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ABSTRACT 
 

GWAS have identified several chromosomal loci associated with ovarian cancer 

risk. However, the mechanism underlying these associations remains elusive. We 

identify candidate functional Single Nucleotide Polymorphisms (SNPs) at the 9p22.2 

ovarian cancer susceptibility locus, several of which map to transcriptional regulatory 

elements active in ovarian cells identified by FAIRE-seq (Formaldehyde assisted 

isolation of regulatory elements followed by sequencing) and ChIP-seq (Chromatin 

Immunoprecipitation followed by sequencing) in relevant cell types. Reporter and 

electrophoretic mobility shift assays (EMSA) determined the extent to which candidate 

SNPs had allele specific effects. Chromosome conformation capture (3C) reveals a 

physical association between Basonuclin 2 (BNC2) and SNPs with functional properties. 

This establishes BNC2 as a major target of four candidate functional SNPs in at least 

two distinct elements.  

BNC2 codes for a putative transcription regulator containing three pairs of zinc 

finger (ZF) domains. Furthermore, bnc2 mutation in zebrafish leads to developmental 

defects including dysmorphic ovaries and sterility, clearly implicating this protein in 

cellular processes associated with ovarian development. We show that BNC2 is a 

transcriptional regulator with a specific DNA recognition sequence of targets enriched in 

genes involved in cell communication through DNA binding assays, ChIP-seq, and 

expression analysis.  



viii 
 

This study reveals a comprehensive regulatory landscape at the 9p22.2 locus 

and indicates that a likely mechanism of susceptibility to ovarian cancer may include 

multiple allele-specific changes in DNA regulatory elements some of which alter BNC2 

expression. This study begins to identify the underlying mechanisms of the 9p22.2 locus 

association with ovarian cancer and aims to provide data to support advances in care 

based on one’s genetic composition. 
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CHAPTER ONE:  

BACKGROUND 

 

Ovarian Cancer 

 Ovarian cancer is one of the leading causes of cancer deaths among women in 

the United States. It is a poorly understood disease often diagnosed at late stages and 

consequently with low five year survival rates (Vaughan et al., 2011). In fact, the five 

year survival rate has plateaued at 40% since the introduction of platinum based 

therapies in the late 1970s (Vaughan et al., 2011). One reason for the low survival and 

lack of improvements in therapy is that ovarian cancer has been treated as one disease 

when in actuality it is made up of different subtypes with diverse cellular origins and 

molecular pathways altered (Berns and Bowtell, 2012; TCGA, 2011). Additionally the 

pathogenesis of ovarian cancer is unclear. Identifying risk factors and those with a 

genetic predisposition would aid in identifying the disease and therefore lead to 

increased survival. 

 

Ovarian Cancer Subtypes 

Four different subtypes, mucinous, clear cell, endometrioid, and serous pertain to 

ovarian cancer. Evidence suggests that the mucinous subtype derives from metastases 

to the ovary from gastrointestinal tumors (Kelemen and Kobel, 2011; Lee and Young, 

2003). Clear cell and endometrioid subtypes originate in the endometrium and are often 
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linked with endometriosis (Nezhat et al., 2008). The most common and most lethal 

subtype, high grade serous ovarian cancer, was initially thought to originate in the 

ovarian surface epithelium (OSE). The cancer is often found at late stages and fills the 

peritoneal cavity making it difficult to discern the cell of origin. Yet, significant evidence 

also supports that the secretory cells in the fimbria of the fallopian tube contribute to the 

origin of high grade serous ovarian cancer (Carlson et al., 2008; Lee et al., 2007; Piek 

et al., 2001). 

High grade serous ovarian cancer in itself seems to be very heterogeneous in 

that many patients experience different outcomes (Tan et al., 2013). Indeed, high grade 

serous ovarian cancer is made up of different molecular subtypes defined by expression 

analysis and clustering of ovarian tumor samples (Leong et al., 2015; Tan et al., 2013; 

TCGA, 2011; Tothill et al., 2008). These molecular subtypes include mesenchymal, 

immuno-reactive, differentiated, and proliferative (Leong et al., 2015; TCGA, 2011). The 

mesenchymal subtype displays severe myofibroblast infiltration and has an epithelial to 

mesenchymal gene expression signature (Leong et al., 2015; Tan et al., 2013; TCGA, 

2011; Tothill et al., 2008). The WNT/beta-Catenin and Extra Cellular Matrix Pathways 

are altered and HOX genes and FAP, a stromal component, are over-expressed 

(TCGA, 2011; Tothill et al., 2008). This subtype also has poor prognosis (Leong et al., 

2015; Tan et al., 2013; Tothill et al., 2008). The immune-reactive subtype displays T-

Cell infiltration and expresses T-Cell chemokine ligands (Leong et al., 2015; TCGA, 

2011; Tothill et al., 2008). This subtype has an intermediate prognosis (Leong et al., 

2015; Tothill et al., 2008). The differentiated subtype expresses ovarian tumor markers 

MUC1 and MUC16 as well as the fallopian tube marker SLP1 (Leong et al., 2015; 
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TCGA, 2011). This subtype also has an intermediate response (Leong et al., 2015). The 

last subtype, proliferative, expresses stem cell factors including transcription factors 

(TFs) HMGA2 and SOX11 (Leong et al., 2015; TCGA, 2011) This subtype also has low 

expression of ovarian tumor markers MUC1 and MUC16 and high expression of 

proliferation markers MCM2 and PCNA (TCGA, 2011). This subtype has a poor 

prognosis yet seems to be sensitive and respond well to vinca alkaloids (Leong et al., 

2015; Tan et al., 2013). 

 

Risk Factors and Pathogenesis 

  Since high grade serous epithelial ovarian cancer (EOC) is diagnosed at an 

advanced stage in 70% of patients and these patients have a worse outcome than 

those with early stage disease (Vaughan et al., 2011), identifying those at risk may lead 

to early detection and therefore decreased mortality. One known risk factor that 

significantly influences ovarian cancer is low parity (Braem et al., 2010; Hinkula et al., 

2006; Salehi et al., 2008; Sueblinvong and Carney, 2009). In fact, women who have 

children have a decreased risk of 71% and the risk further decreases by 10% with each 

live birth (Braem et al., 2010). Oral contraceptive use and shorter menstrual lifespan 

also decrease risk of ovarian cancer (Bosetti et al., 2002; Braem et al., 2010; Hankinson 

et al., 1992; Modugno et al., 2004; Salehi et al., 2008; Sueblinvong and Carney, 2009). 

Pregnancy, oral contraceptives, and shorter menstrual lifespan all decrease the number 

of ovulations in a lifetime.  

There is no clear evidence for the pathogenesis of ovarian cancer but several 

hypotheses exist based on the number of ovulations/menstrual cycles in a lifetime. The 
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first hypothesis states that incessant ovulation leads to damage of the ovarian surface 

epithelium which in turn leads to malignant cells (Fathalla, 1971; Riman et al., 1998). 

Another hypothesis suggests that granulosa and theca cells fail to undergo apoptosis 

after ovulation (Cramer et al., 2002; Hanna and Adams, 2006). Another hypothesis 

suggests that high levels of gonadotropins increase stimulation of estrogen, which 

entraps ovarian epithelial cells in inclusion cysts which leads to malignant cells (Hanna 

and Adams, 2006; Zheng et al., 2007). Higher androgen levels lead to cancer while 

higher levels of progestin prevent cancer (Bu et al., 1997; Hanna and Adams, 2006; 

Risch, 1998; Zheng et al., 2007). Pregnancy and oral contraceptives decreases 

gonadotropin and androgen levels while increasing levels of progestin, therefore 

preventing cancer (Sueblinvong and Carney, 2009). Finally, inflammation potentially 

plays a major role in ovarian cancer development (Hanna and Adams, 2006; Ness et 

al., 2000; Salvador et al., 2009). During menstruation, retrograde flow brings 

inflammatory mediators (bacteria, chemicals, etc.) to the fallopian tube and therefore 

inflammation within the fallopian tube (Maisey et al., 2003; McGee et al., 1999; Salvador 

et al., 2009; Strandell et al., 2004). Inflammation within the fallopian tube causes cells to 

rapidly divide and increase the potential for DNA replication errors and thus 

development of a malignant cell (Ames et al., 1995; Dreher and Junod, 1996; Nash et 

al., 1999; Pagano et al., 2004; Salvador et al., 2009). Oral contraceptives and 

pregnancy decrease and eliminate menstruation respectively and therefore decrease 

retrograde flow (Brosens and Vasquez, 1976; Group, 2005; Lindblom et al., 1980; 

Salvador et al., 2009). Also oral contraceptives and pregnancy increase the cervical 

mucus thickness which protects the uterus from inflammatory mediators (Pal and 
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Bhattacharyya, 1989; Salvador et al., 2009). This theory has the most effect on the 

fallopian tube suggesting that inflammation may be the most likely pathogen for ovarian 

cancer (Salvador et al., 2009). 

 

Genetic Predisposition to Ovarian Cancer 

Family history is also a risk factor for ovarian cancer. Ovarian cancer is a 

seemingly inherited disease in that women with a first degree affected relative have an 

increased risk of developing ovarian cancer compared to the general population 

(Pharoah and Ponder, 2002; Stratton et al., 1998). Risk further increases in families with 

mutations in BRCA1 and BRCA2 by 45% and 25% respectively (Antoniou et al., 2002; 

Ford et al., 1998; Minion et al., 2015; Pharoah and Ponder, 2002). Germline mutations 

in mismatch repair genes (MMR) genes such as MLH1, MSH2, MSH6, PMS2, and 

EPCAM, also known as Lynch Syndrome causes 2% of ovarian cancer cases (Lu and 

Daniels, 2013; Malander et al., 2006; Minion et al., 2015; Pennington and Swisher, 

2012; Pennington et al., 2014; Walsh et al., 2011). Lynch syndrome was first identified 

in families with colorectal cancer and the ovarian cancer patients with mutations in MMR 

genes have a family history of colorectal cancer (Malander et al., 2006; Meyer et al., 

2009). Mutations in BRCA1 and BRCA2 lead to high grade serous ovarian cancer while 

mutations in MMR genes more likely lead to endometrioid and mucinous ovarian cancer 

(Berns and Bowtell, 2012; Chiaravalli et al., 2001; Fujita et al., 1995; King et al., 1995; 

Turner et al., 2004).  

Highly penetrant pathogenic alleles of known susceptibility genes such as 

BRCA1/BRCA2 and MMR genes only account for 11% and 2% of high grade serous 



6 
 

EOC and endometrioid/mucinous in the general population, and less than half of all 

familial ovarian cancer cases (Malander et al., 2006; Pharoah and Ponder, 2002; 

Ramus et al., 2007). These genes have been identified by performing family-based 

linkage studies (Miki et al., 1994; Wooster et al., 1995). Germline mutations in highly  

 

Figure 1. Effect size versus allele frequency of ovarian cancer susceptibility 
genes. This figure displays all known ovarian cancer susceptibility genes graphed by 
their approximate effect size and allele frequency in the population. This mainly portrays 
that the genetic contribution to risk includes high effect size/penetrance genes, 
intermediate effect size/penetrance genes and low effect size/penetrance loci. 
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penetrant cancer susceptibility genes TP53 and PTEN have also been found in ovarian 

cancer cases (Minion et al., 2015; Pennington and Swisher, 2012; Pennington et al., 

2014). However, exhaustive family-based linkage studies have not found novel highly 

penetrant genes (Pharoah et al., 2004). Additional studies have found variants with 

intermediate penetrance affecting ovarian cancer risk including several genes in the 

Fanconia Amenia pathway; BARD1, BRIP1, MRE11A, NBN, PALB2, RAD50, RAD51C, 

RAD51D, CHEK2, as well as CHEK1 and ATM (Baysal et al., 2004; Casadei et al., 

2011; Castera et al., 2014; Coulet et al., 2013; Kanchi et al., 2014; Kuusisto et al., 2011; 

Meindl et al., 2010; Pennington and Swisher, 2012; Pennington et al., 2014; Rafnar et 

al., 2011; Thorstenson et al., 2003; Walsh et al., 2011) Mutations in genes like BRCA1 

and BRCA2, with a high effect size or high penetrance, are very rare in the population 

(Figure 1) (Manolio et al., 2009). Mutations in intermediate penetrance genes are 

usually rare to low frequency variants (Figure 1) (Manolio et al., 2009). The remaining 

genetic contribution to risk in ovarian cancer may be explained by common variants with 

a low effect size (Figure 1) (Manolio et al., 2009). 

 

Genome Wide Association Studies 

Genome wide association studies (GWAS) identify the common variants 

associated with complex, common disease, such as ovarian cancer (Cardon and Bell, 

2001; Pharoah et al., 2004; Risch and Merikangas, 1996; Risch, 2000). GWAS identify 

predisposition loci by genotyping thousands of SNPs in thousands of cases and 

thousands of controls to find the common low penetrant alleles that significantly occur 
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more frequently in the cases than in the controls (Cardon and Bell, 2001; Carlson et al., 

2004; Pharoah et al., 2004; Risch and Merikangas, 1996; Risch, 2000).  

 

Linkage Analysis versus GWAS 

 Linkage analysis identifies genetic variants associated with diseases that follow 

the mendelian pattern of inheritance, meaning one gene affects one trait with two (or  

 

Figure 2. Penetrance of inherited variants. Carriers of variants (individuals outlined in 
red) can make up a small proportion of the population or larger proportion of the 
population depending on the type of variant and how it influences disease and fitness. 
Rare variants tend to have high penetrance with the majority of carriers developing the 
disease (red individuals) while common variants tend to have low penetrance. 
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very few) phenotypes (Jimenez-Sanchez et al., 2001). The disease associated variant is 

rare in the population and highly penetrant or in other words, carriers of the variant have 

a high likelihood of developing the disease (Pritchard, 2001; Reich and Lander, 2001) 

(Figure 2). Linkage analysis utilizes pedigrees of affected families to identify genetic  

markers with a known location in the genome that inherit with the disease gene during 

meiosis. Since regions of the genome that are in close proximity are less likely to 

recombine onto separate chromosomes, this allows for the identification of a location for 

the disease gene. Sequencing and identification of variants in the human genome 

attributed to the success of linkage analysis (International HapMap, 2005; Lander et al., 

2001; Venter et al., 2001). Variations identified via linkage analysis often change protein 

coding sequences and therefore affect the function of the gene. 

GWAS analysis identifies genetic variants associated with complex, common 

diseases or diseases that follow a non-Mendelian pattern of inheritance (Cardon and 

Bell, 2001; Manolio, 2010; Pharoah et al., 2004). These traits are polygenic, meaning 

multiple genes affect one trait with a wide range of phenotypes. The disease associated 

variants are common in the population, yet, a small proportion of carriers of a single 

disease associated variant will develop the disease since these variants, alone, have a 

small effect size (Cardon and Bell, 2001; Risch and Merikangas, 1996) (Figure 1 and 2). 

In order to obtain the statistical power that a variant associates more frequently with the 

disease than controls, GWAS genotype thousands of SNPs (common SNPs with a 

minor allele (MAF) > 0.05) in thousands of cases and thousands of controls (Cardon 

and Bell, 2001; Carlson et al., 2004; Colhoun et al., 2003; Dahlman et al., 2002; Hunter 

and Kraft, 2007; Manolio, 2010; Pharoah et al., 2004; Risch and Merikangas, 1996). 
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Statistical power also depends on the effect size (Stranger et al., 2011). By increasing 

the number of cases and controls, a GWAS will identify variants the have a smaller 

effect size (Manolio, 2010). In GWAS, the causal SNPs often change the sequence of 

non-coding DNA (Hardy and Singleton, 2009; Manolio, 2010). In general changing the 

sequence of non-coding DNA, has a less dramatic effect than changing an amino acid 

sequence of a protein, thus differences in effect size.  

 

Principles of GWAS 

The variant identified as associated with the disease in GWAS is called the 

tagging SNP. The tagging SNP represents all linked SNPs or in other words all SNPs 

that frequently inherit with that SNP after recombination during meiosis (Carlson et al., 

2004; Gabriel et al., 2002). Regions of the genome being inherited together rather than 

independently is a phenomenon called linkage disequilibrium (LD). The tagging SNP 

tells us that any variation within a LD structure could be considered the causal variant 

(Carlson et al., 2004; Gabriel et al., 2002; Pharoah et al., 2004) (Figure 3). This allows 

for the genotyping of a subset of SNPs rather than all SNPs within the genome (Carlson 

et al., 2004; Pharoah et al., 2004). The HapMap project determined patterns of LD in 

the human genome among different ethnicities to allow for the selection of SNPs in 

GWAS (International HapMap, 2005). When selecting the tagging SNPs, it is important 

to keep in mind that patterns of LD are different among ethnicities (Carlson et al., 2004).  

R2 and d-prime are pairwise measurement of LD between SNPs. If r2 = 1 and d-

prime = 1 then two of four possible haplotypes are present (Pharoah et al., 2004). The 

first haplotype would be the major allele for both SNPs and the second haplotype would  
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Figure 3. Tagging SNP represents many candidate causal SNPs in LD. SNPs that 
frequently inherit together during meiosis are in LD and are represented by LD 
structures. The increase in red intensity in the LD plot shown here, indicate SNPs in 
increasing LD measured by d-prime. One can visualize LD structure by breaks in red 
color. A tagging SNP (in yellow) would represent all SNPs within the LD structure (in 
blue) as potential candidate causal SNPs. SNPs outside that LD structure (in black) are 
not potentially causal.  
 

be the minor allele for both SNPs. Neither site has experienced mutation or 

recombination between the sites (Carlson et al., 2004). If d-prime and r2 < 1 then more 

than two haplotypes are present (Pharoah et al., 2004). Allele frequency also influences 

r2 since a low frequency allele is less likely to occur in a haplotype (Pharoah et al., 

2004). r2 = 1 only when the two variants have the same MAF (Carlson et al., 2004). 

To manage the high cost of such studies, the analysis is often done in tiers 

(Manolio, 2010; Pharoah et al., 2004). The first tier is testing all possible tagging SNPs 

throughout the genome in a smaller set of cases and controls. Those SNPs that surface 

as significant at an arbitrary threshold are genotyped again in a larger set of cases and 
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controls. The final tier genotypes the SNPs that remained significant at a higher 

arbitrary threshold in tier 2 in an even larger set of cases and controls with the final 

SNPs reaching genome wide significance (Manolio, 2010; Pharoah et al., 2004). This 

process eliminates false positives and allows false negatives to surface (Manolio, 2010). 

Additionally, meta-analyses of independent GWAS increase sample size and statistical 

power (Stranger et al., 2011).  

SNPs with a p-value < 5 x 10-8 are considered genome-wide significant. This is a 

Bonferroni correction based on multiple testing hypothesis since a GWAS genotypes 

approximately 1 million SNPs which, based on LD, seems to provide complete coverage 

of the genome (Hirschhorn and Daly, 2005; Stranger et al., 2011). 

 

Caveats of GWAS 

 After hundreds of GWAS, many diseases still have missing heritability due to the 

lack of statistical power of a causal allele. The causal allele may not have been 

thoroughly represented by a tagging SNP due to correlation and/or differences in allele 

frequency (Stranger et al., 2011). One possibility for missing heritability is that there are 

rare variants with modest effect which would not be detected by GWAS (Manolio et al., 

2009). The 1000 Genomes Project has sequenced 2,000 individuals to begin identifying 

low frequency variants (MAF = 0.001 – 0.005) but detecting association would still 

require sequencing of thousands of cases and controls (Genomes Project et al., 2010; 

Manolio et al., 2009). GWAS also lacks the ability to detect structural variants or copy 

number variation (Manolio et al., 2009). It is still unclear whether multiple variants 

associated with the disease are additive or non-additive in measuring susceptibility. 
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Additive would mean that each variant has an effect size and carriers of more than one 

disease variant would have a combined effect size of those variants (Hirschhorn and 

Daly, 2005; Manolio et al., 2009; Stranger et al., 2011). If some variants are non-

additive, determining risk becomes more complex. Non-additive genetic variance 

includes interactions between loci such as dominance and epistasis as well as 

interaction between loci and environment (Hirschhorn and Daly, 2005; Manolio et al., 

2009; Stranger et al., 2011). If the latter is the case, then fewer variants are required to 

explain the heritability (Hirschhorn and Daly, 2005). If multiple alleles at a disease 

susceptibility locus confer susceptibility, the power of LD mapping approaches decrease 

because each variation will arise on a different haplotype background (Pharoah et al., 

2004). Since for many diseases there is still a gap in the heritability, risk assessment for 

individuals will not be of clinically useful predictive value (Jakobsdottir et al., 2009; 

Manolio, 2010; Wray et al., 2008).  

 

Ovarian Cancer GWAS 

Genome-wide association studies (GWAS) have identified a total of 20 loci 

associated with risk of ovarian cancer (Figure 1 and 4) (Bojesen et al., 2013; Bolton et 

al., 2010; Chen et al., 2014; Kuchenbaecker et al., 2015; Permuth-Wey et al., 2013; 

Pharoah et al., 2013; Shen et al., 2013; Song et al., 2009). The first ovarian cancer 

GWAS was done in three tiers and identified the locus 9p22 as associated with ovarian 

cancer (Song et al., 2009). They then re-analyzed the data to see if the associated SNP 

was more associated with a specific subtype of ovarian cancer (Song et al., 2009). It 
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was only significantly associated with the serous ovarian cancer subtype (Song et al., 

2009).  

Another GWAS that looked at survival in ovarian cancer identified a SNP on 

19p13 (Bolton et al., 2010). Yet, this SNP did not replicate in the final study (Bolton et 

al., 2010). It did replicate as associated with serous ovarian cancer (Bolton et al., 2010).  

 

Figure 4. EOC Susceptibility Loci. Each EOC susceptibility loci identified in ovarian 
cancer GWAS has been plotted here based on their odds ratio (frequency in 
cases/frequency in controls) and EOC GWAS significance. These loci are associated 
with serous EOC, BRCA1/BRCA2 mutation carriers and all histoligies, BRCA1/BRCA2 
mutation carriers and serous EOC, clear cell EOC, and BRCA1 mutation carriers.  
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After these initial ovarian cancer GWAS, investigators realized that stratifying by 

subtype may allow for the discovery of more associated SNPs since phenotypic 

heterogeneity can reduce power (Goode et al., 2010; Ioannidis et al., 2009). Many of 

these loci also displayed associations with carriers of BRCA1 and BRCA2 

(Kuchenbaecker et al., 2015; Ramus et al., 2012; Ramus et al., 2011). One locus was 

identified that associated with BRCA1 mutation carriers only (Couch et al., 2013). This 

suggests that low risk common variants interact multiplicatively with high risk rare 

variants in susceptibility to EOC (Kuchenbaecker et al., 2015). This then led to a GWAS 

meta-analyses of data from ovarian cancer cases unselected for family history, ovarian 

cancer cases with BRCA1 mutations, and ovarian cancer cases with BRCA2 mutations, 

which retrieved additional EOC susceptibility loci (Kuchenbaecker et al., 2015). 

The EOC susceptibility loci identified so far explain 3.9% of the excess familial 

risk of EOC in the general population, 5.2% in BRCA1 carriers, and 9.3% in BRCA2 

mutation carriers (Kuchenbaecker et al., 2015). The identification of these loci may be 

useful for risk assessment in individuals who carry mutations in BRCA1 and BRCA2, yet 

their contribution to risk in the general population is still too low to be useful. Yet, these 

studies provide a starting point for the discovery of pathways and mechanisms 

operating in ovarian oncogenesis. Delineation of these pathways may reveal novel 

therapeutic strategies, much in the same way the identification of BRCA1 and BRCA2 

and their role in homology-directed recombination led to the use of synthetic lethality 

with PARP1 inhibition in breast and ovarian cancer (Fong et al., 2009). However, the 

mechanistic underpinnings of these susceptibility loci remain largely unknown. 
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Functional Analysis of Susceptibility Loci 

Several studies have performed functional analysis of susceptibility loci with 

different degrees of depth of investigation on how these susceptibility loci influence 

disease predisposition. From the experience of previous functional analysis of GWAS 

loci, described here is a thorough and potential flow of questions to analyze a locus 

(Figure 5). To begin functional analyses of the mechanisms of susceptibility of disease 

loci, all correlated SNPs must be identified since tagging SNPs are not necessarily the 

functional SNP, rather they are a surrogate marker for the locus (Carlson et al., 2004; 

Gabriel et al., 2002). Correlated SNPs can be retrieved using an arbitrary threshold of 

LD by obtaining data from the 1000 Genomes Project and performing haplotype 

analysis with the Haploview program (Barrett et al., 2005). Interestingly the majority of 

associated and correlated SNPs reside in non-coding regions of the genome (Maurano 

et al., 2012). Since these SNPs do not disrupt the amino acid sequence of proteins in  

the cell to disrupt cellular processes, it is hypothesized that associated SNPs exert their 

effects through changing the transcription activity of enhancers and promoters and 

therefore affecting the transcription rates of target genes (Freedman et al., 2011). 

Fortunately, The Encyclopedia of DNA Elements (ENCODE) discovered that 

80% of the genome has a biological function in at least one cell type (Dunham et al., 

2012). Many of these functions are cell type specific indicating the importance of 

choosing the cell type for functional analyses (Heintzman et al., 2009).  

 After identifying which SNPs localize within a regulatory element, the next step is 

to identify which SNPs have allele specific activity. This is then followed by identifying 



17 
 

 

Figure 5. Flow chart for the functional analysis of cancer susceptibility loci. 

 

the downstream target gene whose transcription is affected by allele changes at the 

causal SNP (Figure 5). Genes within an arbitrary distance of the causal SNP can 

constitute the universe of candidate target genes for functional analysis. Within 1 

megabase (Mb) of the causal SNP is within reason since very few enhancers loop to 

genes at a farther distance although, it is possible (Jin et al., 2013).  

The next step would be to examine ways to link SNPs and genes (Figure 5). The 

final step would be to explore how these changes in alleles and expression of target 

genes result in disease, or in this discussion cancer. This last and final step would be an 

ongoing exploration and depending on the gene and pathways disrupted, would require 

different scientific techniques to analyze (Figure 5). Since risk variants identified by 
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GWAS, individually, contribute a small percentage of risk, presumably, these variants 

will have small effects on biological functions.  Ultimately, functional analyses of GWAS 

loci uncover the mechanisms by which genetic variation influences risk. 

 

Transcriptional Regulation 

 Since it is hypothesized that allele changes of GWAS SNPs most likely effect the 

transcription function of enhancers and promoters, a clear understanding of and 

development of functional assays is needed to identify the causal SNP. Regulation of 

transcription determines cell identity in development and maintains homeostasis of the 

cell. Aberrant transcription can lead to severe changes in the biological processes of a 

particular cell. Transcription is quite complex in that it is under combinatorial control 

(Britten and Davidson, 1969). Different genes are regulated by different combinations of 

TFs in a cell type specific manner (Britten and Davidson, 1969). Therefore, functional 

analysis of GWAS hits requires identification of a transcription regulatory network at a 

locus and where the glitch in the network, caused by the associated SNP, resides. 

 

Basics of Transcriptional Regulation 

 There are three main DNA regulatory elements in transcription. The core 

promoter resides immediately upstream and adjacent to the transcription start site 

(TSS). General TFs bind to the core promoter. The general TFs make up a group of 

proteins that have or support the catalytic processes necessary for transcription 

elongation. The next regulatory element is the regulatory promoter and it lies 

immediately upstream of the core promoter. It recruits co-activating/repressing TFs that 
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help recruit and activate or block and repress general TFs to the core promoter. The 

final regulatory element is the enhancer which lays several kilobases (kb) upstream or 

downstream of the core promoter. It loops to the core and regulatory promoter to aid in 

recruiting co-activating/repressing TFs. Enhancers also seem to be cell type specific 

and make up the majority of regulatory elements in the genome (Thurman et al., 2012). 

The core promoter is generally inactive in vivo without the regulatory promoter and/or 

enhancer. Since enhancers make up the majority of regulatory elements in the genome 

and have a greater influence on transcription activity, causal SNPs have a higher 

probability of influencing the function of an enhancer.  

For DNA to fit and function in the nucleus, it has a specific structure and 

conformation specific to particular cell types. DNA is packaged into nucleosomes by 

wrapping around histone octamers which in turn package into chromatin. These 

histones also regulate which regions of DNA are accessible to TFs since chromatin 

needs to be de-condensed for activation at promoters and enhancers by specific TFs 

(Cairns, 2009). Chromatin loops bring together enhancers and promoters and organize 

the chromatin into areas of euchromatin (active) and heterochromatin (in-active).  

 The transcription cycle can be described in several steps (Reviewed in (Fuda et 

al., 2009). The first step involves clearing of nucleosomes from enhancers and 

promoters by specific TFs with the ability to bind to nucleosome bound DNA or at linker 

DNA between nucleosomes (Hebbar and Archer, 2003). Additional nucleosome 

remodeling TFs are recruited to further make DNA accessible. The second step 

involves the binding of co-activators which in turn recruit general TFs and RNA 

polymerase II to the core promoter. In the third step, DNA begins to unwind and RNA 
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polymerase II initiates transcription. In the fourth step, co-activators phosphorylate RNA 

polymerase II which then escapes the core promoter and pauses. The fifth step requires 

further phosphorylation of RNA polymerase II to elongate and continue transcription of 

the gene. In the sixth step, RNA polymerase II elongates through the whole entire gene. 

In step seven, transcription terminates. In step eight, transcription reinitiates. All of these 

steps require TFs outside of the general TF category for continuation of the transcription 

cycle. 

Once the appropriate TFs for the particular gene have activated enhancers and 

promoters, transcription elongation can begin. It has recently come to light that 

divergent RNA transcripts exist at promoters and enhancers (Core et al., 2014). 

Activation at an enhancer promoter interaction recruits the general TF machinery to 

anti-sense DNA as well as both strands of the enhancer creating unstable RNA (Core et 

al., 2014). This further portrays that specificity does not come from the core promoter 

where general TFs bind; rather it comes from the binding of regulatory TFs that activate 

transcription. Also, events downstream of transcription play an important role in gene 

expression. It seems that splicing determines whether RNA becomes stable or unstable. 

Thus, differences in enhancer RNA/anti-sense RNA and stable RNA is that stable 

transcripts have a binding motif for the U1 splicing complex which allows them to go 

through the translation process while unstable transcripts have a binding motif for the 

polyadenylation-dependent termination machinery (Core et al., 2014).  
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Transcription Factor Binding 

TF binding can activate transcription by recruiting the general TFs to the core 

promoter or recruit chromatin remodeling enzymes that de-condense the chromatin to 

provide TFs access to the DNA (Blackwood and Kadonaga, 1998; Lee and Young, 

2000; Struhl, 1998; Workman and Kingston, 1998). Alternatively, protein binding to the 

DNA can also lead to repression of transcription by competing for an activator’s binding 

site, interacting with an activator or general TF and inhibiting their function, or by 

recruiting chromatin remodeling enzymes that condense the chromatin at a promoter or 

enhancer (Hanna-Rose and Hansen, 1996; Lee and Young, 2000; Struhl, 1998; 

Workman and Kingston, 1998). Different and distinct combinations of TFs regulate 

specific genes, repress or activate, and bind proximal and distal regulatory elements 

(Gerstein et al., 2012). 

TFs typically have DNA binding domains that recognize specific DNA sequences. 

There are more than eighty known types of sequence specific DNA binding domains 

and those domains with similar amino acid sequences will bind to similar DNA 

sequences  (Weirauch and Hughes, 2011; Weirauch et al., 2014).  These TF binding 

sites are conserved in the genome and TF binding exhibits allele specific activity 

(Gerstein et al., 2012; Neph et al., 2012). 

In vitro binding assays can identify the consensus sequence of many TFs. Yet in 

order for TFs to bind to their consensus sequence in the cell, the region may need to be 

accessible or nucleosome free, or their may need to be co-binding with other TFs. 

Additionally the TF needs to be expressed in the cell type. TF expression correlates to 

activity of enhancers and promoters with a TF motif (Ernst et al., 2011). ChIP-seq for 
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TFs identifies binding sites in the cell, but does not have the resolution of the in vitro 

assays to identify the exact binding sequence (Figure 6). A combination of both assays 

can inform the DNA binding properties of TFs. EMSA test allele specific activity of TF 

binding. Nuclear extracts mixed with radiolabeled probes containing the major or minor 

allele are run on a polyacrylamide gel (Kerr, 1995). If the allele disrupts a TF binding 

motif, the gel will show different band patterns between the major and minor allele 

probes indicative of changes in TF binding. 

 

Chromatin Structure 

As mentioned earlier in the text, histones play a major role in transcription 

regulation since they determine the accessibility of the DNA. Chromatin modifiers affect 

histone binding therefore specific histone modifications inform the activity of the DNA 

bound to that histone (Narlikar et al., 2002). Histone H3 lysine 4 tri-methylation 

(H3K4me3) marks DNA at promoters (Bernstein et al., 2005; Dunham et al., 2012; Ernst 

et al., 2011; Guenther et al., 2007; Heintzman et al., 2007; Mikkelsen et al., 2007). 

Increasing levels of transcriptionally engaged RNA polymerase II, or transcripts that 

consistently and stably transcribe, have increased levels of H3K4me3 (Core et al., 

2014).  Histone H3 lysine 4 di-methylation (H3K4me2) marks promoters and enhancers 

(Bernstein et al., 2005; Ernst et al., 2011; Heintzman et al., 2007). Histone H3 lysine 4 

tri-methylation (H3K4me1) marks DNA at enhancers (Dunham et al., 2012; Ernst et al., 

2011; Heintzman et al., 2007). Histone H3 lysine 27 acetylation (H3K27ac) and Histone 

H3 lysine 9 acetylation (H3K9ac) marks transcriptionally active DNA (Dunham et al., 

2012; Ernst et al., 2011; Heintzman et al., 2007). Histone H3  lysine 36 tri-methylation 
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and Histone H4 lysine 20 mono-methylation mark transcribed DNA (Ernst et al., 2011; 

Guenther et al., 2007; Mikkelsen et al., 2007). Histone H3 lysine 27 tri-methylation 

(H3K27me3) marks repressed DNA (Dunham et al., 2012; Ernst et al., 2011; Heintzman 

et al., 2007; Mikkelsen et al., 2007). Combinations of these histone marks inform 

whether the regions are active, weak or poised (Ernst et al., 2011). Promoter and 

enhancer states vary between active, weak and poised among different cell types but 

the regions of the DNA seem to maintain regulatory potential (Ernst et al., 2011). 

Promoters active in one cell type and not another seem to be cell type specific genes 

while promoters active in many cell types are metabolic housekeeping genes (Ernst et 

al., 2011). Enhancer locations are much more cell type specific than promoters. A gene 

active in more than one cell type uses one promoter yet uses a different enhancer in 

each cell type (Ernst et al., 2011). ChIP-seq for histone posttranslational modifications 

identifies the above mentioned regulatory regions (Figure 6). Due to their cell type 

specificity, to identify enhancers that affect a particular disease, the appropriate cell line 

must be used. 

The opposite of histone binding is regions of open chromatin. Regions of open 

chromatin represent regions accessible to TFs and represent enhancers and promoters 

as well as insulators, silencers, and locus control regions (Gaszner and Felsenfeld, 

2006; Li et al., 1999; Thurman et al., 2012). Thirty percent of distal open chromatin 

regions have marks of enhancers therefore the remaining sequences may contribute to 

chromatin organization (Heintzman et al., 2007). FAIRE identifies regions of open 

chromatin and therefore identifies regions with a potential biological function (Figure 6). 

FAIRE utilizes phenol chloroform extraction to separate the DNA, that tightly crosslinks 
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to nucleosomes, from the unbound DNA in the aqueous layer (Giresi et al., 2007). 

Similar to TF binding, chromatin state differentially binds between maternal and paternal 

alleles (Dunham et al., 2012; Ernst et al., 2011). 

 

 

 

Figure 6: Regulatory regions and how they are identified. Regulatory regions are 
regions of open chromatin, bound by TFs. Modified histones also mark the transcription 
activity of DNA. FAIRE-seq identifies regions of open chromatin and ChIP-seq identifies 
TFs and modified histones bound to DNA. 
  

3D Structure of the Genome 

The genome is not structured in a straight line, rather, it is made of chromatin 

loops bringing together enhancers and promoters in transcription factories (Gondor and 

Ohlsson, 2009). 60% of promoters associate with one enhancer while 90% of 

enhancers associate with one promoter (Zhang et al., 2013). Additionally these 

interactions seem to be cell type specific with 60% of interactions occurring in only one 

cell line (Sanyal et al., 2012). It seems that each cell type utilizes a different enhancer 

for the same promoter (Ernst et al., 2011). Enhancers can loop to target genes up to 1 
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Mb away, in rare cases even farther (Jin et al., 2013). The average distance between 

interacting promoters and enhancers is 120 kb with almost half of the enhancer 

interactions occurring with the nearest promoter (Sanyal et al., 2012).  

These enhancer and promoter interactions seem to be pre-formed in 

development and subsequent events occur to activate transcription rather than having 

dynamic interaction between enhancers and promoters to activate transcription (Ghavi-

Helm et al., 2014; Kulaeva et al., 2012). Interestingly, there seems to be specific pairing 

between TFs at enhancers and promoters (Thurman et al., 2012). Possibly specific TFs 

for a developing cell work together to pre-form these interactions. Promoter and 

enhancer interactions occur at open chromatin sites and not at repressed sites (Sanyal 

et al., 2012; Thurman et al., 2012). Looped enhancers and promoters are bound by 

paused polymerase and transcription initiates once polymerase is activated for 

elongation through recruitment of additional factors (Ghavi-Helm et al., 2014). 

Promoters that do not interact with an enhancer have low gene expression levels 

(Zhang et al., 2013). Most likely, genes are deemed active during development. 

Chromatin conformation capture (3C) identifies enhancer promoter interactions 

(Dekker, 2006). In this technique, formaldehyde cross links genomic DNA in live cells to 

maintain DNA interactions after cell lysis. Digestion and ligation of genomic DNA 

produces linear DNA products of the enhancer and promoter that can be amplified with 

specifically designed primers for those regions (Dekker, 2006). 

Important, yet less studied, regulatory regions in maintaining the 3D structure of 

the genome are insulators and nuclear matrix/scaffold attachment regions (S/MAR). 

Both often mark borders between condensed and de-condensed chromatin 
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(Gerasimova et al., 2000). Insulators are regions of open chromatin bound by CTCF, 

and Cohesin creating chromatin loops that either block a promoter and enhancer 

interaction or maintain a promoter and enhancer interaction (Bondarenko et al., 2003; 

Kagey et al., 2010; Kulaeva et al., 2012; West et al., 2002). S/MARs are often a region 

of open chromatin that binds to the nuclear scaffold and surrounded by CTCF and 

H3K27me3 binding (Dunham et al., 2012; Guelen et al., 2008; Keaton et al., 2011; 

Mirkovitch et al., 1984; Ohlsson et al., 2001). These regions are also thought to be 

important in preventing aberrant enhancer activity and maintaining the 3D structure of 

chromosomes (Bushey et al., 2008; Guelen et al., 2008; Keaton et al., 2011; Linnemann 

et al., 2009). Reporter assays can identify whether an open chromatin region functions 

as an insulator or S/MAR by cloning the region in between an enhancer and promoter 

and observing decreased or lack of transcription (Kellum and Schedl, 1992). Isolation of 

the nuclear scaffold and DNA digestion and extraction can also identify S/MARs 

(Dijkwel and Hamlin, 1999; Keaton et al., 2011; Mirkovitch et al., 1984) 
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CHAPTER TWO: 

IDENTIFYING FUNCTIONAL SNPS 

 

Note to Reader 

 Two manuscripts that have been submitted for review include portions of this 

chapter.   

 

Introduction 

To establish the mechanism by which changes in alleles of SNPs in non-coding 

DNA contribute to EOC, we conducted a functional dissection of the 9p22.2 ovarian 

cancer susceptibility locus. The most significant SNP for high grade serous EOC 

reported initially (rs3814113; P = 2.5 x 10-17) is located 44 kb upstream and 220 kb 

downstream of the BNC2 and CNTLN TSS, respectively (Song et al., 2009). The minor 

allele [C; MAF = 0.323] was associated with reduced risk of EOC (combined data OR = 

0.82; 95%CI = 0.79-0.86). A total of twelve genotyped SNPs within the same linkage 

disequilibrium (LD) region (r2 ≥ 0.239; D’ ≥ 0.591) reached genome wide significance (P 

< 5x10-8) and mapped to non-coding regions, eight of which are located within intron 2 

of the BNC2 gene (Song et al., 2009).   

Here, we conducted a comprehensive functional analysis of all SNPs at the locus 

in LD with rs3814113 (r2 > 0.3). Since all of these SNPs fall in non-coding regions we 

hypothesized that they modify the activity of transcription regulatory elements present in 
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enhancers and promoter regions (Freedman et al., 2011; Monteiro and Freedman, 

2013) as these regions are the most common regulatory elements and thoroughly 

characterized. We integrated several methods to identify functional SNPs with allele-

specific effects on enhancers and promoters operating in OSE and fallopian tube 

epithelial (FTE) cells (Coetzee et al., 2015). 

 

Results 

 

Candidate Functional SNPs  

In order to identify a comprehensive set of candidate functional SNPs at the 

9p22.2 locus, we downloaded all SNPs within 250 kb in LD (r2 ≥ 0.3) with rs3814113 in 

the 1000 Genomes Database (http://www.1000genomes.org/) using HaploView (Barrett 

et al., 2005). These 134 SNPs are distributed over an 82 kb region ranging from the first 

intron of BNC2 to ~44 kb upstream from its TSS (Figure 8A and Table 1). 

 

Table 1: Candidate Functional SNPs 
Chromosome Position SNP r2 

chr9:16914834-16914835 rs10810671 1 
chr9:16915020-16915021 rs3814113 1 
chr9:16914894-16914895 rs7032221 1 
chr9:16910676-16910677 rs10738467 0.974 
chr9:16910762-16910763 rs10738468 0.974 
chr9:16912987-16912988 rs4246134 0.974 
chr9:16911637-16911638 rs4366169 0.974 
chr9:16911756-16911757 rs4445329 0.974 
chr9:16913042-16913043 rs4465052 0.974 
chr9:16913285-16913286 rs4631563 0.974 
chr9:16913472-16913473 rs6475092 0.974 
chr9:16913513-16913514 rs6475093 0.974 
chr9:16913615-16913616 rs6475094 0.974 
chr9:16910897-16910898 rs7045767 0.974 
chr9:16909050-16909051 rs7866677 0.949 

http://www.1000genomes.org/
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Table 1 (Continued) 
Chromosome Position SNP r2 

chr9:16914702-16914703 rs7048397 0.948 
chr9:16916692-16916693 rs10962693 0.922 
chr9:16908168-16908169 rs55689948 0.922 
chr9:16907583-16907584 rs113780397 0.818 
chr9:16911664-16911665 rs10465044 0.719 
chr9:16857402-16857403 rs10962643 0.719 
chr9:16905440-16905441 rs10962679 0.681 
chr9:16909109-16909110 rs7851204 0.672 
chr9:16891646-16891647 rs10124837 0.638 
chr9:16889936-16889937 rs10962662 0.638 
chr9:16911399-16911400 rs10810665 0.626 
chr9:16911665-16911666 rs10810666 0.626 
chr9:16912434-16912435 rs10810668 0.626 
chr9:16912660-16912661 rs10810669 0.626 
chr9:16912662-16912663 rs10810670 0.626 
chr9:16915104-16915105 rs10962691 0.626 
chr9:16913556-16913557 rs12377389 0.626 
chr9:16913767-16913768 rs12377421 0.626 
chr9:16910213-16910214 rs62543587 0.626 
chr9:16913835-16913836 rs74664507 0.622 
chr9:16858083-16858084 rs10756819 0.611 
chr9:16878615-16878616 rs10756823 0.61 
chr9:16878492-16878493 rs10122763 0.607 
chr9:16876282-16876283 rs10810652 0.607 
chr9:16877137-16877138 rs10810655 0.607 
chr9:16894139-16894140 rs10962668 0.607 
chr9:16881876-16881877 rs12345776 0.607 
chr9:16887365-16887366 rs3927680 0.607 
chr9:16882915-16882916 rs4644350 0.607 
chr9:16881372-16881373 rs7040151 0.607 
chr9:16915873-16915874 rs10962692 0.606 
chr9:16909001-16909002 rs12376998 0.596 
chr9:16873550-16873551 rs10810650 0.589 
chr9:16874611-16874612 rs10962650 0.589 
chr9:16900694-16900695 rs28498684 0.589 
chr9:16900764-16900765 rs36116821 0.589 
chr9:16863363-16863364 rs62541919 0.589 
chr9:16891560-16891561 rs10962664 0.586 
chr9:16891589-16891590 rs10962665 0.586 
chr9:16892271-16892272 rs10962666 0.586 
chr9:16914715-16914716 rs62543619 0.586 
chr9:16856882-16856883 rs1416742 0.572 
chr9:16914577-16914578 rs62543618 0.566 
chr9:16898118-16898119 rs10962672 0.563 
chr9:16896587-16896588 rs10962670 0.555 
chr9:16848789-16848790 rs1339552 0.555 
chr9:16903361-16903362 rs34606230 0.555 
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Table 1 (Continued) 
Chromosome Position SNP r2 

chr9:16899284-16899285 rs62543561 0.555 
chr9:16904634-16904635 rs62543578 0.555 
chr9:16905169-16905170 rs62543579 0.555 
chr9:16906005-16906006 rs62543581 0.555 
chr9:16906093-16906094 rs62543582 0.555 
chr9:16906151-16906152 rs62543583 0.555 
chr9:16906306-16906307 rs62543584 0.555 
chr9:16906888-16906889 rs62543585 0.555 
chr9:16906509-16906510 rs72713890 0.555 
chr9:16853778-16853779 rs10810647 0.541 
chr9:16851677-16851678 rs4961501 0.541 
chr9:16847519-16847520 rs7046326 0.541 
chr9:16851976-16851977 rs7868157 0.541 
chr9:16864520-16864521 rs2153271 0.539 
chr9:16884585-16884586 rs10810657 0.528 
chr9:16907645-16907646 rs181552334 0.527 
chr9:16908382-16908383 rs80039758 0.516 
chr9:16885016-16885017 rs12350739 0.508 
chr9:16901227-16901228 rs13300853 0.501 
chr9:16881255-16881256 rs7025549 0.481 
chr9:16901066-16901067 rs62543565 0.475 
chr9:16903365-16903366 rs10738466 0.451 
chr9:16865698-16865699 rs12379183 0.445 
chr9:16907966-16907967 rs117224476 0.44 
chr9:16862279-16862280 rs7861573 0.426 
chr9:16904947-16904948 rs10756835 0.425 
chr9:16905327-16905328 rs12344726 0.425 
chr9:16903947-16903948 rs7029285 0.425 
chr9:16904079-16904080 rs7032175 0.425 
chr9:16904201-16904202 rs7032420 0.425 
chr9:16904354-16904355 rs7032581 0.425 
chr9:16904140-16904141 rs7032644 0.425 
chr9:16904302-16904303 rs58691828 0.425 
chr9:16904495-16904496 rs7033061 0.425 
chr9:16904640-16904641 rs7033084 0.425 
chr9:16904704-16904705 rs7033194 0.425 
chr9:16904845-16904846 rs7033354 0.425 
chr9:16906358-16906359 rs7868583 0.425 
chr9:16907996-16907997 rs77795022 0.422 
chr9:16846259-16846260 rs1339547 0.391 
chr9:16846322-16846323 rs1339548 0.391 
chr9:16907674-16907675 rs76718132 0.379 
chr9:16903849-16903850 rs10810661 0.37 
chr9:16849603-16849604 rs10962641 0.37 
chr9:16845725-16845726 rs10810645 0.346 
chr9:16843012-16843013 rs4961498 0.336 
chr9:16870181-16870182 rs62541922 0.317 
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Table 1 (Continued) 
Chromosome Position SNP r2 

chr9:16895577-16895578 rs12551733 0.301 
chr9:16902523-16902524 rs4961503 0.301 
chr9:16907620-16907621 rs9697099 0.301 
chr9:16846110-16846111 rs10962638 0.3 
chr9:16863542-16863543 rs10962645 0.3 
chr9:16868379-16868380 rs10962647 0.3 
chr9:16868957-16868958 rs10962648 0.3 
chr9:16873534-16873535 rs10962649 0.3 
chr9:16874877-16874878 rs10962652 0.3 
chr9:16876735-16876736 rs10962653 0.3 
chr9:16877787-16877788 rs10962656 0.3 
chr9:16881345-16881346 rs10962658 0.3 
chr9:16883317-16883318 rs10962659 0.3 
chr9:16858568-16858569 rs11788047 0.3 
chr9:16872322-16872323 rs11789875 0.3 
chr9:16864075-16864076 rs11792249 0.3 
chr9:16889022-16889023 rs12376099 0.3 
chr9:16854366-16854367 rs12379687 0.3 
chr9:16852452-16852453 rs62541877 0.3 
chr9:16861204-16861205 rs62541878 0.3 
chr9:16861507-16861508 rs62541879 0.3 
chr9:16865290-16865291 rs62541920 0.3 
chr9:16870500-16870501 rs62541923 0.3 
chr9:16877422-16877423 rs62541926 0.3 
chr9:16885463-16885464 rs77507622 0.3 

 

Functional Analysis of SNPs  

Now that a set of candidate functional SNPs have been identified through genetic 

means, molecular biology techniques identify SNPs with a biological function. Those 

SNPs with a biological function most likely affect disease. Here we map SNPs to 

regulatory elements marked by histone markers and open chromatin as well as 

measure their transcription activities in luciferase assays and EMSA.  

Mapping SNPs to regulatory elements. Since all 134 SNPs in the candidate 

functional set are located in non-coding regions, multiple functional assays are needed 

to identify regions of transcriptional regulatory activity. First we integrated FAIRE-seq,  
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and ChIP-seq for H3K27Ac and H3K4Me1, histone markers for active chromatin and 

enhancers, respectively from Coetzee et al. (Coetzee et al., 2015; Ernst et al., 2011; 

Heintzman et al., 2007).  We generated chromatin landscape profiles at the 9p22.2 

locus (Figure 8A) from cell lines postulated to be the origins of high grade serous 

ovarian cancer and serous ovarian cancer cell lines. 

 

Table 2: Twenty-two SNPs associated with ovarian cancer risk overlap with areas 
of regulatory activity. SNPs highlighted in dark blue have an r2 > 0.8 to rs3814113. 
SNPs in blue have an r2 = 0.5 - 0.8. SNPs in light blue have an r2 = 0.3 - 0.5.  

Region chr9 Coordinates 
Tile SNP Name Effect 

Allele 
Reference 

Allele R2 
1 16,837,392-16,838,723     
2 16,848,158-16,848,790     
3 16,850,432-16,851,014     
4 16,852,717-16,853,479     
5 16,857,377-16,857,907     
 T5 rs10962643 A C 0.719 
6 16,860,790-16,861,348     
 T6 rs62541878 T A 0.3 
7 16,863,768-16,874,127     
 T7.1 rs11792249 G T 0.3 
 rs2153271 T C 0.539 
 T7.2 rs62541920 A G 0.3 
 rs12379183 G A 0.445 
 T7.3 rs10962647 G T 0.3 
 T7.4 & T7.5 rs10962648 C G 0.3 
 T7.6 rs62541922 C T 0.317 
 rs62541923 A C 0.3 
 T7.7 rs11789875 A G 0.3 
 T7.8 rs10962649 T C 0.3 
 rs10810650 T C 0.589 
8 16,883,570-16,885,692     
 

T8 
rs10810657 A T 0.528 

 rs12350739 A G 0.508 
 rs77507622 G A 0.3 
9 16,899,790-16,900,338     
10 16,901,238-16,902,039     
11 16,907,559-16,908,180     
 

T11 

rs113780397 A G 0.818 
 rs9697099 A T 0.301 
 rs181552334 G A 0.527 
 rs76718132 T C 0.379 
 rs117224476 G T 0.44 
 rs77795022 G T 0.442 

12 16,915,387-16,915,739     
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FAIRE and ChIP-seq profiles revealed twelve regions showing evidence for 

enhancer activity in at least one ovarian cell line (Figure 8A). Twenty-two candidate 

functional SNPs (Table 2) overlapped with five regions containing FAIRE or ChIP-seq 

features (Figure 8A). 

 Development of Enhancer Scanning method. Several SNPs overlapped with 

regions of activity at the 9p22 locus. To eliminate non-causal SNPs in an accelerated 

fashion, we developed a streamlined method that can systematically scan for regions 

with regulatory activity in a cell line of choice and can be scaled-up to study relatively 

large genomic regions (100-500 kb). The method takes advantage of online 

bioinformatics tools and combines a PCR-based generation of tiling clones spanning the 

region with high efficiency recombination cloning. 

Experimental Design. The complete procedure is depicted in Figure 7. To 

reiterate, we start with a genomic region identified by a GWAS as associated with risk 

for a certain condition (Figure 7) and to reiterate we assume that the tagging SNP may 

not necessarily represent the functional SNP. Next, in order to capture the variation in 

the locus we can use linkage disequilibrium (LD) structure information and retrieve all 

SNPs in (LD) with the tagging SNP (Figure 7) (Carlson et al., 2004; Hazelett et al., 

2014). As a rule of thumb, we retrieve sets of SNPs in LD in 1000 Genomes Project with 

r2 ≥ 0.3, ≥0.5, or ≥0.8. These thresholds are arbitrary and serve as a guideline for the 

investigator to decide which set to pursue further analysis appropriate for the resources 

and time available. 

With the regions of interests marked by enhancers defined, we next generate 

tiles by PCR spanning the regions marked by enhancers with each tile of approximately 
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2 Kb (Figure 7). This size is a compromise between having to generate the least 

amount of tiles to cover a region and efficient and reproducible PCR amplification. 

Regions with repetitive sequences may need smaller tiles to facilitate amplification. The 

PCR primers used are designed to include attR sequences to mediate recombinational 

cloning into destination vectors, pGL3-LRF and pGL3LRR, that contain a luciferase 

gene driven by a basal promoter (Figure 7). Using the Gateway® Vector Conversion 

System, we converted the pGL3-Promoter vector (Promega) to a Gateway® destination 

vector by inserting a blunt-ended cassette of the ccdB gene and the chloramphenicol 

resistance gene flanked by attR1 and attR2 sites into a SmaI site of pGL3-Promoter 

vector. Two recombinant vectors, carrying the cassette in each orientation, pGL3-LRF 

and pGL3-LRR, are then used to clone individual tiling clones by recombination. 

Plasmids containing tiling clones in both orientations are then transfected in an 

appropriate cell type and activity of luciferase is measured and compared with the 

corresponding pGL3-LR destination vector (Figure 7).  

Although enhancers are expected to operate independent of orientation and 

position relative to the target promoter (Khoury and Gruss, 1983), because the relative 

position of the binding site in relation to the promoter of the reporter may influence 

expression, tiles should be tested in both cloning orientations.  

True functional SNPs are also expected to show allele specific differences in 

enhancer activity. Risk alleles may create or disrupt a specific binding site therefore it is 

recommended to test both alleles for each SNP. Different alleles can be introduced in 

the tiles using Quick Change PCR mutagenesis (Braman et al., 1996). 
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Choice of template, tile verification, and host cell. Once the region of interest is 

defined we generate tiles by PCR using human genomic DNA or a Bacterial Artificial 

Chromosome (BAC) clone containing the region of interest (Figure 7). In our experience 

the latter provides a more robust option to amplify the tiles. It is expected that the BAC 

is likely to contain the major allele for the SNPs, but could represent the minor allele. In 

 

Figure 7: Luciferase assay protocol. Here we designed a semi-high-throughput assay 
that utilizes transcription reporter plasmids to test several potential regulatory elements 
for transcription activity. 
 

addition, depending on the number of loci being studied and the size of regions to be 

analyzed there could be hundreds of tiling clones to be processed simultaneously 
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increasing the chance of sample mix-ups. Thus, it is useful to sequence a sample (or 

all) of the clones to confirm their identity and to determine the correct allele being 

tested.   

Ideally the host cell for the transfection should represent a tissue compartment 

relevant for the disease under study. For example, cells for normal intestinal crypts 

when studying colorectal cancer. However, primary cells might be difficult to transfect 

and immortalized or cancer cells may provide an alternative, but the use of these cells 

lines should be kept in mind when interpreting the results.  

Controls. Several controls are advisable to guarantee data quality and wise use 

of resources and reagents. We found that because in each experiment a large number 

of luciferase measurements are going to be made, it is important to have a monitor of 

whether the transfection has worked before processing samples. We recommend the 

use of a parallel transfection with a GFP expression vector of choice and when there is 

no detectable GFP-positive cell we do not proceed to lyse cells and measure luciferase. 

We also include a positive control (pGL3-Control Vector containing with a SV40 

enhancer) and expect its activity to be consistent across transfections (10-20X the 

negative control in the experiment, for example). Eight replicates are performed for each 

tile in each orientation. The negative controls used are the plasmids that only include 

the recombination cassette in both orientations and are compared to the tested tiles of 

the same orientation. An additional control derived from the region being studied is also 

recommended and can be designed by identifying a region with no chromatin markers 

indicative of activity. 
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Statistical analysis. Results from transfections with individual tiles are analyzed in 

eight replicates. This number allows for the generation of box whisker plots and 

maximizes the 96-well setup but investigators might want to scale it down to reduce 

costs. Raw readings from firefly (Photinus pyralis) luciferase are normalized against an 

internal Renilla reniformis luciferase control driven by a minimal promoter, pRL-TK 

(Renilla luciferase driven by thymidine kinase promoter) to adjust for differences in 

transfection efficiency in different wells. Next, we set the negative control (pGL3-LRF 

and pGL3-LRR empty vectors) as the reference and results are transformed to fold over 

the negative control. Statistical analysis is performed by comparing the exact means 

and p ≤ 0.05 is considered significant. When testing a large number of tiles, a multiple 

testing correction can be applied (for example, p≤ 0.05/number of tiles being tested). 

Alternatively, a less stringent false discovery rate can also be applied for prioritization. 

However, we feel that due to the stage of SNP analysis in which this assay is being 

performed it would be unwarranted to apply multiple testing corrections as true positive 

clones with small effects might be discarded.  Additional more stringent tests are 

subsequently applied to the tiles (for example, allele-specific differences, activity in 

EMSA, etc.) to weed out false positive hits. 

Anticipated results. At the end of the protocol we anticipate that the investigator 

will have generated tiles representing the genomic region of interest and will have 

identified those that contain regulatory regions capable of activating transcription of a 

heterologous reporter gene in the cell line of choice. These tiles can then be reduced to 

narrow down the region and they can be mutagenized to test whether different alleles of 
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SNPs contained in the tile have specific effects. The results provide an empirical map of 

regulatory activity operating in the locus for the cell lines tested. 

Limitations. The enhancer scanning method presented here is based on the use 

of a plasmid-based reporter gene to detect regions in the genomic DNA with 

transcriptional regulatory activity. As other naked DNA-based assays (such as EMSAs) 

it identifies sequences present in the DNA that have the ability to recruit and bind 

transcriptional regulators. It is conceivable that the underlining DNA (exposed in the 

plasmid-based assay) that carries the activity may, in certain chromatin contexts, be 

hidden by tight nucleosome packing, repressive chromatin features and DNA 

methylation. Thus, some tiles may be false positive hits. 

The sensitivity of the method presented here is dependent on transfection 

efficiency and cells that are difficult to transfect, or experiments in which transfection is 

sub optimal, may not identify all tiles with activity. Use of a set of internal controls 

greatly minimizes false negatives due to transfection failures. The ability of the 

enhancer to activate transcription of a cognate promoter region depends of the 

formation of an adequate DNA loop between the enhancer and promoter (Plank and 

Dean, 2014). Thus, it is conceivable that even when testing both cloning orientations in 

a plasmid context, an optimal loop may not form between the region and the promoter 

leading to false-negative results. Our data suggests that the fraction of false negatives 

due to the plasmid context is small. 

Finally, it is unclear to what extent the detection of a regulatory activity using a 

heterologous promoter affects the results. It is possible that the enhancer-promoter 

interaction depends on binding factors or other promoter features (biochemical 
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compatibility) (van Arensbergen et al., 2014) that are not found in the SV40 promoter. In 

this case, the enhancer scanning method may not properly identify the region. Thus, we 

suggest that strong candidates be tested also against the promoter of candidate target 

regions in the locus. 

 

Figure 8: Functional annotation identifies candidate functional SNPs overlapping 
with regions of regulatory activity in ovarian cells. A. Within the region of the 9p22 
locus containing linked SNPs, twelve regions contain FAIRE peaks (gray), H3K27Ac 
peaks (orange), and/or H3K4Me1 peaks (maroon) in iOSE, iFTSE, and ovarian cancer 
cells. Regulatory regions highlighted in yellow do not overlap with candidate functional 
SNPs. Regions highlighted in red overlap with candidate functional SNPs. Blue bars 
represent location of 2 kb tiles cloned into luciferase reporter vectors. B. Box and 
whisker plots show the luciferase activity from duplicate experiments with 8 biological 
replicates of each tile in both orientations. Asterisks denote tiles exhibiting significant 
transcription activity compared to a control tile (C) located in a genomic region in the 
locus inactive in ovarian cells as judged by features in the figure. Tiles moved forward in 
the functional assays are colored red.  
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Mapping SNPs to regions of enhancer activity. Using the Enhancer Scanning 

method, we tested twelve genomic tiles (~2 kb each) (Figure 8A), in both orientations, 

spanning the five functional regions cloned upstream of the SV40 promoter driving 

expression of luciferase.  We also tested two additional tiles: one overlapping with the 

most significant SNP (T12.1) and a control tile devoid of enhancer activity as judged by 

FAIRE and ChIP-seq data (Figure 8A, Tile C).  

Tiling clones were transfected in IOSE4cMYC ovarian cells (an early stage in vitro 

transformation model of ovarian cancer) (Lawrenson et al., 2010) and luciferase levels 

were determined 24h post transfection. Tiles in regions 6 (T6), 7 (T7.2, T7.3, T7.6), and 

8 (T8) containing 9 candidate functional SNPs displayed significant activity in either 

orientation (two tailed t-test p<0.05 compared to the control tile C, repeated in duplicate 

tests) (Figure 8B). 

 

SNPs with Allele Specific Effects 

SNPs with allele specific enhancer activity. We further hypothesized that 

SNPs likely to have a functional impact will display allele-specific effects. Thus, we 

performed site directed mutagenesis to switch from the reference to the effect allele in 

tiles with significant luciferase activity and compared the activity of different alleles. 

Significantly different activity between reference and effect allele was found for seven 

SNPs in three regions, T6 (rs62541878), T7 (rs62541920, rs12379183, rs1092647), and 

T8 (rs77507622, rs10810657, rs12350739), which were retained for further analysis 

(Figure 9A).     
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Figure 9: SNPs showing allele-specific activities. A. Luciferase assays reveal 
significant allele specific differences in transcription activation for rs62541878, 
rs62541920, rs12379183, rs1092647, rs77507622, rs10810657, and rs12350739 as 
indicated by red asterisks. Reference and effect allele tiles are shown as black and gray 
box and whiskers, respectively. B. EMSA showing allele specific differences in mobility 
between the reference and effect alleles. SNPs in Regions 7, 8, and 11 display 
differences in complex formation between the reference and effect alleles. SNPs with 
allele specific differences are indicated by red text. 
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Allele specific activities in electrophoretic mobility shift assays. We 

conducted electrophoretic mobility shift assays (EMSA) (Kerr, 1995) using fourteen 41-

mer probes to interrogate both alleles for each of the seven SNPs listed above and 

located in regions 6, 7 and 8 (Figure 9B). Tile 11 had significant transcription activity in 

only one reporter experiment but two SNPs within the region (rs113780397 and 

rs181552334) are correlated with r2 of 0.818 and 0.5 respectively, (the highest r2 values 

of all candidate functional SNPs (Table 2)) and so four additional probes were tested. 

We also tested rs3814113, the most significant SNP, for allele-specific effects.  

We obtained nuclear extracts from IOSE4cMYC cells growing in log phase and incubated 

with oligonucleotide probes containing the reference or the effect allele. EMSA revealed 

allele specific effects for rs12379183, rs62541920 (Region 7), rs12350739, rs77507622 

(Region 8) and rs181552334 (Region 11) (Figure 9B) indicating that five SNPs in three 

regions at the 9p22.2 locus are functionally relevant. 

 

Summary 

The two SNPs in Region 7 reside in an approximately 7kb region that includes 

the TSSs for two BNC2 transcripts (Figure 11 and Figure 12A) denoted by FAIRE-seq 

and H3K4me1 ChIP-seq data in ovarian cells, and ENCODE layered H3K4me3 

(promoters) ChIP-seq data (Figure 11 and Figure 12A). This region is the major BNC2 

promoter, implicating BNC2 as a candidate mediator of ovarian cancer susceptibility at 

the 9p22.2 locus (Figure 11).  

Region 8, containing two SNPs with allele specific activity in luciferase assays 

and EMSA, overlaps with FAIRE-seq and ChIP-seq data in ovarian cells with features  



43 
 

 

Figure 10: Conservation and S/MAR predicted sequences within the locus. A. This 
snapshot from the genome browser for the region containing linked SNPs includes 
tracks for Phylop, PhastCons scoring for conservation and alignment of DNA sequences 
among several vertebrates. Interestingly, region 7 and 8 have peaks of conservation for 
both scoring systems while regions 6 and 11 lack a conservation signal. B. Region 11 
contains sequences highly predicted by MAR-Wiz to attach to the nuclear 
scaffold/matrix compared to the rest of the locus. The intensity of prediction was driven 
by the Origin of Replication Rule and the A-T Richness Rule. 
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indicative of an enhancer (Figure 11 and Figure 8A). Region 11 overlaps with FAIRE-

seq data in ovarian cells and one SNP displayed allele-specific effects in EMSA 

experiments. Yet, it lacked ChIP-seq data for enhancer histone marks and had weak 

evidence for enhancer activity in luciferase assays. Interestingly, the region contains a 

sequence predicted to bind to the nuclear scaffold/matrix (Figure 11 and Figure 10) by 

MAR-Wiz (http://genomecluster.secs.oakland.edu/MarWiz/). The FAIRE-seq peak 

indicates lack of nucleosome formation at region 11 (Figure 10 and Figure 8A)  

consistent with observation of scaffold/matrix attachment regions (S/MARs) in plant and 

human cells (Keaton et al., 2011; Pascuzzi et al., 2014). The region is also A/T rich, a 

common feature of S/MARs (Keaton et al., 2011). Although S/MARs are poorly 

characterized functionally they have been suggested to regulate adjacent genes 

(Linnemann et al., 2009). 

 

 

Figure 11: Summary of location of SNPs with most compelling evidence for 
function. Five out of 134 candidate functional SNPs have the most compelling 
evidence for function. Two reside within the promoter of BNC2. Two reside within an 
enhancer and one resides in a putative S/MAR.  
 

We are continuing to investigate the potential S/MAR by performing a nuclear scaffold 

extraction (Dijkwel and Hamlin, 1999; Keaton et al., 2011) followed by qPCR for region 

11. Additionally ChIP for Lamin B1, a nuclear matrix protein, and CTCF may also give 

additional evidence for S/MAR sites (Guelen et al., 2008; Keaton et al., 2011). Even 

http://genomecluster.secs.oakland.edu/MarWiz/
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though enhancers make up the majority of regulatory elements in the genome, other 

potential regulatory elements such as insulators and S/MARs need further 

characterization since they may affect disease such as we have shown in this chapter.  

 

Materials and Methods 

 

Candidate Functional SNPs 

In order to identify a set of candidate functional SNPs in the locus we 

downloaded all SNPs within 250 kb of rs3814113, the SNP originally associated with 

ovarian cancer risk (Song et al., 2009) from the 1000 Genomes Project (v3) (Abecasis 

et al., 2012). The data was uploaded into Haploview. SNP retrieval was done by running 

Tagger only including rs3814113 and capturing all SNPs within 250 kb of rs3814113 

resulting in 134 SNPs with an r2 > 0.3.  

 

Cell Lines and Cell Type-specific Datasets 

The contribution of various cell and tissue types for the origin of different invasive 

EOC subtypes, and their molecular profiles indicate that histotypes of EOC should be 

considered different diseases (Berns and Bowtell, 2012). Subtype analysis of the 

association of the most significant SNP (rs3814113) revealed a stronger association 

when the analysis was restricted to high grade serous tumors, marginally associated 

with endometrioid tumors and no evidence of association was seen for mucinous or 

clear cell carcinoma, although non-serous subtypes have relatively small sample sizes. 

Thus, we chose to use, whenever possible, cell lines and datasets originating from 
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ovarian surface and fallopian tube epithelium. Experiments were conducted in two 

immortalized normal ovarian surface epithelial cell lines, iOSE4 and iOSE11 

(Lawrenson et al., 2009), two immortalized normal fallopian tube surface epithelial cells 

(iFTSEC33 and iFTSEC246). In addition, we used a normal epithelial ovarian cell line 

immortalized with hTERT and transformed with MYC called IOSE4cMYC (Lawrenson et 

al., 2010) and two ovarian cancer cell lines, CaOV3 considered highly likely high grade 

serous carcinoma by molecular profiling (Domcke et al., 2013) and UWB1.289 (BRCA1-

null)(Dellorusso et al., 2007). (Dellorusso et al., 2007).  

Immortalized ovarian cells were grown in media with a 1:1 ratio of 

MCDB105/Medium 199, 15% Fetal Bovine Serum (FBS), 10 ng/mL Epidermal Growth 

Factor, 0.5 µg/mL hydrocortisone, 5 µg/mL insulin, and 34 µg/mL Bovine Pituitary 

Extract.  For 4C2 cells medium was complemented with 2 µg/mL Blasticidin. 

 

FAIRE-Seq and ChIP-Seq for Histone Modifications 

FAIRE-Seq and ChIP-Seq for Histone H3 Lysine 27 Acetylation and Histone H3 

Lysine 4 Monomethylation was performed in iOSE4, iOSE11, iFTSEC33, iFTSEC246, 

UWB1.289, and CaOV3 (Coetzee et al., 2015). 

 

Enhancer Scanning 

A series of genomic tiles of ~2 kb spanning regions with evidence of regulatory 

activity in experiments for FAIRE-Seq and ChIP-Seq for Histone modifications and 

containing significantly associated SNPs were generated by PCR amplification with 

KOD (Millipore) or Taq Polymerase (Qiagen) using 50 ng of bacterial artificial 
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chromosome (BAC) Clone RPCI-11-185E1 (Empire Genomics) as template. Tiles were 

cloned in both a forward and reverse orientation upstream of the SV40 promoter by 

recombination in the firefly luciferase reporter vector pGL3-Pro-attb vector designed to 

test for enhancer regions. It is a modification of pGL3-Promoter (Invitrogen) adding attb 

sites surrounding the cddb gene.   

Each tiling clone (100 ng) was co-transfected in eight replicates into IOSE4cMYC 

cells with 10ng of pRL-CMV (Promega), an internal control expressing Renilla 

luciferase, per well of 96 well plates of IOSE4cMYC cells. Luciferase activity was 

measured 24 hours post transfection by Dual Glo Luciferase Assay (Promega). Quick 

Change II XL Site Directed Mutagenesis Kit (Agilent) was used to mutate the tiles from 

the reference to the effect alleles.  

Firefly Luciferase counts are normalized by Renilla luciferase counts in each 

sample. Each read is then divided by the average normalized read of TC (the control tile 

devoid of any activity-associated chromatin features) for scanning experiments, or by 

the normalized read of the plasmid with the reference allele in allele-specific 

experiments to generate the normalized fold change over the control. Tiles with 

significantly (two tailed t-test <0.05) higher luciferase counts than the control tile (TC) in 

two independent experiments in both orientations were tested for allele specific effects. 

Tile T7.2 was significant in only one experiment for the forward orientation but its 

reverse orientation was significant in both experiments and was thus included. For 

allele-specific luciferase assays, tiles with the effect allele were considered significant if 

the luciferase counts were significantly higher (p-value <0.05) in one independent 

experiment than the tile with the reference allele.  
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Genome Browser 

 Bed files using the hg19 genomic positions were created for the ChIP-seq and 

FAIRE-seq data (Coetzee et al., 2015), as well as a list of the candidate functional 

SNPs, and enhancer scanning tiles. These bed files were uploaded to the genome 

browser by clicking manage custom tracks followed by add custom tracks in our own 

session file of the genome browser. We could then visualize and overlap SNPs with the 

regulatory elements and design tiles that overlap with the regulatory elements 

containing SNPs. Under this session we can also include tracks from the genome 

browser. 

 

Electrophoretic Mobility Shift Assays 

Nuclear extracts were obtained from IOSE4cMYC cells at 70-90% confluence. 

Cells were harvested, pelleted at 450 g for 5 minutes, and suspended gently in 1X Lysis 

Buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 10 mM DTT, protease 

inhibitor cocktail), and incubated on ice for 15 minutes. The cell suspension was 

centrifuged for 5 minutes at 450 g and the pellet was re-suspended in 1X Lysis Buffer. 

The cells were disrupted using a syringe with a narrow gauge (No. 27) and nuclei were 

pelleted by centrifugation at 11,000 g for 20 minutes followed by re-suspension in 1X 

Extraction Buffer (20 mM HEPES pH7.9, 1.5 mM MgCl2. 0.42 M NaCl, 75% Glycerol, 10 

mM DTT, protease inhibitor cocktail) and shaken for 30 minutes. The nuclear extracts 

were cleared by centrifugation at 21000 g, 4°C. 

Single stranded DNA (ssDNA) oligonucleotides containing the reference or effect 

allele in the center of the 41-mer probe were synthesized (Invitrogen). The probe is 
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prepared by heating complementary ssDNA to 100°C in Elution Buffer (10 mM Tris·Cl, 

pH 8.5) and annealed by slowly decreasing the temperature.  Annealed probes (10 

pmol) were labeled with γ32P-dATP using T4 polynucleotide kinase (NEB) for 1 hour at 

37°C, followed by 30 minutes at 65°C. The unincorporated dNTPs were removed using 

the Qiaquick nucleotide removal kit (Qiagen). For each binding reaction 10 µg of nuclear 

extract were mixed with 1 µL of labeled probe in 1 X Binding Buffer (10 mM Tris, 50 mM 

KCl, 1 mM DTT; pH 7.5) with 1 µg poly dI-dC and incubated for 20 minutes, room 

temperature. Loading Buffer (5X) was added to the binding reaction and loaded in 6% 

native polyacrylamide gel. The gel was pre-run for at least 1 hour at 100V, loaded and 

electrophoresed at 80V overnight.  
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CHAPTER THREE: 

IDENTIFICATION OF TARGET GENE 

 

Note to Reader 

 A manuscript that has been submitted for review includes portions of this 

chapter.   

 

Introduction 

In this chapter, we next identified the major target gene regulated by the 

candidate functional SNPs at the 9p22.2 ovarian cancer susceptibility locus. We tested 

whether candidate target genes are functionally and physically associated with the 

previously identified functional SNPs. The closest gene to these SNPs is BNC2. BNC2 

expression has been compared between immortalized normal ovarian epithelial cell 

lines and ovarian cancer cell lines and BNC2 expression decreases in cancer cell lines 

compared to normal (Goode et al., 2010). Additionally, immortalized ovarian epithelial 

cells subjected to transformation with c-MYC and KRAS also displayed reduced 

expression of BNC2 compared to the parental cell lines (Goode et al., 2010) implicating 

BNC2 as a potential target for ovarian cancer predisposition as well as a potential tumor 

suppressor. Since enhancers can loop to target genes at an average of 1 Mb away (Jin 

et al., 2013) only looking at the nearest gene would not be the most agnostic approach.  
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Results 

 

BNC2 and CNTLN as Candidate Target Genes 

Transcription activity at candidate gene promoters. Next, we examined all 

four genes (c9orf92, BNC2, CNTLN and SH3GL2) within 1 MB at either side of the 

region defined by the candidate SNPs (Figure 12A). We first identified their promoters 

by the presence of layered H3K4me3 in the vicinity of TSSs on seven non-ovarian cell 

lines from ENCODE (Integrated Regulation from ENCODE) (Figure 12A). The 

H3K4me3 promoter mark does not depend on cell type specificity as much as 

enhancers but rather promoters resides at similar locations across all cell types 

(Dunham et al., 2012).  Next, we determined whether the gene was expressed in 

ovarian cell lines by examining the presence of H3K27ac as a surrogate marker of 

active promoters as well as transcript levels from RNA-sequencing data for ovarian and 

fallopian tube epithelial cells (Figure 12B). While marks in the BNC2 and CNTLN 

promoters, combined with RNA-seq data indicate that they are expressed in ovarian 

cells, we saw little evidence of expression for c9orf92 and SH3GL2  (Figure 12B). 

Taken together, our results indicate that BNC2 and CNTLN are the strongest candidate 

gene targets at this locus.  

Expression Quantitative Trait Loci (eQTL). Measurement of BNC2 and 

CNTLN mRNA levels in ovarian tissue binned by genotype (AA, AT, or TT) (eQTL) was 

performed to test whether the genotype at rs3814113 correlates to expression of genes 

within the 1 Mb region surrounding the SNP. There was no correlation between the SNP 

and expression changes of BNC2 or the next closest gene, CNTLN. eQTL analysis was  
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Figure 12. Functional SNPs influence transcription of BNC2. A. A snapshot from 
the genome browser displays UCSC genes as well as FAIRE peaks (gray), H3K27Ac 
peaks (orange), and/or H3K4Me1 peaks (maroon) in iOSE, iFTSE,, and ovarian cancer 
cells generated in the laboratory. The four genes within the region considered as 
potential target genes for ovarian cancer susceptibility include c9orf92, BNC2, CNTLN, 
and SH3GL2. ENCODE H3K4me3 peaks (purple), used to identify the promoters for 
these four genes (highlighted in yellow). H3K27ac tracks (orange) inform the extent to 
which these promoters are active and show that BNC2 and CNTLN promoters are 
active in ovarian cells while c9orf92 and SH3GL2 are less active. B. RNA-seq for these 
four genes indicates the presence of transcripts for BNC2 and CNTLN but not for 
SH3GL2 and c9orf92. C. 3C analysis indicates that Region 8 (left) interacts with the 
BNC2 promoter while region 11 (right) does not show a significant interaction compared 
to the adjacent site. Anchor regions for 3C are highlighted in red.  
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also performed using TCGA ovarian tumor data. In this dataset the genotype at 

rs3814113 does not correlate to expression of BNC2 or CNTLN. eQTL was also 

performed genome wide among TCGA ovarian tumor data and not a single gene had 

expression level significantly correlating to the genotype. Since the SNP does not 

correlate to expression in normal or tumor tissue there may be context specific gene 

regulation of BNC2 and cannot be visualized from these samples. A null eQTL has also 

been seen for TFs MYC, ESR1, and KLF4 with breast cancer associated SNPs even 

though other methods point to these genes as likely targets (Li et al., 2013). It is 

presumed that TFs are tightly regulated. Therefore a positive eQTL will not be 

observed. 

 

Region 8 is in Physical Proximity to the TSS of BNC2 in Ovarian Cells 

We used Chromatin Conformation Capture (3C) to identify which promoters in the locus 

interact with Region 8. In iOSE11 cells, Region 8 displays more frequent interactions 

with the canonical BNC2 promoter compared to an adjacent restriction site (Figure 

12C). Region 11 showed no significant interactions with the promoters for the canonical 

and alternative BNC2 transcripts, or with the CNTLN promoter (Figure 12C).  Taken 

together the data indicate that Region 7 and 8 are involved in the regulation of the 

transcription of BNC2. The modules in Region 7 affect the major promoter of BNC2 and 

the module in Region 8 is a distal regulatory enhancer which physically interacts with 

the BNC2 promoter.   
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Summary 

 In summary, we deduced from four candidate functional SNPs, that BNC2 is the 

target gene of this locus. Transcription activity at promoters measured by ChIP-seq for 

H3K27ac and presence of transcripts measured by RNA-seq narrowed our candidates 

to BNC2 and CNTLN. Finally, physical interactions between the enhancer and promoter  

of BNC2 measured by 3C identified our final candidate (Figure 13).  

 

 

Figure 13. Summary of locus target genes. BNC2 is the most likely target of the two 
SNPs in its promoter. The SNPs within the enhancer and S/MAR could possibly 
regulate genes within a 1 Mb region. Of the four genes, CNTLN and BNC2 were the 
only ones expressed. The enhancer containing two functional SNPs looped to the 
promoter of BNC2 and not the promoter of CNTLN.  
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Materials and Methods 

 

eQTL Analysis 

 eQTL analysis was performed as described elsewhere (Pharoah et al., 2013). 

 

3C 

iOSE11 cells grown to approximately 80% confluence in media with a 1:1 ratio of 

MCDB105/Medium 199, 15% Fetal Bovine Serum (FBS), 10 ng/mL Epidermal Growth 

Factor, 0.5 µg/mL hydrocortisone, 5 µg/mL insulin, and 34 µg/mL Bovine Pituitary 

Extract were trypsinized and re-suspended in 1% formaldehyde. Fixed cells were 

pelleted and then re-suspended with 0.125 M glycine-PBS solution.  Cells were lysed in 

500 µL cold lysis buffer (10 mM Tris HCl pH 8.0, 10 mM NaCl, 0.2% NP40, Protease 

Inhibitor). After centrifugation the remaining pelleted nuclei was rinsed with 500µL New 

England Biolabs Buffer 2 (NEBuffer2), then re-suspended with 200 µL NEBuffer2. An 

additional 1320 µL NEBuffer2 was added along with 168 µL 1% SDS and incubated at 

65°C for 12 minutes, followed by addition of 176 µL 10% Triton X-100. EcoR1 (375 

units) was added in 150 µL NEBuffer2 and incubated for 24 hours at 37°C.  

To stop digestion, 86 µL of 10% SDS was added and samples were incubated for 

30 minutes at 65°C. Cells (4 x 107) were pooled and mixed with 7.44 mL of ligation 

buffer (1x T4 Ligase Buffer (NEB) 1% Triton-X 100, 1 mg/mL BSA) followed by the 

addition of 10 µL of T4 DNA ligase. Samples were incubated for 1 to 5 days at 16°C and 

then digested with proteinase K and de-cross-linked at 65°C overnight. DNA was then 
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extracted with Phenol-Chloroform (Sigma) and ethanol precipitated. Re-hydrated DNA 

was then desalted with Microcon Ultra Cell YM -100 and eluted. 

qPCR was performed by using Taq Polymerase PCR Kit (Qiagen) and Syto9 

(Life Technologies) with 30 ng of DNA 1X Taq Buffer, 0.2 mM dNTPs, 0.25 µM Primers, 

0.1 µL Taq Polymerase, 30 ng of DNA library, 5 µM Syto9; 95°C for 15 minutes, 50 

cycles at 94°C for 20 seconds, 60°C for 1 minute.  Samples were run using FAM 

Spectrum on and Applied Biosystems 7900 HT Fast Real Time PCR System.  EcoR1 

digested BACs (RPCI-11-185E1 Empire Genomics, RPCI-11-179K24 Life 

Technologies, RPCI-11-106G11 Life Technologies) for the region were used for the 

standard curve (Hagege et al., 2007). Interactions were calculated as a percentage of a 

restriction site directly adjacent to the bait restriction site. Sites with significantly higher 

frequency of interaction than the site adjacent to the anchor were considered significant. 

3C was performed with two biological replicates and three technical replicates. 
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CHAPTER FOUR: 

FUNCTIONAL ANALYSIS OF BNC2 

 

Note to Reader 

 A manuscript that has been submitted for review includes portions of this 

chapter.   

 

Review of Basonculin 2 

Taken together, the functional data points to BNC2 as the most likely candidate 

target gene of the causal SNPs at the ovarian cancer susceptibility locus. 

 

Identification of Basonuclin 2 and comparison to Basonculin 1 

 A chicken and mouse EST database search for homologs of Basonuclin 1 (bnc1) 

identified the novel gene bnc2 (Romano et al., 2004; Vanhoutteghem and Djian, 2004). 

Bnc1 expresses in epidermal keratinocytes and reproductive germ cells of mouse testis 

and ovary (Mahoney et al., 1998; Tseng and Green, 1992; Yang et al., 1997). BNC1, a 

nuclear ZF protein and TF, binds to and activates transcription of ribosomal RNA 

promoters while also localizing to areas typical of RNA polymerase I TFs (Iuchi and 

Green, 1999; Tian et al., 2001; Tseng et al., 1999). ZF domains have specific amino 

acids within the alpha helix of the domain that interact with specific nucleotides within 

the major groove of the DNA helix (Wolfe et al., 2000). BNC1 and BNC2 only have 
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43.4% identity between their sequences, yet, BNC1 and BNC2 have a similar structure 

with three separated pairs of two cysteine and two histidine (C2H2) ZFs and a nuclear 

localization signal (NLS) between the first and second pair of ZFs (Romano et al., 2004; 

Vanhoutteghem et al., 2011; Vanhoutteghem and Djian, 2004). ZF 1,2 has the most 

similarity between BNC1 and BNC2 (92.1%) and has the most conservation across 

species while ZF 3,4 and ZF 5,6 have less similarity between the two genes (Romano et 

al., 2004; Vanhoutteghem et al., 2011). A highly conserved region between the two 

proteins also lies in the N-terminus, yet the region has no obvious functional domain 

(Vanhoutteghem et al., 2011; Vanhoutteghem and Djian, 2004). BNC2 has 6 exons, 5 

introns and spans over 300 kb while BNC1 has 5 exons and spans over 29 kb (Romano 

et al., 2004). Yet both genes are split up almost identically (Romano et al., 2004). Both 

genes have a GC rich TATA-less promoter (Vanhoutteghem et al., 2011; 

Vanhoutteghem and Djian, 2004) and therefore may have similar transcription 

regulation. Mammals, birds, and fish express both genes (Lang et al., 2009; Romano et 

al., 2004; Vanhoutteghem and Djian, 2004). Additional orthologs with a similar structure 

to the Basonuclins includes the disco genes in Drosophila and other insects (Romano et 

al., 2004). A single Basonuclin expresses in invertebrate chordates Branchiostoma 

floridae and Ciona intestinalis which resembles BNC2 (Vanhoutteghem et al., 2011). 

Therefore a duplication to create two Basonuclins occurred in a vertebrate ancestor and 

BNC2 is the more ancient gene and most likely more important (Vanhoutteghem et al., 

2011). BNC2 is extremely conserved and more so than BNC1 with a sequence identity 

of 97.2% between human and mouse (Vanhoutteghem and Djian, 2004). Out of fifty 



59 
 

C2H2 ZF proteins, BNC2 is the ninth most conserved protein further indicating an 

essential function for BNC2 (Vanhoutteghem and Djian, 2006). 

   

Expression of BNC2 

 In the mouse, bnc2 expresses highly in the skin tissue, ovary, and kidney with 

low levels in the testes, small intestine, and lung (Romano et al., 2004). No expression 

was seen in the peripheral blood leukocytes, brain, colon, liver, spleen or thymus 

(Romano et al., 2004; Vanhoutteghem and Djian, 2004). Closer inspection of 

expression in mice revealed expression in the mesenchymal cells, mainly connective 

tissue surrounding specific organs including the brain meninges, the cartilage, and the 

bone as well as the male germ cells (Vanhoutteghem et al., 2011; Vanhoutteghem et 

al., 2009; Vanhoutteghem et al., 2014). It is not expressed in the female germ cells 

(Vanhoutteghem et al., 2014). In zebrafish, bnc2 expresses in the hypodermis, somatic 

cells of ovaries, brain, dorsal spinal cord, eye, superficial cells of vertebrae, fins, gut, 

kidney, and testes (Lang et al., 2009). Drosophila and insect disco proteins have similar 

expression to BNC2 (Vanhoutteghem et al., 2009).  

 Interestingly transcription of the human BNC2 gene can be initiated at 6 different 

exons with the canonical form being the most abundant (Vanhoutteghem and Djian, 

2007). The human BNC2 gene also has alternative splice sites in the downstream 

exons adding up to a total of 23 different exons (Vanhoutteghem and Djian, 2007). 

There is potential for alternative transcripts in mice but not nearly as many in humans 

indicating that the non-conserved transcripts play less of an important role 

(Vanhoutteghem and Djian, 2007). There also seems to be tissue specific splicing since 
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reverse-transcriptase PCR revealed different isoforms among human testes, kidney, 

and keratinocytes (Vanhoutteghem and Djian, 2007). As mentioned in the previous 

paragraph, BNC2 is expressed in several different cell types and therefore may have 

many different transcripts among different cells. The Vanhoutteghem, et. al, 2007 study 

states in the title that “The human basonuclin 2 gene has the potential to generate 

nearly 90,000 mRNA isoforms encoding over 2,000 different protiens” (Vanhoutteghem 

and Djian, 2007), a most astonishing amount. All identified transcripts in the 

Vanhoutteghem, el. al, 2007 study were transfected into HeLa cells and only four 

actually expressed (Vanhoutteghem and Djian, 2007). These four included the 

canonical form, one with a modified fourth finger (adds more residues between the 

second cysteine and first histidine), one that lacked ZF 5,6 and one that lacked all the 

ZFs and nuclear localization signal (Vanhoutteghem and Djian, 2007). Northern blot 

analysis in mouse shows the prescence of 9, 6, 4, and  2 kb transcripts (Romano et al., 

2004). The isoforms appearing in both mouse and human suggests that these four 

isoforms may all play an important role in the tissues in which they are expressed. 

 

Function of BNC2 

  As mentioned previously, BNC1, a nuclear ZF protein and TF, binds to and 

activates transcription of ribosomal RNA promoters while also localizing to areas typical 

of RNA polymerase I TFs (Iuchi and Green, 1999; Tian et al., 2001; Tseng et al., 1999). 

Romano et al., 2004 tested the ability of BNC2 ZFs to bind to the ribosomal RNA 

promoter in in vitro DNA binding assays and indeed BNC2 binds to the ribosomal RNA 

promoter (Romano et al., 2004). Unlike BNC1, BNC2 does not shuttle out of the nucleus 
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(Vanhoutteghem and Djian, 2006). BNC1 has a serine in the NLS that becomes 

phosphorylated in order to transport into the cytoplasm (Vanhoutteghem et al., 2011; 

Vanhoutteghem and Djian, 2006). BNC2 has a proline at this residue and therefore 

cannot be phosphorylated (Vanhoutteghem et al., 2011; Vanhoutteghem and Djian, 

2006). Interestingly, BNC2 was first seen as a 145 kDa protein to come down in the 

insoluble fraction of the nuclear extract indicative of localizing to nuclear speckles 

(Vanhoutteghem and Djian, 2006). Proteins involved in splicing, mRNA export, 

nonsense mediated decay and polyadenylation (Fu and Maniatis, 1990; Kataoka et al., 

2000; Krause et al., 1994; Lamond and Spector, 2003; Zhou et al., 2000) also localize 

to nuclear speckles potentially revealing a function for BNC2. Vanhoutteghem et al. also 

saw that BNC2 co-localized with SC35, a splicing factor (Vanhoutteghem and Djian, 

2006). Interestingly, the Phillipe Djian group also identified a larger isoform (160 kDa) of 

BNC2 that comes down in the soluble fraction of the nuclear extract and appears in the 

chromatin fraction indicative of BNC2 acting as a typical TF (Vanhoutteghem et al., 

2011; Vanhoutteghem et al., 2014). This isoform is actually the most abundant and 

canonical isoform in mice (Vanhoutteghem et al., 2014). The isoform that locates to 

nuclear speckles does not appear in mice (Vanhoutteghem et al., 2014). 

 Animal models with disruption of bnc2 gave intriguing phenotypes. Zebrafish with 

truncating mutations of bnc2 lack body stripes, are significantly smaller than wild type, 

and females are infertile (Lang et al., 2009). The dysmorphic ovaries in zebrafish 

provide the first link between ovarian development and bnc2. The Lang et al. paper 

noted that the oocytes from the mutants were fertilizable and that the infertility most 

likely stems from the excess somatic ovarian tissue (Lang et al., 2009). This group also 
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discovered that bnc2 acts non cell autonomously on the zebrafish stripes (the iridescent 

iridiphores, the orange/yellow xanthaphores, and the black melanophores) (Lang et al., 

2009). Bnc2 is not expressed in the pigmented cells but resides in the hypodermis 

(Lang et al., 2009). Bnc2 mutant mice are also dwarfed in size compared to wild-type 

and infertile like the zebrafish mutants (Vanhoutteghem et al., 2011; Vanhoutteghem et 

al., 2014). Interestingly, bnc2 mutant mice die neonatally due to cleft palate and other 

craniofacial and tongue abnormalities (Vanhoutteghem et al., 2011; Vanhoutteghem et 

al., 2009). Bnc2 is strongly expressed in the craniofacial sites affected; therefore bnc2 

has a direct effect on the affected cells (Vanhoutteghem et al., 2009) unlike the indirect 

effect on the pigmented cells of zebrafish. Vanhoutteghem et al. also discovered that 

the craniofacial abnormalities were due to less cells entering mitosis during 

development (Vanhoutteghem et al., 2009). Due to the expression in male germ cells, 

Vanhoutteghem et al. investigated its role in spermatogenesis and discovered that bnc2 

expression regulates mitosis of prospermatagonia and prevents meiosis in fetal testis 

(Vanhoutteghem et al., 2014). Male germ cells undergo meiosis after birth while female 

germ cells undergo meiosis in the fetus therefore could explain why bnc2 is expressed 

in male but not female germ cells (Vanhoutteghem et al., 2014).  

The 9p22.2 locus containing the BNC2 gene has also been identified as a human 

height and skin pigmentation GWAS locus (Eriksson et al., 2010; Hider et al., 2013; 

Jacobs et al., 2013; Visser et al., 2014; Wood et al., 2014). These studies implicate 

BNC2 as the target gene of this locus since traits affected by BNC2 mutation or knock 

out in animal models affect overlapping traits associated with 9p22 in human GWAS. 

Further understanding of how this gene functions may reveal how changes in the 
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transcription rates of BNC2 lead to ovarian cancer predisposition and development. 

Here we characterize BNC2 as a TF and found that this protein acts primarily by binding 

a specific DNA sequence located in enhancer regions proximal to genes involved in 

cell-cell communication and chromatin remodeling. This work reveals a complex 

regulatory network in a cancer risk locus and provides new insights into the etiology of 

EOC. 

 

Results 

 

C2H2 Zinc Finger Proteins 

 The most obvious indicator of function for BNC2 is the presence of three 

separated pairs of C2H2 ZF domains (Romano et al., 2004; Vanhoutteghem and Djian, 

2004). A thorough understanding of how these domains work will give clues for the role 

of BNC2 in ovarian cancer susceptibility. These domains contain two cysteine and two 

histidine residues that, together, bind to zinc stabilizing a fold which creates two beta 

sheets and an alpha helix (Wolfe et al., 2000). ZF domain containing proteins comprise 

half of all known human and mouse TFs (Emerson and Thomas, 2009; Fulton et al., 

2009; Messina et al., 2004; Tupler et al., 2001) and are the largest protein family in 

mammalian genomes (Ravasi et al., 2003). Approximately 700 human C2H2 ZF 

proteins have been identified (Najafabadi et al., 2015; Vaquerizas et al., 2009; Weirauch 

and Hughes, 2011).  

C2H2 ZFs domains display sequence specific DNA binding through amino acids 

at positions -1, 2, 3, and 6 of the ZF alpha helix with each DNA binding amino acid 
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binding to one nucleotide (Elrod-Erickson et al., 1996; Klug, 2010; Lam et al., 2011; 

Pavletich and Pabo, 1991; Wolfe et al., 2000). DNA binding usually requires two or 

more ZF domains in tandem and these tandem ZF domains overlap binding with the 

previous ZF binding site at the fourth base pair (Elrod-Erickson et al., 1996; Pavletich 

and Pabo, 1991; Wolfe et al., 2000). The position 6 amino acid binds to the first 

nucleotide on the primary strand (which could also be the fourth nucleotide bound to a 

ZF in tandem), position 3 binds to the second, and -1 to the third. The position 2 amino 

acid binds to the fourth nucleotide on the complementary strand (Wolfe et al., 2000).  

Due to the unique way these ZF domains bind to DNA, many groups have 

attempted to identify a “recognition code” for ZF domains and possibly design ZFs for 

gene therapy, yet specificity has not been optimal (Corbi et al., 1998; Corbi et al., 1997; 

Wolfe et al., 2000). Difficulty obtaining the “recognition code” most likely stems from 

adjacent ZFs overlapping with the DNA sequence they recognize altering the individual 

ZFs ability to bind to the predicted sequence (Isalan et al., 1997). Also, interactions 

between amino acids of neighboring ZFs and within individual ZFs (outside of amino 

acids at positions   -1, 2, 3, and 6) can orient the protein in a way that alters the 

sequence it should typically recognize (Wolfe et al., 2001). The specificity of these 

proteins has been questioned but Lam et al. clearly explained that C2H2 ZFs in tandem 

bind to degenerate motifs, in other words, they bind to many different but similar motifs 

(Lam et al., 2011). 

Najafabadi et al. developed an improved recognition code by testing 47,072 

natural ZF domains sampled from all eukaryotes in tandem against a library of possible 

nucleotide binding sequences using a bacterial one hybrid system (Najafabadi et al., 
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2015). This data was used to create a model that takes into account the degeneracy of 

the binding (Najafabadi et al., 2015). Many bacterial one hybrid sequences and 

predicted sequences were confirmed via ChIP-seq and protein binding microarray 

(PBM) (Najafabadi et al., 2015). A PBM is an array with double stranded DNA probes 

representing all possible 8mer sequences DNA binding proteins can recognize (Berger 

and Bulyk, 2009; Berger et al., 2006). Glutathione-S-transferase (GST)-tagged DNA 

binding proteins are applied to the array followed by a fluorophore for GST to asses 

which sequences the protein recognizes (Berger and Bulyk, 2009; Berger et al., 2006). 

It has been shown that C2H2 ZF domains can also bind RNA or proteins, but 

Najafabadi et al. clearly demonstrates that the majority bind DNA (Najafabadi et al., 

2015). Again, due to the unique nature in which ZF domains recognize and bind to 

nucleotide motifs, these TFs have the most unique binding sites compared to any other 

TFs (Najafabadi et al., 2015). 

  

BNC2 Zinc Fingers Recognize Specific DNA Sequences in vitro  

BNC2 contains three pairs of C2H2 ZFs suggesting that it interacts with specific 

DNA sequences and plays a role in transcription regulation (Figure 15A) 

(Vanhoutteghem and Djian, 2004, 2006).  In order to identify potential DNA sequences 

recognized by the BNC2 ZFs, bacterially expressed GST-tagged constructs of each ZF 

pair (Figure 14A) were applied to a protein binding microarray (PBM) of overlapping, 

rationally randomized nucleotides (Berger and Bulyk, 2009; Berger et al., 2006; Lam et 

al., 2011). The top ten scoring sequences for each of the individual ZF pairs were then 

aligned to generate a logo using position weight matrix scoring (Figure 15A). The motifs  
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 Figure 14: BNC2 binds to its own promoter. A. Coomassie stain of protein 
purification of GST tagged BNC2 ZF pairs: 1,2; 3,4; and 5,6. B. CPB tagged GFP and 
BNC2 were over expressed in 293FT cells. Lysates of these cells were 
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immunoprecipitated with either Rabbit IgG or the Prestige antibody for BNC2 (Sigma). 
Immunoprecipitates undergo Western Blot for CBP. A band for BNC2 between the 150 
kDA and 250 kDA mark appears in the input and BNC2 IP for over expressed BNC2 but 
not in the input and BNC2 IP for over expressed GFP nor in the IgG IP. C. ChIP 
indicates that BNC2 binds to its own promoter. Potential ZF 5,6 binding sites within the 
BNC2 promoter are indicated with black lines. Black boxes indicate location of 
amplicons analyzed with ChIP qPCR. In iOSE11 and iFTSEC283 cells there is a signal 
that BNC2 is indeed binding to those sites (bar graph). Raw ChIP-seq data for BNC2 in 
iOSE11 cells replicate the binding at the -914 position (blue bar). 
 

for ZF1,2 and 5,6 are almost identical to the predicted C2H2 “recognition code” 

(Najafabadi et al., 2015).  The data for ZF3,4 yielded lower-confidence data and did not  

match the recognition code predictions (Figure 15A) (Berger et al., 2006). The 3’ end of 

the ZF1,2 and ZF5,6 binding motifs contain the same nucleotides at the same position 

and weight, consistent with the similarity between ZF2 and ZF6 in amino acid residues 

at positions that specifically interact with DNA (Figure 15A). Interestingly, the BNC2 

promoter contains two of the top 10 BNC2 ZF5,6 PBM binding sequences (Figure 14C). 

To validate BNC2 binding sequences identified using the PBM we conducted 

ChIP in iOSE11 and iFTSEC283 cells for endogenous BNC2 (Figure 14B) to determine 

its presence at the putative PBM sites (-582 and -914 base pair (bp) upstream of the 

TSS) found at the BNC2 locus as well as at site >300 bp (-2184) from the TSS as a 

negative control. A significantly larger amount of DNA pulled down with the BNC2 

antibody than with the IgG control at the -582 (iOSE11 p = 2.6 x 10-3, iFTSEC283 p = 

8.3 x 10-3) and -914 (iOSE11 p = 1.8 x 10-4, iFTSEC283 p = 2.0 x 10-6) bp sites, but not 

at the -2184 bp site (Figure 14C). This supports that BNC2 recognizes the sites 

identified in the PBM experiment and also suggests an auto-regulatory mechanism. 
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BNC2 Genome-wide Target Sites 

To determine the sites in the genome bound by BNC2 in ovarian cells we 

conducted ChIP-seq in iOSE11 and iFTSEC283 cells. MEME, a motif analysis tool, 

identified a motif centrally enriched in the ChIP-seq peaks for both cell types (Figure 

15B). ChIP-seq data replicated BNC2 binding in the iOSE11 cells at the -914 position 

tested in ChIP-qPCR (Figure 14C). Interestingly the motif identified by MEME seems to 

be a concatenation of the motif for ZF1,2 and the reverse complement motif for ZF5,6 

(Figure 15B). ZF1,2 and 5,6 are greater than 500 amino acids away from each other 

potentially allowing the protein to fold in a way that allows the two ZF paired domains to 

bind to the DNA as dimers (Figure 15B). The originally identified sequence has a 75% 

homology to the MEME motif (Figure 15B). About 50% and 25% of the iFTSEC283 and 

iOSE11 peaks, respectively, have the motif near the peak summits (Figure 15C). 

We annotated the transcriptional landscape of the BNC2 ChIP-seq peaks in 

iOSE11 cells by overlapping them with ChIP-seq for H3K27ac and H3K4me1 in iOSE11 

cells and at core promoters (1 kb of TSS) (Figure 15D). BNC2 ChIP-seq peaks that 

overlap with H3K4me1 and H3K27ac were considered regions of active enhancers. 

Peaks that only overlap with H3K27ac were considered active chromatin. Peaks that 

only overlap with H3K4me1 were considered poised enhancers. Sixty-six percent of 

BNC2 ChIP-seq peaks overlap with a regulatory element. Interestingly, a small 

percentage of BNC2 recognition sites reside in core promoters indicating BNC2 works, 

in part, by modulating the activity of enhancers. 
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Figure 15. BNC2 recognizes specific nucleotide sequence. A. BNC2 is 
characterized as a C2H2 ZF protein with three pairs of ZFs (called 1,2; 3,4; 5,6). BNC2 
ZF binding sites were identified in vitro by applying recombinant proteins of each ZF pair 
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to a PBM. Position weight matrices of all potential binding sites with significant scores 
for each BNC2 ZF pair are shown as logos. Motifs predicted based on the protein 
sequence of the ZF domains aligned with ZF1,2 and ZF5,6. The 3’ end of the 
sequences recognized by ZF1,2 and ZF5,6 reveal the same nucleotides. Inspection of 
the amino acid sequences for ZF2 and ZF6 show that amino acid residues at position  
-1, 2, 3, and 6 within the alpha helix that specifically interact with DNA nucleotides (in 
red) are the same. B. The ChIP-Seq motif identified by MEME seems to be a 
concatenation of the predicted motif for ZF1,2 and the predicted reverse complement 
motif for ZF 5,6 or vise-a-versa. C. Enrichment of motif relative to ChIP-Seq peak 
summits. D. A Circos table depicts the percentage of BNC2 ChIP-seq sites overlapping 
with chromatin mark’s ChIP-seq sites in iOSE11 cells. Sites containing only H3K4me1 
marks are considered poised enhancers. Sites containing H3K4me1 and H3K27ac 
marks are considered active enhancers. Sites containing only H3K27ac marks are 
considered active chromatin. Sites within 1 kb of a TSS that contain H3K27ac marks are 
considered active promoters. Sites within 1 kb of a TSS without histone marks are 
considered poised promoters. 
 

Identification and Validation of BNC2 Target Genes 

To identify target genes regulated by enhancers containing BNC2 binding sites 

we used the Galaxy Cistrome program (Liu et al., 2011). This generated a list of 445 

genes in iOSE11 cells and 725 genes in iFTSEC283 cells with TSS within 30 kb of the 

BNC2 ChIP-seq peak centers. One hundred and sixty eight genes lie near BNC2 ChIP-

seq peaks in both cell types. KEGG Pathway analysis identified several pathways that 

are likely targets including chemokine and TGF-beta signaling pathways (Figure 16). 

Next, we selected a set of 89 genes implicated in ovarian cancer, ovarian cancer 

GWAS, follicular development, ovarian development (Bojesen et al., 2013; Cancer 

Genome Atlas Research, 2011; Goode et al., 2010; Nef et al., 2005; Permuth-Wey et 

al., 2013; Pharoah et al., 2013; Ramakrishna et al., 2010; Schindler et al., 2010; Shen 

et al., 2013; Song et al., 2009), were part of the significant KEGG pathways, or 

contained ChIP-seq peaks within their core promoter (within 1kb from the TSS)(Table 3) 
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Figure 16: Kegg Pathway analysis of downstream targets of BNC2. A Kegg 
Pathway analysis on all genes within 30 kb of BNC2 ChIP-seq sites in iOSE11 and 
iFTE283 cells revealed several pathways reaching significance. Bar graphs in red 
indicate the pathways relevant to cancer. Genes within 30 kb of BNC2 ChIP-seq sites 
and within those pathways were analyzed further.  
 

and tested whether overexpression of BNC2 in HEK 293T (Figure 17) would modulate 

their expression measured by Nanostring. Several genes implicated in ovarian cancer 

and ovarian development or that mapped to KEGG Focal Adhesion, ECM-receptor 

interaction or TGF-β Signaling Pathways showed changes in expression induced by 

BNC2 overexpression as measured 24h after transfection (Table 4). 
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Figure 17. Overexpression of BNC2 in HEK293FT cells. Western blot indicates the 
over-expression of CBP-tagged BNC2 in 293FT cells. Blotting for the CBP tag and the 
antibody for BNC2 clearly show that BNC2 is over-expressed. 
 

Table 3: Expression analysis of downstream target genes of BNC2 
Gene Cell Line Pathway P-Value 

FAM49B FTE Ovarian Cancer 0.00015 

ITGB5 FTE ECM-receptor interaction, Focal Adhesion 0.00046 

PKDCC FTE Ovarian Development 0.00066 

CCND3 FTE Focal adhesion, WNT Signaling Pathway, JAK-STAT Signaling Pathway 0.00107 

CEP55 FTE Ovarian Development 0.00264 

GUSB 
 

Reference 0.00528 

JUN FTE, 
OSE Focal adhesion, WNT Signaling Pathway, MAPK Signaling Pathway 0.00627 

COL6A3 FTE ECM-receptor interaction, Focal Adhesion 0.00698 

ITGA3 OSE Focal Adhesion 0.00711 

CAPN2 FTE Focal adhesion 0.00943 

SLFN12 FTE Promoter with Peak 0.01012 

FBXO15 OSE Promoter with Peak 0.01375 
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Table 3 (Continued) 
Gene Cell Line Pathway P-Value 

COL4A5 FTE ECM-receptor interaction, Focal Adhesion 0.01748 

FEM1A OSE Promoter with Peak 0.02064 

TTI2   Reference 0.02961 

TGFBR3 FTE TGF-beta Signaling Pathway 0.03906 

STK35   Reference 0.0451 

BMP6 FTE TGF-beta Signaling Pathway 0.05324 

SMG5   Reference 0.05469 

SNAI2 FTE Adherens Junction 0.06178 

PPP3CA FTE WNT Signaling Pathway, MAPK Signaling Pathway 0.06363 

FN1 FTE ECM-receptor interaction, Focal Adhesion 0.06388 

FASLG FTE MAPK Signaling Pathway 0.07104 

RANBP10 OSE Promoter with Peak 0.07547 

BANP OSE Promoter with Peak 0.0801 

INO80 
 

Reference 0.0833 

SH2D4A FTE, OSE Ovarian Development 0.08539 

TOX4 
 

Reference 0.09168 

MAP3K8 FTE MAPK Signaling Pathway 0.09761 

ID1 OSE TGF-beta Signaling Pathway 0.10798 

LSM5 FTE Follicular Development 0.10818 

ACTG1 OSE Focal Adhesion, Adherens Junction 0.114 

GBA OSE Promoter with Peak 0.1165 

PPP6R3 OSE Promoter with Peak 0.11658 

POLDIP3 OSE Promoter with Peak 0.11742 

CD59 FTE Promoter with Peak 0.12042 

ANK3 FTE Ovarian Development 0.13177 

THOC6 Ose Promoter with Peak 0.13242 

LEP FTE JAK-STAT Signaling Pathway 0.14078 

HNF1B FTE GWAS 0.14732 

LMO7 FTE Adherens Junction 0.1582 

DKK1 FTE WNT Signaling Pathway 0.16114 

ACTB   Reference 0.17339 

MYLK FTE Focal adhesion 0.17567 

LEPR FTE JAK-STAT Signaling Pathway 0.17834 

ACTN4 OSE Focal Adhesion, Adherens Junction 0.21508 

KBTBD6 OSE Promoter with Peak 0.21679 

FSCN1 OSE Promoter with Peak 0.23926 

BTBD19 OSE Promoter with Peak 0.25273 

LAMB1 FTE ECM-receptor interaction, Focal Adhesion 0.25369 

TCTEX1D4 OSE Promoter with Peak 0.26229 

THBS1 FTE, OSE ECM-receptor interaction, Focal Adhesion, TGF-beta Signaling Pathway 0.27286 
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Table 3 (Continued) 
Gene Cell Line Pathway P-Value 

CD36 FTE ECM-receptor interaction 0.27883 

EIF2C1 
 

Reference 0.29711 

SPHK1 OSE Ovarian Development 0.30676 

ITGA5 OSE Focal Adhesion 0.31715 

RASGRP1 FTE MAPK Signaling Pathway 0.33703 

FAP FTE Ovarian Cancer 0.33708 

RASGRP3 FTE, OSE MAPK Signaling Pathway 0.34904 

RASGRF2 OSE MAPK Signaling Pathway 0.35168 

WASL FTE, OSE Adherens Junction 0.35776 

DUSP1 OSE MAPK Signaling Pathway 0.36196 

PDCD1LG2 FTE Promoter with Peak 0.37688 

CCDC80 FTE Promoter with Peak 0.39362 

PRDM4   Reference 0.39529 

SMAD3 FTE, OSE Adherens Junction, TGF-beta Signaling Pathway, WNT Signaling 
Pathway 0.39745 

CTGF FTE, OSE Follicular Development 0.40642 

TRIB2 FTE Ovarian Development 0.43142 

SPARC FTE Follicular Development 0.44907 

PDGFC FTE Focal adhesion 0.47425 

CLPB OSE Promoter with Peak 0.49331 

COL4A6 FTE ECM-receptor interaction, Focal Adhesion 0.49815 

CACNG6 OSE MAPK Signaling Pathway 0.51917 

UHRF1BP1L FTE Ovarian Development 0.54734 

LTBP1 FTE TGF-beta Signaling Pathway 0.56817 

IL22 FTE JAK-STAT Signaling Pathway 0.57974 

IFNGR1 FTE JAK-STAT Signaling Pathway 0.58208 

IL22RA2 FTE, OSE JAK-STAT Signaling Pathway 0.58664 

CD44 FTE Ovarian Development, ECM-receptor interaction 0.5942 

RAI14 FTE Promoter with Peak 0.63357 

DUSP3 FTE MAPK Signaling Pathway 0.64444 

PRKCA FTE Focal adhesion, WNT Signaling Pathway, MAPK Signaling Pathway 0.66141 

RPS6KA2 FTE MAPK Signaling Pathway 0.6638 

DUSP10 FTE, OSE MAPK Signaling Pathway 0.67452 

GNA12 OSE MAPK Signaling Pathway 0.70082 

TSNAXIP1 OSE Promoter with Peak 0.71591 

BCL2L1 FTE JAK-STAT Signaling Pathway 0.73164 

AP2S1 OSE Promoter with Peak 0.74506 

TGFBR2 FTE Adherens Junction, TGF-beta Signaling Pathway, MAPK Signaling 
Pathway 0.76959 

ITGB2 OSE promoter with Peak 0.83732 

SMAD7 FTE, OSE TGF-beta Signaling Pathway, Promoter with Peak 0.85264 

PLOD2 FTE Ovarian Development 0.85924 
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Table 3 (Continued) 
Gene Cell Line Pathway P-Value 

GIGYF2   Reference 0.8774 

GADD45B OSE MAPK Signaling Pathway 0.89367 

ZBTB4 OSE Promoter with Peak 0.89726 

PHF12 OSE Promoter with Peak 0.89743 

SEMA3C OSE Ovarian Development 0.90991 

 

BNC2 Interacts with the NuRD Complex  

To further elucidate the function of BNC2 in transcription regulation we used tandem 

affinity purification to isolate proteins that are in complex with ectopically expressed 

tagged BNC2 in HEK293T cells (Figure 18A). Gene ontology enrichment analysis using 

the web gestalt program (http://bioinfo.vanderbilt.edu/webgestalt/) (Zhang et al., 2005)  

indicates that BNC2 interacts with proteins enriched in the NuRD complex of 

transcription repression (p = 2.75 x 10-11) (Figure 18B, red circle), RNA binding proteins 

(p = 9.47 x 10-6), and proteins involved in gene expression (p = 2.78 x 10-6). 

Immunoprecipitation of endogenous MTA2, a component of the NuRD complex, 

followed by a western blot for endogenous BNC2 was used to verify the interaction 

(Figure 18C).  

Since BNC2 interacts with the NuRD complex we then tested the extent to which 

BNC2 constructs fused to GAL-4 DNA binding domain represses transcription of a 

heterologous promoter (Figure 18D). Full length and fragments of BNC2 significantly 

repressed expression of luciferase compared to GAL-4 alone indicating that BNC2 

displays transcription repression activity and may interact with the NuRD complex via 

multiple regions (Figure 18E).  

 

http://bioinfo.vanderbilt.edu/webgestalt/
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Table 4: Genes with significant expression changes upon differential expression 
of BNC2. 

iFTE283 

Gene TSS to Peak 
Center P-Value 

Expression 
Correlation 

to BNC2 
Pathway 

FAM49B 21553 0.00014782 - Ovarian 
Cancer 

PKDCC 16237 0.00066222 - Ovarian 
Development 

COL4A5 24983 0.0174824 - Focal 
Adhesion 

CAPN2 5635|-5189 0.00942743 - Focal 
adhesion 

ITGB5 8074 0.00046358 - Focal 
Adhesion 

COL6A3 -17808 0.00698256 + Focal 
Adhesion 

JUN 20445 0.00626649 + Focal 
adhesion 

TGFBR3 5215|-14508 0.0390608 + 
TGF-beta 
Signaling 
Pathway 

CCND3 -25565 0.00106617 + Focal 
adhesion 

SLFN12 -819 0.0101215 + Promoter with 
Peak 

CEP55 -24627|24647 0.002645 + Ovarian 
Development 

iOSE11 

Gene TSS to Peak 
Center P-Value 

Expression 
Correlation 

to BNC2 
Pathway 

JUN -20156 0.00626649 + Focal 
adhesion 

ITGA3 -4619 0.00711417 + Focal 
Adhesion 

FBXO15 -620|-721 0.01375 + Promoter with 
Peak 

FEM1A -65 0.0206431 - Promoter with 
Peak 
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Figure 18: BNC2 interacts with the NuRD complex. A. TAP-tagged control GFP and 
BNC2 purified protein complexes from HEK293FT cells. B. Gray nodes represent 
proteins found in complex with BNC2. Blue and orange edges indicate interactions 
identified by tandem affinity purification coupled to mass-spectrometry or present in 
published datasets identified by the Cytoscape plugin BisoGenet, respectively. Notably, 
BNC2 interacts with proteins that are part of the NuRD complex (red circle). C. 
Confirmation immunoprecipitation indicates endogenous BNC2 interacts with NuRD 
protein MTA2. D. BNC2 constructs (gray boxes) fused to the GAL4 DNA binding domain 
(DBD) (orange boxes) were co-transfected with the GAL4-TK-Luc reporter vector. E. 
Illustration of the GAL4-tk-Luc construct (top). Measurements of relative luciferase 
levels determine which constructs have repression activity compared to the GAL4-DBD 
alone (bottom). 
 

Summary 

 Here we have shown that BNC2 does indeed act as a TF. It recognizes a specific 

DNA binding motif in vitro which also appears as the predicted motif based on previous 

TF binding data. The motifs for ZF1,2 and ZF 5,6 also appear in the MEME analysis as 

a concatenation indicating that BNC2 binds to DNA in a folded form. BNC2 binding also 
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overlaps with previously identified regulatory regions, more specifically enhancers, in 

ovarian cells. Changes in BNC2 expression also lead to changes in downstream target 

gene expression. Interestingly many affected genes regulate cell-cell communication. A 

previous study suggests that BNC2 acts non-cell autonomously in the development of 

the Xanthaphores (stripes) in Zebrafish. Therefore, BNC2 may play a similar role in 

ovarian development. BNC2 also interacts with other TFs. Most interestingly, BNC2 

interacts with the NuRD complex, a complex involved in chromatin remodeling and 

histone deacetylation. In general the NuRD complex acts as a repressor of transcription 

and a reporter assay with BNC2 constructs suggests that BNC2 represses transcription 

in this context.   

     

Materials and Methods 

 

Protein Binding Microarray 

Fragments containing cDNAs of the each ZF pairs were PCR amplified from a 

plasmid containing full length BNC2 cDNA (gift from Dr. Philippe Djian). Primers 

containing Gateway recombination sites are described in Table 5. PCR products were 

cloned into pDONR221 using the BP recombination kit and transferred to pDEST15 as 

a fusion to GST using LR recombination kit (Invitrogen). After plasmid purification, 

pDONR221 plus ZF plasmids undergo into using the LR recombination kit from 

Invitrogen. Plasmids containing GST-tagged ZFs were expressed in BL21 E. coli and 

purified using GT sepharose beads. Purified GST-ZFs were eluted from beads with 50 

mM reduced glutathione (Figure 14A). The eluate was then dialyzed in TBS with 50 µM 
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Zinc Acetate and proteins were quantified using Bio-Rad Protein Assay.  For the Protein 

Binding Microarray, 0.5 µg of each GST-ZF protein construct were applied individually 

to two differently designed arrays designated ME and HK as previously described 

(Berger and Bulyk, 2009; Lam et al., 2011). ZFs typically bind to degenerate motifs and 

have the potential to have more than one recognition sequence (Lam et al., 2011; 

Ramirez et al., 2008). Each DNA probe sequence is given an E-score which is similar to 

the Area under the ROC curve statistical metric and an E-score above 0.45 was 

considered significant (Berger et al., 2008). 

 

ChIP/ChIP-Seq for BNC2 

ChIP was performed as previously described (Gomes et al., 2006) using a 

validated BNC2 antibody (Sigma Atlas) (Figure 14B). In brief, iOSE11 or iFTSEC283 

cells grown to 70% confluence in media with a 1:1 ratio of MCDB105/Medium 199, 15% 

Fetal Bovine Serum (FBS), 10 ng/mL Epidermal Growth Factor, 0.5 µg/mL 

hydrocortisone, 5 µg/mL insulin, and 34 µg/mL Bovine Pituitary Extract were cross-

linked with 1% Formaldehyde in PBS. Crosslinking is quenched by adding Glycine to a 

concentration of .125M. After washing, cells are collected in Szaks’ RIPA buffer (150 

mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris HCl pH8, 5 mM 

EDTA, Protease Inhibitors, 50 mM NaF, 0.2 mM sodium orthovanadate, 0.5 mM PMSF) 

and the lysate is brought to approximately 1 mg/mL. The lysate is then sonicated in 

Biogenode Sonicating Water Bath for 12 cycles of 30 seconds on and 30 seconds off for 

8 minutes. One mg of protein is then mixed with 40 µL of 50% slurry protein A/G 

agarose beads (Santa Cruz) previously washed in Szaks’ RIPA buffer and pre-cleared 
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for 1-2 hours at 4°C. Pre-cleared lysate is then mixed with 5 µg of BNC2 antibody 

(Sigma Atlas) and 40 µL of 50% slurry protein A/G agarose beads previously washed in 

Szaks’ RIPA buffer and saturated with 1 mg/mL BSA. The mix was incubated overnight 

at 4°C while rotating. Beads are then washed twice with Szaks’ RIPA Buffer, four times 

with Szaks’ IP wash buffer (100 mM Tris HCl pH 8.5, 500 mM LiCl, 1% NP-40, 1% 

deoxycholate), twice again with Szak’ RIPA Buffer and twice with cold TE. 

Immunocomplexes are eluted by incubating samples at 65°C for 10 minutes in 1.5X 

Talianidis Elution Buffer (70 mM Tris HCl pH 8, 1 mM EDTA, 1.5% SDS). Crosslinks 

were reversed by bringing samples to 200 mM NaCl solution and incubating at 65°C for 

5 hours. DNA was purified by phenol-chloroform extraction and re-suspended in 50 µL 

10 mM Tris pH 8.0. 

Real time qPCR was performed using Sybr Green chemistry with primers at the -

2184, -914, and -582 positions relative to the TSS (Table 5) in an Applied Biosystems 

7900HT Fast Real Time PCR System using absolute quantification with genomic DNA 

as a standard control to measure the amount of DNA bound by BNC2 in comparison to 

the IgG control. Data were normalized by taking the percentage of DNA for each site of 

the highest bound site. ChIP for each cell line was performed in four biological 

replicates. 

For BNC2 ChIP-Seq, four individual ChIP samples were pooled for each cell line 

(iOSE11 and iFTSEC283) in two biological replicates. Immunoprecipitated DNA was 

used to generate a sequencing library using the NuGEN Ovation Ultralow Library 

System with indexed adapters (NuGEN, Inc., San Carlos, CA).  The library was PCR 

amplified and size-selected using AxyPrep Fragment Select beads (Corning Life 
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Sciences – Axygen Inc., Union City, CA).  The size and quality of the library was 

evaluated using the Agilent BioAnalzyer, and the library was quantitated with the Kapa 

Library Quantification Kit (Kapa Biosystems, Woburn MA).  Each enriched DNA library 

was then sequenced on an Illumina HiScan SQ sequencer to generate 20-30 million 

100-bp-end reads.  The raw sequence data was de-multiplexed using the Illumina 

CASAVA 1.8.2 software (Illumina, Inc., San Diego, CA) and binding sites were identified 

using the MACS software (Zhang et al., 2008) using input DNA as a control, and a band 

with setting of 300.  All other parameters were set to defaults.  The .bam and .wig files 

were visualized and inspected using the UCSC genome browser (Kent et al., 2002). 

Peaks used for further analysis had an intensity greater than 0.05 (reads/length), 

number of reads greater than 50, and a fold change compared to the input greater than 

10. 

To identify target genes, bed files were uploaded into Galaxy Cistrome (Liu et al., 

2011) and the peak2gene Peak Center Annotation tool was used on both the iOSE11 

and iFTSEC283 BNC2 ChIP-Seq files to generate a list of genes within 30 kb of the 

peak centers. BNC2 ChIP-seq peaks for each of the iOSE11 and iFTE283 samples 

were ranked by their MACS p-values, and the top 2000 peaks with the most significant 

p-values were selected for de novo motif discovery. The 500 bp sequences surrounding 

the summits of the top 2000 peaks were extracted, and de novo motif discovery was 

performed for iOSE11 and iFTE283 samples separately using MEME-ChIP (Machanick 

and Bailey, 2011) with the following parameters: ZOOPS mode, minimum MEME width 

6, maximum MEME width 30, maximum 5 MEME motifs, and DREME E-value cutoff 

0.05. The top scoring MEME-ChIP motif for both samples were almost identical, and 
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thus were averaged. Enrichment of this motif at the peak summits was examined using 

CentriMo (Bailey and Machanick, 2012) for iOSE11 and iFTE283 samples separately, 

as central enrichment is often associated with direct binding of the protein to DNA 

(Bailey and Machanick, 2012). 

DNA-binding preferences were predicted for each of the three ZF pairs of BNC2 

(ZF1-2, ZF3-4, and ZF5-6) using B1H-RC (Najafabadi et al., 2015), which consists of a 

set of Random Forest models that take the protein sequence as input and predict 

nucleotide preferences at different DNA positions. These predictions were compared to 

the PBM motifs obtained for the same ZF pairs, as well as to the de novo motif obtained 

from full-length BNC2 ChIP-seq. 

 

Nanostring 

pNTAP-BNC2 (or the empty vector) was transfected with Fugene 6 into 293FT 

cells grown to 70% confluence in DMEM and 10% FBS. Cells were harvested after 24 

hours and BNC2 overexpression was confirmed by Western blotting (Figure 17). RNA 

was isolated using Trizol RNA Isolation (Life Technoligies) and cleaned using Qiagen 

RNeasy Mini Kit (Qiagen). The three biological replicates for 293FT cells with the empty 

vector or over-expressed BNC2 were applied to a Nanostring platform containing 

probes for 86 genes and controls (Table 3). A custom NanoString nCounter Gene 

Expression (GX) CodeSet with probes representing 97 genes was developed and the 

sample was processed on the NanoString nCounter Analysis System according to the 

manufacturer’s protocol (NanoString Technologies, Seattle WA). The resulting .RCC 

files containing raw counts were checked for quality in the NanoString nSolver Analysis 
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Software v1.1, and then exported for normalization and analysis. TTI2, PRDM4, STK35, 

TOX4, INO80, GIGYF2, and SMG5 were used as reference genes to normalize the data 

in the NanoString nSolver Analysis Software v 1.1. These genes had a %CV < 50. 

Normalized data is then analyzed using Graph Pad Prism 6. Genes were considered to 

be differentially expressed had a p-value <.05 (two tailed t-test). 

 

Tandem Affinity Purification coupled to LC-MS/MS 

Full length BNC2 cDNA was amplified using primers containing BamHI and SalI 

restriction enzyme sites (Table 5) and cloned into pNTAP-B vector cut with BamHI and 

XhoI. Construct 1-236 was obtained by cutting the 1-524 PCR amplification product with 

BamHI and XhoI (site at 710 bp). Log growing 293FT (1 x 108 cells) grown in DMEM 

plus 10% FBS were transfected with 200 μg pNTAP-BNC2 construct using the calcium 

phosphate method, as previously described (Swift et al., 2001). Purification of TAP-

tagged BNC2 complexes was performed using the InterPlay TAP purification kit 

(Stratagene) (Woods et al., 2012). A TAP-GFP construct was used as a control to 

reduce false positive interactions using this purification method. 

Following in-gel tryptic digestion, peptides were extracted and concentrated 

under vacuum centrifugation.  A nanoflow liquid chromatograph (Easy-nLC, Proxeon, 

Odense, Denmark) coupled to an electrospray ion trap mass spectrometer (LTQ, 

Thermo, San Jose, CA) was used for tandem mass spectrometry peptide sequencing 

experiments.  The sample was first loaded onto a trap column (BioSphere C18 

reversed-phase resin, 5µm, 120Å, 100 µm ID, NanoSeparations, Nieuwkoop, 

Netherlands) and washed for 3 minutes at 8 mL / minute.  The trapped peptides were 
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eluted onto the analytical column, (BioSphere C18 reversed-phase resin, 150mm, 5µm, 

120Å, 100 µm ID, NanoSeparations, Nieuwkoop, Netherlands).  Peptides were eluted in 

a 30 minute gradient from 5% B to 45% B (solvent A: 2% acetonitrile + 0.1% formic 

acid; solvent B: 90% acetonitrile + 0.1% formic acid) with a flow rate of 300 nL/minute.  

Five tandem mass spectra were collected in a data-dependent manner following each 

survey scan.  Sequences were assigned using Mascot (www.matrixscience.com) 

searches against human Swiss Prot entries (Sprot_20090505, 20402 entries).  

Carbamidomethylation of cysteine, methionine oxidation, and deamidation of 

asparagine and glutamine were selected as variable modifications, and as many as 2 

missed tryptic cleavages were allowed.  Precursor mass tolerance is set to 2.5 and 

fragment ion tolerance to 0.8.  Results from Mascot were compiled in Scaffold, which 

was used for manual inspection of peptide assignments and protein identifications. 

Database searches were conducted against human entries in the SwissProt 

database (v.20090505) using Mascot (Matrix Science, London, UK; version 2.2.04) 

(Perkins et al., 1999), assuming the digestion enzyme trypsin and allowing as many as 

2 missed cleavages. Tandem mass spectra were matched to peptide sequences with a 

peptide ion mass tolerance of 1.2 Da and fragment ion mass tolerance of 0.80 Da. 

Oxidation of methionine and carbamidomethylation of cysteine were specified as 

variable modifications. Assignments were manually verified by inspection of the tandem 

mass spectra and coalesced into Scaffold reports (v.2.0, available at 

www.proteomesoftware.com) for statistical analysis and data presentation. 

Scaffold (version Scaffold_2_04_00, Proteome Software Inc., Portland, OR) was 

used to validate MS-MS based peptide and protein identifications. Peptide 
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identifications were accepted if they could be established at greater than 95.0% 

probability as specified by the Peptide Prophet algorithm (Keller et al., 2002). Protein 

identifications were accepted if they could be established at greater than 50.0% 

probability and contained at least 2 identified peptides.  Protein probabilities were 

assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that 

contained similar peptides and could not be differentiated based on MS-MS analysis 

alone were grouped to satisfy the principles of parsimony. Proteins appearing in control 

GFP purification and in the BNC2 samples were removed from the final datasets. Final 

protein list underwent gene ontology enrichment analysis from the WebGestalt program 

using h_sapiens genome as a reference set (Zhang et al., 2005). 

 

Transcriptional Repression Assay 

Fragments as well as full length BNC2 were PCR amplified from plasmid 

containing BNC2 cDNA using primers to clone in frame to GAL4 DBD (Table 5). These 

plasmids were then co-transfected with pGAL4-TK-Luc (Yang et al., 2001) expressing 

firefly luciferase and pRL-SV40 expressing Renilla luciferase as an internal control into 

293FT cells. Luciferase levels were measured 24 hours post-transfection using Dual 

Luciferase II Assay Kit (Promega).  

 

Table 5: List of oligos used in this study: 
Primer Name Sequence Assay 

T5 FWD attb-TAAGTAGAGACGGGGTTTCA Tiling Clones 

T5 REV attb-CTGATGGACCATTCTTCACT Tiling Clones 

T6 FWD attb-GGTGGAAAGCAAACTAAATG Tiling Clones 

T6 REV attb-TAGTTCTGTTGTGCAGGTTG Tiling Clones 

T7.1 FWD attb-TGGGGGTTTTCATTGCCAGG Tiling Clones 
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Table 5 (Continued) 
Primer Name Sequence Assay 

T7.1 REV attb-GACTCGACGATGTGCTGTCC Tiling Clones 

T7.2 FWD attb-GTGAAGCTGCACAGACACTA Tiling Clones 

T7.2 REV attb-CAGAATGTTGCACAAAAAGA Tiling Clones 

T7.3 FWD attb-TCTTTTTGTGCAACATTCTG Tiling Clones 

T7.3 REV attb-ATTAAGTTGGGTGGTGTTTG Tiling Clones 

T7.4 FWD attb-ACCGTGCTGAACCCTTAACT Tiling Clones 

T7.4 REV attb-GAGCCCAGGACTGTGGTTAC Tiling Clones 

T7.5 FWD attb-CTCTGCTTTTGTCTGCTTCT Tiling Clones 

T7.5 REV attb-GGACCTACGGGAACTTTTAC Tiling Clones 

T7.6 FWD attb-ATTCCGAATGTGAAGACAAG Tiling Clones 

T7.6 REV attb-TTTTCACTAGGAACCGGTAA Tiling Clones 

T7.7 FWD attb-GTGCAAGCCCCACAAGTTTT Tiling Clones 

T7.7 REV attb-GATGCAACCTGTCCCCAGAA Tiling Clones 

T7.8 FWD attb-TCTCCGAGTTATGCAGATTT Tiling Clones 

T7.8 REV attb-GAGCTTTGCAAGTTAGAGGA Tiling Clones 

T8 FWD attb-AGAGACAACCCAAGATAGCA Tiling Clones 

T8 REV attb-CCAATGACGAAATGTATGTG Tiling Clones 

T11 FWD attb-GGGTGGGGGTGAGGATGATA Tiling Clones 

T11 REV attb-TTTGCCTGTAGTGGGTGCTC Tiling Clones 

T12 FWD attb-TGCCTGGCTTAGTCTTTATT Tiling Clones 

T12 REV attb-AGGAGAAGGAATAGCTGCTT Tiling Clones 

TC FWD attb-GAATATGACTGGCACCACTT Tiling Clones 

TC REV attb-AATAAAGACTAAGCCAGGCA Tiling Clones 

rs62541878 sense tatctctacaaaatatatatatatatatatataaatttaccaggcatcgtggcttgc Site Directed 
Mutagenesis 

rs62541878 antisense gcaagccacgatgcctggtaaatttatatatatatatatatatattttgtagagata Site Directed 
Mutagenesis 

rs62541920 sense atacatacacagtgagtcatttaagagtttcacattctgccttc Site Directed 
Mutagenesis 

rs62541920 antisense gaaggcagaatgtgaaactcttaaatgactcactgtgtatgtat Site Directed 
Mutagenesis 

rs12379183 sense tcaaagagaaaatagagcaaaaagaacaaaactgatgttgttatgtacggatattt Site Directed 
Mutagenesis 

rs12379183 antisense aaatatccgtacataacaacatcagttttgttctttttgctctattttctctttga Site Directed 
Mutagenesis 

rs10962647 sense tcagctctgcttttgtctgctgctttttgtaatcacatatctc Site Directed 
Mutagenesis 

rs10962647 antisense gagatatgtgattacaaaaagcagcagacaaaagcagagctga Site Directed 
Mutagenesis 

rs62541922 sense ccagccgccggcccctcactcgg Site Directed 
Mutagenesis 

rs62541922 antisense ccgagtgaggggccggcggctgg Site Directed 
Mutagenesis 

rs62541923 sense ggtccccggccagccctcctcag Site Directed 
Mutagenesis 

rs62541923 antisense ctgaggagggctggccggggacc Site Directed 
Mutagenesis 

rs200648906 sense cagctgtcacacacacacgaaaaaaaaattgcggggc Site Directed 
Mutagenesis 

rs200648906 antisense gccccgcaatttttttttcgtgtgtgtgtgacagctg Site Directed 
Mutagenesis 
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Table 5 (Continued) 
Primer Name Sequence Assay 

rs10810657 sense cttcgttacacagcatatatctgcacccctgcc Site Directed 
Mutagenesis 

rs10810657 antisense ggcaggggtgcagatatatgctgtgtaacgaag Site Directed 
Mutagenesis 

rs12350739 sense Gtgctgctgatctcatgcccttcctctgg Site Directed 
Mutagenesis 

rs12350739 antisense Ccagaggaagggcatgagatcagcagcac Site Directed 
Mutagenesis 

rs77507622 sense Attccagaaatcattattaggcagtttcttagagcaattcatgggtt Site Directed 
Mutagenesis 

rs77507622 antisense aacccatgaattgctctaagaaactgcctaataatgatttctggaat Site Directed 
Mutagenesis 

rs10810657_Effect A ATCACTTCGTTACACAGCATATATCTGCACCCCTGCCGGCA EMSA 

rs10810657_Effect T TGCCGGCAGGGGTGCAGATATATGCTGTGTAACGAAGTGAT EMSA 

rs10810657_Reference T ATCACTTCGTTACACAGCATTTATCTGCACCCCTGCCGGCA EMSA 

rs10810657_Reference A TGCCGGCAGGGGTGCAGATAAATGCTGTGTAACGAAGTGAT EMSA 

rs77507622_Reference A CCAGAAATCATTATTAGGCAATTTCTTAGAGCAATTCATGG EMSA 

rs77507622_Reference T CCATGAATTGCTCTAAGAAATTGCCTAATAATGATTTCTGG EMSA 

rs77507622_Effect G CCAGAAATCATTATTAGGCAGTTTCTTAGAGCAATTCATGG EMSA 

rs77507622_Effect C CCATGAATTGCTCTAAGAAACTGCCTAATAATGATTTCTGG EMSA 

rs12350739_Effect A TCATCAGTGCTGCTGATCTCATGCCCTTCCTCTGGCAAACC EMSA 

rs12350739_Effect T GGTTTGCCAGAGGAAGGGCATGAGATCAGCAGCACTGATGA EMSA 

rs12350739_Reference G TCATCAGTGCTGCTGATCTCGTGCCCTTCCTCTGGCAAACC EMSA 

rs12350739_Reference C GGTTTGCCAGAGGAAGGGCACGAGATCAGCAGCACTGATGA EMSA 

rs113780397_Effect A AGATTGAGCCACTGCACTGCATCCTGGGTGACAGAGCGAGA EMSA 

rs113780397_Effect T TCTCGCTCTGTCACCCAGGATGCAGTGCAGTGGCTCAATCT EMSA 

rs113780397_Reference G AGATTGAGCCACTGCACTGCGTCCTGGGTGACAGAGCGAGA EMSA 

rs113780397_Reference C TCTCGCTCTGTCACCCAGGACGCAGTGCAGTGGCTCAATCT EMSA 

rs117224476_Reference T TATATTATATATAATGTATATATTATATATTATATAATATA EMSA 

rs117224476_Reference A TATATTATATAATATATAATATATACATTATATATAATATA EMSA 

rs117224476_Effect G TATATTATATATAATGTATAGATTATATATTATATAATATA EMSA 

rs117224476_Effect C TATATTATATAATATATAATCTATACATTATATATAATATA EMSA 

rs12379183_Reference A GCAAAAAGAACAAAACTGATATTGTTATGTACGGATATTTT EMSA 

rs12379183_Reference T AAAATATCCGTACATAACAATATCAGTTTTGTTCTTTTTGC EMSA 

rs12379183_Effect G GCAAAAAGAACAAAACTGATGTTGTTATGTACGGATATTTT EMSA 

rs12379183_Effect C AAAATATCCGTACATAACAACATCAGTTTTGTTCTTTTTGC EMSA 

rs62541920_Reference G CATACACAGTGAGTCATTTAGGAGTTTCACATTCTGCCTTC EMSA 

rs62541920_Reference C GAAGGCAGAATGTGAAACTCCTAAATGACTCACTGTGTATG EMSA 

rs62541920_Effect A CATACACAGTGAGTCATTTAAGAGTTTCACATTCTGCCTTC EMSA 

rs62541920_Effect T GAAGGCAGAATGTGAAACTCTTAAATGACTCACTGTGTATG EMSA 

rs10962647_Reference T CAGCTCTGCTTTTGTCTGCTTCTTTTTGTAATCACATATCT EMSA 

rs10962647_Reference A AGATATGTGATTACAAAAAGAAGCAGACAAAAGCAGAGCTG EMSA 

rs10962647_Effect G CAGCTCTGCTTTTGTCTGCTGCTTTTTGTAATCACATATCT EMSA 

rs10962647_Effect C AGATATGTGATTACAAAAAGCAGCAGACAAAAGCAGAGCTG EMSA 

rs3814113_Major T CAGGGTACCTGCTCCATATCTTCTGGACCAGTTCTCCAAAC EMSA 
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Table 5 (Continued) 
Primer Name Sequence Assay 

rs3814113_Major A GTTTGGAGAACTGGTCCAGAAGATATGGAGCAGGTACCCTG EMSA 

rs3814113_minor C CAGGGTACCTGCTCCATATCCTCTGGACCAGTTCTCCAAAC EMSA 

rs3814113_minor G GTTTGGAGAACTGGTCCAGAGGATATGGAGCAGGTACCCTG EMSA 

rs181552334_Major A ATATATATAATATATATTACATAATATATAATATATATAAT EMSA 

rs181552334_Major T ATTATATATATTATATATTATGTAATATATATTATATATAT EMSA 

rs181552334_minor G ATATATATAATATATATTACGTAATATATAATATATATAAT EMSA 

rs181552334_minor C ATTATATATATTATATATTACGTAATATATATTATATATAT EMSA 

BPR1F CGCTACCACCACCACATACAT 3C 

BPAR1F GCTCTGAACACGCACAGACA 3C 

BPR2R GGTGGTGCACACCTGTAGAG 3C 

BPAR2R GGGCAATGAGCTGTGTCTCT 3C 

9p22BNCEcoF1 ACTTTTGGGTAAAGAGGGACAA 3C 

9p22BNCpEcoF2 GCTGGCTTGATGCTATTCCC 3C 

9p22BNCpEcoF3 AGCAATTTGTGAAGTACCAGGC 3C 

9p22BNCEcoR4 GGTATAGTGAGAAGGGCACCA 3C 

9p22BNCEcoR5 AACTGAGACCAGACCACAAGT 3C 

9p22BNCEcoF6 CACCGCACCGATCCTGTTT 3C 

9p22BNCEcoF7 ACTCCAGTCTGGGCAACAAG 3C 

9p22BNCEcoF8 GTCATGAGATCGTGGCTGGG 3C 

9p22BNCEcoF9 GGCGTGAAACTTCTTGTTATGTGA 3C 

9p22BNCEcoF10 GACTGAGCCTGAAGGAAGGC 3C 

9p22BNCEcoF11 ACAGATACCAAGTGCAAACTGC 3C 

9p22BNCEcoF12 GGGAGGCTGAGACATGAGAC 3C 

9p22BNCEcoR13 CCCCATCTGGGACTTGAAGG 3C 

9p22BNCEcoR14 CACCAATAAGCGATCAGCTCC 3C 

9p22BNCEcoF15 CAGGGCCAAGAATCTACCGC 3C 

9p22BNCEcoR16 GAAAAATCACCTGTGTGGGCA 3C 

9p22BNCEcoF17 GCACAAGGCCCTTATTCCCA 3C 

9p22BNCEcoF18 TGCCTCTGCCAGAATGATGT 3C 

9p22BNCEcoR19 TGTGTCATTGAGTGGTGTTGAT 3C 

9p22BNCEcoR20 ATCTCTTGAAGCCAGCCATTT 3C 

9p22BNCEcoR21 TGTGAGAGTGCCTCGGTGTA 3C 

9p22BNCEcoF22 GGCATGCTGCCACATATTCAG 3C 

9p22BNCEcoF23 ACCACAGAGAAGGTGGCAAG 3C 

9p22BNCEcoR24 TGTTTCCCTCTCCTCCCCAA 3C 

9p22CNTLNEcoF1 CATAGGAGATATACATCAGTTGCCA 3C 

9p22CNTLNEcoF2 TGGTGCTTGTAGAGGGGTTTC 3C 

9p22CNTLNEcoF3 TGGAGACAGGGTAGCGATCA 3C 

9p22CNTLNEcoF4 GCTTAGCACTGGACTCAGCA 3C 

9p22CNTLNEcoF5 ACCCAACAAGGCTTGAAACA 3C 
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Table 5 (Continued) 
Primer Name Sequence Assay 

9p22CNTLNEcoF6 GGGTTGCTAGAGACTTGGGG 3C 

9p22CNTLNEcoF7 ATCTCCTCAGTGGCCTTTGT 3C 

9p22CNTLNEcoR8 GCCGAGCCCTCATGATGTAA 3C 

1-236 FWD TAGGATCCAGATGGCACACCTTGGGCCCAC GAL4-BNC2 Constructs 

1-524 FWD TAGGATCCAGATGGCACACCTTGGGCCCAC GAL4-BNC2 Constructs 

1-524 REV CTGTCGACACTTGCTATGACAGGGGTGG GAL4-BNC2 Constructs 

385-524 FWD CAGGATCCGAAATGCCCTGACCAGCATTAC GAL4-BNC2 Constructs 

385-524 REV CTGTCGACACTTGCTATGACAGGGGTGG GAL4-BNC2 Constructs 

519-818 FWD CAGGATCCCCACCCCTGTCATAGCAAGT GAL4-BNC2 Constructs 

519-818 REV CTGTCGACTTTGAGGGCTGCCATAATTC GAL4-BNC2 Constructs 

818-1099 FWD GAGGATCCTGAATTATGGCAGCCCTCAAA GAL4-BNC2 Constructs 

818-1099 REV AAGTCGACCTAATCTACTGAAGTGAAGG GAL4-BNC2 Constructs 

951-1099 FWD GAGGATCCGGAGAGGCATGGCAGAGGACTA GAL4-BNC2 Constructs 

951-1099 REV AAGTCGACCTAATCTACTGAAGTGAAGG GAL4-BNC2 Constructs 

1-1099 FWD TAGGATCCAGATGGCACACCTTGGGCCCAC GAL4-BNC2 Constructs 

1-1099 REV AAGTCGACCTAATCTACTGAAGTGAAGG GAL4-BNC2 Constructs 

BNC2 ZF 1,2 FWD attb-CAGAATTCTGCCCCAGTCAGTG ZF Protein Constructs 

BNC2 ZF 1,2 REV attb-TACTAGCTGGCTAGGGAGAGGA ZF Protein Constructs 

BNC2 ZF 3,4 FWD attb-GACATGTTTTACATGAGCCAGT ZF Protein Constructs 

BNC2 ZF 3,4 REV attb-GTTCAGGTGGGAGTCTTCAGTC ZF Protein Constructs 

BNC2 ZF 5,6 FWD attb-AGAGGCATGGCAGAGGACTA ZF Protein Constructs 

BNC2 ZF 5,6 REV attb-ATCTACTGAAGTGAAGGGAA ZF Protein Constructs 

-2184 FWD CCTGCAGATGCAACCTGTCCCC Site Specific ChIP 

-2184 REV TCTGCATTCGTGGATTCTGTGCAT Site Specific ChIP 

-914 FWD GCACAAAACGCTCCGCCACC Site Specific ChIP 

-914 REV GGCGGAGGAAAACCCAGCGG Site Specific ChIP 

-582 FWD TTCCTCGGCGTTTCGCAGCC Site Specific ChIP 

-582 REV GCGGGCGTGGAGGTAGAGGT Site Specific ChIP 
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CHAPTER FIVE:  

DISCUSSION 

 

Note to Reader 

 A manuscript that has been submitted for review includes portions of this 

chapter.   

 

Here, we start from EOC GWAS findings and delineate a potential mechanistic 

basis for susceptibility at the 9p22.2 locus (Figure 19). We identify allele specific effects 

for 5 candidate functional SNPs in three genomic regions, 7, 8 and 11, which contribute 

to the regulation of BNC2, a pleiotropic gene encoding a TF involved in ovarian 

development, skin pigmentation, and height in fish, mice, and humans.   

In Chapter two we identified 5 functional SNPs with allele specific function by 

assessing their regulatory potential in several different assays. These assays included 

FAIRE-seq and ChIP-seq for histone markers to identify regulatory regions in the locus 

as well as luciferase reporter assays measuring said region’s transcription activity. 

Allele specific functions were measured with luciferase reporter assays comparing 

transcription activity between plasmids with the major and minor allele. EMSA discern 

which SNPs have allele specific nuclear extract binding. These assays measure 

different yet important mechanisms of transcription therefore we have confidence that 

these 5 positive SNPs truly represent the causal SNPs in the 9p22.2 locus. 
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Functional analysis of disease susceptibility loci has mainly focused on 

associated SNPs that locate to enhancers due to the prevalence of enhancers in the 

genome. Yet, evidence for a functional role as an enhancer for Region 11 is weak; it is 

not conserved, is highly repetitive, and has few enhancer activity-associated chromatin 

features (Figure 10, Figure 8A). Consistent with the data, it displayed significant 

luciferase activity in only one experiment (Figure 8B). It failed to show significant 3C 

interactions to BNC2 or CNTLN promoters in chapter three (Figure 12C). Moreover, 

inspection of histone modifications by ChIP-seq from ENCODE for over 70 cell lines 

failed to reveal any chromatin markers associated with enhancers. Thus, it is unlikely 

that this region acts as an enhancer even in a different cell type. 

In silico analysis suggests that the region may harbor a scaffold/matrix 

attachment region (S/MAR). S/MARs have been proposed to assist in chromatin 

looping, maintain the local 3D structure of the genome and modulate gene expression 

(Linnemann et al., 2009). Importantly, polymorphisms in S/MARs can affect their ability 

to attach to the nuclear scaffold/matrix (Kisseljova et al., 2014). It is possible that 

S/MARs, which are not well characterized, may play a significant role in the association 

with ovarian cancer risk. Quantitative PCR for region 11 in DNA purified from a nuclear 

scaffold extract could confirm whether region 11 is indeed a S/MAR. Knocking out 

region 11 and looking at changes in expression of potential downstream targets would 

identify the target gene of region 11. As mentioned earlier, S/MARs are not well 

characterized therefore changes in DNA binding to the nuclear scaffold may have an 

entirely unique effect on development and cancer oncogenesis outside of the realm of 

transcription regulation. 
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In Chapter Three, we identified BNC2 as the major target of the 9p22 causal 

SNPs. In ovarian cells, the promoter of BNC2 is active and transcripts for BNC2 are 

present. Additionally two of the causal SNPs in Region 7 implicate BNC2 as a target 

gene as they are located in its major promoter. Two of the causal SNPs in Region 8 

overlap with enhancer marks and physically interact with the BNC2 promoter. Thus, 

these regions, conserved in mouse, contribute to the regulation of BNC2 expression 

(Figure 10).   

Our data indicate that the mechanism by which genetic variation at the locus 

affect ovarian cancer susceptibility may be mediated primarily by multiple non-coding 

elements including enhancer and promoter elements which target BNC2 and by a 

putative S/MAR element. Limitations of this work include the possibility that enhancer 

landscapes may change significantly during development (Pennacchio et al., 2006), the 

limited regulatory profiling information that has been performed in ovarian cells (e.g. 

lack of CTCF repressor marks and putative non-coding RNA elements data) and the 

possibility of false positive and false negative findings. 

However, several lines of evidence suggest that we have captured the functional 

features relevant to ovarian cancer risk. First, our use of a large panel of ovarian normal 

and cancer cell lines derived from different origins provide a broad view of regulatory 

activity. Second, most (~90%) enhancers are linked to single promoter in primary 

mouse cells (Kieffer-Kwon et al., 2013) supporting the hypothesis that Region 8 targets 

BNC2 exclusively although it is unclear how other regulatory features present in the 

locus might interact with the regulatory network described here. For example, large 

active enhancer clusters that drive expression of cell identity genes, also called super 
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enhancers (Hnisz et al., 2013) are nearby. This paper discusses that the repertoire of 

cell identity genes mostly includes TFs which in turn use an auto-regulatory loop to 

regulate their own expression by binding to these super enhancers. This super 

enhancer (Figure 19B) contains BNC2 binding sites defined by our ChIP-seq data 

suggesting that BNC2 represents a cell identity gene or master regulator in ovarian 

cells.  

In Chapter Four we show that BNC2, an ancient gene with potentially very 

important functions in living organisms, acts as a transcription regulator in enhancer 

regions potentially through recruitment of the NuRD complex of chromatin remodeling 

(Gunther et al., 2013; Hu and Wade, 2012; Ramirez and Hagman, 2009). We also show 

that BNC2 targets enhancer regions likely operating to modulate the expression of 

downstream genes involved in cell-cell and cell-extracellular matrix communication.  

Genome-wide and candidate gene association studies have identified significant 

associations between the 9p22.2 locus and skin pigmentation in Europeans 

(rs10756819) (Jacobs et al., 2013) and Asians (Hider et al., 2013), and freckling 

(rs2153271) (Eriksson et al., 2010) (Figure 19B). Importantly, functional dissection 

identified rs12350739 as the likely causal variant associated with saturation of skin color 

(Visser et al., 2014). This SNP is one of the functional SNPs identified in the present 

study mapping to a BNC2 enhancer (Region 8). The locus also contains a region of 

Neanderthal DNA (Chr9: 16,720,121-16,786,930) thought to confer adaptive advantage 

to colder climates by modulation of skin pigmentation (Sankararaman et al., 2014; 

Vernot and Akey, 2014) (Figure 19B). In addition, the locus has been found to be 

associated with human height (rs2149163 and rs3927536) (Wood et al., 2014) (Figure 
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19B). In relation to EOC, the locus is associated to abnormal ovarian ultrasound results 

(rs12379183, a functional SNP in the present study located in Region 7) (Figure 19B). 

The link between BNC2 and ovarian biology is further supported by the results of 

deletion of BNC2 in mice and zebrafish.  In the bonaparte mutants, in addition to the 

defect in skin pigmentation (lack of body stripes) and stunted growth, the ovaries are 

dysmorphic leading to infertility (Lang et al., 2009). In mice, Bnc2 is expressed in 

ovarian somatic cells such as theca cells and Bnc2-/- female mice present with an 

excess of stromal cells and a greatly reduced number of oocytes leading to infertility 

(Philippe Djian, personal communication). These mice are also born abnormally small 

with cleft palates suggesting that bnc2 plays a role in skeletal development 

(Vanhoutteghem et al., 2009). This data suggests that the bnc2 mutants/knock-outs in 

model organisms influence the same traits identified to be associated with the locus 

further supporting that BNC2 is the target gene. 

Decreased parity is a major risk factor for ovarian cancer and disruption of BNC2 

in zebrafish and mice indicate its role in fertility. Additionally, evidence suggesting that 

BNC2 is an ovarian cell identity gene/master regulator indicates its role in ovarian 

development and maintenance of function. Therefore BNC2 may indirectly influence 

ovarian cancer risk by primarily influencing ovarian development and fertility. Additional 

functional assays studying ovarian development and the menstrual cycle, such as 

conditional knock-outs of BNC2, may inform the role of BNC2 in ovarian development 

and fertility. 

In summary, we propose that the mechanism of ovarian cancer susceptibility in 

the 9p22.2 locus is likely mediated by changes in a transcriptional regulatory network 
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involving several enhancer and promoter elements acting on BNC2 and a putative 

S/MAR region. While our data strongly suggests that the association signal is mediated 

through BNC2 regulation the individual contribution of each element and gene(s) to risk 

must wait further analysis. 

 

 

Figure 19: Outline of the study. A. Summary of identifying the functional SNPs. B. 
Further evidence tells us that the 9p22 locus and BNC2 are important. An introgressed 
Neanderthal region (light blue bar) lies within the BNC2 gene and may influence 
pigmentation. Two super enhancers (red bars) lie on and near the BNC2 gene and are 
believed to mainly target TFs involved in cell type identity. Other SNPs at the locus are 
implicated in abnormal ovarian ultrasound as well as skin color and pigmentation 
(green).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



96 
 

 
 
 
 

REFERENCES 
 
Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., 
Kang, H.M., Marth, G.T., and McVean, G.A. (2012). An integrated map of genetic 
variation from 1,092 human genomes. Nature 491, 56-65. 
 
Ames, B.N., Gold, L.S., and Willett, W.C. (1995). The causes and prevention of cancer. 
Proceedings of the National Academy of Sciences of the United States of America 92, 
5258-5265. 
 
Antoniou, A.C., Pharoah, P.D., McMullan, G., Day, N.E., Stratton, M.R., Peto, J., 
Ponder, B.J., and Easton, D.F. (2002). A comprehensive model for familial breast 
cancer incorporating BRCA1, BRCA2 and other genes. British journal of cancer 86, 76-
83. 
 
Bailey, T.L., and Machanick, P. (2012). Inferring direct DNA binding from ChIP-seq. 
Nucleic Acids Res 40, e128. 
 
Barrett, J.C., Fry, B., Maller, J., and Daly, M.J. (2005). Haploview: analysis and 
visualization of LD and haplotype maps. Bioinformatics 21, 263-265. 
 
Baysal, B.E., DeLoia, J.A., Willett-Brozick, J.E., Goodman, M.T., Brady, M.F., Modugno, 
F., Lynch, H.T., Conley, Y.P., Watson, P., and Gallion, H.H. (2004). Analysis of CHEK2 
gene for ovarian cancer susceptibility. Gynecologic oncology 95, 62-69. 
 
Berger, M.F., Badis, G., Gehrke, A.R., Talukder, S., Philippakis, A.A., Pena-Castillo, L., 
Alleyne, T.M., Mnaimneh, S., Botvinnik, O.B., Chan, E.T., et al. (2008). Variation in 
homeodomain DNA binding revealed by high-resolution analysis of sequence 
preferences. Cell 133, 1266-1276. 
 
Berger, M.F., and Bulyk, M.L. (2009). Universal protein-binding microarrays for the 
comprehensive characterization of the DNA-binding specificities of transcription factors. 
Nat Protoc 4, 393-411. 
 
Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep, P.W., 3rd, and Bulyk, 
M.L. (2006). Compact, universal DNA microarrays to comprehensively determine 
transcription-factor binding site specificities. Nat Biotechnol 24, 1429-1435. 
 
Berns, E.M., and Bowtell, D.D. (2012). The changing view of high-grade serous ovarian 
cancer. Cancer research 72, 2701-2704. 
 



97 
 

Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., 
McMahon, S., Karlsson, E.K., Kulbokas, E.J., 3rd, Gingeras, T.R., et al. (2005). 
Genomic maps and comparative analysis of histone modifications in human and mouse. 
Cell 120, 169-181. 
 
Blackwood, E.M., and Kadonaga, J.T. (1998). Going the distance: a current view of 
enhancer action. Science 281, 60-63. 
 
Bojesen, S.E., Pooley, K.A., Johnatty, S.E., Beesley, J., Michailidou, K., Tyrer, J.P., 
Edwards, S.L., Pickett, H.A., Shen, H.C., Smart, C.E., et al. (2013). Multiple 
independent variants at the TERT locus are associated with telomere length and risks of 
breast and ovarian cancer. Nature genetics 45, 371-384, 384e371-372. 
 
Bolton, K.L., Tyrer, J., Song, H., Ramus, S.J., Notaridou, M., Jones, C., Sher, T., 
Gentry-Maharaj, A., Wozniak, E., Tsai, Y.Y., et al. (2010). Common variants at 19p13 
are associated with susceptibility to ovarian cancer. Nature genetics 42, 880-884. 
 
Bondarenko, V.A., Jiang, Y.I., and Studitsky, V.M. (2003). Rationally designed insulator-
like elements can block enhancer action in vitro. The EMBO journal 22, 4728-4737. 
 
Bosetti, C., Negri, E., Trichopoulos, D., Franceschi, S., Beral, V., Tzonou, A., Parazzini, 
F., Greggi, S., and La Vecchia, C. (2002). Long-term effects of oral contraceptives on 
ovarian cancer risk. International journal of cancer Journal international du cancer 102, 
262-265. 
 
Braem, M.G., Onland-Moret, N.C., van den Brandt, P.A., Goldbohm, R.A., Peeters, 
P.H., Kruitwagen, R.F., and Schouten, L.J. (2010). Reproductive and hormonal factors 
in association with ovarian cancer in the Netherlands cohort study. American journal of 
epidemiology 172, 1181-1189. 
 
Braman, J., Papworth, C., and Greener, A. (1996). Site-directed mutagenesis using 
double-stranded plasmid DNA templates. Methods in molecular biology 57, 31-44. 
Britten, R.J., and Davidson, E.H. (1969). Gene regulation for higher cells: a theory. 
Science 165, 349-357. 
 
Brosens, I.A., and Vasquez, G. (1976). Fimbrial microbiopsy. The Journal of 
reproductive medicine 16, 171-178. 
 
Bu, S.Z., Yin, D.L., Ren, X.H., Jiang, L.Z., Wu, Z.J., Gao, Q.R., and Pei, G. (1997). 
Progesterone induces apoptosis and up-regulation of p53 expression in human ovarian 
carcinoma cell lines. Cancer 79, 1944-1950. 
 
Bushey, A.M., Dorman, E.R., and Corces, V.G. (2008). Chromatin insulators: regulatory 
mechanisms and epigenetic inheritance. Molecular cell 32, 1-9. 
 



98 
 

Cairns, B.R. (2009). The logic of chromatin architecture and remodelling at promoters. 
Nature 461, 193-198. 
 
Cancer Genome Atlas Research, N. (2011). Integrated genomic analyses of ovarian 
carcinoma. Nature 474, 609-615. 
 
Cardon, L.R., and Bell, J.I. (2001). Association study designs for complex diseases. 
Nature reviews Genetics 2, 91-99. 
 
Carlson, C.S., Eberle, M.A., Rieder, M.J., Yi, Q., Kruglyak, L., and Nickerson, D.A. 
(2004). Selecting a maximally informative set of single-nucleotide polymorphisms for 
association analyses using linkage disequilibrium. American journal of human genetics 
74, 106-120. 
 
Carlson, J.W., Miron, A., Jarboe, E.A., Parast, M.M., Hirsch, M.S., Lee, Y., Muto, M.G., 
Kindelberger, D., and Crum, C.P. (2008). Serous tubal intraepithelial carcinoma: its 
potential role in primary peritoneal serous carcinoma and serous cancer prevention. 
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 
26, 4160-4165. 
 
Casadei, S., Norquist, B.M., Walsh, T., Stray, S., Mandell, J.B., Lee, M.K., 
Stamatoyannopoulos, J.A., and King, M.C. (2011). Contribution of inherited mutations in 
the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer research 71, 
2222-2229. 
 
Castera, L., Krieger, S., Rousselin, A., Legros, A., Baumann, J.J., Bruet, O., Brault, B., 
Fouillet, R., Goardon, N., Letac, O., et al. (2014). Next-generation sequencing for the 
diagnosis of hereditary breast and ovarian cancer using genomic capture targeting 
multiple candidate genes. European journal of human genetics : EJHG 22, 1305-1313. 
 
Chen, K., Ma, H., Li, L., Zang, R., Wang, C., Song, F., Shi, T., Yu, D., Yang, M., Xue, 
W., et al. (2014). Genome-wide association study identifies new susceptibility loci for 
epithelial ovarian cancer in Han Chinese women. Nature communications 5, 4682. 
 
Chiaravalli, A.M., Furlan, D., Facco, C., Tibiletti, M.G., Dionigi, A., Casati, B., Albarello, 
L., Riva, C., and Capella, C. (2001). Immunohistochemical pattern of hMSH2/hMLH1 in 
familial and sporadic colorectal, gastric, endometrial and ovarian carcinomas with 
instability in microsatellite sequences. Virchows Archiv : an international journal of 
pathology 438, 39-48. 
 
Coetzee, S.G., Shen, H.C., Hazelett, D.J., Lawrenson, K., Kuchenbaecker, K., Tyrer, J., 
Rhie, S.K., Levanon, K., Karst, A., Drapkin, R., et al. (2015). Cell Type Specific 
Enrichment Of Risk Associated Regulatory Elements At Ovarian Cancer Susceptibility 
Loci. Human molecular genetics. 
 



99 
 

Colhoun, H.M., McKeigue, P.M., and Davey Smith, G. (2003). Problems of reporting 
genetic associations with complex outcomes. Lancet 361, 865-872. 
 
Corbi, N., Libri, V., Fanciulli, M., and Passananti, C. (1998). Binding properties of the 
artificial zinc fingers coding gene Sint1. Biochemical and biophysical research 
communications 253, 686-692. 
 
Corbi, N., Perez, M., Maione, R., and Passananti, C. (1997). Synthesis of a new zinc 
finger peptide; comparison of its 'code' deduced and 'CASTing' derived binding sites. 
FEBS letters 417, 71-74. 
 
Core, L.J., Martins, A.L., Danko, C.G., Waters, C.T., Siepel, A., and Lis, J.T. (2014). 
Analysis of nascent RNA identifies a unified architecture of initiation regions at 
mammalian promoters and enhancers. Nature genetics 46, 1311-1320. 
 
Couch, F.J., Wang, X., McGuffog, L., Lee, A., Olswold, C., Kuchenbaecker, K.B., 
Soucy, P., Fredericksen, Z., Barrowdale, D., Dennis, J., et al. (2013). Genome-wide 
association study in BRCA1 mutation carriers identifies novel loci associated with breast 
and ovarian cancer risk. PLoS genetics 9, e1003212. 
 
Coulet, F., Fajac, A., Colas, C., Eyries, M., Dion-Miniere, A., Rouzier, R., Uzan, S., 
Lefranc, J.P., Carbonnel, M., Cornelis, F., et al. (2013). Germline RAD51C mutations in 
ovarian cancer susceptibility. Clinical genetics 83, 332-336. 
 
Cramer, D.W., Barbieri, R.L., Fraer, A.R., and Harlow, B.L. (2002). Determinants of 
early follicular phase gonadotrophin and estradiol concentrations in women of late 
reproductive age. Human reproduction 17, 221-227. 
 
Dahlman, I., Eaves, I.A., Kosoy, R., Morrison, V.A., Heward, J., Gough, S.C., 
Allahabadia, A., Franklyn, J.A., Tuomilehto, J., Tuomilehto-Wolf, E., et al. (2002). 
Parameters for reliable results in genetic association studies in common disease. 
Nature genetics 30, 149-150. 
 
Dekker, J. (2006). The three 'C' s of chromosome conformation capture: controls, 
controls, controls. Nature methods 3, 17-21. 
 
Dellorusso, C., Welcsh, P.L., Wang, W., Garcia, R.L., King, M.C., and Swisher, E.M. 
(2007). Functional Characterization of a Novel BRCA1-Null Ovarian Cancer Cell Line in 
Response to Ionizing Radiation. Molecular cancer research : MCR 5, 35-45. 
 
Dijkwel, P.A., and Hamlin, J.L. (1999). Physical and genetic mapping of mammalian 
replication origins. Methods 18, 418-431. 
 
Domcke, S., Sinha, R., Levine, D.A., Sander, C., and Schultz, N. (2013). Evaluating cell 
lines as tumour models by comparison of genomic profiles. Nature communications 4, 
2126. 



100 
 

Dreher, D., and Junod, A.F. (1996). Role of oxygen free radicals in cancer development. 
European journal of cancer 32A, 30-38. 
 
Dunham, I., Kundaje, A., Aldred, S.F., Collins, P.J., Davis, C.A., Doyle, F., Epstein, 
C.B., Frietze, S., Harrow, J., Kaul, R., et al. (2012). An integrated encyclopedia of DNA 
elements in the human genome. Nature 489, 57-74. 
 
Elrod-Erickson, M., Rould, M.A., Nekludova, L., and Pabo, C.O. (1996). Zif268 protein-
DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA 
interactions. Structure 4, 1171-1180. 
 
Emerson, R.O., and Thomas, J.H. (2009). Adaptive evolution in zinc finger transcription 
factors. PLoS genetics 5, e1000325. 
 
Eriksson, N., Macpherson, J.M., Tung, J.Y., Hon, L.S., Naughton, B., Saxonov, S., 
Avey, L., Wojcicki, A., Pe'er, I., and Mountain, J. (2010). Web-based, participant-driven 
studies yield novel genetic associations for common traits. PLoS genetics 6, e1000993. 
 
Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Epstein, C.B., 
Zhang, X., Wang, L., Issner, R., Coyne, M., et al. (2011). Mapping and analysis of 
chromatin state dynamics in nine human cell types. Nature 473, 43-49. 
 
Fathalla, M.F. (1971). Incessant ovulation--a factor in ovarian neoplasia? Lancet 2, 163. 
Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., 
Swaisland, H., Lau, A., O'Connor, M.J., et al. (2009). Inhibition of poly(ADP-ribose) 
polymerase in tumors from BRCA mutation carriers. The New England journal of 
medicine 361, 123-134. 
 
Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., 
Weber, B., Lenoir, G., Chang-Claude, J., et al. (1998). Genetic heterogeneity and 
penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The 
Breast Cancer Linkage Consortium. American journal of human genetics 62, 676-689. 
 
Freedman, M.L., Monteiro, A.N., Gayther, S.A., Coetzee, G.A., Risch, A., Plass, C., 
Casey, G., De Biasi, M., Carlson, C., Duggan, D., et al. (2011). Principles for the post-
GWAS functional characterization of cancer risk loci. Nature genetics 43, 513-518. 
 
Fu, X.D., and Maniatis, T. (1990). Factor required for mammalian spliceosome 
assembly is localized to discrete regions in the nucleus. Nature 343, 437-441. 
Fuda, N.J., Ardehali, M.B., and Lis, J.T. (2009). Defining mechanisms that regulate RNA 
polymerase II transcription in vivo. Nature 461, 186-192. 
 
Fujita, M., Enomoto, T., Yoshino, K., Nomura, T., Buzard, G.S., Inoue, M., and 
Okudaira, Y. (1995). Microsatellite instability and alterations in the hMSH2 gene in 
human ovarian cancer. International journal of cancer Journal international du cancer 
64, 361-366. 



101 
 

Fulton, D.L., Sundararajan, S., Badis, G., Hughes, T.R., Wasserman, W.W., Roach, 
J.C., and Sladek, R. (2009). TFCat: the curated catalog of mouse and human 
transcription factors. Genome biology 10, R29. 
 
Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., 
Higgins, J., DeFelice, M., Lochner, A., Faggart, M., et al. (2002). The structure of 
haplotype blocks in the human genome. Science 296, 2225-2229. 
 
Gaszner, M., and Felsenfeld, G. (2006). Insulators: exploiting transcriptional and 
epigenetic mechanisms. Nature reviews Genetics 7, 703-713. 
 
Genomes Project, C., Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin, 
R.M., Gibbs, R.A., Hurles, M.E., and McVean, G.A. (2010). A map of human genome 
variation from population-scale sequencing. Nature 467, 1061-1073. 
 
Gerasimova, T.I., Byrd, K., and Corces, V.G. (2000). A chromatin insulator determines 
the nuclear localization of DNA. Molecular cell 6, 1025-1035. 
 
Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., 
Khurana, E., Rozowsky, J., Alexander, R., et al. (2012). Architecture of the human 
regulatory network derived from ENCODE data. Nature 489, 91-100. 
 
Ghavi-Helm, Y., Klein, F.A., Pakozdi, T., Ciglar, L., Noordermeer, D., Huber, W., and 
Furlong, E.E. (2014). Enhancer loops appear stable during development and are 
associated with paused polymerase. Nature 512, 96-100. 
 
Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R., and Lieb, J.D. (2007). FAIRE 
(Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory 
elements from human chromatin. Genome research 17, 877-885. 
 
Gomes, N.P., Bjerke, G., Llorente, B., Szostek, S.A., Emerson, B.M., and Espinosa, 
J.M. (2006). Gene-specific requirement for P-TEFb activity and RNA polymerase II 
phosphorylation within the p53 transcriptional program. Genes & development 20, 601-
612. 
 
Gondor, A., and Ohlsson, R. (2009). Chromosome crosstalk in three dimensions. 
Nature 461, 212-217. 
 
Goode, E.L., Chenevix-Trench, G., Song, H., Ramus, S.J., Notaridou, M., Lawrenson, 
K., Widschwendter, M., Vierkant, R.A., Larson, M.C., Kjaer, S.K., et al. (2010). A 
genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 
and 8q24. Nature genetics 42, 874-879. 
 
Group, E.C.W. (2005). Noncontraceptive health benefits of combined oral 
contraception. Human reproduction update 11, 513-525. 



102 
 

Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, 
B.H., de Klein, A., Wessels, L., de Laat, W., et al. (2008). Domain organization of 
human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 
948-951. 
 
Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. (2007). A 
chromatin landmark and transcription initiation at most promoters in human cells. Cell 
130, 77-88. 
 
Gunther, K., Rust, M., Leers, J., Boettger, T., Scharfe, M., Jarek, M., Bartkuhn, M., and 
Renkawitz, R. (2013). Differential roles for MBD2 and MBD3 at methylated CpG islands, 
active promoters and binding to exon sequences. Nucleic Acids Res 41, 3010-3021. 
 
Hagege, H., Klous, P., Braem, C., Splinter, E., Dekker, J., Cathala, G., de Laat, W., and 
Forne, T. (2007). Quantitative analysis of chromosome conformation capture assays 
(3C-qPCR). Nat Protoc 2, 1722-1733. 
 
Hankinson, S.E., Colditz, G.A., Hunter, D.J., Spencer, T.L., Rosner, B., and Stampfer, 
M.J. (1992). A quantitative assessment of oral contraceptive use and risk of ovarian 
cancer. Obstetrics and gynecology 80, 708-714. 
 
Hanna-Rose, W., and Hansen, U. (1996). Active repression mechanisms of eukaryotic 
transcription repressors. Trends in genetics : TIG 12, 229-234. 
 
Hanna, L., and Adams, M. (2006). Prevention of ovarian cancer. Best practice & 
research Clinical obstetrics & gynaecology 20, 339-362. 
 
Hardy, J., and Singleton, A. (2009). Genomewide association studies and human 
disease. The New England journal of medicine 360, 1759-1768. 
 
Hazelett, D.J., Rhie, S.K., Gaddis, M., Yan, C., Lakeland, D.L., Coetzee, S.G., Ellipse, 
G.-O.N.c., Practical, c., Henderson, B.E., Noushmehr, H., et al. (2014). Comprehensive 
functional annotation of 77 prostate cancer risk loci. PLoS genetics 10, e1004102. 
 
Hebbar, P.B., and Archer, T.K. (2003). Chromatin remodeling by nuclear receptors. 
Chromosoma 111, 495-504. 
 
Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, 
Z., Lee, L.K., Stuart, R.K., Ching, C.W., et al. (2009). Histone modifications at human 
enhancers reflect global cell-type-specific gene expression. Nature 459, 108-112. 
 
Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D., Barrera, 
L.O., Van Calcar, S., Qu, C., Ching, K.A., et al. (2007). Distinct and predictive chromatin 
signatures of transcriptional promoters and enhancers in the human genome. Nature 
genetics 39, 311-318. 
 



103 
 

Hider, J.L., Gittelman, R.M., Shah, T., Edwards, M., Rosenbloom, A., Akey, J.M., and 
Parra, E.J. (2013). Exploring signatures of positive selection in pigmentation candidate 
genes in populations of East Asian ancestry. BMC evolutionary biology 13, 150. 
 
Hinkula, M., Pukkala, E., Kyyronen, P., and Kauppila, A. (2006). Incidence of ovarian 
cancer of grand multiparous women--a population-based study in Finland. Gynecologic 
oncology 103, 207-211. 
 
Hirschhorn, J.N., and Daly, M.J. (2005). Genome-wide association studies for common 
diseases and complex traits. Nature reviews Genetics 6, 95-108. 
 
Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-Andre, V., Sigova, A.A., Hoke, H.A., 
and Young, R.A. (2013). Super-enhancers in the control of cell identity and disease. 
Cell 155, 934-947. 
 
Hu, G., and Wade, P.A. (2012). NuRD and pluripotency: a complex balancing act. Cell 
Stem Cell 10, 497-503. 
 
Hunter, D.J., and Kraft, P. (2007). Drinking from the fire hose--statistical issues in 
genomewide association studies. The New England journal of medicine 357, 436-439. 
International HapMap, C. (2005). A haplotype map of the human genome. Nature 437, 
1299-1320. 
 
Ioannidis, J.P., Thomas, G., and Daly, M.J. (2009). Validating, augmenting and refining 
genome-wide association signals. Nature reviews Genetics 10, 318-329. 
 
Isalan, M., Choo, Y., and Klug, A. (1997). Synergy between adjacent zinc fingers in 
sequence-specific DNA recognition. Proceedings of the National Academy of Sciences 
of the United States of America 94, 5617-5621. 
 
Iuchi, S., and Green, H. (1999). Basonuclin, a zinc finger protein of keratinocytes and 
reproductive germ cells, binds to the rRNA gene promoter. Proceedings of the National 
Academy of Sciences of the United States of America 96, 9628-9632. 
 
Jacobs, L.C., Wollstein, A., Lao, O., Hofman, A., Klaver, C.C., Uitterlinden, A.G., 
Nijsten, T., Kayser, M., and Liu, F. (2013). Comprehensive candidate gene study 
highlights UGT1A and BNC2 as new genes determining continuous skin color variation 
in Europeans. Human genetics 132, 147-158. 
 
Jakobsdottir, J., Gorin, M.B., Conley, Y.P., Ferrell, R.E., and Weeks, D.E. (2009). 
Interpretation of genetic association studies: markers with replicated highly significant 
odds ratios may be poor classifiers. PLoS genetics 5, e1000337. 
 
Jimenez-Sanchez, G., Childs, B., and Valle, D. (2001). Human disease genes. Nature 
409, 853-855. 
 



104 
 

Jin, F., Li, Y., Dixon, J.R., Selvaraj, S., Ye, Z., Lee, A.Y., Yen, C.A., Schmitt, A.D., 
Espinoza, C.A., and Ren, B. (2013). A high-resolution map of the three-dimensional 
chromatin interactome in human cells. Nature 503, 290-294. 
 
Kagey, M.H., Newman, J.J., Bilodeau, S., Zhan, Y., Orlando, D.A., van Berkum, N.L., 
Ebmeier, C.C., Goossens, J., Rahl, P.B., Levine, S.S., et al. (2010). Mediator and 
cohesin connect gene expression and chromatin architecture. Nature 467, 430-435. 
 
Kanchi, K.L., Johnson, K.J., Lu, C., McLellan, M.D., Leiserson, M.D., Wendl, M.C., 
Zhang, Q., Koboldt, D.C., Xie, M., Kandoth, C., et al. (2014). Integrated analysis of 
germline and somatic variants in ovarian cancer. Nature communications 5, 3156. 
Kataoka, N., Yong, J., Kim, V.N., Velazquez, F., Perkinson, R.A., Wang, F., and 
Dreyfuss, G. (2000). Pre-mRNA splicing imprints mRNA in the nucleus with a novel 
RNA-binding protein that persists in the cytoplasm. Molecular cell 6, 673-682. 
 
Keaton, M.A., Taylor, C.M., Layer, R.M., and Dutta, A. (2011). Nuclear scaffold 
attachment sites within ENCODE regions associate with actively transcribed genes. 
PloS one 6, e17912. 
 
Kelemen, L.E., and Kobel, M. (2011). Mucinous carcinomas of the ovary and 
colorectum: different organ, same dilemma. The Lancet Oncology 12, 1071-1080. 
 
Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002). Empirical statistical 
model to estimate the accuracy of peptide identifications made by MS/MS and database 
search. Anal Chem 74, 5383-5392. 
 
Kellum, R., and Schedl, P. (1992). A group of scs elements function as domain 
boundaries in an enhancer-blocking assay. Molecular and cellular biology 12, 2424-
2431. 
 
Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and 
Haussler, D. (2002). The human genome browser at UCSC. Genome research 12, 996-
1006. 
 
Kerr, L.D. (1995). Electrophoretic mobility shift assay. Methods in enzymology 254, 619-
632. 
 
Khoury, G., and Gruss, P. (1983). Enhancer elements. Cell 33, 313-314. 
Kieffer-Kwon, K.R., Tang, Z., Mathe, E., Qian, J., Sung, M.H., Li, G., Resch, W., Baek, 
S., Pruett, N., Grontved, L., et al. (2013). Interactome maps of mouse gene regulatory 
domains reveal basic principles of transcriptional regulation. Cell 155, 1507-1520. 
 
King, B.L., Carcangiu, M.L., Carter, D., Kiechle, M., Pfisterer, J., Pfleiderer, A., and 
Kacinski, B.M. (1995). Microsatellite instability in ovarian neoplasms. British journal of 
cancer 72, 376-382. 
 



105 
 

Kisseljova, N.P., Dmitriev, P., Katargin, A., Kim, E., Ezerina, D., Markozashvili, D., 
Malysheva, D., Planche, E., Lemmers, R.J., van der Maarel, S.M., et al. (2014). DNA 
polymorphism and epigenetic marks modulate the affinity of a scaffold/matrix 
attachment region to the nuclear matrix. European journal of human genetics : EJHG 
22, 1117-1123. 
 
Klug, A. (2010). The discovery of zinc fingers and their applications in gene regulation 
and genome manipulation. Annual review of biochemistry 79, 213-231. 
 
Krause, S., Fakan, S., Weis, K., and Wahle, E. (1994). Immunodetection of poly(A) 
binding protein II in the cell nucleus. Experimental cell research 214, 75-82. 
 
Kuchenbaecker, K.B., Ramus, S.J., Tyrer, J., Lee, A., Shen, H.C., Beesley, J., 
Lawrenson, K., McGuffog, L., Healey, S., Lee, J.M., et al. (2015). Identification of six 
new susceptibility loci for invasive epithelial ovarian cancer. Nature genetics. 
 
Kulaeva, O.I., Nizovtseva, E.V., Polikanov, Y.S., Ulianov, S.V., and Studitsky, V.M. 
(2012). Distant activation of transcription: mechanisms of enhancer action. Molecular 
and cellular biology 32, 4892-4897. 
 
Kuusisto, K.M., Bebel, A., Vihinen, M., Schleutker, J., and Sallinen, S.L. (2011). 
Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations 
in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer 
individuals. Breast cancer research : BCR 13, R20. 
 
Lam, K.N., van Bakel, H., Cote, A.G., van der Ven, A., and Hughes, T.R. (2011). 
Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays. 
Nucleic acids research 39, 4680-4690. 
 
Lamond, A.I., and Spector, D.L. (2003). Nuclear speckles: a model for nuclear 
organelles. Nature reviews Molecular cell biology 4, 605-612. 
 
Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., 
Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the 
human genome. Nature 409, 860-921. 
 
Lang, M.R., Patterson, L.B., Gordon, T.N., Johnson, S.L., and Parichy, D.M. (2009). 
Basonuclin-2 requirements for zebrafish adult pigment pattern development and female 
fertility. PLoS genetics 5, e1000744. 
 
Lawrenson, K., Benjamin, E., Turmaine, M., Jacobs, I., Gayther, S., and Dafou, D. 
(2009). In vitro three-dimensional modelling of human ovarian surface epithelial cells. 
Cell Prolif 42, 385-393. 
 
 



106 
 

Lawrenson, K., Grun, B., Benjamin, E., Jacobs, I.J., Dafou, D., and Gayther, S.A. 
(2010). Senescent fibroblasts promote neoplastic transformation of partially transformed 
ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. 
Neoplasia 12, 317-325. 
 
Lee, K.R., and Young, R.H. (2003). The distinction between primary and metastatic 
mucinous carcinomas of the ovary: gross and histologic findings in 50 cases. The 
American journal of surgical pathology 27, 281-292. 
 
Lee, T.I., and Young, R.A. (2000). Transcription of eukaryotic protein-coding genes. 
Annual review of genetics 34, 77-137. 
 
Lee, Y., Miron, A., Drapkin, R., Nucci, M.R., Medeiros, F., Saleemuddin, A., Garber, J., 
Birch, C., Mou, H., Gordon, R.W., et al. (2007). A candidate precursor to serous 
carcinoma that originates in the distal fallopian tube. The Journal of pathology 211, 26-
35. 
 
Leong, H.S., Galletta, L., Etemadmoghadam, D., George, J., Australian Ovarian 
Cancer, S., Kobel, M., Ramus, S.J., and Bowtell, D. (2015). Efficient molecular subtype 
classification of high-grade serous ovarian cancer. The Journal of pathology 236, 272-
277. 
 
Li, Q., Harju, S., and Peterson, K.R. (1999). Locus control regions: coming of age at a 
decade plus. Trends in genetics : TIG 15, 403-408. 
 
Li, Q., Seo, J.H., Stranger, B., McKenna, A., Pe'er, I., Laframboise, T., Brown, M., 
Tyekucheva, S., and Freedman, M.L. (2013). Integrative eQTL-based analyses reveal 
the biology of breast cancer risk loci. Cell 152, 633-641. 
 
Lindblom, B., Hamberger, L., and Ljung, B. (1980). Contractile patterns of isolated 
oviductal smooth muscle under different hormonal conditions. Fertility and sterility 33, 
283-287. 
 
Linnemann, A.K., Platts, A.E., and Krawetz, S.A. (2009). Differential nuclear 
scaffold/matrix attachment marks expressed genes. Human molecular genetics 18, 645-
654. 
 
Liu, T., Ortiz, J.A., Taing, L., Meyer, C.A., Lee, B., Zhang, Y., Shin, H., Wong, S.S., Ma, 
J., Lei, Y., et al. (2011). Cistrome: an integrative platform for transcriptional regulation 
studies. Genome biology 12, R83. 
 
Lu, K.H., and Daniels, M. (2013). Endometrial and ovarian cancer in women with Lynch 
syndrome: update in screening and prevention. Familial cancer 12, 273-277. 
 
Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA 
datasets. Bioinformatics 27, 1696-1697. 



107 
 

Mahoney, M.G., Tang, W., Xiang, M.M., Moss, S.B., Gerton, G.L., Stanley, J.R., and 
Tseng, H. (1998). Translocation of the zinc finger protein basonuclin from the mouse 
germ cell nucleus to the midpiece of the spermatozoon during spermiogenesis. Biology 
of reproduction 59, 388-394. 
 
Maisey, K., Nardocci, G., Imarai, M., Cardenas, H., Rios, M., Croxatto, H.B., Heckels, 
J.E., Christodoulides, M., and Velasquez, L.A. (2003). Expression of proinflammatory 
cytokines and receptors by human fallopian tubes in organ culture following challenge 
with Neisseria gonorrhoeae. Infection and immunity 71, 527-532. 
 
Malander, S., Rambech, E., Kristoffersson, U., Halvarsson, B., Ridderheim, M., Borg, 
A., and Nilbert, M. (2006). The contribution of the hereditary nonpolyposis colorectal 
cancer syndrome to the development of ovarian cancer. Gynecologic oncology 101, 
238-243. 
 
Manolio, T.A. (2010). Genomewide association studies and assessment of the risk of 
disease. The New England journal of medicine 363, 166-176. 
 
Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., 
McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., et al. (2009). Finding the 
missing heritability of complex diseases. Nature 461, 747-753. 
 
Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., 
Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic localization 
of common disease-associated variation in regulatory DNA. Science 337, 1190-1195. 
 
McGee, Z.A., Jensen, R.L., Clemens, C.M., Taylor-Robinson, D., Johnson, A.P., and 
Gregg, C.R. (1999). Gonococcal infection of human fallopian tube mucosa in organ 
culture: relationship of mucosal tissue TNF-alpha concentration to sloughing of ciliated 
cells. Sexually transmitted diseases 26, 160-165. 
 
Meindl, A., Hellebrand, H., Wiek, C., Erven, V., Wappenschmidt, B., Niederacher, D., 
Freund, M., Lichtner, P., Hartmann, L., Schaal, H., et al. (2010). Germline mutations in 
breast and ovarian cancer pedigrees establish RAD51C as a human cancer 
susceptibility gene. Nature genetics 42, 410-414. 
 
Messina, D.N., Glasscock, J., Gish, W., and Lovett, M. (2004). An ORFeome-based 
analysis of human transcription factor genes and the construction of a microarray to 
interrogate their expression. Genome research 14, 2041-2047. 
 
Meyer, L.A., Broaddus, R.R., and Lu, K.H. (2009). Endometrial cancer and Lynch 
syndrome: clinical and pathologic considerations. Cancer control : journal of the Moffitt 
Cancer Center 16, 14-22. 
 



108 
 

Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P.A., Harshman, K., Tavtigian, S., 
Liu, Q., Cochran, C., Bennett, L.M., Ding, W., et al. (1994). A strong candidate for the 
breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66-71. 
 
Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, 
P., Brockman, W., Kim, T.K., Koche, R.P., et al. (2007). Genome-wide maps of 
chromatin state in pluripotent and lineage-committed cells. Nature 448, 553-560. 
 
Minion, L.E., Dolinsky, J.S., Chase, D.M., Dunlop, C.L., Chao, E.C., and Monk, B.J. 
(2015). Hereditary predisposition to ovarian cancer, looking beyond BRCA1/BRCA2. 
Gynecologic oncology 137, 86-92. 
 
Mirkovitch, J., Mirault, M.E., and Laemmli, U.K. (1984). Organization of the higher-order 
chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223-232. 
 
Modugno, F., Ness, R.B., Allen, G.O., Schildkraut, J.M., Davis, F.G., and Goodman, 
M.T. (2004). Oral contraceptive use, reproductive history, and risk of epithelial ovarian 
cancer in women with and without endometriosis. American journal of obstetrics and 
gynecology 191, 733-740. 
 
Monteiro, A.N., and Freedman, M.L. (2013). Lessons from postgenome-wide 
association studies: functional analysis of cancer predisposition loci. Journal of internal 
medicine 274, 414-424. 
 
Najafabadi, H.S., Mnaimneh, S., Schmitges, F.W., Garton, M., Lam, K.N., Yang, A., 
Albu, M., Weirauch, M.T., Radovani, E., Kim, P.M., et al. (2015). C2H2 zinc finger 
proteins greatly expand the human regulatory lexicon. Nature biotechnology. 
 
Narlikar, G.J., Fan, H.Y., and Kingston, R.E. (2002). Cooperation between complexes 
that regulate chromatin structure and transcription. Cell 108, 475-487. 
 
Nash, M.A., Ferrandina, G., Gordinier, M., Loercher, A., and Freedman, R.S. (1999). 
The role of cytokines in both the normal and malignant ovary. Endocrine-related cancer 
6, 93-107. 
 
Nef, S., Schaad, O., Stallings, N.R., Cederroth, C.R., Pitetti, J.L., Schaer, G., Malki, S., 
Dubois-Dauphin, M., Boizet-Bonhoure, B., Descombes, P., et al. (2005). Gene 
expression during sex determination reveals a robust female genetic program at the 
onset of ovarian development. Dev Biol 287, 361-377. 
 
Neph, S., Vierstra, J., Stergachis, A.B., Reynolds, A.P., Haugen, E., Vernot, B., 
Thurman, R.E., John, S., Sandstrom, R., Johnson, A.K., et al. (2012). An expansive 
human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83-90. 
 



109 
 

Ness, R.B., Grisso, J.A., Cottreau, C., Klapper, J., Vergona, R., Wheeler, J.E., Morgan, 
M., and Schlesselman, J.J. (2000). Factors related to inflammation of the ovarian 
epithelium and risk of ovarian cancer. Epidemiology 11, 111-117. 
 
Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. (2003). A statistical model for 
identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646-4658. 
 
Nezhat, F., Datta, M.S., Hanson, V., Pejovic, T., Nezhat, C., and Nezhat, C. (2008). The 
relationship of endometriosis and ovarian malignancy: a review. Fertility and sterility 90, 
1559-1570. 
 
Ohlsson, R., Renkawitz, R., and Lobanenkov, V. (2001). CTCF is a uniquely versatile 
transcription regulator linked to epigenetics and disease. Trends in genetics : TIG 17, 
520-527. 
 
Pagano, J.S., Blaser, M., Buendia, M.A., Damania, B., Khalili, K., Raab-Traub, N., and 
Roizman, B. (2004). Infectious agents and cancer: criteria for a causal relation. 
Seminars in cancer biology 14, 453-471. 
 
Pal, T., and Bhattacharyya, A.K. (1989). Structural changes in human cervical mucus. 
The Indian journal of medical research 90, 44-50. 
 
Pascuzzi, P.E., Flores-Vergara, M.A., Lee, T.J., Sosinski, B., Vaughn, M.W., Hanley-
Bowdoin, L., Thompson, W.F., and Allen, G.C. (2014). In vivo mapping of arabidopsis 
scaffold/matrix attachment regions reveals link to nucleosome-disfavoring poly(dA:dT) 
tracts. The Plant cell 26, 102-120. 
 
Pavletich, N.P., and Pabo, C.O. (1991). Zinc finger-DNA recognition: crystal structure of 
a Zif268-DNA complex at 2.1 A. Science 252, 809-817. 
 
Pennacchio, L.A., Ahituv, N., Moses, A.M., Prabhakar, S., Nobrega, M.A., Shoukry, M., 
Minovitsky, S., Dubchak, I., Holt, A., Lewis, K.D., et al. (2006). In vivo enhancer analysis 
of human conserved non-coding sequences. Nature 444, 499-502. 
 
Pennington, K.P., and Swisher, E.M. (2012). Hereditary ovarian cancer: beyond the 
usual suspects. Gynecologic oncology 124, 347-353. 
 
Pennington, K.P., Walsh, T., Harrell, M.I., Lee, M.K., Pennil, C.C., Rendi, M.H., 
Thornton, A., Norquist, B.M., Casadei, S., Nord, A.S., et al. (2014). Germline and 
somatic mutations in homologous recombination genes predict platinum response and 
survival in ovarian, fallopian tube, and peritoneal carcinomas. Clinical cancer research : 
an official journal of the American Association for Cancer Research 20, 764-775. 
 
Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999). Probability-based 
protein identification by searching sequence databases using mass spectrometry data. 
Electrophoresis 20, 3551-3567. 



110 
 

Permuth-Wey, J., Lawrenson, K., Shen, H.C., Velkova, A., Tyrer, J.P., Chen, Z., Lin, 
H.Y., Ann Chen, Y., Tsai, Y.Y., Qu, X., et al. (2013). Identification and molecular 
characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nature 
communications 4, 1627. 
 
Pharoah, P.D., Dunning, A.M., Ponder, B.A., and Easton, D.F. (2004). Association 
studies for finding cancer-susceptibility genetic variants. Nature reviews Cancer 4, 850-
860. 
 
Pharoah, P.D., and Ponder, B.A. (2002). The genetics of ovarian cancer. Best practice 
& research Clinical obstetrics & gynaecology 16, 449-468. 
 
Pharoah, P.D., Tsai, Y.Y., Ramus, S.J., Phelan, C.M., Goode, E.L., Lawrenson, K., 
Buckley, M., Fridley, B.L., Tyrer, J.P., Shen, H., et al. (2013). GWAS meta-analysis and 
replication identifies three new susceptibility loci for ovarian cancer. Nature genetics 45, 
362-370. 
 
Piek, J.M., van Diest, P.J., Zweemer, R.P., Jansen, J.W., Poort-Keesom, R.J., Menko, 
F.H., Gille, J.J., Jongsma, A.P., Pals, G., Kenemans, P., et al. (2001). Dysplastic 
changes in prophylactically removed Fallopian tubes of women predisposed to 
developing ovarian cancer. The Journal of pathology 195, 451-456. 
 
Plank, J.L., and Dean, A. (2014). Enhancer function: mechanistic and genome-wide 
insights come together. Molecular cell 55, 5-14. 
 
Pritchard, J.K. (2001). Are rare variants responsible for susceptibility to complex 
diseases? American journal of human genetics 69, 124-137. 
 
Rafnar, T., Gudbjartsson, D.F., Sulem, P., Jonasdottir, A., Sigurdsson, A., Jonasdottir, 
A., Besenbacher, S., Lundin, P., Stacey, S.N., Gudmundsson, J., et al. (2011). 
Mutations in BRIP1 confer high risk of ovarian cancer. Nature genetics 43, 1104-1107. 
 
Ramakrishna, M., Williams, L.H., Boyle, S.E., Bearfoot, J.L., Sridhar, A., Speed, T.P., 
Gorringe, K.L., and Campbell, I.G. (2010). Identification of candidate growth promoting 
genes in ovarian cancer through integrated copy number and expression analysis. 
PLoS One 5, e9983. 
 
Ramirez, C.L., Foley, J.E., Wright, D.A., Muller-Lerch, F., Rahman, S.H., Cornu, T.I., 
Winfrey, R.J., Sander, J.D., Fu, F., Townsend, J.A., et al. (2008). Unexpected failure 
rates for modular assembly of engineered zinc fingers. Nat Methods 5, 374-375. 
 
Ramirez, J., and Hagman, J. (2009). The Mi-2/NuRD complex: a critical epigenetic 
regulator of hematopoietic development, differentiation and cancer. Epigenetics 4, 532-
536. 
 



111 
 

Ramus, S.J., Antoniou, A.C., Kuchenbaecker, K.B., Soucy, P., Beesley, J., Chen, X., 
McGuffog, L., Sinilnikova, O.M., Healey, S., Barrowdale, D., et al. (2012). Ovarian 
cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation 
carriers. Human mutation 33, 690-702. 
 
Ramus, S.J., Harrington, P.A., Pye, C., DiCioccio, R.A., Cox, M.J., Garlinghouse-Jones, 
K., Oakley-Girvan, I., Jacobs, I.J., Hardy, R.M., Whittemore, A.S., et al. (2007). 
Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Human 
mutation 28, 1207-1215. 
 
Ramus, S.J., Kartsonaki, C., Gayther, S.A., Pharoah, P.D., Sinilnikova, O.M., Beesley, 
J., Chen, X., McGuffog, L., Healey, S., Couch, F.J., et al. (2011). Genetic variation at 
9p22.2 and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Journal of the 
National Cancer Institute 103, 105-116. 
 
Ravasi, T., Huber, T., Zavolan, M., Forrest, A., Gaasterland, T., Grimmond, S., Hume, 
D.A., Group, R.G., and Members, G.S.L. (2003). Systematic characterization of the 
zinc-finger-containing proteins in the mouse transcriptome. Genome research 13, 1430-
1442. 
 
Reich, D.E., and Lander, E.S. (2001). On the allelic spectrum of human disease. Trends 
in genetics : TIG 17, 502-510. 
 
Riman, T., Persson, I., and Nilsson, S. (1998). Hormonal aspects of epithelial ovarian 
cancer: review of epidemiological evidence. Clinical endocrinology 49, 695-707. 
 
Risch, H.A. (1998). Hormonal etiology of epithelial ovarian cancer, with a hypothesis 
concerning the role of androgens and progesterone. Journal of the National Cancer 
Institute 90, 1774-1786. 
 
Risch, N., and Merikangas, K. (1996). The future of genetic studies of complex human 
diseases. Science 273, 1516-1517. 
 
Risch, N.J. (2000). Searching for genetic determinants in the new millennium. Nature 
405, 847-856. 
 
Romano, R.A., Li, H., Tummala, R., Maul, R., and Sinha, S. (2004). Identification of 
Basonuclin2, a DNA-binding zinc-finger protein expressed in germ tissues and skin 
keratinocytes. Genomics 83, 821-833. 
 
Salehi, F., Dunfield, L., Phillips, K.P., Krewski, D., and Vanderhyden, B.C. (2008). Risk 
factors for ovarian cancer: an overview with emphasis on hormonal factors. Journal of 
toxicology and environmental health Part B, Critical reviews 11, 301-321. 
 
 
 



112 
 

Salvador, S., Gilks, B., Kobel, M., Huntsman, D., Rosen, B., and Miller, D. (2009). The 
fallopian tube: primary site of most pelvic high-grade serous carcinomas. International 
journal of gynecological cancer : official journal of the International Gynecological 
Cancer Society 19, 58-64. 
 
Sankararaman, S., Mallick, S., Dannemann, M., Prufer, K., Kelso, J., Paabo, S., 
Patterson, N., and Reich, D. (2014). The genomic landscape of Neanderthal ancestry in 
present-day humans. Nature 507, 354-357. 
 
Sanyal, A., Lajoie, B.R., Jain, G., and Dekker, J. (2012). The long-range interaction 
landscape of gene promoters. Nature 489, 109-113. 
Schindler, R., Nilsson, E., and Skinner, M.K. (2010). Induction of ovarian primordial 
follicle assembly by connective tissue growth factor CTGF. PLoS One 5, e12979. 
 
Shen, H., Fridley, B.L., Song, H., Lawrenson, K., Cunningham, J.M., Ramus, S.J., 
Cicek, M.S., Tyrer, J., Stram, D., Larson, M.C., et al. (2013). Epigenetic analysis leads 
to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. 
Nature communications 4, 1628. 
 
Song, H., Ramus, S.J., Tyrer, J., Bolton, K.L., Gentry-Maharaj, A., Wozniak, E., Anton-
Culver, H., Chang-Claude, J., Cramer, D.W., DiCioccio, R., et al. (2009). A genome-
wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. 
Nature genetics 41, 996-1000. 
 
Strandell, A., Thorburn, J., and Wallin, A. (2004). The presence of cytokines and growth 
factors in hydrosalpingeal fluid. Journal of assisted reproduction and genetics 21, 241-
247. 
 
Stranger, B.E., Stahl, E.A., and Raj, T. (2011). Progress and promise of genome-wide 
association studies for human complex trait genetics. Genetics 187, 367-383. 
Stratton, J.F., Pharoah, P., Smith, S.K., Easton, D., and Ponder, B.A. (1998). A 
systematic review and meta-analysis of family history and risk of ovarian cancer. British 
journal of obstetrics and gynaecology 105, 493-499. 
 
Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes 
& development 12, 599-606. 
Sueblinvong, T., and Carney, M.E. (2009). Current understanding of risk factors for 
ovarian cancer. Current treatment options in oncology 10, 67-81. 
 
Swift, S., Lorens, J., Achacoso, P., and Nolan, G.P. (2001). Rapid production of 
retroviruses for efficient gene delivery to mammalian cells using 293T cell-based 
systems. Curr Protoc Immunol Chapter 10, Unit 10 17C. 
 
 
 



113 
 

Tan, T.Z., Miow, Q.H., Huang, R.Y., Wong, M.K., Ye, J., Lau, J.A., Wu, M.C., Bin Abdul 
Hadi, L.H., Soong, R., Choolani, M., et al. (2013). Functional genomics identifies five 
distinct molecular subtypes with clinical relevance and pathways for growth control in 
epithelial ovarian cancer. EMBO molecular medicine 5, 983-998. 
 
TCGA (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615. 
Thorstenson, Y.R., Roxas, A., Kroiss, R., Jenkins, M.A., Yu, K.M., Bachrich, T., Muhr, 
D., Wayne, T.L., Chu, G., Davis, R.W., et al. (2003). Contributions of ATM mutations to 
familial breast and ovarian cancer. Cancer research 63, 3325-3333. 
 
Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M.T., Haugen, E., 
Sheffield, N.C., Stergachis, A.B., Wang, H., Vernot, B., et al. (2012). The accessible 
chromatin landscape of the human genome. Nature 489, 75-82. 
 
Tian, Q., Kopf, G.S., Brown, R.S., and Tseng, H. (2001). Function of basonuclin in 
increasing transcription of the ribosomal RNA genes during mouse oogenesis. 
Development 128, 407-416. 
 
Tothill, R.W., Tinker, A.V., George, J., Brown, R., Fox, S.B., Lade, S., Johnson, D.S., 
Trivett, M.K., Etemadmoghadam, D., Locandro, B., et al. (2008). Novel molecular 
subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical 
cancer research : an official journal of the American Association for Cancer Research 
14, 5198-5208. 
 
Tseng, H., Biegel, J.A., and Brown, R.S. (1999). Basonuclin is associated with the 
ribosomal RNA genes on human keratinocyte mitotic chromosomes. Journal of cell 
science 112 Pt 18, 3039-3047. 
 
Tseng, H., and Green, H. (1992). Basonuclin: a keratinocyte protein with multiple paired 
zinc fingers. Proceedings of the National Academy of Sciences of the United States of 
America 89, 10311-10315. 
 
Tupler, R., Perini, G., and Green, M.R. (2001). Expressing the human genome. Nature 
409, 832-833. 
 
Turner, N., Tutt, A., and Ashworth, A. (2004). Hallmarks of 'BRCAness' in sporadic 
cancers. Nature reviews Cancer 4, 814-819. 
van Arensbergen, J., van Steensel, B., and Bussemaker, H.J. (2014). In search of the 
determinants of enhancer-promoter interaction specificity. Trends in cell biology 24, 
695-702. 
 
Vanhoutteghem, A., Bouche, C., Maciejewski-Duval, A., Herve, F., and Djian, P. (2011). 
Basonuclins and disco: Orthologous zinc finger proteins essential for development in 
vertebrates and arthropods. Biochimie 93, 127-133. 



114 
 

Vanhoutteghem, A., and Djian, P. (2004). Basonuclin 2: an extremely conserved 
homolog of the zinc finger protein basonuclin. Proceedings of the National Academy of 
Sciences of the United States of America 101, 3468-3473. 
 
Vanhoutteghem, A., and Djian, P. (2006). Basonuclins 1 and 2, whose genes share a 
common origin, are proteins with widely different properties and functions. Proceedings 
of the National Academy of Sciences of the United States of America 103, 12423-
12428. 
 
Vanhoutteghem, A., and Djian, P. (2007). The human basonuclin 2 gene has the 
potential to generate nearly 90,000 mRNA isoforms encoding over 2000 different 
proteins. Genomics 89, 44-58. 
 
Vanhoutteghem, A., Maciejewski-Duval, A., Bouche, C., Delhomme, B., Herve, F., 
Daubigney, F., Soubigou, G., Araki, M., Araki, K., Yamamura, K., et al. (2009). 
Basonuclin 2 has a function in the multiplication of embryonic craniofacial mesenchymal 
cells and is orthologous to disco proteins. Proc Natl Acad Sci U S A 106, 14432-14437. 
 
Vanhoutteghem, A., Messiaen, S., Herve, F., Delhomme, B., Moison, D., Petit, J.M., 
Rouiller-Fabre, V., Livera, G., and Djian, P. (2014). The zinc-finger protein basonuclin 2 
is required for proper mitotic arrest, prevention of premature meiotic initiation and 
meiotic progression in mouse male germ cells. Development 141, 4298-4310. 
 
Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., and Luscombe, N.M. (2009). A 
census of human transcription factors: function, expression and evolution. Nature 
reviews Genetics 10, 252-263. 
 
Vaughan, S., Coward, J.I., Bast, R.C., Jr., Berchuck, A., Berek, J.S., Brenton, J.D., 
Coukos, G., Crum, C.C., Drapkin, R., Etemadmoghadam, D., et al. (2011). Rethinking 
ovarian cancer: recommendations for improving outcomes. Nature reviews Cancer 11, 
719-725. 
 
Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, 
H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001). The sequence of the human 
genome. Science 291, 1304-1351. 
 
Vernot, B., and Akey, J.M. (2014). Resurrecting surviving Neandertal lineages from 
modern human genomes. Science 343, 1017-1021. 
 
Visser, M., Palstra, R.J., and Kayser, M. (2014). Human skin color is influenced by an 
intergenic DNA polymorphism regulating transcription of the nearby BNC2 pigmentation 
gene. Hum Mol Genet. 
 
 
 



115 
 

Walsh, T., Casadei, S., Lee, M.K., Pennil, C.C., Nord, A.S., Thornton, A.M., Roeb, W., 
Agnew, K.J., Stray, S.M., Wickramanayake, A., et al. (2011). Mutations in 12 genes for 
inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively 
parallel sequencing. Proceedings of the National Academy of Sciences of the United 
States of America 108, 18032-18037. 
 
Weirauch, M.T., and Hughes, T.R. (2011). A catalogue of eukaryotic transcription factor 
types, their evolutionary origin, and species distribution. Sub-cellular biochemistry 52, 
25-73. 
 
Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., 
Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., et al. (2014). Determination and 
inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431-1443. 
 
West, A.G., Gaszner, M., and Felsenfeld, G. (2002). Insulators: many functions, many 
mechanisms. Genes & development 16, 271-288. 
 
Wolfe, S.A., Grant, R.A., Elrod-Erickson, M., and Pabo, C.O. (2001). Beyond the 
"recognition code": structures of two Cys2His2 zinc finger/TATA box complexes. 
Structure 9, 717-723. 
 
Wolfe, S.A., Nekludova, L., and Pabo, C.O. (2000). DNA recognition by Cys2His2 zinc 
finger proteins. Annual review of biophysics and biomolecular structure 29, 183-212. 
 
Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafsson, S., Chu, A.Y., 
Estrada, K., Luan, J., Kutalik, Z., et al. (2014). Defining the role of common variation in 
the genomic and biological architecture of adult human height. Nat Genet 46, 1173-
1186. 
 
Woods, N.T., Mesquita, R.D., Sweet, M., Carvalho, M.A., Li, X., Liu, Y., Nguyen, H., 
Thomas, C.E., Iversen, E.S., Jr., Marsillac, S., et al. (2012). Charting the landscape of 
tandem BRCT domain-mediated protein interactions. Sci Signal 5, rs6. 
 
Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., Collins, N., 
Gregory, S., Gumbs, C., and Micklem, G. (1995). Identification of the breast cancer 
susceptibility gene BRCA2. Nature 378, 789-792. 
 
Workman, J.L., and Kingston, R.E. (1998). Alteration of nucleosome structure as a 
mechanism of transcriptional regulation. Annual review of biochemistry 67, 545-579. 
 
Wray, N.R., Goddard, M.E., and Visscher, P.M. (2008). Prediction of individual genetic 
risk of complex disease. Current opinion in genetics & development 18, 257-263. 
 
Yang, W.M., Yao, Y.L., and Seto, E. (2001). The FK506-binding protein 25 functionally 
associates with histone deacetylases and with transcription factor YY1. The EMBO 
journal 20, 4814-4825. 



116 
 

Yang, Z., Gallicano, G.I., Yu, Q.C., and Fuchs, E. (1997). An unexpected localization of 
basonuclin in the centrosome, mitochondria, and acrosome of developing spermatids. 
The Journal of cell biology 137, 657-669. 
 
Zhang, B., Kirov, S., and Snoddy, J. (2005). WebGestalt: an integrated system for 
exploring gene sets in various biological contexts. Nucleic acids research 33, W741-
748. 
 
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., 
Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of 
ChIP-Seq (MACS). Genome biology 9, R137. 
 
Zhang, Y., Wong, C.H., Birnbaum, R.Y., Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., 
Poh, H.M., Wong, E., et al. (2013). Chromatin connectivity maps reveal dynamic 
promoter-enhancer long-range associations. Nature 504, 306-310. 
 
Zheng, H., Kavanagh, J.J., Hu, W., Liao, Q., and Fu, S. (2007). Hormonal therapy in 
ovarian cancer. International journal of gynecological cancer : official journal of the 
International Gynecological Cancer Society 17, 325-338. 
 
Zhou, Z., Luo, M.J., Straesser, K., Katahira, J., Hurt, E., and Reed, R. (2000). The 
protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 
407, 401-405. 



 

 
 

 
 

ABOUT THE AUTHOR 
 Melissa Ann Buckley (Price) grew up in Arvada, Colorado hiking, skiing, and 

playing soccer. She attended the University of Colorado in Boulder for undergraduate 

and as the first in her family to attend a state university. From day one she wanted to 

study the sciences and was a Molecular Cellular and Developmental Biology major.  

  Melissa’s lab experience first began during an internship with a small 

pharmaceutical company, Replidyne in Louisville, CO. For her main project she 

measured the changes in activity of mutant methionly-tRNA synthetase of C. dificile. 

She thoroughly enjoyed the collaborative and creative atmosphere. She knew after this 

experience she wanted to continue her research career, thus she applied to the Cancer 

Biology PhD program at Moffitt Cancer Center, University of South Florida.  

Her recent research was conducted in the lab of Dr. Alvaro Monteiro. Her thesis 

project included identifying the regulatory regions that overlap with SNPs identified in 

genome wide association studies for ovarian cancer and identifying the downstream 

target genes of those regulatory regions. Broadly, the Monteiro lab took on the research 

of several potential regulatory regions for ovarian cancer predisposition. Melissa helped 

develop many of the assays not previously performed in the lab but required for the 

emerging field; truly a challenge.  

 While in the Monteiro lab Melissa received an award from the ARCS 

(Achievement Reward for College Scientists) Foundation. She also obtained the Ruth L. 

Kirschstein National Research Service Award from the NIH. 


	University of South Florida
	Scholar Commons
	January 2015

	Functional Analysis of the Ovarian Cancer Susceptibility Locus at 9p22.2 Reveals a Transcription Regulatory Network Mediated by BNC2 in Ovarian Cells
	Melissa Buckley
	Scholar Commons Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER ONE:
	BACKGROUND
	Ovarian Cancer
	Ovarian Cancer Subtypes
	Risk Factors and Pathogenesis
	Genetic Predisposition to Ovarian Cancer

	Genome Wide Association Studies
	Linkage Analysis versus GWAS
	Principles of GWAS
	Caveats of GWAS
	Ovarian Cancer GWAS
	Functional Analysis of Susceptibility Loci

	Transcriptional Regulation
	Basics of Transcriptional Regulation
	Transcription Factor Binding
	Chromatin Structure
	3D Structure of the Genome


	CHAPTER TWO:
	IDENTIFYING FUNCTIONAL SNPS
	Introduction
	Results
	Candidate Functional SNPs
	Functional Analysis of SNPs
	SNPs with Allele Specific Effects

	Summary
	Materials and Methods
	Candidate Functional SNPs
	Cell Lines and Cell Type-specific Datasets
	FAIRE-Seq and ChIP-Seq for Histone Modifications
	Enhancer Scanning
	Genome Browser
	Electrophoretic Mobility Shift Assays


	CHAPTER THREE:
	IDENTIFICATION OF TARGET GENE
	Introduction
	Results
	BNC2 and CNTLN as Candidate Target Genes
	Region 8 is in Physical Proximity to the TSS of BNC2 in Ovarian Cells

	Summary
	Materials and Methods
	eQTL Analysis
	3C


	CHAPTER FOUR:
	FUNCTIONAL ANALYSIS OF BNC2
	Review of Basonculin 2
	Identification of Basonuclin 2 and comparison to Basonculin 1
	Expression of BNC2
	Function of BNC2

	Results
	C2H2 Zinc Finger Proteins
	BNC2 Zinc Fingers Recognize Specific DNA Sequences in vitro
	BNC2 Genome-wide Target Sites
	Identification and Validation of BNC2 Target Genes
	BNC2 Interacts with the NuRD Complex

	Summary
	Materials and Methods
	Protein Binding Microarray
	ChIP/ChIP-Seq for BNC2
	Nanostring
	Tandem Affinity Purification coupled to LC-MS/MS
	Transcriptional Repression Assay


	CHAPTER FIVE:
	DISCUSSION
	REFERENCES
	ABOUT THE AUTHOR

