WSA
NIVERSITY OF
OUUTH FLORIDA

# Structure and Dynamics of the p53 Transactivation Domain Binding to MDM2 and RPA70 

Anne Terese Powell<br>University of South Florida, annirese@hotmail.com

Follow this and additional works at: http:// scholarcommons.usf.edu/etd
Part of the American Studies Commons, and the Biophysics Commons

## Scholar Commons Citation

Powell, Anne Terese, "Structure and Dynamics of the p53 Transactivation Domain Binding to MDM2 and RPA70" (2012). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/4207

Structure and Dynamics of the p53 Transactivation Domain Binding to MDM2 and RPA70

## By

Anne Terese Powell

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Biology,
Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida

Major Professor: Gary Daughdrill, Ph.D.
Kristina Schmidt, Ph.D.
Stanley Stevens, Ph.D. Jiandong Chen, Ph.D.

Date of Approval:
March 22, 2012

Keywords: Nuclear Magnetic Resonance, Isothermal Titration Calorimetry, Thermodynamics, Intrinsically Disordered Proteins, Polymorphism

Copyright © 2012, Anne Terese Powell

## Dedication

I would like to dedicate this work to my late aunt, Mary Ann Long. She always encouraged me to be my best. Her memory is a driving force in my life to help those affected by cancer. This work is also dedicated to my mother, Elizabeth Johnston. Her constant pursuit of knowledge and her curiosity are infectious. She has taught me through example that anything is possible. This work is also dedicated to my father, Gary Pine. He has the strongest work ethic of any man that I have ever met. I try to emulate his resolve not only to work, but to do the best work.

## Acknowledgements

I would like to thank Dr. Gary Daughdrill for his patience and guidance. I am grateful for the time and direction from my committee members. Dr. Kristina Schmidt was invaluable during my graduate experience. I would like to thank Dr. Hongwei Wu, Wade Borcherds and Katie Mishall for their help and contribution to this work. As an undergraduate researcher, Katie assisted with most of the RPA70 experiments. Most of all I would like to thank my husband Chase. His support, encouragement, and understanding were priceless. Lastly, I would like to say thank you to my children for their sacrifice of time.

## Table of Contents

List of Tables ..... iii
List of Figures ..... iv
Abstract ..... vi
Chapter 1: The History, Structure, and Binding Partners of p53 ..... 1
The History of p53 ..... 1
The discovery of p53 ..... 1
The function of p53 ..... 2
The p53 Protein ..... 3
The domains of p53 ..... 3
p53 is an Intrinsically Disordered Protein. ..... 3
The p53 binding partner RPA70 ..... 5
Regulation of p53 by the E3 ligase, MDM2 ..... 7
History and functional differences of the polymorphism. ..... 7
Chapter 2: Materials, Methods, and Experimental Design ..... 9
Creation of constructs ..... 9
Protein Expression ..... 10
Protein Purification ..... 11
Purification of p53. ..... 11
Purification of RPA70 ..... 13
Purification of MDM2 ..... 14
Nuclear Magnetic Resonance (NMR) Spectroscopy ..... 15
Using HSQC experiments to probe residue specific changes in the structure and dynamics of protein-protein interactions ..... 16
Paramagnetic Relaxation Enhancement (PRE) ..... 17
NMR data analysis ..... 19
Isothermal Titration Calorimetry ..... 19
Chapter 3: Results of the Interaction of RPA70 with p53 ..... 21
RPA $\triangle 169$ and Canine p53TAD ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC Titration Experiment. ..... 21
RPAD122 and Human p53TAD 1H-15N HSQC Titration Experiment ..... 23
Chapter 4: Results of the Interactions of MDM2 with p53 ..... 26
MDM2 and Human p53 ..... 26
MDM2 and Human p53 474 _72R_P27A ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC Titration Experiment. ..... 29
MDM2 and Human p53 574 _K24N Isothermal Titration Calorimetry Experiment ..... 30
Chapter 5: Results of the Polymorphism at Position 72 in Human p53. ..... 32
MDM2 and Human p53 474 _72P ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC Titration Experiment ..... 32
MDM2 and Human p53TAD Isothermal Titration Calorimetry ..... 33
Human p53 574 _72R and p53 $\Delta 74$ _72P (1-73) Paramagnetic Relaxation Enhancement Experiment. ..... 34
Chapter 6: Discussion ..... 37
References Cited ..... 42
Appendices ..... 53

## List of Tables

Table 1. The ITC values of the point mutant K24N and p53TAD........................ 30
Table 2. The ITC data collected comparing the single nucleotide polymorphism at position 72. The arginine polymorphism values are on the left and the proline values are on the right. 34

## List of Figures

Figure 1. The domain structure of p53 protein ..... 3
Figure 2. The disorder predictor IUPred was used to diagram of the p53 full length protein. ..... 5
Figure 3. The RPA70 protein domains. ..... 6Figure 4. The p53 and MDM2 autoregulatory negative feedback loop.Activation of p53 leads to angiogenesis, growth arrest, DNArepair, or apoptosis.7
Figure 5. SDS-PAGE gel of purified p53 proteins. ..... 11
Figure 6. SDS PAGE gel with RPA70 purified proteins; RPA $\triangle 122$ is on the left and RPA $\triangle 169$ is on the right. ..... 13
Figure 7. Purified MDM2 on SDS PAGE gel. The molecular weight is indicated onthe left14

Figure 8. Cartoon schematic of ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC NMR titration experiment. The red p 53 sample contains only ${ }^{15} \mathrm{~N}$ labeled p 53 . The blue sample contains the exact concentration of ${ }^{15} \mathrm{~N}$ p53 plus a three molar excess of ${ }^{14} \mathrm{~N}$ MDM2.16
Figure 9. The sequence alignment of human and canine RPA70 residues 1-122 and human and canine p53TAD ..... 21
Figure 10. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectra of Canine p53TAD and RPAd169 titration experiment. ..... 22
Figure 11. The chemical shift change in Hertz for the 11 residues on RPA70 that displayed the largest shift during p53TAD titration. ..... 23
Figure 12. The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectra of the titration of ${ }^{15} \mathrm{~N} R P A \triangle 122$ and ${ }^{14} \mathrm{~N}$ human p53TAD ..... 24

Figure 13. An overlay of 18 HSQC spectra of human p53 serine 15 when binding to MDM2.

Figure 14.Threonine 55 peak behavior upon MDM2 titration. The free peak is shown in red and the bound peak is shown in blue27

Figure 15. Peak intensity plotted as a function of MDM2 concentration. The primary site is depicted with Serine 15 and the secondary site is depicted with Threonine 55

Figure 16. Serine 15 and Threonine 55 in p53TAD_P27A titration peak intensity plotted as a function of MDM2 concentration. 29

Figure 17. The polymorphism at position 72 titration experiments plotted with peak intensity as a function of MDM2.33

Figure 18. The long range interactions in the p53TAD polymorphism protein ensembles. The resonance intensity is shown on the $X$ axis and the residue position is shown on the X axis. The proline allele is shown in blue and the arginine allele is shown in red.35

Figure 19. A schematic of the local concentration effect of MDM2 on the second binding site in p53TAD. 39

Figure 20. A schematic of the possible compositions of the protein ensembles of the arginine and proline alleles 40


#### Abstract

The tumor suppressor protein, p53, is mutated or dysregulated in nearly all human cancers(1). The amino terminal domains are essential for transcriptional activation in stressed cells and play a vital role in cell cycle regulation, apoptosis and senescence. The transactivation (TAD) and proline rich domains in this region are dynamic and intrinsically disordered; lacking stable secondary or tertiary structure. This region contains multiple binding sites; arguably, the most significant of these is for p53's negative regulator, the E3 ligase, MDM2. An important, but less understood interaction involving the single stranded DNA binding protein, RPA70A, is hypothesized to be involved in maintaining genome integrity(2-4). Additionally, the amino terminus contains an important single nucleotide polymorphism that has demonstrated different affinity for MDM2 and is of significant biological importance in the induction of apoptosis (5). Isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy were employed to investigate how the thermodynamics and the inherent flexibility of the amino terminus of p53 play a role in complex formation with the MDM2 or RPA70 proteins. Understanding the structure, dynamics, and function of p 53 is paramount in the fight against cancer.


## Chapter 1: The History, Structure, and Binding Partners of p53

## The History of p53

The discovery of p53. A connection between oncogenic transformation and viral infection, exemplified by the human papilloma virus (HPV) and EpsteinBarr virus, had been established by the mid 1970's(6). In the pursuit to identify the middle T antigen of the SV40 virus a protein that was approximately 55 kilo Daltons (kDa) was immunoprecipitated; it was soon realized that it was not a viral protein, but was encoded by the host cell(6). Interestingly, the middle T antigen of the SV40 virus does not exist, but in looking for it they found the p53 protein. The existence of the p53 protein was first published in 1979 as a cellular protein using two approaches, virological and immunological; at the time it was not known that both approaches were describing the same protein (6-12). In 1983, Crawford published that the protein identified in both approaches was the same and named it p53; the research field of p53 was born (13).

There was a fundamental shift about causation in cancer in the early 1980's going from a viral model of pathogenesis to an oncogenic model; the discovery of tumor suppressor genes would come in the late 1980's (6). The p53 protein was originally believed to be an oncoprotein for a multitude of reasons. It was implicated in cell proliferation, associated with the activated oncogene Ha -

Ras, and demonstrated nuclear localization and accumulation in cancer cells but was not present in untransformed cells (14-23).

These initial observations are consistent with p53 function, but were misinterpreted because the function of p53 was not yet understood. When cells are exposed to stress p53 is activated and accumulates within the nucleus. The wildtype p53 had not been define and the p53 protein was a truncated or mutant form in mouse cancer cells leading to functional inactivation of p53 (24). It was shown that families who have a condition called Li-Fraumeni syndrome, which is associated with a high risk for multiple cancers, often have a germ line mutation in p53 $(25,26)$. It was shown that the p53 protein had antiproliferative properties, and was often deleted or mutated in human cancer (6, 24, 27, 28). The p53 gene encoded a tumor suppressor protein (29, 30).

The function of p53. The p53 protein is ubiquitously expressed and maintained at low levels under normal cellular conditions (31-33). The p53 pathway is activated when the cell is exposed to different stresses and activation leads to growth arrest, DNA repair, senescence or apoptosis (1, 33-35). The function of p 53 is to maintain genome integrity(34). If p53's function is altered through, mutation, deletion of the gene or through dysregulation cancer is almost inevitable. For this reason, p53 is one of the most significant targets in cancer research.


Figure 1.The domain structure of p53 protein. The transactivation domain (TAD), Proline Rich Domain (PD), the DNA Binding Domain, the Tetramerization domain (TD), and Regulatory Domain (RD) are shown in blue with the associated regions of the protein demonstrated above the domains.

## The p53 Protein

The domains of p53. The human p53 protein has 393 amino acids and contains five domains that can be divided into three distinct regions; region 1 contains two amino terminal domains, region 2 is the middle DNA binding domain, and region 3 contains two carboxyl terminal domains (figure 1). The first region, residues 1-100, contains the transactivation domain and proline rich domain. This region contains the binding site for p53's negative regulator, the E3 ligase, MDM2. Additionally, this region contains an important functional polymorphism at position 72 that encodes either a proline or an arginine. The second region encompassing residues 101-300 contains the DNA binding domain. The DNA binding domain is where most of the mutations occur that lead to oncogenic transformation (36). The third region at the carboxyl terminus, residues 301-393, contains the tetramerization and regulatory domain respectively.
p53 is an Intrinsically Disordered Protein. Historically it was thought that a rigid three dimensional structure was necessary for biological function, but the classic structure-to-function paradigm is now changing (37). In the past
decade, the view that rigid protein structure gives rise to its biological function has been evolving due to the discovery that multiple systems lack tertiary structure and that absence of rigid structure is important for their function. These advances have led to the discovery of a new family proteins that do not form compact rigid structure under normal physiological conditions (38). These partially or completely disordered proteins are called intrinsically disordered proteins (IDPs) (37, 39-43).

Intrinsically disordered proteins are common in nature (44). Proteomes of highly complex organisms contain higher numbers of IDPs compared with less complex organisms(39). This is thought to be a result of the increased need for cell signaling and gene regulation in more complex organisms(45). IDPs have high specificity and low affinity for their binding partners and this is important in cell regulation allowing these interactions to be easily reversed (44-46). IDPs are overrepresented in protein families that are involved in transcription, translation, signal transduction, and cell cycle regulation (45, 47). Another characteristic that is unique to IDPs is the ability to fold in the presence of a ligand or binding partner. This mechanism is called coupled folding binding, and can be referred to as a disorder-to-order transition (39, 44-46).

The intrinsically disordered protein family is characterized as having no compact globular core, extended structure, and sample a dynamic range of conformations under normal physiological conditions (39, 44-49). The ability to sample a wide range of conformations can be a functional advantage. For instance, a single disordered protein can bind to different proteins in unique
conformations with high specificity and low affinity (44-46, 50). The ability to sample numerous conformations allows for binding with many distinctive protein partners or ligands (44-47).


Figure 2. The disorder predictor IUPred was used to diagram of the p53 full length protein. This disorder predictor uses amino acid composition and energy content information to determine if a give sequence will contain intrinsic disorder (49,50). Disorder tend tendency values above 0.5 are predicted to be disordered and values below 0.5 are predicted to contain secondary and tertiary structure. The TAD, PD, DNA Binding Domain, TD, and RD domains are outlined in black. The residue position is listed on the X axis.

The p53 protein is an intrinsically disordered protein (40, 51). In monomeric p53 the amino terminal and carboxyl terminal do not form stable secondary structure; only the DNA binding domain having established secondary and tertiary structure (figure 2). The tetramerization domain will form stable structure in the tetrameric p 53 . The crystal structure of the DNA binding domain was first published in 1994 (52). The intrinsic disorder inherent to both termini of the protein would aid in p53's important role in cell cycle regulation (53). Additionally, p53 goes through a disorder-to-order transition when binding the single stranded DNA binding protein, RPA70 or its negative regulator, MDM2 (3).

The p53 binding partner RPA70. The single stranded DNA binding protein, replication protein A is composed of 3 subunits; a 14 kDa , a 32 kDa , and

70 kDa subunits $(54,55)$. The 70 kDa subunit of RPA70 is essential in DNA replication and chromosomal stability (54-56). The p53 transactivation domain (TAD) binds the RPA70 protein and it has been shown that single stranded DNA and p53 compete for binding with RPA70 (3, 57-60). The competition between single stranded DNA and the p53 protein is hypothesized to be important in the response to DNA damage and potentially provides a pool of p53 to respond immediately after damage occurs (3, 4, 60).


Figure 3. The RPA70 protein domains. The full length protein is shown at the top followed by the deletion mutants created for experiments used in this work. The full length protein contains DNA binding domain $F$ (DBDF), then a flexible linker that connects to DNA Binding Domain A (DBDA), DNA Binding Domain B (DBDB), DNA Binding Domain C (DBDC).

The domain structure of RPA70 is shown in figure 3 . The tumor suppressor protein p53 binds the basic cleft on the amino terminal end of RPA70 in the DNA binding domain $F$ (DBDF) and at the carboxyl terminal end in the DNA binding domain C (DBDC) of RPA70 (3). Deletion mutant analysis has been employed to investigate DBDF binding to p53 and to single stranded DNA (3).

Regulation of p53 by the E3 ligase, MDM2. The Murine Double Minute 2 (MDM2) oncoprotein was first identified when it was found to induce cancer transformation in a mouse cell line and further reports showed its involvement in


Figure 4. The p53 and MDM2 autoregulatory negative feedback loop. Activation of p53 leads to angiogenesis, growth arrest, DNA repair, or apoptosis.
human sarcomas in the early 1990's (61-63). It was also shown that MDM2 formed a complex with p53 and inhibited p53 transactivation (62). MDM2 not only binds to p53 and inhibits p53 transactivation it is also an ubiquitin E3 ligase activity that targets p53 for degradation by ubiquitinating the carboxyl terminus of p53. Additionally, activated p53 induces the transcription of MDM2; this creates and auto-regulatory feedback (figure 4).

## The polymorphism at codon 72 in the p53 protein.

History and functional differences of the polymorphism. The arginine/proline polymorphism at codon 72 was first reported in 1990 (64). Following this discovery, Thomas et. al. reported that both variants could be considered wild type based on DNA sequence specific binding, but noted a difference in transcriptional activation and apoptotic induction between the
polymorphs (65). This polymorphism occurs within the proline rich domain and accounts for one of the PXXP motifs indicating that it may alter protein-protein interactions (66). It has been shown at the cellular level to have differential implications in cancer predisposition, age of onset, and patient survival (5, 6672). The preeminence of the data points to a substantial dissimilarity in apoptotic potential between the two alleles; with the arginine allele causing stronger induction of apoptosis as opposed to the proline allele (5, 72). Although a structural difference has been reported through proteolytic digest and differential shifts on SDS-PAGE gels, a detailed structural explanation is still lacking (66).

At a cellular level, the p 5372 R variant binds MDM2 with a higher affinity than 72P allele as determined by an immunoprecipitation assay $(5,66)$. The difference in binding affinity may be due to differences between the structure and dynamics of the allelic protein ensembles. Alternatively, another protein binding site within the amino terminal domain of p53 could be affecting the MDM2 binding affinity; the second site has been preliminarily shown to bind to MDM2 with lower affinity than the primary MDM2 binding site (73). It is reasonable to assume that the basic nature of the arginine at position 72 alters the electrostatic interactions within the transactivation and proline rich domains giving rise to the differential affinity of the variants with MDM2 and ultimately influencing biological function of the p53 protein.

## Chapter 2: Materials, Methods, and Experimental Design

## Creation of constructs

The Pet28a vector was used for the p53 constructs p53 $474 \_72 R$, p53 591 _72P, the Pet28d vector was used for RPA70 169 , RPA70 130 and were created in the lab previously (3). The pGex6P2 MDM2 (17-125) construct was ordered from GeneArt (Invitrogen, Grand Island, NY). The following constructs were made with a QuikChange II Site-Directed Mutagenesis Kit (Stratagene, Wilmington, DE), p53 744 D21E, _K24E, _K24A, _K24Q, _K24N, p53 491 _72P_E28C, pGex6P2 p53 491 _72R_E28C, RPA $4129, \Delta 128, \Delta 127$, $\Delta 126, \Delta 125, \Delta 124, \Delta 123, \Delta 122, \Delta 121, \Delta 120$, and RPA $\Delta 300 \_$L280F, RPA 400 _L280F, RPA $\Delta 400$ _L280F. The p53 $491 \_72 R$ construct was ordered from GeneArt (Invitrogen, Grand Island, NY) and sub cloned into the pGex6P2 vector using the restriction enzymes EcoR1 and BamH1 (New England Biolabs, Ipswich, MA). All constructs were transformed into NEB5 $\alpha$ E. coli cells. One nanogram of plasmid DNA was mixed with $50 \mu \mathrm{~L}$ of competent cells and incubated on ice for 30 minutes, heat shocked for 45 seconds, followed by incubation on ice for 5 minutes. SOC media, 950 microliters, was added to the mixture and was incubated at $37^{\circ} \mathrm{C}$ for 1 hour with 225 rpms in a shaker incubator. The mixture was then plated on a plate with the appropriate antibiotic (ampicillin or kanamycin) and incubated $16-18$ hours at $37^{\circ} \mathrm{C}$. Single colonies were picked and grown overnight in NZY broth with the appropriate antibiotic.

The next morning the cultures were spun down at $4^{\circ} \mathrm{C}$ at 5400 xg for 10 minutes. A Qiagen miniprep kit would be used to extract the plasmid DNA from the cultures (Valencia, CA). The sequences were confirmed by MWG Operon (Huntsville, $A L$ ) and sequence analysis using Geneious software.

## Protein Expression

All the protein constructs used in this study were transformed into BL21 (DE3) competent E. coli (Invitrogen). One nanogram of plasmid DNA was mixed with $20 \mu \mathrm{~L}$ of competent cells and incubated on ice for five minutes, placed at $42^{\circ}$ C for 30 seconds, followed by incubation on ice for 2 minutes. Eighty microliters of SOC media was added to the mixture followed by incubation at $37^{\circ} \mathrm{C}$ for 1 hour with shaking at 225 rpms. The mixture was then plated on LB agar with the appropriate antibiotic (ampicillin or kanamycin) and incubated 16-18 hours at $37^{\circ} \mathrm{C}$.

Minimal media was made and one colony was picked to inoculate 50 ml overnight cultures (appendix 1). The controls for the inoculation of overnight cultures were as follows. Two milliliters of culture were removed and placed in a sterile test tube. One gram on ammonium chloride was added to each liter of sterilized media. Next two milliliters were removed from the nitrogen containing media and added to a sterile test tube. Two grams of glucose were then added and mixed with the each of the sterile liters of media. Two milliliters of media was removed and added to a third sterilized test tube. Control tube 1 and 2 had bacteria colony added; the third tube was a sterility control and did not get inoculated with a colony. For isotopically labeled samples, $1 \mathrm{~g} / \mathrm{l}$ of ${ }^{15} \mathrm{~N}$-labeled
ammonium chloride and/or $2 \mathrm{~g} / 1{ }^{13} \mathrm{C}$-labeled glucose were added in the place of nitrogen and carbon sources (Cambridge Isotopes, Andover, MA).The next morning the 50 ml overnight cultures were used to inoculate two liters of media. The cultures were induced at an optical density ( $\mathrm{A}_{600}$ ) of 0.6-0.8 via a T 7 driven promoter using 1 mM of Isopropyl $\beta$-D-1-thiogalactopyranoside (IPTG). The RPA70 constructs and the MDM2 constructs were grown for 4 hours. The p53 constructs were grown for 6 hours. The RPA70 and p53 constructs were induced at $37^{\circ} \mathrm{C}$ and the MDM2 protein was induced at $25^{\circ} \mathrm{C}$ to reduce inclusion body formation. The cultures were pelleted after induction by spinning at $8,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$. The pellets were stored at $-80^{\circ} \mathrm{C}$ until purification.

## Protein Purification

Purification of p53. The p53 culture pellets were thawed on ice and suspended in 50 mM sodium phosphate monobasic,


Figure 5. SDS-PAGE gel of purified p53 proteins. A, B, C, and D shown above are p53 474 _72R, canine p53TAD, p53 474 _72R_K24N, p53474_72R_P27A respectively. Āll proteins ran at approximately 14 kDa . 300 mM sodium chloride, 10 mM imidazole, and $0.02 \%$ sodium azide pH 8 . The cells were lysed by two passes through a French press with 1200 psi. The supernatant was collected and cellular debris was spun out in a centrifuge at $38,360 \times \mathrm{xg}$ at $4^{\circ} \mathrm{C}$ for 1 hour. The supernatant was filtered and run through a nickel resin (BioRAD) column on an AKTA fast protein liquid chromatography (FPLC) unit (GE Healthcare, Pittsburgh, PA). Protein binding and elution to the nickel resin was monitored using an
ultraviolet spectrometer with the wavelength set at 280 nm . The apparent mass of fractions corresponding to eluted protein was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) (figure 5). Fractions corresponding to p53TAD were combined and dialyzed 1000 fold into gel filtration buffer ( 50 mM sodium phosphate monobasic, 300 mM sodium chloride, 1 mM EDTA, and $0.02 \%$ sodium azide pH 7 ). The protein was then concentrated to a volume of $\sim 12$ millilters and the histidine tag was cleaved in two hours at room temperature with gentle rocking using a thrombin cleavage kit (Sigma Aldrich, St. Louis, MO). A pre-cleave and post cleave sample is saved for SDS analysis to confirm cleavage of the tag. The sample volume is then reduced to approximately 6mls using a centricon centrifugal concentrator with a 3000 molecular weight cut off (MWCO) at $4,000 \mathrm{xg}$ at $4^{\circ} \mathrm{C}$ and run on a size exclusion column (SEC) at one milliliter per minute flow rate. The relevant fractions were collected and confirmed on an SDS PAGE gel and dialyzed into the appropriate buffer. The NMR buffer contained 50 mM sodium phosphate monobasic, 50 mM sodium chloride, 1 mM EDTA, and $0.02 \%$ sodium azide pH 6.8 for p53 studies. The p53 and RPA70 binding studies used 50 mM sodium phosphate monobasic, 50 mM sodium chloride, 1 mM EDTA, 2 mM DTT, and $0.02 \%$ sodium azide pH 6.5 . The NMR buffer contained 50 mM sodium phosphate monobasic, 100 mM sodium chloride, 1 mM EDTA, 5 mM DTT, and $0.02 \%$ sodium azide pH 7 for p 53 and MDM2 binding studies. The ITC buffer for p53 and MDM2 was 50 mM sodium phosphate monobasic, 100 mM sodium chloride, 1 mM EDTA, $8 \mathrm{mM} \beta \mathrm{ME}$ and $0.02 \%$ sodium azide pH 7.

Purification of RPA70. RPA70 deletion mutants RPA $\Delta 122$ and RPAD169 were used for NMR experiments. Both were purified with the same protocol. The RPA70 culture pellets were thawed on ice and suspended in 30 mM HEPES, 0.25 mM EDTA, $0.25 \% \mathrm{w} / \mathrm{v}$ inositol, $0.01 \% \mathrm{w} / \mathrm{v}$ IGEPAL, 50 mM KCl , and 1 mM DTT. The cells were lysed by two passes through a French press with 1200 psi. The supernatant was collected and cellular debris was spun out in a centrifuge at $38,360 \mathrm{xg}$ at $4^{\circ} \mathrm{C}$ for 1 hour. The supernatant was filtered and run on a fast flow Affigel blue resin column (BioRAD) column on an AKTA fast protein liquid chromatography (FPLC) unit (GE Healthcare, Pittsburgh, PA). Protein binding and elution to the Affigel blue resin was monitored using an ultraviolet spectrometer with the wavelength set at 280 nm . The apparent mass of fractions corresponding to eluted protein

Figure 6. SDS PAGE gel with RPA70 purified proteins; RPA $\Delta 122$ is on the left and RPA $\triangle 169$ is on the right. The molecular weight markers are shown on the left. was determined using SDS PAGE (figure 6). The fractions containing the protein were pooled and dialyzed into gel filtration buffer ( 50 mM sodium phosphate monobasic, 300 mM sodium chloride, 1 mM EDTA, 2 mM DTT, and $0.02 \%$ sodium azide pH 7 ). The protein was concentrated and brought down to a volume of approximately 6-8 mls and run on a size exclusion column (SEC) at one milliliter per minute flow rate. The fractions were run on a $15 \%$ SDS PAGE gel and the fractions containing the protein were dialyzed into 50 mM sodium phosphate
monobasic, 50 mM sodium chloride, 1 mM EDTA, 2 mM DTT, and $0.02 \%$ sodium azide pH 6.5 and concentrated down to .3 mM to .45 mM for NMR studies.

Purification of MDM2. The MDM2 culture pellets were thawed on ice and suspended in 50 mM Tris $\cdot \mathrm{HCl}, 300 \mathrm{mM}$ sodium chloride, 2.5 mM EDTA, 1 mM DTT, and 0.02\% sodium azide pH 7.4. The cells were lysed by two passes through a French press with 1200 psi. The supernatant was collected and cellular debris was spun out in a centrifuge at $38,360 \mathrm{xg}$ at $4^{\circ} \mathrm{C}$ for 1 hour. The supernatant was filtered and run through a GST resin column on an AKTA fast protein liquid chromatography (FPLC) unit (GE Healthcare, Pittsburgh, PA). Protein binding and elution to the GST resin was monitored using an ultraviolet spectrometer with the wavelength set at 280 nm . The apparent mass of fractions corresponding to eluted protein was determined using SDS PAGE. The protein was eluted with 10 mM glutathione. The appropriate fractions were collected and dialyzed out of the 10 mM glutathione 14 buffer and back into the original buffer. The protein was brought

Figure 7. Purified MDM2 on SDS PAGE gel. The molecular weight is indicated on the left. to a concentration of $2 \mathrm{mg} / \mathrm{ml}$ and cleaved with a $1: 100$ ratio of HRV3C (GE Healthcare, Pittsburgh, PA) protease at $4^{\circ} \mathrm{C}$ for 24 hours. The protein was then run on a GST column again, the cleaved protein was in the flow through peak and the GST tag bound to the column and was eluted in later fractions with 10 mM glutathione. The cleaved protein was dialyzed into gel filtration buffer with 5 mM DTT. The protein was concentrated and brought down to a volume of approximately 6-8 mls and run on a size exclusion column (SEC) at one milliliter
per minute flow rate. The fractions were run on an $18 \%$ SDS PAGE gel (figure 7 ) and the fractions containing the protein were dialyzed into 50 mM sodium phosphate monobasic, 100 mM sodium chloride, 1 mM EDTA, 5 mM DTT, and $0.02 \%$ sodium azide pH 7 and concentrated down to .3 mM for NMR studies or dialyzed into 50 mM sodium phosphate monobasic, 100 mM sodium chloride, 1 mM EDTA, $8 \mathrm{mM} \beta \mathrm{BE}$, and $0.02 \%$ sodium azide pH 7 for ITC studies.

## Nuclear Magnetic Resonance (NMR) Spectroscopy.

NMR spectroscopy is a technique that can be used to determine the structure of organic molecules with varying complexity. ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$, and ${ }^{13} \mathrm{C}$ are added to the media the E. coli are grown in effectively labeling the protein of interest with NMR active nuclei. NMR active nuclei contain an inherent magnetic moment that aligns with an applied magnetic field. In NMR spectroscopy the nuclei are perturbed by a radio frequency pulse. As they relax back to the original position and realign with the applied magnetic they emit a signal that is detected and referred to as resonance.

Using HSQC experiments to probe residue specific changes in the structure and dynamics of protein-protein interactions. An ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectrum is collected to assess changes in protein structure by monitoring the nuclear magnetic resonance frequencies of the backbone amide and associated proton of an ${ }^{15} \mathrm{~N}$ labeled protein. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC titration experiments were performed by labeling one protein and titrating in an unlabeled binding partner (figure 8). RPA70 was ${ }^{15} \mathrm{~N}$ labeled in the HSQC titration experiments with


Figure 8. Cartoon schematic of ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC NMR titration experiment. The red p 53 sample contains only ${ }^{15} \mathrm{~N}$ labeled p 53 . The blue sample contains the exact concentration of ${ }^{15} \mathrm{~N}$ p53 plus a three molar excess of ${ }^{14} \mathrm{~N}$ MDM2.
p53TAD. The MDM2 HSQC experiments contained ${ }^{15} \mathrm{~N}$ labeled p53TAD. In the HSQC titration experiments two NMR samples were prepared. Both samples contained a ${ }^{15} \mathrm{~N}$-labeled protein at $100-300 \mu \mathrm{M}$. One of these samples also contained the unlabeled binding partner in a 2-3 fold stoichiometric excess. HSQC spectra were collected on both of these samples. Then an identical volume from each sample is removed and transferred to the other sample. Hamilton syringes were utilized to reduce sample loss during transfer and improve accuracy of the volume transferred. Two more HSQC spectra were collected after the transfer to assess changes in backbone structure and dynamics induced by the unlabeled protein binding partner. Volume transfers were made until both NMR samples contained the same concentration of the unlabeled protein-binding partner. The experiments were performed on a Varian VNMRS 600 MHz spectrometer equipped with a triple resonance pulse field Zaxis gradient cold probe. The sweep widths and complex points of the HSQC were $8012.8\left(t_{2}\right) 62000\left(t_{1}\right) \mathrm{Hz}$ and $512\left(t_{2}\right) 6128\left(t_{1}\right)$, respectively (43). The experiments were performed at $25^{\circ} \mathrm{C}$ with uniformly labeled ${ }^{15} \mathrm{~N}$ protein (p53TAD, RPA70 4169 , or RPA70 122 ) in $90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}$, PBS buffer. Resonance assignments for human p53TAD and RPA70 were previously reported and the HSQC spectra peaks were inferred from these assignments $(3,74)$.


#### Abstract

Paramagnetic Relaxation Enhancement (PRE). Paramagnetic Relaxation Enhancement is used to assess intramolecular distances in dynamic ensembles of intrinsically disordered proteins. This technique utilizes an unpaired electron from a (S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl


methanesulfonothioate) (MTSL) paramagnetic group covalently attach to a cysteine to calculate intramolecular distances between 10-30 Å. Residues have increased relaxation rates when in close proximity to MTSL; which is seen on a NMR spectrum as peak broadening and decrease in peak intensity. Site directed mutagenesis, as previously described, was used to introduce a cysteine residue at position 28 in p53TAD. The E28C mutant sequence was confirmed (MWG, Operon). The p53 574 _E28C protein was expressed and purified. Once purified and dialyzed into the NMR buffer with 4 mM DTT three PD-10 columns (GE Healthcare, Pittsburgh, PA) were equilibrated with 25 mls of NMR buffer $(50 \mathrm{mM}$ sodium phosphate monobasic, 50 mM sodium chloride, 1 mM EDTA, and $0.02 \%$ sodium azide pH 6.8 ). Approximately, 2.5 mls of 0.2 mM p53 474 _E28C was bound to an equilibrated PD-10 column. The protein was eluted with 3.5 mls of buffer. The eluent was brought up to a total volume of 5 mls . This was divided into 2.5 mls and each was dialyzed again using the other two equilibrated PD-10 columns. The eluent dripped into a 15 ml falcon tube with 100 ul of MTSL suspended in ethanol. The eluent was pooled and was incubated at room temperature for one hour. 2.5 mls was pulled off and was run through the PD-10 column again and then eluted with 3.5 mls of NMR buffer. This was repeated every hour for three hours. At each hour time point $200 \mu \mathrm{l}$ s was taken for mass spectrometry analysis. Direct injection ESI-mass spectrometry was performed to confirm that greater than $95 \%$ of the protein sample was MTSL labeled. After confirmation by mass spectroscopy, the ${ }^{15} \mathrm{~N}$ labeled p53D74_E28C an HSQC
spectrum was collected. Afterwards, the MTSL group was reduced by the addition of ascorbic acid. Another HSQC was collected on the reduced sample.

NMR data analysis. Data analysis was performed using NMRview software on Linux OS. Raw data was collected as a .fid file and processed with a Perl script to convert it in to an .nv file that is readable by NMRview. Peak adjustments were made for most residues, excluding Prolines for RPA700122, RPA70 169 , p53 474 _72P, p53 $474 \_72 R$ and p53 adjustments were correlated with each dataset. The datasets containing the amide nitrogen and proton chemical shifts, and peak intensities were converted to .txt files and imported into Microsoft Excel 2010. The total chemical shifts for the RPA70 were calculated using the formula, where H is equal to ${ }^{1} \mathrm{H}$ and N is equal to ${ }^{15} \mathrm{~N}$,

$$
\left[\left\{H^{2}+(N / 5)^{2}\right\} / 2\right]^{0.5}
$$

The peak intensity values from the PRE experiments were calculated by dividing the peak intensities from the MTSL plus ascorbic acid HSQC by the peak intensity values from the MTSL HSQC spectrum.

## Isothermal Titration Calorimetry.

ITC is a technique that measures the amount of heat that is released or absorbed when a protein and its ligand bind. This technique was employed to measure the binding stoichiometry ( N ), association constant $(\mathrm{Ka})$, change in enthalpy $(\Delta \mathrm{H})$, and change in entropy $(\Delta \mathrm{S})$ between MDM2 (17-125) and p53TAD. The binding disassociation constant (Kd) can then be calculated. The
change in Gibbs energy $(\Delta G)$ can be calculated using the relationship $\Delta G=$ RTInKa $=\Delta H-T \Delta S$, where $R$ is the gas constant and $T$ is the absolute temperature.

Protein purification was performed in parallel with MDM2 (17-125) and the p53TAD constructs, p53 ${ }^{2} 74$ _K24N, p53 p53 $491 \_72$ P. Each pair of proteins was co-dialyzed, with a $10,000+$ fold dilution, into buffer (50mM sodium phosphate monobasic, 100mM sodium chloride, 1mM EDTA, $8 \mathrm{mM} \beta \mathrm{ME}$, and $0.02 \%$ sodium azide pH 7 ). MDM2 was at 0.005 mM in the cell and 0.05 mM p53 was in the syringe and titrated in $7 \mu$ increments, with a total of 38 injections, and 300 seconds in between each titration point. Titrations were performed at $25^{\circ} \mathrm{C}$ and in triplicate. As a control, buffer was placed in the syringe and titrated into 0.005 mM MDM2 to measure the heat of dilution. The raw ITC data was analyzed using Origin software.

## Chapter 3: Results of the Interaction of RPA70 with p53

## RPA 169 and Canine p53TAD ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC Titration Experiment.

RPA70 is highly conserved in mammals. The p53 protein sequence is less conserved (figure 9).

```
RPA70 Residues 1-122
\begin{tabular}{|c|c|c|}
\hline Human & MVGQLSEGAIAAIMQKGDTNIKPILQVINIRPITTGNSPPRYRLIMSDGLNTLSSEMLAT & 60 \\
\hline Canine & \begin{tabular}{l}
MVGHLSEGAIAAIMQQGETSIKPILQVINIRPITTGNSPPRYRLLMSDGLNTLSSEMLAT \\
***:***********:*:*.***********************************************)
\end{tabular} & 60 \\
\hline Human & QLNPLVEEEQLSSNCVCQIHRFIVNTLKDGRRVVILMELEVLKSAEAVGVKIGNPVPYNE & GL 122 \\
\hline Canine & QLNPLVEEEQLSSNCICQINRFIVNTLKDGRRVVILMELNILKSAEAVGLKIGNPVPYNE & GH 122 \\
\hline & ***************:***:*******************: : ********:********* & * \\
\hline \multicolumn{3}{|l|}{p53 Transactivation Domain} \\
\hline Human & MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP & 60 \\
\hline \multirow[t]{2}{*}{Canine} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MEESQSELNIDPPLSQETFSELWNLLPENNVLSSELCPAVDELLL-PESVVNWLDEDS-- 57 ***.**: .: : *********:**:*********. . *:*:*:* *: : : *: **.}} \\
\hline & & \\
\hline Human & \multicolumn{2}{|l|}{DEAPRMP-EAAPRV------ 73} \\
\hline \multirow[t]{2}{*}{Canine} & \multicolumn{2}{|l|}{DDAPRMPATSAPTAPGPAPS 77} \\
\hline & *:***** & \\
\hline
\end{tabular}
```

Figure 9. The sequence alignment of human and canine RPA70 residues 1-122 and human and canine p53TAD. The p53 binding region of RPA70 is completely conserved in these homologues. The specific residues that undergo the largest chemical shifts in the presence of p53TAD are shown in red. The human p53TAD residues in the primary MDM2 binding site are shown in blue, and the human p53TAD residues important in binding RPA70 are shown in red.

It has been shown that there is a difference in the backbone dynamics for several p53TAD homologues (unpublished data from the Daughdrill lab); important for this experiment it has been shown that canine p53TAD is more dynamic that human p53TAD (43). The experiment was performed to assess if canine p53TAD would bind RPA70. Additionally, if complex formation occurred would the dynamic behavior have an effect on complex formation? Any difference in binding of RPA70 to human or canine p53TAD could be attributed to differences
in dynamics of the p53 transactivation domain, because of the high level of sequence conservation in the human and canine homologues of RPA70. Canine p53TAD was titrated into a ${ }^{15} \mathrm{~N}$ labeled sample of RPA70 169 . If canine p 53 TAD bound to RPA704169 and showed reduced affinity for RPA70 it would indicate that the less dynamic human p53TAD aided in p53/RPA70 complex formation.

We found that canine p53TAD required a significantly higher concentration than human p53TAD to induce chemical shifts; indicating a lower affinity for


Figure 10. ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HSQC spectra of Canine p53TAD and RPAd169 titration experiment. A. An overlay of the first two spectra collected, red contains only RPA70 169 and blue contains RPA70 169 with a two molar excess of canine p53TAD. Alanine 59 is highlighted at the bottom of the spectra. B. A close up of Alanine 59 with the starting and ending concentration of Canine p53TAD. RPA704169. Figure 10 shows an overlay of the first two ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectra. The red spectrum is the ${ }^{15} \mathrm{~N}$ RPA70 169 sample and the blue spectrum is the ${ }^{15} \mathrm{~N}$ RPA70 169 with a two-fold molar excess of ${ }^{14} \mathrm{~N}$ canine p53TAD. The results indicate that canine p53TAD does form a complex with RPA70. The apparent
lower affinity of RPA70 and canine p53TAD suggests that the more dynamic canine p53TAD is influencing complex formation.

## RPAD122 and Human p53TAD 1H-15N HSQC Titration Experiment.

 Previously, it was demonstrated that human p53TAD binds a basic cleft in DBDF of RPA70 169 (3). It has also been shown that single stranded DNA binds to the same basic cleft in DBDF; this suggests that a competitive mechanism may exist between ssDNA and p53TAD for RPA70 binding (3). We wanted to assess if the RPA70 flexible linker between DBDF and DBDA (figure 3) affected the binding interaction with human p53TAD. It is known that DBDF is important in proteinprotein interactions and DBDA and DBDB have high affinity for single stranded

Figure 11. The chemical shift change in Hertz for the 11 residues on RPA70 that displayed the largest shift during p53TAD titration.

DNA. Investigating if the flexible linker affects complex formation between RPA70 and p53TAD would provide insight on how p53TAD may be involved in DNA damage response.

This titration was performed as previously described with ${ }^{15} \mathrm{~N}$ labeled RPA70 122 and ${ }^{14} \mathrm{~N}$ human p53TAD in a two-fold molar excess. The binding affinity and chemical shifts were similar in the RPAD169 and RPA $\Delta 122$ experiment with the largest shifts displayed by G17, I33, T35, S54, S55, F56, A59, R91, V93 and Y118 (figure 11). Each peak is representative of the ensemble average for that particular residue. The observed chemical shift changes occurred in small distinct increments. This is referred to as fast


Figure 12. The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectra of the titration of ${ }^{15} \mathrm{~N}$ RPA $\triangle 122$ and ${ }^{14} \mathrm{~N}$ human p53TAD. A. An overlay of the first (red) and last (blue) titration points of RPA $\Delta 122$. The red spectrum does not contain any p53TAD and the blue spectrum contains 0.6 mM p53TAD. B. The RPA70 residue Alanine 59 is shown at each titration point from 0.0 mM to 0.3 mM of p53TAD.
exchange; affirming that p53TAD and RPA70 have a low affinity (figure 12). The broadening of the resonances during the titration suggests the formation of multiple intermediates during the binding process. If the affinity was higher there would be two peaks observed; a free peak and a bound peak.

Based on these results we conclude that the flexible linker between DBDF and DBDA are not necessary for complex formation between RPA70 and p53TAD. The residues in RPA70 experience similar chemical shifts regardless of the presence of the flexible linker. RPA700122 has low affinity for human p53TAD based on the peak behavior observed in this experiment.

## Chapter 4: Results of the Interactions of MDM2 with p53

MDM2 and Human p53 474 _72R ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC Titration Experiment. In previous studies the binding of MDM2 and p53 was investigated primarily using short peptides of the p53 MDM2 binding site, typically encompassing residues 15-29 (75-83). Recently, it was shown that MDM2 binds to multiple distinct sites within the p53 transactivation domain, residues 18-26, 40-45, and 49-54 (73, 84). The primary MDM2 binding site includes residues 18-26, and the secondary


Figure 13 An overlay of 18 HSQC spectra of human p53 serine 15 when binding to MDM2. The one dimensional splice shows the peak intensity change during the titration. The free peak is shown in red and the bound peak is shown in blue.
binding site encompasses residues 40-55. We used the entire transactivation domain, residues 173 to assess binding to MDM2. Our approach was unique, not only for employing the entire transactivation domain, but because we used a higher ratio of MDM2 than had been previously reported. A similar study had been performed that did use a


Figure 14 Threonine 55 peak behavior upon MDM2 titration. The free peak is shown in red and the bound peak is shown in blue.
longer p53TAD construct and HSQC titration, but the titration did not exceed a $1: 2$ ratio p53TAD to MDM2 (73).

We found that residues in the primary binding site, 15-29, behaved differently than the residues in the second site residues 40-55. In the primary binding site, the free peak disappeared and the bound peak appeared during the titration, consistent with a system in slow exchange that binds tightly (figure 13). There were only two peaks per residue in the primary binding site; a free peak and a bound peak. Binding in the primary binding site reached saturation at approximately a $1: 1$ ratio of p53TAD to MDM2. Bound peak intensity in the primary site reached a maximal value and remained constant once the primary site was saturated.

The 1:3 ratio we employed proved important for the peak behavior in the second site. Initially, the free peak disappeared and the bound peak appeared. However, once the primary site was saturated the bound peak displayed chemical shifts and peak intensity changes consistent with a system in fast exchange that binds weakly (figure 14). The peaks intensity changes were measured and plotted as a function of MDM2 concentration (figure 15). The
binding for the primary site is saturated at a stoichiometry of approximately $1: 1$, as shown by the intensity for the bound peak reaching a maximum. The peak intensity for the bound peak in the secondary site also reaches a maximum at a stoichiometry of 1:1 and then the bound peak loses intensity and experiences chemical shifts after additional MDM2 is added. This indicates that after the primary site is saturated, the apparent tight binding at the secondary site is actually weak $(85,86)$.


Figure 15. Peak intensity plotted as a function of MDM2 concentration. The primary site is depicted with Serine 15 and the secondary site is depicted with Threonine 55.

MDM2 and Human p53D74_72R_P27A ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC Titration

Experiment. It is known that prolines break alpha helices in structured proteins. The conserved proline at position 27 in p53TAD may be breaking the transient helix that forms in the primary MDM2 binding site. Site directed mutagenesis was used to create a protein ensemble that contained more helical propensity than the wild type p53TAD. This experiment was performed to assess how increasing the helical


Figure 16. Serine 15 and Threonine 55 in p53TAD_P27A titration peak intensity plotted as a function of MDM2 concentration.
the form of
an alpha helix; by introducing an alanine at position 27 p53TAD becomes more helical in
the MDM2 primary binding site. This experiment was designed to provide preliminary information about how coupled folding binding works in IDPs and how prolines affect transient secondary structure in these systems.

We found that the primary and secondary binding sites displayed similar behavior when compared to the p53 $574 \_72 R$ HSQC titration. However, the peak intensity falls more abruptly and in a linear fashion as compared to the p53 wild type in both binding sites. The peak intensity was plotted as a function of MDM2 concentration for both the primary and secondary MDM2 binding site (figure 16). The binding is saturated at the primary site in the P27A mutant at approximately the same concentration as the wild type. A reasonable explanation of the lower concentration of MDM2 needed to induce peak intensity decay and the linear relationship of the decay is the lower entropic barrier of binding the more helical p53 P27A to MDM2.

## MDM2 and Human p53 474 _K24N Isothermal Titration Calorimetry

Experiment. The p53 574 _K24N mutation was used to evaluate the lysine at position 24; a substitution to an asparagine was created by site directed mutagenesis. If the asparagine at residue 24 had higher binding affinity than the lysine wild type it would give credence to Table 1. The ITC values of the point mutant K24N and p53TAD.
the hypothesis of lysine 24 forming a salt bridge that aided in stabilization of

|  | p53 $\mathbf{1 7 4 \_ 7 2 R}$ | p53 |
| :--- | ---: | ---: |
| Kd4_K24N | 0.802666667 | $6.74 \mathrm{E}-08$ |
| $\boldsymbol{\Delta G}$ | -8978.526667 | $-9.12 \mathrm{E}+03$ | the transient helix present in the transactivation domains protein ensemble. The disassociation constant $(\mathrm{Kd})$ and change in Gibbs free energy $(\Delta \mathrm{G})$ are listed for

the K24N mutant and wild type are shown in Table 1. The results indicate that the K24N point mutant has a lower disassociation constant and thus higher binding affinity for MDM2.

## Chapter 5: Results of the Polymorphism at Position 72 in Human p53. MDM2 and Human p53 574 _72P ${ }^{1} \mathrm{H}^{-15} \mathrm{~N}$ HSQC Titration Experiment.

 Cellular studies have shown that the Arginine polymorphism at position 72 has a greater association with MDM2 compared to the Proline allele (5). A structural explanation of the biological differences has not been investigated until now. To investigate a structural basis for cellular function, we performed an NMR HSQC titration experiment with the proline allele to evaluate if there was a difference in chemical shifts or peak intensity as compared to our arginine allele data.We titrated a ${ }^{15} \mathrm{~N}$ labeled $\mathrm{p} 53 \Delta 74$ _72P sample with ${ }^{14} \mathrm{~N}$ MDM2 and collected ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC spectra. Similar peak behavior in the primary and secondary site was observed in the proline allele as seen with the arginine allele. The primary site was saturated at stoichiometry of approximately 1:1 of p53TAD to MDM2. However, the peak intensity changes in both the primary and secondary site were different. The preliminary data suggests that a higher concentration of MDM2 might be required to cause the free peak intensity to decay in the proline allele (figure 17).


Figure 17. The polymorphism at position 72 titration experiments plotted with peak intensity as a function of MDM2.

MDM2 and Human p53TAD Isothermal Titration Calorimetry. As mentioned earlier, typically short peptides have been used to measure p53TAD binding to MDM2. We used varying lengths of p53TAD and to examine the thermodynamics of p53TAD and MDM2 complex formation. We used p53TAD constructs, $\Delta 74 \_72 R, \Delta 74 \_72 \mathrm{P}, \Delta 91 \_72 \mathrm{R}$, and $\Delta 91 \_72 \mathrm{P}$. Both longer and shorter constructs were used to assess whether the single nucleotide polymorphism displayed different thermodynamics (Table 2). The long and short constructs of both alleles displayed similar values for $\Delta \mathrm{G}$ and Kd .

Table 2. The ITC data collected comparing the single nucleotide polymorphism at position 72. The arginine polymorphism values are on the left and the proline values are on the right.

|  | p53074_72R | p53074_72P | p53491_72R | p53491_72P |
| :---: | :---: | :---: | :---: | :---: |
| Kd | $3.45239 \mathrm{E}-07$ | $1.71226 \mathrm{E}-07$ | $1.6629 \mathrm{E}-07$ | 2.64139E-07 |
| $\Delta \mathrm{G}$ | -8817.526667 | -9235.4 | -9044.06 | -8978.526667 |

These data indicate that the biological difference may be due to a kinetic effect and not a thermodynamic effect.

Human p53 $\mathbf{D 7 4}$ _72R and p53 574 _72P (1-73) Paramagnetic Relaxation
Enhancement Experiment. This experiment was performed to compare the long-range interactions in the p53TAD polymorphism, p53 $\Delta 74 \_72$ P. We know that MDM2 binds both the primary and secondary binding site. We know that the alleles display biological differences. However, it was not known how close the two binding sites are to each other in each allelic ensemble. The composition of conformations within the protein ensemble could be altered between alleles and be a potential explanation of the biological differences and differing affinity for MDM2.

The closer in proximity an individual residue is to the MTSL label the lower the resonance intensity quotient; this method gives reliable long-range distance estimates in intrinsically disordered proteins. The glutamic acid at position 28 was mutated to a cysteine so an MTSL label could be covalently attached adjacent to the primary MDM2 binding site and in between the primary and secondary sites. The resonance intensity quotients were measured and are plotted for the arginine and proline alleles in figure 18.


Figure 18. The long range interactions in the p53TAD polymorphism protein ensembles. The resonance intensity is shown on the X axis and the residue position is shown on the $X$ axis. The proline allele is shown in blue and the arginine allele is shown in red.

The PRE data indicate that the primary and secondary binding sites are closer to each other in the arginine allele than they are in the proline allele. One potential explanation for the difference in proximity of the binding sites is that the proline allele has a more extended protein ensemble. If the proline allele had an extended ensemble it could lead to reduced affinity for MDM2. Furthermore, if the arginine allele had a collapsed ensemble with the two binding sites closer together it would cause a local concentration effect when MDM2 was present. This artificial increase in MDM2 availability between the two binding sites would be observed as the arginine allele having a higher affinity for MDM2; which has already been shown in cellular studies. Alternately, an electrostatic interaction could be influencing the closeness of the binding sites between the alleles. The
net charge of p53TAD is -13 or -14 depending on the allele, arginine and proline, respectively.

Another interesting observation is the low resonance intensity quotient at the carboxyl terminal around position 65 through 70 (figure 15). The MTSL label was attached to residue 28 and it is surprising to see residues interacting that far away. It is unexpected to find a long range interaction between residues spaced so far apart in an IDP due to the intrinsic nature of IDPs. The observation of long range interaction, such as the one shown here, provides clues to the behavior of IDPs and this knowledge could potentially lead to the structural explanation behind observed biological behavior.

## Chapter 6: Discussion

RPA70. The RPA studies were performed to assess the evolution of intrinsic disorder in the p53 transactivation domain by investigating the human and canine p53TAD/RPA complex. We demonstrated that canine p53TAD does bind to RPA70 169. This experiment showed that a homologue of p53TAD that has varying dynamics within its protein ensemble binds RPA70. Despite the evolutionary conservation of the RPA70/p53TAD interaction complex formation variations are seen between the canine and human NMR spectra. The canine p53TAD had a lower apparent affinity than the human p53TAD. It took 1:4 molar ratio of canine p 53 to induce the chemical shifts seen with a $1: 2$ molar ratio of human p53TAD. Furthermore, the less dynamic human p53TAD binds RPA70 with higher affinity. This data suggests that the dynamic behavior of intrinsically disordered proteins may impact their biological function.

We also examined the intrinsically disordered linker (IDL) in RPA between DBDF and DBDA to evaluate if the intrinsically disordered linker played a role in complex formation with p53TAD. We showed that the flexible linker between DBDF and DBDA in RPA70 does not have a large impact on complex formation with the p53 transactivation domain. The residues involved with binding p53TAD displayed similar chemical shifts and peak intensity in the presence and absence of the disordered linker domain. The largest chemical shifts were seen for residues G17, I33, T35, S54, S55, F56, A59, R91, V93 and Y118. These results
align very well with published chemical shifts for RPAD169 induced by human p53TAD binding (3). The flexible linker between DBDF and DBDA may have evolved as a mechanism to aid in response to DNA damage. The linker tethers two domains together; the first having affinity for p53 and the second having high affinity for single stranded DNA. RPA70 could bind to p53 blocking the MDM2/p53 interaction. If the cell experienced stress and DNA damage, RPA could then release p53 and bind single stranded DNA. The p53 protein could then be activated and would go on to induce growth arrest, DNA repair, or apoptosis.

MDM2. The HSQC NMR experiments showed that the peaks in the primary binding site behaved differently than the peaks in the secondary binding site. In the primary binding site, the free peak would disappear and the bound peak would appear and this was associated with marked changes in peak intensity. The second binding site displayed chemical shifts and peak intensities decreased as more MDM2 was added. The apparent high affinity, as indicated by slow exchange, in the second binding site could be caused by high local concentration of MDM2 that would be present at concentrations below saturation (figure 19). Once the first site is saturated this effect is alleviated and the true lower affinity becomes apparent.

The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC titration with the P27A point mutant and MDM2 showed that binding saturation occurred at roughly the same concentration as the wild type. However, it took a smaller amount of MDM2 to induce a decrease in peak intensity compared to wild type p53TAD. The free peak intensity decay is linear


Figure 19. A schematic of the local concentration effect of MDM2 on the second binding site in p53TAD. The primary and secondary MDM2 binding sites are shown in blue and MDM2 is depicted in red. The top schematic depicts unsaturated p53TAD and the lower schematic represents saturation of MDM2 in the primary binding site.
when plotted as a function of MDM2 concentration. One possible explanation is that the more helical P27A is experiencing conformational
selection when binding MDM2. The less helical wild type requires a higher concentration of MDM2 to induce the free peak intensity decrease and does not have a linear decay. The wild type may be following a form of coupled foldingbinding referred to as induced fit. In the induced fit mode of binding there are nonspecific interactions that lead to a conformational change and then tighter binding occurs.

Polymorphism at Position 72. These p53TAD and MDM2 studies were performed to investigate the effects of the single nucleotide polymorphism at position 72 in p53TAD and to assess the thermodynamics of complex formation between p53TAD and MDM2. When we compared the results from the PRE experiments for the polymorphism we found a difference in the proximity of the first and second binding sites. In the arginine allele, the binding sites were closer to each other than they were in the proline allele. One potential explanation is
that the proline allele has a more extended protein ensemble and the arginine allele has a more collapsed protein ensemble (figure 20). This might be expected based on the presence of the extra positive charge in a protein that has a net negative charge of -13 . However, it is important to note that this polymorphism occurs at the second to last residue used in the constructs, which may influence the results. A longer construct should be used to verify these results.


72R collapsed ensemble $\rightarrow$ local concentration effect $\rightarrow$ higher affinity 72P elongated ensemble $\rightarrow$ further distance between sites $\rightarrow$ lower affinity
Figure 20. A schematic of the possible compositions of the protein ensembles of the arginine and proline alleles. The arginine allele is more collapsed causing a higher local concentration effect of MDM2 than what is seen in the proline protein ensemble.

Based on the PRE data and the NMR titration results, it would be reasonable to expect that the ITC data would show that the arginine allele would have a higher affinity for MDM2 than the proline allele. However, short and long constructs of each SNP were employed and there was not a significant difference in the
binding disassociation constants $(\mathrm{Kd})$. The full length arginine has been shown to have higher affinity for MDM2 than the proline allele in cellular studies (5). Additionally, long range interactions have been shown in the intrinsically disordered p53 transactivation domain $(4,87)$. It is clear that more experimentation needs to be done to understand how the complex formation occurs in respect to the single nucleotide polymorphism at position 72 in p53TAD.

Future directions for this project would include PRE experiments on the longer polymorphism constructs to determine in the distance between the binding sites is similar to those calculated for the shorter constructs. Relaxation dispersion NMR experiments could be employed to investigate the kinetic differences between the alleles; potentially explaining the similarity in thermodynamics from the ITC data. Before this work began a structural explanation of the biological differences displayed by polymorphism was lacking. This work has provided preliminary clues about the mechanism of this system. It has been shown that there is a correlation with latitude and the distribution of the proline and arginine allele. It is also known that populations are more susceptible to certain cancers and have different cancer outcomes. It would be interesting to investigate the evolutionary implications of this allele, and how it may have played a role in designating p53, in the words of Levine "The Guardian of the Genome".

## References Cited

1. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307-10. Epub 2000/12/01. doi: 10.1038/35042675. PubMed PMID: 11099028.
2. Selivanova G, Wiman KG. p53: a cell cycle regulator activated by DNA damage. Advances in cancer research. 1995;66:143-80. Epub 1995/01/01. PubMed PMID: 7793313.
3. Vise PD, Baral B, Latos AJ, Daughdrill GW. NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Nucleic acids research. 2005;33(7):2061-77. Epub 2005/04/13. doi: 10.1093/nar/gki336. PubMed PMID: 15824059; PubMed Central PMCID: PMC1075921.
4. Vise P, Baral B, Stancik A, Lowry DF, Daughdrill GW. Identifying longrange structure in the intrinsically unstructured transactivation domain of p53. Proteins. 2007;67(3):526-30. Epub 2007/03/06. doi: 10.1002/prot.21364. PubMed PMID: 17335006.
5. Dumont P, Leu JI, Della Pietra AC, 3rd, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature genetics. 2003;33(3):357-65. Epub 2003/02/05. doi: 10.1038/ng1093. PubMed PMID: 12567188.
6. Soussi T. The history of p53. A perfect example of the drawbacks of scientific paradigms. EMBO reports. 2010;11(11):822-6. Epub 2010/10/12. doi: 10.1038/embor.2010.159. PubMed PMID: 20930848; PubMed Central PMCID: PMC2966958.
7. Chang C, Simmons DT, Martin MA, Mora PT. Identification and partial characterization of new antigens from simian virus 40 -transformed mouse cells. Journal of virology. 1979;31(2):463-71. Epub 1979/08/01. PubMed PMID: 225565; PubMed Central PMCID: PMC353469.
8. Kress M, May E, Cassingena R, May P. Simian virus 40 -transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. Journal of virology. 1979;31(2):472-83. Epub 1979/08/01. PubMed PMID: 225566; PubMed Central PMCID: PMC353470.
9. Rotter V, Witte ON, Coffman R, Baltimore D. Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. Journal of virology. 1980;36(2):547-55. Epub 1980/11/01. PubMed PMID: 6159484; PubMed Central PMCID: PMC353673.
10. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proceedings of the National Academy of Sciences of the United States of America. 1979;76(5):2420-4. Epub 1979/05/01. PubMed PMID: 221923; PubMed Central PMCID: PMC383613.
11. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40transformed cells. Nature. 1979;278(5701):261-3. Epub 1979/03/15. PubMed PMID: 218111.
12. Linzer DI, Maltzman W, Levine AJ. The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology. 1979;98(2):308-18. Epub 1979/10/30. PubMed PMID: 228475.
13. Leppard K, Crawford L. Monoclonal antibodies displaying a novel species specificity for the primate transformation-related protein, p53. The EMBO journal. 1983;2(9):1457-64. Epub 1983/01/01. PubMed PMID: 11892796; PubMed Central PMCID: PMC555307.
14. Reich NC, Levine AJ. Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature. 1984;308(5955):199-201. Epub 1984/03/08. PubMed PMID: 6366574.
15. Milner J, McCormick F. Lymphocyte stimulation: concanavalin A induces the expression of a 53 K protein. Cell biology international reports. 1980;4(7):663-7. Epub 1980/07/01. PubMed PMID: 7397796.
16. Mercer WE, Nelson D, DeLeo AB, Old LJ, Baserga R. Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3 T3 cells. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(20):6309-12. Epub 1982/10/01. PubMed PMID: 6292898; PubMed Central PMCID: PMC347110.
17. Mercer WE, Avignolo C, Baserga R. Role of the p 53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Molecular and cellular biology. 1984;4(2):276-81. Epub 1984/02/01. PubMed PMID: 6366518; PubMed Central PMCID: PMC368692.
18. Calabretta B, Kaczmarek L, Selleri L, Torelli G, Ming PM, Ming SC, et al. Growth-dependent expression of human $\mathrm{Mr} 53,000$ tumor antigen messenger RNA in normal and neoplastic cells. Cancer research. 1986;46(11):5738-42. Epub 1986/11/01. PubMed PMID: 3019534.
19. Shohat O, Greenberg M, Reisman D, Oren M, Rotter V. Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene. 1987;1(3):277-83. Epub 1987/01/01. PubMed PMID: 2455263.
20. Eliyahu D, Raz A, Gruss P, Givol D, Oren M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature. 1984;312(5995):646-9. Epub 1984/12/13. PubMed PMID: 6095116.
21. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature. 1984;312(5995):649-51. Epub 1984/12/13. PubMed PMID: 6390217.
22. Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature. 1984;312(5995):651-4. Epub 1984/12/13. PubMed PMID: 6095117.
23. Jenkins JR, Rudge K, Chumakov P, Currie GA. The cellular oncogene p53 can be activated by mutagenesis. Nature. 1985;317(6040):816-8. Epub 1985/10/06. PubMed PMID: 3903515.
24. Mowat M, Cheng A, Kimura N, Bernstein A, Benchimol S. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature. 1985;314(6012):633-6. Epub 1985/04/18. PubMed PMID: 3990796.
25. Malkin D, Li FP, Strong LC, Fraumeni JF, Jr., Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233-8. Epub 1990/12/10. PubMed PMID: 1978757.
26. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with LiFraumeni syndrome. Nature. 1990;348(6303):747-9. Epub 1990/12/20. doi: 10.1038/348747a0. PubMed PMID: 2259385.
27. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989;57(7):1083-93. Epub 1989/06/30. PubMed PMID: 2525423.
28. Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. Journal of virology. 1989;63(2):739-46. Epub 1989/02/01. PubMed PMID: 2642977; PubMed Central PMCID: PMC247745.
29. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244(4901):217-21. Epub 1989/04/14. PubMed PMID: 2649981.
30. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989;246(4929):491-4. Epub 1989/10/27. PubMed PMID: 2554494.
31. Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anticancer therapy. British journal of pharmacology. 2011. Epub 2011/07/02. doi: 10.1111/j.1476-5381.2011.01570.x. PubMed PMID: 21718309.
32. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899-908. Epub 2005/04/20. doi: 10.1038/sj.onc.1208615. PubMed PMID: 15838523.
33. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323-31. Epub 1997/02/07. PubMed PMID: 9039259.
34. Burns TF, El-Deiry WS. The p53 pathway and apoptosis. Journal of cellular physiology. 1999;181(2):231-9. Epub 1999/09/25. doi: 10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO;2-L. PubMed PMID: 10497302.
35. Vousden KH. Apoptosis. p53 and PUMA: a deadly duo. Science. 2005;309(5741):1685-6. Epub 2005/09/10. doi: 10.1126/science.1118232. PubMed PMID: 16151000.
36. Vogelstein B, Kinzler KW. Tumour-suppressor genes. X-rays strike p53 again. Nature. 1994;370(6486):174-5. Epub 1994/07/21. doi: 10.1038/370174a0. PubMed PMID: 8028656.
37. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of molecular biology. 1999;293(2):321-31. Epub 1999/11/05. doi: 10.1006/jmbi.1999.3110. PubMed PMID: 10550212.
38. Dyson HJ, Wright PE. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem. 2002;62:311-40. Epub 2002/11/07. PubMed PMID: 12418108.
39. Uversky VN. What does it mean to be natively unfolded? European journal of biochemistry / FEBS. 2002;269(1):2-12. Epub 2002/01/11. PubMed PMID: 11784292.
40. lakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. Journal of molecular biology. 2002;323(3):573-84. Epub 2002/10/17. PubMed PMID: 12381310.
41. Dosztanyi Z, Csizmok V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Journal of molecular biology. 2005;347(4):827-39. Epub 2005/03/17. doi: 10.1016/j.jmb.2005.01.071. PubMed PMID: 15769473.
42. Olson KE, Narayanaswami P, Vise PD, Lowry DF, Wold MS, Daughdrill GW. Secondary structure and dynamics of an intrinsically unstructured linker domain. Journal of biomolecular structure \& dynamics. 2005;23(2):113-24. Epub 2005/08/03. PubMed PMID: 16060685.
43. Daughdrill GW, Borcherds WM, Wu H. Disorder predictors also predict backbone dynamics for a family of disordered proteins. PloS one. 2011;6(12):e29207. Epub 2011/12/24. doi: 10.1371/journal.pone.0029207. PubMed PMID: 22195023; PubMed Central PMCID: PMC3240651.
44. Uversky VN. Natively unfolded proteins: a point where biology waits for physics. Protein science : a publication of the Protein Society. 2002;11(4):739-56. Epub 2002/03/23. doi: 10.1110/ps.4210102. PubMed PMID: 11910019; PubMed Central PMCID: PMC2373528.
45. Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, Romero P, et al. Rational drug design via intrinsically disordered protein. Trends Biotechnol. 2006;24(10):435-42. Epub 2006/08/01. doi: S0167-7799(06)00184-3 [pii]
|10.1016/j.tibtech.2006.07.005. PubMed PMID: 16876893.
46. Dyson HJ, Wright PE. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol. 2002;12(1):54-60. Epub 2002/02/13. doi: S0959440X02002890 [pii]. PubMed PMID: 11839490.
47. Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6(3):197-208. Epub 2005/03/02. doi: nrm1589 [pii]
10.1038/nrm1589. PubMed PMID: 15738986.
48. Daughdrill GW, Narayanaswami P, Gilmore SH, Belczyk A, Brown CJ. Dynamic behavior of an intrinsically unstructured linker domain is conserved in the face of negligible amino acid sequence conservation. Journal of molecular evolution. 2007;65(3):277-88. Epub 2007/08/28. doi: 10.1007/s00239-007-9011-2. PubMed PMID: 17721672.
49. Plaxco KW, Gross M. Cell biology. The importance of being unfolded. Nature. 1997;386(6626):657, 9. Epub 1997/04/17. doi: 10.1038/386657a0. PubMed PMID: 9109481.
50. Demchenko AP. Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit. 2001;14(1):42-61. Epub 2001/02/17. doi: $\quad 10.1002 / 1099-1352(200101 / 02) 14: 1<42:: A I D-J M R 518>3.0 . C O ; 2-8$ [pii]
10.1002/1099-1352(200101/02)14:1<42::AID-JMR518>3.0.CO;2-8. PubMed PMID: 11180561.
51. Bell S, Klein C, Muller L, Hansen S, Buchner J. p53 contains large unstructured regions in its native state. Journal of molecular biology. 2002;322(5):917-27. Epub 2002/10/09. PubMed PMID: 12367518.
52. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265(5170):346-55. Epub 1994/07/15. PubMed PMID: 8023157.
53. Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochimica et biophysica acta. 1996;1287(2-3):77-102. Epub 1996/06/07. PubMed PMID: 8672531.
54. Iftode C, Daniely Y, Borowiec JA. Replication protein A (RPA): the eukaryotic SSB. Critical reviews in biochemistry and molecular biology. 1999;34(3):141-80. Epub 1999/09/03. doi: 10.1080/10409239991209255. PubMed PMID: 10473346.
55. Wold MS, Kelly T. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proceedings of the National Academy of Sciences of the United States of

America. 1988;85(8):2523-7. Epub 1988/04/01. PubMed PMID: 2833742; PubMed Central PMCID: PMC280029.
56. Erdile LF, Heyer WD, Kolodner R, Kelly TJ. Characterization of a cDNA encoding the $70-\mathrm{kDa}$ single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. The Journal of biological chemistry. 1991;266(18):12090-8. Epub 1991/06/25. PubMed PMID: 2050703.
57. Abramova NA, Russell J, Botchan M, Li R. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repairdependent manner. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(14):7186-91. Epub 1997/07/08. PubMed PMID: 9207066; PubMed Central PMCID: PMC23787.
58. Dutta A, Ruppert JM, Aster JC, Winchester E. Inhibition of DNA replication factor RPA by p53. Nature. 1993;365(6441):79-82. Epub 1993/09/02. doi: 10.1038/365079a0. PubMed PMID: 8361542.
59. Li R, Botchan MR. The acidic transcriptional activation domains of VP16 and p 53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell. 1993;73(6):1207-21. Epub 1993/06/18. PubMed PMID: 8390328.
60. Miller SD, Moses K, Jayaraman L, Prives C. Complex formation between p53 and replication protein A inhibits the sequence-specific DNA binding of p53 and is regulated by single-stranded DNA. Molecular and cellular biology. 1997;17(4):2194-201. Epub 1997/04/01. PubMed PMID: 9121469; PubMed Central PMCID: PMC232068.
61. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358(6381):80-3. Epub 1992/07/02. doi: 10.1038/358080a0. PubMed PMID: 1614537.
62. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53mediated transactivation. Cell. 1992;69(7):1237-45. Epub 1992/06/26. PubMed PMID: 1535557.
63. Barak Y, Oren M. Enhanced binding of a 95 kDa protein to p 53 in cells undergoing p53-mediated growth arrest. The EMBO journal. 1992;11(6):2115-21. Epub 1992/06/01. PubMed PMID: 1600943; PubMed Central PMCID: PMC556678.
64. Ara S, Lee PS, Hansen MF, Saya H. Codon 72 polymorphism of the TP53 gene. Nucleic acids research. 1990;18(16):4961. Epub 1990/08/25. PubMed PMID: 1975675; PubMed Central PMCID: PMC332028.
65. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Molecular and cellular biology. 1999;19(2):1092-100. Epub 1999/01/16. PubMed PMID: 9891044; PubMed Central PMCID: PMC116039.
66. Ozeki C, Sawai Y, Shibata T, Kohno T, Okamoto K, Yokota J, et al. Cancer susceptibility polymorphism of p53 at codon 72 affects phosphorylation and degradation of p53 protein. The Journal of biological chemistry. 2011;286(20):18251-60. Epub 2011/04/02. doi: 10.1074/jbc.M110.208587. PubMed PMID: 21454683; PubMed Central PMCID: PMC3093897.
67. El Hallani S, Ducray F, Idbaih A, Marie Y, Boisselier B, Colin C, et al. TP53 codon 72 polymorphism is associated with age at onset of glioblastoma. Neurology. 2009;72(4):332-6. Epub 2009/01/28. doi: 10.1212/01.wnI.0000341277.74885.ec. PubMed PMID: 19171829.
68. Jones JS, Chi X, Gu X, Lynch PM, Amos CI, Frazier ML. p53 polymorphism and age of onset of hereditary nonpolyposis colorectal cancer in a Caucasian population. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10(17):5845-9. Epub 2004/09/10. doi: 10.1158/1078-0432.CCR-030590. PubMed PMID: 15355915.
69. Kruger S, Bier A, Engel C, Mangold E, Pagenstecher C, von Knebel Doeberitz M, et al. The p53 codon 72 variation is associated with the age of onset of hereditary non-polyposis colorectal cancer (HNPCC). Journal of medical genetics. 2005;42(10):769-73. Epub 2005/10/04. doi: 10.1136/jmg.2004.028506. PubMed PMID: 16199549; PubMed Central PMCID: PMC1735929.
70. Pim D, Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. International journal of cancer Journal international du cancer. 2004;108(2):196-9. Epub 2003/11/26. doi: 10.1002/ijc.11548. PubMed PMID: 14639602.
71. Rogler A, Rogenhofer M, Borchardt A, Lunz JC, Knoell A, Hofstaedter F, et al. P53 codon 72 (Arg72Pro) polymorphism and prostate cancer risk: association between disease onset and proline genotype. Pathobiology : journal of immunopathology, molecular and cellular biology.

2011;78(4):193-200. Epub 2011/07/23. doi: 10.1159/000326767. PubMed PMID: 21778786.
72. Orsted DD, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. The Journal of experimental medicine. 2007;204(6):1295-301. Epub 2007/05/31. doi: 10.1084/jem.20062476. PubMed PMID: 17535973; PubMed Central PMCID: PMC2118619.
73. Chi SW, Lee SH, Kim DH, Ahn MJ, Kim JS, Woo JY, et al. Structural details on mdm2-p53 interaction. The Journal of biological chemistry. 2005;280(46):38795-802. Epub 2005/09/15. doi: 10.1074/jbc.M508578200. PubMed PMID: 16159876.
74. Daughdrill GW, Ackerman J, Isern NG, Botuyan MV, Arrowsmith C, Wold MS, et al. The weak interdomain coupling observed in the 70 kDa subunit of human replication protein A is unaffected by ssDNA binding. Nucleic acids research. 2001;29(15):3270-6. Epub 2001/07/27. PubMed PMID: 11470885; PubMed Central PMCID: PMC55822.
75. Pazgier M, Liu M, Zou G, Yuan W, Li C, Li J, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(12):4665-70. Epub 2009/03/04. doi: 10.1073/pnas.0900947106. PubMed PMID: 19255450; PubMed Central PMCID: PMC2660734.
76. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR. Molecular mechanism of the interaction between MDM2 and p53. Journal of molecular biology. 2002;323(3):491-501. Epub 2002/10/17. PubMed PMID: 12381304.
77. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274(5289):948-53. Epub 1996/11/08. PubMed PMID: 8875929.
78. Teufel DP, Bycroft M, Fersht AR. Regulation by phosphorylation of the relative affinities of the N -terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene. 2009;28(20):2112-8. Epub 2009/04/14. doi: 10.1038/onc.2009.71. PubMed PMID: 19363523; PubMed Central PMCID: PMC2685776.
79. Teufel DP, Freund SM, Bycroft M, Fersht AR. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of
p53. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(17):7009-14. Epub 2007/04/18. doi: 10.1073/pnas.0702010104. PubMed PMID: 17438265; PubMed Central PMCID: PMC1855428.
80. Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. The Journal of biological chemistry. 2010;285(3):2174-83. Epub 2009/11/17. doi: 10.1074/jbc.M109.073056. PubMed PMID: 19910468; PubMed Central PMCID: PMC2804373.
81. Li C, Pazgier M, Yuan W, Liu M, Wei G, Lu WY, et al. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. Journal of molecular biology. 2010;398(2):200-13. Epub 2010/03/17. doi: 10.1016/j.jmb.2010.03.005. PubMed PMID: 20226197; PubMed Central PMCID: PMC2856455.
82. Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(16):6591-6. Epub 2009/04/10. doi: 10.1073/pnas.0811023106. PubMed PMID: 19357310; PubMed Central PMCID: PMC2672497.
83. Lee CW, Ferreon JC, Ferreon AC, Arai M, Wright PE. Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(45):19290-5. Epub 2010/10/22. doi: 10.1073/pnas.1013078107. PubMed PMID: 20962272; PubMed Central PMCID: PMC2984141.
84. Yin Y, Stephen CW, Luciani MG, Fahraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nature cell biology. 2002;4(6):462-7. Epub 2002/05/29. doi: 10.1038/ncb801. PubMed PMID: 12032546.
85. Zuiderweg ER. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry. 2002;41(1):1-7. Epub 2002/01/05. PubMed PMID: 11771996.
86. Cavanagh F, Palmer, and Skelton. Protein NMR spectroscopy Principles and Practice. 1st ed. San Diego, CA: Academic Press Inc; 2007.
87. Lum JK, Neuweiler H, Fersht AR. Long-Range Modulation of Chain Motions within the Intrinsically Disordered Transactivation Domain of Tumor Suppressor p53. Journal of the American Chemical Society.

2012;134(3):1617-22. Epub 2011/12/20. doi: 10.1021/ja2078619. PubMed PMID: 22176582; PubMed Central PMCID: PMC3265989.

## Appendix 1: M9 Minimal Media Recipe

Stock Solutions:

1. 1 liter of 10 X M9 Salts

| Na 2 HPO 4 | 60 g |
| :--- | :--- |
| KH 2 PO 4 | 30 g |
| NaCl | 5 g |

2. 1 M MgSO 4 Filter sterilized
3. $20 \%$ Dextrose Filter Sterilized
4. 50 mM CaCl 2 Filter Sterilized
5. $0.01 \mathrm{FeCl3}$ (in 0.1 M HCL to prevent precipitation)
6. $5 \mathrm{mg} / \mathrm{ml}$ Vitamin B1 Filter Sterilized

To make 2 liters of M9 Media, to 1.7 liters of $\mathrm{ddH}_{2} \mathrm{O}$

- 200ml of 10X M9 Salts
- 4 ml 1 M MgSO 4
- 20 ml of $20 \%$ D-Glucose (or $2 \mathrm{~g} / /$ of dry glucose)
- 4 ml of 50 mM CaCl 2
- 2 ml 0.01 M FeCl 3
- $400 \mu \mathrm{l}$ of $5 \mathrm{mg} / \mathrm{ml}$ Vitamin B1
- pH to 7.3-7.5
- QS to 2 liters with $\mathrm{ddH}_{2} \mathrm{O}$


## Appendix 2: ${ }^{15} \mathrm{~N}$ labeled RPA $\Delta 122{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ chemical shifts from titration with ${ }^{14} \mathrm{~N}$ human $\mathrm{p} 53 \mathrm{TAD74} \mathrm{\Delta 72R}$.

|  | $[0 \mathrm{mM}]$ |  | $[0.065 \mathrm{mM}]$ |  | $[0.126 \mathrm{mM}]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | H shift |  | N shift | H shift |
| G3 | 8.49472 | 112.60674 | 8.49877 | 112.57875 | 8.49545 | 112.5707 |
| Q4 | 8.05931 | 118.70228 | 8.06646 | 118.7038 | 8.0658 | 118.70276 |
| L5 | 8.10679 | 118.70406 | 8.11058 | 118.70214 | 8.11278 | 118.70189 |
| S6 | 9.10108 | 118.21407 | 9.11024 | 118.21766 | 9.11916 | 118.24112 |
| E7 | 7.82985 | 126.62897 | 7.83498 | 126.66325 | 7.83641 | 126.64723 |
| G8 | 7.46378 | 112.62811 | 7.46808 | 112.63383 | 7.44658 | 112.37222 |
| A9 | 8.61853 | 126.06001 | 8.62634 | 126.03616 | 8.63234 | 126.02344 |
| I10 | 8.97124 | 117.1506 | 8.97618 | 117.15587 | 8.96836 | 117.12127 |
| A11 | 8.47768 | 122.23817 | 8.48586 | 122.22247 | 8.49624 | 122.19742 |
| A12 | 7.87684 | 120.11706 | 7.88321 | 120.11942 | 7.87658 | 119.9857 |
| I13 | 8.33613 | 119.40733 | 8.34114 | 119.3989 | 8.33213 | 119.46397 |
| M14 | 7.95402 | 114.6039 | 7.95912 | 114.66241 | 7.95911 | 114.81184 |
| Q15 | 8.7774 | 117.85872 | 8.77922 | 117.84295 | 8.76431 | 117.73307 |
| K16 | 7.67131 | 116.01237 | 7.67732 | 116.01322 | 7.68725 | 116.12341 |
| G17 | 7.68825 | 108.8917 | 7.69666 | 108.89277 | 7.732782 | 108.97016 |
| D18 | 7.47496 | 119.41606 | 7.48031 | 119.41169 | 7.43457 | 119.25576 |
| T19 | 7.96514 | 113.01614 | 7.96775 | 112.95087 | 7.94901 | 112.87827 |
| N20 | 8.75985 | 121.67473 | 7.86119 | 121.64814 | 8.75115 | 121.62254 |
| I21 | 7.21755 | 115.59309 | 7.2199 | 115.58829 | 7.2112 | 115.44206 |
| K22 | 8.36592 | 122.38187 | 8.37018 | 122.3791 | 8.37392 | 122.29372 |
| I24 | 9.08966 | 121.67828 | 9.09648 | 121.69381 | 9.10138 | 121.69863 |
| L25 | 8.60123 | 123.65409 | 8.60883 | 123.64906 | 8.61151 | 123.64106 |
| Q26 | 9.40683 | 119.97401 | 9.41479 | 119.98541 | 9.42011 | 120.02401 |
| V27 | 8.78953 | 127.40601 | 8.79253 | 127.40748 | 8.76625 | 127.40642 |
| I28 | 9.38958 | 128.74265 | 9.39216 | 128.77696 | 9.37224 | 128.75554 |
| N29 | 7.7768 | 114.62202 | 7.78264 | 114.7016 | 7.78081 | 114.79806 |
| I30 | 8.31274 | 121.10027 | 8.31537 | 121.09098 | 8.3041 | 121.2686 |
| R31 | 9.18069 | 127.32478 | 9.19097 | 127.32424 | 9.19426 | 127.35426 |
| I33 | 9.08939 | 123.76946 | 9.08693 | 123.76572 | 9.0386 | 123.95855 |
| T34 | 8.39506 | 119.57108 | 8.3936 | 119.57032 | 8.35812 | 119.38955 |
| T35 | 8.39418 | 117.14801 | 8.39551 | 117.13085 | 8.35456 | 116.87991 |
| G36 | 8.60115 | 112.60674 | 8.60271 | 112.53287 | 8.58115 | 112.3444 |
| R41 | 7.64153 | 118.27394 | 7.64559 | 118.3233 | 7.62836 | 118.40776 |
| Y42 | 9.26557 | 120.25946 | 9.26979 | 120.23985 | 9.27029 | 120.12081 |
| R43 | 8.88943 | 124.36253 | 8.89065 | 124.40101 | 8.86804 | 124.35854 |
|  |  |  |  |  |  |  |


|  | [0mM] |  | [0.065mM] |  | [0.126mM] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift | H shift | $N$ shift |
| L44 | 9.15114 | 127.19112 | 9.1509 | 127.2118 | 9.12687 | 127.35183 |
| L45 | 8.1127 | 123.94019 | 8.12221 | 123.93026 | 8.15975 | 123.65063 |
| M46 | 8.25318 | 122.52427 | 8.26 | 122.50504 | 8.25759 | 122.55097 |
| S47 | 8.9417 | 112.62324 | 8.94151 | 112.61787 | 8.91918 | 112.49933 |
| D48 | 8.74154 | 127.26814 | 8.75306 | 127.26392 | 8.74027 | 127.26095 |
| G49 | 8.86554 | 107.39132 | 8.87191 | 107.38456 | 8.88047 | 107.40484 |
| L50 | 8.50147 | 121.95661 | 8.50768 | 121.98894 | 8.49883 | 121.95937 |
| N51 | 10.21852 | 118.86313 | 10.22463 | 118.88677 | 10.21568 | 188.83913 |
| T52 | 7.65369 | 105.83672 | 7.66308 | 105.87403 | 7.67868 | 105.93496 |
| L53 | 8.47126 | 119.98016 | 8.47668 | 120.00486 | 8.47375 | 119.84361 |
| S54 | 9.0129 | 121.51517 | 9.02872 | 121.48524 | 9.11794 | 121.4344 |
| S55 | 6.93034 | 116.01674 | 6.9408 | 116.15755 | 6.994 | 117.24545 |
| F56 | 7.17094 | 117.57133 | 7.18402 | 117.59602 | 7.30784 | 117.174 |
| M57 | 9.41832 | 121.10448 | 9.42155 | 121.09737 | 9.39154 | 121.08389 |
| A59 | 8.52449 | 131.29565 | 8.52701 | 131.27145 | 8.49283 | 130.58478 |
| T60 | 8.50058 | 115.88895 | 8.50758 | 115.89041 | 8.52354 | 115.87483 |
| Q61 | 9.0002 | 120.54276 | 9.00761 | 120.52618 | 9.02969 | 120.52987 |
| L62 | 8.0537 | 117.43435 | 8.0599 | 117.46102 | 8.05536 | 117.46824 |
| N63 | 7.80051 | 122.24356 | 7.80677 | 122.26669 | 7.81207 | 122.26233 |
| L65 | 7.93014 | 113.36299 | 7.93235 | 113.32162 | 7.91347 | 113.29031 |
| V66 | 7.38864 | 118.70502 | 7.39822 | 118.74209 | 7.40936 | 118.9766 |
| E67 | 7.82516 | 121.95584 | 7.83144 | 121.97433 | 7.82516 | 121.97812 |
| E68 | 8.30668 | 114.88316 | 8.31067 | 114.84889 | 8.29029 | 114.81021 |
| E69 | 7.54763 | 112.91103 | 7.55258 | 112.9156 | 7.54515 | 112.45525 |
| Q70 | 7.80464 | 116.44814 | 7.80919 | 116.49712 | 7.81155 | 116.51871 |
| L71 | 7.3588 | 119.78008 | 7.36499 | 199.80554 | 7.37173 | 120.00371 |
| S72 | 7.24815 | 117.15189 | 7.25251 | 117.20356 | 7.25251 | 117.33606 |
| S73 | 8.68356 | 118.14029 | 8.69112 | 118.15598 | 8.69559 | 118.25958 |
| N74 | 8.81857 | 114.7481 | 8.82975 | 114.75043 | 8.84915 | 114.72945 |
| C75 | 8.15422 | 117.56303 | 8.16327 | 117.5332 | 8.17541 | 117.54194 |
| V76 | 8.54825 | 120.82168 | 8.55217 | 120.8192 | 8.54261 | 120.74581 |
| C77 | 9.32232 | 122.80442 | 9.32878 | 122.8052 | 9.33461 | 122.80572 |
| Q78 | 9.11577 | 120.82077 | 9.12058 | 120.78825 | 9.11786 | 120.786 |
| 179 | 8.71311 | 127.0759 | 8.73044 | 127.17488 | 8.72513 | 127.17561 |
| H80 | 7.99996 | 124.50445 | 8.00769 | 124.49002 | 8.01462 | 124.50413 |
| R81 | 7.85875 | 117.71114 | 7.8654 | 117.68836 | 7.87373 | 117.69311 |
| F82 | 8.83636 | 125.35076 | 8.84688 | 125.34533 | 8.86818 | 125.35273 |
| 183 | 8.73023 | 116.73206 | 8.73974 | 116.81507 | 8.75632 | 119.91483 |
| V84 | 8.71229 | 124.50558 | 8.71898 | 124.48707 | 8.71629 | 124.33618 |
| T86 | 8.54826 | 118.56321 | 8.55637 | 118.58945 | 8.57126 | 118.94386 |
| L87 | 9.11248 | 127.86527 | 9.11689 | 127.8339 | 9.10833 | 127.49507 |
| K88 | 8.5768 | 120.92942 | 8.58491 | 120.89823 | 8.55897 | 120.9244 |
| D89 | 7.72444 | 115.37907 | 7.73129 | 115.34027 | 7.74512 | 115.16412 |
| G90 | 8.06578 | 108.09757 | 8.07153 | 108.16183 | 8.05848 | 108.25146 |
| R91 | 7.75402 | 121.24566 | 7.7653 | 121.2571 | 7.8049 | 121.39096 |
| R92 | 8.36494 | 120.12046 | 8.36809 | 120.18205 | 8.29969 | 120.37558 |


|  | [0mM] |  | [0.065mM] |  | [0.126mM] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift | H shift | $N$ shift |
| V93 | 8.74884 | 118.84773 | 8.7475 | 118.82851 | 8.76421 | 117.73307 |
| V94 | 8.09492 | 124.79263 | 8.10435 | 124.82636 | 8.11725 | 124.79695 |
| 195 | 9.36544 | 127.66432 | 9.37457 | 127.68437 | 9.38064 | 127.68185 |
| L96 | 9.08334 | 126.19267 | 9.09007 | 126.19371 | 9.09431 | 126.22703 |
| M97 | 8.21827 | 120.5441 | 8.22018 | 120.55229 | 8.21046 | 120.40545 |
| L99 | 8.78324 | 123.79875 | 8.78596 | 123.78936 | 8.75749 | 123.63207 |
| E100 | 8.75496 | 120.34846 | 8.75496 | 120.34865 | 8.75333 | 120.32056 |
| V101 | 9.40726 | 127.75901 | 9.40613 | 127.60266 | 9.39926 | 127.68217 |
| L102 | 8.94548 | 129.67847 | 8.95155 | 129.67819 | 8.95431 | 129.68576 |
| K103 | 7.75339 | 117.57032 | 7.75764 | 117.58583 | 7.74959 | 117.56532 |
| S104 | 8.74073 | 120.33979 | 8.74073 | 120.33979 | 8.73921 | 120.28172 |
| A105 | 8.74204 | 123.08772 | 8.75254 | 123.10425 | 8.77412 | 123.10271 |
| E106 | 8.56553 | 117.2826 | 8.5686 | 117.26859 | 8.5665 | 117.26879 |
| A107 | 7.67092 | 121.95584 | 7.67584 | 121.9607 | 7.6757 | 121.96309 |
| V108 | 7.71817 | 118.5846 | 7.72578 | 118.62908 | 7.73335 | 118.66089 |
| G109 | 8.22418 | 106.82076 | 8.23033 | 106.76716 | 8.23224 | 106.7403 |
| V110 | 7.13564 | 114.89161 | 7.14198 | 114.9081 | 7.14138 | 114.89805 |
| K111 | 8.03568 | 123.0874 | 8.03991 | 123.11765 | 8.0369 | 123.10342 |
| 1112 | 9.21767 | 130.302 | 9.22344 | 130.30597 | 9.23173 | 130.33345 |
| G113 | 8.33 | 114.30955 | 8.33384 | 114.27973 | 8.32746 | 114.28344 |
| N114 | 8.45973 | 116.01383 | 8.46373 | 116.01685 | 8.46112 | 116.02251 |
| V116 | 8.06063 | 116.02081 | 8.06549 | 118.97226 | 8.05298 | 115.7333 |
| Y118 | 9.13634 | 125.92437 | 9.13713 | 125.90623 | 9.09501 | 125.53538 |
| N119 | 7.93582 | 125.977 | 7.94034 | 125.97516 | 7.94396 | 125.9465 |
| E120 | 8.23864 | 124.21947 | 8.23964 | 124.19786 | 8.31426 | 124.25186 |
| G121 | 7.93297 | 115.30896 | 7.93677 | 115.32671 | 7.92596 | 115.44406 |


|  | $[0.165 \mathrm{mM}]$ |  | $[0.186 \mathrm{mM}]$ |  | $[0.198 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | H shift |  | N shift | H shift | $N$ shift |
| G3 | 8.49545 | 112.5707 | 8.49273 | 112.57123 | 8.4932 | 112.58458 |  |
| Q4 | 8.0658 | 118.70276 | 8.0658 | 118.70276 | 8.06249 | 118.70398 |  |
| L5 | 8.11278 | 118.70189 | 8.11278 | 118.70189 | 8.11164 | 118.70398 |  |
| S6 | 9.11914 | 118.28088 | 9.11914 | 118.28088 | 9.11794 | 118.27278 |  |
| E7 | 7.83641 | 126.64723 | 7.8333 | 126.62824 | 7.83462 | 126.62774 |  |
| G8 | 7.44658 | 112.37222 | 7.4475 | 112.3442 | 7.45331 | 112.34521 |  |
| A9 | 8.63234 | 126.02344 | 8.6298 | 126.05714 | 8.63144 | 126.0541 |  |
| I10 | 8.96428 | 117.14502 | 8.96428 | 117.14502 | 8.95943 | 117.12668 |  |
| A11 | 8.49666 | 122.23648 | 8.49499 | 122.234 | 8.49868 | 122.23129 |  |
| A12 | 7.87658 | 119.9857 | 7.87158 | 119.97449 | 7.87205 | 119.97836 |  |
| I13 | 8.32393 | 119.49432 | 8.32393 | 119.49432 | 8.32127 | 119.53873 |  |
| M14 | 7.9595 | 114.89787 | 7.95551 | 114.89851 | 7.96032 | 114.88825 |  |
| Q15 | 8.7603 | 117.72203 | 8.7532 | 117.71851 | 8.7532 | 117.71851 |  |
| K16 | 7.68725 | 116.12341 | 7.68725 | 116.12341 | 7.68725 | 116.12341 |  |
| G17 | 7.74643 | 108.99072 | 7.74721 | 108.99042 | 7.74794 | 108.9912 |  |
| D18 | 7.43457 | 119.25576 | 7.45569 | 119.25188 | 7.45702 | 119.25705 |  |
| T19 | 7.9399 | 112.85008 | 7.9399 | 112.85008 | 7.93916 | 112.78754 |  |


|  | [0.165mM] |  | [0.186mM] |  | [0.198mM] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift | H shift | $N$ shift |
| N20 | 8.74736 | 121.69197 | 8.74285 | 121.61817 | 8.74223 | 121.61871 |
| 121 | 7.2112 | 115.44206 | 7.20621 | 115.41461 | 7.20633 | 115.39547 |
| K22 | 8.37433 | 122.26398 | 8.37104 | 122.24689 | 8.37338 | 122.24426 |
| 124 | 9.10097 | 121.67191 | 9.10097 | 121.67191 | 9.10097 | 121.67191 |
| L25 | 8.60912 | 123.65765 | 8.60912 | 123.65765 | 8.60912 | 123.65765 |
| Q26 | 9.4184 | 120.02338 | 9.4184 | 120.02338 | 9.4184 | 120.02338 |
| V27 | 8.75424 | 127.41192 | 8.75424 | 127.41192 | 8.75122 | 127.44817 |
| 128 | 9.37018 | 128.75157 | 9.36083 | 128.74648 | 9.36083 | 128.74648 |
| N29 | 7.77672 | 114.8571 | 7.77513 | 114.85713 | 7.77196 | 114.86937 |
| 130 | 8.29853 | 121.28085 | 8.29444 | 121.36154 | 8.29444 | 121.36154 |
| R31 | 9.18943 | 127.33842 | 9.18943 | 127.33842 | 9.18943 | 127.33842 |
| 133 | 9.0276 | 124.00481 | 9.01826 | 124.07225 | 9.01328 | 124.07375 |
| T34 | 8.35014 | 119.30526 | 8.34748 | 119.28164 | 8.34685 | 119.2874 |
| T35 | 8.3459 | 116.85824 | 8.34183 | 116.85817 | 8.33654 | 116.85831 |
| G36 | 8.57248 | 112.2991 | 8.57112 | 112.2998 | 8.56816 | 112.24475 |
| R41 | 7.62196 | 118.42001 | 7.61777 | 118.41187 | 7.61777 | 118.41187 |
| Y42 | 9.26678 | 120.12093 | 9.26678 | 120.12093 | 9.27127 | 120.11524 |
| R43 | 8.86009 | 124.35056 | 8.85423 | 124.362 | 8.85521 | 124.36099 |
| L44 | 9.13514 | 127.35757 | 9.13514 | 127.35757 | 9.13514 | 127.35757 |
| L45 | 8.1459 | 123.67451 | 8.1459 | 123.67451 | 8.14348 | 123.63243 |
| M46 | 8.2542 | 122.52785 | 8.2542 | 122.52785 | 8.2542 | 122.52785 |
| S47 | 8.91315 | 112.4857 | 8.9066 | 112.48395 | 8.9066 | 112.48395 |
| D48 | 8.73445 | 127.26607 | 8.73445 | 127.26607 | 8.73672 | 127.26476 |
| G49 | 8.877 | 107.39162 | 8.88057 | 107.3903 | 8.88057 | 107.3903 |
| L50 | 8.495 | 121.95755 | 8.48946 | 121.95736 | 8.49151 | 121.96056 |
| N51 | 10.21239 | 118.83825 | 10.20664 | 118.83381 | 10.20791 | 118.83395 |
| T52 | 7.68546 | 105.93919 | 7.68069 | 105.93968 | 7.68371 | 105.97414 |
| L53 | 8.47066 | 119.83709 | 8.4705 | 119.83289 | 8.4705 | 119.83289 |
| S54 | 9.13542 | 121.3974 | 9.1367 | 121.39838 | 9.14537 | 121.39046 |
| S55 | 6.99462 | 117.43574 | 7.00123 | 117.54698 | 7.00295 | 117.5771 |
| F56 | 7.30784 | 117.174 | 7.31146 | 117.1496 | 7.31733 | 117.14792 |
| M57 | 9.3815 | 121.10734 | 9.37737 | 121.09971 | 9.37672 | 121.09631 |
| A59 | 8.48299 | 130.44594 | 8.4474 | 130.44615 | 8.47659 | 130.3017 |
| T60 | 8.52397 | 115.87118 | 8.52397 | 115.87118 | 8.52399 | 115.86612 |
| Q61 | 9.03391 | 120.52967 | 9.03109 | 120.52777 | 9.0613 | 120.53278 |
| L62 | 8.05288 | 117.46864 | 8.04778 | 117.43398 | 8.04778 | 117.43398 |
| N63 | 7.81207 | 122.26233 | 7.80733 | 122.2562 | 7.81339 | 122.27343 |
| L65 | 7.90578 | 113.28272 | 7.90037 | 113.28274 | 7.90297 | 113.2806 |
| V66 | 7.40607 | 118.97706 | 7.40898 | 118.97608 | 7.40868 | 119.09051 |
| E67 | 7.82516 | 121.97812 | 7.81791 | 122.05606 | 7.81791 | 122.05608 |
| E68 | 8.2832 | 114.80456 | 8.2796 | 114.77894 | 8.2772 | 114.75609 |
| E69 | 7.54515 | 112.45525 | 7.5453 | 112.47873 | 7.5453 | 112.47873 |
| Q70 | 7.81155 | 116.51871 | 7.81155 | 116.51871 | 7.80721 | 116.52219 |
| L71 | 7.37162 | 120.10326 | 7.36536 | 120.10297 | 7.37138 | 120.11861 |
| S72 | 7.24724 | 117.41167 | 7.24778 | 117.42372 | 7.24834 | 117.42976 |
| S73 | 8.69559 | 118.25958 | 8.69473 | 118.25884 | 8.69473 | 118.25884 |
| N74 | 8.85069 | 114.74072 | 8.85069 | 114.74072 | 8.85324 | 114.74126 |


|  | [0.165mM] |  | [0.186mM] |  | [0.198mM] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift | H shift | $N$ shift |
| C75 | 8.17923 | 117.56538 | 8.17658 | 117.56313 | 8.17658 | 117.56313 |
| V76 | 8.53589 | 120.68551 | 8.53589 | 120.68551 | 8.53589 | 120.68551 |
| C77 | 9.33461 | 122.80572 | 9.33461 | 122.80572 | 9.33461 | 122.80572 |
| Q78 | 9.11579 | 120.82922 | 9.11228 | 120.81113 | 9.11228 | 120.81113 |
| 179 | 8.72258 | 127.19044 | 8.72258 | 127.19044 | 8.71794 | 127.12451 |
| H80 | 8.01462 | 124.50413 | 8.01283 | 124.50343 | 8.01762 | 124.50292 |
| R81 | 7.87373 | 117.69311 | 7.87101 | 117.69481 | 7.8751 | 117.71111 |
| F82 | 8.87603 | 125.35317 | 8.87148 | 125.35436 | 8.87148 | 125.35436 |
| 183 | 8.7593 | 116.96954 | 8.7593 | 116.96954 | 8.7593 | 116.96954 |
| V84 | 8.71501 | 124.22902 | 8.71149 | 124.22007 | 8.71149 | 124.22007 |
| T86 | 8.5717 | 118.99638 | 8.5717 | 118.99638 | 8.5717 | 118.99638 |
| L87 | 9.10833 | 127.49507 | 9.09996 | 127.49565 | 9.09998 | 127.34804 |
| K88 | 8.5721 | 121.07577 | 8.56579 | 121.07684 | 8.57013 | 121.07457 |
| D89 | 7.74759 | 115.16305 | 7.74759 | 115.16305 | 7.74759 | 115.16305 |
| G90 | 8.05848 | 108.25146 | 8.05041 | 108.25367 | 8.05041 | 108.25367 |
| R91 | 7.81659 | 121.39577 | 7.81262 | 121.39215 | 7.81717 | 121.3908 |
| R92 | 8.27994 | 120.37433 | 8.27764 | 120.40013 | 8.27225 | 120.40246 |
| V93 | 8.65951 | 118.6536 | 8.65435 | 118.64227 | 8.65345 | 118.58379 |
| V94 | 8.11725 | 124.79695 | 8.11725 | 124.79695 | 8.11725 | 124.79695 |
| 195 | 9.38064 | 127.68185 | 9.38064 | 127.68185 | 9.38064 | 127.68185 |
| L96 | 9.09431 | 126.22703 | 9.09431 | 126.22703 | 9.09431 | 126.22703 |
| M97 | 8.20701 | 120.37859 | 8.20701 | 120.37859 | 8.20701 | 120.37859 |
| L99 | 8.74798 | 123.5997 | 8.74798 | 123.5997 | 8.74366 | 123.51326 |
| E100 | 8.75333 | 120.32056 | 8.75333 | 120.32056 | 8.75333 | 120.32056 |
| V101 | 9.39926 | 127.68217 | 9.39926 | 127.68217 | 9.39926 | 127.68217 |
| L102 | 8.95431 | 129.68576 | 8.95029 | 129.70605 | 8.95226 | 129.71947 |
| K103 | 7.74145 | 117.55917 | 7.74145 | 117.55917 | 7.7418 | 117.56816 |
| S104 | 8.73921 | 120.28172 | 8.73921 | 120.28172 | 8.73921 | 120.28172 |
| A105 | 8.77706 | 123.08849 | 8.77706 | 123.08849 | 8.78333 | 123.07632 |
| E106 | 8.5665 | 117.26879 | 8.56364 | 117.26866 | 8.56426 | 117.27957 |
| A107 | 7.6757 | 121.96309 | 7.67153 | 121.95955 | 7.67153 | 121.95955 |
| V108 | 7.73335 | 118.66089 | 7.73057 | 118.65158 | 7.73057 | 118.65158 |
| G109 | 8.23224 | 106.7403 | 8.23072 | 106.73915 | 8.23014 | 106.69326 |
| V110 | 7.14138 | 114.89805 | 7.13644 | 114.88908 | 7.13555 | 114.88841 |
| K111 | 8.03397 | 123.06836 | 8.03077 | 123.06593 | 8.03092 | 123.0893 |
| 1112 | 9.23002 | 130.30272 | 9.23002 | 130.30272 | 9.23002 | 130.30272 |
| G113 | 8.32487 | 114.28533 | 8.32091 | 114.28402 | 8.32393 | 114.28932 |
| N114 | 8.46112 | 116.02251 | 8.46112 | 116.02251 | 8.4569 | 116.02289 |
| V116 | 8.04755 | 115.67507 | 8.04755 | 115.67507 | 8.04759 | 115.60922 |
| Y118 | 9.08397 | 125.47266 | 9.08054 | 125.47309 | 9.07717 | 125.38454 |
| N119 | 7.94396 | 125.9465 | 7.94396 | 125.9465 | 7.94376 | 125.9184 |
| E120 | 8.31079 | 124.37102 | 8.30635 | 124.37193 | 8.30612 | 124.49686 |
| G121 | 7.92252 | 115.4482 | 7.92252 | 115.4482 | 7.92252 | 115.4482 |


|  | [0.293mM] |  | [.3185mM] |  | [0.357mM] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift | H shift | N shift |
| G3 | 8.48918 | 112.57901 | 8.48918 | 112.57901 | 8.48381 | 112.58531 |
| Q4 | 8.06042 | 118.70712 | 8.06476 | 118.70566 | 8.05957 | 118.70909 |
| L5 | 8.11164 | 118.70396 | 8.11254 | 118.70238 | 8.10689 | 118.70228 |
| S6 | 9.11939 | 118.28086 | 9.1248 | 118.27842 | 9.11852 | 118.27683 |
| E7 | 7.8361 | 126.628 | 7.8361 | 126.628 | 7.82995 | 126.63061 |
| G8 | 7.45954 | 112.33442 | 7.45954 | 112.33442 | 7.45405 | 112.33369 |
| A9 | 8.6307 | 126.05193 | 8.63532 | 126.05704 | 8.63035 | 126.05887 |
| 110 | 8.95943 | 117.12668 | 8.95935 | 117.07037 | 8.954 | 117.06158 |
| A11 | 8.49796 | 122.2376 | 8.49984 | 122.24172 | 8.49793 | 122.23441 |
| A12 | 7.87125 | 119.97802 | 7.87125 | 119.97802 | 7.8667 | 119.96715 |
| 113 | 8.31825 | 119.53418 | 8.32104 | 119.55587 | 8.31276 | 119.55148 |
| M14 | 7.95416 | 114.8933 | 7.95873 | 114.88215 | 7.95407 | 114.88773 |
| Q15 | 8.75097 | 117.71367 | 8.75138 | 117.71338 | 8.74805 | 117.71225 |
| K16 | 7.69125 | 116.15827 | 7.69208 | 116.15403 | 7.67914 | 116.15489 |
| G17 | 7.7594 | 109.06181 | 7.76061 | 109.0592 | 7.76325 | 109.07111 |
| D18 | 7.45942 | 119.26151 | 7.46507 | 119.28349 | 7.44699 | 119.28018 |
| T19 | 7.92992 | 112.76955 | 7.93432 | 112.76987 | 7.923432 | 112.76807 |
| N20 | 8.74223 | 121.61871 | 8.74197 | 121.61446 | 8.73751 | 121.60032 |
| 121 | 7.20107 | 115.31134 | 7.20453 | 115.31332 | 7.19931 | 115.31136 |
| K22 | 8.37186 | 122.24417 | 8.37484 | 122.24827 | 8.37037 | 122.25004 |
| 124 | 9.10097 | 121.67191 | 9.09987 | 121.67371 | 9.09505 | 121.67797 |
| L25 | 8.60912 | 123.65765 | 8.61249 | 123.66027 | 8.607 | 123.6505 |
| Q26 | 9.41844 | 120.0659 | 9.42353 | 120.07526 | 9.41858 | 120.11265 |
| V27 | 8.74837 | 127.45145 | 8.74825 | 127.43205 | 8.74211 | 127.42564 |
| 128 | 9.35512 | 128.74992 | 9.3541 | 128.74861 | 9.34976 | 128.7431 |
| N29 | 7.77196 | 114.86937 | 7.77148 | 114.86987 | 7.76731 | 114.88219 |
| 130 | 8.29444 | 121.36154 | 8.29444 | 121.36154 | 8.28892 | 121.39593 |
| R31 | 9.18943 | 127.33842 | 9.19517 | 127.33973 | 9.18822 | 127.33759 |
| 133 | 9.00666 | 124.07865 | 9.00418 | 124.08161 | 9.00057 | 124.0826 |
| T34 | 8.34169 | 119.27202 | 9.34195 | 119.26221 | 8.33588 | 119.26147 |
| T35 | 8.32911 | 116.73598 | 8.32911 | 116.73598 | 8.32417 | 116.72891 |
| G36 | 8.56531 | 122.20745 | 8.56531 | 122.20745 | 8.55935 | 112.19471 |
| R41 | 7.6128 | 118.4287 | 7.6157 | 118.4336 | 7.61318 | 118.436 |
| Y42 | 9.26591 | 120.11846 | 9.2663 | 119.97427 | 9.25995 | 119.9826 |
| R43 | 8.84867 | 124.35641 | 8.85273 | 124.35989 | 8.8469 | 124.35699 |
| L44 | 9.13514 | 127.35757 | 9.14221 | 127.41045 | 9.15718 | 127.40204 |
| L45 | 8.14255 | 123.55729 | 8.14705 | 123.49854 | 8.14196 | 123.50988 |
| M46 | 8.25445 | 122.59405 | 8.2543 | 122.61494 | 8.2485 | 122.60418 |
| S47 | 8.90086 | 112.47749 | 8.90111 | 112.47687 | 8.89603 | 112.48212 |
| D48 | 8.73672 | 127.26478 | 8.7316 | 127.27294 | 8.72549 | 127.26451 |
| G49 | 8.88057 | 107.3903 | 8.8833 | 107.39097 | 8.8833 | 107.39097 |
| L50 | 8.4891 | 121.9623 | 8.4898 | 121.95035 | 8.48593 | 121.94537 |
| N51 | 10.20759 | 118.83279 | 10.20699 | 118.84419 | 10.20157 | 118.84206 |
| T52 | 7.68335 | 105.97404 | 7.68969 | 105.97995 | 7.68262 | 105.97832 |
| L53 | 8.46663 | 119.71126 | 8.47066 | 119.70908 | 8.46558 | 119.69682 |
| S54 | 9.15987 | 121.39642 | 9.16516 | 121.38496 | 9.16703 | 121.38502 |
| S55 | 7.01212 | 117.7034 | 7.01814 | 117.84956 | 7.01851 | 117.85889 |


|  | [0.293mM] |  | [.3185mM] |  | [0.357mM] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift | H shift | $N$ shift |
| F56 | 7.33595 | 117.11839 | 7.34331 | 117.01931 | 7.34223 | 117.01437 |
| M57 | 9.37113 | 121.10075 | 9.37113 | 121.10075 | 9.36623 | 121.0037 |
| A59 | 8.47172 | 130.16588 | 8.47114 | 130.16701 | 8.46543 | 130.1665 |
| T60 | 8.53046 | 115.86622 | 8.53012 | 115.87691 | 8.53012 | 115.87691 |
| Q61 | 9.03997 | 120.53897 | 9.04204 | 120.5462 | 9.03821 | 120.53872 |
| L62 | 8.04778 | 117.43398 | 8.05371 | 117.4449 | 8.04756 | 117.44371 |
| N63 | 7.8129 | 122.27144 | 7.81111 | 122.25417 | 7.80608 | 122.25101 |
| L65 | 7.89457 | 113.27416 | 7.89797 | 113.20464 | 7.88905 | 113.20034 |
| V66 | 7.40868 | 119.09051 | 7.40927 | 119.12634 | 7.40082 | 119.12556 |
| E67 | 7.81791 | 122.05608 | 7.8196 | 122.07246 | 7.81332 | 122.08224 |
| E68 | 8.2772 | 114.75609 | 8.2772 | 114.75609 | 8.27162 | 114.74988 |
| E69 | 7.5453 | 112.47873 | 7.5453 | 112.47873 | 7.5403 | 112.47773 |
| Q70 | 7.80653 | 116.56302 | 7.81163 | 116.56654 | 7.80556 | 116.57528 |
| L71 | 7.37138 | 120.11861 | 7.37406 | 120.11799 | 7.36641 | 120.12436 |
| S72 | 7.24669 | 117.42654 | 7.24669 | 117.42654 | 7.24179 | 117.41978 |
| S73 | 8.69488 | 118.25573 | 8.69653 | 118.27384 | 8.69094 | 118.30238 |
| N74 | 8.85704 | 114.74201 | 8.85959 | 114.74072 | 8.85986 | 114.74093 |
| C75 | 8.18033 | 117.56304 | 8.18243 | 117.56407 | 8.17724 | 117.53307 |
| V76 | 8.53254 | 120.68336 | 8.53556 | 120.68338 | 8.53065 | 120.67885 |
| C77 | 9.33661 | 122.80743 | 9.33741 | 122.80711 | 9.33052 | 122.80355 |
| Q78 | 9.11228 | 120.81113 | 9.11293 | 120.79371 | 9.10641 | 120.77634 |
| 179 | 8.71794 | 127.12451 | 8.71958 | 127.12366 | 8.71399 | 127.13269 |
| H80 | 8.01145 | 124.49834 | 8.01833 | 124.50459 | 8.01833 | 124.50459 |
| R81 | 7.87618 | 117.71252 | 7.87618 | 117.71252 | 7.87069 | 117.71323 |
| F82 | 8.87706 | 125.3571 | 8.8796 | 125.35186 | 8.87735 | 125.35237 |
| 183 | 8.76588 | 116.99091 | 8.76604 | 116.98788 | 8.76025 | 116.9763 |
| V84 | 8.71149 | 124.22007 | 8.71236 | 124.22173 | 8.70593 | 124.21296 |
| T86 | 8.57268 | 119.329 | 8.57625 | 119.13256 | 8.57155 | 119.12752 |
| L87 | 9.09998 | 127.34804 | 9.10304 | 127.3358 | 9.09729 | 127.33222 |
| K88 | 8.57046 | 121.0743 | 8.57046 | 121.0743 | 8.56912 | 121.09012 |
| D89 | 7.75432 | 115.03851 | 7.75567 | 115.02457 | 7.7532 | 115.04819 |
| G90 | 8.04762 | 108.3054 | 8.04762 | 108.3054 | 8.04217 | 108.30287 |
| R91 | 7.82414 | 121.40808 | 7.8249 | 121.40952 | 7.82469 | 121.5022 |
| R92 | 8.26004 | 120.49084 | 8.26004 | 120.49084 | 8.24822 | 120.54686 |
| V93 | 8.63667 | 118.58425 | 8.63594 | 118.56979 | 8.6285 | 118.57613 |
| V94 | 8.12383 | 124.78515 | 8.12383 | 124.78515 | 8.1187 | 124.78487 |
| 195 | 9.38064 | 127.68185 | 9.38064 | 127.68185 | 9.37415 | 127.6154 |
| L96 | 9.09385 | 126.23492 | 9.09651 | 126.29472 | 9.09409 | 126.29795 |
| M97 | 8.20111 | 120.28157 | 8.20022 | 120.28413 | 8.19582 | 120.25977 |
| L99 | 8.73583 | 123.51589 | 8.73589 | 123.51131 | 8.73067 | 123.51248 |
| E100 | 8.75333 | 120.32056 | 8.74448 | 120.39692 | 8.73922 | 120.40055 |
| V101 | 9.39926 | 127.68217 | 9.39926 | 127.68217 | 9.41235 | 127.69873 |
| L102 | 8.95226 | 129.71947 | 8.95408 | 129.71849 | 8.94788 | 129.72952 |
| K103 | 7.7371 | 117.56961 | 7.74196 | 117.56538 | 7.73536 | 114.57538 |
| S104 | 8.73921 | 120.28172 | 8.73921 | 120.32193 | 8.73323 | 120.26759 |
| A105 | 8.78341 | 123.09702 | 8.78985 | 123.08506 | 8.78295 | 123.08804 |
| E106 | 8.56426 | 117.29315 | 8.56426 | 117.29315 | 8.55974 | 117.27934 |


|  | $[0.293 \mathrm{mM}]$ |  | $[.3185 \mathrm{mM}]$ |  | $[0.357 \mathrm{mM}]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | H shift | N shift | H shift | N shift |
| A107 | 7.6743 | 121.96017 | 7.6743 | 121.96017 | 7.66968 | 121.95921 |
| V108 | 7.73057 | 118.65158 | 7.7336 | 118.69747 | 7.73041 | 118.70372 |
| G109 | 8.23014 | 106.69326 | 8.23014 | 106.69326 | 8.22388 | 106.69801 |
| V110 | 7.13555 | 114.88841 | 7.13885 | 114.88706 | 7.13552 | 114.88171 |
| K111 | 8.03092 | 123.0893 | 8.0333 | 123.09063 | 8.02976 | 123.08657 |
| I112 | 9.23575 | 130.2959 | 9.23524 | 130.3091 | 9.23126 | 130.30403 |
| G113 | 8.31901 | 114.30688 | 8.32202 | 114.32118 | 8.31807 | 114.32217 |
| N114 | 8.4569 | 116.02289 | 8.45837 | 116.01915 | 8.45377 | 116.02079 |
| V116 | 8.04225 | 115.59976 | 8.04225 | 115.59976 | 8.04094 | 115.58772 |
| Y118 | 9.07065 | 125.34921 | 9.07112 | 125.35186 | 9.06541 | 125.35026 |
| N119 | 7.94376 | 125.9184 | 7.94132 | 125.92151 | 7.94238 | 125.9246 |
| E120 | 8.30147 | 124.59592 | 8.30162 | 124.63653 | 8.29405 | 124.64327 |
| G121 | 7.92252 | 115.4482 | 7.91893 | 115.46407 | 7.91281 | 115.47981 |


|  | $[0.416 \mathrm{mM}]$ |  | $[0.5 \mathrm{mM}]$ |  |
| :---: | ---: | ---: | ---: | ---: |
| Residue | H shift | N shift | H shift | N shift |
| G3 | 8.48489 | 112.56483 | 8.48914 | 112.51387 |
| Q4 | 8.0626 | 118.70132 | 8.064466 | 118.70331 |
| L5 | 8.11218 | 118.70444 | 8.11247 | 118.70626 |
| S6 | 9.11931 | 118.27807 | 9.12481 | 118.28288 |
| E7 | 7.83564 | 126.62865 | 7.83575 | 126.63704 |
| G8 | 7.45977 | 112.34584 | 7.45926 | 112.34627 |
| A9 | 8.63605 | 126.05061 | 8.63605 | 126.05061 |
| I10 | 8.95368 | 117.03835 | 8.95968 | 117.08467 |
| A11 | 8.5015 | 122.21987 | 8.50104 | 122.22164 |
| A12 | 7.87065 | 119.91552 | 7.87086 | 119.9152 |
| I13 | 8.31752 | 119.55891 | 8.31916 | 119.5562 |
| M14 | 7.95414 | 114.87699 | 7.95929 | 114.89988 |
| Q15 | 8.74837 | 117.69604 | 8.75049 | 117.69858 |
| K16 | 7.69076 | 116.16357 | 7.69479 | 116.15222 |
| G17 | 7.76575 | 109.08082 | 7.76972 | 109.08298 |
| D18 | 7.46781 | 119.35693 | 7.45891 | 119.28732 |
| T19 | 7.92975 | 112.77013 | 7.93027 | 112.76878 |
| N20 | 8.73751 | 121.60032 | 8.73751 | 121.60032 |
| I21 | 7.20196 | 115.30927 | 7.20089 | 115.3087 |
| K22 | 8.37176 | 122.23462 | 8.37725 | 122.24618 |
| I24 | 9.10581 | 121.68383 | 9.1012 | 121.69132 |
| L25 | 8.61249 | 123.66027 | 8.61315 | 123.65929 |
| Q26 | 9.42113 | 120.09075 | 9.42417 | 120.09886 |
| V27 | 8.73744 | 127.42881 | 8.74242 | 127.42792 |
| I28 | 9.3541 | 128.74861 | 9.35755 | 128.7494 |
| N29 | 7.77067 | 114.88463 | 7.77025 | 114.89363 |
| I30 | 8.28888 | 121.39385 | 8.29486 | 121.39775 |
| R31 | 9.18959 | 127.33112 | 9.19536 | 127.33896 |


|  | [0.416mM] |  | [0.5mM] |  |
| :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | H shift | $N$ shift |
| 133 | 9.00173 | 124.12769 | 9.00086 | 124.087 |
| T34 | 8.33642 | 119.23441 | 8.33642 | 119.23441 |
| T35 | 8.32169 | 116.72963 | 8.32409 | 116.73325 |
| G36 | 8.5596 | 112.20389 | 8.5596 | 112.20389 |
| R41 | 7.61139 | 118.42401 | 7.61388 | 118.4264 |
| Y42 | 9.27252 | 119.98667 | 9.27252 | 119.98667 |
| R43 | 8.84864 | 124.36092 | 8.84864 | 124.36092 |
| L44 | 9.13322 | 127.41666 | 9.13071 | 127.5387 |
| L45 | 8.14788 | 123.5356 | 8.1477 | 123.52261 |
| M46 | 8.25344 | 122.65648 | 8.25949 | 122.6666 |
| S47 | 8.90202 | 112.48276 | 8.90055 | 112.48398 |
| D48 | 8.71717 | 127.25389 | 8.72682 | 127.28009 |
| G49 | 8.8833 | 107.39097 | 8.88317 | 107.39787 |
| L50 | 8.48836 | 121.96027 | 8.48836 | 121.96027 |
| N51 | 10.20416 | 118.8273 | 10.20749 | 118.83269 |
| T52 | 7.68969 | 105.97995 | 7.68807 | 105.97688 |
| L53 | 8.46629 | 119.69462 | 8.47127 | 119.70194 |
| S54 | 9.17726 | 121.38188 | 9.17791 | 121.39032 |
| S55 | 7.02293 | 117.99625 | 7.02402 | 117.99348 |
| F56 | 7.35654 | 117.00815 | 7.35889 | 117.01522 |
| M57 | 9.36492 | 121.08514 | 9.36615 | 121.1027 |
| A59 | 8.46487 | 130.16075 | 8.46621 | 130.13411 |
| T60 | 8.53012 | 115.87691 | 8.53314 | 115.87337 |
| Q61 | 9.04294 | 120.54892 | 9.04771 | 120.54293 |
| L62 | 8.04668 | 117.42879 | 8.05152 | 117.43699 |
| N63 | 7.81111 | 122.25417 | 7.81111 | 122.25417 |
| L65 | 7.89535 | 113.19493 | 7.89495 | 113.19946 |
| V66 | 7.40329 | 119.12925 | 7.40172 | 119.13563 |
| E67 | 7.81918 | 122.05762 | 7.81918 | 122.05762 |
| E68 | 8.27158 | 114.75621 | 8.27158 | 114.75621 |
| E69 | 7.54415 | 112.47911 | 7.542 | 112.48576 |
| Q70 | 7.81226 | 116.56062 | 7.81226 | 116.56062 |
| L71 | 7.3714 | 120.12359 | 7.37789 | 120.14838 |
| S72 | 7.2489 | 117.42619 | 7.24837 | 117.43728 |
| S73 | 8.6949 | 118.28917 | 8.6949 | 118.28917 |
| N74 | 8.8601 | 114.72706 | 8.8661 | 114.74685 |
| C75 | 8.18282 | 117.5527 | 8.18382 | 117.57619 |
| V76 | 8.536 | 120.68532 | 8.52992 | 120.686 |
| C77 | 9.33635 | 122.81353 | 9.33635 | 122.81353 |
| Q78 | 9.10676 | 120.79881 | 9.11308 | 120.76868 |
| 179 | 8.71891 | 127.0814 | 8.71873 | 127.05315 |
| H80 | 8.02113 | 124.506 | 8.02113 | 124.506 |
| R81 | 7.8772 | 117.71114 | 7.87797 | 117.71732 |
| F82 | 8.88157 | 125.35076 | 8.88308 | 125.35028 |
| 183 | 8.76611 | 117.00624 | 8.76611 | 117.00624 |
| V84 | 8.70677 | 124.20631 | 8.71253 | 124.2204 |


|  | $[0.416 \mathrm{mM}]$ |  | $[0.5 \mathrm{mM}]$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | H shift | N shift |
| T86 | 8.57738 | 119.17541 | 8.57714 | 119.21103 |
| L87 | 9.09652 | 127.33701 | 9.10069 | 127.32381 |
| K88 | 8.56609 | 121.09295 | 8.57145 | 121.09303 |
| D89 | 7.75844 | 115.01825 | 7.75958 | 115.04354 |
| G90 | 8.04329 | 108.34087 | 8.04814 | 108.38067 |
| R91 | 7.8304 | 121.50509 | 7.82982 | 121.53538 |
| R92 | 8.24785 | 120.54215 | 8.2482 | 120.54296 |
| V93 | 8.62892 | 118.57237 | 8.63043 | 118.57333 |
| V94 | 8.12441 | 124.7656 | 8.1242 | 124.78152 |
| I95 | 9.37245 | 127.62317 | 9.37737 | 127.62215 |
| L96 | 9.09562 | 126.2972 | 9.09896 | 126.3353 |
| M97 | 8.19437 | 120.25808 | 8.19437 | 120.25808 |
| L99 | 8.73095 | 123.50819 | 8.73637 | 123.51622 |
| E100 | 8.74096 | 120.40315 | 8.74234 | 120.40031 |
| V101 | 9.41111 | 127.69692 | 9.44034 | 127.73339 |
| L102 | 8.94877 | 129.7179 | 8.9545 | 129.73732 |
| K103 | 7.74156 | 117.54368 | 7.7413 | 117.57744 |
| S104 | 8.73307 | 120.21799 | 8.72941 | 120.16267 |
| A105 | 8.78938 | 123.08546 | 8.79021 | 123.08703 |
| E106 | 8.56504 | 117.28217 | 8.56504 | 117.28217 |
| A107 | 7.67194 | 121.94656 | 7.67118 | 121.95902 |
| V108 | 7.736 | 118.69333 | 7.73617 | 118.70895 |
| G109 | 8.22995 | 106.69196 | 8.22991 | 106.68785 |
| V110 | 7.1391 | 114.87959 | 7.13991 | 114.8923 |
| K111 | 8.03058 | 123.09205 | 8.03058 | 123.09205 |
| I112 | 9.23172 | 130.30148 | 9.24244 | 130.39037 |
| G113 | 8.31853 | 114.31683 | 8.31853 | 114.31683 |
| N114 | 8.45377 | 116.02079 | 8.45981 | 116.02187 |
| V116 | 8.04058 | 115.54128 | 8.04161 | 115.57133 |
| Y118 | 9.06532 | 125.3315 | 9.06568 | 125.34258 |
| N119 | 7.94245 | 125.92411 | 7.94711 | 125.92171 |
| E120 | 8.30146 | 124.64153 | 8.30194 | 124.64891 |
| G121 | 7.915 | 115.46492 | 7.91736 | 115.51824 |
|  |  |  |  |  |

## Appendix 3 : ${ }^{15} \mathrm{~N}$ labeled p53TAD74 $472 \mathrm{R}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ chemical shifts and peak intensity upon titration with ${ }^{14} \mathrm{~N}$ MDM2 (17-125).

|  | [Omm] |  |  |  | $[.005 \mathrm{mM}]$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |  |  |
| M1 | 8.38921 | 121.57822 | 0.3472 | 8.38922 | 121.61005 | 0.3421 |  |  |
| E2 | 8.35346 | 122.1015 | 0.7653 | 8.35376 | 122.09689 | 0.7303 |  |  |
| E3 | 8.38897 | 123.54234 | 1.1073 | 8.38902 | 123.53931 | 1.1221 |  |  |
| Q5 | 8.5188 | 121.03509 | 0.5245 | 8.51859 | 121.03289 | 0.5085 |  |  |
| S6 | 8.34222 | 117.75684 | 0.2494 | 8.34203 | 117.75394 | 0.2596 |  |  |
| D7 | 8.40081 | 123.68549 | 0.7176 | 8.40114 | 123.68714 | 0.224 |  |  |
| S9 | 8.48325 | 116.01997 | 0.5015 | 8.49109 | 116.01869 | 0.4778 |  |  |
| V10 | 7.82659 | 121.13232 | 0.7326 | 7.82786 | 121.12839 | 0.6974 |  |  |
| E11 | 8.2953 | 126.14723 | 0.9371 | 8.30669 | 126.14424 | 0.9026 |  |  |
| L14 | 8.3068 | 122.45206 | 0.8937 | 8.3068 | 122.45175 | 0.9485 |  |  |
| S15 | 8.28796 | 116.69543 | 0.3432 | 8.29062 | 116.69282 | 0.3589 |  |  |
| S15' | 8.35092 | 116.87386 | 0.0034 | 8.35085 | 116.86983 | 0.0002 |  |  |
| Q16 | 8.44366 | 122.54105 | 0.3246 | 8.44761 | 122.56557 | 0.3461 |  |  |
| E17 | 8.43434 | 121.99925 | 0.4095 | 8.43312 | 121.99965 | 0.4081 |  |  |
| T18 | 8.07143 | 114.87696 | 0.3718 | 8.07146 | 114.86373 | 0.363 |  |  |
| T18' | 8.39015 | 113.50847 | -0.002 | 8.39738 | 113.99001 | -0.0013 |  |  |
| F19 | 8.20094 | 122.29047 | 0.3962 | 8.20078 | 122.28687 | 0.3803 |  |  |
| F19' | 8.14317 | 123.14242 | -0.0107 | 8.14566 | 123.45153 | -0.00331 |  |  |
| S20 | 8.06274 | 116.74464 | 0.144 | 8.06435 | 116.74104 | 0.138 |  |  |
| S20' | 7.94758 | 117.15224 | -0.0002 | 7.94661 | 17.17829 | 0.0005 |  |  |
| D21 | 8.23645 | 122.0976 | 0.2773 | 8.23641 | 122.09476 | 0.2605 |  |  |
| D21' | 8.11853 | 121.42062 | 0.1096 | 8.1185 | 121.4181 | 0.1125 |  |  |
| L22 | 7.90673 | 121.13192 | 1.0496 | 7.90667 | 121.12881 | 1.0396 |  |  |
| W23 | 7.81259 | 119.39646 | 1.0447 | 7.81271 | 119.39336 | 0.9801 |  |  |
| W23' | 7.76807 | 119.39822 | -0.0064 | 7.75992 | 119.39823 | 0.0099 |  |  |
| K24 | 7.55257 | 120.45626 | 0.7276 | 7.55367 | 120.45707 | 0.7176 |  |  |
| K24' | 7.30116 | 120.16179 | -0.0008 | 7.30094 | 120.16608 | 0.0036 |  |  |
| L25 | 7.78891 | 120.74577 | 0.8411 | 7.7891 | 120.74264 | 0.8415 |  |  |
| L25' | 7.90678 | 120.64973 | 0.0071 | 7.90213 | 123.64848 | 0.0009 |  |  |
| L26 | 7.86848 | 123.72094 | 0.9005 | 7.87155 | 123.73322 | 0.8737 |  |  |
| E28 | 8.67161 | 119.7818 | 0.9334 | 8.67164 | 119.77941 | 0.9159 |  |  |
| N29 | 8.23656 | 118.81824 | 0.3126 | 8.23951 | 118.81547 | 0.2835 |  |  |
| N29' | 8.24059 | 119.09757 | 0.0117 | 8.2477 | 119.10239 | 0.016 |  |  |
| N30 | 8.24768 | 119.58994 | 0.2065 | 8.24814 | 119.58644 | 0.1975 |  |  |
| V31 | 7.98906 | 120.16756 | 0.7136 | 7.98911 | 120.16735 | 0.658 |  |  |


|  |  |  |  | [.005mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | $N$ shift | Intensity |
| L32 | 8.24855 | 125.47619 | 0.8143 | 8.24824 | 125.46992 | 0.7849 |
| S33 | 8.17734 | 118.05961 | 0.5061 | 8.17735 | 118.04543 | 0.4694 |
| S33' | 8.17697 | 118.33422 | 0.03 | 8.17751 | 118.33214 | 0.0351 |
| L35 | 8.25967 | 123.73632 | 1.0871 | 8.25973 | 123.7327 | 1.0264 |
| S37 | 8.29532 | 115.63542 | 0.2763 | 8.30087 | 115.64993 | 0.2435 |
| Q38 | 8.33222 | 122.24746 | 0.1263 | 8.33179 | 122.25491 | 0.1201 |
| A39 | 8.26324 | 125.18187 | 0.5204 | 8.27154 | 125.18082 | 0.5442 |
| A39' | 8.21669 | 124.52618 | 0.0033 | 8.216 | 124.498 | 0 |
| M40 | 8.28335 | 119.4919 | 0.623 | 8.28331 | 119.48959 | 0.5674 |
| D41 | 8.21269 | 121.03548 | 0.9643 | 8.2127 | 121.0334 | 0.9262 |
| D41' | 8.178 | 120.55 | 0 | 8.17773 | 120.5506 | 0.0046 |
| D42 | 8.201 | 120.26399 | 1.6214 | 8.20098 | 120.26125 | 1.5793 |
| D42' | 8.16458 | 119.78222 | 0.0116 | 8.16529 | 119.77031 | 0.0103 |
| L43 | 8.03609 | 121.71114 | 1.3089 | 8.03614 | 121.70784 | 1.2309 |
| L43' | 8.01294 | 121.44733 | 0.0088 | 8.01284 | 121.42484 | 0.0089 |
| M44 | 8.21315 | 120.34038 | 0.5824 | 8.21488 | 120.2771 | 1.1817 |
| L45 | 8.0384 | 123.14597 | 0.8651 | 8.04013 | 123.15377 | 0.8273 |
| L45' | 8.012 | 122.658 | 0 | 8.01262 | 122.66724 | 0.0089 |
| S46 | 8.48319 | 118.43179 | 0.7947 | 8.49188 | 118.42941 | 0.7543 |
| D48 | 8.17705 | 118.77493 | 0.8536 | 8.17703 | 118.76389 | 0.8203 |
| D49 | 8.04803 | 120.17868 | 0.9748 | 8.04798 | 120.16766 | 0.9066 |
| D49' | 8.6017 | 119.78046 | 0.0121 | 8.05961 | 119.78034 | 0.0216 |
| 150 | 7.80082 | 120.16756 | 1.266 | 7.80081 | 120.16464 | 1.1876 |
| $150{ }^{\prime}$ | 7.77034 | 119.78232 | -0.0015 | 7.76586 | 119.87347 | 0.0096 |
| E51 | 8.30138 | 123.65692 | 0.7759 | 8.3019 | 123.64158 | 0.8136 |
| Q52 | 8.09497 | 120.36002 | 0.8503 | 8.0952 | 120.35741 | 0.8042 |
| W53 | 7.93033 | 121.42083 | 1.4122 | 7.93033 | 121.4204 | 1.3398 |
| F54 | 7.94005 | 121.51907 | 0.6229 | 7.93514 | 121.51455 | 0.9497 |
| T55 | 7.94203 | 116.21425 | 0.4538 | 7.94207 | 116.21436 | 0.422 |
| T55' | 7.93027 | 116.00203 | 0.0581 | 7.92996 | 116.01849 | 0.0602 |
| E56 | 8.25967 | 123.35468 | 0.7791 | 8.25973 | 123.34685 | 0.7574 |
| E56' | 8.25937 | 123.18397 | -0.0158 | 8.26213 | 123.18198 | -0.0304 |
| D57 | 8.40081 | 123.39989 | 0.7176 | 8.40076 | 123.40179 | 0.7156 |
| G59 | 8.36561 | 109.36705 | 0.9631 | 8.36556 | 109.36362 | 0.9858 |
| D61 | 8.41259 | 119.87824 | 0.7463 | 8.41269 | 119.8772 | 0.7465 |
| E62 | 8.07148 | 120.84271 | 0.846 | 8.07147 | 120.84074 | 0.8186 |
| A63 | 8.23118 | 126.62881 | 0.906 | 8.23637 | 126.62611 | 0.9901 |
| R65 | 8.4247 | 121.90302 | 0.9793 | 8.42445 | 121.90051 | 0.989 |
| M66 | 8.43633 | 123.34866 | 0.4857 | 8.43632 | 123.34686 | 0.4758 |
| E68 | 8.49507 | 121.22816 | 0.8099 | 8.506 | 121.22534 | 0.7699 |
| A69 | 8.26368 | 125.38717 | 0.6735 | 8.26361 | 125.3966 | 0.5666 |
| A70 | 8.18907 | 124.89296 | 0.9293 | 8.18925 | 124.89098 | 0.9914 |
| R72 | 8.44038 | 122.48113 | 0.8507 | 8.44126 | 122.48224 | 0.7891 |
| V73 | 7.70656 | 125.50375 | 1.1515 | 7.70678 | 125.49516 | 1.1029 |


|  | [.014mM] |  |  | [.024mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.38923 | 121.6087 | 0.3546 | 8.38923 | 121.6087 | 0.3566 |
| E2 | 8.3539 | 122.12215 | 0.6694 | 8.3539 | 122.12215 | 0.6741 |
| E3 | 8.38911 | 123.54029 | 1.0928 | 8.38904 | 123.54163 | 1.0815 |
| Q5 | 8.51855 | 121.03008 | 0.5572 | 8.51855 | 121.03008 | 0.5548 |
| S6 | 8.34212 | 117.75113 | 0.2419 | 8.34212 | 117.75113 | 0.2479 |
| D7 | 8.39852 | 123.68642 | 0.2149 | 8.39852 | 123.68642 | 0.2292 |
| S9 | 8.4833 | 116.01527 | 0.502 | 8.4833 | 116.01527 | 0.5067 |
| V10 | 7.82436 | 121.12621 | 0.7718 | 7.82436 | 121.12621 | 0.7551 |
| E11 | 8.29506 | 126.14113 | 0.9605 | 8.29506 | 126.14113 | 0.9286 |
| L14 | 8.30657 | 122.47572 | 0.8653 | 8.30657 | 122.47572 | 0.8452 |
| S15 | 8.2833 | 116.69073 | 0.3542 | 8.2833 | 116.69073 | 0.3354 |
| S15' | 8.35059 | 116.87302 | 0.0086 | 8.35197 | 116.87196 | 0.0196 |
| Q16 | 8.44406 | 122.55728 | 0.3025 | 8.44406 | 122.55728 | 0.3034 |
| E17 | 8.42439 | 121.98997 | 0.4094 | 8.42439 | 121.98997 | 0.3969 |
| T18 | 8.06457 | 114.89224 | 0.3336 | 8.06526 | 114.89112 | 0.3133 |
| T18' | 8.39235 | 113.99249 | 0.0021 | 8.3991 | 113.991 | 0.0143 |
| F19 | 8.20066 | 122.28397 | 0.36 | 8.20066 | 122.28397 | 0.3426 |
| F19' | 8.14255 | 123.14256 | -0.0084 | 8.14201 | 123.14322 | 0.0112 |
| S20 | 8.0597 | 116.78655 | 0.1461 | 8.0599 | 116.7365 | 0.1428 |
| S20' | 7.94381 | 117.18866 | -0.0053 | 7.94163 | 117.15009 | 0.0103 |
| D21 | 8.23641 | 122.09476 | 0.2485 | 8.23641 | 122.09476 | 0.2431 |
| D21' | 8.11848 | 121.41582 | 0.1227 | 8.11845 | 121.41614 | 0.108 |
| L22 | 7.90665 | 121.12763 | 0.9493 | 7.90665 | 121.12763 | 0.9194 |
| W23 | 7.81257 | 119.39229 | 1.0032 | 7.81258 | 119.39198 | 0.9287 |
| W23' | 7.76012 | 119.39387 | 0.0071 | 7.76036 | 119.4002 | -0.0011 |
| K24 | 7.54213 | 120.45217 | 0.63 | 7.54738 | 120.45442 | 0.5661 |
| K24' | 7.30094 | 120.16608 | 0.0052 | 7.3009 | 120.15989 | 0.0014 |
| L25 | 7.78892 | 120.74149 | 0.7503 | 7.78915 | 120.74128 | 0.7126 |
| L25' | 7.91 | 120.64184 | -0.0002 | 7.90343 | 120.64144 | 0.0119 |
| L26 | 7.87133 | 123.73 | 0.8873 | 7.87147 | 123.73123 | 0.825 |
| E28 | 8.67176 | 119.7763 | 0.8301 | 8.67167 | 119.77691 | 0.8067 |
| N29 | 8.23604 | 118.81183 | 0.3065 | 8.23623 | 118.81213 | 0.2791 |
| N29' | 8.23631 | 119.10083 | 0.0213 | 8.22622 | 119.00491 | 0.0189 |
| N30 | 8.24799 | 119.58353 | 0.1936 | 8.24799 | 119.58353 | 0.1742 |
| V31 | 7.98911 | 120.16245 | 0.7038 | 7.98911 | 120.16245 | 0.6527 |
| D49' | 8.05972 | 119.7767 | 0.0226 | 8.05605 | 119.77391 | 0.031 |
| L32 | 8.24799 | 125.46648 | 0.7908 | 8.24799 | 125.46648 | 0.7496 |
| S33 | 8.1773 | 118.04125 | 0.4597 | 8.1773 | 118.04125 | 0.4388 |
| S33' | 8.17725 | 118.33118 | 0.0262 | 8.16996 | 118.32503 | 0.0326 |
| L35 | 8.25976 | 123.73082 | 1.0615 | 8.25976 | 123.73082 | 0.9872 |
| S37 | 8.29497 | 115.62962 | 0.2593 | 8.29497 | 115.62962 | 0.2401 |
| Q38 | 8.3309 | 122.22765 | 0.243 | 8.3309 | 122.22765 | 0.2131 |
| A39 | 8.25993 | 125.17676 | 0.5382 | 8.25993 | 125.17676 | 0.4961 |
| A39' | 8.21228 | 124.50417 | 0.0071 | 8.20049 | 124.50532 | 0.0111 |
| M40 | 8.2833 | 119.48781 | 0.5892 | 8.2833 | 119.48781 | 0.5398 |
| D41 | 8.21256 | 121.03039 | 0.9224 | 8.21256 | 121.03039 | 0.8614 |
| D41' | 8.17725 | 120.548 | 0.0151 | 8.17736 | 120.54665 | 0.0277 |


|  | [.014mM] |  |  | [.024mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| D42 | 8.2008 | 120.26083 | 1.5598 | 8.20088 | 120.25868 | 1.4762 |
| D42' | 8.16556 | 119.77784 | 0.02237 | 8.16535 | 119.87924 | 0.04205 |
| L43 | 8.03618 | 121.70514 | 1.2681 | 8.03618 | 121.70514 | 1.1931 |
| L43' | 8.01255 | 121.41573 | 0.0156 | 8.01252 | 121.41614 | 0.0264 |
| M44 | 8.21408 | 120.31093 | 0.5017 | 8.20812 | 120.31508 | 0.4763 |
| L45 | 8.03618 | 123.15159 | 0.8965 | 8.03627 | 123.1522 | 0.8257 |
| L45' | 8.01564 | 122.6698 | 0.0142 | 8.01554 | 122.66982 | 0.0257 |
| S46 | 8.48325 | 118.42659 | 0.7791 | 8.48347 | 118.42639 | 0.7395 |
| D48 | 8.17646 | 118.80756 | 0.7635 | 8.17328 | 118.77209 | 0.7292 |
| D49 | 8.04798 | 120.16766 | 0.8684 | 8.04798 | 120.16766 | 0.8327 |
| 150 | 7.80082 | 120.16286 | 1.24 | 7.80082 | 120.16286 | 1.1519 |
| $150 '$ | 7.78904 | 119.77681 | 0.0427 | 7.77709 | 119.7031 | 0.0309 |
| E51 | 8.2952 | 123.63458 | 0.9049 | 8.2952 | 123.63458 | 0.8489 |
| Q52 | 8.09511 | 120.35492 | 0.8552 | 8.09511 | 120.35492 | 0.7781 |
| W53 | 7.93032 | 121.41653 | 1.3399 | 7.93024 | 121.41675 | 1.2569 |
| F54 | 7.93017 | 121.51328 | 0.941 | 7.9301 | 121.51237 | 0.8866 |
| T55 | 7.94203 | 116.24724 | 0.4279 | 7.94203 | 116.24724 | 0.4119 |
| T55' | 7.9184 | 116.01701 | 0.053 | 7.9263 | 116.01154 | 0.062 |
| E56 | 8.25976 | 123.34568 | 0.7502 | 8.25976 | 123.34568 | 0.7203 |
| E56' | 8.25952 | 123.05432 | -0.0081 | 8.26033 | 123.05566 | 0.0064 |
| D57 | 8.40071 | 123.44263 | 0.622 | 8.40105 | 123.44192 | 0.6388 |
| G59 | 8.36579 | 109.36194 | 0.9321 | 8.36567 | 109.36174 | 0.9316 |
| D61 | 8.41274 | 119.87355 | 0.6735 | 8.41274 | 119.87355 | 0.6826 |
| E62 | 8.0715 | 120.83833 | 0.806 | 8.07143 | 120.83772 | 0.7837 |
| A63 | 8.22443 | 126.62372 | 0.9329 | 8.22443 | 126.62372 | 0.9017 |
| R65 | 8.42455 | 121.89954 | 0.9338 | 8.42455 | 121.89954 | 0.9265 |
| M66 | 8.43616 | 123.34426 | 0.488 | 8.43623 | 123.3463 | 0.4845 |
| E68 | 8.49502 | 121.22367 | 0.8319 | 8.49502 | 121.22367 | 0.8165 |
| A69 | 8.25981 | 125.36871 | 0.636 | 8.25981 | 125.36871 | 0.6251 |
| A70 | 8.18906 | 124.88745 | 0.8692 | 8.18907 | 124.88765 | 0.9121 |
| R72 | 8.43628 | 122.47785 | 0.896 | 8.43628 | 122.47785 | 0.8756 |
| V73 | 7.70668 | 125.56261 | 1.0975 | 7.70649 | 125.52828 | 1.1079 |


|  | $[.045 \mathrm{mM}]$ |  |  | $[.062 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.38923 | 121.6087 | 0.3383 | 8.38923 | 121.6087 | 0.3413 |
| E2 | 8.3539 | 122.12215 | 0.6496 | 8.3539 | 122.17342 | 0.6554 |
| E3 | 8.38928 | 123.53702 | 1.0275 | 8.38928 | 123.53702 | 0.9401 |
| Q5 | 8.51872 | 121.0308 | 0.5383 | 8.51872 | 121.0308 | 0.5264 |
| S6 | 8.34212 | 117.75113 | 0.2395 | 8.34212 | 117.75113 | 0.2479 |
| D7 | 8.401 | 123.69793 | 0.2365 | 8.4011 | 123.70457 | 0.2585 |
| S9 | 8.48336 | 116.01526 | 0.4624 | 8.48336 | 116.01526 | 0.4544 |
| V10 | 7.82436 | 121.12621 | 0.7349 | 7.82436 | 121.12621 | 0.7231 |


|  | [.045mM] |  |  | [.062mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | $N$ shift | Intensity |
| E11 | 8.29506 | 126.14113 | 0.8493 | 8.29506 | 126.14113 | 0.7461 |
| L14 | 8.30687 | 122.47622 | 0.7709 | 8.30687 | 122.47622 | 0.6293 |
| S15 | 8.2833 | 116.69073 | 0.2591 | 8.2833 | 116.69073 | 0.1596 |
| S15' | 8.3539 | 116.88183 | 0.0637 | 8.3553 | 116.87572 | 0.1206 |
| Q16 | 8.44458 | 122.55947 | 0.2987 | 8.44481 | 122.55713 | 0.269 |
| E17 | 8.42457 | 121.99548 | 0.3634 | 8.4221 | 121.99588 | 0.2908 |
| T18 | 8.06526 | 114.89112 | 0.2313 | 8.06526 | 114.89112 | 0.1358 |
| T18' | 8.39528 | 113.56627 | 0.0223 | 8.39428 | 113.53852 | 0.0486 |
| F19 | 8.20087 | 122.28477 | 0.2584 | 8.2011 | 122.28437 | 0.1523 |
| F19' | 8.14899 | 123.12342 | 0.0432 | 8.15382 | 123.15038 | 0.0947 |
| S20 | 8.06758 | 116.7171 | 0.0793 | 8.05979 | 116.693 | 0.0598 |
| S20' | 7.94218 | 117.17709 | 0.0239 | 7.94705 | 117.17188 | 0.0664 |
| D21 | 8.23639 | 122.09078 | 0.1941 | 8.23623 | 122.09129 | 0.1004 |
| D21' | 8.12137 | 121.38597 | 0.1279 | 8.11855 | 121.41592 | 0.1125 |
| L22 | 7.90665 | 121.12763 | 0.7249 | 7.90665 | 121.12763 | 0.4233 |
| W23 | 7.81258 | 119.39198 | 0.7134 | 7.81259 | 119.39117 | 0.3508 |
| W23' | 7.76006 | 119.39952 | 0.0109 | 7.76563 | 119.39127 | 0.0446 |
| K24 | 7.55246 | 120.45177 | 0.4645 | 7.5494 | 120.4679 | 0.2337 |
| K24' | 7.30707 | 120.16049 | 0.0218 | 7.30701 | 120.16255 | 0.0327 |
| L25 | 7.78915 | 120.74128 | 0.562 | 7.78915 | 120.74128 | 0.2876 |
| L25' | 7.90014 | 123.65062 | 0.0558 | 7.89981 | 120.64171 | 0.1151 |
| L26 | 7.87147 | 123.73123 | 0.6108 | 7.87143 | 123.7297 | 0.3057 |
| E28 | 8.67167 | 119.77691 | 0.6154 | 8.67167 | 119.77691 | 0.3183 |
| N29 | 8.23613 | 118.8113 | 0.2434 | 8.23613 | 118.8113 | 0.1228 |
| N29' | 8.22493 | 119.00438 | 0.0657 | 8.22449 | 119.00461 | 0.1204 |
| N30 | 8.24799 | 119.58353 | 0.1433 | 8.24799 | 119.58353 | 0.0845 |
| V31 | 7.98911 | 120.16245 | 0.5204 | 8.0013 | 120.16348 | 0.3602 |
| D49' | 8.059464 | 119.77682 | 0.0678 | 8.05978 | 119.7765 | 0.1507 |
| L32 | 8.24895 | 125.48112 | 0.6019 | 8.24895 | 125.48112 | 0.3673 |
| S33 | 8.1773 | 118.04125 | 0.3402 | 8.1773 | 118.04125 | 0.1905 |
| S33' | 8.16221 | 118.33614 | 0.0931 | 8.16548 | 118.32985 | 0.1815 |
| L35 | 8.25976 | 123.73082 | 0.7644 | 8.25976 | 123.73082 | 0.4128 |
| S37 | 8.29506 | 115.62952 | 0.1986 | 8.29634 | 115.64872 | 0.1104 |
| Q38 | 8.33322 | 122.22303 | 0.1712 | 8.33511 | 122.21838 | 0.1219 |
| A39 | 8.25993 | 125.17676 | 0.3866 | 8.25993 | 125.17676 | 0.2121 |
| A39' | 8.2011 | 124.50149 | 0.0414 | 8.20127 | 124.5013 | 0.0943 |
| M40 | 8.2833 | 119.48781 | 0.446 | 8.2833 | 119.48781 | 0.2448 |
| D41 | 8.21256 | 121.03039 | 0.677 | 8.21256 | 121.03039 | 0.3797 |
| D41' | 8.17715 | 120.54726 | 0.0822 | 8.17741 | 120.5484 | 0.1753 |
| D42 | 8.20088 | 120.25868 | 1.1786 | 8.20088 | 120.25868 | 0.6583 |
| D42' | 8.16574 | 119.8742 | 0.0964 | 8.16562 | 119.87294 | 0.2362 |
| L43 | 8.03618 | 121.70514 | 0.9265 | 8.03618 | 121.70514 | 0.5193 |
| L43' | 8.01262 | 121.41447 | 0.1093 | 8.01264 | 121.41512 | 0.1829 |
| M44 | 8.20812 | 120.31508 | 0.3913 | 8.20623 | 120.30077 | 0.6583 |


|  | $[.045 \mathrm{mM}]$ |  |  |  | $[.062 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |  |
| L45 | 8.0362 | 123.15106 | 0.6353 | 8.0362 | 123.15106 | 0.345 |  |
| L45' | 8.01254 | 122.67055 | 0.0837 | 8.01257 | 122.66941 | 0.1713 |  |
| S46 | 8.48337 | 118.4266 | 0.5812 | 8.48926 | 118.42598 | 0.3476 |  |
| D48 | 8.17328 | 118.77209 | 0.5808 | 8.17328 | 118.77209 | 0.3276 |  |
| D49 | 8.04804 | 120.16246 | 0.6966 | 8.04804 | 120.16246 | 0.422 |  |
| I50 | 7.80085 | 120.16204 | 0.9048 | 7.80085 | 120.16204 | 0.4973 |  |
| I50' | 7.77729 | 119.96959 | 0.0967 | 7.77748 | 119.96928 | 0.1917 |  |
| E51 | 8.2952 | 123.63458 | 0.6853 | 8.2952 | 123.63458 | 0.3921 |  |
| Q52 | 8.09511 | 120.35492 | 0.6067 | 8.09511 | 120.35492 | 0.3288 |  |
| W53 | 7.93024 | 121.41675 | 1.0157 | 7.93024 | 121.41675 | 0.5784 |  |
| F54 | 7.93023 | 121.51081 | 0.696 | 7.93023 | 121.51081 | 0.4011 |  |
| T55 | 7.94203 | 116.24724 | 0.3394 | 7.94203 | 116.24724 | 0.2116 |  |
| T55' | 7.93024 | 115.91903 | 0.0754 | 7.93024 | 115.92741 | 0.1649 |  |
| E56 | 8.25976 | 123.34568 | 0.6282 | 8.26578 | 123.3463 | 0.4614 |  |
| E56' | 8.26315 | 123.05515 | 0.06254 | 8.25975 | 123.05536 | 0.1442 |  |
| D57 | 8.4008 | 123.38837 | 0.4484 | 8.4008 | 123.38837 | 0.4033 |  |
| G59 | 8.36567 | 109.36174 | 0.8899 | 8.36567 | 109.36174 | 0.8146 |  |
| D61 | 8.41274 | 119.87355 | 0.6392 | 8.41272 | 119.96835 | 0.6308 |  |
| E62 | 8.07143 | 120.83772 | 0.7549 | 8.07143 | 120.83772 | 0.6781 |  |
| A63 | 8.22443 | 126.62372 | 0.8537 | 8.22944 | 126.62392 | 0.8118 |  |
| R65 | 8.4243 | 121.89832 | 0.8791 | 8.4243 | 121.89832 | 0.7645 |  |
| M66 | 8.43623 | 123.34435 | 0.4777 | 8.43629 | 123.34487 | 0.4494 |  |
| E68 | 8.49507 | 121.22337 | 0.7763 | 8.49507 | 121.22337 | 0.7415 |  |
| A69 | 8.25976 | 125.37285 | 0.6231 | 8.25994 | 125.36953 | 0.6243 |  |
| A70 | 8.18907 | 124.88765 | 0.9218 | 8.18907 | 124.88765 | 0.9243 |  |
| R72 | 8.43628 | 122.47785 | 0.8535 | 8.43618 | 122.47694 | 0.8209 |  |
| V73 | 7.70653 | 125.47323 | 1.1202 | 7.70649 | 125.46668 | 1.151 |  |
|  |  |  |  |  |  |  |  |


|  | [.076mM] |  |  | [.101mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.38923 | 121.6087 | 0.308 | 8.38923 | 121.6087 | 0.2943 |
| E2 | 8.3539 | 122.17342 | 0.6211 | 8.35395 | 122.18784 | 0.5946 |
| E3 | 8.38928 | 123.53702 | 0.8422 | 8.38928 | 123.53702 | 0.7884 |
| Q5 | 8.51863 | 121.02977 | 0.4995 | 8.51863 | 121.02977 | 0.4861 |
| S6 | 8.34212 | 117.75113 | 0.2519 | 8.34212 | 117.75113 | 0.2396 |
| D7 | 8.40089 | 123.70753 | 0.2799 | 8.40071 | 123.71452 | 0.2867 |
| S9 | 8.49508 | 116.01547 | 0.4573 | 8.49508 | 116.01547 | 0.4516 |
| V10 | 7.82436 | 121.12621 | 0.6827 | 7.82436 | 121.12621 | 0.6719 |
| E11 | 8.30128 | 126.14583 | 0.6503 | 8.30164 | 126.16378 | 0.5864 |
| L14 | 8.30687 | 122.47622 | 0.5352 | 8.31492 | 122.50206 | 0.5685 |
| S15 | 8.28909 | 116.69427 | 0.086 | 8.28896 | 116.69362 | 0.0331 |
| S15' | 8.35394 | 116.88371 | 0.1515 | 8.35398 | 116.88361 | 0.2129 |
| Q16 | 8.44481 | 122.55713 | 0.2576 | 8.44481 | 122.55713 | 0.2343 |


|  | [.076mM] |  |  | [.101mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | $N$ shift | Intensity |
| E17 | 8.40696 | 122.04971 | 0.1127 | 8.40696 | 122.04971 | 0.1415 |
| T18 | 8.06986 | 114.86888 | 0.0716 | 8.06235 | 114.86573 | 0.0168 |
| T18' | 8.39284 | 113.53625 | 0.0604 | 8.39692 | 113.57674 | 0.072 |
| F19 | 8.20181 | 122.28648 | 0.0881 | 8.20609 | 122.28827 | 0.0202 |
| F19' | 8.15383 | 123.15179 | 0.1249 | 8.15384 | 123.15159 | 0.1599 |
| S20 | 8.07108 | 116.69465 | 0.0351 | 8.07269 | 116.69218 | 0.0092 |
| S20' | 7.94629 | 117.1763 | 0.0766 | 7.94226 | 117.17665 | 0.1058 |
| D21 | 8.23581 | 122.17249 | 0.1076 | 8.23581 | 122.17249 | 0.0518 |
| D21' | 8.12176 | 121.39339 | 0.1076 | 8.11889 | 121.40819 | 0.1102 |
| L22 | 7.91451 | 121.1258 | 0.2696 | 7.91846 | 121.1291 | 0.2696 |
| W23 | 7.81259 | 119.39117 | 0.161 | 7.81211 | 119.38329 | 0.0366 |
| W23' | 7.76565 | 119.39127 | 0.0594 | 7.76504 | 119.38757 | 0.0904 |
| K24 | 7.5494 | 120.4679 | 0.1161 | 7.55353 | 120.43309 | 0.0439 |
| K24' | 7.31795 | 120.160 .11 | 0.0332 | 7.31831 | 120.16344 | 0.0439 |
| L25 | 7.78915 | 120.74128 | 0.1291 | 7.78895 | 120.74191 | 0.0175 |
| L25' | 7.90666 | 120.64413 | 0.1369 | 7.90099 | 120.64444 | 0.1817 |
| L26 | 7.87143 | 123.7297 | 0.1302 | 7.87196 | 123.73206 | 0.0705 |
| E28 | 8.67167 | 119.77691 | 0.1499 | 8.67167 | 119.77691 | 0.0247 |
| N29 | 8.23608 | 118.81619 | 0.0723 | 8.23574 | 118.81131 | 0.0225 |
| N29' | 8.2246 | 119.00409 | 0.1526 | 8.22463 | 119.00521 | 0.1833 |
| N30 | 8.24671 | 119.58115 | 0.0488 | 8.24799 | 119.58353 | 0.0186 |
| V31 | 8.00073 | 120.15081 | 0.2733 | 8.01266 | 120.10526 | 0.3242 |
| D49' | 8.05969 | 119.7766 | 0.1844 | 8.05972 | 119.7763 | 0.2248 |
| L32 | 8.24895 | 125.48112 | 0.2203 | 8.23262 | 125.72092 | 0.0589 |
| S33 | 8.17739 | 118.04185 | 0.1085 | 8.17735 | 118.04178 | 0.0325 |
| S33' | 8.16562 | 118.33086 | 0.2406 | 8.1596 | 118.33817 | 0.2822 |
| L35 | 8.25976 | 123.73082 | 0.2156 | 8.27118 | 123.63547 | 0.0796 |
| S37 | 8.26847 | 115.31998 | 0.0613 | 8.26847 | 115.31998 | 0.0789 |
| Q38 | 8.33511 | 122.21838 | 0.0853 | 8.31953 | 122.27681 | 0.0828 |
| A39 | 8.26364 | 125.18227 | 0.1092 | 8.34804 | 124.90046 | 0.0569 |
| A39' | 8.20092 | 124.50201 | 0.1107 | 8.20095 | 124.50397 | 0.1472 |
| M40 | 8.2833 | 119.48781 | 0.1413 | 8.2833 | 119.48781 | 0.0483 |
| D41 | 8.21271 | 121.03008 | 0.2012 | 8.21256 | 121.02966 | 0.0615 |
| D41' | 8.17734 | 120.5481 | 0.2132 | 8.17729 | 120.54769 | 0.2705 |
| D42 | 8.20088 | 120.25868 | 0.3729 | 8.20136 | 120.25745 | 0.1218 |
| D42' | 8.16561 | 119.87254 | 0.2863 | 8.16562 | 119.87273 | 0.3853 |
| L43 | 8.03618 | 121.70514 | 0.2919 | 8.03618 | 121.70514 | 0.09 |
| L43' | 8.01881 | 121.41532 | 0.2335 | 8.01254 | 121.41469 | 0.3172 |
| M44 | 8.20247 | 120.29118 | 0.3729 | 8.20092 | 120.25786 | 0.1218 |
| L45 | 8.03664 | 123.11062 | 0.1826 | 8.03645 | 123.06091 | 0.0647 |
| L45' | 8.01265 | 122.6695 | 0.216 | 8.0142 | 122.66264 | 0.2777 |
| S46 | 8.49516 | 118.42599 | 0.2568 | 8.51188 | 118.37444 | 0.2368 |
| D48 | 8.17521 | 118.71805 | 0.2095 | 8.16567 | 118.7159 | 0.1014 |
| D49 | 8.04804 | 120.16246 | 0.2809 | 8.04804 | 120.16246 | 0.1203 |


|  | [.076mM] |  |  |  | $[.101 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |  |
| I50 | 7.80085 | 120.16204 | 0.2796 | 7.80111 | 120.16142 | 0.0921 |  |
| I50' | 7.7773 | 119.96928 | 0.2269 | 7.77738 | 119.96917 | 0.3187 |  |
| E51 | 8.2952 | 123.63458 | 0.2323 | 8.2952 | 123.63458 | 0.0761 |  |
| Q52 | 8.09511 | 120.35492 | 0.1711 | 8.09501 | 120.35492 | 0.0429 |  |
| W53 | 7.93034 | 121.41593 | 0.3402 | 7.92757 | 121.38475 | 0.1194 |  |
| F54 | 7.93055 | 121.4903 | 0.2269 | 7.93004 | 121.45496 | 0.1194 |  |
| T55 | 7.942 | 116.20773 | 0.1349 | 7.94187 | 116.20855 | 0.0487 |  |
| T55' | 7.93029 | 115.91792 | 0.1936 | 7.92987 | 115.92278 | 0.2348 |  |
| E56 | 8.27169 | 123.34507 | 0.4727 | 8.27169 | 123.34507 | 0.494 |  |
| E56' | 8.25975 | 123.05515 | 0.1821 | 8.25976 | 123.05556 | 0.2402 |  |
| D57 | 8.40072 | 123.39043 | 0.3724 | 8.40088 | 123.39236 | 0.3369 |  |
| G59 | 8.36567 | 109.36174 | 0.7611 | 8.36567 | 109.36174 | 0.7011 |  |
| D61 | 8.41273 | 119.96958 | 0.6562 | 8.41272 | 119.96835 | 0.6671 |  |
| E62 | 8.07143 | 120.83772 | 0.6066 | 8.07169 | 120.8383 | 0.5764 |  |
| A63 | 8.23618 | 126.62352 | 0.8927 | 8.23618 | 126.62352 | 0.8654 |  |
| R65 | 8.4243 | 121.89832 | 0.7018 | 8.42088 | 121.89812 | 0.6173 |  |
| M66 | 8.43629 | 123.34487 | 0.4246 | 8.4363 | 123.34363 | 0.4056 |  |
| E68 | 8.50083 | 121.22356 | 0.6751 | 8.50083 | 121.22356 | 0.6841 |  |
| A69 | 8.25994 | 125.36953 | 0.5876 | 8.25994 | 125.36953 | 0.5668 |  |
| A70 | 8.18907 | 124.88765 | 0.9097 | 8.18907 | 124.88765 | 0.8827 |  |
| R72 | 8.43618 | 122.47694 | 0.7724 | 8.43618 | 122.47694 | 0.7598 |  |
| V73 | 8.1742012 | 121.32843 | 1.1754 | 7.70649 | 125.46668 | 1.1921 |  |


|  | $[.133 \mathrm{mM}]$ |  |  | $[.165 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.38917 | 121.60741 | 0.28 | 8.38928 | 121.60867 | 0.272 |
| E2 | 8.35383 | 122.18665 | 0.541 | 8.35383 | 122.18665 | 0.5635 |
| E3 | 8.38928 | 123.53702 | 0.7538 | 8.39451 | 123.53779 | 0.6762 |
| Q5 | 8.51859 | 121.02879 | 0.4913 | 8.5303 | 121.03094 | 0.4878 |
| S6 | 8.34206 | 117.75025 | 0.2328 | 8.34228 | 117.75196 | 0.2322 |
| D7 | 8.40125 | 123.71524 | 0.2945 | 8.40088 | 123.63309 | 0.2916 |
| S9 | 8.49498 | 116.01407 | 0.416 | 8.49512 | 116.0164 | 0.464 |
| V10 | 7.82436 | 121.12621 | 0.6593 | 7.82436 | 121.12621 | 0.6358 |
| E11 | 8.29983 | 126.16666 | 0.5985 | 8.30659 | 126.21333 | 0.628 |
| L14 | 8.31842 | 122.50247 | 0.5424 | 8.31862 | 122.57189 | 0.6664 |
| S15 | 8.28896 | 116.69362 | 0.0128 | 8.28896 | 116.69362 | 0.0078 |
| S15' | 8.35386 | 116.88273 | 0.2485 | 8.35395 | 116.88362 | 0.28 |
| Q16 | 8.47139 | 122.57313 | 0.1464 | 8.47628 | 122.57929 | 0.1588 |
| E17 | 8.4014 | 122.04575 | 0.1953 | 8.4014 | 122.04575 | 0.2146 |
| T18 | 8.06195 | 114.79726 | 0.0006 | 8.06077 | 114.7972 | -0.0031 |
| T18' | 8.39063 | 113.51651 | 0.0788 | 8.39463 | 113.55564 | 0.0815 |
| F19 | 8.19927 | 122.28517 | 0.0121 | 8.20932 | 122.28302 | 0.007 |
| F19' | 8.15384 | 123.15159 | 0.1761 | 8.15384 | 123.15159 | 0.1926 |
| S20 | 8.07205 | 116.68913 | -0.0075 | 8.07419 | 116.68092 | 0.0085 |
| S20' | 7.94206 | 117.17443 | 0.1024 | 7.94208 | 117.17291 | 0.1059 |


|  | [.133mM] |  |  | [.165mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| D21 | 8.22463 | 122.08878 | 0.0127 | 8.2168 | 122.00046 | 0.00396 |
| D21' | 8.11854 | 121.41432 | 0.1172 | 8.11854 | 121.41432 | 0.0995 |
| L22 | 7.91846 | 121.1291 | 0.2878 | 7.91846 | 121.1291 | 0.307 |
| W23 | 7.81407 | 119.39039 | 0.0144 | 7.81316 | 119.9313 | 0.04218 |
| W23' | 7.76504 | 119.38757 | 0.0887 | 7.76504 | 119.38757 | 0.0966 |
| K24 | 7.55046 | 120.45242 | 0.0023 | 7.55927 | 120.45548 | -0.0003 |
| K24' | 7.30677 | 120.16496 | 0.0548 | 7.30571 | 120.15898 | 0.055 |
| L25 | 7.78895 | 120.74191 | -0.0055 | 7.78895 | 120.74191 | 0.0051 |
| L25' | 7.89491 | 120.64241 | 0.2046 | 7.89501 | 120.54768 | 0.1892 |
| L26 | 7.87196 | 123.73206 | 0.0101 | 7.87196 | 123.73206 | 0.003 |
| E28 | 8.67167 | 119.77691 | 0.0003 | 8.67167 | 119.77691 | 0.0108 |
| N29 | 8.23613 | 118.81179 | 0.0152 | 8.23649 | 118.8059 | 0.0224 |
| N29' | 8.22419 | 118.99843 | 0.2106 | 8.22425 | 119.00497 | 0.2128 |
| N30 | 8.24799 | 119.58353 | 0.0013 | 8.24799 | 119.58353 | 0.004 |
| V31 | 8.01266 | 120.10526 | 0.3583 | 8.01267 | 120.06514 | 0.3794 |
| D49' | 8.05967 | 119.77511 | 0.2532 | 8.05916 | 119.70339 | 0.2227 |
| L32 | 8.23262 | 125.72092 | 0.0376 | 8.23262 | 125.72092 | 0.0503 |
| S33 | 8.17735 | 118.04178 | 0.009 | 8.17735 | 118.04178 | 0.0074 |
| S33' | 8.15378 | 118.32928 | 0.3281 | 8.15378 | 118.32928 | 0.3208 |
| L35 | 8.27118 | 123.63547 | 0.0353 | 8.27118 | 123.63547 | 0.0403 |
| S37 | 8.25967 | 115.33901 | 0.1058 | 8.25977 | 115.34061 | 0.1016 |
| Q38 | 8.31953 | 122.27681 | 0.0795 | 8.31953 | 122.27681 | 0.0798 |
| A39 | 8.34804 | 124.90046 | 0.0558 | 8.34804 | 124.90046 | 0.0659 |
| A39' | 8.20096 | 124.50009 | 0.1767 | 8.20117 | 124.50153 | 0.1791 |
| M40 | 8.2833 | 119.48781 | 0.0209 | 8.2833 | 119.48781 | 0.0146 |
| D41 | 8.21256 | 121.02966 | 0.026 | 8.21256 | 121.02966 | 0.0291 |
| D41' | 8.17729 | 120.54769 | 0.2878 | 8.17729 | 120.54769 | 0.3104 |
| D42 | 8.20136 | 120.25745 | 0.0685 | 8.20136 | 120.25745 | 0.0395 |
| D42' | 8.16556 | 119.87133 | 0.4335 | 8.16556 | 119.87133 | 0.4513 |
| L43 | 8.03618 | 121.70514 | 0.0475 | 8.03618 | 121.70514 | 0.018 |
| L43' | 8.01276 | 121.41432 | 0.3712 | 8.01276 | 121.41432 | 0.3238 |
| M44 | 8.20092 | 120.25786 | 0.0685 | 8.20092 | 120.25786 | 0.0395 |
| L45 | 8.0356 | 123.05416 | 0.0334 | 8.02417 | 123.05588 | 0.0195 |
| L45' | 8.01233 | 122.66862 | 0.3205 | 8.01285 | 122.66582 | 0.2933 |
| S46 | 8.51201 | 118.32928 | 0.2609 | 8.51874 | 118.33 | 0.2714 |
| D48 | 8.16545 | 118.7165 | 0.0547 | 8.16545 | 118.7165 | 0.0462 |
| D49 | 8.04804 | 120.16246 | 0.0574 | 8.04804 | 120.16246 | 0.0508 |
| 150 | 7.80111 | 120.16142 | 0.0538 | 7.80111 | 120.16142 | 0.0262 |
| 150' | 7.77738 | 119.96917 | 0.3384 | 7.77738 | 119.96917 | 0.3331 |
| E51 | 8.2952 | 123.63458 | 0.0438 | 8.2952 | 123.63458 | 0.0222 |
| Q52 | 8.09501 | 120.35492 | 0.0242 | 8.09501 | 120.35492 | -0.0024 |
| W53 | 7.92757 | 121.38475 | 0.0639 | 7.92757 | 121.38475 | 0.0279 |
| F54 | 7.93004 | 121.45496 | 0.0639 | 7.93004 | 121.45496 | 0.0279 |
| T55 | 7.94187 | 116.20855 | 0.022 | 7.94187 | 116.20855 | 0.0095 |
| T55' | 7.9302 | 115.91638 | 0.2518 | 7.93061 | 115.87907 | 0.2057 |
| E56 | 8.27141 | 123.34421 | 0.4804 | 8.27141 | 123.34421 | 0.4392 |
| E56' | 8.25974 | 123.05584 | 0.2915 | 8.25974 | 123.05584 | 0.2764 |


|  | $[.133 \mathrm{mM}]$ |  |  | $[.165 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| D57 | 8.40062 | 123.39305 | 0.4768 | 8.40062 | 123.39305 | 0.4622 |
| G59 | 8.36567 | 109.36174 | 0.648 | 8.36567 | 109.36305 | 0.6548 |
| D61 | 8.41272 | 119.96835 | 0.6579 | 8.41272 | 119.96835 | 0.6776 |
| E62 | 8.07165 | 120.83633 | 0.5683 | 8.083 | 120.83665 | 0.607 |
| A63 | 8.23618 | 126.62352 | 0.7958 | 8.23641 | 126.62217 | 0.8848 |
| R65 | 8.41266 | 121.89671 | 0.6154 | 8.41266 | 121.89671 | 0.5588 |
| M66 | 8.4363 | 123.34363 | 0.392 | 8.4363 | 123.34363 | 0.3956 |
| E68 | 8.49557 | 121.22229 | 0.6822 | 8.5073 | 121.22255 | 0.6826 |
| A69 | 8.25989 | 125.36803 | 0.5732 | 8.25991 | 125.36946 | 0.5303 |
| A70 | 8.18921 | 124.88626 | 0.8411 | 8.18921 | 124.88626 | 0.8929 |
| R72 | 8.43612 | 122.47555 | 0.7693 | 8.44099 | 122.47629 | 0.7279 |
| V73 | 7.70663 | 125.46456 | 1.1486 | 7.70671 | 125.46506 | 1.2444 |


|  | $[.198 \mathrm{mM}]$ |  |  |  | $[.222 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |  |
| M1 | 8.38938 | 121.60709 | 0.2956 | 8.38922 | 121.6091 | 0.2982 |  |
| E2 | 8.35383 | 122.18665 | 0.5586 | 8.354 | 122.1863 | 0.5945 |  |
| E3 | 8.39451 | 123.53779 | 0.7754 | 8.39451 | 123.53779 | 0.7373 |  |
| Q5 | 8.51898 | 121.03033 | 0.5146 | 8.52444 | 121.02947 | 0.4519 |  |
| S6 | 8.34217 | 117.75014 | 0.2325 | 8.34217 | 117.75014 | 0.2312 |  |
| D7 | 8.3893 | 123.63197 | 0.2778 | 8.40077 | 123.63408 | 0.2792 |  |
| S9 | 8.48867 | 116.01438 | 0.4199 | 8.49523 | 116.01608 | 0.4386 |  |
| V10 | 7.82436 | 121.12621 | 0.6628 | 7.82436 | 121.12621 | 0.6464 |  |
| E11 | 8.29505 | 126.21198 | 0.6232 | 8.30084 | 126.19936 | 0.558 |  |
| L14 | 8.31862 | 122.57189 | 0.6275 | 8.31855 | 122.57297 | 0.6612 |  |
| S15 | 8.28896 | 116.69362 | 0.0038 | 8.28896 | 116.69362 | 0.0097 |  |
| S15' | 8.35388 | 116.8818 | 0.2778 | 8.35394 | 116.88401 | 0.2784 |  |
| Q16 | 8.47143 | 122.60232 | 0.1369 | 8.47143 | 122.60232 | 0.1388 |  |
| E17 | 8.40096 | 121.99223 | 0.2593 | 8.40102 | 122.05013 | 0.2112 |  |
| T18 | 8.05978 | 114.79765 | -0.0082 | 8.05889 | 114.79629 | -0.0026 |  |
| T18' | 8.3887 | 113.55099 | 0.089 | 8.38893 | 113.60092 | 0.084 |  |
| F19 | 8.21387 | 122.28477 | 0.0032 | 8.21418 | 122.28189 | 0.0062 |  |
| F19' | 8.15386 | 123.1506 | 0.1922 | 8.15386 | 123.1506 | 0.202 |  |
| S20 | 8.07183 | 116.68294 | -0.0068 | 8.07116 | 116.6813 | -0.0011 |  |
| S20' | 7.94209 | 117.1761 | 0.1152 | 7.94637 | 117.17074 | 0.1184 |  |
| D21 | 8.22433 | 122.08356 | 0.0109 | 8.22405 | 122.03922 | 0.0036 |  |
| D21' | 8.11854 | 121.41432 | 0.1155 | 8.11867 | 121.41603 | 0.1161 |  |
| L22 | 7.91853 | 121.12543 | 0.2703 | 7.91853 | 121.12543 | 0.235 |  |
| W23 | 7.81048 | 119.39139 | 0.0419 | 7.81078 | 119.38993 | 0.0171 |  |
| W23' | 7.76504 | 119.38757 | 0.1081 | 7.76504 | 119.38757 | 0.0996 |  |
| K24 | 7.54996 | 120.45016 | -0.0042 | 7.55023 | 120.45084 | -0.0071 |  |
| K24' | 7.30631 | 120.16086 | 0.0495 | 7.30656 | 120.16401 | 0.0547 |  |
| L25 | 7.78895 | 120.74191 | 0.0017 | 7.78895 | 120.74191 | -0.0032 |  |
| L25' | 7.89506 | 120.54639 | 0.1789 | 7.89493 | 120.45217 | 0.1707 |  |
| L26 | 7.87196 | 123.73206 | -0.0038 | 7.87196 | 123.73206 | -0.0029 |  |
|  |  |  |  |  |  |  |  |


|  | [.198mM] |  |  | [.222mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | $N$ shift | Intensity |
| E28 | 8.67167 | 119.77691 | -0.0078 | 8.67167 | 119.77691 | -0.0006 |
| N29 | 8.23619 | 118.80508 | 0.0195 | 8.23639 | 118.80426 | 0.031 |
| N29' | 8.22427 | 118.90582 | 0.1801 | 8.22464 | 118.90681 | 0.21 |
| N30 | 8.24799 | 119.58353 | -0.0026 | 8.24799 | 119.58353 | 0.0071 |
| V31 | 8.00096 | 120.06462 | 0.3995 | 8.00084 | 120.06561 | 0.3731 |
| D49' | 8.04805 | 119.67847 | 0.2286 | 8.04791 | 119.67956 | 0.2077 |
| L32 | 8.23262 | 125.72092 | 0.0312 | 8.23262 | 125.72092 | 0.0362 |
| S33 | 8.17735 | 118.04178 | 0.0202 | 8.17735 | 118.04178 | 0.0044 |
| S33' | 8.15378 | 118.32928 | 0.3308 | 8.15368 | 118.32975 | 0.3171 |
| L35 | 8.27118 | 123.63547 | 0.0348 | 8.27118 | 123.63547 | 0.0314 |
| S37 | 8.25977 | 115.3386 | 0.1034 | 8.25977 | 115.3386 | 0.0996 |
| Q38 | 8.31953 | 122.27681 | 0.0804 | 8.31953 | 122.27681 | 0.0784 |
| A39 | 8.34804 | 124.90046 | 0.0557 | 8.34804 | 124.90046 | 0.0611 |
| A39' | 8.20096 | 124.50072 | 0.1969 | 8.20096 | 124.50072 | 0.1774 |
| M40 | 8.2833 | 119.48781 | -0.0017 | 8.2833 | 119.48781 | 0.0051 |
| D41 | 8.21256 | 121.02966 | 0.0174 | 8.21256 | 121.02966 | 0.0086 |
| D41' | 8.17287 | 120.5546 | 0.2655 | 8.17481 | 120.59373 | 0.2622 |
| D42 | 8.20136 | 120.25745 | 0.0118 | 8.20136 | 120.25745 | 0.0152 |
| D42' | 8.16556 | 119.87133 | 0.4152 | 8.16551 | 119.87253 | 0.4352 |
| L43 | 8.03618 | 121.70514 | 0.0139 | 8.03618 | 121.70514 | 0.0042 |
| L43' | 8.01258 | 121.31799 | 0.3297 | 8.01269 | 121.3201 | 0.3209 |
| M44 | 8.20092 | 120.25786 | 0.0118 | 8.20092 | 120.25786 | 0.0152 |
| L45 | 8.02413 | 123.05511 | 0.0074 | 8.02434 | 123.05535 | -0.0004 |
| L45' | 8.00076 | 122.57062 | 0.2518 | 8.00102 | 122.57317 | 0.2619 |
| S46 | 8.50693 | 118.32876 | 0.251 | 8.51182 | 118.32975 | 0.247 |
| D48 | 8.16545 | 118.7165 | 0.0306 | 8.16545 | 118.7165 | 0.0137 |
| D49 | 8.04804 | 120.16246 | 0.0222 | 8.04804 | 120.16246 | 0.0099 |
| 150 | 7.80111 | 120.16142 | 0.0203 | 7.80111 | 120.16142 | 0.0133 |
| 150' | 7.76545 | 119.96829 | 0.3402 | 7.7656 | 119.97009 | 0.3161 |
| E51 | 8.2952 | 123.63458 | 0.0184 | 8.2952 | 123.63458 | 0.017 |
| Q52 | 8.09501 | 120.35492 | -0.0069 | 8.09501 | 120.35492 | 0.0008 |
| W53 | 7.92757 | 121.38475 | 0.0194 | 7.92757 | 121.38475 | 0.009 |
| F54 | 7.93004 | 121.45496 | 0.0194 | 7.93004 | 121.45496 | 0.009 |
| T55 | 7.94187 | 116.20855 | 0.0001 | 7.94187 | 116.20855 | 0.0061 |
| T55' | 7.91853 | 115.82202 | 0.2309 | 7.91855 | 115.78225 | 0.1936 |
| E56 | 8.27141 | 123.34421 | 0.4374 | 8.27168 | 123.34446 | 0.421 |
| E56' | 8.25965 | 122.95834 | 0.2385 | 8.25445 | 122.9575 | 0.2153 |
| D57 | 8.39559 | 123.39256 | 0.3867 | 8.3956 | 123.39436 | 0.3647 |
| G59 | 8.36567 | 109.36305 | 0.5681 | 8.36562 | 109.36112 | 0.5675 |
| D61 | 8.41272 | 119.96835 | 0.6551 | 8.41269 | 119.96917 | 0.6681 |
| E62 | 8.07796 | 120.83571 | 0.5511 | 8.0832 | 120.8371 | 0.6072 |
| A63 | 8.22788 | 126.62232 | 0.786 | 8.23626 | 126.62331 | 0.8262 |
| R65 | 8.41266 | 121.89671 | 0.6162 | 8.41928 | 121.89771 | 0.5716 |
| M66 | 8.4363 | 123.34363 | 0.3832 | 8.4363 | 123.34363 | 0.37 |
| E68 | 8.49492 | 121.22258 | 0.7059 | 8.50517 | 121.22458 | 0.65 |
| A69 | 8.25965 | 125.36824 | 0.5772 | 8.25961 | 125.37004 | 0.5265 |


|  | [.198mM] |  |  | [.222mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| A70 | 8.18921 | 124.88626 | 0.8264 | 8.18907 | 124.88734 | 0.8678 |
| R72 | 8.43637 | 122.47503 | 0.7756 | 8.43645 | 122.47694 | 0.7223 |
| V73 | 7.70671 | 125.46506 | 1.174 | 7.70674 | 125.46688 | 1.219 |


|  | [.237mm] |  |  | [.255mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.39349 | 121.60856 | 0.2868 | 8.38948 | 121.60809 | 0.302 |
| E2 | 8.354 | 122.1863 | 0.5909 | 8.354 | 122.1863 | 0.6031 |
| E3 | 8.39869 | 123.52998 | 0.7773 | 8.39869 | 123.52998 | 0.7193 |
| Q5 | 8.53011 | 121.03169 | 0.4826 | 8.52412 | 121.02864 | 0.472 |
| S6 | 8.34217 | 117.75014 | 0.2352 | 8.34214 | 117.75123 | 0.2343 |
| D7 | 8.40077 | 123.63538 | 0.2606 | 8.40097 | 123.63418 | 0.2657 |
| S9 | 8.49514 | 116.01718 | 0.4668 | 8.49503 | 116.01578 | 0.4429 |
| V10 | 7.82447 | 121.12762 | 0.6178 | 7.82432 | 121.12682 | 0.6462 |
| E11 | 8.30644 | 126.2039 | 0.6349 | 8.30132 | 126.1895 | 0.561 |
| L14 | 8.31855 | 122.57297 | 0.6862 | 8.31855 | 122.57297 | 0.668 |
| S15 | 8.28896 | 116.69362 | 0.0122 | 8.28896 | 116.69362 | 0.009 |
| S15' | 8.3539 | 116.88491 | 0.2682 | 8.35386 | 116.88319 | 0.2829 |
| Q16 | 8.47575 | 122.60954 | 0.1315 | 8.47383 | 122.61221 | 0.1395 |
| E17 | 8.40102 | 122.05013 | 0.2061 | 8.40102 | 122.05013 | 0.1987 |
| T18 | 8.0582 | 114.79623 | 0.0081 | 8.05575 | 114.79776 | -0.0022 |
| T18' | 8.39511 | 113.55861 | 0.085 | 8.39074 | 113.50623 | 0.0892 |
| F19 | 8.21386 | 122.28146 | -0.0042 | 8.21347 | 122.28084 | 0.0033 |
| F19' | 8.15386 | 123.1506 | 0.2043 | 8.15374 | 123.15138 | 0.213 |
| S20 | 8.07093 | 116.68061 | 0.0056 | 8.07049 | 116.68124 | 0.0036 |
| S20' | 7.95363 | 117.17339 | 0.1209 | 7.94623 | 117.1729 | 0.1174 |
| D21 | 8.22426 | 122.00465 | 0.10192 | 8.22057 | 122.20609 | 0.0083 |
| D21' | 8.11867 | 121.41603 | 0.0961 | 8.11867 | 121.41603 | 0.1074 |
| L22 | 7.91856 | 121.12762 | 0.238 | 7.90685 | 121.1092 | 0.2014 |
| W23 | 7.814 | 119.39948 | 0.0184 | 7.80995 | 119.39005 | 0.009 |
| W23' | 7.76504 | 119.38757 | 0.099 | 7.76504 | 119.38757 | 0.1031 |
| K24 | 7.54981 | 120.4541 | 0.0004 | 7.55501 | 120.45513 | -0.0089 |
| K24' | 7.30647 | 120.16201 | 0.0601 | 7.30663 | 120.16286 | 0.0574 |
| L25 | 7.78895 | 120.74191 | -0.0055 | 7.78895 | 120.74191 | -0.0083 |
| L25' | 7.89508 | 120.45266 | 0.1769 | 7.88929 | 120.41077 | 0.1367 |
| L26 | 7.87196 | 123.73206 | -0.0078 | 7.87196 | 123.73206 | 0.0041 |
| E28 | 8.67167 | 119.77691 | 0.0012 | 8.67167 | 119.77691 | 0 |
| N29 | 8.23634 | 118.80376 | 0.0438 | 8.23625 | 118.80348 | 0.0404 |
| N29' | 8.22396 | 118.91122 | 0.2088 | 8.22481 | 118.90748 | 0.2084 |
| N30 | 8.24799 | 119.58353 | 0.0006 | 8.24799 | 119.58353 | 0.0089 |
| V31 | 8.0006 | 120.06763 | 0.3727 | 8.0006 | 120.06763 | 0.3343 |
| D49' | 8.04762 | 119.68085 | 0.204 | 8.04769 | 119.58343 | 0.1901 |
| L32 | 8.23262 | 125.72092 | 0.044 | 8.23262 | 125.72092 | 0.0452 |
| S33 | 8.17735 | 118.04178 | 0.017 | 8.17735 | 118.04178 | 0.0044 |
| S33' | 8.154 | 118.33074 | 0.3019 | 8.15386 | 118.33015 | 0.2927 |


|  | [.237mm] |  |  | [.255mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | $N$ shift | Intensity |
| L35 | 8.27118 | 123.63547 | 0.0291 | 8.27118 | 123.63547 | 0.0266 |
| S37 | 8.25977 | 115.3386 | 0.0903 | 8.25975 | 115.34061 | 0.1088 |
| Q38 | 8.31953 | 122.27681 | 0.0757 | 8.31953 | 122.27681 | 0.0757 |
| A39 | 8.34804 | 124.90046 | 0.0697 | 8.34804 | 124.90046 | 0.0668 |
| A39' | 8.20648 | 124.47939 | 0.1687 | 8.20084 | 124.47588 | 0.1767 |
| M40 | 8.2833 | 119.48781 | -0.0007 | 8.2833 | 119.48781 | 0.0007 |
| D41 | 8.21256 | 121.02966 | -0.0005 | 8.21256 | 121.02966 | 0.0055 |
| D41' | 8.17741 | 120.59417 | 0.2733 | 8.17214 | 120.59985 | 0.2619 |
| D42 | 8.20136 | 120.25745 | 0.0095 | 8.20136 | 120.25745 | 0.0114 |
| D42' | 8.16567 | 119.8727 | 0.4458 | 8.16567 | 119.8727 | 0.4207 |
| L43 | 8.03618 | 121.70514 | 0.0073 | 8.03618 | 121.70514 | 0.0017 |
| L43' | 8.0126 | 121.32101 | 0.3374 | 8.00105 | 121.31683 | 0.3018 |
| M44 | 8.20092 | 120.25786 | 0.0095 | 8.20092 | 120.25786 | 0.0114 |
| L45 | 8.02416 | 123.05584 | 0.0036 | 8.02398 | 123.05484 | 0.0143 |
| L45' | 8.00098 | 122.57417 | 0.2597 | 8.00067 | 122.57255 | 0.279 |
| S46 | 8.51867 | 118.33136 | 0.2457 | 8.50697 | 118.33067 | 0.237 |
| D48 | 8.16545 | 118.7165 | 0.0222 | 8.16545 | 118.7165 | 0.0157 |
| D49 | 8.04804 | 120.16246 | 0.0115 | 8.04804 | 120.16246 | 0.0012 |
| 150 | 7.80111 | 120.16142 | 0.0115 | 7.80111 | 120.16142 | 0.0003 |
| 150' | 7.7656 | 119.97009 | 0.3059 | 7.7656 | 119.97009 | 0.2724 |
| E51 | 8.2952 | 123.63458 | 0.0181 | 8.2952 | 123.63458 | 0.0213 |
| Q52 | 8.09501 | 120.35492 | -0.0042 | 8.09501 | 120.35492 | 0.0006 |
| W53 | 7.92757 | 121.38475 | 0.0084 | 7.92757 | 121.38475 | 0.0038 |
| F54 | 7.93004 | 121.45496 | 0.0084 | 7.93004 | 121.45496 | 0.0038 |
| T55 | 7.94187 | 116.20855 | 0.008 | 7.94187 | 116.20855 | 0.0094 |
| T55' | 7.91848 | 115.77831 | 0.1846 | 7.91383 | 115.72585 | 0.1909 |
| E56 | 8.27151 | 123.34659 | 0.4071 | 8.2716 | 123.34435 | 0.4029 |
| E56' | 8.25972 | 122.96043 | 0.2108 | 8.24796 | 122.86197 | 0.229 |
| D57 | 8.40092 | 123.3928 | 0.2993 | 8.39611 | 123.3956 | 0.3475 |
| G59 | 8.36565 | 109.36211 | 0.5918 | 8.36565 | 109.36211 | 0.5457 |
| D61 | 8.41286 | 119.97068 | 0.6757 | 8.41286 | 119.97068 | 0.6716 |
| E62 | 8.08334 | 120.83799 | 0.6277 | 8.08334 | 120.83799 | 0.6084 |
| A63 | 8.23626 | 126.62331 | 0.8962 | 8.23626 | 126.62331 | 0.8171 |
| R65 | 8.42491 | 121.89787 | 0.6066 | 8.41786 | 121.89555 | 0.5745 |
| M66 | 8.43968 | 123.3076 | 0.3537 | 8.43631 | 123.29803 | 0.3769 |
| E68 | 8.50699 | 121.2254 | 0.7138 | 8.50699 | 121.2254 | 0.6606 |
| A69 | 8.27009 | 125.37238 | 0.5303 | 8.2598 | 125.37004 | 0.5425 |
| A70 | 8.18907 | 124.88734 | 0.8842 | 8.18907 | 124.88734 | 0.8648 |
| R72 | 8.44147 | 122.47649 | 0.6763 | 8.44147 | 122.47649 | 0.7294 |
| V73 | 7.70674 | 125.46688 | 1.2643 | 7.70672 | 125.46607 | 1.2303 |


|  | $[.276 \mathrm{mM}]$ |  |  | $[.285 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.38923 | 121.6089 | 0.3128 | 8.38923 | 121.6089 | 0.3049 |
| E2 | 8.35403 | 122.18784 | 0.6124 | 8.35403 | 122.18784 | 0.621 |


|  | [.276mM] |  |  | [.285mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | $N$ shift | Intensity |
| E3 | 8.39511 | 123.51105 | 0.7195 | 8.39511 | 123.51105 | 0.7196 |
| Q5 | 8.52412 | 121.02864 | 0.4674 | 8.52412 | 121.02864 | 0.4619 |
| S6 | 8.34214 | 117.75123 | 0.2261 | 8.34214 | 117.75123 | 0.2314 |
| D7 | 8.40097 | 123.63418 | 0.2611 | 8.40097 | 123.63418 | 0.2647 |
| S9 | 8.49503 | 116.01578 | 0.4429 | 8.49503 | 116.01578 | 0.4358 |
| V10 | 7.82432 | 121.12682 | 0.6426 | 7.82432 | 121.12682 | 0.6355 |
| E11 | 8.30132 | 126.1895 | 0.5495 | 8.30132 | 126.1895 | 0.5533 |
| L14 | 8.31855 | 122.57297 | 0.674 | 8.31855 | 122.57297 | 0.6655 |
| S15 | 8.28896 | 116.69362 | -0.0003 | 8.28896 | 116.69362 | 0.003 |
| S15' | 8.35386 | 116.88319 | 0.2763 | 8.35386 | 116.88319 | 0.2904 |
| Q16 | 8.4716 | 122.57481 | 0.1457 | 8.4716 | 122.57481 | 0.1405 |
| E17 | 8.40102 | 122.05013 | 0.2038 | 8.40102 | 122.05013 | 0.2044 |
| T18 | 8.05549 | 114.7958 | 0.0015 | 8.0552 | 114.79618 | -0.0004 |
| T18' | 8.39173 | 113.6437 | 0.0958 | 8.38966 | 113.5078 | 0.0927 |
| F19 | 8.21261 | 122.27972 | -0.0072 | 8.21235 | 122.1261 | 0.0029 |
| F19' | 8.15384 | 123.15159 | 0.2005 | 8.15385 | 123.1517 | 0.2122 |
| S20 | 8.07044 | 116.67995 | 0.0081 | 8.06574 | 116.67986 | -0.0014 |
| S20' | 7.94265 | 117.17271 | 0.1251 | 7.94698 | 117.17292 | 0.109 |
| D21 | 8.22549 | 122.00482 | 0.0002 | 8.21279 | 121.99455 | 0.0082 |
| D21' | 8.11858 | 121.41603 | 0.1058 | 8.11858 | 121.41603 | 0.1163 |
| L22 | 7.90668 | 121.03059 | 0.1968 | 7.90668 | 121.03059 | 0.1956 |
| W23 | 7.80993 | 119.38953 | 0.0143 | 7.81006 | 119.39179 | 0.0154 |
| W23' | 7.76572 | 119.39085 | 0.104 | 7.76548 | 119.39075 | 0.1023 |
| K24 | 7.55 | 120.45279 | 0.0033 | 7.55128 | 120.45094 | -0.0029 |
| K24' | 7.30583 | 120.16071 | 0.0574 | 7.30626 | 123.16391 | 0.0582 |
| L25 | 7.78895 | 120.74191 | 0.0032 | 7.78895 | 120.74191 | 0.0054 |
| L25' | 7.88319 | 120.35502 | 0.1403 | 7.88316 | 120.35532 | 0.1498 |
| L26 | 7.87196 | 123.73206 | 0.0048 | 7.87196 | 123.73206 | 0.0016 |
| E28 | 8.67167 | 119.77691 | 0.0056 | 8.67167 | 119.77691 | -0.0002 |
| N29 | 8.23571 | 118.80332 | 0.0485 | 8.23509 | 118.80312 | 0.0561 |
| N29' | 8.21864 | 118.90712 | 0.1179 | 8.21282 | 118.90836 | 0.1769 |
| N30 | 8.24799 | 119.58353 | -0.0067 | 8.24799 | 119.58353 | 0.0044 |
| V31 | 7.99621 | 120.05293 | 0.2772 | 7.99409 | 120.0436 | 0.2549 |
| D49' | 8.04097 | 119.58373 | 0.1651 | 8.03614 | 119.58312 | 0.1701 |
| L32 | 8.23262 | 125.72092 | 0.0434 | 8.23262 | 125.72092 | 0.0425 |
| S33 | 8.17735 | 118.04178 | 0.0079 | 8.17735 | 118.04178 | 0.003 |
| S33' | 8.15386 | 118.33015 | 0.2684 | 8.15383 | 118.32117 | 0.2657 |
| L35 | 8.27118 | 123.63547 | 0.0276 | 8.27118 | 123.63547 | 0.0192 |
| S37 | 8.25975 | 115.34061 | 0.1074 | 8.25975 | 115.34061 | 0.0952 |
| Q38 | 8.31953 | 122.27681 | 0.0798 | 8.31953 | 122.27681 | 0.0849 |
| A39 | 8.34804 | 124.90046 | 0.0596 | 8.34804 | 124.90046 | 0.0629 |
| A39' | 8.20093 | 124.47624 | 0.1739 | 8.20092 | 124.43839 | 0.1775 |
| M40 | 8.2833 | 119.48781 | 0.0012 | 8.2833 | 119.48781 | 0.0064 |
| D41 | 8.21256 | 121.02966 | 0.0024 | 8.21256 | 121.02966 | 0.0098 |
| D41' | 8.1686 | 120.60496 | 0.2779 | 8.16816 | 120.61414 | 0.2952 |
| D42 | 8.20136 | 120.25745 | 0.0121 | 8.20136 | 120.25745 | 0.0058 |


|  | [.276mM] |  |  | [.285mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | $N$ shift | Intensity |
| D42' | 8.16558 | 119.87181 | 0.4138 | 8.16556 | 119.87314 | 0.3891 |
| L43 | 8.03618 | 121.70514 | 0.0006 | 8.03618 | 121.70514 | 0.005 |
| L43' | 8.00084 | 121.32011 | 0.2849 | 8.00084 | 121.32011 | 0.2621 |
| M44 | 8.20092 | 120.25786 | 0.0121 | 8.20092 | 120.25786 | 0.0058 |
| L45 | 8.02318 | 123.05349 | 0.0024 | 8.02328 | 122.04318 | 0.0046 |
| L45' | 8.00105 | 122.57224 | 0.02639 | 8.00073 | 122.56779 | 0.2372 |
| S46 | 8.50685 | 118.33015 | 0.2045 | 8.50685 | 118.33015 | 0.2058 |
| D48 | 8.16545 | 118.7165 | 0.0177 | 8.16545 | 118.7165 | 0.0147 |
| D49 | 8.04804 | 120.16246 | 0.0045 | 8.04804 | 120.16246 | -0.0022 |
| 150 | 7.80111 | 120.16142 | -0.0046 | 7.80111 | 120.16142 | -0.001 |
| $150{ }^{\prime}$ | 7.7656 | 119.97009 | 0.249 | 7.7656 | 119.97009 | 0.2203 |
| E51 | 8.2952 | 123.63458 | 0.0163 | 8.2952 | 123.63458 | 0.0125 |
| Q52 | 8.09501 | 120.35492 | -0.0012 | 8.09501 | 120.35492 | -0.0048 |
| W53 | 7.92757 | 121.38475 | 0.0029 | 7.92757 | 121.38475 | 0.0061 |
| F54 | 7.93004 | 121.45496 | 0.0029 | 7.93004 | 121.45496 | 0.0061 |
| T55 | 7.94187 | 116.20855 | 0.0073 | 7.94187 | 116.20855 | 0.0049 |
| T55' | 7.9067 | 115.72595 | 0.1762 | 7.90689 | 115.64133 | 0.1594 |
| E56 | 8.2716 | 123.34435 | 0.3775 | 8.2716 | 123.34435 | 0.3687 |
| E56' | 8.24806 | 122.86309 | 0.2206 | 8.24806 | 122.86309 | 0.1952 |
| D57 | 8.39202 | 123.38915 | 0.2804 | 8.39443 | 123.38213 | 0.2826 |
| G59 | 8.36547 | 109.33525 | 0.5157 | 8.36547 | 109.33525 | 0.4982 |
| D61 | 8.41276 | 119.96958 | 0.6818 | 8.41276 | 119.96958 | 0.665 |
| E62 | 8.08322 | 120.8369 | 0.6043 | 8.08322 | 120.8369 | 0.6026 |
| A63 | 8.23643 | 126.62383 | 0.7974 | 8.23609 | 126.62372 | 0.7887 |
| R65 | 8.41815 | 121.89729 | 0.563 | 8.41815 | 121.89729 | 0.5641 |
| M66 | 8.43628 | 123.32943 | 0.3696 | 8.43628 | 123.32943 | 0.3694 |
| E68 | 8.5067 | 121.22204 | 0.6529 | 8.5067 | 121.22204 | 0.6466 |
| A69 | 8.2598 | 125.37004 | 0.5375 | 8.2598 | 125.37004 | 0.54 |
| A70 | 8.18907 | 124.88734 | 0.8756 | 8.18913 | 124.88705 | 0.8521 |
| R72 | 8.43611 | 122.47663 | 0.7356 | 8.43611 | 122.47663 | 0.7214 |
| V73 | 7.70672 | 125.46648 | 1.2246 | 7.70672 | 125.46648 | 1.2242 |


|  | [.295mM] |  |  | $[.3 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |
| M1 | 8.38926 | 121.6088 | 0.313 | 8.38926 | 121.6088 | 0.3086 |
| E2 | 8.35403 | 122.18784 | 0.6197 | 8.35403 | 122.18784 | 0.6301 |
| E3 | 8.39511 | 123.51105 | 0.7253 | 8.39511 | 123.51105 | 0.762 |
| Q5 | 8.52412 | 121.02864 | 0.4647 | 8.52412 | 121.02864 | 0.4538 |
| S6 | 8.34214 | 117.75184 | 0.2244 | 8.34209 | 117.75223 | 0.2294 |
| D7 | 8.40094 | 123.63397 | 0.2585 | 8.40085 | 123.63467 | 0.2633 |
| S9 | 8.49503 | 116.01578 | 0.4404 | 8.49514 | 116.01688 | 0.4473 |
| V10 | 7.82432 | 121.12682 | 0.646 | 7.82432 | 121.12682 | 0.6378 |
| E11 | 8.30132 | 126.1895 | 0.5565 | 8.30132 | 126.1895 | 0.5723 |


|  | [.295mM] |  |  | [.3mM] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | $N$ shift | Intensity | H shift | N shift | Intensity |
| L14 | 8.31855 | 122.57297 | 0.6617 | 8.31855 | 122.57297 | 0.68 |
| S15 | 8.28896 | 116.69362 | 0.0052 | 8.28896 | 116.69362 | 0.003 |
| S15' | 8.35386 | 116.88319 | 0.2728 | 8.35386 | 116.88511 | 0.2757 |
| Q16 | 8.4716 | 122.57481 | 0.1396 | 8.4716 | 122.57481 | 0.1375 |
| E17 | 8.4006 | 122.08997 | 0.2074 | 8.40094 | 122.06818 | 0.1988 |
| T18 | 8.05494 | 114.79594 | 0.0018 | 8.05509 | 114.79355 | -0.0084 |
| T18' | 8.39349 | 113.50728 | 0.0866 | 8.39615 | 113.55131 | 0.0822 |
| F19 | 8.21242 | 122.12473 | 0.0002 | 8.21229 | 122.12437 | 0.0204 |
| F19' | 8.15385 | 123.1517 | 0.2032 | 8.15391 | 123.15269 | 0.2062 |
| S20 | 8.06527 | 116.6796 | 0.003 | 8.0649 | 116.67986 | -0.0082 |
| S20' | 7.94943 | 117.20791 | 0.1093 | 7.94951 | 117.20859 | 0.1238 |
| D21 | 8.21766 | 122.03085 | -0.0045 | 8.21948 | 122.00103 | 0.0092 |
| D21' | 8.11862 | 121.41552 | 0.1091 | 8.1185 | 121.41703 | 0.117 |
| L22 | 7.90668 | 121.03059 | 0.1906 | 7.9065 | 121.02936 | 0.1854 |
| W23 | 7.81059 | 119.39096 | 0.0099 | 7.81002 | 119.44991 | 0.0206 |
| W23' | 7.76556 | 119.39096 | 0.1014 | 7.76561 | 119.39135 | 0.1059 |
| K24 | 7.55174 | 120.45013 | -0.0019 | 7.5583 | 120.45602 | 0.0091 |
| K24' | 7.30714 | 120.16318 | 0.0555 | 7.30622 | 120.16345 | 0.0629 |
| L25 | 7.78895 | 120.74191 | 0.0072 | 7.78895 | 120.74191 | 0.012 |
| L25' | 7.88326 | 120.35471 | 0.1394 | 7.88337 | 120.31641 | 0.1361 |
| L26 | 7.87196 | 123.73206 | 0.0032 | 7.87196 | 123.73206 | 0.0093 |
| E28 | 8.67167 | 119.77691 | -0.0029 | 8.67167 | 119.77691 | 0.0018 |
| N29 | 8.23474 | 118.80256 | 0.0585 | 8.23382 | 18.80187 | 0.0552 |
| N29' | 8.21282 | 118.90545 | 0.1556 | 8.2125 | 118.81223 | 0.1716 |
| N30 | 8.24799 | 119.58353 | 0.0056 | 8.24799 | 119.58353 | 0.0095 |
| V31 | 7.98919 | 120.01202 | 0.2659 | 7.98919 | 120.01202 | 0.2829 |
| D49' | 8.03612 | 119.58424 | 0.163 | 8.03623 | 119.53722 | 0.1598 |
| L32 | 8.23262 | 125.72092 | 0.0448 | 8.23262 | 125.72092 | 0.05 |
| S33 | 8.17735 | 118.04178 | 0.0159 | 8.17735 | 118.04178 | 0.0158 |
| S33' | 8.15383 | 118.32117 | 0.252 | 8.15384 | 118.28263 | 0.2321 |
| L35 | 8.27118 | 123.63547 | 0.0195 | 8.27118 | 123.63547 | 0.0223 |
| S37 | 8.25975 | 115.34061 | 0.1064 | 8.25975 | 115.34061 | 0.0973 |
| Q38 | 8.31953 | 122.27681 | 0.0749 | 8.31953 | 122.27681 | 0.0766 |
| A39 | 8.34804 | 124.90046 | 0.0631 | 8.34804 | 124.90046 | 0.0606 |
| A39' | 8.20094 | 124.40679 | 0.1768 | 8.20094 | 124.40679 | 0.1814 |
| M40 | 8.2833 | 119.48781 | 0.0058 | 8.2833 | 119.48781 | 0.0026 |
| D41 | 8.21256 | 121.02966 | 0.005 | 8.21256 | 121.02966 | 0.0079 |
| D41' | 8.1656 | 120.64322 | 0.2888 | 8.16563 | 120.64493 | 0.2995 |
| D42 | 8.20136 | 120.25745 | -0.0048 | 8.20136 | 120.25745 | 0.0038 |
| D42' | 8.16556 | 119.87314 | 0.3767 | 8.16556 | 119.87314 | 0.3759 |
| L43 | 8.03618 | 121.70514 | 0.0046 | 8.03618 | 121.70514 | 0.0025 |
| L43' | 8.00065 | 121.22326 | 0.2598 | 8.00065 | 121.22326 | 0.2752 |
| M44 | 8.20092 | 120.25786 | -0.0048 | 8.20092 | 120.25786 | 0.0038 |


|  | $[.295 \mathrm{mM}]$ |  |  |  | $[.3 \mathrm{mM}]$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residue | H shift | N shift | Intensity | H shift | N shift | Intensity |  |
| L45 | 8.02303 | 122.4298 | -0.0052 | 8.02345 | 122.42769 | 0.0087 |  |
| L45' | 8.00083 | 122.57233 | 0.2279 | 8.00086 | 122.57387 | 0.2302 |  |
| S46 | 8.50685 | 118.33015 | 0.1887 | 8.50689 | 118.33115 | 0.1901 |  |
| D48 | 8.16545 | 118.7165 | 0.0161 | 8.16545 | 118.7165 | 0.0198 |  |
| D49 | 8.04804 | 120.16246 | 0.0018 | 8.04804 | 120.16246 | -0.005 |  |
| I50 | 7.80111 | 120.16142 | 0.0019 | 7.80111 | 120.16142 | -0.0051 |  |
| I50' | 7.75964 | 119.96877 | 0.2023 | 7.75541 | 119.96957 | 0.207 |  |
| E51 | 8.2952 | 123.63458 | 0.0191 | 8.2952 | 123.63458 | 0.0102 |  |
| Q52 | 8.09501 | 120.35492 | -0.0096 | 8.09501 | 120.35492 | -0.0123 |  |
| W53 | 7.92757 | 121.38475 | -0.003 | 7.92757 | 121.38475 | 0.0069 |  |
| F54 | 7.93004 | 121.45496 | -0.003 | 7.93004 | 121.45496 | 0.0069 |  |
| T55 | 7.94187 | 116.20855 | 0.0152 | 7.94187 | 116.20855 | -0.0003 |  |
| T55' | 7.90667 | 115.62993 | 0.1718 | 7.9067 | 115.63062 | 0.1835 |  |
| E56 | 8.2716 | 123.34435 | 0.3508 | 8.27139 | 123.34557 | 0.3566 |  |
| E56' | 8.24799 | 122.86167 | 0.1829 | 8.248 | 122.76694 | 0.1887 |  |
| D57 | 8.39443 | 123.38213 | 0.2868 | 8.39443 | 123.38213 | 0.2877 |  |
| G59 | 8.36547 | 109.33525 | 0.4917 | 8.36573 | 109.31077 | 0.4965 |  |
| D61 | 8.41276 | 119.96958 | 0.6638 | 8.41272 | 119.97058 | 0.6792 |  |
| E62 | 8.08322 | 120.8369 | 0.6073 | 8.08322 | 120.8369 | 0.6072 |  |
| A63 | 8.23623 | 126.62392 | 0.7873 | 8.23617 | 126.62482 | 0.8044 |  |
| R65 | 8.41815 | 121.89729 | 0.5597 | 8.41815 | 121.89729 | 0.553 |  |
| M66 | 8.43615 | 123.34467 | 0.3645 | 8.43643 | 123.30646 | 0.3599 |  |
| E68 | 8.50699 | 121.22407 | 0.6554 | 8.50686 | 121.22396 | 0.6882 |  |
| A69 | 8.2598 | 125.37004 | 0.5334 | 8.25962 | 125.37114 | 0.5217 |  |
| A70 | 8.18917 | 124.88806 | 0.8579 | 8.18911 | 124.88896 | 0.8876 |  |
| R72 | 8.43611 | 122.47663 | 0.7158 | 8.43611 | 122.47663 | 0.7191 |  |
| V73 | 7.70672 | 125.46648 | 1.2273 | 7.70679 | 125.46768 | 1.2415 |  |

## Appendix 4: Paramagnetic Relaxation Enhancement of ${ }^{15} \mathrm{~N}$ labeled p53TAD $\mathbf{4 7 4}$ _72R or p53TAD $\mathbf{\Delta 7 4}$ _72P.

| Residue | $\Delta 74 \_72 P$ <br> +vitC | $\Delta 74 \_72 \mathrm{P}$ | $\Delta 74 \_72 R+$ <br> vitC | $\Delta 74 \_72 \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: |
| M1 | 1.2578 | 0.6775844 | 1.8563 | 0.6587072 |
| E2 | 2.3401 | 0.6934862 | 3.3744 | 0.8120625 |
| E3 | 3.5797 | 0.9467852 | 3.7809 | 1.0987821 |
| Q5 | 1.4971 | 0.545193 | 2.746 | 0.6374394 |
| S6 | 1.2111 | 0.8257875 | 1.4666 | 0.9192558 |
| D7 | 1.253 | 0.731978 | 1.7118 | 0.6681979 |
| S9 | 1.9254 | 0.8421835 | 2.2862 | 0.9021456 |
| V10 | 2.2395 | 0.8471403 | 2.6436 | 0.9128058 |
| E11 | 2.2239 | 0.6596761 | 3.3712 | 0.7868116 |
| L14 | 0.4344 | 0.1960023 | 2.2163 | 0.1773865 |
| S15 | 0.4371 | 0.3428235 | 1.275 | 0.2723837 |
| Q16 | 0.1257 | 0.196161 | 0.6408 |  |
| E17 | 0.36 | 0.2936858 | 1.2258 |  |
| T18 | 0.6051 | 0.4444036 | 1.3616 | 0.3404427 |
| F19 | 0.1892 | 0.1947504 | 0.9715 | 0.1016667 |
| S20 | 0.0863 | 0.1759429 | 0.4905 | 0.1129371 |
| D21 | 0.2917 | 0.3897648 | 0.7484 | 0.3184904 |
| L22 | 0.687 | 0.3329134 | 2.0636 | 0.2409114 |
| W23 | 0.2064 | 0.1754058 | 1.1767 | 0.061976 |
| K24 | 0.0821 | 0.081505 | 1.0073 | 0.0720431 |
| L25 | 0.1274 | 0.12726 | 1.0011 | 0.1198311 |
| L26 | 0.0131 | 0.0111641 | 1.1734 | 0.0093925 |
| C28 | -0.0148 | 0.0237294 | 0.6237 | 0.0822959 |
| N29 | -0.0121 | 0.0323184 | 0.3744 | 0.088071 |
| N30 | 0.285 | 0.2047267 | 1.3921 | 0.1288469 |
| V31 | 0.0937 | 0.0636246 | 1.4727 | 0.14461 |
| L32 | 0.4034 | 0.0946304 | 4.2629 | 0.0862133 |
| S33 | 0.0973 | 0.0829356 | 1.1732 | 0.0667964 |
| L35 | 0.3043 | 0.1570662 | 1.9374 | 0.1211191 |
| S37 | 0.195 | 0.2312344 | 0.8433 | 0.0713231 |
| Q38 | 0.1601 | 0.5080927 | 0.3151 | 0.0598381 |
| A39 | 0.313 | 0.2471378 | 1.2665 | 0.2125896 |
| M40 | 0.2119 | 0.688434 | 0.3078 | 0.0505548 |
|  |  |  |  |  |


| Residue | $\Delta 74 \_72 P$ <br> + +itC | $\Delta 74 \_72 \mathrm{P}$ | $\Delta 74 \_72 R+$ <br> vitC | $\Delta 74 \_72 \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: |
| D41 | 0.6676 | 0.3735661 | 1.7871 | 0.2338333 |
| D42 | 1.252 | 0.4143089 | 3.0219 | 0.5228571 |
| L43 | 0.9004 | 0.3278712 | 2.7462 | 0.2717098 |
| M44 | 0.7781 | 0.2751025 | 2.8284 | 0.14737 |
| L45 | 0.4043 | 0.2180455 | 1.8542 | 0.0828146 |
| S46 | 0.6889 | 0.2670983 | 2.5792 | 0.1787442 |
| D48 | 0.693 | 0.3990097 | 1.7368 | 0.3013642 |
| D49 | 1.9321 | 0.7249634 | 2.6651 | 0.6892447 |
| I50 | 1.4681 | 0.4907079 | 2.9918 | 0.4757233 |
| E51 | 0.344 | 0.6584992 | 0.5224 | 0.1143484 |
| Q52 | 0.6707 | 0.3582034 | 1.8724 | 0.4323431 |
| W53 | 0.2851 | 0.1723596 | 1.6541 | 0.1778451 |
| F54 | 0.8276 | 0.3763358 | 2.1991 |  |
| T55 | 0.5489 | 0.3358008 | 1.6346 | 0.305 |
| E56 | 1.5327 | 0.5168263 | 2.9656 | 0.6020261 |
| D57 | 0.7742 | 0.4953295 | 1.563 | 0.8352561 |
| G59 | 2.4075 | 0.8234992 | 2.9235 | 0.9100806 |
| D61 | 2.5976 | 0.9051186 | 2.8699 | 0.9862021 |
| E62 | 2.7243 | 0.988211 | 2.7568 | 1.0273684 |
| A63 | 3.1361 | 0.9071214 | 3.4572 | 0.9280714 |
| R65 | 1.6871 | 0.5942167 | 2.8392 |  |
| M66 | 1.3452 | 0.6183122 | 2.1756 | 0.5537269 |
| E68 | 2.3047 | 0.672081 | 3.4292 | 0.6971429 |
| A69 | 2.7567 | 0.8565702 | 3.2183 | 0.6932591 |
| A70 | 3.1639 | 0.7421943 | 4.2629 | 0.7802326 |
| V73 | 4.9883 | 1.036293 | 4.8136 | 1.0802083 |
|  |  |  |  |  |

