8 

Phospholipids, membrane asymmetry, scramblase activity, and blood coagulation: 

Phospholipids are essential components of mammalian cell membranes; specifically, these lipids 

are distributed asymmetrically on the inner and outer leaflets of the plasma membrane (PM). 

Phospholipids that are located in the cytosolic leaflet allow anchoring of signaling proteins that need to be 

membrane associated to elicit functionality [107]. For instance, phosphatidylserine (PS, ~15% of total), 

one of the four major phospholipids in the plasma membrane is located in the inner leaflet along with 

phosphatidylethanolamine (PE, ~25%) while sphingomyelin (SM, ~25%) and phosphatidylcholine (PC, 

~25%) are localized in the outer leaflet. This asymmetrical distribution of phospholipids, which is 

maintained in the quiescent cells under normal conditions, collapses in response to two major cellular 

events, blood coagulation and apoptosis; these events involve “scrambling” of these phospholipids 

between the inner and outer leaflets of plasma membrane. Injuries leading to activation of the blood 

coagulation pathway involves PS externalization in platelets; this event promotes its interactions with 

various coagulation factors which stimulates the formation of thrombin and consequently, blood clotting 

[108-110]. In apoptotic cells, scramblase activity leads to altered phospholipid PM asymmetry resulting in 

PS externalization. This PS exposure provides a signal for recruitment of macrophages to bind to and 

engulf these apoptotic cells [111, 112]. Indeed, regulation of scramblase activity is essential in 

maintaining and altering the asymmetry of membrane phospholipids [110, 113, 114]. In addition to the 

blood coagulation and apoptosis, calcium dependent phospholipid scrambling has also been reported to 

regulate the activity of plasma membrane cholesterol [115]. Treatment of erythrocytes with calcium 

ionophore led to a marked increase in the chemical activity (escape potential) of cholesterol which was 

abolished by scramblase inhibitors [115]. Phospholipid scrambling leading to PS externalization has been 

attributed to various proteins. For example, several groups have reported that phospholipid scramblase 

(PLSCR) family members contribute to calcium dependent PS externalization in blood platelets aiding in 

the process of blood coagulation [34, 35]. However, later studies in PLSCR knockout mice have 

suggested that PLSCR members might only have a partial role in this process [37, 116]. TMEM16 family 
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of transmembrane proteins that function as chloride channels, especially were identified later to be 

involved in the calcium dependent phospholipid scrambling activity and PS externalization [117-122]. 

However, TMEM16F-/- knockout mice exhibit normal levels of PS externalization during apoptosis 

[122]; this indicates that different mechanisms may be responsible for PS externalization in apoptotic 

cells and upon calcium mobilization. Recently, a six transmembrane protein called XK related protein 8 

(Xkr8, located at 1p35.3) has been shown to be involved in PS externalization induced by apoptotic 

mediators; this was demonstrated using Xkr8-/- knockout mice cells and human cancer cells treated with 

Xkr8 siRNA [123-125]. Xkr8 was directly activated by caspase 8, an important mediator in process of 

apoptosis. In support, the C. elegans homolog of Xkr8 (CED-8), also promoted PS externalization [123, 

124]. However, the exact mechanism by which Xkr8 regulates the PS externalization in apoptotic cells 

remains unknown. Collectively, these findings implicate different proteins in PS externalization induced 

under different conditions (PS exposure in response to coagulation, calcium activation, and apoptosis).   

cDNA Cloning of “phospholipid scramblases”: 

Previous studies implicated increased calcium ions in the activation of scramblase activity 

thereby leading to PS externalization in multiple cell types including platelets and erythrocytes [126-129]. 

However, the molecules and mechanisms involved in this particular process remained unknown until 

1996 when Basse and colleagues reported the purification of a type II transmembrane protein from 

erythrocytes, which upon reconstitution into liposomes, could mediate calcium-dependent redistribution 

of membrane phospholipids including PS and PC [34]. Its cDNA was isolated via a plaque hybridization 

technique [35] and was named PL scramblase (PLSCR1), a ~37 kDa protein. PLSCR1 was found to be 

expressed ubiquitously in multiple cell lines including erythrocytes, blood platelets, and others which 

were associated with phospholipid scramblase activity in the presence of Ca
+2

 [130]. In 2000, Wiedmer 

and colleagues cloned the human PLSCR1 gene from a human genomic BAC library and estimated the 

size of its gene to be 29.7 Kb encompassing 9 exonic regions [131]. The first exon of PLSCR1 is 

untranslated and was identified to be its promoter region [131]. Additionally, three other cDNAs with 
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high homology to PLSCR1 were cloned by a PCR-based approach utilizing a cDNA library [131]. These 

newly identified proteins were named PLSCR2, PLSCR3, and PLSCR4 [131]. More recently, another 

gene with similarity to PLSCR1, named PLSCR5, has been identified as a fifth member of phospholipid 

scramblase family. PLSCR1 (318 aa), PLSCR2 (297 aa), PLSCR4 (329 aa), and PLSCR5 (271 aa) are all 

located at the 3q24 cluster whereas PLSCR3 (295 aa) is located at 17p13.  

Gene Location and Protein Structure of PLSCR1 isoforms: 

Figure 4: Structural organization of PLSCR1 gene and protein 

(A) PLSCR1 gene, located at 3q23 is comprised of 9 exonic regions. The coding region lies between 

bases 257 (in exon II) and 1211 (exon IX). Four alternate variants of PLSCR1 are presented in the 

figure. Variant 1 lacks exon IV, variant II lacks exon VI and variant III lacks exons VI and VII. 

Alignment of exons with their corresponding amino acid regions and the deleted protein domains in 

each variant are presented. (B) PLSCR1protein structure comprises of the following important 

structural domains. (1) Proline rich N terminal region (1-85 aa) [18, 19], (2) Dileucine motif (amino 

acids116, 117), (3) DNA binding domain (86-118 aa) [23], (4) Palmitoylation site (184-189 aa) [24], 

(5) NLS (257-266 aa) [25], (6) Calcium binding domain (273-284 aa) [26] and (7) Transmembrane 

domain (287-309) [27].  (*Figure created by Madhav Karthik Kodigepalli) 
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With the exception of PLSCR3, all of the PLSCR family members are clustered on the q arm of 

chromosome 3, specifically at 3q23 and 3q24 loci (https://genome.ucsc.edu/, December 2013).  In the 

Figure 5: Amino acid sequence alignment of PLSCR family members 

Amino acid sequences of PLSCR2 (NP_001186907.1), PLSCR3 (NP_001188505.1), PLSCR4 

(NP_001121777.1), and PLSCR5 (NP_001078889.1) were aligned with that of PLSCR1 

(AAH21100.1) via Clustal Omega bioinformatic program (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

The alignment output was then analyzed via BoxShade program 

(http://www.ch.embnet.org/software/BOX_form.html) to highlight the identical amino acids among the 

PLSCR family members. 

 

https://genome.ucsc.edu/
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order from the centromere, PLSCR4 is located at chr3:146,192,336-146,251,179 (58.543 Kb), PLSCR2 is 

located at chr3:146,433,288-146,469,301 (36.013 Kb), PLSCR1 chr3:146,515,180-146,544,841 (~29.661  

Kb), and PLSCR5 is located at chr3:146,576,608-146,606,216 (29.608 Kb) (Figure 1). On the other hand, 

PLSCR3 is located distantly from the other PLSCR family members on the p arm of chromosome 17 at  

 

chr17:7,389,728-7,394,843 (5.115 Kb) [131]. PLSCR1 gene is comprised of 9 exons with the coding 

region beginning at exon 2 and ending at exon 9. Figure 4 (Upper panel) illustrates the exon structures 

and the corresponding protein structural domains that they code. Although various alternate splice forms 

Table 2: Protein identity matrix of PLSCR family members 

Amino acid sequences of PLSCR2 (NP_001186907.1), PLSCR3 (NP_001188505.1), PLSCR4 

(NP_001121777.1), and PLSCR5 (NP_001078889.1) were aligned with that of PLSCR1 

(AAH21100.1) via Clustal Omega bioinformatic program (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

Percent protein identities obtained are presented in the form of matrix. 

Table 1: cDNA identity matrix of PLSCR family members 

cDNA sequences of PLSCR2 (NM_001199978.1), PLSCR3 (NM_001201576.1), PLSCR4 

(NM_001128305.1), and PLSCR5 (NM_001085420.1) were aligned with that of PLSCR1 

(BC021100) via Clustal Omega bioinformatic program (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

Percent cDNA identities obtained are presented in the form of matrix. 

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
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of PLSCR1 are predicted, only three such forms have been identified experimentally [132]. As shown in 

Figure 4 (Upper panel), these three variants are 905 bp, 750 bp, and 551 bp which harbor deletions in 

exon IV, exon VI, exons VI and VII respectively; in contrast, the full length PLSCR is represented by 

1122 bp [132]. Interestingly, exon IV codes for the proline-rich region important for mediating 

interactions with various signaling mediators [18, 19, 133] while exon VI codes for the region 

encompassing the palmitoylation site which regulates the localization of PLSCR1 [24]. Although these 

splice variants have been identified, it remains to be investigated whether they elicit altered localization 

and/or functionality. As shown in Table 1, the cDNA alignment of the PLSCR family members 

performed by Clustal Omega bioinformatic program (http://www.ebi.ac.uk/Tools/msa/clustalo/) shows 

that the mRNAs of PLSCR2 (NM_001199978.1), PLSCR3 (NM_001201576), PLSCR4 

(NM_001128305), and PLSCR5 (NM_001085420) have a sequence identity of 70.24%, 38.61%, 45.35% 

and 55.95% with PLSCR1 (BC021100), respectively. The protein sequence alignment analyses of PLSCR 

family members using the same program indicates that the PLSCR2 (297 aa, NP_001186907.1), PLSCR3 

(295 aa, NP_001188505.1), PLSCR4 (329 aa, NP_001121777.1) and PLSCR5 (271 aa, 

NP_001078889.1) proteins have 73.63%, 50.00%, 48.14% and 57.36% identity with PLSCR1 (318 aa, 

AAH21100.1), respectively (Table 2). As shown in Figure 5, all the PLSCR members with the exception 

of PLSCR2 possess a proline-rich N-terminal region containing PXXP and PPXY domains, a cysteine-

rich region, a conserved calcium ion binding domain, and a putative transmembrane region rich in 

hydrophobic amino acids. In addition, PLSCR1 contains a nuclear localization signal (NLS) and a DNA 

binding domain (Figure 4, Lower panel) that is known to mediate direct binding to IP3R promoter [23] 

whereas PLSCR4 contains a minimal nuclear localization signal [134].  

Scramblase activity of PLSCR family members: 

PLSCR1, isolated from erythrocytes, was reconstituted into liposomes containing PS and PC in 

9:1 ratio; this resulted in rapid bidirectional movement similar to that in plasma membranes following 

Ca
+2

 mobilization [34]. Similar results were obtained upon reconstitution of recombinant MBP-tagged 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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PLSCR1 in the liposomal-based reconstitution assay or GFP-tagged PLSCR1 expressed in Burkitt‟s 

lymphoma Raji cells treated with A23187, a calcium ionophore [82][35]. The calcium binding site in 

PLSCR1 (amino acid 278–284) is critical in mediating calcium-induced phospholipid scrambling activity 

[26]. Interestingly, in C. elegans, PS externalization in apoptotic germ cells is mediated by Scrm1, an 

ortholog of human PLSCR1 [135]. These reports provide evidence for scramblase activity for PLSCR1 in 

calcium-dependent manner. With respect to other PLSCR family members, mutations in the calcium-

binding site of PLSCR4 resulted in a marked reduction in its Ca
+2

 and Mg
+2

-induced scramblase activity 

[136]. Interestingly, PLSCR3, which is localized to mitochondrial membranes, is capable of externalizing 

cardiolipin from the inner to the outer mitochondrial membrane [137]. In contrast, PLSCR2 was 

demonstrated to lack scramblase activity; this was attributed to the absence of a proline-rich N-terminal 

region which is present in other PLSCR family members [138]. Indeed, studies indicate that PLSCR2, 

when fused with the proline-rich domain of PLSCR1, leads to increased calcium-dependent scrambling 

activity [138]. Although the above studies implicate PLSCRs in the redistribution of phospholipids 

between membrane leaflets, studies by Fadeel and colleagues suggested that there may be other factors 

responsible for  PS externalization induced by apoptotic stimuli [116]. Furthermore, the PLSCR1 

expression was detected to be normal in patients with Scott syndrome, a disease characterized by 

defective phospholipid scrambling in platelets leading to a deficiency in blood coagulation [139]. Also, 

PLSCR1 knockout mice did not display any deficiency in scramblase activity suggesting that PLSCR1 is 

not essential for mediating PS exposure in vivo [37, 116]. Since PLSCR3 and PLSCR4 may also 

contribute to scrambling activity, they might overcome the loss of PLSCR1 by eliciting redundant 

function thus leading to PS externalization in PLSCR1-/- mice [136-138]. It would be interesting to 

determine whether combinatorial knockouts of specific PLSCR family members results in dysregulated 

scramblase activity. PLSCR3-/- knockout mice have been developed and utilized by Mutch et.al. in 2007  

[140]. Strikingly, PLSCR1 and PLSCR3 double knock-out mice still retain scramblase activity [140]. The 

role of PLSCR2 and PLSCR4 in scrambling activity still remains unknown. 
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Defect in TMEM16/Ano6 is Responsible for Scramblase Activity Deficiency in Scott Syndrome platelets: 

Scott Syndrome is a severe bleeding disorder that is characterized by lack of PS exposure in 

platelets, red cells, and lymphocytes resulting in a defective blood coagulation process [141]. Platelets 

from Scott syndrome patients failed to expose PS to the outer leaflet of the plasma membrane following 

cellular activation by treatment with calcium ionophore [142]; although PLSCR1 was thought to be 

implicated in mediating scramblase activity, PLSCR1 expression was normal in these cells [139]. 

Recently, TMEM16F (Transmembrane protein 16F, Anoctamin), a calcium-dependent chloride channel, 

was identified to be involved in the Ca
+2

-dependent PS externalization in Scott syndrome platelets via 

studies in mouse Ba/F3 B-cells and a calcium ionophore [117]. TMEM16F/Ano6, a gene located at 

chromosome 12q12, belongs to TMEM family of chloride channels and encodes for a protein containing 

8 transmembrane domains [119]. Indeed, TMEM16F is mutated in patients with Scott syndrome and its 

reconstitution in liposome systems as well as in Scott Syndrome cells promoted PS externalization [117, 

118, 120, 121, 143]. In support, TMEM16F knockout mice displayed excessive bleeding defects and 

defective lipid scrambling activity in platelets [121, 122]. Collectively, evidence has accumulated 

supporting TMEM16F in playing an essential role in phospholipid scrambling, in particular PS exposure, 

under conditions of increased calcium. However, immortalized fetal thymocyte cells isolated from the 

TMEM16F-/- knockout mice did not show any abnormalities in PS externalization following exposure to 

apoptotic stimuli [122]. This implicates another mechanism responsible for PS externalization during 

apoptosis. Nonetheless, the contribution of PLSCR family members, XKR8, and TMEM16F in mediating 

phospholipid scrambling and the extent to which they are required for this process needs further 

investigation. 
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Regulation, Subcellular Localization, and Functions of PLSCR Family members 

Transcriptional regulation by growth factors, interferons, and Snail: 

 

 

 

 

 

 

 

 

 

 

 

 

PLSCR1 expression is upregulated in response to stimulation with growth factors and cytokines 

[19, 39]. In particular, long term treatment with epidermal growth factor (EGF) leads to increased 

expression of PLSCR1 whereas short-term treatment leads to PLSCR1 tyrosine phosphorylation 

(Y69/Y74) mediated by c-Src [19] [144]. In addition to EGF, activated c-Abl also leads to tyrosine 

phosphorylation of PLSCR1 upon stimulation with the DNA damaging agent cisplatin [18]. Other growth 

factors that lead to induction of PLSCR1 expression include stem cell factor (SCF) and granulocyte 

Stimulant  Cell type (with PLSCR1 induction) Reference 

Epidermal Growth Factor 

(EGF) 
KB - HeLa contaminant epithelial carcinoma [19] 

Interferons (IFN) HT1080 - human fibrosarcoma 

[39] 

 

HeLa – cervical carcinoma 

HUVEC – human umbilical vein endothelial cells 

Jurkat – human T-lymphocytes 

Daudi – B-lymphoblast cells 

Raji – burkitt‟s B-lymphoma cells 

HEY – ovarian carcinoma cells [177] 

All trans retinoic acid 
(ATRA) 

NB4 – promyelocytic leukemia [40] 

Stem cell factor (SCF) Mouse cultured bone marrow progenitors [37] 

Granulocyte colony 

stimulating factor  
(G-CSF) 

Mouse cultured bone marrow progenitors [37] 

Table 3: Upregulation of PLSCR1 in response to various stimuli 

List of various stimuli including growth factors (i.e. EGF, G-CSF, and SCF) along with cytokines (i.e. 

IFN) and differentiation inducing agents (i.e. ATRA) in specific cell types leading to upregulation of 

PLSCR1 expression is presented. The corresponding citations are presented for each stimulus 

presented. 
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colony stimulating factor (G-CSF) [37]. In acute promyelocytic leukemia (APL) NB4 cells, PLSCR1 

expression is induced with all trans-retinoic acid (ATRA), a differentiation-inducing agent [40]. This 

ATRA- mediated induction of PLSCR1 is mediated by PKCδ activation [40]. PLSCR1 is transcriptionally 

activated by Type I interferons (i.e. IFN-α, IFN-β, and IFN-γ) [39] and is one of the most potently 

induced interferon regulated genes [38]. It is presently unclear based on the microarray screen performed 

by Der and colleagues [38] whether other members of PLSCR family are transcriptionally induced by 

interferons. Treatment with IFN-α led to an 8-fold increase in PLSCR1 protein (in comparison to 10-fold 

and 3-fold induction in protein) with IFN-β and IFN-γ, respectively; genomic sequencing of PLSCR1 

indicated that the IFN stimulated response element (ISRE) located in exon I was essential for its induction 

[39]. The transcriptional activation of PLSCR1 by IFN-α was mediated by activation of PKCδ (protein 

kinase C), JNK (c-Jun N terminal Kinase), and followed by STAT1 [145]. Collectively, these studies 

provide evidence for PLSCR1 regulation under different conditions (Table 3); however, the exact 

mechanism through which PLSCR1 is regulated at the transcriptional level in response to these stimulants 

is not well understood. Recent studies implicate Snail, a transcriptional regulator of epithelial-

mesenchymal transition (EMT)), as a direct regulator of PLSCR1 mRNA  [146].  

Subcellular localization of PLSCR1:  

PLSCR1 (318 amino acids) is a type-II transmembrane protein that is tail-anchored to the plasma 

membrane at its C-terminal end [27]. PLSCR1 protein is comprised of important structural domains 

which regulate its function and subcellular localization as shown in Figure 4 (Lower panel): (1) proline-

rich N-terminal region (1-98 aa region) containing PXXP and PPYP domains that aid in its interactions 

with various signaling molecules [18, 19], (2) a DNA binding domain (86-118 aa) [23], (3) cysteine-rich 

palmitoylation site (
184

CCCPCC
189

) [24], (4) an atypical nuclear localization signal (NLS, 257-266 aa) 

[25], (5) a conserved calcium binding domain (273-284 aa) [26], and (6) a single membrane spanning 

transmembrane domain at the C-terminal end (288-306 aa) [27]. Although PLSCR1 predominantly 

localizes at the plasma membrane, it is also located in other subcellular compartments [19, 24, 42, 133]. 
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Palmitoylation status at the cysteine rich palmitoylation site regulates the localization of PLSCR1 [24]. 

Studies indicate that C/A mutations (via site directed mutagenesis) in the palmitoylation site or treatment 

with 2-bromopalmitate (inhibitor of palmitoylation) promotes nuclear localization of PLSCR1 in specific 

cell types [24]. Stimulation with interferons can also promote nuclear localization of PLSCR1 in specific 

cell types including HEY and HEY1B ovarian cancer cells [24] and SVT2 fibroblast cells [24]. Nuclear 

import of PLSCR1 is dependent on the importin α/β nuclear receptor pathway [25] in which the atypical 

NLS of PLSCR1 (257-266 aa) interacts and binds to importin α/β [25, 147]. In the nuclear compartment, 

PLSCR1 regulates transcriptional activity of IP3R [23] and may also play a putative role in DNA 

replication due to its physical interaction with topoisomerase [148]. Interestingly, stimulation with EGF 

leads to plasma membrane PLSCR1 internalization into endocytic vesicles which recycles back to the 

plasma membrane in contrast to the EGF receptor [19]. Moreover, PLSCR1 is also located in the 

endoplasmic reticulum (ER), Golgi, and endosomal compartments [133]. PLSCR2 and PLSCR4 are also 

localized at the plasma membrane [131, 149] whereas PLSCR3 although primarily localized to the 

mitochondrial membrane [131, 150, 151], is also present in the nuclear compartments in the absence of 

palmitoylation in macrophages [152]; nuclear functions of this PLSCR isoform remain unknown.  

Role of PLSCR1 in cell signaling/receptor trafficking events and protein-protein interactions:  

Although initial studies implicated PLSCR family members primarily in mediating lipid 

scrambling activity, later studies reported PLSCR1 to participate in various signaling pathways. 

Stimulation of human A431 epidermoid carcinoma cells with EGF leads to tyrosine phosphorylation of 

PLSCR1 and promotes its interaction with EGFR and ShcA, an adaptor molecule [144]. Specifically, 

EGF-mediated activation of PLSCR1 occurs at tyrosines 69 and 74 and is mediated by c-Src kinase 

activity; PLSCR1 interaction with ShcA requires its PXXP and PPYP motifs in its N-terminal region 

[144]. Further, PLSCR1 and EGF receptor are co-internalized into endosomal pools upon EGF 

stimulation; while EGF receptor is trafficked to lysosomes for degradation, PLSCR1 recycles back to the 

plasma membrane [19]. Additionally, activation of the FCER1 (IgE receptor), an immune receptor 
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expressed in mast cells, with IgE immunoglobulins also leads to tyrosine phosphorylation of PLSCR1 

[153] implicating PLSCR1 in IgE receptor signaling and degranulation in mast cells, a process that results 

in production of antimicrobial molecules [153]. Collectively, these results suggests a potential role of 

PLSCR1 in participating in EGF (and other growth factor) mediated signaling pathways and receptor 

Interaction Partner Interaction localization Identified by  Validated by Reference 

EGFR Lipid Rafts Co-IP Immunofluorescence [19] 

ShcA Lipid Rafts Co-IP Immunofluorescence [19] 

RELT 
Plasma membrane & perinuclear 

regions of Cytoplasm. 

Yeast-2-

Hybrid 
Co-localization, Co-IP [228] 

ECM1 Extracellular matrix 
Yeast-2-

Hybrid, IHC 
Co-IP and pull down  [155] 

c-Abl cytoplasm 
GST-SH3  
domain 

binding assay 

Co-IP [18] 

Topoisomerase – II Nucleus 
Yeast-2-

Hybrid 
Co-IP and pull down  [148] 

BACE Cytoplasm, Endosomes/Golgi 
Yeast-2-
Hybrid 

Co-localization, Co-IP [133] 

Onzin Cytoplasm 
Yeast-2-

Hybrid 
Co-IP [154] 

TLR9 Endoplasmic Reticulum 
Yeast-2-

Hybrid 

Co-IP and 

immunofluorescence 
[42] 

Proteinase 3 Cytoplasm and plasma membrane Co-IP Immunofluorescence [156] 

 

internalization. PLSCR1 can also regulate the toll like receptor (TLR9) signaling pathway upon cellular 

stimulation with pathogenic or foreign nucleic acids/proteins [42]. In plasmacytoid dendritic cells, 

PLSCR1 interacts with TLR9 in endosomal compartments to regulate TLR9-mediated production of IFN-

α [42]. In addition to receptor-mediated pathways, the DNA damage inducing agent cisplatin leads to c-

Abl tyrosine kinase-mediated activation of PLSCR1 [18] implicating a role for PLSCR1 in cellular 

Table 4: List of protein interaction partners of PLSCR1 

Various identified interaction partners of PLSCR1 are listed along with the subcellular localization 

of the interaction and specific techniques utilized to determine and validate them. The 

corresponding citations are presented for each of the PLSCR1 interaction partners. 
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responses to chemotherapeutic agents. Since PLSCR3 and PLSCR4 also possess the proline-rich N-

terminal domains (which mediates interaction with signaling mediators in PLSCR1 [18, 19, 133]), it 

would thus be interesting to determine whether these members of PLSCR family are involved in similar 

signaling pathways.  

Additionally, PLSCR1 interacts directly with various other proteins of signaling importance. In 

SH-SY5Y human neuroblastoma cells, PLSCR1 interacts with β-secretase (β-secretase APP cleaving 

enzyme, BACE), a membrane proteinase enzyme that regulates the production of amyloid β-peptide 

molecules which is a characteristic feature of Alzheimer‟s disease [133]. PLSCR1 and BACE co-localize 

in the Golgi and endosomal compartments; this observation implicates a role for PLSCR1 in regulating 

the intracellular distribution of BACE and potentially a role for PLSCR1 in Alzheimer‟s disease 

pathophysiology. In myeloid cells, PLSCR1 also binds directly to Onzin, a negative transcriptional 

regulatory target of c-Myc which regulates cell proliferation [154]. These findings potentially implicate 

PLSCR1 in cancer cell survival and proliferation. Furthermore, PLSCR1 interacts with RELT (receptor 

expressed in lymphoid tissues). Interestingly, PLSCR1 interaction with RELT leads to phosphorylation of 

PLSCR1 by OSR1, an oxidative stress response kinase protein; this interaction may implicate PLSCR1 in 

oxidative stress response pathways. Additionally, PLSCR1 is secreted into the extracellular matrix via a 

lipid raft-dependent pathway leading to interaction with ECM1 (extracellular matrix protein 1) [155] 

suggesting a potential role in regulatory mechanisms in human skin tissue such as epidermal 

differentiation which is mediated by ECM1.  PLSCR1 also interacts with Proteinase 3 (PR3), a target of 

autoantibodies in Wegener granulomatosis in the neutrophils [156]. Table 4 provides a summary of all the 

interaction partners of PLSCR1 along with the localization of interactions. 

Role of PLSCR1 as a DNA-binding protein and transcription factor: 

Nuclear localized PLSCR1 is proposed to participate as a DNA binding and transcription factor 

[24, 147].  PLSCR1 has a putative DNA binding domain (86-118 aa) through which it binds genomic 

DNA; specific target genes included IP3R (inositol triphosphate receptor class I) [23]. In addition, 

PLSCR1 interacts with topoisomerase type II enzyme which may implicate PLSCR1 in DNA repair and 
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replication [148]. Additionally, nuclear PLSCR1 is involved in the production of mature neutrophils from 

myeloid progenitors following exposure to granulocyte colony stimulating factor (G-CSF) [157] although 

the underlying mechanism is unclear. Collectively, these reports implicate nuclear PLSCR1 as a potential 

player in transcriptional regulation as well as in DNA replication and repair pathways. With respect to 

other PLSCR family members, PLSCR2 was predominantly nuclear localized when stably expressed in 

Chinese hamster ovary K1 cell line [158]; the function of nuclear localized PLSCR2 has yet to be 

investigated.  

 

Functions of PLSCR1: Innate Immune Recognition, Cell Death Pathways, and Cancer 

Antiviral functions of PLSCR1 and viral entry: 

Interferons (IFNs) are cytokines that elicit antiviral functions [159-162]. Since PLSCR1 is one of 

the most highly inducible IFN responsive genes, studies have focused on whether it mediates the antiviral 

functions of IFN. Knockdown of PLSCR1 via siRNA and fibroblasts isolated from PLSCR1-/- knockout 

mice revealed increased viral titers of vesicular stomatitis (VSV) and encephalomyocarditis (EMCV) 

viruses upon treatment with IFN implicating PLSCR1 in IFN-mediated antiviral responses [4]. Further, 

overexpression of PLSCR1 led to an antiviral effect similar to IFN treatment in which increased 

expression of various IFN stimulated genes (ISGs) results in reduced viral titers. These results implicate 

PLSCR1 in IFN signaling [4]. Furthermore, PLSCR1 mediates protective function by inhibiting the 

effects of Staphylococcal α toxin [163]. PLSCR1 also antagonizes hepatitis B viral (HBV) replication and 

propagation [8]. Overexpression of PLSCR1 significantly inhibited HBV synthesis both in vivo and in 

vitro; this appears to be partly mediated by activation of JAK-STAT pathway [8]. Hepatitis C virus 

(HCV) infection results in liver damage and can promote development of hepatocellular carcinomas [164-

166]. Using RNAi based approach, PLSCR1 was identified as one of the major mediators of IFN-

dependent inhibition of HCV replication [7]. Interestingly, PLSCR1 also aids in Hepatitis C viral entry 

suggesting potential dual role (promoting and suppressing) of PLSCR1 in HCV propagation [167]. Yeast-

2-hybrid screens and co-immunoprecipitation studies revealed PLSCR1 as an interacting partner of HCV 
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viral coat proteins E1 and E2; furthermore, reduction of PLSCR1 expression in hepatoma cells 

significantly reduces HCV entry into cells suggesting a potential dual role in HCV responses [167]. 

PLSCR1 directly interacts with viral components through which it inhibits the viral propagation in host 

cells [5, 6]. For instance, PLSCR1 binds directly to the human T-cell leukemia virus type-1 (HTLV-1) 

 

encoded viral protein Tax, which aids in the activation of provirus, and inhibit its subcellular distribution 

and function, thereby inhibiting the activation of virus [5]. Similarly, PLSCR1 binds to Tat protein 

encoded by human immunodeficiency virus type-1 (HIV-1) both in vivo and in vitro inhibiting 

transcriptional activation of HIV long term repeat by Tat [6]. Furthermore, the interaction is mediated by 

amino acid 160 to 250 in PLSCR1 [6]. PLSCR1 as well as PLSCR4 interact with CD4 receptor on T-

cells; this process is important in HIV-1 infection of T cells suggesting a pro-viral function of these 

proteins [149]. Collectively, these studies implicate an interesting role of PLSCR1 in viral responses in 

host cells where it can both assist in the viral infection and inhibit viral replication and propagation.   

 

Figure 6: Role of PLSCR1 in viral/bacterial responses and in cancer development 

PLSCR1 inhibits the replication and propagation of HIV-1, HTLV-1 and HBV viruses and also 

mediates the protection against Staphylococcal α-toxin while it facilitates the replication of HCV [4-8]. 

PLSCR1 overexpression has as a tumor suppressive effects in ovarian carcinomas (in vivo) [15] and 

leukemia [16, 17] while in colorectal cancer and metastatic liver cancer, it functions as a tumor 

promoter [20-22]. (*Figure created by Madhav Karthik Kodigepalli) 
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Role of PLSCR1 in autoimmune diseases (systemic lupus erythematosus): 

Recent evidence suggests that PLSCR1 may regulate autoimmune disorders such as systemic 

lupus erythematosus (SLE). SLE is characterized by the immune system attacking the cells and tissues of 

the host, thereby leading to inflammation in various organs of the body. Additionally, ~10% of SLE 

patients exhibit an unusual increase in blood coagulation (hyper-coagulation). Interestingly, Suzuki and 

colleagues identified three splice variants of PLSCR1 (in addition to the full-length form) which were 

overexpressed in monocytes of SLE patients [132]. Interestingly, these cells also had increased PS 

externalization which led to the increased coagulation [132]. Therefore, PLSCR1 may play a role in 

regulating the pathophysiology of SLE. However, the extent to which PLSCR1 mediates this process 

remains unclear.  Among the three splice variants identified, splice variant 1 (905 bp) has a deletion in 

exon 4, thereby missing a part of the N-terminal proline-rich region of PLSCR1 [132]. Variant 2 (750 bp) 

contains a deletion in exon 6 and variant 3 (551 bp) contains a deletion in both exon 6 and 7 [132]. As 

shown in Figure 4 (Upper panel), exon 6 of PLSCR1 codes for the region containing the palmitoylation 

region. The significance of these PLSCR1 splice forms in the SLE patient monocytes remains to be 

investigated. It is interesting to note that all these three splice variants had an intact EF (calcium binding) 

domain which is known to play a major role in scramblase activity of PLSCR1 [132].   

PLSCR1 in innate immune responses: TLR signaling: 

Toll like receptors (TLRs) are a major component of the innate immune system cellular responses 

by functioning as receptors recognizing the foreign and pathogenic nucleic acids or proteins that enter the 

cells [168-170]. Following cellular recognition, TLRs are activated via proteolysis leading to activation of 

downstream signaling cascades including activation of IRF3/7 or NFκB transcription factors in which 

lead to induction of antiviral cytokines including IFNs and interleukins (ILs) [168, 171, 172]. Recent 

studies in plasmacytoid dendritic cells (pDCs), a group of antigen presenting cells, revealed a role for 

PLSCR1 in regulating TLR9 signaling in response to treatment with viral particles and synthetic CpG 

DNAs [42]. These studies indicate that TLR9-mediated IFN production in these cells requires expression 

of PLSCR1 [42]. However, the complete mechanism by which PLSCR1 modulates the TLR signaling and 
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innate immune responses require further investigation. Collectively these observations provide a link 

between PLSCR1 regulation and innate immune responses.  

Role of PLSCR1 in Apoptosis and Autophagy: 

As described earlier, externalization of PS is an event associated with apoptotic cell membranes 

important for clearance by macrophages [111, 112]. Although PLSCR family members appear to be 

involved in the process of PS externalization during apoptosis, PLSCR1 deficient mice did not 

demonstrate any defect in PS externalization [37, 116]. Interestingly, Scrm1, a C. elegans ortholog of 

human PLSCR1, mediates PS scrambling in apoptotic cells [135, 173]. WAH-1, C. elegans homolog of 

apoptosis inducing factor (AIF) promotes the PS externalization in apoptotic cells via its association with 

Scrm1, an event that helps in clearance of apoptotic cells by the macrophages [135, 173]. Other PLSCR 

family members also appear to be involved in both the intrinsic and extrinsic apoptotic signaling 

pathways. For instance, PLSCR3 appears to play a role in apoptosis induced by UV and tBid [174]; other 

studies implicate PLSCR3 in apoptotic cell death via the activity of PKCδ [151]. Similarly, PLSCR3 

overexpression markedly increases TRAIL (TNF related apoptosis inducing ligand) induced 

mitochondrial apoptotic pathway and activation of caspases suggesting that PLSCR3 plays a role in the 

intrinsic apoptotic pathway [175]. Similarly, PLSCR1 increases UV-induced apoptotic process by 

mediating the intrinsic apoptotic signaling [176]. Although studies demonstrate that reduction or blocking 

of PLSCR1 via siRNA or N-terminal antibodies, respectively, results in increased apoptosis in colorectal 

cancer [20] and ovarian cancer cells treated with chemotherapeutics [177], it has yet to be shown that 

PLSCR1 is directly involved in altering the process of apoptosis in these cases. In addition to apoptosis, 

PLSCR3 plays a role in autophagy, another type of cell death pathway, in which it is involved in 

externalizing cardiolipin which is important in targeting the damaged mitochondria to 

autophagosomes/lysosomes during mitophagy (a type of autophagy that specifically targets the damaged 

mitochondria for degradation) [178]. Additionally, recent studies on hybrid mapping of yeast and human 

interaction networks identified PLSCR1 as one of the interaction partners of ATG12, an ubiquitin like 
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protein that helps in the elongation step of autophagosome formation [179]. These findings suggest a 

potentially important role of PLSCR1 in the process of autophagy which still remains to be investigated.    

Role of PLSCR1 in blood and solid cancers: 

PLSCR1 mRNA expression was markedly induced upon treatment with all-trans retinoic acid 

(ATRA), a chemotherapeutic used in treatment of APL [17]. Further, reduced PLSCR1 expression in 

these cells significantly suppressed the differentiation of APL cells indicating role of PLSCR1 as an anti-

leukemic molecule [17]. Studies in acute myelogenous leukemia (AML) patients revealed that elevated 

PLSCR1 mRNA expression correlated with the increased survival rate in AML patients [41] implicating a 

role for PLSCR1 as a tumor suppressor. Future reports support the role of PLSCR1 in leukemic cell 

differentiation; further, PLSCR1 induction upon treatment of APL cells with differentiation-inducing 

agents such as ATRA and phorbol myristate acetate (PMA) was mediated by activation of PKCδ [40]. 

Similarly, PLSCR1 expression and localization were also altered when AML cells were treated with 

wogonoside, a Chinese herbal medicine used to treat the blood-related malignancies [180, 181]. In 

addition to cell differentiation, PLSCR1 expression inhibited U937 myeloid leukemia cell proliferation by 

modulating the expression of pro-survival and anti-apoptotic proteins [16]. Collectively, all the above 

observations implicate PLSCR1 as mechanism tumor suppressor in leukemia development. A similar 

function is attributed to PLSCR1 in ovarian cancer cells [15]. Murine xenografts containing 

overexpressed PLSCR1 (in HEY1B ovarian carcinoma cells) was found to be growth suppressed 

compared to control xenografts [15]. However, overexpression of PLSCR1 did not result in any 

functional effect in in vitro [15]. In contrast, evidence is accumulating in support of PLSCR1 as an 

oncogenic molecule in ovarian, colorectal, and metastatic liver cancers [20-22]. PLSCR1 was highly 

elevated in various colorectal cancer (CRC) patient tissues and was consequently identified as a 

biomarker in CRC [22]. Furthermore, antibody or siRNA mediated downregulation of PLSCR1 in 

colorectal and liver cancers dramatically reduced tumorigenesis [21, 36].  
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Hypotheses and Objectives 

As stated earlier, we have previously shown that As2O3 treatment leads to cytoprotective 

autophagy in ovarian cancer cells mediated by induced SnoN expression. However, the exact mechanisms 

regulating SnoN expression in ovarian cancers treated with As2O3 are unclear. In this regard, we 

hypothesized that SnoN expression in ovarian cancers is regulated by molecular pathways involving other 

genes amplified at the 3q26 region as a mechanism of cooperative oncogenecity. Despite numerous 

reports suggesting involvement of PLSCR1 in pathogenesis of ovarian and colorectal cancers, the exact 

role and regulation of PLSCR1 in ovarian cancers remains unknown. It also remains to be investigated 

whether PLSCR1 can also alter the chemotherapeutic sensitivity of ovarian cancers. Therefore, we 

hypothesized that PLSCR1, located at 3q23, is regulated via crosstalk by SnoN, located at 3q26 in ovarian 

cancer. As mentioned above, PLSCR1 is an IFN-stimulated gene and is also implicated in regulation of 

antiviral and autoimmune responses. However, it remains unknown whether PLSCR1 can also regulate 

innate immune responses of which IFN is a downstream product. We hypothesized that PLSCR1, an IFN 

stimulated gene is also regulated by the innate immune TLR signaling.     

 

Figure 7: Model of proposed hypotheses for Aims 1 and 2 

Mechanisms regulating the expression of SnoN/SkiL (located at 3q26.2) in ovarian cancer cells treated 

with As2O3 remain unclear.  Similarly, the exact role and regulation of PLSCR1 in ovarian cancers 

remains unknown. We propose that PIK3CA (located at 3q26.3) regulates SnoN expression and SnoN 

regulates PLSCR1 (located at 3q23) expression via cooperative oncogenicity in ovarian cancer [9, 11]. 

(*Model created by Madhav Karthik Kodigepalli) 

 



29 

 

One of the major objectives of our studies is to understand the mechanisms of regulation of SnoN 

(3q26.2) and PLSCR1 (3q23) located near the highly amplified 3q26 locus in ovarian and other epithelial 

carcinomas. We also aimed to determine the role of PLSCR1 in ovarian cancer chemotherapeutic 

responses. We addressed the above hypotheses by performing the studies presented under the following 

specific aims. 

Specific Aim1 (presented in Chapter 3): Identification of molecular mechanisms leading to altered SnoN 

expression in ovarian cancers upon treatment with chemotherapeutics.   

Aim 1.1: To identify the signaling pathways activated upon arsenic trioxide treatment in ovarian cancer 

cells. 

Aim 1.2: To validate the signaling pathways involved utilizing specific inhibitors and siRNAs. 

Specific Aim2 (presented in Chapter 4): Identification of crosstalk of SnoN with other genes located near 

the 3q26 amplicon in ovarian cancers.    

Aim 2.1: Determine the correlation between SnoN and PLSCR1 alterations in ovarian cancers.   

Aim 2.2: Investigate the transcriptional regulation of PLSCR1 by SnoN. 

Aim 2.3: Determine the role of PLSCR1 in ovarian cancer chemotherapeutic responses by utilizing 

siRNAs. 

Specific Aim3 (presented in Chapter 5): To determine the role of TLR-IRF3 pathway in regulating the 

PLSCR1 expression in normal ovarian and ovarian cancer cells treated with dsDNA. 

Aim 3.1: To determine the effects of TLR signaling on PLSCR1 expression by utilizing dsDNA.  

Aim 3.2: To identify the transcriptional regulation of PLSCR1 by TLR-IRF3 pathway.     

 

Overall Impact and Significance 

SnoN, located at the 3q26 amplicon, is known to be amplified and overexpressed in ovarian 

cancers and its expression correlates with the aggressiveness of the cancers [9]. Further, SnoN 

overexpression is also known to result in chemoresistance in ovarian cancer patients [9]. Understanding 

the mechanisms leading to dysregulated expression of SnoN in ovarian cancer is very important to 
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developing imporved treatment strategies. PLSCR1 is located centromeric to the 3q26 amplicon which 

harbors genes that are dysregulated in ovarian cancer. PLSCR1 is also known to be overexpressed in solid 

cancers and was identified as an anti-leukemic molecule. Thus, understanding the role of PLSCR1 and its 

crosstalk with SnoN in ovarian cancer would aid in the development of combinatorial treatment strategies 

targeting both molecules. 
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Chapter 2 

 

Materials and Methods 

 

Culture and Propagation of Cell Lines 

 

Name of 

Cell Line 
Cell Type Culture Medium Passage Number Obtained/Purchased 

HEY 
Ovarian serous epithelial 

carcinoma 
RPMI p=n+5 – p=n+35 

Dr. Gordon B Mills, MD 

Anderson Cancer Center 

T80 

Large T antigen/hTERT 

Immortalized normal ovarian 
surface epithelial cells 

RPMI p=n+9 – p=n+27 
Dr. Gordon B Mills, MD 

Anderson Cancer Center 

HMEC 
Primary mammary epithelial 

cells 

Mammary epithelial cell 

basal medium 
p=6 ATCC 

TOV112D 
Endometrioid ovarian 

carcinoma 
Medium199 

+MCDB131 (1:1) 
p=4 ATCC 

TOV21G Clear cell ovarian carcinoma 
Medium199 

+MCDB131 (1:1) 
p=n+4 

Dr. Jonathan Lancaster, Moffitt 

Cancer Center  

HeLa Cervical adenocarcinoma EMEM p=n+1 – p=n+18 ATCC 

HEK293T 
Human embryonic kidney 

epithelial cells 
RPMI p=n+5 – p=n+22 

Dr. Gordon B Mills, MD 

Anderson Cancer Center 

PANC-1 
Pancreatic ductal 

adenocarcinoma 
DMEM p=n+7 – p=n+22 ATCC 

AsPC-1 Pancreatic adenocarcinoma DMEM p=n+2 – p=n+7 ATCC 

MIA 
PaCa-2 

Pancreatic epithelial carcinoma RPMI p=n+5 – p=n+23 
Dr. Said Sebti, Moffitt Cancer 

Center  

BxPC-3 Pancreatic adenocarcinoma RPMI p=n+6 – p=n+20 ATCC 

A431 Human epidermoid carcinoma DMEM p=2 – p=11 ATCC 

Table 5: List of all cell lines utilized for dissertation 
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All the cell lines used for the studies presented throughout this thesis are listed in Table 5 along 

with the information regarding the respective culture media used, source, and passage numbers. All the 

cell lines were cultured in an incubator at 37°C in the presence of 5% CO2 in the appropriate media. The 

media used for the culture of all cell lines, with the exception of the primary human mammary epithelial 

cells (HMEC), were supplemented with 8% fetal bovine serum (FBS) and 5% penicillin/streptomycin. 

The complete growth medium for the culture of HMECs was prepared by combining the components of 

the Mammary Epithelial Growth Kit (PCS-600-040) with the Mammary Epithelial Cell Basal Medium 

(PCS-600-030) obtained from ATCC (Manassas, VA). For subculturing, all the cells were first 

trypsinized with 0.25% Trypsin-EDTA at room temperature with the exception of A431 cells and 

TOV21G cells which were trypsinized at 37°C and HMEC cells which were trypsinized using 0.05% 

Trypsin-EDTA at 37°C. Once detached, cells were collected in appropriate complete growth media and 

were pelleted at 1,000 rpm for 5 minutes before re-plating the cells at 1:5 dilution in appropriate growth 

media. Detached HMEC cells were collected in trypsin neutralization solution (5% FBS in PBS) and were 

pelleted at 1,000 rpm for 3 minutes before replating. All cell lines used for the cell lines reported in this 

thesis were tested negative for mycoplasma and were authenticated by STR profiling. 

 

Genomic DNA Isolation and STR Profiling 

Cells grown to confluence in a T25 flask were trypsinized and collected into FBS-containing 

culture media. These cells were spun down at 1,000 rpm for 5 minutes; the resultant pellet was 

resuspended in 200 μl phosphate buffered saline (PBS). Genomic DNA isolation was performed using the 

DNeasy blood and tissue kit from Qiagen (Valencia, CA) following the manufacturer‟s protocol. The 

isolated genomic DNA was quantified using a Nanodrop and the samples were then submitted for STR 

(short tandem repeats) profiling to Genetica DNA Laboratories (Burlington, NC). The STR profiling data 

was analyzed against a reference cell profile in available public databases.   
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Cellular Treatments with Growth Factors, Chemotherapeutic Agents, and Signaling Pathway 

Inhibitors 

Cells were plated, as appropriate for experimental purpose, into 35mm dishes or 6, 24, or 96-well 

plates or at densities of 250,000, 52,000, and 5,000 cells per well, respectively, except for MIA PaCa-2, 

PANC-1 and AsPC-1 cells which were plated at a density of 500,000 in 6-well plates. Epidermal growth 

factor (EGF) (Calbiochem, Rockland, MA) was prepared in 10 mM Acetic acid containing 0.1% BSA 

(100 μg/ml) and was used at a concentration of 100 ng/ml. Transforming Growth Factor-β (TGF-β) 

(Calbiochem, Rockland, MA) (80 nM) was prepared in 500 μl of 4 mM HCl and 0.1% BSA and utilized 

at a concentration of 50 pM. Arsenic trioxide (As2O3) (Sigma Aldrich, St. Louis, MO) was dissolved in 

10 N NaOH, then diluted with nanopure water, and adjusted to a pH of 7; the As2O3 was utilized at a 

concentration between 5-25 μM. Interferon-2α (IFN) (MBL international) was dissolved in nanopure 

water (2X10
8 

IU/ml) and was utilized at a concentration between 3,000–10,000 IU/ml. Src family kinase 

inhibitor PP2 (10 mM stock) (Calbiochem) and SU6656 (10 mM stock) (Calbiochem), PI3K kinase 

inhibitors LY294004 (10 mM stock) (Cell Signaling, Danvers, MA) and GDC0941 (1.95 mM stock) 

(Selleckchem, Houston, TX), MAP kinase inhibitor U0126 (10 mM stock) (Cell Signaling technology, 

Danvers, MA), and EGF receptor kinase inhibitor PD153035 (2.5 mM stock) (A.G. Scientific, San Diego, 

CA) were all dissolved in dimethyl sulfoxide (DMSO) and were utilized at concentrations ranging from 

100 nM to 10 μM. Transcriptional inhibitor Actinomycin D (ActD) (100 μg/ml) prepared in complete 

growth media, was used at a concentration of 100 ng/ml. Translational inhibitor Cycloheximide (CHX) (2 

mg/ml stock), and proteasomal inhibitor MG132 (10 mM stock) were all dissolved in DMSO and were 

utilized at concentrations of 2 μg/ml, and 5 μM, respectively. The anti-oxidant, N-Acetyl-L-Cysteine 

(NAC) (50 mM stock), was dissolved in serum free media and was used at a concentration between 100 – 

1,000 μM. Dilutions of the above growth factors and inhibitors were diluted into serum free media prior 

to use. Cells were pre-treated with PP2, U0126, PD153035 and SU6656 inhibitors for minimum of 2 

hours prior to treating them with EGF or As2O3 whereas all other inhibitors were used to co-treat the cells 

along with EGF or As2O3. 



34 

 

Plasmids, MicroRNAs and Cloning of PLSCR1 into pBABE-puro  

pcDNA3, pcDNA3 containing wild type-PLSCR1 cDNA, pcDNA3 containing C/A-PLSCR1 

cDNA (mutated palmitoylation site; 
184

CCCPCC
189

-
184

AAAPAA
189

), pGL3-basic, and pGL3-basic vector 

containing human PLSCR1 genomic construct (5‟ 1 – 4177 nucleotides)[39], were kindly provided by Dr. 

Peter J. Sims (University of Rochester)[24, 39]. pGFP-V-RS retroviral vector containing shRNA targeting 

PLSCR1 was kindly provided by Dr. Igor Prudovsky (Maine Medical Center Research Institute)[182]. 

Retroviral vector pBABE-puro and retroviral vectors pCGP and pVSVG containing sequences coding for 

the viral components gag, pol, and env, were obtained from Dr. Gordon Mills (MD Anderson Cancer 

Center). Retroviral vectors pGFP-V-RS and pQCXIN, and pEGFP-C1 vectors were obtained from 

Clontech (Mountain View, CA). pEGFP-LC3 vector containing GFP-tagged LC3 were obtained from 

Addgene (Cambridge, MA) (Deposited by Dr. Toren Finkel). Mimics of hsa-miR-216b (ID: MC12302), 

hsa-miR-410 (ID: MC11119), hsa-miR-494 (ID: MC12409), hsa-miR-495 (ID: MC11526), and miRNA 

negative control (#4464058) were purchased from Ambion (Grand Island, NY).  

Wild type (WT)-PLSCR1 and C/A-PLSCR1 (palmitoylation mutant, see above) were cloned into 

pBABE-puro retroviral vector using the constructs from Dr. Sims as template (pcDNA3 vectors, see 

above) using the following strategy. Briefly, WT-PLSCR1 and C/A-PLSCR1 were excised from pcDNA3 

vector by incubating these vectors (10 μg of each vector) with EcoRI and BamHI enzymes. The reaction 

mixtures were then run on a 1% agarose gel to gel-purify the insert (QIAquick Gel Extraction Kit, 

Qiagen, #28706) which was eluted from the column into 30 μl of EB buffer. The gel purified insert was 

used for the ligation reaction along with dephosphorylated pBABE-puro vector (1 μg) that was digested 

with BamH1 and EcoR1. Ligation reaction was performed by incubating the mixture of 8 μl gel purified 

insert, 1 μl dephosphorylated pBABE-puro vector along with 10 μl ligase buffer and 1 μl of DNA ligase 

enzyme at 37°C for 5 minutes at room temperature and then at 4°C for 3 hours. The ligated products were 

then transformed into Top10F‟ bacteria and next day successful colonies were selected and analyzed to 

identify positive transformants by performing double digestion with BamHI and EcoRI. The correct 
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orientation and sequence of the insert was validated by sequencing at the Molecular Genomics Core 

(Moffitt Cancer Center, Tampa, Florida) using pBABE-5‟ and pBABE-3‟ primers.    

  

Generation and Cloning of PLSCR1 Mutants 

Below PLSCR1 mutants with a C-terminal HA tag were generated via PCR-based mutagenesis for the 

studies described in Chapter 6. 

1. Wild type PLSCR1-HA 

2. C/A-PLSCR1-HA (Palmitoylation mutant, see above) 

3. ΔN-PLSCR1-HA (N-terminal amino acids 1-97 deleted from wild type PLSCR1) 

4. ΔTM-PLSCR1-HA (amino acids 287-318 harboring transmembrane domain deleted from wild 

type PLSCR1) 

The following primers with EcoRI restriction sites (underlined) and sequences for HA-tag (bolded) were 

designed and used together with the pcDNA3 vectors harboring WT-PLSCR1 or C/A-PLSCR1 as 

templates to generate the above PLSCR1 variants. 

WT-PLSCR1-HA and C/A-PLSCR1-HA: 

Forward:  

5‟ GGCGGAATTCTCCACCATGGACAAACAAAAC 3‟ 

Reverse:  

5‟ GCGCGAATTCCTAAGCGTAGTCTGGGACGTCGTATGGGTACCACACTCC 3‟ 

ΔN-PLSCR1-HA: 

Forward:  

5‟ GGCGGAATTCTCCACCATGGGATTAGAATATTTA 3‟ 
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Reverse:  

5‟ GCGCGAATTCCTAAGCGTAGTCTGGGACGTCGTATGGGTACCACACTCC 3‟ 

ΔTM-PLSCR1-HA: 

Forward:  

5‟ GGCGGAATTCTCCACCATGGACAAACAAAAC 3‟ 

Reverse: 

5‟GCGCGAATTCCTAAGCGTAGTCTGGGACGTCGTATGGGTATTTAACATCAAGGTC 3‟ 

pcDNA3 containing wild type PLSCR1 cDNA was used as template for generation of wild type, 

ΔN, and ΔTM PLSCR1 variants, while pcDNA3 containing C/A-PLSCR1 was used for generating the 

C/A-PLSCR1-HA variant. PCR was performed using appropriate primers (forward and reverse), template 

and Platinum PCR super mix (#12532-016, Invitrogen, Grand Island, NY ) at the following reaction 

conditions: 95°C for 4 minutes, 95°C for 5 minutes (melting), 35 cycles of 50°C for 30 seconds 

(annealing), 68°C for 1 minute (extension) and  68°C for 15 minutes (final extension). The amplified 

product was then cloned into pCR2.1-TOPO vector (#450641, Invitrogen) by performing TOPO-TA 

cloning (2 μl of PCR product, 0.5 μl of salt solution and 0.5 μl pCR2.1-TOPO vector incubated at room 

temperature for 30 minutes). This reaction mixture was then transformed into TOP10 (for WT and C/A-

PLSCR1) or TOP10F‟ (for ΔN and ΔTM-PLSCR1)  bacteria which were then plated on LB agar media 

containing kanamycin and X-gal or kanamycin, X-gal and IPTG respectively to identify the positive 

clones next day (white colored colonies). Positive clones were then validated for the presence of 

respective PLSCR1 variants by performing restriction digestion with EcoRI and by sequencing using 

M13 Forward and M13 Reverse primers. Respective HA-tagged PLSCR1 variants were then subcloned 

from pCR2.1-TOPO vector into retroviral vector pQCXIN using following strategy. Briefly, all the HA-

tagged PLSCR1 variants were excised from their respective pCR2.1-TOPO vectors (50 μg for WT, CA, 
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and ΔTM-PLSCR1 and 25 μg for ΔN-PLSCR1) by incubating them with EcoRI restriction enzyme. Then 

the reaction mixture was run on a 1% agarose gel to gel purify the insert as described above. The gel 

purified product was then ligated with the dephosphorylated pQCXIN vector (1-2 μg) that was digested 

with EcoRI. Ligation reaction was performed as described above using DNA ligase with the exception of 

ΔN PLSCR1 and ΔTM PLSCR1 for which the ligation reaction was performed by incubating 3.5 μl of 

insert, 1 μl of dephosphorylated vector, 5 μl of ligase buffer, and 0.5 μl of DNA ligase at room 

temperature for 5 minutes and then at 4°C for 3 hours. The ligated products were transformed into 

TOP10F‟ bacteria and successful colonies were analyzed for successful cloning and correct orientation by 

performing double digestion with EcoRI and NaeI with the exception of HA-ΔN PLSCR1 which was 

verified by double digestion with EcoRI and XbaI. The positive clones were further validated by 

sequencing at Molecular Genomics Core (Moffitt Cancer Center, Tampa, Florida).  

 

Plasmid and MicroRNA (miRNA) Transfection 

Cells were plated into 6 well plates or 35 mm dishes at a density of 250,000 cells in 2 mls of 

complete growth media or in a 24 well plate at 52,000 cells 400 μl of complete growth media 

respectively. Twenty-four hours post adherence, cells were maintained in serum free conditions for the 

transfection procedure. Plasmid transfection was performed using Fugene HD (Promega). Briefly, 1 μg of 

the appropriate plasmid DNA or 200 pmoles of appropriate miRNA mimic was added to 100 μl of serum 

free media followed by the addition of 3 μl of Fugene HD in cryovials. This mixture was then incubated 

at room temperature for 15 minutes which was followed by adding this mixture to the cells in a drop-wise 

manner. The cells were then incubated at 37°C for 6 hours at which time 2 mls of complete growth media 

was overlayed onto the 2 ml existent serum free media covering the transfected cells. Twenty-four hours 

post-transfection, the media on top of the cells was replaced with 2 mls of complete growth media; 48 

hours post-transfection, cells were then harvested for RNA/protein as needed. Negative controls, mock 

transfection control containing only transfection reagent and an empty vector transfection were routinely 

performed for overexpression studies.   
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 siRNA Mediated Knockdown 

ON-TARGETplus siRNAs targeting c-Src (L-003175-00), PIK3CA (L-003018-00), MAPK1 (L-

003555-00), STAT3 (L-003544-00), EGFR (L-003114-00), PLSCR1 (L-003729-00), TLR4 (L-008088-

01), TLR9 (L-004066-00), IRF3 (L-006875-00), and non-targeting control siRNA (D-001810-10) were 

obtained from Dharmacon. Cells were plated into 6-well plates at a density of 325,000 cells per well in 

complete growth media. Post-adherence, media was changed to serum free conditions followed by siRNA 

transfection using Dharmafect I transfection reagent (Dharmacon, Lafayette, CO). Five μl of Dharmafect 

was initially incubated in 100 μl of serum free media for 10 minutes at room temperature (in eppendorf 

tubes). Then 5 μl of the appropriate siRNA (at 50 nM) concentration was added followed by a further 

incubation for 20 minutes at room temperature. This mixture was then added drop-wise to the cells 

followed by an overlay with 2 mls complete media 3 hours post-transfection. Twenty-four hours post-

transfection, the media was replaced with complete growth media for at least 3 hours if additional 

treatments were performed.  

 

Establishment of Retroviral Stable Cell lines 

Below listed stable cell lines were generated as part of the studies: 

 

Cell Line Aim  Plasmid Insert 

HEY PLSCR1 overexpression pBABE-puro Wild type PLSCR1 

HEY PLSCR1 stable knockdown pGFP-V-RS shRNA-PLSCR1 

HeLa PLSCR1 stable knockdown pGFP-V-RS shRNA-PLSCR1 

PANC-1 PLSCR1 stable knockdown pGFP-V-RS shRNA-PLSCR1 

MIA PaCa-2 PLSCR1 stable knockdown pGFP-V-RS shRNA-PLSCR1 

BxPC-3 PLSCR1 stable knockdown pGFP-V-RS shRNA-PLSCR1 

 

 

The above six retroviral stable cells lines were developed as follows. HEK293T cell line was used as the 

packaging cell line for generation of retroviral particles. HEK293T cells, seeded at 1.5 million cells per 

Table 6: List of developed retroviral stable cell lines 
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well in a 6-well plate and were transfected with the retroviral vector, pBABE-puro containing Wild type-

PLSCR1 or empty pBABE-puro vector together with the pCGP and pVSVG vectors (that code for viral 

components gag and pol as well as env, respectively) in a 1:1:1 ratio. Media from HEK293T cells 

containing the viral particles was collected at 48 hours and 72 hours post-transfection, filtered through a 

0.45 μm filter, diluted with complete  RPMI media containing 8 μg/ml of polybrene (1:1 ratio) and added 

to HEY cells (seeded in a 6-well plate at 250,000 cells per well). Forty eight hours after the second 

infection, the media was changed to complete growth media containing 2 μg/ml of puromycin for 

selection. Wild type-PLSCR1 expression was validated by collecting total lysates and performing western 

analysis for PLSCR1. Additionally, empty pGFP-V-RS retroviral vector or pGFP-V-RS containing 

shRNA-PLSCR1 was used to obtain stable knockdown of PLSCR1 (with the control) in all the above 

mentioned cell lines.  Reduction in PLSCR1 protein in all of these cells was validated by performing 

western analysis for PLSCR1.    

 

Protein Isolation, SDS-PAGE, and Western Blotting 

Cells plated in 6-well or 24-well plates (following treatments described above) were washed once 

with PBS. Total cell lysates were then prepared by adding 75 μl – 100 μl or 50 μl of RPPA lysis buffer 

respectively (1% Triton X-100, 50 mM HEPES, 150 mM NaCl, 1 mM MgCl2, 1 mM EGTA, 10% 

glycerol, and protease inhibitor cocktail (Roche, Indianapolis, IN)) for 1 hour at 4
°
C; this was followed by 

scraping, collection of the lysed cells, and centrifugation at 14,000 rpm for 10 minutes. The supernatant 

was retained as the total protein lysates and 2 μl of all the protein samples were added to a transparent 96-

well plate in duplicates together with the BSA (bovine serum albumin) standards ranging from 25 μg/ml 

to 2,000 μg/ml. BCA (bicinchoninic acid, Fisher Scientific) assay was performed by adding 200 μl of 

BCA reagent (98% Reagent A+ 2% Reagent B) to each well; the plate was next incubated at 37°C for 30 

minutes. Absorbance readings were measured at 570 nm and protein concentrations were determined by 

using the standard curve equation. All the protein samples were then normalized to the lowest 

concentration sample followed by the addition of 10 μl of 6X SDS loading dye buffer. Loading samples 
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were resolved on an 8%, 10%, or 12% SDS-PAGE gel (as appropriate) at 100V for ~2 hours. Gels were 

then transferred to polyvinylidene fluoride (PVDF) membranes using a semi-dry transfer apparatus for 2 

hours at 0.11 A (one membrane) or 0.15 A (two membranes). Transferred membranes were then washed 

with 1X TBST (1X Tris-Buffered Saline (TBS) containing 0.1% Tween-20 (Biorad)) followed by 

blocking in 5% milk /1X TBST solution for 1 hour before incubating the membranes in primary antibody 

at 4°C on an orbital shaker overnight. A complete list of all primary antibodies utilized for the western 

analyses presented in this thesis is given in Table 7 (with antibody dilutions and company sources). The 

next day, the membranes were washed with 1X TBST four times for 15 minutes each on an orbital shaker 

at room temperature. Secondary goat anti-rabbit (#107-5046, Immun-Star, Biorad)  or goat anti-mouse 

antibodies (#107-5047, Immun-Star, Biorad) diluted in 5% milk in TBST were applied to the membranes 

at concentrations ranging from 0.26 μg/ml to 1 μg/ml and were incubated for a further 1 hour at room 

temperature on the same shaker. This was followed by six washes with 1X TBST for 15 minutes each 

prior to the application of the enhanced chemi-luminescence reagent (ECL or Clarity ECL, Bio-Rad, 

Hercules, CA or LumiGLO, Cell Signaling) followed by detection of the bound antibodies by exposing 

the membranes to X-ray film in a dark room. All the antibodies listed in Table 7 were detected by 

application of ECL or LumiGLO substrate with the exception of phospho-JNK which was detected using 

Clarity ECL substrate.    

 

Subcellular Fractionation 

Isolation of cytoplasmic and nuclear fractions was performed using the NE-PER nuclear and 

cytoplasmic extraction kit (#78833, Thermo Scientific). Briefly, cells plated into T25 flask at a density of 

1 million, were treated appropriately post-adherence and were then washed once with PBS. Cells were 

then collected by scraping with 100 μl of PBS, pelleted at 500 g for 3 minutes and were resuspended into 

200 μl of CER-I reagent by vortex mixing followed by incubation on ice for 10 minutes. This suspension 

was pelleted at 16,000 g for 5 minutes and 200 μl of supernatant was centrifuged again for 5 minutes at 

16,000 g. Top 100 μl of the resultant supernatant was collected as cytoplasmic fraction. The pellet was  
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Antibody Type Dilution Source Catalog Number. 

Bcl-XL Rabbit monoclonal 1:1000 Cell Signaling #2764 

c-Src Mouse monoclonal 1:1000 Cell Signaling #2110 

EGFR Rabbit polyclonal 1:1000 Santa Cruz SC-03 

GAPDH Rabbit polyclonal 1:5000 Cell Signaling #2118 

GFP Mouse monoclonal 1:1000 Santa Cruz SC-9996 

Grb2 Mouse monoclonal 1:2000 BD Biosciences #610111 

HA-11 Mouse monoclonal 1:1000 Covance #14921901 

IRF3 Rabbit monoclonal 1:1000 Cell Signaling #11904 

Lamin A/C Mouse monoclonal 1:1000 Cell Signaling #4777 

LC3B Rabbit polyclonal 1:1000 Cell Signaling #2775 

MAPK Rabbit polyclonal 1:1000 Cell Signaling #4695 

MBP Mouse monoclonal 1:10000 NEB #E80325 

PAI-1 Mouse monoclonal 1:1000 BD Biosciences #612024 

Pan-Actin Rabbit polyclonal 1:1000 Cell Signaling #4968 

PARP Rabbit polyclonal 1:1000 Cell Signaling #9542 

Phospho-IRF3 Rabbit monoclonal 1:500 Cell Signaling #4947 

Phospho-AKT Rabbit polyclonal 1:1000 Cell Signaling #4060 

Phospho-EGFR (PY99) HRP-conjugated 1:1000 Santa Cruz SC-7020 

Phospho-ERK Rabbit polyclonal 1:1000 Cell Signaling #9101 

Phospho-JNK Mouse monoclonal 1:500 Cell Signaling #9255 

Phospho-Src (416) Rabbit monoclonal 1:1000 Cell Signaling #2113 

Phospho-STAT3 Rabbit polyclonal 1:1000 Cell Signaling #6145 

PIK3CA Rabbit polyclonal 1:1000 Cell Signaling #4249 

PLSCR1 Mouse monoclonal 1:500 Santa Cruz SC-59645 

pSer-p66-ShcA Mouse monoclonal 1:1000 Calbiochem #566807 

ShcA Rabbit polyclonal 1:1000 Millipore #06-203 

SnoN Rabbit polyclonal 1:1000 Santa Cruz SC-9141 

STAT3 Rabbit polyclonal 1:1000 Cell Signaling #4904 

Total AKT Rabbit polyclonal 1:1000 Cell Signaling #4685 

Total JNK Rabbit monoclonal 1:1000 Cell Signaling #9258 

XIAP Rabbit monoclonal 1:1000 Cell Signaling #2045 

 

washed once with PBS and was resuspended in 100 μl of NER reagent by vortex mixing every 10 minutes 

for 4 times. This suspension was centrifuged at 16,000 g for 10 minutes and the top 50 μl of the 

supernatant was collected as nuclear fraction. Gel loading samples prepared by adding 10 μl of 6X SDS to 

each of the collected fractions, were analyzed by western blotting using the antibodies against the proteins 

of interest.  

 

Table 7: List of primary antibodies utilized for western analyses 
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Immunoprecipitation 

Cells were seeded in 6-well plates at a density of 250,000 cells/well. After the respective 

treatment, protein lysates were collected using RPPA lysis buffer. To these lysates, 5 μl of antibody 

(targeting the protein of interest) was added at concentrations between 200–250 μg/ml; lysates were 

incubated on an orbital shaker at 4°C for 3 hours. Following this incubation, 40 μl of Protein G Sepharose 

4 Fast Flow beads (Amersham Biosciences, Piscataway, NJ) were then added and incubated with shaking 

for 1 hour at 4°C. The beads were then pelleted at 3,000 rpm for 3 minutes, washed with lysis buffer once 

and with PBS three times. The immunoprecipitated proteins were eluted by adding 30 μl of 5% SDS 

buffer. The immunoprecipitates were then run on appropriate SDS-PAGE gels together with the total 

lysate (as “input” fractions), supernatants (to ensure antigen depletion from lysates) and antibody negative 

controls (antibodies incubated in the RPPA lysis buffer only). Western analysis was performed for the 

proteins of interest using corresponding antibodies.     

 

Total RNA Isolation and Real-Time PCR 

Cells seeded into 6-well plates were washed with PBS. Total RNA was isolated using the RNeasy 

mini kit (Qiagen) following the protocol provided with the kit. RNA was quantified using Nanodrop and 

20 ng/μl dilutions were prepared for use in real-time PCR. Quantitative PCR was performed using the 

One-step PCR Taqman master mix (4309169), FAM-labeled probes/primers, and the One-Step-Plus 

detection system (Applied Biosystems, Bedford, MA). FAM-labeled probes/primers specific for SnoN 

(Hs00180524_m1), PLSCR1 (Hs00275514_m1), IFN-α (Hs00855471_g1), IFN-β (Hs01077958_s1), 

TLR-4 (Hs00152939_m1), and TLR9 (Hs00370913_s1) were obtained from Assays-on-Demand 

(Applied Biosystems). β-actin (#401846, Applied Biosystems) was used as the endogenous control. All 

Ct (cycle threshold) values were normalized to that of β-actin (ΔCt) first and then to the untreated control 

reference sample (ΔΔCt). Relative mRNA fold changes were calculated by using the formula 2
-(ΔΔCt)

. The 

RNA-fold changes were then represented as bar graphs with error bars representing the standard 

deviations.  
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Luciferase Promoter Activity Assays 

T80 cells were plated in 6-well plates at a density of 250,000 cells per well; they were then 

transfected with the pGL3-basic empty vector or that containing the human PLSCR1 genomic construct 

as described above. One day post-transfection, the cells were recovered with complete growth media for a 

minimum of 3 hours and were treated with 50 pM TGF-β. Protein lysates were collected and 20 μl of 

normalized lysates were added in duplicate to an opaque 96-well plate. Hundred μl of luciferase assay 

substrate (Luciferase assay substrate, #E151A, Promega) was added to each well in the dark and 

luminescence readings were measured using a Biotek plate reader. As a negative control, 100 μl of 

substrate was added to wells containing 20 μl of RPPA lysis buffer only. Luminescence readings from 

these wells were considered as background and were subtracted from the readings obtained from samples. 

For experiments investigating the effect of knockdown of EVI1 and SnoN on PLSCR1 promoter activity, 

cells were first transfected with siRNAs targeting EVI1 or SnoN; this was then followed 24 hours later by 

transfection with pGL3-basic or pGL3-basic containing the human PLSCR1 genomic construct. 

 

Immunocytochemistry 

Direct Immunofluorescence: 

Cells were plated on coverslips in a 6-well plate, 24-well plate, 35mm dishes at a density of 

250,000, 52,000 and 250,000 per well respectively. Post-adherence, cells were transfected with pEGFP-

C1 or pEGFP-LC3 plasmids as appropriate. Forty eight hours post-transfection, cells were washed with 

PBS and fixed with 4% paraformaldehyde for 30 min at room temperature. All staining/incubation steps 

were performed in the dark. Cells were then washed in PBS twice for 5 minutes each and then blocked for 

1 hour at room temperature with blocking buffer (PBS containing 0.1% Triton-X-100 and 5% goat serum 

(#PI-31872, Fischer Scientific)). After three washes with PBS, coverslips were mounted on glass slides 

with DAPI nuclear stain (#H-1200, Vector Laboratories, Burlingame, CA). The edges of the coverslips 

were sealed with nail polish and imaging was performed using a PerkinElmer UltraVIEW ERS spinning 
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disk confocal microscope (Department of CMMB, University of South Florida) or Zeiss inverted 

fluorescence microscope (Microscopy core, Moffitt Cancer Center). For all the immunofluorescence data 

presented in Chapters 3 and 4 of this thesis, imaging was performed at Moffitt Cancer Center whereas the 

imaging for all the data presented in Chapters 5 and 6 was performed at Department of CMMB. For the 

EGFP-LC3 autophagy study, the number of cells positive for GFP-LC3 punctae were counted and their 

percentage using total number of cells was calculated. For the EGFP-C1 based assay to determine the 

transfection efficiency, number of cells positive for GFP expression were counted and their percentage 

using total cells was calculated.    

Indirect Immunofluorescence: 

 

Primary Antibody Dilution Source Catalog Number Secondary antibody 

PLSCR1 1:500 Santa Cruz SC-59645 
Alexafluor-488 

(Anti-Mouse) 

HA-11 1:1000 Covance #14921901 
Alexafluor-488 
(Anti-Mouse) 

RCAS-1 1:50 Cell Signaling #12290 
Alexafluor-546 

(Anti-Rabbit) 

Calnexin 1:50 Cell Signaling #2679 
Alexafluor-546 

(Anti-Rabbit) 

 

Cells plated on coverslips in 6-well plates or 35mm dishes at a density of 250,000 to 325,000 

cells per well, were treated IFN-2α or transfected with indicated plasmids for appropriate lengths of time. 

Cells were first washed with PBS once and then fixed with 4% paraformaldehyde for 30 minutes. After 2 

washes with PBS, the cells were blocked for 1 hour in blocking buffer (PBS containing 0.1% Triton-

X100 and 5% goat serum) and incubated overnight at 4°C with the indicated primary antibody diluted in 

PBS containing 0.1% Triton-X 100 and 1% goat serum. Next day, the cells were washed with PBS and 

were incubated in Alexafluor-488 or Alexafluor-546 conjugated goat anti-mouse or anti-rabbit secondary 

Table 8: List of primary antibodies utilized for indirect immunofluorescence 
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antibody (1:500, Invitrogen), respectively, for 1 hour at room temperature in the dark. After three PBS 

washes, coverslips were mounted onto glass slides with DAPI nuclear stain; this was followed by imaging 

using a confocal microscope. A complete list of all primary antibodies utilized for the indirect 

immunofluorescence studies presented in this thesis is summarized in Table 8 (with antibody dilutions 

and corresponding secondary antibodies). 

 

Annexin V/PI Assay 

Supernatant media was collected upon experimental completion. To this media, trypsinized adherent cell 

population was added (by adding 500 μl of Trypsin-EDTA for cells in 6-well plates). Cells (floating and 

adherent cell populations) were then pelleted by spinning them at 1000 rpm for 5 minutes. Cells were 

resuspended in 500 μl PBS; rapid staining procedure was adapted using the Annexin V/PI staining kit 

(Calbiochem, Rockland, MA). Briefly, cells were incubated with 1.25 μl of Annexin V stain followed by 

10μl of media binding reagent for 15 minutes at room temperature in the dark. Then the cells were 

pelleted at 1000 rpm for 5 minutes followed by resuspension in 500 μl of ice-cold binding buffer. This 

was then incubated in 10 μl of Propidium Iodide (PI) for 30 min at 4°C in the dark. These stained cells 

were then analyzed by flow cytometry by detecting signals at 518 nm for FL1 and 620 nm for FL2 using 

the Flow Cytometry Core, (College of Medicine, University of South Florida).    

 

Caspase Activity Assay 

Cells plated in 6-well plates were trypsinized using 500 μl of Trypsin-EDTA per well. Cells from 

each well were counted and were re-seeded into an opaque 96-well plate at a density of 50,000 cells in 

100 μl of complete growth media per well. One day post-seeding, caspase activity assay was performed 

using the Caspase Glo-3/7 assay kit (Promega, Madison, WI). Briefly, 100 μl of caspase glo-3/7 substrate 

was added to each well and then the plate was shaken for 2 minutes in the Biotek plate reader; incubation 

was then performed in the dark at room temperature for 30 minutes before taking luminescence 

measurements every 30 minutes. A mixture of growth media and caspase glo-3/7 substrate at a 1:1 ratio 
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was used as a negative control. All the luminescence readings were presented as bar graphs containing 

error bars representing the standard deviation values.       

 

Phosphatase Assay 

Protein lysates were isolated from cells plated in 6-well plates (treated as indicated) using RPPA 

lysis buffer. Protein lysate concentrations were then normalized to the sample (determined by BCA assay) 

with the lowest concentration. Normalized protein lysates were then added to a 96-well plate and 

phosphatase activity was measured using the 1-Step PNPP (ρ-nitrophenyl phosphate disodium salt) 

substrate (Fisher Scientific). Briefly, 100 μl of 1-Step PNPP substrate was added to each well followed by 

shaking in a Biotek plate reader before incubating at room temperature for 30 minutes after which time 50 

μl of 2 N NaOH was added to terminate the reaction; absorbance readings were measured at a wavelength 

of 405 nm.   

 

ATP Viability Assays 

Cells were plated into opaque 96-well plates at a density of 5000 cells in 100 μl of complete 

growth media per well. Cells were treated and then washed once with 200 μl PBS prior to assessing cell 

viability using the ATP viability kit (Promega, Madison, WI). Briefly, 100 μl of PBS was added to each 

well along with100 μl of Cell Titer Glo substrate; the plate was shaken for 2 minutes using the Biotek 

plate reader followed by incubation in the dark at room temperature for 10 minutes. Luminescence 

readings were obtained using the Biotek plate reader.   

 

Cell Growth Assays 

Cells were plated into transparent 96-well plates at a seeding density of 5000 per well in 200 μl 

media. After the indicated treatments, media was discarded from the plates and 100 μl of crystal violet 

stain (0.5% crystal violet (Fischer Scientific) in 20% methanol) was added to each well for 15 minutes at 

room temperature. The stain was washed away using Nanopure water and plates were left at room 
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temperature for 24 hours to dry followed by the addition of 200 μl of Sorenson‟s buffer (0.1 M Sodium 

Citrate, pH 4.2 in 50% Ethanol) to each well; the plate was shaken at room temperature for 2 hours. 

Absorbance readings were then measured using a Biotek plate reader at 570 nm. 

    

Statistical Analyses 

All the data presented in the studies presented in this thesis is representative of more than one 

independent experimental replicate; details of numbers of replicates are indicated in the respective figure 

legends. All the bar graphs presented in this thesis represent the averages of all independent experiments 

(replicates) with error bars representing standard deviation. Statistical significance of the data is presented 

as p-values as generated using the Graphpad Prism software (standard student‟s t-test). P values are 

represented as follows: P< 0.001 (***), P<0.01 (**), P<0.05 (*) and p>0.05 (NS). 
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Chapter 3 

SnoN/SkiL Expression is Modulated via As2O3-Induced Activation of PI3K/AKT Pathway in 

Ovarian Cancer Cells 

Introduction 

Platinum-based chemotherapeutics such as paclitaxel, cisplatin, and carboplatin proceeding 

surgical resection is the most common strategy for treatment of ovarian cancers [46, 47, 58]. Despite the 

recent improvements in treatment, the 5-year survival rate of ovarian cancer patients remains less than 

50% (National Cancer Institute, http://seer.cancer.gov/statfacts/html/ovary.html) [49]. The chromosomal 

region 3q26 is commonly amplified in a subset of epithelial cancers including ovarian cancers [9-12, 28-

30]. Previous studies including those from our research group demonstrate that this region contains 

various oncogenes including MECOM (MDS1-EVI1 complex) [10], SnoN/SkiL [9], and PKCι [30] at 

3q26.2; and PIK3CA at 3q26.3 [11]. As mentioned in Chapter 1, SnoN (Ski related novel protein N) 

belongs to the ski family of oncogenes and is an important transcriptional regulator involved in the TGFβ 

signaling pathway [28, 76-79]. It binds to the SMAD2/3 and SMAD4 complex thereby preventing them 

from recruiting transcriptional co-activators (i.e. c-Jun, CBP, p300 and FAST-1/2) [183-185], thereby 

leading to repression of transcription of TGFβ target genes and their downstream effects [77-79]. 

Previous array comparative genomic hybridization (aCGH) data obtained from 235 epithelial ovarian 

cancer patients demonstrated SnoN/SkiL to be amplified at 3q26.2 as well as overexpressed (at RNA 

level) in ~80% of serous ovarian carcinomas in comparison to normal ovarian cells [9]. In addition, we 

determined that arsenic trioxide (As2O3) induces SnoN expression which mediates cytoprotective 

autophagic response that antagonizes the cytotoxic effects of As2O3 [1]. However, the mechanisms and 

signaling pathways mediating these responses remain to be identified. 
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Upon stimulation with extracellular ligands, epidermal growth factor receptor (EGFR) activates 

downstream signaling cascades involving Src, Ras-MAPK, and PI3K/AKT pathways which promote cell 

growth, survival, and proliferation [186, 187]. EGFR and its downstream adaptor and signaling 

molecules, notably ShcA [188, 189], Grb2 [190-192], PI3K [11, 53, 66, 165, 193, 194], and Src [195-

197] pathways are highly altered or dysregulated in cancers [11, 53, 66, 165, 188-190, 198-201]. 

Additionally, EGFR is also associated with drug resistance and poor clinical outcome of cancer patients 

[202]. In addition to growth factors (such as EGF and TGFα), chemotherapeutic agents including cisplatin 

[203, 204] and As2O3 [205-207] activate EGFR. As2O3 promotes EGFR phosphorylation followed by 

activation of downstream Src and AKT pathways [205, 206]. In human epidermoid carcinoma (A431) 

cells, activation of Src and EGFR/ERK pathway mediates As2O3-induced expression of p21 and cell cycle 

arrest [206]. Interestingly, TGIF (TGFβ-interacting factor), a transcriptional co-repressor in the TGFβ 

signaling pathway also contributes to this process [208]. Similarly, in human keratinocytes, EGFR is 

activated in a Src-dependent manner in response to As2O3 [209]. In addition, EGFR is activated by 

ligand-independent methods including activation by stimuli such as oxidative stress [209, 210], UV [211], 

and γ-irradiation [212].  

As described in Chapter 1, As2O3 is an FDA approved drug used in the treatment of acute 

promyelocytic leukemia (APL) [90, 91]. As2O3 binds directly to the PML-RAR fusion oncoprotein 

(characteristic of APL) thus promoting its degradation via SUMOylation [91]. Additionally, it increases 

cellular cytotoxicity of epithelial cancer cells including those derived from the ovarian tissue by inducing 

apoptosis [1, 75, 213]. Interestingly, As2O3 activates EGFR and its downstream signaling mediators 

including Src, PI3K, and ERK [205, 207, 209]. Our recent studies demonstrate that As2O3 also modulates 

the expression of various TGFβ signaling mediators [1]. Treatment of ovarian cancer cells with As2O3 

markedly reduced the expression of EVI1, TAK1, SMAD2/3, and TGFβRII in both a proteasome-

dependent and independent manner [1]. In contrast, As2O3 markedly induces SnoN protein and mediates a 

beclin-1 independent cytoprotective autophagic response that antagonizes the cell death response in these 
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cells [1]. However, the detailed mechanisms that underlie SnoN induction and the resultant cellular 

responses remain unclear. Previous studies suggest an important role for EGFR and its downstream 

signaling pathways in regulating cancer cell responses [186, 199, 203-205, 209]; furthermore, As2O3 

activates these pathways [137, 205, 209]. Therefore, we hypothesized that As2O3-induced SnoN 

expression and cell responses are mediated by activation of EGFR and its downstream signaling 

pathways. Herein, our studies indicate that As2O3 treatment activates EGFR and alters its ability to 

interact with its downstream adaptor proteins (i.e. ShcA/Grb2) at a slower rate compared to cells treated 

with EGF. Utilizing inhibitor and siRNA knockdown studies, we further demonstrate that inhibition of 

Src family kinases (SFK) and the PI3K/AKT signaling abrogates the As2O3-induced changes in SnoN 

levels. Inhibition of the PI3K pathway increased the sensitivity of ovarian cancer cells to As2O3. 

Similarly, reduction of EGFR and MAPK1 altered the As2O3-mediated cell death responses independent 

of SnoN expression. Collectively, our studies identify the PI3K/AKT pathway to facilitate the changes in 

SnoN expression and the subsequent cytoprotective responses upon As2O3 treatment in HEY ovarian 

carcinoma cells.  

Results 

As2O3 activates EGFR and promotes its interaction with downstream adaptor protein Grb2: 

In order to determine whether As2O3 activates EGFR and its downstream signaling mediators, we 

treated HEY cells with As2O3 (5, 10, or 25 μM) or EGF (100 ng/ml) from 1 to 30 hours and analyzed their 

effects. As shown in Figure 8A, EGF treatment dramatically increased the phosphorylation of EGFR (p-

EGF) and AKT by 1 hour post-treatment which decreased gradually until 30 hours. Additionally, we 

observed slightly slower mobility of p66 isoform of ShcA adaptor protein at 1 hour. Interestingly, EGFR 

protein levels rapidly decreased by 1 hour when compared to untreated cells which could be attributed to 

the antibody having high affinity for the unphosphorylated form relative to the phosphorylated form. In 

contrast, Grb2 and ShcA protein levels reduced from 6 hours onwards whereas there were no  
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Figure 8. As2O3 leads to activation of EGFR, Src, and AKT and modulates EGFR interaction with 

Grb2 (*Continued on next page) 
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Figure 8. As2O3 leads to activation of EGFR, Src, and AKT and modulates EGFR interaction 

with Grb2 (*Continued on next page) 
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significant changes in the SnoN and PARP levels (Figure 8A). On the other hand, treatment with 10 and 

25 μM As2O3 resulted in a much slower activation of EGFR which peaked at 18 hours post-treatment 

compared to 1 hour EGF treatment (Figure 8B). The reduction in EGFR, ShcA, and Grb2 protein levels 

was also slower than that of EGF treatment starting from 18 hours onwards. Interestingly, AKT was 

phosphorylated by 1 hour gradually decreasing until 30 hours in a manner that was very similar to the 

EGF treatment. In contrast, Src activation was biphasic with p-Src levels peaking at 6 and 18 hours. As 

reported by earlier studies, As2O3 treatment resulted in increased levels of SnoN by 6 hours and cleaved 

PARP from 18 to 30 hours suggestive of increased apoptosis. We validated the apoptotic response via 

Annexin V/PI staining which indicated increased apoptosis when HEY cells were treated with increasing 

concentrations of As2O3 (Figure 8C). Consistently, there was a dramatic reduction in the levels of anti-

apoptotic proteins XIAP and BCL-XL (Figure 8B). The changes observed upon As2O3 treatment were 

Figure 8. As2O3 leads to activation of EGFR, Src, and AKT and modulates EGFR interaction 

with Grb2 

(A) HEY ovarian cancer cells were treated with 100 ng/ml EGF from 1 to 30 hours. Total cell lysates 

were harvested as described in Chapter 2 and western analyses were performed for the indicated 

antibodies. (B) HEY cells were treated with As2O3 (5 or 10 or 25 μM) from 1 to 30 hours and lysates 

collected were analyzed by western blotting for the indicated antibodies. (C) Cells were treated with 5 

or 10 or 25 μM As2O3 for 18 hours and were stained with Annexin V and propidium iodide (PI) as 

described in chapter 2. Flow cytometry was performed to obtain the raw plots (Left panel) and to 

analyze the percentage of dead and viable cells (Right panel) (D) Cells were treated with 10 or 25 μM 

As2O3 for 9 and 18 hours both in presence and absence of 2 μg/ml CHX. Lysates collected were 

analyzed via western blotting for the indicated antibodies. (E) Cells were treated with EGF and As2O3 

from 5 minutes to 6 hours as described above. Total cell lysates were isolated and western analyses 

was performed for the indicated antibodies. (F) Cell lysates obtained from (E) were used for 

immunoprecipitation analyses of EGFR as described in Chapter 2 followed by western analyses. (G) 

Cell lysates obtained from (E) were used for immunoprecipitation analyses of ShcA followed by 

western blotting. (H) Cells were treated with 10 or 25 μM As2O3 for 9 and 18 hours and total cell 

lysates collected were analyzed by western blotting (Left panel). Lysates collected were also utilized 

for immunoprecipitation analyses of EGFR (Right panel). Data presented in (A), (E) and (F) is 

representative of four independent experiments while (B), (C), (D), (G), and (H) represent two 

independent experiments 
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observed at all three concentrations (5, 10, and 25 μM) although there was increased intensity of changes 

with increasing concentration. Collectively, these results indicate that As2O3 activates EGFR, Src and 

AKT and alters the expression of downstream adaptor proteins ShcA and Grb2 with slower kinetics 

compared to EGF stimulation suggesting that different mechanisms of activation are involved following 

cellular stimulation with EGF and As2O3. We next treated HEY cells with As2O3 both in the presence and 

absence of cycloheximide (CHX), a translational inhibitor. Indeed, there was no significant difference in 

decreased EGFR levels mediated by As2O3 in the presence of CHX suggesting that EGFR is degraded 

upon As2O3 treatment (Figure 8D). 

Since As2O3 alters EGFR activation and expression, we next determined whether As2O3 

modulates the interaction of EGFR with its downstream adaptor proteins ShcA and Grb2. Co-

immunoprecipitation against EGFR in HEY cells treated with EGF and As2O3 indicated that activated 

EGFR interacted with p66 ShcA in both the untreated and As2O3 or EGF treated cells (Figure 8F). 

Interestingly, there was a marked increase in interaction of EGFR with Grb2 upon treatment with both 

EGF and As2O3 (Figure 8F). As2O3 treatment also resulted in increased phosphorylation of p66 ShcA 

from 6 hours onwards (Figures 8F and 8H) which was further validated by detection of phospho-Ser36 

form of p66 ShcA in the co-immunoprecipitate fractions of ShcA (Figure 8G). Together, these results 

indicate that As2O3 stimulation induces phosphorylation of p66ShcA and increases the interaction of Grb2 

with EGFR-ShcA complex.   

Inhibition of Src family kinase activity alters the As2O3-mediated EGFR activation and SnoN induction: 

In order to identify the signaling pathways mediating the As2O3-induced changes in SnoN 

expression, we first utilized inhibitors targeting mediators of different pathways: (1) PP2, a general Src 

family kinase (SFK) inhibitor; (2) U0126, MAP Kinase inhibitor; and (3) PD153035, an EGFR and 

HER2/neu kinase inhibitor. We treated the HEY cells with As2O3 both in the presence and absence of 

these inhibitors at the following doses: PP2, 10μM; U0126, 10μM; and PD153035, 100 nM. Interestingly, 
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Figure 9. Inhibition of Src family kinase activity modulates the As2O3-mediated EGFR activation 

and SnoN induction (*Continued on next page) 

 

in the presence of PP2 (and not U0126 and PD153035), we observed a significant reduction in the As2O3-

induced EGFR activation and SnoN protein levels (Figures 9A-C, 9H, and 10F). 
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Figure 9. Inhibition of Src family kinase activity modulates the As2O3-mediated EGFR activation 

and SnoN induction  

(A) Cells were treated with 25 μM As2O3 for 6 hours after pretreatment with 10 μM PP2 or 10 μM 

U0126 and 100 nM PD153035 or DMSO. Total cell lysates collected were analyzed via western 

blotting for indicated antibodies. (B) Cells were treated with 25 μM As2O3 or 10 μM PP2 or both as 

described in (A) for 6 hours and lysates collected were analyzed by western blotting for the indicated 

antibodies. (C) Densitometric analyses were performed to determine the relative SnoN level changes 

from (B).  (D) Cells were treated with 25 μM As2O3 for 6 to 24 hours both in presence and absence of 

100 ng/ml ActD. Lysates collected were analyzed via western blotting for the indicated antibodies. (E) 

Cells were treated with 25 μM As2O3 for 6 hours both in presence and absence of 10 μM PP2 as in (A). 

Total RNA was isolated and qPCR was performed to determine the relative mRNA levels of SnoN as 

described in Chapter 2. (F) Cells were pretreated with 5 or 10 μM SU6656 for 2 hours followed by 25 

μM As2O3 for 6 hours. Cell lysates obtained were analyzed via western blotting for the indicated 

antibodies. (G) Following pretreatment with 10 μM PP2 for 2 hours, cells were treated with 100 ng/ml 

EGF or 25 μM As2O3 for indicated durations and total cell lysates collected were analyzed by western 

blotting. (H) Lysates collected in (G) were utilized for immunoprecipitation analyses of EGFR as 

described earlier. Data presented in (A) and (E) are representative of four and three independent 

experiments respectively while (B), (D), (F), and (G) represent two independent experiments 
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We next attempted to determine whether As2O3-induced changes in SnoN expression occurs via 

transcriptional regulation. In this regard, we treated cells with As2O3 both in the presence and absence of 

the transcriptional inhibitor Actinomycin D (ActD). Indeed, ActD dramatically reduced SnoN protein 

levels in As2O3-treated HEY cells suggesting that As2O3 induction of SnoN occurs via transcriptional 

regulation of SnoN (Figure 9D). To determine whether PP2 can also modulate the SnoN mRNA levels 

upon As2O3 treatment, we performed qPCR analyses in HEY cells co-treated with As2O3 and PP2. 

Consistent with the protein level changes, As2O3 treatment led to a marked increase in SnoN mRNA 

levels (~2.8 fold, Figure 9E) which reduced significantly (~40%) in presence of PP2 although treatment 

with PP2 alone did not alter the SnoN mRNA levels. These results clearly suggest that Src family of 

kinases might contribute to As2O3-induced transcriptional induction of SnoN. In order to further validate 

the role of Src kinase activity, we next utilized another specific Src kinase inhibitor, SU6656. However, 

as shown in Figure 9F, treatment of HEY cells with SU6656 did not inhibit the As2O3-induced expression 

of SnoN protein levels. This difference between the effects of these two Src kinase inhibitors could be 

attributed to the difference in their specificities. PP2 is a general Src family kinase inhibitor whereas 

SU6656 inhibits only specific Src family members in comparison and different Src family kinases might 

be targeted by these two inhibitors leading to discrepancy in responses. Since PP2 treatment altered the 

As2O3-induced EGFR activation, we then investigated whether PP2 could also inhibit the interaction of 

EGFR with its downstream adaptor proteins ShcA and Grb2. Indeed, co-IP of EGFR (Figure 9H) in HEY 

cells treated with As2O3 or EGF performed in the presence or absence PP2 showed a marked reduction in 

As2O3-induced association of EGFR with p66 ShcA and Grb2. In contrast, EGF-induced association of 

EGFR with Grb2 and ShcA was only subtly reduced (Figure 9H). Collectively, these results suggest that 

Src kinase activity contributes to As2O3-mediated EGFR activation and downstream interactions 

concurrently with SnoN induction. 
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Inhibition of PI3K signaling modulates the As2O3-induced SnoN expression and cellular sensitivity: 

As shown in Figure 8B, we observed that As2O3 activates AKT at 1 hour post-treatment, prior to 

SnoN induction at 6 hours. In order to determine whether AKT activation is an upstream event 

contributing to As2O3-induced SnoN expression, we utilized inhibitors LY294002 and GDC0941, to 

target and inhibit the PI3K kinase activity. Co-treatment of HEY cells with 25 μM As2O3 for 18 hours in  

Figure 10. Inhibition of PI3K-AKT signaling modulates the As2O3-mediated SnoN induction 

and cell responses (*Continued on next page) 
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Figure 10. Inhibition of PI3K-AKT signaling modulates the As2O3-mediated SnoN induction and 

cell responses (*Continued on next page) 
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Figure 10. Inhibition of PI3K-AKT signaling modulates the As2O3-mediated SnoN induction and 

cell responses (*Continued on next page) 
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combination with increasing concentrations of LY294002 (1 – 25 μM, Figure 10A) or GDC0941 (1 - 10 

μM, Figure 10B) dramatically abolished the As2O3-mediated induction of SnoN protein concurrently with 

AKT activation. Similar changes in the SnoN protein in the presence of these inhibitors were observed 

even with shorter treatment (6 hours, Figure 10E) and lower doses (10 μM, Figure 10F) of As2O3. To 

determine whether PI3K inhibitors transcriptionally modulate SnoN mRNA, we performed qPCR 

analysis after treating HEY cells with As2O3 (18 hours) both in the presence and absence of LY294002; 

we noted a significant decrease (~50%) in the SnoN transcript  levels induced by As2O3 (Figure 10C). 

Collectively these results indicate that PI3K signaling contributes to transcriptional regulation of As2O3-

mediated induction of SnoN. Additionally, we  observed a marked increase in cleaved PARP levels 

consistent with reduced expression of the anti-apoptotic protein XIAP (Figures 10A and 10B) with 

increasing concentrations of LY292002 and GDC0941, thus indicating increased apoptosis. In order to 

validate the increased apoptotic responses, we performed caspase activity assay (Figure 10D) and 

Figure 10. Inhibition of PI3K-AKT signaling modulates the As2O3-mediated SnoN induction and 

cell responses  

(A) Cells were treated with 25 μM As2O3 for 18 hours with or without 1 or 10 or 25 μM LY294002. 

Total cell lysates collected were analyzed via western blotting for indicated antibodies. (B) Cells were 

treated with 25 μM As2O3 with or without 100 nM or 1 μM or 10 μM GDC0941 for 18 hours and 

lysates collected were analyzed by western blotting for the indicated antibodies. (C) Cells were treated 

with 25 μM As2O3 for 18 hours with or without 25 μM LY294002 and total RNA isolated was utilized 

to perform qPCR analyses to determine SnoN relative mRNA levels.  (D) Cells were treated with 25 

μM As2O3 for 18 hours both in presence and absence of 25 μM LY294002 or 10 μM GDC0941. 

Caspase activity levels were measured as described in Chapter 2. (E) Cells were treated with 25 μM 

As2O3 for 6 hours both in presence and absence of 25 μM LY294002 or 10 μM GDC0941 and lysates 

collected were analyzed by western blotting. (F) Cells were treated with 10 μM As2O3 with or without 

10 μM PP2 or 10 μM SU6656 or 25 μM LY294002 or 10 μM GDC0941 for 18 hours as described 

above and western analyses were performed on the lysates collected. (G) HEY cells were either mock 

transfected or transfected with control or PIK3CA siRNA as described in Chapter 2 followed by 

treatment with 25 μM As2O3 for 6 hours. Lysates collected were analyzed via western blotting for the 

indicated antibodies. (F) Densitometric analysis was performed on the SnoN protein level changes 

from (G). (I - J) Apoptosis assay was performed on HEY cells treated with 25 μM As2O3 (I) or 25 μM 

LY294002 (J) or both (I). (K) Tabular representation of data presented in (I). Data presented in (A), 

(C), (D) and (F) are representative of three independent experiments while all others represent two 

independent experiments. 
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Annexin V/PI apoptosis assay (Figure 10I). Indeed, we noted a significant increase in the activity of 

caspases upon treatment with As2O3 in the presence of both LY294002 and GDC0941 (Figure 10D). 

Consistently, treatment with As2O3 in the presence of LY294002 resulted in a significant increase in the 

total apoptotic cell numbers (Figures 10I and 10K) while only LY294002 failed to increase apoptosis 

(Figure 10J).  These results suggest that activation of the PI3K signaling cascade upon As2O3 treatment 

alters cell survival responses in HEY cells. Since chemical inhibitors might have various non-specific 

effects, we next reduced the expression of PIK3CA, the catalytic subunit of PI3K by utilizing siRNA 

followed by 6 hours As2O3 treatment. Similar to the inhibitors, PIK3CA knockdown resulted in a marked 

reduction in As2O3-induced SnoN protein with a concurrent increase in cleaved PARP levels (Figure 

10G). Furthermore, qPCR analysis demonstrated a significant reduction (~50%) in SnoN mRNA levels in 

cells transfected with PIK3CA siRNA relative to control siRNA. Together, these results indicate that 

activation of the PI3K/AKT signaling pathway modulates SnoN expression and cell survival in HEY cells 

in response to As2O3. 

Reduction of EGFR, pp60 c-Src, and MAPK1 alters As2O3-induced cellular responses:  

Since inhibition of Src family kinases results in altered As2O3-mediated responses, we next 

attempted to identify the specific Src family member mediating this process. In this regard, we obtained 

siRNA against pp60c-Src, one of the most studied Src family member to assess its effect on the As2O3-

mediated cellular responses. Mediators of Ras-MAPK signaling play a major role in cancer cell survival 

and proliferation [214-217]. MAPK1 (p42 ERK1) modulates cancer cell survival and viability upon 

knockdown. On the other hand, EGFR (as shown in Figure 8B) becomes phosphorylated at tyrosine 

residues upon stimulation with As2O3. Therefore, in addition to pp60c-Src siRNA, to determine whether 

MAPK1 and EGFR reduction would alter the As2O3-mediated responses in HEY cells we investigated the 

effect of siRNAs targeting MAPK1 and EGFR. As2O3 treatment (6 and 18 hours) upon transfection with 

MAPK1 or EGFR siRNA resulted in a dramatic reduction in As2O3-mediated phosphorylation of EGFR 

(Figure 11A) although there was no change in SnoN protein. Additionally, we noted markedly decreased 
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cleaved PARP levels with increased expression of anti-apoptotic XIAP relative to cells transfected with 

control siRNA; these results suggest that MAPK1 and EGFR knockdown modulates the cellular 

sensitivity to As2O3. However in contrast, pp60c-Src knockdown led to an increase in cleaved PARP and 

reduction in XIAP levels (Figure 11A). Although PP2 treatment resulted in inhibition of As2O3-mediated 

EGFR phosphorylation and SnoN levels (Figure 9a and 9b), pp60c-Src knockdown did not alter the 

EGFR phosphorylation and SnoN induction. This validated the effects of SU6656, a specific Src kinase 

 

Figure 11. siRNA mediated reduction of EGFR, pp60 c-Src, and MAPK1 modulates the As2O3-

induced cellular responses (*Continued on next page) 
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inhibitor and indicates that As2O3-induced changes in SnoN expression and EGFR activation may not be 

mediated by pp60c-Src but possibly other members of the Src family of kinases; further investigation is 

required to identify the specific members of Src family involved in this process. We next validated the 

effects of these siRNAs on As2O3-mediated cell death responses by performing apoptosis assays (Figure 

11B). Collectively, these results indicate that knockdown of EGFR, MAPK1, and pp60c-Src expression 

Figure 11 (Continued). siRNA mediated reduction of EGFR, pp60 c-Src, and MAPK1 modulates 

the As2O3-induced cellular responses  

(A) HEY cells were either mock transfected or transfected with control siRNA or EGFR or pp60c-Src 

or MAPK1 siRNA as described in Chapter 2 followed by treatment with 25 μM As2O3 for 6 and 18 

hours. Lysates collected were analyzed via western blotting for the indicated antibodies. (B) Cells were 

transfected with control or EGFR or pp60c-SRc or MAPK1 siRNA followed by treatment with 25 μM 

As2O3 for 18 hours apoptosis assay was performed and data is presented in tabular form. (C) Cells 

transfected with control or p66ShcA siRNA were treated with 100 ng/ml EGF or 25 μM As2O3 for 

indicated durations and total cell lysates collected were analyzed via western analyses. (D) Lysates 

collected in (C) were utilized to perform immunoprecipitation of EGFR as described earlier. Data 

presented in (A), (B), (C) and (D) are representative of two independent experiments. 
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modulates cell viability of HEY cells via regulation of the anti-apoptotic protein XIAP upon As2O3 

stimulation; this process appeared to be independent of SnoN levels. As shown in Figures 8F and 8G, 

As2O3 stimulation results in phosphorylation of p66 ShcA and increases the association between EGFR 

and Grb2. Previous studies implicate the p66 isoform of ShcA in cell death while p46 and p52 are 

associated with cell survival [218-220]. In this regard, we next tried to determine whether p66 ShcA is 

involved in mediating the As2O3-induced increase in EGFR-Grb2 interaction. We transfected HEY cells 

with siRNA that specifically targets the CH2 domain of p66 ShcA (a domain that is absent in the p46 and 

p52 isoforms) and treated them with As2O3 for 1 and 6 hours. Interestingly, co-immunoprecipitation of 

EGFR performed in cells with p66 ShcA knockdown (with As2O3) showed that the association of EGFR 

with Grb2 was markedly abrogated when compared to control siRNA treatment. Together these results 

suggest that EGFR and Grb2 interaction stimulated by As2O3 requires p66 ShcA.  

 

Discussion 

As described in Chapter 1, SnoN/SkiL a negative transcriptional regulator of TGF-β signaling, is 

amplified at 3q26.2 locus and plays a very important role in ovarian cancer development and pathogenesis 

[9]. Our previous studies show that As2O3 treatment in HEY (serous epithelial ovarian carcinoma) cells 

results in a marked induction of SnoN which mediates a beclin-1 independent cytoprotective autophagy 

that counters the cytotoxic effects of As2O3 [1]. However, the mechanism by which As2O3 induces SnoN 

expression and its cellular responses was unclear. Herein, our studies presented in this Chapter 

demonstrate that the As2O3-induced SnoN expression and cellular response in ovarian cancer cells is 

mediated by activation of the PI3K/AKT signaling pathway.  

Previous studies show that the EGF receptor and its downstream signaling pathways including 

those involving PI3K/AKT, MAPK, and Src are highly altered in specific cancers including ovarian 

cancers; they play prominent roles in cancer cell survival and proliferation [9, 70, 189, 190, 198-201, 221, 

222].  
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Interestingly, these pathways mediate As2O3-induced cellular responses [205, 206, 209]. We 

demonstrate in this Chapter that As2O3 treatment, similar to EGF stimulation, leads to tyrosine 

phosphorylation of EGFR and further modulates its interaction with ShcA and Grb2 (Figure 8). In 

addition, As2O3 leads to a marked increase in SnoN levels (similar to previous studies [1]) and increases 

apoptotic responses as evidenced by increased cleaved PARP, reduced BCL-XL, and reduced XIAP 

levels. Interestingly, the kinetics of As2O3-induced activation of EGFR was slower in comparison to EGF 

stimulation implicating different mechanisms involved in activation of EGFR upon treatment with EGF 

and As2O3. As2O3 also rapidly activates AKT (by 1 hour) and Src (by 6 hours) prior to the activation of 

Figure 12. Schematic representation of the mechanism of SnoN modulation by As2O3 

As2O3 activates EGFR and modulates its interactions with ShcA and Grb2. It also activates PI3K/AKT 

pathway that mediates the As2O3-mediated SnoN induction and cell survival responses that are blocked 

by LY294002. MAPK1 and EGFR knockdown lead to decreased sensitivity to As2O3 in a SnoN 

independent manner. (*Model created by Madhav Karthik Kodigepalli) 
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EGFR (peaking at 18 hours) potentially implicating the PI3K/AKT and Src pathways in As2O3-induced 

EGFR activation and cellular responses.  

Src activation upon As2O3 treatment appeared to be biphasic, peaking first at 6 hours and then 

again at 18 hours suggesting a dual function in mediating the As2O3 response. Since Src mediates both 

cytoprotective and cytotoxic responses [223] depending on the specific Src family member involved 

[224], we hypothesize that Src activation at the early stages of As2O3 treatment (1 to 6 hours) might 

mediate the cell survival response while promoting the cell death response at later time points (18 to 30 

hours). Indeed, inhibition of Src family kinase activity via PP2 (a general Src family kinase inhibitor) 

dramatically reduces As2O3-mediated EGFR activation and induction of SnoN mRNA and protein 

supporting the role of Src signaling in this process. This observation is consistent with previous studies 

showing the role of Src in mediating the As2O3-induced activation of EGFR [209]. However, we did not 

observe the same effect upon treatment with SU6656, a specific Src kinase inhibitor. This difference in 

responses could potentially be due to the possibility of PP2 and SU6656 targeting different members of 

the Src family. Although reduction of pp60c-Src altered the cellular sensitivity to As2O3, it did not affect 

SnoN expression suggesting that further studies are needed to identify the specific Src family member 

involved in this process. Similarly, although treatment with U0126, a drug inhibiting MAP kinase activity 

did not have any effect on the As2O3 responses, MAPK1, and EGFR siRNAs altered the cell sensitivity to 

As2O3. These results implicate EGFR/MAPK pathway to mediate the cellular responses of As2O3 in a 

SnoN-independent mechanism. 

Although EGFR is activated upon As2O3 treatment, the exact mechanism by which As2O3 leads to 

EGFR activation is unknown and needs to be investigated further. We performed phosphatase activity 

assays (data not shown) to determine whether reduced phosphatase activity upon As2O3 treatment resulted 

in increased phosphorylation of EGFR. However, phosphatase activity levels were not altered in presence 

of As2O3. Slower kinetics of As2O3-induced EGFR activation and its interaction with ShcA and Grb2 

compared to those with EGF stimulation suggests an indirect mechanism of activation that might involve 
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other signaling mediators. We propose that the EGFR activation upon As2O3 treatment could be mediated 

by Src kinase activity. Indeed, previous studies report that As2O3 stimulation leads to EGFR 

phosphorylation at tyrosines 845 and 1173 which are known targets of Src kinase activity [209]. Few 

studies also report the role of reactive oxygen species (ROS) in regulating the Src kinase activity [225] 

and our previous study suggests that As2O3-induced responses including changes in SnoN expression are 

also mediated by increased production of ROS [1]. Collectively, these results might suggest a role for Src 

kinase activity in activating EGFR upon As2O3 treatment in a ROS-dependent manner.  

Studies indicate that the genes localized to the 3q26 region may cross-regulate each other as 

evidenced by EVI1 (3q26.2) regulating the expression of SnoN (3q26.2) [33], PI3K (PIK3CA, 3q26.3) 

[226, 227], and claudin-1 (3q28) [32]; and PI3K  regulating SnoN expression [9]. Interestingly, as shown 

in Figure 8B, we noted a rapid activation of AKT (at 1 hour) prior to SnoN induction (6 hours) in 

response to As2O3 suggesting a role of PI3K/AKT pathway activation in mediating the SnoN changes. In 

this regard, we tried to determine whether SnoN expression is regulated by the PI3K pathway. Indeed, 

inhibition of the PI3K/AKT pathway via LY294002 and GDC0941 also resulted in reduction of As2O3-

induced SnoN expression. Additionally, PI3K inhibition altered the cellular responses of HEY cells to 

As2O3 as evidenced by increased percentage of apoptotic cells and decreased levels of anti-apoptotic 

markers. We further validated these results via siRNA mediated knockdown of PIK3CA which had 

similar effect on the cell death responses. These results collectively demonstrate that the PI3K signaling 

regulates SnoN expression and facilitates a cytoprotective pathway which in turn antagonizes the 

cytotoxic effect of As2O3 in HEY cells. As stated above, PIK3CA gene (at 3q26.3) is amplified in ovarian 

cancers and is localized at a close proximity to SnoN/SkiL (3q26.2). Therefore, our findings may also 

suggest a co-operative oncogenicity between SnoN and PIK3CA [9] leading to increased cell survival in 

ovarian cancer cells upon treatment with chemotherapeutics. Collectively, our studies indicate that 

PI3K/AKT and Src pathways modulate the As2O3-induced SnoN expression and cell survival responses in 
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HEY ovarian carcinoma cells. These findings may aid in the development of novel combinatorial 

strategies targeting SnoN and PI3K (or Src) pathways in the treatment of ovarian cancer.    
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Chapter 4 

Phospholipid Scramblase 1, an IFN-Regulated Gene Located at 3q23, is Regulated by SnoN/SkiL in 

Ovarian Cancer Cells  

Introduction     

Amplification of the chromosomal 3q26 region is a commonly observed genomic aberration in 

various epithelial cancers including ovarian cancers [9-12, 28-30]. As shown in Figure 1 (Chapter 1, page 

3), this region harbors various oncogenes including MECOM [10], SnoN [9, 28], PKCι [31] (at 3q26.2), 

and PIK3CA [11] (at 3q26.3) that are highly amplified at the DNA copy number level in ovarian cancers. 

Previous studies including ours suggest that the genes located at the 3q26 locus can cross regulate each 

other [32, 33, 177]. EVI1 (ecotropic viral integration site 1), located at 3q26.2, binds to the SnoN 

promoter region and regulates SnoN expression [33]. Furthermore, our laboratory has shown that EVI1 

regulates claudin-1 mRNA and protein levels; CLDN-1 is located at 3q28 [32]. Our recent studies 

(presented in Chapter 3) also show that PIK3CA, the catalytic subunit of PI3K located at 3q26.3, 

regulates SnoN expression in ovarian cancer cells treated with arsenic trioxide (As2O3) [9, 177].  

SnoN/SkiL is a negative transcriptional regulator of TGFβ signaling which binds to SMAD2/3 

and SMAD4 complex to repress the transcription of TGFβ target genes [75-77, 85, 86]. SnoN is amplified 

and overexpressed in various cancers including ovarian [9], lung [80], breast [79], esophageal [76], and 

colorectal cancers [82]. Previous aCGH (array comparative genomic hybridization) studies performed in 

235 ovarian cancer patient samples indicated that DNA copy number levels of SnoN and mRNA 

expression are elevated in ovarian cancers [9]. Our research group demonstrated that treatment of HEY 

ovarian carcinoma cells with As2O3 results in a dramatic induction in expression of SnoN [1]. Further, 

SnoN was found to modulate chemotherapeutic responses in HEY cells by mediating cytoprotective 
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autophagy in response to As2O3 [1]. As presented in Chapter 3, we identified that SnoN expression is 

modulated in response to As2O3 is via activation of the PI3K/AKT signaling pathway [177].   

As described in Chapter 1, PLSCR1 (phospholipid scramblase 1, 318 aa), a type-II 

transmembrane protein located at chromosome 3q23 belongs to the family of phospholipid scramblases. 

PLSCR1 was previously implicated in externalization of phosphatidylserine (PS) [34], a phenomenon 

aiding in disruption of membrane phospholipid asymmetry during cellular events such as blood 

coagulation and apoptosis. However, recent evidence indicates that TMEM16F and Xkr8 to be 

responsible for the PS externalization during blood coagulation and apoptosis, respectively [121, 123, 

125, 132]. As described in Chapter 1, PLSCR1 is involved in various signaling pathways [19, 42, 133, 

144, 153, 228]. PLSCR1 is activated by c-Src upon EGF stimulation [144]. It is also phosphorylated by c-

Abl upon treatment with cisplatin [18]. Additionally it also interacts with various proteins of significant 

signaling functions suggesting a potential role of PLSCR1 in signaling pathways. PLSCR1 interacts with 

EGF receptor and Shc-A upon stimulation with EGF [19]. Furthermore, PLSCR1 interacts with RELT 

(receptors expressed in lymphoid tissues) family members [228], c-Abl [18], extracellular matrix protein 

1 (ECM1) [155], c-Myc target Onzin [154], and the β-secretase cleaving enzyme (BACE) [133]. 

Collectively, all these findings indicate a diverse role of PLSCR1 in various signaling processes. As 

shown in Table 3 (Chapter 1), PLSCR1 expression is upregulated by various stimuli including cytokines, 

growth factors, and differentiation inducing agents. For instance, treatment with epidermal growth factor 

(EGF) [19], all-trans retinoic acid (ATRA) [17, 40], granulocyte colony stimulation factor (G-CSF) [157], 

stem cell factor (SCF) [157] results in induction of PLSCR1 in specific cell types. Additionally, treatment 

with IFNs, cytokines with antiviral function, dramatically induces the expression of PLSCR1 in specific 

cell types [38, 39]. In fact, PLSCR1 is one of the most induced interferon stimulated genes (ISG) [38]. 

Later studies demonstrated that IFN transcriptionally regulates PLSCR1 expression which requires the 

ISRE element present in the untranslated exon 1 of PLSCR1 [39]. IFN-mediated induction of PLSCR1 

occurs by activation of PKCδ, JNK, and STAT1 [145]. Interestingly, IFN treatment leads to nuclear 

localization of PLSCR1 in specific cell lines [24]. Although, PLSCR1 expression is induced by various 
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factors, the exact mechanisms by which it is transcriptionally regulated remains unclear. Recent studies 

identify the Snail EMT regulator as a direct transcriptional regulator of PLSCR1 mRNA which is the only 

published evidence of direct transcriptional regulation of PLSCR1 [146].  

Recent reports suggest that PLSCR1 plays an important role in cancer development. In colorectal 

cancer patient specimens, PLSCR1 expression was highly elevated [22] relative to normal colorectal 

mucosa and its inhibition via siRNA or N-terminal targeted antibodies markedly reduced cancer cell 

proliferation and tumorigenicity implicating PLSCR1 in a tumor promoting function [20, 21]. On the 

other hand, mouse xenograft studies by Silverman and colleagues using PLSCR1 overexpressing HEY1B 

ovarian cancer cells suggests a tumor suppressive role for PLSCR1 in vivo [15] which was absent when 

studied under in vitro conditions [15]. Collectively, these studies implicate potential role of PLSCR1 in 

cancer development and progression. However, the role of PLSCR1 in ovarian cancer development and in 

chemotherapeutic responses remains uninvestigated. In addition, the mechanisms and mediators involved 

in transcriptional regulation of PLSCR1 are unclear. As described above, evidence suggests that the 

oncogenes located at/in proximity of 3q26 locus (EVI1, SnoN, PIK3CA, etc.) can cross regulate each 

other via cooperative oncogenicity. Since PLSCR1 is located at 3q23, proximal to 3q26 locus, we 

hypothesize that SnoN/SkiL, located at 3q26.2 can regulate the expression of PLSCR1 in ovarian cancers. 

Furthermore, we hypothesize that PLSCR1 DNA copy number and expression is altered in ovarian 

cancers relative to normal ovarian cells. In this regard, our goal was to determine whether PLSCR1 DNA 

copy number and RNA/protein expression is altered in ovarian cancers with a pattern similar to SnoN; 

and to identify whether PLSCR1 is transcriptionally regulated by SnoN/SkiL in ovarian cancer cells. 

Herein, indeed our bioinformatic analyses studies indicate that PLSCR1 DNA copy numbers and mRNA 

levels are elevated in ovarian cancer patient samples and highly correlate with those of SnoN/SkiL. 

Furthermore, via qPCR and luciferase promoter based assays, we demonstrate that SnoN transcriptionally 

regulates PLSCR1 expression. Finally, our studies indicate that PLSCR1 knockdown, similar to SnoN 

knockdown results as previously reported, sensitizes the ovarian cancer cells to treatment with As2O3. 
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Figure 13. Correlation between DNA copy number and mRNA alterations of PLSCR1 and 

SnoN in ovarian cancers (*Continued on next page) 

 

Collectively, our studies show that PLSCR1, transcriptionally regulated by SnoN, might potentially plays 

an important role in ovarian cancer development and chemotherapeutic responses. 

 

Results  

Elevated PLSCR1 DNA copy number and mRNA expression in ovarian cancer: 
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Since PLSCR1 is located at 3q23, near the 3q26 region is well known to be amplified in ovarian 

cancers, we assessed whether its DNA copy number and mRNA/protein expression was also altered in 

ovarian cancers. In this regard, we utilized bioinformatic programs to analyze the TCGA (The Cancer 

Genome Atlas) ovarian cancer dataset (https://tcga-data.nci.nih.gov.tcga/). As shown in Figure 13A, using 

Oncomine (http://www.oncomine.org/) [229] , we demonstrated that the PLSCR1 DNA copy number 

levels, similar to SnoN, were elevated in ovarian cancer patients (607/1168). Using cBioPortal  

Figure 13. Correlation between DNA copy number and mRNA alterations of PLSCR1 and SnoN 

in ovarian cancers (*Continued on next page) 
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(http://www.cbioportal.org/public-portal/) [230, 231] and we determined that PLSCR1 and SnoN were 

amplified in ~13% and ~31% of the patients, respectively. We next determined whether PLSCR1 and 

SnoN are co-amplified and noted that 70 of the 570 patients (~12%) had amplifications in both the genes. 

Since SnoN mRNA transcripts are overexpressed in ovarian cancers [9], we next tried to identify whether 

PLSCR1 mRNA expression also is altered in ovarian cancers. qPCR analyses in normal ovarian and 

ovarian cancer cell lines indicated that PLSCR1 mRNA levels were elevated in ovarian cancer cells 

compared to normal immortalized (LTAg/hTERT) ovarian surface epithelial (T80) cells (Figure 13C). 

 

Figure 13 (Continued). Correlation between DNA copy number and mRNA alterations of 

PLSCR1 and SnoN in ovarian cancers 

(A) SnoN and PLSCR1 DNA copy number levels were determined in TCGA ovarian serious 

cystadenocarcinoma dataset via Oncomine bioinformatic analyses. (B) Correlation of SnoN and 

PLSCR1 DNA copy number alterations in ovarian cancer patients was analyzed by performing linear 

regression analyses via R (R-Project). (C) Total RNA was isolated from the normal ovarian (T80 and 

T29) and ovarian cancer (OVCAR8, OVCA429, HEY and SKOV3) cell lines; relative PLSCR1 (Left 

panel) and SnoN mRNA levels (Right panel) were determined via quantitative real time PCR as 

described in chapter 2. (D) Linear regression analyses were performed on the PLSCR1 and SnoN 

mRNA (Left panel) and DNA copy number levels (Right panel) in the ovarian cancer cell lines. (E) 

Total lysates were harvested from the cell lines mentioned in (C) and western blotting was performed 

for the indicated antibodies as described in chapter 2. (F) Linear regression analyses performed on 

PLSCR1 and SnoN protein levels as mentioned above. Data presented in (C) and (E) is representative of 

two independent experiments.  

 

http://www.cbioportal.org/public-portal/
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Altered PLSCR1 DNA copy number and mRNA expression correlate with SnoN in ovarian cancers:  

Linear regression analyses using R program (http://www.R-project.org/) of copy number alterations for 

PLSCR1 and SnoN demonstrated that most patients with PLSCR1 amplification also had amplified SnoN 

while only 33% of patients with SnoN amplification had amplification of the PLSCR1 gene (R
2
 = 0.2474) 

(Figure 13B). Similarly, DNA copy number variations of both the genes were also correlated in ovarian 

cancer cell lines (Figure 13D, Right panel). Furthermore, similar to DNA copy number changes, linear 

regression analyses also indicated that the changes in PLSCR1 mRNA levels are highly correlated with 

the SnoN mRNA changes (Figure 13D, Left panel). In contrast, western analyses did not show significant 

correlation between SnoN and PLSCR1 protein level expression in these cell lines (Figure 13E and 13F). 

Together, these results indicate that the PLSCR1 DNA copy number and mRNA levels are elevated in 

ovarian cancer and these alterations highly correlate with that of SnoN suggesting a potential synergistic 

function of these two genes in ovarian cancer development and responses to chemotherapeutics. 

Furthermore, the discordance in the SnoN and PLSCR1 protein expression suggests differential 

mechanisms of protein level regulation involved for SnoN and PLSCR1. 

SnoN and TGFβ transcriptionally regulate the expression of PLSCR1: 

Since SnoN and PLSCR1 are located in close proximity to each other (at 3q26.2 and 3q23 respectively) 

and their DNA copy number level changes are highly correlated in ovarian cancers, we next hypothesized 

that SnoN regulates the expression of PLSCR1. To address this question, we reduced the expression of 

SnoN using siRNA in HEY ovarian carcinoma cells (~95% at protein level) and quantified PLSCR1 

mRNA levels. Indeed SnoN knockdown significantly reduced (~35%) PLSCR1 mRNA levels (Figure 

14A) suggesting that SnoN regulates PLSCR1 transcriptionally. To provide additional evidence of the 

transcriptional regulation of PLSCR1 by SnoN, we performed luciferase-based PLSCR1 promoter 

activity assays in T80 cells using pGL3 vector containing genomic PLSCR1 (details described in Chapter 

2). SnoN knockdown resulted in a significant reduction of promoter activity of PLSCR1 providing 



77 

 

supporting evidence that SnoN transcriptionally regulates PLSCR1 mRNA levels (Figure 14B). Since 

SnoN is a negative regulator of TGFβ signaling [76, 77], we measured the PLSCR1 promoter activity in 

T80 cells which were treated with TGFβ (50 pM) and noted that similar to SnoN knockdown, TGFβ 

stimulation also resulted in significant reduction of PLSCR1 promoter activity (Figure 14C).  

Furthermore, TGFβ stimulation also significantly reduced PLSCR1 mRNA levels by 18 hours 

post-treatment after an initial increase at 3 hours, while SnoN mRNA levels increased by 3 hours (as 

previously reported [9]) and 18 hours (Figure 14D). These results suggest divergent mechanism of 

regulation of PLSCR1 and SnoN by TGFβ stimulation. Since TGFβ stimulation reduced the expression of   

Figure 14. SnoN and TGFβ transcriptionally regulate PLSCR1 (*Continued on next page) 
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PLSCR1, we next assessed whether PLSCR1 modulates the TGFβ signaling pathway, we exogenously 

expressed wild type (WT) PLSCR1 and the palmitoylation mutant (C/A) PLSCR1, which harbors a 

mutation in palmitoylation site and localizes to the nucleus, in T80 cells and looked at the expression of 

TGFβ target molecules. Interestingly, overexpression of both of these PLSCR1 forms resulted in a 

Figure 14. SnoN and TGFβ transcriptionally regulate PLSCR1 

 (A) HEY cells were transfected with control or SnoN siRNA as described in chapter 2 and total 

RNA was isolated 48 hours post siRNA treatment; relative mRNA levels of PLSCR1 (Left panel) 

and SnoN (Right panel) were measured as described earlier. (B and C) T80 cells were transfected 

with pGL3-basic vector containing PLSCR1 genomic construct followed by treatment with control 

or SnoN siRNA (B) or 50 pM TGFβ for 24 hours (C); PLSCR1 promoter activity was determined 

by performing luciferase assay as described in chapter 2. (D) T80 cells were treated with 50 pM 

TGFβ for 3 and 18 hours and relative mRNA levels of PLSCR1 (Left panel) and SnoN (Right 

panel) were determined from total RNA as described earlier. (E) T80 cells were mock transfected 

or transfected with pcDNA3 plasmid containing WT-PLSCR1 or C-A PLSCR1 at concentrations 

ranging from 0.25 to 2.0 μg/ml; cell lysates were harvested 48 hours post-transfection and western 

analysis was performed for the indicated antibodies. All the data presented is representative of two 

independent experiments.  
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dramatic induction of plasminogen activator inhibitor 1 (PAI-1) (Figure 14E), a known target of TGFβ 

pathway [232, 233]. PAI-1 expression is known to regulate the TGFβ induced migratory and invasive 

potential in breast and gynecological cancers [13]. Collectively, these results indicate that PLSCR1 is 

transcriptionally regulated by SnoN and TGFβ stimulation; and similar to SnoN, PLSCR1 expression can 

also modulate the TGFβ signaling pathway. However, how PLSCR1 modulates the TGFβ signaling and 

its significance remains to be investigated.    

SnoN regulates the IFN-mediated induction of PLSCR1: 

Previous studies report that interferons (IFN) stimulation results in a significant induction of PLSCR1 in 

various cell lines as shown in Chapter 1 (Table 3) [38, 39]. Since SnoN knockdown resulted in reduced 

expression of PLSCR1, we next tried to determine whether SnoN could modulate IFN-mediated induction 

of PLSCR1. Similar to the previous reports [38, 39], we noted a dramatic induction of PLSCR1 protein 

levels in HEY ovarian carcinoma cells upon treatment with 3,000 IU/ml IFN-2α (Figure 15A) starting 

from 6 hours up to 24 hours. We further validated this by performing qPCR which showed a significant 

increase in PLSCR1 mRNA levels (~3-fold) at 3 hours post-treatment with IFN-2α (Figure 15B, Left 

panel). Interestingly, we also detected SnoN protein levels to be elevated upon IFN-2α treatment starting 

at 3 hours prior to PLSCR1 induction (at 6 hours) (Figure 15A). These results suggested a potential role 

of SnoN in transcriptional activation of PLSCR1 upon IFN-2α stimulation. However, we did not note any 

significant changes in the SnoN mRNA levels upon IFN-2α treatment (Figure 15B Right panel). Our 

previous studies demonstrate that As2O3-induced SnoN expression and apoptosis in ovarian cancer cells is 

mediated by increased production of reactive oxygen species (ROS) [1]; and treatment with N-acetyl 

cysteine (NAC), an anti-oxidant and free radical scavenger [213] markedly reduced these effects.  

In order to determine whether IFN-mediated PLSCR1 and SnoN induction also is mediated by 

production of ROS, we treated HEY cells with IFN both in the presence and absence NAC. However, 

western analyses indicated no change in the induction of PLSCR1 or SnoN protein levels upon IFN-2α 
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treatment in the presence of NAC suggesting that their induction is independent of ROS production 

(Figure 15H). Previous studies have identified IFN-induced PLSCR1 to be localized to plasma membrane 

and/or nuclear compartment in specific cell types [24]. In this regard, we performed immunostaining for 

PLSCR1 in HEY cells treated with IFN-2α. As shown in Figure 15C, PLSCR1, dramatically induced 

following 18 hour IFN stimulation, was localized predominantly to the plasma membrane and perinuclear 

regions. Similarly, subcellular fractionation studies revealed that although a minor fraction of PLSCR1 

was detected in the nuclear fraction, PLSCR1 was largely detected in the cytoplasmic fraction (Figure 

15D).  

Figure 15. Interferon-induced PLSCR1 mRNA expression is regulated by SnoN (*Continued on 

next page) 
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Figure 15. Interferon-induced PLSCR1 mRNA expression is regulated by SnoN 

(A) HEY cells were treated with 3,000 IU/ml of IFN-2α from 15 minutes up to 24 hours. Cell lysates 

were harvested and analyzed by western blotting for the indicated antibodies. (B) HEY cells were 

treated with 3,000 IU/ml IFN-2α for 1 and 3 hours and total RNA was isolated. Relative PLSCR1 (Left 

panel) and SnoN (Right panel) mRNA levels were determined via qPCR. (C) HEY cells were treated 

with 3,000 IU/ml IFN-2αfor 24 hours followed by immunostaining against PLSCR1 as (described in 

chapter 2). (D) HEY cells treated with IFN-2α as in (C) followed by subcellular fractionation (described 

in chapter 2). Fractions were analyzed via western blotting for indicated antibodies. (E and F) HEY cells 

were transfected with control or SnoN siRNA followed by treatment with IFN-2α for 3 hours. Total 

RNA isolated was isolated and qPCR was performed to determine the relative PLSCR1 (E) and SnoN 

(F) mRNA levels. (G) HEY were treated with IFN-2α for 6 hours and cell lysates harvested followed by 

western analysis for the indicated antibodies. (H) HEY cells were treated with IFN-2α in presence or 

absence of 100 – 1000 μM NAC for 9 hours. Cell lysates were harvested and analyzed via western 

blotting for the indicated antibodies. Data presented in (A) is representative of three independent 

experiments while (B), (C), (D) and (E) represent two independent experiments.  
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In order to determine whether SnoN modulates the IFN-mediated PLSCR1 induction, we next 

treated the HEY cells with IFN-2α after knockdown of SnoN via siRNA. Indeed, we noticed significant 

reduction in IFN-induced PLSCR1 mRNA levels (~1.8 fold, Figure 15E) upon SnoN knockdown (Figure 

15F); however, SnoN knockdown did not alter the IFN-induced PLSCR1 protein levels (Figure 15G) 

implicating involvement of other mechanisms in the process of PLSCR1 induction. The lack of changes 

in PLSCR1 protein upon SnoN knockdown could also potentially be attributed to the long half-life of 

PLSCR1 protein (which has yet to be formally assessed). Our studies in HEY cells treated with 

cycloheximide (CHX), an inhibitor of translation did not show significant reduction in PLSCR1 levels 

even 24 hours after CHX treatment (Data not shown). Further studies are needed to investigate the 

mechanisms involved in this process. Collectively, these results indicate that SnoN plays a part in 

regulating the IFN-induced PLSCR1 expression. 

PLSCR1 knockdown modulates the ovarian cancer cell responses to As2O3: 

As mentioned earlier, our previous studies indicate that As2O3 treatment results in induction of 

SnoN levels which mediates a cytoprotective autophagy that antagonizes the ROS-mediated cell death 

responses in HEY ovarian carcinoma cells [1]. In order to determine whether PLSCR1, similar to SnoN 

could mediate this process, we first tried to identify whether As2O3 could alter the PLSCR1 expression in 

HEY cells. Interestingly, PLSCR1 protein levels significantly decreased upon treatment with 25 μM 

As2O3 from 1 to 24 hours (Figure 16A and B). Previous studies report As2O3 to be involved in 

proteasomal degradation of proteins including EVI1 in HEY cells [1]. In this regard, we next tried to 

determine whether the reduction of PLSCR1 protein levels upon As2O3 treatment is due to its degradation 

via the proteasomal pathway. However, 25 μM As2O3 in combination with 5 μM MG132 (a proteasomal 

inhibitor) did not recover the PLSCR1 levels reduced by As2O3 treatment (Figure 16C) indicating that 

reduction in PLSCR1 levels is independent of the proteasomal degradation pathway. In order to determine  
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whether As2O3 treatment transcriptionally reduced the PLSCR1 expression, we performed qPCR analyses 

to quantify the PLSCR1 mRNA levels in As2O3 treated HEY cells. Consistent with the protein levels, 

PLSCR1 mRNA levels were also reduced significantly upon As2O3 treatment (Figure 16D) indicating that 

As2O3-induced transcriptional regulation of PLSCR1. 

 

Figure 16. PLSCR1 knockdown alters the sensitivity of ovarian cancer cells to As2O3 

(*Continued on next page) 
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SnoN knockdown alters the sensitivity of HEY ovarian cancer cells to As2O3 by increasing 

apoptosis and reducing cytoprotective autophagic flux [1]. Since PLSCR1 is regulated by SnoN and their 

expression is altered similarly in ovarian cancers, we hypothesized that PLSCR1 knockdown would also 

alter the chemotherapeutic responses in ovarian cancer cells. In this regard, we treated HEY cells with 

As2O3 after treatment with non-targeting siRNA and PLSCR1 siRNA. Indeed, as shown in Figure 16E, we 

Figure 16. PLSCR1 knockdown alters the sensitivity of ovarian cancer cells to As2O3 

(A) HEY cells were treated with 25 μM of As2O3 from 15 minutes up to 24 hours. Cell lysates were 

harvested and analyzed by western blotting for the indicated antibodies. (B) Densitometric analyses 

were performed on PLSCR1 protein changes observed in (A). (C) HEY cells were treated with 25 

μM of As2O3 in presence and absence of 5 μM MG132 for 6 and 18 hours. Cell lysates harvested 

were analyzed via western blotting for the indicated antibodies. (D) HEY cells treated with As2O3 as 

in (A) for 6 and 18 hours followed by total RNA isolation; qPCR was performed to determine the 

relative PLSCR1 mRNA levels. (E) HEY cells were transfected with control or PLSCR1 siRNA 

followed by treatment with 25 μM As2O3 18 hours; Cell lysates were harvested followed by western 

analysis for the indicated antibodies. (F) HEY cells were transfected with pEGFP-LC3 vector 

followed by treatment with control or PLSCR1 siRNA. As2O3 treatment was performed (10 μM, 18 

hours) EGFP-LC3 assay (Left panel) was performed as described in chapter 2. Percentage of cells 

positive for LC3 punctae was represented in bar graphs (Right panel). Data presented in (A) and (E) 

is representative of three independent experiments while (B), (C), (D) and (F) represent two 

independent experiments. 
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noticed a marked increase in cleaved PARP levels, a marker of apoptosis in the As2O3 treated cells upon 

PLSCR1 knockdown. This suggests that PLSCR1 modulates the chemo-sensitivity in these cells. 

Additionally, we also noticed a dramatic reduction in the conversion of LC3-I to LC3-II (an important 

step in the formation of autophagosomes during the process of autophagy [2]) in the presence of As2O3 in 

PLSCR1 reduced cells (Figure 16F). These results were further validated via EGFP-LC3 autophagy assay 

showing a significant reduction in number of EGFP-LC3 punctae (Figure 16F) formed upon As2O3 

treatment in the PLSCR1 knockdown cells. Collectively, these results clearly indicate that PLSCR1, 

similar to SnoN, alters the ovarian cancer cell responses to As2O3 by altering the autophagic and apoptotic 

processes. The complete mechanism by which PLSCR1 increases the sensitivity of ovarian cancer cells to 

chemotherapeutic agents needs to be investigated.         

 

Discussion 

PLSCR1 is located at chromosome 3q23, adjacent to the 3q26 locus that is amplified in various 

cancers including ovarian cancer [9, 10, 12, 28-30]. Previous reports suggest that the genes amplified at 

3q26 might cross-regulate other genes that are located in close proximity [32, 33, 234]. Although 

presumed to regulate translocation of phospholipids between the inner and outer leaflets of plasma 

membrane, recent studies have indicated elevated expression and a potential tumor promoting function of 

PLSCR1 in colorectal and metastatic cancers [15, 20-22]. Recent immunohistochemistry (IHC) studies 

show PLSCR1 expression to be elevated in colorectal cancers specimens [22]. Moreover, inhibition of 

PLSCR1 (via siRNAs and specific antibodies) delays colorectal cancer and metastatic liver cancer 

development implicating PLSCR1 as a tumor promoter [20, 21]. Although mouse xenograft studies 

performed utilizing HEY1B ovarian carcinoma cells implicated a potential role for PLSCR1 in tumor 

suppression in ovarian cancer, these observations were not detected in vitro [15]. 
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Herein, we demonstrate, using Oncomine and cBioPortal bioinformatic analyses of the TCGA 

cancer genomic dataset that the DNA copy number levels of PLSCR1 are elevated in ovarian cancer 

patient samples and cell lines. Via qPCR analyses, we also identified that mRNA expression levels of 

PLSCR1 are also elevated in ovarian cancer cell lines compared to immortalized normal ovarian cells 

(Figure 13C). More importantly, alterations in PLSCR1 DNA copy number and mRNA expression levels 

highly correlate with that of SnoN, which is amplified at 3q26.2 and plays a prominent role in ovarian 

cancer pathogenesis and chemotherapeutic responses [1, 9]. These observations suggest that PLSCR1 

might play a similar function as SnoN in ovarian cancer development. Interestingly, we did not find any 

Figure 17: Model of the regulation of PLSCR1 by SnoN and modulation of As2O3-induced cell 

death response by PLSCR1 

SnoN transcriptionally upregulates PLSCR1 expression while As2O3 leads to its downregulation. 

Upregulated PLSCR1 results in increased expression of PAI-1, a target of TGFβ signaling [13]. siRNA-

mediated reduction of PLSCR1 increases the sensitivity of ovarian cancer cells to treatment with 

As2O3 via increased apoptosis and decreased autophagy. (*Model created by Madhav Karthik 

Kodigepalli) 
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correlation between SnoN and PLSCR1 at the protein level and we propose that this discordance might be 

due to different translational and post-translational mechanisms between SnoN and PLSCR1 which needs 

further investigation. We also demonstrate that PLSCR1 mRNA level expression is regulated by SnoN 

and TGFβ stimulation in ovarian cancer. SnoN knockdown resulted in significant reduction of both 

endogenous and IFN-2α induced PLSCR1 mRNA levels. Interestingly, in addition to SnoN reduction, 

TGFβ treatment also resulted in a significant reduction in promoter activity of PLSCR1 validating the role 

of SnoN and TGFβ in transcriptional regulation of PLSCR1. On the other hand, overexpression of 

PLSCR1 (both wild type (WT) and C/A mutant, that localizes to nuclear compartment) led to dramatic 

increase in protein expression of PAI-1, an important TGFβ target gene [233] which is known to inhibit 

the migratory and invasive capabilities of breast and gynecological cancers [13]. This suggests a potential 

role for PLSCR1 in modulating TGFβ-stimulated migration and invasion in cancer cells. However, the 

exact mechanisms involved in the regulation of PLSCR1 by SnoN or TGFβ and the regulation of TGFβ 

signaling by PLSCR1 remain to be investigated. Recent reports of Snail, an important transcription factor 

associated with EMT, binding directly to PLSCR1 promoter region to down-regulate its expression is the 

only evidence thus far of direct transcriptional regulation of PLSCR1 [146]. It is currently unknown 

whether SnoN, similar to Snail, could also bind to the promoter region of PLSCR1 to alter its 

transcription. Interestingly, SnoN knockdown did not result in significant changes in PLSCR1 protein 

levels (Figure 15G) which suggest involvement of other mediators and/or mechanisms involved in the 

regulation of PLSCR1 expression. Additionally, the longer half-life of PLSCR1 (as determined by CHX 

time course experiment; data not presented) could potentially contribute to the lack of PLSCR1 protein 

level reduction upon SnoN knockdown. Collectively, our studies suggest that SnoN contributes in part to 

regulation of both endogenous and IFN-2α induced expression of PLSCR1. Together, PLSCR1 and SnoN 

co-amplified and co-overexpressed in ovarian cancers could potentially exhibit cooperative oncogenicity. 

We have previously shown that As2O3-treatment leads to dramatic induction of SnoN in ovarian 

cancer cells which mediates a cytoprotective autophagy antagonizing the pro-apoptotic effects of As2O3 
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[1]. In contrast, our current study shows that As2O3 results in a significant reduction in PLSCR1 mRNA 

and protein expression in a process-independent of proteasomal degradation pathway that is known to 

mediate degradation of EVI1-induced by As2O3. Importantly, siRNA mediated reduction of PLSCR1 

increased the sensitivity of HEY cells to As2O3 as evidenced by increased cleaved PARP levels. 

Additionally, PLSCR1 knockdown in As2O3 treated cells also resulted in reduction in levels of LC3-II, an 

important mediator in the process of autophagy. However, the exact mechanism by which PLSCR1 

modulates As2O3-induced processes of apoptosis and autophagy is currently unknown. Collectively, these 

results implicate PLSCR1, similar to SnoN, as a key player in ovarian cancer development and 

chemotherapeutic responses (Figure 17). Further studies are necessary to completely understand its exact 

role that would aid in the development of novel and better therapeutic strategies in treatment of ovarian 

cancers.  

PLSCR1 is one of the most induced IFN-regulated genes [38] and consistent with previous 

reports, our studies also demonstrated a dramatic induction in PLSCR1 protein and mRNA levels upon 

IFN-2α stimulation (Figures 15A and 15B). Although predominantly localized to the plasma membrane, 

PLSCR1 is also present at other subcellular locations such as nucleus, endosomes, Golgi, and ER under 

different conditions [19, 24, 133, 180]. Importantly, defective palmitoylation and IFN stimulation result 

in its nuclear localization in specific cell types as mentioned in Chapter 1. Our studies show PLSCR1 to 

be predominantly localized at the plasma membrane (Figures 15C and 15D) although a small percentage 

was found in the nuclear fractions (Figure 15D). At the plasma membrane, PLSCR1 is implicated in 

various signaling functions via its interaction with various signaling mediators; on the other hand, nuclear 

functions of PLSCR1 include transcriptional regulation of genes (such as IP3R) and interactions with 

DNA topoisomerase II significance of which still remains uninvestigated. Collectively, these reports 

suggest that subcellular localization of PLSCR1 plays a decisive role in determining its function. 

Although, IHC studies in colorectal cancer patient specimens have shown increased PLSCR1 expression 

[22], the subcellular localization of PLSCR1 in these specimens remains to be determined. Altered 
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localization of PLSCR1 in these cancers could lead to its altered functions which can in turn potentially 

modulate the development and cellular responses in these cancers. Together, further studies would aid in 

understanding the role of PLSCR1 completely which could potentially lead to development of better 

strategies in ovarian cancer treatment. 
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Chapter 5 

Regulation of PLSCR1 by IRF3 Following Vector Transfection in Normal and Malignant Epithelial 

Cells 

Introduction 

Although plasmid transfection is a commonly utilized method for exogenous expression of 

specific proteins, few studies suggest that plasmid transfection leads to non-specific and off-target effects. 

Microarray based gene expression studies by Lobenhofer et al. [235] suggest that plasmid transfection 

may result in differential induction of various off-target genes including those that are associated with 

regulating primary immune responses (i.e. IFNs and other inflammatory cytokines such as interleukins 

(ILs)) in response to viral/foreign DNA entry into the host cells [235]. 

Toll-like receptors (TLRs) are evolutionarily conserved receptors of the innate immune system 

that detect the pathogen associated molecular patterns (PAMPs) [236]. The TLR family is composed of 

10 members which are type I transmembrane receptors localized either to the plasma membrane and 

endosomal compartments. Plasma membrane localized TLRs (1, 2, 4, 5, 6, and 10) are involved in 

recognizing pathogenic protein components such as viral envelope proteins or bacterial wall proteins 

[168]. On the other hand, the remaining endosome-localized TLR family members (3, 7, 8, and 9) are 

nucleic acid sensing receptors that are active where they detect pathogenic nucleic acids such as viral and 

bacterial nucleic acids along with non-pathogenic foreign nucleic acids such as plasmid DNA [237] [238] 

[169]. Upon recognizing pathogenic components, Toll-like receptors undergo proteolysis to become 

activated triggering the activation of downstream signaling mediators followed by production of 

antiviral/inflammatory cytokines such as IFNs and ILs. Activated TLRs recruit adaptor proteins such as 
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myeloid differentiation factor 88 (Myd88), TRIF (Toll-interleukin-1 receptor (TIR) domain containing 

adaptor protein inducing IFN), TIRAP (Toll-interleukin-1 receptor (TIR) domain containing adaptor 

protein), and TRAM (TRIF-related adaptor molecule). This complex between TLR and adaptor proteins 

leads to activation of various signaling mediators such as IRAK1/4 finally leading to activation of two 

groups of transcription factors including IRF3/7 on one hand and NFκB on the other [43]. Upon 

activation IRF3/7 proteins enter the nuclear compartments resulting in induction of various IFN and IFN-

dependent genes. On the other hand, activated NFκB induces the transcription of various cytokines such 

as IL-1/3 and other inflammatory cytokines. In addition to IRF and NFκB pathways, TLR signaling 

associates with other signaling pathways such as PI3K [171] and MAPK pathways [172, 239] which play 

a prominent role in cell proliferation and survival. TLR signaling is reported to result in activation of 

AKT which is required for the activation of downstream NFκB activation. On the other hand, MAP 

kinase proteins such as ERK1/2, p38MAPK, and JNK are reported to be directly activated by TLR 

signaling [172]. In addition, various other mediators of MAPK signaling (i.e. TAK1 and ASK1) [240] 

regulate TLR signaling. These studies indicate an important role for TLR signaling in cell survival and 

proliferation via crosstalk with PI3K and MAPK signaling pathways. 

As described in Chapter 1, PLSCR1, located at 3q23, is a type II transmembrane protein 

previously implicated in the process of PS externalization leading to disruption of membrane asymmetry 

during important cellular events such as blood coagulation and apoptosis [34]. PLSCR1 is one of the most 

highly induced IFN-stimulated genes and mediates the antiviral functions of IFNs [38, 39, 163, 241]. 

PLSCR1 is transcriptionally regulated by IFN via activation of PKCδ, JNK, and STAT-1 [145]. Although 

primarily localized to the plasma membrane, PLSCR1 is also located in the nucleus, endoplasmic 

reticulum, Golgi, and endosomal compartments [19, 24, 25, 42, 133] under specific conditions. For 

instance, defective palmitoylation and IFN treatment results in nuclear localization of PLSCR1 in specific 

cell types [24, 177]. Previous studies including our recent studies have suggested that PLSCR1 plays an 

important role in regulating cancer development and cancer cell responses to chemotherapeutic agents 
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[15, 21, 22, 36, 177]. As described earlier in Chapter 1, PLSCR1 is also implicated in viral responses in 

host cells by antagonizing viral entry, replication, and propagation (i.e. hepatitis B virus (HBV) [8], 

hepatitis C virus (HCV) [7], vesicular stomatitis (VSV) [4], encephalomyocarditis (ECMV) [4], human 

immunodeficiency (HIV-1) [6], and human T cell leukemia (HTLV-1) [5] viruses). These findings 

suggest an important antiviral function of PLSCR1.  

Recent studies by Talukder et al. have shown an important role for PLSCR1 in TLR9 signaling in 

plasmacytoid dendritic cells (pDCs) [42]. These studies report that PLSCR1 interacts with TLR9 in  

endosomal compartments and its knockdown in human pDC cell line results in ablation of TLR9 

mediated induction of IFN in response to stimulation with CpG ODN (oligodeoxynucleotide) [42]. These 

studies indicate a potential function of PLSCR1 in modulating the innate immune responses. Furthermore, 

TLR signaling is also activated upon stimulation with dsDNA (plasmid) in human neutrophils leading to 

IFN production [45]. However, it is unknown whether PLSCR1 mediates immune responses upon entry 

of dsDNA into host cells [45]. Since PLSCR1 is an IFN-regulated gene and regulates TLR9 signaling, we 

hypothesize that PLSCR1 alters cellular responses upon dsDNA transfection. Herein, we report that 

transfection with dsDNA in immortalized normal ovarian surface epithelial (T80) and primary mammary 

epithelial (HMEC) cells markedly induces PLSCR1 mRNA and protein expression. In addition, dsDNA 

increases the activation of IRF3, a downstream mediator of TLR signaling, which is well-established to 

induce expression of type I IFNs (α/β) [45, 242]. Furthermore, we also detected a significant increase in 

mRNA levels of nucleic acid sensing TLRs, namely TLR9 and TLR4. Via siRNA and inhibitor studies, 

we further show that PLSCR1 induction is mediated by IRF3 and partly by ERK1/2 activation. In 

contrast, dsDNA transfection in ovarian cancer cells did not result in PLSCR1 induction and IRF3 

activation. Collectively these studies suggest that activation of IRF3 may mediate PLSCR1 induction in 

dsDNA stimulated normal epithelial cells. Further investigation is needed to delineate the detailed 

underlying mechanism and the significance of these altered dsDNA responses in normal epithelial cells 

relative to ovarian cancer cells. 
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Results 

dsDNA plasmid transfection induces PLSCR1 mRNA/protein in T80 ovarian epithelial cells and HMEC 

mammary epithelial cells: 

As mentioned earlier, PLSCR1 is a highly induced IFN-stimulated gene [38, 39], and plasmid 

DNA transfection leads to induction of IFN-stimulated genes [45]; therefore, we first compared the 

effects of dsDNA transfection with that of IFN-2α (3,000 IU/ml) treatment from 15 minutes to 24 hours 

in T80 cells. As previously noted in HEY ovarian cancer cells [177], IFN increases PLSCR1 protein from 

6 hours until 24 hours (Figure 18A). Since IFN stimulated PLSCR1 induction is mediated by activation of 

PKCδ, JNK,  

Figure 18. IFN and empty plasmid transfection induce PLSCR1 mRNA and protein 

(*Continued on next page) 
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Figure 18. IFN and empty plasmid transfection induce PLSCR1 mRNA and protein  

(A) T80 cells were treated with 3,000 IU/ml IFN-2α from 15 minutes up to 24 hours. Cell lysates were 

analyzed by western blotting with the indicated antibodies. (B) Total RNA was isolated from cells 

treated as described in (A). PLSCR1 mRNA levels, detected via real-time PCR, are presented. (C) T80 

cells were transfected with empty pcDNA3 plasmid (“pcDNA3”) or transfection reagent only 

(“mock”). Cell lysates were harvested from 6 up to 48 hours post-transfection and analyzed via 

western blotting with the indicated antibodies. (D) Total RNA was isolated from cells treated as 

described in (C). PLSCR1 mRNA levels, detected via real-time PCR, are presented. (E) HMEC cells 

were treated similarly as described for T80 cells (C) and cell lysates were then analyzed by western 

blotting with the indicated antibodies. Data presented in (A), (B), (C) and (D) is representative of three 

independent experiments while (E) represent two independent experiments. 
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and STAT1 [145], we assessed whether these mediators were activated in T80 cells following IFN 

stimulation. Indeed, we observed IFN-mediated activation of JNK (peaking at 15 minutes) and STAT3 

(peaking at 6 hours) (Figure 18A) although activated PKCδ was undetectable under our conditions. 

Additionally, we observed increased phosphorylated AKT and MAPK at 15 minutes which rapidly 

decreased by 1 hour (Figure 18A). These results indicate that multiple signaling pathways are activated in 

T80 cells upon IFN stimulation including MAPK, AKT, JNK, and STAT3. To assess whether induction 

of PLSCR1 protein with IFN is a result of its elevated transcription, we performed quantitative PCR 

utilizing specific PLSCR1 probes/primers with RNA isolated from T80 cells treated with 3,000 IU/ml 

IFN from 3 to 24 hours. As shown in Figure 18B, similar to the protein level changes, PLSCR1 mRNA 

significantly increased by 6 hours IFN treatment. Collectively, these results indicate that IFN 

transcriptionally induces PLSCR1 expression of in T80 cells.  

We next determined the effects of dsDNA (pcDNA3 vector) on PLSCR1 expression in T80 cells. 

As shown in Figure 18C, we noted a dramatic increase in PLSCR1 protein from 24 to 48 hours post-

dsDNA transfection. We next assessed whether pcDNA3 transfection activates JNK and PKCδ (similar to 

that observed with IFN stimulation). However, phosphorylation of PKCδ and JNK were undetectable 

following pcDNA3 transfection. Although we detected activated STAT3 in dsDNA transfected cells, it 

was also phosphorylated in mock transfected cells suggesting dsDNA transfection did not further activate 

STAT3 (Figure 18C). Similar to IFN stimulation, dsDNA transfection markedly activates MAPK 

signaling pathway (relative to mock transfection). On the other hand, although AKT was activated in 

dsDNA treated cells, there was only a subtle increase in its phosphorylation in comparison to mock 

transfected cells. As mentioned earlier, TLR signaling is activated in response to cellular presentation of 

foreign DNA including plasmid DNA [45, 243]. Therefore, we assessed the activation status of IRF3, a 

downstream target of this pathway. Indeed, there was a marked increase in phosphorylated IRF3 levels 

upon dsDNA transfection (relative to mock) indicating that the TLR signaling pathway may be activated 

in response to dsDNA treatment. To determine whether dsDNA transfection leads to increased PLSCR1  
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mRNA levels, we performed quantitative real-time PCR using mRNA from T80 cells transfected with 

pcDNA3. As shown in Figure 18D, PLSCR1 mRNA was significantly increased from 12 until 48 hours 

post-transfection; this may suggest that PLSCR1 is transcriptionally induced by vector transfection. We 

next determined whether the PLSCR1 induction following dsDNA transfection is specific to T80 cells 

Figure 19. Subcellular localization of PLSCR1 following IFN treatment and dsDNA transfection  

(A) T80 cells, transfected with empty pGL3-basic, pBABE-puro, pcDNA3 and pQCXIN vectors or 

transfection reagent only were analyzed by western blotting for the indicated antibodies. (B) T80 cells 

(grown on coverslips) were treated with 3,000 IU/ml IFN-2α (Left panel) for 18 hours or transfected 

with empty pcDNA3, empty pQCXIN, or mock as described in (A) (Right panel). Cells were 

immunostained for PLSCR1 and DAPI. Images were then captured using a confocal microscope. Data 

presented (A) and (B) is representative of three and two independent experiments respectively. 
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only or if it occurs in other normal epithelial cell types also. In this regard, we transfected the primary 

mammary epithelial cells (HMECs) with pcDNA3 plasmid (Figure 18E) and determined whether 

PLSCR1 is induced relative to mock transfected cells. Indeed, we observed that similar to T80 cells, 

PLSCR1 protein was induced in dsDNA transfected cells from 24 to 48 hours post-transfection. 

Furthermore, we noted that IRF3 was activated upon dsDNA transfection in HMECs. Collectively, these 

results indicate that dsDNA transfection in epithelial cells results in transcriptional activation of IRF3 (a 

downstream mediator of the TLR signaling), MAPK, and STAT3 along with induction of PLSCR1.  

To determine whether dsDNA-mediated PLSCR1 induction is specific to pcDNA3 vector 

transfection or whether this observation could be generalized to other vectors, we transfected T80 cells 

with pGL3-basic luciferase reporter plasmid (4.8 kb), pBABE-puro plasmid (5.2 kb), and pQCXIN 

plasmid (7.4 kb) in addition to pcDNA3 and assessed whether it would lead to PLSCR1 induction. 

Indeed, as presented in Figure 19A, similar to pcDNA3, transfection with pGL3-basic, pBABE-puro, and 

pQCXIN also resulted in a dramatic PLSCR1 induction along with IRF3 activation in T80 cells. This 

suggests that dsDNA response in T80 cells is not vector specific. Since previous studies indicate that IFN-

2α stimulation leads to plasma membrane localization of de novo synthesized PLSCR1 [24, 177], we 

performed immunostaining of PLSCR1 and assessed the localization of PLSCR1 upon dsDNA 

transfection in the T80 cells. Consistent with the western analysis, there was a dramatic increase in 

PLSCR1 staining in the vector-transfected T80 cells (Figure 19C, Right panel). Additionally, we 

observed that PLSCR1 was predominantly localized to the plasma membrane in the ~70% of the cells; 

however, PLSCR1 was also detected in the perinuclear regions (i.e. endoplasmic reticulum/Golgi). 

Similar to previous studies including ours in HEY cells, IFN-2α treatment in T80 cells also resulted in 

plasma membrane localization of PLSCR1. However, the intensity of its expression was markedly lower 

(Figure 19C, Left panel) relative to vector transfection.  
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Inhibition of MAP kinase activity and reduction of STAT3 expression does not modulate the dsDNA-

induced PLSCR1 mRNA levels: 

 

 

Figure 20. Inhibition of MAPK activity does not antagonize PLSCR1 induction upon dsDNA 

transfection 

(A) T80 cells were pre-treated with 10 μM U0126 or DMSO for at least 2 hours prior to and 6 hours 

after transfection with pcDNA3. PLSCR1 mRNA levels were quantified by real-time PCR. (B) Empty 

plasmid or mock transfection was performed in T80 cells that were treated with PLSCR1 siRNA. Cell 

lysates were isolated at the indicated time points following transfection and analyzed via western 

blotting with the indicated antibodies. (C) T80 cells were pre-treated with 10 μM U0126 for at least 2 

hours prior to and after 6 hours post-transfection with empty plasmid. Lysates were collected at 24 and 

48 hours post-transfection and analyzed via western blotting and densitometric analysis of PLSCR1 

western was obtained using Image-J software. (D) T80 cells were transfected with siRNA targeting 

STAT3 followed by empty plasmid pcDNA3 transfection for 24 hours. Cell lysates were then 

analyzed by western blotting with the indicated antibodies. Data presented in (A) and (C) is 

representative of three independent experiments while (B) and (D) represent two and four independent 

experiments respectively. 
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Since we have observed increased phosphorylation of ERK1/2 upon dsDNA transfection, we next 

determined whether MAPK signaling activity contributes to the dsDNA stimulated PLSCR1 induction. In 

this regard, we pretreated the T80 cells with U0126, an inhibitor of MAP Kinase activity followed by 

transfection with pcDNA3. We then analyzed the RNA and protein levels at 24 and 48 hours post-

transfection. However, pretreatment with U0126 only resulted in a subtle increase in PLSCR1 mRNA 

levels upon 48 hours post vector transfection in comparison to treatment with DMSO (Figure 20A). 

Furthermore, as shown in Figure 20B, the changes in the PLSCR1 protein levels upon U0126 treatment 

were also variable and insignificant. We next determined whether PLSCR1 induction is an upstream 

event to ERK1/2 activation and performed PLSCR1 siRNA mediated knockdown followed by dsDNA 

transfection for 12 and 24 hours. As shown in Figure 20C, we did not observe any marked changes in 

ERK activation with PLSCR1 reduction. Together, these results suggest that the MAPK signaling 

inhibition does not modulate the PLSCR1 mRNA level induction and PLSCR1 does not regulate the 

MAPK activation upon dsDNA transfection. Since dsDNA transfection resulted in activation of STAT3 

(Figure 18C), we next tried to determine whether STAT3 activation is required for the vector mediated 

PLSCR1 induction. In this regard, we reduced the expression of STAT3 via siRNA and assessed the 

dsDNA-induced PLSCR1 protein level changes. However, we did not observe any significant changes in 

PLSCR1 protein levels in the presence of STAT3 siRNA (Figure 20D) suggesting that PLSCR1 

upregulation is independent of STAT3 activation. 

 

Reduction of IRF3 modulates the dsDNA-mediated PLSCR1 induction:  

As described earlier, upon recognition of PAMPs, Toll like receptors (TLRs) stimulate the downstream 

signaling cascade which activates transcription factors, NFκB and IRF3/7, resulting in induction of 

inflammatory cytokines including Type I IFNs [168, 236]. Recently, it has been reported that PLSCR1 

can regulate TLR9 signaling in plasmacytoid dendritic cells (pDCs) [42]. TLR9, one of the nucleic acid 

sensing TLRs, functions in the endosomal compartments to recognize foreign/pathogenic nucleic acids 

that enter endosomes via endocytosis. [169]. On the other hand, although TLR4 is predominantly 
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localized to the plasma membrane, it is capable of recognizing plasmid DNA following its internalization 

into endosomal compartments [244]. Since we have observed that IRF3 is phosphorylated following 

dsDNA treatment (Figure 18C), we assessed whether dsDNA transfection in T80 cells alters TLR9 and 

TLR4 mRNA. Indeed, as shown in Figure 21A, we observed TLR4 (Upper panel) and TLR9 (Lower 

panel) mRNA levels to be significantly induced following dsDNA transfection in T80 cells. Similarly, we 

detected significant induction of IFN-α (Figure 21B Upper panel) and IFN-β (Figure 21B Lower panel) 

mRNA levels (IFN-γ was undetectable), downstream transcriptional targets of IRF3 activation [44].  

 

 

Figure 21. IRF3 knockdown antagonizes dsDNA-induced PLSCR1 expression (*Continued on 

next page) 
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Collectively, these results indicate that dsDNA transfection leads to induction of TLR4 and TLR9 

as well as IFN-α and IFN-β. In order to assess the contribution of TLR receptor signaling to PLSCR1 

induction following dsDNA transfection, we made attempts to reduce TLR4 and TLR9 expression using 

knockdown strategies. However, protein level changes in TLR4 and TLR9 were not detected with 

knockdown. Therefore, we obtained siRNA targeting IRF3, a downstream TLR signaling target that is 

activated upon transfection with dsDNA. Strikingly, IRF3 knockdown (~90% reduction at the protein 

level) markedly ablates PLSCR1 induction following dsDNA transfection (Figure 21C). Therefore, IRF3 

appears indispensable in the regulation of PLSCR1 expression in response to dsDNA.     

Figure 21. IRF3 knockdown antagonizes dsDNA-induced PLSCR1 expression 

T80 cells were mock or empty pcDNA3 transfected. RNA was isolated following 6 to 48 hours 

transfection. TLR4/TLR9 (A) and IFN-α/IFN-β (B) mRNA levels were detected by real-time PCR. (C) 

Empty plasmid or mock transfection was performed in T80 cells that were treated with IRF3 siRNA. 

Cell lysates were isolated at 48 hours following transfection and analyzed via western blotting with the 

indicated antibodies. Data presented in (A) and (B) is representative of four independent experiments 

while (C) represents two independent experiments. 

 



102 

 

Plasmid transfection does not lead to PLSCR1 induction in ovarian cancer cells: 

 

Figure 22. Lack of PLSCR1 induction upon plasmid transfection in ovarian cancer cells 

(A) T80, HEY, TOV112D, and TOV21G cells were “mock” or empty pcDNA3 transfected. Cell 

lysates were collected 48 hours post-transfection followed by western analysis with the indicated 

antibodies. (B) Transfection efficiency was assessed in T80, HEY, TOV112D, and TOV21G cells 

(grown on coverslips) using pEGFP-C1 vector. Representative images are presented (Top panel).  

Percentages of GFP-positive cells in each of these cell lines is graphically presented (Lower panel). 

(C) T80, HEY, TOV112D, and TOV21G cells, transfected with pEGFP-C1 vector were collected 48 

hours post-transfection and percent GFP positive cells were assessed via flow cytometry. Data 

presented in (A) and (B) is representative of two independent experiments and (C) is representative of 

three independent experiments. 
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To determine whether dsDNA transfection responses could be altered in ovarian cancer cell lines 

(relative to the normal T80 cell lines), we utilized serous (HEY), endometrioid (TOV112D), and clear cell 

(TOV21G) ovarian carcinoma cell lines and assessed their downstream responses to dsDNA transfection. 

In contrast to T80 cells, there was no increase in PLSCR1 protein upon vector transfection in the ovarian 

cancer cell lines. In contrast, as shown in Figure 22A, there was a subtle reduction in PLSCR1 expression 

in these cancer cell lines. Furthermore, we observed that the pattern of PLSCR1 expression was similar to 

the pattern of activated IRF3. However, the total IRF3 levels were variable following pcDNA3 

transfection particularly in the TOV112D and TOV21G cell lines (Figure 22A); therefore, interpretation  

 

of the activation status of IRF3 is unclear. To determine whether this differential PLSCR1 induction 

between the normal and cancer cells may be due to differences in transfection efficiency, we transfected 

these cell lines with pEGFP-C1 plasmid and assessed the transfection efficiency of these cell lines via 

microscopy and flow cytometry. However, as shown in Figure 22B and 22C, the transfection efficiency of 

these cancer cell lines was similar to that in T80 cells suggesting that the activation of the TLR signaling 

cascade may be dysregulated in the cancer cell lines. In addition, to determine if the kinetics in the cancer  

Figure 23. Induction of TLR9 and IFN-α mRNA with lack of PLSCR1 or TLR4 transcript 

induction in ovarian cancer cells (*Continued on next page) 

.  
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cells may differ to that of T80 cells upon dsDNA entry, we performed dsDNA transfection from 6 to 48 

hours in the HEY cell line. As shown in Figure 23A, phosphorylated IRF3 was variable and induction of 

PLSCR1 was absent at all the time points assessed following dsDNA transfection (relative to mock 

transfection). Additionally, as shown in Figure 23B, the TLR4 mRNA was not elevated (as we observed 

for T80 cells (Fig. 17A, Upper panel) although TLR9 mRNA was markedly elevated in HEY cells. 

Figure 23. Induction of TLR9 and IFN-α mRNA with lack of PLSCR1 or TLR4 transcript 

induction in ovarian cancer cells  

(A) HEY cells were “mock” or pcDNA3 transfected. Cell lysates were collected from 6 up to 48 

hours post-transfection and analyzed by western blotting with the indicated antibodies. (B) Total 

RNA was isolated from HEY cells that were either mock (48 hours) or pcDNA3 transfected (from 

6 up to 48 hours post-transfection). PLSCR1, TLR4, TLR9, and IFN-α mRNA levels were 

quantified by real-time PCR. All the data presented is representative of two independent 

experiments.     
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Consistent with the protein level changes, PLSCR1 was also not significantly altered at the mRNA level 

although IFN-α was elevated at 6 hours post-dsDNA transfection in HEY cells. We did not detect IFN-β 

and IFN-γ mRNA in HEY cells transfected with dsDNA. Collectively, these results implicate the 

presence of an altered TLR signaling pathway in ovarian cancer cells following recognition of dsDNA. 

Further studies are needed to understand the complete mechanisms and significance of these differential 

signaling responses in cancer cells.  

 

Discussion 

As described in Chapter 1, PLSCR1 expression is upregulated by growth factors including 

epidermal growth factor (EGF) [19], stem cell factor (SCF) [37], granulocyte colony stimulating factor 

(G-CSF) [37], cytokines (IFN) [39], and differentiation-inducing agents such as ATRA [40]. Importantly, 

previous studies including ours (in HEY cells) demonstrate that IFN markedly induces PLSCR1 [39, 

177]. This process is mediated via activation of PKCδ, JNK, and STAT1 [18]. In the current study, we 

report a novel finding that transfection with dsDNA (plasmid DNA) in normal immortalized ovarian 

(T80) and mammary (HMEC) epithelial cells also leads to induction of PLSCR1 mRNA and protein 

levels. We also observed sustained activation of MAPK in the dsDNA transfected cells however, its 

inhibition by U0126 treatment did not lead to convincing changes in the induced PLSCR1 mRNA levels. 

Additionally, dsDNA transfection leads to activation of the IRF3, a downstream signaling mediator of 

TLR signaling [45] (Figure 24). Furthermore, IRF3 knockdown reduces PLSCR1 induction following 

dsDNA transfection suggesting that IRF3 expression is essential in this process. However, the exact 

mechanism through which activated IRF3 regulates PLSCR1 expression upon dsDNA transfection 

remains unknown and needs to be further investigated. As mentioned earlier, PLSCR1 is one of the most 

induced IFN-stimulated genes and IRF3 activates transcription of IFN along with IFN related genes [45]. 

Recently studies report that Snail, a transcription factor regulating EMT in cancer cells, binds to the 
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PLSCR1 promoter to down regulate its expression [146]. In this regard, it would be interesting to identify 

any potential IRF3 binding sites within the PLSCR1 promoter region to determine whether IRF3 could 

directly regulate PLSCR1 transcription.  

As described earlier, although PLSCR1 is primarily localized to the plasma membrane, it is also 

localized to various intracellular compartments including the nucleus, endoplasmic reticulum, golgi, and 

endosomes [19, 24, 42, 133] under specific conditions. For instance, mutation (via site directed 

mutagenesis [24]) in the palmitoylation site leading to defective palmitoylation or treatment with the 

Figure 24. dsDNA transfection in normal epithelial cells induces PLSCR1 expression mediated 

by IRF3 activation 

Plasmid dsDNA transfection in normal epithelial cells leads to induction of PLSCR1 via activation of 

IRF3. dsDNA transfection also results in activation of MAPK (ERK1/2) and induction of TLR4/9 and 

IFN-α/β mRNA. In contrast, in ovarian cancer cells dsDNA transfection does not lead to activation of 

MAPK or IRF3, thus leading to a lack of PLSCR1 mRNA induction. (*Model created by Madhav 

Karthik Kodigepalli) 
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palmitoylation inhibitor 2-bromopalmitate [24], results in nuclear distribution of PLSCR1 in specific cell 

lines [24]. Previous studies including ours demonstrate that treatment with IFN-2α not only induces the 

expression of PLSCR1 but also leads to plasma membrane or nuclear localization of PLSCR1 in specific 

cells [39, 177]. In the nuclear compartment, PLSCR1 transcriptionally regulates the inositol 1,4,5-

triphosphate receptor (IP3R) [23] and interaction with components of the DNA replication machinery 

including topoisomerases [148]. Herein, upon dsDNA transfection in normal ovarian epithelial cells, we 

noted that the de novo synthesized PLSCR1 localizes predominantly to the plasma membrane (~70% of 

the total cells with PLSCR1 induction) as well as to perinuclear regions (Figure 19B). PLSCR1 localizes 

to endosomes in plasmacytoid dendritic cells upon stimulation with CpG-ODN [42]. Furthermore, 

PLSCR1 interacts with TLR9 in the endosomes and regulates TLR9 mediated induction of IFN following 

CpG-ODN treatment in these cells [42]. Additionally, PLSCR1 knockdown reduces TLR9 levels in the 

endosomal compartments suggesting that PLSCR1 is important in the translocation of TLR9 from ER to 

the endosomes. However, our studies indicate that PLSCR1 is localized at the plasma membrane and 

perinuclear regions upon stimulation with dsDNA in normal ovarian and mammary epithelial cells. The 

function of de novo PLSCR1 at the plasma membrane and endoplasmic reticulum/golgi upon dsDNA 

transfection requires further investigation. 

As described earlier, previous studies suggest a very important role of PLSCR1 in immune cell 

responses (Figure 6) [4-8]. Recent studies in plasmacytoid dendritic cells implicate PLSCR1 in the 

regulation of theTLR9 signaling pathway [42]. Additionally, here we show that dsDNA stimulation in 

normal ovarian and mammary epithelial cells induces PLSCR1together with activation of IRF3, a 

downstream TLR signaling mediator. Collectively these results indicate a potential role for PLSCR1 in 

innate immunity in response to pathogenic/foreign DNA. The exact role of PLSCR1 in the dsDNA 

responses in T80 cells and whether PLSCR1 is also induced upon activation of TLR signaling by other 

stimulants such as LPS, CpG-ODN, or viral particles remains to be investigated.  
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Interestingly, we have noted a striking difference in the effect of dsDNA transfection on 

PLSCR1, IRF3 and TLRs between normal ovarian epithelial cells and ovarian cancer cells. As shown in 

Figure 22A, PLSCR1 induction was observed only in normal cells (T80 and PMEC (Figure 18E)) but not 

in ovarian carcinoma cells (HEY, TOV112D and TOV21G) transfected with dsDNA. Additionally, 

dsDNA did not lead to increased activation of IRF3 in the cancer cells. Although the basal level of 

PLSCR1 was elevated in the ovarian cancer cell lines relative to the normal T80 cells, there was no 

difference in the total IRF3 or phosphorylated IRF3 levels. It remains to be investigated whether other 

members of the IRF and TLR family are involved in PLSCR1 regulation in these cancer cells. 

Collectively, these results suggest that the mechanism of PLSCR1 upregulation or IRF3 activation in 

response to stimulation with dsDNA could be dysregulated in ovarian cancer cells. However, exact role of 

PLSCR1 in inflammation or innate immunity in ovarian cancer development is currently unknown and 

needs to be further investigated. Additionally, the detailed signaling pathway events leading to these 

changes are presently unclear and need to be investigated. Understanding the altered immune responses in 

ovarian cancer cells could potentially aid in the development of novel immune therapy strategies in the 

treatment of ovarian cancers.  
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Chapter 6 

Significance of PLSCR1 in Ovarian Cancer and Immunotherapy 

Overview 

Our studies presented herein primarily focus on the role and regulation of SnoN/SkiL (a TGFβ 

pathway regulator) and PLSCR1 (an interferon-regulated gene), which are located at 3q26.2 and 3q23, 

respectively, in epithelial ovarian cancer. In Chapter 3, we delineated a mechanism by which SnoN is 

modulated upon As2O3 treatment in HEY ovarian cancer cells. As described in Chapter 3, via inhibitor 

and siRNA mediated knockdown studies, we have now identified that PI3K signaling pathway is 

responsible for As2O3-induced change in SnoN expression; we also demonstrate that inhibition of PI3K 

signaling cascade leads to increased sensitivity of ovarian cancer cells to As2O3 treatment. In Chapter 4, 

we attempt to identify the role of PLSCR1 in ovarian cancer development and cellular responses to 

As2O3. We determined that PLSCR1 is amplified in ovarian cancer patient samples and these DNA copy 

number changes and mRNA expression changes are correlated.  We also identify that SnoN and PLSCR1 

mRNA expression in ovarian cancer cell lines is highly correlated in the absence of any significant 

correlation at the protein level. We also determined that reduced PLSCR1 in ovarian cancer cells leads to 

increased cellular sensitivity to As2O3 indicating a potential role for PLSCR1 in modulating the 

chemotherapeutic responses in ovarian cancer cells.  

In Chapter 5, we report that dsDNA (empty plasmid) transfection results in upregulation of 

endogenous PLSCR1 in T80 (normal immortalized ovarian surface epithelial cells) and HMEC (primary 

mammary epithelial cells), which localizes to the plasma membrane and perinuclear regions. Through 

siRNA and inhibitor studies, we have identified that IRF3 activation, a downstream event of activated 
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TLR signaling pathway, is required for PLSCR1 upregulation. Furthermore, dsDNA treatment results in 

induction of TLR4/9 and IFNα/β mRNA in these cells. Strikingly, dsDNA did not result in either 

induction of PLSCR1 or activation IRF3 in ovarian cancer cells indicating that the TLR signaling cascade 

may be altered in cancer cells.    

 

Regulation of SnoN Expression upon Chemotherapeutic Treatment 

As described in Chapter 1, amplification of chromosome 3q26 region is a common genomic 

aberration found in various epithelial cancers [10, 12, 29, 30, 245, 246]. Our laboratory and others have 

identified gene amplifications in specific oncogenes located at the 3q26.2 locus including MECOM 

(MDS1-EVI1 Complex) [10], SnoN (Ski related novel protein N) [9], PKCι (protein kinase Cι) [31], as 

well as PIK3CA (catalytic subunit of PI3 Kinase) located at 3q26.3 [11] (see Figure 1). In our studies 

published in 2010 [1], our group has reported that upon As2O3 treatment, SnoN is increased at the RNA 

and protein levels in contrast to EVI1 (at MECOM locus) which is decreased [1, 247]. Furthermore, 

elevated levels of SnoN appeared to antagonize the As2O3-induced cell death response by activating a 

cytoprotective autophagic pathway in ovarian cancer cells [1, 75]. Herein, in Chapter 3, we demonstrate 

that PI3K (PIK3CA) contributes significantly to the upregulation of SnoN upon As2O3 treatment. SnoN, 

in contrast to EVI1, has a short half-life; indeed, SnoN is regulated by specific E3 ubiquitin ligases such 

as Smurf2 [85], APC/C [88], and Arkadia [248]. Moreover, our group has recently identified miRNA 

binding sites in 3‟UTR of SnoN which appears to have a role in regulating its expression. This work is 

currently being pursued by another graduate student from our laboratory (Dutta and Nanjundan, 

Submitted, 2014). Whether SnoN and the catalytic subunit of PI3K (PIK3CA) are co-amplified or co-

regulated in ovarian cancer specimens is currently unknown as well as whether there is a correlation 

between their expressions with chemotherapeutic responses is also unclear. Further studies need to be 

advanced in the direction of identifying whether a combinatorial targeting strategy (i.e. SnoN and 

PIK3CA) in ovarian cancers would result in a synergistic effect to improve patient survival. These studies 
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could potentially aid in the development of improved strategies for prevention and treatment of ovarian 

cancers.   

 

Phospholipid Scramblase Family Members and Their Impact in Cancer Development 

The role of phospholipid scramblase (PLSCR) family members (PLSCR1, PLSCR2, PLSCR3 

and PLSCR4) in cancer initiation and progression is presently unclear. There are only a few reports which 

implicate PLSCR1 in cancer development. For instance, PLSCR1 is implicated as a tumor suppressor in 

ovarian cancers; using mouse xenograft studies and a PLSCR1 overexpressing HEY1B ovarian carcinoma 

cell line, PLSCR1 expression appeared to regress the tumor growth over a period of three weeks [15]. 

Additionally, recent data in colorectal cancers has implicated PLSCR1 as a potential oncogene [21, 22, 

36]; evidence indicates that the intensity of PLSCR1 expression is elevated in colorectal cancer specimens 

[22]. Furthermore, our work presented in Chapter 4, indicates that PLSCR1 DNA copy number is 

increased in ovarian cancers. As previously noted, PLSCR1 is located at chromosome 3q23 which lies 

adjacent to and upstream of the 3q26.2 amplicon which is amplified in epithelial cancers including a 

subset of breast, head and neck, esophageal, cervical, and ovarian carcinomas [12, 29, 30, 245, 246, 249]. 

Thus far, there is no evidence implicating other members of the scramblase family (PLSCR2, PLSCR3 

and PLSCR4) in cancer development. It is interesting to note that PLSCR2 and PLSCR4 are located 

adjacent to PLSCR1 at the 3q24 chromosomal locus whereas PLSCR3 is located on chromosome 

17p13.1. As shown in Figure 5, there is a high degree of homology amongst the protein sequences of 

PLSCR2, PLSCR3, PLSCR4 and PLSCR5 (73.63%, 50.00%, 48.14% and 57.36% identity, respectively) 

when compared to PLSCR1 [131].  

Therefore, in order to advance our knowledge of PLSCR1 in cancer development, we proceeded 

to analyze „The Cancer Genome Atlas‟ (TCGA) genomics data using the cBioPortal bioinformatic 

program [230, 231]. As presented in Table 9, we have noted a highly similar level of DNA copy number 

changes (~14% each) between PLSCR1 (80/569), PLSCR2 (81/569), PLSCR4 (81/569) and PLSCR5 

(79/569) (altered at ~20% altogether in 569 ovarian cancers) (Figure 25, Upper panel) while all the four 
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were co-amplified in 14% (79/569) of the patients. Furthermore, as shown in Figure 26, we noted that 

there is a strong and significant tendency for these three scramblases to co-occur indicating a potential 

similarity in function. However, although the PLSCR1, PLSCR2, PLSCR4 and PLSCR5 DNA copy 

number changes were similar (Figure 25, Upper panel), their mRNA expression in ovarian cancers were 

vastly different (Figure 25, Lower panel). This difference between the pattern of DNA copy number 

changes and mRNA expression changes indicates that these phospholipid scramblase family member 

genes may have very different regulatory mechanisms. In addition, with regards to PLSCR3 (Table 9 and 

Figure 25), its DNA copy number profile differs markedly from that of the other family members, thus 

implicating PLSCR3 in an independent function.  

Figure 25: Altered DNA copy number levels and mRNA expression of PLSCR family members in 

ovarian cancers 

TCGA (The Cancer genome Atlas) ovarian carcinoma genomic data was analyzed via cBioPortal 

bioinformatic program (http://www.cbioportal.org/public-portal/) to determine the DNA copy number 

variations (Upper panel) and altered mRNA expression of PLSCR1, PLSCR2, PLSCR3, PLSCR4, 

PLSCR5 and ANO6 (TMEM16F).   

 

http://www.cbioportal.org/public-portal/
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Based on the above described data, we propose that a thorough analysis of additional ovarian 

cancer specimens should be performed in order to validate the bioinformatically analyzed TCGA data; we 

propose to assess (1) DNA copy number level changes using a real-time PCR-based approach, (2) mRNA 

level changes by utilizing specific FAM-labeled qPCR probes/primers, and (3) protein level changes by  

 

 

Figure 26: Mutual exclusivity/co-occurrence of alterations of PLSCR family members in ovarian 

cancers 

Mutual exclusivity or co-occurrence of DNA copy number and mRNA expression alterations of the 

PLSCR family members and ANO6 in ovarian carcinomas was determined via cBioPortal 

bioinformatic program (http://www.cbioportal.org/public-portal/).  

 

http://www.cbioportal.org/public-portal/
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using validated antibodies for western analysis to assess the protein expression of PLSCR family 

members. We have made attempts to assess currently available antibodies for PLSCR2, PLSCR3 and 

PLSCR4 (Table 10A). However, with these antibodies, we could not detect their endogenous protein in 

any of our cell lines under our experimental conditions. Moreover, in the absence of a positive control 

(i.e. respective cDNA constructs to allow their overexpression in mammalian cells followed by their  

 

No. Protein name 
Amplification 
(DNA:CNA) 
(569 samples) 

Mutations RNA level 

expression 
(538 samples) 

% mutated Mutations 

1. PLSCR1 14% 0.6% 
(2/316) 

A88V 
D301H 7% 

2. PLSCR2 14% None - 11% 

3. PLSCR3 2% None - 10% 

4. PLSCR4 14% 0.3% 
(1/316) T96M 10% 

5.  PLSCR5 14% None - 5% 

5. ANO6 4% 0.9% 
(3/316) 

E257Q, L601F, 

R700T 8% 

Table 9: Altered DNA copy number and mRNA expression of PLSCR family members in 

ovarian cancers (cBioPortal Analysis) 

TCGA (The Cancer genome Atlas) ovarian carcinoma genomic data was analyzed via cBioPortal 

bioinformatic program (http://www.cbioportal.org/public-portal/) to determine the percent of patients 

with DNA copy number variations, altered mRNA expression, and mutations of PLSCR1, PLSCR2, 

PLSCR3, PLSCR4, PLSCR5 and ANO6 (TMEM16F). 

 

http://www.cbioportal.org/public-portal/
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detection by western blotting), we were unable to ascertain with confidence whether or not these 

antibodies could detect endogenous PLSCR family members. In future studies, we will obtain validated 

antibodies which recognize these proteins in several assays including western analyses, 

immunocytochemistry, immunohistochemistry, as well as reverse phase protein array (RPPA) analyses. 

In the case that such antibodies are commercially unavailable, we plan to formulate these antibodies 

independently. Table 10B provides the list of some of the currently available antibodies specific for 

PLSCR2, PLSCR3 and PLSCR4.  

 

Although the tissue microarray (TMA) profiling studies reported in colorectal cancers suggested 

that PLSCR1 was overexpressed in these tissues [22], there was no presented data or discussion regarding 

the subcellular distribution of PLSCR1; thus, it remains unclear whether the localization of PLSCR1 is 

altered in the development of cancer. This is an important concept to assess since PLSCR1 can be 

localized to multiple subcellular sites including plasma membrane, nucleus, endoplasmic reticulum (ER),  

Table 10: List of (A) assessed and (B) commercially available antibodies for PLSCR family 

members 
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Golgi, and endosomes [19, 24, 133]. Therefore we propose that a thorough analyses of PLSCR1 

expression and its localization should be performed via tissue microarray in available ovarian and 

pancreatic cancer specimens with one of our collaborators. We propose to assess the localization of 

PLSCR1 in such TMA samples to determine whether PLSCR1 elicits altered expression and localization 

which may support a role for PLSCR1 in the development and aggressiveness of these cancers. The 

functionality of PLSCR1 at these locations has been previously reported; at the plasma membrane, 

Table 11: Altered DNA copy number, mRNA expression, and mutations of PLSCR1 in cancers 

(cBioPortal Analysis)  

cBioPortal bioinformatic program (http://www.cbioportal.org/public-portal/) was used to analyze the 

TCGA cancer genomic data to determine the percent of patients with DNA copy number variations, 

altered mRNA expression, and mutations of PLSCR1in various cancers including ovarian carcinoma, 

breast invasive carcinoma, head and neck squamous cell carcinoma, lung carcinoma, cervical 

carcinoma, pancreatic ductal adenocarcinoma, uterine corpus endometrioid carcinoma and stomach 

adenocarcinoma. 
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PLSCR1 appears to regulate growth factor receptor signaling and receptor trafficking [144] whereas in 

the nucleus, PLSCR1 appears to regulate the transcription of the inositol triphosphate receptor (IP3R) 

[23]. 

  

In addition to ovarian carcinomas, we also analyzed the PLSCR1 DNA level copy number and 

RNA expression alterations in various other epithelial cancers. As shown in Table 11, by cBioPortal 

(http://www.cbioportal.org/public-portal/) analyses, we noted that PLSCR1 was markedly amplified in 

head and neck carcinoma (16%), lung squamous cell carcinoma (21%) and cervical squamous carcinoma 

(21%). Interestingly, as reported earlier, we also noted amplification of MECOM (MDS1-EVI1 complex, 

located at 3q26.2) in more cases of ovarian carcinoma (37%), head and neck carcinoma (19%), lung 

Table 12: Mutations identified in PLSCR1 in cancers (COSMIC Analysis) 

COSMIC bioinformatic program (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) was used 

to analyze the to identify the percent of patients with mutations in PLSCR1 in various cancers 

including ovarian carcinoma, breast carcinoma, lung carcinoma, cervical carcinoma, pancreatic ductal 

adenocarcinoma, and stomach adenocarcinoma 

http://www.cbioportal.org/public-portal/
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squamous carcinoma (34%) and cervical carcinoma (20%) relative to PLSCR1 amplification. 

Additionally, mutational analysis of PLSCR1 on the available TCGA data indicates that about 0.6% of 

ovarian carcinoma patients harbored a mutation in the PLSCR1 gene (A88V and D301H) (See Table 9 

and 11). In addition, we have identified up to three patients with mutations in PLSCR1 using COSMIC 

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/) (Table 12) bioinformatic program, 

respectively. We suggest that mutational analyses of PLSCR1 is important since such amino acid 

mutations could potentially be associated with altered functionality and subcellular localization in ovarian 

carcinoma cells. Indeed, investigator-initiated cysteine to alanine mutations in the palmitoylation site 

(
184

CCCPCC
189

) of PLSCR1 alters its localization from the plasma membrane to the nuclear compartment 

where it binds to genomic DNA and functions as a transcriptional regulator [24, 148, 157]. Therefore, in 

cancer specimens associated with PLSCR1 mutations, altered PLSCR1 function and altered subcellular 

localization may be expected. As shown in Tables 11 and 12, PLSCR1 was mutated in 0.6% of the 

ovarian cancer patients and ranging from 0.4 to 1.1% in other cancers. We further noted that these 

mutations included predominantly missense mutations along with one deletion mutation. The complete 

list of mutations in PLSCR1 in different cancer patient samples is summarized in Tables 11 and 12. 

Interestingly, we noted that many of the mutations (14 out 29 mutations) were in the N-terminal region of 

PLSCR1 (1-100 amino acids) which is the proline-rich region within PLSCR1 that harbors various 

interaction sequences allowing it to bind with various proteins of signaling importance [18, 19, 133]. In 

addition, we noted that 5 patients had mutations in the C-terminal transmembrane region of PLSCR1 

(289-304 amino acids). We also assessed the mutational status of the other three members of the 

scramblase family (PLSCR2, PLSCR3, PLSCR4 and PLSCR5). As shown in Table 9, only one ovarian 

cancer patient had a missense mutation (T96M) in PLSCR4; no mutations were identified in PLSCR2, 

PLSCR3 and PLSCR5 in any of the ovarian cancer specimens assessed (TCGA and COSMIC databases). 

We have generated different HA-tagged PLSCR1 variants harboring deletions/mutations: (1) 

deleted N-terminal region and (2) C-terminal regions (as described in Chapter 2 (Page 35)). These 

constructs include HA-tagged WT PLSCR1 (wild type), HA-tagged C/A-PLSCR1 (palmitoylation 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
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mutant), HA-tagged ΔN-PLSCR1 (deletion of the N-terminal 1-97 amino acids), and HA-tagged ΔTM-

PLSCR1 (deletion of the C-terminal 287-318 amino acids). These have all been successfully cloned into 

the retroviral vector pQCXIN and expression validated in T80 cells (Appendix A). In the future, these 

constructs can be utilized to identify the significance of these regions to PLSCR1 localization and 

function.  

We have also generated multiple cancer cell lines that stably knockdown expression of PLSCR1 

using a retroviral shRNA-based approach. A comprehensive list of all the PLSCR1 knockdown cell lines 

that were generated is presented in Table 6 in Chapter 2 (Page 38). Unfortunately, thus far, we have not 

been able to identify any significant functional changes of PLSCR1 knockdown in these cell lines at this 

point (note: only cell survival assays were performed (cleaved PARP, changes in LC3, and cell viability 

assays)). However, knowing that PLSCR2 and PLSCR4 are located adjacent and co-amplified and co-

expressed with PLSCR1 (as shown in Table 9 and Figures 25 and 26), it is highly possible that 

phospholipid scramblase family members may elicit redundant function and therefore may be able to 

compensate for the loss of PLSCR1 expression. Moreover, knockdown of PLSCR1 may have resulted in 

an upregulation of the PLSCR2 and/or PLSCR4 proteins (or possibly even PLSCR3). Therefore, to 

address this issue, one could generate a cell line with a double or triple knockdown of PLSCR1, PLSCR2, 

and PLSCR4 (and PLSCR3) proteins in order to assess the functional outcome of knocking down the 

three scramblase family members.  

From cBioPortal analyses of PLSCR1 in various cancers, we noted that the in pancreatic ductal 

adenocarcinomas (PDAC) and colorectal adenocarcinomas, PLSCR1 mRNA levels were in fact increased 

in 6% and 5% of patients respectively in absence of any DNA copy number changes (Table 11). This 

variation could indicate that there may be mutations in the PLSCR1 promoter or introns (regulatory 

regions) or other mechanisms leading to its upregulation including changes in the miRNAs expression 

pattern. Based on this data, we have performed in silico miRNA analyses using commonly used 

bioinformatic programs including TargetScanHuman, miRDB, miRANDA, and MicroCosm and utilizing 



120 

 

the 3‟ untranslated region (3‟UTR) of PLSCR1 from Switchgear Genomics (S807025, NM_021105 

(NCBI)). Figure 27 shows the Venn-diagram summarizing all the potential “top hits” for miRNAs that  

 

may bind to the 3‟UTR of PLSCR1. We then assessed the PubMed literature for these “top miRNA hits” 

to identify any experimental data implicating them in modulating “hallmarks” of cancer. Indeed, we noted 

that some of these top hits miR-610, miR-216 and miR410 were implicated in different cancers including 

gastric cancer, hepatocellular carcinoma, glioma, neuroblastoma, and pancreatic cancers [250-254]. In 

order to identify whether any of these miRNAs that have putative binding sites on PLSCR1 3‟ UTR could 

regulate PLSCR1 expression, we transfected HEY ovarian cancer cells with mimics of miR-216b, miR- 

Figure 27: miRNAs with putative binding sites in the 3’UTR of PLSCR1 

PLSCR1 3‟ untranslated region (UTR) (Switchgear Genomics (S807025, NM_021105 (NCBI)) was 

analyzed via bioinformatic programs including TargetScan, miRDB, MicroCosm, miRANDA for 

identifying miRNAs with putative binding sites. Venn-diagram was constructed to identify the miRNA 

“top hits” with binding sites in 3‟ UTR of PLSCR1. (*Created by Madhav Karthik Kodigepalli) 

 



121 

 

 

410, miR-494 and miR-495. Interestingly, although miR-494 was not identified by any of the 

bioinformatic programs (Figure 27) to have a putative binding site in the 3‟UTR of PLSCR1, as shown in 

Figure 28A, transfection with miR-494 mimic resulted in a marked reduction in PLSCR1 protein relative 

to control mimic. This suggests that miR-494 might regulate the expression of PLSCR1 in ovarian cancer 

cells. Interestingly, as shown in Figure 28B, although PLSCR1 3‟UTR did not have perfect miR-494 

binding sites, we identified that miR-494 has two imperfect „ATGTTT‟ binding sites in the 3‟ UTR of 

PLSCR1 (Figure 28B). Further studies are needed to determine whether miR-494 directly binds to the 

Figure 28: miR-494 reduces PLSCR1 protein 

(A) HEY ovarian cancer cells were transfected with control mimic or with mimics of miR-216b, miR-

410, miR-494 and miR-495 using Fugene HD transfection reagent. Cell lysates were harvested 96 

hours post-transfection and were analyzed via western blotting for the indicated antibodies. (B) 3‟UTR 

sequence of PLSCR1 (Switchgear Genomics (S807025, NM_021105 (NCBI)) was utilized to identify 

miR-494 binding site (ATGTTTC). Imperfect miR-494 binding sites (ATGTTT) are highlighted. 
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3‟UTR of PLSCR1 through these indirect binding sites and to validate and understand the complete 

mechanism mediating this process.  

 

Scrambling Activity of PLSCR1  

Historically, phospholipid scramblases were associated with the function of phospholipid 

scrambling [34, 35], maintaining the plasma membrane asymmetry by translocating phospholipids from 

the inner leaflet to outer leaflet of plasma membrane. Indeed, externalization of phosphatidylserine (PS) 

to outer leaflet of plasma membrane in apoptotic cells is an event that aids in their recognition and 

clearance by macrophages which was earlier credited to PLSCR1 function [34, 37]. Additionally, Scrm1, 

the C. elegans homolog of PLSCR1, was shown to be required for PS externalization in apoptotic germ 

cells [135].  However, later studies performed in PLSCR1-/- mice did not demonstrate altered scrambling 

activity and PS exposure and further, the mice also did not exhibit any bleeding disorders suggesting 

PLSCR1 might not be a major player in this process [37, 116]. Later in 2012, using Scott Syndrome cells 

that are deficient in PLSCR activity and a screening approach, TMEM16F, a calcium dependent chloride 

channel, was identified to be responsible for the PS externalization and deficiency of scramblase activity 

in the Scott Syndrome patients [117, 121, 178]. Furthermore, reconstitution of PLSCR1 in these cells did 

not alter the scramblase activity indicating that PLSCR1 is not critically responsible for the scrambling of 

phospholipids. Via cBioPortal analyses (Table 9), we noted that the copy number and mRNA expression 

alterations of TMEM16F (Ano6, located at chromosome 12q12) in ovarian cancers was markedly 

different to that of the members of the phospholipid scramblase family. Furthermore, we also noted that 

DNA copy number changes and mRNA expression levels between TMEM16F and PLSCR1 were not 

correlated (Figure 25 and 26). As shown in Figure 4B in Chapter 1, bulk of PLCSR1 protein is in the 

cytoplasm with only one c-terminal end transmembrane region. It would be interesting to determine how 

PLSCR1 can regulate phospholipid scrambling with only one transmembrane domain. In this regard, it 

could be possible that PLSCR1 could potentially interact with other known scramblases such TMEM16F 

(with 8 transmembrane regions) and thus regulating the scramblase activity indirectly. In this regard, we 
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would determine any possible interaction between PLSCR1 and TMEM16F. We would perform REMTH 

(retrovirus based mammalian two hybrid screen) to identify all the interaction partners of TMEM16F and 

perform PCA (protein complementation assay) to validate the interaction between TMEM16F and 

PLSCR1. As mentioned in above, although, PLSCR1-/- deficient mice exhibited normal PS 

externalization, it is important to consider the role of other members of PLSCR family which also have 

been shown to regulate the scrambling activity [136, 138, 174]. In this regard it would be important to 

generate multiple knockout mice of PLSCR family members and then examine whether scramblase 

activity is still unaltered in presence of calcium or in apoptotic cells. In this regard, we have looked at the 

existing PLSCR members knockout mouse models. PLSCR1-/- and PLSCR3-/- mice have been generated 

and utilized for previous studies by Sims et al. [255]. Additionally PLSCR2-/- are available at the UC 

Davis knockout mouse project (KOMP) repository. In order to generate the PLSCR4-/- and multiple 

knockout mice, we would employ the CRISPR (clustered regularly interspaced short palindromic repeats) 

cas9 genetic deletion system based approach. 

 

Role of PLSCR1 in Modulating Autophagic Flux 

Recent studies implicate PLSCR3 in regulating mitophagy [178], a form of autophagy that 

specifically targets the damaged mitochondria to the autophagosomes for degradation. Using SH-SY5Y 

human neuroblastoma cells, it was demonstrated that PLSCR3 regulates the externalization of cardiolipin 

from the inner to the outer mitochondrial membrane; this is an event that aids in the recognition and 

delivery of the mitochondria to the autophagosomes [178]. Apart from this report, there is no other 

reported evidence implicating the other phospholipid scramblase members (including PLSCR1) in the 

process of autophagy. 
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From our studies presented in Chapter 4, we have observed that siRNA-mediated knockdown of 

PLSCR1 markedly reduced the LC3B levels in HEY ovarian cancer cells treated with As2O3. This 

observation implicates PLSCR1 in process of autophagy. Furthermore, we have noted that dsDNA 

transfection in normal ovarian and mammary epithelial cells leads to a marked increase in LC3-II levels 

(Figure 29A, Right and Left panels). It is currently unclear whether the induction of PLSCR1 and LC3-II 

Figure 29: IRF3 knockdown reduces the dsDNA transfection-induced increase in LC3-II levels in 

normal epithelial cells 

(A) T80 (Left panel) and HMEC cells were transfected with empty pcDNA3 plasmid or transfection 

reagent only (“mock”). Cell lysates were harvested from 6 up to 48 hours post-transfection and 

analyzed via western blotting with the indicated antibodies. (B) Empty plasmid or mock transfection 

was performed in T80 cells that were treated with IRF3 siRNA. Cell lysates were isolated at 48 hours 

following transfection and analyzed via western blotting with the indicated antibodies. (C) T80, HEY, 

TOV112D, and TOV21G cells were “mock” or empty pcDNA3 transfected. Cell lysates were collected 

48 hours post-transfection followed by western analysis with the indicated antibodies. 
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upon dsDNA transfection is linked. Interestingly, we also noted that knockdown of IRF3, which leads to 

reduction in PLSCR1 induction levels, alters the LC3-I to LC3-II ratio (Figure 29B). It is unknown 

whether knockdown of IRF3 would modulate other important autophagic mediators such as ATG5, 

ATG7, ATG9, hVps34, and beclin-1. In addition, knockdown of PLSCR1 using siRNA could provide 

evidence of altered LC3B levels and punctae formation upon dsDNA transfection in T80 or HMEC cells. 

If, indeed, we find changes in the autophagic response upon knockdown of IRF3 or PLSCR1, further 

studies are needed to investigate the mechanism by which PLSCR1 modulates the autophagic responses. 

Based on the preliminary data, as shown in Figure 30, we propose an important role of PLSCR1 and IRF3 

in regulating the process of autophagy in response to treatment with chemotherapeutic agents (As2O3) 

(Left panel) and dsDNA (Right panel). 

 

PLSCR1 and Cancer Immunotherapy 

Ovarian cancer is one of the most common causes of gynecological cancer related deaths in 

women. In 2014 alone, it is estimated that there would be 14,270 deaths due to ovarian cancer and 

incidence of 21,980 new cases (National Cancer Institute, SEER 18 2004-2010). Although we have made 

considerable progress in understanding ovarian cancer and there have been considerable improvements in 

treatment strategies, the 5-year survival rate has been a meager 44.6 % (National Cancer Institute, SEER 

18 2004-2010). Therefore, there is a dire need for novel treatment strategies for this devastating disease. 

Based on our work presented in Chapter 5, we propose that PLSCR1 could potentially be a promising 

target to improve treatment of ovarian cancer using an immunotherapeutic approach. As presented in 

Chapter 5, when we treated normal and cancer cells with dsDNA molecule, we noted that in T80 (normal 

ovarian epithelial cells) and HMEC (primary mammary epithelial cells), there was a marked upregulation 

of PLSCR1, the most highly inducible IFN responsive gene. On the other hand, in ovarian cancer cells, 

there were no marked changes in the expression of PLSCR1. A similar pattern was also noted for the  
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activation of IRF3 upon dsDNA transfection in these cell lines. These results could suggest that the 

mechanism of PLSCR1 upregulation or IRF3 activation is dysregulated in ovarian cancer cells. The 

detailed signaling pathway events leading to these changes are presently unclear and need to be 

investigated. Mechanisms of interaction between tumor cells and the cells associated with immune system 

such as dendritic cells (DCs), macrophages, and natural killer T cells, also needs to be investigated further 

Figure 30: Schematic of the proposed role of PLSCR1 and IRF3 in autophagic regulation 

(A) As2O3 treatment results in induction of cytoprotective autophagy in ovarian cancer cells [1]. Since 

PLSCR1 reduction via siRNA results in increased apoptosis and decreased conversion of LC3-I to LC3-

II (Figure 16E), we propose that PLSCR1 might potentially regulate the process of autophagy in ovarian 

cancer cells in response to chemotherapeutic treatment. (B) dsDNA transfection leads to activation of 

IRF3, induction of PLSCR1 consistent with increased levels of LC3-I to LC3-II conversion, which is 

ablated by siRNA mediated reduction of IRF3. Therefore, we propose that IRF3 activation and PLSCR1 

induction might be critical to process of dsDNA-induced autophagy in normal epithelial cells. (*Model 

created by Madhav Karthik Kodigepalli) 
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with respect to the role of PLSCR1. In this regard, an in vitro co-culture system based approach may be 

appropriate for such studies. Mouse models bearing ovarian tumors could be studied for such in vivo 

interactions within an intact tumor microenvironment. Typically, TLRs that are activated upon entry of 

pathogenic or foreign nucleic acids would stimulate the DCs allowing them to differentiate into antigen 

specific T cells. Indeed, stimulants of TLR signaling could be classified as „vaccine adjuvants‟ which 

would specifically target TLR9 in endosomes; this pathway is well studied in terms of innate immunity 

and protection against bacterial and viral infections. A similar activation could be used to eliminate the 

tumor cells. Therefore, the uptake of these foreign DNAs into „effector‟ cells could promote their anti-

tumor characteristics. PLSCR1 overexpression in HEY1B ovarian cancer cells that were subcutaneously 

administered to athymic nude mice showed a marked reduction in tumor volumes overtime relative to 

control cells with no PLSCR1 overexpression [15]. Whether the host mouse immune responses played a 

role in progression of these tumors that overexpressed PLSCR1 is presently unknown. Therefore, it would 

be interesting to investigate this further by using a different mouse model having intact immune system. 

 

Prospective Studies 

Specific Aim 1: To determine localization and function of PLSCR members in the aggressiveness and 

chemoresistance in ovarian and pancreatic cancers. 

I. We will perform immunohistochemical analyses for PLSCR family members in ovarian and 

pancreatic cancer tissue specimens. We will determine whether the expression and localization of 

these proteins is altered in these cancers.  

II. We will generate ovarian and pancreatic cancer cell lines with double or triple knockdown of 

PLSCR1, PLSCR2 and PLSCR4 to assess their function in these cancers.  

 

Specific Aim 2: To delineate the mechanisms by which IRF3 and PLSCR1 modulate the dsDNA-induced 

autophagy in normal epithelial cells. 
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I. We will perform PLSCR1 siRNA mediated knockdown experiments to determine the role of 

PLSCR1 in mediating the dsDNA-induced autophagy in T80 and HMEC cells. 

II. We will perform IRF3 knockdown studies to determine its role in dsDNA-induced autophagy in 

T80 and HMEC cells. 

III. We will further determine the role of PLSCR1 and IRF3 in dsDNA-induced autophagy by 

identifying whether these proteins interact directly with the autophagy mediators.    

 

Specific Aim 3: To delineate the mechanism leading to altered immune responses in ovarian cancer cells 

upon dsDNA transfection. 

I. We will perform siRNA or specific inhibitor mediated strategies against mediators of TLR 

signaling to delineate the complete mechanism of dsDNA-induced immune responses in T80 

immortalized normal ovarian surface epithelial cells and ovarian carcinoma cells. 
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Appendices 

 

Appendix A: Overexpression and Validation of HA-tagged PLSCR1 Mutants in T80 Cells   

As mentioned earlier in Chapter 6 (Page 118), we have generated the following PLSCR1 mutant 

constructs via a PCR based approach (Please refer to Chapter 2, Page 35).  

1. Wild type PLSCR1-HA 

2. C/A-PLSCR1-HA (Palmitoylation mutant, see above) 

3. ΔN-PLSCR1-HA (Deletion of N-terminal amino acids 1-97 from wild type PLSCR1) 

4. ΔTM-PLSCR1-HA (Deletion of amino acids 287-318 harboring transmembrane domain from 

wild type PLSCR1) 

 

Figure A1: Overexpression and validation of HA-tagged PLSCR1 mutants 

(a) T80 cells were transfected with empty pQCXIN vector or pQCXIN vector containing WT-

PLSCR1, C/A-PLSCR1, ΔN-PLSCR1, or ΔTM-PLSCR1 as described in Chapter 2. Forty-eight hours 

post-transfection, cell lysates were harvested and analyzed by western blotting with the indicated 

antibodies. (b) T80 cells were transfected with empty pQCXIN vector or pQCXIN containing ΔTM-

PLSCR1 followed by treatment with 5 μM MG132 or equal volume of DMSO for 18 hours. Collected 

cell lysates were analyzed by western blotting with the indicated antibodies. 
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The above variants were cloned into pQCXIN vector as described in Chapter 2. After validating the 

desired mutations via sequencing, these variants were transiently overexpressed in T80 cells to validate 

their expression. As shown in Figure A1a, utilizing anti-HA-11 antibody, we detected WT-PLSCR1 and 

C/A-PLSCR1 forms at 37 kDa while ΔN-PLSCR1 was detected at 26 kDa (due to absence of 98 amino 

acids compared to WT -PLSCR1). Interestingly, ΔTM-PLSCR1 was not detected by both anti-PLSCR1 

and anti-HA-11 antibodies. In order to determine whether the ΔTM-PLSCR1 protein is degraded after 

translation via proteasomal degradation pathway, we overexpressed the ΔTM-PLSCR1 in presence of 5 

μM MG132, an inhibitor of proteasomal degradation pathway. Indeed, as shown in Figure A1b, treatment 

with MG132 and not DMSO (control) recovered ΔTM-PLSCR1 expression which was detected both by 

PLSCR1 and HA-11 antibodies at 33 kDa (due to lack of 29 aa compared to WT-PLSCR1). These results 

suggest that ΔTM-PLSCR1 protein may potentially be degraded via proteasomal pathway when 

expressed. However, the mechanism involved and significance of degradation of ΔTM-PLSCR1 requires 

further investigation.   

 

Appendix B  

Request for permission to reproduce the work published in FEBS Letters as "SnoN/SkiL expression is 

modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer 

cells" 

Anne Rougeaux <anne.rougeaux@bzh.uni-heidelberg.de> Apr 16 

 

 

Dear Madhav Karthik Kodigepali, 

 Thank you very much for your message. 

 You can reproduce the article below entitled, 

 "SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT 

pathway in ovarian cancer cells", 
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Karthik M. Kodigepalli, Punashi S. Dutta, Kyle A. Bauckman, Meera Nanjundan, FEBS Letters Vol. 587, 

Issue 1, Pages 5-16, 4 January 2013,published in FEBS Letters in your thesis, providing the original 

publication is acknowledged accordingly and the authors' approval is obtained. 

Thank you. 

 With best regards, 

Anne Rougeaux 

FEBS Letters Editorial Office 

 

On 15/04/2014 18:59, Madhav Karthik Kodigepalli wrote: 

Dear Editor, 

I am a doctoral candidate from University of South Florida, Tampa FL. USA. I am currently writing my 

doctoral thesis and would like to rewrite and include data/content from one of the articles that was 

published in FEBS Letters Journal.  

 

In this regard, I am writing to you to request your permission to rewrite the article entitled 'SnoN/SkiL 

expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in 

ovarian cancer cells' (Volume587, Issue 1, 4 January 2013, Pages 5-16). I am a primary co-author on 

the article and it was accepted for publication in 'FEBS Letters' on November 1, 2012. 

I would greatly appreciate your help and thank you in advance for your valuable time. 

Sincerely, 

Madhav Karthik Kodigepalli 

Doctoral candidate, Department of CMMB, 

University of South Florida, Tampa. FL. USA  

--  

Anne Rougeaux 

Editorial Assistant 
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FEBS Letters Editorial Office 

Heidelberg University Biochemistry Center 

Im Neuenheimer Feld 328 

D-69120 Heidelberg 

Germany 

tel: +49 6221 54 4285 

fax: +49 6221 54 4260 

febs.letters@bzh.uni-heidelberg.de 

------------------------------------------------ 

Submit your manuscript to FEBS Letters to be considered for the  10,000 Euro Young Scientist Award. 

For more details see:  http://www.febsletters.org/content/younggroupleader 

 

Appendix C 

Request for permission to reproduce the work published in Molecular Cancer as “Phospholipid 

Scramblase 1, an interferon regulated gene located at 3q23, is regulated by SnoN/SkiL in ovarian 

cancer cells' (2013,12:32  doi: 10.1186/1476-4598-12-32)” 

Dear Dr. Kodigepalli, 

Thank you for your email. 

All of our authors retain copyright of their manuscripts and can therefore use any part of it again as long 

as the original article is properly cited. 

 Biomed Central‟s full copyright policy can be found 

here: http://www.biomedcentral.com/authors/license/ 

 Please let us know if you have any further questions. 

 Best Wishes, 

 Limuel   

 Limuel Garin 

tel:%2B49%206221%2054%204285
tel:%2B49%206221%2054%204260
mailto:febs.letters@bzh.uni-heidelberg.de
http://www.febsletters.org/content/younggroupleader
http://www.biomedcentral.com/authors/license/
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Journal Editorial Office 

BioMed Central   

 Web: biomedcentral.com 

  

From: Madhav Karthik Kodigepalli [mailto:kkarthik@mail.usf.edu]  

Sent: Tuesday, April 15, 2014 11:59 PM 

To: Molecular Cancer 

Subject: Requesting permission to use published content in thesis 

 

Dear Editor, 

 I am a doctoral candidate from University of South Florida, Tampa FL. USA. I am currently writing my 

doctoral thesis and would like to rewrite and include data/content from one of the articles that was 

published in Molecular Cancer Journal.  

In this regard, I am writing to you to request your permission to rewrite the article entitled 'Phospholipid 

Scramblase 1, an interferon regulated gene located at 3q23, is regulated by SnoN/SkiL in ovarian 

cancer cells' (2013,12:32  doi: 10.1186/1476-4598-12-32). I am the primary author on the article and it 

was published in 'Molecular cancer' on April 26, 2013. 

I would greatly appreciate your help and thank you in advance for your valuable time. 

Sincerely, 

Madhav Karthik Kodigepalli 

Doctoral candidate, Department of CMMB, 

University of South Florida, Tampa. FL. USA 

http://biomedcentral.com/
mailto:kkarthik@mail.usf.edu
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