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STATISTICAL AND DATA MINING METHODOLOGIES FOR
BEHAVIORAL ANALYSIS IN TRANSGENIC MOUSE MODELS OF

ALZHEIMER’S DISEASE: PARALLELS WITH HUMAN AD
EVALUATION

Ralph E. Leighty

ABSTRACT

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the

leading cause of human senile dementia. Alzheimer’s represents a significant public

health concern, having widespread social and economic implications. Consequently,

protocols for early detection and therapeutic intervention (both behavioral and phar-

macologic) constitute important targets for medical investigation. Furthermore, con-

temporary research depends upon comprehensive neurobehavioral assessment and

advanced statistical and computational analytic methodologies for characterizing

AD-associated sensorimotor and cognitive impairment, as well as evaluating thera-

peutic efficacy. This dissertation introduces data mining-based techniques (decision

trees, neural networks, support vector machines) for behavioral analysis in both

nontransgenic and Alzheimer’s transgenic mice, to evaluate the cognitive benefits of

long-term caffeine treatment. Both treatment and transgenic effects are identified

through advanced statistical (discriminant analysis) and data mining approaches. In

addition, a novel mouse-based cognitive assessment paradigm, adapted from a hu-

man interference learning AD-diagnostic protocol, is implemented to evaluate both

genetic (GRK5) and therapeutic (GM-CSF) effects in mice, against an Alzheimer’s

transgenic background. Data mining techniques are shown to be comparable to con-
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ventional statistical analyses, often providing complementary diagnostic information.

Indeed, comparisons between data mining-based and multivariate statistical analy-

ses, with respect to groupwise discriminability, support the use of both methodolo-

gies in neurobehavioral research. Future work involving both data mining-based and

multivariate statistical analyses of cognitive-behavioral data is discussed, emphasiz-

ing the need for longitudinal studies, repeated-measure designs, and spatiotemporal

modeling for evaluating the time-course of both human AD and AD-like pathology

in transgenic mouse models.
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CHAPTER 1

BACKGROUND

1.1 History of Alzheimer’s Disease

Alzheimer’s disease (AD; OMIM 104300) is a progressive, degenerative neurolog-

ical disorder, characterized by sensorimotor, perceptual, and cognitive impairment

and the development of distinctive neuropathologic lesions. The disorder was first

described in 1907 by the German psychiatrist Alois Alzheimer (1864-1915), who

reported the case of a 51-year-old woman who initially presented with paranoia,

confusion, and memory and language impairment (Alzheimer, 1907; Stelzmann et

al., 1995; Maurer et al., 1997). Her mental deterioration continued until her death

four and one-half years later. Postmortem neurohistological examination revealed

proteinaceous extracellular neuritic plaques and intracellular neurofibrillary tangles;

Alzheimer was the first to identify the latter finding (Graeber et al., 1998; Graeber,

1999). The presence of both neuropathologic markers represents confirmatory evi-

dence of Alzheimer’s disease, although neither is specific for AD (Markesbery, 1997;

Selkoe, 2001; Adlard and Cummings, 2004).

The leading cause of senile dementia is Alzheimer’s disease, affecting approxi-

mately ten percent of people over the age of 65 years and forty percent of those over

80 years of age (Evans et al., 1989). Currently, about five million Americans have

Alzheimer’s disease, and the number may increase to as many as sixteen million by

2050 (Hebert et al., 2003; Alzheimer’s Association, 2008). The increasing prevalence
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of Alzheimer’s disease represents a significant public health concern (Brookmeyer et

al., 1998), with widespread social and economic consequences.

1.2 Behavioral Characterization of Alzheimer’s Disease

Reflecting the progressive neuropathology, the time course of Alzheimer’s disease

corresponds to a graded decline in mental function occurring over a period of between

five and twenty years (Locascio et al., 1995), which resembles a retrogression of nor-

mal development (Reisberg et al., 1999). Alzheimer’s disease has been called “death

... by a thousand subtractions” (Shenk, 2001) in recognition of this insidious and,

ultimately, fatal trajectory of attrition. Overt behavioral (including cognitive) man-

ifestations reflect the extent and progress of the underlying neuropathology (Weiner

et al., 2005).

Alzheimer’s disease, in the early stage, is marked by significant impairment in

short-term (working) memory (McKhann et al., 1984; Forstl and Kurtz, 1999). This

condition transcends casual forgetfulness or “absentmindedness” in daily routine. Pa-

tients begin experiencing difficulty with tasks requiring concentration and sustained

attention, planning and organization. Psychiatric symptoms, including depression,

delusions, and anxiety, may appear toward the end of this stage (Hart et al., 2003)

and persist throughout the patient’s life. These deficits impede the performance of

daily activities, and contribute to increased accident and hazard risks to patients.

In the moderate stage of Alzheimer’s disease, further declines in short-term mem-

ory and thinking skills compromise the patient’s ability to care for him- or herself.

Erosion of the integrity of long-term memory leads to further disorientation and

confusion. This confusion, in turn, causes agitation, anxiety, restlessness, and ag-

gression. Delusions and hallucinations of increasing severity, compulsive wandering

and hoarding behaviors are observed as well (Devanand et al., 1997).
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Nearly complete loss of mental function, in addition to profound motor impair-

ment, characterizes the advanced stage of Alzheimer’s disease. These patients are

in extremely fragile health, often becoming bedridden and sinking into a minimally-

responsive vegetative state before finally succumbing to secondary illnesses (e.g.,

respiratory and/or cardiovascular pathology, opportunistic infection) (Souren et al.,

1995). After clinical diagnosis of AD, the average duration of patient survival is

between five and eight years (Bracco et al., 1994).

1.3 Pathological Characterization of Alzheimer’s Disease

Before Alzheimer described the association between progressive dementia and

cortical lesions, many age-associated cerebrovascular structural anomalies had been

reported in patients. However, it was unclear whether the lesions were the cause

of the dementia. Elucidation of the underlying mechanisms of Alzheimer’s disease

developed from several lines of inquiry into the neurophysiological correlates of the

progressive behavioral (mainly cognitive) dysfunction observed in AD patients.

Originally described by Alzheimer in 1907, the distinguishing neuropathological

markers of AD are intercellular senile plaques and intracellular neurofibrillary tan-

gles (NFTs) (e.g., Mattson, 2004). The plaques are comprised of variable-length (38

to 42 residues) beta amyloid protein (Roher et al., 1986) and the tangles consist of

hyperphosphorylated cytoskeletal tau protein (Grundke-Iqbal et al., 1986). These

features are found throughout the cerebral cortex, amygdala, and hippocampus.

Within these specifically vulnerable brain regions, synaptic disruption and neuronal

cell loss occur (e.g., Stern et al., 2004), with concomitant neurochemical changes.

The underlying mechanism for the pathogenesis of Alzheimer’s disease emphasizes

the role of beta amyloid protein (Hardy, 1997; Tanzi and Bertram, 2005; Hardy,

2006), identified as the core peptide in plaques (Glenner and Wong, 1984a, 1984b;

3



Masters et al., 1985). This protein appears highly conserved across species (Selkoe

et al., 1987); antibodies to a partial peptide fragment (28 amino acids) of human

amyloid cross-reacted with cerebrovascular deposits and neuritic plaques from aged

mammals (dog, monkey, orangutan, and polar bear). It is through the accumulation

of abnormal beta amyloid protein that Alzheimers disease is considered a protein

misfolding disease (Cohen and Kelly, 2003; Hashimoto et al., 2003), sharing aggrega-

tion kinetics properties with prion diseases (e.g., scrapie, Creutzfeldt-Jakob disease,

bovine spongiform encephalopathy) (Griffith, 1967; Come et al., 1993; Cohen, 1999;

Hayashi et al., 2004).

With progressive loss of cortical and hippocampal neurons, concomitant brain

atrophy is observed in AD brains. The cerebral cortical atrophy is hemispherically

asymmetric, being more pronounced in the left hemisphere than in the right (Gee

et al., 2003; Thompson et al., 2003), particularly in the anterior- and posterolateral-

temporal and dorsolateral-prefrontal regions (Gee et al., 2003). The cerebellum,

occipital region, and sensorimotor cortex are largely spared (Thompson et al., 2003).

Interruption of connectivity between association cortices may arise from the loss of

pyramidal neurons of the CA1, subiculum, and entorhinal cortex of the hippocam-

pus (Morrison and Hof, 1997). Within the hippocampus, substantial loss of CA1

neurons is observed in mild to severe AD patients (Price et al., 2001). Loss of hip-

pocampal neurons in the CA1 and subiculum are associated with the formation of

neurofibrillary tangles (Rossler et al., 2002).

Beta amyloid is produced through a series of protease-mediated cleavages from

amyloid precursor protein (APP; Goldgaber et al., 1987) into several isoforms of

between 365 and 750 residues (Vassar et al., 1999). APP is a transmembrane pro-

tein (Kang et al., 1987), having a long extracellular amino-terminus and a shorter

intracellular carboxy-terminus (Maccioni et al., 2001). APP is encoded by a gene

4



within the Down’s syndrome region of chromosome 21 (Tanzi et al., 1987). Normally,

alpha-secretase cleaves APP near the center of the beta amyloid domain, resulting in

a non-amyloidogenic polypeptide fragment (Selkoe, 2001). However, two pathogenic

forms of beta amyloid (Aβ), beta amyloid[1-40] (Aβ40) and beta amyloid[1-42] (Aβ42),

result from cleavage of APP by beta-secretase at Met671 followed by gamma-secretase

at Val711 or Ile713, respectively (Citron et al., 1996; Bossy-Wetzel et al., 2004). Mis-

sense mutations encoded in APP near secretase cleavage sites lead to increased beta-

amyloid production (Selkoe, 2001). Neither APP nor Aβ is specific for Alzheimers

disease; amyloid precursor protein and beta amyloid are found in AD patients as

well as non-AD individuals (Selkoe, 2001).

Regiospecific accumulation of Aβ42 results in diffuse plaques, which occur mainly

within the association and limbic cortices (Roher et al., 2000). Monomeric beta amy-

loid form alpha-helices which undergo destabilization and conformal transformation

into beta-helical dimers (Serpell, 2000), each consisting of a hydrophobic core sur-

rounded by hydrophilic residues. Adjacent dimers bind together into protofilaments

which, in turn, form beta-sheets, and subsequently coalesce into fibrils (Roher et al.,

2000; Walsh and Selkoe, 2004). Compact (dense) plaques subsequently may form

from additional conformal changes in fibril aggregates (e.g., Kayed et al., 2003), and

trigger astrocytic and microglial activation (Yamaguchi, et al., 1988), which repre-

sent an inflammatory response (Selkoe, 2001). Subsequent production of free radicals

by microglial mitochondria leads to neuronal dysfunction and cell death through ox-

idative damage, such as lipid peroxidation (Selkoe, 2001; Reddy, 2006). Astrocytes

produce two inflammatory proteins – α-antichymotrypsin (ACT) and apolipoprotein

E (ApoE) – which participate in amyloid plaque formation (Selkoe, 2001; Potter

et al., 2001). Both ACT and ApoE have been shown to promote amyloid forma-

tion and deposition as “pathologic chaperones” both in vitro and in vivo (Sanan
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et al., 1994; Wisniewski et al., 1994; Bales et al., 1999). Furthermore, it has been

demonstrated that ACT and ApoE act either together or independently to promote

both diffuse and compact beta amyloid plaques without influencing monomeric beta

amyloid levels (Nilsson et al., 2004).

Intracellular NFTs are comprised of aggregates of paired helical filaments (PHF),

alpha-helices of hyperphosphorylated microtubular tau protein (Alonso et al., 2001;

Canevari et al., 2004; Sobow et al., 2004). Tau, which normally binds tubulin, is

involved in microtubule formation and stabilization within neurons (Mudher and

Lovestone, 2002). Following phosphorylation by protein kinases cdk5 or GSK3beta,

tau dissociates from microtubules and forms PHFs (Maccioni et al., 2001). Finally,

accumulating PHFs destabilize intraneuronal microtubules and eventually replace

the microtubules with pathogenic tangles (Mudher and Lovestone, 2002).

1.4 Diagnosis of Alzheimer’s Disease

Dementia – the progressive deterioration of cognitive function – may result di-

rectly from primary diseases of the brain, or as a consequence of other disease states.

The most common types of dementia, distinguished by age of onset and specific

pattern of structural and functional pathology, include: Alzheimer’s disease, fron-

totemporal dementia, HIV-associated dementia, Lewy body dementia, and vascular

dementia. Dementia is often comorbid with Huntington’s disease, Parkinson’s dis-

ease, progressive supranuclear palsy, neurosyphilis, and several prion disorders (e.g.,

Creutzfeld-Jakob disease, Gerstmann-Straussler-Scheinker syndrome). In addition,

certain environmental toxins (e.g., lead, industrial solvents), metabolic disorders

(e.g., hypothyroidism, vitamin B12 deficiency) and brain injuries (e.g., subdural

hematoma, normal-pressure hydrocephalus) can produce dementia which, in some

cases, may be reversible with treatment. Several psychiatric conditions, including
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depression, may resemble dementia as well. Differential diagnosis of Alzheimer’s dis-

ease, therefore, requires a complete personal and family medical history, and consider-

ation of coexisting medical/psychiatric conditions which share symptoms in common

with Alzheimer’s disease. The complete diagnostic process involves several stages in

increasing order of invasiveness.

General cognitive impairment appears gradually over time, and probable Alzhei-

mer’s disease is diagnosed through behavioral assessment, typically as clinical ob-

servation and interview-based examination, over a period of weeks or months. The

overt symptoms of Alzheimer’s disease are called the “Four As” – agnosia (the in-

ability to recognize objects or familiar people), amnesia (the inability to remember),

aphasia (linguistic incompetence; the inability to understand or communicate using

language), and apraxia (the inability to perform activities). Physical and psycho-

logical examinations are necessary for differential diagnosis, to rule out alternative

disorders with similar presentations, such as clinical depression. Interviews with

the patient, family members, and caregivers also provide diagnostic information. In

addition, electroencephalographic and brain imaging techniques are used to supple-

ment diagnosis. Currently, the definitive diagnosis of Alzheimer’s disease requires

microscopic examination for the characteristic lesions at autopsy.

1.4.1 Psychometric Assessment

Evaluation of probable Alzheimer’s disease in both clinical and community-living

settings requires standardized psychometric testing instruments. Cognitive assess-

ment inventories commonly used in clinical settings include the Mini-Mental State

Examination (MMSE; Folstein et al., 1975) and the Blessed Orientation-Memory-

Concentration test (BOMC; Katzman et al., 1983). The MMSE consists of a thirty-

point questionnaire of items representing five cognitive components: time and place
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orientation, registration (ability to identify and remember three common objects),

attention and mental calculation (e.g., serial subtraction), short-term memory recall

(of the three objects presented earlier), and language ability (e.g., repeat phrase,

follow directions given by examiner). Scores are compared against norms established

for age and educational level (Crum et al., 1993). The BOMC contains six items, ad-

dressing three cognitive domains: time orientation, concentration (analogous to the

MMSE attention and mental calculation component), and memory recall. The sim-

ilar content of these instruments is reflected in the strong intercorrelation between

examinee scores (Fillenbaum et al., 1987; Zillmer et al., 1990). High-throughput

screening techniques, abbreviated versions of mental test batteries, are under devel-

opment for efficient, large-scale evaluation of prospective patient groups. Mnemonic

measures, for instance, are useful for AD-screening as well as in differential diagnosis.

For example, AD patients score lower than MCI patients who, in turn, score lower

than age-matched depressed patients on visual association cued-recall tests (Dierckx

et al., 2007), using discriminant analysis (95% overall accuracy). Semantic fluency

tasks (e.g., free-response naming of exemplars within a target category) are particu-

larly sensitive discriminators between normal aging and Alzheimer-associated deficits

(Cerhan et al., 2002; Salmon et al., 2002). For example, in tests of verbal fluency

(names of animals, words having same first-letter), normal-aged individuals generate

more words and produce larger clusters within categories, relative to mild-AD pa-

tients (Gomez and White, 2006). In addition, comprehensive cognitive assessment

protocols have been established (e.g., CERAD; Morris et al., 1993) for clinical eval-

uation, therapeutic monitoring, and epidemiological studies of AD patients. The

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) has devel-

oped a multimetric neuropsychological battery for diagnosing probable Alzheimer’s

disease, as well as for characterizing the severity of cognitive impairment (Morris
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et al., 1993; Strauss and Fritsch, 2004), consisting of the MMSE and six additional

performance measures: modified Boston Naming Test, verbal fluency test, construc-

tional praxis (design copying), and three word-list learning measures (immediate

recall, delayed recall, and word recognition). Factor analytic studies of the CERAD

inventory (Strauss and Fritsch, 2004; Jones and Ayers, 2006) suggest a single factor

representing overall cognitive performance in probable-Alzheimer’s subjects, however

a two-factor solution was obtained when age-matched, non-AD subjects are included

in the analysis (Jones and Ayers, 2006). Indeed, researchers have extracted two-

(e.g., Jacobs et al., 1994), three- (e.g., Kanne et al., 1998), and even five-factor (e.g.,

O’Donnell et al., 1988) solutions using multiple psychometric instruments – including

the MMSE (Folstein et al., 1975), SPMSQ (Pfeiffer, 1975), and ACAD (Sevush et al.,

1991); the apparent multidimensionality of cognition in Alzheimer’s disease has been

interpreted in terms of either premorbid heterogeneity or AD-related heterogene-

ity (Fisher et al., 1999; Sevush et al., 2003). Two hundred sixty-one patients with

probable-AD completed the MMSE, SPMSQ, and ACAD examinations (Sevush et

al., 2003); subsequent factor analysis (principal components, Varimax rotation) iden-

tified two general-cognitive factors, related to Alzheimer’s progression, and a third

factor reflecting premorbid characteristics (correlated with demographic variables).

In addition, Alzheimer’s disease has been considered a heterogeneous disorder, hav-

ing diverse overt behavioral and cognitive manifestations (Cummings, 2000). The

cognitive impairment associated with Alzheimer’s disease tends to increase in both

severity and scope, mirroring the insidious progression of the underlying neuropathol-

ogy (Morris et al., 1989; Cummings, 2000). In contrast, various psychological and

behavioral symptoms of Alzheimer’s pathology may appear during different stages

(Jost and Grossberg, 1996). The multidimensional character of Alzheimer’s disease,

for instance, was suggested by a factor analysis (principal component) of eighteen
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standard behavioral/cognitive measures in an AD outpatient (DSM-IV, NINCDS-

ADRDA criteria) sample (N=244; Spalletta et al., 2004), which identified seven

distinct factors (and their associated behavioral vs. cognitive dimension): general

cognitive (cognitive), hyperactivity (behavioral), psychosis (behavioral), constructive

ability (cognitive), anxiety (behavioral), mood-excitement (behavioral), and mood-

depression/apathy (behavioral). These results, collectively, suggest that behavioral

and cognitive components represent independent dimensions of AD (Spalletta et al.,

2004), based on multiple conventional neuropsychological assessment techniques, and

underscore the primacy of a single underlying “global” construct of general cognition.

Finally, although both psychometric (e.g., MMSE) and behavior-based (e.g., DAFS)

evaluation protocols have demonstrated effectiveness for differential diagnosis and

therapeutic assessment in Alzheimer’s disease, interpreting the complex interplay

between cognitive and behavioral processes – as revealed through factor analyses –

remains a controversial area of research (e.g., Ownby et al., 2004).

Cooperative efforts to standardize clinical diagnosis of Alzheimer’s disease, by

the National Institute of Neurological and Communicative Disorders and Stroke

(NINCDS) and the Alzheimer’s Disease and Related Disorders Association (ADRDA),

led to the development of a set of criteria based on clinical observation, neuropsycho-

logical testing, and histopathologic evidence (McKhann et al., 1984; Blacker et al.,

1994). The presence of a dementia syndrome, in addition to progressive cognitive im-

pairment, occurring in the absence of other diseases capable of producing dementia,

is required for a diagnosis of probable Alzheimer’s disease; post-mortem microscopic

examination of brain tissue is required to confirm definite Alzheimer’s disease. Re-

cent advances in diagnostic imaging techniques, however, have prompted the revision

of the NINCDS-ADRDA criteria, and a new proposal is under review (Dubois et al.,

2007). Finally, neuropsychological tests are modest predictors of daily functional sta-
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tus in Alzheimer’s patients. In a study (Farias et al., 2003) involving 42 outpatients

diagnosed with possible- or probable-AD, cognitive performance (immediate- and

delayed-recall, attention, visuospatial, executive functioning, and praxis measures)

was significantly correlated with functional status (DAFS scale; Loewenstein et al.,

1989). The DAFS scale (Loewenstein et al., 1989, 1995) is a highly-reliable (both

inter-rater and test-retest) behavior-based evaluation of daily living skills in familiar

domains, such as: telling time (reading a clock), handling money (writing a check,

balancing a checkbook, making change), and household routines (addressing and

mailing a letter, using a telephone). The DAFS is a useful screening device for dif-

ferential diagnosis among normal-aged, depressed, and probable-AD individuals; AD

patients score significantly lower than either normal-aged or depressed individuals

on all functional measures except telling time (Loewenstein et al., 1989).

1.4.2 Biomarkers

Advances in bioinformatics methodology enable investigators to examine gene-

level (genomic) and protein-level (proteomic) features of normal and pathological

phenotypes, including neurological syndromes (Mirnics and Pevsner, 2004). Manip-

ulations of genetic expression in transgenic animals, for instance, which alter neuronal

structure and/or molecular signalling pathways are manifested through distinct cog-

nitive genotypes (Flint, 1999). Candidate-gene association studies and genome-wide

scans suggest that human memory is a polygenic cognitive trait (de Quervain et

al., 2003; Egan et al., 2003; Papassotiropoulos et al., 2005; de Quervain and Papas-

sotiropoulos, 2006), with heritability estimated at 50% (McClearn et al., 1997). For

example, a genome-wide scan (Papassotiropoulos et al., 2006) involving over 500,000

single-nucleotide polymorphisms in pooled DNA from 341 young adults, stratified by

performance in a verbal delayed-recall task, linked better performance (after both
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5-min delay and 24-hr delay) with the presence of the KIBRA rs17070145 T allele;

an independent sample of 256 adults associated this allele with superior performance

on standard tests of episodic memory (Buschke’s Selective Reminding Test, Rey

Auditory Verbal Learning Test), although no significant allele-dependent differences

were observed in the Wisconsin Card Sorting Test or the Paced Auditory Serial

Attention Task (Papassotiropoulos et al., 2006). Hence, a single genetic mutation

(KIBRA rs17070145) is associated with individual differences in episodic memory,

but not attention, executive function, or working memory (Papassotiropoulos et al.,

2006). Furthermore, gene-associated differences in brain function (e.g., memory,

intelligence) are partly determined by gene-influenced structural differences in the

brain (Toga and Thompson, 2005; Zimmer, 2008). Additionally, genetic evidence

from animal studies underscores the association between genes and cognitive ability.

Genetic differences in spatial learning ability in mice has been examined using mul-

titrait analysis (Steinberger et al., 2003) in DBA/2 and C57BL6/J mouse strains,

and reveals two quantitative trait loci, on chromosomes 4 and 12, are associated with

Morris water maze retention (time spent and number of annular crossings in former

platform-containing quadrant), as well as spatial learning rate (swim path distance,

latency to reach platform location), measured in the probe trial (Steinberger et al.,

2003).

Techniques based on data mining (e.g., Bayesian statistical models) have been

applied to human brain-specific gene network databases compiled from genomic and

proteomic studies in order to identify candidate genes for neurological disorders (Liu

et al., 2006). Genome screening in known-AD families, for example, has identified

mutations in three genes associated with the early-onset familial AD (APP, PSEN1,

and PSEN2; e.g., Tanzi and Bertram, 2001) and a late-onset AD-associated poly-

morphism of ApoE (ApoE-ε4; chromosome 19q13). In addition, linkage analysis
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suggests as many as twelve genetic loci contribute to AD (1q23, 3p26, 4q32, 5p14,

6p21, 6q27, 9q22, 10q24, 11q25, 14q22, 15q26, and 21q22; Blacker et al., 2003). Mi-

croarray analysis of plasma samples from normal-control and AD-individuals identi-

fied eighteen proteins which differ significantly in concentration (i.e., ANG-2, CCL5,

CCL7, CCL15, CCL18, CXCL8, EGF, G-CSF, GDNF, ICAM-1, IGFBP-6, IL-1α,

IL-3, IL-11, M-CSF, PDGF-BB, TNF-α, and TRAIL-R4), and distinguish between

the groups with approximately 90% accuracy (Ray et al., 2007). These signaling

proteins are associated through two independent regulatory pathways: one set is

related by TNF-α (tumor necrosis factor) and M-CSF (monocyte-colony stimulating

factor), while the other set centers around EGF (epidermal growth factor) (Ray et

al., 2007). The involvement of these proteins in immunoreactivity, hematopoiesis,

and apoptosis is consistent with recent findings showing increased hematopoietic cell

activity in the Alzheimer brain (both human AD and in Alzheimer’s transgenic mice;

(Wyss-Coray, 2006; Simard et al., 2006; Britschgi and Wyss-Coray, 2007), as well

as Alzheimer-associated abnormalities in apoptotic pathways (LeBlanc, 2005). The

diagnostic utility of microarray analysis is underscored by postmortem frontal cor-

tical RNA analyses in normal-aged and AD patients (Walker et al., 2004). A data

mining-based classifier (BioMinerTM) confirmed the expression of 17 neuropathology-

associated genes (DTNA, B2M, APLP1, C4B, LIMS2, IGHM, GRP58, KRT8, ATF4,

RANGAP, GSTM2, TU3A, ADD3, FTL, HBB, CLU, and HBG2) in cortical samples

from AD patients (Walker et al., 2004).

Similarly, gene profiling (cDNA microarray) of 18-month-old Alzheimer’s trans-

genic mice (APPsw) and age-matched control animals has identified 52 differentially

expressed genes (Jee et al., 2005). Subsequent examination of age-related patterns

in genetic up- and down-regulation, comparing aged (18 month-old) and young (1

month-old) transgenic and normal mice, revealed 48 and 40 differentially expressed
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genes between aged and young animals of each group, respectively (Jee et al., 2007).

Age-associated changes in the genetic profiles are consistent with inflammatory re-

sponse, increased oxidative stress, and decreased neurotrophic support (Lee et al.,

2000). Differential 2D electrophoresis of whole-cortical tissue from 14-month-old

Alzheimer’s transgenic mice (APP/PS1) identified significant differences in the con-

centrations of 15 proteins, relative to wild-type animals (Sizova et al., 2007). In

addition to intraneuronal and membrane proteins associated with synaptic function

and axonal growth, proteins involved in glial response and inflammation, cholesterol

metabolism, and oxidative response were included (Sizova et al., 2007).

1.4.3 Neurological Basis of Memory Systems

Anatomical components of the mammalian nervous system form a complex, in-

terconnected network. Understanding neuropathologies, such as Alzheimer’s disease,

requires thorough study of the relationship between structure and function at dif-

ferent scales. Indeed, memory – the storage and retrieval of learned information –

has been examined and modeled in humans (and other animals) on different scales,

within both normal and pathological states, and in a variety of contexts. On a cel-

lular scale, for example, simultaneous stimulation of two neurons enhances synaptic

transmission between the neurons through a complex cascade of intracellular protein

transcriptional and molecular signalling events (Kandel, 1979; Sweatt, 1999; Kandel,

2001), consequently improving long-term interneuronal communication (“long-term

potentiation,” LTP; Lynch, 2004). Direct-stimulation studies, for example, show

that short-term memory formation is dependent upon LTP in the hippocampus (e.g.,

Bliss and Lomo, 1973), and pharmacologic agents which interfere with hippocam-

pal LTP (e.g., by blocking NMDA receptors) in rats also impair spatial memory

performance (Morris water maze) (Morris et al., 1986). In addition, mice receiv-
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ing medial frontal cortical injections of anisomycin (a protein synthesis inhibitor)

exhibit spatial memory acquisition deficits (radial maze nonmatching-to-place task)

(Touzani et al., 2007), suggesting the role of protein synthesis during learning. A

macroscale, information processing model of memory uses storage duration as the

distinguishing criterion for a tripartite organization of memory systems, consisting

of: sensory memory (registry of ambient environmental stimuli, typically available

for a very brief duration; Sperling, 1960); short term memory (limited-capacity tem-

porary store, Baddeley and Hitch’s “working memory,” 1974; Miller, 1956; Brown,

1958; Peterson and Peterson, 1959); and, long term memory (high-capacity, “per-

manent” reference memory; Landauer, 1986). Long term memory is subsequently

divided into declarative (explicit) memory and nondeclarative (implicit) memory

components, each having distinct neuroanatomical substrates (e.g., Schacter, 1987;

Thompson and Kim, 1996; Squire and Zola, 1997; Miyashita, 2004). Indeed, much of

what is known about the structure of human memory systems is inferred from clinical

studies of amnesics (e.g., Shallice and Warrington, 1970; Cohen et al., 1985; Graf and

Schacter, 1987; Periani et al., 1993), who exhibit dissociation syndromes among com-

ponent systems. The inability to form new long-term memories through experience

(anterograde amnesia), for example, is associated with hippocampal lesions or tempo-

ral lobe damage (either deliberately by surgery, or accidentally through injury) (e.g.,

Kandel and Pittenger, 1999). Declarative memory involves medial temporal lobe,

hippocampal, and prefrontal cortical structures (Kandel and Pittenger, 1999), and

consists of factual information (semantic memory) and autobiographical, experience-

based knowledge (episodic memory); the semantic-episodic distinction was suggested

by Tulving (1972, 1985). By contrast, nondeclarative memory involves the cerebel-

lum and striatum, and encompasses procedural, skill-based knowledge, including

conditioning; associative priming (Meyer and Schvaneveldt, 1971), artificial gram-
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mar learning (correct identification of rule-consistent strings of letters formed from

a finite-state grammar; Reber, 1967), category learning, and sequence learning (e.g.,

serial reaction time task) are examples of implicit memory phenomena.

Within a comprehensive assessment of learning and memory function, domain-

specific memory tasks provide evidence for the differential effects of normal and

pathological (i.e., AD) aging on human memory systems. For example, comprehen-

sive memory tests administered to early-to-moderate AD patients and age-matched

normal individuals (Stopford et al., 2007) identified five distinct memory domains

(personal memory, recognition, verbal recall, visual recall, and working memory) in

which impairment within one domain may occur independently of the other domains.

In a comparison of differential impairment across memory systems, Mitchell (1989)

examined the effect of normal aging in two adult cohorts (cross-sectional study; 19-

32 y/o “young” and 63-80 y/o “older”; N = 48, each) using multiple performance

measures: episodic memory (free recall, recognition, intrusions during recall, and

longitudinal change in recall; Underwood et al., 1978); procedural memory (repeti-

tion priming latency; Graf and Schacter, 1985); and, semantic memory (vocabulary,

picture-naming latency and errors). Although no significant age-related differences

were observed for either procedural or semantic memory, younger adults performed

better in recall and recognition measures of episodic memory (Mitchell, 1989); addi-

tionally, factor analysis of the multimetric assessment confirmed the tripartite mem-

ory taxonomy. Episodic memory (free recall, word recognition) deficits have been

observed in preclinical AD patients (Backman et al., 2001), up to six years prior to

diagnosis, as well as deficits in perceptual speed and executive functioning (Back-

man et al., 2005). No short-term memory (digit span) impairments were found in

preclinical AD cases, relative to age-matched normal individuals, however (Backman

et al., 2001).
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1.4.4 Electroencephalography

A landmark discovery in neurology, the construction of a minimally-invasive elec-

trical interface between the living nervous system and a recording apparatus, enabled

investigators to monitor ensemble neural activity in real-time. Electroencephalog-

raphy (EEG), first described by Hans Berger in 1924, involves recording electrical

potentials from an array of electrodes distributed across the scalp surface following

a standardized grid pattern (Rowan and Tolunsky, 2003). The potentials recorded

from each electrode reflect the collective electrical activity (i.e., APs, EPSPs and IP-

SPs) of the underlying local population of neurons, to a depth of several centimeters.

The EEG, therefore, represents regional brain electrical potential (e.g., microvolts)

as a function of time (e.g., milliseconds). Four characteristic signal patterns have

been described in the human EEG, somewhat arbitrarily based on frequency ranges,

which correspond to different mental states. Beta activity (“fast-wave”), indicative

of focused mental activity and attention, has relatively high frequency (greater than

12 Hz) and low amplitude. Alpha activity, recorded in relaxed, awake subjects with

their eyes closed, exhibits a frequency of 8 to 12 Hz with amplitude between 10 and

50 microvolts. The prominence of the alpha rhythm in the occipital region, and

its responsiveness to opening and closing of the eyes, suggests an association with

visual processing (Adrian, 1935). Theta waves of between 4 and 7 Hz, and delta

(“slow-wave”) activity, of less than 4 Hz frequency, are typical of drowsiness and

sleep. Visual inspection is the conventional method for interpreting EEGs recorded

from subjects. The presence (or absence) of specific features or patterns of activ-

ity, as depicted on a graphical recording trace, represents neurological diagnostic

criteria. Human EEGs recorded during a broad range of behavioral states – both

normal and pathological – have been examined in this manner. For example, in-
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creased frontal midline theta activity is associated with working-memory intense

tasks (Gevins et al., 1997, 1998). Sleep-staging, for instance, traditionally relies on

visual recognition (by an expert) of unique waveforms and sustained periods of slow-

wave activity in the EEG trace (e.g., Rechtschaffen and Kales, 1968). An alternative,

computational approach, nonlinear dynamical analysis (NDA), utilizes mathematical

techniques adapted from engineering for studying complex, time-based physical phe-

nomena (Pradhan and Dutt, 1993; Pritchard and Duke, 1995). Using this approach,

the dynamics of the EEG signal are characterized mathematically in terms of “di-

mensional complexity” (represented as the correlation dimension, D2; Grassberger

and Procaccia, 1983). Dimensional complexity is a summary statistic, capturing the

overall character of cortical activity (incl. nonlinear communication between indi-

vidual neurons, as well as between neuron populations) in a single measure. It is

noteworthy that the presence of dynamically chaotic activity throughout the brain

may be essential for – and indicative of – normal functioning, including consciousness

(Fell et al., 2003). The spatiotemporal complexity of the EEG mirrors the intricate

neurophysiological substrate for behavioral and cognitive processing. Indeed, within

the nervous system, synchrony and coherence are often associated with pathology

(e.g., epileptiform spiking and seizures) (Skarda and Freeman, 1987; Doyon, 1992).

In addition to providing theoretical insights on spatiotemporal phenomena in

the brain, dimensional complexity measures can be used to describe cortical states

(for identifying neural correlates of behavior and cognitive activity), to examine

therapeutic efficacy and experimental treatment effects, and to assist in the diag-

nosis of neuropathology. For example, levels of consciousness can be reliably dis-

tinguished through NDA techniques, facilitating computer-assisted automated EEG

monitoring and recording. In humans, as sleep proceeds from NREM (“non-REM”)

Stage 1 through NREM Stage 4, a monotonic decrease in measured dimensional
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complexity (D2) has been observed (Pradhan and Sadasivan, 1996). In addition,

D2 measures during REM are slightly higher than D2 during waking. Automated

discrimination among NREM stages using D2 measures from sampled EEG data

is comparable or superior to expert-staged hypnograms (Pradhan and Sadasivan,

1996). Lower D2 measures, relative to resting conditions, are observed during medi-

tative states (Aftanas and Golocheikine, 2002) particularly over the midline frontal

and central regions. Sleep-deprived subjects also exhibit lower D2, which may repre-

sent sub-optimal information processing capacity (Jeong et al., 2001b). In addition,

task-dependent changes in D2 may be related to individual intellectual ability (e.g.,

Jausovec and Jausovec, 2000; Lutzenberger et al., 1992; Molle et al., 1999), consis-

tent with a resource-demand model of functional processing in the brain. NLDA-

based studies of neuropathologies, including Alzheimer’s disease, suggest that di-

mensional complexity may be a more sensitive diagnostic marker than traditional

expert-based EEG interpretive methods (e.g., Gallez and Babloyantz, 1991; Jeong et

al., 1998; Jeong, 2004). Decreased D2 was found in clinical patients with posttrau-

matic stress disorder (PTSD), suggestive of impaired cortical information processing

(Chae et al., 2004). Patients diagnosed with schizophrenia do not exhibit initial

transient D2 changes, compared with non-schizophrenic individuals, when perform-

ing a cognitively-demanding task (Kirsch et al., 2000), suggesting impaired ability

to respond adaptively to changing cognitive demands.

The primary EEG findings in AD patients include: increased diffuse slow activity

and slowing of the dominant posterior rhythm (Brenner et al., 1988; Jeong, 2004),

decreased alpha and beta activity (Letemendia and Pampiglione, 1958; Jeong, 2004),

increased theta and delta activity (Brenner et al., 1986; Giaquinto and Nolfe, 1986),

and decreased synchronization (coherence) in the alpha and beta bands (Dunkin et

al., 1994; Koenig et al., 2005). These abnormalities correlate with disease severity
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(Hughes et al., 1989; Kowalski et al., 2001), and reflect concomitant structural and

functional impairment of the cerebral cortex. Underscoring cholinergic involvement

in Alzheimers disease is the finding that young, healthy subjects receiving the mus-

carinic (cholinergic) antagonist scopolamine also exhibit either/both increased slow-

wave and decreased fast-wave activity (Ebert and Kirch, 1998; Ebert et al., 2001) and

transitory Alzheimer-like memory impairment (Wesnes et al., 1988). In addition, AD

patients receiving the cholinergic agonist nicotine show increased fast-wave activity

and decreased slow-wave activity (Knott et al., 2000), and mild-AD patients receiv-

ing long-term treatment with donepezil show decreased theta activity (Kogan et

al., 2001). NLDA-based studies, using single-channel as well as multi-channel EEG,

show decreased D2 in AD, suggesting reduced nonlinear cellular communication or

coupling between cortical regions (Jelles et al., 1999; Jeong et al., 2001a).

1.4.5 Diagnostic Medical Imaging

Medical imaging techniques provide useful diagnostic information. These meth-

ods include: computed tomography (CT), magnetic resonance imaging (MRI), func-

tional magnetic resonance imaging (fMRI), positron emission tomography (PET),

and single photon emission computed tomography (SPECT). For example, anatom-

ical (structural) changes in the brain are detected using CT and MRI, while physio-

logical (metabolic) correlates of brain function are studied using PET and SPECT.

Regiospecific atrophy of the hippocampus and entorhinal cortex have been identified

in longitudinal studies of Alzheimers patients using CT and MRI (Jack et al., 1997;

Xu et al., 2000; Barnes et al., 2004; Pennanen et al. 2004) underscoring the utility

of these methods for monitoring the progress of AD in patients over time. Localized

decreases in glucose metabolism, measured through PET studies, can identify areas

compromised by Alzheimers disease (Minoshima, 2003). Modified PET techniques,
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using a radiolabeled ligand which binds to beta amyloid, have been used to localize

amyloid plaques (Klunk et al., 2003; Klunk et al., 2004). Correlation between in

vivo and in vitro PET imaging studies using the radiotracer Pittsburgh Compound-

B (Ikonomovic et al., 2008), for instance, show highly selective binding for insoluble

(fibrillar) beta amyloid deposits. A similar approach is being developed for PET

imaging of neurofibrillary tangles (Mathis et al., 2004). Additionally, a refinement of

SPECT (HMPAO-99Tc SPECT; DeFigueiredo et al., 1995) has demonstrated utility

for differential diagnosis of AD from both vascular- and fronto-temporal dementias

(Dougall et al., 2004), with 71.3% (75.9%) and 71.5% (78.2%) sensitivities (and

specificities), respectively.

Early perceptual and information processing events, and their neural substrates,

are examined through diagnostic medical imaging techniques. Moreover, diagnostic

imaging during task performance helps reveal the neuroanatomical substrates, con-

nectivity, and mechanisms which underlie complex cognitive behavior. For example,

the Stroop color word interference task, in which subjects identify congruence be-

tween color-word (i.e., name of a color) and word-color (i.e., color of a printed word)

stimuli presented visually (Stroop, 1935), requires coordinated visual and verbal pro-

cessing; AD individuals exhibit deficits in this task, relative to age-matched normal

subjects (Bondi et al., 2002; Amieva et al., 2004). The neural circuitry involved in

the Stroop color word interference task has been explored using fMRI (Peterson et

al., 1999; Leung et al., 2000). Regiospecific activation patterns within the frontal and

anterior cingulate cortex follow a temporal sequence correlated with visuospatial and

verbal processing of the target stimuli (Leung et al., 2000). Left prefrontal cortical

activation was identified during verbal fluency tasks using fMRI in normal individu-

als (Schlosser et al., 1998), as well. Additionally, neuroimaging can reveal parallels

between nascent behavioral (functional) impairment and neuropathology, and sug-
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gest patterns of functional compensation during early AD (e.g., Posner et al., 1997).

For example, age-matched normal and early-AD individuals performed an episodic

memory task while undergoing functional magnetic resonance (fMRI) imaging (Gron

and Riepe, 2004); in a graded progression, increasing functional impairment (poorer

cognitive performance) was associated with decreasing posteromedio-temporal ac-

tivation, across normal and AD subjects. Intact operational components of work-

ing memory – executive control (information encoding and retrieval processes) and

active maintenance (preserving immediate availability of information) – are neces-

sary for short-term storage and manipulation of information (e.g., Baddeley and

Hitch, 1974; Baddeley, 1992). Functional MRI studies in humans performing work-

ing memory tasks indicate both frontal and parietal cortical involvement in the active

maintenance component (Cohen et al., 1997). Positron emission tomography (PET)

studies of human subjects during episodic memory tasks (yes-no recognition) reveal

increased activity within the right prefrontal cortex and anterior cingulate (Nyberg

et al., 2000). In addition, PET during an episodic memory task involving normal-

aged and mildly cognitively-impaired (MCI) patients showed different patterns of

regional activation between the two groups (Moulin et al., 2007); the task consisted

of two successive encoding trials (semantically-related pairs of words) followed by

a retrieval trial. Although both groups exhibited left frontal lobe activation dur-

ing initial encoding, only the normal-aged individuals showed activation during the

secondary encoding. In addition, MCI individuals showed activation in the visual

cortex during secondary encoding, while normal-aged individuals did not. During

retrieval, MCI individuals did not exhibit right frontal or left temporal activation

(in contrast to normal-aged individuals), although they showed more extensive left

frontal cortical activation, relative to normal-aged individuals (Moulin et al., 2007).
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An important goal of medical research in Alzheimer’s disease is the development

of early diagnostic techniques, to optimize the efficacy of treatment and intervention.

Methods which are both sensitive to early behavioral and pathological indications

and selective for Alzheimer’s disease are highly desirable. Content analysis, for in-

stance, represents a potential early predictor, providing a means for identifying the

progressive decline of linguistic abilities associated with Alzheimer’s disease (Forbes

et al., 2004; Garrard et al., 2005; Venneri et al., 2005). Careful examination of

an author’s written work (e.g., the final novel of British writer Iris Murdoch) com-

pleted prior to the onset of characteristic Alzheimer symptoms can reveal lexical

deficits suggestive of incipient cognitive impairment (Garrard et al., 2005). However,

whether semantic and syntactic components of verbal ability decline separately or

in parallel remains unclear (Garrard et al., 2005). Alzheimer’s disease, like many

other nucleating pathologies (e.g., prion diseases; Prusiner, 1991; Jarrett and Lans-

bury, 1993; DeMager et al., 2002), exhibits very subtle manifestations in its nascent

form; prodromal detection of AD is complicated because neuropathology precedes

behavioral deficits.

1.5 Risk Factors for Alzheimer’s Disease

Aging and family history have been identified as major risk factors for Alzheimer’s

disease. However, Alzheimer’s disease is not an inevitable consequence of aging. For

example, slight atrophy and sparse accumulations of hyperphosphorylated tau, but

no beta-amyloid plaques, were found in the cortex and hippocampus of a 115-year-old

woman whose cognitive abilities remained intact (MMSE scores comparable to 60-75

y/o) until her death from cancer (den Dunnen et al., 2008). Although the cause

of Alzheimer’s disease is unknown, it is likely a multifactorial disorder possessing

a combination of dispositional (e.g., genetic) and situational (e.g., environmental)
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determinants (e.g., Mattson et al., 2002). Two variants of Alzheimer’s disease have

been identified: a late-onset (i.e., 65 years of age, or older) “sporadic” form, which

encompasses the majority of cases, and an early-onset (between 30 and 65 years of

age) “familial” form, which accounts for approximately five percent of cases. These

variants share similar behavioral and pathological manifestations, and differ only in

their age of onset.

Several inalterable factors contribute to the development of Alzheimer’s disease.

The likelihood of developing Alzheimer’s disease increases with age. Females are

at higher risk than are males. The presence of the ApoE4 allele of the ApoE gene

increases risk in a dose-dependent manner, and lowers the age of onset of AD (Veurink

et al., 2003; Yao et al., 2004). In addition, the early-onset variant of Alzheimer’s

disease is associated with mutations in several autosomal-dominant genes (Selkoe

and Podlisny, 2002; Pardo and van Duijn, 2005; Chai, 2007).

Life experiences and lifestyles can influence both the likelihood of developing

Alzheimer’s disease as well as the progress of the disorder. A history of traumatic

head injury, particularly during early adulthood, is associated with increased risk

(Fleminger et al., 2003). Poor cardiovascular health (high blood pressure, high

cholesterol) is also associated with increased risk. A longitudinal study (Buchman

et al., 2006) examined the relationship between body mass index and several age-

associated dementing neuropathologies (AD, cerebral infarction, and Lewy body dis-

ease), and showed a significant association with Alzheimer’s pathology even after

correcting for dementia, chronic diseases, and physical activity. The relative risk of

incident dementia was estimated (Cox proportional hazard model) in a cohort study

(Stern et al., 1994; N=593 non-demented individuals, aged 60+ y/o), in which in-

creased risk of dementia was associated with low education (RR 2.2), low lifetime

occupational attainment (RR 2.25), or both (RR 2.87); the reduced risk of inci-
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dent AD associated with increased educational and/or occupational attainment may

reflect either the limitations of diagnostic testing (education influences test perfor-

mance) or an acquired cognitive reserve which delays (or masks) the onset of clinical

dementia (Stern et al., 1994). For reasons which remain unclear, higher educational

attainment is also associated with accelerated cognitive decline with advancing age

in AD (Wilson et al., 2004), particularly in the executive speed and memory cogni-

tive domains (Scarmeas et al., 2006a). Environmental toxins may also play a role,

particularly during early development. Relatively high concentrations of copper,

for example, have been found associated with human amyloid plaques and neuropil

(Kowalik-Jankowska et al., 2002). Additionally, aged (23 y/o) monkeys exposed to

lead as infants exhibit greater expression of APP and BACE1, as well as beta amyloid

deposits in the frontal association cortex (Wu et al., 2008b); concomitant decrease in

DNA methyltransferase activity is suggestive of an epigenetic imprinting mechanism.

1.6 Risk Reduction Strategies

Beneficial health-promoting lifestyles, including increased levels of physical activ-

ity (Larson et al., 2006), mental stimulation (e.g., reading, puzzle-solving; Verghese

et al., 2003), and social interaction are associated with decreased risk for developing

Alzheimer’s disease, and may have long-term protective benefits (Fratiglioni et al.,

2004; Kramer and Erickson, 2007). Elderly (aged 65+ years) individuals who en-

gage in regular (i.e., at least three times per week) physical exercise (e.g., walking,

bicycling, swimming) are significantly less likely to develop dementia, compared to

individuals who exercise less frequently (Larson et al., 2006). Participants (N=176;

70+ year-olds) in a year-long group investigative program who engaged in moderate

daily exercise reported higher subjective measures of quality-of-life, physical well-

being, and physical self-perception, relative to more-sedentary participants (Fox et
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al., 2007). Interestingly, although voluntary participation in leisure physical activities

is associated with reduced AD risk, neither occupational (at-work) nor commuting

(to/from workplace) physical activity is associated with reduced risk for either de-

mentia or AD (Rovio et al., 2007). A five-year study (Wilson et al., 2007) involving

700 aged individuals examined the relationship between daily cognitive activity level

and AD risk, and reported that more frequent engagement in cognitive activity was

associated with reduced AD incidence, and that a cognitively-inactive person was

2.6 times more likely to develop AD.

Neuroprotective and/or therapeutic effects of dietary modification have been

demonstrated in both laboratory (using Alzheimer’s transgenic animal models) and

clinical (human) studies. A “Mediterranean diet,” low in saturated fat and enriched

with fruits and vegetables, is associated with reduced risk for Alzheimer’s disease

(Scarmeas et al., 2006b). In addition, specific dietary micronutrient components can

influence AD risk. The increased intake of vitamins C and E is associated with de-

creased AD risk (Masaki et al., 2000; Morris et al., 1998); the antioxidant properties

of these vitamins help protect neurons from membrane lipid peroxidation-induced

damage (Berman and Brodaty, 2004). Polyphenol components (e.g., phenolic acid,

flavonoids) of phytochemical extracts from certain spices and fruits (incl. blueberries

and pomegranates) also contain antioxidants having beneficial effects (Joseph et al.,

1998; Aggarwal and Shishodia, 2004; Joseph et al., 2005; Hartman et al., 2006).

Diets richer in sources of omega-3 fatty acids (e.g., DHA, docosahexaenoic acid),

such as fish, are also associated with decreased AD risk (Bourre, 2004; Morris et al.,

2005). Regular intake of alcohol and nicotine are also associated with decreased AD

risk, although the potential risks from chronic use or abuse of these agents is under

investigation (e.g.,. Letenneur et al., 2004).

26



Regular consumption of coffee, tea, or other caffeine-containing products may

protect against the development of Alzheimer’s disease and help maintain cogni-

tive functioning throughout life. Caffeine is a non-selective (A1, A2A) adenosine

receptor antagonist which increases alertness and arousal (e.g., Nehlig et al., 1992;

Fredholm et al., 1999). In a Portuguese retrospective study (20-year), daily caffeine

intake was significantly associated with reduced risk of AD (Maia and DeMendonca,

2002). A Canadian prospective study in aged adults showed that coffee consump-

tion is associated with reduced AD risk (Lindsay et al., 2002). A cross-sectional

study in aged adults (N = 890 female, mean age 72.6 yrs; N = 638 male, mean

age 73.3 yrs) examined the relation between mental ability on standardized tests

and self-reported coffee consumption, and showed a significant association between

lifetime coffee consumption and better cognitive performance in women (Johnson-

Kozlow et al., 2002). No significant relation between coffee intake and cognitive

performance was found in men, nor between decaffeinated coffee consumption and

cognitive performance by either sex (Johnson-Kozlow et al., 2002). By contrast, a

study (Van Gelder et al., 2007) involving 676 European men, all born between 1900

and 1920, used MMSE scores in a mixed longitudinal model to explore the associ-

ation between coffee consumption (in cups/day) and ten-year cognitive decline. A

significant difference in MMSE-score decline was observed between coffee-consumers

versus non-consumers, with the least cognitive decline occurring in individuals con-

suming three cups per day (Van Gelder et al., 2007). The optimal orally-administered

dose of caffeine in healthy adult humans for enhancing both sensorimotor-cognitive

(attentional, performance) and subjective (mood) experience is approximately 250

mg (Kaplan et al., 1997). Studies in Alzheimer’s transgenic mice (APPsw) strongly

support the putative association between caffeine consumption and both cognitive-

protection and AD-amelioration. Arendash et al. (2006) administered caffeine (1.5
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mg/day p.o.; equivalent to 500 mg/day in human) to APPsw mice for six months,

beginning at four months of age. Caffeine-treated animals performed superior to

age-matched transgenic controls, and comparably to non-transgenic animals, across

multiple measures of spatial learning, working and reference memory, and recogni-

tion/identification (Arendash et al., 2006). Significantly decreased hippocampal Aβ

was found in caffeine-treated transgenic animals, as well (Arendash et al., 2006). In

addition, although dietary caffeine supplementation did not affect either cortical nor

hippocampal adenosine receptor densities, caffeine-treated animals exhibited normal

brain adenosine levels, which may explain the observed cognitive-protection effect

(Arendash et al., 2006). Additional studies (e.g., Dall’Igna et al., 2007) suggest

the neuroprotective mechanism of caffeine involves blockade of A2A receptors in the

brain.

Chronic intake of non-steroidal anti-inflammatory drugs (NSAIDs; e.g., ibupro-

fen, indomethacin, sulindac) is associated with a decreased AD risk (McGeer et

al., 1996; Stewart et al., 1997; Zandi et al., 2002). The primary anti-inflammatory

mechanism of these agents involves inhibition of the two isoforms of cyclooxygenase

(COX1 and COX2) (Marnett and Kalgutkar, 1999), however, NSAID administration

reduces Aβ42 levels independently of COX inhibition (Weggen et al., 2001). Studies

in Alzheimers transgenic mice provide a more complex portrait, however. Although

ibuprofen, flurbiprofen, indomethacin, and sulindac reduce brain Aβ42 levels in mice,

many other NSAIDs (including aspirin, naproxen, and ketoprofen) do not (Eriksen

et al., 2003). Nevertheless, modulation of the endogenous inflammatory response

(e.g., by suppressing microglial activity) remains an active area of pharmaceutical

research (e.g., Kitzawa et al., 2004; McGeer and McGeer, 2007).
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1.7 Genetics of Alzheimer’s Disease

The early-onset “familial” variant of Alzheimer’s disease results from mutations

within any of three autosomal-dominant genes (Price and Sisodia, 1998; Rocchi et

al., 2003; Brouwers et al., 2006): amyloid precursor protein (APP, chromosome

21; Murrell et al., 1991; Mullan et al., 1992), presenilin-1 (PS1, chromosome 14;

Haas et al., 1999), and presenilin-2 (PS2, chromosome 1). As described earlier,

the polymorphic apolipoprotein E gene (ApoE, chromosome 19) confers differential

vulnerability to the more-common, late-onset, “sporadic” form of AD. Additional

genes, identified through microarray analyses of genome-wide screens, are currently

under investigation to elucidate their roles in Alzheimer’s disease. In addition, the

association between environmental factors operating through epigenetic mechanisms

and late-onset AD has received recent attention (e.g., Wu et al., 2008a).

The amyloid precursor protein (APP) gene is located on chromosome 21 (locus

21q21.3) and contains 19 exons (Kang et al., 1987; St George-Hyslop et al., 1987;

Tanzi et al., 1988). Multiple isoforms of the protein are caused by alternative splicing

(Yoshikai, 1990). In addition, several mutations in the APP gene have been identified

in families through pedigree analysis. One variant of early-onset AD involves a valine-

to-phenylalanine substitution at residue 717 (V717F; Murrell et al., 1991). This

mutation, known as the “London” variant, increases cleavage of APP by gamma-

secretase, resulting in higher levels of Aβ42. Another variant of familial AD, known

as the “Swedish” variant (Mullan et al., 1992), involves the double mutation K670N

(i.e., Lys to Asn) and M671L (Met to Leu). This double point-mutation increases

cleavage of APP by beta-secretase, resulting in elevated levels of both Aβ40 and Aβ42.

The presenilin-1 (PS1) gene was localized to chromosome 14 (locus 14q24.3)

through a pedigree analysis of 34 individuals with early-onset AD (Van Broeck-
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hoven, 1992; Campion, 1995; Alzheimer’s Disease Collaborative Group, 1995), and

specifically described by Sherrington et al. (1995). The PS1 gene consists of 14

exons and the coding region is estimated at 60 kb (Rogaev, 1997; Del-Favero, 1999).

Presenilin-1 is an integral membrane protein that cleaves Notch1 (Ikeuchi, 2002), and

may play a role during embryonic somitogenesis (Koizumi, 2001). Several pathogenic

allelic variants have been found, including M146L (Met to Leu) (Sherrington et al.,

1995; Morelli et al., 1998), M146V (Met to Val) (ADCG, 1995) and M146I (Met

to Ile) (Jorgensen et al., 1996; Gustafson et al., 1998). In addition, the mutation

E318G (Glu to Gly) results in a predisposition to FAD (Taddei, 2002). Mutations of

PS1 decrease the age of AD onset to the early 40s and 50s by selectively increasing

gamma-secretase cleavage of peptides C99 and C83, which subsequently increases

brain Aβ42 levels (Selkoe, 2001).

The presenilin-2 (PS2) gene is located on chromosome 1 (locus 1q31-q42). The

PS2 gene contains 12 exons of which 10 are coding regions. The 448-residue polypep-

tide encoded by the primary transcript of PS2 shares 67% homology with PS1 (Levy-

Lahad, 1996). Both PS1 and PS2 genes share structural and functional similarity,

and their associated proteins are expressed in the same regions within mammalian

neurons (Kovacs, 1996). Like PS1, several pathogenic allelic variants have been iden-

tified, including N131I (Asn to Ile), M239V (Met to Val) (Rogaev, 1995), and D439A

(Asp to Ala) (Lleo, 2001). Tomita (1997) has suggested that this mutation results

in increased amyloid plaque formation through altered APP metabolism.

The apolipoprotein E (ApoE) gene is located on chromosome 19 (locus 19q13.2).

ApoE is polymorphic, and allelic variants of ApoE confer differential predisposition to

human aging-associated cognitive disorders, including memory impairment and AD.

The presence of the ApoE4 variant is associated with a more rapid decline in episodic

memory, relative to ApoE2 and ApoE3 (Wilson et al., 2002). The ApoE4 variant
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may be associated with increased risk for both AD (Corder et al., 1993; Gureje et

al., 2006) and Creutzfeldt-Jakob disease (Amouyel, 1994), in a gene dose-dependent

manner (i.e., more copies of the gene confers greater risk). Interaction effects between

ApoE and cellular-level microenvironmental variables have been observed, as well.

Studies in Alzheimer’s transgenic mice, for example, suggest that concurrent pres-

ence of latent herpes simplex virus type-1 (HSV-1) in the brain may exacerbate the

risk associated with ApoE4 (Miller and Federoff, 2008), by promoting more-favorable

conditions for AD-associated neuronal degeneration. Mild-to-moderate AD patients

receiving antidiabetic rosiglitazone treatment who are ApoE4-negative show modest

cognitive improvement, while ApoE4-positive patients do not (Risner et al., 2006).

Additionally, the deleterious effects of ApoE4 may be modulated by the expression

of additional genes. Using a genome-wide single nucleotide polymorphism (SNP)

analysis to identify latent genetic interactions, Reiman et al. (2007) found an as-

sociation between the ApoE4 and GRB-associated binding protein 2 (GAB2) genes

which quadruples the risk for late-onset AD in ApoE4-positive individuals. GAB2

helps to regulate tau phosphorylation, through the AKT/GSK3beta kinase cascade.

Although the role of the tau gene in Alzheimer’s pathology remains largely un-

clear, evidence from transgenic mouse studies demonstrates the interaction between

tau and APP expression on subsequent pathology and behavior. For instance, al-

though no change in beta-amyloid levels or plaque burden was detected in transgenic

mice with both human APP overexpression and reduced tau expression (i.e., either

homogeneous or heterogeneous tau-knockout), these animals performed comparably

to wild-type animals in the Morris water maze (Roberson et al., 2007).

The neuronal sorting receptor (SOR1) gene is associated with late-onset AD

(Rogaeva et al., 2007). SOR1 promotes recycling of APP from the cell surface,

and underexpression of SOR1 permits beta amyloid production from APP through
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an alternative pathway. In addition, a point mutation in a mitochondrial enzyme-

coding sequence has been associated with AD (Lin et al., 1992), and genes from

chromosomes 10 (locus 10p3) (Zubenko, 2001) and 20 (Olson et al., 2002) have been

implicated.

Epigenetics, the study of heritable regulation of gene expression without alter-

ation of the DNA sequence (Waddington, 1953; Weinhold, 2006; Dolinoy et al., 2007),

is a growing area in bioinformatics research supported by genome-wide scans of fam-

ilies (Bock and Lengauer, 2008). Epigenetic inheritance has been proposed as one

mechanism underlying non-genotoxic carcinogenesis (e.g., peroxisome proliferator-

activated receptor; Gonzalez, 2002), asthma (Vercelli, 2004), autism (Lopez-Rangel

and Lewis, 2006), and possibly late-onset AD (Bassett et al., 2002, 2006). Addition-

ally, modifications of gene expression during early mammalian development caused

by nutritional, environmental, and even behavioral factors can profoundly alter the

resulting phenotype (Dolinoy et al., 2007); epigenetic inheritance explains, in part,

how individuals with identical genetic makeup may exhibit divergent phenotypic tra-

jectories over the lifespan (Fraga et al., 2005). Different patterns of DNA methylation

by maternal and paternal alleles during early development, for example, can result in

gene expression determined by parent-of-origin (“imprinting”) (Lewin, 2008, p. 833).

Two extremely rare human genetic disorders, Prader-Willi syndrome (PWS; OMIM

176270) and Angelman syndrome (AS; OMIM 105830), illustrate the disparate phe-

notypic effects of genomic imprinting: Partial or complete deletion of 15q11-q13 (i.e.,

bands 11 through 13 of the long arm of chromosome 15) from the maternal copy of

the chromosome results in AS, characterized by delayed motor, speech and cogni-

tive development, seizures, and eccentric affective behavior (Angelman syndrome

was once known, pejoratively, as “happy puppet syndrome”) (Magenis et al., 1987);

similar corruption of the paternal copy results in PWS, characterized by hyperpha-
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gia, hypotonia, and impaired learning ability (Ledbetter et al., 1981). Because DNA

methylation events can occur throughout the entire lifespan (Bjornsson et al., 2008),

epigenetic modulation of individual phenotype represents an ongoing process.

1.8 Animal Models of Alzheimer’s Disease

Animal models are useful in research for identifying characteristic biochemical,

histopathological, and behavioral manifestations of neurological disorders (e.g., Gal-

lagher and Rapp, 1997). Additionally, these models can be used to elucidate the

functional role of genes or proteins and the impact of genetic manipulation on pheno-

typic expression, as well as to evaluate therapeutic efficacy of pharmacologic and/or

behavioral interventions. The assessment and analytical methodologies for animal

models should closely resemble those of their human counterparts, as well (e.g., MRI

in living transgenic mice, Jack et al. 2007). An ideal model for Alzheimer’s disease,

for example, should manifest progressive cognitive impairment and AD-characteristic

neuropathology (Janus and Westaway, 2001; Dodart et al., 2002; Bloom et al., 2005;

Brasnjevic et al., 2006). In addition, reproducibility of results by different investiga-

tors is necessary for establishing a valid animal model.

In some cases, naturally-occurring examples of Alzheimer’s-like neuropathology

already exist, which can be studied as model systems of disease (Nakayama et al.,

2004). For instance, cognitive dysfunction syndrome, a geriatric neurological dis-

order in domestic cats (Levine et al., 1987) and dogs (Ruehl et al., 1995; Cum-

mings et al., 1996a, 1996b; Borras et al., 1999), is symptomatically reminiscent of

human Alzheimer’s disease (e.g., confusion, sensory disorientation, reduced social

interaction, vocalization, disruption of sleep-wake cycle, and urinary incontinence).

Histopathological changes similar to human AD, including extraneuronal deposition

of beta amyloid (primarily Aβ42) protein and intraneuronal accumulation of hyper-
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phosphorylated tau protein (although no mature neurofibrillary tangles), have been

observed in aged (10+ year-old) cats (Head et al., 2005; Cummings et al., 1996c;

Gunn-Moore et al., 2006). The highest concentrations of Congophilic staining were

found in the deep cortical and anterior cerebral regions, and intense neuronal AT8-

immunoreactivity was detected. In aged (8-18 y/o) dogs, scattered diffuse (but not

compact) beta amyloid plaques were detected in the cerebral cortex using immuno-

histochemical staining, in addition to extensive cerebrovascular amyloid deposition

(Borras et al., 1999). Both cats and dogs respond positively to antioxidant-enriched

diets, with improved cognitive performance (Cotman et al., 2002; Milgram et al.,

2005) and increased longevity (Cupp et al., 2006). In addition to domestic canine and

feline species, both aged nonhuman primates (chimpanzees and orangutans; Gearing

et al., 1994, 1997) and polar bears (Tekirian et al., 1996) exhibit diffuse Aβ42-specific

plaques in the cortex and hippocampus; tau-immunoreactive paired helical filaments

have also been found in aged chimpanzee cortical tissue (Rosen et al., 2008). Both

neurofibrillary tangles and neuritic plaques have been found in the cerebral cortex of

aged sheep (Nelson et al., 1994). In addition, argyrophilic neurofibrillary tangles, as

well as both neuritic and diffuse plaques, were found in the cortex and hippocampus

of an aged wolverine (Roertgen et al., 1996).

Transgenic animals, by contrast, represent artificial (constructed) model systems

in which one or more genes are deleted, mutated, and/or overexpressed (Jaenisch,

1988; Lee et al., 1996). The resulting genetically-engineered animals are useful sub-

jects for observing and measuring the pathogenesis and progression of disorders,

as well as for examining the effects of preventive or therapeutic interventions. For

studying many human neurodegenerative diseases, including AD, transgenic mice

are commonly used (e.g., Emilien et al., 2000; Wong et al., 2002). These mice are

produced through pronuclear injection of an appropriate cDNA transgene into a
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single-cell mouse embryo which is implanted into a pseudopregnant female mouse.

Successful incorporation of the transgene into the mouse genome is verified by geno-

typing the offspring by polymerase chain reaction (PCR) at weaning. Using this

protocol, multiple lines of transgenic mouse models have been developed and main-

tained for studying Alzheimer’s disease. The selection of an appropriate background

mouse strain is an important consideration, however (Gerlai, 1996; Carlson et al.,

1997; Crawley et al., 1997; Picciotto and Wickman, 1998; Nguyen et al., 2000;

Pugh et al., 2004). Inbred FVB/N or C57BL/6J lines carrying the APP transgene,

for instance, are more prone to premature death preceded by behavioral anomalies

(neophobia, decreased Y-maze spontaneous alternation activity), relative to outbred

hybrids (Carlson et al., 1997). Inbred CBA/J mice exhibit learning impairment in

the Morris water maze, which may be related to aberrant hippocampal electrophys-

iology, specifically, impaired long-term potentiation in the CA1 region (Nguyen et

al., 2000).

1.8.1 PDAPP Transgenic Mouse Model

The PDAPP transgenic mouse model includes a single-mutation human APP

gene, with phenylalanine replacing valine at residue 717 (V717F). The hAPP mini-

gene, using a human platelet derived growth factor b (PDGF-b) promotor, is incor-

porated into mice having a C57B6 x DBA/2 F1 hybrid strain background (Games

et al., 1995; Rockenstein et al., 1995).

Pathological Characterization

A significant increase in transgenic APP levels is detected in the cerebral cortex

and hippocampus between 4 and 18 months of age (Games et al., 1995), including a

17-fold increase in hippocampal beta amyloid (primarily Abeta[1-42]) between 4 and

8 months of age (Johnson-Wood et al., 1997). At three months of age, significant
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hippocampal atrophy is detected (Dodart et al., 2000). At 4-5 months, enhanced

paired-pulse facilitation (PPF) and rapidly-decaying long-term potentiation (LTP)

are noted (Larson et al., 1999). In addition, decreased proliferation of neurons in the

hippocampal subgranular zone (SGZ) occurs during the first year (Donovan et al.,

2006), suggesting that altered neurogenesis contributes to decreases in hippocampal

function in these animals. Neither neurofibrillary tangles nor paired helical filaments

have been detected in the PDAPP transgenic mouse model (Masliah et al., 1996;

Masliah et al., 2001).

Although three- to four-month-old homozygous PDAPP mice exhibited some ex-

tent of mature beta amyloid deposits, not all heterozygous PDAPP mice manifest

mature deposits (Dodart et al., 2000). Additional studies have shown that between

four to six months of age, no significant pathology is observed in heterozygotic an-

imals (Games et al., 1995). However, beta amyloid deposits are found exclusively

in the hippocampus, corpus callosum, and cerebral cortex of transgenic animals in

an age-dependent fashion beginning at six months (Dodart et al., 2000). Eight- to

twelve-month-old heterozygous PDAPP mice exhibit structural pathologic features

reminiscent of human AD (Masliah et al., 1996), including similarities in amyloid

deposition, dystrophic neurites, and glial cell reactivity. Thioflavin S-positive beta

amyloid deposits are detected in the hippocampus and entorhinal cortex between 12

and 15 months, with little or no detectable deposits earlier (Reilly et al., 2003). By

16-17 months of age, increased plaque density was observed within the entorhinal

cortex, dentate gyrus, and CA1 of the hippocampus (Chen et al., 2000), and diffuse

plaques were found within the hippocampus and entorhinal cortex.

An interaction among human APP, ApoE, and ACT expression in the PDAPP

mouse model has been shown to influence beta amyloid plaque deposition and char-

acter (Nilsson et al., 2004). PDAPP mice lacking both ApoE and ACT have no
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compact beta amyloid deposits, and only minimal diffuse deposits. Overexpression

of ACT in ApoE-knockout PDAPP mice increases diffuse beta amyloid deposition,

but compact deposits remain absent. Expression of ApoE produces higher diffuse

beta amyloid deposition, relative to ApoE-knockouts, and is associated with the

presence of compact deposits. The presence of both ApoE and ACT produces the

highest levels of both diffuse and compact beta amyloid deposition.

Behavioral Characterization

Behavioral manifestations and deficits precede amyloid plaque deposits, with

radial arm maze impairment (reference memory errors) detected at three months,

compared to wildtype controls (Dodart et al., 1999). Object recognition memory

impairment is noted at six months, with significant decline identified at 9-10 months

(Dodart et al., 1999; Dodart et al., 2000).

Correlation-, factor-, and discriminant-analyses of behavioral measures obtained

from comprehensive task batteries support the existence of uniquely identifiable sen-

sorimotor and cognitive domains, as well as domain-specific pathological correlations

in the PDAPP mouse model (Leighty et al., 2004). Signficant correlations are ob-

served both within and between water maze tasks (Morris maze, platform recogni-

tion, and radial arm water maze), and between these tasks and Congophilic beta

amyloid deposition within the cerebral cortex and hippocampus of 15 month-old

PDAPP mice (Leighty et al., 2004). In particular, spatial memory tasks have iden-

tified domain-specific deficits in cognitive performance. Progressive deficits in water

maze serial spatial memory are seen between 13 and 18 months, and non-progressive

deficits in water maze spatial reference memory are detected between 13 and 18

months, and as early as 3-4 months, compared with nontransgenic mice (Chen et al.,

2000).
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The pattern of cognitive impairment in 15 month-old PDAPP mice is influenced

by human ApoE and ACT expression (Nilsson et al., 2004). No impairment in the

Morris maze and radial arm water maze tasks are observed in PDAPP mice lacking

both ApoE and ACT. Expression of ApoE results in substantial impairment in both

the Morris maze and radial arm water maze tasks. Overexpression of ACT in ApoE-

knockout mice results in modest impairment in the radial arm water maze task, but

normal Morris maze performance.

1.8.2 APPsw Transgenic Mouse Models

A double mutation of the APP gene, occurring at residues 670 (K670N) and 671

(M671L), known as the “Swedish” mutation is the basis for several transgenic mouse

models. The models differ in strain backgrounds, which produces marked differ-

ences in cognitive and sensorimotor phenotypic characteristics. The FVB/N mouse

strain, for example, exhibits susceptibility to hippocampal and cortical apoptosis

and astrogliosis (Moechars et al., 1996) as well as retinal degeneration (Vinores et

al., 2003), and the APPsw model having this background is particularly vulnerable

to hippocampal cell death (Mohajeri et al., 2004). Sturchler-Pierrat et al. (1997)

describe the generation of another APPsw model called the APP23 mouse, produced

by insertion of the hAPP751 cDNA into the XhoI site of an expression vector contain-

ing the murine Thy1.2 glycoprotein gene and promotor. The Tg2576 mouse model

(Hsiao et al., 1996; Chapman et al., 1999) introduces mutant human APP through

a hamster prion protein gene, PrP, promotor on a C57BL6 x C57BL6/SJL strain

background.

Pathological Characterization

Young APP23 mice (6 months) exhibit sparse beta amyloid deposits, however,

substantial plaque deposition (including dense deposits) are seen at 24 months in
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diverse regions, including the neocortex, hippocampus, and thalamus (Sturchler-

Pierrat et al., 1997). Both heterozygous and homozygous APP23 mice exhibit

extensive plaque deposits between 14-18 months of age in the neocortex and hip-

pocampus (Calhoun et al., 1998), although no significant neuronal loss was present.

Additionally, no neurofibrillary tangles were identified through immunostaining and

Bielschowski silver staining (Schwab et al., 2004). Nine month-old animals which re-

ceived intrahippocampal injections of human beta amyloid extract at five months of

age exhibit extensive hippocampal plaque deposition (Meyer-Luehmann et al., 2006).

The induction of beta-amyloidogenesis at this earlier timepoint within a susceptible

host demonstrates the nucleant (“seeding”) aspect of Alzheimer’s pathology (Riek,

2006).

Neuropathology in the Tg2576 mouse was first studied by Hsiao et al. (1996).

Increased levels of Aβ40 were found as early as two months of age, with a five-fold

increase by 11 to 13 months of age. Elevated levels of Aβ42 were also found, with a

14-fold increase by 11 to 13 months of age. Amyloid deposits within the frontal, tem-

poral, and entorhinal cortices, as well as the hippocampus and cerebellum were found

in 11 to 13 month-old mice (Hsiao et al., 1996). Similarly, brain levels of both Aβ40

and Aβ42 increased from 4-8 months of age through 12 months, with beta amyloid

deposits within the hippocampus and cortex by the later time-point (Pratico et al.,

2001). By 18 months of age, Tg2576 mice have widespread beta amyloid deposition

in the hippocampus and neocortex (Pratico et al., 2001). Benzing et al. (1999) also

found extensive brain beta amyloid deposits in 18 month-old Tg2576 mice, predom-

inantly within the temporal and cingulate cortices, accompanied by astrocytes and

microglia. Beta amyloid deposits within the cingulate cortex, entorhinal cortex, and

hippocampal region CA1 were detected in 16 month-old Tg2576 mice (Irizarry et al.,

1997). Positive plaque-associated astrocyte activation was found, consistent with
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Benzing et al. (1999). King and Arendash (2002b) noted extensive synaptophysin

staining of the hippocampus and neocortex in 19 month-old Tg2576 mice, relative

to age-matched nontransgenic animals; decreased staining was observed within the

plaque cores, with increased staining around the periphery. Additionally, Wester-

man et al. (2002) suggested an association between the presence of insoluble beta

amyloid and Morris water maze retention performance deficits in Tg2576 mice over

10 months of age. Lesne et al. (2006) associated extracellular accumulation of a

soluble 56 kD beta-amyloid dodecamer (named “beta-amyloid star 56”) with spatial

memory deficits observed in 6 to 14 month-old Tg2576 mice.

Behavioral Characterization

APP23 mice exhibit spatial learning and memory deficits in the Morris water

maze task (Kelly et al., 2003; Lalonde et al., 2002; Van Dam et al., 2003). Evidence

of cognitive impairment precedes plaque deposition; heterozygous APP23 mice show

significant beta amyloid plaque deposition at 6 months of age, but demonstrate

impairment in both the acquisition and retention components of the Morris water

maze as early as 3 months of age (Van Dam et al., 2003). Lalonde et al. (2002) noted

impairment of 16 month-old mice in the acquisition – but not retention – component

of Morris water maze performance. Kelly et al. (2003) obtained similar findings,

with 3, 18, and 25 month-old APP23 mice showing progressively increasing latencies

in the same task.

Tg2576 mice exhibit a different pattern of behavioral impairment from APP23

mice. Holcomb et al. (1999) found no impairment in sensorimotor tasks, Y-maze

entries or alternation, Morris water maze, or visible platform performance of 3 month-

old Tg2576 mice. King and Arendash (2002a) also found no impairment in Y-maze

entries, Morris water maze, visible platform, and circular platform performance in 3

month-old mice. However, they noted impairment in selected sensorimotor tasks (in-
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creased open field activity and poor balance beam performance), as well as Y-maze

alternation. Hsiao et al. (1996), by contrast, did not find Y-maze alternation deficits

in 3 month-old Tg2576 mice, but noted these impairments at 10 months of age, as

well as increased latency of Morris water maze acquisition. Tg2576 mice exhibit im-

paired novel object habituation and reduced reactivity to spatial novelty as early as 7

months of age (Middei et al., 2006), suggestive of hippocampal-mediated attentional

deficits. Circular platform performance deficits were detected in 7 month-old mice,

relative to non-transgenic littermates (Pompl et al., 1999). Spatio-temporal con-

text learning impairment has been observed in 10-12 month-old Tg2576 mice (Good

et al., 2007), reminiscent of human episodic memory deficits (i.e., “what,” “when,”

and “where” aspects of object presentation). Holcomb et al. (1999) found no im-

pairment in Morris water maze or visual platform performance by 9 months of age,

but noted that Tg2576 mice showed decreased Y-maze alternation, compared with

non-transgenic animals. By contrast, King and Arendash (2002a) noted a significant

increase in visible platform latency at 9 months. Manifold learning and memory

impairment (Morris maze spatial acquisition and retention, circular platform escape

latency, RAWM working memory) was also found in 9 month-old transgenic mice,

relative to age-matched nontransgenics (Arendash et al., 2006). Additionally, trans-

genic mice displayed significant sensorimotor impairment (balance beam and string

agility tasks) by 14 months, as well as impaired Y-maze alternation by 19 months,

relative to age-matched nontransgenic animals (King and Arendash, 2002a). Hsiao et

al. (1996) observed significant impairment in Morris water maze retention between

9 and 15 months of age. In addition, impaired reversal learning (odor discrimination

task) was observed in 6 month-old Tg2576 mice (Zhuo et al., 2007), with animals

requiring more trials to reach criterion, relative to age-matched non-transgenic con-

trols.
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1.8.3 APPsw+PS1 Transgenic Mouse Model

The APP/PS1 mouse model incorporates two human FAD-associated mutation

variants: the Tg2576 APPsw Swedish double-mutation and the presenilin-1 (PS1)

M146L mutation (Holcomb et al., 1998).

Pathological Characterization

The most striking feature of the APPsw/PS1 double transgenic mouse model

is its accelerated beta amyloid deposition temporal profile, relative to the APPsw

mouse. Compact beta amyloid deposits are found as early as 12-16 weeks of age

and, by 24-32 weeks of age, plaques surrounded by reactive astrocytes are observed

(Holcomb et al., 1998). Takeuchi et al. (2000) found beta amyloid plaque deposits

in the neocortex and, to a lesser extent, the hippocampus, of three month-old trans-

genic mice. By six months, small diffuse plaques and larger compact plaques were

ubiquitous in the cortex. No changes were detected in hippocampal CA1 neuron

density nor in synaptophysin-associated immunoreactivity, relative to age-matched

single transgenic and non-transgenic mice (Takeuchi et al., 2000). These results differ

from those of Gordon et al. (2002), however, who found beta amyloid deposits in six

month-old APP/PS1 mice, but not in three month-old animals. These deposits were

found mainly in the hippocampus and frontal and entorhinal cortices, in association

with both reactive astrocytes and dystrophic neurites. By 15 months of age, positive

staining for reactive astrocytes increased throughout the brain, particularly within

the cerebral cortex and striatum (Gordon et al., 2002). Jensen et al. (2005) also

reported significant beta-amyloid immunostaining and Congo red staining within the

cortex and hippocampus in 17-month-old mice. Borchelt et al. (1997) found substan-

tial beta amyloid deposition in the hippocampus and cerebral cortex of APP/PS1

mice, with age-related increases in plaque burden from 9 months to 12 months of
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age. A significant negative correlation between total beta amyloid burden in the

hippocampus and frontal cortex, and T1-T4 acquisition trial error reduction in the

radial arm water maze, underscores the parallel trajectories of neuropathological and

cognitive deterioration (Gordon et al., 2001). Congophilic staining in the frontal cor-

tex is significantly positively correlated with cognitive impairment (working memory

errors in the radial arm water maze task) in APP/PS1 mice (Arendash et al., 2001;

Gordon et al., 2001). In addition, non age-dependent cortical electrophysiological

anomalies are detected in APPsw/PS1 mice (Wang et al., 2002), manifested as re-

duced theta (4 to 6 Hz) and enhanced beta (14 to 27 Hz) and gamma (28 to 40 Hz)

EEG activity, underscoring the pathophysiological distinctiveness of this genotype.

Behavioral Characterization

APP/PS1 mice up to 9 months of age do not exhibit deficits in sensorimo-

tor tasks (Holcomb et al., 1999). However, by 6 to 9 months of age, these mice

show increased activity (i.e., number of entries) and impairment in Y-maze alterna-

tion, compared with age-matched nontransgenic mice (Holcomb et al., 1999). Addi-

tional studies by Arendash et al. (2001) utilized a more comprehensive behavioral

task battery, and identified domain-specific patterns of impairment. At 5-7 months

of age, APP/PS1 mice did not differ from age-matched nontransgenics in either

sensorimotor- or cognitive-based tasks, including Y-maze alternation, with the ex-

ceptions of Y-maze entries (APP/PS1 showed greater activity) and balance beam

(APP/PS1 showed impairment). In a later study, however, transgenic animals be-

tween 4.5 and 6 months of age exhibited impairment in both Morris maze acquisition

and retention, as well as RAWM working memory (Jensen et al., 2005), relative to

age-matched nontransgenic mice. This early evidence of cognitive impairment co-

incides with incipient plaque formation within vulnerable brain regions (cortex and

hippocampus). Ten month-old animals exhibit significantly greater duration within
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– as well as increased percent-entries into – the open-arms of the elevated plus maze

(Pugh et al., 2007). By 15-17 months of age, APP/PS1 mice showed increased ac-

tivity (both in open field and Y-maze entries) as well as general sensorimotor and

cognitive impairment, compared to age-matched nontransgenic animals (Arendash et

al., 2001). Ethell et al. (2006) noted working memory impairment (overall number

of errors during Trials 4 and 5 in the radial arm water maze task) in eight month-old

APP/PS1 mice, compared with age-matched non-transgenic control animals.

1.8.4 APPsw+PS1+Tau Transgenic Mouse Model

The trigenic-AD mouse (LaFerla, 2006) was produced by subcloning an hAPP695

cDNA fragment with the Swedish double mutation (K670N, M671L), and human

tau with the P301L mutation, into the murine Thy1.2 expression cassette. These

were inserted by co-microinjection into pronuclei of single-cell embryos from PS1

(M146V mutant) knock-in mice. Currently, this mouse model most-closely mirrors

the pathological profile of human Alzheimer’s disease, with simultaneous expression

of human mutant APP and tau proteins and the appearance of their respective

histopathological and behavioral manifestations.

Pathological Characterization

Trigenic-AD (3xTgAD) mice develop both amyloid plaques and neurofibrillary

tangles in an age-related progressive fashion (Billings et al., 2005). Intraneuronal

beta amyloid protein is found in the hippocampus and amygdala of four month-old

animals, but neither plaque nor tangle formation is evident at this age (Billings et al.,

2005). Beta amyloid deposits initially appear in the cortex, as early as six months of

age, and spread to the hippocampus, while tau pathology emerges in the reverse order

(Oddo et al., 2003a). Beta amyloid deposition precedes tangle pathology, despite

comparable overexpression of the respective human mutant transgenes (Oddo et al.,
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2003a), and consistent with the amyloid cascade hypothesis of Alzheimer’s disease

pathogenesis. Synaptic dysfunction progresses in an age-related manner, with deficits

in long-term potentiation preceding plaque and tangle pathology, and deficits in

long-term synaptic plasticity related to the accumulation of beta amyloid within

neurons (Oddo et al., 2003b; LaFerla and Oddo, 2005). In addition, the trigenic-AD

mouse model provides evidence that oligomerization of beta amyloid initially occurs

intraneuronally (Oddo et al., 2006).

Behavioral Characterization

At 2.5 months of age, 3xTgAD mice are prepathologic and cognitively unimpaired

(Morris water maze), although they exhibit initially decreased vertical open field ac-

tivity (number of rearings), relative to age-matched nontransgenics (Gimenez-Llort

et al., 2007), and by six months of age, increased horizontal open field activity (loco-

motion) is observed. By four months of age, deficits in long-term memory retention

(cued Morris water maze) are found (Billings et al., 2005). Immunotherapy-induced

clearance of beta amyloid, which accumulates in the hippocampus and amygdala

by four months of age, temporarily alleviates cognitive impairment, however. Ad-

ditionally, six month-old trigenic-AD mice exhibit poorer acquisition in the Morris

water maze, as well as subsequent memory retention deficits (probe trial), relative

to nontransgenics (Gimenez-Llort et al., 2007).

1.8.5 Animal Models: A Coda

The most commonly used variants of the Alzheimer’s transgenic mouse model

were described in this section. However, these examples represent only a sample

from the growing diversity of transgenic mouse strains available to researchers for

exploring various aspects of Alzheimer pathology. Transgenic mice are currently

the best animal model system for investigating the pathogenesis and progression of
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Alzheimer’s disease, as well as for evaluating experimental diagnostic and therapeutic

interventions. However, the Alzheimer’s transgenic mouse is not a perfect model, and

is incomplete with respect to pathology.

The immuno-neuroinflammatory response, for instance, differs between human

AD and the mouse model, possibly due to reduced sensitivity of murine comple-

ment factors to human beta-amyloid (Webster et al., 1997). In humans, significant

microglial activation and increased levels of complement factors are associated with

plaque cores (Schwab et al., 2004). By contrast, a weaker microglial response that

is largely confined to the plaque periphery is observed in the Alzheimer’s transgenic

mouse (Schwab et al., 2004). In addition, plaque-associated neuronal loss occurring

in human AD is not consistently observed in transgenic mice. In Tg2576 mice, for

example, some studies (e.g., Tomidokoro et al., 2001) report neuronal loss associ-

ated with beta-amyloid plaques, albeit “limited,” while other studies (e.g., Stein and

Johnson, 2002) do not. Finally, it is noteworthy that human APP differs from the

murine homolog by only seventeen amino acids (Jankowsky et al., 2007) and that,

while wild-type rodents do not exhibit age-associated Alzheimer-like amyloid lesions

(Shivers et al., 1988) for unknown reasons (Selkoe, 1989; Cai et al., 2001; Jankowsky

et al., 2004), the co-expression of murine APP in Alzheimer’s transgenic mice alters

the solubility and distribution pattern of the aggregates (Jankowsky et al., 2007).

Despite these, and other, potential deficiencies and limitations, each new generation

of Alzheimer’s transgenic mouse model constitutes an evolutionary step of scientific

progress, both reflecting our current knowledge of Alzheimer’s disease and promising

new insights.

Currently, observing and measuring the overt behavioral (cognitive) manifesta-

tions of Alzheimer’s disease provide the most direct, and least invasive, means for

investigating the disorder. The development of technology for observing, measuring,
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recording, classifying, and interpreting animal behavior mirrors advances in psychol-

ogy, neurology, and associated behavioral sciences. The modern researcher can select

from a wide range of experimental apparatus, including arenas, mazes, and operant

chambers, and utilize computer-mediated sensors for detecting even the most subtle

subject responses. Not surprisingly, the tools available for data analysis reflect the

sophistication of these devices, from basic statistics to complex computational al-

gorithms. Only recently, however, have neuroscientists begun to exploit the greater

potential of contemporary analytical engines for behavioral research.

1.9 Treatments for Alzheimer’s Disease

Several classes of pharmacologic agents (Suh and Checler, 2002; Cummings and

Zhong, 2006; Klafki et al., 2006; Silvestrelli et al., 2006) have been developed for

the treatment of Alzheimer’s disease, including cholinesterase inhibitors, N-methyl-

d-aspartate (NMDA) receptor antagonists, and secretase-modulators. In addition,

various natural products are under investigation as therapeutic agents (Cox and

Balick, 1994).

1.9.1 Pharmaceuticals

Cholinesterase inhibitors (e.g., tacrine, donepezil, galantamine, and rivastigmine)

help compensate for diminished availability of the neurotransmitter acetylcholine by

blocking the action of acetylcholinesterase, which normally breaks down acetylcholine

following release (Gauthier, 2001). The resulting increase in synaptic concentration

of acetylcholine modestly ameliorates the depletion of the neurotransmitter caused

by progressive loss of cholinergic neurons, but does not alter the underlying patho-

genetic mechanism of the dementia. These agents have demonstrated effectiveness

in mild to moderate AD (Holmes et al., 2004), albeit for limited duration (1-2 yrs).
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Tacrine (CognexTM) was the first centrally-acting acetylcholinesterase inhibitor ap-

proved for the treatment of Alzheimer’s disease. Clinical trials in individuals with

mild to moderate dementia showed improvements in language skills (production,

comprehension, and word recognition) (Raskind et al., 1997), and demonstrated re-

lief of major psychiatric symptoms (anxiety, apathy, and hallucinations) in individ-

uals with moderate dementia (Farlow et al., 1992; Knapp et al., 1994; Kaufer et al.,

1996). Tacrine has been replaced by newer medications, due to its poor oral bioavail-

ability and adverse drug reaction issues (incl. gastrointestinal and urinary problems,

hepatotoxicity) (Qizilbash et al., 1998). Donepezil (AriceptTM , Eisai), which was in-

troduced in 1997, features 100% oral bioavailability, fewer reported side effects, and

a longer half-life (i.e., requires fewer daily doses), compared with tacrine (Scarpini et

al., 2003). Clinical trials in mild to moderate AD patients showed improved cognition

and activities of daily living (Winblad et al., 2001), and reduced psychiatric symp-

toms (anxiety, delusions) in moderate to severe AD patients (Rogers et al., 1998;

Feldman et al., 2001). Galantamine (RazadyneTM , Ortho-McNeil Neurologics) is an

alkaloid originally isolated from flowers and bulbs of the Voronov snowdrop (Galan-

thus woronowii ; Amaryllidaceae) (Scott and Goa, 2000). Galantamine is not only a

competitive reversible acetylcholinesterase inhibitor, but also increases acetylcholine

release by modulating nicotinic cholinergic receptors (Woodruff-Pak et al., 2001). In

mild to moderate AD patients, galantamine has been shown to improve cognition and

decrease anxiety and hallucinations (Tariot et al., 2000). Rivastigmine (ExelonTM ,

Novartis) inhibits both acetylcholinesterase and butyrylcholinesterase, and is partic-

ularly beneficial in patients exhibiting Alzheimer’s- or Parkinson-associated delusions

or hallucinations (Burn et al., 2006; Gauthier et al., 2006; Touchon et al., 2006). Ri-

vastigmine became the first product approved for the treatment of mild to moderate

dementia associated with Parkinson’s disease (Emre et al., 2004) in 2006.
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NMDA receptor antagonists (e.g., memantine) bind to NMDA receptors with

greater affinity than magnesium ion, thus preventing the prolonged influx of calcium

ions underlying neuronal glutamatergic excitotoxicity observed in AD (Cacabelos et

al., 1999). These agents can dissociate from the postsynaptic receptors to permit glu-

tamate binding, thus preserving physiological and signal-conductive processes of the

receptor. Memantine (NamendaTM , Forest Pharmaceuticals), introduced in 2003, is

a non-competitive, low-affinity NMDA receptor antagonist (Lipton, 2005), and the

first pharmaceutical therapeutic agent for AD which targets the glutamatergic sys-

tem (Robinson and Keating, 2006). It is indicated for treating moderate to severe

AD (Reisberg et al., 2003) and, when administered with donezepil, showns enhanced

effectiveness for improving cognitive function in severe AD (Tariot et al., 2004).

Eight month-old Alzheimer’s transgenic mice (APP/PS1) receiving daily meman-

tine (30 mg/kg/day p.o.) for 2 to 3 weeks showed less-impairment in Morris water

maze acquisition (i.e., reduced escape latency), relative to untreated transgenic ani-

mals (Minkeviciene et al., 2004), suggesting improved hippocampal-mediated spatial

learning ability. Memantine is also a potent serotonergic (5HT3) receptor antagonist

(Rammes et al., 2001), but the clinical relevance to AD remains unknown.

Selective amyloid lowering agents (SALA), such as R-flurbiprofen (FlurizanTM ,

tarenflurbil, Myriad Genetics), represent a new class of pharmacologic therapies for

treating mild AD currently under investigation. These agents are related to NSAIDs,

and have been shown to reduce the levels of pathogenic Aβ42 both in vitro and in

animal models (Morihara et al., 2002; Eriksen et al., 2003) by modulating the action

of gamma-secretase. Both R-ibuprofen and R-flurbiprofen are poor cyclooxygenase

inhibitors, but effectively reduce Aβ42 production in vitro (Morihara et al., 2002).

However, an 18-month Phase 3 clinical study of FlurizanTM in patients with mild

Alzheimer’s disease showed no significant difference between treated and untreated
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patients, with respect to cognitive- or daily living-based indices (either cognition-

and daily living-indices (Green et al., 2008).

1.9.2 Natural Products

Several natural products, including medicinal plant extracts, are under investiga-

tion as nootropics and potential therapeutic agents for AD based on ethnobotanical

traditions (Perry et al., 1999; Philipson, 2003). For example, flavonoid and ter-

pene trilactone extracts from the Maidenhair tree (Ginkgo biloba L.; Ginkgoaceae)

may slow the progression of dementia, and are being studied as potential treatments

for cognitive impairment and Alzheimer’s disease (Zimmermann et al., 2002; Cohen-

Salmon et al., 1997; Kanowski et al., 1996; Le Bars et al., 1997; DeKosky et al., 2006).

The antioxidant properties of Ginkgo extracts may reduce Alzheimer’s-related ox-

idative stress (Christen, 2000; Philipson, 2003). Daily oral administration of Ginkgo

extract (70 mg/kg/day) in eight month-old Alzheimer’s transgenic mice (Tg2576)

for six months resulted in Morris water maze probe trial (memory retention) perfor-

mance comparable to age-matched non-transgenic animals (Stackman et al., 2003).

There was no significant spatial learning difference between Ginkgo-treated and un-

treated non-transgenic animals, however (Stackman et al., 2003). Studies in rats

(Shif et al., 2006) suggest that, while oral administration of Ginkgo extract may not

affect either reference memory or working memory in the Morris maze and eight-arm

radial maze tasks, chronic administration improves the overall rate of spatial learn-

ing over time. Oral administration of Celastrus seed (Celastrus paniculatus Willd.;

Celastraceae) oil improves memory retention performance in rats (Nalini et al., 1995)

using a two-compartment passive avoidance paradigm (Bures and Buresova, 1963).

Treated animals have significantly lower brain levels of monoamine neurotransmit-

ters (i.e., norepinephrine, dopamine, and serotonin) and their metabolites, suggesting

50



both that Celastrus oil decreases the turnover of central monoamines and that these

neurotransmitters exert an inhibitory influence on learning and memory (Nalini et

al., 1995). In addition, water-soluble extracts from Celastrus seeds have been shown

to inhibit NMDA receptors in vitro, which may serve a neuroprotective role by pre-

venting glutamate-induced neurotoxicity (Godkar et al., 2004). Huperzine A, an

alkaloid isolated from the Chinese medicinal herb Qian Ceng Ta (Huperzia serrata

[Thunb.] Trev. = Lycopodium serratum) and related genera of clubmoss ferns, in-

hibits acetylcholinesterase activity and increases brain acetylcholine levels for several

hours (Cheng and Tang, 1998; Xiao et al., 2000; Bai et al., 2000; Zangara, 2003).

Vinpocetine, isolated from Madagascar periwinkle (Vinca alba), increases cerebral

blood flow in patients with senile cerebrovascular disease (Balestreri et al., 1987).

The spice turmeric (Curcuma longa), found in curry powder, contains curcumin,

which has been shown to inhibit the formation of beta amyloid fibrils and to destabi-

lize preformed fibrils, in vitro (Ono et al., 2004). Daily curcumin reduces both soluble

beta amyloid and plaque burden in Tg2576 (APPsw) mice, without altering APP

levels (Lim et al., 2001). The reduced age-adjusted prevalence of Alzheimer’s disease

observed in India (Ganguli et al., 2000) may be related to dietary turmeric. Young

(2 month-old) APP/PS1 mice receiving extract of Bacopa monniera (traditional

anti-aging, memory-enhancing therapy from India) for 8 months show decreased cor-

tical Aβ40 and Aβ42 levels, relative to untreated control animals (Holcomb et al.,

2006). Transgenic mice (Tg2576) receiving orally-administered pomegranate juice

showed enhanced water maze performance and decreased beta-amyloid (both solu-

ble and compact deposit forms), relative to untreated controls (Hartman et al., 2006).

Cannabinoid derivatives have been shown to block beta amyloid-induced microglial

activation in vitro, and may have additional neuroprotective potential (Ramirez et

al., 2005).

51



1.9.3 Behavior-Based Therapies

As an adjunct to pharmacologic treatments, several behavioral and psychosocial

intervention and rehabilitation strategies have been suggested for early to moder-

ate Alzheimer’s disease (Cohen-Mansfield, 2001; Olazaran et al., 2004; Sitzer et

al., 2006). Research with Alzheimer’s transgenic mice, which exhibit progressive

neuropathology and cognitive impairment reminiscent of human-AD, suggests that

physical exercise may alleviate AD-associated cognitive impairment (Nichol et al.,

2007). After three weeks of ad lib access to an exercise wheel, aged (16-18 month-

old) transgenic animals performed comparably to age-matched non-transgenic con-

trols in the radial arm water maze task for both short-term (working) and long-

term (reference) memory performance (Nichol et al., 2007); by contrast, sedentary

aged transgenic- and non-transgenic animals were readily distinguishable. Studies

in Alzheimer’s transgenic animal models demonstrate the cognitive-protective ben-

efits of “enriched” (i.e., physically- and cognitively-stimulating) housing conditions.

Arendash et al. (2004a), for example, noted that aged (16 month-old) APPsw mice

which are placed into enriched housing conditions for four months exhibit cognitive

performance (spatial reference learning/memory, object identification) significantly

superior to that of litter-mates housed under standard laboratory conditions. No

differences were found between enriched- and standard-housed mice in total Aβ load

of either hippocampus or parietal cortex (Arendash et al., 2004a), suggesting an

alternative mechanism to brain β-amyloid reduction for the observed cognitive ef-

fects. Subsequent investigations have found both decreased cortical beta-amyloid

deposition (Lazarov et al., 2005; Ambree et al., 2006) and enhanced cognitive perfor-

mance (Costa et al., 2007) effects of environmentally-enriched housing environments,

relative to standard animal housing conditions. Indeed, long-term “complete” en-
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richment environments (combining social, physical, and cognitive stimulation) may

provide optimal conditions to protect against cognitive and functional impairment,

and ameliorate AD-associated neuropathology (Cracchiolo et al., 2007). Further-

more, behavioral interventions involving physical and/or cognitive stimulation have

demonstrated benefits for maintenance and even modest improvements in mental

function of AD patients. Ambulatory AD patients who participated in a collective

exercise program (one hour, twice weekly for one year; walking, strength-, balance-,

and flexibility-training regime) showed a slower decline in activities of daily living

(ADL; Katz Index) performance measures, relative to nonparticipants (Rolland et

al., 2007). Quayhagen and Quayhagen (1989) showed that AD patients who engaged

in mentally-stimulating activities (verbal and memory exercises, problem-solving)

maintained cognitive function during the treatment period, compared to patients

who did not engage in the activities. Indeed, AD patients who receive regular (two

45-min sessions/day, three times per week for five wks) training in daily living activ-

ities (e.g., routine kitchen activities, letter-writing, telephone use) showed significant

improvements in both cognitive- and daily living functionality (Farina et al., 2002);

by three months after training ceased, however, these benefits vanished and patients

regressed to pre-training status. In some cases, where AD patients do not respond

to physical therapeutic interventions, the cause may involve executive dysfunction

or gait disturbances arising from AD-associated cerebrovascular disease (Scherder et

al., 2007).
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1.10 Statement of Purpose

The investigations described in this dissertation embrace the multidisciplinary

character of modern Alzheimer’s research by introducing, implementing, and eval-

uating a novel human-mouse parallel cognitive/behavioral testing paradigm, in ad-

dition to complementary analytical protocols based on data mining techniques, for

neurobehavioral assessment in Alzheimer’s transgenic mice. An interference testing

paradigm recently developed for evaluating AD patients was adapted for mouse-based

testing using spatial memory-domain elements in place of the original (human) se-

mantic learning components. The effectiveness of this novel cognitive assessment

task for distinguishing transgenic and/or treatment effects was examined in several

studies. Data mining methods – widely used in engineering, business and industrial

applications – are only recently gaining recognition in neuroscience as complementary

analytic methodologies to well-established statistical approaches. These techniques

were shown to be effective tools for evaluating genotype and/or treatment effects

using multimetric behavioral data.

The specific aims of these investigations were to:

1. Evaluate cognitive effects of long-term caffeine administration in nontransgenic

mice, using both conventional statistical and complementary data mining an-

alytic methods, in a comprehensive sensorimotor and cognitive task battery.

2. Examine short-term caffeine admininstration in both aged nontransgenic and

Alzheimer’s transgenic mice, to identify potentially differential sensitivity to

cognitive-protective benefits of caffeine.
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3. Analyze the human semantic interference task dataset using conventional sta-

tistical and complementary data mining techniques, to evaluate the diagnostic

utility and differential sensitivity of these research tools for human clinical

applications.

4. Demonstrate utility of the novel human-mouse parallel testing paradigm (“in-

terference task”) for distinguishing among nontransgenic and Alzheimer’s trans-

genic mice with and without G-protein coupled receptor kinase-5 (GRK5) gene-

knockout manipulation.

5. Utilize the novel interference task to evaluate therapeutic efficacy of granulo-

cyte macrophage colony-stimulating factor (GM-CSF) in both nontransgenic

and Alzheimer’s transgenic mice.
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CHAPTER 2

BEHAVIORAL ASSESSMENT IN ALZHEIMER’S TRANSGENIC
MICE

Comprehensive testing batteries have been developed for physical and behavioral

assessment of animal subjects in laboratory settings. The theoretical and practical

necessity of utilizing multiple behavioral tasks and/or measures cannot be overstated

(e.g., Rogers et al., 1999; van der Staay and Steckler, 2001; Arendash et al., 2004b;

Caeyenberghs et al., 2006; Vekovischeva et al., 2007), with justifications includ-

ing convergent validation, enhanced discriminative capacity, and broader sampling

across the behavioral repertoire. Indeed, as Crabbe and Morris (2004) argue, using

the example of a rodent behavioral model of human intoxication, several measures

from different tasks are necessary to depict strain-independent sensorimotor man-

ifestations of ethanol ingestion. In addition, complex behavioral phenomena (e.g.,

memory and learning) have both spatial and temporal dimensions which must be ad-

dressed during both measurement and analysis. For example, cognitive impairment

is more easily identified, relative to normal cognitive ability, using tasks which manip-

ulate the latency (time delay) between learning and subsequent recall of information

(McDonald and Overmier, 1998).

An early assessment battery (Irwin, 1968) consisted of fifty observational cat-

egories (e.g., locomotor activity, grip strength, righting reflex), individually scored

using a nine-point (0-8) scale. This screen was used in pharmaceutical research

for evaluating and characterizing drug reponses in animals. Another testing bat-
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tery (Moser et al., 1995), developed by behavioral neurotoxicologists at the U.S.

Environmental Protection Agency, classifies behavioral observations into six neu-

rological domains: Activity, autonomic, excitability, neuromuscular, physiological,

and sensorimotor function. SmithKline Beecham Pharmaceuticals developed a com-

prehensive testing protocol (SHIRPA; Rogers et al., 1997) encompassing behavioral

observations, sensorimotor and neurophysiological processes, and cognitive function-

ing. SHIRPA is useful for identifying strain-specific behavioral patterns (“behavioral

phenotyping”) and for distinguishing among inbred mouse strains (Rogers et al.,

1999; Crawley, 1999).

The protocols and measures described below, and summarized in Table 2.1, com-

prise the behavioral assessment battery developed by Gary Arendash and colleagues

at the University of South Florida for examining treatment- and transgenicity-effects

in Alzheimer’s transgenic mice. The tasks are presented in order of testing sequence

and include practical details, as well as historical design perspectives.

2.1 Sensorimotor Tasks and Associated Measures

2.1.1 Open Field Activity

The apparatus consists of an open box, 80 cm by 80 cm square with 28 cm-high

walls, painted black. The floor of the box is divided into sixteen regions by a grid

of white equispaced lines. Each animal is placed in the center of the floor, and the

number of lines crossed during a single five-minute trial is recorded (OF). The early

version of this chamber (Broadhurst, 1961) featured a somewhat larger (120 cm x 120

cm x 45 cm, 25-cell floor grid) enclosure in which rodent behavior could be observed

for a specified time (e.g., 5 min, 1 hr), and the number of lines crossed or regions
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entered is recorded. The open field activity task provides a measure of spontaneous

locomotor and exploratory behavior.

Circular arenas (e.g., Hall, 1934) are also used. In addition, automated monitor-

ing (photocell-detector, videotape recording) methods are sometimes used in place

of a human observer (e.g., Kafkafi, 2003). The original paradigm of observing naive

rodent (and, subsequently, other species) behavior in confined arenas focused on au-

tonomic responses (e.g., defecation, urination) as indices of “emotionality,” anxiety

and stress (Hall, 1934; Hall, 1936). Indeed, familiarity (habituation) with the open

field through repeated testing decreases anxiety-like responses in rats (Ossenkopp

et al., 1994). Furthermore, the cognitive-emotional determinants of overt behavior

have both situational (environmental) and dispositional (e.g., genetic, physiological)

components which remain largely unexplored (Ramos and Mormede, 1998).

2.1.2 Balance Beam

A wooden rod measuring 50 cm long by 1 cm wide is fixed between two columnar

supports, suspended 45 cm above a padded table surface. At each end of the rod,

mounted atop the supporting column, is a 14 cm by 10 cm escape platform. At

the start of each of three 60-second trials, the mouse is placed at the center of the

narrow rod, aligned perpendicularly to the rods length. The amount of time the

animal remains on the rod before falling, up to 60 sec, is recorded. If the animal

reaches either platform (escapes), the maximum time of 60 sec is assigned. The

average time across three trials is recorded, as well (BB). A series of progressively-

narrower beams (e.g., Carter et al., 1999) can be used for quantifying sensorimotor

deficits. The balance beam task reflects overall motor coordination and balance.
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Table 2.1. Task-associated behavioral measures used in analyses

Task Symbol Description

Open Field OF Number of line crossings
Balance Beam BB Average latency, in seconds
String Agility SA Performance rating score
Y-Maze YM-AE Number of Y-maze arm entries

YM-PA Percentage of spontaneous alternations
Elevated Plus EP-CE Number of closed-arm entries
Maze EP-OE Number of open-arm entries

EP-TO Time spent in open arms, in seconds
WM-Avg Overall average escape latency across days

during the acquisition phase, in seconds
Morris Water WM-Fin Average escape latency on the final day of the
Maze acquisition phase, in seconds

WM-Ret Percentage of time spent in former platform-
containing quadrant during retention testing

CPE-Avg Overall average number of errors across days
Circular CPE-Fin Average number of errors on the final day
Platform CPL-Avg Overall average escape latency across days, in sec.

CPL-Fin Average escape latency on the final day, in sec.
Platform PR-Avg Overall average latency across days, in sec.
Recognition PR-Fin Average latency on the final day, in sec.

RME-T4 Average number of errors during Trial #4,
across all blocks

RME-T5 Average number of errors during Trial #5,
across all blocks

RME-FT1 Average number of errors during Trial #1
of final block

Radial Arm RME-FT4 Average number of errors during Trial #4
Water Maze of final block
(RAWM) RME-FT5 Average number of errors during Trial #5

of final block
RML-T4 Average latency for Trial #4 across all blocks, in sec.
RML-T5 Average latency for Trial #5 across all blocks, in sec.
RML-FT1 Average latency for Trial #1 of final block, in sec.
RML-FT4 Average latency for Trial #4 of final block, in sec.
RML-FT5 Average latency for Trial #5 of final block, in sec.
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2.1.3 String Agility

The apparatus for this task resembles that of the Balance Beam task, with the

wooden rod replaced by a taut, cotton string. At the start of a single 60 sec trial,

the mouse is positioned midway along the length of the string and allowed to grasp

the string with its forepaws, and then released. The animal’s performance is assessed

using a six-point scoring system, and this measure is recorded (SA): “0” is assigned

if the mouse falls from the string, “1” is assigned if the mouse maintains its grip on

the string for 60 sec using its forepaws, “2” is assigned if the mouse maintains its grip

on the string for 60 sec using its forepaws and either hindlimb, “3” is assigned if the

mouse maintains its grip on the string for 60 sec using all four limbs, “4” is assigned

if the mouse maintains its grip on the string for 60 sec using all four limbs and its

tail, and, “5” is assigned if the mouse escapes by reaching either platform. A second

trial is permitted if the animal falls from the string immediately after it is released

at the start of the first trial. This task extends an early technique for measuring

grip strength which utilized the wire grid cover of the animal’s cage: the mouse

was allowed to grasp the wire grid, which was immediately inverted, suspending the

animal several inches above the cage floor (e.g., Sango et al., 1996). The string agility

task provides a measure of forepaw grip capacity and overall physical strength and

agility.

2.2 Cognitive Tasks and Associated Measures

2.2.1 Y-Maze

The apparatus consists of a Y-shaped, three-armed (21 cm long by 4 cm wide)

maze enclosed by 40 cm-high walls. All visible surfaces of the interior are painted

black to provide a uniform, neutral testing environment without spatial orientation
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cues. A light source is positioned above the center of the maze where the three

arms intersect. The mouse is placed in the center of the maze and the sequence of

arm-visits is observed for a single, five-minute trial. The total number of arm entries

(YM-AE) is recorded, as a measure of exploratory behavior, as well as the percentage

spontaneous alternation (YM-PA; i.e., the ratio of the number of visits of all three

arms during three consecutive arm-choices to the total number of arm-entries), which

is associated with general mnemonic function (Lamour et al., 1989). The Y-Maze

paradigm is a variation of the T-Maze, an earlier design in which working memory

and exploratory behavior are examined in moderately food- or water-deprived test

subjects introduced into the lower end of a T-shaped maze in which a small amount

of food or water has been placed at both end-walls of the longer cross-arm. During

the pre-testing habituation period, the animal must learn to alternate arm-visits to

obtain the reinforcer, often requiring several weeks of training (Hepler et al., 1985;

Markowska et al., 1989). The detrimental effects of disrupting cholinergic circuits of

the brain (either by nucleus basalis lesions or acetylcholine receptor antagonists) on

working memory have been demonstrated using T-maze delayed alternation measures

(Hepler et al., 1985; Mastropaolo et al., 1988). The Y-maze task involves both

cognitive (basic mnemonic function) and sensorimotor (exploration) components of

behavior.

2.2.2 Elevated Plus Maze

The Elevated Plus Maze is a four-armed maze consisting of two opposite “open”

arms and two opposite “closed” arms, each measuring 30 cm long by 5 cm wide. The

four arms meet at right angles, forming a 5 cm by 5 cm center region. Additionally,

the “closed” arms are surrounded by 15 cm-high walls. A light source is positioned

above the center of the maze where the four arms intersect. The entire apparatus
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is positioned 80 cm above the ground, and the interior walls are painted black to

reduce environmental cues. The mouse is placed in the center of the maze, facing

a closed arm, and observed for a single, 5-minute trial. The number of open arm

entries (EP-OE) and closed arm entries (EP-CE), as well as the total time spent in

the open arms (EP-TO), is recorded.

This paradigm is based on the apparatus and interpretation described in Briley et

al. (1986), downscaled from the original dimensions (50 cm long by 10 cm wide arms)

suitable for rats. Briley et al. (1986) also recorded the total number of arm entries

during a single five-minute trial as a measure of total locomotion and the percentage

of open-arm entries as an index of fear response, and found that rats show a marked

preference for enclosed arms. Briley’s design, in turn, was based on the earlier ob-

servation that rats exhibit reduced exploratory behavior and enhanced avoidance

of open elevated alleys, compared with covered tunnels (Montgomery, 1955). The

effects of anxiolytic (chlordiazepoxide, pentobarbital, ethanol) and anxiogenic (FG-

7142, caffeine, picrotoxin) agents have been studied using the elevated plus maze,

in conjunction with a holeboard test (Lister, 1987). This task is used to evaluate

emotionality and general anxiety, although abilities related to “decision-making” and

“risk-assessment” may be represented as well (Rodgers and Johnson, 1995). Confir-

matory factor analyses (e.g., Wall and Messier, 2000), however, suggest a two-factor

solution for this task. Indeed, the “Long-Term Caffeine Administration in Non-

transgenic Mice” study reported in this dissertation illustrates segregation between

the arm-residency duration measure (EP-TO) and the two arm-entry frequency mea-

sures (EP-OE, EP-CE), underscoring the distinction between anxiety-associated and

exploratory-locomotor metrics in the elevated plus maze task.
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2.2.3 Morris Water Maze (Submerged Platform)

The apparatus consists of a water-filled, 100 cm diameter circular pool which

is divided into four equal-sized quadrants by two perpendicular lines drawn on the

floor of the pool. A clear 9 cm diameter circular platform is placed in the center of

quadrant #2, submerged 1.5 cm beneath the surface of the water. Assorted visual

cues are placed along the external circumference of the pool, to serve as extramaze

navigational landmarks (e.g., Suzuki et al., 1980). The training and testing procedure

consists of two phases: a ten-day “acquisition” phase, involving four trials per day,

followed by a one-day, single-trial “retention” phase, which is videotape-recorded

for later analysis. The two phases of the Morris Water Maze task involve spatial

learning (“acquisition”) and reference memory (“retention”) processes. On each

day of the acquisition phase, the mouse is placed into each of the four quadrants

(randomized order), initially facing the side wall, and the average latency to locate

and mount the submerged platform is recorded (maximum of 60 sec per trial). The

animal is allowed to remain on the platform (having reached the platform either by

swimming or through gentle guidance by the experimenter) for a 30 sec intertrial

“stay” period. The maximum latency (60 sec) is recorded for any trial in which the

animal requires guidance to reach the platform. The average latency for each day

is calculated, and both the final-day average latency (WM-Fin) and overall average

latency across all days (WM-Avg) are recorded. On the day following completion of

the acquisition phase, the submerged platform is removed and the mouse is placed

into the quadrant opposite the formerly platform-containing quadrant for a single,

60 sec “probe” trial. The videotape of the probe trial is subsequently examined to

determine performance parameters: percentage of total swim time spent in quadrant
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#2 (WM-Ret), quadrant preference, number of annulus crossings, swim path and/or

average speed, etc.

The Morris water maze (Morris, 1981; Morris, 1984), originally intended to exam-

ine neuroanatomical substrates of spatial learning and memory in rats, is the most

common paradigm for cognitive evaluation in rodents (D’Hooge and DeDeyn, 2001).

Hippocampal lesions in both rats (Morris et al., 1982; Eichenbaum et al., 1990) and

mice (Logue et al., 1997), for example, consistently produce acquisition deficits in this

task. Both species- and strain-specific differences in performance have been reported,

with rats generally superior to mice in the Morris water maze (Whishaw and Tomie,

1996) and C57BL/6 strain performing better than Swiss Webster mice (Wright et

al., 2004). Idiosyncratic or anomalous behaviors, such as circling or preference for

sinking over swimming, are commonly reported (e.g., Wahlsten et al., 2005). In

addition, video recording equipment is often utilized to increase test accuracy and

efficiency. For example, recorded sessions can be viewed and evaluated independently

by multiple observers, thus reducing experimenter bias and improving the reliability

of behavioral response scoring (Graziano et al., 2003; Tecott and Nestler, 2004).

2.2.4 Circular Platform

The apparatus consists of a walled 70 cm diameter arena with sixteen circular

“escape” holes equidistantly-spaced around the circumference. Assorted visual cues

are provided both inside (on the encircling wall) and outside (on the enshrouding

curtain) of the arena, which serve as visual landmarks. A refuge box containing

bedding material is positioned underneath a single escape hole (randomly selected,

once per subject across entire testing period). Noxious auditory (high-speed fan 15

cm above the platform) and visual (two 150-watt flood lights located 76 cm above

the platform) stimuli are used to elicit escape behavior during the single, five-minute
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daily trial for eight consecutive testing days. The mouse is placed in the center of

the arena and the noxious stimuli are activated at the beginning of each trial, and

the number of errors (i.e., head pokes into non-escape holes) and escape latency time

are measured. The number of errors (CPE-Fin) and escape latency time (CPL-Fin)

are recorded for the final day of testing, as well as the respective averages across all

days (CPE-Avg and CPL-Avg). The platform surface is thoroughly cleaned with

deodorizing disinfectant to remove olfactory cues due to stress-induced urination

and/or defecation. This paradigm is a refinement of the Barnes maze design (Barnes,

1979) for rats. This task primarily evaluates spatial reference memory, but also

includes general anxiety and sensorimotor components (e.g., Leighty et al., 2004).

2.2.5 Platform Recognition

The Platform Recognition task utilizes the same quadrant-labeled, 100 cm di-

ameter circular pool apparatus as the Morris Water Maze task, except in that a

prominent target (9 cm diameter circular platform with a 10 cm x 40 cm black en-

sign) is positioned 0.8 cm above the water surface. On each of the four testing days,

the animal is released against the wall of the same quadrant for each of four 60 sec

trials. The platform is moved to a different quadrant of the pool for each trial. The

time required for the mouse to locate and mount the platform (up to 60 sec per trial)

is recorded, followed by a 30 sec intertrial “stay” period, during which the animal is

permitted to remain atop the platform. If the mouse fails to locate the platform after

60 sec, it is gently guided to the platform to begin the stay period, and a latency of

60 sec is recorded. The average latency on the final testing day (PR-Fin) and the

overall average latency (PR-Avg) are calculated and recorded. This task assesses

recognition/identification memory processes.
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2.2.6 Radial Arm Water Maze

The apparatus consists of a 100 cm diagonal circular pool containing a six-armed

(30.5 cm long x 19 cm wide) aluminum insert with a 40 cm diameter central area.

The metal insert extends from the pool floor to 5 cm above the water line, providing a

neutral background for the test subjects. The task is divided into three (or up to five)

three-day “blocks,” for a total of between nine and fifteen days. Each daily session

consists of four acquisition trials (T1-T4), followed by a 30 min delay, and ending with

a delayed-recall “retention” trial (T5). At the beginning of the session, a submerged

clear platform (same target as in Morris Water Maze task) is placed at the end of

the designated goal arm (randomly chosen each day, in contrast to the Morris maze

procedure), and the animal is placed into one of the remaining non-goal arms (in a

randomized sequence), facing the central swim area, for each of the four acquisition

trials. The mouse is allowed up to 60 sec to locate the platform and, if successful,

remains on the platform for a 30 sec intertrial stay period. If the mouse enters a non-

goal arm, it is gently drawn back to the starting arm. Also, if the animal fails to locate

the platform after 60 sec, it is gently led to the platform for the stay period. The

latency to locate the goal platform is recorded, with trials in which the mouse fails

to locate the platform recorded as 60 sec. In addition, the number of errors (entries

into non-goal arms) committed during each trial are recorded. Experimenters also

record any behavioral anomalies (e.g., perseveration, circling, swimming difficulty).

After completing the four acquisition trials, the mouse is removed from the pool and

warmed under a heat lamp, then returned to its cage for 30 min. For the retention

trial (T5), the mouse is placed into the single remaining unfamiliar (i.e., not used

as the start arm in T1-T4) non-goal arm, and the performance latency and errors

measures are recorded. Ten aggregate measures are calculated upon completion of
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the task: Average late-acquisition performance is calculated for both latencies and

errors using the T4 data both across all sessions (RML-T4 and RME-T4) and for the

final block only (RML-FT4 and RME-FT4); average initial-acquisition performance

(T1) in the final block is calculated for latency and errors (RML-FT1 and RME-FT1);

average retention performance is calculated for both latency and errors using the T5

data across all sessions (RML-T5 and RME-T5) and for the final block only (RML-

FT5 and RME-FT5). Hence, both T4 and T5 measures represent indices of working

memory. This task extends the standard Morris water maze, which measures only

spatial reference learning and memory capacity, by coupling the learning-acquisition

component (T1-T4) with a recall-retention testing phase (T5). The final block of

testing (i.e., last three sessions) are more indicative of overall cognitive functioning,

while the earlier blocks largely reflect procedural learning of this relatively complex

task. The radial arm water maze (RAWM) paradigm is a down-scaled water-based

adaptation (Hyde et al., 1998) of earlier dry-land radial mazes for rats having 8 or

12 arms radiating from a central enclosure. This configuration permitted one or

more food- or water-baited arms to serve as the goal(s) (e.g., Olton and Samuelson,

1976; Olton, 1977; Crusio et al., 1995). Studies with multi-armed mazes (Cole and

Chappell-Stephenson, 2003) suggest the upper limit of spatial memory in rats is

between 24 and 32 locations.

2.3 New Paradigms and Parallels: Tales of Mice and Men

The identification of homologous neural substrates in humans and other animal

species (e.g., Spear et al., 1990) associated with specific cognitive domains (e.g.,

implicit memory, episodic and episodic-like memory) represents an important ad-

vance in neuroscience research, enabling investigators to develop, test, and refine

animal models for human neurobehavioral disorders, including Alzheimer’s disease.
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Cross-species comparative neuroanatomical studies in both normal and pathological

conditions, for example, emphasize the role of the hippocampus (or non-mammalian

homologous structures) in spatial memory and learning, as well as declarative mem-

ory in general (e.g., Squire, 1992; Eichenbaum, 1999; Maviel et al., 2004). The

persistence of location memory in food-storing birds (Biegler et al., 2001), spatial-

based radial maze learning in mice (Crusio and Schwegler, 2005), and object-position

memory impairment following temporal lobectomy (with concomitant hippocampec-

tomy) in patients (Nunn et al., 1999) are significant examples. These findings have

diverse applications beyond neuroscience; cognitive science and learning theory rely

on both structural and functional understanding of animal nervous systems and

their behavioral manifestations. The microarchitecture and structural interconnec-

tivity of the hippocampus, for example, has inspired theoretical models of Hebbian

learning (associative synaptogenesis) and artificial neural computation (e.g., Kelso

et al., 1986; Foster et al., 2000) which are used in advanced computing architectures

having autonomous learning capabilities (“artificial intelligence”).

Specialized cognitive tasks used to explore human memory and learning abilities,

as well as to diagnose clinical neuropathology, have been adapted for neurobehav-

ioral assessment in animals, including mice. Specifically, several forms of learning

(e.g., associative, discrimination) as well as both long-term and short-term mem-

ory systems have been examined through naturalistic and artificial experimental

paradigms, often very elaborate, in which multiple parameters (e.g., stimulus di-

mension and complexity, presentation latency and duration) are manipulated and

responses recorded. In developing these parallel assessment methodologies, however,

it is important to recognize that although human-based tasks for assessing learning

and memory often rely upon verbal responses, while animal-based tasks generally uti-
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lize motor responses (e.g., turn direction, arm-visit latency), both response classes

represent valid behavioral indices for measurement, comparison, and analysis.

The serial reaction time task, for instance, involves measuring accuracy and re-

sponse latency across trials in a sequence-learning problem (Nissen and Bullemer,

1987) to assess procedural (implicit) memory function. Diagnostic imaging studies in

normal and task-impaired individuals implicate the role of basal ganglia, neocortex,

and cerebellum in this task (Knopman and Nissen, 1991; Willingham and Koroshetz,

1993; Pascual-Leone et al., 1996; Rauch et al., 1997). The role of the basal ganglia

in implicit memory is underscored by lesion studies in rats wherein striatal lesions –

but not hippocampal lesions – result in procedural memory acquisition impairment

in a fixed-sequence arm-opening variant of the eight-armed radial maze task (De-

Coteau and Kesner, 2000). Sequence learning impairment is also observed following

dorsal caudate lesions (Christie and Dalrymple-Alford, 2004) in rats trained in 4-, 8-,

and 12-trial arm choice sequences; performance deficits are not observed in animals

following dorsal hippocampal lesions. Christie and Hersch (2004) adapted the appa-

ratus for mice, and used multiple repetitions of four-trial sequences within training

sessions. Interference effects (declining performance on subsequent session) resulted

from replacing the repeating sequence with a random sequence during a single ses-

sion (Christie and Hersch, 2004), similar to the pattern observed in humans (e.g.,

Nissen and Bullemer, 1987; Reed and Johnson, 1994). Another mouse-version of the

serial reaction task (Cho et al., 2007) uses an operant chamber with nose poke holes

positioned on the walls; mice conditioned (FR-1 schedule) to respond through nose

poke of illuminated holes are trained to nose poke a specific repeating sequence of

holes, using water access as reinforcement for correct-sequence responses. Evidence of

Pavlovian and operant (Skinnerian) conditioning, both examples of associative learn-

ing, is well-documented for a broad range of animal species (e.g., Spear et al., 1990).
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In addition, non-human animals exhibit a remarkable capacity for learning complex

stimuli, both natural and artificial, subject to species-specific sensory constraints.

Visual discrimination experiments in pigeons (Columba livia) (which have highly-

developed visual systems), for example, indicate that animals can learn arbitrary

categories of novel stimuli. These processes require pattern recognition, associative

memory, and visuospatial memory. Examples of visually-presented stimulus classes

successfully distinguished by pigeons include: pictures of natural objects (e.g., trees;

Vaughan, 1988), light emitting diode array patterns (Jitsumori et al., 2002), and

paintings by Monet and Picasso (Watanabe et al., 1995). Similar complex learning

has been observed in rats using odor recognition/discrimination tasks (e.g., Kesner

et al., 2002), which also underscore hippocampal involvement in temporal-sequence

(episodic-like) learning. Event-related episodic-like memory (Morris, 2001; Hampton

and Schwartz, 2004) has been examined in mice using object exploration tasks based

upon spatiotemporal ordering schemes (Dere et al., 2005). These studies demonstrate

that mice are able to distinguish novel from familiar objects (“what”), the relative

recency of encounter with an object (“when”), and the location where objects were

previously presented (“where”) (Dere et al., 2005). Additionally, episodic-like mem-

ory deficits are strongly correlated with beta-amyloid plaque burden in Alzheimer’s

double-transgenic (APPswe/PS1) mice (Savonenko et al., 2005), underscoring the

diagnostic utility of episodic memory tasks in Alzheimer’s disease.

Working memory processes, as well, have been examined in both humans and

animals through cross-species experimental paradigms. For instance, the “Hebb-

Williams” maze (Hebb and Williams, 1946), widely-regarded as the standard in-

strument for evaluating animal spatial learning, has been implemented as a “virtual

environment” computer simulation for human subjects (Shore et al., 2001) wherein

the physical features of a maze (e.g., walls, alleys, corners) are rendered with graph-
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ical algorithms. Virtual mazes represent an analogous maze-learning paradigm for

comparing human and animal learning capacity under experimental conditions, as

well as for evaluating neuropathological syndromes which manifest distinct spatial

problem solving impairment. For example, comparisons between the average acqui-

sition performance of young humans (university undergraduate students) and mice

(C57BL/6J strain) across a battery of twelve distinct maze configurations (virtual

simulation, for humans; actual implementation, for mice) showed that, although hu-

mans learn the task more quickly, the learning curves are strikingly similar (Shore

et al., 2001). Subsequent correlation analysis among these tasks reveal a significant

association between mental rotation and probe trial performance (Morris maze), but

not between other spatial performance measures (Astur et al., 2004), suggesting dif-

ferential assessment of spatial problem solving ability by the Morris maze and radial

maze in human subjects. Furthermore, human patients with surgically-induced me-

dial temporal lobe lesions exhibit performance deficits in room-based analogues of

the Morris maze and radial maze tasks (Bohbot et al., 2002) reminiscent of cognitive

impairment observed in rodents having similar lesions. These findings are consistent

with the results of comprehensive behavioral assessment in Alzheimer’s transgenic

mice, in which component measures obtained from spatial learning/memory tasks

(Morris maze, radial arm maze, platform recognition) exhibit co-localization within

cognitive “domains” (e.g., Leighty et al., 2004; Arendash et al., 2007; Leighty et

al., 2008), as well as discriminability based upon transgenicity and/or therapeutic

treatment effects (e.g., Arendash et al., 2001; Arendash and King, 2002; King and

Arendash, 2002a; Leighty, 2003; Arendash et al., 2004b; Leighty et al., 2004; Jensen

et al., 2005; Leighty et al., 2008).

A promising research direction for comparative psychology and behavioral neu-

ropathology involves interference effects on working memory and learning. Interfer-
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ence is a form of “forgetting” which occurs when one recall process compromises

another (Postman and Underwood, 1973). Two types of interference – proactive

and retroactive – are differentiated by the temporal dependency of forgetting. In

proactive interference, earlier learning interferes with subsequent learning, as when

a professional typist experiences difficulty learning to play the piano. By contrast,

retroactive interference occurs when recent learning interferes with recall of earlier

learning as, for example, when an individual has trouble remembering his previous

address or telephone number after recently relocating to a new city (and learning

a new address and phone number). Exposure to a complex, overstimulating envi-

ronment (e.g., Toffler’s “information overload”) is a common cause of interference in

humans (and other animals, as well), and sustained pressure to adapt to accelerating

change is associated with both cognitive impairment (confusion, disorientation) and

physiological dysfunction (anxiety, stress) (e.g., Toffler, 1970). Radial maze learning

in rats, for example, is subject to intertrial proactive interference (e.g., Cohen et

al., 1996; Roberts and Dale, 1981) when the delay interval between successive trials

is very brief; the interference effect is likely due to errors in temporal discrimina-

tion among events occurring within- vs. between-trials (Roberts and Dale, 1981).

Additionally, interference effects observed in aged rats in visual discrimination tasks

(e.g., Winocur, 1984) resemble performance deficits in hippocampally-lesioned young

animals, suggesting the utility of interference testing for neuropathological assess-

ment. In humans, interference effects have been examined with object recognition

and naming tasks in which subjects are asked to recall the items in a group of famil-

iar objects presented either with or without intervening, unrelated “distractor” items

(e.g., Fuld, 1981). The Fuld task has been adapted by Loewenstein et al. (2004),

for both proactive and retroactive interference effects, as a diagnostic instrument for

evaluating probable Alzheimer’s disease and mild cognitive impairment in aged indi-
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viduals. Individuals with mild Alzheimer’s disease can be distinguished from normal

aged adults with remarkable accuracy (84.6% sensitivity and 96.2% specificity) using

measures of both proactive and retroactive interference (Loewenstein et al., 2004).

The interference testing paradigm has been adapted for mice by substituting a spa-

tial learning task (radial arm water maze) for the human-based (verbal) semantic

learning task (discussed in Chapter 7).
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CHAPTER 3

BEHAVIORAL DATA ANALYSIS

3.1 On Behavioral Classification

Behavioral evaluation is only the information-gathering phase of neurobehavioral

investigation, and must necessarily be followed by an analytic process for identifying,

quantifying, and interpreting meaningful patterns and trends in the dataset. There

are several important reasons for collecting and studying these data, including: be-

havioral phenotyping (characterizing groups, e.g., by transgenicity or strain, in terms

of behavior); therapeutic monitoring (e.g., to evaluate the effects of ongoing pharma-

cologic treatments, either cross-sectionally by group or longitudinally by individual,

to observe trends over time); and treatment-outcome assessment (e.g., looking at the

end-result of a therapeutic intervention or manipulation). All of these procedures in-

volve classification, the assignment of individuals to groups on the basis of measured

variables. Unfortunately, choosing an appropriate classifier methodology depends

upon the data, the hypotheses under investigation, and the available computing re-

sources, among other considerations; just as there is “no free lunch,” there is no

universally-superior classification algorithm (Wolpert and Macready, 1997). Several

broad categories of classifiers exist, however, and there are hybrid and ensemble com-

binations of methods which may provide even better performance for their particular

application (e.g., Sigut et al., 2007). Expert systems, for instance, encapsulate the

knowledge and decision-making capabilities of (human) experts within specific prob-
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lem domains (Giarratano and Riley, 2004), such as diagnosing bacterial infections

based on patient symptoms and microbiology lab results (MYCIN; Shortliffe 1974,

1976).

Behavioral assessment, in practice, generally occurs under conditions and con-

straints which are far from what is theoretically ideal. The economic and manage-

ment aspects of animal maintenance and testing, for instance, often impose severe

limitations on feasibility. Unfortunately, the discrepancy between the actual and the

desirable in many situations cannot be remedied, only accomodated. Consider the

problem of adequate sample size (e.g., Raudys and Jain, 1991): a sample must be

sufficiently large to be representative of a (theoretically-immense) population of can-

didate individuals but, moreover, the sample must be manageable; hence, limitation

engenders compromise. Balancing across groups is generally more important, how-

ever; Chandrasekaran and Jain (1979), for example, noted performance degradation

in (parametric) statistical classifiers resulting from unequal sample sizes. Addition-

ally, the practical limits imposed in certain behavioral tests (e.g., radial arm water

maze trials have a 60 sec time-limit), while based upon established performance

norms (e.g., “typical” response of test subjects), constitute data censorship and

require special analytic consideration. Gehan (1965) and Breslow (1970), for exam-

ple, advocate distribution-free (nonparametric) statistical tests for comparing groups

subject to arbitrary right-censorship, based on Wilcoxon (two-group) and Kruskal-

Wallis (multiple-group) methods, respectively. A modified Gehan-Breslow analysis

was used by Alkon (1974) in studies of photoperiod-mediated associative learning in

the nudibranch mollusc Hermissenda crassicornis, subject to time-limits (i.e., right-

censored). Neurobehavioral researchers, however, generally consider time-limit as

a procedural issue and utilize standard (M)ANOVA or Kruskal-Wallis methods for

comparing groups (e.g., King et al., 1999; King and Arendash, 2002a).

75



Expediency in research often has a price; practitioners who take short-cuts with

experimental design and data analysis, regardless of motivation, must proceed with

extreme caution. Inappropriate selection of repeated-measures ANOVA instead of

nonlinear mixed-effects models for evaluating pharmacologic dose-reponse effects in

rats (Kristensen and Hansen, 2004), for instance, disregards the nonlinear response

characteristics typical of physiological phenomena (e.g., Peek et al., 2002; Kristensen

and Hansen, 2004). Additionally, violations of the underlying assumptions of sta-

tistical tests can interfere with interpretability or, at worst, compromise the validity

of the results (Montgomery, 1953; Boneau, 1960). In practice, however, the fun-

damental assumptions of analysis of variance – independence of cases, normality

of distributions, homoscedasticity (homogeneity of group variances), and sphericity

(homogeneity of paired-difference variances) – can sometimes be violated without

serious consequences. A series of preliminary tests (and correction methods) can

be used to detect (and ameliorate) potential violations, for example: Kolmogorov-

Smirnov test (for normality; Lilliefors, 1968), Bartlett test (for homoscedasticity;

Bartlett, 1937, 1947), Greenhouse-Geisser correction (for sphericity), and Bonfer-

roni correction (for multiple comparisons). In addition, one of the best, albeit least

sophisticated, techniques for identifying potential problems is to inspect an appro-

priate graphical depiction of the data, such as a histogram or scatterplot; cursory

examination of the raw data, in a suitable format, is often the most efficient manner

for detecting anomalies and outliers.

Data transformations (e.g., Box and Cox, 1964; Scott and Wild, 1991; Bland

and Altman, 1996a) are sometimes performed prior to analysis, particularly when

parametric statistical tests are planned, to correct issues which would otherwise

complicate or invalidate the results. Transforming data through linear arithmetic

scaling (e.g., dividing each value within a column by the variance of the same col-
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umn, to produce unit variance), for instance, changes the mean and variance of the

column (relative to the original), but leaves the correlation coefficient (Pearson’s

product moment correlation coefficient) between transformed columns unchanged

(Butler, 1982). This intermeasure correlation-preserving transformation is particu-

larly useful for standardizing data for neural networks, which often converge sooner

with ”zero-mean, unit-variance” data (Haykin, 1999). Logarithmic transforms (e.g.,

Montgomery, 1953; Martone et al., 1984; Tranel et al., 1994; Bland and Altman,

1996b) are useful for correcting heterogeneity of variance, and often used for right-

skewed positive-valued data (large values, e.g., response latencies) and to convert

multiplicative main effects into additive effects; this approach will not work with

negative values, and very small values (<1) should be pre-multiplied by a large

constant. Square root transforms are often used with count data (e.g., bacterial

colonies on plates), and when the variance is proportional to the mean; the square

root transform is also useful for normalizing Poisson-distributed data. When data

are expressed as proportions (percentages) and, in particular, when these data are

binomial, the arcsine or arcsine(square-root) transform is often suggested. Results

can be back-transformed using the inverse operation, for subsequent interpretation

and reporting. Additionally, rank-transformation of data (i.e., replace each value

with its rank) followed by ANOVA is sometimes used when the original data neither

satisfy the assumptions for standard ANOVA, nor meet the criteria for nonparamet-

ric analysis (Conover and Iman, 1981), although this transformation can compromise

testing for effect interactions (Seaman et al., 1994).

A classifier represents a mathematical model of empirical data (measured vari-

ables) which is intended to split (partition) the data into two (or more) groups.

However, partitioning one set of (linearly separable) multidimensional data from

another requires a separator with the same number of dimensions (e.g., in one di-
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mension, a point; in two dimensions, a line; in three dimensions, a plane; in four or

more dimensions, a hyperplane); this is the geometric basis of linear classification.

Many sets of multidimensional data are not linearly separable, but can be partitioned

using nonlinear classifiers, such as neural networks. Hence, for any given dataset,

there are likely to be several alternative classifier architectures to be compared. A

common method for evaluating these models involves partitioning the dataset into

three subsets by random assignment of individual cases: training data (which will

be used to construct the initial classifier model), testing data (used to refine the

model to improve generalizability), and evaluation data (for simulating real-world

application of the model using unfamiliar data). The relative proportions of these

subsets varies with the application and the practitioner. However, in situtations

where data are scarce or when critical instances must necessarily be included, cross-

validation techniques are used (e.g., Stone, 1977; Goutte, 1997). Threefold cross

validation, for example, involves splitting the dataset into three parts – two training

sets and one testing set – and repeating the evaluation protocol three times, thus al-

lowing all combinations of testing and training subsets to be assigned and evaluated.

Leave-one-out (k-fold) cross-validation (“jackknifing”) is a more rigorous approach

(computationally-intense), in which a model is constructed using all but a single case,

which is subsequently used to evaluate the model, and the construction-evaluation

process repeated k-times (i.e., for each of the cases in the dataset). Another ap-

proach, called “bootstrapping,” generates training and testing sets using sampling

with replacement from the dataset (e.g., Efron, 1983). Jackknifing, however, tends

to produce relatively unbiased results, compared with resampling techniques, partic-

ularly for small sample sizes (Lance et al., 2000).

Comparing the performance of multiple classifiers requires several parameters cal-

culated from the output generated by each model (e.g., Altman and Bland, 1994). A
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classification matrix, or “confusion table,” for example, often provides useful perfor-

mance data; the rows of the matrix depict actual (true) categories, while the columns

depict the (classifier-) predicted categories. The “true-positive” (TP) and “true-

negative” (TN) totals represent, respectively, the number of correctly-categorized

“positive” (e.g., transgenic, treated) and “negative” (e.g., non-transgenic, control-

group) case instances. The “false-negative” (FN) total indicates how many true-

positive individuals are misclassified as “negative” and, correspondingly, the “false-

positive” (FP) total shows how many true-negative individuals are categorized as

“positive.”

The overall success rate, or accuracy, of the classifier is the ratio of correctly-

classified cases to the total number of cases. Mathematically,

Accuracy =
TP + TN

TP + TN + FP + FN

The sensitivity is the proportion of true-positive cases which are identified as

positive. In diagnostic terms, sensitivity is the probability that the test is positive

given that the patient has the disease. Expressed as,

Sensitivity =
TP

TP + FN

By contrast, the specificity is the proportion of true-negative cases correctly rec-

ognized as negative or, clinically, the probability that the test is negative given that

the patient does not have the disease. Computed as,

Specificity =
TN

TN + FP
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Hence, in a study comparing spatial reference memory of transgenic (Tg, treat-

ment group) and non-transgenic (NT, control group) animals: the higher the accu-

racy, the more Tg and NT animals correctly assigned into their respective groups; the

higher the sensitivity, the more Tg animals recognized as Tg (and not misclassified as

NT); the higher the specificity, the more NT animals identified as NT (and not mis-

classified as Tg). In terms of hypothesis testing (Neyman and Pearson, 1933/1967),

false-positive outcomes represent type I errors (i.e., the rejection of a true null hy-

pothesis), while false-negative outcomes represent type II errors (i.e., failure to reject

a false null hypothesis). Classifier performance is sometimes evaluated using a re-

ceiver operating characteristic (ROC) curve (Hanley and McNeil, 1982; Zweig and

Campbell, 1993; Obuchowski, 2003; Lasko et al., 2005; Fawcett, 2006), which de-

picts sensitivity, or “true positive rate,” along the ordinate against (1 - specificity),

or “false positive rate,” along the abcissa, for different values of a discriminative

parameter (e.g., the cutoff-value for a classifier, test result criterion). This method

is useful for fine-tuning individual classifiers and for testing component classifiers to

be combined into ensemble models (Swets, 1988; Swets et al., 2000). An additional

statistic, Kappa, representing the proportion of successfully-classified cases corrected

for chance performance, is sometimes reported, as well (Cohen, 1960; Fleiss, 1971;

Viera and Garrett, 2005) for comparing the performance of multiple independent

classifiers.

3.2 Statistical Analysis

Conventional analytic protocols for behavioral experiments generally involve one

or more of the following: examining relationships between manipulations (e.g., levels

of an independent variable) and observable/measurable phenomena (e.g., dependent

variables), for example, dose-response patterns or treatment effects; identifying as-
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sociation(s) between/among dependent measures, for example, correlation between

behavioral deficits and histopathological markers; characterizing clinical syndromes

in terms of behavioral response patterns, for example, motor deficits in Parkinson-

ism; classifying or categorizing subjects in terms of behavioral response patterns, for

example, distinguishing between normal-aged and Alzheimer’s patients using cog-

nitive assessment inventories. Multivariate statistical techniques (Tabachnick and

Fidell, 2001) are currently the standard approach in these investigations for identify-

ing, testing, measuring, and reporting experimental group differences (e.g., analysis

of variance, or ANOVA), association (e.g., correlation), latent patterns in datasets

(e.g., factor analysis), and classification (e.g., discriminant analysis). The avail-

ability of powerful computing technology and ready-to-run “canned” software (e.g.,

SYSTATTM , StatisticaTM , RTM) enables any researcher to perform complex analyses

easily and efficiently.

This section presents and discusses three of the most important statistical method-

ologies for neurobehavioral research: correlation analysis, factor analysis, and dis-

criminant analysis.

3.2.1 Correlation Analysis

Correlation analysis measures the linear association between two (or more) vari-

ables. This relationship is expressed as the “correlation coefficient” (Pearson’s product-

moment correlation coefficient), r, which is a real-valued number between -1.0 and

+1.0. Mathematically, this value is calculated by dividing the covariance of two

variables by the product of their standard deviations. The magnitude (i.e., absolute

value) represents the strength of the association, with increasing value indicating

greater association between two measures. Negative values denote pairs of vari-

able which change in opposite directions, i.e., one variable increases as the other
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decreases; positive values indicate change in the same direction, i.e., both variables

either increase or decrease. Independence between two variables is represented with

a correlation coefficient of zero. It is important to emphasize that correlation only re-

flects linear association between two measured variables; correlation does not imply a

causal relationship between the variables. In addition, correlations which are statis-

tically significant are not necessarily meaningful, in a practical sense. Finally, when

multiple, simultaneous tests of correlation are performed on a dataset, the resultant

significance values (p-values) should be adjusted (e.g., Bonferroni’s correction) prior

to interpretation.

Correlation analyses are frequently used to explore complex relationships among

behavioral and/or pathologic measures in experimental paradigms. For example, ex-

tensive inter-task and intra-task correlations were identified in a multimetric behav-

ioral assessment battery (Arendash and King, 2002; Leighty et al., 2004). Significant

intertask correlations were found between sensorimotor tasks (e.g., Balance Beam

and String Agility), cognitive tasks (e.g., Y-Maze and Circular Platform), as well as

between sensorimotor and cognitive tasks (e.g., Open Field and Circular Platform)

in the age-matched nontransgenic-control and Tg2576 Alzheimer’s transgenic mice

(Arendash and King, 2002). Similarly, significant intertask correlations between sen-

sorimotor tasks (Open Field and Y-Maze Entries) and cognitive tasks (Morris Water

Maze, Circular Platform, Platform Recognition, and RAWM), as well as between sen-

sorimotor and cognitive tasks (Open Field and RAWM, Balance Beam and RAWM)

were observed in four Alzheimer’s transgenic mouse lines (Leighty et al., 2004). In

addition, performance measures showed significant intratask correlation within both

the Circular Platform and Morris Water Maze tasks (Arendash and King, 2002) in

Tg2576 mice. Likewise, significant intratask correlation was found in the Circular

Platform, Morris Water Maze, Platform Recognition, and RAWM tasks completed by
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four Alzheimer’s transgenic mouse lines (Leighty et al., 2004). Subsequent histolog-

ical examination of brain tissues from Tg2576 transgenic mice using synaptophysin

immunostaining revealed that increased hippocampal staining is associated with

both sensorimotor (Balance Beam) and cognitive (Morris Water Maze) performance

deficits in the Tg2576 mice (King and Arendash, 2002b). In addition, the Y-Maze

entries measure was significantly negatively correlated with Congophilic (compact)

beta-amyloid levels in both cortex and hippocampus of Alzheimer’s transgenic mice

(Leighty et al., 2004); Platform Recognition and RAWM (T4L, T5L) measures were

also significantly (positively) correlated with both cortical and hippocampal compact

beta-amyloid. Total cortical and hippocampal beta-amyloid (6E10 immunostaining)

levels were significantly correlated with Balance Beam (negatively), and Morris Wa-

ter Maze acquisition, Platform Recognition, and RAWM (all positively) (Leighty et

al., 2004).

Significant positive correlation between alternative psychometric batteries (Fil-

lenbaum et al., 1987) used for clinical diagnosis of Alzheimer’s disease reflects the

similarity of cognitive abilities assessed by these instruments. Indeed, multitask-

multimetric cognitive assessment typically results in positive manifold correlation

structure, i.e., subjects typically retain rank-ordering across problem-solving tasks,

which has been taken as evidence of a single underlying cognitive construct since

Spearman’s (1904) elucidation of a “general intelligence” factor. Additionally, post-

mortem studies in Alzheimer’s patients showed significant correlation between re-

gional (frontal cortex, hippocampus) cholinergic activity and cognitive performance

(MMSE and MRDS tests) measured within a year of death (Pappas et al., 2000),

underscoring the diagnostic utility of behavioral (psychometric) assessment.
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3.2.2 Factor Analysis

Factor analysis is a multivariate data reduction technique for identifying under-

lying associations among measured variables and using these patterns to generate a

smaller ensemble of composite variables (called ”factors”). Exploratory factor analy-

sis, the most common methodology, attempts to extract the latent associative struc-

ture among variables without using prior theory, allowing the practitioner to inter-

pret the resulting factor loadings matrix. Confirmatory factor analysis, by contrast,

determines whether the number and composition of factors extracted from a given

dataset conform to a pre-established (usually theoretical) expectation. The “extrac-

tion” of factors is an iterative optimization procedure in which variance-maximizing

linear combinations of the measured variables are generated, the resulting variance is

subtracted and a second linear combination generated, and so forth; this approach is

called “principal components analysis,” and results in orthogonal (i.e., uncorrelated)

factors. Alternative extraction algorithms, such as “principal factor analysis,” can

be used to determine the minimum number of factors which account for the common

variance of a dataset (e.g., Velicer and Jackson, 1990). The factor loadings matrix

(component loadings, in principal components analysis) represents the correlation co-

efficients between factors (columns) and component measure variables (rows); hence,

these values reflect the amount of each component’s variance explained by each fac-

tor on which it loads. Frequently, when the initial component loading patterns are

difficult to intuit, additional mathematical processing (“rotation”) is performed to

improve interpretation; Varimax rotation (Kaiser, 1958), for example, generally pro-

duces a factor matrix in which each component variable is associated with a single

factor (instead of loading on several factors).
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Factors extracted are not necessarily factors interpreted; the practitioner is ul-

timately responsible for making sense of each factor based, in part, upon expecta-

tion and past experience (e.g., Fabrigar et al., 1999). Researchers use a collection

of heuristics for interpreting factor analytic results, supported by theoretical, em-

pirical, and sometimes anecdotal evidence (Zwick and Velicer, 1986; Lance et al.,

2006). The eigenvalue (or “characteristic root”) of each factor reflects the propor-

tion of overall variance (of all measured variables) which is accounted for by that

factor; eigenvalues greater than unity (1.0), for example, are often interpreted as

significant (Guttman, 1954; Kaiser, 1960). Factors having fewer than three high-

magnitude component loadings, for instance, should not be interpreted (Velicer and

Fava, 1998). In addition, contrary to common practice, larger sample sizes alone

are insufficient to improve factor pattern resolution (Guadagnoli and Velicer, 1988;

MacCallum et al., 1999), although the number of cases (samples) must always exceed

the number of factors. However, Monte Carlo simulations have shown that factor

structure and the magnitudes of loadings can influence factor scores, particularly

in the case of small samples (Grice, 2001). Finally, factor structure can be altered

(sometimes profoundly) by the inclusion of additional behavioral measures within a

single task. Rodgers and Johnson (1995), for example, identified two factors (“anx-

iety” and “locomotor activity”) using the standard spatiotemporal measures (i.e.,

frequency and duration of open- and closed-arm entries) in the elevated plus-maze

task. However, a third factor (“decision making”) emerged when the duration of

time spent in the maze center was included in the analysis. Indeed, these examples

underscore the popular maxim that interpreting factor analytic results is as much an

art as a science.

The first practical application of factor analysis involved intelligence testing dur-

ing the early 20th century, when Charles Spearman (1904) postulated a common
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underlying “trait” for human intelligence to explain observed individual correlations

between cognitive tasks. Indeed, a single construct of general cognitive ability may

explain competence across a broad range of areas (academic, vocational, etc.) (Kun-

cel et al., 2004). Many behavioral researchers, however, have questioned the va-

lidity of a single-factor cognitive theory and subsequently developed more complex

models comprised of multiple distinct factors, each representing an unique facet of

cognition. Thurstone (1938), for instance, identified seven “primary mental abili-

ties” (i.e., associative memory, number facility, perceptual speed, reasoning, spatial

visualization, verbal comprehension, and word fluency) by using multiple mental as-

sessment inventories. Human behavioral and psychological characteristics are also

identified through factor analysis. For example, four factors were extracted from

a comprehensive psychological assessment of Alzheimer’s outpatients (N=435), ac-

counting for 57% of total variance (Mirakur et al., 2004): “affect” (e.g., agitation,

anxiety, depression); “physical behavior” (e.g., apathy, disturbances in appetite and

sleep); “psychosis” (e.g., delusions and hallucinations); and, “hypomania” (e.g., dis-

inhibition, euphoria). Factor analysis is used to validate psychometric inventories,

as well. For example, factor analytic studies support the five-factor structure of

the MMSE. A large, multisite sample of older adults (N=8556; 50-80 y/o), for ex-

ample, returned an oblique five-factor solution (Jones and Gallo, 2000). The five

factors are: Concentration (serial subtraction, backward word-spelling); Language

and Praxis (three-step command, read-follow instructions, sentence writing, poly-

gon copying, object naming); Orientation (time- and place-orientation); Memory

(delayed-recall); and, Attention (immediate word repetition). Additionally, Baños

and Franklin (2002) administered the MMSE within a more heterogeneous popula-

tion (N=339; 18-87 y/o; psychiatric patients) and also found an oblique five-factor

solution: Orientation, Attention-Working Memory, Comprehension-Praxis, Naming,
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and Verbal Recall. Factor analysis also reveals lifespan-developmental trends in psy-

chometric measures. For example, the tendency for human intelligence to become

increasingly undifferentiated with increasing age (e.g., Stricker and Rock, 1987); fac-

tor analysis of verbal, quantitative, and analytical items of the Graduate Record

ExaminationTM shows that, although cognitive factors remain largely distinct, the

intercorrelation of the factors increases with age.

Manifold positive correlation across cognitive tasks (e.g., Morris water maze,

Hebb-Williams maze, and water plus-maze) has been found in both rats (e.g., Thorn-

dike, 1935) and mice (Matzel et al., 2003; Galsworthy et al., 2005), as well; unrotated

principal components analysis returns a first factor which accounts for between 38 and

61 percent of task variance. Additionally, the strength of correlation between tasks in-

creases with increasing problem-solving complexity (Thorndike, 1935). Mouse-based

studies (Kolata et al., 2005) also indicate significant covariance of general cognitive

ability with short-term (working) memory, but not with long-term (retention) mem-

ory, suggesting the existence of separate memory domains (cf. King et al., 1999;

Leighty et al., 2004), as observed in humans. The primary factor in mice, therefore,

may represent an overall cognitive performance metric (Plomin, 2001; Galsworthy

et al., 2005) which parallels the general cognitive ability construct in humans. Fac-

tor analysis has been used for dimensional reduction of multimetric performance

assessments in mice; the thirteen or nineteen performance measures obtained from

a comprehensive behavioral assessment battery, for example, can be reduced to two

or three recognizable factors (e.g., “working memory,” “locomotion and exploratory

behavior”; Leighty et al., 2004). These factors can be used subsequently to char-

acterize group differences in behavior, for example, sex differences in the “anxiety”

factor extracted from elevated plus maze data of rats (Fernandes et al., 1999). The

complex interplay between cognitive processes, suggestive of underlying neurophysio-
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logical connectivity, is also explored through factor analysis. The interdependence of

human working memory (e.g., forward or reverse digit span) and complex cognitive

tasks (e.g., arithmetic processing, counting), for example, is revealed through shared

component loading of psychometric measures (e.g., Miyake et al., 2001). Similarly,

the influence of noncognitive elements of mouse behavioral tasks, such as species-

specific swimming patterns in the Morris water maze, can be identified through fac-

tor loading patterns (Wolfer et al., 1998). Sensorimotor components can introduce

variability, analogous to electronic “noise” (Wolfer et al., 1998), obscuring the subtle

cognitive manifestations of genotypic differences. Furthermore, because the relative

contributions of each component measure of all factors are calculated (called the

factor structure), factor analyses are useful tools for developing parsimonious models

of complex behavioral phenomena. In addition, factor “scores” (generated for each

individual subject from their corresponding performance measures, for instance) can

be regressed onto other variables (e.g., pathologic measures) (Pappas et al., 2000).

Factor analyses have also been used with a nineteen-measure comprehensive be-

havioral assessment battery in Alzheimer’s transgenic mice, both with and without

pathologic measures (total and compact beta-amyloid in cortex and hippocampus),

to explore patterns of association among measures (e.g., Leighty et al., 2004). Mea-

sures from the RAWM, Platform Recognition, and Circular Platform (latency) tasks

comprise the first factor, accounting for over 32% of variance. Behavioral measures

from the Morris Water Maze, Y-Maze (entries), and Circular Platform (errors) loaded

independently as the next three factors, each accounting for about 10% of overall vari-

ance. When included, all four pathologic measures loaded with the RAWM, Platform

Recognition, and Circular Platform (latency) measures on the first factor, increasing

the variance component to approximately 35%. These findings underscore both the

diagnostic utility of the three water-based tasks (Morris Maze, Platform Recognition,
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and RAWM) which share interrelated cognitive domains, and the strong association

between cognitive impairment (reflected as performance deficits) and neuropathol-

ogy (cortical and hippocampal beta-amyloid) displayed in Alzheimer’s transgenic

mice (Leighty et al., 2004). Furthermore, exploratory factor analyses of behavioral

assessments completed at different time-points may provide important insights on

patterns of cognitive development and/or progressive impairment. For example,

factor-structure changes were observed in APP/PS1 transgenic mice between 4.5-6

months and 15-16.5 months of age (Jensen et al., 2005). At the later time-point, the

primary factor was comprised of measures from the RAWM, Morris Water Maze, and

Platform Recognition tasks; at the earlier time-point, only the first two tasks were

represented. In addition, five distinct significant factors were identified at the later

time-point, while only three factors were returned at the earlier time-point. These

results suggest a growing dissociation among cognitive domains with increasing age,

perhaps reflecting some progressive decoupling of cognitive processes, concomitant

with advancing neuropathology.

3.2.3 Discriminant Analysis

Discriminant analysis is a multivariate statistical technique for identifying essen-

tial variables which reliably distinguish between (or among) pre-defined groups and

predicting group membership for unclassified individuals on the basis of the variables.

The procedure generates a mathematical model, consisting of one or more functions

(typically linear) which partition individuals into groups using a combination of the

measured variables. The “complete” (or “direct-entry”) variant attempts to include

all the measured variables in the model, while “stepwise” (e.g., stepwise-forward)

variants iteratively select and test each measure for inclusion based on variance-

optimization, exhaustively adding (and, possibly, removing) measures. Stepwise
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methods often generate more parsimonious models (i.e., having fewer variables) and

exhibit superior classificatory ability, relative to complete discrimiminant analyses.

For example, direct-entry discriminant analysis of a comprehensive behavioral task

battery (consisting of either 15 or 32 sensorimotor and cognitive measures) in APPsw

(Tg2576), Tau, and non-transgenic mice failed to distinguish among the three groups

(Arendash et al., 2004b), however, a stepwise-forward analysis achieved significant

discriminability for both sets of measures (p<.0001 and p<.0005, respectively). A

nineteen-measure comprehensive behavioral assessment was unable to distinguish

among four Alzheimer’s transgenic mouse lines using complete discriminant analy-

sis, although a stepwise-forward analysis significantly distinguished among the lines

using only four measures (YM-Alt, YM-Ent, PR-Avg, and RM-B3T4L) (Leighty et

al., 2004). Inclusion of total and Congophilic cortical and hippocampal beta-amyloid

measures also resulted in significant discriminability among the four mouse lines us-

ing stepwise-forward analysis, generating a four predictor-variable model (YM-Alt,

YM-Ent, RM-B3T4L, and HP-Cng) as well (Leighty et al., 2004). Hence, the in-

clusion of pathologic biomarkers with behavioral performance measures may provide

supplemental discriminative information for classification and diagnostic evaluation.

Physical measurements, collected from individuals to be classified, are typically

employed in discriminant analysis. For example, Fisher’s (1936) discriminant func-

tion analysis is the classic demonstration of using morphometric features (length

and width of sepal and petal structures) to classify individuals into groups (three

Iris species: setosa, versicolor, and virginica) using a linear combination of the four

physical measures. In addition to structural feature-based classification, function-

based taxonomies (e.g., behavioral observations or cognitive performance) are also

possible. Behavioral phenotyping of inbred mouse strains using the SHIRPA test

battery (Rogers et al., 1999), for example, relies on discriminant analysis to classify
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individual animals into their respective strain category on the basis of sensorimo-

tor and cognitive task performance. In addition, 18F-fluorodeoxyglucose positron

emission tomography (FDG-PET) was used to distinguish between age-matched

groups of AD patients (MMSE criteria) and healthy subjects, yielding sensitivity

of 90+% and specificity of 95% (Habeck et al., 2008). Predicting an individual’s fu-

ture performance using historical data (e.g., graduate school admissions, employment

candidate screening) is another common application of discriminant analysis (e.g.,

Neely, 1977). Discriminant analysis is also useful in clinical diagnosis, for generating

reduced-length cognitive assessment batteries. For example, discriminant analysis

of a fifteen-measure neuropsychological test resulted in a subset of five measures

representing overall cognitive ability which accurately distinguished among normal,

mildly, and moderately-to-severely impaired geriatric outpatients (Whelihan et al.,

1997).

3.3 Data Mining Analysis

Data mining is a multi-step process for exploration and recognition within col-

lections of data (Fayyad et al., 1996b). Driven by the ever-increasing volume of data

available today, the goal of data mining is to extract, identify and analyze meaning-

ful (i.e., pertinent) information content (e.g., consistent patterns, systematic rules

or trends) in the context of extraneous detail. Some of the important considerations

for data mining operations include: selecting information-appropriate representation

schemes (data structures; e.g., lists, arrays, or graphs); designing and implementing

task-appropriate algorithms (e.g., depth-first search, feed-forward backpropagation

of error, entropy minimization); and evaluating accuracy (e.g., Are the analytic re-

sults correct?), utility (e.g., Does the analysis reveal novel, nontrivial knowledge?),

and performance efficiency (e.g., Is there a faster or less-expensive method for ob-
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taining comparable results?). Data mining techniques have a wide range of appli-

cations (e.g., Fayyad et al., 1996a; Koh and Tan, 2005), including: finance (e.g.,

optimal portfolio allocation and value prediction), marketing (e.g., identifying con-

sumer grocery shopping patterns), industry (e.g., monitoring plant operations and

quality control), and medicine (e.g., risk management and treatment protocol assess-

ment). Furthermore, through the integration of shared databases (e.g., Amari et al.,

2002), contemporary neuroscientists can exchange both research data and analytic

tools and establish large-scale collaborative networks for studying human brain dis-

orders. The capacity of data mining methodologies for managing and coordinating

immense, heterogeneous collections of information makes these research innovations

possible.

Data mining techniques useful for scientific research include both supervised-

learning (training involves learning a mapping between input items and their corre-

sponding target output; e.g., classifiers) and unsupervised-learning (constructing a

model using only the training items, without a priori structural knowledge; e.g., data

compression, clustering algorithms) approaches for knowledge discovery, such as deci-

sion trees, neural networks, support vector machines, and others. Enhanced classifier

performance (e.g., greater accuracy, speed, and/or generalizability), for instance, is

often achieved by combining several similar (or different) data mining methods to

produce ensemble models (e.g., Bauer and Kohavi, 1999; Provost and Fawcett, 2001).

Multiple-classifier systems can be used to partition complex problems for distributed

processing, or to exploit the respective strengths of each individual methodology

(Dietterich, 1997; Wolpert and Macready, 1997; Kiang, 2003). Phillips-Wren et al.

(2007), for example, compared several data mining techniques (decision trees, neural

networks, logistic regression) for predicting medical oncologist visits based on patient

data (demographics, insurance-eligibility, medical history), and showed that neural
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network-based classifier performance improves when the data are pre-processed using

decision trees.

This section describes three common data mining techniques – decision trees,

neural networks, and support vector machines – which have been used separately

from, as well as in conjunction with, conventional statistical methods for analyzing

biomedical data in both experimental and clinical contexts.

3.3.1 Decision Trees

This data mining technique is based on a graph-theoretic depiction of actions and

consequences, using the metaphor of a tree with branches and leaves to represent

classification rules and case instances, respectively. Each branch corresponds to a

decision event, and the degree of arborization (breadth and depth of the tree) reflects

the complexity of the classifier. Ideally, decision events (called “splits”) should parti-

tion the dataset into groups containing a single dominant class, and splitting should

continue until a user-established criterion is reached (e.g., all individuals in a group

are of the same class, no sample cases remain). Classification using decision trees

involves learning through induction (i.e., rule-inference from examples consisting of

attributes and a corresponding conclusion), information theory, and the reduction of

entropy (uncertainty). The number of bits (decisions) needed to classify individual

cases – similar to the guessing game of “twenty questions” – is related to the depth

of the tree; the objective is to choose splits in a manner that significantly reduces

uncertainty at each step. Consider the example of a multi-task behavioral evaluation

of transgenic and nontransgenic mice, for which we are provided with a table listing

each animal’s performance measure for each task, along with its genotypic identity

(transgenic or nontransgenic). Each behavioral measure represents an attribute, and

each corresponding genotypic identity represents a conclusion, for each animal (case).
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The goal is to construct a tree with a decision event at each branch point (e.g., “Is

the animal’s string agility score greater than three?”), such that branches terminate

at correct conclusions. After generating the complete tree, one can elucidate overall

rules, for example, “If an animal averages fewer than five RAWM Trial 5 errors, and

has a balance beam latency of at least 45 sec, then it is nontransgenic” and “in the

retention-test phase of the Morris maze task, if an animal spends less than 35% of

the time in the goal quadrant, then it is transgenic.”

This technique has several advantages: decision trees are easily generated and

readily understood; both nominal and categorical data can be included in the dataset,

missing cases are easily handled as a separate class; and, there is no “black box”

(i.e., all observed splits can be described in terms of Boolean logic, as conjunc-

tive/disjunctive rules, instead of complex mathematical formulae). One significant

disadvantage of decision trees, however, is their sensitivity to small variations in the

dataset. For example, the use of information-gain (entropy reduction) criteria at

each split means that when two or more attributes (e.g., RME-T4 and WM-Ret,

in the above example) have nearly the same calculated entropy-reducing effect, the

addition or deletion of a single case may determine the shape of the entire tree. Ex-

amples of computer algorithms for decision tree learning are ID3 (Quinlan, 1986),

which is restricted to categorical values, and C4.5 (Quinlan, 1993), which allows

continuous-valued attributes.

Decision tree-based classifiers have been used for analyzing large datasets of neu-

rophysiological data to assist medical diagnosis, as well as in the development of

behavior-based screening inventories for Alzheimer’s. Additionally, decision trees

are used in neuropharmacological research for generating drug screening protocols.

For detecting epileptiform EEG spikes, decision tree-based classifiers (J4.8) are com-

parable to visual analysis by trained human experts (Valenti et al., 2006). A bi-
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nary decision tree was used to generate an eleven-question, true-false survey called

the “Symptoms of Dementia Screener” (Mundt et al., 2000), intended for use by

nonclinical personnel and caregivers to screen for probable-AD. The optimal pro-

portion of correctly-identified probable-AD individuals (i.e., sensitivity) was 90.2%,

and the proportion of correctly-identified non-demented individuals (i.e., specificity)

was 84.6% (Mundt et al., 2000); this instrument performed better than (conven-

tional) MMSE scoring, which demonstrated 78.7% sensitivity and 92.2% specificity.

Finally, pharmacologic research on mouse-based models of depression involves mul-

tiple behavioral response measures (e.g., tail suspension test, forced swimming test;

Bourin et al., 2005). However, because behavioral responses in mice are influenced

by strain-dependent differential drug sensitivity, it is often difficult to interpret and

compare results of experiments in which different strains and/or drug dosage levels

are examined. A decision tree was constructed to identify an appropriate selection

sequence for mouse strain(s) (Swiss NMRI, C57B1/6J, or DBA/2) and behavioral

task(s) (tail suspension or forced swimming) to evaluate candidate antidepressant

compounds (Bourin et al., 2005), based on mechanism of action.

3.3.2 Neural Networks

Artificial neural networks (“neural networks,” ANNs; Abdi, 1994; Haykin, 1999)

are a class of learning methods inspired by structural and functional features of

biological nervous systems. Neural networks consist of a large number of inter-

connected, independently-operating computing elements whose aggregate activity

results in classification, recognition, feature-extraction, and other higher-order com-

putational capabilities; these “emergent collective computational abilities” (Hop-

field, 1982) are the hallmark feature of complex self-organizing systems, such as

ecosystems, cities, and brains. The first mathematical model of neural computation
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based on threshold-logic and all-or-none response was proposed by McCulloch and

Pitts (1943), whose “neuron” received excitatory and inhibitory input information

through “synapses,” performed arithmetic spatial summation, and produced binary

output. Later, Rosenblatt (1958) designed a two-layered trainable computing model

for pattern recognition, called the “perceptron,” which could only solve simple (i.e.,

linearly-separable) classification problems. Perceptrons cannot solve more complex

(e.g., non-linearly separable) problems such as the exclusive-OR logical relation (e.g.,

Minsky and Papert, 1969). A multilayered-perceptron architecture, however, with

at least a single hidden layer (and sufficient computing elements) becomes a univer-

sal function approximator which can describe any continuous function (Kolmogorov,

1957; Cybenko, 1989); an ANN with two hidden layers can describe any arbitrary

function. Subsequently, many different neural network computing architectures have

been developed, each utilizing its own optimization paradigm (e.g., thermodynamic

metaphor in Boltzmann machines; Ackley et al., 1985) and information represen-

tational scheme (e.g., self-organizing maps; Kohonen, 1982). The ability of neural

networks to construct nonlinear mappings between independent and dependent vari-

ables (e.g., between behavioral measures and treatment groups) exemplifies their

utility in diverse real-world applications where the relationships between (or among)

measured variables are either complex or unclear (Zhang, 2000; Almeida, 2002).

Hence, neural networks are useful for constructing dynamical models of ensemble

systems having multiple interacting components.

Neural networks are robust (highly fault- and noise-tolerant), and particularly

useful for handling incomplete or inexact data. Training ANNs, however, is computa-

tionally intense and requires fast processing machines for efficient operation in real-

world applications. Untrained neural networks contain no a priori knowledge of

the learning problem (e.g., the initial matrix of interneuronal connection weights
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contains random numbers), hence, trained ANNs sometimes converge to different

internal stable weight-matrix configurations – either spontaneously, or in response

to small induced perturbations (e.g., input and/or weight noise; Pendharkar, 2002).

Consequently, leave-one-out (k-fold) cross-validation is recommended in addition to

performing and comparing multiple training sessions (Cunningham et al., 2000).

Furthermore, because ANNs make no assumptions concerning the underlying distri-

bution of data (i.e., nonparametric), their performance is relatively immune to de-

partures from statistical normality (of distributions) and linearity (of relationships

between variables). However, because no specification of an explicit relationship

between predictor variables and outcome is required or – indeed – necessary for con-

structing and training neural networks, there is currently no prescribed approach

for assembling optimal network topologies (e.g., number of layers or hidden-layer

units). Instead, practitioners often rely on experience, heuristics, and trial-and-error

experimentation for guidance (Walczak and Cerpa, 1999), e.g., using the geometric

mean of the numbers of input- and output-layer elements to assign the number of

hidden-layer units.

Although ANNs are normally implemented as software (computer programs) ex-

ecuted on high-performance hardware platforms, a geometric metaphor provides a

useful means of description. One standard architecture for supervised learning, called

a feed-forward network, is comprised of finite sets of computing elements (also called

“neurons” or “computing units”) arranged into distinct layers, with each layer fully-

connected to the preceding and succeeding layers (i.e., all elements are pairwise-

connected between layers) by weighted links. The first layer, called the “input layer,”

receives the stimulus data (e.g., case instances used for training and testing), and

the final layer, called the “output layer,” returns the final computed result generated

by the network; layers of elements, positioned between the input and output layers,
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are known as “hidden layers.” Hence, information provided to the input layer is pro-

cessed within the elements of that layer, then passed forward to the second layer for

processing within elements of the second layer, and proceeding across all layers until

the elements of the output layer receive and process the information. Training a net-

work necessarily requires structural changes, which are represented by adjustments

of the connections (i.e., weights) between elements. The magnitude of the weight

adjustments, as well as the choice of connections to be adjusted, is determined by

comparing the desired output of the network (recall, this is supervised learning)

with its actual output and applying an appropriate learning algorithm. The back-

propagation training algorithm (Rumelhart et al., 1986), for example, realizes the

principle of Hebbian learning (Hebb, 1949), by iteratively adjusting the connection

strengths (weights) between successive layers of the network, in retrograde fashion

starting from the output layer, to minimize the discrepancy (error) between the de-

sired and actual outputs of the network. Training involves a compromise between

memorization and generalization (Almeida, 2002), i.e., between acquiring a perfect

mapping between training examples and corresponding output, and acquiring suffi-

cient association between input and output patterns for adequate handling of novel,

testing examples; stopping criteria (e.g., number of training epochs, asymptotic error

analysis) are used to determine how long to continue training.

Artificial neural networks represent a promising new computational tool for both

clinical and experimental data analysis, as well as for medical decision-making (e.g.,

Baxt, 1995; Papik et al., 1996). Indeed, diagnoses generated by neural networks are

generally comparable, and sometimes superior, to those made by (human) experts

(e.g., Miller et al., 1992; Tafeit and Reibnegger, 1999). For example, a review of

clinical and randomized-control trials (Lisboa and Taktak, 2006) involving neural

network adjuncts in cancer diagnosis and prognosis showed a significant benefit (21

98



out of 27 studies) by including these methods with conventional medical assessment.

Similar diagnostic advantages are reported for the prediction of mortality in cardiac

surgery patients (Nilsson et al., 2006), dynamic identification of gait pathologies using

kinematic data (Schöllhorn, 2004), and evaluation of treatment efficacy of combina-

tion HIV therapy (Larder et al., 2007). In experimental settings, neural networks

are also used for analyzing real-time data in computer automated studies involving

rodents. For example, in rats, to classify behavior using Fourier-transformed, dig-

itized images (Heeren and Cools, 2000; Rousseau et al., 2000) or to identify sleep

stage through EEG recordings (Robert et al., 1997). Human- and neural network-

based evaluation of rat sleep stage (waking, paradoxical sleep, non-REM) using a

single parietal-occipital EEG channel were in agreement over 90% of epochs exam-

ined (Robert et al., 1996). In mice, neural networks have been used to distinguish

among five different species using both frequency- and time-domain characteristics of

recorded vocalizations (Tian and Shang, 2006). Surprisingly, a three-layered network

(257 x 89 x 5) which included potentially extraneous signal input outperformed a

four-layered topology (33 x 35 x 30 x 5), which was supplied with a smaller subset

of power spectrum data, with respect to overall classification (approximately 95%

versus 45%) (Tian and Shang, 2006); the seemingly extraneous signal characteristics

provided to the first network evidently provided important discriminative details for

the classifier. Indeed, the performance of neural network-based classifiers is often

strongly influenced by the number of attributes (e.g., behavioral/cognitive measures,

recorded signals) supplied as input to the network (Leighty et al., 2008).

In addition to experimental and medical applications, artificial neural networks

have demonstrated utility for psychological and behavioral assessment (Price et al.,

2000). For example, a neural network-based classifier using coded responses from

parent interviews showed high discriminability (92% accuracy during training) and
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generalizability (92% correct-assignment of test cases) for autism (Cohen et al., 1993).

Nair et al. (1999) used eleven depression-related symptoms to identify clinically-

depressed (DSM-III) individuals. Subsequent contribution analysis (which measures

the impact of each symptom on overall network-produced diagnosis) of the trained

neural network identified different patterns of symptom “importance” between de-

pressed and non-depressed individuals (Nair et al., 1999), although “sadness” was

the strongest individual predictor. The prediction of psychiatric treatment outcome,

as well, is a practical application of neural networks. Serretti et al. (2007) combined

multiple predictors of antidepressant response in patients with major depression,

obtaining a correlation of .46 between predicted and observed response (i.e., explain-

ing 21% of variance); this example underscores the ability of neural networks to

combine diverse forms of predictor variables (e.g., demographic, individual medical

and psychiatric history, known therapeutic response parameters). In addition to

cross-sectional studies (i.e., sampling conducted at a single time-point), longitudi-

nal analyses (i.e., sampling at multiple time-points) are useful performance metrics

for disorders with nonlinear pathological trajectories, such as Alzheimer’s disease

(Tandon et al., 2006).

Neural networks have theoretical significance, as functional models of biological

nervous systems, for exploring normal and pathological cognitive processes as well as

complex systems, machine learning and artificial intelligence. ANNs, as examples of

parallel distributed processing, are used to study human learning and problem solv-

ing (Rumelhart and McClelland, 1986) and are the foundation of “connectionist”

architecture models in cognitive science (e.g., for modeling the Stroop effect; Co-

hen et al., 1990). Despite the ANN’s capacity for fault-tolerance, a sharp decline in

operating performance associated with external disruption or disconnection of con-

nections between computing elements may occur when up to 70% of connections are
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compromised (Kalampokis et al., 2003); this critical threshold represents the onset of

“pathology” in the ANN, reminiscent of incipient neuropathological degeneration of

the brain. In addition, computational models of episodic memory have been based on

autoassociative neural networks (e.g., Hopfield nets, 1982), and recognition memory

has been studied using backpropagation in “encoder problem” learning architectures

(Ratcliff, 1990).

3.3.3 Support Vector Machines

Support vector machines (SVMs) are a learning methodology for performing bi-

nary classification (Burges, 1998; Cristianini and Shawe-Taylor, 2000; Noble, 2006).

SVMs originated in Vladimir Vapnik’s (Vapnik and Lerner, 1963; Vapnik and Chervo-

nenkis, 1964; Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998) research on

learning theory, postulating a two-stage process for constructing abstract partitions

between two groups of training examples. In the first stage, the input data (repre-

sented as numerical vectors) are mathematically mapped into a higher-dimensional

“feature space” (extending the conventional two- or three-dimensional space). The

mapping operation requires an appropriate transformation (known as a “kernel func-

tion”), which must be selected in advance (e.g., polynomial, radial basis function).

In the second stage, a decision surface (called a “hyperplane”) is calculated which

maximizes separation between the two groups. At the end of training, the two groups

will occupy distinct regions of the feature space. Like neural networks, SVMs are

very robust (noise-tolerant), highly resistant to overfitting, and capable of nonlinear

classification.

SVMs have become a standard tool in bioinformatics research for classifying gene

expression profiles. The expression patterns of candidate genes are classified through

comparison with patterns of known co-regulated groups of genes (Gaasterland and
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Bekiranov, 2000). Golub et al. (1999), for example, distinguished between individ-

uals with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML)

using SVMs trained with Affymetrix microarray data (6817 genes) from 38 bone

marrow samples (ALL, N=27; AML, N=11). Biological sequence analysis is another

important bioinformatics application for support vector machines. Prediction of pro-

line cis/trans isomerization (Song et al., 2006), for example, using adjacent amino

acid sequence information from a protein database, along with multiple sequence

alignment (PSI-BLAST profiles) data; radial basis function kernels outperformed

both polynomial and linear kernel functions in the support vector machines tested.

SVMs also exhibit great facility for handling the voluminous datasets of measure-

ments sampled during physiological and behavioral experiments in rodents. Crisler

et al. (2008), for example, used a support vector machine-based classifier for sleep-

staging in rats. Electrophysiological data were recorded (three electrodes: frontal cor-

tex, parietal cortex, and temporalis muscle), filtered (low-pass, 90Hz), and digitized

to generate time- and frequency-domain datasets, which were subsequent analyzed

by support vector machines with a radial basis function kernel. Scoring results be-

tween the SVM-based classifier and human experts were in 96% agreement (Crisler et

al., 2008). Following treatment with different antidepressants, behavioral recordings

(time spent immobile, swimming, and struggling) of rats during the forced swim-

ming test were analyzed by SVMs to distinguish among drug classes (Frohlich et

al., 2008). Untreated control animals were distinguishable from rats receiving either

tricyclic antidepressants (imipramine, 88% accuracy; desipramine, 83% accuracy)

or selective serotonin reuptake inhibitors (fluoxetine, 87% accuracy); in addition,

the SVM-based classifier was able to distinguish between animals receiving the two

classes of antidepressants (accuracy greater than 83%) (Frohlich et al., 2008).
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SVMs are potentially useful adjuncts for medical diagnosis. Übeyli (2008), for

example, distinguished among six classes of dermatologic conditions in 358 patients

using a support vector machine-based classifier with a radial basis function kernel.

The network configuration consisted of 34 inputs (clinical and histopathological fea-

tures), six outputs (the diagnostic classes), and nine support vectors. The resulting

classifier achieved nearly 100% accuracy, sensitivity, and specificity (Übeyli, 2008),

outperforming both multilayer-perceptron and recurrent neural networks. Addition-

ally, the use of SVMs in diagnostic image analysis (e.g., detecting microcalcification

clusters in digital mammograms; El-Naqa et al., 2002) underscores the remarkable

pattern recognition capacity of this methodology.

3.4 Practical Comparisons

Performance comparisons within and between statistical- and data mining-based

classifiers involves several practical and theoretical considerations (Duin, 1996). The

particular application, for example, imposes constraints on the selection of classi-

fiers; e.g., known/unknown underlying distributions, sample size effects. The prior

experience of the practitioner is an important factor, particularly when confronting

design heuristics, e.g., neural network topology or support vector machine kernel

function. Recalling that there is no “best” classifier methodology for all problem do-

mains (e.g., Duin, 1996; Wolpert and Macready, 1997), comparisons are necessarily

context-specific and perhaps, to some extent, user-specific.

Pattern recognition is a typical domain for comparing discriminant analysis and

neural networks (e.g., Holmstrom et al., 1997). For instance, handwritten character

identification and phoneme recognition are, respectively, space- and time-dependent

pattern classification problems. Visual image stimuli (printed characters) may be

coded as normalized matrices of pixel-intensity values, for example, and provided as
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input to the classifier engine. Similarly, auditory stimuli (sound fragments) may be

encoded as frequency spectra, or as signal processing parameters (e.g., calculated by

Fourier analysis, wavelet transform). Parsons and Jones (2000), for example, used

temporal and spectral features extracted from digitized recordings of echolocation

calls from 14 sympatric bat species as classifier input, resulting in 79% accuracy of

classification by discriminant functions and 87% accuracy by artificial neural network.

Statistical- and data mining-based classifiers have been compared in studies in-

volving therapeutic interventions in Alzheimer’s transgenic mice, to evaluate both

transgenic and treatment effects (Leighty et al., 2008). Multimetric behavioral data

from two separate investigations – one study examining caffeine administration in

young mice, and a second study involving environmentally-enriched housing condi-

tions – were analyzed. Neural network-based classifiers were shown to be superior

to discriminant analysis (both complete and optimized, stepwise-forward, methods)

for distinguishing between nontransgenic and Alzheimer’s transgenic animals in both

studies. The two classifiers performed comparably, however, with respect to distin-

guishing treatment effects in transgenic animals (Tg control vs. Tg treatment) in

both studies. In addition, the classifiers performed comparably for the interaction

between treatment and transgenicity (i.e., discriminability among all groups). Taken

together, these findings suggest that the two classifiers may be suitable complements

for neurobehavioral investigation. Furthermore, neural networks may be sensitive

to subtle features (e.g., nonlinearity) in datasets which discriminant analysis cannot

detect.

Both statistical and data mining methodologies have been applied in Alzheimer’s

disease research, primarily by psychologists and psychiatrists for developing and re-

fining psychometric screening instruments. For example, Grossi et al. (2007) used

four pathological features (neurofibrillary tangle and neuritic plaque measures in
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neocortex and hippocampus) to distinguish confirmed-AD individuals (N=26) and

normal-aged individuals (N=36) with discriminant analysis and neural networks.

The linear discriminant analysis correctly identified 92.3% of individuals, while the

neural network correctly identified all the individuals. Subsequent relevance anal-

ysis identified the neocortical neurofibrillary tangle measure as the most important

predictor variable (Grossi et al., 2007). In addition, French et al. (1997) used the re-

sults of eleven neuropsychological tests to distinguish between probable Alzheimer’s

disease and normal-elderly individuals with linear discriminant analysis and neural

networks. The neural network was more accurate than the discriminant analysis

(91.1% versus 71.9%) overall, and better able to distinguish levels of severity within

the AD individuals (French et al., 1997). Indeed, neural networks are powerful tech-

niques for combining heterogeneous predictor variables in AD diagnosis. For exam-

ple, Garcia-Perez et al. (1998) trained a three-layered feedforward-backpropagation

neural network using 46 measures (demographic, medical history, psychometric as-

sessment, electrophysiological, and diagnostic imaging) from 35 individuals with ei-

ther clinically-diagnosed vascular dementia (N=19) or AD (N=16). Subsequent test-

ing using a training set of demented individuals (N=23) resulted in 82.6% accuracy

of classification. The network configuration consisted of 46 input layer elements,

29 hidden layer units, and a single output unit; the learning rate and momentum

parameters were both set to 0.1, connection weights were initialized to 0.3, and the

stopping criterion (error tolerance) was set to 0.0000002 (Garcia-Perez et al., 1998).
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3.5 “What’s Past Is Prologue”

Whereof what’s past is prologue, what to come

In yours and my discharge.

William Shakespeare (1564-1616)

The Tempest, Act II, Scene i, Lines 253-254.

The preceding chapters were intended to establish the practical foundations for

conducting behavioral research using a transgenic mouse model of Alzheimer’s dis-

ease, including selection of an appropriate animal model and behavioral/cognitive

assessment task battery, as well as to introduce statistical and data mining-based

approaches for neurobehavioral data analysis.

In contrast, the following chapters illustrate specific applications for examining

both transgenicity and therapeutic treatment effects in nontransgenic and Alzheimer’s

transgenic mice, comparing statistical and data mining-based analytic techniques us-

ing a semantic interference testing protocol in human Alzheimer’s patients, and for

evaluating a novel, mouse-based cognitive assessment paradigm inspired by the se-

mantic interference protocol.

Each application is introduced with a brief statement of background motiva-

tion, followed by a complete description of the materials and methods utilized (e.g.,

subjects, treatment and assessment protocols). Next, a detailed presentation of sta-

tistical and data mining analytic results is provided. The presentation is completed

by a discussion of key findings, emphasizing significant contributions to Alzheimer’s

research.
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CHAPTER 4

CAFFEINE ADMINISTRATION IN NONTRANSGENIC MICE

4.1 Introduction

Does life-long consumption of caffeine provide any therapeutic benefits in nor-

mal, healthy individuals, with respect to cognitive ability? That is, does caffeine

consumption significantly prevent, postpone, or ameliorate normal age-associated

cognitive impairment?

The effects of long-term caffeine consumption in normal humans have been inves-

tigated through retrospective studies on coffee consumption (e.g., Chou, 1992; Rosso

et al., 2008). Approximately one-half of the American population consumes coffee

on a daily basis, averaging over two cups per day (equivalent to 200 mg of caffeine,

or 2.4 mg/kg/day for adults) (Chou, 1992). Despite widespread anecdotal evidence

of purported adverse systemic effects (e.g., anxiety, insomnia, hypertension, coro-

nary heart disease, pancreatic cancer, reproductive system-related disorders) associ-

ated with chronic caffeine consumption, there is no clear evidence of a link between

modest coffee consumption and human disease (Chou, 1992; Smith, 2002). Indeed,

self-report studies (Smith, 2002) suggest an association between improved mental

functioning (sustained attention, overall alertness) and regular coffee consumption

in normal adults. Among elderly women, but not men, increased long-term coffee

consumption is associated with better mental performance (MMSE, visual short-term

and long-term memory, verbal category fluency) (Rancho Bernardo Study; Johnson-
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Kozlow et al., 2002), suggesting a cognitive neuroprotective effect of caffeine (Rosso

et al., 2008). Similarly, a community-based French study (Ritchie et al., 2007) re-

ported relatively smaller age-associated declines in verbal retrieval and visuospatial

memory ability with increased long-term coffee consumption in elderly women, com-

pared with age-matched non-consumers.

In mice, relatively few studies have addressed the long-term effects of caffeine

administration in rodents, despite an abundance of studies on the acute effects of

caffeine in mice (e.g., Izquierdo et al., 1979; Angelucci et al., 1999). For example,

in a study involving adult rats receiving caffeine orally through their drinking water

(0.3 mg/mL) for four weeks, caffeine-treated animals displayed impaired Morris water

maze acquisition (i.e., longer latency) during the first trial, but similar latency on sub-

sequent acquisition trials, relative to untreated rats (Hun et al., 2007). Additionally,

although all rats performed comparably on a probe trial (Morris water maze reten-

tion) administered one week after acquisition, the caffeine-treated animals performed

significantly poorer on probe trials administered two- and three-weeks after acqui-

sition (Hun et al., 2007), relative to untreated rats. The performance impairment

observed in the hippocampal-dependent Morris water maze task by caffeine-treated

rats was underscored by immunohistochemical assays, which showed decreased neuro-

genesis in the hippocampal subgranular zone (Hun et al., 2007), relative to untreated

animals. Hence, long-term caffeine administration in normal rats may be associated

with functional damage to vulnerable regions of the hippocampus, expressed behav-

iorally as domain-specific cognitive impairment (e.g., spatial reference memory). By

contrast, a study by Arendash et al. (2009) compared cognitive performance between

aged (15-16 month-old) nontransgenic mice which received oral caffeine (0.3 mg/mL)

for the previous ten months and age-matched untreated animals. As illustrated in

FIgure 4.1, cognitive measures obtained from a comprehensive behavioral assess-
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ment battery (Figure 4.1A, Y-maze; Figure 4.1B and C, Morris water maze; Figure

4.1D, Circular Platform; Figure 4.1E, Platform Recognition; and Figure 4.1F, Ra-

dial Arm water maze tasks) showed no significant differences between caffeine-treated

and untreated nontransgenic mice for any of the 18 behavioral measures evaluated

(Arendash et al., 2009).

Figure 4.1. Comparisons between untreated and caffeine-treated nontransgenic mice.

Assessing the treatment effect of caffeine in nontransgenic animals provides an

important reference benchmark for subsequent evaluation of therapeutic efficacy in

Alzheimer’s transgenic mice. In addition, the dataset generated from such investiga-

tions provides an unique opportunity for comparing conventional statistical analytic
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approaches (e.g., ANOVA) with novel data mining-based methods for identifying ex-

perimental treatment effects using a multimetric behavioral assessment battery. The

purpose of this study is to re-examine the results of the Arendash et al. (2009) study

using discriminant analysis and data mining-based classifiers, to determine whether

groupwise differences in cognitive performance can be detected through advanced

statistical and data mining-based techniques.

4.2 Materials and Methods

A total of nineteen subjects (nontransgenic mice; C57/SJL/SW/B6 hybrid back-

ground) were included in the study, randomly-assigned to either of two groups: con-

trol (N=11) and caffeine-treated (N=8). Caffeine treatment (provided through drink-

ing water, 0.3 mg/ml) began at five and one-half months of age, and continued until

all animals of both groups were tested at 15-16 months of age. Behavioral testing

consisted of a nine-task behavioral assessment battery, from which nineteen measures

were obtained (refer to Table 2.1 for coding): Open Field (OF), Balance Beam (BB),

String Agility (SA), Y-maze (YM-AE, YM-PA), Elevated Plus maze (EP-CE, EP-

OE, EP-TO), Morris water maze (WM-Avg, WM-Fin, WM-Ret), Circular Platform

(CPE-Avg, CPL-Avg), Platform Recognition (PR-Avg, PR-Fin), and Radial Arm

water maze (RAWM; RML-T4, RML-FT4, RML-T5, RML-FT5).

Animal care and use was in accordance with the Guide and Use of Laboratory An-

imals, National Research Council, 1996, in a program and facilities fully accredited

by the Association for Assessment and Accreditation of Laboratory Animal Care,

International, under a protocol approved by the University of South Florida Institu-

tional Animal Care and Use Committee (No. 2729, Gary Arendash, Ph.D., Principal

Investigator).
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General Analytic Protocol

PentiumTM -class microcomputing hardware platforms were used to execute cur-

rent versions of both statistical and data mining analytical software. Supplementary

software applications were implemented in the C++ programming language (Strous-

trup, 1985) for database cross-checking, data preprocessing, and other routine non-

analytic tasks. Statistical analyses were performed using the SYSTATTM (Systat

Software, Inc.) software package. Correlation analysis, factor analysis, and discrim-

inant analysis were conducted interactively using default application and system-

configured settings, except as indicated. The Pearson product-moment correlation

coefficient (r) and its associated significance value (p) was calculated and reported

for each significant (i.e., p<.05) pairwise comparison between variables. Bonfer-

roni’s correction for multiple simultaneous comparisons was applied, as needed, and

pairwise-deletion was used to handle missing values. Factor analysis was performed

using principal components method, with subsequent Varimax rotation. Discrimi-

nant analysis was performed using both complete (direct-entry) method, in which

all available predictor variables are used to generate multivariate classification func-

tion(s), and stepwise-forward method, wherein a model is iteratively constructed

through inclusion/deletion of predictor variables on the basis of individual variance

contribution. The “alpha-to-add” parameter for the stepwise-forward approach was

0.15. Classifier performance was evaluated using jackknifing, and the success rate

(overall accuracy), sensitivity, and specificity were calculated and reported.
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The formulae for calculating accuracy, sensitivity, and specificity are:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Where: TP and TN denote the number of true-positive and true-negative cases,

respectively, and FP and FN represent the number of false-positive and false-negative

cases, respectively. Accuracy, sensitivity, and specificity measures are expressed as

percentages. In addition, Wilks’s lambda statistic (Wilks, 1932) and associated sig-

nificance value were reported. Data mining analyses were performed using the Java-

based WekaTM (Witten and Frank, 2000) software package. Decision tree-, neural

network-, and support vector machine-based classifiers were executed interactively

using default application and system-configured settings, except as indicated. Deci-

sion tree induction was performed using the J48 algorithm, a Java-based implemen-

tation of the C4.5 method (Quinlan, 1993). A multilayer perceptron architecture was

used for the neural network-based classifiers, consisting of an input layer (correspond-

ing to the number of predictor/attribute variables), an output layer (corresponding to

the number of distinct classification groups), and a single hidden layer. The number

of computing elements in the hidden layer was varied between the number of input-

layer units and the number of output-layer units, and the corresponding classifier

performances (k-fold cross-validation) compared to determine the optimal hidden-

layer configuration. The backpropagation learning algorithm was used for training

each neural network, using fixed parameters for both learning rate (0.9) and momen-

tum (0.2). The support vector machine implementation used the SMO method and

radial basis function (RBF) kernel for classification. Substitution of a normalized
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polynomial kernel (NPK), in some cases, resulted in improved classifier performance,

where indicated. Multiple executions (program runs) of both neural networks and

support vector machines were performed to achieve stable convergence, as well as

to avoid spurious (inconsistent) results. The performance of all data mining-based

classifiers was evaluated by k-fold (leave-one-out) cross-validation, and the success

rate (accuracy), sensitivity, and specificity were reported, in addition to the Kappa

statistic (for comparison among classifiers).

4.3 Results of Statistical Analyses

4.3.1 Correlation Analysis

Significant correlations (p < .05) observed in pairwise comparisons of all be-

havioral measures are shown in Table 4.1, wherein marked cells include both the

correlation coefficient (r-value, top) and significance (p-value, bottom). Significant

intra-task correlations exist within the Elevated Plus maze, Morris water maze, Plat-

form Recognition, and Radial Arm water maze. Significant inter-task correlations

are observed between sensorimotor and cognitive tasks: Open Field and Morris water

maze (OF / WM-Avg), Open Field and Circular Platform errors (OF / CPE-Avg),

and Balance Beam and RAWM latency (BB / RML-FT4, RML-FT5, and RML-T5).

Indeed, observed intertask correlations between sensorimotor and cognitive measures

underscore the interdependence among sensory, motor, and cognitive behavioral pro-

cesses. Additionally, significant inter-task correlations exist between cognitive tasks:

Y-maze percent alternation and RAWM latency (YM-PA / RML-FT5, RML-T5),

Circular Platform latency and Morris water maze (CPL-Avg / WM-Ret), and Plat-

form Recognition and RAWM latency (PR-Fin / RML-T4, RML-T5; PR-Avg /

RML-T4, RML-T5). Correlations observed between measures spanning multiple
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tasks suggests overlapping or shared cognitive domains across tasks, or dependencies

therein. Not surprisingly, for example, spatial memory-biased tasks (Morris water

maze, Platform Recognition, and RAWM) exhibit extensive intercorrelation between

component measures. The absence of significant correlations between measures from

the RAWM and Morris water maze tasks is consistent with factor analyses, which

indicated segregation between these tasks. Finally, the multifactorial character of

certain tasks was underscored: Significant correlation between the Elevated Plus

maze task and both RAWM latency (EP-TO / RML-FT4, RML-T4) and Morris

water maze (EP-TO / WM-Ret) suggests an anxiety component to the RAWM and

Morris water maze tasks, while an activity component to the Circular Platform task

is suggested by the correlation between Y-maze entries and Circular Platform errors

(YM-AE / CPE-Avg).

4.3.2 Factor Analysis

An unrotated principal component analysis of the behavioral measures is shown

in Table 4.2, with significant factor loadings (absolute value greater than 0.540) in-

dicated. Calculated eigenvalue results (i.e., >1 criterion) were in agreement with

observed scree plot (Cattell, 1966) identification of five significant factors. The pri-

mary factor (accounting for over 27% of overall variance) was a cognitive-biased

structure comprised of the four RAWM latency measures, as well as the Balance

Beam, and Platform Recognition measures, consistent with correlation analyses. The

second factor was comprised of arm-entry counts (both open- and closed-arms) from

the Y-maze, as well as the probe trial (retention) measure from the Morris water

maze, reflecting the proportion of time spent in the previously platform-containing

quadrant of the pool. Collectively, this factor may reflect elements of persistence or

search behavior. Both sensorimotor (open field activity, Y-maze arm entries) and
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Table 4.2. Unrotated factor component loadings in the nontransgenic caffeine study

Factor
Measure I II III IV V

RML-T5 0.931
RML-FT5 0.873
RML-FT4 0.873
RML-T4 0.863

BB -0.594
PR-Avg 0.564
PR-Fin 0.545
PM-OE -0.847
PM-CE -0.846
WM-Fin 0.552
CPE-Avg 0.690

OF 0.688
YM-AE 0.599 0.652
WM-Avg 0.575
WM-Ret 0.721
CPL-Avg 0.699
YM-PA -0.576

Variance 27.69% 15.14% 14.35% 11.99% 6.87%

cognitive (Circular Platform error average, Morris water maze acquisition) measures

are included in the third factor, which may represent a meshing of spatial refer-

ence learning and exploratory behavior. The fourth factor, which is comprised of

the average Circular Platform latency, number of Y-maze arm entries, and Morris

water maze retention measures, may reflect elements of escape behavior. Note that

two of these tasks involve escape scenarios – from noxious stimuli to a safe refuge

(Circular Platform) or from the water to a dry platform (Morris water maze) – in

which the animal must learn to associate experimental cues with safety. The Y-maze

arm entries measure (YM-AE) loads on both Factors III and IV, underscoring an

exploratory/activity component to other measures in both of these factors. The fifth

factor consists solely of the Y-maze percent alternations, which reflects systematic
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visitation of all arms in the Y-maze. This factor may therefore represent general

mnemonic function as a cognitive domain separate from others (i.e., working mem-

ory). Note the absence of Elevated Plus maze open-arm visit latency (PM-TO) and

String Agility (SA) measures, indicating relative non-significance of these behavioral

components.

4.3.3 Discriminant Analysis

A direct-entry (complete) discriminant analysis did not yield significant discrim-

inability between the two groups (Wilks lambda = 0.084, p = .7703). However,

a stepwise-forward analysis produced significant discriminability (Wilks lambda =

0.162, p = .0041) with 79% classification accuracy (“success rate”) (Jackknifing

method). The classifier exhibited a sensitivity of 75% (i.e., correct indication of

treated animals) and a specificity of 82% (i.e., correct indication of untreated ani-

mals), with respect to caffeine treatment effect. Indeed, stepwise-forward discrim-

inant analysis surpassed conventional ANOVA-based techniques (Arendash et al.,

2009) by disinguishing between untreated and caffeine-treated nontransgenic mice.

The eight variables retained by the stepwise-forward analysis included both sensori-

motor and cognitive measures: OF, BB, YM-PA, WM-Fin, CPE-Avg, CPL-Avg, PR-

Avg, and PR-Fin. The significant discriminability between the two groups achieved

through a combination of sensorimotor and cognitive measures suggests that caffeine

may exert influence beyond the cognitive domains.
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4.4 Results of Data Mining Analyses

4.4.1 Decision Tree Analysis

WM-Ret <= 0.117: NT+CAFF (3.0)

WM-Ret > 0.117

| SA <= 3

| | OF <= 98: NT (3.0)

| | OF > 98: NT+CAFF (4.0)

| SA > 3: NT (9.0/1.0)

Figure 4.2. Sample decision tree classifier generated in the nontransgenic caffeine
study

A decision tree classifier constructed using the J48 algorithm (variant of C4.5) is

depicted in Figure 4.2. The classifier attempted to split the dataset using three mea-

sures, based on the entropy-reducing (information gain) capacity of these predictors:

WM-Ret, SA, and OF. Only one of the measures (Morris water maze retention, WM-

Ret) has a strong cognitive bias, while the other two reflect sensorimotor integrative

(String Agility) and exploratory (Open Field) abilities. Cross-validation (k-fold) of

the optimal tree resulted in only 36% correct classification of cases (Kappa = -0.34).

The sensitivity of this classifier was only 13% and the specificity was 55%, with re-

spect to caffeine treatment effect. Therefore, although this was the optimal decision

tree-based classifier, it did not successfully distinguish between the two groups of

animals.

4.4.2 Neural Network Analysis

A three-layered neural network, trained using the backpropagation learning al-

gorithm (rate = 0.3, momentum = 0.2), was evaluated with the number of hidden-

layer units varied between 4 and 12. The optimal performance was obtained for
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a network containing nineteen input-layer elements (the behavioral measures), five

hidden-layer elements, and two output-layer elements (the two treatment groups).

Cross-validation (k-fold) of the optimal network showed 58% correct classification

of cases (Kappa = 0.16), with 63% sensitivity and 55% specificity. Although these

results are superior to those of the decision tree-based classifier, the discriminability

observed is not significant.

4.4.3 Support Vector Machine Analysis

A support vector machine architecture (SMO method) attempted to classify the

nineteen cases into their respective groups, resulting in 52% correct classification

(Kappa = 0.08) using k-fold cross-validation, with 63% sensitivity and 46% speci-

ficity. These results are inferior to those obtained by the neural network-based classi-

fier and, subsequently, represent unsuccessful discrimination between the two groups.

4.5 Discussion

The correlation analysis showed significant intercorrelations between and within

behavioral tasks, which is consistent with findings from earlier studies involving

multimetric behavioral assessment (e.g., Arendash and King, 2002; Leighty et al.,

2004). The factor analysis is consistent with findings from earlier studies, in which

the primary factor represents a strong cognitive-loaded component of behavioral

performance (e.g., Galsworthy et al., 2005), largely driven by the RAWM task, un-

derscoring the primacy of this task for cognitive assessment (e.g., Leighty et al.,

2004; Jensen et al., 2005). The discriminant analysis is also consistent with earlier

studies, in which non-significant discriminability observed with direct-entry analysis

is contrasted with significant discriminability when the stepwise-forward approach is

used (e.g., Arendash et al., 2004b; Leighty et al., 2004). In addition, the presence of
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both sensorimotor and cognitive measures in the optimal model suggest that caffeine

influences multiple behavioral domains. None of the data mining-based classifiers

successfully distinguished between animals which received caffeine and those which

did not. Table 4.3 summarizes the performance of all classifiers examined, with re-

spect to sensitivity, specificity, and overall success rate, in distinguishing between

caffeine-treated and untreated nontransgenic mice.

Table 4.3. Classifier performance comparison in the nontransgenic caffeine study

Evaluation Discriminant Analysis Decision Neural Support Vector
Criterion Complete Step-Fwd Tree Network Machine

Accuracy 63% 79% 36% 58% 52%
Sensitivity 75% 75% 13% 63% 63%
Specificity 55% 82% 55% 55% 46%

Although the stepwise-forward variant of discriminant analysis was able to dis-

tinguish between treated and untreated animals using a highly-selective subset of the

behavioral measures, the consensus among the classifiers examined is that the two

groups are indistinguishable. Strong agreement among the data mining-based classi-

fiers underscores the lack of discriminability between the two groups of mice. Indeed,

the combination of measures selected by the stepwise-forward discriminant analysis

to achieve discriminability does not exhibit face validity. Upon careful inspection,

the list of predictor variables appears arbitrary and lacks coherence (i.e., it is not

a “meaningful” sampling of variables, based on actual experience with behavioral

testing). Furthermore, despite the capacity of neural networks to learn arbitrary

mappings between features (e.g., behavioral measures) and corresponding instances

(e.g., treatment groups) (Cybenko, 1989), the inability of neural network-based clas-

sifiers to successfully distinguish between groups of animals on the basis of behavioral

metrics further implies similitude. These results mirror the standard analyses of vari-
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ance comparing corresponding performance measures between caffeine-treated and

untreated nontransgenic mice in the Y-maze, Morris water maze, Circular Platform,

Platform Recognition, and Radial Arm water maze tasks (Arendash et al., 2009);

measure for measure, these ANOVAs indicate no significant differences between the

two groups of mice.

Collectively, the lack of discriminability between caffeine-treated and untreated

animals suggests that chronic caffeine administration in nontransgenic mice, begin-

ning in “early adulthood” and continuing until “late adulthood,” does not provide

significant benefits with respect to cognitive performance, relative to untreated ani-

mals. One implication for humans may be that long-term, daily oral intake of caffeine

in moderate doses is unlikely to provide cognitive benefits in normal, healthy indi-

viduals.
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CHAPTER 5

CAFFEINE ADMINISTRATION IN ALZHEIMER’S TRANSGENIC
MICE

5.1 Introduction

Does long-term consumption of caffeine provide cognitive therapeutic benefits in

individuals exhibiting Alzheimer’s disease or Alzheimer-like neuropathology?

The neuroprotective potential of caffeine in humans has been studied through

community-wide retrospective and prospective studies among coffee consumers (e.g.,

Johnson-Kozlow et al., 2002; Ritchie et al., 2007; van Gelder et al., 2007), wherein

increased coffee consumption is associated with both reduced risk for Alzheimer’s

disease and smaller relative age-associated declines in cognitive abilities. Indeed, a

21 year follow-up study (Eckelinen et al., 2008) suggests that midlife consumption

of between three and five cups of coffee substantially reduces the risk of subsequent

AD. Another study suggesting an association between long-term caffeine consump-

tion and AD (Maia and de Mendonca, 2002) found that AD patients consumed less

caffeine during the 20 years prior to diagnosis, relative to age-matched individuals

without AD. However, investigating the potential therapeutic benefits of caffeine

within vulnerable populations (e.g., individuals predisposed to Alzheimer’s disease)

is a more difficult research problem. Indeed, widespread methodological issues (e.g.,

lack of standard measures for caffeine consumption, AD diagnostic criteria) further

complicate efforts to evaluate possible therapeutic benefits of caffeine in AD patients

(Rosso et al., 2008).
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Studies involving long-term caffeine consumption in adult (four month-old) Alz-

heimer’s transgenic mice (Arendash et al., 2006) show cognitive protection across

multiple domains (spatial learning, reference memory, working memory, and object

recognition) following five months of oral treatment (1.5 mg/day), relative to age-

matched untreated animals. In addition, long-term caffeine administration is associ-

ated with decreased hippocampal beta-amyloid deposition and reduced expression of

both presenilin (PS1) and beta-secretase (BACE) (Arendash et al., 2006), suggesting

reduced production of beta-amyloid in caffeine-treated animals as the mechanism of

cognitive protection. In another study (Arendash et al., 2009), the effects of long-

term caffeine administration were examined in aged (18-19 month-old) Alzheimer’s

transgenic (APPsw) mice. Following pre-testing in the RAWM to confirm cognitive

(working memory) impairment, aged transgenic animals consumed either caffeine-

treated (0.3 mg/mL) drinking water or normal, untreated drinking water for four to

five weeks. Age-matched nontransgenic animals, included in the study for subsequent

groupwise performance comparisons, consumed untreated drinking water throughout

the study. All animals were subsequently evaluated using a multimetric behavioral

battery, and the results analyzed to determine whether chronic caffeine dosing influ-

ences cognitive performance against a background of Alzheimer-like pathology and

cognitive impairment.

Figure 5.1 illustrates caffeine treatment-associated reversal of memory impair-

ment in aged Tg mice (Arendash et al., 2009). Aged Tg mice display significant

(∗p < .000005) working memory impairment in the RAWM task, relative to age-

matched NT control animals, prior to caffeine treatment (Figure 5.1-A). Aged Tg

mice receiving caffeine (Tg+CAFF) performed comparably to NT mice, with respect

to RAWM working memory final-block T4 and T5 trials, after 4-5 weeks of caffeine

treatment (Figure 5.1-B), while Tg animals differ significantly (∗∗p < .025) from
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the other two groups. Untreated transgenic mice (Tg) did not exhibit significant

improvement between pre-treatment and during-treatment evaluation in RAWM T5

performance, although both NT animals (∗p < .05; paired t-test) and caffeine-treated

animals (Tg+CAFF) (∗∗p < .005; paired t-test) improved markedly (Figure 5.1-C).

Comparable performance during the final two days of platform recognition testing

(strategy switching) was observed in NT and Tg+CAFF mice, while Tg control

animals showed impairment (∗p < .02; Tg vs. NT).

The purpose of this study was to re-evaluate the results of the aged Alzheimer’s

transgenic mice experiment involving long-term caffeine administration (Arendash et

al., 2009), to compare standard statistical analyses (ANOVA) with advanced statisti-

cal and data mining-based methodologies for identifying transgenic- and therapeutic

treatment-effects.
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Figure 5.1. Behavioral assessment in NT and Tg mice receiving caffeine
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5.2 Materials and Methods

A total of twenty subjects (twelve APPsw Alzheimer’s transgenic mice and eight

age-matched nontransgenic mice) were included in the study. At 18 to 19 months of

age, all animals were pre-treatment tested in the RAWM task for six days to con-

firm working memory impairment in transgenic mice. After pre-treatment RAWM

evaluation, the transgenic animals were randomly assigned to either of two treat-

ment groups (Tg and Tg+CAFF), balanced by RAWM performance. Five of the

transgenic animals received caffeine (Tg+CAFF) through their drinking water (0.3

mg/mL), while the other seven (Tg) continued to receive normal drinking water, as

did the nontransgenic mice, for a four- to five-week treatment period. Following the

treatment period, all animals completed a three-task behavioral assessment battery,

from which eight measures were obtained (refer to Table 2.1 for coding): Radial Arm

water maze (RAWM; RML-T4, RML-FT4, RML-T5, RML-FT5), Platform Recogni-

tion (PR-Avg, PR-Fin), and Y-maze (YM-AE, YM-PA). Detailed descriptions of the

computing resources (hardware, software), as well as parameter settings for analytic

programs, are provided in the General Analytic Protocol in Section 4.2.

Animal care and use was in accordance with the Guide and Use of Laboratory An-

imals, National Research Council, 1996, in a program and facilities fully accredited

by the Association for Assessment and Accreditation of Laboratory Animal Care,

International, under a protocol approved by the University of South Florida Institu-

tional Animal Care and Use Committee (No. 2729, Gary Arendash, Ph.D., Principal

Investigator).
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5.3 Results of Statistical Analyses

5.3.1 Correlation Analysis

Table 5.1. Correlations between behavioral measures in the Alzheimer’s transgenic
caffeine study

YM-
PA

PR-
Avg
PR- .90
Fin .000

RML- .65 .52
T4 .002 .020

RML- .80 .68 .75
FT4 .000 .001 .000

RML- .69 .71 .74 .61
T5 .001 .000 .000 .004

RML- .63 .58 .58 .69 .79
FT5 .003 .007 .008 .001 .000

YM- YM- PR- PR- RML- RML- RML-
AE PA Avg Fin T4 FT4 T5

Significant correlations (p < .05) observed in pairwise comparisons of all mea-

sures for all three groups (NT, Tg, Tg+CAFF) collectively are shown in Table 5.1,

wherein marked cells include both the correlation coefficient (r-value, top) and sig-

nificance (p-value, bottom). Significant intra-task correlations exist within the Plat-

form Recognition and Radial Arm water maze tasks, suggesting extensive association

and/or coordination among cognitive processes within these tasks. Effective overall

cognitive performance in RAWM, for example, is dependent upon successful func-

tional integration between spatial learning and both working and reference memory

systems.

Widespread significant inter-task correlations were identified between the Plat-

form Recognition and Radial Arm water maze tasks, as well, suggesting the involve-
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ment of similar underlying cognitive domains or neurobehavioral substrates across

tasks. Observed inter-task correlations, therefore, suggest that the Platform Recog-

nition and RAWM tasks share multiple learning- and memory-related features in

common. The correlations between component measures across tasks in mice are

analogous to the observed correlations between psychometric testing instruments

used for human AD evaluation, resulting from parallel assessment of similar cogni-

tive abilities (e.g., working memory, spatial recognition).

Neither measure obtained in the Y-maze task was significantly correlated with

any other measures. This is not surprising for the activity-based Y-maze arm en-

tries (YM-AE) measure. The relative independence of Y-maze alternations (YM-PA)

from the other cognitive measures may reflect its general mnemonic foundation as

separate from the cognitive domains for RAWM and Platform Recognition perfor-

mance and/or context-sensitivity of learning and performance, i.e., learning within a

land-based task (Y-maze) versus water-based tasks (Platform Recognition, RAWM).

5.3.2 Factor Analysis

Table 5.2. Unrotated factor component loadings in the Alzheimer’s transgenic caffeine
study

Factor
Measure I II

PR-Avg 0.902
RML-T5 0.883
PR-Fin 0.854

RML-FT4 0.849
RML-FT5 0.836
RML-T4 0.809
YM-AE -0.868
YM-PA 0.712

Variance 57.11% 17.96%
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An unrotated principal component analysis of the eight measures is shown in

Table 5.2, with significant factor loadings (absolute value greater than 0.700) in-

dicated. Calculated eigenvalue results (i.e., >1 criterion) were in agreement with

observed scree plot (Cattell, 1966) identification of two significant factors. The pri-

mary factor (57% of overall variance) was comprised of all behavioral measures from

the Platform Recognition and RAWM tasks, and represents an overall cognitive func-

tion component of behavior. Both Y-maze measures together comprised the second

factor (accounting for approximately 18% of variance), underscoring their indepen-

dence from the other behavioral measures, as was evident from correlation analyses

as well. The Y-maze task involves both sensorimotor and cognitive elements, and the

segregation of this land-based task from the two water-based tasks suggests context-

sensitivity in both learning and performance (land vs. water) and/or the general

mnemonic nature of the Y-maze task, as mentioned previously.

5.3.3 Discriminant Analysis

The results of the discriminant function analyses, both direct-entry (complete)

and stepwise-forward approaches, are presented in Table 5.3 for reference purposes.

All discriminant analysis comparisons involve the eight behavioral measures from

“during-treatment” testing.

Nontransgenic (NT) vs. Transgenic-Control (Tg) Groups

A direct-entry (complete) discriminant analysis did not demonstrate significant

discriminability between the two groups. However, a stepwise-forward analysis re-

turned significant discriminability (Wilks’s lambda = 0.456, p = .0017) with 87%

accuracy (Jackknifing method). The sensitivity was 86% and the specificity was

88%, with respect to the transgenic-control group. Only the RML-T5 measure was
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Table 5.3. Classifier performance comparison in the Alzheimer’s transgenic caffeine
study

Support
Evaluation Discriminant Analysis Decision Neural Vector

Groups Criterion Complete Step-Fwd Tree Network Machine

Tg Accuracy NS 87% 80% 73% 67%
vs Sensitivity NS 86% 100% 71% 43%
NT Specificity NS 88% 63% 75% 88%
Tg Accuracy NS 75% NS 67% 75%
vs Sensitivity NS 80% NS 80% 60%

Tg+CAFF Specificity NS 71% NS 57% 86%
NT Accuracy NS 100% NS 77% 85%
vs Sensitivity NS 100% NS 80% 80%

Tg+CAFF Specificity NS 100% NS 75% 88%
All three Accuracy 60% 80% 45% 70% 65%

retained by the stepwise-forward model, underscoring the sensitivity of the reference

memory measure to distinguish transgenicity.

Transgenic-Control (Tg) vs. Transgenic+Treatment (Tg+CAFF) Groups

Nonsignificant discriminability was obtained using direct-entry discriminant anal-

ysis. A stepwise-forward analysis, however, returned significant discriminability

(Wilks’s lambda = 0.233, p = .0065) with 75% accuracy (Jackknifing method).

The observed sensitivity was 80% and the specificity was 71%, with respect to the

transgenic+treatment group. Three variables were retained by the stepwise-forward

analysis: YM-AE, YM-PA, and RML-FT5. This subset of measures includes both

sensorimotor (through the Y-maze measures) and cognitive elements, suggesting a

more complex behavioral profile may distinguish between treated- and untreated-

transgenic animals, reflecting both sensorimotor and cognitive components.

Nontransgenic (NT) vs. Transgenic+Treatment (Tg+CAFF) Groups

Although direct-entry discriminant analysis did not result in significant discrim-

inability between the two groups, stepwise-forward analysis found significant dis-
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criminability (Wilks’s lambda = 0.164, p = .0007) with 100% accuracy (Jackknifing

method). Both the sensitivity and specificity indices were 100%, with respect to

the transgenic+treatment group. The stepwise-forward analysis returned a model

having three predictor variables: YM-PA, RML-FT5, and RML-T5. This cognitive-

biased subset of measures reflects systematic, coordinated search capability (Y-maze

percent alternations), as well as spatial reference memory function.

All Three Groups

In contrast to the pairwise group analyses, a direct-entry discriminant analysis

of all three groups showed significant discriminability (Wilks’s lambda = 0.067, p

= .0042), but with only 60% classificatory accuracy (Jackknifing method). Further-

more, a stepwise-forward analysis also returned significant discriminability (Wilks

lambda = 0.158, p = .0001) with 80% accuracy (Jackknifing method). The three

predictor variables retained by the classifier model were: YM-PA, RML-FT5, and

RML-T5. This is the same subset of measures retained by the “Nontransgenic vs.

Transgenic+Treatment” classifier model, and suggests that a combination of sensori-

motor and cognitive behavioral indices may be necessary for successful discrimination

among nontransgenic and transgenic animals (either caffeine-treated or untreated).

The canonical scores plot generated from stepwise-forward discriminant analysis is

depicted in Figure 5.2. The axes represent the two functions used to distinguish

among the three groups in the analysis.
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Figure 5.2. Canonical scores plot of discriminant analysis for all three groups
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5.4 Results of Data Mining Analyses

5.4.1 Decision Tree Analysis

Nontransgenic (NT) vs. Transgenic-Control (Tg) Groups

A decision tree constructed using the J48 algorithm identified a single measure,

PR-Fin, as the best discriminative attribute for splitting the dataset into distinct

groups. Subsequent cross-validation (k-fold) of the optimal tree showed in 80% cor-

rect classification of cases (Kappa = 0.61), with 100% sensitivity and 63% specificity.

Transgenic-Control (Tg) vs. Transgenic+Treatment (Tg+CAFF) Groups

Although two attribute measures, PR-Avg and YM-PA, were selected by the

decision tree-based classifier for providing optimal discriminability between the two

groups, only 50% (Kappa = -0.03) of the individual animals were correctly classi-

fied. Hence, the performance of the classifier represents chance-level (nonsignificant)

discriminability between untreated and caffeine-treated Alzheimer’s transgenic mice.

Nontransgenic (NT) vs. Transgenic+Treatment (Tg+CAFF) Groups

Both Platform Recognition task measures (PR-Fin, PR-Avg) were selected by

the decision tree classifier as having optimal capacity for splitting the dataset into

two distinguishable groups. However, because only 31% of animals were correctly

classified (Kappa = -0.52), the performance of the classifier did not exceed a level

comparable to random assignment of individuals to groups. This finding suggests

that, while the Platform Recognition measures exhibit modest bias between the

two groups, the caffeine-treated transgenic mice do not significantly differ from the

nontransgenic animals.

All Three Groups

The Y-maze percent alternations (YM-PA) and both Platform Recognition task

measures (PR-Fin, PR-Avg) were identified as having sufficient information value to
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split the database into three groups. Although only 45% of animals were correctly

assigned to their respective groups (Kappa = 0.16), this modest level of classifier

performance exceeds that of random-chance assignment (33%).

5.4.2 Neural Network Analysis

Nontransgenic (NT) vs. Transgenic-Control (Tg) Groups

A three-layered neural network, in which the number of hidden-layer units was

varied between three and nine, demonstrated optimal performance when configured

with eight input-layer elements (the behavioral measures), three hidden-layer ele-

ments, and two output-layer elements (the two category groups). Subsequent cross-

validation (k-fold) of the optimal network showed 73% correct classification of cases

(Kappa = 0.46), with 71% sensitivity and 75% specificity.

Transgenic-Control (Tg) vs. Transgenic+Treatment (Tg+CAFF) Groups

Four hidden-layer units were necessary to achieve optimal classification per-

formance between treated and untreated transgenic mice. The resulting network

performed modestly, correctly classifying 67% of cases (Kappa = 0.35), with 80%

sensitivity and 57% specificity. Although only two-thirds of individuals were cor-

rectly identified by group, the classifier showed superior detection of caffeine-treated

Alzheimer’s transgenic mice (sensitivity), relative to untreated Tg controls (speci-

ficity).

Nontransgenic (NT) vs. Transgenic+Treatment (Tg+CAFF) Groups

The neural network-based classifier utilized four hidden-layer computing units

to produce optimal discriminability between treated and untreated nontransgenic

animals. Seventy-seven percent of individual animals were correctly assigned to their

respective groups (Kappa = 0.53). The classifier displayed 80% sensitivity and 73%

specificity. Hence, an identically-configured network was better able to accurately
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and reliably distinguish (77% vs. 67%) a caffeine treatment effect in transgenic

animals against a nontransgenic standard, relative to a transgenic standard.

All Three Groups

The optimal neural network-based classifier for distinguishing among the three

groups contained four computing units in the hidden layer. This classifier performed

remarkably well, demonstrating 70% accuracy (Kappa = 0.54), relative to the 33%

which would be attributed to random assignment. The neural network’s difficulty in

distinguishing between untreated and caffeine-treated Alzheimer’s transgenic animals

(Tg vs. Tg+CAFF), mentioned previously, may have undermined the classifier’s

overall performance when all three groups were included.

5.4.3 Support Vector Machine Analysis

Nontransgenic (NT) vs. Transgenic-Control (Tg) Groups

A support vector machine-based classifier was trained using the behavioral mea-

sures to distinguish between nontransgenic (NT) and untreated transgenic (Tg) ani-

mals. Two-thirds of the animals were correctly classified (Kappa = 0.31), with 43%

sensitivity and 88% specificity. Hence, although only modest discriminability was

observed between the two groups, the classifier was particularly effective in correctly

identifying nontransgenic animals (88% specificity), relative to the transgenic mice.

Transgenic-Control (Tg) vs. Transgenic+Treatment (Tg+CAFF) Groups

The classifier correctly distinguished between caffeine-treated and untreated trans-

genic mice in 75% of the cases (Kappa = 0.47). The sensitivity of the support vector

machine was 60% and the specificity was 86%, indicating greater detection accuracy

for untreated mice relative to treated animals.
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Nontransgenic (NT) vs. Transgenic+Treatment (Tg+CAFF) Groups

The support vector machine-based classifier performed remarkably well, correctly

assigning 85% of the mice comprising these two groups (Kappa = 0.68). The clas-

sifier displayed 80% sensitivity and 88% specificity. Hence, the classifier showed ap-

proximately equal facility in correctly identifying nontransgenic and caffeine-treated

transgenic animals.

All Three Groups

When a support vector machine was trained using behavioral data from all an-

imals of the three groups, only 65% of individuals were correctly assigned to their

respective groups (Kappa = 0.45). Overall, this level of discriminability is similar to

that between treated- and untreated-transgenic animals.

5.5 Discussion

Consistent with findings from earlier studies (e.g., Arendash and King, 2002;

Leighty et al., 2004), significant intercorrelations were found both between and within

behavioral tasks. The factor analysis was also consistent with prior findings (Aren-

dash and King, 2002; Jensen et al., 2005; Arendash et al., 2006), wherein a cognitive-

loaded behavioral component was returned as the primary factor. Additionally, in

both the current study and in prior studies examining long-term caffeine administra-

tion in mice (Arendash et al., 2006), measures from the Platform Recognition and

RAWM tasks loaded separately from the Y-maze task measures, underscoring the

distinct sensorimotor/cognitive domain assessment of the Y-maze paradigm. The

discriminant analyses are consistent with earlier studies (e.g., Arendash and King,

2002; Leighty et al., 2004), as well, where non-significant discriminability returned

through direct-entry analysis is contrasted with significant discriminability achieved

by utilizing the stepwise-forward approach.
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Among the data mining classifiers, decision trees were particularly sensitive to

transgenicity effects, while support vector machines were more sensitive to (caf-

feine) treatment effects in Alzheimer’s transgenic mice. The decision tree method

was successful only in distinguishing between nontransgenic and untreated (control)

transgenic animals. The reliance of decision tree-based classifiers upon platform

recognition-associated measures, however, contrasts with statistical classifiers, which

favored Y-maze and RAWM measures. The data mining methods, while inferior to

the stepwise-forward variant of discriminant analysis, were collectively superior to

the direct-entry (complete) discriminant analysis classifier. These findings support

the use of data mining techniques as supplements to – rather than substitutes for –

standard statistical analytic methods. Table 5.3 summarizes the performance of all

classifiers examined, with respect to sensitivity, specificity, and overall accuracy, in

distinguishing between/among caffeine-treated and untreated transgenic, and non-

transgenic mice.

Taken together, these results suggest differential sensitivity to treatment and/or

transgenicity by predictor variables; some variables are better discriminators of

transgenic- or treatment-effects than others. This explains the success of stepwise-

forward discriminant analysis (and failure of direct-entry discriminant analysis) in

distinguishing between groups, in terms of treatment as well as transgenicity. Fur-

thermore, the stepwise-forward discriminant analyses suggest the three groups exam-

ined are pairwise-discriminable, albeit utilizing different predictor variables. A prior

study utilizing the same dataset as in the present study (Arendash et al., 2009) em-

ployed standard ANOVA-based comparisons between/among nontransgenic, untreated-

and caffeine-treated transgenic mice, and found that caffeine-treated transgenic an-

imals differed significantly from untreated transgenics in the Platform Recognition

(escape latency) and RAWM (final acquisition trial latency, T4; retention trial la-

137



tency, T5) tasks (Figure 5.1). In addition, caffeine-treated transgenic mice did not

differ significantly from nontransgenics in these tasks (Arendash et al., 2009). Al-

though these results seem to contradict the findings of the current study involving dis-

criminant analysis and data mining-based methods, it is important to recognize that

multiple predictor variables (behavioral measures) were utilized within each analysis

of the current study, in contrast to the single measure-by-measure comparisons per-

formed through ANOVA in Arendash et al. (2009). For example, measures from both

the Y-maze and RAWM tasks – together – were necessary to distinguish between

nontransgenic and caffeine-treated animals using discriminant analysis. Hence, sig-

nificant discriminability, when observed, in the current study reflects distinguishable

collective patterns of measures between groups, rather than differences between sin-

gle measures. Indeed, the ability of both stepwise-forward discriminant analysis and

data mining-based classifiers to distinguish between groups using multiple behavioral

measures underscores the importance of these advanced techniques as complements

to conventional behavioral analytic protocols, such as ANOVA.

Several implications for humans may be inferred from these findings. First, be-

cause transgenic mice (both caffeine-treated and untreated) were distinguishable

from nontransgenics, it is likely that normal individuals and AD-individuals, re-

gardless of therapeutic influence, will exhibit distinctive patterns of cognitive perfor-

mance, however subtle, which are discernable to a well-conditioned classifier using a

sufficiently rich dataset of measures. This supports the use of comprehensive behav-

ioral and cognitive assessment for accurate, reliable diagnosis of probable Alzheimer’s

disease. Second, in light of findings by Arendash et al. (2009) that long-term oral

caffeine consumption confers cognitive-protective benefits in aged Alzheimer’s trans-

genic mice (based on specific task performance measures), it is reasonable to conclude

that certain cognitive domains (e.g., working/reference memory) are highly respon-
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sive to the therapeutic effects of caffeine. Finally, that certain tasks are more likely

to detect these cognitive benefits, when present, than are other tasks. The Radial

Arm water maze, for instance, has demonstrated superiority for identifying cognitive

impairment, as well as for evaluating the efficacy of therapeutic interventions, in

Alzheimer’s transgenic mice (e.g., Arendash et al., 2004; Jensen et al., 2005; Ethell

et al., 2006; Cracchiolo et al., 2007). Similarly, the MMSE (Folstein et al., 1975)

psychometric inventory is one of the most effective instruments for both diagnostic

screening and therapeutic evaluation in Alzheimer’s patients. Assessment method-

ologies for Alzheimer’s disease continue to improve, however, and recently-developed

paradigms (e.g., semantic interference task; Loewenstein et al., 2004) emphasize spe-

cific cognitive domains (e.g., verbal memory) and operations (e.g., proactive and

retroactive interference) which exhibit Alzheimer-specific impairment, as explored in

the next chapter.
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CHAPTER 6

INTERFERENCE TESTING IN HUMANS: A COMPARISON OF
STATISTICAL AND DATA MINING METHODS

6.1 Introduction

Memory dysfunction – particularly, impaired delayed recall ability – is an early

indicator of probable Alzheimer’s disease (e.g., Welsh et al., 1991). Compromised

storage and consolidation of new learning in AD patients may be related to increased

susceptibility to stimulus intrusions occurring between the learning period and sub-

sequent recall (i.e., interference) which, in turn, is associated with impaired hip-

pocampal function (e.g., Hasselmo and Wyble, 1997). A novel cognitive assessment

protocol, developed by Dr. David Loewenstein and colleagues at the University of

Miami (Florida) School of Medicine, has demonstrated effectiveness as a psychome-

tric screening instrument for distinguishing among clinically-diagnosed (DALCOG,

MMSE) mild probable AD, mild cognitively impaired (MCI), and normal elderly indi-

viduals (Loewenstein et al., 2003; Loewenstein et al., 2004). The technique represents

an extension of the Fuld object recognition task using two sets of semantically-related

stimuli for evaluating both proactive and retroactive interference effects.

The interference testing protocol consists of four tasks. The first task, three-trial

recall, is a modified version of the Fuld object memory examination (Fuld, 1981;

Loewenstein et al., 2001), in which the subject is presented with ten familiar objects

(Bag A) and asked to recall the objects following a brief distraction task, repeated

three times. In the second task, proactive interference, the subject is presented
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with ten novel objects (Bag B) and asked to recall them, to determine whether

previous learning (Bag A objects) intrudes upon present learning (Bag B objects).

The third task, short-delay recall, wherein the subject is asked to recall the original

set of ten items (Bag A), provides a measure of retroactive interference (difficulty

recalling previous learning due to intrusion by present learning). Finally, long-delay

recall is evaluated by asking the subject to recall the original set of ten items (Bag

A) after a 20-minute delay. The stimulus presentation and response forms were

selected both to facilitate administration of the testing instrument as well as to

closely mirror familiar, commonly executed cognitive tasks (e.g., object recognition

by touch, naming) by human subjects. In addition, the objects comprising the two

sets of stimuli were selected to be semantically related (Loewenstein et al., 2003), to

increase the likelihood of intrusion (interference) errors. Both Alzheimer’s disease

patients and individuals with mild cognitive impairment were shown to be vulnerable

to proactive interference, relative to normal elderly subjects (Loewenstein et al.,

2004).

The purpose of this study was to explore advanced statistical and data mining

methodologies for distinguishing among aged-normal, mild Alzheimer’s, and mild

cognitively impaired individuals using measures from the four tasks described above

included in the same dataset as in the original Loewenstein et al. (2004) study. The

results provided in the original report (Loewenstein et al., 2004), based on one-way

analysis of variance (ANOVA) and logistic regression statistics, were compared with

discriminant analyses and data mining-based analyses of the original dataset.
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6.2 Materials and Methods

A total of 132 cases representing three classes of age-matched subjects were in-

cluded in the dataset: Mild Alzheimer’s disease (AD, N = 26), mild cognitive impair-

ment (MCI, N = 53), and normal elderly (CON, N = 53). Group membership was

assigned by clinical examination using standardized criteria (NINCDS-ADRDA). In

addition to behavioral testing, all individuals completed the MMSE examination.

The MMSE score was included in the correlation analysis to illustrate convergent

validity, but only behavioral measures were used for subsequent analyses. The behav-

ioral evaluation yielded the following measures, in order: Three-trial recall (Modified

OME, Fuld) score (Bag-A objects), proactive interference (Bag-B Immediate Recall)

score, retroactive interference (Bag-A Short Delay) score, and delayed-recall (Bag-

A 20-min Delay) score. A verbal fluency task was used as a distractor between

successive trials of the three-trial recall task, as well as immediately preceding the

proactive interference task. These data were provided courtesy of Dr. David Loewen-

stein; complete details of the testing procedure are provided in Loewenstein et al.

(2004).

6.3 Results of Statistical Analyses

6.3.1 Standard Analysis

Figure 6.1 depicts significant groupwise contrasts in component behavioral mea-

sures of the semantic interference protocol, with respect to memory performance

(i.e., average number of correct responses). Using analysis of variance (ANOVA, F-

test), all three pairs of groups (i.e., AD vs. MCI, AD vs. CON, and MCI vs. CON)

exhibited significant differences in cognitive performance. Both the three-trial recall

and proactive interference measures (Loewenstein’s FRET3 and SITB measures, re-
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spectively) differed significantly between these three pairs of groups (all p = .000).

In addition, both the retroactive interference and delayed-recall measures (Loewen-

stein’s SITAB and SITDRE measures, respectively) differed significantly between the

CON group and either the AD or MCI group (all p = .000); these two measures also

differed between the AD and MCI groups (both p = .020).

Furthermore, significant groupwise differences were observed in the average MMSE

scores [Mean ± SEM: AD (23.12 ± 0.53), MCI (27.04 ± 0.26), and CON (28.56 ±

0.19)], wherein all pairwise differences between groups were statistically significant

(all p = .000). Hence, for each of the cognitive performance measures, all pairs

of groups differ significantly (p < .05) and, collectively, portray a continuum of

cognitive impairment from relatively-unimpaired performance (CON) to substantial

impairment (AD). Normal elderly individuals (CON), for instance, demonstrated su-

perior performance, relative to the other two groups. By contrast, mildly cognitively-

impaired (MCI) individuals exhibited intermediate performance between the other

two groups.

6.3.2 Correlation Analysis

Table 6.1. Correlations among MMSE scores and behavioral measures in the human
semantic interference protocol

Three-Trial .54
Recall .000

Proactive .46 .75
Interference .000 .000
Retroactive .41 .68 .51
Interference .000 .000 .000

Delayed .41 .78 .60 .75
Recall .000 .000 .000 .000

MMSE Three-Trial Proactive Retroactive
Recall Interference Interference
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Figure 6.1. Groupwise contrasts for all human interference protocol measures
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Significant (p < .05) pairwise correlations among all clinical measures (both task-

based and MMSE) for all groups of subjects are shown in Table 6.1. Both the Pearson

product-moment correlation coefficient (r-value) and its corresponding significance

(p-value) are indicated at the top and bottom, respectively. Positive correlation be-

tween cognitive performance in the three-trial recall task and both the retroactive

interference and delayed-recall measures suggests performance consistency between

the original learning component (i.e., the first set of verbal stimuli) and subsequent

retroactive interference. In addition, positive correlation between the proactive in-

terference measure and the other three verbal tasks (three-trial recall, retroactive

interference, and delayed-recall) suggests comparable learning performance across

problem conditions (i.e., different sets of verbal stimuli). Finally, significant positive

correlation between the MMSE and all task-based behavioral measures underscores

the diagnostic utility of the MMSE psychometric instrument for verbal learning and

memory evaluation.

6.3.3 Discriminant Analysis

Table 6.2 compares the performance of the classifiers examined in the present

study, including the direct-entry and stepwise-forward discriminant analyses.

Alzheimer’s (AD) vs. Mild Cognitive Impairment (MCI) Groups

Direct-entry (complete) discriminant analysis demonstrated significant discrim-

inability between individuals with probable Alzheimer’s disease and those with mild

cognitive impairment (Wilks’s lambda = 0.730, p = .0001), with 70% of subjects

correctly assigned to their respective groups, as shown in Table 6.2. The sensitivity

of the classifier was 65% and the specificity was 72%, with respect to Alzheimer’s

identification. Stepwise-forward analysis also returned significant discriminability

between the two groups (Wilks’s lambda = 0.754, p = .0000) with 76% accuracy,
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Table 6.2. Classifier performance comparison in the human semantic interference
protocol

Support
Evaluation Discriminant Analysis Decision Neural Vector

Groups Criterion Complete Step-Fwd Tree Network Machine

AD Accuracy 70% 76% 73% 68% 73%
vs Sensitivity 65% 69% NS NS NS

MCI Specificity 72% 79% 93% 77% 91%
AD Accuracy 94% 94% 91% 90% 95%
vs Sensitivity 85% 85% 85% 85% 89%

CON Specificity 98% 98% 94% 93% 98%
MCI Accuracy 90% 90% 83% 88% 91%
vs Sensitivity 87% 87% 83% 87% 93%

CON Specificity 92% 92% 83% 89% 89%
All three Accuracy 71% 81% 73% 73% 76%

69% sensitivity and 79% specificity. The stepwise-forward model retained only the

three-trial recall score (i.e., Fuld task score) measure. Hence, the three-trial re-

call task component provides sufficient predictive information to distinguish between

mild cognitive impairment and probable Alzheimer’s disease. Indeed, the additional

behavioral task measures may, in fact, undermine discriminability between these two

groups.

Alzheimer’s (AD) vs. Normal-Aged (CON) Groups

Successful, and identical, discriminability between normal aged and probable

Alzheimer’s individuals was achieved using direct-entry and stepwise-forward dis-

criminant analyses (Wilks’s lambda = 0.245, p = .0000). Both classifier variants

exhibited 94% accuracy, with 85% sensitivity and 98% specificity, with respect to

Alzheimer’s identification, as reported in Table 6.2. The three-trial recall, proactive

interference, and retroactive interference task scores were retained by the stepwise-

forward model. Equivalent performance between the direct-entry and stepwise-
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forward analyses suggests the delayed-recall measure does not contribute to overall

discriminability between normal-aged and probable Alzheimer’s individuals.

Mild Cognitive Impairment (MCI) vs. Normal-Aged (CON) Groups

Direct-entry and stepwise-forward discriminant analyses performed identically,

distinguishing between normal-aged and mildly cognitively impaired individuals (Wilks’s

lambda = 0.438, p = .0000) with 90% accuracy, as indicated in Table 6.2. The ob-

served sensitivity was 87% and the specificity was 92%, with respect to the MCI

group of subjects. The stepwise-forward model retained the three-trial recall, proac-

tive interference, and retroactive interference task scores. These results once again

suggest the delayed-recall measure does not contribute to discriminability between

normal-aged and MCI individuals.

All Three Groups

Individuals of all three groups (normal-aged, probable Alzheimer’s disease, and

mildly cognitively impaired) were successfully distinguished using direct-entry dis-

criminant analysis (Wilks’s lambda = 0.337, p = .0000). Seventy-one percent of the

subjects were correctly identified by group. The normal-aged individuals were the

most reliably distinguished by the classifier. A stepwise-forward analysis also re-

turned significant discriminability among the three groups (Wilks’s lambda = 0.220,

p = .0000) with 81% accuracy. All four behavioral measures were retained by the

stepwise-forward analysis as predictor variables for group membership. These results

suggest that all of the cognitive measures may contribute significant, nonredundant

discriminative information for determining group membership.
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6.4 Results of Data Mining Analyses

6.4.1 Decision Tree Analysis

Alzheimer’s (AD) vs. Mild Cognitive Impairment (MCI) Groups

Two behavioral measures (proactive interference and delayed-recall) were selected

by the decision tree for splitting the dataset (Kappa = 0.3102). The resulting classi-

fier correctly identified 73% of individuals, with nonsignificant (35%) sensitivity and

93% specificity, as shown in Table 6.2. Most of the subjects were classified as MCI,

regardless of actual group.

Alzheimer’s (AD) vs. Normal-Aged (CON) Groups

The dataset attributes identified by the decision tree were the three-trial recall

and delayed-recall measures. The classifier accurately identified 91% of individuals

(Kappa = 0.7974). The sensitivity was 85% and specificity was 94%, with respect

to probable Alzheimer’s disease. Hence, the normal-aged individuals were somewhat

more likely to be correctly identified, relative to Alzheimer’s subjects.

Mild Cognitive Impairment (MCI) vs. Normal-Aged (CON) Groups

A decision tree attempted to split the dataset using the three-trial recall and

proactive interference measures. The resulting classifier correctly identified 83%

(Kappa = 0.6604) of individuals, with 83% sensitivity and 83% specificity, as in-

dicated in Table 6.2.

All Three Groups

The decision tree-based classifier selected three measures (three-trial recall, proac-

tive interference, and delayed-recall) to distinguish among all three groups of indi-

viduals. The optimal tree accurately identified 73% of the individuals (Kappa =

0.5678). The retroactive interference measure was not selected by any of the deci-

sion tree-based classifiers.
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6.4.2 Neural Network Analysis

Alzheimer’s (AD) vs. Mild Cognitive Impairment (MCI) Groups

A neural network-based classifier was trained to distinguish between individuals

from the probable Alzheimer’s disease and mildly cognitively impaired groups using

all four behavioral measures from the interference paradigm. Optimal performance

was achieved with a three-layered network containing four computing elements within

the input layer elements (the behavioral measures), three hidden-layer elements, and

two output-layer elements (the two category groups). As indicated in Table 6.2,

the classifier correctly identified 68% of cases (Kappa = 0.2763), with nonsignificant

(50%) sensitivity and 77% specificity, with respect to Alzheimer’s disease. True-AD

individuals were assigned equally to either the AD or MCI group.

Alzheimer’s (AD) vs. Normal-Aged (CON) Groups

As shown in Table 6.2, a neural network-based classifier successfully distinguished

between normal aged individuals and those with probable Alzheimer’s disease (Kappa

= 0.7707), with 90% accuracy, 85% sensitivity and 93% specificity, with respect to

Alzheimer’s disease. Although this classifier exhibited remarkably accurate perfor-

mance, 15% of probable Alzheimer’s disease individuals were misclassified as being

normal aged.

Mild Cognitive Impairment (MCI) vs. Normal-Aged (CON) Groups

Discriminability between normal aged and mildly cognitively impaired individu-

als was demonstrated by a neural network-based classifier (Kappa = 0.7547), which

accurately assigned 88% of individuals to their respective groups. The classifier

showed 87% sensitivity and 89% specificity, with respect to mild cognitive impair-

ment. Thus, excellent discriminability was achieved between MCI and normal-aged

individuals through neural network analysis.
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All Three Groups

All three groups (normal aged, mildly cognitively impaired, probable Alzheimer’s

disease) of individuals were successfully distinguished (Kappa = 0.5657), as reported

in Table 6.2. Seventy-three percent of individuals were correctly assigned to their

respective groups using the classifier.

6.4.3 Support Vector Machine Analysis

Alzheimer’s (AD) vs. Mild Cognitive Impairment (MCI) Groups

A support vector machine architecture attempted to distinguish between mildly

cognitively impaired individuals and those with probable Alzheimer’s disease using

the behavioral measures from the interference paradigm. As shown in Table 6.2,

the classifier correctly identified 73% of the individuals by group (Kappa = 0.3253),

with nonsignificant (39%) sensitivity and 91% specificity. Hence, although almost

all of the MCI individuals were correctly matched to their group, most of the AD

individuals were incorrectly identified as belonging to the MCI group.

Alzheimer’s (AD) vs. Normal-Aged (CON) Groups

Ninety-five percent of normal aged and probable Alzheimer’s individuals were

correctly assigned to their respective groups using a support vector machine-based

classifier (Kappa = 0.8830). The observed sensitivity was 89% and the specificity

was 98%, with respect to Alzheimer’s disease. This classifier performed remarkably

well overall, in that only 11% of probable Alzheimer’s individuals were incorrectly

identified as being normal aged.

Mild Cognitive Impairment (MCI) vs. Normal-Aged (CON) Groups

Normal aged and mildly cognitively impaired individuals were successfully distin-

guished (Kappa = 0.8113) using a support vector machine architecture. As reported
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in Table 6.2, the classifier accurately identified 91% of the individuals from these two

groups, with 93% sensitivity and 89% specificity, with respect to MCI.

All Three Groups

A respectable 76% of individuals from all three groups were correctly assigned

to their respective group (Kappa = 0.6110) using classifiers based on support vector

machine architectures.

6.5 Discussion

The original report (Loewenstein et al., 2004) presented ANOVA-based statisti-

cal results of comparisons between groups of all task measures in the interference

protocol. The three groups were found to differ significantly (all p < .001), with

respect to cognitive performance, in all four tasks (three-trial recall, proactive inter-

ference, retroactive interference, and delayed-recall). In addition, pairwise compar-

isons between groups were performed by logistic regression for all tasks except the

three-trial recall component of the protocol. The mild cognitively impaired (MCI)

and normal-aged (CON) groups showed significant differences (all p < .0001) in the

proactive interference, retroactive interference, and delayed-recall measures (Loewen-

stein et al., 2004). Proactive interference was the best discriminator between these

two groups (81.3% accuracy), while delayed-recall measure was the least-effective

predictor variable (75.5%). Between the mild AD patients (AD) and normal-aged

(CON) individuals, the proactive interference (p < .0001), retroactive interference (p

< .001), and delayed-recall (p < .0001) measures differed significantly between the

two groups (Loewenstein et al., 2004). However, between the AD and CON groups,

delayed-recall provided the best discriminability (89.9%) and retroactive interfer-

ence showed the poorest discriminability (83.3%), of the four tasks. Additionally,

higher accuracy, sensitivity, and specificity were observed when multiple measures
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were combined as a single index of cognitive performance (e.g., Total Recognition

Memory Score) (Loewenstein et al., 2004).

In this study, the correlation analysis showed significant (all p = .000) posi-

tive pairwise correlation among all four behavioral measures, as well as between the

standard psychometric screening instrument (MMSE) and each behavioral measure.

Because only four behavioral measures were examined, and these exhibited exten-

sive intercorrelation, no factor analyses were performed. The discriminant analyses

were consistent with earlier studies (e.g., Arendash and King, 2002; Leighty et al.,

2004), in which the stepwise-forward variant exhibits comparable (or, sometimes,

enhanced) accuracy, relative to the standard direct-entry (complete) analysis. In-

deed, although all discriminant analysis-based classifiers successfully distinguished

between pairs of groups, by cognitive impairment, the stepwise-forward approach

was superior for distinguishing between AD and MCI groups, as well as among all

three groups, as shown in Table 6.2. Overall, all three decision tree-based classi-

fiers successfully distinguished between/among the groups, but the support vector

machine’s performance was the most similar to the stepwise-forward discriminant

analysis result.

Support vector machine-based classifiers demonstrated superior discriminability

between the mild cognitively impaired (MCI) and normal-aged (CON) individuals,

as depicted in Table 6.2. The stepwise-forward discriminant analysis retained the

three-trial recall, proactive interference, and retroactive interference measures for

distinguishing between the groups. This finding is consistent with that of Loewen-

stein et al. (2004), wherein these same three measures provided superior discrim-

inability, relative to delayed-recall, between these two groups. The decision tree, as

well, retained the three-trial recall and proactive interference measures, underscor-

ing the relative importance of these cognitive metrics for detecting subtle features of
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MCI. Indeed, Loewenstein et al. (2004) identified proactive interference as providing

optimal discriminability (81.3%) between the two groups, by logistic regression.

The support vector machine-based classifier also displayed the best discriminabil-

ity between probable AD and normal-aged individuals, as shown in Table 6.2. As

noted earlier, equivalent classifier performance despite the absence of the delayed-

recall measure from the stepwise-forward analysis suggests this measure does not

contribute significantly to groupwise discriminability. This contrasts with the logistic

regression-based results (Loewenstein et al., 2004) which emphasize the delayed-recall

measure for distinguishing between these two groups. Indeed, the overall accuracy

achieved by discriminant analysis, as shown in Table 6.2, exceeds that of logistic

regression between the AD and CON groups. The decision tree-based classifier de-

termined that the three-trial recall and delayed-recall measures together provide

the most information bias for distinguishing between these two groups. The ob-

served accuracy of this classifier (91%, from Table 6.2) approximates the logistic

regression-based finding (89.9%) for delayed-recall alone, as reported in Loewenstein

et al. (2004). The neural network-based classifier performed comparably to the lo-

gistic regression method, with respect to discriminability between probable AD and

normal-aged (CON) individuals.

As indicated in Table 6.2, the stepwise-forward discriminant analysis displayed

the best discriminability between probable AD and mild cognitive impairment, uti-

lizing only the three-trial recall measure. Although Loewenstein et al. (2004) did

not report relative discriminability using the Fuld three-trial recall measure, they

emphasize the clinical significance of this task for the diagnosis of dementia. In-

terestingly, the decision tree retained both the proactive interference and delayed-

recall measures, and classified almost all individuals as MCI, regardless of true group

membership. Indeed, the difficulty of all three data mining techniques to accurately
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distinguish between these groups (all data mining-based classifiers displayed non-

significant sensitivity, effectively assigning true-AD individuals randomly to either

group) underscores the challenge of reliable behavior-based differential diagnosis of

AD. The adverse effects of disproportionate sample sizes on training the classifiers

cannot be discounted, however. Although the MCI and normal-aged groups had

equal sizes (N=53), there were only one-half as many AD individuals (N=26) in-

cluded in the study. Either doubling the number of AD subjects or halving the

numbers of MCI and normal-aged subjects (by Monte Carlo selection, for example)

might correct the sample size-bias problem.

Discriminant analyses retained all behavioral measures for distinguishing among

the three groups, and displayed 81% overall accuracy, as reported in Table 6.2. As

noted earlier, the retention of all four behavioral measures by the stepwise-forward

analysis suggests that each measure may contribute unique discriminative informa-

tion. Indeed, the Loewenstein et al. (2004) findings indicate that multiple measures

of cognitive ability provide superior discriminability, relative to individual measures.

The decision tree-based classifier retained all measures except retroactive interfer-

ence, but only identified 73% of the individuals by group, as shown in Table 6.2.

Taken together, these results suggest the interference-based cognitive assessment

protocol introduced in Loewenstein et al. (2004) is highly effective in distinguishing

between and among mild-Alzheimer’s, mild cognitively impaired, and aged-normal

individuals. In addition, significant positive correlation between the behavioral mea-

sures and the MMSE (standard clinical assessment instrument) supports convergent

validity for diagnosis. As portrayed in Table 6.2, there is strong consensus among

the classifiers with respect to discriminability between groups, e.g., AD individuals

are more easily distinguished from aged-normal than are MCI individuals. The com-

parisons and contrasts between conventional statistical approaches (ANOVA, logistic

154



regression), as reported in Loewenstein et al. (2004), and the advanced statistical

(discriminant analyses) and data mining-based approaches utilized here further sup-

port the use of the latter techniques in conjunction with the former for comprehensive

neurobehavioral research. Future studies should address refinements and extensions

of both statistical and data mining methods to improve diagnostic utility.
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CHAPTER 7

THE INTERFERENCE TASK: A NOVEL ASSESSMENT PARADIGM

7.1 Introduction

As discussed in the previous chapter, the semantic interference task (Loewenstein

et al., 2004) is a recently-developed clinical diagnostic protocol for distinguishing

among normal-aged, mild cognitively-impaired, and probable Alzheimer’s individu-

als using a verbal-report memory test having proactive and retroactive interference

components, as well as a measure of delayed-recall performance. The demonstrated

effectiveness of this protocol for detecting and, indeed, discriminating mild forms of

cognitive impairment in humans suggested that a similar ensemble of rodent-based

behavioral tasks and measures might exhibit comparable utility. The notion of adapt-

ing human-based tasks for cognitive assessment in rodents is not without precedent.

Indeed, the most common single evaluation instrument is the maze (e.g., Hebb and

Williams, 1946), a scaled model of the classic path-search puzzle. Both water- and

land-based mazes, featuring two- and three-dimensional configurations, have been

developed for studying learning and memory processes (e.g., Spear et al., 1990) in

varied contexts. Similarly, the serial reaction time test for procedural (implicit)

memory functional evaluation (Nissen and Bullemer, 1987) has also been adapted

for mice (e.g., Christie and Hersch, 2004; Cho et al., 2007). Finally, episodic-like

memory function has been examined in mice using exploration and object recogni-

tion tasks (Dere et al., 2005) to simulate the “where, what, and when” paradigms
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commonly used in humans. Mirroring the episodic memory impairment displayed by

Alzheimer’s patients, Alzheimer’s transgenic mice perform poorly in the simulated

episodic-like memory task (Savonenko et al., 2005).

The purpose of this study was to implement and evaluate a novel behavioral

testing paradigm for mice, adapted from the human-based instrument presented in

Loewenstein et al. (2004), in nontransgenic and Alzheimer’s transgenic animals hav-

ing either the wildtype or GRK5-knockout genotype. The mouse-analogue of the

instrument, described in Materials and Methods below, substitutes spatial memory-

dependent elements for the verbal (semantic) memory-dependent components of the

original protocol, while preserving the flexibility of the latter for evaluating proac-

tive and retroactive interference effects on learning. Additionally, in contrast to the

Loewenstein et al. (2004) which utilized only error-scores, the mouse-based adap-

tation provides both error-score and response-latency measures from each task. As

shown in prior studies with both nontransgenic and Alzheimer’s transgenic animals

(e.g., Arendash et al., 2001; Leighty et al., 2004; Arendash et al, 2006), the Radial

Arm water maze (RAWM) provides an excellent means for evaluating spatial short-

term (working) memory function in mice. Consequently, the RAWM represents a

reasonable starting design from which to develop the mouse-based interference test-

ing paradigm. The two alternative configurations of the RAWM apparatus (Pool A

and Pool B), featuring unique target placement and peripheral visual cues, for exam-

ple, are intended to parallel the original protocol’s use of semantically-related objects

(Bag A and Bag B). Similarly, the intertrial Y-maze exposure period is intended as a

brief distractor task, analogous to the intervening verbal fluency (naming) task used

by Loewenstein et al. (2004).

G-protein coupled receptor kinase-5 (GRK5) is responsible for selective desensi-

tization of G-protein coupled receptors of the muscarinic acetylcholinergic system in
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mice (reviewed in: Suo et al., 2007). Studies in vitro show sub-threshold concen-

trations of soluble beta amyloid reduce functional GRK5 levels and, moreover, that

these reductions precede the onset of cognitive impairment in AD transgenic mice

(Suo et al., 2004). Aged (19 month-old) GRK5-knockout mice exhibit widespread

hippocampal pathology (swollen axonal clusters), as well as muscarinic cholinocep-

tive system dysfunction (reduced mAChR M1, M2, and M4) (Suo et al., 2007);

these animals also display selective impairment in working memory, but not spatial

learning or reference memory. The GRK5-knockout mouse has been proposed as a

model organism for human AD, as a complement to existing APP-transgenic mice,

to evaluate both behavioral (cognitive) and pathologic (e.g., cholinergic) responses

to treatment protocols.

In this study, the mouse-based interference paradigm was used to compare con-

ventional statistical (ANOVA) methods, as reported in Suo et al. (2007), with ad-

vanced statistical (discriminant function) and data mining-based analytic techniques

for evaluating cognitive impairment in mice (both nontransgenic and Alzheimer’s

transgenic) with/without GRK5 manipulation (i.e., wildtype or knockout). In addi-

tion, error-score and response-latency data were examined both separately and to-

gether to determine the most effective group of behavioral measures for distinguishing

between/among treatment groups of mice. Hence, the interaction between two ge-

netic manipulations (nontransgenic vs. Alzheimer’s transgenic, GRK5-wildtype vs.

knockout), as reflected in cognitive performance in the interference paradigm, was

investigated.
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7.2 Materials and Methods

The animals used for this analysis represented an extension of the initial be-

havioral study (reported in: Suo et al., 2007), involving one-year-old Alzheimer’s

transgenic (APPsw) Tg2576 mice and nontransgenic littermates, with an additional

manipulation of the GRK5 gene (wildtype vs. knockout). Targeted deletion of ex-

ons 7 and 8 of the GRK5 gene was used to generate GRK5-KO (“knockout”) mice.

Hence, there were four groups of animals examined: Nontransgenic-control (NT,

N=7), nontransgenic-knockout (NT-KO, N=8), transgenic-control (Tg, N=12), and

transgenic-knockout (Tg-KO, N=10). All animals completed the comprehensive be-

havioral task battery (as used in prior studies, e.g., Jensen et al., 2005; Cracchiolo

et al., 2007), prior to the Mouse Interference Paradigm.

All behavioral measures from the comprehensive task battery were analyzed us-

ing both statistical (ANOVA, correlation analysis, factor analysis, and discriminant

analysis) and data mining-based methods (decision trees, neural networks, and sup-

port vector machines). Similarly, the three datasets of interference paradigm-derived

behavioral measures obtained in this study were subsequently analyzed using the

same analytic suite. A complete description of the computing resources (e.g., hard-

ware platform, software packages) used in the analyses, including parameter settings

for the programs, is provided in the General Analytic Protocol of Section 4.2.

Animal care and use was in accordance with the Guide and Use of Laboratory An-

imals, National Research Council, 1996, in a program and facilities fully accredited

by the Association for Assessment and Accreditation of Laboratory Animal Care,

International, under a protocol approved by the University of South Florida Institu-

tional Animal Care and Use Committee (No. 2951, Gary Arendash, Ph.D., Principal

Investigator).
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Mouse Interference Paradigm

Apparatus. The apparatus consists of two circular pools (“A” and “B”; 100 cm

diameter x 25 cm deep), each containing a six-armed (30 cm long x 19 cm wide;

radially distributed around a 40 cm diameter central arena) stainless steel insert,

and a relocatable, transparent submerged platform (9 cm diameter; e.g., inverted

clear glass jar). The pools are filled with warm water (maintained at 24-27 deg C) to

a level 1.5 cm above the top of the submerged platform, positioned in the appropriate

goal-arm. For each pool, the arms are labeled in a fixed, counter-clockwise order,

beginning with the arm located directly in front of the experimenter (#1). A distinct

visual cue (unique size and shape) is placed at the end of arms #2 through #6, along

the exterior circumference of the pools. In addition, a Y-maze apparatus (three-

armed; 21 cm long x 4 cm wide x 40 cm high walls) is located nearby.

Protocol. Behavioral testing typically consists of 4-6 consecutive daily sessions,

with each test day’s session comprised of: one “Platform A Orientation” trial, three

“Platform A Recall” trials, one “Platform B Orientation” trial, one “Platform B

Recall” trial, one “Platform A Short Delay” trial, and one “Platform A Long De-

lay” trial. In addition, each pool is assigned a specific start-arm and goal-arm to be

used throughout the day’s session. Each pool’s daily start-arm and goal-arm assign-

ments (for up to six testing sessions) are: A(2,6)B(3,6); A(5,3)B(1,3); A(4,5)B(2,1);

A(4,1)B(3,4); A(6,4)B(2,6); and A(5,2)B(5,3). At the beginning of each session, a

submerged platform is positioned near the end of each pool’s goal-arm. For the sin-

gle, unscored “Platform A Orientation” trial, the mouse is introduced at the center

of the start-arm of Pool A, facing the central arena, and allowed 60 sec to explore

the pool undisturbed. If the animal has not located the submerged platform, it is

gently guided to – and allowed to remain atop – the platform for 30 sec. The mouse

is then placed into one arm of the Y-maze and allowed to explore for 60 sec. Next,
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on each of three recall trials: the mouse is introduced into the start-arm of Pool A,

midway along the length and facing the central arena, and allowed up to 60 sec to

locate and mount the submerged platform. If the mouse enters a non-goal arm, it

is gently withdrawn to the start-arm and an error is recorded. If the mouse fails to

locate the platform after 60 sec, it is gently guided there and allowed to remain for

30 sec. After each recall trial, the mouse is placed into the Y-maze and allowed to

explore for 60 sec. In addition, for each recall trial, the number of errors (travelling

more than 20cm into any non-goal arm) and the latency (time to reach the plat-

form; scored as “60 sec,” if unreached) are recorded as “Platform A Recall - Errors”

and “Platform A Recall - Latency,” respectively. The mouse is then introduced at

the center of the start-arm of Pool B, facing the central arena, and allowed 60 sec

to explore the pool undisturbed for the single, unscored “Platform B Orientation”

trial. If the animal has not located the submerged platform, it is gently guided to

– and allowed to remain atop – the platform for 30 sec. The mouse is then placed

into one arm of the Y-maze and allowed to explore for 60 sec. Next, for a single

trial, the mouse is introduced into the start-arm of Pool B, midway along the length

and facing the central arena, and allowed up to 60 sec to locate and mount the sub-

merged platform. Each time the mouse enters a non-goal arm, it is withdrawn to the

start-arm. If the mouse fails to locate the platform after 60 sec, it is gently guided

there and allowed to remain for 30 sec. The mouse is then placed into the Y-maze

for 60 sec. The number of errors and latency are recorded as “Platform B Recall -

Errors” and “Platform B Recall - Latency,” respectively. The animal is then placed

into Pool A for a single trial, as described above, and the “Platform A Short Delay”

number of errors and latency are recorded. The mouse is transferred to its home

cage for 20 min, after which it is placed into Pool A for a single trial, as described

above, and the “Platform A Long Delay” number of errors and latency are recorded.
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Dataset. Corresponding behavioral measures obtained from the final two daily

testing sessions are averaged as a “block” for subsequent analysis. Hence, eight be-

havioral measures are determined: Three-trial recall (mean error-score and response-

latency, from Platform A Recall); proactive interference (mean error-score and response-

latency, from Platform B Recall); retroactive interference (mean error-score and

response-latency, from Platform A Short Delay); and, delayed-recall (mean error-

score and response-latency, from Platform A Long Delay). Finally, these measures

are grouped into three datasets: Error-scores only, response-latencies only, and both

error-scores and reponse-latencies.

7.3 Results of Statistical Analyses: Comprehensive Task Battery

7.3.1 Standard Behavioral Analysis

Table 7.1 portrays the standard ANOVA analyses (F-test, α = .05) of behavioral

measures from the comprehensive task battery for all animals in the study. Signif-

icant differences between groups are printed in bold and denoted by superscripted

characters: (1) The nontransgenic-control (NT) vs. Alzheimer’s transgenic-control

(Tg) group contrast is represented by an asterisk (∗); the Alzheimer’s transgenic-

control vs. transgenic with GRK5-knockout genotype (Tg-KO) contrast is indicated

with a dagger (†); and, the contrast between nontransgenic-control and nontrans-

genic with GRK5-knockout genotype (NT-KO) is represented by a double-dagger

(‡). Significant differences were found between the NT and Tg groups in Y-maze

percent alternations (YM-PA, but not YM-AE), elevated plus maze open-arm entries

(EP-OE; but not EP-CE or EP-TO), and radial arm water maze retention memory

(overall errors and latencies in both T4 and T5; errors in final block T5). The

primary cognitive impairment in Tg mice (relative to NT animals), therefore, was

162



reflected in the RAWM error measures, although a Tg effect on Y-maze alternations

(general mnemonic function) was also evident. The Tg mice differed significantly

from the Tg-KO animals in both open field activity (OF) and elevated plus maze

open-arm entries. Similarly, NT animals and NT-KO mice also differed significantly

with respect to open field activity. Hence, no cognitive effects of the GRK5-knockout

genotype were observed in either nontransgenic or Alzheimer’s transgenic mice. No

significant differences were found between the NT and Tg-KO groups for any of the

behavioral measures.
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Table 7.1. Groupwise contrasts for all behavioral task measures in the GRK5 study

Behavioral Group mean (± standard error)
Measure NT Tg Tg-KO NT-KO

Sensorimotor-based
OF 136.1 (± 13.5) 156.3 (± 6.7) 142.0† (± 11.0) 87.6‡ (± 10.5)
BB 53.0 (± 7.0) 39.4 (± 7.2) 35.8 (± 8.6) 39.7 (± 9.0)
SA 4.3 (± 0.7) 4.6 (± 0.4) 3.5 (± 0.8) 3.9 (± 0.7)

EP-CE 12.4 (± 1.4) 15.2 (± 2.8) 11.7 (± 2.4) 11.3 (± 1.8)
EP-OE 0.7 (± 0.5) 30.3∗ (± 14.6) 10.5† (± 5.4) 1.4 (± 0.5)
YM-AE 33.3 (± 2.7) 36.9 (± 2.9) 36.7 (± 3.1) 25.1 (± 2.4)

Anxiety-based
EP-TO 0.7 (± 0.5) 1.1 (± 0.4) 1.0 (± 0.5) 3.8 (± 1.9)

Cognitive-based
YM-PA 67.0 (± 5.1) 51.0∗ (± 2.6) 50.3 (± 3.3) 62.6 (± 3.0)
WM-Fin 20.1 (± 6.7) 21.1 (± 3.3) 22.6 (± 4.4) 24.5 (± 4.7)
WM-Avg 28.0 (± 4.8) 28.6 (± 3.1) 31.2 (± 3.5) 33.7 (± 3.7)
CPE-Fin 12.2 (± 4.1) 24.3 (± 5.2) 29.8 (± 8.1) 17.6 (± 4.9)
CPE-Avg 18.1 (± 3.5) 23.5 (± 4.2) 30.1 (± 6.2) 17.5 (± 3.0)
CPL-Fin 122.4 (± 37.3) 166.1 (± 35.0) 172.0 (± 29.9) 166.5 (± 29.5)
CPL-Avg 181.3 (± 29.2) 188.4 (± 24.2) 200.4 (± 23.7) 219.6 (± 22.0)
PR-Fin 13.4 (± 6.0) 12.3 (± 4.3) 7.7 (± 1.2) 18.7 (± 7.4)
PR-Avg 19.7 (± 5.8) 19.3 (± 2.6) 16.0 (± 2.0) 27.6 (± 6.4)

RME-FT4 1.0 (± 0.6) 2.1 (± 0.3) 1.5 (± 0.5) 0.4 (± 0.3)
RME-FT5 1.6 (± 0.6) 3.2∗ (± 0.6) 2.5 (± 0.6) 0.8 (± 0.4)
RME-T4 1.3 (± 0.4) 2.6∗ (± 0.2) 2.0 (± 0.3) 1.3 (± 0.1)
RME-T5 1.3 (± 0.4) 2.7∗ (± 0.3) 2.1 (± 0.4) 1.2 (± 0.2)
RML-FT4 17.9 (± 7.6) 32.0 (± 3.8) 21.6 (± 6.6) 10.4 (± 3.7)
RML-FT5 20.8 (± 7.1) 36.0 (± 5.6) 31.3 (± 6.9) 12.4 (± 3.3)
RML-T4 21.9 (± 4.1) 33.9∗ (± 2.6) 29.3 (± 4.9) 21.5 (± 2.0)
RML-T5 21.3 (± 4.4) 32.9∗ (± 2.8) 30.6 (± 4.9) 19.1 (± 2.1)
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7.3.2 Correlation Analysis

Table 7.2 portrays significant pairwise correlations (p < .05) observed between

behavioral measures from the comprehensive task battery. Marked cells include

both the correlation coefficient (r-value, top) and significance (p-value, bottom).

Widespread intra-task correlations exist within the RAWM task and, to a lesser

extent, within the Platform Recognition and Morris water maze tasks. Inter-task

correlations were found between sensorimotor and cognitive tasks: Open Field ac-

tivity and RAWM (all measures except RML-T4), Circular Platform errors, Y-maze

arm entries, and Elevated Plus maze closed-arm entries; and, String Agility and El-

evated Plus maze open-arm latency. These patterns underscore the interdependence

among sensory, motor, and cognitive processes, as well as the role of anxiety-related

components on behavior.

In addition, significant inter-task correlations were found between cognitive tasks:

(1) Y-maze and all RAWM measures (except between YM-AE and RME-T5); (2)

Morris water maze and Platform Recognition; (3) Morris water maze and RAWM

latencies (and, to a lesser extent, errors); and, (4) Circular Platform latency and

RAWM errors (and, to a lesser extent, latencies, as well). These observed correla-

tions between behavioral measures which span multiple tasks is suggestive of shared,

overlapping, or interdependent cognitive domains across tasks. For example, exten-

sive intercorrelation between component measures of the Morris water maze, Plat-

form Recognition, and RAWM tasks reflects the shared spatial memory dependency

of these behavioral paradigms.

Finally, patterns in pairwise correlations underscore the multifactorial character

of certain tasks. Significant correlation between the Elevated Plus maze closed-arm

entries and both Circular Platform measures, as well as between Elevated Plus maze
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open-arm entries and RAWM errors, suggests an anxiety/exploratory component

within both the Circular Platform and RAWM tasks.

7.3.3 Factor Analysis

A varimax-rotated principal component analysis of all behavioral measures from

the comprehensive task battery is shown in Table 7.3, with significant factor load-

ings (absolute value greater than 0.500) indicated. The eigenvalue results (i.e., >1

criterion) were consistent with scree plot (Cattell, 1966) identification of seven sig-

nificant factors. The primary factor (accounting for about 28% of overall variance)

was a cognitive-biased structure comprised of all RAWM measures, as well as the

Y-maze percent alternations, consistent with correlation analysis. The second factor

was comprised of Platform Recognition and Morris water maze measures, represent-

ing an object recognition/identification-related cognitive domain, distinct from the

working memory-associated primary factor. Factor III includes a combination of sen-

sorimotor (Balance Beam latency) and stimulus-avoidance measures (average Circu-

lar Platform latency and Elevated Plus maze closed-arm entries), and may reflect an

escape/avoidance behavioral component. Similarly, the fourth factor contains mea-

sures associated with escape or avoidance behavior (average Circular Platform errors

and Elevated Plus maze closed-arm entries), as well as an exploratory/activity mea-

sure (Open Field activity), which together may reflect escape/avoidance behaviors

distinct from Factor III. The fifth factor includes only a single behavioral measure,

Elevated Plus maze open-arm residency time, which is the only Elevated Plus maze

measure linked to anxiety; thus, Factor V represents an anxiety factor. Factor VI also

includes only a single measure, Elevated Plus maze open-arm entries, which may be

related to exploratory behavior, distinct from Factor V. The sixth factor is comprised

of a single sensorimotor measure, String Agility, which represents overall physical
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Table 7.3. Varimax-rotated factor analysis of comprehensive task battery measures
in the GRK5 study

Factor
Measure I II III IV V VI VII

RML-T5 0.877
RME-T5 0.862
RML-FT5 0.826
RME-FT4 0.820
RML-FT4 0.815
RME-FT5 0.779
YM-PA -0.665
RML-T4 0.663
RME-T4 0.629
PR-Fin 0.911
PR-Avg 0.882
WM-Fin 0.812
WM-Avg 0.810
CPL-Avg -0.743

BB 0.719
EP-CE 0.511 0.535

CPE-Avg 0.772
OF 0.768

EP-TO 0.883
EP-OE 0.757

SA -0.746

Variance 27.99% 15.61% 8.45% 9.11% 6.26% 5.74% 6.66%
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strength, coordination, and grip capacity. Interestingly, the segregation of measures

from the Elevated Plus maze task underscores the multifactorial character of this

behavioral task, which includes activity and escape/avoidance (anxiety-related).

Table 7.4. Classifier performance comparison using comprehensive task battery mea-
sures in the GRK5 study

Support
Evaluation Discriminant Analysis Decision Neural Vector

Groups Criterion Complete Step-Fwd Tree Network Machine

NT Accuracy NS 84% 74% 89% 74%
vs. Sensitivity NS 92% 75% 92% 83%
Tg Specificity NS 71% 71% 86% 57%
NT Accuracy NS 87% NS 67% 53%
vs. Sensitivity NS 100% NS 63% NS

NT-KO Specificity NS 71% NS 71% 57%
Tg Accuracy NS 81% 71% 52% 62%
vs. Sensitivity NS 67% 67% NS NS

Tg-KO Specificity NS 92% 75% 58% 75%
NT Accuracy NS 81% NS 56% NS
vs. Sensitivity NS 89% NS NS NS

Tg-KO Specificity NS 71% NS 71% NS
All four Accuracy 47% 56% 36% 39% 28%

7.3.4 Discriminant Analysis

Table 7.4 compares the performance of classifiers utilizing behavioral measures

from the comprehensive task battery, for distinguishing between pairs of groups, as

well as among the four groups of animals. The third and fourth columns of the

table display the results of discriminant analysis-based classifiers using the direct-

entry (complete) and stepwise-forward methods, respectively. Evaluation criteria

for classifier performance are provided only when the observed level strictly exceeds

expected values associated with random-chance assignment of individuals to groups

(i.e., 50% for two-group discriminability, 25% for four-group discriminability).
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Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

Although the direct-entry (complete) discriminant analysis failed to distinguish

between the NT and Tg groups, the stepwise-forward approach returned significant

discriminability (Wilks’s lambda = 0.191, p = .0003) between the groups. As indi-

cated in Table 7.4, the classifier exhibited 84% accuracy, with 92% sensitivity and

71% specificity, with respect to transgenicity. Five behavioral measures were selected

on the basis of variance contribution: SA, YM-PA, CPE-Avg, RME-T4, and RME-

T5. The emphasis on cognitive measures, particularly the RAWM working memory

T4 and T5 components, underscores the cognitive impairment of Tg mice, relative

to NT controls.

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

Direct-entry discriminant analysis was unable to distinguish between the NT

and NT-KO groups, however the variance-optimizing stepwise-forward approach per-

formed remarkably well (Wilks’s lambda = 0.317, p = .0044). Three predictor vari-

ables were selected for the model – OF, EP-TO, and RME-FT5 – which represent a

cross-section of sensorimotor, anxiety-related, and cognitive measures. Eighty-seven

percent of individuals were correctly identified by group, including all of the NT-KO

animals and 71% of the NT controls. This suggests that the absence of GRK5 expres-

sion in a nontransgenic animal produces a subtle, albeit discernable, characteristic

behavioral phenotype. Relative to NT mice, NT-KO animals showed decreased lo-

comotor activity (OF), less anxiety (greater EP-TO latency), and superior working

memory (fewer final-block RAWM trial T5 errors).

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

As shown in Table 7.4, the standard direct-entry approach did not successfully

distinguish between the two groups, although the stepwise-forward analysis returned

significant discriminability (Wilks’s lambda = 0.610, p = .0116) using only two be-
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havioral measures, BB and RME-T4. The classifier displayed 81% overall accuracy,

with 67% sensitivity and 92% specificity, with respect to the Tg-KO group. Hence,

the overall performance was largely driven by the classifier’s identification of the Tg

control group. Interestingly, a sensorimotor measure (balance beam latency) and a

robust cognitive measure (RAWM overall T4 errors), together, were found to provide

optimal discriminability, although (as shown in Table 7.1) these two measures, indi-

vidually, do not differ significantly between the groups. The Tg-KO mice displayed

better balance/coordination (higher BB) and better cognitive function (fewer overall

RAWM trial T4 errors), compared with Alzheimer’s transgenic-control animals.

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

The direct-entry discriminant analysis did not distinguish between the two groups,

although the stepwise-forward approach was successful (Wilks’s lambda = 0.199, p =

.0028). The classifier displayed 81% accuracy, with 89% sensitivity and 71% speci-

ficity, with respect to the Tg-KO group. Five behavioral measures (BB, EP-TO,

YM-PA, PR-Fin, and RML-FT4) were included in the model. As described earlier,

with reference to Table 7.1, these two groups do not differ significantly with respect

to any of these measures. Moreover, the classifier is likely exhibiting sensitivity

to a composite behavioral phenotype, which emerges only through sampling mul-

tiple sensorimotor, anxiety, and/or cognitive features (utilizing the comprehensive

task battery). Relative to nontransgenic-control animals, the Tg-KO mice exhibited

poorer balance/coordination, more anxiety, poorer overall mnemonic function (de-

creased YM-PA), but markedly superior object recognition/identification memory

(decreased PR-Fin latency). However, the RML-FT4 measure was slightly lower in

Tg-KO mice, suggesting better working memory function, relative to the nontrans-

genic group.
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All Four Groups

Statistically-significant discriminability among the four groups was returned by

the direct-entry discriminant analysis (Wilks’s lambda = 0.010, p = .0275), with

47% overall accuracy. Individuals of the Tg group were the most likely to be cor-

rectly identified (67%), while only 22% of the Tg-KO mice were detected. Similarly,

the stepwise-forward approach demonstrated significant and, moreover, superior dis-

criminability (Wilks’s lambda = 0.227, p = .0000). Only four behavioral measures

were retained by the model (OF, EP-TO, YM-PA, and RME-T4), which accurately

classified 56% of animals by group. The NT-KO mice were the most likely to be

correctly identified (75%), while only 29% of NT mice were recognized.

7.4 Results of Data Mining Analyses: Comprehensive Task Battery

A comparative summary of the performance of data mining-based classifiers uti-

lizing behavioral measures from the comprehensive task battery is provided in Table

7.4, for reference. The fifth through seventh columns of the table report the perfor-

mance evaluation (i.e., accuracy, sensitivity, and specificity) for each classifier, with

respect to discriminability between pairs of groups, as well as among all four groups.

7.4.1 Decision Tree Analysis

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

The decision tree identified a single behavioral measure, RME-T5, as providing

sufficient information bias to distinguish between NT and Tg mice. The result-

ing classifier correctly identified 74% of animals by group (Kappa = 0.45), with 75%

sensitivity and 71% specificity, with respect to transgenicity. Alzheimer’s transgenic-

control mice exhibited significant cognitive impairment (i.e., increased errors in over-

all RAWM trial T5), relative to nontransgenic-control animals, as indicated in Table
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7.1. This result underscores the primacy of the RAWM task for detecting cognitive

impairment and, specifically, overall measures of working memory.

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

Decision tree-based classifiers were unable to distinguish between nontransgenic

mice with the GRK5-wildtype and animals having the GRK5-knockout genotype.

As reported in Table 7.4, none of the behavioral measures of the comprehensive task

battery provided sufficient information bias to reliably discriminate between the two

groups. This suggests comparable behavioral performance between the two groups,

i.e., the absence of GRK5 expression in a nontransgenic mouse does not significantly

impact the overall behavioral phenotype of the mouse.

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

The RME-T5 and RME-FT4 measures were selected by the decision tree for their

information value in distinguishing between Alzheimer’s transgenic mice having the

GRK5-wildtype and animals with the GRK5-knockout genotype. The classifier gen-

erated by the decision tree exhibited 71% overall accuracy (Kappa = 0.42), 67%

sensitivity and 75% specificity, with respect to the GRK5-knockout group. Although

the classifier exhibited superior accuracy for identifying Tg mice, relative to Tg-KO

animals, the choice of two robust cognitive measures of RAWM working memory

(indeed, both final-block T4 errors and overall T5 errors) highlights the importance

of the RAWM task for evaluating cognitive impairment. Interestingly, although

these two groups differ significantly in only one of these two measures (RME-T5), as

shown in Table 7.1, both measures together provide remarkable discriminative po-

tential. Alzheimer’s transgenic-control mice (Tg) exhibit significant working memory

deficits, relative to transgenics which do not express GRK5. This results suggests

that expression of GRK5, superimposed against an Alzheimer’s transgenic back-
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ground, may ameliorate working memory dysfunction associated with the APPsw

genotype.

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

As shown in Table 7.4, individuals from the nontransgenic and transgenic-knockout

groups could not be distinguished using any combination of behavioral measures from

the comprehensive task battery by decision tree-based classifiers. No individual mea-

sure, or combination of measures, provided sufficient information bias to reliably

split the database into the two groups. These findings suggest that the absence of

GRK5 expression in an Alzheimer’s transgenic mouse may sufficiently mitigate the

behavioral manifestations of Alzheimer’s-like neuropathology, as to render these indi-

viduals comparable to nontransgenic animals, using the comprehensive task battery

assessment.

All Four Groups

Eight measures from the comprehensive task battery, representing a diverse sam-

pling of the mouse behavioral repertoire, were identified by the decision tree for dis-

tinguishing among the four groups of animals. These measures were: OF, RME-FT4,

RME-FT5, WM-Avg, EP-OE, YM-PA, BB, and RML-FT4. This cognitively-biased

subset of measures accurately identified 36% of all animals by group (Kappa = 0.14),

as indicated in Table 7.4.

7.4.2 Neural Network Analysis

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

The neural network-based classifier performed remarkably well, accurately iden-

tifying 89% of animals by group (Kappa = 0.77). The sensitivity of the classifier was

92% and the specificity was 86%, with respect to transgenicity. This level of perfor-
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mance underscores the relative ease of identifying impaired cognitive performance in

the Alzheimer’s transgenic animals, relative to the nontransgenic mice.

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

As shown in Table 7.4, only two-thirds of all nontransgenic animals were distin-

guishable on the basis of GRK5 genotype (Kappa = 0.34). Animals with the GRK5-

knockout genotype were more likely to be misclassified, relative to mice having the

GRK5-wildtype (63% sensitivity vs. 71% specificity). Although these two groups do

not differ significantly with respect to individual cognitive measures, nontransgenic

mice expressing GRK5 were significantly more active than were GRK5-knockout an-

imals, as measured by the Open Field task (i.e., NT-KO mice displayed significantly

fewer line-crossings in the open arena).

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

The performance of neural network-based classifiers for distinguishing between

Alzheimer’s transgenic mice on the basis of GRK5 expression was only slightly su-

perior to random-chance assignment (52% overall accuracy, Kappa = 0.03). Indeed,

detection of Tg-KO animals failed to reach criterion (50%).

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

The level of discriminability between nontransgenic animals and mice having both

genetic manipulations (Alzheimer’s transgenic with GRK5-knockout) was only 56%

overall (Kappa = 0.15), as reported in Table 7.4. This performance was largely driven

by accuracy in identifying the NT mice (specificity = 71%), because an insufficient

proportion of Tg-KO animals were identified by the classifier to reach criterion.

All Four Groups

Thirty-nine percent of all animals were correctly assigned to their respective

groups by the neural network-based classifier using behavioral measures from the

comprehensive task battery (Kappa = 0.17).
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7.4.3 Support Vector Machine Analysis

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

A support vector machine-based classifier trained using all the behavioral mea-

sures from the comprehensive task battery successfully distinguished between non-

transgenic and Alzheimer’s transgenic mice, with 74% overall accuracy (Kappa =

0.42). The sensitivity was 83% and specificity was 57%, as shown in Table 7.4.

The observed level of discriminability between these two groups is not surprising,

because Alzheimer’s transgenic mice differ significantly from nontransgenics in both

sensorimotor and cognitive measures. Compared with NT mice, Tg animals explore

the open-arms of the Y-maze more frequently, but exhibit poorer systematic search

of the Y-maze (relatively fewer arm-visit alternations; YM-PA). The Alzheimer’s

transgenic mice also display poorer working memory, relative to nontransgenics, as

indicated by higher error-scores (RME-T4, and both RME-T5 and RME-FT5) and

longer response-latencies (both RML-T4 and RML-T5) in the RAWM trials T4 and

T5.

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

The support vector machine-based classifier obtained only 53% overall accuracy

(Kappa = 0.07) in distinguishing between nontransgenic animals on the basis of

GRK5 expression. Classifier-based assignment of NT-KO mice was comparable to

random-chance performance, however.

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

As indicated in Table 7.7, sixty-two percent of Alzheimer’s transgenic mice were

correctly identified on the basis of GRK5-genotype. Although 75% of Tg animals ex-

pressing GRK5 were recognized, fewer than half of the mice lacking GRK5 expression

were successfully detected.

176



Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

Support vector machine-based classifiers failed to distinguish between NT and

Tg-KO animals using the behavioral measures from the comprehensive task battery.

Classifier performance never exceeded the accuracy expected by random assignment

of individuals to groups.

All Four Groups

As reported in Table 7.4, only 28% of all animals were accurately identified

by group by support vector machines (Kappa = 0.03). This level of performance

only slightly exceeds the accuracy expected by random assignment of individuals to

groups.

7.5 Results of Statistical Analyses: Interference Paradigm

7.5.1 Standard Behavioral Analysis

The behavioral performance of all four groups in each measure of the interference

paradigm (both error-scores and response-latencies) are shown in Figure 7.1, on the

next page, with group means and associated standard errors depicted for each mea-

sure. Based upon standard statistical tests (ANOVA, F-test), the Tg group differed

significantly from the NT group, denoted by an asterisk (∗), with respect to both

errors and latencies in the three-trial recall, retroactive interference, and delayed-

recall tasks (all p ≤ .05). No significant differences were found between the NT and

NT-KO groups, with respect to any of the behavioral measures in the interference

paradigm. Similarly, although the Tg and Tg-KO groups differed with respect to

the three-trial recall error-score (p = .075), this contrast did not meet the signifi-

cance criterion (p ≤ .05). Finally, NT and Tg-KO animals exhibit significant (p ≤

.05) groupwise differences in cognitive performance, as revealed by the retroactive
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Figure 7.1. Groupwise contrasts for all interference paradigm measures in the GRK5
study
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interference task (latencies, but not errors), and indicated with a pound-sign symbol

(#). This finding suggests that normal (i.e., comparable to nontransgenic animals)

cognitive performance was observed in Alzheimer’s transgenic animals which do not

express GRK5 in all tasks/measures except retroactive interference, wherein the Tg-

KO mice showed impaired context-switching from the interference-context (Pool B)

back to the original learning condition (Pool A), relative to nontransgenics. More-

over, it was the response-latency measure of the retroactive interference task which

demonstrated greater sensitivity to the Tg-KO behavioral phenotype.

7.5.2 Correlation Analysis

Table 7.5. Correlations between behavioral measures of the interference paradigm in
the GRK5 study

TT-L .72
.001

PI-E

PI-L .95
.000

RI-E .65 .68
.003 .001

RI-L .63 .75 .97
.004 .000 .000

DR-E .61 .73 .87 .85
.005 .000 .000 .000

DR-L .54 .77 .89 .93 .95
.017 .000 .000 .000 .000

TT-E TT-L PI-E PI-L RI-E RI-L DR-E

Significant (p < .05) correlations observed between pairs of measures, for all

groups, are indicated in Table 7.5. Marked cells in the table include both the corre-

lation coefficient (r-value, top) and significance (p-value, bottom). The abbreviations

for the four tasks of the mouse-based interference paradigm are: Three-trial recall,
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errors and latency (TT-E, TT-L); proactive interference, errors and latency (PI-E,

PI-L); retroactive interference, errors and latency (RI-E, RI-L); and, delayed-recall,

errors and latency (DR-E, DR-L).

There were positive correlations between the error-score measures of the three-

trial recall and both retroactive interference and delayed-recall tasks. A similar pat-

tern of association was observed among the corresponding latency measures. This is

consistent with acquisition of the initial learning component (Pool A) being predictive

of later performance in the same spatial environment (i.e., Pool A). The error-score

and response-latency measures of the proactive interference task were significantly

intercorrelated. However, neither measures from the proactive interference task was

significantly correlated with any measures from the other three tasks, suggesting in-

dependence of performance between the two learning contexts (Pool A vs. Pool B).

Significant correlations were found between corresponding error-score and response-

latency measures for the other three tasks, as well (e.g., three-trial recall errors and

latency), which underscores the comparability of these two indices of performance

within tasks of the mouse-based interference paradigm.

Additional intercorrelations across cognitive components, as well as between error

and latency measures, were detected. Both measures from the three-trial recall task

were significantly intercorrelated with both measures of retroactive interference, sug-

gesting consistent/stable acquisition and retention of the initial learning component

(Pool A), despite the influence of both a distractor task (Y-maze exposure) and the

interference task (Pool B exposure). Similarly, complete intercorrelation between all

measures of the retroactive interference and delayed-recall tasks suggests temporal

stability of learning. This permanence is further underscored by significant pairwise

intercorrelation among all measures of the three-trial recall and delayed-recall tasks.

180



7.5.3 Factor Analysis

Table 7.6. Varimax-rotated factor analysis of interference paradigm measures in the
GRK5 study

Factor
Measure I II

Retroactive Interference (Latency) 0.956
Delayed-Recall (Latency) 0.948
Retroactive Interference (Errors) 0.944
Delayed-Recall (Errors) 0.934
Three-Trial Recall (Latency) 0.855
Three-Trial Recall (Errors) 0.744
Proactive Interference (Errors) 0.992
Proactive Interference (Latency) 0.981

Variance 60.99% 24.61%

A varimax-rotated principal component analysis of the eight measures is shown

in Table 7.6. Significant (absolute value greater than 0.700) component loadings

are indicated for the two factors returned. Additionally, the calculated eigenvalue

results (i.e., >1 criterion) were in agreement with scree plot (Cattell, 1966) identifi-

cation of two significant factors. The primary factor (accounting for approximately

60% of overall variance) consisted of error-score and response-latency measures from

the Three-Trial Recall, Retroactive Interference, and Delayed-Recall tasks, and rep-

resents spatial learning and memory function associated with the initial learning

condition (Pool A). By contrast, the second factor (approximately 25% of variance)

includes only the Proactive Interference measures, and likely represents spatial learn-

ing and memory related to the interference condition (Pool B).
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Table 7.7. Classifier performance comparison using interference paradigm measures
in the GRK5 study

Evaluation Discriminant Analysis Decision Neural
Groups Dataset Criterion Complete Step-Fwd Tree Network SVM

Accuracy NS 74% 63% 68% 53%
Errors Sensitivity NS 67% 67% 75% 75%

Specificity NS 86% 57% 57% 14%
NT Accuracy NS 79% 68% 53% NS
vs. Latency Sensitivity NS 75% 67% 58% NS
Tg Specificity NS 86% 71% NS NS

Accuracy NS 74% 58% 63% 63%
Err+Lat Sensitivity NS 67% 58% 75% 67%

Specificity NS 86% 57% 57% 57%

Accuracy NS NS NS NS NS
Errors Sensitivity NS NS NS NS NS

Specificity NS NS NS NS NS
NT Accuracy NS NS NS NS NS
vs. Latency Sensitivity NS NS NS NS NS

NT-KO Specificity NS NS NS NS NS
Accuracy NS NS NS NS NS

Err+Lat Sensitivity NS NS NS NS NS
Specificity NS NS NS NS NS

Accuracy NS NS 73% NS NS
Errors Sensitivity NS NS 80% NS NS

Specificity NS NS 67% NS NS
Tg Accuracy NS NS NS NS NS
vs. Latency Sensitivity NS NS NS NS NS

Tg-KO Specificity NS NS NS NS NS
Accuracy NS NS 55% NS NS

Err+Lat Sensitivity NS NS NS NS NS
Specificity NS NS 58% NS NS

Accuracy NS 77% 53% 53% 53%
Errors Sensitivity NS 80% 60% NS 90%

Specificity NS 71% NS 58% NS
NT Accuracy NS 88% 88% 71% NS
vs. Latency Sensitivity NS 80% 100% 70% NS

Tg-KO Specificity NS 100% 71% 71% NS
Accuracy NS 88% 88% 65% NS

Err+Lat Sensitivity NS 90% 100% 60% NS
Specificity NS 86% 71% 71% NS

Errors Accuracy 30% 32% 35% 30% 27%
All four Latency Accuracy NS 46% 32% NS NS

Err+Lat Accuracy NS 32% 43% 30% NS
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7.5.4 Discriminant Analysis

A summary table comparing classifier performance is shown in Table 7.7. The

fourth and fifth columns of the table display the results of discriminant analysis-based

classifiers using the direct-entry (complete) and stepwise-forward methods, respec-

tively. Measures of classifier performance (i.e., accuracy, sensitivity, and specificity)

are depicted only when the observed level strictly exceeds expected values associated

with random-chance assignment of individuals to groups (i.e., 50% for two-group

discriminability, 25% for four-group discriminability).

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

A direct-entry discriminant analysis did not return significant discriminability be-

tween the two groups (Wilks’ lambda = 0.585, p = .0913) using only error-score data.

By contrast, a stepwise-forward analysis of error-scores was successful (Wilks lambda

= 0.643, p = .0069) with 74% overall accuracy (sensitivity = 67%, specificity = 86%),

as shown in Table 7.7, wherein only the delayed-recall error measure was retained by

the stepwise-forward model. Direct-entry discriminant analysis using only response-

latency data failed to distinguish between the two groups, although stepwise-forward

analysis returned significant discriminability (Wilks lambda = 0.677, p = .0111)

with 79% accuracy (sensitivity = 75%, specificity = 86%), retaining only the three-

trial recall latency measure as the predictor variable. When both error-scores and

response-latencies were included, only the stepwise-forward analysis successfully dis-

tinguished individuals by transgenicity (Wilks lambda = 0.643, p = .0069) with

74% accuracy (sensitivity = 67%, specificity = 86%), as depicted in Table 7.7. The

delayed-recall error-score was the only behavioral measure (of the eight provided)

to be retained by the stepwise-forward model. Hence, stepwise-forward, but not

direct-entry, discriminant analyses successfully distinguished between nontransgenic-
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control and transgenic-control mice, utilizing either the delayed-recall error-score or

the three-trial recall latency measure. Between these two measures, however, the

former was shown to be superior when all measures were available for selection. Ani-

mals in the Tg group exhibited higher (i.e., poorer) values for both of these measures,

relative to mice in the NT group.

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

Neither direct-entry nor stepwise-forward discriminant analyses showed signifi-

cant discriminability between the two groups, using either error-scores or response-

latencies, or both. The stepwise-forward analysis indicated that none of the can-

didate predictor variables met the criterion for model inclusion (alpha-to-enter =

0.15). Thus, removal of GRK5 expression had no effect on behavioral performance

in normal (nontransgenic) mice.

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

Both direct-entry and stepwise-forward discriminant analyses failed to distin-

guish between the two groups using error-scores, response-latencies, or both behav-

ioral measures. None of the candidate predictor variables met the statistical cri-

terion (alpha-to-enter = 0.15) to be added to the stepwise-forward model. Similar

to the results obtained for nontransgenic animals (GRK5-wildtype vs. knockout),

neither discriminant analysis-based classifier distinguished between GRK5-wildtype

and knockout genotype in Alzheimer’s transgenic mice. Hence, removal of GRK5

expression did not enhance the behavioral impairment of Tg mice.

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

The direct-entry discriminant analysis was unable to distinguish significantly be-

tween the two groups using error-scores and/or response-latencies. By contrast, the

stepwise-forward method returned significant groupwise discriminability for all three

dataset conditions. Using only error-scores, the stepwise-forward classifier retained
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the proactive interference and retroactive interference measures, and demonstrated

77% overall accuracy (Wilks’s lambda = 0.627, p = .0379) with 80% sensitivity

and 71% specificity. Similarly, when response-latencies were used, only the proac-

tive interference and retroactive interference measures were retained by the model,

exhibiting 88% accuracy (Wilks’s lambda = 0.606, p = .0299) with 80% sensitiv-

ity and 100% specificity; all nontransgenic animals were correctly identified by the

stepwise-forward classifier using latency data alone. When both error-scores and

response-latencies were provided, the stepwise-forward analysis retained the proac-

tive interference error-score and the retroactive interference latency measures, and

showed 88% accuracy (Wilks’s lambda = 0.549, p = .0151), 90% sensitivity and 86%

specificity. Hence, the NT and Tg-KO groups were more easily distinguishable than

NT vs. Tg, suggesting additional cognitive impairment, beyond the APP transgenic

effect, may be attributed to the absence of GRK5 expression.

All Four Groups

Direct-entry discriminant analysis reported significant discriminability among the

four groups (Wilks’ lambda = 0.515, p = .0475), using only error-score data. How-

ever, the overall classification accuracy was 30%. A stepwise-forward analysis also

returned significant discriminability (Wilks lambda = 0.675, p = .0043) with modest

32% overall accuracy, as shown in Table 7.7. Only the delayed-recall error mea-

sure was retained by the stepwise-forward model. By contrast, using only response-

latency data, only the stepwise-forward discriminant analysis significantly distin-

guished among the four groups (Wilks lambda = 0.681, p = .0049) with moderate

46% accuracy, as reported in Table 7.7. The only predictor variable included in the

stepwise-forward model was the three-trial recall latency measure. Similarly, when

both errors and latencies were provided, only the stepwise-forward approach returned

significant discriminability (Wilks lambda = 0.675, p = .0043) with 32% accuracy,
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as portrayed in Table 7.7. The delayed-recall error measure was the only predictor

variable retained by the model for distinguishing among the four groups. Hence,the

delayed-recall error measure was identified as the best discriminator among the four

groups of mice, although the three-trial recall latency measure also demonstrated

potential for distinguishing among the groups. It should be noted, however, that the

overall levels of accuracy observed (i.e., 30% to 46%) are only modestly superior to

the random-chance performance criterion for four-group discriminability (25%).

7.6 Results of Data Mining Analyses: Interference Paradigm

Table 7.7 compares the performance of classifiers based on advanced statistical

techniques (columns four and five) and data mining-based methods (columns six

through eight). Performance measures (i.e., accuracy, sensitivity, and specificity)

are reported only when the criterion for random-chance assignment (i.e., 50% for

two-group discriminability, 25% for four-group discriminability) is exceeded.

7.6.1 Decision Tree Analysis

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

Using only error-score data, the decision tree attempted to split the dataset using

three measures (delayed-recall, proactive interference, and three-trial recall), result-

ing in 63% correct classification of cases (Kappa = 0.23), as shown in Table 7.7. The

sensitivity was 67% and specificity was 57%, with respect to transgenicity. When

only response-latency data were provided, the decision tree-based classifier used two

measures (three-trial recall and proactive interference) to distinguish between the

two groups, resulting in 68% overall accuracy (Kappa = 0.36). For the latency-based

classification, the classifier sensitivity was 67% and specificity was 71%. Including

both error-scores and response-latencies resulted in a decision tree-based classifier
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with three measures (delayed-recall errors, proactive interference errors, and three-

trial recall errors) selected to distinguish between the two groups, and displaying 58%

correct classification of cases (Kappa = 0.15). The sensitivity was 58% and specificity

was 57%, as indicated in Table 7.7. These analyses suggest that measures from the

three-trial recall and proactive interference tasks most reliably distinguish animals

by transgenicity (Alzheimer’s transgenic vs. nontransgenic), and the delayed-recall

error measure also contributes to the discriminability. However, the level of discrim-

inability (i.e., 58% to 68%) observed was only slightly better than random-chance

assignment expectation for two-group classification (50%).

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

Decision tree-based classifiers were unable to distinguish between GRK5-wildtype

and knockout genotype nontransgenic animals using either error-score, response-

latency, or both sets of behavioral measures. None of the candidate predictor vari-

ables met the information gain criterion required by the decision trees for splitting

the dataset into groups.

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

Using only the error-score measures, decision tree-based classifiers were able to

distinguish between the two groups using only the delayed-recall measure, resulting

in 73% overall accuracy (Kappa = 0.46). The sensitivity was 80% and specificity was

67%, as indicated in Table 7.7. However, the classifier was unable to generate a deci-

sion tree to distinguish between the two groups using only response-latencies. When

provided with both error-scores and reponse-latencies, the decision tree-based classi-

fier selected two measures (delayed-recall errors and retroactive interference latency)

to distinguish between the two groups, resulting in 55% correct classification of cases

(Kappa = 0.08), as reported in Table 7.7. The classifier’s sensitivity was only 50%

(comparable to random-chance assignment) and specificity was 58%. Taken together,
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these results suggest the significant discriminability observed for errors+latencies is

driven by the error-score data, since: (1) Response-latency measures alone do not

provide discriminability, and (2) the level of discriminability (accuracy) was much

higher for error-scores alone, relative to errors+latencies combined.

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

The decision tree-based classifier was only modestly capable of distinguishing be-

tween the two groups using error-scores alone, displaying only 53% accuracy (Kappa

= 0.03) with 60% sensitivity, utilizing the proactive interference and retroactive in-

terference measures. By contrast, 88% accuracy (Kappa = 0.75) was achieved using

only response-latencies, wherein only the retroactive interference measure was se-

lected for its information-bias capacity. All of the Tg-KO animals were correctly

identified (100% sensitivity) using latency data alone. Similarly, when both error-

score and response-latency measures were available, the overall accuracy was 88%

(Kappa = 0.75), with 100% sensitivity and 71% specificity, using only the retroactive

interference response-latency measure to split the dataset. Hence, groupwise differ-

ences in a single behavioral measure (retroactive interference latency) are sufficient

to distinguish between NT and Tg-KO animals.

All Four Groups

The decision tree attempted to distinguish among the four groups using only

error-score data, and identified two behavioral measures (retroactive interference and

three-trial recall) which optimally classified individuals into their respective groups.

As shown in Table 7.7, 35% correct classification of cases (Kappa = 0.13) was ob-

served. When only response-latency data were provided, the decision tree accurately

distinguished 32% of the individual animals (Kappa = 0.07) using all four latency

measures. None of the nontransgenic-control (NT) animals were correctly identi-

fied using only error-score or response-latency data, however. Providing the decision
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tree with both error-score and response-latency data for the four groups resulted in

selection of four measures (retroactive interference errors, three-trial recall errors,

delayed-recall errors, and retroactive interference latency), and overall accuracy of

43% (Kappa = 0.24), as indicated in Table 7.7. Hence, discriminability among groups

by decision tree-based classifiers appears significant statistically, but not appreciably

above random-chance levels (i.e., 25%).

7.6.2 Neural Network Analysis

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

When either error-scores or response-latencies were used, the optimal architecture

of the neural network-based classifier consisted of four input-layer computing units

(the behavioral measures), four hidden-layer units, and two output-layer units (the

two groups). For errors-only, the classifier showed 68% overall accuracy (Kappa

= 0.32), with 75% sensitivity and 57% specificity, with respect to transgenicity, as

indicated in Table 7.7. Using only latency data, the overall accuracy was 53% (Kappa

= 0.01), sensitivity was 58% and specificity was 43%. Hence, error-scores distinguish

between nontransgenic and Alzheimer’s transgenic animals more accurately than

do response-latencies; three out of four transgenic mice were correctly identified.

Using both errors and latencies, the optimal neural network architecture included

eight input-layer computing elements (the behavioral measures), four hidden-layer

units, and two output-layer units (the two groups). The resulting classifier correctly

identified 63% of cases (animals) by group (Kappa = 0.23). The sensitivity was 75%

and specificity was 57%. The inclusion of latency measures with the error-score data,

therefore, undermined overall discriminability between the groups.
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Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

None of the neural network-based classifiers successfully distinguished between

GRK5-wildtype and knockout genotype in nontransgenic mice using either error-

scores, response-latencies, or both. The resulting neural networks did not reliably

classify individuals by group, based on results from multiple program executions.

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

Neural network-based classifiers trained using error-scores, response-latencies, or

both, failed to distinguish reliably between GRK5-wildtype and knockout genotype,

superimposed on an Alzheimer’s transgenic mouse background. Indeed, significant

classifier performance instability was observed across repreated program runs.

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

The neural network showed only marginal performance, relative to random-

chance assignment, with only 53% of animals correctly identified (Kappa = 0.07)

using only error-score measures. Indeed, only 58% of nontransgenics were correctly

identified (specificity), while the sensitivity was nonsignificant. Latency measures

alone, by contrast, accurately distinguished 71% of the animals by group (Kappa

= 0.41), with 70% sensitivity and 71% specificity. When both error-scores and

response-latencies were provided, however, the performance declined to 65% accu-

racy (Kappa = 0.30), with only 60% sensitivity and 71% specificity. These results

suggest that response-latencies drive discriminability between the two groups, with

respect to neural network-based classifiers.

All Four Groups

Using only error-score data, the optimal neural network-based classifier consisted

of four input-layer computing units (the behavioral measures), three hidden-layer

units, and four output-layer units (the four groups). The classifier demonstrated

30% overall accuracy (Kappa = 0.05), as reported in Table 7.7, although none of
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the control animals (NT or Tg) were correctly identified. Classifiers trained using

only response-latency data did not successfully distinguish among the four groups.

The optimal classifier utilizing both error-scores and response-latencies, however,

was comprised of eight input-layer computing elements (the behavioral measures),

three hidden-layer units, and four output-layer units (the four groups), and correctly

identified 30% of cases (animals) by group (Kappa = 0.05). Interestingly, none of

the nontransgenic animals (NT and NT-KO) were correctly identified. Hence, the

inclusion of latency measures with error measures neither improved nor compromised

overall discriminability among the four groups, relative to exclusive use of error-

scores as predictor variables. Moreover, the observed discriminability among the

four groups (30%) was only slightly better than classification performance expected

by random-assignment (25%).

7.6.3 Support Vector Machine Analysis

Nontransgenic-Control (NT) vs. Transgenic-Control (Tg) Groups

The support vector machine-based classifier obtained only 53% overall accuracy

(Kappa = -0.12) using only error-score measures, with 75% sensitivity and 14% speci-

ficity, as shown in Table 7.7. Most animals were classified as Tg, regardless of actual

genotype. By contrast, the support vector machine was unable to distinguish be-

tween groups solely on the basis of response-latency measures; all NT animals were

misclassified as transgenic. By including both error-scores and response-latencies,

however, the classifier demonstrated 63% overall accuracy (Kappa = 0.23), as indi-

cated in Table 7.7. The sensitivity was 67% and specificity was 57%.

Nontransgenic-Control (NT) vs. Nontransgenic-Knockout (NT-KO) Groups

Support vector machine-based classifiers were unable to distinguish between GRK5-

wildtype and knockout genotype nontransgenic animals using behavioral error-scores,
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response-latencies, or both. Classifier performance never exceeded the accuracy ex-

pected by random assignment of individuals to groups (i.e., 50%).

Transgenic-Control (Tg) vs. Transgenic-Knockout (Tg-KO) Groups

Alzheimer’s transgenic animals, with or without the GRK5-knockout genotype,

were not distinguishable by support vector machine-based classifiers using either

error-scores, response-latencies, or both. The performance accuracy never exceeded

50%, the expected value based on random assignment of individuals.

Nontransgenic-Control (NT) vs. Transgenic-Knockout (Tg-KO) Groups

Only the support vector machine-based classifier trained using error-score mea-

sures alone was able to distinguish between these two groups, and performed only

slightly better than random-chance assignment, with 53% accuracy (Kappa = -0.12).

Indeed, although 90% of the Tg-KO animals were correctly identified (sensitivity),

all of the NT animals were incorrectly identified as Tg-KO. Hence, this classifier

performed similarly to the NT vs. Tg classifier, with respect to discriminability and

assignment profile.

All Four Groups

Using only error-scores for training, the classifier correctly identified 27% of all

animals by group (Kappa = 0.001), as reported in Table 7.7. Transgenic-control

(Tg) mice were the most likely to be correctly identified (sensitivity = 67%), how-

ever none of the nontransgenic-control (NT) or transgenic-knockout (Tg-KO) were

recognized by the classifier. By contrast, the classifier was unable to distinguish

among the four groups using only response-latency data. When both error-scores

and response-latencies were used for training the classifier, the overall discriminabil-

ity among groups was not significant (i.e., less than expected level attributed to

random assignment). Hence, the inclusion of response-latency data undermined the

modest potential of error-score measures for distinguishing among the mice by group.
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Reminiscent of the four-group classification performance of decision trees and neural

networks, the observed discriminability was only marginally superior to random-

chance assignment (using error-scores alone).

7.7 Discussion

The cognitive deficits noted by Suo et al. (2007) in aged nontransgenic GRK5-

knockout mice were confined to specific domains. Indeed, basic mnemonic function,

reference memory and spatial reference learning, as well as object identification abil-

ity were comparable to age-matched GRK5-wildtype animals (Suo et al., 2007). At

17 to 19 months of age, no deficits were observed in the Y-maze (percent alterna-

tions), Morris water maze (both acquisition and retention), circular platform, and

platform recognition tasks (Suo et al., 2007) between GRK5-wildtype and knockout

mice. However, short-term (working) memory impairment was observed in GRK5-

knockout animals (i.e., increased RAWM T4 and T5 errors), relative to wildtype

(Suo et al., 2007), based on one-way ANOVA across days.

In the present study, a different group of GRK5-knockout mice was investigated,

along with combined GRK5-knockout and Tg2576 (APP) mice. The purpose was

to determine if any greater cognitive impairment was evident in the combined-

genotype mice, relative to either GRK5-knockout or Tg2576 alone. All animals

completed both the comprehensive behavioral task battery and the novel mouse-

based interference paradigm. As discussed earlier, neurobehavioral investigations

of group-differences (e.g., transgenicity, therapeutic efficacy) typically utilize a rel-

atively small subset of multivariate statistical approaches. Moreover, analysis of

variance (ANOVA, F-test) and/or regression are frequently the only methods con-

sidered, while more-appropriate techniques may be discounted (or, indeed, ignored),

despite the widespread availability of powerful computing software and reference doc-
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umentation. For this reason, the present study utilized both standard and advanced

statistical methods for analyzing the behavioral measures obtained from both behav-

ioral assessment regimens (i.e., comprehensive task battery, mouse-based interference

paradigm). In addition to statistical methodologies, data mining-based approaches

were also utilized for determining groupwise discriminability, both between pairs of

groups and among all groups of mice.

Standard, ANOVA-based groupwise comparisons were performed using all mea-

sures of the comprehensive task battery, to identify significant pairwise differences

in behavioral measures. Significant differences between the NT and Tg, NT and

NT-KO, and Tg and Tg-KO groups are indicated, as well. Nontransgenic-control

and Alzheimer’s transgenic-control animals were found to differ in both sensorimo-

tor (EP-OE) and cognitive measures (YM-PA, RAWM overall T4 and T5 errors and

latencies, and RAWM final-block T5 errors). The primacy of RAWM measures un-

derscores the importance of working memory assessment for identifying Alzheimer’s-

associated cognitive impairment, as well as the utility of the RAWM task for behav-

ioral phenotyping in mice. Only two significant differences were found between the

Tg and Tg-KO animals (both sensorimotor, OF and EP-OE), suggesting the removal

of GRK5 expression does not further exacerbate cognitive impairment observed in

Alzheimer’s transgenic animals. Similarly, nontransgenic animals expressing GRK5

do not differ significantly from GRK5-knockout mice with respect to any cognitive

measure, although these two groups differ in Open Field activity. Hence, on the

basis of standard statistical methods, we may conclude that GRK5 does not signif-

icantly impact cognitive performance in mice, regardless of Alzheimer’s transgenic

background. However, no significant differences were found for any of the behavioral

measures between the NT and Tg-KO groups of mice. Taken together with the NT

vs. Tg contrast, this finding suggests that the absence of GRK5 expression may, in
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fact, ameliorate cognitive impairment normally observed in Alzheimer’s transgenic

animals.

The correlation analysis results were consistent with prior studies (e.g., Leighty,

et al., 2004; Caffeine Administration in Nontransgenic Mice study, this disserta-

tion) involving behavioral assessment in mice using the comprehensive task battery,

wherein widespread significant correlations are found among cognitive tasks (specifi-

cally, Platform Recognition, Morris water maze, and RAWM) and, to a lesser extent,

between sensorimotor and cognitive tasks (e.g., Open Field activity and RAWM).

Additionally, the multifactorial nature of certain tasks (e.g., Elevated Plus maze,

Y-maze) was revealed through segregation of component measure correlations, such

as between exploratory/activity elements of the Elevated Plus maze and measures of

general locomotor function (EP-CE / OF) or systematic search capacity (EP-OE /

YM-PA). The aggregation of cognitive-based performance measures across tasks was

revealed through exploratory factor analysis, wherein the primary factor, represent-

ing general mnemonic function, was comprised of all RAWM measures, as well as

Y-maze percent alternations, while a separate factor was comprised of both Platform

Recognition and Morris water maze task measures. Segregation of task components,

as well, was found through factor analysis (e.g., the three Elevated Plus measures

load on separate factors).

Also utilizing data from the comprehensive task battery, discriminant analysis

(both direct-entry and stepwise-forward) was used to construct linear classifiers for

distinguishing individuals between groups, as well as among all four groups. Sig-

nificant discriminability among the groups was obtained using stepwise-forward dis-

criminant analysis, although the standard direct-entry approach was unsuccessful.

These findings were consistent with earlier studies, wherein stepwise-forward analy-

ses achieve superior discriminability relative to the standard direct-entry (complete)
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approach (e.g., Arendash and King, 2002; Leighty et al., 2004). Optimal discrim-

inability was observed between the nontransgenic animal groups on the basis of

GRK5 expression, in which 87% of mice were correctly identified using only three of

the behavioral measures (OF, EP-TO, and RME-FT5), representing a combination

of sensorimotor, anxiety, and cognitive components of behavior. In addition, the

stepwise-forward analysis demonstrated the highest overall discriminability among

the four groups of all classifiers examined, correctly identifying 56% of individuals,

yet requiring only four of the comprehensive task battery measures. The primacy

of cognitive measures from the RAWM task, emphasized by both standard ANOVA

and advanced statistical methods, further underscores the importance of working

memory evaluation in behavioral phenotyping and classification. Taken together,

these results demonstrate the remarkable capacity of stepwise-forward discriminant

analysis for identifying groupwise differences, often using combinations of predictor

variables which may not appear meaningful or coherent (to an experienced animal

behaviorist, for example). Although an iterative search through a relatively large

array of empirical measures may be acceptable for exploratory data analysis, this

is not necessarily appropriate when prior experience (or other guidance) exists for

identifying candidate predictor variables. Indeed, the informed selection of individ-

ual behavioral measures (e.g., only RAWM error-scores) followed by the application

of standard statistics, including ANOVA, is a common protocol for neurobehavioral

research, particularly when reliable measures for specific syndromes are known in

advance (e.g., use of RAWM trials T4 and T5 to assess working memory impairment

associated with Alzheimer’s-like neuropathology).

The data mining-based classifiers exhibited diverse, idiosyncratic behavior across

both groups and methodologies, in contrast to the relatively consistent performance

of the stepwise-forward analyses. Indeed, the only consistent result across all data
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mining techniques was the discriminability between the NT and Tg groups. Decision

trees exhibited the poorest performance in terms of pairwise group discriminabil-

ity, only distinguishing between two pairs of groups (NT vs. Tg, Tg vs. Tg-KO),

while neural networks demonstrated the best overall performance among the data

mining techniques (for both two-way and four-way classification). In fact, the neu-

ral network-based classifier outperformed the stepwise-forward analysis for distin-

guishing between NT and Tg animals (89% vs. 84%). Neural networks, however,

performed only slightly better than random-chance level with respect to the Tg vs.

Tg-KO and NT vs. Tg-KO comparisons. The support vector machine-based classi-

fiers showed the poorest four-way discriminability of all classifiers examined (28%),

relative to the 25% expected through random assignment of individuals to groups.

Measures from the RAWM were preferentially selected by the decision trees, under-

scoring the diagnostic utility and information richness of this cognitive assessment

task. Hence, despite the availability of diverse behavioral measures from the com-

prehensive task battery, data mining-based approaches were generally weaker than

advanced statistical methods, with respect to groupwise discriminability involving

two genetic manipulations (i.e., APP, GRK5) in mice.

In contrast to the comprehensive task battery, the mouse-based interference

paradigm consists only of cognitive-based behavioral measures. Both error-scores

and response-latencies are reported for all tasks (three-trial recall, proactive inter-

ference, retroactive interference, and delayed-recall). Standard statistical analyses

(ANOVA) indicated significant (p < .05) differences between the Tg and NT groups

in the three-trial recall, retroactive interference, and delayed-recall measures, with

respect to both errors and latencies. All three of these measures reflect acquisi-

tion and retention of the initial learning task (Pool A), by contrast with the proac-

tive interference task (Pool B) which represents a distinct, albeit cognitively-related
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(spatial working memory), learning condition. This context-sensitivity effect was

underscored by patterns of correlation and factor component loadings observed in

subsequent analyses of the interference paradigm measures. Neither nontransgenics

nor Alzheimer’s transgenic mice could be distinguished on the basis of GRK5 ex-

pression (i.e., NT vs. NT-KO, Tg vs. Tg-KO), using any of the tasks/measures of

the interference paradigm. Furthermore, there were no significant groupwise differ-

ences observed in either error-scores or response-latencies in the proactive interfer-

ence task. Indeed, the comparatively higher scores in the proactive interference task

(indicative of poorer task performance, relative to the other tasks) exhibited by all

groups underscores the difficulty of switching between Pool A- and Pool B-learning

experienced by all animals tested. Additionally, the Tg-KO mice only differed sig-

nificantly from NT mice with respect to retroactive interference response-latency,

which involves context-switching between the interference-condition (Pool B) and the

original learning condition (Pool A). Hence, generally comparable cognitive perfor-

mance was displayed by NT and Tg-KO animals, consistent with standard statistical

analysis (ANOVA), but contrary to advanced statistical examination (discriminant

function) of behavioral measures from the comprehensive task battery wherein a clas-

sifier model used sensorimotor and cognitive measures to reliably distinguish between

these two groups.

The correlation analysis of behavioral measures from the interference paradigm

revealed significant intercorrelation among both error and latency measures of the

three-trial recall, retroactive interference, and delayed-recall tasks, reminiscent of

correlation patterns observed both within and between cognitive-based tasks of the

comprehensive task battery (e.g., Leighty et al., 2004). In addition, corresponding

error and latency measures for each task were also strongly correlated, underscoring

the comparability of these cognitive performance indices. Neither of the proactive
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interference measures was significantly correlated with any other behavioral measure,

which suggests independence between learning occurring within proactive interfer-

ence and the other measures evaluated (from Pool A). Indeed, the two significant

factors returned by exploratory factor analysis clearly segregated measures associated

with Pool A (Factor I; three-trial recall, retroactive interference, and delayed-recall)

from the measures associated with Pool B (Factor II; proactive interference).

The results of the discriminant analyses of measures from the cognitive inter-

ference paradigm were generally consistent with earlier studies, wherein stepwise-

forward analyses achieve superior discriminability relative to the standard direct-

entry (complete) approach (e.g., Arendash and King, 2002; Leighty et al., 2004). In-

deed, the only successful “statistical” classifier utilized stepwise-forward discriminant

analysis (for both Tg vs. NT, and NT vs. Tg-KO, discriminability using error-scores

and/or response-latency data). Alzheimer’s transgenic animals were not distinguish-

able with respect to GRK5 expression, nor were NT mice significantly distinguishable

from NT-KO animals (consistent with Suo et al., 2007). Moreover, comparatively

superior discriminability between the NT and Tg-KO groups was demonstrated us-

ing the two interference-related measures (proactive and retroactive), while the NT

vs. Tg contrast emphasized the delayed-recall error score. Hence, the differences in

cognitive performance which distinguish NT and Tg-KO individuals differ from those

which distinguish NT and Tg individuals. Indeed, these results would be predictable

from the performance of mice, as depicted in the standard bar-graph representation

(Figure 7.1).

As portrayed in Table 7.7 for the interference task, both the neural network-

and support vector machine-based classifiers were inferior to advanced statistical

(stepwise-forward discriminant analysis) methods and, moreover, exhibited similarly

idiosyncratic performance to the analyses reported earlier for the comprehensive task
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battery. The decision tree, however, was the only classifier examined which was capa-

ble of distinguishing between Tg and Tg-KO mice (using error-score data), utilizing

the delayed-recall measure. In addition, the decision tree was comparable to stepwise-

forward discriminant analysis for distinguishing between NT and Tg-KO animals,

using response-latency data (with or without error-score data). The retroactive in-

terference latency was shown to be the best predictor variable for group membership,

consistent with the findings for NT vs. Tg-KO contrast using stepwise-forward dis-

criminant analysis discussed earlier. The performance profiles of the neural networks

and support vector machines are unsatisfactory, relative to the decision trees, and in-

terpretation is further complicated by marginal performance (e.g., often only slightly

above random-chance assignment levels), as well as ubiquitous nonsignificant sensi-

tivity and/or specificity.

The goals of this study were to examine the effectiveness of a novel interference-

based paradigm for cognitive assessment in mice, through comparison with an es-

tablished comprehensive behavioral task battery, and to utilize advanced statistical

and computational (data mining-based) analytic techniques along with conventional

(ANOVA-based statistics) approaches for neurobehavioral research. Two genotypic

components (Alzheimer’s transgenicity and GRK5) were manipulated, and the con-

sequential behavioral (cognitive) manifestations were evaluated and analyzed. A

significant main effect for the Alzheimer’s transgenic genotype (APPsw) was iden-

tified using the comprehensive task battery, through standard statistical techniques

for individual cognitive measures, as well as by advanced statistical and data mining-

based classifiers, consistent with prior findings (e.g., Leighty et al., 2004; Leighty et

al., 2008). Similarly, behavioral measures from the interference paradigm successfully

distinguished between NT and Tg mice using standard statistics, advanced statistics

and data mining techniques.
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The effect of GRK5 expression against a nontransgenic (NT) background was re-

vealed with the comprehensive task battery, wherein a single sensorimotor measure

(Open Field activity) was identified by standard statistics, and both sensorimotor and

cognitive measures were returned by stepwise-forward discriminant analysis. By con-

trast, none of the classifiers examined were able to distinguish between NT and NT-

KO individuals using behavioral measures from the interference paradigm. The influ-

ence of the GRK5 genotype against an Alzheimer’s transgenic background (APPsw)

was indicated by two sensorimotor measures (Open Field activity, Elevated Plus maze

open-arm entries) through standard statistics, as well as by stepwise-forward discrim-

inant analysis and decision trees using behavioral data from the comprehensive task

battery. Using measures from the interference paradigm, the Tg and Tg-KO groups

were largely indistinguishable through standard statistics and decision tree-based

classifiers (except using error-score data) only. Additionally, the NT and Tg-KO

groups were distinguishable using standard statistics (only for retroactive interfer-

ence response-latency in the interference paradigm), as well as by stepwise-forward

discriminant analyses of both the comprehensive task battery (requiring sensorimo-

tor, anxiety, and cognitive-based measures) and interference paradigm measures.

This study also demonstrated that the effectiveness of group classification was de-

pendent upon whether the comprehensive task battery or the interference paradigm

was used as the source for the behavioral measures. By comparing Tables 7.4 and 7.7,

for example, we find that behavioral measures from the comprehensive task battery

provided superior discriminability by all classifiers (both advanced statistical and

data mining-based), relative to interference paradigm-based measures, for distin-

guishing between nontransgenic-control and Alzheimer’s transgenic-control animals,

as well as among the four groups of mice. This may be attributable to the broader

sampling from the behavioral repertoire (sensorimotor, anxiety, and cognitive com-
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ponents) offered by the comprehensive battery, relative to the cognitive-based inter-

ference paradigm. As reported earlier, successful groupwise discriminability is often

based upon a combination of sensorimotor-based, anxiety-based, and/or cognitive-

based measures. Indeed, discriminant analysis, neural networks, and support vector

machines were able to distinguish between the NT and NT-KO groups, as well as

between the Tg and Tg-KO groups, using behavioral measures from the comprehen-

sive task battery; however, none of these three types of classifiers succeeded using

interference paradigm measures instead. Here again, the availability of a large num-

ber of candidate predictor variables increased the likelihood of distinguishing between

groups. By contrast, interference paradigm measures (specifically, response-latencies)

provided superior discriminability between the NT and Tg-KO groups, for all classi-

fiers except support vector machines (which showed comparable performance). The

choice of behavioral metrics (errors vs. latencies) may also determine the optimal

classifier model. For detecting the effect of GRK5 expression on an Alzheimer’s

transgenic background (i.e., Tg vs. Tg-KO), for instance, a decision tree provided

with behavioral measures from the comprehensive task battery will outperform a

decision tree using only interference paradigm-based response-latency measures, but

underperform a decision tree using only error-score interference measures. Finally,

neither decision tree-based classifier (using measures from the comprehensive battery

or the interference paradigm) reliably distinguished between nontransgenic mice on

the basis of GRK5 expression (i.e., NT vs. NT-KO).

These results have several important implications for transgenic mouse models of

Alzheimer’s disease, as well as behavioral evaluation and analytic methodology:

First, the APP genotype undoubtedly exerts a very powerful influence on the cogni-

tive phenotype of mice within the mixed background of our colony. Indeed, as previ-

ously discussed, even a single behavioral measure (e.g., RAWM T4 errors, delayed-

202



recall errors) may be sufficient to distinguish between nontransgenic and Alzheimer’s

transgenic animals.

Second, that classifiers exhibit differential sensitivity to behavioral features. In some

cases, error-scores are better discriminators (e.g., Tg vs. NT using neural networks),

while in other cases, response-latencies are more effective (e.g., Tg vs. NT using

stepwise-forward discriminant analysis). For this reason, it is extremely important

for practitioners to examine and compare alternative classifier designs, to evaluate

applicability for a specific research problem. Moreover, the importance of diverse

sampling across the behavioral repertoire (sensorimotor-based, anxiety-based, and

cognitive-based tasks/measures) cannot be overstated, to maximize the chances of

detecting groupwise differences otherwise overlooked.

Third, that additional response data may not necessarily improve groupwise dis-

criminability, nor interpretability of analytic results. For behavioral measures of the

interference paradigm, the availability of both error-scores and response-latencies

did not necessarily improve the performance of trained classifiers, compared to using

either of the two response measures alone. In addition, decision tree performance

declines, support vector machines improve slightly, and stepwise-forward discrimi-

nant analyses often remain the same when latency measures are included, relative to

using error-scores alone. And,

Finally, although the comprehensive task battery provides a richer sampling of the

mouse behavioral repertoire, thus generally improving diagnostic effectiveness (e.g.,

distinguishing between treatment groups), the mouse-based interference paradigm

developed and refined in this Study represents a powerful new instrument for cogni-

tive assessment in Alzheimer’s disease research with transgenic animals.
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CHAPTER 8

INTERFERENCE TASK-BASED THERAPEUTIC EVALUATION OF
GM-CSF

8.1 Introduction

Granulocyte macrophage colony-stimulating factor (GM-CSF) is an inflammato-

genic cytokine component of the immune-inflammatory cascade, which promotes pro-

duction of both granulocytes (eosinophils, basophils, and neutrophils) and monocytes

(which, in turn, mature into GM-CSF-secreting macrophages) by stem cells. In hu-

mans, GM-CSF is used to stimulate white blood cell production following chemother-

apy. However, when administered to Alzheimer’s transgenic mice in conjunction with

IL-4, as an adjuvant in beta-amyloid immunotherapy, fewer cortical Congophilic

plaques and reduced plaque-associated microgliosis were reported (DaSilva et al.,

2006). Coadministration of GM-CSF and IL-r promotes an attenuated Th2 response

to beta-amyloid immunization, including antibodies which, in turn, reduce plaque

burden (DaSilva et al., 2006). GM-CSF levels, measured in brain slice cultures, are

positively correlated with beta-amyloid (both Aβ40 and Aβ42) in Alzheimer’s trans-

genic mice (Patel et al., 2005), underscoring the role of cytokines in the neuroin-

flammatory response to beta-amyloid. Successful attenuation of plaque-associated

structural and functional impairment may constitute a therapeutic role for GM-CSF,

albeit indirect, to preserve or restore cognitive function in AD.

The purpose of this study was to investigate the cognitive effects of GM-CSF

administration in both nontransgenic and Alzheimer’s transgenic mice using a novel,
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mouse-based interference learning paradigm. This behavioral paradigm was adapted

from a semantic interference testing protocol (Loewenstein et al., 2004) for AD di-

agnosis and screening in clinical settings, by substituting rodent-appropriate test

conditions (RAWM apparatus, visual cues) and spatial memory domain in place of

the original protocol’s verbal stimuli and semantic components, as well as including

both error-score and response-latency measures from each behavioral task. Details

of the behavioral tasks in the original protocol were presented earlier (refer to the

“Interference Testing in Humans: A Comparison of Statistical and Data Mining

Methods” Study, Chapter 6). The mouse-based behavioral paradigm consists of four

interrelated tasks, as described in the previous chapter (“The Interference Task: A

Novel Assessment Paradigm”, Chapter 7): Three-trial recall, proactive interference,

retroactive interference, and delayed-recall. Behavioral measures (error-scores and/or

response-latencies) from one or more of these tasks have successfully distinguished be-

tween nontransgenic and Alzheimer’s transgenic mice, as well as between Alzheimer’s

transgenic animals with an additional genetic modification (GRK5-knockout) and

transgenics having the GRK5-wildtype genotype (Chapter 7). The applicability of

the interference paradigm for evaluating GM-CSF therapeutic benefits was exam-

ined using both advanced statistical (discriminant analyses) and data mining-based

methods (decision trees, neural networks, support vector machines), and discussed

in light of standard statistical (analysis of variance; ANOVA) findings by Arendash

et al. (unpublished data).

8.2 Materials and Methods

The subjects consisted of age-matched mice generated from a cross between het-

erozygous APPsw (APP mutation K670N and M671L) and heterozygous PS1 (Tg

line 6.2) mice, from which 16 Alzheimer’s transgenic (APPsw) and 16 nontransgenic
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(NT) mice were selected. At one-year of age, these 32 animals were cognitively pre-

tested for eight days using the RAWM working memory task to assess cognitive per-

formance. The APPsw mice were then separated into two groups by random assign-

ment, balanced for cognitive performance and blood beta-amyloid levels: Alzheimer’s

transgenic-control (Tg; N=8) and transgenic-treatment (Tg+GMCSF; N=8). Simi-

larly, the NT mice were randomly assigned to either of two groups, balanced for cog-

nitive performance: Nontransgenic-control (NT; N=8) and nontransgenic-treatment

(NT+GMCSF; N=8). After two weeks, the mice began receiving daily subcuta-

neous injections of either GMCSF (5 mcg) (NT+GMCSF and Tg+GMCSF groups)

or plain vehicle (NT and Tg groups) for ten days. All animals were then cognitively

post-tested for four days using the RAWM, followed by two days without testing,

and concluded by the interference paradigm for four days. Daily injections were

continued throughout the cognitive evaluation period.

Behavioral measures of all animals from the final two-day block of the four-day

RAWM post-test (i.e., both errors and latencies for working memory, trials T4 and

T5), as well as from the final two-day block of the four-day interference paradigm

(i.e., both errors and latencies for three-trial recall, proactive interference, retroactive

interference, and delayed-recall), were compiled for subsequent analyses. Standard

statistical methods (ANOVA, F-test) were used to identify group differences in the

final-block post-test RAWM dataset, as well as the final-block interference dataset.

In addition, performance measures from the final-block of the interference paradigm

were used to generate additional datasets for further analysis, as described in the

Mouse Interference Paradigm (in Section 7.2) of the “The Interference Task: A Novel

Assessment Paradigm” Study (Chapter 7). The eight cognitive measures, consisting

of mean error-score and response-latency from each of the four tasks of the interfer-

ence paradigm, were grouped into three separate datasets (errors-only, latencies-only,
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both errors and latencies) for analysis using both advanced statistical (correlation

analysis, factor analysis, and discriminant analysis) and data mining-based methods

(decision trees, neural networks, and support vector machines). Complete specifi-

cations of the computing hardware and software utilized in the analyses, including

program parameter settings, are provided in the General Analytic Protocol of Section

4.2 in the “Caffeine Administration in Nontransgenic Mice” Study (Chapter 4).

Animal care and use was in accordance with the Guide and Use of Laboratory An-

imals, National Research Council, 1996, in a program and facilities fully accredited

by the Association for Assessment and Accreditation of Laboratory Animal Care,

International, under a protocol approved by the University of South Florida Insti-

tutional Animal Care and Use Committee (No. 3183, Huntington Potter, Ph.D.,

Principal Investigator).
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8.3 Results of Statistical Analyses

8.3.1 Standard Statistical Analysis

Figure 8.1 (next page) shows the cognitive performance (error-scores) of all groups

in the post-test RAWM working memory trials T4 and T5 for both two-day blocks.

Groupwise means and standard-error are indicated in the figure. The double-asterisk

(∗∗) denotes significant difference between the Tg group and the other three groups of

animals in the RAWM working memory trial T5 measure (p < .05). The dagger sym-

bol (†) indicates significant contrast (p < .05) with NT+GMCSF and Tg+GMCSF.

Measured ten days into the GMCSF treatment period, Tg-control mice exhibited im-

pairment in RAWM working memory trials T4 and T5, compared with NT animals.

Cognitive impairment of Tg-control mice was evident within two-day blocks (Figure

8.1, upper), as well as across all four days of RAWM testing (Figure 8.1, lower).

Alzheimer’s transgenic animals receiving GM-CSF (Tg+GMCSF), by contrast, per-

formed comparably (or, indeed, superior) to NT on RAWM working memory trials

T4 and T5, both within blocks and overall. Hence, GM-CSF was shown to re-

verse working memory impairment (as evaluated by the RAWM task) in Alzheimer’s

transgenic mice.
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Figure 8.1. Groupwise comparison of error-scores in RAWM post-test trials T4 and
T5, by blocks, in the GMCSF study
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Figure 8.2 (next page) portrays groupwise cognitive performance on all measures

of the final-block of the interference paradigm, indicating the mean and standard er-

ror associated with each measure for all groups. Standard statistical tests (ANOVA,

F-test) reveal a significant difference (p < .05) between the Tg-control group and

the other three groups, denoted by a double-asterisk (∗∗), as well as a significant

difference (p < .05) between the Tg-control and NT+GMCSF groups (indicated by

a single asterisk, ∗). With respect to both error-score and response-latency mea-

sures, Tg-control mice showed significant impairment in both the three-trial recall

and delayed-recall tasks of the interference paradigm, relative to GMCSF-treated

Alzheimer’s transgenic mice (Tg+GMCSF) and both nontransgenic groups (NT,

NT+GMCSF). Indeed, GMCSF treatment in Tg mice dramatically improved (nor-

malized) their cognitive performance in both the three-trial recall and delayed-recall

tasks to levels comparable to NT animals. Additionally, the Tg-control group was sig-

nificantly impaired compared with the NT+GMCSF group, with respect to retroac-

tive interference (both errors and latencies). Finally, GMCSF-treated nontransgenic

animals (NT+GMCSF) performed better (i.e., both decreased errors and latencies)

in the proactive interference and retroactive interference tasks, relative to untreated

nontransgenics (NT), although these differences did not meet the criterion for signif-

icance (both p’s between .05 and .20).
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Figure 8.2. Groupwise contrasts for all interference paradigm measures in the GMCSF
study
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8.3.2 Correlation Analysis

Table 8.1. Correlations between behavioral measures of the interference paradigm in
the GMCSF study

TT-L .93
.000

PI-E

PI-L .93
.000

RI-E .62 .56 .73 .69
.000 .001 .000 .000

RI-L .55 .58 .67 .74 .92
.001 .000 .000 .000 .000

DR-E .77 .64 .47 .36 .74 .64
.000 .000 .007 .044 .000 .000

DR-L .79 .77 .48 .44 .74 .74 .93
.000 .000 .005 .011 .000 .000 .000

TT-E TT-L PI-E PI-L RI-E RI-L DR-E

Table 8.1 shows significant (p < .05) pairwise correlations observed between be-

havioral measures for all groups. The correlation coefficient (r-value) and corre-

sponding significance (p-value) are indicated at the top and bottom, respectively,

within marked cells of the table. The following abbreviations are used to represent

the four tasks of the mouse-based interference paradigm: Three-trial recall, errors

and latency (TT-E, TT-L); proactive interference, errors and latency (PI-E, PI-L);

retroactive interference, errors and latency (RI-E, RI-L); and, delayed-recall, errors

and latency (DR-E, DR-L).

Significant positive correlations were observed between the error-score measures

of the three-trial recall and both retroactive interference and delayed-recall tasks. A

similar pattern of association was found among the corresponding latency measures

of these three tasks. These findings indicate close correspondence between tasks in-

volving Pool A of the behavioral paradigm. The error-score and response-latency
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measures of each of the four tasks were significantly correlated, as well, underscoring

the comparability of both indices of cognitive performance for the tasks compris-

ing the mouse-based interference paradigm. Additionally, both measures from the

three-trial recall task were significantly and positively intercorrelated with both mea-

sures of retroactive interference, suggesting successful acquisition and retention of

the initial learning component (Pool A), despite the brief intervening distractor task

(Y-maze exposure) and interference task (Pool B exposure). Similarly, complete in-

tercorrelation between all measures of the retroactive interference and delayed-recall

tasks suggests long-term stability of learning. This interpretation is supported by

significant pairwise intercorrelation among all measures of the three-trial recall and

delayed-recall tasks. In sharp contrast, both behavioral measures from the proactive

interference task did not correlate with both measures from the initial three-trial re-

call. This indicates independent performance between Pool A (the learning condition

for three-trial recall) and Pool B (the learning condition for proactive interference).

However, both behavioral measures from proactive interference were significantly cor-

related with all measures from both the retroactive interference and delayed-recall

tasks. For animals exhibiting low errors/latencies across all three of these tasks,

this would indicate flexibility of learning across different problem contexts (Pool A

vs. Pool B) – that is, the animals were able to recall the original learning (Pool A),

despite interference/distractor elements and a time delay, as well as to rapidly switch

between the two learning conditions.

The correlation matrix obtained in the present study differs from that obtained in

the previous study (Chapter #7), in that significant pairwise correlations were found

in the present study between measures from the Proactive Interference task and mea-

sures from both the Retroactive Interference and Delayed-Recall Tasks. This impor-
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tant difference has implications for the resulting factor structure, to be discussed

below.

8.3.3 Factor Analysis

Table 8.2. Varimax-rotated factor analysis of interference paradigm measures in the
GMCSF study

Factor
Measure I II

Three-Trial Recall (Errors) 0.941
Three-Trial Recall (Latency) 0.897
Delayed-Recall (Latency) 0.870
Delayed-Recall (Errors) 0.837
Retroactive Interference (Errors) 0.736
Retroactive Interference (Latency) 0.749
Proactive Interference (Latency) 0.959
Proactive Interference (Errors) 0.932

Variance 47.51% 39.70%

Table 8.2 depicts a varimax-rotated principal component analysis of the eight be-

havioral measures of the mouse-based interference task. Significant (absolute value

greater than 0.700) component loadings are shown for the two factors returned. The

calculated eigenvalue results (i.e., >1 criterion) were consistent with scree plot (Cat-

tell, 1966) identification of two significant factors. Measures from the three-trial

recall and delayed-recall tasks comprise the primary factor, accounting for approxi-

mately 48% of overall variance. These two tasks involve spatial learning within the

initial context (Pool A) and long-term (reference) memory for this same information.

Hence, this factor may represent successful (or unsuccessful) acquisition and consoli-

dation of the initial spatial learning problem (Pool A). By contrast, the second factor

(representing approximately 40% of variance) consists of all measures from the inter-

ference components (both proactive and retroactive) of the paradigm. This second
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factor may reflect the subjects’ facility of context-switching (Pool A vs. Pool B) or

the ability to rapidly adapt to changing learning conditions.

As noted previously, differences in correlation patterns among behavioral mea-

sures, observed between this study and the preceding one (Chapter #7), are reflected

in the corresponding factor structures. In contrast to the preceding study, Factor

II of the present study also includes both behavioral measures from the Retroactive

Interference task, which is consistent with the observed pattern of correlation (Table

8.1). Interestingly, while both measures from the Delayed-Recall task loaded on a

separate factor from both measures of the Proactive Interference task, in both stud-

ies, significant pairwise correlations between measures of the Proactive Interference

and Delayed-Recall tasks were only found in the present study. The cause of this dis-

crepancy is unclear, although treatment-bias effects and/or disproportionate sample

sizes (unlike the preceding study, all treatment groups of the present study consisted

of identical numbers of mice) are potential sources.
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Table 8.3. Classifier performance comparison using interference paradigm measures
in the GMCSF study

Evaluation Discriminant Analysis Decision Neural
Groups Dataset Criterion Complete Step-Fwd Tree Network SVM

Accuracy 88% 94% 88% 75% 88%
Errors Sensitivity 88% 100% 100% 75% 88%

Specificity 88% 88% 75% 75% 88%
Tg Accuracy 81% 81% 56% 81% 81%
vs. Latency Sensitivity 88% 75% NS 75% 75%
NT Specificity 75% 88% 75% 88% 88%

Accuracy 88% 94% 88% 69% 75%
Err+Lat Sensitivity 100% 100% 100% 63% 63%

Specificity 75% 88% 75% 75% 88%

Accuracy NS NS 56% 63% 63%
Errors Sensitivity NS NS 63% 63% 63%

Specificity NS NS NS 63% 63%
NT Accuracy NS 69% NS 56% 69%
vs. Latency Sensitivity NS 63% NS 63% 63%

NT+ Specificity NS 75% NS NS 75%
GMCSF Accuracy NS 69% NS 56% 56%

Err+Lat Sensitivity NS 63% NS NS 63%
Specificity NS 75% NS 63% NS

Accuracy 81% 94% 81% 100% 75%
Errors Sensitivity 100% 100% 88% 100% 100%

Specificity 63% 88% 75% 100% NS
Tg Accuracy 94% 94% NS 88% 75%
vs. Latency Sensitivity 88% 88% NS 88% 75%

Tg+ Specificity 100% 100% NS 88% 75%
GMCSF Accuracy 88% 94% 81% 94% 82%

Err+Lat Sensitivity 88% 88% 88% 100% 100%
Specificity 88% 100% 75% 88% 63%

Errors Accuracy 47% 53% 50% 48% NS
All four Latency Accuracy 41% 38% NS NS 28%

Err+Lat Accuracy 47% 59% 41% 41% NS
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8.3.4 Discriminant Analysis

A summary comparison of groupwise discriminability is shown in Table 8.3,

for reference. The table reports the classifier performance evaluation (i.e., accu-

racy, sensitivity, and specificity) for advanced statistical techniques (direct-entry and

stepwise-forward discriminant analyses) in the fourth and fifth columns.

Nontransgenic (NT) vs. Transgenic (Tg) Groups

Error-Scores Only. As reported in Table 8.3, direct-entry (complete) discrimi-

nant analysis returned excellent discriminability (Wilks’ lambda = .261, p = .0031)

between transgenic- and nontransgenic-control animals (accuracy = 88%, sensitiv-

ity = 88%, specificity = 88%) on the basis of the four predictor variables. The

stepwise-forward approach generated a more parsimonious model, consisting of only

two predictor variables (three-trial recall and retroactive interference), with signifi-

cant discriminability (Wilks’ lambda = .271, p = .0002). The simpler (two-variable)

model demonstrated outstanding (94%) accuracy, 100% sensitivity, and 88% speci-

ficity for transgenicity (i.e., all transgenic animals were correctly identified).

Response-Latencies Only. Using only latency data from the four tasks, direct-

entry discriminant analysis successfully distinguished between the two groups (Wilks’s

lambda = .383, p = .0225), with 81% accuracy (sensitivity = 88%, specificity =

75%), as shown in Table 8.3. The stepwise-forward approach also demonstrated

significant discriminability (Wilks’ lambda = .452, p = ..0058) between transgenic-

and nontransgenic-control animals (accuracy = 81%, sensitivity = 75%, specificity

= 88%), although the overall accuracy was comparable to the direct-entry classifier

result. The stepwise-forward model retained only the three-trial recall and proactive

interference latency measures.
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Errors and Latencies. A direct-entry discriminant analysis showed significant

discriminability between groups using both error-scores and reponse-latencies (Wilks’

lambda = .079, p = .0031) between transgenic- and nontransgenic-control animals

(accuracy = 88%, sensitivity = 100%, specificity = 75%) using all eight measures

as predictor variables. By contrast, the stepwise-forward approach retained only

three predictor variables (three-trial recall errors, retroactive interference errors, and

three-trial recall latency), and displayed significant discriminability (Wilks’ lambda

= .143, p = .0000) between the two groups, as reported in Table 8.3. The simpler

(three-variable) model demonstrated superior (94%) accuracy, 100% sensitivity, and

88% specificity for transgenicity.

Summary: Nontransgenic and Alzheimer’s transgenic animals were reliably dis-

tinguished using either/both error-scores and response-latencies obtained from be-

havioral tasks in the interference paradigm. The error measures from the three-trial

recall and retroactive interference tasks were emphasized by the discriminant analy-

ses, regardless of the availability of response-latency metrics.

Nontransgenic (NT) vs. Nontransgenic-Treatment (NT+GMCSF) Groups

Error-Scores Only. Neither direct-entry (complete) nor stepwise-forward dis-

criminant analysis successfully distinguished between GMCSF-treated and untreated

nontransgenic mice using only error-score measures from the interference paradigm.

None of the candidate predictor variables met the statistical criterion (alpha-to-enter)

for inclusion in the model.

Response-Latencies Only. Although significant discriminability was not demon-

strated using direct-entry discriminant analysis with response-latency data, as in-

dicated in Table 8.3, the stepwise-forward approach returned significant discrim-

inability (Wilks’ lambda = .622, p = .0457) between the two groups (accuracy =

69%, sensitivity = 63%, specificity = 75%), with respect to GMCSF treatment. The
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stepwise-forward model retained both the three-trial recall and proactive interference

measures.

Errors and Latencies. Direct-entry discriminant analysis was unable to distin-

guish between the two groups using both error-scores and reponse-latencies. How-

ever, the stepwise-forward approach returned significant discriminability (Wilks’

lambda = .622, p = .0457) between the two groups using a two-variable model

(retaining the latency measures from the three-trial recall and proactive interference

tasks), as shown in Table 8.3. The two-variable model showed 69% accuracy, 63%

sensitivity, and 75% specificity, with respect to treatment.

Summary: The difficulty in distinguishing between untreated and GMCSF-treated

nontransgenic animals was underscored by the inability of direct-entry discriminant

analysis to identify individuals by group using behavioral error and/or latency mea-

sures. Although stepwise-forward discriminant analyses consistently identified the

three-trial recall and proactive interference error-score measures as the best predic-

tor variables for distinguishing between GMCSF-treated and untreated nontrans-

genic mice, the relatively poor discriminability between these two groups (using

either/both errors and latencies) suggests that GMCSF treatment does not affect

normal mice.

Transgenic (Tg) vs. Transgenic-Treatment (Tg+GMCSF) Groups

Error-Scores Only. Direct-entry (complete) discriminant analysis successfully

distinguished (Wilks’ lambda = .276, p = .0042) between the two groups (accuracy

= 81%, sensitivity = 100%, specificity = 63%), as indicated in Table 8.3. The

model generated by the stepwise-forward approach included the three-trial recall and

proactive interference error-scores as predictor variables. This two-variable model

also showed significant discriminability between the two groups (Wilks’ lambda =
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.335, p = .0008), with high (94%) accuracy, 100% sensitivity, and 88% specificity,

with respect to treatment.

Response-Latencies Only. Significant discriminability was demonstrated using

direct-entry discriminant analysis with response-latency data (Wilks’ lambda = .236,

p = .0018), as reported in Table 8.3. The resulting classifier achieved 94% overall

accuracy, 88% sensitivity, and 100% specificity, with respect to treatment. The

stepwise-forward approach also returned significant discriminability (Wilks’ lambda

= .273, p = .0002), and used only the proactive interference and delayed-recall

latency measures as predictor variables. This parsimonious model demonstrated

94% accuracy, 88% sensitivity, and 100% specificity, with respect to treatment. All

transgenic-control animals were correctly identified by both classifiers.

Errors and Latencies. Direct-entry discriminant analysis using both error-scores

and response-latencies successfully distinguished between the two groups (Wilks’

lambda = .066, p = .0017) between the two groups (accuracy = 88%, sensitivity

= 88%, specificity = 88%), as depicted in Table 8.3. Three variables were retained

by the stepwise-forward approach (proactive interference errors and latency, delayed-

recall latency). The three-variable model also distinguished between GMCSF-treated

and untreated Alzheimer’s transgenic mice (Wilks’ lambda = .191, p = .0001), with

excellent (94%) accuracy, 88% sensitivity, and 100% specificity, with respect to treat-

ment.

Summary: Excellent (94%) discriminability was achieved using either/both error-

scores and response-latencies, consistent with significant differences in cognitive per-

formance between the two groups of mice. Error-score data alone, however, was

more effective for correctly detecting the GMCSF treatment effect in Alzheimer’s

transgenic mice (i.e., greater sensitivity).
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All Four Groups

Error-Scores Only. Significant discriminability among the four groups was re-

turned by direct-entry (complete) discriminant analysis (Wilks’ lambda = .274, p

= .0005), with 47% overall accuracy, as indicated in Table 8.3. The GMCSF-

treated nontransgenic animals were the most-frequently misclassified individuals,

with only 25% correctly identified (random-chance level performance). By contrast,

the stepwise-forward approach demonstrated higher discriminability (Wilks’ lambda

= .383, p = .0002) and accuracy (53%) using only two error measures: Three-trial

recall and proactive interference.

Response-Latencies Only. Direct-entry discriminant analysis successfully distin-

guished among the four groups using only reponse-latency data (Wilks’s lambda

= .391, p = .0143), and exhibited 41% overall accuracy. Interestingly, although

the stepwise-forward approach also returned significant discriminability among the

groups (Wilks’s lambda = .473, p = .0019), its overall accuracy was only 38%. The

stepwise-forward model selected both the three-trial recall and proactive interference

latency measures. The GMCSF-treated Alzheimer’s transgenic mice were the most

likely to be misclassified; only 25% of these animals were correctly identified, as if

“normalized” by contrasting with the NT and NT+GMCSF animals.

Errors and Latencies. A direct-entry discriminant analysis returned significant

discriminability (Wilks’s lambda = .119, p = .0007) among the four groups (accu-

racy = 47%), as shown in Table 8.3, using the eight behavioral measures as predictor

variables. The stepwise-forward approach retained only three measures (three-trial

recall errors and latency, proactive interference latency), and showed significant dis-

criminability (Wilks’s lambda = .287, p = .0001) and relatively high (59%) overall

accuracy among the groups. Only 30% of the GMCSF-treated nontransgenic mice

were correctly identified; these animals were the most likely to be misclassified, reflec-
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tive of “normalized” performance (the NT, NT+GMCSF, and Tg+GMCSF animals

performed comparably).

Summary: Variance-optimized (stepwise-forward) discriminant analysis-based clas-

sifiers using both error-score and response-latency measures exhibit better groupwise

discriminability than classifiers based on either errors or latencies alone. Moreover,

the relatively poor overall accuracy may be attributed to the difficulty in distin-

guishing among NT, NT+GMCSF, and Tg+GMCSF groups, due to similarities in

cognitive performance.

8.4 Results of Data Mining Analyses

Table 8.3 compares groupwise discriminability for each classifier in the present

study. Performance evaluation is reported (i.e., accuracy, sensitivity, and specificity)

when significant (exceeding random-chance level assignment) for data mining-based

methods (decision trees, neural networks, and support vector machines) in the sixth

through eighth columns.

8.4.1 Decision Tree Analysis

Nontransgenic (NT) vs. Transgenic (Tg) Groups

Error-Scores Only. When provided with only error-score behavioral data from all

tasks of the interference paradigm, the decision tree-based classifier selected a single

attribute, the three-trial recall measure, as the criterion for splitting the dataset

into two groups. As shown in Table 8.3, the resulting tree correctly identified 88%

(Kappa = 0.75) of individuals, with 100% sensitivity (i.e., all Tg mice were correctly

identified) and 75% specificity (i.e., all but two NT animals were correctly identified).

Response-Latencies Only. The decision tree identified three behavioral latency

measures – delayed-recall, proactive interference, and three-trial recall – for splitting
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the dataset into two groups. The classifier displayed a very modest 56% accuracy

(Kappa = 0.13), with 38% sensitivity (not significant) and 75% specificity. Hence,

this classifier was more appropriate for correctly identifying nontransgenic individu-

als.

Errors and Latencies. When both error-scores and response-latencies were used

to construct the decision tree-based classifier, only the three-trial recall error measure

was selected as having sufficient information-bias to split the dataset into the two

groups. The classifier correctly identified 88% of individuals (Kappa = 0.75), with

100% sensitivity and 75% specificity, as indicated in Table 8.3. Thus, the inclusion

of latency measures with error measures did not change the overall classification

accuracy.

Summary: Error-scores, either alone or together with response-latency measures,

provide excellent discriminability between nontransgenic and Alzheimer’s transgenic

mice, using the interference paradigm. This result underscores the cognitive deficits

present in Tg mice, relative to nontransgenics, based on conventional protocols for

evaluation (e.g., RAWM).

Nontransgenic (NT) vs. Nontransgenic-Treatment (NT+GMCSF) Groups

Error-Scores Only. The decision tree selected a single behavioral measure, retroac-

tive interference errors, as the best attribute for splitting the dataset into two groups,

using only behavioral error-score data. As shown in Table 8.3, the classifier demon-

strated 56% accuracy (Kappa = 0.13), 63% sensitivity, and 50% specificity (non-

significant), with respect to treatment. One-half of the untreated nontransgenic

animals were misclassified as “GMCSF-treated.”

Response-Latencies Only. None of the response-latency measures provided suffi-

cient information for constructing a decision tree-based classifier to distinguish be-

tween GMCSF-treated and untreated nontransgenic mice.
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Errors and Latencies. When both error-scores and response-latencies were pro-

vided, the decision tree was unable to identify any attributes which reliably distin-

guish between the two groups.

Summary: Although the retroactive interference error-score measure provided

modest discriminability between these two groups, these results generally suggest

that GMCSF-treated and untreated nontransgenic mice do not differ significantly,

with respect to performance in the interference paradigm.

Transgenic (Tg) vs. Transgenic-Treatment (Tg+GMCSF) Groups

Error-Scores Only. The decision tree identified a single attribute, three-trial

recall errors, for splitting the dataset into two groups, corresponding to GMCSF-

treated and untreated-control Alzheimer’s transgenic mice. As reported in Table

8.3, the classifier accurately identified 81% of the individuals (Kappa = 0.63), with

88% sensitivity and 75% specificity.

Response-Latencies Only. None of the response-latency measures provided suffi-

cient information-bias to accurately distinguish between the two groups.

Errors and Latencies. A single attribute, three-trial recall error, was identified

as providing sufficient information to distinguish between the two groups, when all

behavioral measures (both errors and latencies) were available to the classifier. The

resulting tree exhibited 81% accuracy (Kappa = 0.63), with 88% sensitivity and 75%

specificity. This is identical to the result obtained for Error-Scores Only.

Summary: Error-score data, either alone or together with response-latency mea-

sures, accurately (81%) distinguishes between Alzheimer’s transgenic mice which

received GM-CSF treatment and Tg animals which did not. This result suggests

a GM-CSF treatment effect, with respect to cognitive performance in the interfer-

ence paradigm, and a primacy of error-based performance criteria over latency-based

measures for detecting GM-CSF treatment efficacy.
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All Four Groups

Error-Scores Only. The error-scores from two behavioral tasks, three-trial recall

and retroactive interference, were selected by the decision tree as providing optimal

discriminabiliity among the four groups of animals. The overall accuracy, as reported

in Table 8.3, was 50% (Kappa = 0.33). Nontransgenic-control individuals were the

least-likely to be correctly identified, with only 25% of NT mice recognized.

Response-Latencies Only. The decision tree-based classifier was unable to suc-

cessfully distinguish among the four groups using only response-latency data. Indeed,

none of the nontransgenic-control animals were correctly identified.

Errors and Latencies. The inclusion of both error-score and response-latency

measures for constructing decision trees resulted in 41% accuracy (Kappa = 0.21)

using four attributes: Three-trial recall errors and latency, retroactive interference er-

rors, and delayed-recall latency. However, only 13% of nontransgenic-control animals

were correctly identified by this classifier.

Summary: Although the overall discriminability among the four groups was rela-

tively poor, this may be due to difficulty with distinguishing among NT, NT+GMCSF,

and Tg+GMCSF animals. However, as reported in Table 8.3, error-scores alone

provided the best four-way discriminability (50%) among the decision tree-based

classifiers.

8.4.2 Neural Network Analysis

Nontransgenic (NT) vs. Transgenic (Tg) Groups

Error-Scores Only. When provided with error-score measures from all tasks of

the interference paradigm, the neural network-based classifier correctly assigned 75%

of the individuals into their respective groups (Kappa = 0.50), with optimal perfor-

mance obtained with three computing elements in the hidden layer of the network.
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The sensitivity was 75% and specificity was 75% for this classifier, as indicated in

Table 8.3. Indeed, the same proportion of animals from each group were misclassified.

Response-Latencies Only. Using only behavioral response-latency data, the neu-

ral network classifier exhibited 81% accuracy (Kappa = 0.63), with 75% sensitivity

and 88% specificity. A slightly greater proportion of nontransgenic animals were

correctly identified, relative to the proportion of transgenics.

Errors and Latencies. Only 69% of individuals (Kappa = 0.38) were correctly

identified by a neural network-based classifier trained with both error-scores and

response-latency data. As reported in Table 8.3, the sensitivity of the classifier was

63% and the specificity was 75%.

Summary: The optimal neural network-based classifier for distinguishing between

nontransgenic and Alzheimer’s transgenic mice used only response-latency data, and

showed a slight performance bias favoring nontransgenic animals, with respect to

correct identification by genotype.

Nontransgenic (NT) vs. Nontransgenic-Treatment (NT+GMCSF) Groups

Error-Scores Only. Using only behavioral error-score data, the neural network-

based classifier correctly assigned only 63% of the individuals into their respective

groups (Kappa = 0.25), with 63% sensitivity and 63% specificity. Hence, approxi-

mately two-thirds of the animals in each group were correctly identified.

Response-Latencies Only. Only 56% accuracy (Kappa = 0.13) was achieved by

neural network classifiers trained using only behavioral response-latency data from

the interference paradigm. The observed sensitivity of the classifier was 63%, and

its specificity was 50%. Hence, random-chance level classification was observed for

the untreated nontransgenic animals.

Errors and Latencies. The neural network-based classifier correctly assigned only

56% of the individuals (Kappa = 0.13) into their respective groups, with 50% sensi-
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tivity and 63% specificity, as shown in Table 8.3. Optimal performance was obtained

with a neural network architecture containing four computing elements in the hidden

layer.

Summary: There was difficulty distinguishing between GMCSF-treated and un-

treated nontransgenic mice, although modest discriminability was observed in neural

network-based classifiers trained using behavioral error-score data from the interfer-

ence paradigm.

Transgenic (Tg) vs. Transgenic-Treatment (Tg+GMCSF) Groups

Error-Scores Only. A neural network-based classifier trained using only behav-

ioral error-scores correctly assigned 100% of the individuals to their respective groups

(Kappa = 1.00), with both sensitivity and specificity of 100%, as shown in Table 8.3.

Optimal performance of this classifier was achieved with three computing elements

in the hidden layer of the network.

Response-Latencies Only. Using only behavioral response-latency data to train a

neural network-based classifier resulted in a lower (88%) accuracy (Kappa = 0.75),

with 88% sensitivity and 88% specificity. This neural network required four hidden

layer elements for optimal performance.

Errors and Latencies. The neural network-based classifier correctly assigned 94%

of the individuals into their respective groups (Kappa = 0.88), with optimal per-

formance obtained with four computing elements in the hidden layer of the net-

work. The sensitivity was 100% and specificity was 88%. Hence, all GMCSF-treated

Alzheimer’s transgenic animals were correctly identified.

Summary: Neural network-based classifiers trained with behavioral data from the

interference paradigm are extremely effective for distinguishing between GMCSF-

treated and untreated Alzheimer’s transgenic mice. Additionally, the effect of net-

work topology (number of computing elements within the hidden layer) on classifier
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performance suggests different underlying complexity associated with latency data,

relative to error data.

All Four Groups

Error-Scores Only. As indicated in Table 8.3, the neural network-based classifier

demonstrated 48% overall accuracy (Kappa = 0.29) in assigning animals to their re-

spective groups on the basis of behavioral error-scores. A network architecture with

four computing elements in the hidden layer was necessary for optimal performance.

The poorest discriminability was observed for both nontransgenic groups, wherein

only 38% of individuals from each group (NT, NT+GMCSF) were correctly identi-

fied, underscoring the similarity of these groups with respect to cognitive performance

in the interference paradigm.

Response-Latencies Only. The neural network-based classifier was unable to dis-

tinguish among the four groups of mice using only behavioral response-latency data.

Indeed, none of the nontransgenic-control (NT) animals were correctly identified.

Errors and Latencies. Using both error-scores and response-latencies, 41% of

the animals were correctly assigned to their respective groups (Kappa = 0.21). The

GMCSF-treated Alzheimer’s transgenic mice were the most likely individuals to be

correctly identified (50%), while only 38% of individuals in each of the other three

groups were correctly assigned to their respective group. Four computing elements

were present in the hidden layer of the optimal network.

Summary: The optimal neural network-based classifier for distinguishing among

the four groups used only behavioral error-score data, provided poor overall dis-

criminability (48%), and showed a performance bias favoring the transgenic (both

GMCSF-treated and untreated) subjects. The inclusion of response-latency data

compromised overall discriminability among groups. Additionally, the optimal net-

work topologies required four computing elements in the hidden layer, regardless of
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how many candidate predictor variables (behavioral measures) were supplied to the

classifier.

8.4.3 Support Vector Machine Analysis

Nontransgenic (NT) vs. Transgenic (Tg) Groups

Error-Scores Only. As shown in Table 8.3, the support vector machine-based clas-

sifier correctly assigned 88% (Kappa = 0.75) of control nontransgenic and Alzheimer’s

transgenic mice to their respective groups, using only behavioral error-scores from

all tasks of the interference paradigm. Both the sensitivity and specificity of the

classifier were 88%. Hence, equal proportions of each group were correctly identified

by the classifier.

Response-Latencies Only. Using only behavioral response-latency data, the clas-

sifier demonstrated 81% accuracy (Kappa = 0.63), with 75% sensitivity and 88%

specificity, as reported in Table 8.3.

Errors and Latencies. When both error-scores and response-latencies were pro-

vided to the classifier, 75% of the animals were correctly assigned to their respective

groups (Kappa = 0.50). The sensitivity was 63% and the specificity was 88%. This

classifier exhibited a performance bias favoring nontransgenic mice, with greater like-

lihood of misclassifying Alzheimer’s transgenics.

Summary: The support vector machine-based classifiers successfully distinguished

between nontransgenic and Alzheimer’s transgenic mice using error-score data. How-

ever, the use of response-latency data, either exclusively or in combination with

error-scores, resulted in a marked decline of both accuracy and specificity for the

transgenic animals.

229



Nontransgenic (NT) vs. Nontransgenic-Treatment (NT+GMCSF) Groups

Error-Scores Only. The support vector machine-based classifier correctly identi-

fied 63% of individuals (Kappa = 0.25), with 63% sensitivity and 63% specificity, as

shown in Table 8.3.

Response-Latencies Only. The accuracy of the classifier increased to 69% (Kappa

= 0.38) when only response-latency data from the interference paradigm were used

to distinguish between GMCSF-treated and untreated nontransgenic mice. The ob-

served sensitivity was 63% and the specificity was 75%. Three-fourths of the un-

treated nontransgenics were correctly identified.

Errors and Latencies. Training with both error-scores and response-latencies

resulted in a classifier which exhibited only 56% accuracy (Kappa = 0.13), as reported

in Table 8.3. This classifier showed 63% sensitivity and 50% specificity, erroneously

identifying half of the untreated animals as having received GMCSF treatment.

Summary: Overall, behavioral response-latency measures provided the best cri-

teria for distinguishing between GMCSF-treated and untreated nontransgenic mice

using support vector machine-based classifiers, although the discrimination provided

was modest at best. Classifier performance degradation occurred, however, when

error-scores were used exclusively or in combination with response-latencies.

Transgenic (Tg) vs. Transgenic-Treatment (Tg+GMCSF) Groups

Error-Scores Only. As reported in Table 8.3, support vector machine-based clas-

sifiers trained exclusively with behavioral error-score data showed 75% accuracy

(Kappa = 0.50), with 100% sensitivity and 50% specificity (nonsignificant). Hence,

all GMCSF-treated transgenics were correctly identified, while one-half of untreated

animals were erroneously recognized as having received GMCSF treatment.
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Response-Latencies Only. Classifiers trained only with behavioral response-latency

data exhibited 75% overall accuracy (Kappa = 0.50), with 75% sensitivity and speci-

ficity. Hence, individuals from both groups were equally likely to be misclassified.

Errors and Latencies. When both errors and latencies were used to train the

classifier, the accuracy increased to 82% (Kappa = 0.63), as indicated in Table 8.3,

with 100% sensitivity and 63% specificity. Similar to the results obtained from

using error-scores exclusively, all GMCSF-treated Alzheimer’s transgenic mice were

correctly identified.

Summary: Support vector machine-based classifiers trained with either error-

score or response-latency data were comparable, with respect to overall discrim-

inability between GMCSF-treated and untreated transgenic mice, the combination

of both behavioral measures significantly increased overall performance while preserv-

ing the observed sensitivity of the Error-Scores Only classifier to treatment effect in

transgenic animals.

All Four Groups

Error-Scores Only. Support vector machine-based classifiers failed to distinguish

among all four groups of mice using only error-score data from the interference

paradigm. Indeed, only one-half of the untreated Alzheimer’s transgenic animals,

and none of the untreated nontransgenics, were correctly identified.

Response-Latencies Only. When response-latency data were used to train the

classifier, the overall accuracy was a poor, albeit significant, 28% (Kappa = 0.04),

as shown in Table 8.3. However, none of the GMCSF-treated Alzheimer’s transgenic

mice or untreated nontransgenics were correctly identified. Only 63% of the untreated

transgenic animals were correctly classified.

Errors and Latencies. The classifier did not successfully distinguish among the

four groups of animals using both error and latency measures from the interfer-
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ence paradigm. Similar to the Response-Latencies Only result, neither the GMCSF-

treated transgenics nor the untreated nontransgenic mice were recognized, and only

63% of untreated transgenics were identified correctly. In addition, fewer than half of

the GMCSF-treated nontransgenics were correctly assigned to their treatment group.

Summary: Overall, support vector machine-based classifiers were generally unsuc-

cessful in distinguishing among the four groups of mice. Significant discriminability

was observed when behavioral response-latency data were used exclusively as predic-

tor variables, but the resulting classifier showed exclusive bias favoring the untreated

Alzheimer’s transgenic mice, and was otherwise ineffective.

8.5 Discussion

Standard statistical analyses (using ANOVA) of final-block behavioral measures

indicate significant groupwise differences in both the post-test Radial Arm water

maze working memory trial T5 (error-score), as well as in three of the four tasks of

the interference paradigm (as shown in Figures 8.1 and 8.2). These differences were

observed between Tg animals and the other three groups. Additionally, nontrans-

genic mice (both NT and NT+GMCSF) and GMCSF-treated Alzheimer’s trans-

genic mice did not differ significantly in cognitive performance in the RAWM trial

T5 measure. These results are consistent with prior findings (e.g., Leighty et al.,

2004; Arendash et al, 2006) showing significant (p < .05) working memory impair-

ment (RAWM T4 and T5 measures) in Alzheimer’s transgenic-control (Tg) mice,

relative to nontransgenic-controls (NT). Significant differences in final-block per-

formance in both the three-trial recall and delayed-recall tasks of the interference

paradigm suggest cognitive impairment in Alzheimer’s transgenic-control mice, rel-

ative to nontransgenic-controls. Moreover, GMCSF-treated Alzheimer’s transgenic

mice performed significantly better in the delayed-recall task during the final block
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of the interference paradigm, relative to transgenic-control animals, indicative of

a therapeutic effect of GMCSF treatment. By contrast, no significant differences

were found between GMCSF-treated and untreated nontransgenic mice in any of the

component measures of the interference paradigm, suggesting that GMCSF may not

provide benefits in individuals not predisposed for Alzheimer-like pathology. Finally,

although only a single non-interference paradigm measure was compared among the

groups – final-block RAWM trial T5 error-scores – the component tasks of the inter-

ference paradigm provide superior groupwise discriminability using standard statis-

tical methods of analysis.

Extensive significant pairwise correlation was observed among both error-score

and response-latency measures of all four behavioral tasks. Corresponding error

and latency measures for each task were also strongly correlated, underscoring the

comparability of these behavioral indices for evaluating cognitive performance. Both

behavioral measures of the proactive interference task were significantly correlated

with the corresponding measure (error or latency) of each of the other tasks, except

for three-trial recall. These correlation results were similar to those obtained in the

GRK5-related investigation (refer to Chapter 7), with the exception of the Proactive

Interference task correlations with other tasks.

Exploratory factor analysis provided evidence for segregation by learning condi-

tion (measures related to Pool A vs. measures associated with Pool B) in the pre-

ceding (“The Interference Task: A Novel Assessment Paradigm”) study, although

segregation-by-condition was not observed in this study. Indeed, learning associated

with both Pool A and Pool B was reflected in the second factor. Not surprisingly,

in light of the extensive pairwise intercorrelations between/among measures of the

Three-Trial Recall and Delayed-Recall tasks, these two components of the interfer-

ence paradigm together comprised the primary factor (Table 8.2). Consequently, the
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primary factor may be interpreted as representing performance in the initial learn-

ing task (Three-Trial Recall) and following a substantial delay (Delayed-Recall),

thus reflecting successful consolidation of early learning (Pool A) in the interfer-

ence paradigm reminiscent of the primacy effect observed in human serial recall.

Similarly, significant intercorrelation between/among measures of the Proactive In-

terference and Retroactive Interference tasks is reflected in the coexistence of these

two tasks in Factor II, in contrast to the factor structure of the interference paradigm

recovered in the preceding study wherein only Proactive Interference measures com-

prised the second factor. The second factor may be related to context-switching or

the capacity to adapt to new learning conditions (Pool A vs. Pool B). It is im-

portant to recognize, however, that both correlation and factor structures may be

different if either first-block or overall data were used for these analyses (instead

of final-block measures). This may occur, in part, as a consequence of the nonlin-

ear time-dependence of learning and memory (e.g., Gallistel et al., 2004), whereby

discrepancies in groupwise analytic results may arise from behavioral sampling at

different stages of learning/memory acquisition. Moreover, distinctive (often, sub-

tle) statistical features of the subject pool (e.g., significantly unequal group sizes,

differential treatment effect, discrepancies in group variances, etc.) may introduce

bias or other undesirable side-effects in the analysis.

The discriminant analysis results were generally consistent with prior studies,

wherein stepwise-forward analyses often return superior discriminability relative to

the standard direct-entry (complete) approach (e.g., Arendash and King, 2002; Leighty

et al., 2004). Discriminant analysis-based classifiers successfully distinguished both

transgenicity (Tg vs. NT) and GMCSF-treatment effect in Alzheimer’s transgenic

mice (Tg vs. Tg+GMCSF), and showed moderate discriminability (53%), albeit

superior to all other classifiers, in the four-group comparison. Indeed, despite over-
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all poor performance (69% accuracy), the variance-optimizing stepwise-forward ap-

proach successfully distinguished between the NT and NT+GMCSF groups, although

the consensus among classifiers was that these two groups do not differ with respect

to cognitive measures in the interference paradigm.

The decision tree-based classifiers successfully distinguished between nontrans-

genic and Alzheimer’s transgenic mice at a level comparable to direct-entry discrim-

inant analysis, using interference task error-scores (with or without response-latency

data). In addition, decision trees distinguished between GMCSF-treated and un-

treated Alzheimer’s transgenic mice at a level comparable to direct-entry discrimi-

nant analysis. In contrast to discriminant analysis, the inclusion of response-latencies

to the error data did not improve the overall accuracy of the decision tree. Overall

discriminability among the four groups of animals demonstrated by decision trees,

using interference task error-scores alone, was between that of the two discriminant

analysis-based techniques.

Neural networks were particularly effective for distinguishing between GMCSF-

treated and untreated Alzheimer’s transgenic mice using error-scores alone. However,

neural networks performed comparably to stepwise-forward discriminant analysis

when using latency data for detecting the main effect of Alzheimer’s transgenicity

and, indeed, somewhat better than decision trees for distinguishing between NT and

NT+GMCSF individuals.

Support vector machines performed comparably to direct-entry discriminant anal-

ysis for distinguishing transgenicity using either error-score or response-latency, but

not both, behavioral measures from the interference paradigm. When comparing be-

tween the Tg and Tg+GMCSF groups, however, the support vector machine-based

classifier was poorer than discriminant analysis and markedly inferior to neural net-

work implementations. Moreover, support vector machines showed the poorest over-
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all discriminability among the four groups, achieving an acceptable performance level

(25% or better) only for response-latency data.

In addition to comparisons by classifier-type, to determine the relative strengths

and weaknesses of each methodology, it is informative to compare performance by

subject group, examining both pairwise contrasts and the composite (four-group) re-

sults. This study examined two main effects, Alzheimer’s transgenicity and GMCSF

administration, in a classic 2 x 2 design. In addition, two cognitive metrics (error-

score and response-latency) were measured for each behavioral task component of

the interference paradigm. The main effect of Alzheimer’s transgenicity was best de-

tected by stepwise-forward discriminant analysis, resulting in 94% overall accuracy,

although the other classifiers also performed remarkably well. Additionally, classifi-

cation using error-scores alone was generally superior to efforts including response-

latencies (which provided no significant advantage). As discussed previously, the

APP genotype produces a distinct behavioral phenotype, with respect to progressive

cognitive impairment, and represents a useful model for investigating Alzheimer-like

neuropathology through its overt behavioral manifestations. Indeed, standard sta-

tistical analyses (ANOVA) of both final-block RAWM trial T5 error-scores and two

tasks of the interference paradigm (Three-Trial Recall and Delayed-Recall, both er-

rors and latencies) clearly differentiated between Tg mice and the other groups. The

consensus among classifiers is that the GMCSF-treatment effect in nontransgenic

animals is minimal, i.e., these mice do not benefit significantly from receiving GM-

CSF treatment. Indeed, only modest discriminability was consistently observed in

both neural networks and support vector machines for these two groups. ANOVA-

based analyses of the final-block RAWM trial T5 failed to distinguish between the

NT and NT+GMCSF groups, and modest (but nonsignificant) differences were ob-

served in both error-scores and response-latencies of the Proactive Interference and
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Retroactive Interference tasks of the interference paradigm. The GMCSF-treatment

effect in Alzheimer’s transgenic mice, by contrast, is significant. Indeed, all classi-

fiers distinguished this treatment effect using error-scores and/or response-latencies

obtained in the interference paradigm. In fact, only decision trees were unable to

distinguish between the groups using only latencies. Standard statistical analysis of

final-block RAWM trial T5 showed a significant impairment in the Tg group, relative

to Tg+GMCSF. Similarly, ANOVA-based analyses of both Three-Trial Recall and

Delayed-Recall measures (errors and latencies) underscore the cognitive deficits of

Alzheimer’s transgenic-control mice relative to transgenics receiving GMCSF treat-

ment. Moreover, the Tg and Tg+GMCSF groups were often more easily distinguish-

able than were the Tg and NT groups. Error-scores were generally more effective

for achieving composite (four-group) discriminability, although the stepwise-forward

discriminant analysis provided the best overall performance using a combination of

errors and latencies (59%).

Several important conclusions and cautions may be drawn from the results. First,

the Alzheimer’s transgenic genotype (APP) reliably produces a distinctive cognitive-

behavioral phenotype against which diverse genetic manipulations and therapeutic

interventions may be explored, analyzed, and interpreted in the context of human

Alzheimer’s disease diagnosis, treatment, and management. Indeed, the cognitive

repertoire of this behavioral phenotype is sufficiently rich, with respect to discernible

and quantifiable domains (e.g., working memory), that comprehensive, multitask-

multimetric assessment returns an extraordinarily detailed portrait of abilities, as

previously reported (e.g., Leighty et al., 2004). Second, the differential sensitivity of

classifiers to cognitive-behavioral features suggests not only the salience of particular

attributes (individual measures, such as three-trial recall error-score), with respect to

groupwise discriminability, but, moreover, the likelihood that nonlinear interactions
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between/among attributes contribute to the observed discriminability. Analysis of

variance, for example, although widely accepted in neurobehavioral research, displays

significant limitations with respect to groupwise discriminability (e.g., Figure 8.1, dis-

cussed earlier) in part because of its dependence upon specific, and often unrealistic,

measurement conditions. Indeed, many statistical methodologies are dependent upon

– and optimized for – linear models of predictor variables (e.g., ANOVA, multiple

regression, linear discriminant analysis). However, nonlinear interactions are quite

common in natural physiological systems (e.g., Glass, 2001; Westbury et al., 2003),

and require special mathematical treatment for proper analysis. As discussed earlier,

neural networks are particularly suitable for applications in which the relationship

within and between sets of variables (measures) is likely to be nonlinear or, indeed,

unknown. Fourth, this study further supports adoption of the mouse-based interfer-

ence paradigm as a standard component of neurobehavioral assessment for research

in Alzheimer’s transgenic mice. The component tasks of the paradigm were shown

to contribute unique information reflecting cognitive status in individuals, as well as

discriminative criteria for distinguishing among groups by transgenic and/or treat-

ment effect. Finally, although this study did not address the therapeutic window

(e.g., first-block vs. final-block vs. overall efficacy), duration of response (permanent

vs. transient), dose-dependence, or age-dependence of GMCSF efficacy, in light of

the observed therapeutic effect of GMCSF treatment in Alzheimer’s transgenic ani-

mals (and, possibly, to a lesser extent in nontransgenics), additional investigation of

GMCSF’s potential role in AD therapy is indicated.
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CHAPTER 9

CONCLUSIONS

Alzheimer’s disease is a multifactorial disorder, exhibiting a remarkably complex

portrait of neuropathological phenomena and cognitive/behavioral manifestations.

Contemporary research methodologies must necessarily address these features in or-

der to develop and refine valid experimental models (e.g., transgenic animals), com-

prehensive neurobehavioral assessment paradigms, and rigorous data analysis proto-

cols. Indeed, the sophistication of modeling, evaluation, and analysis closely parallels

advances in both computational- and bio-technology. Consequently, today’s medical

scientists and clinicians possess a powerful array of tools for investigating both patho-

logical (from molecular-genetic to organ-system scale) and behavioral (sensorimotor,

cognitive, daily living) aspects of Alzheimer’s disease.

The research presented in this dissertation addressed neurobehavioral assessment

and analysis in both Alzheimer’s transgenic mice and human AD patients. The utility

of comprehensive sensorimotor and cognitive behavioral evaluation for both trans-

genic and treatment effects was demonstrated, underscoring the importance of multi-

ple tasks and/or measures for identifying and quantifying group-differences in animal

models of human AD. Data mining techniques (decision trees, neural networks, sup-

port vector machines), underrepresented in behavioral research, were compared with

conventional statistical analyses (correlation, discriminant analysis, factor analysis)

to explore the diagnostic potential of data mining methodologies in both human-

and mouse-based studies. A semantic interference learning task originally developed
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for human AD assessment was adapted for mice, by replacing verbal-semantic ele-

ments with visual-spatial components. The resulting parallel evaluation paradigm

effectively distinguished both transgenic and treatment effects in animal models.

Comprehensive assessment, using multiple tasks and measures of sensorimotor

and cognitive ability, provides the best opportunity to detect anomalous behav-

iors suggestive of underlying neuropathology. By sampling across diverse behavioral

domains (e.g., balance, agility, spatial learning, reference memory) and recording

multiple intratask response metrics (e.g., acquisition and retention measures in the

Morris water maze task), a broader cross-section of the behavioral repertoire is re-

vealed, thus providing the investigator with a more complete portrait of the subject’s

overall neurobehavioral status. Subsequent analysis of behavioral measures reveals

evidence of the complex interplay among, as well as within, sensorimotor and cog-

nitive domains which, collectively, are expressed as a distinct syndrome. The sig-

nificant correlations between/among behavioral measures observed within individual

cognitive-loaded tasks, such as the radial arm water maze, reflects both the extent

of integration among diverse cognitive functions necessary for successful overall per-

formance in these tasks, as well as the sweeping impact of incipient neuropathology

across multiple cognitive domains. Strong consensus among cognitive measures ob-

tained from the water maze-type tasks (RAWM, Morris water maze, platform recog-

nition task) underscores the ability of these protocols to evaluate similar features of

learning and memory processes. Indeed, factor analyses of the comprehensive task

battery consistently returned a primary factor comprised largely of measures from

the RAWM and platform recognition tasks, representing overall cognitive function-

ing, which may be analogous to the putative general mental ability “g” construct in

humans.
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Statistical approaches for identifying and quantifying group differences form the

analytic foundation of both experimental and clinical neurobehavioral research. Data

mining techniques, by contrast, have been confined largely to industrial and commer-

cial applications, and are only recently gaining recognition in biomedical research.

Classifier models produced by stepwise-forward discriminant analysis were generally

superior to those returned by direct-entry (complete) discriminant analysis for distin-

guishing between/among groups based on treatment and/or transgenic effects, using

behavioral measures. The variance-optimization capacity of the stepwise-forward ap-

proach, in conjunction with the availability of a relatively large sampling of the mouse

behavioral repertoire (i.e., many measures from which to select predictor variables),

increased the likelihood for successful discriminability. The resulting classifiers often

selected a collection of sensorimotor, anxiety, and cognitive measures, stressing the

importance of multimetric assessment inventories. Moreover, these findings under-

score the utility of the assessment battery for mouse behavioral phenotyping (char-

acterizing groups of animals by treatment and/or transgenic effects using discernable

behavioral features).

Decision trees, which select predictor variables based on information-bias ca-

pacity, did not exhibit consistent performance but, rather, idiosyncratic (subject

to differential performance with different datasets) behavior in the relatively-smaller

datasets of mouse-based studies. For this reason, unless the investigator has substan-

tial prior experience with the experimental treatment conditions, to make informed

decisions concerning predictor variable selection, reliance on decision tree-based clas-

sifiers is not recommended, particularly when small sample sizes are present. Neu-

ral networks and support vector machines also exhibited modestly idiosyncratic,

albeit more consistent, behavior for analyzing groupwise behavioral measures. In-

deed, either/both of these two methods were found to be superior to discriminant
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analyses, with respect to groupwise discriminability. These findings suggest that

memory/learning processes, mirroring the underlying physiological substrates, may

exhibit nonlinear behavioral manifestations to which neural network and support

vector machine architectures may be more sensitive (compared to multivariate sta-

tistical analyses). Moreover, these results indicate that statistical- and data mining-

based classifiers may be complementary techniques, rather than substitutes and, in

addition, that sample size may be an important consideration when selecting among

alternative analytic methodologies.

Two studies examining the cognitive effects of caffeine admininstration in mice

were used to develop and refine advanced statistical and data mining analytic tech-

niques for neurobehavioral research in both nontransgenic and Alzheimer’s trans-

genic animals. The first study (Chapter 4), involving aged nontransgenic mice which

received oral caffeine (1.5 mg/day) for approximately ten months suggests that, al-

though caffeine may exert subtle influence on both sensorimotor and cognitive be-

havior, it is unlikely that chronic caffeine intake provides cognitive benefits in normal

(nontransgenic) animals, as reflected in poor groupwise discriminability by both ad-

vanced statistical and data mining-based classifiers. The effects of long-term caffeine

administration in Alzheimer’s transgenic mice were investigated in the second study

(Chapter 5). After consuming oral caffeine (1.5 mg/day) for four to five weeks,

caffeine-treated transgenic animals performed comparably to age-matched nontrans-

genic mice and, indeed, superior to untreated transgenic animals, with respect to

cognitive measures of working memory, as indicated by superior discriminability be-

tween/among treatment groups by both sets of classifiers.

The semantic interference task (Loewenstein et al., 2004) was recently developed

as a clinical diagnostic/screening instrument for probable Alzheimer’s disease. The

original (human) version consists of verbally-reported immediate- and delayed-recall
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memory components, which assess the subject’s ability to maintain two distinct col-

lections of familiar items in memory. When the dataset from the Loewenstein et al.

(2004) study was analyzed using advanced statistical and data mining-based tech-

niques (Chapter 6), these methodologies were found to be comparable with respect to

overall accuracy, sensitivity, and specificity for distinguishing between/among prob-

able Alzheimer’s disease, mildly cognitively-impaired, and normal aged individuals

(humans). Collectively, these results underscore the diagnostic importance of the

semantic interference paradigm for Alzheimer’s screening, as well as the use of data

mining techniques for clinical applications typically confined to statistical methods.

A mouse-based adaptation of the task was created by substituting spatial learn-

ing elements (similar apparatus to the RAWM) for the verbal components of the

original task. The resulting paradigm generated performance measures (both error-

scores and response-latencies) which were analogous to those of the original human-

based design, reflecting: general recall and learning capacity, proactive interference,

retroactive interference, and delayed-recall ability.

The mouse-based interference paradigm was compared to conventional neurobe-

havioral assessment protocols (e.g., RAWM, comprehensive behavioral task battery)

in two studies, involving: (1) the cognitive effects of an additional genetic manip-

ulation (elimination of GRK5 expression) superimposed on the Alzheimer’s trans-

genic genotype, as well as nontransgenics, and, (2) therapeutic efficacy of GM-CSF

administration in Alzheimer’s transgenic mice and age-matched nontransgenic an-

imals. The GRK5-knockout genotype is being investigated (e.g., Suo et al., 2007)

as a model for Alzheimer’s-like neuropathology. In Chapter 7, one-year-old mice

(both nontransgenic and Alzheimer’s transgenic) with an additional genetic modifi-

cation (with/without GRK5 expression) completed both the comprehensive behav-

ioral task battery and the mouse-based interference paradigm, and the results were
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analyzed using standard statistics (ANOVA), advanced statistics (e.g., discriminant

analysis), and data mining methods (decision trees, neural networks, support vector

machines). Nontransgenic and Alzheimer’s transgenic mice, both expressing GRK5,

were found to differ in both sensorimotor and cogitive measures of the comprehen-

sive battery, using both standard and advanced statistics, as well as data mining

methods. These two groups also exhibit significant differences in component mea-

sures of the interference paradigm, based on standard and advanced statistics, as

well as data mining analyses. By contrast, only modest discriminability with respect

to GRK5 expression was observed in both nontransgenic and Alzheimer’s transgenic

animals. However, comparisons among nontransgenic mice expressing GRK5 and

both Alzheimer’s transgenic groups across measures in the interference paradigm

suggest that eliminating expression of GRK5 may ameliorate cognitive impairment

associated with the Alzheimer’s transgene, bringing the Tg-KO animals closer to the

baseline cognitive performance of GRK5-expressing nontransgenics. Indeed, GRK5-

expressing nontransgenics only differ significantly from GRK5-knockout Alzheimer’s

transgenics with respect to a single behavioral measure of the interference paradigm,

retroactive interference response-latency. Finally, the therapeutic efficacy of GM-

CSF admininstration, with respect to cognitive function, was examined in both non-

transgenic and Alzheimer’s transgenic animals (Chapter 8). The inflammatogenic

cytokine GM-CSF has been proposed as a treatment for Alzheimer’s disease, to atten-

uate beta-amyloid plaque-associated structural and functional impairment, thereby

improving or restoring cognitive function. One-year-old Alzheimer’s transgenic mice

received daily injections of GM-CSF (5 mcg/day) for two weeks, then completed both

RAWM post-testing and the interference paradigm. GMCSF-treated transgenic an-

imals performed signficantly superior to untreated transgenics and comparably to

age-matched nontransgenic mice (receiving either GMCSF or plain vehicle) in the

244



RAWM trial T5 working memory error-score measure, as well as in the three-trial

recall and delayed-recall measures of the interference paradigm. GMCSF, therefore,

may ameliorate Alzheimer’s transgene-associated cognitive impairment and, thus,

represent a cognitive-protective treatment for individuals predisposed for Alzheimer’s

disease.

In theory, early detection and therapeutic intervention represents the best strat-

egy for treating progressive disorders, such as Alzheimer’s disease. Although spe-

cific genetic markers have been identified as risk factors for early-onset, familial

Alzheimer’s disease, the etiology of most AD cases (over ninety percent) remains

unclear. Many situational (e.g., lifestyle, diet) and dispositional (e.g., other ge-

netic factors, epigenetics) candidate risk factors are currently under investigation.

Meanwhile, diagnostic, therapeutic, and management protocols currently exist for

patients. Subtle manifestations of nascent cognitive impairment, for example, may

be revealed through early psychometric indices (e.g., academic or mental ability

test subscores). Certain individual differences in learning patterns (e.g., memory-

task learning curve) which are commonly dismissed as psychological variability may,

in fact, represent very early indications of cognitive dysfunction or, possibly, pre-

disposition to dementia-like syndromes. Advanced analytic methodologies, as well,

may lead to new insights through the integration of neurobehavioral and neurological

databases. Customized hybrid and ensemble classifier systems, for instance, could be

used to detect specific distinguishing features, patterns, or trends which reliably iden-

tify pathologic states, therapeutic efficacy, or differential treatment effects in both

experimental (e.g., transgenic animals) and clinical settings. Finally, in recognition

of the spatial and temporal aspects of Alzheimer’s disease, investigative paradigms

which exploit the spatiotemporal dynamics of AD should be pursued. For example,

certain computational architectures, such as self-organizing maps, are particularly
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suitable for multidimensional modeling of nonlinear dynamical processes, such as

regiospecific patterns of brain activation.

Contemporary Alzheimer’s research has become a multidisciplinary endeavor,

bringing together the diverse insights and talents of both academic and professional

specialties. Alzheimer’s disease represents a significant public health concern which

calls for a commensurate share of social, political, and scientific attention. Indeed,

there is growing public awareness of Alzheimer’s disease and related research activi-

ties, as reported by the news media and portrayed in popular entertainment. Each

advance renews our hopes, and each setback strengthens our resolve: We recognize

this familiar ebb and flow as the natural pace of progress, and find solace in its

continuity.
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Übeyli, E. D. (2008). Multiclass support vector machines for diagnosis of erythemato-
squamous diseases. Expert Systems with Applications, 35, 1733-1740.

Underwood, B. J., Boruch, R. F., and Malmi, R. A. (1978). Composition of episodic
memory. Journal of Experimental Psychology: General, 107, 393-419.

Valenti, P., Cazamajou, E., Scarpettini, M., Aizemberg, A., Silva, W., and Kochen,
S. (2006). Automatic detection of interictal spikes using data mining models.
Journal of Neuroscience Methods, 150, 105-110.

Van Broeckhoven C, Backhovens H, Cruts M, De Winter G, Bruyland M, Cras
P, and Martin J. J. (1992). Mapping of a gene predisposing to early-onset
Alzheimer’s disease to chromosome 14q24.3. Nature Genetics, 2, 335-339.

Van Dam, D., DHooge, R., Staufenbiel, M., Van Ginneken, C., Van Meir, F., and
De Deyn, P. (2003). Age-dependent cognitive decline in the APP23 model
precedes amyloid deposition. European Journal of Neuroscience, 17, 388-396.

Van Der Staay, F. J., and Steckler, T. (2001). Behavioral phenotyping of mouse
mutants. Behavioral Brain Research, 125, 3-12.

Van Gelder, B. M., Buijsse, B., Tijhuis, M., Kalmijn, S., Giampaoli, S., Nissinen,
A., and Kromhout, D. (2007). Coffee consumption is inversely associated with
cognitive decline in elderly European men: The FINE Study. European Journal
of Clinical Nutrition, 61, 226-232.

Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.

Vapnik, V., and Chervonenkis, A. (1964). A note on one class of perceptrons.
Automation and Remote Control, 25, 821-837.

307



Vapnik, V., and Lerner, A. (1963). Pattern recognition using generalized portrait
method. Automation and Remote Control, 24, 774-780.

Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P.,
Teplow, D. B., Ross, S., Amarente, P., Loeloff, R., Luo, Y., Fisher, S., Fuller,
J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess,
T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999).
Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the trans-
membrane aspartic protease BACE. Science, 286, 735-741.

Vaughan, W., Jr. (1988). Formation of equivalence sets in pigeons. Journal of
Experimental Psychology: Animal Behavior Processes, 14, 36-42.

Vekovischeva, O. Yu., Verbitskaya, E. V., Aitta-aho, T., Sandnabba, K., and Korpi,
E. R. (2007). Multimetric statistical analysis of behavior in mice selected for
high and low levels of isolation-induced male aggression. Behavioral Processes.
75, 23-32.

Velicer, W. F., and Fava, J. L. (1998). Effects of variable and subject sampling on
factor pattern recovery. Psychological Methods, 3, 231-251.

Velicer, W. F., and Jackson, D. N. (1990). Component analysis versus common
factor analysis: Some issues in selecting an appropriate procedure. Multivariate
Behavioral Research, 25, 1-28.

Venneri, A., Forbes-Mckay, K. E., and Shanks, M. F. (2005). Impoverishment of
spontaneous language and the prediction of Alzheimer’s disease. Brain, 128,
E27.

Vercelli, D. (2004). Genetics, epigenetics, and the environment: Switching, buffer-
ing, releasing. Journal of Allergy and Clinical Immunology, 113, 286-381.

Verghese, J., Lipton, R., Katz, M., Hall, C., Derby, C., Kuslansky, G., Ambrose,
A., Sliwinski, M., and Buschke, H. (2003). Leisure activities and the risk of
dementia in the elderly. New England Journal of Medicine, 348, 2508-2516.

Veurink, G., Fuller, S., Atwood, C., and Martins, R. (2003). Genetics, lifestyle, and
the roles of amyloid beta and oxidative stress in Alzheimer’s disease. Annals
of Human Biology, 30, 639-667.

Viera, A. J., and Garrett, J. M. (2005). Understanding interobserver agreement:
The kappa statistic. Family Medicine, 37, 360-363.

308



Vinores, S., Xiao, W., Zimmerman, R., Whitcup, S. and Wawrousek, E. (2003).
Upregulation of vascular endothelial growth factor (VEGF) in the retinas of
transgenic mice overexpressing interleukin-1 beta (IL-1beta) in the lens and
mice undergoing retinal degeneration. Histology and Histopathology, 18, 797-
810.

Waddington, C. H. (1953). Epigenetics and evolution. Symposium of the Society
for Experimental Biology, 7, 186-199.

Wahlsten, D., Cooper, S. F., and Crabbe, J. C. (2005). Different rankings of in-
bred mouse strains on the Morris maze and a refined 4-arm water escape task.
Behavioral Brain Research, 165, 36-51.

Walczak, S., and Cerpa, N. (1999). Heuristic principles for the design of artificial
neural networks. Information and Software Technology, 41, 107-117.

Walker, P. R., Smith, B., Liu, Q. Y., Famili, A. F., Valdes, J. J., Liu, Z., and
Lach, B. (2004). Data mining of gene expression changes in Alzheimer brain.
Artificial Intelligence in Medicine, 31, 137-154.

Wall, P. M., and Messier, C. (2000). Ethological confirmatory factor analysis of
anxiety-like behavior in the murine elevated plus-maze. Behavioral Brain Re-
search, 114, 199-212.

Walsh, D. M., and Selkoe, D. J. (2004). Oligomers on the brain: The emerging
role of soluble protein aggregates in neurodegeneration. Protein and Peptide
Letters, 11, 213-228.

Wang, J., Ikonen, S., Gurevicius, K., van Groen, T., and Tanila, H. (2002). Alter-
ation of cortical EEG in mice carrying mutated human APP transgene. Brain
Research, 943, 181-190.

Watanabe, S., Sakamoto, J., and Wakita, M. (1995). Pigeons’ discrimination of
paintings by Monet and Picasso. Journal of the Experimental Analysis of Be-
havior, 63, 165-174.

Webster, S., Lue, L. F., Brachova, L., Tenner, A. J., McGeer, P. L., Terai, K.,
Walker, D. G., Bradt, B., Cooper, N. R., and Rogers, J. (1997). Molecu-
lar and cellular characterization of the membrane attack complex, C5b-9, in
Alzheimer’s disease. Neurobiology of Aging, 18, 415-421.

Weggen, S., Eriksen, J. L., Das, P., Sagi, S. A., Wang, R., Pietrzik, C. U., Findlay,
K. A., Smith, T. E., Murphy, M. P., Bulter, T., Kang, D. E., Marquez-Sterling,
N., Golde, T. E., and Koo, E. H. (2001). A subset of NSAIDs lower amyloido-
genic Abeta42 independently of cyclooxygenase activity. Nature, 414, 212216.

309



Weiner, M. F., Hynan, L. S., Bret, M. E., and White, C. (2005). Early behavioral
symptoms and course of Alzheimer’s disease. Acta Psychiatrica Scandinavica,
111, 367-371.

Weinhold, B. (2006). Epigenetics: The science of change. Environmental Health
Perspectives, 114, A160-A167.

Welsh, K., Butters, N., Hughes, J., Mohs, R., and Heyman, A. (1991). Detection
of abnormal memory decline in cases of Alzheimer’s disease using CERAD
neurological measures. Archives of Neurology, 48, 278-281.

Wesnes, K., Simpson, P. M., and Kidd, A. G. (1988). An investigation of the range
of cognitive impairments induced by scopolamine 0.6 mg. Human Psychophar-
macology, 3, 27-41.

Westbury, C., Buchanan, L., Sanderson, M., Rhemtulla, M., and Phillips, L. (2003).
Using genetic programming to discover nonlinear variable interactions. Behav-
ior Research Methods, Instruments, and Computers, 35, 202-216.

Westerman, M., Cooper-Blacketer, D., Mariash, A., Kotilinek, L., Kawara-bayashi,
T., Younkin, L., Carlson, G., Younkin, S., and Ashe, K. (2002). The rela-
tionship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s
disease. Journal of Neuroscience, 22, 1858-1567.

Whelihan, W. M., Thompson, J. A., Piatt, A. L., Caron, M. D., and Chung, T.
(1997). The relation of neuropsychological measures to levels of cognitive func-
tioning in elderly individuals: A discriminant analysis approach. Applied Neu-
ropsychology, 4, 160-164.

Whishaw, I. Q., and Tomie, J. A. (1996). Of mice and mazes: Similarities between
mice and rats on dry land but not water mazes. Physiology and Behavior, 60,
1191-1197.

Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika,
24, 471-494.

Willingham, D. B., and Koroshetz, W. J. (1993). Evidence for dissociable motor
skills in Huntington’s disease patients. Psychobiology, 21, 173-182.

Wilson, R. S., Bienias, J. L., Berry-Kravis, E., Evans, D. A., and Bennett, D. A.
(2002). The apolipoprotein E ε2 allele and decline in episodic memory. Journal
of Neurology, Neurosurgery and Psychiatry, 73, 672-677.

Wilson, R. S., Li, Y., Aggarwal, N. T., Barnes, L. L., McCann, J. J., Gilley, D.
W., and Evans, D. A. (2004). Education and the course of cognitive decline in
Alzheimer’s disease. Neurology, 63, 1198-1202.

310



Wilson, R. S., Scherr, P. A., Schneider, J. A., Tang, Y., and Bennett, D. A. (2007).
The relation of cognitive activity to risk of developing Alzheimer disease. Neu-
rology, 69, 1911-1920.

Winblad, B., Engedal, K., Soininen, H., verhey, F., Waldemar, G., Wimo, A., Wet-
terholm, A., Zhang, R., Haglund, A., Subbiah, P. and the Donepezil Nordic
Study Group. (2001). A 1-year, randomized, placebo-controlled study of
donepezil in patients with mild to moderate AD. Neurology, 57, 489-495.

Winocur, G. (1984). The effects of retroactive and proactive interference on learning
and memory in old and young rats. Developmental Psychobiology, 17, 537-545.

Wisniewski, T., Castano, E., Golabek, A., Vogel, T. and Frangione, B. (1994). Ac-
celeration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Ameri-
can Journal of Pathology, 145, 1030-1035.

Witten, I. H., and Frank, E. (2000). Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations, 2nd Ed. New York: Morgan
Kaufmann Publishers.

Wolfer, D. P., Stagljar-Bozicevic, M., Errington, M. L., and Lipp, H.-P. (1998).
Spatial memory and learning in transgenic mice: Fact or artifact? News in
Physiological Sciences, 13, 118-123.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1, 67-82.

Wong, P. C., Cai, H., Borchelt, D. R., and Price, D. L. (2002). Genetically engi-
neered mouse models of neurodegenerative diseases. Nature Neuroscience, 5,
633-639.

Woodruff-Pak, D. S., Vogel, R. W., and Wenk, G. L. (2001). Galantamine: Ef-
fect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning.
Proceedings of the National Academy of Sciences USA, 98, 2089-2094.

Wright, J. W., Alt, J. A., Turner, G. D., and Krueger, J. M. (2004). Differences
in spatial learning comparing transgenic p75 knockout, New Zealand Black,
C57BL/6, and Swiss Webster mice. Behavioral Brain Research, 153, 453-458.

Wu, J., Basha, M. R., and Zawia, N. H. (2008a). The environment, epigenetics and
amyloidogenesis. Journal of Molecular Neuroscience, 34, 1-7.

Wu, J., Basha, M. R., Brock, B., Cox, D. P., Cardozo-Pelaez, F., McPherson, C. A.,
Harry, J., Rice, D. C., Maloney, B., Chen, D., Lahiri, D. K., and Zawia, N. H.
(2008b). Alzheimer’s disease (AD)-like pathology in aged monkeys after infan-
tile exposure to environmental metal lead (Pb): Evidence for a developmental
origin and environmental link for AD. Journal of Neuroscience, 28, 3-9.

311



Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, by-
stander or beneficial response? Nature Medicine, 12, 1005-1015.

Xiao, Q. X., Wang, R., and Xi, C. T. (2000). Huperzine A and tacrine attenu-
ate beta-amyloid peptide-induced oxidative injury. Journal of Neuroscience
Research, 61, 564-569.

Xu, Y., Jack, C. R., OBrien, P. C., Kokmen, E., Smith, G. E., Ivink, R. J., Boeve,
B. F., Tangalos, R. G., and Petersen, R. C. (2000). Usefulness of MRI measures
of entorhinal cortex versus hippocampus in Alzheimer’s disease. Neurology, 54,
1760-1767.

Yamaguchi, H., Hirai, S., Morimatsu, M., Shoji, M., and Harigaya, Y. (1988).
Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta
Neuropathologica, 77, 113-119.

Yao, J., Petanceska, S. S., Montine, T. J., Holtzman, D. M., Schmidt, S. D., Parker,
C. A., Callhan, M. J., Lipinski, W. J., Bisgaier, C. L., Turner, B. A., Nixon,
R. A., Martins, R. N., Ouimet, C., Smith, J. D., Davies, P., Laska, E., Ehrlich,
M. E., Walker, L. C., Mathews, P. M., and Gandy, S. (2004). Aging, gen-
der, and ApoE isotype modulate metabolism of Alzheimer’s Aβ peptides and
F-isoprostanes in the absence of detectable amyloid deposits. Journal of Neu-
rochemistry, 90, 1011-1018.

Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H., and Sakaki, Y. (1990), Genomic
organization of the human amyloid beta-protein precursor gene. Gene, 87,
257-263.

Zandi, P. P., Anthony, J. C., Hayden, K. M., Mehta, K., Mayer, L., Breitner, J. C.,
and Cache County Study Investigators. (2002). Reduced incidence of AD with
NSAID but not H2 receptor antagonists: The Cache County Study. Neurology,
59, 880-886.

Zangara, A. (2003). The psychopharmacology of huperzine A: An alkaloid with
cognitive enhancing and neuroprotective properties of interest in the treatment
of Alzheimer’s disease. Pharmacology Biochemistry and Behavior, 75, 675-686.

Zhang, G. P. (2000). Neural networks for classification: A survey. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
30, 451-462.

Zhuo, J.-M., Prescott, S. L., Murray, M. E., Zhang, H.-Y., Baxter, M. G., and
Nicolle, M. M. (2007). Early discrimination reversal learning impairment and
preserved spatial learning in a longitudinal study of Tg2576 APPsw mice. Neu-
robiology of Aging, 28, 1248-1257.

312



Zillmer, E. A., Fowler, P. C., Gutnick, H. N., and Becker, E. (1990). Comparison
of two cognitive bedside screening instruments in nursing home residents: A
factor analytic study. Journal of Gerontology, 45, P69-P74.

Zimmer, C. (2008, Oct). The search for intelligence. Scientific American, 299(4),
68-75.

Zimmermann, M., Colciaghi, F., Cattabeni, F., and Di Luca, M. (2002). Ginkgo
biloba extract: From molecular mechanisms to the treatment of Alzheimer’s
disease. Cellular and Molecular Biology, 48, 613-623.

Zubenko, G. S., Hughes, H. B., III, and Stiffler, J. S. (2001). D10S1423 identifies
a susceptibility locus for Alzheimer’s disease in a prospective, longitudinal,
double-blind study of asymptomatic individuals. Molecular Psychiatry, 6, 413-
419.

Zweig, M. H., and Campbell, G. (1993). Receiver-operating characteristic (ROC)
plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry,
39, 561-577.

Zwick, W. R., and Velicer, W. F. (1986). Comparison of five rules for determining
the number of components to retain. Psychological Bulletin, 99, 432-442.

313



ABOUT THE AUTHOR

Ralph E. Leighty attended the University of Florida (Gainesville) as an under-

graduate, where he completed Bachelor’s degrees in Chemistry (1985) and Psychol-

ogy (1988), followed by postbaccalaureate study in Pharmacy and Neurobiological

Sciences. In 1991, he relocated to Tampa, Florida to pursue graduate studies in

Experimental Psychology at the University of South Florida. He transferred to the

College of Engineering in 1995 to study artificial intelligence and robotics, and re-

ceived a Master’s in Computer Science (1997). In 2001, he resumed his graduate

studies, earning a Master’s in Biology (2003) with a thesis on behavioral analysis of

strain differences and Alzheimer-like transgenic effects in mice. His current research

interests include behavioral neurobiology, computational neuroscience, and nonlinear

analysis. In addition to his academic activities, he is an actor/comedian, musician

(piano, synthesizers), and chess enthusiast. He currently resides in Tampa with his

wife, Debby, and their two cats, Jo and Meg.


	University of South Florida
	Scholar Commons
	4-6-2009

	Statistical and Data Mining Methodologies for Behavioral Analysis in Transgenic Mouse Models of Alzheimer’s Disease: Parallels with Human AD Evaluation
	Ralph E. Leighty
	Scholar Commons Citation


	tmp.1335210388.pdf.ovUn6

