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Abstract 

In enterohemorrhagic E. coli (EHEC) sigma factor N (σN) regulates glutamate-dependent acid 

resistance (GDAR) and the locus of enterocyte effacement (LEE), discrete genetic systems 

required for transmission and virulence of this intestinal pathogen.  Regulation of these systems 

requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC/σN-dependent reduction 

in the activity of sigma factor S (σS).  This study elucidates pathway components and stimuli for 

σN-directed regulation of GDAR and the LEE in EHEC.  Deletion of fliZ, the product of which 

reduces σS activity, phenocopies rpoN (σN) and ntrC null strains for GDAR and LEE control, acid 

resistance and adherence.  Upregulation of fliZ by NtrC/σN is indirect, requiring an intact flagellar 

regulator flhDC.  Activation of flhDC by NtrC/σN and FlhDC-dependent regulation of GDAR and 

the LEE is dependent on σN-promoter flhDP2, and a newly described NtrC upstream activator 

sequence.  While the addition of ammonium significantly alters GDAR and LEE expression, acid 

resistance and adherence, it does so independently of rpoN, ntrC and the NtrC sensor kinase ntrB.  

Altering the availability of NtrC phosphodonor acetyl phosphate by growth without glucose, with 

acetate addition, or by deletion of acetate kinase, ackA, abrogates NtrC/σN-dependent control of 

flhDC, fliZ, GDAR and LEE genes. 
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Chapter One: Regulation of Sigma Factor N and its Contribution to Bacterial Virulence 

and Pathogenesis 

 

1.1 Bacterial RNA Polymerase 

Regulation of gene expression is a vital aspect of survival for organisms in all domains of life.  It 

is the basis for cellular differentiation, adaptation to changing environments, and life itself.  

Transcription initiation is the first step of gene expression and provides one the most important 

points of access for differential regulation of genes.  In all domains, the multi subunit enzyme 

called RNA polymerase (RNAP) is the key component involved in transcribing DNA into RNA.  

The bacterial catalytic core RNAP is intensely conserved consisting of just one form and being 

composed of the five subunits α2, β, β’ and ω (Fig. 1.1). 

The crab claw shape of the RNAP is due to the β (~150kDa) and β’ (155kDa) subunits, 

which form the pincers of the crab claw (443).  The α subunits form a dimer (74kDa) and play an 

important role in assembly of the core RNAP.  The dimerized C-terminal domain of the α subunits 

(α-CTD) primarily interacts with various transcriptional factors dictated by environmental signals 

and also interacts with promoter DNA sequences signaling the dimerized N-terminal domain (α-

NTD) to first recruit and bind the β subunit and then bind the β’ subunit for assembly of the RNAP 

(130, 138, 164, 342).  Finally, association of the ω subunit (11kDa) at the interface of the β and β’ 

subunits results in formation of the ~380kDa catalytic core RNA polymerase complex (53). 

An immobile domain comprised of α-NTDs, ω and portions of the β and β’ subunits contain 

the active site channel of the core RNAP formed by the cleft between the β and β’ subunits.  This 

immobile domain is further bordered by 4 mobile domains.  This includes the β’ clamp domain,  
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Figure 1.1.  Bacterial RNA polymerase (adapted from Geszvain et al. 2005).   (A) RNAP subunits α2, β, β’ and ω 

form the core RNA polymerase. β and β’ subunits form the active site, which is divided into the DNA entry channel 

and secondary channel for entry of NTPs. (B) The transcription and sigma factor cycle. Sigma (orange) associates 

with core RNAP (blue), targets RNAP to specific promoters and isomerizes closed complex to an open complex to 

initiate promoter melting and transcription. 
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which forms a β’ pincer that closes on the main channel to hold the template DNA and the 

RNA:DNA hybrid within the active center.  Within the β’ pincer are two mobile domains called 

the lobe and protrusions, which can open and close to make the active site available.  The final 

mobile domain, called the β’ flap domain, covers the RNA exit channel regulating the exit of 

nascent RNA transcript (Fig. 1.1A) (260, 443). 

 Immediately downstream of the active site, the main channel is separated into a 

downstream DNA entry channel and a secondary channel.  Double stranded DNA enters into the 

RNAP complex through the DNA entry channel and following DNA melting, the template strand 

is positioned into the center of the active site.  The structure and size of the secondary channel 

dictates that only NTPs can be positioned and allowed to pass through to enter the active center 

for addition onto the polymerizing RNA transcript.  As nascent transcript elongates, it separates 

form the RNA:DNA hybrid and is extruded from the RNAP through the RNA exit channel (199, 

259). 

 

1.2 Bacterial Sigma Factors and Their Role in Transcription 

The core RNAP is completely dependent on another dissociable subunit called a sigma factor, 

which is crucial for the complete function of the RNAP holoenzyme for promoter recognition and 

initiation of transcription (53).  The key functions of sigma (σ) factors involve: I) binding core 

RNAP to form the RNAP holoenzyme (Eσ), II) recruiting Eσ to target promoters, III) promoter 

melting at the transcription start site, and IV) regulating transcription by clearing and releasing the 

promoter from RNAP (50). 
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 1.2.1 The transcription and sigma factor cycle 

 The transcription cycle consists of three main steps: initiation, elongation and termination.  

During initiation, the core RNAP which is in its open complex form binds to a sigma factor to 

form the RNAP holoenzyme (54).  The sigma factor recruits the holoenzyme to promoter DNA, 

where the holoenzyme forms the closed complex in a process called promoter recognition (55, 

200).  The closed complex isomerizes to an open complex, during which promoter DNA melting 

by the sigma factor allows the active site to access the template strand (341).  This open complex 

RNAP can initiate transcription but mostly remains at the promoter in an initial transcription 

complex creating and releasing very short transcripts in a process called abortive transcription, and 

then eventually escapes the promoter forming the transcription elongation complex (TEC) (202, 

409).  After the formation of the TEC, the sigma factor is rapidly released from the holoenzyme 

back in to the cellular pool of sigma factors for association with core RNAP (254, 316).  When 

RNAP encounters termination sites, structural reorganization within RNAP leads to release of 

RNA and dissociation of RNAP from template DNA resulting in termination of transcription (Fig. 

1.1B). 

 

1.2.2 The σ70 family: structure and functions 

All bacterial sigma factors can be categorized into two families, σ70 and σ54, based on their 

primary sequence, recognition of consensus promoter sequence and the mode of transcription 

initiation.  Even though there is little sequence similarity between the σ70 and σ54 families, sigmas 

of both types bind the same core RNAP to initiate transcription (56, 127, 362).  Sigma factors in 

the σ70 family are mostly composed of four helical domains (σ1, σ2, σ3 and σ4) connected by flexible 

linkers (Fig. 1.2) (62, 231, 259).  The crucial roles of binding core RNAP, promoter recognition  
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Figure 1.2.  Domains and functions of sigma factors in the σ70 family (from Osterberg et al. 2011). Globular 

domains are connected by flexible linkers.  σ1 autoinhibits free sigma from binding promoters and after holoenzyme 

formations facilitates open complex formation by binding to nonconserved (NCR) discriminator DNA sequence.  σ2 

binds core RNAP and initiates promoter melting at -10 (TATAAT) consensus sequence.  σ3 can help recognize 

extended -10 promoter elements.  σ4 binds -35 (TTGACA) promoter consensus sequence 
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and promoter melting to initiate transcription are contained within the σ2 and σ4 domains of all 

sigma factors in the σ70 family.  Within the four domains there are sub regions that play important 

roles in sigma factor functions.  The σ1.1 region at the N-terminus autoinhibits free sigma from 

binding promoters and this autoinhibition is repressed when the free sigma binds core RNAP (61, 

99).  After association with the core RNAP, σ1.1 can facilitate open complex formation at promoters 

by binding to the discriminator DNA sequence (411).  The σ2.2 region provides the most important 

basis of interaction between sigma factors and core RNAP.  It first interacts and binds to the β’ 

subunit and then binds the σ2.3 region, which stimulates σ2.3 region to initiate promoter melting at 

the -10 consensus sequence (10, 218, 286).  The σ3 domain helps in recognition of extended -10 

promoter elements, if present, and mostly remains positioned within the active site of RNAP  (22).  

The σ4 domain, containing the highly conserved regions 4.1-4.2, forms a mobile module with the 

β flap domain of the core RNAP and is essential for binding the -35 consensus promoter sequence 

(62, 356). 

 

1.3 The σ54 Family 

In contrast to the sigma factors of the σ70 family, alternative sigma factor N (RpoN or σ54) is the 

only sigma factor in the σ54.  Unlike Eσ70, Eσ54 holoenzyme binds at -24 (GG) and -12 (TGC) 

consensus sequences and remains in an energetically favorable closed complex (50, 423).  Open 

complex formation and transcription initiation by Eσ54 is completely dependent on ATP hydrolysis 

facilitated by activator proteins called bacterial enhancer binding proteins (bEBPs).  These bEBPs 

are members of the AAA+ (ATPases associated with various cellular activities) protein subfamily 

and bind enhancer sites upstream of a σ54 promoter site, also referred to as upstream activating 

sequence (UAS).  The hydrolysis of ATP by bEBPs results in a conformational change in σ54 that  
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Figure 1.3.  Generalized mechanism of σ54-dependent transcription.  Eσ54 holoenzyme is unable to form open 

complex at promoters and needs assistance from bacterial enhancer binding proteins (bEBPs).  bEBPs bind to enhancer 

sites and interaction between bEBP and Eσ54 is mediated through DNA bending by integration host factor.  ATP 

hydrolysis by bEBP initiates open promoter complex formation by σ54 and initiation of transcription   
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initiates promoter melting (306, 346, 417, 418, 434).  This Eσ54 activation process very closely 

resembles that observed for eukaryotic RNA polymerase II, where DNA melting is initiated 

through ATP hydrolysis by TFIIH (196, 221).  Since bEBPs can bind to enhancer sites 100-400 

bp upstream of a σ54 promoter, DNA between the enhancer sites and promoter must bend to allow 

interaction between the bEBP and Eσ54 (68).  This is facilitated by the DNA bending protein called 

integration host factor, which binds to specific sequences present between the σ54 promoter and 

the enhancer site (Fig. 1.3) (152, 437). 

 

1.3.1 Key components and structure of the σ54 protein 

Due to the extreme difference in protein sequence between σ70 and alternative sigma factor 

N (σ54) (18% similarity), the regions of σ54 are categorized based on function (Fig. 1.4).  Region I 

(residues 1 to 56) at the N terminus is primarily a glutamine and leucine rich sequence and plays 

important roles in promoter recognition and promoter melting through interaction with bEBPs (50, 

59, 66, 364).  Region I has been shown to bind both duplex and  premelted -12 consensus (GC) 

DNA sequence and plays an important role in DNA melting at this site (346, 425).  Similar to σ70, 

after Eσ54 holoenzyme formation, Region I can inhibit spontaneous open complex formation at 

promoters.  Deletion of residues 25-31 in Region I significantly increases Eσ54(ΔRegionI) binding to 

promoters, but transcription from this complex is only favored in solutions that allow transient 

DNA melting (65, 385, 413).  Initiation of melting of duplex -12 (GC) sequence is completely 

enhancer-dependent and requires direct interaction of bEBPs with Region I.  Bacterial enhancer 

binding proteins directly interact with residues 33-37 in Region I and the requirement of a bEBP 

for transcription initiation can be bypassed through deletion of Region I but only in the presence 

of premelted DNA (45, 73).  
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Figure 1.4.  Domains and functions of σ54. Regions are described based on functions.  Region I (1-56) is essential 

for interacting with AAA+ domain of bacterial enhancer binding proteins (bEBPs) and initiating promoter melting at 

-12 (GC) consensus sequence.  Region II (56-120) function is still not known.  Region III (120-477) is essential for 

binding core RNAP and -24 (GG) promoter consensus sequence.  
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Region II is the most variable in length, ranging from 26 residues in Rhodobacter to 110 

residues in Bradyrhizobium, and being completely absent in Bacillus subtilis (86, 96, 203) (Fig. 

1.4).  Sequence analysis has shown that Region II is predominantly comprised of acidic residues 

and in some organisms these acidic residues occur every third residue and have been termed acid 

trimer repeats (ATRs) (430).  A true generalized function for Region II is still unknown, but the 

only evidence for a role of Region II has been obtained from studies in Klebsiella pneumoniae.  

Studies have shown that in Klebsiella pneumoniae Region II plays a critical role in σ54 association 

to core RNAP and in open complex formation by influencing binding of Eσ54 holoenzyme to DNA 

(63, 375).  In Klebsiella, the residues 56 to 106 of Region II are required for binding to core RNAP, 

whereas residues 56 to 83 are required for complete association of Eσ54 to DNA (375). 

Region III (residues 120-477) is extremely conserved and contains the main determinants 

for binding core RNAP and -24 (GG) consensus sequence (Fig. 1.4).  Studies have shown that 

substitutions within residues 120-215 in Region III impair σ54 binding to core RNAP to varied 

degrees (121).  Specifically, deletion of a hydrophobic heptad repeat between residues 158-179 

shows a significant impairment in formation of Eσ54 holoenzyme (154).  Residues 329 to 463 

contain elements that are absolutely essential for binding the -24 (GC) promoter consensus 

sequence (56, 424).  Residues 329-346 contains a domain that results in direct crosslinking with 

duplex DNA, which allows σ54 to bind DNA even when it is not associated with RNAP (64).  Near 

the C-terminal end of σ54 is a highly conserved 10 amino acid sequence called the RpoN box 

(residues 454 to 463) (59, 395).  These residues form a HTH motif and specifically an arginine 

residue (R456) has been shown to be crucial for binding to -24 consensus sequence (104, 105).  

Deletion or substitution of any residue in the RpoN box leads to complete abrogation of σ54 binding 

to the -24 promoter sequence (395).  Another putative HTH motif has been identified between 
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residues 366-386 and the arginine residue (R383) was experimentally shown to bind the -13 

promoter region, but further functions have not been described for these residues (246). 

 

 1.3.2 Key components and structure of bacterial enhancer binding proteins 

 Bacterial enhancer binding proteins (bEBPs) are members of the AAA+ protein family and 

have two critical functions in σ54-dependent transcription: I) stimulating conformation change in 

σ54 in the holoenzyme through ATP hydrolysis, and II) initiating σ54-directed DNA melting at the 

-12 promoter site.  bEBPs are comprised of three functional domains: an N-terminal regulatory 

domain (R), a central AAA+ domain (C) and a C-terminal DNA binding domain (D).  The core 

AAA+ domain, which drives ATP hydrolysis and conformational change in σ54, is absolutely 

essential for a functioning bEBP and as such the R and D domains are sometimes absent in some 

bEBPs as observed in the case of PspF (E. coli), FlgR (Campylobacter), HrpR and HrpS 

(Pseudomonas) (48, 108, 158).  The central AAA+ domain is comprised of seven highly conserved 

regions (C1-C7), which contain elements essential to the function of a bEBP (Fig. 1.5).  The 

Walker A (region C1) and Walker B (region C4) motifs play roles in nucleotide binding and 

hydrolysis, respectively (136, 412).  The Walker A motif has a consensus sequence 

GxxxxGK(T/S) and is assisted by residues in Sensor II (region C7) to bind ATP, which triggers 

bEBP oligomerization into higher order rings (24, 345, 351).  bEBP monomers are usually ordered 

into hexameric rings, where the cleft between two adjacent protomers form the catalytic center for 

ATP hydrolysis (319).  The Walker B motif has a consensus sequence hhhhDE (h – hydrophobic 

residue), which binds Mg2+ required for ATP hydrolysis (338, 352).  The arginine residues (R 

fingers) in region C6 stabilize the ring structure by reaching into the catalytic core of an adjacent 
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Figure 1.5.  σ54 bacterial enhancer binding proteins (bEBPs) (from Bush et al. 2012). Sequence alignment showing 

all the conserved regions in the central AAA+ domain of all bEBPs.  Walker A is assisted by Sensor II to bind ATP, 

triggering bEBP oligomerization into higher order rings.  Cleft between two adjacent bEBP promoters form the 

catalytic center for ATP hydrolysis. Walker B binds Mg2+ and performs ATP hydrolysis.  The R fingers reach into the 

catalytic core of an adjacent subunit, function in nucleotide sensing and work in conjunction with Walker B in 

intersubunit catalysis.  When ATP is bound to the Walker motifs, the glutamate (E) in Walker B forms a bond with a 

switch asparagine (N) and upon conversion of ATP to ADP this bond is broken.  Change in nucleotide state is 

communicated by the switch asparagine and the residues of Sensor I to the L1 and L2 loops.  The GAFTGA motif in 

L1 loop with assistance from the L2 loop directly cause conformational change in σ54, which leads to open complex 

formation.  
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subunit, function in nucleotide sensing and work in conjunction with Walker B in intersubunit 

catalysis (136, 224, 273, 351).  When ATP is bound to the Walker motifs, the glutamate (E) in 

Walker B forms a bond with a switch asparagine (N) in region C2 and upon conversion of ATP to 

ADP this bond is broken.  This change in nucleotide state is communicated by the switch 

asparagine and the residues of Sensor I (region C6) to the L1 and L2 loops (183, 185, 320, 350).  

The tip of the loop 1 (L1) in region C3 holds the GAFTGA motif and with the assistance from the 

residues in loop 2 (L2) directly causes conformational change in σ54, which leads to Eσ54 closed 

complex formation (Fig. 1.5) (319, 444, 445). 

The N-terminal regulatory domain (R) of bEBPs are involved in sensing various intra- and 

extra-cellular cues, which are directly coupled to activation or repression of bEBPs.  The R domain 

has a diverse set of motifs for sensing various signals which can be categorized into three classes: 

V4R motifs, response regulator motifs, and GAF domains (Fig. 1.6) (362, 364).  bEBPs with V4R 

motifs sense and bind small ligands, usually aromatic compounds that are substrates of enzymatic 

pathways that they control (363).  For example, the bEBP, DmpR, in Pseudomonas binds various 

aromatic compounds that are involved in phenol catabolism, which then directly derepresses the 

inhibition of C domain (266, 368, 427).  bEBPs with response regulator domains are parts of two-

component systems, where a conserved residue in the R domain of the bEBP is directly 

phosphorylated by a cognate membrane bound sensor kinase (67).  One of the most well studied 

bEBPs in this category is the E. coli nitrogen regulatory protein NtrC.  During nitrogen limited 

conditions, the membrane bound sensor kinase NtrB autophosphorylates itself and then transfers 

the phosphate to a specific aspartate residue in the R domain of NtrC.  This signals inactive NtrC 

dimers to oligomerize into active hexameric rings, allowing for the formation of a core catalytic 

complex for ATP hydrolysis required for open complex formation in σ54-dependent transcription  
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Figure 1.6. Schematic illustration of different N-terminal sensory domains and C-terminal helix-turn-helix 

(HTH) DNA-binding domain.  The variable N-terminal sensory domains can contain V4R or GAF or response 

regulator motifs.  V4R motifs can recognize and bind aromatic compounds (such as phenolic compounds) or small 

ligands.  GAF domains can bind small biomolecules (such as formate) or other proteins.  Response regulators are parts 

of two component systems and are phosphorylated by their cognate membrane bound sensor kinase. 
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(329, 364, 383).  bEBPs with GAF motifs in the R domain respond to a wide range of inputs such 

as ligands, biomolecules and proteins.  The E. coli bEBP NorR, which is involved in expression 

of nitric oxide reductase, directly binds nitric oxide (NO) at the GAF domain and derepresses 

activity of NorR (87, 159).  Similarly, another bEBP, FhlA, binds formate to activate transcription 

of formate hydrogen lyase (153).  The GAF domain in the bEBP NifA responds to different inputs 

in different organisms for the same response to nitrogen limitation.  For example, in Azotobacter 

vinelandii, NifA is repressed by direct binding of NifL under nitrogen excess and activated by 

binding of 2-oxoglutarate to the GAF domain under nitrogen limitation (23, 372).  In 

Bradyrhizobium japonicum, NifA production can be directly affected at the level of transcription 

in response to oxygen limitation and in Herbaspirillum seropedicae NifA can respond to nitrogen 

limitation by direct binding of the PII signal transduction protein to the GAF domain (114, 275, 

376). 

The C-terminal DNA binding domain contains a helix-turn-helix motif that is vital for 

binding of bEBPs to enhancer sequences (Fig. 1.6) (382, 434).  Most enhancer sites exhibit dyad 

symmetry and as a result, bEBPs initially bind as inactive dimers as has been shown in the cases 

of NtrC, NorR and XylR (14, 291, 337, 406).  Different studies have suggested that the D domain 

may also have functions in bEBP oligomerization, stabilization and fidelity.  It has been proposed 

that the binding of bEBPs as dimers at the enhancer sites increases the local concentration of 

bEBPs, which may facilitate oligomerization and formation of the higher order ring structure (59).  

Evidence from EM reconstruction of bEBP bound to various nucleotides suggests that during 

transition of ATP to ADP conformational changes within the D domain may stabilize bEBP ring 

arrangement or facilitate σ54 interaction with bEBP oligomer (59, 94). 
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In Escherichia coli, it has been proven that under varying conditions response regulators 

of two component systems can be cross phosphorylated by non-cognate sensor kinases (408).  

bEBP response regulators such as NtrC can also be directly phosphorylated by high energy 

phosphoryl donors as acetyl phosphate (197).  In Campylobacter jejuni, deletion of the D domain 

of the bEBP FlgR results in constitutive activation of σ54-dependent transcription and thus has 

been proposed that the D domain may prevent cross phosphorylation by non-cognate sensor 

kinases or high energy phosphoryl donors as acetyl phosphate (186). 

 

1.3.3 bEBPs lacking regulatory and DNA binding domains 

Beyond the described architecture for the bEBPs, there are variants of bEBPs that can lack 

a regulatory input (R) domain or C-terminal DNA binding (D) domain and in some extreme cases 

contain highly variant versions of the Walker and GAFTA domains.  In Pseudomonas syringae, 

HrpR and HrpS activate σ54-dependent transcription of hrpL, which is involved in regulation of 

the hrp-hrc pathogenicity island (158).  Both HrpR and HrpS lack any recognizable regulatory 

input domain and are constitutively active, but their activity in the absence of any signal is 

repressed by direct binding of the regulatory protein HrpV.  Environmental cues lead to 

dissociation of HrpV from the complex, which allows HrpR/HrpS to activate σ54-dependent 

transcription of hrpL (189, 364).  Another example of a bEBP lacking a regulatory domain is that 

of PspF in E. coli, which is involved in activation of the phage shock operon (89).  Even though 

the exact physiological context for the function of the phage shock operon is not known, it is 

predicted that the phage shock operon is activated in response to membrane stress (184, 419).  

Similar to P. syringae, under uninduced conditions, PspF is bound and inactivated by PspA, 

encoded by the first gene (pspA) of the psp operon, and during membrane stress dissociation of 
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PspA allows PspF to initiate σ54-dependent transcription of the psp operon (49, 106, 108, 160, 

187).  In bEBPs that lack a C-terminal binding domain, they overcome this obstacle by activating 

σ54-dependent transcription directly from solution.  Studies have shown that bEBPs lacking a DNA 

binding domain have to reach a higher concentration relative to DNA bound bEBPs to initiate 

transcription (25).  A well-studied example of such a bEBP is FlgR, which is a crucial activator of 

flagellar genes in Helicobacter pylori (27, 378).  Bramhachary et al. has shown that FlgR lacks 

the HTH motif common in the C-terminal domain of other bEBPs and initiates σ54-dependent 

transcription independent of any enhancer site.  It was also shown that FlgR has the ATPase 

capability to activate transcription of Eσ54 even in E. coli (48). 

 

1.4 Factors That Influence σ54-Dependent Transcription 

All genes required for growth and housekeeping are expressed by the housekeeping sigma factor 

(σ70), whereas alternative sigma factors are primarily involved in regulation of genes under duress 

and also for bacterial virulence (193, 276).  σ54 was first identified as a sigma factor in E. coli 

during analysis of the gln operon, which is involved in glutamine synthetase production and 

nitrogen assimilation (150, 157).  Further analysis identified σ54 as an alternative sigma factor with 

crucial functions in activating genes required during nitrogen regulated (Ntr) response, flagellar 

biosynthesis, and bacterial pathogenesis (325, 327).  Besides σ54, in E. coli there are other 

alternative sigma factors that are tightly regulated through various direct active and indirect passive 

mechanisms programmed within the cell.  Active mechanisms involve directly regulating 

expression of the sigmas, harnessing the sigma factors through antisigma factors, keeping them in 

an inactive form or maintaining high proteolytic turnover of sigma factors (26, 143, 144, 147, 193, 

263).  Passive mechanisms involve direct competition between sigmas for core RNAP based on 
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their intrinsic affinity for RNAP, sequestration of σ70 from holoenzyme allowing alternative 

sigmas to bind core RNAP and influencing activity of alternative sigmas which increase affinity 

for core RNAP (151, 229, 295, 296).  Even though the functions of σ54 have been well studied and 

more are being discovered, there are still significant gaps in knowledge about how σ54 itself is 

regulated.  One specific area requiring further research is identifying what factors stimulate or 

regulate association of σ54 to core RNAP and their exact mode of action.  The following sections 

introduce elements that are known to influence σ54-dependent transcription and review their 

mechanisms. 

 

1.4.1 The effects of ppGpp and its cofactor DksA on σ54-dependent transcription 

When bacteria encounter nutrient limitation, ppGpp triggers a change in global 

transcription called stringent response, which downregulates synthesis of stable RNAs (rRNA, 

tRNA), ribosomal proteins and increases production of factors required for stress response (307).  

ppGpp can directly bind RNAP and alter activity of RNAP resulting in inhibition and stimulation 

of target promoters (3, 85, 277, 289, 364, 410).  The effect of ppGpp at promoters is facilitated by 

another protein called DksA, which binds the active site of RNAP through the secondary channel 

and amplifies the impact of ppGpp (289).  DksA causes structural changes within RNAP, which 

alters interaction with the -6 to +6 region of σ70 promoters (39, 217, 340).  ppGpp and DksA also 

indirectly influence transcription at promoters through sigma factor competition.  It is 

hypothesized that when ppGpp and DksA inhibit RNAP binding to σ70 promoters, its causes RNAP 

to dissociate from σ70 allowing alternative sigma factors to form holoenzyme and direct 

transcription from their respective target promoters (276).  These functions of ppGpp eventually 

identified their vital role in activation of σ54-dependent transcription (31, 32, 181, 210, 386, 388). 
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The most concrete evidence of a direct effect of ppGpp and DksA on σ54 promoters has 

been obtained from investigation of the dmp operon in P. putida and E. coli.  The dmp operon in 

Pseudomonas sp. contains genes required for growth on phenol and phenolic derivatives as sole 

carbon sources (366).  The structural genes are transcribed from a σ54-dependent promoter termed 

Po (369).  The bEBP required for transcription of Po is DmpR (encoded by dmpR), which is 

divergently transcribed from a σ70-dependent promoter termed Pr (290, 365, 367).  When ppGpp 

levels are increased, transcription of Po concomitantly increases and reducing ppGpp or DksA 

levels significantly reduces expression of Po.  Po expression can be completely abrogated by 

removing both ppGpp and DksA, showing a synergistic effect (32, 388).  In vitro transcription 

assays shows that ppGpp and DksA do not have any direct stimulatory effect on the Po promoter 

suggesting some indirect stimulatory effect on Po (32).  This gap in knowledge was finally resolved 

after it was determined that ppGpp and DksA influence expression of DmpR through the Pr 

promoter.  Deletion of dksA or reducing ppGpp production substantially decreases DmpR levels 

and in vitro transcription assays validated that ppGpp-DksA directly stimulate σ70-dependent 

transcription of the Pr promoter (32, 181).  Therefore, ppGpp-DksA directly activate dmpR 

expression from Pr, which leads to DmpR-σ54-dependent expression from the Po promoter.  

Besides the effect on the Po promoter, ppGpp-DksA has also been shown to have similar 

stimulatory effect on other σ54 promoters.  The Po promoter was replaced with σ54 promoters of 

Pu (P. putida), nifh (K. pneumoniae), glnA (E. coli) and pspA (E. coli) and their response to ppGpp 

and DksA was determined in vitro.  All promoters exhibited significantly decreased activation in 

the absence of either ppGpp or DksA, showing a strong dependence on both and an indirect role 

for ppGpp and DksA in activation of σ54 promoters (31, 32). 
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As mentioned previously, the expression of the distinct sigma regulons is in part dependent 

on the intrinsic ability of sigmas to compete with other sigma factors for binding RNAP.  At any 

given point the amount of any sigma factor in the cell exceeds that of available core RNAP, which 

makes the amount of functional RNAP an important rate limiting step (132, 300).  Studies have 

shown that in E. coli the levels of σ54 and σF always remain constant at about 10% and 50% of that 

of σ70, respectively, and during transition into stationary phase σS reach 30% of that of σ70 (173, 

178).  Also, in stationary phase the levels of free RNAP decreases to approximately 65% of that 

of log phase levels (192).  Even though out of all the alternative sigma factors σ54 has the second 

highest affinity for core RNAP, the constant low levels of σ54 and competition from other sigmas 

make it extremely difficult to form holoenzyme (229).  Unlike the other sigma factors which are 

regulated with their antisigma factors, there are no known antisigma factors for σ54.  As such, 

sigma factor competition plays a crucial role in σ54-dependent transcription.  This idea has been 

further validated through both in vivo and in vitro experimentation with the DmpR-Po system.  As 

explained previously, in the absence of ppGpp, DmpR-σ54-dependent expression of the Po 

promoter significantly decreases (32, 388).  Studies have shown that creating mutations within 

rpoD (encoding σ70) or the β and β’ subunits which allow the formation of Eσ54 can restore Po 

expression in the absence of ppGpp and DksA (210, 386).  Similarly, artificially manipulating 

levels of σ54 and σ70 through overexpression of σ70 and reduction of σ70 also significantly increases 

Po expression in the absence of ppGpp and DksA (31, 32).  The role for sigma factor competition 

was even further validated through deletion of rpoS (encoding σS), which lead to increased 

expression of Po (210).  Altogether, a complete indirect mechanism of influencing σ54-dependent 

transcription has been proposed and is referred to as the passive model for ppGpp and DksA 

regulation of σ54 (269, 364). 
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In this passive model for ppGpp and DksA, it is hypothesized that the increased σ54-

dependent transcription is partly due to increased availability of free RNAP.  Studies suggest that 

ppGpp can destabilize Eσ70 promoter open complexes, which causes RNAP to fall off promoters 

(21, 448).  During exponential growth in rich media it has been shown that about 60-70% of Eσ70 

is occupied at promoters of rRNA and tRNA operons and ppGpp levels are very low or barely 

detectable (262).  As such, there are very low amounts of free RNAP available to form Eσ54.  It is 

hypothesized that during stringent response when ppGpp levels significantly increase, it binds and 

destabilizes Eσ70 occupied at the rRNA operons, which increases levels of free RNAP and allows 

σ54 to form holoenzyme leading to increased σ54-dependent transcription (269, 276, 364).  It has 

yet to be experimentally proven if there is total increase in σ54-holoenzyme in the presence of 

ppGpp. 

 

1.4.2 Regulation of σ54-dependent transcription by integration host factor 

As mentioned previously, σ54-dependent transcription is absolutely dependent on 

activation by enhancer binding proteins and in some cases on integration host factor (IHF), which 

bends DNA between the enhancer site and promoter allowing interaction of bEBPs with Eσ54.  

Apart from bending DNA and positioning enhancer and promoter sites for efficient activation, 

additional functions for control of σ54-dependent transcription have been identified for IHF from 

different studies in Pseudomonas and E. coli.  Investigation of the Po promoter region has 

identified that IHF plays a role in the activation of Po, independent of DmpR and the enhancer 

sites (387).  Upstream of the Po promoter there are two IHF binding sites: IHF1 overlaps with the 

enhancer sites (UAS) and IHF2 is located between the UAS and Po promoter.  The IHF2 site has 

been shown to provide sufficient binding of IHF and robust DmpR-σ54-dependent transcription of 
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Po.  Removal of the UAS showed that IHF can stimulate Po expression with assistance from DmpR 

in solution and that it is not involved in recruitment of DmpR to UAS.  Increasing concentration 

of Eσ54 does not affect IHF-mediated Po expression, which also proves that IHF does not stimulate 

Po expression through recruitment of Eσ54 to the promoter.  Analysis of the holoenzyme at the 

promoter revealed that IHF binding causes a structural change in the AT rich region around IHF2, 

which stabilizes Eσ54 open promoter complexes at Po (387). 

The second example of a distinct role for IHF in σ54-dependent transcription is derived 

from analysis of the Pu promoter in P. putida (35).  For maximal expression from the Pu promoter, 

the α-CTD of RNAP has to make contacts with a specific DNA sequence just upstream of the IHF 

binding site.  Removal of the DNA sequence or absence of IHF significantly decreases expression 

from the Pu promoter, which showed that IHF may play a role in association of the α-CTD of 

RNAP with the upstream DNA element (35).  Subsequently, it was determined that in the absence 

of IHF only one of the α-CTD of RNAP makes contact with the DNA sequence and in the presence 

of IHF both α-CTD of RNAP make contact with the DNA sequence forming a stable closed 

complex at the Pu promoter (228). 

Another example of a role for IHF in σ54-transcription has been derived from 

experimentation with the psp operon in E. coli.  The psp operon is transcribed from a σ54 promoter 

with assistance from the activator PspF and interaction of PspF with Eσ54 is mediated by IHF 

induced DNA bending.  PspF is divergently expressed from the psp operon from a σ70 promoter 

and autoregulates its own expression by binding and repressing the σ70 promoter (89, 187).  Gel 

shift assays have shown that PspF and IHF individually bind their respective sites at the promoter, 

but when both are present the shift in promoter DNA is increased approximately 48-fold, which is 

significantly higher than the sum of their individual shifts.  It has been predicted that PspF binding 
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to enhancer sites results in an energetically favorable configuration which leads to significantly 

higher recruitment and binding of IHF.  Alternatively, it has been shown that IHF binding also 

leads to increased recruitment of PspF to enhancer sites.  This is a unique example of co-operative 

binding of IHF and an activator for σ54-dependent system (188). 

 

1.4.3 Other factors that affect σ54 association with RNAP 

Rsd was initially identified from E. coli cell extracts of stationary phase cultures, where an 

additional protein was found in complex with σ70-holoenzyme (175).  Further experimentation 

identified that Rsd binds σ70 at a 1:1 ratio and not with any other sigma factors or components of 

core RNAP.  Rsd was shown to inhibit transcription from σ70 promoter by replacing σ70 in the 

holoenzyme (175).  Studies have also shown that Rsd sequesters σ70 and inhibits σ70 from binding 

core RNAP and -35 promoter DNA (161).  Rsd has since been designated as the σ70 antisigma 

factor, which sequesters σ70 allowing association of alternative sigma factors during stationary 

phase.  Observing expression of the Po promoter in an rsd null strain in E. coli and a pfrA (rsd 

homolog) null strain in P. putida revealed that deletion of these genes had no significant effect on 

DmpR-σ54-dependent expression of Po, but overexpression of rsd increased Po expression in the 

absence of ppGpp (31, 210).  Even though the physiological levels of Rsd did not produce any 

effect, the possible role of Rsd for other low affinity promoters or under other growth conditions 

have still yet to be determined.  Some studies have also shown that different potassium salts can 

also affect sigma factor selectivity in core RNAP.  Kundu et al. demonstrated that increasing 

concentration of potassium glutamate and potassium acetate significantly impedes σ70-dependent 

transcription and increases σF-dependent transcription in a dose dependent manner (204).  Lee et 

al. also demonstrated using potassium glutamate and potassium acetate that potassium levels affect 
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interaction between core RNAP and σ70 and σS (213).  Therefore, it is possible that potassium 

levels in the cell may similarly affect σ54 association with core RNAP, but these effects have yet 

to be determined. 

 

1.5 Role of σ54 in Bacterial Pathogenesis and Stress Fitness 

σ54 was initially discovered during the investigation of the response of E. coli to nutrient limitation 

(150). When E. coli is cultivated in media without ammonia or with a single organic nitrogen 

source (nitrogen limiting conditions), it results in expression of about 100 genes, collectively called 

the nitrogen regulated (Ntr) response.  Growth in nitrogen limited environment results in low 

intracellular levels of glutamine, culminating in the phosphorylation and activation of the bEBP 

NtrC by the sensor kinase NtrB and NtrC-σ54 dependent activation of Ntr genes.  The primary 

function of Ntr genes is to assimilate nitrogen through induction of transport/scavenging systems 

and nitrogen degradation pathways when nitrogen is limiting (327).  Under these conditions, 

glutamine synthetase (GS) catalyzes the synthesis of L-glutamine from ammonia and L-glutamate.  

However, roles of σ54 extend beyond just assimilation of nitrogen during nitrogen limitation 

response and have broad implications on cell metabolism.  In commensal E. coli σ54 has been 

directly implicated in catabolism of arginine and agamatine, transport of amino acids such as 

arginine, histidine, glutamate and aspartate.  σ54 also plays a key role in formate metabolism by 

directly activating the FhlA regulon, which encodes formate catabolic genes.  Studies have shown 

that σ54 is directly responsible for activating expression of the prp operon and the zra operon, 

whose genes encode components crucial for propionate metabolism and maintaining zinc 

homeostasis, respectively.  Recent studies have also shown that σ54 activates the rtc operon whose 

gene products are the only RNA cyclase and RNA ligase found in E. coli suggesting an important 
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role for σ54 in RNA metabolism, but the actual physiological context has yet to be determined (for 

detailed review see (327)).  Other than playing an important role in metabolism many studies have 

also implicated σ54 as a crucial determinant of bacterial pathogenesis in many organisms.  The 

following sections present a review of the different organisms in which σ54 plays an important role 

in virulence and pathogenesis. 

 

1.5.1 Borrelia burgdorferi 

 Borrelia burgdorferi, a spirochetal bacterium, is the causative agent of Lyme disease and 

the most common vector-borne disease in the US (15).  It maintains a natural reservoir in Ixodes 

scapularis ticks and is transmitted to mammalian (rodent or human) hosts through bite of an 

infected tick (52, 379).  Following a localized skin lesion the pathogen can disseminate to the heart, 

joints and nervous system causing carditis, arthritis and neurological complications (281).  First, 

B. burgdorferi has to adapt to conditions and colonize in the tick host and then subsequently adapt 

and colonize within the mammalian host.  Adaptation and colonization within different hosts is 

primarily driven through differential regulation of outer surface lipoproteins (Osp) (353).  Outer 

surface lipoprotein A (OspA) and OspB are absolutely essential for colonization of the tick midgut 

and highly expressed when the bacteria are ingested by the tick through a blood meal (95, 279, 

284, 354, 440).  Outer surface lipoprotein C (OspC) is essential for colonization of the mammalian 

host and highly expressed when the bacteria are transferred from the tick into mammal through 

the bite (133, 285, 353, 398).  In conjunction to OspC, other surface proteins like decorin binding 

protein A (DbpA) and Mlp8 also function in colonization of the mammalian host (278).  The 

alternative sigma factor S (RpoS) plays a crucial role in the switching of outer surface lipoproteins 

and the complex natural cycle of B. burgdorferi, by indirectly repressing OspA and OspB and 
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directly activating OspC, DbpA and Mlp-8 during mammalian infection (156, 398, 440).  

Expression of rpoS (encoding RpoS) is directed from a σ54 promoter, and deletion of rpoN 

completely abrogates expression of rpoS, opsC, dbpA and derepresses expression of ospA (57, 115, 

374).  As with any σ54-dependent promoter, activation of rpoS is completely dependent on the 

unique bEBP Rrp2, which does not bind to any specific DNA sequence and activates rpoS 

transcription independent of any enhancer sequences (41, 43, 134, 438).  Initially it was 

hypothesized that Rrp2 phosphorylation and its activation was dependent on it cognate sensor 

kinase HK2.  Subsequent experimentation identified that phosphorylation and activation of Rrp2 

was dependent specifically on production of acetyl phosphate, a high energy phosphoryl donor 

(435).  Another unique feature for rpoS transcription in Borrelia is that σ54 is also completely 

dependent on another DNA binding protein called BosR, which very closely resembles a Fur 

homolog (280).  This dependence on both a bEBP (Rrp2) and a non bEBP (BosR) for 

transcriptional activation by σ54 represents a unique case that has never been observed for σ54 in 

other bacteria.  Inactivation of any component in the Rrp2-BosR-RpoN pathway for activation of 

rpoS significantly mitigates virulence and recovery of the pathogen from mice models proving 

their necessity for full pathogenic potential in Borrelia for mammalian infection (280). 

 

1.5.2 Escherichia coli O157:H7 

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a serious food and water 

borne pathogen, responsible for outbreaks of bloody diarrhea (hemorrhagic colitis), severe acute 

anemia and the life threatening illness hemolytic uremic syndrome (HUS) (232, 245, 422).  To 

cause disease, EHEC must pass through the harsh acidic milieu of the upper gastrointestinal tract, 

and then colonize the lower gastrointestinal tract (4, 384, 422).  After entry into the stomach, EHEC 
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ceases growth, enters into stationary phase and activates expression of genes for acid resistance 

response, which allow survival of EHEC during passage through the gastric acid barrier of the 

stomach (pH 1-3) and determines a low oral infectious dose (<100 cells/ml) (76, 397).  After 

entering the lower gastrointestinal tract, increased availability of nutrients, neutral pH and 

physiologic temperature signal EHEC to grow exponentially and colonize.  Colonization is 

dependent on the pathogenicity island called the locus of enterocyte effacement (LEE), which 

encodes a type III secretion system and several effector proteins, absolutely crucial for intimate 

interaction of EHEC with intestinal cells (102, 293).  Therefore, both acid resistance and type III 

secretion mechanisms are vital for EHEC transmission and pathogenesis.  In E. coli O157:H7, 

alternative sigma factor S (σS) is a common regulator of both acid resistance and the LEE (169, 

313).  When the extracellular pH drops to pH 1-3, σS activates expression of the central 

transcriptional activator gene, gadE, whose protein product GadE activates glutamate-dependent 

acid resistance for maintaining cytoplasmic pH (70, 117, 219).  Posttranslational regulation of σS 

plays an important role in regulation of LEE encoded genes through two major LEE regulators, 

Ler and GrlR.  In one mechanism TTS genes are de-repressed through proteolytic activity of 

ClpXP on σS (169).  In another mechanism stabilization of rpoS mRNA increases expression of 

TTS genes (206). 

Recent study demonstrated that deletion of rpoN impacts expression of GDAR and the LEE 

in EHEC during exponential growth (332).  Inactivating σ54 (RpoN) significantly increases 

expression of GDAR genes correlating with increased fitness in acid after a two hour acid 

challenge.  Whereas, the WT strain exhibits no acid resistance during exponential phase, the rpoN 

mutant exhibits almost a 1000 fold increase in acid survival after a two hour challenge, 

demonstrating that σ54 is involved in negative regulation of GDAR.  Deletion of σ54 also 
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significantly decreases expression of genes encoding the central LEE regulator, ler, and receptor 

for A/E lesions, tir, demonstrating that σ54 plays a positive regulatory role in regulation of the LEE.  

The influence of σ54 on GDAR and LEE was shown to be dependent on σS, because inactivation 

of rpoS (encoding σS) in the rpoN mutant strain abolishes σ54-dependent control of GDAR and the 

LEE (332).  This is another example of where σ54 influences σS for control of mechanisms that 

influence pathogenesis, but unlike Borrelia burgdorferi in EHEC σ54 influences σS indirectly in a 

negative manner.  In EHEC, σ54 negatively influences both stability and activity of σS to regulate 

GDAR and LEE expression and is dependent on the bEBP NtrC for this control.  Deletion of ntrC, 

encoding NtrC, phenocopies the rpoN mutant for control of GDAR and the LEE (251).  Negative 

regulation of σS activity by NtrC-σ54 is mediated through FliZ, an antagonist of σS activity, and 

upregulation of fliZ by NtrC-σ54 has been shown to be indirect, requiring an intact flagellar 

regulator FlhDC.  Phosphorylation and activation of NtrC for control of GDAR and the LEE was 

shown to be independent of nitrogen availability within the cell, and like Borrelia is dependent on 

acetyl phosphate. Manipulation of acetyl phosphate levels through deletion of acetate kinase 

(ackA) and substitution of carbon source abrogates NtrC-σ54-dependent control of flhDC, fliZ, 

GDAR and LEE genes (Mitra et al. unpublished, in review).  Altogether, NtrC-σ54 play an 

important role in regulation of key pathogenic mechanisms in EHEC by sensing extra- and 

intracellular availability of carbon. 

 

 1.5.3 Pseudomonas aeruginosa 

 Pseudomonas aeruginosa is one of the most common causes of infections in burn injuries 

and are commonly associated with infections in patients with cystic fibrosis (CF) (123).  The large 

amounts of viscous bronchial secretions, high osmolarity and low nitrogen and phosphate 
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conditions within CF lungs, stimulate production of alginate, allowing P. aeruginosa to proliferate 

and cause severe infections in the respiratory tract (34, 97, 238).  Alginate, an exopolysaccharide, 

provides an important protective barrier against antibiotics and host immunity in the host lungs 

(208, 238).  Its production is dependent on two genes, algD and algC, which are under direct 

transcriptional control of σ54.  Studies have shown that alginate production is influenced by 

nitrogen availability within the cell, which is cued through σ54 to activate or repress expression of 

algD and algC.  Removal of rpoN, encoding σ54, significantly reduces algDC expression and 

production of alginate making σ54 an important determinant for successful colonization within the 

host lungs (46, 449).  Deletion of rpoN also severely abrogates production of pili and flagella by 

directly affecting expression of pilin and flagella biosynthesis genes, leading to loss of adhesion 

to various cell types and motility and making the pathogen extremely avirulent (78, 84, 91, 190, 

403).   P. aeruginosa also depends on flagella and pili production for successful colonization 

within the respiratory tract in CF patients.  Absence of either flagella or pili significantly abrogates 

virulence in P. aeruginosa.  Studies from burned mice model shows that non-flagellated or pili 

negative strains have a ten times higher LD50 and significantly reduced recovery from skin relative 

to WT, making them highly susceptible to host defense mechanisms (253, 347).  Altogether, the 

positive regulatory roles of σ54 in alginate, flagella and pili production make it an important 

determinant of P. aeruginosa pathogenesis. 

 

 1.5.4 Pseudomonas syringae 

 Pseudomonas syringae is an opportunistic pathogen and the causative agent of leaf blights 

and many related diseases in plants (149).  During pathogenesis, P. syringae invades the plant 

through the stomata or wounds and colonizes the surfaces of cells (194).  The range of plants that 
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P. syringae can invade and colonize is strain specific, and when introduced into a non-compatible 

host, the host’s defense system responds by eliciting a rapid localized programmed cell death 

termed hypersensitive response (HR) to prevent further colonization (142, 194, 432).  P. syringae 

strains contain avirulence (avr) genes which interact with non-compatible hosts and ensure 

interaction with compatible hosts and successful infection and colonization (357).  Within P. 

syringae is a pathogenicity island (PAI) called the hrp/hrc gene cluster, which encodes 

components of a type III secretion apparatus and effector proteins (avr genes), crucial for effective 

identification and colonization of the host (129, 170, 267, 301, 357).  In conjunction to the hrp/hrc 

PAI, some P. syringae pathovars also produce a phytotoxin called coronatine, which induces 

chlorosis in the host (6, 29).  Expression of the majority of hrp, hrc and avr genes in the 

pathogenicity island are under the direct transcriptional control of an extracytoplasmic sigma 

factor called HrpL (145, 432).  It was eventually identified that transcription of hrpL is under direct 

control of σ54 and is dependent on two separate bEBPs, HrpR and HrpS (158, 193).  Subsequent 

studies showed that strains lacking rpoN are extremely impaired at colonizing host cells and in 

production of coronatine, which significantly reduces the ability of P. syringae to cause disease 

(6, 146).  The extreme defective phenotype of rpoN mutants is not just due to decreased expression 

of PAI, since complementation with hrpL only marginally reproduces wild type phenotype but not 

coronatine production, proving that σN contributes to P. syringae virulence through both hrpL-

dependent and -independent mechanisms (193). 

 

 1.5.5 Salmonella typhi 

 Salmonella typhi is the causative agent of typhoid fever and poses a serious problem in 

many developing nations (287).  An important determinant of virulence in S. typhi is the 
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lipopolysaccharide (LPS) layer, a major component in the outer membrane of all gram negative 

bacteria.  LPS provides crucial protection to the pathogen from lytic action of serum complement 

and also functions in adherence to epithelial cells during initial stages of infection (182, 225, 299).  

LPS biosynthesis is dependent on nutrient availability, pH, osmolarity and temperature (5, 162, 

335).  Expression of operons and genes encoding components of LPS core and O antigen are 

positively regulated by the RfaH elongation factor (17, 110, 234, 310, 416).  Most of these operons 

and genes contain a conserved 8 bp motif called ops (operon polarity suppressor) at the 5’-UTR, 

which induces transcriptional pausing both in vivo and in vitro (11, 216).  RfaH recognizes these 

ops sequences and stimulates expression of these operons and genes by repressing transcriptional 

pausing (12).  It has been proven that RfaH is absolutely necessary for production of LPS in S. 

typhi (336).  RfaH dependent expression of LPS is growth phase dependent with expression of 

rfaH and production of LPS being lowest during exponential phase and maximal during stationary 

phase (38, 336).  It was eventually shown that expression of rfaH is activated from a σ54 promoter 

and that deletion of rpoN significantly abrogates the growth phase dependent expression of rfaH 

and production of LPS.  Involvement of σ54 also led to the finding that both rfaH expression and 

LPS production was similarly influenced by nitrogen availability, where nitrogen limitation 

significantly increased RfaH levels and LPS production (38). 

 

 1.5.6 Other species 

 Besides the organisms reviewed in the preceding sections, σ54 has also been implicated to 

be important for virulence in other pathogens.  In Vibrio cholerae deletion of rpoN leads to loss of 

motility and inability to colonize in an infant mouse model of cholera.  The inability to colonize 

in mouse was shown to be independent of motility suggesting a more significant role for σ54 in 
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regulation of V. cholerae virulence (198).  Similarly, σ54 was also shown to be necessary for the 

fish pathogen Vibrio anguillarum in penetration of the fish epithelium, but it is not required for 

virulence following penetration of the epithelium (270).  In Legionella pneumophila, mutation of 

rpoN significantly impairs the ability of the pathogen to compete with the wild type in an infection 

model, proving that σ54 is required for full in vivo virulence and fitness (349).  Studies in the plant 

pathogen Erwinia amylovora show that σ54 is absolutely necessary for virulence, which was linked 

to the direct regulatory effect of σ54 in expression of the type III secretion system (9, 77). 

 

Concluding Remarks 

During various nutrient limitation and upon encountering stressful conditions bacteria have to 

rapidly adapt to survive.  Integration of environmental signals by sigma factors and coupling them 

to differential gene regulation provides the basis for adaption and survival in extreme 

environments. σ54 is a major player in nitrogen limitation response, amino acid synthesis and 

transport, carbon metabolism and various other vital cellular processes.  However, in recent years, 

studies have shown that functions of σ54 extend beyond just maintaining cellular metabolism.  σ54 

is absolutely crucial for expression of virulence factors in Borrelia, Pseudomonas and Vibrio 

species and for complete in vivo disease progression.  In EHEC σ54 is responsible for activation of 

the locus of enterocyte effacement, which is crucial for immune subversion and colonization in the 

human intestine.  For full activity σ54 is completely dependent on enhancer binding proteins 

(bEBPs), which provide the bridge between environmental signals and activation of σ54-dependent 

transcription.  However, in many pathogens the environmental factors and the molecular basis that 

influence bEBP-σ54-directed regulation of pathogenesis are poorly understood.  Defining the 

molecular basis of σ54-directed regulation and understanding the environmental factors that 
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influence these pathways are crucial for development of chemotherapy to prevent disease 

progression in many of these pathogens.  
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Chapter Two: Sigma Factor N, Liaison to an NtrC and RpoS Dependent Regulatory 

Pathway Controlling Acid Resistance and the LEE in Enterohemorrhagic Escherichia coli 

 

Note to Reader 

 This chapter has been previously published in PlosOne, 2012; 7(9): e46288, and has been 

reproduced as per open access guidelines of PlosOne. See appendix A. 

 

2.1 Abstract 

Enterohemorrhagic Escherichia coli (EHEC) is dependent on acid resistance for gastric passage 

and low oral infectious dose, and the locus of enterocyte effacement (LEE) for intestinal 

colonization.  Mutation of rpoN, encoding sigma factor N (σN), dramatically alters the growth-

phase dependent regulation of both acid resistance and the LEE.  This study reports on the 

determinants of σN-directed acid resistance and LEE expression, and the underlying mechanism 

attributable to this phenotype.  Glutamate-dependent acid resistance (GDAR) in TW14359ΔrpoN 

correlated with increased expression of the gadX-gadW regulatory circuit during exponential 

growth, whereas upregulation of arginine-dependent acid resistance (ADAR) genes adiA and adiC 

in TW14359ΔrpoN did not confer acid resistance by the ADAR mechanism.  LEE regulatory (ler), 

structural (espA and cesT) and effector (tir) genes were downregulated in TW14359ΔrpoN, and 

mutation of rpoS encoding sigma factor 38 (σS) in TW14359ΔrpoN restored acid resistance and 

LEE genes to WT levels.  Stability, but not the absolute level, of σS was increased in 
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TW14359ΔrpoN; however, increased stability was not solely attributable to the GDAR and LEE 

expression phenotype.  Complementation of TW14359ΔrpoN with a σN allele that binds RNA 

polymerase (RNAP) but not DNA, did not restore WT levels of σS stability, gadE, ler or GDAR, 

indicating a dependence on transcription from a σN promoter(s) and not RNAP competition for the 

phenotype.  Among a library of σN enhancer binding protein mutants, only TW14359ΔntrC, 

inactivated for nitrogen regulatory protein NtrC, phenocopied TW14359ΔrpoN for σS stability, 

GDAR and ler expression.  The results of this study suggest that during exponential growth, NtrC-

σN regulate GDAR and LEE expression through downregulation of σS at the post-translational 

level; likely by altering σS stability or activity. The regulatory interplay between NtrC, other EBPs, 

and σN-σS, represents a mechanism by which EHEC can coordinate GDAR, LEE expression and 

other cellular functions, with nitrogen availability and physiologic stimuli. 

 

2.2 Introduction 

Enterohemorrhagic Escherichia coli (EHEC) is an enteric pathogen commonly implicated in food-

borne outbreaks of hemorrhagic colitis, and in the life-threatening illness hemolytic uremic 

syndrome (18, 243, 244).  To cause disease in humans, EHEC must overcome two formidable 

innate barriers to infection: the acidity of the stomach, and competition for intestinal colonization 

sites.  For the former, EHEC (and other E. coli) has evolved multiple discrete acid resistance 

mechanisms (reviewed in (116)), which allow for survival in highly acidic environments such as 

the stomach, and which determine a low oral infectious dose (75, 396).  For competitive gut 

colonization, EHEC utilize a type III secretion system (T3SS) encoded on the locus of enterocyte 

effacement (LEE) pathogenicity island (109, 137, 241, 292).  This T3SS translocates EHEC 
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effector proteins into host intestinal cells that mediate intimate attachment to the gut and subvert 

host cellular processes (reviewed in (429)).  

The expression of acid resistance and the LEE is influenced by various environmental and 

intracellular signals, including nutrient availability, stress, and growth phase (69, 128, 226, 227, 

373), (1, 2, 30, 191, 195, 441).  During exponential growth acid resistance is largely repressed, but 

is activated as cultures transition into stationary phase (69); for the LEE, the inverse is true (30).  

This pattern of expression may reflect the importance of colonization and replication when 

resources are abundant, and that of stress durability when they are scarce. Many auxiliary 

regulators communicate these changes in growth conditions to regulatory components of both acid 

resistance and the LEE (93, 201, 207, 211, 227, 343, 360, 399).  Alternative sigma factor 38 (σS) 

is a global regulator that plays an important role in coordinating acid resistance and LEE 

expression with growth phase.  σS is a protein of low abundance during exponential growth, but 

accumulates during transition into stationary phase (209).  The acid resistance phenotype of 

stationary phase cultures is largely attributed to σS and expectedly, strains mutated for rpoS 

(encoding σS) are sensitive to acid (69, 373), whereas LEE expression is both decreased and 

increased in response to rpoS mutation, depending on growth conditions (168, 207, 377, 401).  Not 

surprisingly, rpoS mutants are impaired in their ability to survive passage in both murine and 

bovine models of infection (312).  σS is tightly regulated at multiple levels of control (reviewed in 

(147)), and the factors that dictate rpoS/σS expression indirectly influence acid resistance, the LEE, 

and EHEC pathogenesis. 

Recently, another alternative sigma factor, sigma N (σN), has been shown to control 

structural and regulatory genes of both acid resistance and the LEE in EHEC serotype O157:H7 

(332).  When bound to RNA polymerase (RNAP), the RNAP-σN holoenzyme (EσN) directs 
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transcription from an estimated twenty-one promoters in E. coli which specify the transcription of 

over sixty genes involved in nitrogen and carbon metabolism, and stress resistance (51, 308, 327, 

420).  EHEC strains null for rpoN (encoding σN) express elevated levels of acid resistance genes 

belonging to the glutamate-dependent acid resistance (GDAR) system, and reduced levels of 

expression for genes encoded on all five operons of the LEE (332).  This altered expression of 

GDAR and LEE genes is restricted to exponential phase cultures.  Furthermore, GDAR 

upregulation in rpoN mutants is correlated with increased survival in acidic environments, and is 

dependent on an intact rpoS gene, suggesting that GDAR is controlled by an as yet uncharacterized 

σN-σS regulatory pathway in E. coli (332). 

 There is precedent for such a pathway in Borrelia burgdorferi, in which a σN-σS regulatory 

pathway controls the expression of membrane lipoproteins essential for transmission and 

pathogenesis (42, 155, 439).  In the B. burgdorferi model, σN has been shown to directly activate 

rpoS transcription, which is contrary to E. coli in which rpoS inactivation abrogates the GDAR 

phenotype of an rpoN null mutant, suggesting that σN downregulates rpoS/σS by some unknown 

mechanism.  There is evidence that this negative regulation is at the post-transcriptional level, as 

rpoN mutation does not alter rpoS mRNA levels (332).  In addition, a recent study reported 

increased levels and stability of σS in an rpoN mutant of the nonpathogenic E. coli strain K-12 

MG1655 (101).  This study further explores the regulatory interplay of σN and σS, and uncovers 

mechanistic details about σN-σS directed control of acid resistance and the LEE, and other genetic 

factors which contribute to the expression of this regulatory pathway. 
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2.1 Results 

 

2.2.1 σN-σS directed regulation of glutamate-dependent acid resistance and the locus of 

enterocyte effacement 

Independent regulatory pathways control glutamate-dependent acid resistance (GDAR) 

genes in response to discrete environmental stimuli through transcriptional modulation of the 

central regulator gadE.  These include pathways that stimulate gadE during exponential growth in 

minimal, acidified media (EvgAB-YdeO) (226, 236), or during stationary phase growth in rich 

media (σS-GadX-GadW) (227) , or rich media containing glucose (TrmE) (128).  The growth 

conditions under which rpoN-dependent acid resistance is expressed do not conform precisely to 

any of these stimulating environments.  And yet, mutation of rpoS in an rpoN null background 

suppresses GDAR, suggesting that in the WT background σN negatively regulates GDAR through 

a σS-dependent pathway; namely, σS-GadX-GadW.  To explore this further, transcript levels of 

GDAR regulatory genes from these activating circuits were measured in WT and mutant 

backgrounds of TW14359 during exponential growth.   

As anticipated, gadE transcript levels were significantly higher in TW14359ΔrpoN 

compared to TW14359 (p=0.001), as well as TW14359ΔrpoS (p=0.007), and 

TW14359ΔrpoNΔrpoS (p=0.005) (Fig. 2.1A).  Adding to this, both gadX and gadW transcripts 

were upregulated in TW14359ΔrpoN (p<0.05), but not in TW14359ΔrpoS for gadX, or 

TW14359ΔrpoNΔrpoS for either gadX or gadW. Transcript levels for trmE and ydeO, key 

regulators of alternative pathways for gadE activation, were in low abundance, and did not differ 

significantly between strains (Fig 2.1A); the presence of amplicons for trmE and ydeO was 

validated by gel electrophoresis.  Thus, a rpoN null mutation leads to increased expression of the 

GDAR-activating GadX-GadW pathway, agreeing with the rpoS-dependency of the phenotype. 
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Figure 2.1.  Transcript levels for acid resistance genes.  Gene transcript levels as determined by qRT-PCR are 

plotted for genes of the GDAR system (A) and genes of the ADAR system (B).  Mean transcript levels are normalized 

to the 16S rRNA gene rrsH.  Transcript levels are plotted against WT TW14359 (filled), TW14359ΔrpoN (empty), 

TW14359ΔrpoN ΔrpoS (hatched), and TW14359ΔrpoS (stippled, gadX and gadE only) for (A).  Asterisks denote 

significant differences by Tukey’s HSD following a significant F-test (n≥3, p<0.05 [*]; p<0.01 [**]).  Error bars 

indicate standard error of the mean. 
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In addition to GDAR, σS regulates at least two more acid resistance systems in E. coli: the 

arginine-dependent acid resistance (ADAR) system (220), and the oxidative-dependent acid 

resistance (ODAR) system (312).  Both GDAR and ADAR systems protect the cell from acid by 

a proton scavenging mechanism that is facilitated by the conversion of glutamate to γ-aminobutyric 

acid (GDAR) or arginine to agmatine (ADAR), and catalyzed by amino acid decarboxylases.  

ODAR on the other hand does not require glutamate or arginine, and is repressed by glucose 

(reviewed in (116)).  Except for rpoS, the regulatory and structural determinants of ODAR are not 

well understood, and thus were not investigated in this study.  For ADAR, the structural genes 

adiA (arginine decarboxylase) and adiC (arginine-agmatine exchanger) were slightly but 

significantly upregulated in TW14359ΔrpoN relative to TW14359 and TW14359ΔrpoNΔrpoS 

(p<0.05) (Fig. 2.1B).  However, adiY, encoding a putative regulator of adiA and adiC (380), was 

not altered in expression in either of the mutant backgrounds.  Despite the increase in adiA and 

adiC expression in TW14359ΔrpoN, there was no corresponding increase in acid resistance by the 

ADAR mechanism (Table 2.1), and exclusion of either glutamate or arginine from acidified EG 

media resulted in no growth for any strains (data not shown).  Therefore the only known 

requirements for rpoN-dependent acid resistance are rpoS, gadE, and glutamate. 

σS has also been shown to upregulate and downregulate transcription  of LEE genes in 

EHEC.  For upregulation, σS is hypothesized to enhance expression of the central regulator of the 

LEE, ler (encoded on operon LEE1), in a manner dependent on the non-coding RNA DsrA (207). 

It has also been reported that both the LEE3 and LEE5 operons possess σS-responsive promoters 

(377).  For downregulation, σS is proposed to stimulate an unknown repressor of PchA, which is a 

positive regulator of ler (167, 168, 401).    The mutation of rpoN leads to the downregulation of 

LEE genes during exponential growth (332).  Since σN controls GDAR through a σS-dependent 
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Figure 2.2.  Transcript levels for LEE genes.  (A) gene transcript levels as determined by qRT-PCR are plotted for 

representative LEE genes in WT TW14359 (filled) and TW14359ΔrpoN (empty). (B) ler transcript levels by qRT-

PCR are plotted against TW14359 and various mutant derivative strains of TW14359.  Mean transcript levels are 

normalized to the 16S rRNA gene rrsH.  For panel A, an asterisk denotes a significant difference between TW14359 

and TW14359ΔrpoN for each gene by Welch’s t-test (n≥3, p<0.05).  For panel B, the asterisk denotes a significant 

difference between TW14359ΔrpoN and the remaining strains by Tukey’s HSD following a significant F-test (n≥3, 

p<0.05).  Error bars indicate standard error of the mean. 

 
  



 

42 
 

pathway, it was predicted that σN-directed regulation of the LEE may be similarly dependent on 

rpoS.  As expected, transcript levels for LEE genes encoding the T3SS translocon component espA 

(encoded on LEE4), the effector chaperone cesT (on LEE5), and the translocated intimin receptor 

tir (on LEE5) were downregulated during exponential growth of TW14359ΔrpoN relative to 

TW14359 (p<0.05) (Fig. 2.2A).  In addition, transcript levels of ler (on LEE1) were reduced in 

TW14359ΔrpoN compared to TW14359 (p=0.015) and TW14359ΔrpoS (p=0.011) (Fig. 2.2B). 

Importantly, mutation of rpoS in TW14359ΔrpoN restored ler expression to levels consistent with 

TW14359ΔrpoS; ler expression was increased in rpoS null backgrounds relative to WT, but not 

significantly increased.  These results indicate that σN positively regulates the LEE during 

exponential growth in an rpoS-dependent manner, and is consistent with the role of σS as a negative 

regulator of LEE expression via the PchA-Ler pathway (167, 168, 401). 

 

2.2.2 Effect of rpoN mutation on rpoS mRNA and σS stability in EHEC 

There is evidence that the mutation of rpoN in EHEC does not alter rpoS mRNA levels, 

but instead leads to post-transcriptional alternations in rpoS/σS (332).  The mutation of rpoN in E. 

coli strain K-12 MG1655 was recently shown to lead to increased σS levels and stability (101).  

However, there are substantial differences at the genomic level between K-12 and EHEC O157:H7 

strains (139).  As an important example, the TW14359 genome (and the genomes of many other 

EHEC strains), does not contain two of the thirteen σN enhancer-binding proteins found in K-12 

and most other E. coli.  This study thus aimed to validate the effect of rpoN mutation on σS levels 

and stability in the EHEC background and under the growth conditions that promote σN-dependent 

control of GDAR and the LEE. 
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Figure 2.3.  Stability of rpoS mRNA and σS.  (A) Mean rpoS transcript levels (1st ordinate) and ratio of rpoS transcript 

(2nd ordinate) plotted against time following addition of rifampin at t=0 min for WT TW14359 (filled) and 

TW14359ΔrpoN (empty); ratio is indicated by the dotted line.  Error bars denote standard error of the mean (n≥3).  

(B) Representative western immunoblots for σS as a function to time following addition of tetracycline at t=0 min for 

TW14359 (WT) and TW14359ΔrpoN (ΔrpoN); blots are in increments of 4 min.  Stationary phase (Stat.) protein 

extracts were used as a positive control for σS, and TW14359ΔrpoS (ΔrpoS) as a negative control.  Equal loading was 

controlled for by westerns for GroEL (top row is ΔrpoN, bottom row is WT). 
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As anticipated, no difference was observed in the stability of rpoS mRNA between 

TW14359 and TW14359ΔrpoN (Fig. 2.3A).  After 12 min of rifampin addition, rpoS transcript 

was barely detectable in both backgrounds and the mean half-life for rpoS transcript was estimated 

at 2.43 min (TW14359) and 2.51 min (TW14359ΔrpoN), which agrees with previous estimates 

(283, 442).  Before addition of rifampin, however, levels of rpoS transcript were higher (1.5-fold) 

in TW14359ΔrpoN compared to TW14359, but not significantly higher.  In agreement with 

experiments using strain MG1655, σS was more stable in TW14359ΔrpoN compared to TW14359, 

however absolute levels were not observed to be higher in TW14359ΔrpoN (Fig. 2.3B) as 

described for MG1655 (101). In TW14359, σS was barely detectable after 4 min of tetracycline 

addition, but was detected for up to 12 min in TW14359ΔrpoN.  The mean half-life for σS was 

estimated at 2.4 min for TW14359 and 5.5 min for TW14359ΔrpoN, increasing by 2.3-fold in the 

rpoN null background. The half-life for  σS has been estimated at 1.4-6.5 min in exponential 

cultures of E. coli (209, 258, 355), and  10.5-30 min in stationary phase cultures (209, 355).  These 

results reveal that in TW14359ΔrpoN, rpoS-dependency and control of GDAR and the LEE is 

correlated with an increase in exponential phase stability, but not absolute levels, of σS. 

 

2.2.3 Role for core RNA polymerase and σN–dependent transcription in the σS stability, 

GDAR and LEE expression phenotype of TW14359ΔrpoN  

The ability of E. coli sigma factors to successfully compete for core RNA polymerase (RNAP) 

differs substantially.  For example, the RNAP binding affinity of σN is second only to the primary 

sigma factor, σ70, whereas σS binding affinity lies at the bottom of this rank order (83, 230).  In 

addition, the relative cellular abundance of each sigma factor influences gene expression through 

competition for RNAP (111).  During exponential growth, σN levels have been estimated to be at 
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Figure 2.4.  Effect of rpoNR456A expression in TW14359ΔrpoN 

on σS stability, gadE and ler transcription.  (A)  Representative 

western immunoblots for σS in TW14359 (WT), TW14359ΔrpoN 

complemented with rpoN+ (TW14359ΔrpoNpRAM-1), 

TW14359ΔrpoN (ΔrpoN), TW14359ΔrpoN complemented with 

rpoNR456A (TW14359ΔrpoNpRAM-2) before (t=0 min) and 4 min 

after addition of tetracycline (Tet.). Stationary phase (Stat.) protein 

extracts were used as a positive control for σS, and TW14359ΔrpoS 

(ΔrpoS) as a negative control.  Equal gel loading was controlled 

for by westerns for GroEL. (B) Mean gadE and ler transcript levels 

by qRT-PCR are plotted against TW14359 (WT) and derivative 

strains from Panel A.  Transcript levels are normalized to the 16S 

rRNA gene rrsH. Asterisks denote significant differences between 

WT and ΔrpoNpRAM-1 when compared to ΔrpoN and 

ΔrpoNpRAM-2 by Tukey’s HSD following a significant F-test 

(n≥3, p<0.05).  Error bars indicate standard error of the mean. 
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10-16% of σ70, whereas σS is barely detectable (163, 174, 179).  Together, this suggests that σS is 

at a substantial disadvantage for competitive RNAP binding during exponential growth.  However, 

in an rpoN null background, the absence of competing σN may allow for an increase in σS RNAP 

binding sufficient enough to protect σS from ClpXP degradation, leading to increased transcription 

from σS promoters.  This hypothesis might explain the σS stability, GDAR and LEE expression 

phenotype of TW14359ΔrpoN. 

To examine this possibility, a mutant version of the rpoN gene (rpoNR456A) was 

constructed, the product of which can efficiently form EσN holoenzyme but cannot bind DNA to 

direct transcription from σN promoters [91, 92].  If the increased stability of σS in TW14359ΔrpoN 

is solely the result of increased RNAP binding by σS, the expression of rpoNR456A in 

TW14359ΔrpoN should reproduce WT levels of σS stability.  This was not determined to be the 

case however, as the stability of σS in TW14359ΔrpoNpRAM-2 did not differ from that of 

TW14359ΔrpoN, and both were increased in comparison to TW14359 and 

TW14359ΔrpoNpRAM-1 (Fig. 2.4A).  The effect of rpoNR456A expression on the GDAR and LEE 

expression phenotype of TW14359ΔrpoN was also examined.  Transcript levels for the GDAR 

regulator gadE, and the LEE regulator ler in TW14359ΔrpoN and TW14359ΔrpoNpRAM-2 did 

not differ, and were significantly higher or lower than TW14359 and TW14359ΔrpoNpRAM-1, 

respectively (p<0.05) (Fig. 2.4B). Interestingly, survival by GDAR for TW14359ΔrpoNpRAM-2 

was partially reduced compared to TW14359ΔrpoN, but remained substantially higher than 

TW14359 and TW14359ΔrpoNpRAM-1 (Table 2.1). 
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2.2.4 Sensitivity of σN-dependent GDAR and LEE expression to protease inhibition 

The low abundance of σS during exponential growth is due to rapid proteolytic turnover by 

the serine protease complex ClpXP (209, 355).  In strains mutated for clpP (the protease of ClpXP), 

σS is completely stable in exponential phase (355), however in exponential phase cultures of 

TW14359ΔrpoN, σS is still largely unstable (Fig. 2.3B), suggesting that there remains a sufficient 

amount of σS proteolysis.  To reproduce the level of increased σS stability characteristic of 

TW14359ΔrpoN in the WT background, subinhibitory concentrations of the serine protease 

inhibitor 3, 4-dichloroisocoumarin (3, 4-DCI) (97) were titrated into growing exponential cultures 

and σS stability was measured. 

The addition of 5 µM 3, 4-DCI (or 1/12X MIC) increased σS stability levels in TW14359 

similar to σS stability levels observed in TW14359ΔrpoN without the addition of 3, 4-DCI (Fig. 

2.5A).  Addition of 3, 4-DCI further increased σS levels in TW14359ΔrpoN as well, revealing that 

σS stability is sensitive to serine protease inhibition in both backgrounds.  It was predicted that if 

the GDAR and LEE expression phenotype of TW14359ΔrpoN was simply a result of decreased 

σS proteolysis, then experimentally increasing σS stability with 3,4-DCI should reconstitute a 

similar phenotype in TW14359.  For GDAR this was not shown to be true, as 3, 4-DCI had no 

impact on survival of TW14359 in acid, and only marginally increased percent survival in 

TW14359ΔrpoN (Table 2.1).  Thus increased stability of σS alone cannot account for GDAR in 

TW14359ΔrpoN.  The expression of LEE genes is known to be positively influenced by ClpP 

through its proteolytic effect on σS (168, 401).  Consistent with this, 3, 4-DCI addition reduced 

expression from lerP430-lacZ in TW14359 as indicated by a decrease in percent β-galactosidase 

activity relative to untreated controls (Fig. 2.5B).  Since addition of 3,4-DCI further increased σS 

stability in TW14359ΔrpoN, it was expected that this increase would correspond with a further 



 

48 
 

 
 

 

 

Figure 2.5.  Effect of the serine protease inhibitor 3,4-DCI on σS stability and ler expression.  (A)  Representative 

western immunoblots for σS stability in TW14359 (WT) and TW14359ΔrpoN (ΔrpoN) during exponential phase 

(Expo.) 4 min after the addition of tetracycline, and with or without 3,4-DCI, as well as in WT and TW14359ΔrpoS 

(ΔrpoS) during stationary phase (Stat.) with 3,4-DCI. Equal gel loading was controlled for by westerns for GroEL.  

(B)  Expression from lerP430-lacZ as measured by mean percent β-galactosidase activity following addition of 3,4-DCI 

and relative to untreated controls during exponential growth for TW14359 (circles) and TW14359ΔrpoN (squares).  

Asterisks denote significant differences between TW14359 and TW14359ΔrpoN at each OD600 by Welch’s t-test (n≥3, 

p<0.05 [*]; p<0.01 [**]). 
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decrease in ler expression.  On the contrary, lerP430-lacZ expression did not differ in 3,4-DCI-

treated TW14359ΔrpoN cultures compared to untreated controls, and β-galactosidase activity was 

unchanged throughout growth compared to significantly reduced activity in TW14359 (p<0.05) 

(Fig. 2.5B).  These results reveal that although σS stability is sensitive to protease inhibition using 

3, 4-DCI in TW14359ΔrpoN, GDAR and ler expression is not and indicates that the underlying 

mechanism responsible for these phenotypes are at least partially distinct.  The addition of 1/2X 

MIC of 3, 4-DCI did not significantly alter the outcome for GDAR or ler expression in either strain 

(data not shown). 

 

2.2.5 Identification of the enhancer-binding protein required for σN-directed regulation 

of GDAR and the LEE 

σN is a unique sigma factor in its requirement for enhancer-binding proteins (EBP) to 

initiate transcription (reviewed in (361)).  If σS stability, GDAR and LEE expression in the rpoN 

mutant is dependent on σN-directed transcription, at least one of these EBPs is required for this 

control.  To examine this, a library of EBP isogenic deletion mutants in TW14359 was constructed 

and screened for GDAR during exponential growth.  Of the eleven mutants, only TW14359ΔglnG 

and TW14359ΔfhlA expressed GDAR comparable to levels observed for TW14359ΔrpoN (Table 

2.1).  fhlA encodes a regulator of formate metabolism (344), and ntrC (also glnG) encodes NtrC, 

a major regulator of nitrogen assimilation (330, 450).  The impact of fhlA or ntrC mutation on LEE 

expression was then determined by transforming pRJM-1 containing lerP430-lacZ into both EBP 

isogenic backgrounds, TW14359ΔrpoN and TW14359, and β- galactosidase activity was 

measured during exponential growth.  Expression from lerP430-lacZ increased in TW14359 to mid-

exponential phase (OD600=0.5), then tapered off as cells entered late exponential phase 
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Figure 2.6.  Stability of σS in σN enhancer binding protein mutants.  Representative western immunoblots for σS 

in TW14359 (WT), TW14359ΔrpoN (ΔrpoN), TW14359ΔfhlA (ΔfhlA), and TW14359ΔntrC (ΔntrC) before (t=0 min) 

and 4 min after addition of tetracycline (Tet.). Stationary phase (Stat.) protein extracts were used as a positive control 

for σS, and TW14359ΔrpoS (ΔrpoS) as a negative control.  Equal loading was controlled for by westerns for GroEL. 
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(OD600=1.0) (Fig. 2.6).  For TW14359ΔrpoN, lerP430-lacZ expression only slightly increased 

during growth, and was significantly reduced to 56% of WT levels at OD600=0.5, concordant with 

qRT-PCR data (p=0.008) (Figs. 2.2 and 2.6).  Mutation of fhlA had no apparent effect on lerP430-

lacZ expression, yet ntrC mutation reduced lerP430-lacZ expression to 50% of WT at OD600=0.5 

(p=0.006) to levels comparable with TW14359ΔrpoN (Fig. 2.6).  Thus the mutation of ntrC 

faithfully reproduces the GDAR and LEE expression phenotype of TW14359ΔrpoN.  

Interestingly, σS stability was increased in both EBP mutant backgrounds to the level of stability 

observed in TW14359ΔrpoN (Fig. 2.6).  These results reveal that mutation of fhlA and ntrC 

similarly influence σS stability, yet only ntrC mutation phenocopies GDAR and LEE expression 

observed in TW14359ΔrpoN.  A strain deleted for both rpoN and ntrC was constructed to validate 

the dependence on rpoN for NtrC-directed GDAR and LEE expression, but the mutant was too 

growth-impaired in DMEM to be phenotypically informative. 

 

2.3 Discussion 

The importance of σN in E. coli metabolism, particularly nitrogen metabolism, is undisputed.  

Strains mutated for rpoN are growth-impaired under nitrogen-limiting conditions due to an 

inability to activate nitrogen regulatory response promoters.  Mutation of rpoN also clearly affects 

many genes in E. coli that are not directly tied to metabolism, but which are perhaps cued to the 

metabolic status of the cell through σN, such as those involved in the regulation of motility (82, 

447), NO detoxification (122), and biofilm formation (28).  In the present study, the phenotype of 

acid resistance and LEE expression previously described for rpoN mutants in EHEC (332), 

represents a case in which σN-dependent regulation is indirectly communicated through the 

downregulation of another sigma factor, σS.  The antagonistic interplay of σN and σS in the control 
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of these discrete systems resembles that described on a genomic scale by Dong et al. (101), in 

which it was estimated that as many as 60% of σN regulated genes are counter-regulated by σS. 

For control of acid resistance, σN negatively regulates the σS-directed GadX-GadW 

pathway of glutamate-dependent acid resistance (GDAR) activation.  This agrees with the 

dependence on rpoS and gadE for acid resistance formerly described for rpoN mutants (332), and 

with research showing that rpoS expression in a ΔgadXW background cannot induce the GDAR 

central regulator gadE (348).  In this regulatory circuit, σS drives the transcription of gadX, the 

product of which then activates gadE transcription.  GadX also downregulates GadW, which is a 

negative regulator of σS (227).  As observed for GDAR, σN is clearly dependent on rpoS for 

upregulation of the LEE, conforming to the role of σS as a negative regulator of LEE expression 

(168, 401).  This σN-σS regulatory pathway is predicted to converge on the LEE central regulator, 

ler.  The fact that ler expression was not observed to be significantly decreased in previous 

microarray studies of rpoN mutated EHEC (332) but is in the current study, may be explained by 

the increased sensitivity of qRT-PCR. 

The GDAR and LEE expression phenotype of TW14359ΔrpoN correlates with an increase 

in σS stability similar to that described for K-12 (101), however no increase in σS levels was 

observed as was for K-12.  This disparity in results could reflect genetic differences between K-

12 and TW14359, or differences in experimental growth conditions. For the latter, the M9 glucose 

media used by Dong et al. (101) should be strongly growth restrictive for rpoN mutants, which are 

auxotrophic for glutamine in minimal media containing glucose (330).  As the production of σS is 

sensitive to reduced growth (209), increased σS levels during growth of rpoN mutants in M9 

glucose may be attributed to metabolic stress, and not specific to σN.  The growth of rpoN mutants 

is impaired in DMEM, but not prohibitively, as it contains glutamine. 
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This study further scrutinized the genetic basis for and significance of increased σS stability 

in the GDAR and LEE expression phenotype of rpoN.  The expression of a transcriptionally silent 

allele of σN (rpoNR456A) in TW14359ΔrpoN did not reconstitute WT levels of σS stability, gadE or 

ler expression, suggesting that competition for core RNAP is unlikely to be the primary underlying 

mechanism for this phenotype, and that transcription from a σN promoter(s) is a requirement.  The 

RNAP competition hypothesis implies that the simple removal of a competing sigma factor may 

allow for increased competition of the remaining sigma factors for RNAP core.  However, due to 

the low intrinsic affinity of σS for RNAP (230), all else being equal, it is more likely that σ70, or 

other sigma factors present during exponential phase (ex. σF) will out-compete σS for extant core.  

Naturally, this competition dynamic changes in stationary phase cultures, as small molecules and 

proteins modulate the ability of specific sigma subunits to interact with RNAP. 

Addition of the serine protease inhibitor 3,4-DCI was shown to result in increased σS 

stability in TW14359, and further increased σS stability in  TW14359ΔrpoN. This cumulative 

increase in σS stability in TW14359ΔrpoN could reflect the sum of effects of 3,4-DCI and rpoN 

mutation on a common pathway (i.e. ClpP), or independent pathways. There is no direct evidence 

however, that 3, 4-DCI is increasing σS stability by inhibiting ClpP.  Regardless of which is true, 

increasing σS stability alone by interfering with proteolysis did not alter GDAR and LEE 

expression in TW14359ΔrpoN, suggesting that the mechanistic basis of these phenotypes is 

distinct.  Mutation of rpoN could lead to increased σS activity at promoters, or modulate its affinity 

for RNAP.  For the former, both FliZ and 6S RNA have been reported to reduce σS activity at 

selective promoters (294, 405).  Interestingly, transcript levels of fliZ were markedly upregulated 

in rpoN null K-12 (101), but not in EHEC (332).  For the latter, various proteins and small 

molecules are known to facilitate EσS holoenzyme formation, including Crl (100), Rsd (176), and 
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ppGpp (180).  Currently, the involvement of any of these regulators in σN-σS control of GDAR and 

the LEE is unknown.  

This study revealed that a strain mutated for ntrC, encoding nitrogen regulatory protein 

NtrC, is phenotypically similar to an rpoN mutant in regards to σS stability, GDAR and LEE 

expression. NtrC is a canonical σN EBP, activating transcription from at least 16 promoters in E. 

coli by binding as a hexameric ring to an upstream activator sequence (UAS) distal to the σN -24/-

12 binding site (98, 421, 450).  The transcription of ntrC dramatically increases when E. coli is 

grown in media that does not contain ammonia (i.e. DMEM), and plays an integral role in 

controlling nitrogen utilization pathways.  This finding suggests that the product(s) of an NtrC/σN 

driven promoter directly or indirectly downregulates σS, which in-turn affects GDAR and LEE 

expression.  Currently however, there is no experimental evidence to support a role for any of the 

known NtrC/σN regulated genes in this.  Alternatively, NtrC could activate σN promoters 

independent of DNA binding, which may relax the site selectivity of NtrC/σN dependent 

transcription initiation.  Examples of this have been described for Rrp2 of B. burgdorferi, and FlgR 

of Campylobacter jejuni, that activate σN promoters in the absence of known UAS sites for these 

EBPs by some unknown mechanism (40, 58, 186). There is also a precedent for NtrC regulating 

transcription independent of σN.  NtrC binds to the core promoters of glnAP1 and glnAP3, repressing 

glnLG/glnALG (glutamine synthetase operon) transcription by interfering with σ70-dependent 

initiation (330).  Other E. coli promoters that are directly downregulated by NtrC have not however 

been described. 

This study further identified FhlA as a putative EBP involved in the control of σS and 

GDAR, but not the LEE.  FhlA activates transcription from multiple operons involved in formate 

metabolism, including structural components of the formate hydrogen lyase hydrogenase-3 (Hyd-
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3) complex.  Interestingly, the Hyd-3 complex has been reported to confer acid resistance by a 

unique mechanism that involves the consumption of protons during the conversion of formic acid 

to CO2 and H2 (268).  However, the fact that fhlA mutation leads to acid resistance is inconsistent 

with its role as a positive regulator of the Hyd-3 acid resistance mechanism.  Adding to this, Hyd-

3 has only been shown to be protective under anaerobic growth conditions (268), together 

suggesting that the acid resistance conferred by fhlA mutation is independent of this mechanism.  

Alternatively, mutation of fhlA may lead to the accumulation of formic acid during growth on 

glucose (DMEM contains 4 g/l glucose) leading to acid-adaptation.  Volatile fatty acid (VFAs, 

including acetic, formic and butyric acid) production during growth on glucose has been attributed 

to inorganic acid resistance in Salmonella and E. coli (16, 205).  The broader significance of this 

finding is that multiple σN EBPs regulate GDAR and the LEE by discrete pathways, some of which 

may be independent of rpoS.  In further support of this hypothesis, the EBP QseF has been 

independently shown to be important for attaching and effacing lesion formation, and for the 

control of T3SS effectors in response to autoinducer 3 (AI-3) and norepinephrine/epinephrine 

(321, 323, 324).  The mutation of qseF did not however affect GDAR in this study (data not 

shown). 

 Given the essential roles of NtrC and σN in nitrogen metabolism, the results of this study 

infer that these proteins coordinate the expression of GDAR and the LEE with nitrogen (i.e. NH3) 

availability through σS.  This proposed regulatory pathway shares many similarities with that 

described for rfaH expression and O-antigen production in Salmonella enterica.  Specifically, σN 

has been observed to activate rfaH transcription in an rpoS-dependent manner (36).  However, the 

mutation of rpoN was epistatic for rfaH control by σS, indicating a regulatory relationship in which 

σS is positively controlling σN; there is no evidence that σS influences rpoN/σN expression or 
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activity in E. coli (101, 332).  Remarkably however, rfaH transcription was further determined to 

be stimulated under nitrogen-limiting conditions (37), which suggests the potential for 

involvement of NtrC in σN-σS dependent control of O-antigen production in S. enterica. 

 This study concludes that σN exerts its regulatory influence on GDAR and the LEE through 

negative post-translational control of σS.  Thus the inactivation of rpoN relaxes the requirement 

for stationary phase-induced mechanisms of σS accumulation during exponential growth.  

Furthermore, the results suggest that σN-σS dependent GDAR and LEE expression is at least 

partially controlled by NtrC, an EBP that activates transcription from σN promoters specifying 

genes for nitrogen utilization.  The regulatory interplay of NtrC and other EBPs with σN and σS is 

likely to play a significant role in coordinating transcription with the various nutritional and 

physiological stimuli EHEC is exposed to during transmission, and in the course of infection. 

 

2.4 Materials and Methods 

 

2.4.1 Bacterial strains and culture conditions   

The strains and plasmids used in this study are listed in Table 2.2.  Strains were stocked at 

-80°C in glycerol (15% v/v final) diluted in Lysogeny Broth (LB) and were maintained in LB or 

on LB with 1.5% agar (LBA).  Unless otherwise noted, overnight (18-20 h) cultures grown in 

MOPS (50 mM)-buffered Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, cat. 

#D2902, St. Louis, MO) (257) containing 4 g/l glucose and 4 mM glutamine (pH 7.4) were used 

to inoculate fresh DMEM to a final OD600=0.05 and cultured at 37°C on a rotary shaker (200 RPM) 

using a 1:10 ratio of media-to-flask volume as described (332).  The growth of strains in DMEM 

was monitored by taking OD600 readings at 1 h intervals over 12 h (Fig. S1).  Antibiotics (Sigma-



 

57 
 

Aldrich) were added to cultures when required.  The rpoS+ status of strains was confirmed by 

catalase activity and glycogen storage following previous protocols (44, 148).   

 

2.4.2 Directed gene deletion and site-specific mutation 

Gene deletion mutants were constructed using the λ Red recombinase-assisted approach 

(92, 261) and as described (332).  Primers used for the deletion of σN EBPs, as well as rpoN and 

rpoS are provided in Table 2.3.  For site-specific mutation, a 1,518 bp ClaI/HindIII-digested PCR 

fragment containing the rpoN gene from strain TW14359 nucleotide positions 4,144,833-

4,146,311 was generated using primers rpoN-45/ClaI and rpoN+1455/HindIII (Table 2.3).  This 

fragment was ligated into ClaI/HindIII-digested pACYC177 to produce pRAM-1 (Table 2.2).  

Point mutations C1366G and G1367C were introduced into the rpoN gene present on the pRAM-

1 template plasmid by PCR using mutagenic primers rpoNR456A-F and rpoNR456A-R (Table 

2.3) and Pfu Ultra™ high fidelity DNA polymerase (Agilent, Santa Clara, CA) to produce pRAM-

2 (Table 1).  The resultant σN allele has a R456A mutation (rpoNR456A) in the DNA binding domain 

which interferes with the ability of the protein to bind DNA, but does not affect its capacity for 

RNAP association and holoenzyme formation (394, 415).  pRAM-1, in addition to pRAM-2 

purified from E. coli XL10-Gold® (Agilent) transformants, were transformed into strain 

TW14359ΔrpoN as described (332).  Genetic constructs were validated by PCR, and restriction 

mapping, or by DNA sequencing and qRT-PCR. 

 

2.4.3 Tests for acid resistance 

Acid resistance by the glutamate- and arginine-dependent systems was measured as 

described (332) with slight adaptations.  For the glutamate-dependent acid resistance mechanism, 
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mid-exponential (OD600=0.5) DMEM cultures were inoculated to 106 CFU/ml final cell density 

into E minimal glucose (EG) media with or without 5.7 mM L-glutamate at pH 7 (control) or 

acidified with HCl (pH 2).  To test for arginine-dependent acid resistance, exponential phase 

DMEM cultures were inoculated into EG media as above but with or without 0.6 mM L-arginine 

at pH 7 and pH 2.5.  EG media acid resistance test environments were incubated at 37°C (200 

RPM) for 1 h before sampling.  For cell counts (CFU/ml) and percent survival determinations, 

samples were serially-diluted in PBS (pH 7), plated to LBA and incubated overnight at 37°C.   

 

2.4.4 Quantitative real-time PCR (qRT-PCR) 

Primers for qRT-PCR are provided in Table 2.3.  RNA purification, cDNA synthesis, qRT-

PCR cycling conditions and data analysis followed previously described protocols (265, 332).   

 

2.4.5 Protein extraction, SDS-PAGE and western immunoblots 

To extract total cellular protein, 10 ml culture samples were centrifuged at 10,000 x g for 

2 min and the cell pellet was washed twice with sterile water with centrifugation as above.  Washed 

cell pellets were resuspended in 0.7 ml 0.5 M triethyl ammonium bicarbonate buffer (TEAB) 

(Sigma-Aldrich) and sonicated with a Sonic Dismembrator 120 (Fisher, Waltham, MA) at 50% 

amplitude for 30 sec intervals totaling 5 min, followed by incubation at 95°C in 4X Laemmli 

Buffer for 5 min.  Total cell protein was collected from lysed cells by centrifugation at 10,000 x g 

for 5 min, and supernatant was removed by aspiration.  For western immunoblots, 10-30 µg 

extracted protein was resolved using 10% SDS-PAGE at 13 V/cm for 80 min before transfer at 15 

V for 20 min to polyvinylidene fluoride (PVDF) membranes using a Trans-Blot semi-dry transfer 

cell (Bio-Rad, Hercules, CA).  For detection of σS,  PVDF membranes were blocked in Tris-
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buffered saline (1X Tris, pH 7.4) with 0.1% (v/v) Tween-20 (TBST) containing 5% skim milk for 

2 h at room temperature before incubation with anti-σS mAbs (Neoclone, Madison, WI) diluted 

1:5000 in TBST containing 2% skim milk overnight on a Veri Mix platform rocker (Fisher) at 

4°C.  Membranes were then incubated for 1 h at room temperature with HRP-conjugated goat anti-

mouse pAbs (Bio-Rad) diluted 1:10,000 in TBST with 2% skim milk.  Protein was detected using 

an enhanced chemiluminescence (ECL) Plus detection system (Amersham-Pharmacia, 

Piscataway, NJ) following the manufacturer’s instructions.  Protein levels were measured and 

analyzed using a ChemiDoc XRS and Image Lab Software (Bio-Rad).  The amount of protein 

loaded was measured using a Bradford protein assay standard curve.  Equal loading was validated 

by western blots for GroEL using anti-GroEL mAbs (Bio-Rad) diluted 1:40,000 in TBST with 2% 

skim milk.  Western blots were repeated a minimum of three times in independent trials. 

 

2.4.6 σS and rpoS mRNA stability 

Cultures were grown to mid-exponential phase (OD600=0.5) before the addition of a 

subinhibitory concentration of the transcription inhibitor rifampin (300 µg/ml final) or the 

translation inhibitor tetracycline (60 µg/ml final).  Sampling was performed immediately before 

addition of antibiotics, and at 4 min intervals thereafter for 12 min (rpoS mRNA stability) or 16 

min (σS protein stability).  RNA was purified and validated as described (265).  For rpoS mRNA 

stability, gene transcript levels were measured using qRT-PCR and primers rpoS+356 and 

rpoS+466 (Table 2.3).  Protein was extracted, and σS levels measured by western immunoblots.  

The half-life in minutes for rpoS mRNA and σS was extrapolated from gene transcript or protein 

levels, respectively, using linear regression analysis and as described (33).  The strength of 

linearity was estimated by the correlation coefficient (r2), and exceeded 0.85 (85%) for all analyses. 
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2.4.7 lacZ transcriptional fusions and β-galactosidase assay 

A 429-bp BamHI/EcoRI digested PCR fragment generated using primers ler-1/BamHI and 

ler-430/EcoRI (Table 2.3) and corresponding to nucleotide positions 4,679,303-4,679,731 in strain 

TW14359 was cloned into the similarly digested vector pRS551 (371)  using T4-DNA ligase 

(Fisher) to create pRJM-1 (Table 2.2).  This cloned fragment included 429-bp upstream of the 

translation initiation codon for ler (ECSP_4703) and both ler P1 and P2 promoters 

transcriptionally fused to lacZ (lerP430-lacZ).  pRJM-1 purified from DH5α transformants was used 

for transformation into various WT and mutant backgrounds.  The lerP430-lacZ fusion was 

confirmed by PCR and sequencing.  To measure β-galactosidase activity from lerP430-lacZ, 50 µl 

culture samples taken at OD600=0.25 (early exponential), OD600=0.5 (mid-exponential) and 

OD600=1.0 (late exponential) were immediately added to 950 µl Z-buffer (1M KCl, 1 mM MgSO4, 

0.05 M β-mercaptoethanol, 0.06 M Na2HPO4, 0.04 M NaH2PO4•H2O, pH 7) with 0.1 ml 

chloroform and 50 µl 0.1% (v/v) SDS) and mixed vigorously for 30 sec.  Samples were then 

incubated static at 28°C for 5 min before addition of 0.2 ml ortho-nitrophenyl β-D-

galactopyranoside (ONPG, 4 mg/ml in 0.1 M phosphate buffer, pH 7) at 28°C for 20 min.  

Following development of the yellow cleavage product orthonitrophenol, the reaction was 

terminated by the addition of 0.5 ml Stop Solution (1M Na2CO3) and samples were mixed and 

then centrifuged at 21,000 x g for 5 min before measuring β-galactosidase activity.  β-galactosidase 

activity was converted to Miller Units as described (248).   
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2.4.8 Serine protease inhibition 

Selective inhibition of serine protease activity was performed using subinhibitory concentrations 

(i.e. 1/12X minimum inhibitory concentration (MIC) or 5 µM) of 3, 4-dichloroisocoumarin (3,4-

DCI) (Sigma-Aldrich) (309).  The MIC for 3,4-DCI was at 60 µM for both WT and rpoN null 

backgrounds.  The effect of 3,4-DCI addition to growing cultures on σS stability, GDAR and LEE 

expression was determined as described above.  For σS stability, 3, 4-DCI was added to cultures at 

mid-exponential phase (OD600=0.4) and incubated to OD600=0.5 before addition of 60 µg/ml 

tetracycline.  Sampling was performed immediately before tetracycline addition and 4 min after 

addition.  For GDAR and LEE expression, 3,4-DCI was added at OD600=0.4 as for σS stability, 

and then GDAR tested, or β-galactosidase activity measured from lerP430-lacZ as described above.  

Control cultures did not contain 3, 4-DCI for all experiments. 
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Table 2.1 Acid resistance by the GDAR and ADAR mechanisms. 

 

    Percent survival (SD)a 

Growth condition Strain/genotype GDAR ADAR 

DMEM TW14359 <0.01b <0.01 

 TW14359ΔrpoN 24.2 (0.24) <0.01 

 TW14359ΔfhlA 21.2 (0.31) NDc 

 TW14359ΔglnG 15.7 (1.88) ND 

 TW14359ΔrpoNΔrpoS <0.01 <0.01 

 TW14359ΔrpoN pRAM-1 0.141 (0.11) 0.125 (0.79) 

 TW14359ΔrpoN pRAM-2 10.61 (1.22) ND 

    

DMEM + 3, 4-DCId TW14359 <0.01 ND 

  TW14359ΔrpoN 29.1 (9.3) ND 
 

a Percent survival by the glutamate-dependent (GDAR) and arginine-dependent (ADAR) acid resistance system; 

standard deviation (SD). 

b Less than 10 CFU/ml remains following 1 h exposure to acidified GDAR or ADAR test environment.  

c Not determined (ND).    

d DMEM growth media with addition of 5 µM 3,4-dichloroisocoumarin  (3,4-DCI). 
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Table 2.2 Strain and plasmids used in this study. 

Strain/plasmid Relevant characteristics Source/reference 

Strain name:   

DH5α Vector propagation, recA1 endA1  

XL10-Gold®  Competent cells Agilent, Santa Clara, CA 

TW14359 WT 2006 outbreak, western U.S. (232) 

EcRPF-6 TW14359ΔrpoN This study 

EcRPF-9 TW14359ΔrpoNΔrpoS This study 

EcRPF-7 TW14359ΔrpoS This study 

EcRAM-26 TW14359ΔglnG This study 

EcRAM-25 TW14359ΔfhlA This study 

EcRAM-28 TW14359ΔqseF This study 

EcRAM-27 TW14359ΔpspF This study 

EcRAM-29 TW14359ΔygeV This study 

EcRAM-4 TW14359norR::kan KanR This study 

EcRAM-7 TW14359rtcR::kan KanR This study 

EcRAM-3 TW14359hyfR::kan KanR This study 

EcRAM-11 TW14359zraR::kan KanR This study 

EcRAM-8 TW14359tyrR::kan KanR This study 

EcRAM-5 TW14359prpR::kan KanR This study 

Plasmid name:   

pACYC177 Low copy cloning vector, AmpR KanR P15A (74) 

pRAM1 rpoN::pACYC177, AmpR KanS This study 

pRAM2 rpoNR456A::pACYC177 AmpR KanS This study 

pRS551 lac fusion vector, AmpR KanR lacZ+ ColE1 (371) 

pRJM-1 pRS551 containing lerP430-lacZfusion This study 
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Table 2.3 Primers used in this study. 
Primer Name Type Sequence (5’à3’) Source/reference 

adiA+1463 Real-Time CACAAACCGGCAAAACCTAT This study 

adiA+1542  Real-Time ATGCATTACCCAGCAGTCCT This study 

adiC+1076 Real-Time ATGACCGACACGGAAGAAAC This study 

adiC+987  Real-Time CGTCGGTATTTTGATGACCA This study 

adiY+276 Real-Time CCTGACACCAGACGTCTTTC  This study 

adiY+357   Real-Time  GCGTGTTCGTTCCTTTTCTG  This study 

cesT+296 Real-Time TCCCTCTCGATGATGCTACC 343 

cesT+445 Real-Time TGTCGCTTGAACTGATTTCCT 343 

crl+103 Real-Time TCGATTGTCTGGCTGTATGC This study 

crl+244 Real-Time AGTCGCCTGCTTTATCGAAC This study 

espA+128 Real-Time AGGCTGCGATTCTCATGTTT 343 

espA+310 Real-Time GAAGTTTGGCTTTCGCATTC 343 

gadE+309 Real-Time TGGTAAACACTTGCCCCATA 343 

gadE+419 Real-Time AGCGTCGACGTGATATTGCT 343 

gadW+445  Real-Time ATCGCCAAACGTTGGTATCT This study 

gadW+536 Real-Time CAGGTGTTTTCATCCTGCAA This study 

gadX+319 Real-Time CGCTATGCAGAAATGCTACG  This study 

gadX+413 Real-Time ACGTTCAGAAGCAGCGGTAT This study 

ler+109 Real-Time CGAGAGCAGGAAGTTCAA 343 

ler+214 Real-Time GTCCATCATCAGGCACAT 343 

rpoS+356 Real-Time TATCGAAGAGGGCAACCTGG 343 

rpoS+466 Real-Time GTTCAATCGTCTGGCGAATC 343 

tir+664 Real-Time ACTTCCAGCCTTCGTTCAGA 343 

tir+869 Real-Time TTCTGGAACGCTTCTTTCGT 343 

trmE+1083     Real-Time AGTCTTTGCCGAGAGACGAA This study 

trmE+991       Real-Time ACCGTGGTACGCAATAAAGC This study 

ydeO+548 Real-Time TAGATGCCAGAATGCAGCAC This study 

ydeO+631     Real-Time TGGCATAACCACATTGTTCG This study 

ler-1/BamHI Cloning CGGGATCCAATAAATAATCTCCGCATGC This study 

ler-430/EcoRI Cloning CGGAATTCGGATTCACTCGCTTGCCGCC This study 

rpoN+1455/HindIII Cloning AACACAAGCTTGTGTCTTCCTTATCGGTTGG This study 

rpoN-45/ClaI Cloning ATTATCGATGGGTAGAAGTTTGCGACGTT This study 

fhlA+2106/P2 Mutation CAGGCAGATCTGTCCGGCAATTTGCAGTTAAATCAATGCCcatatgaatatcctccttag This study 

fhlA-66/P1 Mutation CTAAATCTCCTATAGTTAGTCAATGACCTTTTGCACCGCTgtgtaggctggagctgcttc This study 

glnG+1503/P2 Mutation CCGGGCAAGATCATACTGAACTTATCGGAACAGTAAAGCGcatatgaatatcctccttag This study 

glnG-50/P1 Mutation CATACCGAGTTCTCGGTTTACCTGCCTATCAGGAAATAAAgtgtaggctggagctgcttc This study 

hyfR+2004/P2 Mutation TGCAAAAGCAGATTACAACACCTCGCGAACCGAGATCCCCcatatgaatatcctccttag This study 

hyfR-43/P1 Mutation TTCTCATTAATAAGGACTGTTGATGGCTATGTCAGACGAGgtgtaggctggagctgcttc This study 

norR+1510/P2 Mutation AGTTGTGATGATTTTGTGCCAGTGCCTGACGAATAGTTTCcatatgaatatcctccttag This study 

norR-107/P1 Mutation ACCTCAATTTATTCAGCGTGTTCTAAAAAGATGTCTTGCTgtgtaggctggagctgcttc This study 

prpR+1676/P2 Mutation CCTATGTAAACATCCCCGATGCGTAAGTTTATCGGTGATCcatatgaatatcctccttag This study 

prpR-117/P1 Mutation TAATCCGCAAATATGCGTTTCAGTTAACGTTTCAGGCAATgtgtaggctggagctgcttc This study 

pspF+1029/P2 Mutation CACGCCGCATCCGGCAAGTTGTATTGCCCAACTTCGCTAAcatatgaatatcctccttag This study 

pspF-41/P1 Mutation GCAACATGCCAGGATGAATTAGCTAATTACACTAACAAGTgtgtaggctggagctgcttc This study 

qseF+1333/P2 Mutation ATTCCTTGAAATCGTTTGCATCCAGCTCGTGTCGGGAAACATATGAATATCCTCCTTAG This study 

qseF+20/P1 Mutation ATTTATTATTGGTCGATGACGATCCGGGATTGCTGAAACTGTGTAGGCTGGAGCTGCTTC  This study 

rpoN+1430/P2 Mutation ACGAGCTGTTTACGCTGGTTTGACGGCGGAATGGATAAAGcatatgaatatcctccttag 343 

rpoN-12/P1 Mutation ACGATTCTGAACATGAAGCAAGGTTTGCAACTCAGGCTTAgtgtaggctggagctgcttc 343 

rpoNR456-F Mutation GGAACAAGGTATCATGGTGGCACGCGCCACTGTTGCGAAGTACCGAGAGTCT This study 

rpoNR456-R Mutation AGACTCTCGGTACTTCGCAACAGTGGCGCGTGCCACCATGATACCTTGTTCC This study 

rpoS+1104/P2 Mutation TTGCCGGGTAGGACGCTGACGTGTCTTATCCAGGCGACAAcatatgaatatcctccttag 343 

rpoS-56/P1 Mutation GGAACCAGGCTTTTGCTTGAATGTTCCGTCAAGGGATCACgtgtaggctggagctgcttc 343 

tyrR+1523/P2 Mutation TGGCTTAAGCCATATTCCCGCAACTTATTGGCAATCGCGGcatatgaatatcctccttag This study 

tyrR-94/P1 Mutation TCTTTGTGTCAATGATTGTTGACAGAAACCTTCCTGCTATgtgtaggctggagctgcttc This study 

yfhA+1333/P2 Mutation ATTCCTTGAAATCGTTTGCATCCAGCTCGTGTCGGGAAAGcatatgaatatcctccttag This study 

yfhA+20/P1 Mutation ATTTATTATTGGTCGATGACGATCCGGGATTGCTGAAACTgtgtaggctggagctgcttc This study 

ygeV+1806/P2 Mutation CCTGAATTCAGGCCGGATTCACTGATGTTATGTGTTTAACcatatgaatatcctccttag This study 

ygeV-77/P1 Mutation GAGTTAATATGATCATGATCTGTGAACCATCAACGTCTTCgtgtaggctggagctgcttc This study 

zraR+1312/P2 Mutation TTGCCAACAGCGTTTTGCGCGTGATCCCTAACTGACGGGCcatatgaatatcctccttag This study 

zraR-14/P1 Mutation TATCGATATTCTGGTGGTGGATGATGACATTAGCCACTGCgtgtaggctggagctgcttc This study 
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Figure S2.1.  Growth of strains in Dulbecco’s Modified Eagle’s Medium (DMEM).  Mean (n=2) optical density 

600 nm (OD600) plotted for TW14359 (empty squares), TW14359ΔrpoN (filled squares), TW14359ΔrpoS (circles), 

TW14359ΔfhlA (plus signs), TW14359ΔntrC (triangles), and TW14359ΔrpoNΔrpoS (diamonds).  Individual OD600 

measurements for each strain varied by less than 5%.  For lerP430-lacZ expression (Fig. 6), sampling was done for all 

strains except for TW14359ΔrpoS and TW14359ΔrpoNΔrpoS at OD600=0.25, OD600=0.5, and OD600=1.0 

approximately corresponding to early-, mid- and late-exponential phase, respectively.  For all remaining experiments, 

sampling was done at OD600=0.5.  
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Chapter Three: Essential Pathway Components and Stimuli for NtrC/σN-Dependent 

Regulation of Acid Resistance and the Locus of Enterocyte Effacement (LEE) in 

Enterohemorrhagic Escherichia coli (EHEC) 

 

3.1 Abstract 

In enterohemorrhagic E. coli (EHEC) sigma factor N (σN) regulates glutamate-dependent acid 

resistance (GDAR) and the locus of enterocyte effacement (LEE), discrete genetic systems 

required for transmission and virulence of this intestinal pathogen.  Regulation of these systems 

requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC/σN-dependent reduction 

in the activity of sigma factor S (σS).  This study elucidates pathway components and stimuli for 

σN-directed regulation of GDAR and the LEE in EHEC.  Deletion of fliZ, the product of which 

reduces σS activity, phenocopies rpoN (σN) and ntrC null strains for GDAR and LEE control, acid 

resistance and adherence.  Upregulation of fliZ by NtrC/σN is indirect, requiring an intact flagellar 

regulator flhDC.  Activation of flhDC by NtrC/σN and FlhDC-dependent regulation of GDAR and 

the LEE is dependent on σN-promoter flhDP2, and a newly described NtrC upstream activator 

sequence.  While the addition of ammonium significantly alters GDAR and LEE expression, acid 

resistance and adherence, it does so independently of rpoN, ntrC and the NtrC sensor kinase ntrB.  

Altering the availability of NtrC phosphodonor acetyl phosphate by growth without glucose, with 

acetate addition, or by deletion of acetate kinase, ackA, abrogates NtrC/σN-dependent control of 

flhDC, fliZ, GDAR and LEE genes. 
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3.2 Introduction 

Alternative sigma factor N (σN) when bound to RNA polymerase directs the transcription of genes 

for carbon and nitrogen metabolism, stress fitness, and regulation (327).  In an increasing number 

of bacterial pathogens, σN has been shown to also regulate genes for virulence and transmission, 

and to be required for complete in vivo disease progression (7, 20, 88, 165, 249, 274, 358, 414).  

For most species, the mechanism underlying σN-dependent regulation of pathogenesis remains 

unknown.  The exception lies in the model of Borrelia burgdorferi, and to a lesser extent, 

enterohemorrhagic E. coli (EHEC).  In B. burgdorferi, the causative agent of Lyme borreliosis, σN 

activates outer surface lipoproteins (OspA and OspC) essential for transmission from the tick 

vector to a mammalian host, and for establishment of infection (133, 155, 284).  This Osp 

activation pathway requires another sigma factor (σS), the transcription of which is directly 

activated from a σN-promoter in what has been dubbed a σN-σS regulatory cascade (141, 374).  In 

EHEC serotype O157:H7, a food-borne pathogen attributed to outbreaks and sporadic cases of 

bloody diarrhea (hemorrhagic colitis) (318), σN (encoded by rpoN) represses transcription of 

glutamate-dependent acid resistance (GDAR) genes, while activating the locus of enterocyte 

effacement (LEE) pathogenicity island (332).  The GDAR system allows for low oral infectious 

dose during gastric passage (75, 396), while the LEE encodes a type III secretion (T3S) apparatus 

that translocates virulence factors into host intestinal cells mediating intimate adherence and 

immune subversion (109, 241, 292).  Thus, σN in EHEC regulates major determinants of fecal-oral 

transmission and colonization. 

Like B. burgdorferi, a σN-σS regulatory pathway has been described for EHEC, and has 

been further implicated in the control of GDAR and LEE genes in this pathogen (332).  However 

for EHEC, the underlying mechanism by which σS is regulated is not completely understood.  σS 
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controls the expression of hundreds of genes in E. coli; it is an activator of GDAR system genes 

(gad genes) (227), and can both activate and repress the LEE (168, 207, 401).  Strains null for 

rpoN are characterized by a phenotype of increased GDAR and decreased LEE expression that is 

dependent on an intact rpoS (encoding σS), and while deletion of rpoN in either EHEC, or 

laboratory E. coli strain K-12 MG1655, has no impact on rpoS transcription, both the stability and 

activity of σS have been shown to increase (101, 252, 332).  Mitra et al. (252) demonstrated that 

this effect of σN on σS stability/activity is indirect and dependent on transcription from a σN-

promoter, and not competition of these sigma factors for core RNA polymerase (RNAP).  What 

additional regulatory component(s) is required downstream of σN for control of σS, GDAR and the 

LEE is not yet known.  Unlike other E. coli sigma factors, the initiation of transcription by σN 

requires activation by enhancer binging proteins (EBP) that communicate various environmental 

signals to the RNAP-σN holoenzyme complex (EσN) (361).  Of the eleven EBPs encoded within 

the EHEC O157:H7 background, only deletion of ntrC (encoding NtrC) phenotypically reproduces 

the rpoN null background for control of σS, GDAR and the LEE (252).  Nitrogen regulatory protein 

C, NtrC (also NRI), is the response regulator of a two-component system that activates σN-

dependent transcription of genes for the assimilation and utilization of nitrogen, relieving slowed 

growth under nitrogen-limiting conditions (450).  It is thus plausible that nitrogen availability plays 

a fundamental role in activation of the σN-σS regulatory pathway in EHEC.  In this study, essential 

components of the mechanism for σN-dependent control of GDAR and the LEE are identified, and 

their genetic interactions tested.  The significance of nitrogen metabolism and basis of pathway 

activation are also examined. 
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3.3 Results 

 

3.3.1 FliZ phenocopies NtrC and σN for control of GDAR and the LEE 

Previous studies have revealed NtrC and σN to negatively regulate GDAR and positively 

regulate the LEE by reducing the activity of alternative sigma factor S (σS) (252, 332).  For this to 

occur, NtrC-σN must increase or decrease the expression of a gene(s) whose product, in-turn, alters 

σS-dependent transcription.  One of two proteins were predicted to fulfill this role: Crl or FliZ. Crl 

enhances RNAP-σS holoenzyme formation, thus increasing transcription from σS promoters (311, 

407), whereas FliZ interferes with σS promoter binding and transcription initiation, thus reducing 

σS-dependent transcription (294, 297).  During growth in DMEM (OD600=0.5), both crl and fliZ 

expression were shown to be reduced in TW14359ΔntrC and TW14359ΔrpoN when compared to 

TW14359 (p<0.05) (Fig. 1A), however, only TW14359ΔfliZ phenocopied TW14359ΔntrC and 

TW14359ΔrpoN for the control of GDAR and LEE genes (Fig. 3.1B).  In TW14359Δcrl, both 

gadE and gadB were increased in expression compared to TW14359 (p<0.05), but less than for 

TW14359ΔrpoN, TW14359ΔntrC and TW14359ΔfliZ, in which expression levels for all genes 

were nearly identical (p<0.01) (Fig. 3.1B).  The expression of LEE genes ler, tir, espA and cesT 

did not differ between TW14359 and TW14359Δcrl, but were uniformly reduced in 

TW14359ΔntrC, TW14359ΔrpoN and TW14359ΔfliZ backgrounds (p<0.05) (Fig. 3.1B).  Both 

gadE and ler expression was restored to near WT levels in fliZ complement strain 

TW14359ΔfliZpRAM-8 or by the deletion of rpoS in TW14359ΔfliZ (Fig. 3.1B).  Consistent with 

the effect of fliZ deletion on gadE and gadB expression, counts (CFU/ml) of TW14359ΔfliZ 

recovered following exposure to acidified (pH 2) EG media for 1 h increased by 10- to 100-fold 

compared to TW14359, TW14359ΔfliZpRAM-8 and TW14359ΔfliZΔrpoS, yet remained ~10-fold 

less than that observed for TW14359ΔntrC and TW14359ΔrpoN (Fig. 3.1C).  Furthermore, the 
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Figure 3.1.  Effect of fliZ deletion on 

GDAR and LEE expression, acid 

resistance and adherence. (A) 
Expression of crl (black) and fliZ 

(white) plotted for WT and derivative 

strains. (B) Expression of GDAR 

(gadE, gadB) and LEE (ler, tir, espA, 

cesT) genes plotted for WT (black), 

ΔntrC (white), ΔrpoN (gray), ΔfliZ 

(stippled), and Δcrl (vertical lines); in 

strains ΔfliZpRAM-8 (diagonal) and 

ΔfliZΔrpoS (dashed) only gadE and 

ler were measured. (C) Representative 

plate counts (CFU/ml) on LBA for WT 

and derivative strains following 1 h 

challenge in EG media (pH 7 v. pH 2). 

(D) Counts for microcolonies on HT-

29 cells plotted for WT and mutant 

derivative strains. For panels A and B, 

asterisks denote significant differences 

between WT and derivative strains by 

t-test (p<0.05 [*], p<0.01 [**], n≥3). 

Error bars denote standard deviation. 

For D, boxplot boundaries represent 

the 25
th

 and 75
th

 percentiles, whiskers 

represent the maximum and minimum 

values and the median is given by the 

horizontal line.  Plots that differ in 

lowercase letter differ significantly by 

Tukey’s HSD following a significant 

F-test (n≥3, p<0.05). 
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ability to form microcolonies on HT-29 intestinal cells was decreased in TW14359ΔfliZ compared 

to TW14359 (p=002), and matched that observed for TW14359ΔntrC and TW14359ΔrpoN (Fig. 

3.1D). 

 

3.3.2 σN utilizes FlhDC for activation of fliZ transcription 

fliZ is encoded as the second gene of a three gene operon (fliAZY), the transcription of 

which is directed from as least two promoters, fliAP1 and fliAP2.  Neither of these promoters are σN-

dependent, however fliAP1 is activated by the regulator of flagellar biosynthesis and motility 

FlhDC, for which there is a predicted σN-dependent promoter, flhDP2 (447).  In addition, a putative 

activator sequence (UAS) for NtrC is present ~1-kb upstream of flhDP2.  It was thus hypothesized 

that the control of fliZ by NtrC-σN is a consequence of direct activation of flhDC transcription from 

this promoter. 

In agreement with this, flhDC expression was similarly reduced in both TW14359ΔntrC 

and TW14359ΔrpoN backgrounds compared to TW14359 during growth in DMEM (OD600=0.5) 

(p<0.05) (Fig. 3.2A).  Also, flhDC significantly decreased gadE levels and increased ler levels 

when overexpressed in TW14359ΔntrC and TW14359ΔrpoN (p<0.05), but not in TW14359ΔfliZ 

(Fig. 3.2B).  To define cis-elements of the flhDC promoter region important for NtrC-σN dependent 

regulation, flhDC mRNA copy number was measured from three promoter fragments (Fig. 3.2C) 

cloned into arabinose inducible vector pBAD22 and transformed into TW14359ΔflhDC.  As 

anticipated, flhDC copy number was reduced when expressed from a fragment in which the 

putative NtrC UAS was removed (Frag. II) compared to the WT flhDC promoter fragment (Frag. 

I) (p=0.004) (Fig. 3.2C).  flhDC copy number was further reduced when expressed from a fragment 

in which both the NtrC UAS and putative σN promoter flhDCP2 were removed (Frag. III), but not 
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Figure 3.2.  Regulation of flhDC by NtrC-σN and effect on gadE and ler expression.  (A) Expression levels for 

flhDC plotted for WT and derivative strains. The asterisk denotes a significant difference between WT and mutated 

strains by t-test (p<0.05, n≥3). (B) Expression levels for gadE (black) and ler (gray) plotted for WT and derivative 

strains containing pRAM-3 (flhDC::pBAD22); expression of pRAM-3 is either uninduced (−) or induced (+) with 

arabinose.  Asterisks indicate significant differences between uninduced and induced treatments by t-test (p<0.05 [*], 

p<0.01 [**], n≥3). (C) Absolute flhDC mRNA copy number and expression levels for gadE and ler measured in the 

ΔflhDC background expressing cloned flhDC fragments, Frag. I (black), Frag. II (white), and Frag. III (stippled); 

topology of flhDC promoter fragments is included, top right panel C. See text for details.  (D) EMSA for NtrC binding 

to the flhDCP promoter and glnAP2 promoter; EBNA is Epstein Barr nuclear antigen DNA. Inset arrows indicate the 

location of the NtrC/probe complex (filled arrow) or free probe (empty arrow). See text for details. Error bars denote 

standard deviation for all panels.  
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significantly less than for Frag. II.  Correspondingly, gadE expression increased (p<0.01) and ler 

expression decreased (p<0.05) in TW14359ΔflhDC expressing either Frag. II or Frag. III when 

compared to Frag. I (Fig. 2C).  Thus, the putative NtrC UAS site and σN promoter flhDCP2 are 

required for full expression of flhDC and for regulation of gadE and ler. Purified 6xHis-NtrC was 

observed to retard the mobility by EMSA of a 200-bp flhD promoter probe containing the putative 

NtrC UAS in a manner similar to the NtrC–dependent glutamine synthetase promoter, glnAP2 (Fig. 

3.2D).  No shift was observed for flhD or glnA promoter probes in the absence of 6xHis-NtrC, or 

for the negative control Epstein Barr nuclear antigen (EBNA) DNA probe (Fig. 3.2D). 

 

3.3.3 Auxotrophy for glutamine enhances glutamate-dependent acid resistance 

NtrC-σN direct the transcription of nitrogen regulated (Ntr) response genes, the primary 

function of which is to assimilate nitrogen through induction of transport/scavenging systems and 

nitrogen degradation pathways when nitrogen is limiting (reviewed in (327)).  Under these 

conditions, glutamine synthetase (GS) catalyzes the synthesis of L-glutamine from ammonia and 

L-glutamate.  The gene for GS (glnA) is maximally expressed from the σN promoter glnAP2 in a 

manner dependent on NtrC.  Thus, strains that are null for rpoN or ntrC cannot initiate transcription 

from glnAP2 and are auxotrophic for glutamine when nitrogen is limiting.  Since the acid resistance 

of TW14359ΔrpoN is entirely dependent on glutamate availability (332), the significance of 

glutamine auxotrophy and glnA to the expression of this phenotype was determined.  Growth of 

TW14359ΔrpoN in MOPS media containing 0.2% glucose and 0.1% L-histidine (i.e. high energy 

but nitrogen-limiting) is impaired due to auxotrophy for glutamine (Gln−) (Fig. 3.3A).  However, 

after 48 h the outgrowth of a prototrophic (Gln+) suppressor mutant (TW14359ΔrpoNGln+) was 

repeatedly observed in which WT growth in MOPS media was restored (Fig. 3.3A), and in which 
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Figure 3.3. Impact of glutamine 

metabolism on the GDAR and 

LEE expression phenotype of 

TW14359ΔrpoN. (A) Mean (n=3) 

log-10 transformed optical density 

at 600 nm (log
10

 OD
600

) plotted for 

WT (square), ΔrpoN (circles), and 

suppressor mutant ΔrpoN Gln+ 

(triangles) as a function of time 

during growth in nitrogen-limiting 

MOPS
 
media (2 g/l glucose, 1 g/l 

L-histidine, pH 7). (B) Expression 

levels for glnA, gadE, and ler 

plotted for WT (black), ΔrpoN 

(white), and ΔrpoN Gln+ 

(stippled). Error bars denote 

standard deviation for panels A 

and B. (C) Representative plate 

counts (CFU/ml) on LBA for WT 

and derivative strains following 1 

h challenge in EG media (pH 7 v. 

pH 2). (D) Counts for 

microcolonies on HT-29 cells 

plotted for WT and mutant 

derivative strains. Boxplots are as 

described for Fig. 1D.  For B and 

D, plots that differ in lowercase 

letter for each gene (B) or strain 

(D) differ significantly by Tukey’s 

HSD following a significant F-test 

(n≥3, p<0.05). 
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the expression of glnA was significantly increased compared to TW14359ΔrpoN during growth in 

DMEM (OD600=0.5) (p=0.013) (Fig. 3.3B); glnA expression was still however slightly but 

significantly lower in TW14359ΔrpoNGln+ when compared to TW14359 (p=0.02).  Mutations 

which suppress Gln− in E. coli have been mapped to ntrC, and to cis-elements controlling glnA 

transcription. glnA can be transcribed from three promoters: glnAP1 and glnAP3 are σ70 promoters 

that are repressed by NtrC during nitrogen-limitation, whereas glnAP2 is a σN promoter that is 

activated by NtrC under the same conditions.  Mutations in the DNA-binding domain of NtrC 

(amino acid residues 400-470) at the C-terminus result in the de-repression of glnAP1 and/or glnAP3, 

while mutations in the promoter(s) enhance transcription from glnAP1 or result in formation of a 

de novo σ70 consensus at glnAP2 (328).  Partial DNA sequencing of ntrC and the glnA promoter 

region did not reveal any of these described mutations in TW14359ΔrpoNGln+.  Sequencing of 

the TW14359ΔrpoNGln+ genome however, revealed a single adenine deletion in the ntrC ORF at 

nucleotide position 4,910,080 (accession NC_013008, NCBI), resulting in a frame-shift mutation.  

This mutation occurs early in the ORF at +285 relative to the start codon and results in a premature 

stop codon or opal (UGA) mutation at amino acid position 106.  It was thus suspected that 

increased expression of glnA, and growth in the absence of glutamine for TW14359ΔrpoN Gln+ 

(Fig. 3.3B), reflects de-repression at the glnAP1 and glnAP3 promoters due to NtrC inactivation.  

Expression levels for gadE and ler did not differ between TW14359ΔrpoN and 

TW14359ΔrpoN Gln+ during growth in DMEM (OD600=0.5), indicating that the Gln− status of 

TW14359ΔrpoN has no impact on GDAR and LEE gene regulation. Interestingly however, counts 

(CFU/ml) recovered from acidified EG media were decreased by ~1000-fold for 

TW14359ΔrpoNGln+ and for TW14359ΔrpoN overexpressing glnA (strain 

TW14359ΔrpoNpRAM-9) when compared to TW14359ΔrpoN (Fig. 3.3C), clearly indicating a 
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role for glnA in the complete acid resistance phenotype of TW14359ΔrpoN.  Adding to this, 

CFU/ml recovered from acidified EG increased by ≥100-fold in both TW14359ΔglnA and 

TW14359ΔrpoNΔglnAGln+ backgrounds.  The CFU/ml recovered from acidified EG media for 

all strains was at least 10-fold greater than that observed for TW14359.  Consistent with qRT-PCR 

data on ler (Fig. 3A), the number of microcolonies formed on HT-29 cells in TW14359ΔrpoNGln+ 

was significantly reduced when compared to TW14359 (p<0.05), but did not differ from 

TW14359ΔrpoN or TW14359ΔrpoNΔglnAGln+ (Fig. 3.3D). 

 

3.3.4 NtrC-σN is not activated by a canonical signal for regulation of GDAR and the 

LEE 

When E. coli is cultivated in media without ammonia, intracellular levels of glutamine are 

low, culminating in the phosphorylation and activation of NtrC by sensor kinase NtrB and NtrC-

σN dependent transcription.  It was thus suspected that the absence of ammonia in DMEM prompts 

NtrC-σN dependent transcription of flhDC, activating the pathway for GDAR and LEE regulation, 

and that supplementation of DMEM with ammonia would offset this effect.  If so, ammonia would 

be expected to stimulate gad gene expression and repress the LEE in TW14359, but to have no 

effect in the TW14359ΔrpoN and TW14359ΔntrC backgrounds.  While the addition of ammonium 

chloride (2 g/l NH4Cl2) was observed to slightly but insignificantly increase GDAR gene (gadE 

and gadB) expression in TW14359, expression in TW14359ΔntrC and TW14359ΔrpoN uniformly 

decreased (p<0.05) (Fig. 3.4A).  Correspondingly, ammonium addition reduced CFU/ml recovered 

for TW14359ΔntrC and TW14359ΔrpoN by ~100- to 1000-fold but had no observable effect on 

CFU/ml recovered for TW14359 (Fig. 3.4B).  For the LEE, ammonium addition increased ler, tir, 

espA, and cesT expression in all backgrounds (Fig. 3.4C) and correspondingly increased the 
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Figure 3.4.  Role for ammonium in the NtrC-σN dependent pathway controlling GDAR and the LEE. (A) 
Expression levels for gadE (filled) and gadB (empty) without (−) and with (+) the addition of NH4Cl2 plotted for WT 

and derivative strains; asterisks denote significant difference between treatments by t-test (p<0.05 [*], p<0.01 [**], 

n≥3). (B) Representative plate counts (CFU/ml) on LBA for WT and derivative strains grown without (−NH4) or with 

(+NH4) NH4Cl2 added to DMEM and following 1 h challenge in EG media (pH 7 v. pH 2). (C) Expression levels for 

ler (black), tir (white), espA (stippled), and cesT (gray) for WT and derivative strains grown without (−NH3) or with 

(+NH3) NH4Cl2 added to DMEM. (D) Counts for microcolonies on HT-29 cells plotted for WT and mutant derivative 

strains grown without (−NH4) or with (+NH4) NH4Cl2. Boxplots are as described for Fig. 1D. (E) Expression levels 

of flhDC, fliZ and rpoS plotted for WT (black), ΔntrC (white), and ΔrpoN (stippled). (F) Representative western blot 

for σS and GroEL (control) in WT, ΔrpoN and ΔntrC grown without (−) or with (+) NH4Cl2 added to DMEM.  For A, 

C and E, asterisks denote significant differences between treatments by t-test (p<0.05 [*], p<0.01 [**], n≥3). For D, 

plots that differ in lowercase letter differ significantly by Tukey’s HSD following a significant F-test (n≥3, p<0.05).  

Error bars denote standard deviation.  
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number of microcolonies formed on HT-29 cells for all strains (p<0.05).   The same observations 

were made when substituting equimolar ammonium sulfate for ammonium chloride (data not 

shown).  These results reveal that ammonium does in fact influence GDAR and LEE gene 

expression, but by a mechanism that is independent of ntrC and rpoN.  In support of this data, the 

expression of pathway components (gadE, ler, flhDC and fliZ) for control of GDAR and the LEE 

were not altered in a strain deleted for the NtrC cognate sensor kinase, ntrB.  Interestingly, growth 

in DMEM containing ammonium was observed to significantly reduce rpoS expression in 

TW14359, TW14359ΔntrC and TW14359ΔrpoN (p<0.01), while having no impact on flhDC or 

fliZ expression in these backgrounds (Fig. 3.4E).  This reduction in rpoS transcript levels correlated 

with a reduction in σS levels in all backgrounds with ammonium, however σS levels were not as 

strongly reduced in TW14359ΔrpoN when compared to TW14359 or TW14359ΔntrC (Fig. 3.4F). 

Feng et al (112) demonstrated phosphotransfer to, and activation of, NtrC in E. coli by the 

small molecule phosphodonor acetyl phosphate (acetyl~P).  Acetyl~P readily accumulates during 

growth on glucose or in the presence of excess acetate, but not during growth on glycerol (239, 

Wolfe 2005).  It was thus of interest to determine the effect of glucose and acetyl~P availability 

on σN-dependent control of pathway components for the regulation of GDAR and the LEE.  During 

growth in MOPS media containing glucose (2 g/l) and NH4Cl2 (1 g/l) (OD600=0.5), the expression 

of flhDC, fliZ, and ler was decreased and gadB increased in TW14359ΔntrC and TW14359ΔrpoN 

when compared to TW14359 (p<0.05) (Fig. 3.5A), similar to that observed during growth in 

DMEM media (Fig. 3.1A, B and Fig. 3.2A).  Substituting 0.2% (v/v) glycerol for glucose as the 

sole carbon source reduced flhDC, fliZ and ler expression in TW14359 and rpoN complement 

strain TW14359ΔrpoNpRAM-1 (p<0.05), but not in TW14359ΔntrC and TW14359ΔrpoN (Fig. 

3.5A).   
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Figure 3.5.  The effect of acetyl~P availability 

on the expression of essential components for 

σN-dependent regulation of GDAR and the 

LEE.  (A) Expression levels of genes in order 

from bottom to top: gadE, ler, flhDC and fliZ 

plotted for WT and derivative strains grown in 

MOPS with glucose (black), glycerol (white), or 

glycerol and acetate (gray). (B) gadE and ler 

expression levels plotted for WT (black), ΔntrC 

(white), ΔrpoN (stippled), ΔackA (gray), and ackA 

complement strain ΔackApRAM-8 (hatched). 

Plots that differ in lowercase letter for each strain 

(A) or gene (B) differ significantly by Tukey’s 

HSD following a significant F-test (n≥3, p<0.05). 

Error bars denote standard deviation. 
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Likewise, glycerol substitution increased gadB expression in TW14359 and 

TW14359ΔrpoNpRAM-1 (p<0.05), but not in TW14359ΔntrC and TW14359ΔrpoN.  The 

addition of sodium acetate (2 g/l) to glycerol treatments restored flhDC, fliZ and ler expression to 

levels observed for glucose in TW14359, however gadB expression was slightly but insignificantly 

increased when compared to glycerol treatments (Fig. 3.5A).  In TW14359ΔntrC and 

TW14359ΔrpoN, acetate was still observed to generally increase fliZ, flhDC and ler expression, 

yet had no impact on gadB expression in these backgrounds, which may reflect a more generalized, 

ntrC- and rpoN-independent effect of acetate on the expression of these genes.  To further examine 

the effect of acetate and acetyl~P availability on this regulatory pathway, gadB and ler expression 

was measured in a strain null for acetate kinase (ackA), the product of which catalyzes the 

interconversion of acetate to acetyl~P (339).  In TW14359ΔntrC, TW14359ΔrpoN and 

TW14359ΔackA, gadB expression was significantly and uniformly increased when compared to 

TW14359 (p<0.01) (Fig. 3.5B).  Complementation with ackA (strain TW14359ΔackApRAM-8) 

restored gadB expression to WT levels. For ler, expression was similarly reduced in 

TW14359ΔackA, TW14359ΔntrC, and TW14359ΔrpoN when compared to WT and 

TW14359ΔackApRAM-8 (p<0.05). 

 

3.4 Discussion 

In the present study NtrC and σN have been shown to positively regulate the expression of crl and 

fliZ, the products of which control the activity of σS.   It is predicted that of the two, only FliZ is a 

required component of the σN pathway controlling σS, GDAR and the LEE.  What impact crl 

upregulation in TW14359ΔrpoN has on σS, if any, is as yet unclear.  Crl and FliZ play antagonistic 

roles in the regulation of σS.  Crl directly binds σS facilitating interaction with RNA polymerase 
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Figure 3.6: Model predicting NtrC-σN dependent regulation of GDAR and the LEE. During exponential growth 

in DMEM (a nitrogen-limiting media), NtrC activates transcription from σN-dependent promoters for flhD and glnA. 

FlhDC (regulator of flagellar biosynthesis) directly activates fliZ, the product of which reduces the activity of σS-

RNAP (EσS) holoenzyme. σS indirectly downregulates LEE expression by repressing the LEE activator pchA (not 

shown) by an unknown mechanism, while upregulating the GDAR activator gadE through increased transcription of 

gadX (not shown). The upregulation of glnA (encoding glutamine synthetase, GS) increases the conversion of extant 

glutamate (Glu) to glutamine (Gln), thus depleting the substrate for GDAR system decarboxylases (GadA/GadB) and 

the potential for proton scavenging and acid detoxification. Acetyl~P (AcP) is a non-cognate phosphodonor that can 

activate NtrC-dependent transcription from σN promoters for flhD and glnA. The model is an amalgam of experimental 

observations inferred from this and previous studies (112, 215, 227, 296, 331, 401, 447). See the text for further details. 
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and holoenzyme (EσS) formation (47), whereas FliZ acts downstream of EσS formation, binding 

to the -10 box of σS promoters (297) precluding promoter recognition by EσS.  Thus, FliZ may be 

dominant to Crl in σN-directed control of σS activity.  Alternatively, Crl has been shown to reduce 

σS stability in an RssB-dependent manner during all stages of growth (407).  It is therefore 

plausible that the increased stability of σS in rpoN null backgrounds (101, 252) results from 

reduced crl expression.  This is consistent with the observation that in TW14359ΔrpoN the GDAR 

and LEE expression phenotype cannot be reproduced by increasing σS stability alone (252).  

The transcription of fliZ is largely determined by FlhDC, a global regulator of motility 

genes (119).  FlhD forms a heterodimer with FlhC, directly activating transcription of the fliAZY 

operon from the σ70-dependent promoter fliAP.  This study determined that flhDC was required for 

σN-directed regulation of GDAR and LEE genes in a manner that was dependent on an intact fliZ.  

Based on our results, it is predicted that NtrC and σN directly activate transcription of flhDC during 

exponential growth in DMEM (4 g/l glucose, with no NH4) requiring the putative σN-promoter 

flhDP2, and a newly identified NtrC box at position 2481732-2487152 (Fig. 3.6).  This NtrC box 

is nearly identical to the predicted NtrC consensus (113), differing by a single nucleotide in the 

dyad repeat region.  Upregulation of FlhDC leads to increased transcription of fliZ (119), the 

product of which decreases the activity of σS (297) (Fig. 3.6).  This suggests that during exponential 

growth NtrC-σN keep the activity of extant σS in check by increasing FlhDC-dependent 

transcription of fliZ.  One consequence of this reduced σS activity in EHEC is an increase in LEE 

expression (332) and correspondingly, increased in vitro microcolony formation.  While FlhDC 

has been formerly shown to effect adherence in E. coli, until now, the association has been 

negative.  Leathem et al. (212) reported that the deletion of flhDC in E. coli K-12 increased 

colonization of a mouse, while constitutive expression of flhDC in another study, reduced 
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adherence of EHEC to HeLa cells (166).  Since the former study is in the K-12 MG1655 

background, the effect of flhDC on colonization is clearly LEE-independent.  For EHEC however, 

flhDC and the LEE are known to be inversely regulated; expression of LEE-encoded GrlA 

downregulates flhDC and motility in a manner dependent on RcsB, a response regulator of the Rcs 

phosphorelay system (166, 256).  Perhaps FlhDC is used by σN to initiate transcription of the LEE, 

and then is repressed as GrlA accumulates as part of a GrlA-RcsB feedback loop initiating intimate 

adherence.  This would be consistent with the transience and growth-phase dependence of σN 

dependent regulation of the LEE (252). 

By reducing the activity of σS, σN also helps to maintain a low level of GDAR gene 

expression during exponential growth (Fig. 3.6).  However, unlike σN-dependent LEE regulation, 

it is predicted that full expression of the GDAR phenotype in rpoN null strains is a consequence 

of two discrete but concurrent mechanisms.  One requires σS for the activation of GDAR system 

genes (gad genes), the products of which confer acid resistance by a proton-scavenging mechanism 

involving the decarboxylation (GadA/GadB decarboxylases) and subsequent protonation of 

glutamate to yield γ-amino butyric acid (GABA) (Fig. 3.6).  In the absence of glutamate, GDAR 

is defective in protecting E. coli from acid stress (reviewed in (116)).  It is this cellular glutamate 

that is the source of the corresponding mechanism.  Specifically, under nitrogen-limiting 

conditions (ex. growth in DMEM), NtrC-σN activate transcription of glutamine synthetase (glnA), 

which catalyzes the conversion of glutamate (Glu) to glutamine (Gln) (Fig 3.6).  Strains null for 

rpoN or ntrC are therefore unable to activate glnA in response to reduced nitrogen availability, 

leading to glutamate accumulation and auxotrophy for glutamine.  These strains are thus 

characterized by elevated levels of both the components (i.e. gadE, gadA/B, gadC) and substrate 

(glutamate) for GDAR.  This mechanistic duality is reflected in the observation that neither fliZ 
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nor glnA deletion can fully recapitulate the GDAR phenotype of an rpoN null background.  Since 

as many as 60% of σN-regulated genes have been shown to be antagonistically controlled by σS in 

E. coli (101), the interplay of these sigma factors likely has a more global impact on virulence, 

fitness and metabolism than simply control of GDAR and the LEE. 

The precise activating signal for NtrC-σN dependent regulation of GDAR and the LEE is 

as yet unknown.  Phosphorylation and activation of NtrC is sensitive to changes in the intracellular 

levels of glutamine.  When E. coli is grown in the absence of ammonium, glutamine levels are 

low, signaling the phosphorylation of NtrC by its cognate sensor kinase NtrB, and NtrC-dependent 

activation of σN promoters for nitrogen assimilation (326).  Although the addition of ammonium 

to DMEM did have a significant impact on GDAR and LEE expression, it did so independently of 

ntrC and rpoN.  This effect of ammonium on the expression of E. coli colonizing factors has been 

formerly observed in EPEC, as well as for enterotoxigenic E. coli (ETEC).  In EPEC, ammonium 

has been shown to reduce expression of the bundle-forming pilus genes bfpA and bfpT, and to 

reduce T3S-secretion of the EspA, EspB and EspC translocon proteins (195, 235, 315).  For ETEC, 

ammonium increased expression of the 987P fimbria genes fasH and fasA (107).  Idiosyncrasies 

between EPEC and ETEC colonizing factor expression in response to ammonium correlate with 

differences in tissue tropism and reflect the availability of ammonium in the intestine; its 

concentration gradually increasing towards the distal small intestine (107, 235, 402).  This natural 

gradient of intestinal ammonium may have a significant influence on the decision for colonization 

in all E. coli.  However for EPEC, repression of bfp was shown to require a trans-acting factor that 

was absent, or present but not functional in E. coli K-12 (235).  How the ammonium signal is 

communicated to GDAR in EHEC and to the LEE in EHEC and EPEC requires further study. 



 

85 
 

Based on the findings of this study, it is proposed that NtrC is autophosphorylated by a 

non-cognate phosphodonor in the σN pathway controlling GDAR and the LEE.  Acetyl~P is a 

plausible candidate (Fig. 3.6), as it is a known NtrC phosphodonor (13, 112), and experimental 

alteration of acetyl~P levels by substituting either glycerol or glycerol and acetate for glucose, or 

by the deletion of acetate kinase (ackA), alters the expression of pathway components for 

regulation of GDAR and the LEE in a manner dependent on rpoN and ntrC.  Requirement for 

acetyl~P is consistent with the growth-phase dependency of σN for GDAR and LEE regulation.  

The cellular pool of acetyl~P during growth with glucose peaks during exponential phase, and 

drops off precipitously during transition into stationary phase (314, 389).  Correspondingly, control 

of gad and LEE genes by NtrC and σN is restricted to the mid-exponential phase of growth (252, 

332).  Remarkably, acetyl~P also serves as a phosphodonor for Rrp2, a σN EBP found in B. 

burgdorferi and required for activation of the σN-σS pathway regulating virulence expression in 

this pathogen (433).  Thus, the use of acetyl~P for autophosphorylation of σN EBPs may be a 

phenomenon that is conserved across different species of bacteria.  Why acetyl~P would be used 

in place of the cognate sensor kinase NtrB in E. coli is not yet known.  It has been formerly 

proposed that the phosphorylation of NtrC by acetyl~P may be used to initiate transcription of Ntr 

genes during transition to a nitrogen poor environment, as cellular NtrB levels are very low when 

nitrogen is abundant (112).  Yet, in this study ntrB was clearly dispensable for GDAR and LEE 

regulation when grown in nitrogen-limiting media containing glucose, suggesting that acetyl~P 

alone is sufficient to activate this pathway.  It remains to be determined if ntrB is required for 

GDAR and LEE regulation by NtrC-σN in nitrogen-limiting media lacking glucose.  The broader 

significance of this finding is that acetyl~P levels in E. coli are sensitive to many factors including, 
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nutrients, temperature, anaerobiosis and pH (428), suggesting that it may be used by NtrC to 

communicate various environmental cues to σN. 

 

3.5 Experimental procedures 

 

3.5.1 Bacterial strains and culture conditions 

All strains and plasmids used in this study are listed in Table 3.1. Luria Bertani (LB) starter 

cultures were inoculated with a single colony of each strain and grown at 37°C with shaking (200 

RPM) to an optical density at 600 nm (OD600) of 0.5. Unless otherwise indicated, these cultures 

were used to inoculate either Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, St. 

Louis, MO) buffered with 50 mM MOPS and containing 0.4% (w/v) glucose, or MOPS minimal 

medium. MOPS medium was prepared as described (264), and contained 0.4% (w/v) glucose, 

0.1% (w/v) NH4Cl, and 0.1% (w/v) L-glutamine. Cultures were grown for 18-20 h before 

inoculating into fresh DMEM or MOPS to a final OD600=0.05, respectively, using a 1:10 ratio of 

media-to-flask volume and grown at 37°C, 200 RPM. Appropriate antibiotics were added to 

cultures as required. 

 

3.5.2 Procedures for genetic manipulation 

Nonpolar gene deletion mutants were constructed using the λ Red recombinase-assisted 

approach (92, 261) and as described (332). Primers used for the construction of deletion mutants 

are listed in Table 3.2. For overexpression of flhDC, a 932-bp PCR fragment containing flhDC of 

strain TW14359 (nucleotide positions 2485400-2484469) was generated using primers flhDC-

F/EcoRI and flhDC-R/XbaI. An EcoRI/XbaI digested fragment of the product was cloned into 
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similarly digested arabinose-inducible expression vector pBAD22 (135) to produce pRAM-3. 

pRAM-3 purified from DH5α transformants was then used to transform TW14359 and derivative 

strains producing EcRAM-51 through EcRAM-53. For flhDC promoter expression studies, a 

2,942-bp XhoI/BamHI digested PCR fragment (nucleotide positions 2487394-2484453) was 

generated using primers flhD-1994/XhoI and flhC+595/BamHI. This fragment contained the 

flhDC ORFs, and 1994-bp of DNA upstream of the flhD start codon including a σN promoter 

(2486152-2486138), a σ70 promoter (2485633-2485604), and a predicted NtrC box (2487152-

2487132). This was ligated into XhoI/BamHI digested pACYC177 to produce pRAM-4. The same 

approach was used for pRAM-5 and pRAM-6 construction, however the cloned fragment in 

pRAM-5, generated using primers flhD-825/XhoI and flhD+595/BamHI (positions 2486228-

2484453), did not include the predicted NtrC box. For the fragment in pRAM-6, generated using 

primers flhD-728/XhoI and flhD+595/BamHI (positions 2486128-2484453), both the NtrC box 

and the σN promoter were excluded. Plasmids were purified from DH5α transformants and used to 

transform TW14359ΔflhDC producing strains EcRAM-59 to EcRAM-61. For fliZ 

complementation, a 552-bp PCR fragment containing the fliZ ORF was created using primers fliZ-

Clone/F and fliZ-Clone/R and cloned into the arabinose inducible pBAD-TA vector (Invitrogen) 

to yield pRAM-8, which was then used to transform EcRAM-49 to produce EcRAM-66. For ackA 

complementation, the ackA ORF was amplified using primers ackA-Clone/F and ackA-Clone/R 

and cloned into the high copy pSC-B vector (Agilent) to create pRAM-9, which was then used to 

transform EcRAM-63 to produce EcRAM-68. The rpoN complement strain EcRAM-36 was 

constructed previously (252). All genetic constructs were validated using a combination of 

restriction mapping, DNA sequencing and qRT-PCR. 
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3.5.3 Quantitate Real-Time PCR (qRT-PCR) 

RNA purification, cDNA sysnthesis, qRT-PCR cycling conditions and data analysis for 

relative quantitation of gene expression followed previously described protocols (252, 256, 332). 

Analysis was performed using a Realplex2 Mastercycler (Eppendorf). Cycle threshold (Ct) data 

were normalized to rrsA (16S rRNA gene) and normalized Ct values (ΔCt) were transformed to 

arbitrary gene expression units using 2-ΔCt/10-6 as described (222). A previous method was used 

for the quantitation of flhD mRNA copy number (60). Briefly, a 154-bp PCR product containing 

flhD was generated using flhD+63 and flhD+216, column purified (Qiagen) and serially-diluted 

in molecular grade water. Ct was measured for each dilution to generate a standard curve plotting 

Ct as a linear function of DNA concentration (ng/µl). The strength of linearity was estimated by 

the correlation coefficient (r2), which exceeded 0.90 for all curves. DNA concentration was 

extrapolated from a standard curve using experimental Ct values and then converted to flhD copy 

number based on the estimated weight of a single 154-bp flhD dsDNA fragment of 47-kDa. Gene 

expression levels and flhD copy number were compared between samples using the appropriate t-

test or by ANOVA and Tukey’s HSD (n≥3, a=0.05) using R v. 2.13.0. 

 

3.5.4 Protein extraction, SDS-PAGE and western blots 

Protein extraction, purification and procedures for western blots followed a previously 

described protocol (252, 256). Monoclonal antibodies for σS and GroEL were acquired from 

Neoclone (Madison, WI) and Bio-Rad (Carlsbad, CA), respectively. Densitometry was used to 

estimate differences in protein levels using a ChemiDoc XRS+ Imaging System and Image Lab 

3.0 (Bio-Rad). Western blots were repeated a minimum of three times in independent trials.   
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3.5.5 Purification of NtrC 

A 1425-bp NcoI/XhoI-digested PCR fragment generated using primers ntrC+F/NcoI and 

ntrC-R/XhoI was cloned into similarly digested pET-24d producing pRAM7 and replacing the 

ntrC stop codon with a C-terminal 6x His tag. pRAM7 was transformed into propagating E. coli 

strain BL-21, which was grown in LB containing ampicillin (100 µg/ml) to OD600=0.4 before 

induction of 6xHis-tagged ntrC with 1 mM IPTG for 16 h at 20°C (200 RPM). Cultures were 

harvested by centrifugation (5000 x g, 20 min) and 6xHis-NtrC was purified using a nickel Ni-

NTA Protein Purification Kit (Qiagen) according to the manufacturer’s instruction. 

 

3.5.6 Electrophoretic mobility shift assay, EMSA 

EMSA was performed using the LightShift Chemiluminescence EMSA Kit (Pierce, 

Rockford, IL) according to the manufacturer’s instruction. Biotin end-labeled DNA probes were 

generated by PCR using flhD-1842/Biotin and flhD-1634/Biotin for the flhDP promoter probe, and 

glnA-311/Biotin and glnA-112/Biotin for the glnAP2 promoter probe; biotin end-labeled Epstein-

Barr nuclear antigen (EBNA) DNA was supplied with the kit. The flhDP promoter probe (strain 

TW14359 nucleotide position 2487034-2487242) contained a putative NtrC binding site flanked 

by 0.1-kb. For the glnAP2 promoter probe, a confirmed NtrC box (nucleotide position 4913213-

4913228) was flanked by 0.1-kb. Binding reactions (20 µl per reaction) contained 20 fmol of biotin 

end-labeled DNA probe, 50 mM KCl, 5 mM MgCl2, 1% (v/v) glycerol, 0.05% (v/v) NP-40, 50 

ng/µl poly(dI-dC) copolymer competitor, 10X molar excess BSA (10 mg/ml), and 0 µM, 2 µM, 4 

µM, 8 µM or 16 µM purified C-terminally labeled 6xHis-NtrC. Reactions were incubated for 40 

min at room temperature, and were then separated by electrophoresis using 8% non-denaturing 

acrylamide gels prepared in 0.5X TBE buffer at 4°C for 80 min at 160V, and DNA/protein 
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complexes transferred to a nylon membrane (Biodyne). Membranes were UV cross-linked at 

120,000 mJ/cm2 for 1 min and detected by chemiluminescence using the Biotin Detection System 

(Pierce) and a ChemiDoc XRS+ Imaging System including Image Lab 3.0 (Bio-Rad). 

 

3.5.7 Selection of suppressor mutants for glutamine auxotrophy  

Spontaneous suppressor mutants for glutamine auxotrophy were selected in the 

TW14359ΔrpoN background by growth in MOPS minimal media without the addition of 

glutamine. Briefly, overnight cultures of TW14359ΔrpoN grown in MOPS media were inoculated 

into fresh MOPS containing 0.4% glucose and 0.1% NH4Cl and grown at 37°C (200 RPM). The 

outgrowth of suppressor mutants (TW14359ΔrpoN Gln+) consistently occurred following 48 h 

incubation. Single colonies of suppressor mutants were obtained by subculture from MOPS media 

to LB with 1.5% agar, and confirmed by growth in MOPS containing 0.2% glucose and 0.1% (w/v) 

L-histidine as described (328), and by qRT-PCR analysis of glutamine synthetase glnA expression. 

Three independent suppressor mutants were selected and validated by this approach. The mutation 

leading to suppression was determined using a combination of PCR and Sanger sequencing of 

amplified DNA fragments (MWG Operon, Huntsville, AL), and next generation whole genome 

sequencing. 

 

3.5.8 Whole genome next generation DNA sequencing and analysis 

Genomic DNA was extracted from TW14359ΔrpoN and a single suppressor mutant of 

TW14359ΔrpoN (TW14359ΔrpoN Gln+) using Puregene® Kits (Gentra, Minneapolis, MN). One 

microgram of DNA from each strain was enzymatically sheared into libraries of ~200-bp 

fragments using the Ion Xpress™ Plus Fragment Library Kit (Life Technologies, NY). Each DNA 
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library was purified using the E-Gel® SizeSelect™ 2% Agarose system (Invitrogen, NY), and the 

integrity and quantity of each was determined using a Bioanalyzer high-sensitivity DNA chip 

(Agilent, CA). Libraries were diluted and template-positive Ion Sphere Particles (ISPs) prepared 

using the Ion OneTouch 200 Template Kit (Life Technologies). ISPs were sequenced using an 

IonTorrent™ Personal Genome Machine and the Ion PGM 200 Sequencing Kit (Life 

Technologies) following the manufacturer’s instructions. Whole genome sequencing data was 

exported from the Ion Torrent Server and analyzed using the Genomics Suite software package 

(CLC Bio, Denmark). Genomes were assembled using the TW14359 genome (NC_013008, 

NCBI) as a reference, followed by quality-based variant detection to identify polymorphisms with 

a minimum coverage of 10X and 100% detection frequency. Polymorphisms common to both 

strains (relative to the reference TW14359 genome), and those in homopolymeric nucleotide tracts, 

were excluded resulting in the identification of specific genetic variations between 

TW14359ΔrpoN and TW14359ΔrpoN Gln+. 

 

3.5.9 Adherence assay 

Adherence to epithelial cells was determined following a previously described protocol 

(256). Briefly, human HT-29 colonic epithelial cells were grown to confluence on polylysine-

treated glass coverslips placed within the wells of 24 well culture plates at 37°C with 5% CO2. 

Overnight DMEM cultures were diluted 1:40 (v/v) in fresh DMEM and 0.05 ml of this dilution 

was used to inoculate each well which already contained 0.45 ml of sterile DMEM. After 3 h, plate 

wells were washed five times with PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, pH 7) to 

remove non-adherent bacteria from the coverslips, and fresh DMEM was then added before 

incubating for an additional 3 h. Plate wells were subsequently washed three times in PBS, and 
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then fixed with ice cold (−20°C) 100% methanol for 10 min before staining with Giemsa diluted 

in PBS 1:20 (v/v) for 20 min. Giemsa-stained coverslips were examined at 1000X magnification 

by oil immersion, and  microcolonies were scored as discrete clusters of five or more bacterial 

cells as previously defined (2, 167, 242). For each sample, a minimum of ten viewing frames were 

observed and the average number of microcolonies was reported per 50 HT-29 cells. Microcolony 

counts were compared between strains by Tukey’s HSD following a significant F-test (n≥3, 

α=0.05) (R v. 2.13.0). 

 

3.5.10 Tests for acid resistance 

Acid resistance by the glutamate-dependent system was measured for exponential phase cultures 

grown in DMEM as previously described (252, 332) with slight adaptations. Strains were grown 

in DMEM to OD600=0.5 before inoculating (106 CFU/ml final cell density) into E minimal glucose 

(EG) media containing 5.7 mM L-glutamate adjusted with HCl to pH 7 (control) or pH  2. Cultures 

were sampled for counts (CFU/ml) after 1 h incubation at 37°C (200 RPM) by plating serial 

dilutions to LB with 1.5% agar and incubating overnight. Experiments were repeated a minimum 

of three times in independent trials. 
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Table 3.1 Strains and plasmids used in this study 

Strain/Plasmid Relevant characteristics Source/reference 

Strain name:   

DH5α Vector propagation, recA1 endA1  

BL-21  (250) 

TW14359 WT 2006 outbreak, western US (232) 

EcRPF-6 TW14359ΔrpoN (252) 

EcRAM-26 TW14359ΔntrC (252) 

EcRAM-43 TW14359ΔrpoNGln+, suppressor mutant for Gln auxotrophy This study 

EcRAM-45 EcRAM-43ΔglnA This study 

EcRAM-47 TW14359crl::kan KanR This study 

EcRAM-49 TW14359ΔfliZ This study 

EcRAM-51 EcRFP-6 pRAM-3 AmpR This study 

EcRAM-52 EcRAM 26 pRAM-3 AmpR This study 

EcRAM-53 EcRAM 49 pRAM-3 AmpR This study 

EcRAM-58 TW14359ΔflhDC This study 

EcRAM-59 EcRAM 58 pRAM-4 AmpR This study 

EcRAM-60 EcRAM 58 pRAM-5 AmpR This study 

EcRAM-61 EcRAM 58 pRAM-6 AmpR This study 

EcRAM-63 TW14359ΔackA This study 

EcRAM-66 TW14359ΔfliZpRAM-8 This study 

EcRAM-68 TW14359ΔackApRAM-9 This study 

Plasmid name:   

pACYC177 Low copy cloning vector, AmpR KanR P15A (74) 

pET-24d IPTG inducible His-tagging vector, KanR Novagen 

pBAD22 Mid copy arabinose inducible cloning vector, AmpR (135) 

pSC-B High copy cloning vector, AmpR KanR StrataClone 

pBAD-TA Mid-copy arabinose inducible cloning vector, AmpR Inivitrogen 

pRAM-1 rpoN::pACYC177, AmpR KanS (252) 

pRAM-3 flhDC::pBAD22, AmpR This study 

pRAM-4 flhDC::pACYC177 positions +948 to -1994 relative to start codon This study 

pRAM-5 flhDC::pACYC177 positions +948 to -825 relative to start codon This study 

pRAM-6 flhDC::pACYC177 positions +948 to -728 relative to start codon This study 

pRAM-7 ntrC::pET-24d containing ORF, KanR This study 

pRAM-8 fliZ::pBAD, AmpR This study 

pRAM-9 ackA::pSC-B, AmpR KanR This study 
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Table 3.2 Primers used in this study 
Primer Name Type Sequence (5’3’) Source/reference 

cesT+296 Real-Time TCCCTCTCGATGATGCTACC 343 

cesT+445 Real-Time TGTCGCTTGAACTGATTTCCT 343 

crl+103 Real-Time TCGATTGTCTGGCTGTATGC This study 

crl+244 Real-Time AGTCGCCTGCTTTATCGAAC This study 

espA+128 Real-Time AGGCTGCGATTCTCATGTTT 343 

espA+310 Real-Time GAAGTTTGGCTTTCGCATTC 343 

flhC+191 Real-Time AACCAGTCGGTTGAGAATGG This study 

flhC+32 Real-Time GGATATTCAGCTGGCAATGG This study 

flhD+216 Real-Time GTGGCTGTCAAAACGGAAGT This study 

flhD+63 Real-Time CAGCGTCTGATTGTTCAGGA This study 

fliZ-187 Real-Time CGGAACAAAAATCATGGGCG This study 

fliZ-371 Real-Time TGCTCGTGTAGATGATTCCC This study 

gadE+309 Real-Time TGGTAAACACTTGCCCCATA 343 

gadE+419 Real-Time AGCGTCGACGTGATATTGCT 343 

glnA+1064 Real-Time CGTGCTTTCGGAGAAGAAAC This study 

glnA+890 Real-Time ACTACATTGGCGGCGTAATC This study 

katE+734 Real-Time TGCAACCTGAAACTCTGCAC This study 

katE+897 Real-Time TTTACCTGCCAGTGGTTTCC This study 

ler+109 Real-Time CGAGAGCAGGAAGTTCAA 343 

ler+214 Real-Time GTCCATCATCAGGCACAT 343 

otsA+130 Real-Time GGTGAAACAGGGAATGAGGA This study 

otsA+287 Real-Time ACCAGATCGAGGCGATAATG This study 

rpoH+110 Real-Time GGCTGAAAAGCTGCATTACC This study 

rpoH+261 Real-Time CATCAGGCCGATGTTACCTT This study 

rpoS+356 Real-Time TATCGAAGAGGGCAACCTGG 343 

rpoS+466 Real-Time GTTCAATCGTCTGGCGAATC 343 

rtcA+518 Real-Time GGTGGCATCGTTTAACACCT This study 

rtcA+684 Real-Time ATATTCATAACCTGCCGCGC This study 

rtcB+128 Real-Time TGCGGTAATGCCTGATGTAC This study 

rtcB+249 Real-Time TAGTGCGTTCATTCCACAGC This study 

tir+664 Real-Time ACTTCCAGCCTTCGTTCAGA 343 

tir+869 Real-Time TTCTGGAACGCTTCTTTCGT 343 

flhD-1842/Biotin EMSA BIOTIN-ATAATAAAGCGGCGTCCAGC This study 

flhD-1634/Biotin EMSA BIOTIN-ATAATAAAGCGGCGTCCAGC This study 

glnA-311/Biotin EMSA BIOTIN-CAGGATCACAAACATCCTCC This study 

glnA-112/Biotin EMSA BIOTIN-CCCTAAAAGGCGTTATCATGC This study 

ackA-Clone/F Cloning AATGTCGGTGTCATCATGCG This study 

ackA-Clone/R Cloning GGGACACGGTTTATCCTCTT This study 

flhD+948/BamH1 Cloning GCCTCGAGCGCCACACCGTATCAGTTAA This study 

flhD-1994/XhoI Cloning CGGGATCCGGCAAAGCGTTTCGAACAGA This study 

flhD-728/XhoI Cloning CGGGATCCATGGAGAAACGACGCAATCC This study 

flhD-825/XhoI Cloning CGGGATCCTTTCCGGTGTAACCGCAACA This study 

flhDC-F/EcoRI Cloning CGGAATTCAtgcatacctccgagttgct This study 

flhDC-R/XbaI Cloning GCTCTAGATTAAACAGCCTGTACTCTCT This study 

fliZ-Clone/F Cloning CGGAATTCATGATGGTGCAGCACCTGAA This study 

fliZ-Clone/R Cloning GCTCTAGATTAATATATATCAGAAGCAG This study 

ntrC+F/NcoI Cloning CATGCCATGGGCCAACGAGGGATAGTCTGGGT This study 

ntrC-R/XhoI Cloning CCGCTCGAGCTCCATCCCCAGCTCTTTTA This study 

crl+449/P2 Mutation cagttttaatgattattgccggatgtgatgcatccggcacCATATGAATATCCTCCTTAG This study 

crl-41/P1 Mutation gccaatttggtaaaacagttgcatcacaacaggagatagcaGTGTAGGCTGGAGCTGCTTC This study 

flhD+985/P2 Mutation AAAGCAGCGGTACGTCGTTACCGCTGCTGGAATGTTGCGCCATATGAATATCCTCCTTAG This study 

flhD-60/P1 Mutation gacatcacggggtgcggtgaaaccgcataaaaataaagttGTGTAGGCTGGAGCTGCTTC This study 

fliZ+637/P2 Mutation tcaccccgaatgttgttatgtctgtttgcagtgtagagccCATATGAATATCCTCCTTAG This study 

fliZ-45/P1 Mutation cgtcagtaaatgccgcactttaactttgactaccaggagtGTGTAGGCTGGAGCTGCTTC This study 

glnA+1371/P2 Mutation AGTCATACGCACGCGGTCATCTTCTTCGCGACGCAGAGCGCATATGAATATCCTCCTTAG This study 

glnA-72/P1 Mutation acggcgacacggccaaaataattgcagatttcgttaccacGTGTAGGCTGGAGCTGCTTC This study 
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Figure S3.1: Effect of ntrB deletion on the expression of genes for GDAR and LEE control. Gene expression 

levels plotted for WT (black), ΔrpoN (white), ΔntrC (hatched), and ntrB (gray). Asterisks denote significant difference 

between WT and respective isogenic mutants by t-test (p<0.05 [*], p<0.01 [**], n≥3). Error bars denote standard 

deviation.  
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Chapter Four: RtcBA and RtcR are Important Determinants of Enterohemorrhagic 

Escherichia coli (EHEC) Stress Response and Contribute to EHEC Pathogenesis 

 

4.1 Abstract 

In recent years, alternative sigma factor N (σN) has increasingly been identified to be a vital 

determinant for pathogenesis in many organisms such as Borrelia, Pseudomonas, Salmonella and 

Vibrio species.  Enterohemorrhagic E. coli (EHEC), a food borne pathogen, depends on glutamate 

dependent acid resistance (GDAR) for efficient passage through the gastric acid barrier of the 

stomach and on the locus of enterocyte effacement (LEE) for immune subversion and colonization 

in the intestine.  In EHEC σN and its cognate enhancer binding proteins (bEBPs) NtrC and QseF 

have been identified as important regulators of GDAR and the LEE.  The bEBPs play a crucial 

role by sensing environmental cues and coupling them to activation of σN-dependent transcription 

for regulation of GDAR and the LEE.  Besides NtrC and QseF there are 9 other bEBPs that 

function in conjunction with σN for activation of promoters, but their contribution to EHEC stress 

fitness and pathogenesis have not been explored.  This study explores the contribution of σN EBPs 

in EHEC stress fitness and pathogenesis.  Whereas, deletion of norR, prpR, tyrR significantly 

reduces the ability of EHEC to survive in acid, deletion of rtcR negatively impacts EHEC stress 

fitness in acid, peroxide, salt and heat.  Deletion of rtcBA, whose expression is activated by RtcR, 

phenocopied the rtcR mutant for EHEC stress fitness.  Reduced fitness was correlated with 

decreased expression of key regulatory genes for stress responses in both the rtcR and rtcBA 
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mutants.  Deletion of rtcR and rtcBA also significantly reduced EHEC adherence to HT-29 

epithelial cells, killing of Galleria mellonella and survival within macrophages indicating the 

mutants attenuate EHEC virulence.  Decreased adherence to HT-29 cells correlated with reduced 

expression of LEE genes.  Transcriptome analysis using RNAseq identified differential regulation 

of 166 ORFs, of which 109 were downregulated and 57 were upregulated.  For the downregulated 

ORFs, 68% perform crucial functions in the transport and metabolism of various sugars and in the 

transport of quorum sensing molecules, 9% function in stress response, 11% encode structural 

components of curli, fimbriae and flagella, with the remaining having unknown functions. 

 

4.2 Introduction 

Transcription initiation is the first step of gene expression and provides one the most important 

points of access for differential regulation of genes.  During initiation, the core RNAP enzyme 

which is in its open complex form binds to a dissociable subunit called a sigma factor to form the 

RNAP holoenzyme (Eσ) (54).  Sigma factors recruit the holoenzyme (Eσ) to promoter DNA and 

forms a closed complex in a process called promoter recognition. This is then followed by 

promoter melting by the sigma factor to initiate transcription of genes (55, 200).  Whereas, all 

genes required for growth and housekeeping are expressed by the housekeeping sigma factor (σ70), 

bacteria employ alternative sigma factors to express genes required for adapting to changing 

environments and also for virulence and pathogenesis (193, 276).  In Escherichia coli, σN has been 

directly implicated in catabolism of arginine and agamatine, transport of amino acids such as 

arginine, histidine, glutamine, glutamate and aspartate.  Studies have shown that σN is directly 

responsible for activating expression of the fhlA, prp and zra operon, whose genes encode 

components crucial for formate and propionate metabolism and in maintaining zinc homeostasis, 
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respectively.  Altogether, σN has broad functions in maintaining general cell metabolism (for 

detailed review see (327)).  Unlike all other bacterial sigma factors that can readily form open 

complex and initiate transcription, σN remains in an energetically favorable closed complex after 

forming holoenzyme (EσN) (50, 423).  Open complex formation and transcription initiation by EσN 

is completely dependent on activator proteins called bacterial enhancer binding proteins (bEBPs).  

The bEBPs are members of the AAA+ (ATPases associated with various cellular activities) protein 

subfamily and bind upstream activating sequences (UAS) called enhancer sequences.  After 

binding, the bEBPs hydrolyze ATP and interact with σN, resulting in a conformation change within 

σN to initiate promoter melting and transcription (306, 346, 417, 418, 434). 

σN bEBPs are comprised of three functional domains: an N-terminal regulatory domain 

(R), a central AAA+ domain (C) and a C-terminal DNA binding domain (D).  The highly 

conserved core AAA+ domain (C), which drives ATP hydrolysis and conformation change in σN, 

is absolutely essential for a functioning bEBP and as such the R and D domains are sometimes 

absent in some bEBPs, as observed in the case of PspF (E. coli), FlgR (Campylobacter), HrpR and 

HrpS (Pseudomonas) (48, 108, 158).  The N-terminal regulatory domain (R) is highly variable and 

contains different motifs like V4R motifs, response regulator motifs and GAF domains.  These 

motifs play a crucial role in sensing intra- and extra-cellular cues and coupling them to σN-

dependent activation of promoters (362, 364). The C-terminal DNA binding domain contains a 

helix-turn-helix motif that allows bEBPs to bind and oligomerize at UAS and then initiate ATP 

hydrolysis (382, 434).  Since the bEBPs can bind to enhancer sites 100-400 bp upstream of a σN 

promoter, DNA between the enhancer sites and promoter must bend to allow interaction between 

the bEBP and EσN (68).  This is facilitated by the DNA bending protein called integration host 
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factor, which binds to specific sequences present between the σN promoter and the enhancer site 

(152, 437). 

 In an increasing number of bacterial pathogens, σN and its activator proteins (bEBPs) have 

been shown to regulate genes for virulence and transmission, and to be required for complete in 

vivo disease progression (7, 20, 88, 165, 249, 274, 358, 414).  In B. burgdorferi, σN and Rrp2 

(bEBP) are essential for transmission from the tick vector to a mammalian host, and for 

establishment of infection (133, 155, 284).  In Pseudomonas aeruginosa, σN and AlgB (bEBP) 

control alginate production, which is an important determinant for survival within lungs of cystic 

fibrosis patients (46, 431, 449).  Escherichia coli serotype O157:H7 (EHEC), is a food-borne 

pathogen responsible for outbreaks and sporadic cases of bloody diarrhea (hemorrhagic colitis) 

and the life threatening hemolytic uremic syndrome (HUS) (318). EHEC is dependent on the 

glutamate-dependent acid resistance (GDAR) system for efficient passage through the harsh acidic 

milieu of the stomach and to determine a low oral infectious dose (75, 396).  It is also completely 

dependent on the locus of enterocyte effacement (LEE) for expression of a type III secretion (T3S) 

apparatus that translocates virulence factors into host intestinal cells mediating intimate adherence 

and immune subversion (109, 241, 292).  Studies have shown that σN (encoded by rpoN) and the 

bEBPs NtrC (encoded by ntrC), FhlA (encoded by fhlA) and QseF (encoded by qseF) are important 

regulators of GDAR and the LEE (324, 332).  QseF is the response regulator of the QseEF two-

component system and responds to autoinducer-3 (AI-3), and host hormones norepinephrine and 

epinephrine to activate expression of key LEE genes required for intimate adherence to intestinal 

epithelia (322, 324).  NtrC and σN were also recently identified to be key activators for LEE genes 

and repressors of GDAR genes during exponential EHEC growth, but, the specific environmental 

signals influencing the NtrC-σN directed regulation of GDAR and the LEE are not fully understood 
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yet.  It was also demonstrated that the FhlA acts a repressor of GDAR during exponential growth 

(251).  These studies show that there is precedent for σN and its bEBPs to be important 

determinants in EHEC transmission and colonization.  In EHEC, there are total of eleven σN bEBPs 

and besides QseF, FhlA and NtrC their role(s) in EHEC fitness and pathogenesis have not been 

previously explored.  This study explores the roles of all the enhancer binding proteins in EHEC 

fitness and pathogenesis.  In this study the rtc operon, encoding RtcB (RNA ligase) and RtcA 

(RNA cyclase), and the σN enhancer binding protein RtcR, which activates expression of the rtc 

operon are shown to play an important role in EHEC survival under different environmental 

conditions and contribute to EHEC virulence and pathogenesis. 

 

4.3 Results 

 

4.3.1 Role of σN bEBP in EHEC stress fitness 

To determine the contribution of σN bacterial enhancer binding proteins (bEBPs) to EHEC 

fitness, the survival of O157:H7 strain TW14359 was compared to isogenic mutant strains 

representing each of the 11 known bEBPs  in response to  acid, oxidative, salt and heat stress.  

Since many of the σN bEBPs have very low basal expression (Fig. S4.2), they were overexpressed 

in trans in the isogenic mutants to determine their effects on EHEC stress fitness.  The bEBPs 

whose deletion and overexpression had no effect on stress fitness are reported in Table 4.1.  

Missing values in Table 4.1 are for bEBPs that produced significant effects and are discussed here.  

Significant reductions in percent survival were observed for TW14359ΔnorR (67%) 

TW14359ΔprpR (49%), TW14359ΔrtcR (52%), and TW14359ΔtyrR (57%) compared to 

TW14359 (85%) following 1 h incubation in acidified (pH 2) EG media (p<0.05) (Fig. 4.1A).  For 
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Figure 4.1.  Effect of bEBP deletion on EHEC fitness in stressors.  Percent survival in (A) Acid (pH 2.0), (B) 20 

mM H2O2, (C) 1M NaCl, and (D) Heat (50oC) resistance for TW14359 (WT), bEBP mutants (-) and complement 

strains (+).  Plots that differ in lowercase letter differ significantly by Tukey’s HSD following a significant F-test (n 

= 6, p < 0.05). Error bars denote standard deviation. 
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oxidative stress, percent survival was significantly reduced in response to 20 mM hydrogen 

peroxide for strains TW14359ΔrtcR (13%), TW14359ΔtyrR (23%), and TW14359ΔzraR (15%) 

compared to TW14359 (67%) (p<0.01) (Fig. 4.1B). For salt (1 M NaCl) and heat (50C) stress, 

only the deletion of rtcR (salt and heat) and pspF (heat) significantly reduced survival compared 

to wild-type. For salt, survival was reduced to 44% for TW14359ΔrtcR compared to 66% for 

TW14359 (p=0.02) (Fig. 4.1C), whereas for heat, TW14359ΔrtcR was reduced to 35% survival 

and TW14359ΔpspF  to 74% survival compared to 92% for TW14359 (p<0.05) (Fig. 4.1D). Thus 

of all EBPs, only the deletion of rtcR had a negative impact on survival in response to all stressors 

during stationary phase growth.  Complementation restored near wild-type levels of resistance to 

stressors for TW14359ΔprpRpRAM-16, and TW14359ΔrtcRpRAM-19, but not for norR+, tyrR+, 

and pspF+.  In fact, for TW14359ΔzraRpRAM-22 (zraR+), sensitivity to peroxide increased with 

survival (dropping to 3%), and was comparable to that of a strain deleted for stationary phase stress 

resistance factor, rpoS (strain TW14359ΔrpoS) (Fig. 4.1C).  Altogether, the results identify new 

distinct functions for NorR, TyrR and PrpR in EHEC stress fitness which have not been described 

before and show that RtcR is a major contributor to general stress response in EHEC. 

 

4.3.2 RtcR and genes of the rtc operon contribute to EHEC stress fitness 

The salient observation from the initial screening of all the bEBP mutants was that deletion 

of rtcR negatively impacted stress fitness for EHEC.  RtcR was originally implicated in σN-

dependent regulation of the rtc operon containing the genes rtcB and rtcA (124, 317).  Subsequent 

in vitro studies identified that RtcB and RtcA are the only discovered RNA ligase and an RNA 

cyclase, respectively, in E. coli and are involved in RNA repair mechanisms (71, 90, 391-393).  

Since deletion of rtcR reduces stress fitness, it prompted further investigation into the possible 
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Figure 4.2.  Effect of rpoN, rtcR and rtcBA deletion on EHEC fitness in stressors.  Percent survival of TW14359, 

TW14359ΔrpoN, TW14359ΔrtcR, TW14359ΔrtcBA, ΔrtcRpRAM-19 (rtcR+) and ΔrtcBApRAM-23 (rtcBA+) in acid 

(A), peroxide (B), salt (C) and heat (D).  For boxplot, boundaries represent the 25th and 75th percentiles, whiskers 

represent the maximum and minimum values and the median is given by the horizontal line.  Plots that differ in 

lowercase letter differ significantly by Tukey’s HSD following a significant F-test (n = 6, p < 0.05). 
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contribution of RtcB and RtcA in this phenotype.  To determine if the effect of rtcR deletion is 

being mediated through rtcB and rtcA, a strain deleted for both genes (TW14359ΔrtcBA) was 

screened for stress fitness in parallel with TW14359ΔrtcR.  Since RtcR is dependent on σN for the 

expression of rtcBA, survival was also compared to TW14359ΔrpoN.  As observed previously, 

TW14359ΔrtcR exhibited generalized reduction in stress fitness when compared to TW14359 

(Fig. 4.2).  While deletion of rtcBA further reduced recovery from acid (pH 2.0) to 35% compared 

to 41% for TW14359ΔrtcR, the reduction was not significant (Fig. 4.2A). A similar observation 

was made for TW14359ΔrtcR and TW14359ΔrtcBA in response to peroxide and salt stress (Fig. 

4.2 B & C).  Percent survival in response to heat was only marginally reduced in TW14359ΔrtcBA 

(52%) when compared to TW14359ΔrtcR (58%) (Fig. 4.2D).  Complementation with rtcR (strain 

TW14359ΔrtcRpRAM-19) only partially restored survival to WT levels (Fig. 4.2D).  Recovery of 

TW14359ΔrtcBA increased to 73% (p = 0.003) after complementation with rtcBA, however it was 

never restored to WT levels and the difference from WT remained statistically significant (p = 

0.03) (Fig. 4.2D).  Interestingly, for all stressors, survival of the rtcR and rtcBA mutants was 

significantly different from TW14359ΔrpoN (p < 0.05) (Fig. 4.2).  Deletion of rpoN exhibited no 

influence on survival of EHEC and resembled WT levels in all the stressors except during heat 

shock.  TW14359ΔrpoN showed a slight reduction in recovery to 80% compared to the 85% 

survival for TW14359, however this was not statistically significant (p = 0.40) (Fig. 4.2D).  Since 

the fitness pattern of TW14359ΔrpoN did not resemble that of the rtcR and rtcBA mutants, it 

appears that the mechanism through which RtcB, RtcA and RtcR influence general stress 

resistance does not involve σN. 
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4.3.3 The RtcR regulon 

Whole genome RNA sequencing was performed to examine the impact of rtcR inactivation 

on the transcriptome of E. coli O157:H7 TW14359 grown in DMEM.  Inactivation of rtcR resulted 

in the differential expression of 166 ORFs, of which, 109 ORFs were downregulated and 57 were 

upregulated (Table 4.2).  For the ORFs that were downregulated in TW14359ΔrtcR, 74 ORFs 

(~68%) perform crucial functions in transport and metabolism of sugars and amino acids.  

Examples of some downregulated operons and genes include: ast (arginine biosynthesis/ 

transport), lysA (lysine biosynthesis), fad (fatty acid metabolism), fru (fructose transport), mal 

(maltose transport), mgl (galactose transport), prpR (propionate metabolism), lsr (autoinducer-2) 

and several porins and predicted inner membrane proteins (Table 4.2).  Moreover, 10 ORFs (9%) 

functioning in stress response, 12 (11%) encoding structural components of curli (csgA), fimbriae 

(fimA) and flagella (fliL), with the remaining having unknown functions were also downregulated 

(Table 4.2).  For the ORFs that were upregulated, the only specific categories of genes that were 

apparent were genes encoding structural components of the translation apparatus (rpm and rps 

genes) and cold shock response (csp) (Table 4.2).  Examples of other upregulated genes include: 

stx2B (Shiga toxin), grlR (repressor of the LEE), kil1 (host killing protein) and nleE (non-LEE 

encoded effector protein).  These results demonstrate that a significant number of genes in the 

RtcR regulon are involved in biosynthesis and transport of arginine, fructose, maltose and 

galactose.  Most of these sugars become a vital source of carbon in the absence of glucose.  

Downregulation of these genes in the rtcR mutant suggests that the mutant may be defective in 

scavenging different carbon sources in the absence of glucose and RtcR has an important role in 

utilization of these secondary carbon sources. 
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Figure 4.3.  Effect of rtcR and rtcBA deletion on stress and LEE genes mRNA levels and EHEC adherence.  (A) 

Validation of RNA sequencing analysis by qRT-PCR.  mRNA levels of stress (B) and LEE (C) genes in WT (black), 

ΔrtcR (vertical bars), ΔrtcBA (horizontal bars), ΔrtcRpRAM-19 (rtcR+) (gray), ΔrtcRpRAM-23 (rtcBA+) (dashed).  

Error bars denote standard deviation.  Plots that differ in lowercase letter differ significantly by Tukey’s HSD 

following a significant F-test (n≥3, p < 0.05). 
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4.3.4 Contribution of rtc genes in EHEC fitness and virulence 

Quantitative real-time PCR (qRT-PCR) was used to validate expression of eight genes, of 

which four were upregulated (grlR, cspA, stx2B and nleE) and four were downregulated (csgA, 

yafN, fimA and yhbO) in TW14359ΔrtcR by RNAseq analysis.  The expression of both up- and 

down-regulated gene sets by qRT-PCR was shown to be consistent with RNAseq (Fig. 4.3), and 

the magnitude of altered expression was highly correlated (r2=0.96) (Fig. 4.3A).  Since the rtcR 

mutant exhibited reduced survival in response to acid, peroxide, salt and heat stress, it stood to 

reason that the expression of genes involved in the protective response to the stressors may be 

correspondingly altered.  This included the genes gadE (acid), otsA (salt), rpoH (heat) and katE 

(hydrogen peroxide).  Even though, these key regulatory genes for stress responses were observed 

to be downregulated by RNAseq, they were below the critical cutoff for significance (~3-fold 

change).  However, by qRT-PCR analysis of TW14359ΔrtcR compared to wild-type, these genes 

demonstrated a much larger and significant fold reduction in expression (p<0.03) (Fig. 4.3B).  

Complementation of both the rtcR and rtcBA mutants restored gadE, otsA, rpoH and katE 

expression to near WT levels, indicating that the rtc structural and enzymatic genes are involved 

in control of stress genes (Fig. 4.3B).  One of the genes that was significantly upregulated in 

TW14359ΔrtcR was grlR, an important repressor of the locus of enterocyte effacement (LEE) 

(Table 4.2) (166).  The LEE genes encode structural and effector proteins crucial for the EHEC 

T3SS and colonization of the human and animal host.  Since grlR was upregulated in the rtcR 

mutant, it was predicted that LEE genes may be concomitantly downregulated in the rtcR 

background.  As expected, the mRNA levels of LEE genes ler, tir, espA and cesT were uniformly 

reduced in TW14359ΔrtcR and TW14359ΔrtcBA backgrounds compared to TW14359 (p<0.05) 

(Fig. 4.3C).  For all LEE genes, except cesT, expression was restored to near WT levels with 
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complementation (Fig. 4.3B).  Altogether, this data shows that RtcR and RtcBA play an important 

role in the positive regulation of EHEC stress fitness and virulence genes. 

 

4.3.5 RtcB/RtcA and RtcR influence EHEC virulence 

To cause disease, EHEC must pass through the harsh acidic milieu of the upper 

gastrointestinal tract, and then colonize the lower gastrointestinal tract (4, 384, 422).  After entry 

into the stomach, EHEC ceases growth, enters into stationary phase and activates expression of 

stress response genes.  This allows survival of EHEC during passage through the gastric acid 

barrier of the stomach (pH 1-3) and determines a low oral infectious dose (<100 cells/ml) (76, 

397).  After entering the lower gastrointestinal tract, increased availability of nutrients, neutral pH 

and physiologic temperature signal EHEC to grow exponentially and colonize.  Colonization is 

dependent on the LEE, which encodes a type III secretion system and several effector proteins, 

absolutely crucial for intimate interaction of EHEC with intestinal cells (102, 293).  Therefore, 

both acid resistance and type III secretion mechanisms are vital for EHEC transmission and 

pathogenesis.  Since deletion of rtcR and rtcBA negatively impacts both the stress response and 

LEE expression, it stands to reason that it may impact transmission and virulence of EHEC.  To 

test this hypothesis, the ability of TW14359ΔrtcR and TW14359ΔrtcBA to adhere to HT-29 human 

intestinal cells, to kill Galleria mellonella (invertebrate wax worm model) and to survive inside 

macrophages was compared to wild-type TW14359. 

First, the effect of rtcR and rtcBA deletion on adherence to human intestinal HT-29 

epithelial cells was observed. Consistent with the pattern of LEE expression in these backgrounds, 

HT-29 adherence was significantly decreased in TW14359ΔrtcR and TW14359ΔrtcBA compared 

to TW14359 (p < 0.05) (Fig. 4.4C).  Interestingly, even though the rtcR and rtcBA complement 
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Figure 4.4.  Effect of rtcR and rtcBA deletion on EHEC virulence. (A) Percent survival of Galleria mellonella 

(insects) after infection with WT (black), ΔrtcR (spotted) and ΔrtcRpRAM-19 (rtcR+) (blue).  (B) Percent survival of 

Galleria mellonella (insects) after infection with WT (black), ΔrtcBA (spotted) and ΔrtcBApRAM-23 (rtcBA+) (blue).  

(C) Percent adherence of WT, ΔrtcR, ΔrtcBA, ΔrtcRpRAM-19 (rtcR+), ΔrtcRpRAM-23 (rtcBA+) to HT-29 epithelial 

cells.  (D) Survival of ΔrtcR, ΔrtcBA, ΔrtcRpRAM-19 (rtcR+) and ΔrtcBApRAM-23 (rtcBA+) relative to WT within 

macrophage.  For (A) and (B) percent survival of worm was plotted using Prism GraphPad (v6) and significant 

difference was determined using Mann-Whitney U-test (n = 30, p < 0.05). For boxplots (C), boundaries represent the 

25th and 75th percentiles, whiskers represent the maximum and minimum values and the median is given by the 

horizontal line.  For (D) error bars denote standard deviation and asterisks denote significance by student’s t-test (n = 

6, p<0.05). 

 



 

110 
 

strains showed increased adherence to HT-29 cells, it was never restored completely to WT levels 

(Fig. 4.4C). Second, G. mellonella were inoculated with WT and mutant EHEC strains to 

determine their virulence.  G. mellonella  serves as a powerful animal infection model for many 

bacterial pathogens due to its advanced antimicrobial defenses (317).  Therefore, it can provide 

important information regarding the ability of TW14359ΔrtcR and TW14359ΔrtcBA to colonize 

and infect.  Each G. mellonella was infected with 105 CFU and their survival was monitored at 24 

hour intervals.  After 48 h, all G. mellonella infected with TW14359 were dead, whereas 30% of 

those infected with TW14359ΔrtcR survived, with 10% surviving the duration of experiment (96 

h) (Fig. 4.4A).  A nearly identical pattern of survival was observed for TW14359ΔrtcBA (Fig. 

4.4B).  While complementation with rtcR (strain TW14359ΔrtcRpRAM-19) partially restored 

virulence, with no G. mellonella surviving by 72 h (Fig. 4.4A), complementation with rtcBA (strain 

TW14359ΔrtcBApRAM-23) did not (Fig. 4.4B). 

To further determine the effect of rtcR/rtcBA deletion on virulence, a macrophage survival 

assay was performed.  When EHEC colonizes the intestine, it is exposed to the underlying human 

macrophages and can be rapidly killed by them (359).  Studies have shown that EHEC can survive 

within macrophages for up to 24 hours and during this time expression of stress genes (soxRS, 

katE, gadA) is significantly upregulated (304).  Therefore, it was hypothesized that RtcR and 

RtcBA may play an important role for survival in macrophages due to their contribution to 

generalized stress fitness.  As predicted deletion of both rtcR and rtcBA negatively impacted 

recovery of EHEC from macrophage.  TW14359ΔrtcR and TW14359ΔrtcBA both exhibited a 3-

fold reduction in recovery compared to TW14359 (p < 0.03) (Fig. 4.4D).  Complementation with 

rtcR and rtcBA partially increased recovery of EHEC from macrophages (Fig. 4.4D). 
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Figure 4.5.  Analysis of rtcB and rtcA mRNA levels. (A) Mean expression from rtcP188-lacZ represented as β-

galactosidase activity from TW14359, TW14359ΔrpoN and TW14359ΔrtcR.  (B) mRNA levels of rtcB (black) and 

rtcA (gray) in TW14359, TW14359ΔrpoN and TW14359ΔrtcR.  Plots that differ in lowercase letter differ significantly 

by Tukey’s HSD following a significant F-test (n = 6, p < 0.05). Error bars denote standard deviation.  
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4.3.6 RtcR phenocopies RpoN for expression of the rtc operon 

The different stress fitness profile for TW14359ΔrpoN and TW14359ΔrtcR suggested the 

possibility of other σN-independent promoters upstream of the rtc operon controlling rtcBA 

expression.  The impact of rpoN or rtcR mutation on rtc operon expression was determined by 

transforming pRAM-24 containing rtcp188-lacZ (Fig. 4.5A top panel) into TW14359ΔrpoN and 

TW14359ΔrtcR and measuring β-galactosidase activity.  Expression from rtcp188-lacZ was 

significantly reduced in the rpoN mutant to ~73% (p = 0.02) of WT levels (Fig. 4.5A).  

Interestingly, rtcp188-lacZ expression was further reduced in the rtcR mutant and even though it 

was not a marked difference, it was still statistically significant from the rpoN mutant (p = 0.03).  

As a result, it was hypothesized that this difference of promoter expression may also affect the 

expression of the rtc operon.  However, expression of both rtcB and rtcA were unchanged in the 

TW14359ΔrpoN and TW14359ΔrtcR showing that the difference of survival in stressors for 

TW14359ΔrpoN and TW14359ΔrtcR is not due to differential expression of the rtc operon (Fig. 

4.5B). 

 

4.4 Discussion 

The goal of this study was to explore the contribution of σN bEBPs to E. coli O157:H7 stress fitness 

and pathogenesis.  It has been determined that the bEBPs NorR, PrpR, TyrR and RtcR are required 

for the full expression of stress fitness in EHEC.  PrpR is responsible for σN-dependent activation 

of the prp operon which encodes genes necessary for propionate metabolism (214).   Short term 

exposure to propionate and its metabolism has been shown to increase expression of many genes 

in the σS regulon and confer some sort of resistance to moderately acidic conditions (pH 5-6), but 

several orders higher than was tested in this study (305).  In fact, metabolism of short chain fatty 
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acids like butyrate and acetate has been shown to induce acid resistance in EHEC, suggesting that 

propionate metabolism and PrpR may have some role in the acid resistance observed in this study 

(Fig. 4.1A) (120).  NorR, which also positively affected acid resistance (Fig. 4.1A), has only 

previously been associated with E. coli response to nitric oxide stress (87).  Whether there is any 

link between nitric oxide stress and acid resistance still remains unclear.  This study also shows 

that deletion of tyrR reduced survival of EHEC in both acid and peroxide environment (Fig. 4.1A 

and B).  TyrR is a very interesting protein in that it shares very little sequence similarity with any 

σN bEBPs.  The absence of the key GAFTGA domain, which prevents it from associating with σN-

holoenzyme, and its role in stimulation of σ70 promoters classifies TyrR as an atypical EBP (303).  

TyrR has so far only been identified in activation and repression of genes involved in aromatic 

amino acid synthesis and transport (302).  It is well know that amino acids like glutamate, 

glutamine and arginine play key roles in E. coli acid resistance (70, 116, 118), but as to how 

aromatic amino acids or TyrR could affect these acid resistance mechanisms needs to be further 

explored.  On the other hand, the basis for why tyrR deletion and overexpression affects peroxide 

resistance may be clearer.  Genes of the TyrR regulon are involved in production of chorismate 

and enterobactin (126).  Chorismate is required for synthesis of ubiquinone, which is a crucial 

component of the aerobic respiratory chain involved in reduction of reactive oxygen species.  

Therefore, deletion of tyrR could be influencing levels of ubiquinone resulting in a reduced 

recovery of TW14359ΔtyrR from peroxide.  Alternatively, overexpression of tyrR may be causing 

increased production of enterobactin, a siderophore involved in iron acquisition.  High intracellular 

levels of enterobactin could: I) lead to sequestration of iron from key enzymes and proteins within 

the cell rendering crucial enzymes inactive, or II) increase iron levels to toxic levels within the 

cell, producing more ROS through the Fenton reaction.  In both cases, it could be detrimental to 
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the cell and explain why even if overexpression of tyrR increases chorismate production, it does 

not recover fitness to WT levels in peroxide (Fig. 1B). 

This study demonstrates that RtcB, RtcA and RtcR positively influence stress fitness and 

virulence genes and phenotypes of EHEC.  The deletion of rtcR and rtcBA negatively impact 

survival of E. coli O157:H7 during acid, peroxide, salt and heat stress.  Decreased survival of the 

rtcR and rtcBA mutants in response to stress challenge was directly correlated to reduced mRNA 

levels of key regulatory genes of the E. coli stress response (Fig. 4.3B).  Studies have shown that 

during environmental duress bacteria can respond to various stressors by inducing expression of 

ribonuclease or ribotoxin encoding genes belonging to toxin-antitoxin (TA) systems.  Under 

normal conditions, these ribotoxins are mostly inactivated through direct binding of cognate 

antitoxins (125).  During stress response, it has been suggested that the activated toxins can initiate 

programmed cell death or arrest cell growth through translation inhibition by direct cleaving of 

mRNA and tRNA (8, 79, 223, 272, 446).  The toxins encoded from type II TA systems are all 

mRNA interfases that have been shown to directly inhibit translation through mRNA cleavage (79, 

125, 140, 446).  In E. coli, the extensively studied type II TA system RelEB is activated under 

various stress and starvation conditions which eventually causes a global reduction in translation 

by mRNA cleavage (80, 81, 282).  An important fact about these mRNA interfases and 

ribonucleases is that their cleaving mechanism eventually results in generation of RNA 2’3’-cyclic 

phosphate and 5’-OH ends which later become crucial substrates for RNA repair mechanisms (8, 

223, 272, 400).  Following RNA cleavage, RNA cyclases create RNA 2’3’-cyclic phosphate ends, 

which serve as important substrates for RNA ligases to link to RNA 5’-OH ends to regenerate the 

3’5’-phosphodisester RNA backbone. 



 

115 
 

RtcA (encoded by rtcA) is a RNA 3’-terminal phosphate cyclase that catalyzes a three step 

process of generating RNA 2’,3’-cyclic phosphate ends important for RNA metabolism.  In the 

first step, RtcA uses a divalent cation (Mn2+ or Mg2+) and ATP to form the covalent RtcA-Amp 

intermediate.  In the second step the adenylate from Rtc-Amp is transferred to the RNA 3’-

phosphate terminus forming an activated phosphoanhydride intermediate. In the third step, the 

RNA 2’-OH attacks the 3’-phosphate of the intermediate to generate the RNA 2’3’-cyclic 

phosphate product (71, 124).  This RNA 2’3’-cyclic phosphate product serves as important 

substrates for RNA ligases during tRNA/rRNA restriction repair and splicing.  Interestingly, RtcB 

(encoded by rtcB) is a newly discovered family of RNA ligase that has a very unique mechanism 

of RNA ligation.  After RtcA catalyzes formation of the RNA 2’3’-cyclic phosphate ends, RtcB 

uses its 2’,3’-cyclic phosphodiesterase activity to break the cyclic phosphate end and creates a 3’-

monophosphate end.  RtcB then uses Mn2+ and GTP to form the covalent RtcB-guanylate 

intermediate where the GTP provides the energy for ligating the 3’-monophosphate end to a RNA 

5’-OH end to restore the 3’5’-phosphodiester backbone (391-393).  The crucial RNA repair 

functions of RtcB and RtcA have only been shown in vitro and the actual physiological context 

and contributions of RtcB and RtcA in E. coli had not been described.  Many groups have proposed 

that the rtc operon may have an important role during stress response which produces RNA 

damage within the cell (391-393).   Knowledge of the only known bacterial RNA repair system 

comes from the different bacteria that contain the pnkP-hen1 operon encoding the PnkP ligase and 

Hen1 cyclase (72, 171).  Since the PnkP-Hen1 operon is absent in E. coli, it strongly supports the 

proposed role for the rtc operon in E. coli RNA repair during stress response. 

This study clearly shows that deletion of rtcR and rtcBA have a significant impact on 

survival of E. coli O157:H7 in response to various stressors.  Decreased resistance to low pH from 
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rtcR and rtcBA deletion would make EHEC more vulnerable to the low pH within the host 

stomach, and reduce its chances of determining a low infectious dose.  Similarly, the significantly 

reduced recovery from macrophages can be correlated to decreased resistance to peroxide in the 

rtcR and rtcBA mutants, which would suggest that the rtcR mutant would be more vulnerable to 

oxygen-dependent killing mechanisms within macrophages (Fig. 4.4D).  Deletion of rtcR and 

rtcBA also negatively impact adherence to HT-29 intestinal epithelial cells and it may be partially 

due to reduced mRNA levels of LEE genes (Fig. 4.3C).  Adherence in EHEC is also dependent on 

other factors like fimbriae, curli and flagella production.  Interestingly, qRT-PCR for the major 

subunit of type I fimbriae, fimA, and the major subunit of curlin, csgA, has shown that they were 

both downregulated ~4-fold in TW14359ΔrtcR (Fig 4.3A).  Therefore, the reduced adherence 

observed in the rtcR and rtcBA mutants could be more due to the combined effect of reduced curli 

and fimbriae genes expression than the LEE.  The contribution of RtcR and RtcBA to EHEC 

virulence is further supported by observing killing of Galleria mellonella.  Whereas, wild-type 

EHEC killed all worms by 48 h, approximately 10% of G. mellonella survived after being 

inoculated with the rtcR and rtcBA mutants (Fig. 4.4A and B), showing that RtcR and RtcBA is 

required for virulence potential in EHEC. 

Another interesting observation is that TW14359ΔrpoN did not produce a similar 

phenotype as TW14359ΔrtcR for EHEC fitness in the stressors.  In silico analysis has shown that 

RtcR has the functional features of σN bEBPs: a N-terminal regulatory domain, a conserved central 

AAA+ domain for ATP hydrolysis, and a C-terminal DNA binding domain.  Moreover, in lab 

strain E. coli, RtcR has been shown to be necessary for σN-dependent transcription of the rtc operon 

(124).  Thus, it would make sense that deletion of rpoN should at least produce a similar pattern 

of survival as the rtcR mutant in the stressors.  However, the stress profile for TW14359ΔrtcR 
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mutant suggests that RtcR influences EHEC fitness in a manner independent of σN.  This suggested 

that there could be a promoter in close proximity to the σN promoter, which may be repressed 

through σN binding.  Therefore, absence of σN in TW14359ΔrpoN could derepress this promoter 

and allow expression of the rtc operon. Whereas in the rtcR mutant, the presence of σN would still 

repress this alternate promoter resulting in an overall reduced expression of the rtc operon.  

Analysis of the promoter region upstream of the rtc operon reveals that there is no difference in 

activation of the rtc operon between TW14359ΔrpoN and TW14359ΔrtcR (Fig. 5.5).  Another 

possibility for this discrepancy could be from the effect of sigma factor competition.  It is well 

known that alternative sigma factors have to compete with each other for association with RNAP 

because at any given point the amount of any sigma factor in the cell exceeds that of available core 

RNAP making the amount of functional RNAP an important rate limiting step (132, 300).  

Moreover, in stationary phase, the levels of free RNAP decreases to approximately 65% of that of 

log phase levels, making holoenzyme formation even more challenging for alternative sigma 

factors (192).  In E. coli, σN has the highest affinity for core RNAP, second to the housekeeping 

sigma factor (σ70), and its constant protein levels throughout all phases of growth make it much 

more challenging for other alternative sigma factors to form holoenzyme (173, 177, 229).  

Therefore, there are two factors that could explain why TW14359ΔrtcR does not perform as well 

as the TW14359ΔrpoN: 1) presence of σN and binding to core RNAP inhibits holoenzyme 

formation by other alternative sigma factors to activate expression of their regulons during stress, 

and 2) reduced levels of RtcBA results in an overall reduction in RNA repair following 

environmental stress.  In the absence of σN in TW14359ΔrpoN would shift holoenzyme formation 

in favor of other alternative sigma factors and stimulate expression of stress response genes.  

However, following the same logic of sigma factor competition would also suggest that the rpoN 
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mutant should at least perform better than WT in response to all the stressors, which was not 

observed in the stress screen (Fig. 5.2).  The functional independence of RtcR from σN presents an 

interesting paradox in σN-EBP regulation which needs to be further explored.  Overall, the findings 

of this study supports the previously stated ideas that genes of the rtc operon are involved in E. 

coli stress response and play an important role in maintenance of cellular fitness through RNA 

repair. 

 

4.5 Experiment Procedures 

 

4.5.1 Bacterial strains and culture conditions 

All strains and plasmids used in this study are listed in Table 4.3.  Luria Bertani (LB) starter 

cultures were inoculated with a single colony of each strain and grown at 37°C with shaking (200 

RPM).  Unless otherwise indicated, these cultures were used to inoculate either LB or Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, St. Louis, MO) buffered with 50 mM MOPS 

and containing 0.4% (w/v) glucose.  Cultures were grown for 18-20 h before inoculating into fresh 

LB or DMEM to a final OD600=0.05, respectively, using a 1:10 ratio of media-to-flask volume and 

grown at 37°C, 200 RPM.  Appropriate antibiotics were added to cultures as required. 

 

4.5.2 Procedures for genetic manipulation 

Nonpolar gene deletion mutants were constructed using the λ Red recombinase-assisted 

approach (92, 261) and as described (332).  Primers used for the construction of deletion mutants 

are listed in Table 4.4.  For complementation of isogenic mutants, fragment containing gene ORFs 

were created using primers listed in Table 4.4, and then cloned into the arabinose inducible vector 
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pBAD-TA (Invitrogen) to create pRAM-11 through pRAM-23.  The constructs were then 

transformed into respective isogenic mutant strains to create the complement strains.  All mutants 

and complements were validated through PCR and restriction mapping. 

 

4.5.3 lacZ transcriptional fusions and β-galactosidase assay 

A 188-bp BamHI/EcoRI digested PCR fragment, generated using primers Rtcp-188/EcoRI 

and Rtcp-1/BamHI (Table 4.4) and corresponding to nucleotide positions 43330148-4330336 in 

strain TW14359 (Fig. 4.5A top panel), was cloned into similarly digested vector pRS551 using 

T4-DNA ligase (Fisher) to create pRAM-24 (Table 4.3). This cloned fragment included 188-bp 

upstream of the translation initiation codon for rtcB (ECSP_4373) and the σN promoter 

transcriptionally fused to lacZ (rtcP188-lacZ).  pRAM-24 purified from DH5α transformants was 

used for transformation into TW14359, TW14359ΔrpoN and TW14359ΔrtcBA backgrounds. The 

rtcP188-lacZ fusion was confirmed by PCR and sequencing.  β-galactosidase activity from rtcP188-

lacZ was measured as previously described (251).  Statistical rigor was determined by Tukey’s 

HSD following a significant F-test (n = 6, p < 0.05). 

 

4.5.4 Quantitate Real-Time PCR (qRT-PCR) 

RNA purification, cDNA sysnthesis, qRT-PCR cycling conditions and data analysis for 

relative quantitation of gene expression followed previously described protocols (252, 256, 332). 

Analysis was performed using a Realplex2 Mastercycler (Eppendorf).  Briefly, cycle threshold 

(Ct) data were normalized to rrsH (16S rRNA gene) and normalized Ct values (ΔCt) were 

transformed to arbitrary gene expression units using 2-ΔCt/10-6 as described (222).  All primers for 
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qRT-PCR is listed in Table 4.4.  Gene expression units were compared statistically between strains 

by Tukey’s HSD following a significant F-test (n = 3, p < 0.05). 

 

4.5.5 Stress fitness assays 

Overnight LB cultures of all strains were inoculated into 10 ml LB at a 1:200 dilution and 

then grown to stationary phase (OD600 = 3.0) (Fig. S4.1).  For complement strains, arabinose was 

added to a final concentration of 0.5% (w/v) and expression of bEBPs was induced for 10 min.  

Following induction, cultures were inoculated into stress test environments or just PBS (for 

controls) and then incubated at 37oC with shaking (200 RPM).  Test cultures were sampled for cell 

counts (CFU/ml) at specified times, and were serially diluted in PBS (pH 7.0) before plating to 

LBA for overnight incubation at 37oC. For oxidative stress, strains were inoculated into PBS 

containing 20 mM hydrogen peroxide for 15 min before sampling. For salt and heat stress, strains 

were inoculated into PBS containing 1 M NaCl, or PBS preheated to 50C, respectively, and 

incubated for 1 h before sampling.  For acid resistance, the glutamate-dependent system was tested 

as described previously (252, 332).  For all experiments, CFU/ml data was transformed to mean 

percent survival and statistically compared using Tukey’s HSD following a significant F-test (n = 

6, p < 0.05). 

 

4.5.6 Adherence assay 

Adherence to epithelial cells was determined following a previously described protocol 

(256) with slight adaptations.  Briefly, human HT-29 colonic epithelial cells were grown to 

confluence in 6 well culture plates at 37°C with 5% CO2.  Overnight DMEM cultures of strains 

were inoculated into fresh 10 ml DMEM and grown to exponential phase to OD600 = 0.4.  



 

121 
 

Expression of bEBPs was induced in complement strains as described above.  Following induction, 

0.05 ml of culture was used to inoculate each well containing 0.45 ml of sterile DMEM. After 4 h 

of static incubation, plate wells were washed five times with PBS to remove non-adherent bacteria 

and HT-29 cells in each well were lysed with 0.5 ml of 0.1% Triton X-100.  Lysate was then 

serially diluted and plated on LBA for determining cell counts (CFU/ml).  For all experiments, 

CFU/ml data was transformed to mean percent adherence and compared statistically by Tukey’s 

HSD following a significant F-test (n = 6, p < 0.05). 

 

4.5.7 Macrophage survival assay 

The human monocyte cell line THP-1 (ATCC® TIB-202TM) was used for determining 

survival of all bacterial strains within macrophage using the protocol of Poirier et al. (304).  THP-

1 cells were maintained in RPMI 1640 media containing 10% FBS, penicillin (100 µg/ml), and 

streptomycin (100 µg/ml) and subcultured every 2-3 days when cell counts reached 8 x 105 

cells/ml.   Macrophages were seeded at 105 cells/well in a 24 well tissue culture plate and a mature 

macrophage-like state was induced with 0.1 µM PMA (phorbol 12-myristate 13 acetate) for 48 h.  

Stationary phase cultures were added to each well at a multiplicity of infection of 10.  After brief 

centrifugation (t = 0) the plate was incubated for 20 min for phagocytosis at 37oC with 5% CO2.  

Following phagocytosis, the medium was twice replaced with fresh RPMI containing gentamycin 

to kill all extracellular bacteria and incubated at 37oC with 5% CO2.  The first gentamycin 

treatment was at 100 µg/ml for 2 h, and the second at 12 µg/ml for 1 h.  All infected monolayers 

were then lysed with 0.1% Triton X-100 and the lysate was serially diluted and plated on LBA for 

determining cell counts (CFU/ml).  For all experiments, CFU/ml data was transformed to mean 
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percent recovery.  Initial (t=0) and final (CFU/ml) were converted to percent survival and 

significance was determined by Tukey’s HSD following a significant F-test (n = 6, p < 0.05). 

 

4.5.8 Virulence assays using Galleria mellonella 

Virulence assays in G. mellonella were performed using fifth instar larvae purchased from 

Georgia Crickets (Winder, GA).  Upon receipt, larvae were stored on wood chips at 4°C and only 

larvae free of melanization and injury were selected for use within 2 weeks.  Overnight cultures 

were grown in DMEM to OD600 = 0.5, and where appropriate, expression of EBP genes was 

induced with arabinose as described above.  Samples (1 ml) were pelleted by centrifugation (5,000 

x g) and washed twice with 10 mM MgSO4 with repeated centrifugation between washes, and 

finally re-suspended in 1 ml of 10 mM MgSO4.  After the wash, 5 µl of each re-suspension 

containing 105 CFU (previously determined through serial dilution plating) was inoculated in G. 

mellonella larva (n = 30) by hemolymph injection via the 4th posterior proleg using a 26s gauge, 

10 µl Hamilton syringe (Hamilton Company, cat. 80366).  Uninjected controls (n = 10) were also 

included in each trial.  Inoculated larvae were incubated at 37°C in the dark for 96 h and the number 

of dead worms were recorded for each trial every 24 hours.  At each assay time point, larvae were 

scored as dead if they did not respond to touch.  Survival curves were created using the method of 

Kaplan and Meier in Prism GraphPad (version 6) and significant differences in survival between 

strains was determined using the Mann-Whitney U-test (n = 30, p < 0.05). 

 

4.5.9 Transcriptomic analysis of TW14359ΔrtcR via RNAseq. 

RNA was isolated from WT and mutant strains as previously described (251) from three 

independent cultures for both strains.  Genomic DNA was removed from RNA samples with 
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DNAse I (Turbo DNA-free, Ambion) and concentration and purity of RNA was determined using 

an Agilent 2100 Bioanalyzer.  Equimolar amounts of RNA, from each of the three replicate 

preparations, were pooled and ribosomal RNA was removed using Ribo-Zero (Epicentre) and 

MicrobExpress (Invitrogen) Kits and removal of ribosomal RNA was again confirmed using the 

bioanalyzer.  The pooled RNA samples were then used for RNA-seq analysis using IonTorrent 

Total RNAseq kit v2 according to the manufacturer’s instructions (Life Technologies).  Templated 

Ion Sphere Particles were generated using the Ion OneTouch 200 Template kit v2 and sequencing 

was performed on an IonTorrent 318 chip using an Ion PGM 200 Sequencing kit.  Data generated 

was exported to the CLC Genomics Workbench software package for analysis.  Reads were 

aligned to the TW14359 genome (NC_013008, NCBI) and expression values for each gene 

determined as RPKM (Reads Per Kilobase of exon model per Million mapped reads) values.  An 

RPKM threshold of detection value of 10 was imposed as a lower level cut off, and data were 

normalized using the quantile normalization approach (240).  Genes demonstrating changes in 

expression lower than 2-fold were excluded from further analysis. 
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Table 4.1.  Effect of bEBP deletion and overexpression on EHEC stress fitness. 

 

  Percent Survival  

Strain Acid Peroxide Salt Heat 

WT 85.0 67.4 66.0 92.5 

ΔfhlA 81.0 70.0 68.0 90.0 

fhlA+ 87.0 67.0 68.0 88.0 

ΔhyfR 80.0 65.0 60.0 94.0 

hyfR+ 82.0 62.0 60.0 90.0 

ΔnorR * 67.0 70.0 88.0 

norR+ * 68.0 68.0 96.0 

ΔntrC 88.0 60.0 60.0 85.2 

ntrC+ 80.0 60.0 65.0 96.0 

ΔprpR * 68.0 70.0 90.0 

prpR+ * 72.0 70.0 90.0 

ΔpspF 80.0 75.0 70.0 * 

pspF+ 90.0 72.0 73.0 * 

ΔtyrR * * 59.8 85.8 

tyrR+ * * 64.3 89.6 

ΔqseF 89.0 68.0 67.0 90.0 

qseF+ 87.0 63.0 60.0 91.0 

ΔygeV 88.0 66.0 73.0 90.0 

ygeV+ 89.0 67.0 69.0 87.0 

ΔzraR 86.0 * 68.0 88.0 

zraR+ 80.0 * 67.0 90.0 

 
+ Isogenic bEBP mutants overexpressing bEBP in trans from inducible vector pBAD-TA. 

* Missing data points are for strains that show significant effect on stress fitness and discussed in results (Fig. 4.1).  
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Table 4.2 Genes differentially regulated in TW14359ΔrtcR. 

 

Gene Function 
Downregulated 

(ΔrtcR/WT) 

Metabolism & Transport:   

abgA Predicted glutamate metabolism protein -4.26 

aceA Isocitrate lyase -4.19 

aceB Malate synthase -9.57 

acs Acetyl-CoA synthetase -3.07 

actP Acetate/glycolate permease -3.01 

aldA Aldehyde dehydrogenase, major metabolism protein -3.44 

argI Arginine biosynthesis -3.09 

astA Arginine biosynthesis -4.99 

astB Arginine biosynthesis -4.4 

astC Arginine biosynthesis -3.4 

astD Arginine biosynthesis -4.52 

astE Arginine biosynthesis -3.57 

cpsB Colanic acid biosynthesis -3.4 

dctA Dicarboxylate transporter -3.21 

ddpB RpoN-dependent predicted component of ABC transporter -14.3 

ddpC RpoN-dependent predicted component of ABC transporter -3.94 

ddpD RpoN-dependent predicted component of ABC transporter -5.79 

fadA Fatty acid catabolism -4.57 

fadB Fatty acid catabolism -5.25 

fadE Acyl-CoA dehydrogenase -3.65 

fadH Fatty acid metabolism -3.88 

fadI Fatty acid metabolism -6.25 

frdB Fumurate reductase iron-sulfur protein -3.52 

fruA Fructose PTS permease -3.57 

fruB Fructose PTS permease -16.94 

fruK Phosphofrucktokinase -3.32 

gabP Amino acid, polyamine transporter -3.15 

galS Galactose transport and catabolism repressor -7.01 

hcaR Phenylpropionate catabolism -5.7 

hybG Chaperon protein for active hydrogenase 2 -4.26 

lacI Repressor of lac operon for lactose utilization -6.86 

lamB Sugar porin for diffusion of maltose and maltodextrins -4.57 

lldP Inner membrane permease for lactate and glycolate -4.72 

lldR Transcriptional repressor of lactate transport and catabolism -3.03 

lsrA ATP binding subunit of AI-2 ABC transporter -3.5 

lsrB Periplasmic binding protein of AI-2 ABC transporter -3.01 

lsrC Innermembrane subunit of AI-2 ABC transporter -13.66 

lsrF Predicted class I aldolase -3.14 

lsrG AI-2 degrading protein -8.44 

lsrK AI-2 kinase -3.63 

lysA Lysine biosynthesis -4.92 

malE Periplasmic binding protein of maltose ABC transporter -3.94 

malF Membrane subunit of maltose ABC transporter -4.24 
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Table 4.2 (continued) Genes differentially regulated in TW14359ΔrtcR. 

 

Gene Function 
Downregulated 

(ΔrtcR/WT) 

Metabolism & Transport:   

malG Membrane subunit of maltose ABC transporter -5.2 

malK ATP binding subunit of maltose ABC transporter -6.76 

malM Maltose regulon periplasmic binding protein -3.69 

malX Maltose/glucose PTS permease -3.61 

manX Subunit of mannose PTS permease -4.15 

manY Subunit of mannose PTS permease -4.8 

manZ Subunit of mannose PTS permease -3.43 

melA Utilization of α-galactosides as nutrients -3.52 

mglA ATP binding subunit of galactose ABC transporter -3.94 

mglB Periplasmic binding subunit of galactose ABC transporter -6.02 

mglC Membrane subunit of galactose ABC transporter -3.98 

prpR Propionate metabolism genes transcriptional activator -4.99 

nrdG Anaerobic growth -4.91 

rihA Cytidine and uridine ribonuclease hydrolase -3.23 

sfsB Regulator of genes of maltose metabolism -5.02 

ugpB Component of glycerol-3-phosphate ABC transporter -4.47 

ulaB L-ascorbate PTS permease -6.44 

uxuB D-glucouronate catabolism -5.41 

yahN Predicted neutral amino acid efflux pump -5.19 

ybdK Carboxylate-amine ligase -3.43 

ydcS Periplasmic binding protein of spermidine/putrescine ABC transporter -3.65 

ydcT Subunit of spermidine/putrescine ABC transporter -3.31 

ydeN Putative sulfatase -5.89 

yedL Predicted acyltransferase -4.97 

yfdZ Glutamate-pyruvate aminotransferase -3.78 

ygaT Unknown carbon starvation induced gene -3.98 

yhhY Predicted acetyltransferase -46.7 

yidE Predicted transporter -3.11 

ykgE Predicted oxidoreductase -5.48 

yqeF Predicted acyltransferase -3.51 

ytfR ATP binding subunit of galactofuranose/glactopyranose ABC transporter -3.55 

Stress Response:   

csiE RpoS-dependent stationary phase inducible protein -3.11 

gamW Host nuclease inhibitor protein -3.41 

priC Primosome required for restart of stalled replication form -3.06 

uspF Class II universal stress protein and fimbrial adhesion -3.7 

yafN Antitoxin for mRNA interfase toxin YafO -5.36 

yehZ Periplasmic binding protein of ABC transporter for osmoprotection -3.22 

yfiL Promotes stress-induced mutagenesis repair -3.42 

yghZ L-glyceraldehyde 3-phosphate reductase for methlyglyoxal detoxification -5.73 

yhbO NaCl induced stress response protein -7.14 

yncN HicA toxin of the HicA-HicB toxin-antitoxin system -32.27 
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Table 4.2 (continued) Genes differentially regulated in TW14359ΔrtcR. 

 

Gene Function 
Downregulated 

(ΔrtcR/WT) 

Adherence:   

afuA Periplasmic ferric iron-binding protein -3.76 

cedA Cell division -8.32 

csgA Major curlin subunit -4.22 

fimA Major type I fimbriae subunit -3.99 

fliL Inner membrane associated flagellar biosynthesis component -5.52 

putA Transcriptional repressor flavoprotein -3.04 

ybgD Fimbrial-like adhesin protein -4.64 

Lipoproteins:   

blc Outermembrane lipoprotein -3.08 

yaiY Inner membrane protein -3.19 

yaiZ Predicted inner membrane protein -79.55 

ybhQ Predicted inner membrane protein -3.36 

yfdY Biofilm associated protein -3.11 

Unknown/Hypothetical:   

phnB Unknown -3.32 

ydcJ Unknown -4.96 

yeaH Unknown -3.28 

yeaL Unknown -4.12 

yegP Unknown -3.27 

yghA Unknown -3.13 

yhaL Unknown -3.69 

yibH Unknown -4.1 

yibT Unknown -3.06 

yicS Unknown -5.12 

yneG Unknown -3.52 

ynfD Unknown -3.88 

yraR Unknown -4.03 
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Table 4.2 (continued) Genes differentially regulated in TW14359ΔrtcR. 

 

Gene Function Upregulated (ΔrtcR/WT) 

borW Bor protein precursor 4.3 

creA Unknown 3 

cspA Major cold shock protein 5.06 

cspE Transcription antiterminator, regulator of RNA stability 3.87 

cspG Cold shock protein 5.87 

dinI Positive modulator of RecA 3.24 

dsrB Unknown 3 

ecpR (MatA) regulator of planktonic/sessile lifestyle 3.84 

escI Predicted type III secretion component 3 

grlR Negative regulator of LEE 3.02 

hha Catabolite repression 3.19 

holE Theta subunit of DNA polymerase 4.28 

ilvC Isoleucine biosynthesis 6.68 

kil1 Host killing protein 5.47 

ndh Aerobic respiration 7.25 

nleE Non-LEE encoded effector protein 3.88 

nsrR Nitric oxide stress 3.15 

orf16 Predicted type III secretion component 15.25 

orf4 Predicted type III secretion component 4.38 

pabA Glutamine amidotransferase activity 4.03 

pdhR Pyruvate dehydrogenase complex regulator 9.75 

ppdB Unknown 3.09 

rplV L22 protein, component of 50S ribosome subunit 3.17 

rpmD L30 protein, component of 50S ribosome subunit 6.17 

rpmG L33 protein, component of 50S ribosome subunit 7.66 

rpmH L34 protein, component of 50S ribosome subunit 6.04 

rpmJ L36 protein, component of 50S ribosome subunit 4.27 

rpsL S12 protein, component of 30S ribosome subunit 3.19 

sepD LEE-encoded type III secretion component 15.38 

stx2B Shiga toxin II subunit B 8.88 

tatA Export of folded protein across inner membrane 3.29 

waaL O antigen ligase 4.39 

wbdN Glycosyl transferase 3.4 

wzy O antigen polymerase 3.26 

yacG DNA gyrase inhibitor 5.79 

ybfA Isochorismate synthase 4.15 

ybhT Predicted membrane transport, cell envelope stress 6.8 

ybiJ Unknown 5.8 

ydiE Unknown 3.64 

ydiH Unknown 8.62 

yeaS Leucine exporter 3.18 

yecJ Unknown 3 

yedR Predicted inner membrane protein 3 

yeeN Unknown 3.05 
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Table 4.2 (continued) Genes differentially regulated in TW14359ΔrtcR. 
 

Gene Function Upregulated (ΔrtcR/WT) 

yfgG Unknown 4.23 

ygjN mRNA interfase, cell growth inhibitor, stress response 8.52 

yhbY Predicted RNA binding protein 3.08 

yhdL Ribosome rescue factor 5.55 

yheV Unknown 6.29 

yiiF Unknown 6.94 

yjbJ Predicted inner membrane protein 5.24 

yjcB Predicted inner membrane protein 13.59 

yjeT Conserved inner membrane protein 5.62 

yliE c-di-GMP-specific phosphodiesterase 3.06 

ynjI Predicted inner membrane protein 5.89 

yqgC Unknown 3.67 

yrdB Unknown 4.85 
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Table 4.3 Strains and plasmids used in this study 

 
Strain/Plasmid Relevant characteristics Source/reference 

Strain name:   

DH5α Vector propagation, recA1 endA1 Mitra et al. 2012 

TW14359 WT 2006 outbreak, western US This study 

EcRPF-6 TW14359ΔrpoN, Glutamine auxotroph Mitra et al. 2012 

EcRAM-25 TW14359ΔfhlA Mitra et al. 2012 

EcRAM 86 TW14359ΔhyfR This study 

EcRAM 87 TW14359ΔnorR This study 

EcRAM-26 TW14359ΔntrC Mitra et al. 2012 

EcRAM 88 TW14359ΔprpR This study 

EcRAM 27 TW14359ΔpspF This study 

EcRAM 28 TW14359ΔqseF This study 

EcRAM 89 TW14359ΔrtcR This study 

EcRAM 90 TW14359ΔtyrR This study 

EcRAM 29 TW14359ΔygeV This study 

EcRAM 91 TW14359ΔzraR This study 

EcRAM 85 TW14359ΔrtcBA This study 

EcRAM 92 EcRPF-6 pRAM-11 AmpR This study 

EcRAM 93 EcRAM-25 pRAM-12 AmpR This study 

EcRAM 94 EcRAM-86 pRAM-13 AmpR This study 

EcRAM 95 EcRAM-87 pRAM-14 AmpR This study 

EcRAM 96 EcRAM-26 pRAM-15 AmpR This study 

EcRAM 97 EcRAM-88 pRAM-16 AmpR This study 

EcRAM 98 EcRAM-27 pRAM-17 AmpR This study 

EcRAM 99 EcRAM-28 pRAM-18 AmpR This study 

EcRAM 100 EcRAM-89 pRAM-19 AmpR This study 

EcRAM 101 EcRAM-90 pRAM-20 AmpR This study 

EcRAM 102 EcRAM-29 pRAM-21 AmpR This study 

EcRAM 103 EcRAM-91 pRAM-22 AmpR This study 

EcRAM 104 EcRAM-85 pRAM-23 AmpR This study 

EcRAM 105 EcRPF-6 pRAM-24 AmpR This study 

EcRAM 106 EcRAM-89 pRAM-24 AmpR This study 

Plasmid name:   

pRS551 lacZ fusion vector, AmpR KanR lacZ+ ColE1  

pBAD-TA Mid copy arabinose inducible cloning vector, AmpR Inivitrogen 

pRAM-11 rpoN::pBAD AmpR This study 

pRAM-12 fhlA::pBAD AmpR This study 

pRAM-13 hyfR::pBAD AmpR This study 

pRAM-14 norR::pBAD AmpR This study 

pRAM-15 ntrC::pBAD AmpR This study 

pRAM-16 prpR::pBAD AmpR This study 

pRAM-17 pspF::pBAD AmpR This study 

pRAM-18 qseF::pBAD AmpR This study 

pRAM-19 rtcR::pBAD AmpR This study 

pRAM-20 tyrR::pBAD AmpR This study 

pRAM-21 ygeV::pBAD AmpR This study 
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Table 4.3 (continued) Strains and plasmids used in this study 

 

Strain/Plasmid Relevant characteristics Source/reference 

Plasmid name:   

pRAM-22 zraR::pBAD AmpR This study 

pRAM-23 rtcBA::pBAD AmpR This study 

pRAM-24 pRS551 containing rtcp188-lacZ fusion This study 

 

 

Table 4.4 Primers used in this study 

 

Primer Name Sequence (5’3’) Source/reference 

qRT-PCR:   

gadE+309 TGGTAAACACTTGCCCCATA Mitra et al. 2012 

gadE+419 AGCGTCGACGTGATATTGCT Mitra et al. 2012 

ler+109 CGAGAGCAGGAAGTTCAA Mitra et al. 2012 

ler+214 GTCCATCATCAGGCACAT Mitra et al. 2012 

tir+664 ACTTCCAGCCTTCGTTCAGA Mitra et al. 2012 

tir+869 TTCTGGAACGCTTCTTTCGT Mitra et al. 2012 

cesT+296 TCCCTCTCGATGATGCTACC Mitra et al. 2012 

cesT+445 TGTCGCTTGAACTGATTTCCT Mitra et al. 2012 

espA+128 AGGCTGCGATTCTCATGTTT Mitra et al. 2012 

espA+310 GAAGTTTGGCTTTCGCATTC Mitra et al. 2012 

rtcB+128 TGCGGTAATGCCTGATGTAC This study 

rtcB+249 TAGTGCGTTCATTCCACAGC This study 

rtcA+518 GGTGGCATCGTTTAACACCT This study 

rtcA+684 ATATTCATAACCTGCCGCGC This study 

katE+734 TGCAACCTGAAACTCTGCAC This study 

katE+897 TTTACCTGCCAGTGGTTTCC This study 

otsA+130 GGTGAAACAGGGAATGAGGA This study 

otsA+287 ACCAGATCGAGGCGATAATG This study 

rpoH+110 GGCTGAAAAGCTGCATTACC This study 

rpoH+261 CATCAGGCCGATGTTACCTT This study 

grlR-RT/F AAGACTCCTGTGGGGAAGGT This study 

grlR-RT/R GGACATGAAGTATGATGTCC This study 

stx2b-RT/F GGCGGATTGTGCTAAAGGTA This study 

stx2b-RT/R GCACTTTGCAGTAACGGTTG This study 

cspA-RT/F TTCATCACTCCTGACGATGG This study 

cspA-RT/R TTACAGGCTGGTTACGTTGC This study 

nleE-RT/F CTAGGAGAACAACGGGCAAA This study 

nleE-RT/R TATTTCCCCAGGCATGTAGC This study 

cspA-RT/F TGCAAGCTGATGCTCGTAAC This study 

cspA-RT/R GCTGTTACCAAAGCCACGTT This study 

fimA-RT/F ATCGTTGTTCTGTCGGCTCT This study 

fimA-RT/R GTACGAACCTGTCCTAACTG This study 

yafN-RT/F CTCTTAAGTGCCAGCGCATT This study 
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Table 4.4 (continued) Primers used in this study 

 

Primer Name Sequence (5’3’) Source/reference 

qRT-PCR:   

yafN-RT/R CTCGGCGTGTAATTTCCTCT This study 

yhbO-RT/F ACCTGTTTTCGCCATCTGTC This study 

yhbO-RT/R CCACGACTTCCTGATCGTAA This study 

Cloning:   

rpoN–F-TA GAGGAATAATAAATGAAGCAAGGTTTGCAACT This study 

rpoN–R-TA TCATCAAACGAGCTGTTTACGCT This study 

fhlA-F-TA GAGGAATAATAAATGTCATATACACCGATGAG This study 

fhlA-R-TA TCATTAAATCAATGCCGATTTAT This study 

hyfR–F-TA GAGGAATAATAAATGGCTATGTCAGACGAGGC This study 

hyfR–R-TA TCATTACAACACCTCGCGAACCG This study 

norR–F-TA GAGGAATAATAAATGAGTTTTTCCGTTGATGT This study 

norR–R-TA TCATTAATCCTTCAATCCCAGAC This study 

ntrC–F-TA GAGGAATAATAAATGCAACGAGGGATAGTCTG This study 

ntrC–R-TA TCATCACTCCATCCCCAGCTCTT This study 

prpR–F-TA GAGGAATAATAAATGGCACATCCACCACGGCT This study 

prpR–R-TA TCATCAGCTTTTCAGCCGCCGCC This study 

pspF–F-TA GAGGAATAATAAATGGCAGAATACAAAGATAA This study 

pspF–R-TA TCACTAAATCTGGTGCTTTTTCA This study 

qseF–F-TA GAGGAATAATAAAGCCATAAACCTGCGCATTT This study 

qseF–R-TA TCATCATTCCTTGAAATCGTTTG This study 

rtcR–F-TA GAGGAATAATAAATGCGTAAAACAGTGGCTTT This study 

rtcR–R-TA TCATCAACTGGAGCTGTGCTGAT This study 

tyrR–F-TA GAGGAATAATAAATGCGTCTGGAAGTCTTTTG This study 

tyrR–R-TA TCATTACTCTTCGTTCTTCTTCT This study 

ygeV–F-TA GAGGAATAATAAATGGAGCTTGCTACTACGCA This study 

ygeV–R-TA TCATTATGTGTTTAACAACTCAT This study 

zraR–F-TA GAGGAATAATAAATGACGCACGATAATATCGA This study 

zraR–R-TA TCACTAACGCGACAATTTTGCCA This study 

RtcBA-F-TA GAGGAATAATAAATGAATTACGAATTACTGAC This study 

RtcBA-R-TA TCATCAATCAGTGAGTTTGGTTA This study 

rtcB-187/EcoRI gccGAATTCcttagatatccttataaaag This study 

rtcB-1/BamH1 gcGGATCCtttgtttttctcttttcgtt This study 

Deletion:   

hyfR-43/P1 TTCTCATTAATAAGGACTGTTGATGGCTATGTCAGACGAGGTGTAGGCTGGAGCTGCTTC This study 

hyfR+2004/P2 TGCAAAAGCAGATTACAACACCTCGCGAACCGAGATCCCCCATATGAATATCCTCCTTAG This study 

norR-107/P1 ACCTCAATTTATTCAGCGTGTTCTAAAAAGATGTCTTGCTGTGTAGGCTGGAGCTGCTTC This study 

norR+1510/P2 AGTTGTGATGATTTTGTGCCAGTGCCTGACGAATAGTTTCCATATGAATATCCTCCTTAG This study 

prpR-117/P1 TAATCCGCAAATATGCGTTTCAGTTAACGTTTCAGGCAATGTGTAGGCTGGAGCTGCTTC  This study 

prpR+1676/P2 CCTATGTAAACATCCCCGATGCGTAAGTTTATCGGTGATCCATATGAATATCCTCCTTAG This study 

pspF-41/P1 GCAACATGCCAGGATGAATTAGCTAATTACACTAACAAGTGTGTAGGCTGGAGCTGCTTC This study 
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Table 4.4 (continued) Primers used in this study 

 

Primer Name Sequence (5’3’) Source/reference 

Deletion:   

pspF+1029/P2 CACGCCGCATCCGGCAAGTTGTATTGCCCAACTTCGCTAACATATGAATATCCTCCTTAG This study 

rtcR-83/P1 TTATATCTTTACGTCCGTAAACGGAGATTTCCCGCAAAGCGTGTAGGCTGGAGCTGCTTC This study 

rtcR+1564/P2 ACGTCAGACCAAAACGCGCCAGGTATTTGCGTAGCCGATCCATATGAATATCCTCCTTAG This study 

tyrR-94/P1 TCTTTGTGTCAATGATTGTTGACAGAAACCTTCCTGCTATGTGTAGGCTGGAGCTGCTTC This study 

tyrR+1523/P2 TGGCTTAAGCCATATTCCCGCAACTTATTGGCAATCGCGGCATATGAATATCCTCCTTAG This study 

qseF+20/P1 ATTTATTATTGGTCGATGACGATCCGGGATTGCTGAAACTGTGTAGGCTGGAGCTGCTTC  This study 

qseF+1333/P2 ATTCCTTGAAATCGTTTGCATCCAGCTCGTGTCGGGAAACATATGAATATCCTCCTTAG This study 

ygeV-77/P1 GAGTTAATATGATCATGATCTGTGAACCATCAACGTCTTCGTGTAGGCTGGAGCTGCTTC This study 

ygeV+1806/P2 CCTGAATTCAGGCCGGATTCACTGATGTTATGTGTTTAACCATATGAATATCCTCCTTAG This study 

zraR-14/P1 TATCGATATTCTGGTGGTGGATGATGACATTAGCCACTGCGTGTAGGCTGGAGCTGCTTC This study 

zraR+1312/P2 TTGCCAACAGCGTTTTGCGCGTGATCCCTAACTGACGGGCCATATGAATATCCTCCTTAG This study 

rtcB-57/P1 TTCTGGCACGACGGTTGCAATTATCAGGACCGCAAACAACGTGTAGGCTGGAGCTGCTTC This study 

rtcA+1077/P2 TTACCTCTACCGGATAGTCACACTGATGAGTCTGATCCGGCATATGAATATCCTCCTTAG This study 
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Figure S4.1.  Growth of strains in LB.  Mean (n=2) optical density 600 nm (OD600) plotted for TW14359 (black), 

TW14359ΔrtcR (squares), TW14359ΔrtcBA (blue).  Individual OD600 measurements for each strain varied by less 

than 5%.  For stress fitness assays, sampling was done for all strains at OD600 = 3.00 approximately corresponding to 

early stationary phase.  For all remaining experiments, sampling was done at OD600=0.5. 
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Figure S4.2.  Expression of σN bEBPs in TW14359.  Expression of bEBPs observed during mid-exponential phase 

in LB.  Most bEBPs have low basal expression under normal growth.  Inset graph shows bEBP expression with ntrC 

datapoint removed.  
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Chapter Five: Purpose, Conclusions, Implications and Recommendations 
 

 

5.1 Purpose of This Research Study 

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a serious food and water borne 

pathogen, responsible for outbreaks of bloody diarrhea (hemorrhagic colitis), severe acute anemia 

and the life threatening illness hemolytic uremic syndrome (HUS) (232, 245, 422).  To cause 

disease in humans, EHEC is completely dependent on extreme acid resistance (XAR) mechanisms 

to pass through the harsh acidic milieu of the upper gastrointestinal tract, and the locus of 

enterocyte effacement (LEE) to colonize the lower gastrointestinal tract (4, 384, 422).  As such, 

XAR and the LEE systems are vital for EHEC virulence and pathogenesis.  Riordan et al. identified 

that the gene rpoN (encoding σ54) modulates XAR and the LEE in a negative and positive manner, 

respectively, during exponential growth (333).  It was also demonstrated that deletion of rpoN 

(encoding σ54) increases survival of EHEC in acid, but significantly affects colonization revealing 

the important contributions of σ54 in EHEC virulence and transmission.  There is precedent for this 

because in recent years σ54 has also been implicated to be an important determinant of virulence 

and transmission, and to be required for complete in vivo disease progression in many other 

pathogens like Borrelia, Pseudomonas, Vibrio, Salmonella and Erwinia (7, 20, 88, 165, 249, 274, 

358, 414).  While the molecular basis of σ54-directed regulation of virulence mechanisms are well 

understood in these pathogens, σ54-directed regulation of EHEC pathogenesis was not known.  

This study sought to delineate the molecular basis of σ54-directed regulation of XAR and the LEE 

and the environmental factors that influence this regulation in EHEC. 
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5.2 Conclusions of This Research Study 

This study has conclusively shown that σ54 is an important determinant of EHEC virulence and 

transmission.  Even though deletion of rpoN significantly increases survival of EHEC in extreme 

acid environments, it also at the same time significantly impairs the ability of EHEC to attach to 

human intestinal epithelial cells.  Thus, it was hypothesized that in WT EHEC during exponential 

phase, σ54 acts as a repressor of XAR and activator of the LEE.  It has been clearly proven that σ54 

is dependent on an intact rpoS gene, encoding the alternative sigma factor S (σS), and the interplay 

of sigma factors between σ54 and σS provide the basis of σ54-directed control of XAR and the LEE.  

Increased stability of σS upon deletion of rpoN suggested that σ54 regulates σS at the 

posttranslational level.  Modulation of σS stability by σ54 could happen in two possible ways: I) 

either through a passive competition for core RNAP, where absence of σ54 allows σS to bind core 

RNAP, protecting it from proteolytic cleavage, or II) through an active mechanism, where σ54 

controls some factor that influences σS stability.  Complementation of TW14359ΔrpoN with a 

mutant σ54 allele that binds core RNAP and is defective in activating transcription demonstrated 

that the increased σS stability is not due to competition for core RNAP.  Whether the stability of 

σS has actual relevance to σ54-dependent control of XAR and the LEE is still inconclusive because 

the two systems could not be modulated just by influencing σS stability (251).  Therefore, it was 

hypothesized that σ54 was probably influencing σS activity towards XAR and LEE promoters 

through some other factor.  This proved to be true as deletion of fliZ, encoding an antagonist of σS 

activity, reproduced a similar phenotype as the rpoN mutant, which could again be restored to WT 

levels through complementation with fliZ.  It was further demonstrated that σ54 requires the master 
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regulator protein FlhDC to regulate production of FliZ, which led to the discovery of the σ54-

FlhDC-FliZ-σS cascade that controls XAR and the LEE in EHEC. 

 To determine the environmental signals that influence σ54/σS dependent regulation of XAR 

and the LEE, it was important to define the activator protein that works in conjunction with σ54 for 

regulation of this pathway. σ54 is an unique sigma factor in that it is completely dependent on 

activator proteins called enhancer binding proteins (bEBPs) for open complex formation at 

promoters and transcription initiation.  These bEBPs bind upstream activating sequences (UAS) 

and through ATP hydrolysis provide σ54 the energy required for open complex formation and 

transcription initiation (381, 423, 426).  The bEBPs have a variable N-terminal sensory domain 

containing different motifs that recognize extra- and intracellular cues to activate σ54 transcription.  

In EHEC there are 11 bEBPs that work in tandem with σ54 for regulation of the σ54 regulon.  Thus, 

logic dictated that at least one of these bEBPs must be required for σ54-directed regulation of XAR 

and the LEE.  Moreover, identification of the bEBPs involved in the σ54/σS pathway would also 

provide insight into the activating signals for the pathway.  As hypothesized, deletion of the bEBP 

NtrC, modulated XAR and the LEE in a manner which was a phenocopy of the rpoN mutant.  This 

was extremely insightful as σ54 and NtrC are two well-known crucial regulators of genes required 

for nitrogen assimilation in many gram negative bacteria.  When E. coli is grown in the absence 

of ammonium, glutamine levels are low, signaling the phosphorylation of NtrC by its cognate 

sensor kinase NtrB, and NtrC-dependent activation of σ54 promoters for nitrogen assimilation 

(326).  Deletion of either rpoN or ntrC (encoding NtrC) results in glutamine auxotrophy, which 

severely mitigates the ability of E. coli to assimilate nitrogen during nitrogen limitation (327).  As 

such, it was hypothesized that NtrC may bridge the gap between nitrogen availability and σ54 

resulting in modulation of σS, XAR and the LEE.  Experimentation with an rpoN mutant strain 
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that was prototroph for glutamine production demonstrated that while glutamine prototrophy had 

no influence on expression of XAR and LEE genes, it significantly affected survival of the rpoN 

mutant in acid.  This was hypothesized to be a result of direct competition for available glutamate 

molecules between glutamine synthetase (for nitrogen assimilation) and the decarboxylase (for 

XAR) enzymes.  This demonstrated that while nitrogen assimilation may not directly affect 

expression of XAR genes, it directly affects XAR at a biochemical level.  Alternatively, it was also 

hypothesized that increasing nitrogen levels in the medium by adding ammonium chloride would 

downregulate NtrC- σ54-dependent expression in WT EHEC, which should result in a XAR and 

LEE phenotype very similar to the rpoN and ntrC mutant strains. Whereas the increased nitrogen 

levels would not have any effect on XAR and LEE in the rpoN and ntrC mutants.  Interestingly, 

this hypothesis was completely disproven as increasing nitrogen availability modulated XAR and 

the LEE in all strains completely independent of NtrC-σ54.  Altogether, these results definitively 

proved that nitrogen availability was not the environmental signal influencing NtrC-σ54 directed 

regulation of σS, XAR and the LEE. 

 The effect of ammonium independent of NtrC-σ54 led to formulating a new hypothesis for 

the activating signal of the σ54-σS pathway.  It was proposed that NtrC is autophosphorylated by a 

non-cognate phosphodonor in the σ54 pathway controlling XAR and the LEE and a plausible 

candidate could be acetyl~P, which is a known NtrC phosphodonor (13, 112).  This was proven to 

be the case as alteration of acetyl~P levels by substituting either glycerol or glycerol and acetate 

for glucose, or by the deletion of acetate kinase (ackA), alters the expression of pathway 

components for regulation of GDAR and the LEE in a manner dependent on rpoN and ntrC.  There 

is precedent for this as acetyl~P also serves as a phosphodonor for Rrp2, a σN EBP found in B. 

burgdorferi and required for activation of the σN-σS pathway regulating virulence expression in 



 

140 
 

this pathogen (433).  Thus, the use of acetyl~P for autophosphorylation of σ54 EBPs may be a 

phenomenon that is conserved across different species of bacteria.  Since, acetyl~P is common by 

product of carbon metabolism, the results suggested that the NtrC-σ54 regulates σS, XAR and the 

LEE in response to carbon availability within the cell.  Altogether, this research study has shown 

that NtrC-σ54 are important determinants of virulence and transmission in EHEC and that they do 

not response to their canonical activating signals for regulation of σS, XAR and the LEE. 

 This study also explored the contribution of σ54 bEBPs in EHEC fitness and pathogenesis 

and demonstrated that the bEBPs NorR, PrpR, TyrR and RtcR contribute to EHEC stress fitness 

in different stressors.  The salient observation after screening of the bEBP mutants was the effect 

deletion of rtcR resulted on EHEC fitness and virulence.  RtcR was originally implicated in σ54-

dependent regulation of the rtc operon containing the genes rtcB and rtcA (124, 317).  Subsequent 

in vitro studies demonstrated that RtcB and RtcA are the only RNA ligase and RNA cyclase, 

respectively, in E. coli and are involved in RNA repair mechanisms (71, 90, 391-393).  Removal 

of RtcR and RtcBA negatively impacts EHEC fitness in acid, peroxide, salt and heat environments 

and also attenuates EHEC virulence.  The decreased resistance to low pH would make EHEC more 

vulnerable to the low pH within the host stomach, and reduce its chances of determining a low 

infectious dose.  Similarly, the significantly reduced recovery from macrophages of the rtcR and 

rtcBA mutants can be correlated to decreased resistance to peroxide suggesting that the mutants 

are more sensitive to oxygen-dependent killing mechanisms within macrophages.  Deletion of rtcR 

and rtcBA also negatively impacts adherence to HT-29 intestinal epithelial cells, which may be 

partially due to a combined effect of reduced LEE, fimbriae and curli genes expression. 

Previous studies had hypothesized that genes of the rtc operon may play a role during 

bacterial stress response, although it had never been experimentally shown (71, 90, 393).  During 
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stress response, it has been has been shown that mRNA interfases of type II toxin-antitoxin systems 

inhibit translation by cleaving mRNA to initiate programmed cell death or arrest cell growth (79, 

125, 140, 446).  In E. coli, the extensively studied type II TA system RelEB is activated under 

various stress and starvation conditions which eventually causes a global reduction in translation 

by mRNA cleavage (80, 81, 282).  Cleaving by mRNA interfases result in generation of RNA 

2’3’-cyclic phosphate and 5’-OH ends which later become crucial substrates for RNA repair 

mechanisms (8, 223, 272, 400).  Interestingly, RtcA (encoded by rtcA) is a RNA 3’-terminal 

phosphate cyclase that catalyzes a three step process of generating RNA 2’,3’-cyclic phosphate 

ends (71, 124).  RtcB (encoded by rtcB) is a newly discovered family of RNA ligase that breaks 

the cyclic phosphate end and then ligates the 3’-monophosphate end to a RNA 5’-OH end to restore 

the 3’5’-phosphodiester backbone (391-393).  So far, the functions of RtcBA had only been shown 

in vitro and this is the first time an actual physiological context has been identified where 

RtcR/RtcBA play an important role in EHEC.  The combined effects of low stress and adherence 

genes expression impact EHEC fitness and pathogenesis.  In conclusion, the findings support the 

previously proposed hypothesis that genes of the rtc operon are involved in EHEC stress response 

and may maintain cellular fitness through RNA repair. 

 

5.3 Implications of This Research Study 

EHEC infections present with hemorrhagic colitis in 90% of cases, which progress to HUS in 3-

15% of cases (19, 131, 334, 370).  Even though individuals of all age can develop HUS, it is more 

common in children and the elderly (384).  In the US alone, there are more than 75,000 cases of 

infection every year, resulting in 325,000 hospitalization and 5,200 deaths (245).  Currently there 

are no established procedures to prevent or control EHEC disease progression.  Research in 
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prevention efforts have focused primarily on three main mechanisms: I) immunization with Shiga 

toxin components; II) use of toxin sequestration mechanism in the gastrointestinal tract; and III) 

use of probiotic strains to prevent toxin uptake (103, 233, 237, 271, 288, 390, 404, 436).  So far, 

these models have been largely ineffective.  The lack of any therapy or prevention measures to 

control EHEC infection reveals the necessity for research which may lead to the elucidation of 

new drug targets or prevention strategies. 

 This study extends the functions of RtcR/RtcBA, NtrC and σ54 beyond cellular metabolism 

and demonstrates that they are important for EHEC transmission and colonization.  The effects of 

rtcR/rtcBA deletion and ntrC/rpoN deletion were observed during different growth phases in 

EHEC.  Deletion of rtcR and rtcBA specifically impacted EHEC fitness in acid during stationary 

phase.  Whereas, deletion of rpoN and ntrC deletion specifically impacted EHEC adherence during 

exponential growth.  This is very important because when EHEC enters the stomach it enters into 

stationary phase to induce XAR and after passing through the stomach and reaching the intestines 

it enters exponential growth and induces LEE for colonization.  Supposedly, if molecular target 

based drugs were developed for RtcR/RtcBA and NtrC/σ54, the administration of this combined 

chemotherapy could be a new approach to EHEC treatment by attacking two separate components 

of EHEC pathogenesis.  First, targeting the RtcR/RtcBA component would potentially reduce 

fitness and increase sensitivity of EHEC to acid in the stomach, significantly reducing the bacterial 

load entering the intestines.  Second, targeting the NtrC/σ54 component would potentially inhibit 

EHEC from colonizing the gastrointestinal tract.  If EHEC could be prevented from colonizing 

that would significantly reduce the chances of developing hemorrhagic colitis and potentially 

HUS.  Moreover, RtcR/RtcBA and NtrC/σ54 have been shown to influence curli/fimbriae and 

flagella, respectively.  As such, targeting them RtcR/RtcBA and NtrC/σ54 would also negatively 
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impact curli, fimbriae and flagella production, which are important determinants of EHEC 

virulence.  Altogether, the findings of this research study show that NtrC/σ54 and RtcR/RtcBA 

have the potential to become drug targets for treatment in EHEC infections. 

 

5.4 Future Studies and Direction 

Unlike other alternative sigma factors in E. coli, knowledge of the regulation of σ54 itself is 

severely lacking and not understood.  The rpoN operon is a five gene polycistronic operon, with 

rpoN being the first gene followed by hpf, ptsN, yhbJ and npr (Fig. 5.1).  Similar to the glucose 

EIIBA phosphotransferase system, the protein products of ptsN and npr form the nitrogen 

phosphotransferase system.  However, it has been shown that their functions do not involve 

transport of molecules, but are rather regulatory (298).  EIIANtr (encoded by ptsN) has been shown 

to play an important role in sigma factor competition between σ70 and σS in response to potassium 

 

 
 
Figure 5.1. RpoN operon in E. coli O157:H7 strain TW14359.  Organization of genes in the rpoN operon. 

 

levels (213).  Hpf and EIIANtr have been shown to negatively regulate genes of the σ54 regulon in 

Klebsiella pneumoniae, and in P. aeruginosa EIIANtr functions in conjunction with σ54 to regulate 

genes for nitrogen metabolism (172, 247, 255).  The organization of these genes in an operon with 

rpoN strongly suggests that they may perform functions that affect σ54 itself or at least in regulation 

of σ54-dependent genes.  One of the future studies will be to investigate the roles of the genes in 

the rpoN operon in regulation of σ54 and σ54-dependent genes. 



 

144 
 

 As mentioned previously, in E. coli K-12 it had been shown that activation of the rtcBA is 

dependent on σ54 and its cognate bEBP RtcR.  Therefore, logically the inactivation of rpoN should 

phenotypically reproduce the same effect as observed for rtcR and rtcBA mutants for EHEC 

fitness.   However, the rpoN mutant did not phenotypically match the rtcR and rtcBA mutants 

suggesting that regulatory effect of RtcR/RtcBA on EHEC fitness may not be fully dependent on 

σ54.  Analysis of the promoter region upstream of rtcBA revealed no difference in activation 

between the rpoN and rtcR mutant.  However, promoter expression analysis was only tested under 

normal growth and it is possible that under different stress conditions there is differential 

expression of rtcBA in the rpoN and rtcR mutants.  Therefore, another future study will focus on 

defining the molecular basis for regulation of the rtc operon.  This will include: I) identify how 

rtcR is regulated, II) identify the upstream activating sequences where RtcR binds to initiate σ54-

dependent transcription, and III) identify if there are any σ54-independent promoters for activating 

rtcBA expression. 

 

 
 

Figure 5.2. Future studies for defining the regulation of the rtc operon.  I) identify how rtcR is regulated, II) 

identify the upstream activating sequences where RtcR binds to initiate σ54-dependent transcription, and III) identify 

if there are any σ54-independent promoters for activating rtcBA expression. 
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