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Abstract 

 

S. aureus has 16 predicted two-component systems (TCS) that respond to a range of 

environmental stimuli, and allow for adaptation to stresses.  Of these 16, three have no 

known function, and are not homologous to any other TCS found in closely related 

organisms. NsaRS is one such element, and belongs to the intramembrane-sensing 

histidine kinase (IM-HK) family, which is conserved within the Firmicutes. The 

regulators are defined by a small sensing domain within their histidine kinase, suggesting 

that they do not sense external signals, but stress in or at the membrane. Our 

characterization of NsaRS in this work reveals that, as with other IM-HK TCS, it 

responds to cell-envelope damaging antibiotics, including phosphomycin, ampicillin, 

nisin, gramicidin, CCCP and penicillin G. Additionally; we reveal that NsaRS regulates a 

downstream transporter, NsaAB, during nisin-induced stress. Phenotypically, nsaS 

mutants display a 200-fold decreased ability to develop resistance to another cell-wall 

targeting antibiotic, bacitracin. Microarray analysis reveals the transcription of 245 genes 

is altered in a nsaS mutant, with the vast majority down-regulated. Included within this 

list are genes involved in transport, drug-resistance, cell-envelope synthesis, 

transcriptional regulation, amino acid metabolism and virulence. Using ICP-MS, a 

decrease in intracellular divalent metal ions was observed in an nsaS mutant, when grown 

under low abundance conditions. Characterization of cells using electron microscopy 

reveals that nsaS mutants also have alterations in cell-envelope structure. Finally, a 
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variety of virulence related phenotypes are impaired in nsaS mutants, including biofilm 

formation, resistance to killing by human macrophages and survival in whole human 

blood. Thus NsaRS is important in sensing cell wall damage in S. aureus, and functions 

to reprogram gene expression to modify cell-envelope architecture, facilitating adaptation 

and survival. Interestingly, in our microarray analysis, we observed a more than 30-fold 

decrease in transcription of an ABC transporter, SACOL2525/2526, in the nsaS mutant. 

This transporter bears strong homology to nsaAB, and is currently uncharacterized. 

Exploration of the role of SACOL2525/2526 revealed that, along with NsaRS, it too 

responds to cell-envelope damaging antibiotics. Specifically, its expression was induced 

by phosphomycin, daptomycin, penicillin G, ampicillin, oxacillin, D-cycloserine and 

CCCP. Mutation of this transporter results in increased sensitivity to the antibacterial 

agent daptomycin, and decreased sensitivity to free fatty acids. These findings are 

perhaps explained by altered membrane fluidity in the mutant strain, as the transporter 

null-strain is more readily killed in the presence of organic solvents, such as toluene. In 

addition, SACOL2525/2526 mutants have a decreased ability to form spontaneous 

mutants in response to several other peptidoglycan synthesis targeting antibiotics, 

suggesting a role for SACOL2525/2526 in antibiotic resistance. Inactivation of this 

transporter alters the cell envelope, and produces similar effects to those observed with 

the nsaS mutant, with increased capsule production, that may provide resistance to 

lysostaphin. Interestingly, the nsaS microarray revealed that this TCS negatively 

regulates only 34 genes, including 6 out of the 10 major secreted proteases. Despite a 

number of reports in the literature describing these enzymes as virulence factors, the data 

is often conflicting. Therefore, the contribution of proteases to CA-MRSA pathogenesis 



x 
 

was investigated, by constructing a strain lacking all 10 extracellular protease genes. 

Analysis of this strain using murine models of infection reveals secreted proteases 

significantly impact virulence in both localized and systemic infections. Additionally, 

inactivation of these enzymes strongly influences survival in whole human blood, and 

increases sensitivity to antimicrobial peptides. Using a proteomics approach, we 

demonstrate that the contribution of secreted proteases to pathogenicity is related to 

differential processing of a large number of surface-associated virulence factors and 

secreted toxins. Collectively these findings provide a unique insight into the role of 

secreted proteases in CA-MRSA infections.  
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Chapter 1: Introduction 
 
 
 

 
Introduction 

 
The Staphylococci. Within the Firmicute phylum and the Staphylococcaceae family is 

the genus Staphyloccoci. Staphylococci are spherical cells about 1 micrometer in 

diameter and divide successively in more than one plane, as opposed to their closely 

related relatives, the streptococci, which form chains. In Greek, staphyle means “bunch of 

grapes”, corresponding to the clustered appearance of the bacteria when viewed under a 

microscope.  They are categorized as Gram-positive bacteria, and have a thick layer of 

peptidoglycan surrounding a single lipid bilayer membrane (Kloos et al., 1991).  The 

staphylococcal cell wall is distinct due to its high glycine content, which makes them 

susceptible to cell wall degradation by lysostaphin (Grundling & Schneewind, 2006). 

This genus is comprised of non-spore forming, non-motile, facultative anaerobes that are 

catalase-positive and oxidase-negative. They can generate energy through respiration or 

fermentation (Woese, 1987). Thus far, there have been 36 species and 18 subspecies 

identified within the Staphylococci genus (Cheung et al., 2006). The Staphylococci are 

found everywhere in nature, including soil and water, and are able to remain on inanimate 

objects for long periods of time. Commonly Staphylococci also inhabit the skin and 

mucus membranes of mammals (Noble & Pitcher, 1978). The majority of this genus is 

coagulase-negative, including S. epidermidis and S. hominis. However, one characteristic 
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that is used to distinguish S. aureus from other Staphylococci in the laboratory is that 

they are coagulase-positive. In addition, most are staphylococci are non-pathogenic, 

further distinguishing S. aureus from its relatives (Klevens et al., 2007).   

 Staphylococcus aureus. S. aureus isolates contain a circular chromosome composed of 

approximately 2.8 million base pairs, although one or more plasmids may also be 

included. The chromosome contains about 2700 coding sequences, as well as regulatory 

RNAs. Many genes have assigned functions through homology with closely related 

organisms, although only a small portion have been characterized. The genome consists 

of coding sequences (CDs) involved in cell division and replication (0.5%), chaperones 

(0.3%), adaptation and protection responses (1.7%), transport proteins (9.2%), 

macromolecule degradation (1.5%), macromolecule biosynthesis (4.7%), cofactor and 

carriers biosynthesis (0.6%), central and intermediary metabolism (2.2%), small 

molecules degradation (3.2%), energy metabolism (1.4%), fatty acid synthesis (0.6%), 

nucleotide biosynthesis (0.9%), cell envelope metabolism (20.3%), ribosome components 

(2.4%), mobile genetic elements (7.2%), regulators (4.7%), toxins (0.8%) and 

pseudogenes (2.6%). In addition, approximately 38% of the entire genome has no known 

function, and a further 10% has only a tentative function (Suzuki et al., 2012).   

The meaning of aureus is golden, which refers to the large colored colonies produced by 

S. aureus on rich media; resulting from the carotenoid pigment staphyloxanthin (Marshall 

& Wilmoth, 1981). S. aureus is found everywhere in nature, forms part of the normal 

skin flora of warm blooded animals and resides in the anterior nares of one in three 

people (Schechter-Perkins et al., 2011).  S. aureus is able to survive on the skin or in the 
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nose asymptomatically, but can gain access to breaches in the skin that may lead to 

disease (Foster, 2009).  S. aureus is commonly transmitted through skin to skin contact 

with a colonized or infected person.  Places that are more crowded, such as military 

camps, sports teams or dormitories increase the risk of dissemination (Ben-David et al., 

2008). This high human prevalence and ease of transmission largely accounts for why S. 

aureus is the most common cause of infection within the Staphylococci (Lowy, 1998).  

The diseases of S. aureus. S. aureus is the most common cause of infection by a single 

agent in the United States (Kobayashi & DeLeo, 2009; Lowy, 1998). People with 

diabetes, AIDS, indwelling intravenous catheters, intravenous drug users, surgical and 

cancer patients have the highest risk of contracting S. aureus infections; however as an 

opportunistic pathogen, all population groups are at risk (Frank, 1997, Zimakoff et al., 

1996). Disease normally starts as a localized infection via breaches of the skin, which can 

result in abscesses or furuncles. These are commonly known as boils and are the most 

common presentation of S. aureus skin infections (Ruhe et al., 2007; Frazee et al., 2005; 

Miller et al., 2007). Such conditions can subsequently proceed to more serious and deep-

seated diseases of the hair follicles, known as carbuncles.  In addition, S. aureus can also 

cause cellulitis, hydradenitis, suppurtiva, impetigo, mastitis, pyodermas and pyomyositis 

(Stack & Sanchez, 2007; Koning et al., 2003). Many of these infections appear red, 

swollen and painful with liquid or pus exudates. Some may be resolved with antibiotic 

therapy, but the majority are treated by surgical drainage.  Ultimately, S. aureus is 

believed to cause greater than 50% of all skin infections in the United States 

(Abrahamian & Moran, 2007; Talan et al., 2011). 



4 
 

From these localized sites of infection, S. aureus can then enter the bloodstream causing 

bacteremia. Bacteremia is associated with high mortality and cost, which places a large 

burden on healthcare systems (Shorr & Lodise, 2006; Steinberg et al., 1996). Percent 

mortality from S. aureus bacteremia ranges from 15% to as high as 80% without 

treatment (Mortara & Bayer, 1993; Selvey et al., 2000; Shorr,, 2006, Naber, 2009). Once 

S. aureus gains access to the bloodstream it can then disseminate to other organs and 

cause systemic infection. For example, S. aureus can cause osteomyelitis, which is an 

infection of bone or bone marrow (Lew & Waldvogel, 2004). Acute osteomyelitis is 

often seen in children, where it infects the long bones of the lower extremities 

(Waldvogel & Vasey, 1980; Carek et al., 2001). In adults, osteomyelitis is more 

commonly seen in vertebral bodies (Carek et al., 2001). S. aureus is also able to colonize 

the lungs, causing pneumonia, which is mostly seen in patients that have recently had 

surgery, have chronic lung disease, are older or are immunocompromised (Kollef et al., 

2005). In one study, the mortality rate of patients with pneumonia caused by S. aureus 

was at least 31% (Jeffres et al., 2006). Antibiotic therapy is used to treat S. aureus 

pneumonia, but must be aggressive, and may necessitate the use of harsh drugs, such as 

vancomycin, for several weeks (Micek et al., 2004). 

Surgical site infections are a major health concern since they are associated with high 

morbidity and health care costs. S. aureus is the most common cause of surgical site 

infections among patients in the ICU (Solomkin, 2001; Grimble et al., 2001). A major 

reason for this is the presence of S. aureus on the skin and mucus membranes of patients 

and operating room staff (Drinka et al., 2001).  
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In addition to these infections, which are caused by live, viable S. aureus, toxinoses, such 

as food poisoning, scalded skin syndrome and toxic shock syndrome are caused by toxins 

that are secreted by this organism. Food poisoning results from ingesting one of several 

staphylococcal enterotoxins (Holmberg & Blake, 1984), with symptoms usually 

including nausea, vomiting, headache and diarrhea. The average time of symptom onset 

after ingesting an enterotoxin is 4.4 hours (LeLoir et al., 2003), and the condition is 

typically self limiting, and does not require antibiotics or hospitalization. Toxic shock 

syndrome results from toxic shock syndrome toxin 1 (TSST-1), and can lead to 

symptoms such as fever, hypotension, rash and hyperemia of the mucus membranes.  

TSST-1 is a superantigen that elicits the production of multiple cytokines, resulting in a 

rapid progression of infection that can cause life threatening complications. This 

syndrome has been associated with high absorbent tampons (Fekety, 1964), and treatment 

is usually the removal of any material connected to disease, alongside antibiotic therapy. 

Virulence factors of S. aureus. S. aureus is a successful pathogen, causing a wide 

variety of diseases, in part because of the plethora of virulence factors it produces. 

Virulence factors are molecules expressed by the pathogen that allow it to survive within 

the host, evade the immune system, invade and colonize, or obtain nutrients (Casadevall 

& Pirofski,2009). The virulence process has multiple steps including: adhesion to the 

surface of host components, escape from the host immune system, and dissemination and 

tissue invasion (Ferry et al., 2005; Cheng et al., 2011). The ability of S. aureus to adhere 

to extracellular matrix proteins is thought to be essential for colonization and the 

establishment of infections (Patti et al., 1994; Pohlmann-Dietze et al., 2000). Microbial 

surface components recognizing adhesive matrix molecules (MSCRAMMS) are anchored 
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to the peptidoglycan layer of cells, and protrude outwards. These are used to attach to 

various host extracellular matrices including collagen, fibronectin and vitronectin (Foster 

& Hook, 1998). Fibronectin binding proteins, FnbA and FnbB, are involved in cell 

invasion by binding fibronectin, which facilitates uptake into the cell (Massey et al., 

2001; Jonsson et al., 1991). Clumping factor, ClfA and ClfB, bind fibrinogen which leads 

to platelet aggregation (O’Brien et al., 2002). Clumping factor also protects the cell from 

phagocytosis by macrophages (Palmqvist et al., 2004). Extracellular adhesion protein 

(Eap) binds to several plasma proteins (fibrinogen, fibronectin, prothrobin and 

vitronectin), epithelial cells and fibroblasts (Palma et al., 1999; Chavakis et al., 2002; 

Hussain et al., 2002). Extracellular fibrinogen-binding protein (Efb) is secreted by S. 

aureus and has been shown to prevent platelet aggregation, which is involved in wound 

healing (Palma et al., 2001). Collectively, these virulence factors aid the cell in adhering 

to host tissues, and facilitate the creation of infection foci.  

Other virulence factors are associated with escape from the host immune system. For 

example, protein A (Spa) is a cell-wall associated protein that binds to IgG. Normally 

IgG associates with bacteria so that neutrophils can recognize the foreign entity and 

facilitate phagocytosis, and destruction of the foreign organism. Protein A binding to IgG 

attenuates the immune response by blocking the ability of IgG to stimulate neutrophils, 

and ultimately inhibits phagocytosis. (Peterson et al., 1977).  Protein A also binds IgM 

associated with B cells, which induces apoptosis of these key host defense cells. S. 

aureus also has another virulence factor that serves to bind immunoglobulins and host 

proteins, Sbi. Sbi, is able to bind the complement protein C3 and blocks the activation of 

the host complement pathway, allowing for S. aureus to evade the host immune system 
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(Haupt et al., 2008).The majority of S. aureus strains produce a capsule, with 11 

serotypes thus far identified (Lee et al., 1994; Lin et al., 1994; Sau & Lee, 1996; Ouyang 

and Lee, 1997); however, serotypes 5 and 8 account for 75-80% of all S. aureus strains 

involved in human infections.  Capsule allows S. aureus to evade the host immune 

system by increasing resistance to phagocytosis and preventing it from being killed by 

neutrophils and monocytes (Watts et al., 2005). Staphylokinase (Sak) is secreted by S. 

aureus and functions to convert human plasminogen bound to the bacterial cells into 

plasmin. This leads to plasmin activation, and cleavage of IgG and C3b, which 

inactivates both and prevents phagocytosis (Rooijakkers et al., 2005). Chemotaxis 

inhibitory protein (CHIPS) binds to human neutrophils and monocytes on the C5a 

receptors, which represses their chemotaxis and antibacterial activity (Haas et al., 2005; 

Wright et el., 2007). The staphylococcal complement inhibitor (SCIN) abrogates C3b 

binding to the bacteria cell, and thus prohibits phagocytosis (Rooijakkers et al., 2005). 

All of these virulence factors serve as a highly efficient defense to circumnavigate the 

effects of the host immune system.  

Virulence factors are also employed for dissemination and host tissue invasion and 

include enterotoxins, toxic shock syndrome toxin-1 (TSST-1) and exfoliative toxins, are 

all staphylococcal superantigens encoded on accessory mobile elements (Ferry et al., 

2005). Exfoliative toxin A and B (eta, etb) cause a unique array of damage, from 

localized lesions to extensive exfoliation, and are the primary arbiters behind scalded-

skin syndrome (Lee et al.,1987). S. aureus also produces extensive cytotoxins that are 

involved in tissue invasion and the destruction of host cells, causing the lysis of 

leukocytes, monocytes and/or erythrocytes. Specifically, α-hemolysin  associates as a 
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hexamer to form pores in erythrocytes, resulting in lysis of the cell. Another mechanism 

S. aureus utilizes for such processes are bi-component pore-forming leukotoxins 

(Menestrina et al., 2003), such as: γ-hemolysin (HlgABC), LukSF-PVL, LukAB and 

LukED (Alonzo et al., 2012).  Further to this, γ-hemolysin has been shown to contribute 

to S. aureus survival in blood and virulence in systemic murine models of infection by 

targeting polymorphonuclear cells and monocytes (Malachowa et al., 2011). The Panton-

Valentine leukocidin (PVL) was found to induce lysis of human polymorphonuclear 

neutrophils, monocytes and macrophages and seems to contribute to the ability S. aureus 

to cause pneumonia (Voyich et al., 2006; Labandeira-Rey et al., 2007; Diep et al., 2010; 

Loffler et al., 2010). Recently the LukAB leukotoxins were identified and shown to 

hinder killing by neutrophils (Dumont et al., 2011). The LukED proteins are the newest 

identified leukotoxins and have been shown to target and kill murine phagocytes (Alonzo 

et al., 2012).  

In addition to bipartite toxins, another group of proteins, the phenol soluble modulins 

(PSMs), have also been implicated in tissue invasion. PSMs share a common alpha 

helical region that is thought to disrupt cell membranes and induce host cell lysis (Wang 

et al., 2007).  Several lipases are also produced by S. aureus: the geh gene encodes a 

glycerolester hydrolase that cleaves long-chain and water-soluble triacylglycerols (Lee & 

Iandolo, 1986; Arvidson, 2000), whilst an esterase, encoded by lip, cleaves short-chain 

triacylglycerides. It has been suggested that lipases are chemotactic to granulocytes and 

decrease phagocytic killing (Rollof et al., 1988), however the role of these esterases 

remains unclear. In addition, two phospholipase C proteins have been identified, 

sphingomyelinase or β-hemolysin, and phosphatidylinositol-specific phospholipase C. 
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Although these are known to contribute to virulence, their exact role and host target (s) 

are unknown. Fatty acid modifying enzyme (FAME) catalyzes the esterfication of long-

chain free fatty acids to generate cholesterol, allowing enhanced invasiveness in 

abscesses by diminishing the bactericidal effects of host lipids (Chamberlain and 

Imanoel, 1996). Additionally, coagulase, a cell surface bound virulence factor, associates 

with prothrombin and forms staphylothrombin, which converts fibrinogen to fibrin that 

coagulates serum (Wegrynowicz et al., 1980).  S. aureus also secretes ten major proteases 

that aid in dissemination and tissue invasion by cleaving host proteins. Secreted proteases 

have been shown to cleave the human protease inhibitor α1-proteinase inhibitor (Potempa 

et al., 1986), the heavy chains of all human immunoglobulin classes (Prokesova et al., 

1992) and elastin (Potempa et al., 1988). Staphopain B was shown to cleave human 

fibronectin, fibrinogen and kininogen (Coulter et al., 1998). These secreted proteases may 

contribute to the switch from adhesive to invasive phenotypes, as they cleave S. aureus 

surface, as well as other secreted virulence factors (McGavin et al., 1997; Karlsson et al., 

2001; McAleese et al., 2001; Lindsay & Foster, 1999). Although secreted proteases have 

been suggested to be important virulence factors, the scope of proteins that they cleave is 

currently unclear.  

The regulation of virulence factors in S. aureus. The success of S. aureus in causing 

disease is attributed not only to these virulence determinants, but in the rapid 

environmental sensing and adaptation of their expression via precise genetic regulation. 

The disease process begins with regulatory elements, which S. aureus has a multitude of, 

including sigma factors, DNA binding proteins, regulatory RNAs and two-component 

systems. Virulence factor production is tightly regulated, and correlates with classical 
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growth phases experienced by bacteria (Figure 1). Shortly after entry into exponential 

phase, adhesive surface proteins are expressed, including protein A, fibronectin binding 

proteins A and B and clumping factors A and B. In addition, expression of the cytotoxin, 

delta-hemolysin is also activated at this time, and remains expressed throughout post-

exponential and stationary growth (Schlievert et al., 2010). Other secreted virulence 

factor expression correlates with bacterial population density, and is activated by a 

quorum sensing system, agr (accessory gene regulator) later in growth. The agr system 

of S. aureus is a global regulatory system that has been extensively studied and regulates 

most staphylococcal virulence factors (Recsei et al., 1986). The agr operon contains four 

genes, agrABCD that are transcribed from promoter 2 (P2, producing RNAII), alongside 

promoter 3 (P3, producing RNAIII), which is divergent, and produces δ-hemolysin (hld) 

(Novick et al., 1995).  

AgrD is a 46 amino acid protein that is cleaved by two proteolytic digestions during the 

exponential growth phase, before being secreted by AgrB. This results in a cyclic peptide 

that is seven to nine amino acids in length, depending on the strain, and is referred to as 

autoinducing peptide (AIP) (Ji et al., 1997). AgrC is a 46 kDa membrane protein that has 

six transmembrane domains and is the histidine kinase of a two-component system 

composed of AgrC and AgrA. AgrC contains a sensor domain which recognizes the 

pheromone AIP, which, once a threshold concentration is reached, leads to AgrC 

autophosphorylation at a conserved histidine residue in the cytoplasmic portion of this 

protein.  This phosphate is then passed to AgrA, which is a 28 kDa response regulator 

that belongs to the AlgR/AgrA/LytR family of DNA binding proteins (Nikolskaya & 

Galperin, 2002). AgrA subsequently binds to both agr promoters, although its affinity for  
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Figure 1. The regulation of virulence factors in a growth phase dependent manner. 
Virulence factors are regulated in a growth phase dependent manner. During exponential 
phase several surface-associated virulence factors, including, protein A, collagen-binding 
protein, clumping factor, fibronectin-binding protein and coagulase are expressed. As 
bacterial density increases, S. aureus switches from expressing adhesive surface proteins 
to secreted proteins. During the post-exponential/stationary phases secreted virulence 
factors are produced, including enterotoxins, secreted proteases, α-hemolysin, PVL and 
lipases.  
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P3 is considerably greater than for P2 (Koenig et al., 2004). RNAIII, produced from P3, 

is a 0.5 kb transcript whose levels increase during growth, and is maximally observed 

during post-exponential phase (Vandenesch et al., 1991). RNAIII ultimately serves as the 

effector molecule of the agr system, seemingly by antisense mechanisms. 

RNAIII was previously shown to regulate the α–toxin gene, hla, as transcript levels for 

this hemolysin in a RNAIII mutant are one tenth of those in a wild-type strain, with 

protein levels concomitantly reduced by 70-fold (Novick et al., 1993). The mRNA of hla 

contains a long 5’ untranslated region of 330 nucleotides, which forms a hairpin that 

contains and blocks the Shine-Dalgarno sequence (Novick et al., 1993). RNAIII binds to 

this untranslated region, and the Shine-Dalgarno sequence is exposed by RNaseT1. This 

binding stops the formation of a secondary structure, frees the ribosome binding site, and 

allows for translation. The observation that both transcription and translation of hla were 

impacted by RNAIII deletion suggests multiple methods of control are exerted by this 

element. This was shown only recently, upon the determination that RNAIII interacts 

with the mRNA for the DNA-binding protein Rot. The repressor of toxins (Rot) serves to 

represses virulence determinant genes regulated by Agr (Said-Salim et al., 2003). To 

relieve this repression, RNAIII binds to a complementary sequence on the rot mRNA, 

inhibiting its translation (Geisinger et al., 2006; Boisset et al., 2007).  

Although Agr contributes greatly to the regulation of virulence factors, it is not the only 

regulator. The staphylococcal accessory regulatory locus (sar) was first identified by 

screening transposon mutants for decreased exoproteins production (Cheung et al., 1992). 

The sar locus consists of three transcripts that end at the same stem-loop sequence, but 
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sarA is the only functional product produced (Bayer et al., 1996; Manna et al., 1998). 

SarA can bind DNA as a dimer, however its target consensus sequence is currently 

unknown. It has also been suggested that SarA is similar to Fis and IHF proteins of E. 

coli, as SarA has similar characteristics as these proteins. These proteins regulate 

transcription by mediating structural changes in DNA and supercoiling (Schumacher et 

al., 2001). SarA has been shown to regulate many virulence factors, both positively and 

negatively. In addition to binding DNA, SarA regulates mRNA stability, as transcripts for 

several surface associated and secreted virulence factors have significantly shorter half-

lives upon sarA deletion (Roberts et al., 2006). In addition to SarA, several Sar 

homologues have been identified as regulators of virulence factors. Specifically, SarR 

represses SarA and hence genes regulated by SarA (Manna & Cheung, 2006), whilst SarS 

is repressed by SarA and Agr (Tegmark et al., 2000; Cheung et al., 2001). SarT, another 

homologue, has been suggested to repress RNAIII (Schmidt et al., 2001). In total, 12 

different members of the SarA family of DNA binding proteins have thus far been 

identified in the S. aureus genome (Schumacher et al., 2001 ; Liet al., 2003).  

Agr and Sar-family proteins, although pleiotropic in action, are not the only virulence 

factor regulators. Another global regulatory element is the Sae system, which influences 

virulence factors independently of Agr and SarA (Giraudo et al., 1997). In addition to 

proteins that bind promoters to exert their effects, sigma factors also play a role in 

regulation. S. aureus also has an alternative sigma factor, σB, which regulates many 

virulence factors during stress situations via both direct and indirect mechanisms 

(Cheung et al., 1999; Nicholas et al., 1999). Collectively, the regulatory network of 
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virulence factors is multifaceted and all contribute to the success of S. aureus as a 

pathogen.  

Antibiotic resistance of S. aureus. Genes encoding for antibiotic resistance typically 

occur on mobile elements, such as genomic islands, transposons, plasmids and phages; 

and are rapidly and easily transferred. Most antibiotic resistance mechanisms function by 

either circumnavigating the effects of the drug (e.g. expelling it via efflux pumps) or by 

modifying the drug directly. S. aureus is prolific at acquiring antibiotic resistance 

cassettes, and thus is a major public health concern due to lack of available treatments. 

The beta-lactam, penicillin, was the first antibiotic used to treat bacterial infections in 

1942. Beta-lactams inhibit penicillin binding proteins (PBP) that perform the last 

enzymatic reaction in cell wall synthesis (Goffin & Ghuysen, 1998). However, only a 

year after its clinical introduction, penicillin resistance by S. aureus was reported 

(Rammelkamp et al., 1943). Resistance was achieved by the acquisition of the blaZ gene, 

which encodes a penicillinase that hydrolytically cleaves beta-lactam antibiotics 

(Kernodle, 1989). Another antibiotic, methicillin, was introduced for clinical use in 1960. 

Methicillin differs structurally from penicillin by sterically hindering the beta-lactam 

cleavage site, and hence penicillinases are ineffective against it. A year after its 

introduction, however, methicillin-resistant S. aureus (MRSA) was reported (Jevons 

1963). Bacteria with methicillin resistance possess PBP2’ specified by the mecA gene; 

which is commonly encoded on a mobile genetic element known as the staphylococcal 

cassette chromosome (SCCmec) (Chamber 1997; Ito et al., 2001). Beta-lactams have low 

affinity to PBP2’ and hence do not interfere with its essential function (Pinho et al., 

2001). Unlike resistance to penicillin, which is narrow in its activity spectrum, methicillin 
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resistance is broad, and confers resistance to the entire class of beta-lactam antibiotics, 

including penicillins, cephalosporins and carabapeneums (McCallum et al., 2009).  

S. aureus has also recently gained resistance to glycopeptides antibiotics, such as 

vancomycin. Vancomycin is considered a last resort antibiotic as it is often the only drug 

still effective against many strains of S. aureus . Vancomycin binds to the D-ala-D-ala 

residues of the lipid II molecule, which normally cross-links with other lipid II molecules 

to form peptidoglycan in the cell wall. This binding event by vancomycin inhibits cross 

linking and peptidoglycan biosynthesis, which results in weakened cell walls and 

eventually cell death (Watanakunakorn, 1984). Two resistance mechanisms have arisen 

in S. aureus towards glycopeptides. First, isolates with reduced susceptibility to 

vancomycin were observed and are known as vancomycin intermediate resistant S. 

aureus (VISA). These isolates have an elevated vancomycin minimum inhibitory 

concentration of 8-16 μl/ml compared to 1-4 μl/ml, which is considered sensitive 

(Hiramatsu, 2001). VISA isolates are associated with thickened and poorly linked 

peptidoglycan, which results in an increased number of free D-ala-D-ala dipeptide targets 

for the antibiotic to bind. Since these extra residues are free and not part of lipid II, this 

binding event does not inhibit peptidoglycan synthesis (Cui et al., 2006). It has also been 

proposed that this difference in cell architecture may reduce the diffusion rate of the 

antibiotic into the cell (Pereira et al., 2007).  

True vancomycin resistance was first reported in 1988 in Enterococcus isolates which 

were found to resist vancomycin by utilizing the vanA cluster of genes (Leclercq et al., 

1988, Uttley et al., 1988). The first S. aureus isolate with vancomycin resistance was 
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found in Japan in 1997 and mostly likely acquired the necessary genes from 

Enterococcus (Hiramatsu et al., 1997). In 2002, vancomycin resistant S. aureus (VRSA) 

was found in the United States, and contain the gene vanA (Clark et al., 2005, Weigel et 

al., 2003). Since then, other VRSA strains have been isolated in the United States as well 

as worldwide (Tiwari & Sen, 2006; Hiramatsu et al., 1997). vanA encodes for an enzyme 

that changes the D-ala-D-ala residues in lipid II to D-ala-D-lac (Perichon & Courvalin, 

2009). PBPs can still utilize these residues for peptidoglycan construction, but 

vancomycin has a 1000-fold lower affinity in binding them (Bugg et at., 1991).  

Hospital-acquired and community-acquired S. aureus. MSRA strains are widespread 

in hospitals and intensive care units, and are one of the leading causes of bacterial 

nosocomial infections worldwide (Diekema et al., 2001). In this setting these strains prey 

upon the immunocompromised and elderly. Such strains are referred to as hospital-

acquired MRSA (HA-MRSA), however, in the past decade MRSA strains have been 

observed in the community infecting young and healthy individuals without any 

connection to healthcare facilities, and are termed community-acquired MRSA (CA-

MRSA) (Johnson et al., 2007; Moran et al., 2005). These, CA-MRSA strains have 

evolved independently in the community, and possess different combinations of virulence 

factors and antibiotic resistance traits, which result in hypervirulent and more aggressive 

isolates (Burlak et al., 2007; Chambers, 2005; Diep et al., 2006; Diep at al., 2008; 

Kennedy et al., 2008; Vandenesch et al., 2003; Wang et al., 2007).  

Multilocus sequence typing and pulsed-field gel electrophoresis (PFGE) has been used to 

define S. aureus isolates according to CDC PFGE types USA100-USA1200 (Enright et 
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al., 2002; Tenover et al., 2004). HA-MRSA infections, in the United States are 

commonly caused by USA100, USA200, USA700 and USA800 types, with the former 

being the most common (Tenover et al., 2004). In contrast, USA300 has become the 

dominant CA-MRSA clone in the United States in the past 10 years (Moran et al., 

2006;Hulten et al., 2010; Talan et al., 2011), replacing USA400 in most regions (Como-

Sabetti et al., 2009; Simor et al., 2010). 

Recent research has shown multiple differences between HA-MRSA and CA-MRSA. 

First, the ability of CA-MRSA to invade healthy hosts is the result of a difference in the 

expression profile of core-genomic elements, as well as newly acquired virulence factors. 

CA-MRSA strains overproduce several core pathogenic determinants, including α-

hemolysin (Hla), delta-hemolysin, proteases and phenol soluble modulins (PSMs) 

(Burlak et al., 2007; Chambers, 2005; Diep & Otto, 2008; Wang et al., 2007). A large 

number of these factors are regulated by the two-component system Agr, and thus their 

overproduction is due, at least in part, to a hyperactive Agr system. The Sae system also 

positively regulates virulence factors and has been shown to have increased expression in 

CA-MRSA strains (Giraudo et al., 1997, Goerke et al., 2005; Nygaard et al., 2010),..  

 Genome analysis of the CA-MRSA isolate MW2 revealed 19 unique virulence factors, 

including several enterotoxins, leukocidins and surface-associated proteins that are not 

found in other S. aureus genomes (Baba et al., 2002). Other CA-MRSA strains also carry 

unique pathogenicity islands, such as SaPI5, which encodes two unusual enterotoxins, K 

and Q (Diep et al., 2006) that are thought to contribute to virulence by stimulating T-

cells. Also, the Panton-Valentine leukocidin (PVL) genes are found in 2% of clinical 



18 
 

isolates, however all CA-MRSA strains that cause skin infections possess them 

(Vandenesch et al., 2003). Of the virulence factor genes acquired by CA-MRSA strains, 

only the arginine catabolic mobile element (ACME) is completely unique to USA300 

(Diep et al., 2006). ACME encodes a complete arginine deaminase system that converts 

D-arginine to L-ornithine for ATP and ammonia production. It has been proposed that 

ACME contributes to colonization through ammonification of the acidic skin 

environment (Diep et al., 2008; Joshi et al., 2011). In addition to toxin production, 

antibiotic resistance genes also vary between these 2 lineages. Both HA-MRSA and CA-

MRSA strains carry SCCmec, with eight different types thus far identified. Types I-III 

contains other drug resistance determinants, whereas types IV-VIII only carry resistance 

to beta-lactam antibiotics (Carvalho et al., 2010). CA-MRSA typically carry SCCmecIV, 

which means that CA-MRSA strains are commonly susceptible to antibiotics such as 

clindomycin, macrolids, co-trimoxazole, tetracyclines and fluoroquinolones (Daum et al., 

2002). TypeIV SCCmec is also smaller in size, and seems to have less of a defect burden 

on strains, comparead to types I, II and III, which are very large and result in decreased 

growth rates of harboring isolates (Laurent et al., 2001; Ender et al., 2004; Diep et al., 

2008).  

The type of infection caused by HA-MSA and CA-MRSA varies greatly. HA-MRSA 

infections are often associated with invasive diseases such as surgical site infections and 

bacteremia, which can result in dissemination to the lungs and cause pneumonia (Webb et 

al., 2009; Selvey et al., 2000). CA-MRSA strains most frequently cause skin infections 

(Cohen & Kurzrock, 2004), which are characterized by the development of necrotizing 

lesions of the skin and soft tissues. These lesions can then progress into abscesses or 
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cellulitis. CA-MRSA can also cause invasive infections, such as bacteremia, endocarditis 

and necrotizing fasciitis, a condition rarely caused by S. aureus (Miller et al., 2005). CA-

MRSA is often associated with worse clinical outcomes and has increased sepsis and in-

hospital mortality rates (Kempker et al., 2010). On average, patients contracting CA-

MRSA are younger and otherwise healthier than those with HA-MRSA (Nair et al., 

2011). Recent reports reveal that the number of CA-MRSA infections is increasing in the 

United States (Limbago et al., 2009; McDougal et al., 2003; Moran et al., 2005), and 

these strains are being observed in the hospital setting, where they are displacing 

traditional HA-MRSA isolates (D’Agata et al., 2009; Popovich et al., 2008; Webb et al., 

2009). 

Two-component systems. The success of S. aureus as a pathogen is in part due to 

precise regulation of genes needed to survive in different environments, including the 

host. One class of elements used by S. aureus to sense the environment and adapt is two-

component systems (TCS). The term “two-component” was first used to describe a class 

of unique regulatory systems found in eubacteria (Hess et al., 1988). However, recently 

two-component signal transduction systems have been found in Achaea, fungi, slime 

molds and even plants (Hoch, 1995; Hwang et al., 2002;. As the name suggests, these 

systems consist of two components, a membrane spanning histidine kinase (HK) and an 

intracellular response regulator (RR). The histidine kinase acts as a sensor and the 

response regulator, which is normally a DNA-binding protein, is responsible for changing 

gene expression to aid in survival of the cell. The chemistry of most TCS consists of 

three reactions, with two intermediates (Figure 2). The two partners of a TCS 

communicate through three phospho-transfer reactions after the HK senses its specific   
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Figure 2. A functional schematic of two-component systems. TCS are utilized by the 
cell as a way to sense the external environment and alter expression profiles in order to 
survive. The histidine kinase (HK) is a membrane bound protein that is able to sense 
specific signals. When the HK senses its target at a threshold level, it autophosphorylates 
at a conserved histidine residue. The phosphate group is then passed to the 
cytoplasmically located response regulator (RR) at an aspartate residue. Once 
phosphorylated, the RR can bind promoters of genes under its control and either increase 
or decrease transcription in accordance with the stress being sensed. 
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signal: (1) the histidine kinase (HK) autophosphorylates itself at a conserved histidine 

residue; (2) the phosphate is transferred to the response regulator (RR) at a conserved 

aspartate residue (Asp); (3) the RR changes gene expression profiles by binding to 

promoters under its control (Figure 3). The phosphoryl group is then transferred to a 

water molecule in a hydrolysis reaction, and is dephosphorylated to reset the system 

(Parkinson, 1993).  

TCS prototypically operate in this way; however some function differently and can 

contain more than two components, yet still utilize the same sensing and phosphotransfer 

system. The HK, CheA of E. coli can phosphorylate either of two RRs, CheY or CheB 

(Stock et al., 1988). The sporulation TCS of B. subtilis is an example of a 

multicomponent phosphorelay system. The HK is considered a hybrid HK due to its 

multistep system and higher complexity. The RR Spo0F receives its phosphate from 

either KinA or KinB. Then the phosphate is passed to another HK, Spo0B, and then 

finally to RR Spo0A (Burbulys et al., 1991).  Instead of the phosphate being passed to 

different proteins, as in the sporulation system, it can also be passed to different domains 

within a single HK. In the anoxic redox TCS from E. coli, the HK ArcB contains two 

domains that autophosphorylate, before the RR, ArcA can be phosphorylated (Ishige et 

al., 1994). In addition to these, not all kinases are membrane bound; some are actually 

soluble cytoplasmic HKs. These HKs are regulated by stimuli within the cytoplasm, or 

interact with the cytoplasmic domains of target proteins. The nitrogen sensing HK, NtrB, 

is one such example of a soluble HK (MacFarlane & Merrick, 1985).  
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Figure 3. The phosphotransfer reactions of two-component systems. The histidine 
kinase (HK) and response regulator (RR) of a TCS communicate through three phospho-
transfer reactions to ultimately alter gene expression. First, the HK autophosphorylates 
itself at a conserved histidine residue; then the phosphate is transferred to the response 
regulator (RR) at a conserved aspartate (Asp); which is followed by the RR changing 
expression profiles by binding to promoters under its control. The final step consists of 
the phosphoryl group being transferred to a water molecule in a hydrolysis reaction, 
leading to dephosphorylation, which resets the system.  
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Structure and function of histidine protein kinases. The main architectural feature of 

all HKs is the kinase core, which is composed of a dimerization domain and an 

ATP/ADP-binding phosphotransfer or catalytic domain (Figure 4) (Stock, 1999). It 

contains the conserved amino acid motif, called the H box, which houses the histidine 

residue where phosphorylation occurs (Stock et al., 1989). The ATP-binding pocket is 

flexible, suggesting that it undergoes a conformational change when associated with ATP 

(Ban et al., 1999). In addition to the kinase core, HKs contain a sensing domain located at 

the N-terminus, which is used to sense specific environmental signals. This domain 

shares little sequence similarity between HKs, supporting the idea that each protein is 

designed to sense different, and very specific, stimuli. For many HKs the stimulus 

remains unknown.  

Structure and function of response regulators. The majority of RRs consist of two 

domains: a conserved N-terminal regulatory domain, and a variable effector domain 

located at the C-terminus (Figure 5). The RR is responsible for transfer of the phosphoryl 

group from the His residue in the HK to a conserved Asp residue within its own 

regulatory domain. In addition to the critical Asp residue, many RRs have acidic residue 

adjacent to this (Stock et al., 1988). The carboxylate side chains of these acidic residues 

are important in obtaining Mg2+, which is required for phosphoryl transfer (Needham et 

al., 1993). Some RRs are able to obtain the phosphoryl group from small molecules such 

as acetyl phosphate, carbamoyl phosphate, imidazole phosphate or phosphoramidate, in 

addition to the cognate HK (Lukat et al., 1992). This suggests that some RRs can 

phosphorylate independently of the HK, and that the concentration of these small 

phosphor-donors can serve as a signal to change gene expression profiles.  
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Figure 4. The architectural features of histidine kinases. The histidine kinase is a 
membrane spanning protein with a sensing domain in the extracellular environment and a 
kinase core that is cytoplasmically located. The sensing domain of each HK is different 
as each recognizes a unique signal. The kinase core is composed of  an ATP/ADP-
binding phosphotransfer domain and the H box. The ATP/ADP-binding phosphotransfer 
domain uses the hydrolysis of ATP for energy, which creates a conformational change in 
the protein. This leads to autophosphorylation at a conserved histidine residue in the H 
box.   
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Figure 5. The architectural features of response regulators. The response regulator 
(RR) of a two-component system is a cytoplasmic located protein and is composed of an 
effector domain and a regulatory domain. The effector domain contains a conserved 
aspartate (Asp) residue where the phosphate group is received from the histidine kinase.  
Once phosphorylated the RR can bind to genes under its control via its DNA-binding or 
regulatory domain. This leads to either increased or decreased transcription of the target 
gene(s). 
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Phosphorylation ultimately promotes a conformational change in both the regulatory 

domain, as well as the effector domain. The effector domain, the DNA sequences that it 

binds to, the arrangement of the binding sites and the exact mechanism of transcriptional 

regulation varies greatly amongst different RRs. It is thought that RRs exists in 

equilibrium between the active and inactive state, with the phosphorylation event shifting 

the equilibrium to the active state. In the active state the RR can promote dimerization 

(McCleary, 1996), higher-order oligomerization (Webber et al., 1997), or interactions 

with other proteins or DNA (Aiba et al., 1989). The majority of effector domains have 

DNA-binding activity, which can either activate or repress genes under its control. 

However, phosphorylation does not equate to activation, and for some RRs, activation is 

the result of relieving inhibition. In this scenario, phosphorylation creates a 

conformational change and modifies the binding of the RR to DNA. In certain situations 

the unphosphorylated RR can bind DNA and inhibit transcription, under normal 

conditions. Upon phosphorylation, the RR is no longer bound and thus repression is 

relieved. 

The occurrence of TCS in prokaryotes. With the availability of whole genome 

sequencing, the frequency of TCSs among bacteria is readily determined. Homology 

suggests that the total number of TCSs differs vastly between bacteria, and range from 0 

in Mycoplasma genitalium to 80 in Synechocystis sp., which is a total of ~2.5% of its 

entire genome (Mizuno et al., 1998). Analysis of other bacterial genomes reveals that 

Bacillus subtilis possesses 70 TCSs; Haemophilus influenza, 9 ; Helicobacter pylori, 11; 

(Mizuno et al., 1998) while E. coli has 30 HKs and 32 RRs (Mizuno, 1997). The exact 

number of TCSs associated within a bacterium, however, changes as new ones are 



27 
 

acquired. Indeed, many newly discovered TCSs are the result of horizontal gene transfer, 

and are involved in sensing and responding to antibiotics, or affecting virulence 

processes. 

Intramembrane-sensing histidine kinases. Several different classes of TCS have been 

identified in recent years, including the HWE (based on the H,W and E residues in the 

kinase core domain), YwpD-like and PleD-like TCS (Karniol & Vierstra, 2004, 

Wietzorrek & Bibb, 1997; Galperin, 2006) Recently, a class of histidine kinases was 

identified and termed the intramembrane-sensing histidine kinases (IM-HKs) (Mascher, 

2006). IM-HKs are small in size, are no more than 400 amino acids in length, and the N-

terminus contains two transmembrane helices (TMH) with less than 25 amino acids 

between them (Figure 6). This small linker region between TMHs is thought to be the 

lone extracellular fragment, meaning that the majority of the kinase is cytoplasmic. 

Therefore it is likely that these IM-HKs do not sense an external signal, but rather sense a 

stimulus either inside or at the surface of the membrane (Mascher, 2006). From 

approximately 350 sequenced genomes, 5000 HKs were identified. Of these 5000, 147 

contain the architecture and characteristics of IM-HKs, with the majority of them 

encoded by Gram-positive bacteria with low G+C content (Macher, 2006). Indeed, when 

analyzing 79 different Gram-positive genomes, 110 proteins were identified as belonging 

to the IM-HK family.  

Subgroups of intramembrane-sensing histidine kinases. Two distinct subgroups of 

IM-HKs have been characterized, and are almost exclusive to the Firmicutes. The major 

characteristic of the first subgroup is that they belong to the HPK7 subclass, and the RR  
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Figure 6. Predicted topology plot of the IM-HK, SACOL2645 from S. aureus. IM-
HKs are characterized by having two transmembrane domains and an extracellular 
sensing domain (circled) less than 25 amino acids, suggesting they sense changes at the 
surface or in the membrane. S. aureus has 4 IM-HK’s, SACOL 2645, GraS, VraS, and 
SaeS.  This depicts the projected transmembrane domains and sensing domain of the 
uncharacterized IM-HK, SACOL 2645. Produced using the SOSUI website.  
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and HK proteins utilize an additional, conserved transmembrane protein to exert their 

effects. Thus far 25 IM-HKs belonging to this group have been identified (Mascher, 

2006). A well studied example is the LiaRS TCS from B. subtilis, which is encoded on 

the liaIHGFSR operon. LiaRS senses and responds to lipid II-interacting antibiotics, 

including bacitracin, vancomycin, ramoplanin and nisin. The LiaRS system is also 

activated by cationic antimicrobial peptides, alkaline shock, organic solvents, detergents 

and ethanol (Petersohn et al., 2001; Hyyrylainen et al., 2005; Pietiainen et al., 2005). In 

the absence of these stimuli, LiaRS is inactive due to the membrane protein LiaF. In a 

liaF deletion mutant, the LiaRS is constitutively activated, and additional stimuli are not 

required. Therefore, LiaRS and LiaF form a three component system, and thus full 

function relies on the presence and activity of all three elements, although the exact 

functional mechanism of this three component system is unknown (Jordan et al., 2006). 

The second group is the largest class, and is characterized by being genetically associated 

with, and an adjacent ATP-binding cassette transporter (ABC transporter). ABC 

transporters are transmembrane proteins that hydrolyze ATP for energy to translocate 

various substrates across the membrane (Higgins, 2001). IM-HKs encompassing this 

group belong to the HPK3i subfamily and regulate, and utilize, the adjacent ABC 

transporter to pump various substrates across the membrane in response to the stimulus 

sensed by the HK.(Mascher, 2006). The cognate TCS is often constitutively expressed, 

and senses cell-wall-targeting compounds, or the damage they cause. Upon induction, the 

RR is activated, and in turn induces transcription of the adjacent ABC transporter. A total 

of 70 proteins belong to this subgroup, with 65 of them found in Gram-positive bacteria 

with low a low G+C content (Mascher, 2006). Of note, almost all of these (53 of 55) are 
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very closely related from an evolution perspective, and gather tightly in a phylogenetic 

tree.  

Two-component systems of S. aureus. Through homology and domain comparisons, S. 

aureus is thought to encode 16 TCSs within its relatively small genome. These TCSs 

mediate the response to changing environments and facilitating survival in the presence 

of a multitude of stresses (Table 1). In addition, these TCSs are a major contributor to the 

success of this bacterium as an invasive and effective pathogen. The TCSs of S. aureus 

sense a variety of signals covering a range of different processes. Only one TCS has been 

shown to be essential for growth, and is involved in cell wall homeostasis. This TCS, 

YycFG, has been shown to activate the expression of cell wall and fatty acid metabolism 

genes, and has also been implicated in daptomycin resistance and vancomycin resistance 

(Dubrac et al., 2007). Other TCSs are also involved in the cell wall stress response, 

including GraRS and VraRS. GraS, VraS and a further unstudied protein that is the focus 

of this work, SACOL2645, belong to the IM-HK class, which are known to sense damage 

of the cell wall. Further to this, LytRS controls the rate of autolysis by regulating genes 

involved in autolytic processing and cell wall metabolism by altering murein hydrolase 

activity (Brunskill & Bayles, 1996). Similar to this, ArlRS regulates 114 genes, many of 

which are also involved in autolysis, as well as cell division processes, growth and 

pathogenesis. ArlRS also has been shown to regulate other TCS, including AgrAC, 

LytRS and KdpDE (Liang et al., 2005). 

TCS in S. aureus can also respond to elemental changes in the environment, including 

potassium, iron, phosphate, oxygen and nitrogen. The activation of KdpDE is dependent 
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Table 1. S. aureus possesses 16 two-components systems. 

COL  #  MW2  #  Gene name  Function  

0019/20   yycFG/walkRS  Essential  

0201/2  0199/8   Anaerobiosis (Preliminary investigations)  

0246/5  0236/7  lytRS  Autolysis regulation  

0716/7  0621/2  graRS  Cell-wall/vancomycin resistance  

0766/5  0668/7  saeRS  Virulence determinant regulation  

1355/4  1208/9   LuxR family  

1451/0  1305/4  arlRS  Virulence determinant regulation and autolysis  

1535/4  1446/5  srrRS  Oxygen sensing regulation  

1740/39  1637/6  phoPR  Alkaline phosphatase regulation  

1905/6  1790/1  yhcSR  Essential/cell wall/phosphomycin resistance  

1942/3  1825/4  vraRS  Cell-wall synthesis  

2026/5  1962/3  agrCA  Accessory gene regulation  

2070/1  2002/3  kdpDE  Potassium transport regulation  

2358/9  2282/3  hssRS  Iron transport and metabolism  

2389/90  2313/4  nreBC  Nitrate reductase regulation  

2646/5  2545/4  nsaRS   
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on external levels of potassium, and inactivation of this system has been shown to 

decrease the expression of several virulence factors. This suggests that S. aureus 

determines its infectious state, in part, by sensing external potassium levels (Xue et al., 

2011). The HssRS TCS is essential for the adaptive response to iron-containing heme 

within the host. HssRS responds to iron levels; in environments with low iron it 

upregulates the heme regulated transporter efflux pump, HrtAB. Although iron is a 

nutritional requirement for S. aureus, which it obtains in a host from heme, metabolizing 

this molecule can lead to reactive oxygen species and membrane damage. HssRS 

regulates HrtAB to alleviate hemin toxicity (Stauff et al., 2007).  S. aureus uses the TCS 

NreBC to senses nitrogen in the external environment. In the presence of low oxygen or 

nitrogen, the RR of this system binds to genes that are involved in nitrate, nitrite 

reduction and fermentative metabolism (Fedtke et al., 2002). This system is required for 

the transport of nitrogen, as mutations in nreBC inhibits the use of nitrogen and force the 

cell to use fermentative pathways (Schlag et al., 2008). Although the PhoPR TCS has not 

been studied in S. aureus, its function can be inferred through comparison to a similar 

system in B. subtilis, where it senses limiting phosphate levels, and regulates genes 

accordingly (Martin et al., 1999). It is also implicated in cell wall homeostatsis, as 

peptidoglycan synthesis is affected by low phosphate levels. SrrAB is involved in global 

energy changes in response to oxygen availability. SrrAB directly regulates virulence 

factors in response to this, and a mutation in srr results in decreased virulence (Yarwood 

et al., 2001; Bae et al., 2004). Another TCS AirSR (formally known as YhcRS) is also 

important in sensing low oxygen levels. This TCS uses a redox active Fe-S cluster within 

the histidine kinase to sense oxidation signals and responds accordingly. This system has 
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been shown to be important for resistance to H2O2, vancomycin, norfloxin and 

ciprofloxacin (Sun et al., 2012). 

Using comparative genomics, four of the sixteen TCSs of S. aureus appear to contain IM-

HKs. One of these is associates with a membrane protein (VraRS), two belong to the 

subfamily associated with ABC transporters (GraRS and SACOL 2645/2646), and the 

final one seems to be an outlier IM-HK that does not fall into this 2 sub-family structure 

(SaeRS).  

The SaeRS two-component system of S. aureus. The sae locus in S. aureus is 

composed of four open reading frames: saeP, saeQ, saeR and saeS. The latter two genes 

encode the HK (saeS) and the RR (saeR) of the two-component system. SaeS is 351 

amino acids in length and has two transmembrane domains. The external or sensor 

domain is nine amino acids long, suggesting that the SaeRS does not sense external 

stimuli, as with other IM-HKs. A microarray analysis performed in the clinical isolate 

MW2 showed that SaeRS regulates the expression of 212 genes, ranging in function from 

energy and metabolism processes, ion transport, DNA repair and virulence (Voyich et al., 

2009). This TCS is required for the expression of several virulence factors including cell 

wall-associated proteins, and secreted proteins (Giraudo et al., 1997, Giraudo et al., 1994, 

Goerke et al., 2005). In addition, the sae locus is vital to the survival of S. aureus in 

animal models (Voyich et al., 2009), although the exact conditions it responds to are 

currently unknown.  

The VraRS system of S. aureus. VraRS was first identified in a VISA isolate as being 

upregulated in a strain with increased vancomycin resistance (McAleese et al., 2006). It 
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was originally termed vancomycin resistance associated regulator and sensor (VraRS) as 

a result of a microarray analysis of VSSA, VISA and VRSA strains which showed 

upregulation of VraRS in VISA and VRSA. In addition to vancomycin, the presence of 

cell wall-targeting antibiotics, including glycopeptides, beta-lactams, bacitracin, D-

cycloserine, daptomycin and mersacidin also results in the upregulation of this TCS 

(Gardete et al., 2006; Kuroda et al., 2003). While the exact signal for the activation of 

VraRS is unknown, the fact that it is an IM-HK with a small sensing domain, and that it 

responds to antimicrobial agents that target multiple steps in cell wall biosynthesis, 

suggests that VraRS responds to general cell wall damage and not that caused by specific 

antibiotics (McAlleese et al., 2006; Gardete et al., 2006). Functionally, VraRS controls 

the expression of the cell wall stress stimulon, which includes many genes involved in 

cell wall biosynthesis. This is suggested, at least in part, to be the reason for altered 

resistance to cell-wall-targeting agents in vraRS mutants (Fan et al., 2007; McCallum et 

al 2006). A microarray performed on S. aureus in the presence of vancomycin resulted in 

139 genes with altered expression suggesting a requirement for these genes in 

vancomycin resistance. However a vraRS mutant grown in the presence of vancomycin 

had only 93 genes altered in expression, suggesting that 46 genes utilized by S. aureus to 

combat vancomycin stress are dependent upon VraRS (Gardete, 2006).   

The GraRS two-component system of S. aureus. The glycopeptides resistance 

associated (Gra) TCS operon consists of three genes, GraXSR. graS encodes an IM-HK 

that is 346 amino acids in length and has only four amino acids on the exterior of the 

membrane. graR encodes the cognate response regulator, while graX specifies a protein 

of unknown function that has been shown to be important for the function of this TCS 
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(Falord et al., 2011). The GraSR TCS has been shown to be important in resistance to 

vancomycin, a glycopeptide, which is where the name came from. In a microarray that 

was performed on a VISA strain, GraSR was found to be upregulated (Cui et al., 2005). 

GraSR has been shown to regulate approximately 248 genes, with 115 being upregulated 

and 133 down regulated. A large portion of these genes are involved in cell wall 

biosynthesis, however other regulators (Rot and MgrA) are contained in this regulon, thus 

some of the 248 genes may be indirectly regulated by GraRS.   

A mutation of graR was found to produce increased susceptibility to vancomycin (Meehl 

et al., 2007). In correlation with these observances, overexpression of this TCS leads to 

an increase in MIC for vancomycin. Directly downstream of graXSR is an ABC 

transporter termed VraFG, which is regulated by this TCS, and also seems to play a role 

in vancomycin resistance (Falord et al., 2011), however the exact mechanism by which 

this is mediated is currently unknown. One of the proposed reasons for the change in 

susceptibility to glycopeptides is the D-alanylation of teichoic acids which is controlled 

by the dltABCD operon. Specifically, a mutation in this operon results in increased 

vancomycin susceptibility (Peschel et al., 2000). This operon is regulated by GraRS, and 

seemingly, GraXSR, VraFG, as well as other genes involved in cell wall biosynthesis 

work together to maintain cell wall homeostasis when in the presence of cell-wall-

targeting compounds.  

 One of the main functions of GraSR is cationic antimicrobial peptide (CAMP) 

resistance; and in fact this system has an alternate name, ApsRS (antimicrobial peptide 

sensor) as a result of this. CAMPs are produced by all living organisms, and are a major 
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component of the innate immune system. They are positively charged, and kill bacteria 

by binding to their negatively charged cell wall, where they form pores, or enter the cell 

and inhibit DNA, RNA or protein synthesis (Hale et al., 2007). The presence of CAMPs 

induces GraSR, which changes gene expression to facilitate resistance by the D-

alanylation of teichoic acids and lysylination of phosphatidylglycerol. D-alanylation of 

teichoic acids increases the overall positive charge of the cell and decreases the affinity of 

CAMP binding. D-alanylation of teichoic acids is performed by the DltABCD enzymes, 

while MprF is responsible for the lysylination of phosphatidylglycerol. GraRS helps in 

the infection process by limiting the activity of host CAMPs and has shown to be 

important in several animal models of infection including drosophila, murine and 

silkworm larvae (Kraus et al., 2008; Tabuchi et al., 2010; Kurokawa et al., 2007).  

Project Aim: TCS have been shown to be important regulatory elements for 

understanding both the virulence process as well as antibiotic resistance. S. aureus has 

sixteen TCS sensing a variety of signals and covering a range of functions. Thirteen of 

the sixteen TCS have definable roles, either through homology with closely related 

organisms, or by their study in S. aureus. IM-HKs are a group of histidine kinases that 

have been suggested to sense damage at the cell surface as they have small sensing 

domains. GraRS and VraRS are highly important IM-HKs, involved in antibiotic 

resistance and the evaluation of these systems is generating insight into resistance 

mechanisms of S. aureus. One IM-HK, SACOL 2645/2646 has not been studied, and 

does not have homology with any TCS in closely related organisms. This suggest that the 

role of this TCS may be unique to S. aureus, and thus understanding its role may 

elucidate important information regarding drug resistance mechanisms, as well as provide 
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a better understanding of regulatory elements S. aureus utilizes during pathogenesis. 

Accordingly, the aim of this project is to characterize SACOL 2645/2646 and determine, 

as with other IM-HKs, if it is involved in cell wall homeostatsis. Further to this, 

identifying genes under the control of SACOL 2645/2646 and determining their 

contribution to the overall function of this TCS will provide exclusive unique insight into 

the lifestyle of S. aureus. 
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Chapter 2: The role and regulation of NsaRS: a cell-envelope stress-sensing two- 
 

component system of S. aureus 
 
 

Introduction 
 

Bacteria are exposed to a variety of environments in which they must adapt in order to 

survive. As such, they have developed multiple mechanisms to adapt to, and survive 

these stresses. While it may be considered that it is only the genes directly involved 

with adaptation that are important, the regulators of these elements are a vital 

component to survival and proliferation. Bacteria possess a variety of regulatory 

elements, including sigma factors, DNA-binding proteins, regulatory RNAs and two-

component systems. Understanding the function and control of these elements 

commonly provides an important insight into the behavior of bacteria, and, in the case 

of pathogens, may gives a greater understanding of virulence mechanisms.  

Bacteria have specialized regulatory elements to detect when they are in a host, and 

when virulence genes need to be expressed. One example from Group A Streptococcus 

(GAS) is the TCS SilAB, which aids in the virulence process via a quorum sensing 

mechanism, allowing GAS to sense the level of other GAS bacteria that are in the 

immediate environment (Belotserkovsky et al., 2009). These systems have been shown 

to be important in the virulence of GAS, as the allow for a delay in expression of 

virulence factors until a large concentration of bacteria are present (Eran et al., 2007). S 

.aureus also has a similar system, agr, which has been shown to be important to the 
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virulence process. Agr is a quorum sensing TCS that regulates many virulence factors; 

and mutants in this system are attenuated in murine models of infection (Mayville et al., 

1999; Schwan et al., 2003; Blevins et al., 2003).  

While several TCS have been shown to be important in virulence, another aspect of the 

infection process is treatment with antibiotics. TCS are also imperative in sensing either 

the antibiotic itself, or the damage caused by these agents. In Enterococcus faecalis the 

TCS, VanRS, is vital for resistance to glycopeptides, including vancomycin. In the 

presence of glycopeptides this system is induced, leading to the upregulation of genes 

including vanHAX, which alters the binding of glycopeptides to the cell wall, and 

ultimately resulting in resistance (Bugg et al., 1991).  S. aureus also has TCSs that 

responds to glycopeptides, VraRS, and to a lesser extent GraRS (McAlleese et al., 2006; 

Gardete et al., 2006; Meehl et al., 2007; Peschel et al., 2000).  

S. aureus has 16 predicted TCS that respond to a range of environmental stimuli, and 

allow for adaptation to various stresses.  Of these 16, three have no known function, 

including SACOL2645/2646, which is the focus of this work. Even using homology 

analysis with closely related organisms, no function can be inferred for this TCS, 

suggesting that it may be unique to the Staphylococci. SACOL2645/2646 was recently 

termed nisin susceptibility associated response regulator and sensor (NsaRS) (Blake et 

al., 2011), and thus this nomenclature will be used throughout. The nsaRS operon 

consists of 3 genes that are expressed from one promoter (Figure 7). The first gene is 

small, consisting of only 201 base pairs, and theoretically producing a protein of 67 

amino acids. This is followed by the response regulator and then the histidine kinase.   
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Figure 7. The NsaRS/NsaAB locus from Staphylococcus aureus. The two-component 
system, NsaRS, is expressed from one promoter, and exists in an operon with another 
small gene, SACOL 2647. NsaS is an IM-HK, belonging to the sub-family that uses an 
adjacent ABC transport system to exert its affects. This is located 3’ of the regulatory 
genes, and is termed NsaAB. nsaAB are putatively expressed from one promoter as 
shown.  
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Analysis of the histidine kinase revealed that NsaS is an IM-HK and has typical 

characteristics of this family, bearing 2 transmembrane domains, and a sensing domain 

of only 9 amino acids in length. This suggests that this TCS may sense damage at the 

cell surface, rather than external signals. NsaS belongs to the group of IM-HKs that 

regulate and utilize an adjacent ABC transporter to exert its affects. For NsaRS, this 

transporter is NsaAB, which is located directly upstream of the TCS, and form an ABC 

transport system of currently unknown function. It also remains unknown whether this 

transporter is regulated by NsaRS. In addition, both GraRS and VraRS, two other IM-

HKs in S. aureus contribute to antibiotic resistance in some manner, and sense cell wall 

disruption. Therefore, elucidating the role of NsaRS may better our understanding of the 

mechanisms S. aureus uses to combat cell wall stress, and/or antibiotic resistance.  

Therefore, the focus of this chapter is the characterization of NsaRS, which we 

hypothesize is employed by S. aureus to combat cell-wall stress. As such the utilization 

of NsaRS by S. aureus will be evaluated, and its response to antibiotics and cell-

envelope-targeting agents determined. Since NsaRS is a regulator, identifying 

components of its regulon will likely provide information leading to the discovery of its 

function. The impact of NsaRS on the virulence of S. aureus will also be addressed, and 

may generate insight into the mechanisms used by S. aureus during pathogenesis. 

 

 

 



42 
 

Results 

Note to Reader 

These results have been previously published (Kolar et al., 2011) with permission of the 

publisher and the published manuscript can be found in Appendix 1. 



43 
 

 
 
 
 
 

Chapter 3: The role and regulation of the ABC transporter, SACOL2525/2526 
 

of S. aureus 
 
 

Introduction 
 
NsaRS is involved in sensing cell-envelope stress, and exerts its effects by regulating 

over 200 different genes. The majority of these are positively regulated, and cover a 

range of functions, including cell wall biosynthesis genes (tagB, fmhA, and scdA), 

osmoprotectants (opuCA  and cudT), as well as other regulators (sarS and rex). The 

ontology grouping that contains the most genes within the NsaRS regulon is 

transporters, with 55 such genes being affected. One particular transporter, 

SACOL2525/2526, not only had the largest decrease in expression of the transporters, 

but in fact had the most alteration in transcription of all 245 genes. SACOL2525/2526 

encodes an ABC-transporter, and homology analysis suggests that it is involved drug 

resistance. Since the appearance and clinical use of penicillin in 1942, antibiotics have 

been used to treat diseases caused by many bacterial pathogens, including S. aureus. 

However, due to antibiotic resistance, some previous treatable infections are now major 

public health threats. One mechanism bacteria utilize in antibiotic resistance is the 

extrusion of the drug by either an efflux pump or carrier (Paulsen et al., 1996). Bacteria 

typically have multiple drug resistance (MDR) transport proteins that they use to protect 

against antimicrobial agents. MDR proteins have effectively been divided into two  
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subgroups: the small multidrug resistance family (SMR) and the multidrug and toxic 

compound extrusion (MATE) family. 

The MATE family is the larger group of the two, and members expunge compounds by 

using the proton motive force.  The QacA protein of S. aureus is a classic example of a 

MATE transporter, conferring resistance to more than 30 lipophilic antimicrobial 

compounds (Tennent et al., 1989; Mitchell et al., 1998).  The SMR group also 

contributes to antibiotic resistance, but does so by utilizing ABC transporters. ABC 

transporters contain a membrane spanning protein that creates a translocation pathway 

for specific substrates. In addition, 2 cytoplasmic adenosine triphosphate-binding 

cassettes (ABCs) are associated with the membrane protein, and hydrolyze ATP to 

generate energy for export. This action causes a conformational change that allows the 

transporter to move substrates from one side of the membrane to the other (Higgins, 

1992). ABC transporters are involved in moving a variety of molecules, nutrients, ions 

and antimicrobial agents across the membrane. ABC transporters contribute to 

antibiotic resistance by directly pumping out drugs, and this action by the transporter 

can be specific for only one antibiotic, or be broad in spectrum, and transport several 

different drugs.  

In the context of this work, SACOL2526/2526 form an SMR ABC transporter. 

SACOL2525 encodes the ATP-binding protein, while SACOL 2526 is the membrane-

spanning protein. In the literature SACOL2525 is referred to as stpC and SACOL2526 

smpC (Ross et al., 1996). This naming is due to homology with the stpA and smpA 

genes from S. epidermidis. In S. epidermidis, StpA and SmpA interact with the protein 
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MsrA, which has been found in coagulase negative staphylococci to confer macrolide 

resistance (Schmitz et al., 2000). Although stpA and smpA have high similarity to stpC 

and smpC, with 85% and 65% respectively, their functions appear to be divergent. S. 

aureus does not have a chromosomally encoded msrA gene, and mutation of stpC and 

smpC does not affect macrolide resistance (Ross et al., 1996). Although it has been 

shown that SACOL2525/2526 does not have the same function as stpA and smpA, its 

actual role is currently unknown. 

In addition to our work with NsaRS, a microarray performed on a graRS mutant of S. 

aureus also showed decreased expression of SACOL2525/2526 (Herbert et al., 2007).  

This of significant interest as both NsaRS and GraRS are IM-HKs associated with an 

ABC transporter, both regulate SACOL2525/2526, and both are involved in cell wall 

homeostasis. While NsaRS regulates the downstream transporter, NsaAB, this effect is 

only seen in the presence of nisin. Conversely, NsaRS regulates SACOL2525/2526 

under standard conditions, during exponential growth. As such, understanding the 

function of this transporter will provide better insight into mechanisms NsaRS utilizes 

to respond to cell-envelope stress, and potentially drug resistance.  
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Materials and Methods 

Bacterial strains, plasmids and growth conditions. E. coli was grown in Luria-

Bertani (LB) medium at 37 C.  S. aureus was grown in 100 ml Tryptic Soy Broth 

(TSB) (1:2.5 flask/volume ratio) at 37 C with shaking at 250 rpm, unless otherwise 

indicated. For all experiments one ml of relevant overnight S. aureus cultures were used 

to inoculate fresh media, and allowed to grow for 3h. These cultures were sub-cultured 

into new media at an OD600 of 0.05 and allowed to grow for as long as the experiment 

needed. When necessary, antibiotics were added at the following concentrations:  

ampicillin 100 mg/ml (E. coli), erythromycin 5 mg/ml (S. aureus), lincomycin 25 

mg/ml (S. aureus), and chloramphenicol 5 mg/ml  (S. aureus).     

Construction of the SACOL2525/2526 mutant strain. Fragment A was amplified 

using OL1299/OL1300 (Table 2), is ~ 1.5 kb upstream of SACOL 2525 and a Mlu1 

restriction site was added. Fragment B was amplified using OL1301/OL1672, is ~ 1.5 

kb downstream of SACOL 2526 with an added Mlu1 site to the beginning. These 

fragments were ligated together cloned into the pJB38 plasmid creating pSLL2. This 

plasmid was electroporated into the S. aureus strain RN4220 and clones were selected 

for using TSA containing chloramphenicol (plasmid encoded). The resulting isolates 

were confirmed by genomic extraction and PCR analysis. The plasmid was extracted 

and a confirmed isolate electroporated into SH1000, again selecting for 

chloramphenicol. The resulting isolates were confirmed by genomic extraction and PCR 

analysis. A confirmed isolate was streaked onto a TSA plate containing 

chloramphenicol and incubated overnight at 43°C. Isolates were passaged for 5 days  
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Table 2. Strains, plasmids and primers used in this study. 
Strain, plasmid 
or primer     Genotype or description             Reference or source 
E. coli 
DH5α Φ80 Δ(lacZ)M15 Δ(argF-lac)U169 endA1 recA1 Lab Stocks 
 hsdR17 (rK

-mK
+) deoR thi-1 supE44 gyrA96 relA1 

 
S. aureus 
RN4220 Restriction deficient transformation recipient Lab Stocks 
SH1000 Wild-Type Laboratory Strain rsbU functional          Horsburgh et al., 
2002 
SLL1 SH1000 SACOL 2525/2526-lacZ fusion This Study 
SLL2 SH1000 SACOL 2525/2526 mutant This Study 
SLL3 SH1000 SACOL 2525/2526 mutant complemented  
 with pSLL3 This Study 
SLL4 SH1000 graR mutant This Study 
 
Plasmids 
pAZ106 Promoterless lacZ erm insertion vector.  Kemp et al., 
1991 
pMK4 cm shuttle vector                                                            Sullivan et al., 
1984 
pJB38 
pSLL1 pAZ106 containing a 1.5 kb SACOL2525/2526  
 promoter fragment This study 
pSLL2 pJB38 containing an 1.5 kb SACOL2525/2526  
 AB fragment This study 
pSLL3 pMK4 containing a 2.5kb SACOL2525/2526  
 complementation fragment This study  
   
  
Primers 
OL1299  ATG ATG GAA TTC GTC ACG AGA GGA ATA ATT CCG C 
OL1300 ATG ATG ACG CGT CAT TCG CTC CAA CGA GAC CAA C 
OL1301 ATG ATG ACG CGT CCC TTC ACC CAA ATA ATG GTG CG 
OL1584 ATG GGA TCC CCG CCA ACT GTC GCA TTT ATC C 
OL1672 ATG ATG GGT ACC TGA TCG ACG ACT AAG CGT TGT ACG G 
OL1673 ATG ATG GAA TTC TAC CTG CAC CAT TCG CTC C 
OL1703 AGG CAC ATT TGT TGG CGT 
OL1704 AGC AAT GGC TAC TCC CGT 
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onto TSA containing chloramphenicol and incubated at 43°C to ensure incorporation of 

the plasmid into the chromosome. Isolates were confirmed by genomic extraction and 

PCR analysis and an 80α phage lysate created for transduction into a clean SH1000 and 

selected by chloramphenicol. A confirmed isolate was grown in TSB containing 

chloramphenicol at 30°C overnight. The resulting culture was diluted 10,000 times and 

100 μl plated on TSA containing 1μg/ml of anhydrous tetracycline and incubated at 

30°C overnight. Resulting isolates were streaked onto TSA and TSA containing 

chloramphenicol. Isolates that grew on TSA only were selected and confirmed by 

Southern blotting creating strain SLL2. 

Construction of the SACOL2525/2526 reporter fusion strain. The putative promoter 

region of the SACOL 2525/2526 loci was amplified as ~1.5 kb PCR fragments using 

primer pair OL1584/OL1673 . The PCR fragment was cloned into pAZ106 creating 

plasmid pSLL1 (SACOL 2525/2526-lacZ). S. aureus RN4220 was transformed with the 

resulting plasmid, with clones selected for using TSA containing erythromycin (plasmid 

encoded). The resulting strains were confirmed by genomic DNA extraction and PCR 

analysis. An 80α phage lysate was created and used for the transduction of S. aureus 

SH1000, with clones again confirmed by PCR analysis. This created strain SLL1 

(SACOL 2525/2526-lacZ). 

Construction of SACOL2525/2526 complemented strain. The entire 

SACOL2525/2526 locus was PCR amplified as a 2.0 kb fragment using primer pair OL-

1584/OL-1926. This fragment was cloned into the shuttle vector pMK4, creating 
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pSLL3. S. aureus RN4220 was transformed with this construct, with clones selected for 

on TSA containing chloramphenicol (plasmid encoded). Isolates were confirmed by 

genomic DNA extraction and PCR analysis. A representative clone was selected to 

generate an 80α phage lysate, which was used to transduce the SH1000, 

SACOL2525/2526 mutants of S. aureus. Clones were again confirmed by PCR analysis, 

creating strain SLL3. 

Plate-based assay for determination of altered transcription from external stress. 

This assay was performed as described previously (Shaw et al., 2008). TSA plates were 

overlayed with TSA top agar (0.7% w/v) containing X-GAL, and the lacZ reporter-

fusion strain. Sterile filter discs were placed onto these plates (3 per plate), before being 

inoculated with 10 µl of the following stress inducing chemicals: 6M HCl, 85% 

phosphoric acid, 100% TCA, 88% formic acid, 0.2M acetic acid, 6M sulphuric acid, 

6M nitric acid, 6M sodium hydroxide, 2M NaCl, 1M glucose, 95% ethanol, 100% 

methanol, 100% isopropanol, 10% SDS, 10% Triton X-100, 10%Tween-20, 1M N-

lauroyl sarcosine, 30% hydrogen peroxide, 1M methyl viologen, 1% menadione, 2 mg 

ml-1 pyrogallol, 1M sodium nitroprusside, 1M 4-MMS, 5 mg ml-1 penicillin G, 5 mg ml-

1 vancomycin, 2 mg ml-1 phosphomycin, 5 mg ml-1 spectinomycin, 100 mg ml-1 

ampicillin, 5 mg ml-1 tetracycline, 50 mg ml-1 kanamycin, 50 mg ml-1 neomycin, 10 mg 

ml-1 chloramphenicol, 20 mg ml-1 puromycin,  2 mg ml-1 bacitracin, 2 mg ml-1 

mupirocin, 500 mM diamide, 12.8 mg ml-1 berberine chloride, 4.21M peracetic acid, 

0.1M EDTA, 1M DTT. Plates were incubated for 24 h at 37OC and screened for a blue 

halo around the perimeter of the filter discs indicating the induction of expression.  
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Real-time PCR. One ml of an overnight culture was laced into fresh TSB and allowed 

to grow for 3 hours at 37°C, shaking. Cultures were standardized to OD600 of 0.05 in 

TSB or TSB with sub-inhibitory concentrations of various chemicals. After the 

specified hour, 3 ml samples were collected, mixed with ethanol and acetone (50:50) 

and placed at -80°C. Samples were centrifuged at 4150 rpm for 10 minutes and cells 

lysed using bead beating. RNA was extracted using the Qiagen RNeasy kit. Resulting 

RNA was used to make cDNA using the iSCRIPT from Bio-Rad. cDNA was measured 

on a nanodrop and standardized for qRT-PCR. SYBR green from Takara was mixed 

with cDNA and the appropriate primers and qRT-PCR was performed on an Eppendorf 

Mastercycler. 

Microtitre MIC assay for cell-wall targeting drugs. Cultures of SH1000 and 

SACOL2525/2526 mutant were diluted 1:1000 in fresh TSB and 200 μl was applied to 

the wells of a 96-well plate. Chemicals were added to the wells in decreasing 

concentrations and mixed by pipetting. Plates were incubated at 37°C and the minimum 

inhibitory concentration determined by visual examination for the well containing the 

lowest concentration producing no growth.  

Survival in the free unsaturated fatty acid, oleic acid. Bacterial overnight cultures 

were sub-cultured in fresh TSB and allowed to grow for 3 hours. Cells were washed 

three times with sodium phosphate buffer before being standardized to an OD600 reading 

of 0.05 in 5 ml sodium phosphate buffer. Oleic acid was added to a final concentration 

of 0.01% and 30 μl sample removed every 15 minutes, serial diluted and plated to 

determine cfu/ml. 
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Survival in toluene. Bacterial overnight cultures were sub-cultured in fresh TSB and 

allowed to grow for 3 hours. Cells were standardized to an OD600 reading of 0.05 in 100 

ml TSB. Toluene was added to a final concentration of 1.5% and 30 μl samples 

removed every 15 minutes, serial diluted and plated to determine cfu/ml. 

Negative staining electron microscopy.  Aliquots of cells grown in TSB for 3h were 

initially fixed in an equal volume of 2% osmium tetroxide in distilled water for 1h at 

4˚C. Following fixation, cells were rinsed in distilled water and pelleted 3 times at 5000 

RPM for 10 minutes. Dilutions were performed to obtain approximately 2000-3000 

cells per drop, before one drop of each sample was applied to a carbon-formvar coated 

copper grid. Grids were allowed to air dry and photographed by electron microscopy. 

Hydrophobicity assay using hexadecane. The hexadecane assay was performed at 

described by Greene et al., 1992. Synchronized bacterial cultures were standardized to 

an OD540 of 0.5 in 1ml of PBS. To each 150 μl of hexadecane was added, mixed 

thoroughly and left at room temperature for 20 minutes for phase separation. The 

aqueous phase was removed and the OD540 collected. Percent adherence was calculated 

using 

% adherence = (initial OD540 – final OD540 / initial OD540) * 100 

Cytochrome C binding assay. The cytochrome C binding assay was performed at 

described by Peschel et al., 1999. Bacteria were grown for 3 hours and harvested by 

centrifugation. Cells were washed three times in MOPS buffer (20mM, pH 7) and 

resuspended to a final OD600 of 7. Cytochrome C was added (0.5 mg/ml) and incubated 
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at room temperature for 10 minutes. Cells were pelleted by centrifugation and 

supernatants analyzed at 530 nm. 

Peptidoglycan lysis kinetics assay. The lysis kinetic assay was performed as described 

by Shaw et al., 2005. Cells were harvested from exponential-phase cultures, washed 

three times with sodium phosphate buffer before being resuspended to an OD600 of 1.0.  

Excess lysostaphin (50μg/ml) was added and OD600 values were recorded every 5 

minutes using a plate reader. 

Survival in daptomycin. Overnight cultures were synchronized and then standardized 

to an OD600 of 0.05 in 5 ml TSB. Daptomycin was added to a final concentration of 0.75 

μg/ml and samples taken every hour, serially diluted and cfu/ml calculated. 

Lysostaphin treatment for removal of the cell envelope. Overnight cultures were 

subcultured into fresh TSB and allowed to grow for 3 hours. Cells were pelleted by 

centrifugation, washed three times in TSM buffer (50 mM Tris-HCl, 0.5 M sucrose, 10 

mM MgCl2) before being resuspended in TSM buffer to an OD600 of 0.05. Lysostaphin 

was added at a concentration of 5 μg/ml and incubated at 37°C for 45 minutes. Aliquots 

were taken and gram stained to ensure removal of the cell envelope but not cell lysis by 

observing pink cocci under the microscope. The resulting protoplasts were washed three 

times with sodium phosphate buffer and resuspended in either TSB  or TSB with CaCl2, 

daptomycin (0.4 μg/ml), kanamycin (1.0 μg/ml), or CCCP (0.005 μg/ml).  

Spontaneous mutation frequency. Overnight cultures (100 μl) of SH1000 or the 

SACOL2525/2526 mutant were plated on TSA plates containing 3X the MIC of 

bacitracin, nisin, vancomycin, teicoplanin, daptomycin, CCCP, phosphomycin and 
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penicillin G at incubated at 37°C overnight. The overnight culture was also serially 

diluted and cfu/ml determined for mutation frequency calculation.  
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Results 

In silico analysis of SACOL2525/2526.  Since the function of SACOL2525/2526 has 

not yet been investigated, other than they do not fulfill the same role as StpA and 

SmpA, an in silico analysis was performed to identify any conserved domains and 

homology to other proteins. The family that SACOL2525 belongs to was determined by 

analyzing amino acid sequences using the NCBI site. This revealed that SACOL2525 is 

similar to other ATP-binding proteins that are part of the galliderm-class lantibiotic 

ABC transporter family. This family of ABC transporters is known to transport 

lantibiotics, including nisin (Tomii & Kanehisa, 1998). SACOL2525 is the ATP-

binding protein that comprises part of the ABC transporter system and as such has the 

attributes/domains of similar proteins, including an ATP-binding domain, an ABC 

transporter signature motif, a Walker A/P loop and no transmembrane domains. Using 

the ClustalW2 software, the amino acid sequence of SACOL2525, EpiF from 

Staphylococcus epidermidis, MutL from Streptococcus mutans, and two other predicted 

ATP-binding proteins that have similarity to members of the galliderm-class lantibiotic 

ABC transporter family, from S. hominis and S. haemolyticus were compared (Figure 

8). EpiF from S. epidermidis is part of an ABC transport system that mediates 

protection from epidermin, by pumping it outside of the cell (Peschel & Gotz, 1996). 

Interestingly, SACOL2525 was found to have 84% similarity to EpiF at the amino acid 

level. Similarly, MutL from S. mutans is the ATP-binding protein of an ABC transport 

system that confers resistance to mutacin (Chen et al., 1999). SACOL2525 only had 

40% similarity with MutF at the amino acid level.  
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Figure 8. Amino acid sequence alignment of SACOL2525. The amino acid sequence 
of SACOL 2525; the lantibiotic transporter ATP-binding protein, EpiF, from 
Staphylococcus epidermidis; the lantibiotic transporter ATP-binding protein MutL from 
Streptococcus mutans; and two other predicted ATP-binding proteins (from S. hominis 
and S. haemolyticus) that have similarity to the galliderm-class of lantibiotic ABC 
transporters were compared using ClustalW2 software. The asterisks represent a 
conserved residue in all sequences, whilst a colon indicates a strong similarity between 
residues. A period signifies conservation between residues with similar biochemical 
properties. Colors are designating according to the physicochemical properties of amino 
acids: red (small and hydrophobic); blue (acidic); magenta (basic) and green (hydroxyl 
+ sulfhydryl + amine).  
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Analysis of the integral membrane protein, SACOL2526, shows that it does not have 

domains specific for lantibiotic transport. SACOL2526 has six transmembrane domains, 

which several other lantibiotic drug transporters have, including SpaG and NisG of B. 

subtilis (Dawson & Locher, 2006; Kuipers et al., 1993). These proteins bind as dimers, 

creating a 12 transmembrane channel for the passage of drugs. Collectively this data 

suggests that SACOL2525/2526 may form the two components of an ABC transport 

system that is specific to lantibiotics and/or other drugs. When one analyzes the coding 

region for SACOL2525/2526 it is apparent that they are likely transcriptionally linked, 

as only 15bp separates the 2 open reading frames. Upstream of SACOL2525 is a 

putative consensus sequence for recognition by the housekeeping sigma factor, σA 

(Figure 9). Specifically, we determined a -35 sequence of TTcACA, followed by a 17 

bp spacer, and a -10 sequence of TATAAT. Since this predicted ABC transporter 

contains the consensus sequence recognized by σA, this may suggest that 

SACOL2525/2526 is utilized by the cell under standard conditions. 

Transcriptional profiling of the SACOL2525/2526 ABC transporter. To analyze the 

utilization of SACOL2525/2526 by S. aureus, its transcriptional profile was determined. 

Using qRT-PCR, expression was observed during both the exponential and post-

exponential phases of growth (Figure 10). Primers specific for SACOL2525 or 

SACOL2526 were utilized, however both produced similar results as they are predicted 

to be transcribed under one promoter. As such, the data for primers specific to 

SACOL2526 are presented herein, and throughout, even though SACOL 2525 primers 

were also used, and corroborated findings in each case. We determined that expression 

was highest at hour 3, which declined 2.4-fold by hour 5, and 3.2-fold by hour 15.  
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Figure 9. The SACOL2525/2526 operon. The operon structure of SACOL2525/2526. 
Shown are the consensus sequences for a lone predicted promoter found upstream of 
SACOL2525 that appears to control both open reading frames. Also shown are relative 
spacing between elements, and predicted ribosome binding-sites.  
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Figure 10. Transcription of SACOL2525/2526 during growth in standard 
conditions. qRT-PCR was performed on SACOL2525/2526 at hours 3 (exponential 
phase), 5 (post-exponential phase) and 15 (stationary phase) in SH1000 grown under 
standard conditions. The data presented are from three independent cultures and error 
bars are shown +/- SEM.  
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Given that SACOL2525/2526 has homology to other SMR multi-drug transporters, we 

next set out to determine if any modulation in transcription of this transporter is seen in 

the presence of stressor compounds. This was performed using a lacZ fusion in strain 

SH1000, which was constructed by cloning the entire predicted promoter region 

upstream of SACOL2525 upstream of the lacZ gene in the suicide vector pAZ106 (see 

Methods). As such, each time SACOL2525/2526 is transcribed from its promoter, the 

lacZ gene is also, which is then translated into β-galactosidase. When β-galactosidase 

and X-Gal come into contact, the X-Gal is cleaved and a blue color is visualized. This 

strain was then utilized in a plate based assay as described by ourselves and others (Cao 

et al., 2002; Shaw et al., 2008), with a variety of antibacterial chemicals (Table 3). An 

overlay containing the lacZ fusion strain, and the β-galactosidase substrate X-Gal at 40 

μg/ml, which would not ordinarily result in blue coloration, was inoculated onto TSA 

plates. A sterile filter disk was placed on the plates and 10 μl of each chemical was 

added and allowed to dry. The plates were incubated overnight at 37°C and the 

appearance of a blue ring around the zone on inhibition signified an increase in 

transcription, as a result of X-Gal cleavage by β-galactosidase. We determined that 

several cell-envelope-targeting agents, including penicillin G, phosphomycin, 

bacitracin, chloropromazine, CCCP, oxacillin and ampicillin produced a blue ring in 

this analysis, suggesting an increase in SACOL2525/2526 transcription (Table 4). In 

addition, triclosan, which inhibits fatty acid synthesis by targeting FabI, also increased 

transcription. Novobiocin, a drug that inhibits DNA replication by targeting the gyrase 

enzymes produced the same effect. To quantitatively confirm these results, qRT-PCR 

was conducted on the SH1000  
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Table 3. Stressor compounds used in the plate-based assay to determine the 
inducibility of SACOL2525/2526 expression.  

        Stress                                   Chemical                          Concentration  

Cell-envelope-
targeting 

Antibiotics 
 
 
 
 
 
 
 
 
 
 

Daptomycin* 
Gramicidin 

CCCP* 
Chloropromazine* 

D-cycloserine 
Penicillin G* 

Oxacillin* 
Cefotaxime 

Phosphomycin* 
Vancomycin 
Ampicillin* 
Bacitracin 

 

10 µg 
50 µg 
1 µg 
50 µg 
50 µg 
20 µg 
50 µg 
50 µg 
20 µg 
20 µg 
1 mg  
20 µg 

 
Other Antibiotics Nalidixic Acid 50 µg 

Ciprofloxacin 
Novobiocin* 
Triclosan* 

50 µg 
50 µg 
10 µg 

Chloramphenicol 50 µg 
Phosphomycin 20 µg 
Spectinomycin 50 µg 
Tetracycline 50 µg 

Erythromycin 50 µg 
Lincomycin 250 µg 
Kanamycin 500 µg 
Neomycin 500 µg 
Puromycin 250 µg 
Mupirocin 20 µg 

  
Acid   Hydrochloric Acid 6 M 

Phosphoric Acid 10 M 
Formic Acid 12 M 
Acetic Acid  1 M 

Sulphuric Acid 12 M 
Nitric Acid  6 M 

Trichloroacetic Acid 12 M 
  

Alkali Sodium Hydroxide 3 M 
  

Osmotic Sodium Chloride 1 M 
Glucose 1 M 
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Table 3 continued 

Alcohol Ethanol 100% 
Methanol 100% 

Isopropanol 100% 
  

Detergent Sodium Dodecyl Sulfate  10% 
Triton X-100 1% 

Tween-20 1% 
N-lauroyl Sarcosine 1% 

  
Oxidative Hydrogen Peroxide 30% 

Methyl Viologen 2 M 
Menadione 1% 
Pyrogallol 4 mg 

  
Nitrosative Sodium Nitroprusside 1M 

  
DNA Damage Methyl Methansulfonate 50 mM 

Ethyl Methanesulfonate 50 mM 
  

Miscellaneous Berberine Chloride 128 µg 
Peracetic Acid 4.2 M 

*And in bold = chemicals that increased transcription of SACOL2525/2526 
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Table 4. Cell-envelope-targeting antibiotics utilized to determine the transcription  
of SACOL2525/2526 under cell-envelope stress 

Drug Target Results in damage of 

phosphomycin*  
intracellular peptidoglycan  

subunit assembly 
cell-wall biosynthesis  

pathway 

D-cycloserine* 
intracellular peptidoglycan  

subunit assembly 
cell-wall biosynthesis 

 pathway 

nisin  
transport and anchoring  

via lipid II 
cell-wall biosynthesis  

pathway 

teicoplanin 
transport and anchoring  

via lipid II 
cell-wall biosynthesis  

pathway 

ampicillin* 
extracellular cross-linking  
of peptidoglycan subunits 

cell-wall biosynthesis  
pathway 

penicillin G* 
extracellular cross-linking  
of peptidoglycan subunits 

cell-wall biosynthesis  
pathway 

oxacillin* 
extracellular cross-linking  
of peptidoglycan subunits 

cell-wall biosynthesis  
pathway 

bacitracin re-entry of bactoprenol carrier 
cell-wall biosynthesis  

pathway 
gramicidin pore forming cell-membrane 
daptomycin* pore forming cell-membrane 
CCCP * loss of the proton motive force cell-membrane 
chloropromazine* ion flux across the cell membrane cell-membrane 

* denotes chemicals shown to increase transcription of SACOL2525/2526 
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wild-type strain during a window of peak SACOL2525/2526 expression (3h), grown in 

either TSB or TSB with sub-inhibitory concentrations of the compounds shown to 

increase transcription. In addition, drugs that increase the transcription of nsaRS, but did 

not produce an increase in SACOL2525/2526 on the plate based assay, including 

daptomycin, D-cycloserine, nisin and gramicidin, were also included (Figure 11). The 

largest effect was observed with CCCP, which produced a 10.2-fold increase in 

transcription. Further to this, penicillin G produced a 7.8-fold increase, followed by 

chloropromazine which showed a 6.3-fold elevation. Daptomycin and phosphomycin 

produced a 3.9 and 2-fold increase respectively. The fatty acid targeting drug triclosan 

produced a 2-fold increase, however the other, non cell-envelope-targeting drug, 

novobiocin, did not alter expression. The remaining drugs, oxacillin, vancomycin, 

bacitracin, nisin, novobiocim, ampicillin and D-cycloserine produced fold changes 

below 2-fold, suggesting that they result in limited differences in SACOL2525/2526 

transcription, at least using the concentrations and conditions tested herein.  

NsaRS, but not GraRS, regulates transcription of SACOL2525/2526 in response to 

a variety of cell-envelope-targeting compounds. NsaRS and GraRS have both been 

shown to regulate SACOL2525/2526. As stated previously, SACOL2525/2526 

transcription increases in the presence of a multitude of cell-envelope-targeting drugs 

that affect various stages in the cell wall biosynthesis pathway. To determine if the 

observed increase in transcription is influenced by either NsaRS or GraRS, qRT-PCR 

was conducted for SACOL2525/2526 in either an nsaS or graR mutant. These strains 

were grown in sub-inhibitory concentrations of the same drugs that increase  
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Figure 11. Inducibility of SACOL2525/2526 by antibacterial agents. qRT-PCR was 
performed on SACOL2525/2526 in SH1000 at hour 3 under standard conditions, or in 
the presence of sub-inhibitory concentrations of the chemicals indicated. The data 
presented are from three independent cultures and error bars are shown +/- SEM. A 
Student’s T-Test was used with a 5% confidence level to determine statistical 
significance, ** = p�0.01, *** = p< 0.001, **** = p�0.0001.  
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SACOL2525/2526 transcription, and were compared to expression in the SH1000 wild-

type (Figure 12). Interestingly, transcription of SACOL2525/2526 was not significantly 

altered in a graR mutant in the presence of any drug tested. However, a decrease in 

transcription was observed for several compounds in the nsaS mutant. Specifically, 

mutation of nsaS caused a 2.7-fold reduction in expression in the presence of 

daptomycin. In addition, a 5.2-fold reduction was observed for penicillin G. The largest 

alteration was in the presence of the membrane targeting drug CCCP, with a 7.1-fold 

decrease observed compared to the parental strain. All of the other drugs tested 

generated a fold change less than 2, and thus NsaRS does not strongly influence the 

increases in transcription produced by ampicillin, oxacillin, D-cycloserine, 

phosphomycin and chloropromazine. Collectively, this suggests that NsaRS regulates 

SACOL 2525/2526 in response to a variety of cell-envelope- targeting antimicrobial 

agents, although other factors also appear to be at work. 

SACOL2525/2526 aids in resistance to daptomycin. Several cell-envelope-targeting 

drugs increase the transcription of SACOL2525/2526, and hence a SACOL 2525/2526 

mutant was constructed to determine the sensitivity of this strain to such agents. In 

addition, the mutation was complemented by introducing SACOL2525/2526, along 

with its native promoter, on the pMK4 shuttle vector into mutant strains (see methods). 

The sensitivity of the mutant to a variety of chemicals was determined via MIC analysis 

for phosphomycin, ampicillin, penicillin G, D-cycloserine, oxacillin, daptomycin, 

chloropromazine, bacitracin, nisin, teicoplanin and gramicidin. No difference in 

sensitivity was found between the two strains for any of these compounds. MIC assays 

are performed overnight, and thus it is possible  



66 
 

 
 
 
 

 
 
Figure 12. The impact of GraRS and NsaRS on the transcription of 
SACOL2525/2526. qRT-PCR was performed on SACOL2525/2526 at hour 3 under 
standard conditions, or in the presence of sub-inhibitory concentrations of the chemicals 
listed. The strains used were the wild-type (blue), graR mutant (red) and nsaS mutant 
(green). The data presented are from three independent cultures and error bars are 
shown +/- SEM. A Student’s T-Test was used with a 5% confidence level to determine 
statistical significance, ** = p�0.01, *** = p< 0.001, **** = p�0.0001.  
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that the mutant might be more sensitive to a given compound initially, but it ultimately 

does not impact final growth yields. To eliminate this possibility, death curves were 

performed during 5 hours of incubation in the presence of lethal concentrations of 

several of these compounds.  No difference in the rate of death was observed with 

penicillin G, bacitracin, gramicidin or CCCP (Figure 13). We did note, however, that in 

the presence of daptomycin, the SACOL2525/2526 mutant had decreased survivability 

compared to the wild-type and complemented strains (Figure 14). Daptomycin affects 

the cell membrane, and must diffuse through any external barriers, including teichoic 

acids, peptidoglycan and capsule, to impact its target. As S. aureus produces has many 

such impediments when grown under standard conditions (O’Riordan & Lee, 2004), we 

sought to determine if the decrease in survivability of the SACOL2525/2526 mutant in 

the presence of daptomycin could be enhanced by the removal of these elements. As 

such, strains were first treated with 5μg/ml of lysostaphin for 45 minutes to remove the 

cell wall, along with all proteins and molecules external to the membrane. After 

treatment, samples of the resulting protoplasts were Gram stained to ensure the removal 

of peptidoglycan, and that cell lysis had not occurred. In addition, the cfu/ml of cells 

before and after lysostaphin treatment was determined to ensure that treatment did not 

affect one strain more than the other (Figure 15).  After treatment, the resulting 

protoplasts were washed to remove the lysostaphin, before being subject to death curve 

kill studies.  First, control experiments were performed to determine if either TSB or 

TSB with 1 mM CaCl2, had an effect on cell viability (Figure 16). For these analyses, 

CaCl2 was used as a control because it is required for daptomycin to exert its activity 

(Jung et al., 2004;  
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Figure 13. SACOL2525/2526 do not present enhanced sensitivity to a number of 
cell-wall targeting chemicals. Growth of the SH1000 wild-type (blue), 
SACOL2525/2526 mutant (red) and complemented (green) strains was analyzed over 5 
hours in the presence of lethal concentrations of: gramicidin (15 μg/ml), penicillin G 
(0.5 μg/ml), CCCP (0.05 μg/ml) or bacitracin (25 μg/ml). The results presented are 
representative of three independent cultures that show less than 10% viability.  
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Figure 14. SACOL2525/2526 aids in the resistance of S. aureus to daptomycin. 
Growth of the SH1000 wild-type (blue), SACOL2525/2526 mutant (red) and 
complemented (green) strains was analyzed over 5 hours in the presence of a lethal 
concentration of daptomycin (0.75 μg/ml + 1mM CaCl2). The results presented are 
representative of three independent cultures that show less than 10% viability. A 
Student’s T-Test was used with a 5% confidence level to determine statistical 
significance, ** = p<0.01, **** = p�0.0001.  
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Figure 15. Lysostaphin treatment does not lead to increase death in the 
SACOL2525/2526 mutant. Lysostaphin was added to the wild-type (WT), 
SACOL2525/2526 mutant (M) and its complemented strain (C)at 5 μg/ml  for 45 
minutes at 37°C. cfu/ml was calculated by serial dilution and plating before (black) and 
after (grey) lysostaphin treatment. The error bars are shown as +/- SEM. 
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Figure 16. SACOL2525/2526 mutants have a weakened cell membrane. The 
SH1000 wild-type (blue), SACOL2525/2526 mutant (red) and complemented (green) 
strains were treated with 5 μg/ml of lysostaphin and the resulting protoplasts were 
incubated in either TSB, TSB with CaCl2 (1 mM) or TSB with NaCl (1 mM). Growth 
was analyzed over the course of 5 hours; the results presented are representative of three 
independent cultures that show less than 10% viability. A Student’s T-Test was used 
with a 5% confidence level to determine statistical significance, *** = p< 0.001, **** = 
p< 0.0001.  

 

  



72 
 

Ho et al., 2008). In TSB alone, the SACOL2525/2526 mutant had decreased 

survivability when compared to the wild-type and complemented strain. Specifically, a 

31.3-fold decrease in the SACOL 2525/2526 mutant viability was observed at hour 2 

that declined further at hour 3 (391-fold), and continued through hours 4 (343-fold) and 

hour 5 (442-fold).  Significantly, this phenotype was completely reversed upon the 

addition of CaCl2, with all three strains surviving equally well upon its addition to TSB. 

To determine if this effect was specific to CaCl2, survival in 1 mM NaCl was also 

evaluated. Again, the decreased survival in TSB by the mutant strain was completely 

reversed, as all three strains grew equally. Next, the survival of the three strains was 

analyzed in TSB with 1 mM CaCl2 and 0.4 μg/ml of daptomycin (Figure 17). It should 

be noted that this concentration is not normally lethal to cells, but is however, toxic to 

protoplasts. Despite our findings when used by itself, the addition of CaCl2 in the 

presence of daptomycin was unable to rescue viability of the SACOL 2525/2526 mutant 

compared to the wild-type. Specifically, a significant difference was seen at hour 2, 

which produced a 17.2-fold decrease in survival. This effect was further enhanced at 

hours 3 (159-fold), hour 4 (209-fold) and hour 5 (264-fold). To determine if this effect 

is specific to daptomycin, the same analysis was performed for CCCP (5.0 ng/ml), 

gramicidin (10 μg/ml) and kanamycin (1.0 μg/ml). CCCP works by altering the proton 

motive force of membranes, whilst gramicidin produces similar damaging effects to 

daptomycin by inserting into the membrane. Kanamycin was used as a control as it does 

not target the membrane or cell wall, but instead inhibits protein synthesis. Neither 

CCCP, gramicidin or kanamycin produced the same effect as daptomycin when tested, 

as all three strains had similarly declining viability upon  
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Figure 17. SACOL2525/2526 mutant protoplasts have elevated sensitivity to 
daptomycin. The SH1000 wild-type (blue), SACOL2525/2526 mutant (red) and 
complemented (green) strains were treated with 5 μg/ml of lysostaphin. The resulting 
protoplasts were incubated in either TSB with 1 mM CaCl2 and 0.4 μg/ml daptomycin, 
5 ng/ml CCCP, 10 μg/ml gramicidin or 1.0 μg/ml kanamycin. Growth was analyzed 
over the course of 5 hours and the results presented are representative of three 
independent cultures that show less than 10% viability. A Student’s T-Test was used 
with a 5% confidence level to determine statistical significance, ** = p<0.01, *** = p< 
0.001.  
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analysis. This suggests that SACOL2525/2526 aids S. aureus in resistance to 

daptomycin specifically.  

SACOL2525/2526 aids in the ability of S. aureus to spontaneously resist the action 

of a variety of cell-envelope targeting antibiotics. Work by ourselves and others 

reveals that NsaRS has a role in the resistance to nisin and bacitracin. NsaRS regulates 

SACOL2525/2526, and their mutants share several phenotypic commonalities. In 

addition, SACOL2525/2526 is predicted to be a multi-drug transporter based on 

homology analyses, and disruption of this transporter leads to increased sensitivity 

towards the cell-membrane-targeting antibiotic, daptomycin. Thus the ability of 

SACOL2525/2526 to mediate resistance to cell-envelope-targeting drugs was 

investigated. The spontaneous mutation frequency for bacitracin, nisin, vancomycin, 

teicoplanin, daptomycin, CCCP, phosphomycin and penicillin G were analyzed using 

10 different replicates from 3 independent cultures of either the wild-type or 

SACOL2525/2526 mutant (Figure 18). Interestingly, no alteration in frequency was 

observed for nisin, vancomycin, CCCP or phosphomycin. We did, however, observe 

differences for the remaining 4 drugs, which all produced a significant difference in the 

number of isolates that were able to spontaneously resist the action of these compounds. 

The SH1000 wild-type produced a mutation frequency of 5.03 x 10-8 for teicoplanin, 

while the SACOL2525/2526 mutant displayed a 3.1-fold decrease, with a frequency of 

only 1.58 x 10-8. The spontaneous mutation frequency for daptomycin produced similar 

results, with the wild-type generating a resistance frequency of 1.85 x 10-9, while the 

SACOL2525/2526 mutant showed a 3.6-fold decrease of only 5.04 x 10-10. The 

observed frequency for the mutant in response to penicillin G had a larger discrepancy, 
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Figure 18. SACOL2525/2526 aids in the ability to spontaneously resist the action of 
a variety of cell-envelope-targeting antibiotics.  The SH1000 wild-type (WT) and 
SACOL2525/2526 mutant (M) were grown on TSA containing 3X the MIC of the 
antibiotics indicated. Plates were incubated overnight, and spontaneous mutants were 
allowed to develop. Mutation frequencies were calculated with respect to the initial 
inoculum. Data is presented from three independent cultures and at least 10 replicates. 
Error bar are shown as +/- SEM. A Student’s T-Test was used with a 5% confidence 
level to determine statistical significance, * = p<0.05, ** = p<0.01.  
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with a 13.7-fold decrease in mutability. Specifically, we observed a frequency for the 

wild-type of 1.31 x 10-9 towards penicillin G, and 9.52 x 10-11 for the mutant. The 

largest difference was seen with bacitracin, with a 17.1 decrease in the mutant, with the 

parent generating a 1.63 x 10-8 mutation frequency, and the SACOL 2525/2526 mutant 

resulting in a frequency of 9.25 x 10-10.  

SACOL2525/2526 is part of the S. aureus resistance mechanism against toxic non-

antibiotic chemicals that target the cell membrane. In contrast to many of the other 

agents analyzed above, triclosan increases transcription of SACOL2525/2526, but does 

not target the bacterial cell envelope. Instead, triclosan impacts fatty acid synthesis via 

inhibition of FabI (Slater-Radosti et al., 2001). To determine if the mutant was sensitive 

to triclosan, the minimum-inhibitory concentration (MIC) determined for this strain 

compared to the wild-type. Upon analysis it was found that both strains have an MIC 

for this compound of 0.1μg/ml. Next, growth of the wild-type and mutant strain in the 

presence of a sub-inhibitory concentration of this agent (0.05 μg/ml) was evaluated over 

5 hours, with no difference again observed in either growth rates or yields. Fatty acids 

are synthesized and inserted into the membrane to control fluidity, among other roles 

(Zhange & Rock, 2008). Since the mutation of SACOL2525/2526 had no effect on 

sensitivity to the inhibition of fatty acid synthesis, we examined the effect of free fatty 

acids on the SACOL2525/2526 mutant. Oleic acid is an unsaturated free fatty acid that 

inserts into the membrane of bacteria causing a variety of damage, including 

interference with proteins needed for energy and metabolism, the inhibition of 

biosynthetic pathways, peptidoglycan precipitation, altered membrane fluidity, cell 

leakage and eventually lysis (Galbraith & Miller, 1973; Knapp & Melly., 1986; Speert 
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et al., 1979; Chamberlain et al., 1991; Xiong & Kapral., 1992). As such, the wild-type, 

mutant and complement strains were standardized to an OD600 of 1.0 in PBS containing 

a lethal concentration of oleic acid (0.01%) and the cfu/ml was evaluated every 15 

minutes for 90 minutes. What was found was that the viability of all strains vastly 

decreased compared to the inoculum, however the SACOL2525/2526 mutant survived 

considerably better than the other strains (Figure 19). Specifically, after 15 minutes 

0.002% of the wild-type, 0.08% of the SACOL2525/2526 mutant, and 0.005% of the 

complemented strain inoculums was recovered; resulting in a 30-fold increase in 

survivability of the mutant. Additionally, no cells from the wild-type or complemented 

strain could be recovered after 15 minutes, while viable  SACOL2525/2526 mutant 

cells were found up to 90 minutes post-inoculation. The increased survivability of the 

SACOL2525/2526 mutant clearly shows that it is more resistant to unsaturated free 

fatty acids than either the parental or complemented strains. Gram-positive bacteria 

often resist the action of free fatty acids by decreasing the fluidity of their membrane 

(Desbois & Smith, 2010). Therefore, we hypothesized that, in the presence of 

unsaturated free fatty acids, S. aureus decreases fluidity of its membrane to cope with 

this stress, and may do so by decreasing the expression of SACOL2525/2526. In order 

to determine if this in fact the case, qRT-PCR for SACOL2525/2526 transcript levels in 

the presence of oleic was performed. Upon analysis, we observed a 5-fold decrease in 

expression of the transporter for SH1000 grown in 1.5% Oleic acid, compared to 

unsupplemented TSB (Figure 20). Surprisingly when S. aureus is grown in rich media 

(TSB) it is able  

 



78 
 

 
 
 
 

 
 
Figure 19. SACOL2525/2526 mutation protects the cell in the presence of free 
unsaturated fatty acids. A). The SH1000 wild-type (blue), SACOL2525/2526 mutant 
(red), and SACOL2525/2526 complement (green) strains were standardized in PBS 
containing 0.01% oleic acid. The survivability of strains was then evaluated over time 
by serial diluting and plating. Error bars are shown as +/- SEM. B). Fold change in 
viability of the mutant (M) and complemented (C) strains compared to the wild-type. 
Data is presented from three independent cultures, with a student’s T-Test using a 5% 
confidence level used to determine statistical significance, * = p<0.05. The error bars 
are shown as +/- SEM.  
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Figure 20. Transcription of SACOL2525/2526 in the presence of oleic acid. qRT-
PCR was performed on SACOL2525/2526 in SH1000 cells grown for 3h in TSB under 
standard conditions, or in the presence of a sub-inhibitory concentration of oleic acid 
(1.5%). The data presented are from three independent cultures, with error bars are 
shown as +/- SEM. A Student’s T-Test was used with a 5% confidence level to 
determine statistical significance, *** = p< 0.001.  
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to withstand much higher concentrations of oleic acid than in PBS. As such, despite the 

fact that 1.5% oleic acid is a very high concentration, it was not toxic and did not affect 

growth of SH1000 in TSB. To further corroborate this finding, growth in toluene was 

investigated as Gram-positive bacteria that have increased membrane fluidity also have 

higher solvent tolerance (Nielsen et al., 2005).  Death in 1.5 % toluene was evaluated 

over a 120 minute time span for SH1000 and its SACOL2525/2526 mutant and 

complemented strains (Figure 21). While all strains decreased over time, the 

SACOL2525/2526 mutant declined far more rapidly than the parent. Specifically, after 

30 minutes a 4.2-fold decrease was observed in mutant cell numbers, followed by a 5.8-

fold reduction after 60 minutes when compared to the wild-type. Collectively this data 

suggest that SACOL2525/2526 contributes to the membrane composition by putatively 

aiding in membrane fluidity. 

SACOL2525/2526 mutants of S. aureus have altered cell envelope architecture. Our 

data thus far suggests that SACOL2525/2526 mutants potentially have altered 

membrane architecture. In addition, a microarray performed on S. aureus grown in the 

presence of linoleic acid, another unsaturated free fatty acid, which disrupts the cell 

wall in a manner akin to oleic acid, revealed decreased SACOL2525/2526 transcription, 

and an increase in the expression of capsule genes (Kenny et al., 2009). This is 

intriguing as nsaS mutants have both decreased SACOL2525/2526 transcription, and 

increased capsule production. As such, negative staining TEM analysis was performed 

on the SH1000 wild-type, SACOL2525/2526 mutant and the complemented strains 

grown in TSB for 3 hours (Figure 22). Interestingly, the SACOL2525/2526 mutant 

showed increased encapsulation when compared to the other strains. It has been  



81 
 

 
 
 
 
 

 
 
Figure 21. SACOL2525/2526 contributes to resistance against solvent stress. The 
SH1000 wild-type (blue), SACOL 2525/2526 mutant (red) and complemented (green) 
strains were inoculated into TSB containing 1.5 % toluene. Their survivability was 
evaluated by serial diluting, plating and calculation of the percent recovery compared to 
the initial inoculum. The data presented are from three independent cultures. A 
Student’s T-Test was used with a 5% confidence level to determine statistical 
significance, *** = p< 0.001, **** = p�0.0001. Error bars are shown as +/- SEM.  
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Figure 22. SACOL2525/2526 mutants have increased capsule production. SH1000, 
along with the SACOL2525/2526 mutant and complemented strains were grown in TSB 
(3 h), and prepared for negative staining analysis. Presented are TEM images that are 
representative of more than 10 separate frames, from three independent cultures.  
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previously been shown that along with decreasing membrane fluidity for resistance to 

fatty acids, S. aureus also increases capsule production in an attempt to construct a 

barrier to lessen the contact of free fatty acids with the membrane (Kenny et al., 2009). 

When the cell changes the composition or abundance of fatty acids in the membrane, 

either increasing or decreasing fluidity, the phosphatidylglycerol outer polar head 

groups attached to the fatty acid, commonly stay the same, and only the fatty acid tails 

are altered (Mishra et al., 2011). For example, by placing more saturated fatty acids in 

the membrane, the cell can decrease fluidity because fatty acids do not contain any 

double bonds, and therefore pack together tightly; however the polar head group 

remains the same. Using this mechanism, the outer polar head groups of the membrane 

lipids still come into contact with any environmental chemicals (free fatty acids) no 

matter the composition. Therefore, increasing capsule production acts as a barrier to try 

to limit the contact of the free fatty acids with the membrane (Kenny et al., 2009). As a 

result, increased capsule production has been shown to increase the overall 

hydrophilicity of the bacterial cell (Greene et al., 1992). This change in hydrophilicity is 

a result of the proteins that are added to the cell envelope, including capsule proteins. 

To determine if excess capsule seen with the TEM analysis alters the overall 

hydrophilicity of the cell, a hexadecane assay was employed using the wild-type, 

SACOL2525/2526 mutant and complemented strains (Figure 23).  Bacterial 

suspensions were mixed with hexadecane and the two phases were allowed to separate 

for 20 minutes. Hydrophilic encapsuled cells do not bind to hexadecane, and thus 

remains in the aqueous layer upon exposure, which can be then be measure 

photometrically. Upon analysis we observed that the SH1000 wild-type and 
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Figure 23. SACOL2525/2526 mutant cells have altered hydrophobicity.  A 
hexadecane assay was performed on the SH1000 wild-type (WT), SACOL2525/2526 
mutant (M) and complemented (C) strains. Bacterial suspensions were mixed with 
hexadecane and the two phases were allowed to separate. The aqueous layer was 
removed, the OD600 read and the percentage of cells in the aqueous layer, indicating 
increased hydrophilicity, calculated. The data presented are from three independent 
cultures and error bars are shown as +/- SEM. A student’s T-Test with a 5% confidence 
level was used, * = p<0.05.  
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SACOL2525/2526 complemented strains only retained 20% and 18% of the total 

number of cells, respectively, in the aqueous layer. The SACOL2525/2526 mutant, 

however, displayed a higher amount, with 31% of cells not binding to hexadecane, and 

remaining in the aqueous layer. This suggests that the SACOL2525/2526 mutant cells 

are more hydrophilic than the parent and complemented strains, which is perhaps 

explained by its increased encapsulation. Another aspect of the cell envelope is surface 

charge, which is controlled in S. aureus by a number of factors, including GraRS (Sass 

& Bierbaum, 2009; Herbert et al., 2007). GraRS not only regulates SACOL2525/2526, 

but also alters the expression of the dlt operon, which ultimately changes cell charge to 

be more positive, in order to decrease the binding of harmful charged elements such as 

antibiotics and antimicrobial peptides. Changing the overall surface charge differs from 

altering cellular hydrophobicity. Hydrophobicity results from proteins and molecules 

deposited on the outside of the cell membrane, whilst cell charge in S. aureus is altered 

by introducing a positively charged lysyl group into the phosphatidylglycerol head 

group of membrane lipids (Peschel et al. 2001). Since the SACOL2525/2526 mutant has 

altered hydrophilicity, the cell surface charge was also evaluated. To determine if the 

SACOL2525/2526 mutant has altered cell surface charge, a cytochrome C binding 

assay was performed with the SH1000 wild-type, SACOL 2525/2526 mutant and the 

graR mutant, which was included as a control (Figure 24). Cytochrome C is positively 

charged and therefore binds to the negatively charge S. aureus cell. We determined that 

SH1000 and its SACOL2525/2526 mutant bound very similar, low amounts of 

cytochrome C (17% and 22%, respectively). In contrast, the graR mutant had a 
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Figure 24. SACOL2525/2526 deletion does not effect cell surface charge.  A 
cytochrome C assay was performed on the SH1000 wild-type (WT), SACOL2525/2526 
mutant (M) and graR mutant (G) strains. Cytochrome C was added to cells and allowed 
to bind. The cells were pelleted and the OD540 of the supernatant was used to determine 
the percentage of cytochrome C bound. The data presented are from three independent 
cultures and error bars are shown as +/-  SEM.  
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2.7-fold increase, with 46% of the cytochrome C bound, suggesting that 

SACOL2525/2526 mutants do not have altered surface charge and that the 

phosphatidylglycerol head groups of the lipids are likely similar.  

SACOL2525/2526 contributes to protection against lysostaphin. An altered cell-

envelope has been reported to affect the interaction between antimicrobial compounds 

and bacterial cells; and ultimately their activity and potency (Cui et al., 2006; Pillai et 

al., 2007). Given that our data thus far shows that the SACOL2525/2526 mutant has 

altered cell envelope architecture, particularly with regard to increased capsule 

production, a lysostaphin kinetics assay was performed to determine if this alteration 

affects resistance to lytic bacterial agents (Figure 25). The nsaS mutant was also 

included in this analysis due to its increased capsule production. SH1000 wild-type, its 

SACOL2525/2526 mutant and complemented strains, alongside and the nsaS mutant, 

were standardized to an OD600 of 1.0 in PBS, before 50 μg/ml of lysostaphin was added. 

OD600 readings were taken every 5 minutes, and the percent lysis, compared to the 

initial inoculum, was determined. While the viability of all strains declined rapidly, the 

SH1000 wild-type and complement strains lysed far faster than the SACOL2525/2526 

or nsaS mutant strains. Specifically, after 15 minutes, 77% and 78% of the wild-type 

and complement strains had lysed, yet only 53% and 48% of the SACOL2525/2526 and 

nsaS mutants lysed, respectively. After 25 minutes of incubation, almost all of the wild-

type and complement strains were lysed, whilst the 2 mutant strains, took an additional 

10 minutes each to reach similar levels of lysis. This suggests that alterations in the cell 

envelope of the SACOL2525/2526 and nsaS mutant strain perhaps decrease the 

sensitivity to lysostaphin. 
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Figure 25. SACOL2525/2526 mutants have decreased sensitivity to the cell wall 
targeting agent lysostaphin.  Lysostaphin lysis reaction kinetics for the SH1000 wild-
type (blue), SACOL2525/2526 mutant (red), complemented strain (green) and the nsaS 
mutant (purple) were performed using excess lysostaphin (50 μg/ml). The OD600 for 
each strain was recorded every 5 minutes, and the percentage of cell lysis was 
calculated in relationship to cultures pre-exposure (T=0). The data presented are from 
three independent cultures and error bars are shown as +/-  SEM. A Student’s T-Test 
was used with a 5% confidence level to determine statistical significance, *** = p< 
0.001, **** = p�0.0001.  
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Discussion 

In silico analysis demonstrates that SACOL2525 is an ATP-binding protein that is 

similar to members that transport galliderm-class lantibiotics. Only a few of these 

proteins have been studied, but many have been found to aid in immunity of the cell to 

lantibiotics by exporting these peptides (Peschel & Gotz, 1996; Chen et al., 1999). 

Analysis of SACOL2526, located downstream of SACOL2525, revealed that it is an 

integral membrane protein, although no major homology was observed with other 

transporters in the database. Together these two proteins form an ABC-transport system 

that may serve a role in the protection of S. aureus from lantibiotics and /or peptide 

antibiotics. Lantibiotics are peptides that are ribosomally synthesized and have been 

shown to contain unusual amino acids, such as lanthionine and dehydrated amino acids. 

These agents of antimicrobial defense have largely been divided into 2 classes based on 

their mode of action, with type A defined by inserting into the membrane and forming 

pores, whilst type B inhibits peptidoglycan synthesis (Chatterjee et al., 2005; Sieber & 

Marahiel, 2005). Interestingly, lantibiotics are not the only antibacterial agents to 

contain unusual amino acids; for example daptomycin is a lipopeptide antibiotic that 

contains the unusual amino acid L-kynurenine (Baltz et al., 2005; Wessels et al., 1996). 

In our study, we found the SACOL2525/2526 mutant was not susceptible to nisin (type 

A), the only lantibiotic tested. This effect implies that SACOL2525/2526 has no role in 

type A lantibiotic detoxification, but may suggest that SACOL2525/2526 transports 

lantibiotics belonging to different classes, or that perhaps it more generally transports 

peptide antibiotics. It is also plausible that this transporter broadly translocates any 

peptide-containing molecule, not just those considered antibiotics, across the 
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membrane, such as perhaps lipid II. This observation is not entirely implausible as has 

been shown that the membrane protein FtsW translocates Lipid II via flippase activity 

in S. aureus (Weidenmaier & Peschel, 2008). In addition, the substrate for the 

GatD/MurT ABC transporter from S. aureus, has recently been suggested to be lipid II 

(Munchet al., 2012) Therefore, S. aureus may have multiple transport systems that can 

shuttle lipid II transport across the membrane, which could include SACOL2525/2526. 

This is made further possible by the observation that SACOL2525/2526 is transcribed 

under standard conditions; however antibiotic transporters tend to be induced only 

during specific stresses (Muthaiyan et al., 2008; Ouyang et al., 2010; Meehl et al., 

2007). Additionally, compounds that induce Lipid II stress do appear to upregulate 

expression of SACOL2525/2526. 

Both IM-HKs associated with ABC transporters in S. aureus (NsaRS and GraRS) have 

been shown to regulate SACOL2525/2526 (Herbert et al., 2007; Kolar et al., 2011). The 

expression of both graRS and nsaRS respond to a number of antimicrobial agents that 

target the cell wall, or perhaps to the damage caused by these agents. NsaRS has a role 

in sensing and adapting to changes caused by chemicals that affect every step in the cell 

wall biosynthesis pathway. The transcription of SACOL2525/2526 in response to cell-

envelope-targeting compounds revealed that several drugs, including phosphomycin, 

daptomycin, chloropromazine, penicillin G, ampicillin, oxacillin, D-cycloserine and 

CCCP caused an increase in transcription. The majority of these agents affect cell wall 

biosynthesis, including the making of lipid II (phosphomycin, D-cycloserine) and 

peptidoglycan synthesis (penicillin G, chloropromazine, ampicillin, oxacillin,) (Figure 

26). The daptomycin mode of action is currently contentious, although it does appear to 
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Figure 26. Schematic representation of peptidoglycan synthesis of S. aureus. 
Antibiotics target specific steps in the peptidoglycan synthesis pathway are shown, 
including: intracellular peptidoglycan subunit assembly (D-cycloserine and 
phosphomycin), transport and anchoring of the Lipid II molecule (vancomcyin, 
teicoplanin and nisin), cross-linking of peptidoglycan subunits (penicillin G, ampicillin, 
chloropromazine and oxacillin) and finally re-entry of the bactoprenol carrier 
(bacitracin). In addition, other drugs (Gramicidin and CCCP) target the membrane 
instead of peptidoglycan synthesis. Drugs highlighted in green have been shown to 
target both the membrane and the peptidoglycan biosynthesis pathway. *Indicates 
compounds shown to increase transcription of SACOL2525/2526.  
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target both the membrane and peptidoglycan synthesis (Canepari et al., 1990; Silverman 

et al., 2003; Cotroneo et al., 2008). Of note, the only compound that increased 

transcription of SACOL2525/2526, and that solely impacts membrane stability, is 

CCCP. CCCP alters the proton motive force, which effects ATP levels and ultimately 

impacts every process that utilizes ATP, which can also include peptidoglycan synthesis 

(Dimroth & Cook, 2004). Therefore, the observed increase in expression of 

SACOL2525/2526 in response to CCCP may be explained by the fact that the 

peptidoglycan synthesis pathway is impacted, albeit as a downstream effect. 

Collectively, this data suggests that SACOL2525/2526 overwhelmingly responds to cell 

wall biosynthesis targeting compounds. 

When comparing the transcription of SACOL2525/2526 to that of nsaRS, it is clear that 

the expression profiles of these 2 elements is very similar. Seven of the ten drugs tested 

(phosphomycin, ampicillin, penicillin G, D-cycloserine, CCCP, daptomycin and 

oxacillin) resulting in increased expression of both loci, whilst only 3 drugs (nisin, 

gramicidin and chloropromazine) show opposing effects. These 2 systems do not both 

respond to every antimicrobial agent tested, suggesting some specificity, and the 

likelihood of divergent regulation. Overall, this suggests that NsaRS relies heavily on 

SACOL2525/2526 to exert its effects under standard conditions, as well as during cell-

envelope stress. NsaRS has been shown to respond to several cell-envelope-targeting 

drugs, but not to all of them. This is consistent with the literature on other IM-HKs, and 

may be explained by the overlapping function of a number of other TCSs that respond 

to cell wall stress, including VraRS, GraRS and WalKR (Li et al., 2007; Kraus et al., 

2008; Pietainen et al., 2009; Delaune et al., 2011). Also, SACOL2525/2526 only 
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responds to certain cell-envelope-targeting drugs, which may be the result of differential 

signaling through NsaRS, and GraRS, which has also been shown to regulate this 

transporter (Herbert et al., 2007). The other two TCSs that respond to cell wall stress, 

VraRS and WalKR, have not yet been shown to regulate SACOL2525/2526, however 

the available transcriptomic data is currently limited, thus not discounting such a 

possibility. Although NsaRS and GraRS both positively regulate SACOL2525/2526 

under standard conditions, it is NsaRS, not GraRS, which mediates the increase in 

transcription in response to cell-wall-targeting chemicals. Interestingly, while 

expression of SACOL2525/2526 in a nsaS mutant in the presence of cell envelope 

antibiotics decreased compared to the wild-type, these were not to the levels of 

unstimulated cells. This suggests that, while NsaRS does positively regulate 

SACOL2525/2526 in response to cell-envelope-targeting drugs, it is not the only 

regulator. This is not surprising, as it has been demonstrated that resistance to 

antibiotics is often modulated by a number of regulatory elements (Howden et al., 2010; 

McAleese et al., 2006). For example, the WalKR TCS has been shown to contribute to 

methicillin and glycopeptide resistance in a variety of S. aureus strains (Dubrac et al., 

2007; Martin et al., 2002). In addition, MgrA is a regulator of multidrug transporters, 

and has also been shown to impact resistance to methicillin (Chen et al., 2006; Truong-

Bolduc et al., 2005). As WalKR is essential in S. aureus, defining its regulon has proven 

complex, however work by Luong et al. reveals that SACOL2525 is contained within 

the MgrA regulon (Luong et al., 2006) Therefore, it is likely that NsaRS utilizes 

SACOL2525/2526 under cell wall stress conditions; however other regulators, 

responding to different types of damage may also employ SACOL2525/2526 for 
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cellular detoxification. This is supported by microarray findings that demonstrate SarA, 

Rot, ArlRS and the alternative sigma factor, σB, all influence SACOL2525 and/or 

SACOL2526 expression (Bischoff et al., 2004; Cassat et al., 2006; Said-Salim et al., 

2003; Liang et al., 2005).  

Transcription of the IM-HK GraRS TCS has also been shown to respond to cell-wall-

targeting agents, although again, to a select number, likely suggesting specificity (Cui et 

al., 2005). Interestingly, GraRS and NsaRS produced opposing effects in response to the 

cell-wall biosynthesis targeting compounds bacitracin, vancomycin, nisin and 

phosphomycin (Meehl et al., 2007; Kolar et al., 2011). This may suggest that GraRS 

may utilize SACOL2525/2526 either only under standard conditions, or in a manner 

that is contrasting to NsaRS. Indeed, the response and resistance to antimicrobial agents 

is commonly pleiotropic, with signaling occurring through multiple regulatory 

pathways. For example, the GraRS TCS contributes to glycopeptide resistance by 

regulating genes required to alter the cell surface charge in order to limit the binding of 

glycopeptides to the cell (Meehl et al., 2007). In addition, the VraRS system regulates 

genes involved in cell wall biosynthesis to repair the damage to the peptidoglycan layer 

(Blake et al., 2009). Together, these 2 TCS systems regulate genes important in 

different aspects of the vancomycin resistance mechanism. Therefore, NsaRS and 

GraRS likely follow a similar model with regards to SACOL2525/2526, where NsaRS 

regulates this transporter in response to cell-wall stress, while GraRS performs 

alternative functions. Since GraRS is able to regulate SACOL2525/2526 under standard 

conditions, it is possible that under cell-wall stress, a hierarchy exists between these 2 

systems, where NsaRS has a higher capacity for SACOL2525/2526 regulation, and 
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ultimately influences the expression of SACOL2525/2526 more so than GraRS.  In 

addition, the regulation of SACOL2525/2526 by GraRS may be indirect, and occur 

through the action of the regulator MgrA. Indeed, GraRS has been shown to positively 

regulate MgrA, which is a master regulator of multi-drug resistance efflux pumps 

(Herbert et al., 2007; Luong et al., 2006).  

Human sebum is the oil found on the skin, and contains free fatty acids to help limit 

bacterial infections and carriage (Kligman, 2006). Free unsaturated fatty acids from 

human sebum insert in bacterial membranes leading to cell death. Some proposed 

models of how this occurs include peptidoglycan precipitation, peroxidative stress, 

alterations of metabolism, inhibition of certain major biosynthesis pathways, 

modulation of membrane permeability or alterations in membrane fluidity (Galbraith & 

Miller, 1973; Knapp & Melly., 1986; Speert et al., 1979; Chamberlain et al., 1991; 

Xiong & Kapral., 1992). Surprisingly, when the SACOL2525/2526 mutant was exposed 

to oleic acid, a free fatty acid found in human sebum, it was better able to survive than 

the wild-type. Of note, the nsaS mutant, which has a ~30-fold decrease in 

SACOL2525/2526 transcription, also survives better than the wild-type during this type 

of stress, although not to the levels of the transporter mutant (preliminary data). 

Although the exact mechanism that mediates this is unclear, it has been shown that 

Gram-positive bacteria resist free fatty acids by decreasing membrane fluidity (Desbois 

& Smith, 2010). Specifically, it has been shown that enhanced production of the 

carotenoid pigment staphyloxanthin is positively correlated with increased resistance to 

fatty acids (Chamberlain et al., 1991). It has been suggested that the observed resistance 

to fatty acids is not due to the pigment itself, but is the result of a decrease in membrane 
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fluidity produced by its overproduction. (Xiong & Karpal.,1992). While enhanced 

staphyloxanthin production decreases membrane fluidity, S. aureus can also change the 

fluidity of its membrane in other ways, including altering the fatty acid composition of 

membrane phospholipids (Mrozik et al., 2004). This may suggest that in the presence of 

free fatty acids, S. aureus may decrease membrane fluidity for survival by limiting the 

expression of SACOL2525/2526. To corroborate this, qRT-PCR was performed on cells 

grown in the presence of oleic acid, revealing transcription of SACOL2525/2526 to be 

decreased as expected. Following this, if an SACOL2525/2526 mutant does have 

decreased membrane fluidity, then it should also have decreased survival in the 

presence of stresses that S. aureus resists by increasing membrane fluidity. Certain 

solvents, such as toluene, have been shown to force Gram-positive cocci to change their 

membrane to become more fluid (Nielsen et al., 2005). Thus, survival in toluene was 

evaluated, and, as hypothesized, the SACOL2525/2526 mutant showed a decrease in 

survivability. Collectively, these data suggest that the membrane of the 

SACOL2525/2526 mutant does in fact have decreased fluidity. This is perhaps 

explained by our finding that SACOL2525/2526 responds to chemicals that disrupt 

peptidoglycan synthesis; perhaps suggesting that the substrate it transports is important 

in this process. It has been shown that disruptions in the peptidoglycan layer cause a 

weaken cell wall, and decreases in cellular integrity (Rohrer & Berger-Bachi, 2003). 

Furthermore, alterations in the cell membrane, such as decreased carotenoid production, 

have been shown to result in decreased membrane fluidity in an attempt to provide 

increased cellular integrity (Mishra et al., 2011). Therefore, it seems likely that in the 

SACOL2525/2526 mutant, peptidoglycan synthesis is impaired, leading to the potential 
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for decreased cellular integrity. In response to this, the SACOL2525/2526 mutant 

seemingly decreases membrane fluidity as a coping mechanism to these alterations, by 

an as yet unknown mechanism. 

Daptomycin was approved for skin and soft tissue infections caused by S. aureus and 

other Gram-positive pathogens in 2003 (Arbeit et al., 2004). At this time one survey 

showed that only 0.1% of S. aureus isolates were resistant to daptomycin, suggesting 

that it was a promising antibiotic with high clinical relevance. Since then, reports of 

daptomycin resistant S. aureus isolates have surfaced, and hence determining the 

resistance mechanism has become a priority (Streit et al., 2004; Marty et al., 2006). 

Daptomycin binds to the bacterial membrane in a calcium-dependent manner, and then 

oligomerizes producing a pore, resulting in a flood of ions from inside the cell to the 

extracellular environment, eventually leading to cell death (Steenbergen et al., 2005). 

While the SACOL2525/2526 mutant did not show a difference in sensitivity to 

daptomycin overnight, survivability in lethal concentrations of daptomycin was 

decreased when compared to the wild-type. Interestingly, a study on daptomycin 

resistant strains showed that the cells had altered cell surface charge as a result of 

increased MprF expression, controlled by GraRS (Pillai et al., 2001;Mishra et al., 2009). 

MprF alters surface charge by changing lysinylation of membrane 

phosphotidylglycerol, which decreases binding of daptomycin to the cell membrane, 

limiting its effects (Jones et al., 2008; Peschel et al., 2001; Weidenmaier et al., 2005). 

The SACOL2525/2526 mutant did not have altered cell surface charge, as determined 

by a cytochrome C assay, which suggests that the decrease in survivability is not the 

result of altered binding capacity of daptomycin to the cell membrane. Daptomycin 
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resistant strains have also been shown by others to have increased membrane fluidity 

(Mishra et al., 2009). Interestingly, as suggested above, the SACOL2525/2526 mutant 

may possess a membrane with decreased fluidity, which perhaps could explain the 

decrease in survival.  In addition, cationic antimicrobial peptides, which area chemically 

similar to daptomycin, insert into the bacterial membrane forming pores; and resistance 

to these agents is also influenced by increased membrane fluidity (Bayer et al., 2000; 

Bayer et al., 2006).  

Another explanation for these findings is that the cell envelope may limit the interaction 

of daptomycin with the membrane of S. aureus cells. As such, the cell wall and capsule 

was removed from wild-type and mutant strains using lysostaphin, to determine if the 

observed decrease in survivability could be enhanced. As expected, the daptomycin-

mediated decrease in survival of the SACOL2525/2526 mutant was exacerbated upon 

lysostaphin treatment. Of note, the SACOL2525/2526 mutant produced no difference in 

survivability to other membrane targeting drugs, such as CCCP or gramicidin, 

suggesting that this effect is specific to daptomycin. An explanation for this might be 

that daptomycin is the only compound to form pores in the membrane, as CCCP effects 

the proton potential and gramicidin binds to bacterial membranes before eventual 

translocation into the cytoplasm (Hancock & Chapple, 1999; Silverman et al., 2003; 

Cotroneo et al., 2008). Conversely, daptomycin can insert into the membrane, where it 

forms pores that allow for the leakage of ions, leading to cell death. The 

SACOL2525/2526 mutant has been suggested to have decreased membrane fluidity, 

which may influence the stability of the formed pores, allowing for increased ion 

leakage and more rapid death. A situation akin to this was observed in E. faecalis, as 
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increased membrane fluidity decreased the stability of pores caused by the peptide 

antibiotic, alamethicin (Cafiso, 1994). 

Although daptomycin was the only chemical where the mutant had decreased 

survivability, SACOL2525/2526 contributes to the ability of S. aureus to generate 

spontaneous mutants in the presence of several cell-wall targeting agents, including 

penicillin G, bacitracin, teicoplanin and daptomycin. These four drugs, having produced 

lower mutation frequencies in the mutant compared to the wild-type, all inhibit cell wall 

biosynthesis, although each at a different step of the pathway. It has been previously 

shown that a nsaRS mutant is sensitive to bacitracin, and that the nsaS mutant produced 

a decrease in mutation frequency compared to the wild-type in the presence of 

bacitracin (Kolar et al., 2011; Matsuo et al., 2010). Because of the similarities between 

NsaRS and SACOL2525/2526, this finding is therefore perhaps unsurprising. The 

SACOL2525/2526 mutant produced a decrease in spontaneous mutation frequency 

when exposed to daptomycin, which corroborates our data showing decreased survival 

of the mutant in the presence of this agent. Teicoplanin and penicillin G both target 

peptidoglycan cross-linking, and the decreased mutation frequencies observed for the 

SACOL2525/2526 mutant may further suggest a role for this ABC transporter in the 

response to peptidoglycan damage. As stated previously, SACOL2525/2526 does not 

respond to every cell-wall-targeting agent.  The other drugs tested either did not 

stimulate SACOL2525/2526 expression (nisin and vancomycin), or they did not impact 

the cell wall biosynthesis pathway (CCCP). This may therefore explain the similar 

mutation frequencies observed for these agents between the mutant and wild-type 

strains. An explanation for these findings may again come from the putative 
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involvement of this transporter in peptidoglycan biosynthesis. If SACOL2525/2526 

transports a substrate important for this process, then its peptidoglycan layer is likely 

weakened in some aspects in the mutant strain. Therefore, it is possible that such 

alteration in peptidoglycan result in more rapid death in the mutant when exposed to 

these compounds, presenting limited opportunity to spontaneously mutate before cell 

death. The reason that we observed differences in mutation frequency but not sensitivity 

to some of these agents may be due the high concentration of antibiotic used in this 

experiment, which is 3 times the MIC. In other experiments using these compounds, the 

SACOL2525/2526 mutant may not produce a difference in survival at lower 

concentrations, due to its ability to compensate for the difference in peptidoglycan 

and/or membrane composition, and thus the action of the compound.   

S. aureus strengthens its peptidoglycan cell wall by cross-linking lipid II molecules via 

a pentaglycine bridge (Schleifer & Kandler, 1972). Lysostaphin, a lytic agent produced 

by the closely related species S. simulans, cleaves these pentaglycine bridges, leading to 

lysis of the cell. (Grudling & Schneewind, 2006). Strains resistant to lysostaphin have 

been shown to lower the glycine content by changing glycine to serine in the bridge, 

and as such cleavage does not occur (Kumar, 2008). In addition, FmhB is responsible 

for the attachment of the first glycine residue to the lysine of the lipid II molecule 

(Rohrer et al., 1999), while the proteins FemAB aid in the successive addition of the 

second through fifth glycine residues.  Accordingly, resistance to lysostpahin is 

commonly mediated through mutation of FemA or FemB, resulting in a lone glycine 

residue available for cross-linking; and such monoglycines cannot be cleaved by 

lysostaphin (Ehlert et al., 1997; Stranden et al., 1997) Given the alterations in cell 
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superstructure demonstrated for the SACOL2525/2526 mutant in this study, we 

performed lysostaphin lysis kinetics to assess how these changes impacted cell lysis 

rates. Unexpectedly, we found that the mutant strain was actually more resistant to the 

action of this agent than the parental strain. Additionally, given the similarity of 

phenotypes for the transport mutant and that of nsaS, we also performed these studies 

with the TCS deficient strain, and revealed similar findings. Although both mutants 

took longer to achieve complete, or near-complete, lysis, both did eventually reach the 

same levels as that of the parent and complemented strains. These final lysis data may 

suggest that the glycine content in the pentaglycine bridges are not changed in the 

mutant strains. An alternative explanation might come from our analysis of the nsaS and 

SACOL2525/2526 mutant using electron microscopy. Negative staining of the 

SACOL2525/2526 mutant revealed an altered cell envelope, similar to that observed 

with the nsaS mutant. The observed difference may be increased capsule production, as 

the microarray for the nsaS mutant showed a decrease in expression of several cap 

genes.  Thus, increased capsule production may contribute to lysostaphin resistance by 

limiting the contact of lysostaphin with peptidoglycan, and ultimately reducing the rate 

of lysis.  Collectively, these data suggest that the SACOL2525/2526 mutant has 

increased capsule production, and an altered cell envelope that allows for a decrease in 

susceptibility to lysostaphin. The increased capsule produces a protective effect for 

lysostaphin, as no difference in glycine content is suggested. It is also likely that the 

increased production of capsule may limited the interaction of daptomycin with the 

mutant membrane, perhaps explaining why we see no difference in MIC during 

overnight growth. However we do show at very high concentrations, or in the absence 
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of capsule and peptidoglycan that the transporter mutant is more susceptible to 

daptomycin, which is likely explained, as suggested above, by the stabilization of pores 

resulting from decreased membrane fluidity.  
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Chapter 4: Extracellular Proteases are Key Mediators of S. aureus Virulence via the  
 

Global Modulation of Virulence Determinant Stability 
 

 
Introduction 

 
Of the 245 genes modulated by NsaRS, only 34 are negatively regulated. These included 

those involved in capsule production, such as capGOIHED; the virulence genes β-

hemolysin, hyaluronate lyase, fibronectin binding protein A; and six of the 10 major 

secreted proteases. Proteases are enzymes that catalyze the cleavage of amide linkages in 

proteins and peptides.  Proteases can be divided into families based on the functional 

group at their active site; with the major catalytic categories being serine, threonine, 

aspartate, metallo and cysteine proteases. It has been shown that the secreted proteases of 

S. aureus are inactive until they are secreted, and are processed outside of the cell, with 

the exception of the Spl proteins (Rice et al., 2001 and Shaw et al., 2004; Reed et al, 

2001). Upon activation, these enzymes modify proteins by breaking peptide bonds, which 

can lead to activation or degradation. As this modification can only occur once the 

proteases have been activated outside of the cell, it suggests that their targets must be: 1) 

other secreted proteins, 2) cell surface associated proteins, or 3) host proteins. Included 

within this list are self-derived virulence determinants secreted by S. aureus, which may 

serve as targets of the proteases to help mediate their level in response to the 

environment. Indeed, such a theory was proposed with regards to these enzymes more 

than ten years ago (Lindsay & Foster, 1999). Since the presentation of this theory, only a 
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few studies have actually been conducted investigating this phenomenon (Karlsson et al., 

2001; McAleese et al., 2001; McGavin et al., 1997; Zielinska et al., 2011). 

The S. aureus genome encodes 129 putative proteases, with 10 being secreted enzymes. 

These include a metalloprotease (aureolysin, aur), a V8 or SspA serine protease, two 

cysteine proteases (staphopain A (ScpA) and staphopain B (SspB), and six serine-like 

proteases that are SspA homologues (SplABCDEF) (Reed et al, 2001; Shaw et al., 2004). 

These ten proteases are located in four different operons, all of which are polycistronic, 

except aureolysin (Figure 27). It has been shown that these extracellular proteases are 

activated by Agr, and strongly negatively affected by SarA, with the exception of the Spl 

proteins (Gustafsson & Oscarsson, 2008; Horsburgh et al., 2002). In addition, the 

proteases are also regulated by σB, SarR, SarZ, Rot and MgrA, although some of these 

regulators most likely act through Agr or SarA (Karlsson & Arvidson, 2002; McNamara 

et al., 2000; Tamber & Cheung, 2009). In addition to transcriptional regulation, the 

proteases are regulated at the post-translational level, as each is secreted as a proenzyme, 

with the exception of the Spl proteins. Each needs to be cleaved in order to gain 

enzymatic activity in a cascade of activation that is thought to keep these proteases 

inactive until secreted (Figure 28). First, aureolysin is able to activate V8 protease, which 

then processes and activates staphopain B (Drapeau, 1978; Rice et al., 2001). The 

activation of aureolysin and Staphopain A resides outside of this cascade, and occurs 

through autocatalysis (Nickerson et al., 2007). In addition, both of the Staphopain 

enzymes have specific, cytoplasmic inhibitory proteins (the staphostatins) encoded 

downstream of the protease (Rzychon et al., 2003). The regulation of secreted proteases  
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Figure 27. The extracellular proteases of S. aureus and their regulation. S. aureus 
has 10 major secreted proteases: aureolysin or metalloprotease (Aur), a V8 or serine-
protease (SspA), two cysteine proteases (ScpA and SspB) and 6 serine-protease like 
enzymes (SplABCDEF).  The two cysteine protease, ScpA and SspB are transcribed with 
their specific inhibitor, staphostatin A (ScpB) and staphostatin B (SspC), respectively. 
The secreted proteases are located on 4 different operons, which are positively regulated 
(arrows) by RNAIII (Agr), and negatively regulated (lines) by SarA.   
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Figure 28. Activation cascade of S. aureus secreted proteases. Secreted proteases are 
regulated at the post-translational level, with each secreted as a proenzyme, apart from 
the Spl proteins. Each needs to be cleaved in order to gain enzymatic activity in a cascade 
of activation. First, aureolysin (Aur) activates the V8 protease (SspA), which then 
processes and activates Staphopain B (SspB). The activation of aureolysin and 
Staphopain A (ScpA) occur through autocatalysis. 
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is complex and occurs at the transcriptional as well as at the post-translational level. This 

intricate level of control suggests that secreted proteases are important elements of S. 

aureus and understanding their role may give a unique insight into the pathogenesis of S. 

aureus. 

S. aureus is a dangerous pathogen causing infection in every part of the body. Recently, 

MRSA strains have been found infecting the young and healthy, which appear to have 

evolved independently within the community (Johnson et al., 2007; Moran et al., 2005). 

Community-acquired Methicillin Resistant S. aureus CA-MRSA strains have increased 

transmission and are hypervirulent, presenting a serious public health threat. The ability 

of CA-MRSA to invade healthy hosts is the result of not only newly acquired virulence 

factors, but alterations in the expression profile of key, core-genomic elements (Diep et 

al., 2006; Diep et al., 2008; Kennedy et al., 2008; Vandenesch et al., 2003; Wang et al., 

2007). Included within this latter class is α-hemolysin (Hla), delta-hemolysin, phenol 

soluble modulins (PSMs), and secreted proteases (Burlak et al., 2007; Chambers, 2005; 

Diep & Otto, 2008; Wang et al., 2007). Most if not all of these factors are regulated by 

the two-component system Agr, and thus their overproduction is due, at least in part, to a 

hyperactive Agr locus (Li et al., 2009). While others have focused on identifying the role 

of cytolytic toxins, such as Hla and Psms in CA-MRSA hypervirulence, the impact of 

extracellular proteases has thus far been overlooked (Wang et al., 2007; Kobayashi & 

DeLeo, 2009; Li et al., 2009; Montgomery et al., 2008; Burlak et al., 2007; Chambers, 

2005; Diep & Otto, 2008). Whilst a number of studies on secreted proteases are contained 

within the literature, their findings are contradictory. As such, the role of these enzymes 

and their involvement in pathogenesis is currently unclear.  
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Therefore, the focus of this chapter is to better understand the pathogenesis of CA-MRSA 

infections and determine if secreted proteases are in fact key virulence factors. 

Specifically, we will determine if secreted proteases are vital to the infection process 

using both systemic and localized infection models. Additionally, we will explore the 

theory that S. aureus secreted proteases modulate the stability of self-derived secreted 

and surface-associated virulence factors.   
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Manuscript Introduction 

S. aureus is a highly successful and diverse pathogen causing an array of diseases. S. 

aureus infections typically proceed from localized sites (e.g. wound), and can proliferate 

via bacteremia to life-threatening systemic diseases, such as osteomyelitis, endocarditis 

and septic arthritis. This diversity and pathogenic success can be attributed, largely, to its 

vast array of temporally and environmentally regulated virulence factors (Lowy, 1998; 

Novick, 2006). Formerly, S. aureus infections were confined to the healthcare setting, 

afflicting the immunocompromised and elderly. Recently there has been a shift in S. 

aureus epidemiology, with increased incidences of severe invasive disease in healthy 

subjects lacking predisposing factors (Johnson et al., 2007; Moran et al., 2006). This 

trendshift is the result of emerging, hypervirulent strains of methicillin-resistant S. aureus 

(MRSA) that have evolved within the community (CA-MRSA). Of considerable concern, 

these CA-MRSA strains appear to be moving into clinical settings and displacing existing 

hospital-associated MRSA strains (D’Agata et al., 2009; Popovich et al., 2008; Webb et 

al., 2009).  

Several CA-MRSA lineages have appeared in the last decade (Diep & Otto, 2008; 

Limbago et al., 2009; McDougal et al., 2009), with USA300 now representing the major 

clone in the United States (Tenover et al., 2008). The reason for the surprising success of 

this strain as the primary CA-MRSA, and perhaps MRSA, isolate in the USA is 

somewhat unclear; however work by a number of groups suggests it may be attributable 

to the differential expression of core genomic elements (Li et al., 2009), including the 

PSMs, hemolysins, enterotoxins and extracellular proteases (Diep & Otto, 2008; Li et al., 
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2009; Adem et al., 2005; Kobayashi & Otto, 2009; Montgomery et al., 2008; Wang et al., 

2007). With regards to this latter class of enzymes, S. aureus possesses 10 major secreted 

proteolytic enzymes. These include a metalloprotease (aureolysin, aur), a V8 or SspA 

serine protease, two cysteine proteases (staphopain A (ScpA) and staphopain B (SspB)), 

and six serine-like proteases that are SspA homologues (SplABCDEF) (Reed et al., 2001; 

Shaw et al., 2004).  

A number of studies have been conducted to determine the contribution of extracellular 

proteases to the disease process; however many have been contradictory. In the RN6390 

background, a SspA mutant displayed attenuated virulence in three different animal 

models of infection (Coulter et al., 1998). Similarly, sspABC and sspBC mutations in the 

8325-4 background also showed reduced virulence in a murine wound model (Shaw et 

al., 2004). In addition to these findings, it has been shown that both S. aureus cysteine 

proteases induce vascular leakage and shock in a guinea pig model of infection (Imamura 

et al., 2005). Furthermore, it was shown that the ability of Newman to evade killing by 

primary human macrophages is dependent on a functional aureolysin gene (Kubica et al., 

2008; Burlak et al., 2007). Finally, a number of studies have shown that Aur, SspA and 

SspB are produced upon engulfment by human neutrophils, and that antibodies are 

generated against these enzymes during infection (Burlak et al., 2007; Calander et al., 

2008; Holtfreter et al., 2009). In contrast, several other studies have produced opposing 

results regarding the pathogenic role of extracellular proteases.  Specifically, single 

mutations in aur and scpAB using strain 8325-4 had no effect on wound formation (Shaw 

et al., 2004), whilst a non-polar sspA mutant in the RN6390 background displayed 

enhanced virulence in a similar model (Rice et al., 2001). Additionally, mutants in 
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sspABC, sspB, aur, and scpAB, in the SH1000 background produced no attenuation in 

virulence in a murine septic arthritis model (Calander et al., 2004). It was also observed 

that a splABCDEF deletion mutant showed no significant difference in virulence in a 

murine peritonitis infection model (Reed et al., 2001). 

In addition to these more general functions, S. aureus exoproteases have been shown to 

cleave specific host proteins. Staphopain B can degrade human fibronectin, fibrinogen 

and kininogen, and may contribute to the ability of S. aureus to disseminate (Imamura et 

al., 2005; Massimi et al., 2002). Secreted proteases can also cleave human α1-proteinase 

inhibitor (Potempa et al., 1986), the heavy chains of all human immunoglobulin classes 

(Prokesova et al., 1992), and elastin (Potempa et al., 1988), which aids in tissue invasion. 

Beyond their interaction with the host, it has been demonstrated that secreted proteases 

modulate the stability of self-derived virulence determinants. Specifically, SspA was 

shown to cleave surface proteins, including fibrinogen-binding protein (McGavin et al., 

1997) and surface protein A (Karlsson et al., 2001). In addition, Aur cleaves the surface 

associated protein clumping factor B (McAleese et al., 2001). Cleavage of these proteins 

by extracellular proteases is thought to affect the transition from an adhesive to invasive 

phenotype. It has also been suggested that extracellular proteases can cleave secreted 

toxins in order to regulate the abundance of virulence factors depending on the specific 

niche encountered within the host (Lindsay & Foster, 1999). Indeed, our group has 

recently shown that aureolysin modulates the stability of both α-toxin and phenol soluble 

modulins in CA-MRSA strains (Gonzalez et al., 2012; Zielinska et al., 2011).  
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Consequently, whilst there is a wealth of information on the role of secreted proteases in 

S. aureus disease causation, the specific role of these enzymes as virulence factors 

remains unclear. Therefore, in the present study, we sought to define the collective 

impact of this class of enzymes on pathogenesis and virulence determinant stability. This 

was achieved using the CA-MRSA strain USA300, which is known to hyperproduce 

secreted proteases, and a strain genetically lacking all 10 of these enzymes.  
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Materials and Methods 

Ethics statement. This study was performed in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The protocol was approved by the Institutional Animal Care 

and Use Committee of the University of South Florida (Permit Number: A-4100-01).  

Bacterial strains, plasmids and growth conditions. The CA-MRSA USA300 LAC 

isolate AH1263 served as the wild-type strain for analysis in this study. A derivative of 

this has been generated and described previously (Wormann et al., 2011) that lacks all 10 

major secreted proteases (strain AH1919). Strains were grown in TSB as documented 

(Shaw et al., 2008), using the following protocol: 1 ml of overnight S. aureus cultures 

were used to inoculate fresh medium and allowed to grow for 3 h. These exponentially 

growing cultures were used to seed new medium at an OD600 of 0.05. These 

exponentially growing test cultures were then allowed to grow for the necessary time 

periods. Growth in milk broth was performed as previously described (Carroll et al., 

2012). Briefly, exponentially growing cultures of the LAC wild-type and protease null 

strain were washed three times with PBS and resuspended in 100 ml 10% skimmed milk. 

The initial inoculum of each strain was also determined at this time by serial dilution and 

plating on TSA. Cultures were incubated at 37°C with shaking and the cfu/ml of each 

strain determined at the times indicated, again by serial dilution and plating. All were 

performed in triplicate, and significance in growth alterations was determined using a 

Student T-Test with a 5% confidence limit. For growth in pig serum, exponentially 

growing cultures of the LAC wild-type and protease null strain were washed three times 
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with PBS and resuspended in 1 ml of pig serum (Sigma). Cultures were incubated at 

37°C with shaking and the cfu/ml of each strain was determined by serial dilution and 

plating, every hour for five hours. The initial inoculum of each strain was also determined 

from the original culture in the same manner. Data are presented as percentage survival 

of each strain compared with initial inocula. These experiments represent three 

independent biological replicates. Statistical significance was evaluated using a Student 

T-Test with a 5% confidence limit. 

Real-time PCR. Quantitative real-time PCR analysis was conducted as described 

previously (Livak & Schmittgen, 2001; Riordan et al., 2010) using primers specific for 

RNAII (F- ATGCGCTGATGATATACCACG, R- 

GTTGATAGACCTAAACCACGACC), RNAIII (F- 

ATTTGTTCACTGTGTCGATAATCC , R- GGAGTGATTTCAATGGCACAAG) and 

hla (F- CGAAAGGTACCATTGCTGGTCAGT, R - 

AAATGCTGAAGGCCAGGCTAAACC). The control primers were for the 16s rRNA 

gene, as described elsewhere (Koprivnjak et al., 2006). 

Whole human blood survival assay. Survival in whole human blood was performed as 

previously described (Kolar et al., 2011). These experiments were performed with three 

separate, de-identified blood samples (purchased from Bioreclamation) and represent 

nine independent replicates. Data are presented as percentage survival of each strain 

compared with initial inocula. Statistical significance was evaluated using a Student T-

Test with a 5% confidence limit. 

Antimicrobial peptide sensitivity assay. Liquid cultures of LAC and its protease null 

mutant were grown in Luria-Bertani (LB) media without NaCl. These were diluted 
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1:1000 in fresh LB, again lacking NaCl, and 200 μl was applied to the wells of a 96-well 

plate. The AMPs LL-37, Indolicidin or Histatin-5 were added to these wells in decreasing 

concentrations and mixed by pipetting. Plates were incubated at 37°C overnight, followed 

by the measurement of culture density by OD600 readings. LD50 values were determined 

as the concentration required to generate a 50% reduction in OD600 compared to controls 

wells, inoculated with S. aureus cells, but lacking AMPs.  

Murine model of wound formation. These experiments were conducted as described 

previously (Shaw et al., 2004; Bunce et al., 1992). Briefly, 6 week old, female SKH1-E 

nude-mice were purchased from Charles River Laboratories, and housed at the vivarium 

in the College of Medicine, University of South Florida. S. aureus strains LAC and LAC-

protease null were grown for 15h in TSB as described above. After this time, aliquots of 

these bacterial suspensions were stored at -80°C, and their cfu/ml determined 

retroactively by serial dilution and viable cell counts. For infection purposes cultures 

were thawed, washed twice in PBS, and diluted in PBS containing 20 μg of sterile 

Cytodex microcarrier beads to 5 x 108 cfu/ml. Ten mice per strain were inoculated 

subcutaneously between the scapula with 200 μl bacterial suspension, giving a final 

inocula of 1x108 cfu/ml. Mice were monitored for 6 days during the infectious process, 

before being sacrificed, and any abscesses harvested and stored at -80°C. Each abscess 

was subsequently homogenized in 3 ml sterile PBS, and the cfu/abscess determined via 

serial dilution and viable count enumeration. The statistical significance of bacterial 

recovery was evaluated using a Student T-Test with a 5% confidence limit. 
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Murine model of sepsis and dissemination. These experiments were conducted as 

described previously (Li et al., 2009; Voyich et al., 2006). Briefly, 6 week old, female 

CD-1 Swiss mice were purchased from Charles River Laboratories, and housed at the 

vivarium in the College of Medicine, University of South Florida. S. aureus strains LAC 

and LAC-protease null were prepared as for the wound formation model. For infection 

purposes, cultures were thawed, washed twice in PBS, and diluted in PBS to 1 x 109 

cfu/ml. Thirty mice per strain were inoculated by tail vein injection with 100 μl bacterial 

suspension, giving a final inocula of 1x108 cfu/ml. The infection was allowed to proceed 

for 6 days, or until mice reached a pre-moribund state (used as a measure of mortality). 

Mice were then euthanized and the brain, liver, kidneys, heart, lungs and spleens 

collected and stored at -80°C. Any mouse sacrificed before day 6 was recorded for 

mortality, but their organs were not analyzed for bacterial burden. Each organ was 

subsequently homogenized in 3 ml sterile PBS, and the cfu/organ determined via serial 

dilution and viable count enumeration. The statistical significance of bacterial recovery 

was evaluated using a Mann-Whitney Test with a 5% confidence limit. Mortality was 

measured using a Log Rank and Chi Squared Test with 1-degree of freedom. 

Proteomic analysis of surface and secreted proteins. Stationary phase (15h) cultures of 

wild-type and mutant strains were prepared in TSB, and their secretomes were harvested 

and purified as described previously (Rivera et al., 2011). Surface proteins were extracted 

by methods previously described (Gatlin et al., 2006). Briefly, wild-type and LAC-

protease null mutant cells were grown to stationary phase (15h) and sedimented via 

centrifugation. Pellets were resuspended in TSM buffer (100mM Tris-HCl, 500 mM 

sucrose, 10mM MgCl2) and incubated in the presence of 100 μg of lysostaphin for 60 
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minutes at 37°C. Supernatants were collected and precipitated with 10% trichloroacetic 

acid, followed by centrifugation to recover precipitates. These were then washed thrice 

with 100% ice-cold ethanol, before being air dried. Triplicate samples of secreted and 

surface proteins for each strain were resuspended in urea buffer, with 15 μg/ml loaded 

and run on 12% SDS-PAGE gels. At least 2 lanes were left between each sample to 

prevent loading contamination, with wild-type and mutant strains run on separate gels. 

Following this, secreted protein gels were cut into 11 approximately equal fractions, 

whilst surface proteins gels were separated into 10 approximately equal fractions. These 

were then washed with ACN to remove SDS and bromophenol blue, before being dried 

using a SpeedVac centrifuge. Gel pieces were rehydrated with 100μl of 45 mM DTT and 

incubated at 55°C for 30 minutes. The supernatant was removed and replaced with 100 

mM iodoacetamide and incubated in the dark at room temperature for 30 minutes. 

Following this, the buffer was removed and washed thrice with 50% ACN/50 mM ABC 

with agitation for 15 minutes. Gel pieces were dried again using a SpeedVac centrifuge. 

Promega Trypsin (12.5 ng/μl) was dissolved in Promega trypsin buffer, and enough 

trypsin solution was used to cover the gel pieces, before incubation at 37°C for 12-16h. 

The supernatant was removed and retained, and the reaction stopped with 5% glacial 

acetic acid. The gel pieces were covered with 100 μl of 50:50 ACN:water containing 

0.1% formic acid and vortexed for 15 minutes. Supernatants were again removed and 

added to the previously collected supernatants. Samples were dried using a SpeedVac 

centrifuge, and resuspended in 1 ml of 0.1% formic acid in water.  Samples were then 

desalted and analyzed using a linear ion trap-LTQ instrument mass spectrometer (LTQ 
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XL, Thermo) operated with Xcalibur (v2.0.7) data acquisition software, as described by 

us previously (Rivera et al., 2011).  
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Results 

Verification of extracellular protease depletion in the LAC-protease null strain. An 

extracellular protease-null strain of S. aureus has previously been generated and 

described in USA300 LAC (Karlsson & Arvidson et al., 2002). As it forms the basis of 

the work described herein, we first set out to confirm the lack of secreted proteases in this 

strain using a targeted proteomics method. Targeted mass-spectrometry uses the inclusion 

of mass to charge ratios in order to guide MS sequencing to a pre-determined subset of 

peptides, and is more accurate than other methods that overlook certain proteins. The 

Aur, SspA, SspB, ScpA and SplA (used as a representative for the spl operon) sequences 

were analyzed using the Protein Prospector-MS digest program to determine the peptides 

that would result after trypsin digest. A peptide that is unique to each protease was 

chosen, and its mass to charge ratio included in a designed MS method. Overnight 

secretome samples (15h) from the LAC wild-type and LAC-protease null mutant were 

prepared and analyzed using an LTQ-MS. Spectral counts of proteins identified were 

compared, with the LAC wild-type producing robust counts for SspA (48), ScpA (49), 

SspB (50), Aur (47) and SplA (8). As expected, when the LAC-protease null mutant 

secretome was probed, no extracellular proteases were detected. This finding was also 

verified via gelatin zymogram, with the LAC wild-type producing several activity bands, 

whilst the mutant displayed none (Figure 29). To ensure that no additional, unintended 

mutations (specifically agr) had occurred in the LAC-protease null strain, we also 

performed real-time PCR analysis with primers specific to RNAII, RNAIII and hla, with 

the latter serving as a representative agr regulated virulence determinant. We found that, 

at both 5h and 15h of growth, there was no observable different between the 2 strains in  
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Figure 29. Gelatin zymography of the LAC wild-type and its protease-null mutant.  
The secretomes of the LAC wild-type and protease-null mutant were collected (15 h) and  
protease activity visualized on a zymogram gel containing gelatin. 
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the levels of these transcripts (Figure 30). As such, these analyses verify that an 

exoprotease-null strain of LAC was created, that seemingly bears no apparent additional 

mutations that impact the synthesis of virulence determinants. 

The protease-null strain has fitness defects during growth in peptide based media 

and pig serum. We first sought to assess whether loss of extracellular proteases affected 

viability of the USA300 LAC strain. As such, growth profiling was performed in 

complex media (TSB) over a 96h period, with no difference observed compared to the 

parental strain (Figure 31A). This is perhaps to be expected, as, for example, agr mutants 

of S. aureus are aproteolytic, yet are undoubtedly viable. Following this, we next tested 

the ability of the protease null strain to grow in peptide based media. This was performed 

as many bacterial species possess a PrtP homolog, which is a surface exposed protease 

that functions to generate oligopeptides from polypeptides for nutrition (Liu et al., 2010). 

Such a protein is lacking in S. aureus (our unpublished data), and therefore we reasoned 

that the extracellular proteases perhaps fulfill such a function for the generation of 

oligopeptides in the absence of a PrtP protein in S. aureus. As such, we grew the LAC 

parental strain and its protease null mutant in 10% milk broth (Figure 31B), which is 

routinely used to evaluate peptide based nutrition (Borezee-Durant et al., 2009), as it 

contains few free amino acids, and abundant peptides. During the first 24 hours of 

profiling, no difference in viability for the LAC wild-type and its mutant strain was 

observed. Interestingly, after this time, both strains began to lose viability, with the 

protease null mutant proving significantly less able to resist starvation in peptide based 

media compared to the parent. Specifically, by day 2, the protease mutant produced a 2.3  
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Figure 30. Exoprotease deletion does not lead to observable difference in agr or hla 
transcript levels. qRT-PCR was performed with primers specific to RNAII, RNAIII and 
hla in the LAC wild-type (black) and protease-null (grey) strains. These analyses were 
performed at (A) 5 hours and (B) 15 hours of growth. The data presented are from at least 
three independent cultures; error bars are shown as +/- SEM.  
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Figure 31. Secreted proteases aid in survival during growth in peptide based media 
and pig serum. The average CFU/mL of the LAC wild-type (black) and LAC-protease 
null mutant (grey) were compared over 4 days in: A) TSB and B) 10% milk broth. Data 
represents three replicates showing less than 10% variability. A Student’s T-Test was 
used with a 5% confidence level to determine statistical significance, * = p� 0.05. C) 
The average CFU/mL of the LAC wild-type (black) and LAC-ESPN mutant (grey) were 
compared at the times indicated during growth in pig serum. Data is expressed as percent 
recovery of the inoculum, and represents three independent experiments. A Student’s T-
Test was used with a 5% confidence level to determine statistical significance, ** = p� 
0.01, *** = p� 0.001; error bars are shown as +/- SEM.  
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fold decrease in average CFU/mL, which was exacerbated at day 3 with a 4-fold decrease 

in survival. By day 4, a 3.1-fold decrease in mutant viability was determined.  

We next set out to assess the fitness of the wild-type and protease mutant during growth 

in a more pathogenically relevant medium, in this case pig serum. Accordingly, 

exponentially growing cells of the parent and mutant were inoculated into pig serum, and 

the survivability of triplicate cultures determined (Figure 31C). When growth was 

analyzed during early time points, a large decrease in the viability of the protease null 

strain was observed. Specifically, after 1h a 3.2-fold decrease in mutant cell viability was 

observed (24.6% of the inoculum), compared to the parent strain (80.9% of the 

inoculum). Viability stabilized after this time, yet still produced a consistent 2-fold 

reduction in the mutant strain compared to the parent from hours 2-5. After 24h of 

incubation, whilst both strains had robust growth (Wt = 480.8% recovery of inoculum, 

protease-null strain = 355.6%), there was still a decrease in final loads of the mutant 

strain. This suggests that secreted proteases may have a role in nutrition acquisition in S. 

aureus, particularly during times of stress and starvation.   

Secreted proteases play a role in resistance to antimicrobial peptides. Antimicrobial 

peptides (AMPs) are small molecules that have a key role in the innate immune system, 

displaying broad spectrum antibacterial activity. Previously it was shown that the S. 

aureus secreted protease, aureolysin, is able to cleave the human cathelicidin, LL-37 

(Sieprawska-Lupa et al., 2004). To determine if secreted proteases facilitate resistance to 

only this AMP, or other such peptides, sensitivity profiling of the mutant was performed 

(Figure 32). When LD50 values were compared for LL-37 we observed a 2.7-fold  
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Figure 32. Secreted proteases play a role in the resistance of S. aureus to 
antimicrobial peptides. The LAC wild-type (black) and protease null mutant (grey) 
were cultured overnight with either LL-37, indolicidin or histatin-5. The LD50 for each 
was determined by OD600 evaluation of cultures grown with AMPs compared to those 
without. Data presented is from at least three independent replicates showing identical 
values. 
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increase in sensitivity for the protease null strain (35 μg/mL) when compared to the 

parent (95 μg/mL). Similarly increased sensitivity was observed when testing was 

performed with indolicidin, with the wild-type strain producing a LD50 of 10 μg/mL, 

whilst the mutant was 3.33-fold lower at only 3 μg/mL. Finally, when histatin-5 was 

used, the LAC wild-type LD50 was 10 μg/mL, yet the protease null strain displayed a 5-

fold increase in sensitivity, with an LD50 of 2 μg/mL. These findings suggest that secreted 

proteases contribute to the ability of S. aureus to resist the toxic effects of AMPs. 

 Extracellular proteases are required for survival during interaction with the innate 

immune system. The in vitro AMP sensitivity assays suggest that extracellular proteases 

are important for survival during interaction with elements of the immune system. 

Accordingly, we next profiled survivability of the mutant strain in the presence of the 

innate immune system, including its cellular components. Accordingly, exponentially 

growing LAC wild-type and protease null mutant cells were separately cultured in whole 

human blood for 4 hours, and their viability determined (Figure 33). Analysis revealed 

that the LAC wild-type had bacterial loads that decreased only marginally from the initial 

inoculum (82.1% recovered). In contrast, the protease null mutant displayed significantly 

impaired survival, returning only 12.6% of the inoculum. This results in a 6.5-fold 

reduction in survivability of the mutant strain when compared to the parent. Ultimately 

this data corroborates our serum and AMP findings, and suggests that secreted proteases 

protect S. aureus during interaction with the host immune system. 

Secreted proteases contribute to CA-MRSA wound formation. There are conflicting 

results regarding the role of extracellular proteases in S. aureus virulence (Shaw et al.,  
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Figure 33. Secreted proteases are protective during interaction with the human 
innate immune system. The LAC wild-type and protease null strain were separately 
cultured in whole human blood for 4 hours, before their viability was determined. Data is 
expressed as percent recovery of the inoculum, and represents three separate blood 
samples and nine individual replicates. Error bars are shown +/- SEM; statistical 
significance was calculated using a Student’s t test with 5% confidence level, **** = 
P�0.0005  
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2004; Coulter et al., 1998; Kubica et al., 2008; Burlak et al., 2007; Rice et al., 2001; 

Calander et al., 2004; Hossain et al., 2006; Diep et al., 2004). As such, we set out to 

determine if the 10 major secreted proteases collectively contribute to localized infection 

using a murine model of skin abscess. Accordingly, 10 mice were subcutaneously 

inoculated with either the LAC wild-type or protease null mutant, and the infection was 

allowed to proceed for 6 days. Following this time, all mice were euthanized, any 

abscesses harvested, and the bacterial loads per abscess determined (Figure 34). We 

observed that the protease null mutant had significantly reduced bacterial loads per 

abscess when compared to the wild-type. Specifically, the average wild-type 

CFU/abscess was 57.7% of the inoculum, whilst for the mutant it was 28.1%, 

representing a 2.0-fold decrease in bacterial burden.  

Extracellular proteases play a key role during systemic CA-MRSA infections. In 

addition to presenting as skin and soft tissue infections, CA-MRSA is also a major cause 

of bacteremia and systemic disease. As such, we next set out to determine if extracellular 

protease deletion impacts systemic CA-MRSA infections. Accordingly, 30 mice each 

were inoculated via tail vein injection with 1 X 108 cells of either the LAC wild-type or 

protease null mutant. The infection was allowed to proceed for 6 days, or until mice 

reached a pre-moribund state (used as a measure of mortality). Mice were then 

euthanized and the brain, liver, kidneys, heart, lungs and spleens collected. Any mouse 

sacrificed before day 6 was recorded for mortality, but their organs were not analyzed for 

bacterial burden. Following recovery, each organ was homogenized, serial diluted and 

plated to determine bacterial load (Figure 35). Of the 30 LAC wild-type animals, 2 died 

prior to day 6, yielding a mortality rate of 3.3%. In contrast, 7 out of the 30 inoculated  
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Figure 34. Secreted proteases contribute to CA-MRSA abscess formation. The LAC 
wild-type and protease null mutant were used to subcutaneously inoculated the scapula of 
10 SKH-1 mice each, at 1 x 108 cells. After 6 days abscesses were harvested and bacterial 
loads determined via homogenization and serial dilution. The average cfu/abscess 
returned is indicated by horizontal bars. Statistical significance was calculated using a 
Student’s t test with a 5% confidence level (p < 0.05). 
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Figure 35.  Secreted proteases have contrasting roles in the morbidity and mortality 
of systemic CA-MRSA infections. The LAC wild-type and mutant were inoculated via 
tail vein injection into 30 mice each, at 1 x 108 cells. Mortality for the LAC wild-type 
(black) and LAC-protease null mutant (grey) infected mice was measured over 6 days 
(A), and analyzed using a Log Rank and Chi Squared Test with 1-degree of freedom (p = 
0.079). After 6 days, all surviving mice were euthanized, and their organs harvested for 
bacterial load determination (A-F). Average CFU/organ of the wild-type and mutant 
strain were compared; error bars are shown as +/- SEM. A Mann-Whitney test was used 
to determine statistical significance. *= p� 0.05, ** = p�0.01, **** = p�0.0001.  
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with the LAC-protease null mutant died, giving a 23.3% mortality rate. This represents a 

7-fold increase in mortality for the protease null strain compared to the parental strain. 

Conversely, when analyzing bacterial burden per organ between the two groups, we 

observed significant decreases for the mutant strain in the liver, lungs, heart and spleen. 

Specifically, the largest fold change, 98.7, was observed in the lungs, with the LAC wild-

type returning an average CFU/lungs of 4.74 X 104 and the protease null mutant returning 

4.80 X 102. Additionally, we observed a 7.4 fold decrease in bacterial load in the liver of 

inoculated mice, with the wild-type producing an average CFU/liver of 4.32 X 105 and 

the mutant 5.79 X 104. The heart produced a 5.7 fold decrease in mutant bacterial cells, 

with LAC yielding 1.2 X 104 and the protease mutant yielding 2.1 X 103. With regards to 

the spleen, we observed 2.01 X 103 CFU/spleen for the parental strain and 6.6 X 102 for 

the mutant, which is a 3.0 fold decrease. Finally, in the brain we observed a 3.8 fold 

decrease in the average CFU/brain for mutant infected mice, however this was found to 

be outside the range of significance, although clearly trending towards it (p = 0.079).   

Interestingly, there was no significant difference between the two strains in their ability to 

infect the kidneys of inoculated mice. The LAC wild-type returned 5.57 X 107 

CFU/organ whilst the protease null mutant returned 5.87 X 107. As such it appears that 

secreted proteases play a major role in the survival of S. aureus during in vivo infection.   

Secreted proteases are primary effectors of virulence determinant stability. It has 

previously been proposed (McGavin et al., 1997; McAleese et al., 2007;  Lindsay & 

Foster 1999; Travis et al., 1995), and demonstrated by our group to a limited extent 

(Gonzalez et al., 2012), that secreted proteases regulate the stability of self-derived 

toxins. To determine if this is in fact the case, we assessed the impact of secreted 
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proteases on virulence determinant stability using proteomic techniques. Accordingly, 

stationary phase secretomes (15h) of the LAC wild-type and protease null mutant were 

collected in triplicate and separated via SDS-PAGE. Each gel was then cut into 11 

identical fractions to facilitate processing. The data from all 11 fractions was pooled, and 

collectively analyzed for alterations in protein abundance using spectral counts (Table 5). 

In total, 19 known secreted proteins had increased abundance upon deletion of 

extracellular proteases. The highest fold change was seen for phenol soluble modulin 

alpha 4, with a 4.2-fold increase in the mutant. Other well known virulence determinants 

were also found to be more abundant in the protease-null strain, including 2 Lipases (Geh 

= 3.8-fold, SAUSA300_2603 = 2.5-fold), components of the γ-hemolysin (HlgA = 2.4-

fold, HlgC = 2.1-fold), α-toxin (2.0-fold), leukotoxin LukE (2-fold) and enterotoxin Q 

(1.5-fold). Our analysis also revealed increased abundance of certain proteins in the wild-

type strain, including all 10 secreted proteases, as expected, along with catalase (9-fold), 

the CamS pheromone (2-fold), and 2 putative lipoproteins (SAUSA300_2403 = 2-fold, 

SAUSA300_0411 = 3-fold).  

A consideration with this pooled analysis is that a protein may be processed by secreted 

proteases into potentially inactive fragments, as a result of endoproteolysis. As the 

protein is not completely degraded to free amino acids, each of these fragments will be 

detected by MS-analysis; therefore one may not observe any fold-change in spectral 

counts, yet cleavage has rendered the protein non-functional.  As such, protein abundance 

was next compared within individual fractions from the SDS-PAGE gels. Spectral counts 

for a given protein were only analyzed for the single fraction that would contain its full-

length protein, based on predicted molecular weight. (Figure 36, Table 6). The 19  
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Table 5. Collective alterations in protein abundance for secreted  
proteins upon deletion of extracellular proteases in S. aureus USA 300.  

Protein Gene 
Accession  
Number WTa,c Mb,c 

Fold  
Change

Phenol-soluble modulin 
alpha 4 peptide  psmα4 4 17 4.25
Triacylglycerol lipase  geh SAUSA300_0320 276 1062 3.84
Autolysin  alt SAUSA300_1921 117 303 2.58
Triacylglycerol lipase  lip SAUSA300_2603 168 425 2.52
Gamma-hemolysin  
component A  hlgA SAUSA300_2365 29 72 2.48
Gamma-hemolysin  
component C  hlgC SAUSA300_2366 17 37 2.17
Alpha-hemolysin  hla SAUSA300_1058 226 462 2.04
Staphylococcal  
superantigen-like  
protein 7  ssl7 SAUSA300_0401 2 6 2
Extracellular matrix- 
binding protein  ebh SAUSA300_1327 2 4 2
Extracellular matrix  
protein-binding protein  emp SAUSA300_0774 5 10 2
Leukocidin lukA SAUSA300_1975 88 176 2
Leukotoxin  lukE SAUSA300_1769 8 16 2
Leukocidin  lukB SAUSA300_1974 83 157 1.89
Putative staphylococcal  
enterotoxin  SAUSA300_0370 7 13 1.85
Ear protein  ear SAUSA300_0815 8 14 1.75
Phenol-soluble modulin 
beta 1 peptide  psmβ1 SAUSA300_1067 5 8 1.6
Staphylococcal  
enterotoxin Q  seq SAUSA300_0801 12 19 1.58
Immunoglobulin- 
binding protein  sbi SAUSA300_2364 17 26 1.52
Phenol-soluble modulin 
alpha 3 peptide  psmα3 2 3 1.5
Putative lipoprotein SAUSA300_2403 2 0 -2
Sex pheromone  camS SAUSA300_1884 2 0 -2
Uncharacterized  
lipoprotein SAUSA300_0411 3 1 -3
Catalase  katA SAUSA300_1232 9 0 -9
Serine protease  splA SAUSA300_1758 14 0 -14
Serine protease  splD SAUSA300_1755 15 0 -15
Zinc metalloproteinase  
aureolysin  aur SAUSA300_2572 15 0 -15
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                                                    Table 5 continued 

Serine protease  splE SAUSA300_1754 18 0 -18
Serine protease  splC SAUSA300_1756 18 0 -18
Serine protease  splF SAUSA300_1753 27 0 -27
V8 protease  sspA SAUSA300_0951 43 1 -43
Serine protease  splB SAUSA300_1757 46 0 -46
Cysteine protease  sspB SAUSA300_0950 123 0 -123
Staphopain A  scpA SAUSA300_1890 143 1 -143

 

a-LAC wild-type 
b- LAC protease-null mutant 
c- total spectral counts identified for each protein
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Table 6. Individual fraction analysis of alterations in protein stability for 
secreted proteins upon deletion of extracellular proteases in S. aureus USA 300.  

Protein Gene 
Accession  
Number Size 

Fold 
Change

Immunoglobulin-binding 
protein  sbi SAUSA300_2364 50 kDa 9
Alpha-hemolysin  hla SAUSA300_1058 36 kDa 8.88
Phenol-soluble modulin 
alpha 4 peptide  psmα4 2 kDa 5
Leukocidin                                   
lukB SAUSA300_1974 39 kDa 4.66
Triacylglycerol lipase  lip SAUSA300_2603 77 kDa 4.6
Gamma-hemolysin 
component A  hlgA SAUSA300_2365 35 kDa 4
Staphylococcal 
complement inhibitor  scn SAUSA300_1919 13 kDa 3.66
Leukotoxin  lukE SAUSA300_1769 35 kDa 3.66
Gamma-hemolysin 
component C  hlgC SAUSA300_2366 36 kDa 3.33

Staphylococcal 
superantigen-like protein 
7  ssl7 SAUSA300_0401  26 kDa 3
Extracellular matrix 
protein-binding protein  emp SAUSA300_0774 38 kDa 3
Ear protein  ear SAUSA300_0815 20 kDa 2.66
Triacylglycerol lipase 
precursor geh SAUSA300_0320 76 kDa 2.55
Panton-Valentine 
leukocidin lukS SAUSA300_1382 35 kDa 2.45

Autolysin  alt 
137 
kDa 2.3

Secretory antigen  ssaA SAUSA300_2249 29 kDa 2
Extracellular matrix-
binding protein  ebh SAUSA300_1327 

1123 
kDa 2

Staphylococcal 
enterotoxin Q  seq SAUSA300_0801 28 kDa 2
Leukocidin                                   
lukA SAUSA300_1975  40 kDa 2
Staphylococcal 
enterotoxin K  sek SAUSA300_0800 28 kDa 2
Phenol-soluble modulin 
alpha 3 peptide  psmα3 3 kDa 2
Phenol-soluble modulin 
beta 1 peptide  psmβ1 SAUSA300_1067 4 kDa 1.75
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                                                       Table 6 continued 

Putative staphylococcal 
enterotoxin  SAUSA300_0370 23 kDa 1.66
Panton-Valentine 
leukocidin,  lukF SAUSA300_1381 37 kDa 1.5
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Figure 36. Extracellular proteases modulate the stability of a wealth of known 
secreted virulence factors.  The secretome of LAC and its protease-null strain were 
collected and fractionated via SDS-PAGE. Known, full length secreted proteins were 
analyzed and their spectral counts determined. Shown are the ratios of abundance for 
each secreted protein in the wild-type (black) compared to the mutant (grey).  
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proteins identified from the pooled sample all had decreased abundance in the wild-type 

strain in their relative molecular weight fractions; in many cases to even greater degrees 

than in our collective analysis. For example, we observed increased abundance for Sbi (9-

fold), alpha-toxin (8.8-fold), phenol soluble modulin alpha 4 (5-fold), γ-hemolysin (HlgA 

= 4-fold) and LukE (3.6-fold) upon deletion of extracellular proteases using this method. 

Furthermore, an additional 5 proteins that did not produce a significant fold change in the 

pooled samples were identified as being altered in protein stability in the mutant strain. 

These include the two components of the Panton-Valentine leukocidin (LukS = 2.4-fold, 

LukF = 1.5-fold), the staphylococcal complement inhibitor (3.6-fold), enterotoxin K (2-

fold), and secretory antigen SsaA (2-fold).  

Following this, we also performed a similar analysis for surface proteins between the two 

strains. The rationale for this is that existing evidence in the literature suggests secreted 

proteases can also target surface exposed proteins in S. aureus (Karlsson et al., 2001; 

McAleese et al., 2001). As such, the cells used to generate secretomes were harvested, 

and their surface protein fraction isolated, before being processed in an identical SDS-

PAGE based fashion. When performing a collective analysis of spectral counts for all 

fractions, we observed 10 proteins with a 1.5-fold or greater increase in the protease null 

mutant (Table 7). These include fibronectin-binding proteins A (4-fold) and B (3-fold), as 

well as fibrinogen binding protein (2.3-fold), clumping factor A (1.7-fold) and IsdA (1.6-

fold). We also performed specific fraction analysis as detailed above to determine those 

proteins with altered protein stability upon deletion of the extracellular proteases (Figure 

37, Table 8). Specific analysis revealed that, in addition to the 10 surface proteins 

identified from pooled studies, a further 7 had a fold change of 2 or higher in the protease  
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Table 7. Collective alterations in protein abundance for surface proteins upon  
deletion of extracellular proteases in S. aureus USA 300.  

Protein Gene 
Accession 
Number WTa,c Mb,c 

Fold 
Change

Fibronectin-binding  
protein B fnbB SAUSA300_1052 1 4 4
Fibronectin-binding  
protein A  fnbA SAUSA300_2441 1 3 3
Enolase eno SAUSA300_0760 45 129 2.86
Staphylokinase  sak SAUSA300_1922 16 40 2.5
Fibrinogen-binding protein  efb SAUSA300_1055 9 21 2.33
Cell wall surface anchor 
 family protein  sasG SAUSA300_2436 33 74 2.24
Transferrin receptor tpn SAUSA300_0721 1 2 2
Putative lipoprotein  SAUSA300_0372 24 44 1.83
Clumping factor A  clfA SAUSA300_0772 11 19 1.72
Iron-regulated surface 
determinant protein A isdA SAUSA300_1029 10 16 1.6

a-LAC wild-type 
b- LAC protease-null mutant 
c- total spectral counts identified for each protein 
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Table 8. Individual fraction analysis of alterations in protein stability for surface  
proteins upon deletion of extracellular proteases in S. aureus USA 300. 

Protein Gene
Accession 
Number Size 

Fold 
Change 

Clumping factor B clfB SAUSA300_2565 97kDa 8 
Staphylokinase  sak SAUSA300_1922 18 kDa 4.8 
Fibrinogen-binding protein  efb SAUSA300_1055 19 kDa 4.25 
Fibronectin-binding  
protein B fnbB SAUSA300_1052 13 kDa 4 
Enolase eno SAUSA300_0760 47 kDa 3.82 
Iron-regulated surface 
determinant protein A isdA SAUSA300_1029 39 kDa 3.75 
Fibronectin-binding  
protein A  fnbA SAUSA300_2441

112 
kDa 3 

Cell wall surface  
anchor family protein                    
sasG SAUSA300_2436 49 kDa 2.93 
Putative lipoprotein  SAUSA300_0372 21 kDa 2.5 
Putative surface protein  SAUSA300_0883 16 kDa 2.47 
Probable transglycosylase  isaA SAUSA300_2436 24 kDa 2.36 
Immunodominant 
staphylococcal antigen B  isaB SAUSA300_2573 19 kDa 2.2 
Clumping factor A  clfA SAUSA300_0772 97 kDa 2.16 
Immunoglobulin G binding 
protein A spa SAUSA300_0113 56 kDa 2.1 
Elastin-binding protein  ebpS SAUSA300_1370 53 kDa 2 
Transferrin receptor tpn SAUSA300_0721 2 
Staphylocoagulase  coa SAUSA300_0224 69 kDa 2 
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Figure 37. Extracellular proteases modulate the stability of a number of surface-
associated virulence factors. The surfactome of LAC and its protease-null strain were 
collected and fractionated via SDS-PAGE. Known, full length surface proteins were 
analyzed and their spectral counts determined. Shown are the ratios of abundance for 
each secreted protein in the wild-type (black) compared to the mutant (grey).  
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mutant. These included immunodominant staphylococcal antigens A (2.3-fold) and B 

(2.2-fold), staphylocoagulase (2-fold), immunoglobulin G binding protein A (Spa = 2.1- 

fold), elastin-binding protein (2-fold) and a putative surface protein (SAUSA300_0883 = 

2.4-fold). We again observed a general increase in protein abundance for the majority of 

proteins identified by fraction analysis when compared to the pooled data. The most 

striking of which was clumping factor B, which, upon fraction analysis, produced an 8-

fold increase in abundance in the mutant.  
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Discussion 

Recent reports suggest that MRSA is now the leading cause of infectious disease and 

death by a single agent in the United States (Coulter et al., 1998). This pathogenic 

success can largely be attributed to the meteoric increase in CA-MRSA infections in the 

last decade (Burlak et al., 2007; Calander et al., 2008); Calander et al., 2004). Although 

several CA-MRSA lineages exist, USA300 is now thought to account for more than 50% 

of all MRSA infections in some regions (Johnson et al., 2007; Moran et al., 2006). The 

reason for the surprising success of USA300 is somewhat unclear; however work by a 

number of groups suggests it may be attributable to the differential expression of core 

genomic elements (Li et al., 2009), including the PSMs, hemolysins, extracellular 

proteases and enterotoxins (Diep et al., 2008; Li et al., 2009; Adem et al., 2005; 

Kobayashi & DeLeo, 2009; Montgomery et al., 2008; Wang et al., 2007). A number of 

studies performed by ourselves and others have focused on determining the contribution 

of extracellular proteases to disease causation (Reed et al., 2001; Shaw et al., 2004; 

Coulter et al., 1998; Rice et al., 2011; Calander et al., 2004; Karlsson & Arvidson, 2002; 

Sifri et al., 2008; Prajsnar et al., 2008). Thus far these data have proved contradictory, 

perhaps as a result of using strains that have varying proteolytic capabilities. Some 

backgrounds used (e.g. RN6390) have limited clinical significance, whilst other studies 

have focused only on individual protease mutations. This latter point is of particular 

importance as it has been shown in other highly proteolytic bacteria that significant levels 

of functional redundancy exist (Travis et al., 1995). For these reasons, and to explore the 

role of this class of enzymes in CA-MRSA pathogenesis, we have focused in this study 

on a total exoprotease null mutant of USA300 LAC.    
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Interestingly, whilst we show that the mutant strain is viable in complex media, we did 

observe a survival defect during extended culturing in peptide based media. Previous 

reports have shown that S. aureus cells can only import octapeptides or smaller for 

nutrition based purposes (Hiron et al., 2007). Therefore, it is possible that the 

extracellular proteases of S. aureus cleave large oligopeptides into smaller fragments for 

growth and nutrition. Interestingly, the defect was only apparent after 24h of growth. 

Thus it is possible that at earlier time points, the major nutrient source is limited free 

amino acids, and oligopeptides with less than 8 residues. Once these more readily usable 

nutrients have been exhausted, the focus would then shift to breaking down oligopeptides 

with greater than 9 residues. In this scenario, any strain lacking extracellular proteases 

would be limited in their ability to generate smaller, importable peptides for nutrition, 

explaining the growth defect observed. This contention is supported by the observation 

that, unlike a variety of other organisms, S. aureus lacks a PrtP homolog, which serves to 

breakdown large oligopeptides for import and nutrition (Siezen et al., 1999). We also 

observed fitness defects in the protease null strain during growth in the more 

pathogenically relevant pig serum. This is perhaps a result of an inability to degrade 

proteins for nutritive purposes. Additionally, others have shown that nutrition defects 

become emphasized during growth in serum (Hammer & Skaar, 2011). Alternatively, 

given that serum contains complement, AMPs and other non-cellular components of the 

immune system, it is possible the growth defects observed stem from a role for 

extracellular proteases during interaction with innate immunity, as a decrease in survival 

of the protease-null mutant is observed at early time points. This is support by the recent 
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finding that aureolysin facilitates resistance of S. aureus to killing by complement as a 

result of C3 cleavage (Laarman et al., 2011). 

This contention is further corroborated by our observation that the protease mutant strain 

is more sensitive to antimicrobial peptides (AMPs). It has previously been shown that 

aureolysin cleaves the cathelicidin AMP, LL-37 (Sieprawska-Lupa et al., 2004). Herein 

we show that cleavage of such agents by extracellular proteases is not confined to LL-37 

alone, as we observed increased sensitivity to both indolicidin and histatin-5.  During 

infection, AMPs bind to bacterial cells through cationic interactions at the cell surface, 

and exhibit antibacterial activity through several mechanisms (Nishi et al., 2004). 

Therefore, in S. aureus, secreted proteases appear to aid in immune evasion by 

preemptively degrading these agents of innate immunity. We further investigated this 

assertion by evaluating survival in whole human blood. In addition to complement and 

AMPs, whole human blood also contains cellular components of immunity. When such 

profiling was performed we also saw major survival defects in the mutant strain. The 

immune components of serum and blood are relatively similar, and thus the decreases in 

survivability observed may result from a lack of AMPs and complement system 

degradation in the mutant strain. However, in serum at 4h, the mutant produced a 2-fold 

decrease, while in blood a 4.72-fold decrease was observed at the same time. This 

suggests that secreted proteases are not only used for protection against the innate 

immune system, but have a larger role in evasion of cell mediated immunity. This finding 

is support by the previous work from our group, showing that a functional aureolysin is 

required to survive phagocytosis by human macrophages (Kubica et al., 2008). 

Additionally, others have shown that Staphopain B can cleave both CD11b and CD31, 
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which block the phagocytosis of S. aureus by neutrophils and monocytes (Smagur et al., 

2009a; Smagur et al., 2009b). Further to this, a number of the secreted proteases have 

been shown to cleave components of human blood, such as pro-thrombin and pro-uPA, in 

order to facilitate survival and proliferation (Beaufort et al., 2008; Wegrzynowicz et al., 

1980). Collectively, findings from the literature, along with our data presented herein, 

strongly argue that extracellular proteases play a protective and beneficial role during S. 

aureus infection. 

We also observed significant influence of the secreted proteases on in vivo pathogenesis. 

This was first studied for localized infection, using a murine model of abscess formation. 

Over the course of a 6 day period we observed an approximately 2-fold decrease in 

virulence for the mutant strain. This decrease is perhaps not as large as would be 

expected; previous work has shown that 8325-4 sspA and sspB mutants are more than 3-

fold impaired in virulence when using this same model (Shaw et al., 2004). The reason 

why a complete protease null mutant would display less attenuation than single protease 

mutants is likely explained by the proteomics works conducted in this study. We observe 

that, upon deletion of the secreted proteases, the stability of a large number of key 

virulence factors increases significantly. As such, a protease-null strain actually 

accumulates more toxins, rather than less. This is particularly important in this model, as 

key mediators of skin infections, such as α-toxin and the PSMs, are more abundant upon 

protease inactivation. Therefore, the observed 2-fold reduction is actually quite 

surprising, given the increased prevalence of wound enhancing toxins. As such, any 

observed decrease at all upon protease deletion is a major finding, and suggests that the 
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loss of these enzymes, despite being subverted by other wound-impacting toxins, 

influences the ability of S. aureus to cause localized disease. 

When using systemic infection models, we observed further, and profound alterations in 

virulence that were far in excess of those seen for localized infections. Specifically, the 

mutant displayed significantly decreased bacterial loads in the lungs (98.79-fold), liver 

(7.45-fold), heart (5.72) and spleen (3.04-fold). The specific explanations for these 

findings, are likely complex and multifactorial. However, it has previously been shown 

that secreted proteases can cleave human α1-proteinase inhibitor (Potempa et al., 1986), 

α1-antichymotrypsin, the heavy chains of all human immunoglobulin classes (Prokesova 

et al., 1992), elastin (Potempa et al., 1988), fibrinogen, fibronectin, high molecular 

weight kinininigen and plasminogen (Imamura et al., 2005; Massimi et al., 2002).  

Cleavage of each of these host proteins aids in tissue invasion, and perhaps explain the 

decrease in mutant cells in these organs. Further to this, we demonstrate in our 

proteomics studies that protease null mutant cells have increased decoration of their cell 

walls, as higher levels of surface proteins were observed upon deletion of proteolytic 

enzymes. Indeed our preliminary studies have shown that the protease null-strain is 

significantly more adhesive to surfaces coated with human proteins, including elastin (our 

unpublished observations). This, coupled with our findings that the protease mutant strain 

is less resistant to AMPs, and has decreased survival in both serum and whole-blood, 

might begin to explain this phenotype. As such, one would hypothesize that, upon 

inoculation into the blood, the protease null strain would immediately display decreased 

fitness for survival, increased attachment, decreased dissemination and invasion, and an 

inability to cleave key host proteins for survival, evasion and nutrition.  
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In stark contrast to this, we in fact observe increased virulence of the protease-null 

mutant when using mortality as a measure of infection. This finding is of primary 

importance, and speaks strongly to a major role for the secreted proteases in controlling, 

and tightly regulating the infectious process. Herein we show major increases in 

virulence determinant stability upon inactivation of extracellular proteases. Specifically 

we show that α-toxin, γ-hemolysin, PSMs, LukE, LukAB, PVL and others are all more 

abundant in protease-null strain. Importantly, each of these factors have been linked to 

increased virulence and mortality during S. aureus infection (Wang et al., 2007; Prajsnar 

et al., 2008; Bubeck Wardenberg & Schneewind, 2008; Bubeck Wardenberg & 

Schneewind, 2007; Menestrina et al., 2003; Morinaga et al., 2003; Dumont et al., 2011; 

Labandeira-Rey et al., 2007; Diep et al., 2007; Loffler et al., 2010 ; Tseng et al., 2009). 

Thus, despite the loss of extracellular proteases and their affects on the host, other major 

virulence factors are more prevalent and stable. We propose that, in the absence of 

proteolytic activity, these other virulence factors exist unchecked, and therefore provide 

the potential for the aggressive progression of infection observed. Indeed, the 

overproduction of PVL has frequently been linked to the rapid and increased mortality 

associated with necrotizing pneumonia (Garnier et al., 2006; Morgan, 2005). Indeed, such 

a scenario is supported by reports on the role of the cysteine protease, SpeB, from Group 

A Streptococci (GAS). When levels of this enzyme rise in GAS, the stability and 

abundance of other virulence factors is reduced, leading to impairments in invasion and 

virulence (Kansal et al., 2000; Kansal et al., 2003; Chatellier et al., 2000). 

Therefore, this presents a scenario where, in addition to their own, independent virulence 

affecting roles, the secreted proteases exist as key check point enzymes to control the 
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severity and intensity of infection via modulating the stability of other toxins and 

virulence determinants. Indeed, one could suggest that the regulatory control of secreted 

proteases by the agr system is no accident, but in fact evolutionary design. In such a 

scenario, any enhancement of agr activity, such as that seen in CA-MRSA strains, would 

lead to massive toxin production, and death of the host organism. As an opportunistic 

pathogen, such rapid killing of the host by S. aureus is counterintuitive to survival. 

Therefore, by tying the production of other toxins to extracellular protease expression and 

activity, one is presented with an inbuilt mechanism to self regulate the overtly harmful, 

and often lethal effects of secreted toxins on the host, thus tempering and controlling the 

pathogenic process. 

In summary, we demonstrate that the extracellular proteases of S. aureus play a variety of 

key roles in the virulence process. Specifically, they aid in protection against the innate 

immune system, at both cell-dependent and independent levels. They also strongly 

impact the progression of both localized and systemic CA-MRSA infections. Finally, and 

perhaps most importantly, they are key mediators of secreted and cell wall associated 

virulence determinant stability. Collectively our findings provide a unique insight into the 

progression of CA-MRSA infections, and the role of secreted proteolytic enzymes. 
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Chapter 5: Final Discussion 
 
 
 
 

Final Discussion 
 

NsaRS is a two-component system which we show herein responds to several cell-

envelope-targeting drugs. This is not surprising as it is an intramembrane-sensing 

histidine kinase (IM-HK), which as a family have very small external sensing domain, 

and most likely do not sense environmental signals, but damage to the cell superstructure 

(Mascher et al., 2006). NsaRS belongs to the group of IM-HKs that exert their effects by 

utilizing an adjacent transporter; NsaRS is located upstream of an ABC transporter, 

NsaAB, which we show in this work to be controlled by this TCS. A microarray on the 

nsaS mutant determined that NsaRS regulates 245 genes under standard conditions. The 

gene with the largest alteration of expression in the nsaS mutant was another ABC 

transporter, SACOL2525/2526, which homology analysis suggests may transport 

peptides or lantibiotics.  

Our analysis shows that NsaRS and SACOL2525/2526 are expressed during the 

exponential phase of growth, which declines into stationary phase (Kolar et al., 2011; 

Chapter 3 of this dissertation). The expression of SACOL2525/2526 seems to be strongly 

regulated by NsaRS, which is in contrast to NsaAB, which is not temporally regulated, 

and is seemingly not expressed under standard conditions. Therefore, it is likely that 

NsaRS utilizes SACOL2525/2526 under standard conditions to exert its effects; with the 
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expression and role of NsaAB being limited during these times of stasis. In this scenario, 

NsaAB is only deployed by the cell, in an NsaRS dependent manner, to circumvent 

damage by cell-wall antibiotics, and as such is only expressed during antibiotic exposure, 

as is situation for other antibiotic transporters (Muthaiyan et al., 2008; Ouyang et al., 

2010; Meehl et al., 2007). This makes SACOL2525/2526 most unusual for a putative 

drug transporter, in that it appears to have a role within the cell during standard growth 

conditions, without the input of stress signals. 

Each of these 3 elements have been shown to respond to certain cell-envelope antibiotics, 

with some overlap in the compounds noted (Kolar et al., 2011; Hiron et al., 2011) when 

one compares the transcription of SACOL2525/2526, nsaRS and nsaAB in response to 

cell-envelope-targeting compounds (Figure 38).  The expression profiles of nsaRS and 

SACOL2525/2526 are very similar, with 7 of the 10 drugs tested (phosphomycin, 

ampicillin, penicillin G, D-cycloserine, CCCP, daptomycin and oxacillin) producing an 

increase in expression for both elements; whilst only 3 drugs (nisin, gramicidin and 

chloropromazine) show opposing effects. In contrast, nsaAB shares only 4 drugs in 

common with NsaRS: CCCP, daptomycin and nisin produce an increase in transcription, 

and chloropromazine decreasing expression of both systems. Six drugs (phosphomycin, 

ampicillin, penicillin G, D-cycloserine, oxacillin and gramicidin) produce contrasting 

effects between NsaRS and NsaAB. None of the 3 systems respond to every drug tested, 

suggesting some specificity exists, however the overall expression pattern of NsaRS is 

more similar to SACOL2525/2526 than NsaAB. This further suggests that NsaRS relies 

more heavily on SACOL2525/2526 to exert its effects than it does NsaAB, at least in the 

conditions tested herein. Interestingly, NsaAB does not respond to any of the drugs tested  
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Figure 38. Transcription of nsaRS, nsaAB and SACOL2525/2526 in response to cell-
envelope-targeting drugs. qRT-PCR was performed on either nsaRS, nsaAB or 
SACOL2525/2526 in the presence of sub-inhibitory concentrations of cell-wall-targeting 
(blue) or cell-membrane-targeting (yellow) drugs, along with those that target both 
(purple). Green boxes signifies an increase in transcription and grey boxes show no 
change in expression to the corresponding antibiotic. 
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that target the peptidoglycan synthesis pathway, as only drugs that target the cell 

membrane increased transcription of this element. In contrast, SACOL2525/2526 

responded to all peptidoglycan synthesis targeting agents tested, with the exception of 

bacitracin, which none of the 3 systems appear to respond to. It has been shown by others 

that NsaRS and NsaAB are important in bacitracin resistance (Hiron., et al 2011). The 

inconsistency between this observation and our work may be the result of the 

concentration used, as these systems seemingly respond to only low levels of bacitracin, 

whilst in our study, the highest concentration of antibiotic that did not impair growth was 

utilized. Therefore, SACOL2525/2526 may respond to antibiotics that target 

peptidoglycan synthesis at high and possibly low concentrations, whereas NsaAB may 

only respond to cell membrane targeting agents, and low concentrations of certain cell-

wall targeting drugs. This may suggest a broader spectrum of response by 

SACOL2525/2526 than NsaAB. The drugs that produced an opposing effect for 

SACOL2525/2526 and NsaRS target the membrane, although there are exceptions, as 

CCCP and daptomycin impact the membrane but also increased the expression of both 

systems.  This is perhaps explained by the fact that daptomycin has also been shown to 

affect cell-wall biosynthesis pathway, in addition to the membrane (Canepari et al., 1990; 

Silverman et al., 2003; Cotroneo et al., 2008). When compared to other drugs that 

dissipate the proton potential, daptomycin takes 10 times longer  to exert the same 

effects, however death still occurs, suggesting that an alteration in the proton potential 

through targeting of the membrane may not be the leading mode of action (Muthaiyan et 

al., 2007). Also, CCCP affects ATP levels within the cell, and a downstream affect of this 

is likely felt on the peptidoglycan synthesis pathway (Dimroth & Cook, 2004). Therefore, 
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NsaRS may deploy NsaAB in specific situations, such as in response to cell-membrane-

targeting drugs (Figure 39). In contrast, NsaRS likely utilizes SACOL2525/2526 in 

response to drugs that target the peptidoglycan synthesis pathway.  

NsaRS has been shown to be important in both bacitracin and nisin resistance by utilizing 

either SACOL2525/2526 or NsaAB (Kolar et al., 2011; Blake et al., 2011; Hiron et al., 

2011). Both NsaRS and SACOL2525/2526 contribute to bacitracin resistance, as nsaS 

and SACOL2525/2526 mutants produced lower spontaneous mutation frequencies in the 

presence of this compound. Furthermore, Hiron et al. showed that NsaRS, NsaAB, and a 

second transporter VraDE work in concert to aid S. aureus in bacitracin resistance. 

Specifically, NsaRS utilizes NsaAB for sensing and signaling of bacitracin stress, with 

VraDE serving as the detoxification module that causes export of intracellular bacitracin. 

Since SACOL2525/2526 does not appear to be a detoxification module as it is expressed 

under standard conditions, it may provide a similar role to NsaAB in sensing and 

signaling. While it is currently unknown how NsaAB aids in sensing cell-wall stress, 

SACOL2525/2526 may do this by changing the fluidity of the membrane. If 

SACOL2525/2526 alters the cell-envelope, or specifically the fluidity of the membrane, 

other IM-HKs may be able to sense this as they respond to alterations at, or in, the 

membrane, and not an external signal. In addition, each histidine kinase contains a 

membrane spanning domain, and alterations in the fluidity of the membrane may change 

the conformational shape of the kinase, resulting in phosphorylation or de-

phosphorylation. Therefore, SACOL2525/2526 may respond to cell-wall stress, and as a 

result, increases the fluidity of the membrane, which may in turn stimulate GraRS, 

NsaRS or VraRS. We show that SACOL2525/2526 contributes to the resistance against a  
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Figure 39. NsaRS regulates NsaAB and SACOL2525/2526 in response to different 
cell envelope stress. A). NsaAB is not expressed under standard conditions but has been 
shown to have increased expression in the presence of certain cell-membrane-targeting 
drugs, as a result of NsaRS action. In this model, NsaRS only use NsaAB in response to 
certain cell-membrane-targeting drugs. B). SACOL2525/2526 has increased expression 
in the presence of drugs that targets peptidoglycan synthesis that is at least partly 
dependent on NsaRS action. NsaRS may utilize SACOL2525/2526 in response to drugs 
that target the peptidoglycan synthesis pathway.  
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number of drugs, and may respond to cell wall stress and signal to NsaRS, either by 

direct interaction; or by altering NsaRS activity by changing membrane fluidity, which 

would then regulate an exporter for removal of the antibiotic. One might speculate that 

the efflux pump utilized in the presence of bacitracin may be VraDE, with other 

transporters involved in this system yet to be identified. Since NsaAB only responds to a 

few cell-envelope targeting drugs, SACOL2525/2526 may respond to a broader spectrum 

of peptidoglycan stress, contributing to resistance against many antibiotics. It could also 

be possible that SACOL2525/2526 senses alterations in the peptidoglycan layer that are 

not associated with damage from an antibiotic, but instead are centered around cell 

division. Additionally, NsaRS was identified by Blake et al. as being important in nisin 

resistance; herein we show that NsaRS upregulates nsaAB in the presence of this 

compound. Therefore, a situation akin to the 6 component resistance mechanism for 

bacitracin may also occur is response to nisin, where NsaRS uses NsaAB in signaling 

nisin stress, and regulates an unknown transporter for the detoxification of nisin. Since 

NsaAB is not expressed under standard conditions it may not contribute to the regular 

functions of the cell, as SACOL2525/2526 does with membrane fluidity; NsaAB may 

therefore directly interact with NsaRS to aid in signaling. Some IM-HKs are associated 

with a membrane protein, which affects the phosphorylation cascade (Jordan et al., 2006). 

However, it has not been investigated whether the IM-HKs associated with an adjacent 

transporter may function in a similar fashion; instead of the transporter pumping a 

substrate in or out, it may have dual roles and also function as a sensor. This direct 

interaction may alter the phosphorylation state of the histidine kinase and ultimately the 

response regulator. This further suggests that NsaRS is important in specific antibiotic 
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resistance, and may utilize either SACOL2525/2526 or NsaAB for sensing and adaption 

to various compounds.  

Although both NsaRS and GraRS positively regulate SACOL2525/2526 under standard 

conditions, only NsaRS contributes to the increase in transcription in response to cell-

wall-targeting chemicals. In a nsaS mutant, in the presence of drugs shown to increase 

transcription, expression of SACOL2525/2526 decreased. Expression levels do not, 

however, return to those observed in unstimulated cells, suggesting that while NsaRS 

does positively regulate SACOL2525/2526 in response to cell-envelope-targeting drugs, 

it is not the only regulator. NsaRS is also responsible, at least in part, for the increased 

transcription of NsaAB in response to nisin. Again, the transcription of NsaAB decreased 

in the nsaS mutant when exposed to nisin, but did not to levels observed in unstimulated 

cells. Therefore, NsaRS does regulate NsaAB in response to nisin, but again, other 

factors are clearly at work. This is consistent with the literature, as S. aureus possesses 

multiple regulators that respond to the same stress. For example, glycopeptide resistance 

has been shown to be influenced by several regulators, including VraRS, GraRS, WalKR,  

the carbon catabolite control protein (CcpA), regulators of multidrug transporters 

(MgrA), the staphylococcal accessory regulator A (SarA), and the alternative sigma 

factor (σB) (Kuroda et al., 2007; Seidl et al., 2006; Meehl et al., 2007; Chen et al., 2006; 

Truong-Bolduc et al., 2005; Ballal & Manna, 2009; Piriz-Duran et al., 1996; Meier et al., 

2007; Bischoff et al., 2004). Several other regulators have been identified for 

SACOL2525/2526 by the utilization of microarrays, including MgrA, SarA, Rot, ArlRS 

and σB (Bischoff et al., 2004; Cassat et al., 2006; Said-Salim et al., 2003; Liang et al., 

2005). MgrA is a DNA-binding protein that has been shown to contribute to antibiotic 
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resistance by regulating several efflux pumps, including NorB and Tet38, along with an 

additional 50 genes implicated in transport (Truong-Bolduc et al., 2005). MgrA aids in 

antibiotic resistance by regulating efflux pumps that extrude drugs out of the cell, and 

transporters that import nutrients, which may give the cell energy to combat the 

encountered stress (Loung et al., 2006). Therefore, it is not surprising that MgrA has been 

shown to regulate SACOL2525/2526, and further suggests that this transporter may be 

important in antibiotic resistance. SACOL2525/2526 may also contribute to resistance by 

altering membrane fluidity, which has been shown to change the activity of transporters 

present in the membrane by increasing or decreasing their efficiency (Gustot et al., 2010). 

In this situation, the cell would not need to alter the transcription of each transporter, but 

instead change the expression of SACOL2525/2526 to produce similar effects, leading to 

a more rapid modification in activity of other transporters. In addition, an increase in 

membrane fluidity may stimulate other regulators, including the IM-HKs GraRS and 

NsaRS, which each regulate around 50 transporters independently (Kolar et al., 2011; 

Herbert et al., 2007). Thus far, only NsaRS has been demonstrated to regulate NsaAB, 

with other regulators yet to be identified (Hiron et al., 2011; Kolar et al., 2011). One 

could speculate that since GraRS has been shown to regulate genes important in nisin 

resistance, it may also regulate NsaAB (Meehl et al., 2007; Li et al., 2007).  Therefore, in 

response to certain cell-envelope-targeting drugs, NsaRS, along with other factors, 

manipulate the transcription of these 2 ABC transporters independently, and utilizes them 

to exert effects in coping with stress.  

Of the 245 genes modulated by NsaRS, only 34 are negatively regulated, and include 

those involved in capsule production (capGOIHED); the virulence genes β-hemolysin, 
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hyaluronate lyase, fibronectin binding protein A; and 6 of the 10 major secreted 

proteases. Secreted proteases have been shown to be inactive until they are secreted, and 

are processed outside of the cell, with the exception of the Spl proteins (Rice et al., 2001 

and Shaw et al., 2004; Reed et al, 2001). Since extracellular proteases are only active 

outside the cell, it has been suggested that their targets include: 1) other secreted proteins, 

including virulence factors; 2) cell surface associated proteins; or 3) host proteins. These 

former 2 facts would allow for the regulation of externalized S. aureus proteins, and may 

suggest a post-translational modification mechanism utilized by S. aureus to respond and 

adapt to a changing environment. Indeed, such a theory was proposed more than ten years 

ago (Lindsay & Foster, 1999), however only a few studies have investigated this 

phenomenon (Karlsson et al., 2001;McAleese et al., 2001; McGavin et al., 1997; 

Zielinska et al., 2011). Whilst a number of reports on secreted proteases are contained 

within the literature, their findings are contradictory, and the role of these enzymes in 

protein modification and pathogenesis is currently unclear. In order to determine if the 

proposed protein modification/regulation theory has validity, a strain was constructed 

lacking all 10 major secreted proteases to study this phenomenon.  

Using proteomics, we show that the secreted proteases do indeed play a major role in the 

modification of S. aureus surface-associated and secreted proteins, as suggested by 

Lindsay & Foster (Lindsay & Foster, 1999). Analysis of the wild-type strain revealed a 

decrease in abundance of 24 known proteins in the absence of secreted proteases, 

including 2 lipases, components of the γ-hemolysin, α-toxin, leukotoxin (LukE), 

enterotoxin Q, Panton-Valentine leukocidin, the staphylococcal complement inhibitor, 

enterotoxin K, and secretory antigen SsaA. A similar analysis was also performed for 
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surface proteins revealing 17 proteins that are cleaved by secreted proteases. These 

include fibronectin-binding proteins A and B, fibrinogen binding protein, clumping factor 

A, IsdA, immunodominant staphylococcal antigens A and B, staphylocoagulase, 

immunoglobulin G binding protein A, elastin-binding protein and a putative surface 

protein (SAUSA300_0883). This data suggests that secreted proteases act as post-

translational regulators of several important secreted and surface-associated proteins. 

To determine the effect of this accumulation, or lack of degradation, the mutant and 

parental strain were evaluated in both localized and systemic models of infection. The 

protease null mutant produced a decrease in bacterial loads recovered from murine 

abscesses, suggesting a decrease in virulence of the protease null mutant strain compared 

to the wild-type. When using systemic infection models, we observed further alterations 

in virulence of the protease-null strain. Specifically, the mutant displayed significantly 

decreased bacterial loads in the lung, liver, heart and spleen, again suggesting attenuation 

of virulence for the mutant. Although there were lower bacterial loads, we did observe an 

increase in virulence for the protease-null mutant when using mortality as a measure of 

infection. Collectively, extracellular proteases contribute significantly to in vivo 

pathogenesis, which is an important finding in itself. Although these results seem 

contradictory, the observed results may be explained by the proteins secreted proteases 

cleave. The reasoning behind the observed increase in mortality is likely the result of 

increased stability for a large number of key virulence factors upon protease deletion. 

Specifically we show that α-toxin, γ-hemolysin, PSMs, LukE, LukAB, PVL and others 

are all more abundant in the protease-null strain. Importantly, each of these factors have 

been linked to increased virulence and mortality during S. aureus infection (Wang et a., 
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2007; Prajnar et al., 2008; Bubeck Wardenburg & Schneewind, 2008; Bubeck 

Wardenburg et al., 2007; Menestrina et al., 2003; Morinaga et al., 2003; Dumont et al., 

2011; Loffler et al., 2011; Tseng et al., 2009). We therefore that, in the absence of 

proteolytic activity, certain virulence factors remain unregulated at the post-translational 

level, and may lead to the aggressive progression of infection observed. The decrease in 

bacterial loads recovered from abscesses and organs may be explained by our proteomics 

studies, which show that protease null mutant cells have increased decoration of their cell 

walls, with higher levels of surface proteins observed. It has been shown that S. aureus 

sheds surface-associated proteins for increased dissemination via the action of these 

proteases. Therefore the protease null mutant likely has a dissemination defect, and 

cannot reach organs as efficiently as the wild-type. In addition, it has previously been 

shown that secreted proteases can cleave human α1-proteinase inhibitor (Potempa et al., 

1986), α1-antichymotrypsin, the heavy chains of all human immunoglobulin classes 

(Prokesova et al., 1992), elastin (Potempa et al., 1988), fibrinogen, fibronectin, high 

molecular weight kinininigen and plasminogen (Massimi et al., 2002; Imamura et al 

2005); each of which contribute to invasion and pathogenesis.  It has previously been 

shown that aureolysin cleaves the human cathelicidin AMP, LL-37, and we demonstrate 

here that the cleavage of AMPs is not specific to LL-37, but also includes indolicidin and 

histatin-5 (Sieprawska-Lupa et al., 2004). AMPs function as part of the host innate 

immune system, and this suggests that proteases aid S. aureus in immune evasion by 

degrading these elements.  To further investigate the effects proteases on components of 

host immunity, survival in whole human blood and serum was evaluated for the protease-

null strain. In both situations, the protease-null strain displayed decreased survivability 



163 
 

when compared to the wild-type. Serum contains complement and AMPs, while whole 

human blood also contains cellular components of immunity. The observed decreases in 

survivability may result from a lack of AMP and complement system degradation by the 

proteases. However, this also suggests that secreted proteases are not only used for 

protection against the innate immune system, but also impacts evasion of cell mediated 

immunity. This finding is support by previous work from a number of groups that show 

secreted proteases play a protective role during S. aureus infection, vis the cleavage of 

host factors (Smagur et al., 2009a; Smagur et al., 2009b; Wegrzynowicz et al., 1980). 

Therefore, the lack of proteolysis in the mutant strain of host factors including 

complement, AMPs and components of innate immune system may explain the observed 

decrease in bacterial loads found in the organs and abscesses. Our study suggests that 

extracellular proteases are not only virulence factors themselves, but also contribute to 

pathogenesis by cleavage of S. aureus surface-associated and secreted proteins. 

Collectively this provides insight into the role of secreted proteases on the virulence 

process by regulating the stability of S. aureus virulence factors and cleavage of host 

immune elements. 

Future Directions 

While some progress in understanding the role of NsaRS has been made, elucidating its 

mechanism of action within the cell-envelope stress response will lead to a clearer 

understanding of its function within the cell. We show that NsaRS regulates 

SACOL2525/2526 and NsaAB in response to certain cell-envelope targeting drugs, 

however it is not the only regulator, as transcription of these elements in the nsaS mutant 
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does not completely revert to wild-type levels. Therefore it is possible that NsaR may be 

able to utilize other phospho-donors in the absence of NsaS, which may account for the 

transcription of SACOL2525/2526 and NsaAB in the absence of NsaS. To determine if 

this is the case, NsaR could be purified, incubated with acetyl [P32] phosphate, and if 

phosphorylation occurs in the presence of this phospho-donor, it could be visualized by 

SDS-PAGE and Western blotting. In addition, the response regulator could be isolated 

from wild-type or nsaS mutant cells via an incorporated affinity tag after exposure to 

various growth conditions. The phosphorylation state could then be identified using 

mass-spectrometry to determine if the response regulator is phosphorylated by its cognate 

histidine kinase, or another phospho-donor under specific conditions. We have suggested 

that the alteration in membrane fluidity caused by SACOL2525/2526 may impact the 

phosphorylation status of IM-HKs, including NsaRS. To determine if this is the case, the 

phosphorylation state of NsaRS or GraRS could be determined in the SACOL2525/2526 

mutant using a similar mass-spectrometry protocol. In addition, a nsaAB mutant could be 

constructed and the impact of this possible signal transporter on NsaRS and GraRS may 

be evaluated using the same method. We show that in the presence of nisin, NsaRS 

regulates NsaAB, yet the role of NsaAB in resistance to nisin and other antibiotics 

remains unknown. Therefore, characterization of a nsaAB mutant may reveal its 

contribution to membrane-targeting antibiotic resistance, as well as the function of 

NsaRS. The sensitivity of a NsaAB mutant to cell membrane damaging agents may 

reveal whether it acts as a specific signaling sensor to just bacitracin and nisin, or if its 

function is more broad in spectrum, and aids NsaRS in resistance to various antibiotics. 

Such sensitivity could be evaluated utilizing MIC assays, death curves, growth curves 
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and spontaneous mutation frequency assays. In addition, the mutant was shown to have 

increased capsule production and a more diffuse cell wall, which may impact the ability 

to disseminate in a host. By conducting systemic models of infection, the contribution of 

NsaRS in dissemination and tissue invasion may be elucidated, and provide new insights 

into S. aureus pathogenicity.  In addition, analyzing nsaS mutant cell wall may provide a 

better understanding of the function of NsaRS and the genes it regulates. This can be 

accomplished by muropeptide analysis using liquid chromatography and mass 

spectrometry, and will not only determine any differences in muropeptide composition, 

but also O-acetylation of the peptidoglycan layer.  

The membrane of the SACOL2525/2526 mutant seems to have decreased fluidity based 

on our findings herein. To determine the contribution of SACOL2525/2526 to membrane 

fluidity, the composition of SACOL2525/2526 mutant membrane should be compared to 

that of the wild-type. This could be determined by lipidomics, where lipids are extracted 

from the membranes of each strain, and, using mass spectrometery, the composition of 

fatty acids determined. One may expect the mutant membrane to contain more saturated 

fatty acids, as these do not contain double bonds and decrease membrane fluidity. This 

alteration in membrane fluidity may impact the proton potential of the cell, and hence 

may change the activity of transporters. An alteration of the proton potential may be the 

reason why a difference in survivability of mutant protoplasts in TSB was observed, 

which was reversed upon the addition of ions. To determine if this is an alteration in 

proton potential, the dye carbocyanine could be incubated with the wild-type or 

SACOL2525/2526 mutant cells, and allowed to cross the membrane, which is dependent 

on proton potential. This dye can then be measured using fluorescence, and will 
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determine if the proton potential is altered. In addition, if metabolomics was performed 

on the SACOL2525/2526 mutant and the metabolite profile compared to the wild-type, 

this may lead to the identification of the pathways that are being altered in the mutant 

strain. It is possible that genes in fatty acid synthesis, peptidoglycan synthesis and 

capsule production would displayed a change in expression, and this may give insight 

into the function of SACOL2525/2526; and also the substrate transported by this system. 

Since this substrate remains unknown, and SACOL2525/2526 is similar to other 

lantibiotic transporters, sensitivity of the mutant should be tested in the presence of other 

lantibiotics, including mersacidin and cinnamycin. Each of these should be evaluated as 

they belong to the type B class of lantibiotics, and in this study only nisin, which is a type 

A lantibiotic, was utilized. The SACOL2525/2526 mutant also possesses increased 

capsule production and may have decreased membrane fluidity, which may be important 

in the virulence process. Therefore, evaluation of survival and dissemination of the wild-

type and SACOL2525/2526 mutant strains in a systemic model of infection may give 

insight into whether these attributes contribute to the success of S. aureus as a pathogen. 

We have shown that secreted proteases are key virulence factors, and contribute to the 

pathogenicity of S. aureus in multiple ways. One significant aspect of our study was the 

identification of S. aureus surface-associated and secreted proteins that are modulated by 

cleavage via secreted proteases. These studies were performed by growing the cells in 

TSB, and it may be possible that when S. aureus is in a host, different secreted and 

surface-associated proteins are expressed. Therefore, by growing the cells in human 

blood or serum, followed by the same proteomics approached already performed herein, 

other protein targets of these enzymes may be identified. While this demonstrates two 



167 
 

types of proteins cleaved by proteases, surface-associated and secreted, another important 

factor to pathogenicity is the interaction of S. aureus with its host. If a complete list of 

host proteins cleaved by secreted proteases were produced, a better understanding of the 

S. aureus-host interaction would result, and possibly give insight into future therapeutics. 

Components of the host immune system that are cleaved by S. aureus secreted proteases 

may be identified by growing the wild-type and protease-null mutant cells in whole 

human blood, removing cellular components, and performing proteomics on the host 

proteins in a similar fashion detailed in this work. It would be important to identify not 

only substrates of the secreted proteases, but also the site of cleavage, as this may reveal 

the molecular mechanism of specificity and signaling. The cleavage sites of the secreted 

proteases may be identified using N-terminomics. This procedure tags the N-terminus of 

proteins, separates the peptides containing the tag, which can then be identified using 

mass spectrometry. While we demonstrate that a strain inactive in all 10 major secreted 

proteases displays an abundance of virulence factors from the lack of proteolytic activity, 

the contribution of individual proteases still remains unclear. As such, proteomics should 

be performed on single mutations to determine if each secreted protease has specificity 

for certain proteins. Finally, secreted proteases have been shown to be expressed at 

different levels between the USA lineage strains, and their contribution may vary 

depending on the isolate. Therefore, mutants lacking all 10 major secreted proteases 

could be constructed in different backgrounds to determine if they are utilized in the 

infection process globally, by performing systemic models of infections. However, each 

strain has a preference for the infection site, and therefore these newly constructed 

strains, along with the LAC protease null mutant, should be tested in a variety of 



168 
 

systemic infection models, including  endocarditis model and osteomyelitis models. 

Further to this, the cytolytic effect of mutant strains on neutrophils from humans, mice, 

rabbits and monkeys should be evaluated to determine the effect of secreted proteases on 

host specificity and virulence between the lineages. 
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