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Modern software systems are complex and often built using components that are pro-

vided with their application programming interface (API) to assist a user. However, this

API is informal and if used incorrectly, may lead to bugs that are hard to detect. In order

to address the problem of API conformance checking, researchers have proposed various

analysis techniques including static and dynamic typestate analysis. However, it is ex-

tremely challenging to develop a static analysis that is both precise and scalable. On the

other hand, dynamic analysis or runtime monitoring of programs may incur heavy over-

head, thereby limiting its application only to a subset of realistic programs. This heavy

overhead could be a result of handling of the monitors that are created during runtime, or

the events generated by program instrumentation, or some other factors related to program

and property interaction.

Our research focuses on developing techniques that optimize program instrumentation

to reduce the monitoring overhead without compromising error reporting. The techniques

are guided by the cost models that we have developed for runtime monitoring and based

on a hybrid approach that combines static with dynamic typestate analysis to exploit the

benefits of both approaches. In addition, the approach also leverages the property structure

to make monitor optimization more effective.

In this dissertation, we present cost models for runtime monitoring that are based on

our understanding of the existing monitoring tools. The cost models describe key factors



that influence the monitoring overhead as well as the relationship among them. We develop

two novel analysis techniques, namely the residual analysis and the stutter-equivalent loop

transformation, that target the number of events as that is a primary factor associated with

the total cost of monitoring. We present the results of their evaluation based on some open

source applications and benchmarks that show that the techniques can effectively reduce

the monitoring overhead.
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Chapter 1

Introduction

1.1 Motivation

With advancements in tools and technologies, modern software systems have grown in

size as well as in complexity. At the same time, user expectations about performance

and reliability of those systems have also grown. In order to limit development time and

also increase reliability, systems are often built using ready-made frameworks, libraries

and components. The legal usage of these components is described informally in docu-

mentation that is provided with their application programming interface (API). Although

useful, the API documentation may contain rules that are ambiguously stated. Moreover,

the complexity of the modern components may make their usage rules complex. If used

incorrectly, this may lead to a software system that may either crash, produce unexpected

results or perform poorly. The bugs introduced by inappropriate API usage may be hard

to detect as they are often caused by a sequence of operations spread over an entire pro-

gram. Moreover, they may cause a failure only under unusual conditions that can easily go

undetected during testing.
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Figure 1.1: Property SocketChannel.

Ensuring that a program uses a component’s API correctly, by performing all the se-

quences of operations related to the component in a legal manner, is a nontrivial problem

that is hard to solve just by a code inspection for large software applications. Therefore,

in order to address this problem of API conformance checking, researchers have proposed

typestate analysis techniques [71]. These analyses try to ensure that a program demon-

strates a behavior that is correct with respect to a typestate property. A typestate property

describes a legal sequence of operations that can be performed on objects that constitutes

a proper usage of the API. These rules can often be expressed as a regular expression and

modeled as a finite state automaton (FSA).

A typestate analysis models an instance of a type as evolving over its lifetime through

different abstract states. A method call on an instance can maintain the instance in its

current state or cause it to move to a new state. If a call moves the instance to the error state

then that method call can be regarded as the final step in a program execution that violates

the typestate property. For example, Figure 1.1 shows the property SocketChannel
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modeled as a FSA. A Java program that attempts to read from a java.net.Socket

instance when it is not in its connected state, which is state 2, is an error, as is one which

fails to eventually return the socket to its closed state, which is state 0. A fault in a program

does not necessarily result in a failure. However, an early fault detection would be a key

to the prevention of a future failure. Since a typestate property behavior is associated with

the path taken during a program execution, a typestate analysis provides an effective tool

to understand the root causes of a fault. Hence, reasoning about typestate properties offers

the potential to increase the observability of program behavior with respect to complex API

usage scenarios, thereby offering the potential to detect errors more easily and closer to the

fault.

Ideally, software systems would be checked automatically during compilation-time for

compliance with a typestate property. In practice, static analyses often produce numerous

false positives, in which case a program would be identified as erroneous even though it

may exhibit legally correct behavior during runtime [23, 24]. On the other hand, if static

analyses are made extremely precise, they may not scale to real programs [23, 24, 31].

Scaling to large software systems and providing precise analysis results in the presence

of aliasing, data, thread and context-sensitive program behavior is very difficult [31]. In

recent years, researchers have combined multiple techniques to dramatically improve the

cost-effectiveness of static typestate analyses [10, 11, 12, 29, 40].

For example, Fink et al. present [40] a multi-stage static typestate analysis, in which

each subsequent stage of analysis is more precise and expensive than the previous. How-

ever, each stage eliminates several points of potential failure (PPF) before starting the next

stage, which reduces burden on the next stage. On the other hand, Bierhoff et al. present

an intraprocedural analysis [11, 12], that eliminates the need for expensive whole-program

analysis. Instead, the authors make use of method annotations that encode access permis-

sions that provide information about typestate changes and also reason about aliasing.
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Although impressive in many ways, these approaches still may produce false positives.

For example, Bierhoff et al. report that two out of the 12 classes analyzed produced five

false positives [12], whereas Fink et al. could verify 93% of PPFs after the final stage

of analysis leaving 7% (more than 340) for further analysis or manual inspection [40]. It

would take a nontrivial manual effort to ensure that none of the remaining warnings could

lead to an error during the program execution.

As a result, dynamic analysis or runtime monitoring of programs to ensure legally cor-

rect program behavior with respect to typestate properties has gained considerable attention

in this decade [2, 5, 25, 26, 27, 33, 36, 62]. Runtime monitoring tools typically work by in-

strumenting a program to be monitored with some extra code that generates events. These

events allow the associated monitors to keep track of typestates. Researchers have pro-

posed several tools and techniques to ensure that monitoring can be efficiently performed

on software applications to verify their typestate property compliance. In spite of this ef-

fort, monitoring may occasionally incur heavy runtime overhead in practice, as high as

11000% [62] or 3500% [16] which would be unacceptable in a production or even in a test-

ing environment. This heavy overhead limits the application of runtime monitoring only to

a subset of real applications and properties. A high runtime overhead could be a result of

handling of the large number of monitors that are created during runtime, or the number

of events generated by the inserted instrumentation. In our study, for the program bloat

from the Dacapo benchmark suite [14] and property HasNext, we observed about 160

million events and about 2 million monitors, whereas for the property FailSafeIter

the observed events were over 80 million and it created more than 4 million monitors.

The runtime overhead in the case of multi-object properties such as FailSafeIter,

that involve more than one object, also depends on the number of monitors associated at a

time with receiver objects. In this case, every single event observed results in a transition

on every monitor associated with the related set of objects. For these reasons, typestate
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properties that involve multiple objects have often been found to be more challenging to

monitor.

The fact that the strengths and weaknesses of static and dynamic analyses approaches

are somewhat opposite has prompted researchers to develop hybrid approaches that would

enjoy the benefits of both worlds. Flanagan [41] describes hybrid type checking problems

in which programs are first subjected to static checking and then, if property conformance

cannot be assured, dynamic checks are employed. A common example involves array

bounds checking for languages such as Java in which static techniques have been developed

to eliminate the checks [22, 63] that would otherwise be deployed at run-time by the virtual

machine. The research on such approaches was mostly limited to state property checking,

i.e, properties that describe legal program control and data states. Typestate properties are

an instance of path properties, i.e, properties that describe the legal sequences of program

control and data states. However, in recent years a few researchers have tried to apply this

approach to path properties. This includes works of Bodden et al. [16, 17, 19, 18, 20, 21],

Martin et al. [60] and that of Naeem and Lhoták [66]. Our work [37, 68] is different than

these works, as it is guided by the cost models that we have developed and uses approach

that exploits the structures of a program and a property. We believe that our work, along

with this complementary work done by other researchers, forms a solid foundation for this

promising line of research.

1.2 Approach

The primary goal of our research is to develop optimization techniques that reduce the run-

time overhead of monitoring without compromising the soundness or the completeness of

analysis results. We have developed techniques that identify statements in a program for

which instrumentation can be dropped either permanently [37] or during certain parts of an
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execution [68]. Our hybrid approach combines static and dynamic typestate analyses tech-

niques. It also exploits the typestate property structure to identify targets for optimization

that make the approach more effective.

Our research is guided by the cost models that we have developed based on our under-

standing of the existing tools [26, 2, 53]. The approach is also driven by the findings and

the observations we have made in previous studies. For example, we observed that only a

small subset of events generated by some statements may contribute to an error and hence,

skipping the remaining ones does not impact error reporting. We used this observation as

a motivation in our previous work [68]. In order to identify such statements, we devel-

oped a scalable static typestate analysis, which can efficiently analyze benchmarks of the

size of DaCapo [14], that ensured that our technique does not compromise the correctness

of runtime monitoring, while making it more efficient. In this dissertation, we present cost

models that guide our research and two analysis techniques that primarily target the number

of events for monitor optimization. Here, we introduce the cost models and the solutions

with the help of a small example that highlights the hybrid features of our approach.

1.3 Simple Code and Property Example

Suppose that we are monitoring an iterator property FailSafeIter that says that a col-

lection may not be updated while it is being iterated. In other words, it specifies that there

may not be a call to any method that updates a collection after an iterator is created and

before an element is accessed by a call to method next. This is a safety property that

ensures that the program behavior is well-defined while iterating over a collection. The

property can be specified as a regular expression (create;next*;update*), and can

be modeled as a FSA as shown in Figure 1.2.
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Figure 1.2: Property FailSafeIter.

Figure 1.3 shows a snippet of code that is a modified version of a method from DaCapo

benchmark bloat. Let us assume that we want to monitor a program that contains this

method for the property FailSafeIterator. A runtime monitoring scheme would

then instrument the statements in the code related to the property with code that would

keep track of monitor states. We call such statements as observable statements or simply

observables. The observable statements in this snippet are statements 1 and 2.

Figure 1.4 shows the instrumented code that consists of calls to methods from class

OBSERVE associated with the observable statements. Each one of these calls would consti-

tute an event during runtime. An event would trigger an execution of code that is necessary

to track monitor states shown in Figure 1.2.
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void makeEquiv ( Node node1 , Node node2 ) {
S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {

I t e r a t o r i t e r = s2 . i t e r a t o r ( ) ; / / S t a t e m e n t 1

whi le ( i t e r . hasNext ( ) ) {
Node n = ( Node ) i t e r . n e x t ( ) ; / / S t a t e m e n t 2
e q u i v . p u t ( n , s1 ) ;

}
}

}

Figure 1.3: A code snippet based on a method from DaCapo benchmark bloat.

1.3.1 Cost Models

Monitoring tools perform several operations that are required to create, maintain and track

monitors. For example, in the example shown in Figure1.4, a monitoring tool would create

a monitor after receiving a create event corresponding to the method call iterator

on collection referenced by s2. A monitor essentially consists of references to the related

objects and an instance of FSA to keep track of its state. Some implementations may only

keep a local copy of the current state and share a global FSA, however these choices are

implementation-dependent as well as driven by the tool architecture. For every event next

in Figure1.4, a monitoring tool would retrieve a list of associated monitors and track them.

This small example shows that a monitoring tool needs to perform several tasks that in-

clude creating monitors, maintaining their pools, locating the associated monitors, travers-

ing the list of retrieved monitors and then executing a transition on each one of them. All

these operations incur a cost that depends on the number of events incurred, the number

of monitors created, the tool architecture and so on. The cost also depends on the tracking

history that dictates the number of monitors associated with the objects. This number in-
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void makeEquiv ( Node node1 , Node node2 ) {
S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {

I t e r a t o r i t e r = s2 . i t e r a t o r ( ) ; / / S t a t e m e n t 1
OBSERVE . c r e a t e ( s2 , i t e r ) ;

whi le ( i t e r . hasNext ( ) ) {
Node n = ( Node ) i t e r . n e x t ( ) ; / / S t a t e m e n t 2
OBSERVE . n e x t ( i t e r ) ;
e q u i v . p u t ( n , s1 ) ;

}
}

}
. . .
p u b l i c c l a s s OBSERVE {

. . .
void c r e a t e ( C o l l e c t i o n c , I t e r a t o r i ){

. . .
}
void u p d a t e ( C o l l e c t i o n c ){

. . .
}
void n e x t ( I t e r a t o r i ){

. . .
}

}

Figure 1.4: The instrumented code snippet for the property FailSafeIter.

fluences the cost of traversing a monitor list and performing transitions. Similarly the cost

also depends on the efficiency of the data structures used, for example, to provide access

to the monitors, and on the execution environment that includes the virtual machine (VM).

The effectiveness of some optimizations may depend on how frequently a garbage collector

is invoked by the VM.

We identified to high-level algorithmic approaches to tool building, namely, object-

based or state-based. These and are explained in Chapter 3. The cost of handling an event
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by a monitoring tool may differ considerably depending on the tool-building approach, the

type of the event and even the states of the associated monitors. We developed detailed

cost models to understand the operational costs of monitoring. We developed separate

cost models for object-based and state-based tools due to their fundamentally different

ways of handling events. The cost models highlight the key factors that influence the cost

of monitoring for each approach and express the relationship among the factors. These

factors form optimization targets for our techniques. The analyses that we have developed,

including those that we plan to develop in future, are guided by the cost models.

In the following sections, we first introduce the residual typestate analysis that targets

the number of events by identifying program statements for which instrumentation can

be dropped permanently. It is presented in detail in Chapter 4. In the following section,

we explain it using the example from Figure 1.3. Later in this chapter, we introduce the

stutter-equivalent loop transformation that also targets the number of events , however,

by transforming program loops that are major source of events. It is presented in detail in

Chapter 5. The optimization target for both of the analyses is based on the insights provided

by the cost models. The cost models define the cost of handling each event and the total

cost of monitoring as the sum of costs of handling all events. We prioritize our research

by targeting the number of events first, as targeting events indirectly targets all operational

costs.

1.3.2 Residual Typestate Analysis

As mentioned earlier, the statements 1 and 2 in Figure 1.4 create events when monitoring

the property FailSafeIter. Statement 1 would create a monitor corresponding to the

set object referenced by s2 and the iterator object referenced by iter. Let us assume that
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the top-down whole-program static analysis that we perform on this code concludes the

following:

1. The iterator object was freshly created just before the loop. Hence at the entry of the

loop, the property monitor can only be in state 2.

2. The reference variable iter is assigned only once at statement 1.

3. The method next has no side-effect on the iterator object referenced by iter in

the context of the property other than executing call next.

4. The statement equiv.put(n, s1) does not have any side-effects that are related

to the collection object referenced by s2 or the iterator object referenced by iter.

In other words, the method call does not result in the generation of events on objects

referenced by s2 or iter.

5. The cumulative effect of all possible executions of the while statement including

the one that does not enter the loop, on the property monitor automaton would be to

keep it in state 2 at the end of the method.

It may be easy in this case to see that the conclusions are valid by manually inspect-

ing the program. However, it may be almost impossible to verify this for large complex

programs especially in the presence of complex aliasing of references. The final conclu-

sion about the property monitor state which is based on the previous four, is the one that

is important from the point of view of instrumentation. It tells us that the program region

enclosed by the loop that contains the event generating statement does not change the state

of the monitor. Thus it need not be monitored. Hence, we call it a safe region. The objec-

tive of residual analysis is to find as many safe regions as possible in the code that may not

contribute to an error.
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void makeEquiv ( Node node1 , Node node2 ) {
S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {

I t e r a t o r i t e r = s2 . i t e r a t o r ( ) ;
OBSERVE . c r e a t e ( s2 , i t e r ) ;

whi le ( i t e r . hasNext ( ) ) {
Node n = ( Node ) i t e r . n e x t ( ) ;
e q u i v . p u t ( n , s1 ) ;

}
}

}

Figure 1.5: The output of residual analysis.

The output of residual analysis is shown in Figure 1.5. Note that only the iterator

creation statement is instrumented by adding a method call OBSERVE.create(s2,

iter). The call to method next is not monitored.

Note that the analysis does not try to analyze path conditions. However, it could still

conclude that the region is safe only because it precisely calculates reachable states at

every statement. In the absence of this information, the analysis would have considered all

states as reaching the region and then would have failed to infer the exact exit state. For

example, for 3 as entry state, the exit state can be the error state if the loop is executed or

it could be state 3, if the loop is not entered. This would have made the behavior of the

loop nondeterministic with respect to the analysis, and as a result, the analysis would have

retained the program instrumentation. Also note, that if the static analysis had indicated

possible side-effects for the statement equiv.put(n, s1), the residual analysis would

not have identified the loop region as safe and would have retained the instrumentation.

This shows that imprecision in the static analysis may result in the analysis not being

able to drop instrumentation inside a loop. The impact of this failure could be big, as it may
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get executed during every loop iteration creating large number of events. Our second anal-

ysis, introduced in the following section, tries to overcome this deficiency by transforming

stutter-equivalent loops. This analysis targets statements inside loops that may contribute

to an error only during certain parts of executions.

1.3.3 Stutter-equivalent Loop Transformation

Programs spend most of their time executing loops. Hence, a statement inside a loop may

generate an event in every iteration of the loop. However, we have observed that often only

the events encountered during the first few iterations are able to change the monitor state.

The remaining iterations only stutter with respect to the property , i.e. they do not change

the state of the monitor. Hence, the analysis restricts its scope to program loops that contain

statements generating events and checks if these loops are eligible for transformation.

For the example shown in Figure 1.3, the analysis does not try to reason about feasible

monitor states at the entry of a loop. Instead, it assumes that the monitor could be in

any state. Nevertheless, it performs intraprocedural points-to analysis using the method

summaries to ensure necessary object aliasing conditions and the absence of side-effects.

It concludes that no matter what state the property monitor is in at the entry of the loop,

the state at the exit of the loop would be correctly determined if we observe the loop only

during its first iteration assuming that the loop was executed at least once. For example, if

the monitor was in state 1 at the entry of the loop, it would be in state err at the end. If

it was in state 2 at the entry of the loop, it would be in state 2 at the end, and if it was in

state 3, it would be in state err at the end. The events can be skipped for the remaining

iterations as they do not change the monitor state, after the first iteration. Such a loop can

be transformed as shown in Figure 1.6. For simplicity, some details are not shown in this

figure, but are presented in Chapter 5.
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void makeEquiv ( Node node1 ,
Node node2 ) {

S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {

I t e r a t o r i t e r =
s2 . i t e r a t o r ( ) ;

OBSERVE . c r e a t e ( s2 , i t e r ) ;

whi le ( i t e r . hasNext ( ) ) {
Node n =

( Node ) i t e r . n e x t ( ) ;
OBSERVE . n e x t ( i t e r ) ;
e q u i v . p u t ( n , s1 ) ;

}
}

}

void makeEquiv ( Node node1 ,
Node node2 ) {

S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {
I t e r a t o r i t e r =

s2 . i t e r a t o r ( ) ;
OBSERVE . m o n i t o r ( s2 , i t e r ) ;

whi le ( i t e r . hasNext ( ) ) {
Node n =

( Node ) i t e r . n e x t ( ) ;
OBSERVE . n e x t ( i t e r ) ;
e q u i v . p u t ( n , s1 ) ;
break i n n e r ;

}
whi le ( i t e r . hasNext ( ) ) {

Node n =
( Node ) i t e r . n e x t ( ) ;

e q u i v . p u t ( n , s1 ) ;
}

}
}

Figure 1.6: Stutter-equivalent Loop Transformation Example: original (left) and trans-
formed (right).

The analysis creates a pair of loops and instruments only the statement in the first loop

with a method call OBSERVE.next(iter). The instrumentation on the iterator creation

statement remains unchanged as the analysis restricts its scope only to loops. The break

statement in the first loop forces the control to jump to the second loop after the instru-

mented code in the first loop is executed. It should be noted that the transformed pair of

loops preserves the semantics of original loop, the only difference being in the events ob-

served by the monitoring system. If the loop in the original program is executed 1000 times

during some execution, it will generate 1000 events corresponding to the method call next

that will be monitored. However, the one in the transformed example would generate only
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one event during the single iteration that the predecessor loop will undergo. The successor

loop will undergo 999 iterations without generating any events. The rest of the program

behavior that is unrelated to monitoring remains unchanged, which shows that the trans-

formation preserves program semantics. Our study [68] showed that this optimization can

significantly reduce the number of observed events that may reduce the runtime overhead

of monitoring.

The effectiveness of this analysis is enhanced by the fact that it targets only the ob-

servables inside loops. The observables that occur before or after the loop execution are

irrelevant. Hence, any imprecision in the analysis that makes it unable to reason about

those observables does not reduce the ability of the analysis to identify loops eligible for

transformation. This also results in higher scalability.

1.4 Theses

The dissertation makes the following theses.

1. The cost models explain the overhead incurred by runtime monitoring be-

cause (i) they make the key factors that influence the cost of monitoring as well

as the relationships among them explicit, (ii) they are based on the understand-

ing of the existing runtime monitoring tools, and (iii) they have been partially

validated.

2. The optimization techniques that we present in this thesis effectively re-

duce the monitoring overhead without compromising error reporting, because

(i) they are based on analyses that perform sound approximations, and (ii) they

target the number of events, a major source of overhead based on the insights

provided by the cost models.
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1.5 Contributions

The brief overview provided in the previous sections of the analyses that we have developed

shows our hybrid approach that integrates static typestate program analysis with runtime

monitoring. At the same time, it also exploits the structure of a typestate property to make

monitor optimization more effective. For example, in the analysis that transforms stutter-

equivalent loops, we exploit the looping structures inside a program as well as within a

property FSA. In the residual typestate analysis, we safely approximate the behavior of

program paths with respect to a property by dropping some instrumentation points or by

replacing some of those by reduced set of points using summary transitions based on the

property structure. Both analyses preserve monitor correctness and program semantics.

Previous static approaches [10, 11, 12, 40] ignore the structure of a typestate property,

whereas the hybrid approaches [17, 19, 18, 20, 21, 29, 66] analyze a given program but

perform no or only a limited property analysis such as checking the existence of events

required to reach the error or the matching state. Many of the dynamic approaches [2, 5, 27]

consider neither the program structure nor the property structure in their analysis. However,

Chen et al. [26] perform optimizations based on the property structure that reduce the

number of unnecessary monitors. Avgustinov et al. [8] analyze the property structure and

present two techniques for monitor optimization in the context of Tracematches.

The novelty of our research approach lies not only in its integrative nature, but also

in the fact that it is based on the insights provided by the cost models that describe the

factors influencing monitoring overhead. In other words, the cost models lay a foundation

for the optimization techniques that we have developed and also for the ones that we plan

to develop in future. In addition, the techniques that we have developed are complementary

to one another.

The main contributions of our research are summarized as follows.
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1. We describe cost models for runtime monitoring that are based on our understand-

ing of current monitoring tools. The cost models highlight the key factors that are

responsible for monitoring overhead and that should form targets for monitor opti-

mization.

2. We present two typestate analyses, namely, the residual typestate analysis and stutter-

equivalent loop transformation that we have developed using a hybrid approach that

combines static and dynamic typestate analyses. In addition, the approach exploits

the program and the typestate property structure. Based on the insights provided by

the cost models, the analyses primarily target the number of events, but can also be

extended to target the number of monitors. We present the results of their evaluation

based on some open source and DaCapo benchmarks, that show that the techniques

can effectively reduce the runtime overhead. In addition, we also show that the anal-

yses produce sound and complete results except in the presence of unchecked excep-

tions if certain conditions are satisfied. We describe the conditions in Chapters 4 and

5.

3. We provide directions for future research, that include a novel technique for monitor

optimization as well as an improvement over existing techniques. The optimization

technique that we propose aims to reduce the cost of monitor traversal as well as

the cost of performing transitions, by reclaiming unnecessary monitors. We also

propose a monitoring approach that we call symbol-driven monitoring and describe

an optimization based on it.
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1.6 Outline of Dissertation

The primary focus of the research is on developing techniques to reduce the overhead of

runtime monitoring. Hence, in this dissertation, we first provide a general background for

runtime monitoring including its generic architecture in Chapter 2. In the same chapter, we

present the related work. The cost models that we have developed, provide insights into

current runtime monitoring approaches that help us prioritize our efforts to develop new

analyses. We present the cost models in Chapter 3. In the same chapter, we revisit some

published results and explain those using a new perspective provided by the models. Based

on these new insights, we have developed two techniques that target the number of events

for optimization. Chapters 4 and 5 present the two analyses, the residual analysis and the

analysis for loop transformation respectively, along with the results of their evaluation.

Finally, in Chapter 6, we provide the conclusion and future research directions.
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Chapter 2

Background and Related Work

Property 
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i.next()*; 

i = c.iterator()*;  

Figure 2.1: General Monitoring Scheme
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2.1 A General Monitoring Scheme

Runtime monitoring is performed to analyze program behavior with respect to a property

during program execution. A property can be specified using various formalisms [34] such

as regular expressions. For example, the property FailSafeIter can be expressed as a

regular expression create next* update* as shown in a general monitoring scheme

in Figure 2.1. Equivalently, it can also be represented as a FSA as shown in Figure 1.2. A

monitoring system or tool typically builds a FSA model for any property specified as a reg-

ular expression, as it is convenient to track a finite state machine. A modeled property FSA

could be deterministic or nondeterministic depending on the design choices made while

building a monitoring tool. Neither of these choices affect the expressiveness of the tool,

as both forms of FSA are equivalent in terms of their expressions, that means the languages

that they accept. For run-time monitoring, a common form of path property specification

used is a deterministic FSA [49]. In this dissertation, we assume that a property FSA is

deterministic unless mentioned otherwise.

The monitoring tool shown in Figure 2.1 accepts a program and a property to be mon-

itored as input. The tool reports an error if and only if it detects it. As a first step, the

instrumentation tool, which may also be a part of the monitoring tool, identifies observable

statements in the program that are relevant to the property. The instrumentation tool then

instruments the observables with some code that updates states of corresponding monitors

waiting for that event. For example, Figure 1.4 shows observable statements with respect

to the property FailSafeIter that are instrumented. After receiving an event, the sys-

tem retrieves the associated monitors and performs a transition corresponding to the input

symbol next on all the monitors. Alternatively, it creates a monitor if it does not ex-

ist corresponding to the event. During a program execution, if any of the monitors goes

to the error state, then a property violation is reported. Otherwise, it does not report a
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violation. These steps are explained in more detail in the next section. JavaMOP [26],

Tracematches [2], and QVM [5] are examples of state-of-art monitoring tools.

2.2 Monitoring Internals

Runtime Monitoring System 

e: <<c,i>,”create”> 

YES 

Report 

Error 

Check if there 

exists any 

monitors for 

Objects:=<c,i> 

< Objects:=<c,i>,   

TransLab:=“create”> 

NO 

Create a monitor 

for Objects:=<c,i> 
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monitor lists of c, i 

and <c,i> 

Retrieve monitors  associated 

with Objects:=<c,i> and 

execute TransLab:=“create” 

on all of those monitors  

Check if any 

monitor in the 

error state 

YES 
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2 
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4 

5 

… 
public int foo() { 
  …… 
 
  … 
    
    
  …… 
}   

i.next(); 

i = c.iterator(); 

Property FailSafeIter 

< Objects:=<c,i>>    

Figure 2.2: Monitoring Internals

Figure 2.2 shows a schematic of monitoring internals and the sequence of operations

that take place inside a monitoring tool after it receives an event. For the sake of simplicity,

only the most relevant details are shown. We consider the same property example that

we considered in Section 2.1, and see what happens when the tool receives an event with

associated symbol create. Note that every event is parameterized with the related set
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of objects and the symbol. In this case, the related set of objects consists of the objects

referenced by the variables c and i. The operations that happen inside the monitoring tool

are as follows.

1. After receiving event create that is generated by a call to method iterator, the

tool first checks if there are any existing monitors associated with the related objects,

in this case, both c and i.

2. If not, it creates a monitor associated with the set of objects (in this case, both c and

i).

3. It inserts the monitor, in the pools of monitors associated with related set of objects.

In this case, there would be three pools associated, one each with the following

sets of objects: i) c, ii) i and iii) both c and i. The details of this step would vary

considerably depending on the tool-building approach and the implementation.

4. The tool retrieves the list of monitors associated with the related objects and performs

a transition related to the symbol create on all the monitors in the list. In this case,

there would only be one monitor corresponding to c and i, as the tool would create

a monitor for every combination of c and i. For event next, the tool executes step

4 directly after step 1, as it finds and retrieves the list of monitors corresponding to

the object referenced by i, containing the monitor that was created by previous event

create.

5. Finally, if any of the monitors goes to the error state, a property violation or error is

reported.

We explain in detail the costs associated with these operations in Chapter 3.
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2.3 Monitoring Fundamentals

0

err

hasNext

next

1

next

hasNext

Figure 2.3: Property HasNext for complete matching.

0
next

1
next

2

Figure 2.4: Property HasNext for suffix matching.

A typestate property may be specified either for a complete matching or for a suffix

matching. A property specified for a complete matching, typically expresses complete le-

gal behavior of an object or interacting objects with respect to the property. Any illegal

behavior that pushes the property FSA to the error state, would be reported as an error.

On the other hand, a property specified for suffix matching would typically express only a
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create 

next 

update 
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next 
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update 

Figure 2.5: Property FailSafeIter for suffix matching.

sequence or sequences of operations that may lead to an error. Hence, a match would cor-

respond to an illegal behavior. This may be explained with the help of an iterator property

HasNext which says that every call to the method next on an iterator object must be pre-

ceded by a call to hasNext. This can be represented as a regular expression (hasNext+

next)* hasNext* for complete matching and modeled as FSA as shown in Figure 2.3.

Here, moving a monitor to state err would imply an error or illegal behavior. Alteratively,

it would be sufficient to specify the suffix that may lead to an error, which can be expressed

as next next and modeled as FSA as shown in Figure 2.4. Here, moving of a monitor

to state 2 would imply a match, which in turn, would imply an error or an illegal behav-

ior. Similarly, the property FailSafeIter represented by the FSA in Figure 1.2, can

be expressed as create next* update+ next and modeled as an FSA as shown in

Figure 2.5 for suffix matching, where a match would indicate an illegal behavior.

For suffix matching, a monitor may exist simultaneously in several current states. Suf-

fix matching would try to match every symbol from the current monitor states as well as

from the beginning. A monitoring tool may support this by keeping a monitor that has mul-

tiple current states or by keeping multiple monitors each with a unique current state. This

is different from complete matching where a monitor is in exactly one state at a time. A

consequence of this is a larger effort in tracking as all monitor states need to be updated for
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every symbol encountered. An incurred symbol may destroy a pattern that may result either

in the deletion of a current state or in the destruction of a monitor depending on the imple-

mentation. For example, suppose that a monitoring tool is monitoring property HasNext

for suffix matching as shown in Figure 2.4. Suppose that the tool is about to receive event

next and there exists a monitor corresponding to the iterator object associated with the

event that has only one current state 1. As soon as, the tool receives the event it updates

state 1 for the event and moves the monitor to state 2 that corresponds to a match. Hence,

the tool would report a violation. At the same time, it begins another match starting with

the start state which is 0. It updates this current state to 1. Hence, the monitor will now have

two current state, namely 1 and 2. Now suppose the tool receives another event hasNext

associated with the same iterator object. Since there is no transition corresponding to sym-

bol hasNext originating from either state 1 or state 2, it will fail a partially built pattern

at state 1, and restart building a pattern for state 2. In other words, for both current states,

the tool will restart building a pattern from state 1. Since the current states are contained

in a set, this means that there will now be only one current state. Alternatively, this may

result in the destruction of a monitor, if the implementation supports a model with multiple

monitors each holding exactly one current state.

The analysis that we consider in this research is based on the concept of typestate, first

introduced by Strom and Yemini [71]. A typestate associates a context with an object, that

determines legal operations that may be performed on the object in that context. A typestate

property specifies a legal sequence of operations on a receiver object that is associated with

a correct API usage. For example, as mentioned in the previous section, an iterator property

HasNext enforces the rule that every call to method next should be preceded by a call

to method hasNext.

A typestate analysis checks if a program complies to a given set of API rules that are

expressed as a typestate property. Even though the original concept of typestate was pro-
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posed for a single object, many properties of interest involve multiple interacting objects.

Hence, the concept is extended for the purpose of program analysis to express the proper-

ties that model interactions among multiple objects and specify legal call orderings [21, 66].

In our research, along with the uni-object properties, we also consider these multi-object

properties and for convenience, we call them multi-object typestate properties.

Regardless of the formalism used for typestate property specification, an observation

of a program behavior is defined in terms of an execution of an observable statement,

such as a method call or return, coupled optionally with a predicate defined over program

variables. In practice, an observation typically would be a result of an event generated by

the instrumentation code associated with an observable. In our presentation, we abstract

away from such details by assuming the definition of a property alphabet, Σ, which is a set

of symbols that encode observations of program behavior that are relevant to a property.

2.3.1 Complete Matching

For all the properties that can be specified as a regular expression, the corresponding prop-

erty FSA can be expressed as a tuple φ = (S,Σ, δ, s0, A) where: S is a set of states, Σ

is the alphabet of symbols, s0 ∈ S is the initial state, A ⊆ S are the accepting states and

δ : S×Σ→ S is the state transition function. We use ∆: S×Σ+ → S to define the compos-

ite state transition for a sequence of symbols from Σ; we refer to such a sequence as a trace

and denote it π. We define the error state as err ∈ S such that ¬∃π ∈ Σ∗ : ∆(err, π) ∈ A.

A property defines a language L(φ) = {π | π ∈ Σ∗ ∧∆(s0, π) ∈ A}; for convenience we

overload L so that L(r) denotes the language defined by regular expression r.

Complete matching can be explained using example in Figure 2.6. We assume that code

shown in the figure is being monitored for property HasNext. The example in Figure 2.6
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void makeEquiv ( Node node1 , Node node2 ) {
S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {

I t e r a t o r i t e r = s2 . i t e r a t o r ( ) ;

whi le ( i t e r . hasNext ( ) ) { / / S t a t e m e n t 1
Node n = ( Node ) i t e r . n e x t ( ) ; / / S t a t e m e n t 2
e q u i v . p u t ( n , s1 ) ;

}
}

}

Figure 2.6: A code snippet based on a method from DaCapo benchmark bloat.

is basically same as the example in Figure 1.3, the only difference being in the observable

statements which in this case are calls to methods hasNext and next.

In this example, for every object referenced by variable iter, a monitoring tool working

in complete matching mode, would create a monitor for the first occurrence of a call to any

of the two methods, hasNext and next. It would then keep track of the monitor states

as they are shown in the FSA in Figure 2.3. A simple monitoring algorithm for complete

matching is presented in Figure 2.7.

Lines 4–7 correspond to the step that checks if there are any monitors associated with

the set objects l related to an event e. If there are not any, the tool will create a monitor

and add it to the pool of monitors. Lines 8–12 show the next step that retrieves the list of

monitors associated with l and perform a transition corresponding to the symbol b on each

one of them. If any of the monitor moves to the error state, an error will be reported.
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CompleteMatching(φ = (S,Σ, δ, s0, A), e = (l, b))
1 let L be the set of sets of objects that receive events
2 let M be the set of monitors
3 let LM : L→M be a map
4 if LM(l) = null then
5 m← new monitor(l)
6 m.cur ← s0

7 M ←M ∪m
8 ms← LM(l)
9 for m ∈ ms do

10 m.cur ← δ(m.cur, b)
11 if m.cur = err then
12 report error

Figure 2.7: Simple complete matching algorithm.

2.3.2 Suffix Matching

In the case of suffix matching, a runtime monitor may simultaneously be in multiple states.

For all those properties that can be specified as a regular expression, the corresponding

property FSA can be expressed as a tuple φ = (S,Σ, δ, s0, A) as in Section 2.3.1. We

define a state transition function for a set of states δ′ : 2S×Σ→ 2S as δ′(S ′, b) = {s|(∃s′ ∈

S ′ : δ(s′, b) = s) ∨ (δ(s0, b) = s)}. Similarly, we have a composite state transition

∆′ : 2S × Σ+ → 2S for a trace π.

Note that, in the case of suffix matching, a monitor in an accept state would indicate

an error. Hence, we define a matching state as any state s such that s ∈ A. A property

defines a language L(φ) = {π | π ∈ Σ∗ ∧ ((∆′({s0}, π) ∩ A) = ∅)}. In other words,

a property φ defines a language L, which is a set of traces, none of which may generate

a match. For convenience, we overload L so that L(r) denotes the language defined by

regular expression r.

Suffix matching can be explained using the same example in Figure 2.6. For every

object referenced by variable iter, a monitoring tool working in the suffix matching mode,

would create a monitor for the first occurrence of a call to any of the two method calls,
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CompleteMatching(φ = (S,Σ, δ, s0, A), e = (l, b))
1 let L be the set of sets of objects that receive events
2 let M be the set of monitors
3 let LM : L→M be a map
4 if LM(l) = null then
5 m← new monitor(l)
6 m.cur ← {s0}
7 M ←M ∪m
8 ms← LM(l)
9 for m ∈ ms do

10 m.cur ← m.cur ∪ {s0}
11 for s′ ∈ m.cur do
12 s′ ← δ(s′, b)
13 if s′ ∈ A then
14 report error

Figure 2.8: Simple suffix matching algorithm.

hasNext and next. This step is very similar to the corresponding step in complete

matching. The only difference being that the field cur, instead of keeping a current state,

would keep a set of current states as in suffix matching may exist in multiple states at the

same time. It would then keep track of the monitor states as they are shown in FSA in

Figure 2.4. A simple monitoring algorithm for suffix matching is presented in Figure 2.8.

Lines 4–7, as in the previous section, correspond to the step that checks if there are any

monitors associated with the set of objects l related to an event e. If there are not any, the

tool will create a monitor and add it to the pool of monitors. Lines 8–14 show the next step

that retrieves the list of monitors associated with l and perform a transition corresponding

to the symbol b on each one of its current states. If any of the monitor moves to an accept

state which is a matching state, an error will be reported.

Both algorithms, suffix matching and complete matching, have been simplified by ig-

noring many details including underlying monitoring tool approach. They do not consider

the data structures used for monitor organization. Adding these details would change the

presentation of algorithms considerably. However, the purpose of the presentation of these
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algorithms here is to make the fundamental difference between complete matching and suf-

fix matching clear. These algorithms highlight the fact that for suffix matching, a monitor

may exist in multiple current states at a time and the match is always started from the be-

ginning, that is from the start state, along with all other current states. This is in contrast

with complete matching, where the monitor can only be in one current state at a time. The

suffix matching algorithm assumes that a monitor keeps a set of current states. However,

in practice, a monitoring tool may maintain separate monitors with exactly one current

state, instead of one monitor with several current states. Such issues are implementation-

dependent, and are discussed in more detail in Section 3.2.3.

2.4 Property violation and Monitor Correctness

FSA monitoring involves detection of each occurrence of an observation, b ∈ Σ. For

complete matching, a simple runtime monitor stores the current state, sc ∈ S, which is

initially s0, and at each occurrence of an observation b, it updates the state to sc = δ(sc, b)

to track the progress of the FSA in recognizing the trace of the program execution. We say

that a program execution violates a property, φ, if the generated trace, π, ends in a non-

accepting state, i.e., ∆(s0, π) 6∈ A; violations can be detected as soon as the monitor enters

the error state, i.e., sc = err.

For suffix matching, a simple runtime monitor stores the set Sc of current states, where

Sc ⊆ S, which is initially {s0}, and at each occurrence of an observation b, it updates

the state to Sc = δ′(Sc, b) to track the progress of the FSA in recognizing the trace of the

program execution. We say that a program execution violates a property, φ, if some prefix

π̂ of the generated trace, π, may end in a matching state, i.e., ∆′({s0}, π̂) ∩ A 6= ∅.

A runtime monitor is correct with respect to the property φ, if it is sound as well as

complete with respect to φ. The definitions of soundness and completeness are given below.
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Definition 2.4.1 (Monitor Correctness) A runtime monitor for property φ observing exe-

cution trace π is sound if it reports a violation if π 6∈ L(φ), and complete if it reports a

violation only if π 6∈ L(φ).

Soundness guarantees that no observed violation will be missed, whereas completeness

guarantees that false reports of violations will not occur.

Both the analyses that we have developed and presented in this proposal are sound and

complete in the absence of unchecked exceptions. In the presence of unchecked exceptions,

the static analysis may not safely approximate the program behavior as the unchecked ex-

ceptions do not appear in method signatures. Hence, the analysis may produce incorrect

results in that case if certain conditions are met. These conditions and the monitor correct-

ness are discussed in detail in Sections 4.3 and 5.6.

2.5 Related Work

There has been a huge body of research work on software verification in general. However,

a part of it is about checking programs for state properties, which are typically specified

as some predicates about the data states of the program at program points of interest. Our

research is about verifying typestate properties which are path properties that reason about

a sequence of program’s control and data states. In this section, we will present work that

is related to the verification of path properties.

2.5.1 Static Approaches

2.5.1.1 Type-system based approaches

Bierhoff and Aldrich [11] present a type-system based approach for typestate verification.

Their analysis is completely intra-procedural which eliminates a need for expensive whole-
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program analysis and makes it scalable. The authors make use of method annotations in the

form of access permissions that specify typestate changes and also reason about aliasing.

These annotations that represent API usage rules should be supplied by the user. In order

to specify access rules the authors make use of linear logic. The typestate changes can be

enforced by using the temporal logic rules and types of accesses it allows on the objects.

Authors provide the flexibility, which is necessary to support aliasing, by providing rules

for splitting and merging access permissions. A downside of this approach is that, like all

other static approaches, it may still produce false positives. However, it is sound and does

not produce false negatives.

Bierhoff et al. present a tool Plural based on this approach and evaluate it using a few

applications [12]. The authors mention the price of modularity as the effort in developing

annotations. For one application, the authors produced about 15 annotations in 75 minutes,

whereas for the other they developed about one annotation for every 30 lines of code. This

indicates that an effort for large applications can be prohibitive. For an application with 65

methods, the tool reported a total of nine warnings out of which five were false positives.

This data shows that, although impressive, the approach still may produce false positives.

Compared to this, a typical static analysis approach or a static analysis phase of a hybrid

analysis approach may produce more false positives for which a hybrid approach performs

runtime monitoring. However, these approaches do not require any method annotations,

which would be an additional burden on a programmer. Moreover, unless automated, the

process of developing annotations, may be prone to errors.

Beckman et al. have extended Bierhoff and Aldrich’s approach to check correct usage

of atomic blocks to avoid race condition [10]. The Java-like language presented in the

paper is based on a sound type system. However, the evaluation of their prototype is based

on a small application. Hence, whether the approach would scale to large applications in

practice remains unclear.
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DeLine and Fähndrich’s type-system based approach [29] is similar and like other type-

system based approaches it also suffers from a laborious and an error-prone process of de-

veloping annotations. The annotations express the typestate change and aliasing rules over

objects as method pre- and post-conditions. The authors have implemented their solution

in a tool named Fugue and is used to analyze Microsoft .NET-based programs.

2.5.1.2 Static analysis based approaches

Fink et al. present a multi-staged static analysis that is flow-sensitive as well as context-

sensitive [40]. In order to make the approach scalable, intraprocedural and flow-insensitive

analyses are run in the beginning. These analysis are less precise but efficient, reducing the

workload for the later stages. The later stages use pointer analysis techniques capable of

making strong updates that are essential for checking typestate properties. Strong updates

overwrite the old content of an abstract memory location with a new value [30]. A disad-

vantage of this approach is that unlike previous approaches it is non-modular and hence

more expensive. However, it needs no annotations. The evaluation of the framework by the

authors showed that staging improved performance of their framework from verification

of 30% points of potential failure (PPFs) to 93% PPFs. However, the approach could not

verify correctness for about 7% (more than 340) PPFs. Manual inspection of 340 PPFs

would be a time-consuming effort.

Das et al. [28] present ESP, that can be viewed as an analysis tool for typestate-like

verification which works on a technique that the authors call property simulation. Property

simulation limits the dataflow information by not tracking the branches that may not affect

the property states. This way the authors succeed in scaling up the analysis to verify an

application of the size of gcc [44] for a property that checks if a file is written only when it

is opened. In comparison, our residual typestate analysis is path-insensitive for the purpose

of scalability. It safely approximates the paths by merging property states at the join points.
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It might be interesting to implement property simulation approach to see if an increase in

the precision results in higher benefits without compromising with the scalability. ESP’s

inter-procedural analysis has a context-sensitive approach that is similar to residual types-

tate analysis’s approach. Both use method summaries at the call sites and merge those at the

entry and the exit points appropriately. Both approaches would reanalyze a called method,

only if the summary information is inadequate, i.e. it does not have an information about

a relevant property state. It would be interesting to see if ESP can scale to more complex

properties that involve multiple objects and for languages like Java that make heavy use of

dynamic dispatching.

2.5.2 Dynamic Approaches

Static approaches for typestate checking are useful. However, they still produce false posi-

tives. This has given rise to research on novel tools and techniques for runtime monitoring.

2.5.2.1 Static instrumentation based approaches

Allan et al. present Tracematches [2], a tool that can monitor a typestate property using its

specification language tracematches which is a pattern-based specification language and is

an extension of AspectJ [51]. Tracematches performs only suffix matching and the prop-

erties may be expressed as regular expressions. Tracematches specifications may include a

code that is to be run when a pattern is matched. This code is woven directly into the base

code. Tracematches implementation is based on AspectJ compiler abc [7] and Soot [70].

Its evaluation using a moderate-size application showed that it incurred a heavy overhead

of over 850%. However, it did not incur significant memory overhead. Avgustinov et al.

[8] propose and implement two optimizations, one of which reduces memory leak making

memory usage as well as tracking efficient by eliminating unnecessary monitors. The other
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optimization provides indexing for efficient access to monitors that further improve track-

ing efficiency. The evaluation on a few benchmark-property combinations shows dramatic

improvement in the performance on many but not all combinations. Occasionally, the op-

timizations result in similar or even worse performance. As pointed by the authors, the

dependency on a garbage collector that optimizes memory leaks means that programs that

have larger heap available may perform poorly compared to programs that have smaller

heap available, because the garbage collector may be invoked less frequently in the former

case. The evaluation performed by other researchers [62, 61] using DaCapo benchmarks

[14] shows that Tracematches occasionally may incur a very high overhead in excess of

11000%. In Chapter 3, we analyze this overhead using the cost models and identify the

contributing factors.

JavaMOP [25, 62] generates aspects based on a specification provided by a user for

Java that can be woven into a program using any AspectJ compiler. JavaMOP is more

expressive as far as property specification is concerned. It allows programmers to spec-

ify properties using various formalisms including context free grammars, FSAs, extended

regular expressions and PTLTL. JavaMOP provides sophisticated indexing that can be ei-

ther centralized in which indexing trees are shared by all objects or decentralized in which

monitor references are stored by the objects as an additional field. Decentralized indexing

normally provides faster access to monitors compared to centralized indexing, but also re-

quires additional instrumentation for inserting a new field which may restrict its usage to

testing environment. JavaMOP has been evaluated [61, 62] on a wide variety of proper-

ties using DaCapo benchmarks [14] and its performance has been compared with Trace-

matches [2] and PQL [60]. PQL is a query language that allows users to check property

conformance. The tool with this specification language also performs static analysis to

that filters unnecessary events and hence it is discussed in Section 2.5.3. The results show

that JavaMOP outperforms Tracematches and PQL for most of the benchmarks used. The
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results also show that JavaMOP could efficiently monitor most of the program-property

combinations for DaCapo benchmarks. However, JavaMOP incurs 1112% overhead for

bloat-HasNext combination, whereas it incurs 627% for bloat-FailSafeIter

combination [61]. Our work on the stutter-equivalent loop transformation is motivated by

the high overhead that is incurred by some of these benchmark-property combinations.

Hence, we used the same program-property combinations that were found to be challeng-

ing for monitoring in the previous work [26, 61] and used JavaMOP as the monitoring tool

for the evaluation of our technique.

2.5.2.2 Dynamic instrumentation based approaches

Dwyer et al. present optimization techniques [33, 36] that exploit the structure of typestate

properties. The authors present a framework, sofya, [36, 53] for adaptive runtime monitor-

ing. This framework can enable or disable instrumentation for obervables by performing

dynamic rewriting. The observables that are selected for the optimization are the ones that

only self-loop on a state of a property FSA, i.e. they do not change the state, when the

FSA is in that state. Formally, for an entry state s, the technique calculates the set O of

observable symbols, o, for which δ(s, o) = s. Hence, once the FSA is moves to the state

s, the framework disables the instrumentation for all the observables in O, provided no

other monitors are interested in that observable symbol. It re-enables the instrumentation

for those observables after one of the monitors moves to another state for which the con-

dition is no longer valid. The framework evaluation on a few applications shows reduction

in the runtime overhead that makes their monitoring feasible. However, dynamic rewriting

of programs to enable and disable instrumentation and the infrastructure that the frame-

work needs, makes efficient monitoring of larger programs challenging. The technique can

be seen to be partially addressing the problem that stutter-equivalent loop transformation

is addressing. An advantage of our loop transformation technique is that it is static. No
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dynamic checks are required to see if instrumentation can be dropped. Moreover, it can

handle loops that have more complex loop phrases that transition through multiple states.

For example, in case of property HasNext, the technique can detect eligible loops with

the phrase hasNextt, next when it transitions through two states in every iteration. An

advantage of adaptive online monitoring is that it can handle program fragments that may

or may not include loops, or include sequence of loops, provided that these fragments have

all self-looping observables. In addition, its condition regarding self-looping behavior is

less stringent than loop transformation analysis’s condition, where it needs to hold for all

states. However, it needs all the monitors to be in self-looping states with respect to the

symbol that is to be disabled, which makes the instrumentation disabling condition severe.

In general, being a completely static transformation that needs no support during runtime,

we expect loop transformation technique to score over adaptive online analysis technique

when it comes to performance.

2.5.2.3 Sampling based approaches

Sampling based approaches work by selecting only a subset of certain attributes for ob-

servation to decrease the runtime overhead. However, they compromise soundness for this

efficiency.

Arnold et al. present Quality Virtual Machine (QVM) that has an ability to perform

typestate, assertion and heap property checking [5]. The biggest advantage of QVM is

that it is implemented in JVM, which gives it direct access to the information that resides

in VM. However, this advantage comes with a cost of non-portability. Unique features

of QVM include its overhead manager that allows user to specify acceptable monitoring

overhead and then ensures that the overhead remains under this limit. At the same time,

it extracts as much information as possible by using techniques such as property-guided

sampling and object-centric sampling. Property-guided sampling ensures that sampling is
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not done randomly and ensures no false positives. An object-centric sampling is performed

by marking objects for tracking at their creation times using a bit in the object header. A

typestate history, which is a log of sequence of events incurred by a receiver object, is

maintained for a few objects created at an allocation site that is identified as creation site

for objects violating a property. The evaluation performed using a variety of benchmarks

including DaCapo, showed that even for small overhead budget of 10%, QVM could track

more than 80% objects for 9 out of 15 benchmarks. This evaluation shows that QVM can

effectively monitor large applications. However, the current approach does not consider

multi-object typestate properties, in which case, its use may be restricted to checking uni-

object typestate properties. The approach is unsound as it cannot detect errors for the

objects not selected for monitoring or after they are dropped.

Dwyer et al. present an approach based on subalphabet sampling [33]. The properties

being monitored are first composed to form a single large property. This creates a lattice

in which the integrated property sits at the top of the lattice. Several program versions

are made and then instrumented for the properties sampled systematically by decomposing

the lattice, so that each version monitors only a subset of properties lowering the overall

cost of monitoring. This technique can be effectively used in software deployment where

each version would be executed by several users and no single user will have to take the

entire burden of monitoring. The cost of reduced monitoring would be missed violations

for the observables that do not appear in the chosen set of properties. However, a violation

detected is guaranteed to violate the top property. The technique was evaluated using real

open source applications that use Hibernate [48] to understand the impact of subalphabet

size on detecting property violations and understanding effectiveness of the technique in

comparison with the original properties. The authors observe that increasing subalphabet

size increases the effectiveness of the technique. However, it also increases the monitoring

cost although not necessarily in the same proportion. For low overhead, the sampling of
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lattice properties is found to be more effective than the original property. One potential

problem with this technique is that there may be hot regions in a program generating only

one or two symbols. In that case, a user executing these regions with instrumentation would

have to take larger monitoring burden compared to other users monitoring other properties

that do not involve these symbols. Hence, it is unclear if subalphabet property sampling

would always result in monitoring overhead that is fairly distributed among all users.

Bodden et al. address a problem similar to the one addressed by Dwyer et al. [33]

by using a different approach for collaborative runtime verification [18]. Instead of sam-

pling on subalphabet, the authors propose partial instrumentation of the program so that

users executing different copies of the program can share the burden of monitoring. The

authors propose two techniques for partitioning instrumentation, spatial in which different

users observe different program points for violation and temporal in which monitoring is

switched on and off depending on the cost of monitoring in terms of time, users are willing

to pay. For spatial partitioning, a static analysis is first performed to identify consistent

shadow groups. These are identified in such a way that the monitor observes all related

events missing which may cause a false positive or negative. However, this approach may

suffer due to instrumentation embedded inside hot program regions that gets executed more

often than other instrumentation, say in loops. Moreover, overlapping points-to sets of skip

shadow could add extra probes. Temporal partitioning would improve on such high over-

heads with the cost of missing violations. The evaluation on DaCapo benchmarks shows

that with a few exceptions, distribution of probes results in reduced overheads, although

not necessarily in the same proportion.
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2.5.3 Hybrid Approaches

Most of the hybrid approaches discussed here are similar at a higher level in the sense

that they perform static analysis first to identify program points for which instrumentations

can be safely dropped, and then analyze the program during runtime with the help of the

remaining instrumentation. However, they differ considerably in the details of underlying

static analysis. Among the research that is closely related to our work and also uses a hy-

brid approach, major part of it has been performed by Eric Bodden, Laurie Hendren, Patrick

Lam, Ondřej Lhoták, Nomair Naeem and their colleagues. Their contributions, along with

ours, are among the first ones in this field. It should be noted that our approaches for

both, residual analysis as well as loop transformation, are considerably different. Resid-

ual analysis, may combine the instrumentation points using summary transitions, whereas

loop transformation is the only approach that uses program transformation technique for

optimization. Here we give an outline of their research along with some other notable

work.

Bodden et al. present a multi-staged analysis [19] similar to the one presented by Fink

et al. [40], with a few differences. Unlike Fink et al.’s approach, Bodden et al.’s approach

is hybrid. So for the PPFs that the analysis failed to show safe, the instrumentation is re-

tained for runtime monitoring. Fink et al.’s analysis is in the context of uni-object typestate

properties, whereas Bodden et al.’s analysis targets both uni-object as well as more general,

multi-object properties. The first stage is a simple and efficient flow-insensitive check on

observables to eliminate infeasible matches. The second stage is a inter-procedural context-

sensitive, but flow-insensitive analysis to eliminate infeasible matches due to inconsistent

bindings. For every shadow, the analysis checks if there exists a consistent group of which

the shadow is a member. If not, instrumentation is dropped for the shadow. The third stage

is more precise and expensive whole-program flow-sensitive analysis to check the order of
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execution of the shadows. The evaluation by the authors on DaCapo benchmarks reveals

that this stage is least effective as first two stages are responsible for dropping most of the

shadows. The evaluation, however, shows the effectiveness of the technique as it could

analyze most program-property combinations with an overhead of < 5%. However, some

combinations still incur a very large overhead. One problem with this approach is that once

found to be a member of a consistent shadow group, a shadow will be retained irrespective

of whether it can really contribute to an error. For example, the analysis does not check if a

shadow is capable of causing a state change. The residual analysis [37] can deal with these

cases effectively. Bodden addresses this issue in his recent work [17].

In our work [68], we have used a staged approach to static analysis which is some-

what similar to the above approach. We first perform an efficient flow-insensitive check

to identify methods that have observables. We then use AST structures generated by Dava

[64, 65] to identify methods with loop carrying observables. Our final stage is a more pre-

cise flow-sensitive, method-summary-based points-to and side-effects analysis that ensures

the eligibility of loop for transformation. Our experience along with the work presented by

Bodden et al. [19] and Fink et al. [40] have shown that multi-staged approach can scale to

real applications.

Naeem and Lhoták present a precise whole-program context-sensitive and flow-sensitive

typestate analysis for Tracematches [66]. The higher precision of analysis is at least partly

due to the typestate and points-to information calculated together at every step. This is

different from our analysis as well as Bodden et al.’s analyses that calculate this informa-

tion in separate passes. In addition, the authors use a novel lattice-based representation to

model points-to relationship between variables and objects. This representation can simul-

taneously hold positive as well as negative bindings, that correspont to must and must-not

aliasing respectively. Author’s lattice-based model addresses the problem related to un-

bounded number of tracematch automata, one each for every possibly related set of objects
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associated with a tracematch, that creates difficulties in static analysis. The lattice used by

the authors stored Tracematches parameter bindings with abstract objects instead of con-

crete objects which limits its size. The size is further controlled by not applying the focus

operation to an abstract object once it is bound by a tracematch state. This results in strong

updates. The focus operation splits an object into two resulting in the exponential growth

of abstract objects [40]. As shown by the evaluation on DaCapo benchmarks, the extra

precision in the points-to analysis resulted in ruling out several PPFs that Bodden et al.’s

analysis [19] failed to show as safe. However, there were a few cases where this analy-

sis was not as effective as the one presented by Bodden et al. The flow-sensitive analysis

presented by Bodden et al. in the final stage performs only weak updates in the context of

skip-shadows due to lack of must-alias analysis. This results no extra precision over the

previous phase and in retaining a lot of shadows that could have been ruled out otherwise.

For these reasons, Naeem and Lhoták’s analysis score over the analysis in [19], particularly

in the handling of HasNext tracematch where calls to hasNext and next often occur

in succession in loops.

Bodden et al. [20] tried to remove some of the deficiencies in the approach presented

in their earlier work [19]. The authors made a major change in the design by replacing the

whole-program analysis by more precise, but less expensive summary-based flow-sensitive

intra-procedural analysis. The approach makes conservative assumptions particularly about

the feasible states at the entry of a method by assuming that a monitor could be in any

state. This makes analysis less precise but preserves its soundness. The more precise

intra-procedural analysis generates information that helps drop instrumentation from more

shadows at the same time improve completeness of the analysis. For example, for property

HasNext, a method m1 called by another method m may not impact the analysis of m, if

it uses an iterator object not related to the one used in m. The intra-procedural analysis that

we developed in our work [68], is similar in nature and is based on similar sound obser-
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vations. For example, in case of property FailSafeIter, if method m has a loop that

has observables corresponding to symbol update and calls method m1 that also has ob-

servables corresponding to only update where the receive object relationship is unclear,

m1 does not impact the analysis of the loop as in either case, the loop still satisfies the

necessary conditions mentioned in Section 5.5.2 and execution of method statement cor-

responding to update in m1 or absence of it, does not compromise with the correctness

of the analysis. Of course, the condition may not hold if m1 can potentially execute an

observable statement corresponding to other symbols such as next.

When evaluated using DaCapo benchmarks, Bodden et al.’s analysis could rule out ma-

jority of PPFs for majority of benchmarks except when applied on benchmarks bloat and

pmd to check iterator properties. Another novelty of this work is presentation of machine

learning algorithm and PPF ranking system that helps ruling out more PPFs and prioritize

inspection respectively. However, this algorithm is unsound. When applied on the results

of the analysis, it removed majority of PPFs that were false positives, but in one case also

removed actual point of failure. It would be interesting to see how it works on applications

that have real bugs.

Bodden presents Nop-shadows analysis [17], a more precise flow-sensitive analysis.

The analysis improves on the previous analyses by identifying shadows that cannot con-

tribute to the property violation and then disabling their instrumentation. In addition to the

flow-sensitive forward pass that calculates for every statement s, the states that may reach

s, the analysis also has a backward pass that calculates possible future states that would

lead to an error by the program execution that follows s. This backward pass not only helps

identify redundant shadows that need no instrumentation, but also deals effectively with a

soundness problem with the analyses presented in the previous work. Previous analyses are

based on calculation of shadow history of statement s, i.e. the shadows that can reach s.

The soundness problem arises due to accidental disabling of conditionally executed shad-
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ows that ensure that a tracematch is not matched, that otherwise would be matched. The

backward pass corrects this situation by calculating future states for every shadow.

Since a nop shadow is a nop shadow only if all other shadows are enabled, the analysis

drops only one shadow at a time to preserve the soundness. This means for a method with n

nop shadows the analysis performs n iterations. This is similar to the process of calculating

safe regions inside methods in residual analysis as explained in Section 4.4.3 in Chapter 4.

An advantage of residual analysis algorithm is that it starts with a window with a maximum

feasible size and then reduces it, if required, depending on the boundaries of an available

safe region, the algorithm can deal with more observables at a time and terminate faster

unless the method has as many nondeterministic regions as observable statements which is

unlikely in practice. In addition, residual analysis makes use of summary transitions that

results in larger safe regions, which in turn, results in even faster termination.

CLARA [16, 21] is a framework for hybrid typestate analysis that not only provides a

suite of three static analyses, but also provides a facility for users to add their own anal-

yses. Users provide a property of interest directly as an annotated aspect that specifies a

nondeterministic FSA. Alternatively, they can use a high level specification compiler such

as JavaMOP or Tracematches to translate these specifications to aspects. The compiler

tool can generate necessary annotations, and if not then the user provides those manually.

CLARA first weaves the aspects in the base program and then with the help of its static

typestate analyses disables the shadows that are not relevant to the property. Two of the

three analyses are similar to the analyses that formed the first two stages in Bodden et al.’s

previous work [19]. The third analysis is the Nop-shadows analysis. We believe that our

analyses would be complementary to the analyses developed by Bodden et al. and if com-

bined should produce even better results. We believe that this would be an interesting area

for future work.
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Martin et al. present PQL, a Programming Query Language [60] that checks if a given

program conforms to design rules. It follows a hybrid approach of using static analysis first

to eliminate unnecessary instrumentation and then using dynamic analysis on the leftover.

Its implementation is based on bddbddb program database for storing information gen-

erated by static analysis and Datalog for running queries on that data. The design rules

can be specified as a pattern along with the actions that need to be performed if the pattern

is matched. A support for subqueries allows PQL to match context-free grammars. This

means PQL is more expressive than Tracematches. However, this feature normally comes

with a loss in the precision and PQL is no exception. As shown by the studies [6, 26], PQL

incurs higher overhead than both Tracematches and JavaMOP.

Goldsmith et al. [45] present PTQL, a Program Trace Query Language, which is a very

expressive SQL-like query language over program traces. The authors provide a compiler,

PARTIQLE for online analysis that generates instrumentation to keep query-related data in

runtime tables that is used to feel empty slots in a query. It also generates query evaluation

code. The author’s approach is similar to the one taken by Martin et al. [60], but Martin et

al.’s approach performs deeper static analysis. The records are time-stamped and this infor-

mation is used in timing analysis that builds graphs that hold timing relationship between

start and end events for every identifier in FROM clause of the query. The timing graphs are

optimized for efficiency. PARTIQLE uses static filtering to ensure that instrumentation is

not applied to sites that violate a predicate. In addition it also performs dynamic filtering at

the instrumentation site by checking predicates involving fields from only one record. The

query evaluation is triggered at points that generate potentially last event in the query. It is

unclear if this strategy would result in extra overhead as runtime tables will be joined and

searched for the results at these points which are all expensive operations. PTQL has been

evaluated on benchmark and property combinations that are different than the ones used
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by other tools such as JavaMOP and Tracematches, and hence it is difficult to compare its

performance with either JavaMOP or Tracematches.

2.5.4 Specification Mining

It may not be always easy for a programmer to express the properties of interest for mon-

itoring. Moreover, APIs can be complex and their documentation is often ambiguous and

incomplete. This may result in a programmer generating an incorrect specification. At

the same time, she would still be interested in understanding the program behavior with

respect to several properties, and ensure that those properties are satisfied during runtime.

The specifications would help her understand and debug programs. To address this prob-

lem, researchers have proposed several promising approaches in the last decade to extract

specifications automatically based on static or dynamic analysis of programs. Many of the

dynamic approaches work on the assumption that the program behavior would mostly be

correct, so that an exceptional or unobserved behavior may correspond to an error.

Researchers have developed tools such as Daikon [39] and DIDUCE [46] that generate

program invariants based on observed program behavior. The invariants are then checked

during runtime and violations, if any, are reported. Daikon uses statistical techniques to

avoid over-reporting of errors, whereas DIDUCE has a learning mode in which it gradu-

ally relaxes an invariant for every violation and reports a warning for the first occurrence of

every violation during its checking mode. The program invariants in both the cases corre-

spond to state properties, whereas our research is focussed on checking typestate properties

that are path properties. Hence, in this section, we mainly discuss the research that is about

checking path properties. Many of these approaches that generate specifications for tempo-

ral properties can be viewed as approaches that can or can be extended to generate typestate
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property specifications. However, most of these approaches do not target properties that

have associated parameters such as objects.

2.5.4.1 Machine learning based approaches

Ammons et al. [3] propose a mining technique that begins with isolating traces that are

unrelated and then uses a machine learning approach based on an off-the-shelf probabilistic

FSA model to generate temporal specifications. The infrequently traversed edges in the

resultant FSA are pruned. The validation of the FSA is performed by human inspection.

This step may create a bottleneck in the process of specification mining as a miner may

generate an incorrect specification based on erroneous traces, and a programmer may have

to check the generated specification for potentially very large number of unordered traces

to discard the erroneous ones. Ammons et al. address this problem later [4] by presenting a

technique concept analysis, that orders and clusters similar traces, so that the programmer

has to check only a small subset of the traces.

Lee et al. [56] present a technique and its implementation; a tool named JMiner. Their

approach targets parametric specifications and multi-object properties. It is based on trace

slicing that differentiates traces based on the related objects and then passing the isolated

traces to machine learning phase. This phase consists of an off-the-shelf probabilistic FSA

learner and then refining its potentially over-generalized results using a FSA learner that

authors have built. Most of the other tools work on the traces provided to them, however,

JMiner can generate traces.

Lo et al. [58] present a technique that improves a precision of the kTail algorithm [13]

which , in turn, results in improving the precision of FSA inferred from traces. It is the state

merging phase of kTail that introduces this imprecision as it performs a lookup over next k

outgoing transitions from the two states under consideration to check for their equivalence

before making a decision about their merging. This operation occasionally merges the
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states erroneously if their near future is same, but distant future is different. The authors

present a statistical technique for mining temporal rules and then using these rules to steer

the kTail algorithm so that it can make a better decision about merging states. If the states

violate any of the temporal rules, the states are not merged. This improves the precision in

the extracted FSA specification. The evaluation of the technique shows that it improves the

specification precision without adding much time overhead.

Most of the specification mining techniques generate either data predicates that are state

properties, or FSA that are path properties. However, they do not generate FSA that are

parametrized with data. Lorenzoli et al. [59] bridge this gap by presenting an algorithm

called GK-Tail that generates extended finite state machines (EFSM) from the program

traces. GK-Tail is a variant of k-Tail algorithm and has its own rules for finding equiv-

alent states that can be merged. Its evaluation indicates that it can extract several EFSM

specifications that cannot be meaningfully described by FSM specifications.

2.5.4.2 Pattern template based approaches

Yang et al. present an approach [73] that can deal with imperfect traces caused either by the

presence of bugs or due to their incompleteness, using statistical techniques. The authors

target temporal specifications that have alternating pattern (a b)*. They consider traces

that have a context as well as those that do not. Traces with context provide richer informa-

tion, but can be made useful only when appropriately generalized based on object identity.

Irrelevant or less interesting traces are pruned using method reachability within a call-graph

and exploiting naming conventions. Results are simplified and generalized using chaining

that combines multiple specifications in a meaningful way. The technique is scalable, but

explores only one kind of pattern and its generalization. There are several other interesting

patterns investigated by other researchers including a few that are associated with only two

variables.
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Gabel and Su present a similar approach [42] that is based on using a pattern template,

but in addition to the pattern (a b)*, the authors also consider a pattern (a b* c)*.

Authors show that the composition of these two patterns can yield complex patterns of

practical interest. The authors show that the mining problem is NP-hard and then make

an improvement [43] over the algorithm provided by Yang et al. [73] for solving mining

problem for input automaton with alphabet of size 2. Gabel and Su’s algorithm is based

on binary decision diagrams, where as Yang et al.’s algorithm is matrix-based. The authors

do not mention if extracted specifications are parametric. In the absence of parameters, the

extracted specifications may be noisy.

2.5.4.3 Static approaches

All of the approaches mentioned so far are dynamic; that is they run a program and then

analyze its runtime behavior. One limitation with these approaches is that the specifications

extracted are limited to the observed behavior. In order to capture the program behavior

especially when multiple APIs are used across multiple procedures, Acharya et al. [1]

propose a static analysis technique implemented using a model checker. The traces are

modeled as partial orders and fed to a miner for extracting specification. A weakness of

this technique is that partial orders cannot describe looping and hence the technique cannot

extract property specifications that have loops.
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Chapter 3

A Cost Model for Runtime Monitoring

3.1 Introduction

Over the past decade, researchers have developed a number of monitoring techniques and

implemented those techniques in tools that can be used to analyze large complex applica-

tions [5, 8, 17, 25, 26, 27, 47, 52]. In spite of this progress, there exist programs for which

monitoring with respect to certain properties incurs significant runtime overhead which

hinders the application of monitoring in practice. When monitoring programs, the property

FSA must be bound to data values. For example, monitoring a property that expresses the

legal sequencing of calls on a Java class requires that the value of the receiver object be

used to correlate calls – a call on one instance of the class is independent of calls on other

instances of the class. For each collection of objects that is related to a property an instance

of a monitor is created and all subsequent calls on those objects generate events that are

routed to track the state of the monitor, based on the FSA, and detect property violations.

It seems sensible that the number of monitors that are created and the number of events

generated by the program execution influence the cost of monitoring. For example, for

the DaCapo benchmark [14] pmd, Tracematches [2] observes over 33 million and over



51

25 million events, respectively, for properties HasNext and SafeIterator [62]. This

leads to runtime overheads of 52% in the former case and 175% in the latter case. Similarly,

the bloat and pmd benchmarks create nearly the same number of monitors, in excess of a

few million, for property SafeIterator [62] for JavaMOP [26]. Despite the similarity

in number of monitors bloat incurs an overhead of 769% whereas pmd’s overhead is only

19%. While the number of monitors and events are significant contributors to overhead, it

seems clear from just these examples that there are other important factors in play.

There are a number of different algorithmic approaches to monitoring of typestate prop-

erties. We distinguish two basic categories: object-based, which maintain a set of monitors

associated with each class instance relevant to the property, and state-based, which main-

tain a set of monitors associated with each state of the property FSA. Both of the approaches

have been discussed in detail in Section 3.2.3. The JavaMOP tool implements object-based

monitoring and Tracematches realizes the state-based approach. These tools can incur

contrasting monitoring overheads for the same benchmark-property combinations. For ex-

ample, Tracematches incurs an overhead of 2452% compared to an overhead of 1112% for

JavaMOP when monitoring property HasNext on the bloat benchmark [62]. However,

for the same property, Tracematches incurs an overhead of only 52% for benchmark pmd

compared to JavaMOP’s 191% overhead [62]. In this chapter, we explore the sources of

these differences in performance.

We adopt an analytic approach, rather than an empirical one, since we seek to explain

performance differences in order to gain insights that might drive the development of im-

provements in runtime monitoring. Towards that end, we abstract and generalize the state

and object-based approaches of JavaMOP and Tracematches and construct models that de-

fine and relate the key components of cost in runtime monitoring. These models attempt to

characterize the relative contribution of different algorithmic variants of the two monitor-

ing approaches in order to permit comparisons. With the cost models in hand, we revisit
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several previously published results, including some of our own, in order to better explain

reported data on monitoring overhead, the conclusions drawn from those data, and to iden-

tify opportunities for further performance improvement.

3.2 Motivation and Background

Several efficient runtime monitoring tools have been developed in the past decade. While

they perform well for many combinations of programs and properties, they have also been

found to generate very high overhead occasionally which may restrict their usage. To date,

the reasons for variation in the cost of runtime monitoring have not been studied or well

understood.

3.2.1 Unexplained variation

To understand the variation in runtime overhead that may be observed when varying differ-

ent parameters we performed a small study on programs and properties which are known

to exhibit non-trivial monitoring overhead. We used two widely studied programs, the Da-

Capo benchmarks bloat and pmd, and typestate properties, HasNext and FailSafeIter.

The programs can be run with two different inputs small and default. We used JavaMOP, a

tool implementing object-based monitoring, and Tracematches, a tool implementing state-

based monitoring. For each tool, we considered several options.

Object indexing provides support for efficiently locating the set of monitors that need

to be updated when a program event is generated; events include information on a set

of related program objects and they are used to “lookup” the set of monitors. JavaMOP

includes support for indexing all of the objects involved in an event, whereas Tracematches

permits just a single object to be indexed. The indexing options can be enabled or disabled

in the tools.
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No. BM Property Input Matching Indexing Tool % Overhead
1 bloat FailSafeIter default complete enabled JM 702.1
2 bloat FailSafeIter small complete enabled JM 73.7
3 bloat FailSafeIter default suffix enabled JM 3291.7
4 bloat FailSafeIter small suffix enabled JM 443.6
5 pmd FailSafeIter default suffix enabled JM 87.0
6 pmd FailSafeIter default suffix enabled TM 9119.6
7 pmd FailSafeIter default suffix disabled TM 41806.5
8 pmd HasNext default suffix enabled JM 73.9
9 bloat FailSafeIter default suffix enabled TM >149900

10 bloat HasNext default suffix enabled JM 2533.33
11 bloat HasNext default complete enabled JM 172.9
12 bloat HasNext default suffix enabled TM 1168.8
13 pmd FailSafeIter default complete enabled JM 56.5
14 pmd HasNext default complete enabled JM 15.2
15 pmd HasNext default suffix enabled TM 91.3

Table 3.1: Variation in the runtime overheads caused by different combinations program,
property, input and tool configurations. * Indicates that the process was stopped after 7200
seconds. JM = JavaMOP and TM = Tracematches.

The trace of events generated by a program can be matched against the FSA specifica-

tion using two different approaches. In complete matching the trace is tested for member-

ship in the language of the FSA; when a trace prefix cannot be extended to an accepting

trace then violations can be detected before the program terminates. FSA properties can

also be specified that are supposed to hold beginning at any point in the program trace—

one can think of these as invariants across the trace. Checking such properties is performed

using suffix matching; conceptually this involves creating a new monitor after every event

to check the property against the suffix beginning at that event. JavaMOP supports both

complete and suffix matching, whereas Tracematches only supports suffix matching.

The monitoring overhead for a non-exhaustive set of combinations of these parame-

ters is provided in Table 3.1. The data show that even for a limited choice for individual

parameters the combinations can be numerous and the overhead ranges significant.
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Intuitively, we expect that the nature of the program, property, and input to strongly

influence overhead. Comparing rows 1 and 2 and then 3 and 4, illustrates that, as expected,

overhead is sensitive to program input; overhead drops by about an order of magnitude in

both cases. The 3rd and 5th rows, with overheads of 3291% to 87%, demonstrate the influ-

ence of the program and the 1st and 11th, with overheads of 702% and 172%, demonstrate

the influence of the property on overhead.

Algorithmic techniques for runtime monitoring should also be expected to influence

overhead. Rows 1 and 3 illustrate the influence that varying the matching type can have on

overhead; overhead increases by more than a factor of 4 to 3291% across this pair. Rows 6

and 7 indicate that indexing can significantly reduce overhead from 41806% to 9119.6%.

Even when holding the benchmark, property, input, checking mode and indexing scheme

fixed the choice of checking tool can matter. Rows 3 and 9 show that JavaMOP slows the

program down by a factor of more than 32, whereas Tracematches timed out so its over-

head is at least 149900% on the bloat benchmark and FailSafeIter property when

running in suffix mode. Switching just the property, to HasNext, however, reveals that the

overhead of Tracematches can be less than half that of JavaMOP; row 12 shows 1168.8%

for the former and row 10 shows 2533.33% for the latter.

Our intention here is not to provide a comprehensive explanation of the sources of vari-

ation in monitoring overhead, but rather to point out that predicting the overhead of runtime

monitoring is difficult since it depends on many factors. While not illustrated here, there are

additional implementation factors that can strongly affect monitoring cost. For example,

while we used the same machine, OS, and JDK, for all runs reported in Table 3.1, we did

observe that changing the platform may either increase or decrease monitoring overhead

depending on how it interacts with the monitoring implementation; more specifically, we

observed the effect of differences in garbage collection implementations. It is also known
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that the choice of data structures to use for indexing can also dramatically affect perfor-

mance [26].

3.2.2 Our Motivation

While tools like JavaMOP and Tracematches represent state-of-the-art runtime monitor-

ing implementations, our goal is not to characterize or compare implementations. We be-

lieve that advancing research on runtime monitoring requires the ability to look beyond

implementations to understand the performance of the underlying algorithmic techniques.

Such insights will help researchers draw more generalizable conclusions about proposed

techniques and to identify new opportunities for optimizing the performance of runtime

monitoring.

We believe that a key tool for enabling such insights are detailed cost models for runtime

monitoring techniques. These models should support reasoning about the relative costs of

variants of a technique. Consequently, they should account for the detailed operation of

techniques and their variants, e.g., indexing and matching types. We emphasize that our

goal is not to provide accurate predictions of the overhead of a particular implementation,

but rather to support analytical reasoning about the potential benefits of new algorithmic

techniques.

We expect for the cost models for runtime monitoring to play a similar role to the

detailed cost models used in selecting compiler optimization strategies. Modern instruction

set architectures contain a number of complex interacting features, e.g., pipelines, caches,

multiple functional units, and being able to reason about the expected performance of a

code fragment in the presence of those features is needed to choose among optimization

and code generation strategies. Similarly runtime monitoring cost models could be used

to select the best technique for a particular program and property. In addition, we believe
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that insights gleaned from studying such models can reveal opportunities for beneficial new

monitoring techniques.

In order to develop detailed cost models, one must first develop a deep understanding

of the costs associated with existing runtime monitoring algorithms.

3.2.3 Monitoring approaches

Conceptually a monitor for an FSA property is a relation between a set of related objects

created during program execution and a state of the FSA. The state reflects a sequence of

FSA transitions which correspond to the execution of a sequence of program statements

that are related to both the property and the set of related objects. In studying two state-of-

the-art runtime monitoring implementations, JavaMOP and Tracematches, we have identi-

fied two fundamentally distinct algorithms for encoding the information associated with a

monitor.

JavaMOP uses an object-based monitoring approach which defines a monitor as a set

of related objects and a state of the FSA. The ovals on the right side of Figure 3.1 illustrate

a set of monitors with objects on the top, e.g., s1, and the state on the bottom, e.g., 1.

Tracematches uses a state-based monitoring approach which defines for each state of the

property FSA a set of monitors which each record a set of related objects. The rectangles on

the lower right of the parts of Figure 3.4 illustrate a set of monitors, depicted as ovals, each

consisting of a set of objects, e.g., s1, i7. In state-based monitoring the state is factored

out of the monitor and defined by the state with which the monitor is associated. In essence

these approaches are duals differing only in the element of the object-state relation they use

as the key for organizing monitoring data. We illustrate and sketch these algorithms in the

remainder of this section.
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 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
   OBSERVE.create(s2,i); 

        s1.addAll(s2); 
        OBSERVE.update(s1); 
        while (i.hasNext()) {  
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
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Figure 3.1: Simple object-based monitoring scheme for complete matching.
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Figure 3.2: Property FailSafeIter

Object-based Monitoring Figure 3.1 illustrates a simple object-based monitoring scheme

for complete matching. Figure 3.2 shows the FSA for the FailSafeIter property used

in the example, which is same as Figure 1.2, but is reproduced here for easy reference.

The relevant statements for this property are calls to methods iterator(), addAll()

and next() on appropriate receiver objects. The figure also shows a fragment of code be-

ing monitored where the relevant statements are instrumented with extra code that is used

to perform monitoring, i.e., the OBSERVE... calls.

Figure 3.1(a) shows an example of the monitoring data structures before the execution

of an iterator() call. The call generates a monitoring event which consists of a tuple

(l, b) where l is a set of associated objects, in this case {s2, i}, and b is an FSA symbol,

which in this case is create. The scheme provides a map, keyed by sets of related ob-

jects that have been involved in previous events. For simplicity, we have shown a single
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ObjectBasedMonitoring(φ = (S,Σ, δ, s0, A), e = (l, b))
1 let L be the set of sets of objects that receive events
2 let Σc ∈ Σ be the set of creation symbols
3 let MS be the set of sets of monitors
4 let ObjsMons : L→MS be a map
5 let ObjsSym be a binary relation over L and Σ
6 if b ∈ Σc ∨ObjsMons(l) = null ∨ suffix then
7 m← new monitor(l)
8 m.cur ← s0

9 for l′ ⊆ l do
10 if ∃σ ∈ Σ : (l′, σ) ∈ ObjsSym then
11 ObjsMons(l′)← ObjsMons(l′) ∪ {m}
12 ms← ObjsMons(l)
13 for m ∈ ms do
14 m.cur ← δ(m.cur, b)
15 if (m.cur = err ∧ ¬suffix) ∨ (m.cur ∈ A ∧ suffix) then
16 report error

Figure 3.3: Simple object-based monitoring algorithm.

map, but in practice for efficiency reasons, multiple maps may be provided. The values

corresponding to the keys are sets of monitors that are associated with the objects.

Figure 3.1(b) shows the situation after the scheme handles the create event. Since

no monitors are associated with collection s2 and iterator i, a new new monitor is created

and references to it are associated with the new keys s2, i, and s2,s1.

Figure 3.1(c) shows how a subsequent update(s1) event, which is triggered by a call

to s1.addAll(), is handled. The monitors associated with s1 in the map are retrieved.

For each such monitor, an FSA transition is simulated to update the state. In this example,

both the monitors associated with s1 were previously in state 1 so they are updated to

δ(1,update) = 2 based on the FSA in Figure 3.2.

A simple algorithm for object-based monitoring is sketched in Figure 3.3. Lines 6–8

handle the creation of new monitors which are initialized to the FSA start state. This is only

performed if either the symbol corresponds to a creation event, no map entries exist for the
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associated objects, or suffix matching is enabled1. Lines 9–11 add the new monitor to the

sets of monitors that are associated with each subset of l that may witness a future event.

Finally, lines 12–14 simulate FSA transitions for the states in every monitor associated with

the objects involved in the event. If any of the monitors goes to the error state (or an accept

state in the case of suffix matching) an error is reported as shown by lines 15–16.

State-based Monitoring Figure 3.4 illustrates a simple state-based monitoring scheme

for complete matching for the same property and program fragment that was shown in the

earlier example. Monitoring is performed over a single copy of the property FSA. A set of

monitors are associated with each state and during monitoring those monitors are moved

between states based on the events encountered and δ.

Figure 3.4(a) shows the situation just before the execution of a call to iterator().

The monitoring system searches for monitors associated with both s2 and i by querying

the sets associated with each FSA state. It fails to find any monitor, so it creates a new

monitor, which consists of just the objects for state-based monitoring, and adds it to the set

associated with state δ(0,create) = 1, where state 0 is the FSA start state. The result

is shown in Figure 3.4(b). Lines 4–6 in Figure 3.5, which sketches a basic state-based

monitoring algorithm, describe the monitor creation steps in detail.

Figure 3.4(b) shows how the subsequent update(s1) event is handled. The monitor

sets for each state are searched, lines 7 – 10 in the algorithm, to find monitors involving s1.

This results in the two instances {s1, i7} at state 1 being found. All of those monitors are

then moved to appropriate states depending on the encountered symbol as shown in lines

11–12. In the example, this causes the monitors to be removed from state 1’s set and added

to the set for δ(1,update) = 2. Line 8 skips the move for self-loop transitions. Lines
1For simplicity, when performing suffix matching, this algorithm creates new monitor for every event,

but in practice for efficiency a monitor may maintain a set of states and simply add a start state to perform
suffix matching. Additionally, to control the number of unnecessary monitors, implementations will also
ensure that duplicate monitors with identical current states will be deleted from the pool.
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Figure 3.4: Simple state-based monitoring scheme for complete matching.



62

StateBasedMonitoring(φ = (S,Σ, δ, s0, A), e = (l, b))
1 let Σc ∈ Σ be the set of creation symbols
2 let MS be the set of sets of monitors
3 let StMons : S →MS be a map
4 if b ∈ Σc ∨ (∀s ∈ S StMons(s) = null) ∨ suffix then
5 m← new monitor(l)
6 StMons(so)← StMons(so) ∪ {m}
7 for s ∈ S do
8 if s 6= δ(s) then
9 for m ∈ StMons(s) do

10 if m.l = l then
11 StMons(s)← StMons(s)− {m}
12 StMons(δ(s))← StMons(δ(s)) ∪ {m}
13 if (δ(s) = err ∧ ¬suffix) ∨ (δ(s) ∈ A ∧ suffix) then
14 report error

Figure 3.5: Basic state-based monitoring algorithm.

13–14 show that if the target state is the error state (or an accept state in the case of suffix

matching) an error is reported.

While relatively simple, these algorithm sketches illustrate the operations that must be

performed during monitoring. For example, the creation of monitors, updating states, and

searching and updating sets of monitors all contribute to monitor cost. These costs may

become non-trivial especially for a sophisticated implementation of a monitoring system

that may involve complex indexing and other data structures. The cost models detailed

in the next section provide a more thorough explanation of the costs incurred in various

monitor operations.

Note that both algorithms presented here can perform either complete or suffix match-

ing. For suffix matching the tool keeps a set of current states instead of a single current

state. The main difference between the two approaches is that for suffix matching, a match

will always be started from the beginning in addition to other current states. This is high-

lighted by the separate algorithms for complete and suffix matching presented in Sections
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2.3.1 and 2.3.2. However, those algorithms are highly generalized and do not consider any

specific tool building approach.

The algorithms presented here do not maintain a set of current states. Our choice here

is mainly influenced by the implementation of JavaMOP that keeps a separate monitor

(although under a common wrapper corresponding to the related set of objects) each for

every current state it is in. The purpose of the algorithms here is to highlight the effect of

underlying tool building approach on monitoring algorithm and the usage of completely

different data structures for monitor organization.

3.2.3.1 Basic Definitions

Let φ = (S,Σ, δ, so, A) be the FSA for the property being monitored and π the trace of

events related to φ that is generated by a program execution. The ith event in the trace,

ei, is a pair (bi, li) where bi ∈ Σ and li is the set of objects associated with ei. Note that,

(i 6= j) 6=⇒ (bi 6= bj) and (i 6= j) 6=⇒ (li 6= lj).

Let E be the set of events and Ec ⊆ E be the set of monitor creation events or simply

creation events. Note that, the members ofEc may or may not have any special symbols as-

sociated with them. Any event can be a creation event especially for a uni-object property.

For example, while monitoring for the HasNext property, either of the two events, gener-

ated by calls to methods hasNext or next can be a creation event if that is the first method

call observed by the corresponding receiver object. If there is no monitor corresponding to

a set of objects that received the event, a monitor will be created corresponding to the set of

objects. In the case of multi-object properties, a creation event would typically correspond

to an event in which two or more property-related objects are involved. It is possible that

in a creation event, objects involved are only bound together and no object is created in the

process. In either case, a creation event corresponds to an event that creates a monitor.
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Let Eb ⊆ E be the set of binding events, that bind new objects to the old ones that al-

ready have associated monitors. These events may create new monitors by combining new

objects with the clones of existing monitors associated with the old objects. For example,

if a property involves three objects o1, o2 and o3, where o1 and o2 are involved in a creation

event, and o3 is created by calling method b on o2 that binds o3 to o2 and then, in turn, to

o1. For convenience, we divide the set of objects l involved in a binding event into two

partitions lb and lb̄. Here, the call to b is a binding event and lb = {o2} and lb̄ = {o3}. We

assume that binding process would involve creating a new monitor by cloning the existing

monitor associated with o1 and o2 and combining that with o3.

Let Σc ⊆ Σ be the set of symbols that are associated with monitor creation events. We

define a predicate ρ that tests if all of the objects associated with a monitor for property φ

are also involved in the monitor’s creation event.

Let πi = e1, . . . , ei be a prefix of π where 1 ≤ i ≤ |π|.

We define τb as the set of types of objects that may be associated with symbol b. LetL be

the set of sets of types of objects associated with all symbols. That meansL = {τb : b ∈ Σ}.

For example, for the property FailSafeIter, L = {{Collection, Iterator},

{Collection}, {Iterator}} and for HasNext, L = {{Iterator}}. Therefore, we have

g : Σ � L, where g is a surjection.

We make following assumptions.

1. The monitors are never reclaimed. Monitors can be reclaimed if they are not required

in the future which may depend on whether the associated objects are reachable and

can incur an event. The terms defined in the cost models use a prefix of a trace

to compute values for the factors that appear in the definition. In order to decide

whether a monitor can be reclaimed a model would need an additional information
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about whether the associated objects are alive and may incur an event. This is beyond

the scope of the current model.

2. A monitoring tool may support indexing, as explained in Section 3.2.3.2, to provide

faster access to monitors. We assume that if indexing is provided, the tool would

use a centralized scheme in which all objects share the index trees. In addition, the

scheme would multi-leveled. That means it would use maps at multiple levels, each

of which can be accessed using an object reference as a key. In other words, an index

tree can be accessed using a set of related objects as a key.

3. For suffix matching, a new monitor is created for every new symbol. The primary

reason for our choice of model is that both JavaMOP and Tracematches support it.

Alternatively, a monitor may keep a set of states and the start state may be added to

that set every time a symbol is encountered.

Before presenting the cost component definitions, we discuss the critical cross-cutting

issue of monitor indexing.

3.2.3.2 Monitor Indexing

Since the monitored properties are often defined over multiple objects, their handling must

be part of a cost model. In defining φ, each symbol is associated with objects of a given

type. For the example in Section 3.2.3, a call to iterator() is associated with the

collection being iterated and the iterator that is created. Thus, for an instance of the iterator

creation event we know that l will be a pair of objects with types Node and Iterator.

Similarly a call to addAll() will produce an update event where l is a single object of

type Node.

The goal of a monitor indexing scheme is to allow efficient access to the set of monitor

structures that are associated with a given event. For each subset of Σ that has the same
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object types an index map is created; the set of all such maps for a property φ is denoted

Ψφ. When an event (l, b) arrives Ψφ(b) is evaluated to produce an object map. l is used to

index into the object map, i.e., Ψφ(b)(l), to produce the set of monitors to be updated based

on b.

It has been shown that the hierarchical organization of the object map is quite efficient

[26]. In such a scheme the structure of l = (l1, . . . , ln) is exploited to efficiently access the

set of monitors. Any prefix of l gives rise to an object map, e.g., Ψφ(b)(l1), and using all

components of l produces a set of monitors, e.g., Ψφ(b)(l1) . . . (ln).

Figure 3.6 illustrates multi-level indexing for the object-based monitoring example in

Section 3.2.3. For pairs of objects associated with an event we see a second-level object

map referenced from the entry of the index map; in general a complete indexing approach

would have a number of levels equal to the size of the largest object set associated with an

event. As described above the levels are indexed by using each element of l in sequence.
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3.3 Cost Models

In this section, we present detailed cost models that account for the key components of the

cost of runtime monitoring. These models were developed by studying multiple runtime

monitoring implementations [2, 26, 53] and abstracting the operations performed to allow

comparison of the underlying algorithmic techniques. The monitoring operations that incur

a cost include creating and maintaining pools of monitors and keeping track of their states.

A monitor pool could be implemented either as a set or a list of monitors.

The cost of monitoring Co for φ is the cumulative cost of processing each event in the

generated trace.

Co =

|π|∑
i=1

f(πi)

As discussed in Section 3.2.3 the processing of each event may vary, e.g., depending on if

it is a creation or update event, but we can identify five distinct components of the cost of

processing an event.

1. CC : Cost of creating monitors.

2. CR : Cost of accessing and manipulating index trees.

3. CI : Cost of inserting monitors into pools.

4. CV : Cost of traversing monitor pools.

5. CT : Cost of performing transitions.

Thus, the cost of processing the ith event is given by

f(πi) = CC(πi) + CR(πi) + CI(πi) + CV (πi) + CT (πi)
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CC =


|li| ∗ ccm ei ∈ Ec ∨ (sm ∧ ¬Eb)∑
m∈θ(lib ,πi)

|P (m,πi) ∪ li| ∗ ccm ei ∈ Eb

0 otherwise

CR =

H(ei,Ψφ) ∗ cr +
∑

υ∈H(ei,Ψ)

κ(υ) ei ∈ Ec ∪ Eb

H(ei,Ψφ) ∗ cr otherwise

CI =


|Ψφ| ∗ cam ei ∈ Ec ∨ (sm ∧ ¬Eb)
|G(li,Ψφ)| ∗ cam ei ∈ Eb
0 otherwise

CV =


0 ei ∈ Ec ∧ ¬sm
θ(li, πi) ∗ (cv + ce) sm

θ(li, πi) ∗ cv otherwise

CT =

{
0 ei ∈ Ec
θ(li, πi) ∗ ct otherwise

Figure 3.7: Cost components for object-based monitoring

Note here that we define this cost in terms of the prefix of the trace up to and including the

ith event since some cost components are dependent on trace history.

Figures 3.7 and 3.8 define the five cost components.

3.3.1 CC: Creating Monitors

The cost of creating monitors is the same for both object and state-based monitoring. In

Figure 2.1, this cost is incurred in performing step 2. As mentioned earlier, a subset of

events, Ec ⊆ E, is distinguished as monitor creation events which indicate the beginning

of monitoring of φ for a set of related objects.
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CC =


|li| ∗ ccm ei ∈ Ec ∨ (sm ∧ ¬Eb)∑
m∈θ(lib ,πi)

|P (m,πi) ∪ li| ∗ ccm ei ∈ Eb

0 otherwise

CR =

0 ¬dx∑
s∈S

K(li, α(s)) ∗ cr otherwise

CI =


cam ei ∈ Ec ∨ (sm ∧ ¬Eb)∑
s∈S

J(lib , s, πi) ∗ cam ei ∈ Eb

0 otherwise

CV =



0 bi ∈ Σc∑
s∈S

λ(s, bi) ∗ η(s, li, πi)∗ dx ∧ K(li, α(s) ≥ 0)

((|li| −K(li, α(s))) ∗ ce + cv)∑
s∈S

(λ(s, bi) ∗ β(s, σi) ∗ (|li| ∗ ce + cv)+ dx ∧ K(li, α(s)) = 0

|keys(δ(s, bi), πi)| ∗ cv)∑
s∈S

λ(s, bi) ∗ β(s, σi) ∗ (|li| ∗ ce + cv) otherwise

CT =

0 ei ∈ Ec∑
s∈S

(η(s, li, πi) ∗ ζ(s, ei)) otherwise

Figure 3.8: Cost components for state-based monitoring

For creation events, or when suffix matching, sm, is enabled, a monitor must be cre-

ated and then inserted into the appropriate indexing structures. |li| ∗ ccm reflects the cost of

creating a monitor component, ccm , for each of the objects in the event, li. For simplicity,

as mentioned earlier, we assume that we always create a new monitor for a symbol ob-

served for suffix matching, rather than adding an extra state to an existing monitor. This

assumption is consistent with the implementation of JavaMOP. However, there is no reason
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CC =


|li| ∗ ccm ei ∈ Ec ∨ (sm ∧ ¬Eb)∑
m∈θ(lib ,πi)

|P (m,πi) ∪ li| ∗ ccm ei ∈ Eb

0 otherwise

Figure 3.9: CC : Cost of creating monitors.

why a monitor implementation that has multiple current states should not be supported for

suffix matching. In fact, this implementation would be more efficient than the alternative

implementation that creates monitors as maintaining a set of states should have a smaller

overhead.

For binding events, the situation is more complicated. The monitors that are already

associated with lb are cloned and then the clones are associated with lb̄. We define P :

M×{σi} → 2S , a function that takes as arguments a monitor and a prefix of the trace σi and

outputs the set of monitor components (associated objects) at a time when the monitored

program generated σi. A newly created monitor will have components corresponding to

the binding event and the old monitor.

3.3.2 CR: Index Trees

CR =

H(ei,Ψφ) ∗ cr +
∑

υ∈H(ei,Ψ)

κ(υ) ei ∈ Ec ∪ Eb

H(ei,Ψφ) ∗ cr otherwise

CR =

0 ¬dx∑
s∈S

K(li, α(s)) ∗ cr otherwise

Figure 3.10: CR: Cost of accessing monitors. Object-based monitoring (Top) and State-
based monitoring (Bottom).
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Accessing and manipulating maps plays an important role in both object or state-based

monitoring, but the associated costs arise in different ways. In Figure 2.1, this cost is

incurred in performing steps 1 and 4.

Let ψ ∈ Ψφ. Let υ be a map in some index tree ψ and Υ be the set of all maps each one

of which belongs to some index tree in Ψφ.

Let Ψ′φ be the set of index trees that (i.e. only their roots) would be created beforehand,

for all related objects are involved in a creation event. All objects involved in transition

events must have associated monitors, and hence, we must have h : L �→Ψ′φ, where h

is a bijection. However, if all related objects are not involved in a creation event, a few

additional index trees that provide access to the already existing monitors based on the

binding objects, in addition to the trees that provide access to the non-binding objects that

may have associated transition events would be required. In the previous example involving

objects o1, o2 and o3, apart from the symbols associated with o1 and o2, and o2, o3, let other

symbols be associated only with either o1 or o3, but not with both and not with o2. This

would mean that we need to create four index trees, for o1 and o2, for o2 and o3, for o1,

and for o3. However, for a binding event involving o2 and o3, in order to provide efficient

access to previously created monitors associated with o2, we need to have an extra index

tree corresponding to only o2.

Let Ψ′′φ be the additional index trees that will be created beforehand for objects that are

involved in binding events. Here, Ψ′φ ∩ Ψ′′φ = ∅, and Ψφ = Ψ′φ ∪ Ψ′′φ. In other words, Ψφ

will be partitioned into Ψ′φ and Ψ′′φ. Formally,

Ψφ =


Ψ′φ, ρ(φ)

Ψ′φ ∪Ψ′′φ, otherwise

and,

Ψ′φ = {ψ : ∃u : (u 6= ∅) ∧ (u ∈ L) ∧ (u ∈ T ({ψ})) ∧ (¬∃ψ1 ∈ Ψ′φ : u ∈ T ({ψ1})}
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Let Type be the set of types of all objects involved in the property φ and let T : 2Ψφ →

22Type be a function that takes a set of index trees and returns a set of sets of types of objects

that may form keys for the trees. Then, Ψ′′φ can be defined as follows.

Ψ′′ =



∅ no binding events

{ψ : ∃u∃i∃j : (u 6= ∅) ∧ (τbj ∩ τbi 6= (τbi ∨ τbj)) otherwise

∧(u ⊆ τbi ∧ u ⊂ τbj) ∧ (¬∃u′ : u ⊂ u′ ∧ u′ ⊆ τbi ∧ u′ ⊂ τbj)

∧u ∈ T ({ψ}) ∧ (¬∃ψ1 ∈ Ψ′′φ : u ∈ T ({ψ1}))}

Theorem 3.3.1 Following inequality must hold.

|L| ≤ |Ψφ| ≤
|L|∑
i=1

2|i|.

Proof 3.3.1 We need minimum index trees when all related objects are involved in a cre-

ation event. That is Ψφ = Ψ′φ when we have ρ(φ). In this case, we already have shown a

bijection h : L�→ Ψφ. This shows that, we need at least |L| index trees.

On the other hand, when we have binding events, we will need additional Ψ′′φ index

trees as per the definition of Ψ′′φ.

In the worst case, every subset u of an element of L may have a corresponding index

tree. Hence, this number cannot be larger than
|L|∑
i=1

2|i|. In practice, we expect |Ψ′′φ| to be

much smaller than this worst case.

Regardless of the type of event, object-based monitoring incurs the cost of retrieving

object maps, and eventually a set of monitors, given an event and a set of index maps; we

denote the number of maps accessed in processing an event with a set of index maps with

H : E×2Ψφ → N. The cost of retrieving a value, cr, from each such map is incurred when

processing each event. If a map that is to be accessed does not exist, it needs to be created.

The cost of adding an entry to a map is cap and that of creating a map is ccp . This additional
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cost of map entry insertion is applicable to both object-based and state-based monitoring

and is shown using function κ : Υ→ R which is a function that takes a map and outputs a

cost of adding an entry to it, if required. The map will be created if required. Formally,

κ(υ) =


0, map entry exists

cap , map exists

ccp + cap , otherwise

In state-based monitoring, no cost is incurred if indexing, dx, is disabled. When index-

ing is used, the state-based monitoring incurs cost for each state in φ.

For each state, s, processing ei = (li, bi) involves accessing the set of monitors asso-

ciated with the li objects and moving them to the successor state, i.e., δ(s, bi). For logical

separation, we show this cost of moving monitors to the successor state as a part of cost

incurred during performing a transition.

Unlike object-based monitoring, here each state has an index map, α : S → Ψφ. For

each object in ei that can be used to perform lookups in the state’s index map the cost of a

map reference is incurred. Here K : 2O ×Ψφ → N takes a set of objects and an index tree

and outputs the number of those objects that are keys in the index tree. In addition to map

reference costs, a cost is incurred for insertion into each map referenced in the successor

state.

3.3.3 CI: Inserting Monitors

In Figure 2.1, this cost is incurred in performing step 3. For object-based monitoring,

processing a creation event, or any event when suffix matching is enabled, results in the

new monitor being inserted into each of the index maps; the cost of the insertion is cam .
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CI =


|Ψφ| ∗ cam ei ∈ Ec ∨ (sm ∧ ¬Eb)
|G(li,Ψφ)| ∗ cam ei ∈ Eb
0 otherwise

CI =


cam ei ∈ Ec ∨ (sm ∧ ¬Eb)∑
s∈S

J(lib , s, πi) ∗ cam ei ∈ Eb

0 otherwise

Figure 3.11: CI : Cost of inserting monitors into pools. Object-based monitoring (Top) and
State-based monitoring (Bottom).

However, the cost changes for a binding event as monitors as many as the cloned ones

need to be inserted in the pools of relevant object sets. For this, we define G : 2O × 2Ψφ →

2Ψφ a function that takes as arguments a set of objects l, a set of index trees Ψ, and outputs

a subset of Ψ, for which a subset of objects l′ of l that includes at least one element from

lb̄, forms a valid key. Formally,

G(l,Ψφ) = {ψ : ∃l′ : (l′ ⊂ l)∧ (l′ ∩ lb̄ 6= ∅)∧ key(l′,Ψφ)}, where key : 2O ×Ψ→ 2O

be a function that takes as arguments a set of objects and an index tree and outputs the

subset of the set of objects that may form a key to the index tree.

Function G would give us the number of index trees that will be accessed to retrieve the

the monitor pools in which the new monitor will be inserted.

For state-driven monitoring, insertion is simple for the case of creation event or suffix

matching since the monitor is simply inserted into the map corresponding to the FSA start

state.

For the case of binding events, we define J : 2O × S × {πi} → 2M , a function that

takes as arguments a set of objects, a state and a prefix of the trace πi and outputs the set

of monitors associated with the set of objects in that state at a time when the monitored

program generated σi. In state-driven monitoring there could only be one index tree at a
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state if indexing is provided. In either case, monitors as many as the cloned ones need to

be inserted in a pool of monitors.

3.3.4 CV : Traversing Monitors

CV =


0 ei ∈ Ec ∧ ¬sm
θ(li, πi) ∗ (cv + ce) sm

θ(li, πi) ∗ cv otherwise

CV =



0 bi ∈ Σc∑
s∈S

λ(s, bi) ∗ η(s, li, πi)∗ dx ∧ K(li, α(s) ≥ 0)

((|li| −K(li, α(s))) ∗ ce + cv)∑
s∈S

(λ(s, bi) ∗ β(s, σi) ∗ (|li| ∗ ce + cv)+ dx ∧ K(li, α(s)) = 0

|keys(δ(s, bi), πi)| ∗ cv)∑
s∈S

λ(s, bi) ∗ β(s, σi) ∗ (|li| ∗ ce + cv) otherwise

Figure 3.12: CV : Cost of traversing monitor pools. Object-based monitoring (Top) and
State-based monitoring (Bottom).

Accessing the collection of monitors associated with an event, through the index and

object maps, is a fundamental component of processing an event. In Figure 2.1, this cost is

incurred in performing step 4.

For object-based monitoring, when handling a creation event corresponding to a cre-

ation symbol, there are no pre-existing monitors related to the event and thus no traversal

cost. For other events, we must account for the fact that the monitors associated with an

event will change throughout the trace. Consequently, we define θ : 2O × {πi} → N to be

the number of monitors associated with a set of objects at a time when the monitored pro-

gram generated πi. Each monitor is accessed in turn where the cost of an individual access

is cv. When suffix matching is enabled, there is an extra cost for comparing the current
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state of the newly created monitor with the current states of the existing ones and keeping

the newly created monitor only if its current state is different than the current states of all

others.

For state-based monitoring, creation events corresponding to creation symbols, also

result in no monitor traversal. For other events and regardless of whether indexing is per-

formed, as discussed above, each state is processed independently. Moreover, processing

in each state is controlled by whether the event causes a state transition. If s = δ(s, bi) then

no monitors need to be moved; this is captured by the λ(s, bi) = (s = δ(s, bi) ? 0 : 1) mul-

tiplier. η : S×2O×{πi} → N is the state-specific analog of θ for object-based monitoring.

It returns the number of monitors associated with the given objects in the given state at a

point in the trace. With indexing enabled, equality tests on monitors, which cost ce, are

performed on each non-key object in the event; without indexing the tests are needed for

all objects. In either case, a monitor access is performed, which costs cv.

However, the cost is higher when indexing is not supported. In this case, all monitors

are traversed at every state to see if any associated monitors exist. For this, we define

function β : S × {σi} → N that takes as arguments a state and a prefix of the trace σi

and outputs the number of monitors in that state at a time when the monitored program

generated πi.

The cost is highest, when indexing is enabled but is not applicable to any of the objects

in li. In this case, monitor traversal is performed by accessing all key-value pairs to find the

relevant monitors. Hence, there is an extra cost for traversal of all keys. This is expressed

using the function keys : Ψ×{πi} → 2O that returns all keys that belong to the index tree.
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CT =

{
0 ei ∈ Ec
θ(li, πi) ∗ ct otherwise

CT =

0 ei ∈ Ec∑
s∈S

(η(s, li, πi) ∗ ζ(s, ei)) otherwise

Figure 3.13: CT : Cost of performing transitions. Object-based monitoring (Top) and State-
based monitoring (Bottom).

3.3.5 CT : Performing Transitions

In Figure 2.1, this cost is incurred in performing step 4. For both object and state-based

monitoring, creation events are initialized to an appropriate state, so no transitions are

needed.

For non-creation events, object-based monitoring accesses each monitor for the event

and performs a transition on the stored FSA state, which costs ct.

In state-based monitoring, for each monitor associated with the event in the current state

the cost may vary, depending on whether the monitor is required to be moved to another

state and whether indexing is provided. That variation is captured by

ζ(s, ei) =



0 s = δ(s, bi)

cdp + |li| ∗ ccm +H(ei,Ψφ) ∗ cr +
∑

υ∈H(ei,Ψ)

κ(υ) dx ∧ ¬pf

cdp dx ∧ pf

cdm ¬dx ∧ pf

cdm + |li| ∗ ccm + cam ¬dx ∧ ¬pf

where cdm and cam are the costs of deleting and adding a monitor to the pools, respec-

tively and cdp is the cost of deleting an entry from a map. When indexing is provided and



78

transition is performed, a new monitor is created and is deleted from the index tree at the

source state and is added to the index tree at the target state. In the absence of indexing the

monitor is deleted from the pool at the source state and added at the target state. Note that

the term corresponding to monitor creation would disappear from the definition, if a mon-

itor is reused and not created. However, for efficient monitor retrieval, a monitor may be

created every time a state is transitioned to implement certain optimizations. For example,

in Tracematches, a disjunct that is equivalent to a monitor is arranged in the memory in a

way that allows an optimization related to memory leaks. However, this support comes at

an extra cost of recreating a disjunct every time it is moved to a different state.

For suffix matching, a monitor will be deleted from the pool if pattern fails, that is when

pf is enabled.

3.3.6 Comparing operational costs

We compare the costs of various monitoring operations and summarize them in Table 3.2.

This comparison should highlight the differences in the costs due to the basic operational

differences in the two approaches. For simplicity, we do not consider the binding events

for this comparison. The comparison is only with respect to the creation and the transition

events.

3.4 Reexamining unexplained variation

Using the cost models, we revisit the results in Table 3.1 to explain some of the observed

differences.

Clearly, changes in the program, input, or property may give rise to changes in the

length of the trace and the number of monitors created during the trace. For example,

reducing the size of the input between rows 1 and 2 drops the number of events from 80
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Cost Object-based Monitoring State-based Monitoring
CC This cost is similar in both cases.
CR This cost would normally be

higher than the cost incurred by
state-based monitoring as access
to monitors would always be
provided using indexing on re-
lated objects. So this operation
would involve accessing an in-
dexing tree using all related ob-
jects as a key. However, this rel-
atively higher cost of manipulat-
ing index trees results in much
higher saving in the cost of mon-
itor pool traversal as it gives di-
rect access to only associated.

This cost would be 0 if no indexing is sup-
ported, or would be equal to or lower than
the cost incurred by the object-based moni-
toring depending on whether index keys are
formed by all related objects or only a subset
of them.

CI This cost would be proportional
to the number of index trees.

This cost would normally be that of inserting
a monitor in one index tree or in the pool.

CV This cost would be proportional
to the number of associated
monitors as only relevant moni-
tors would be accessed due to in-
dexing. For creation events, this
cost is 0.

This cost would be very high if no indexing
is provided as the entire monitor pool would
be traversed. It would also be very high if
indexing is provided for objects other than
that involved in the event. The cost would
be low to high depending on whether full or
partial indexing support is provided. This
cost would be 0 for creation events as well
as self-looping transitions.

CT This cost would be 0 for cre-
ation events and proportional to
the number of associated moni-
tors for transition events. How-
ever, the cost of performing a
transition on a monitor is cheap.

This cost would be 0 for creation events and
self-looping transitions. However, this cost
would be proportional to the number of as-
sociated monitors. However, the cost of per-
forming a transition on a monitor would be
high as a monitor is moved from the monitor
pool of one state to another. The cost would
be even higher if indexing is provided as that
would mean manipulation of index keys.

Table 3.2: Comparing operational costs.
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million to 1.8 million and the number of monitors from 4 million to 340 thousand. This

leads to the ten-fold reduction in overhead. This reduction is mainly due to the reduction in

the total number of events. The overall cost of monitoring is sum of the costs of handling

all individual events.

The variation between rows 6 and 7 is due to the disabling of indexing that rapidly

increases CV . In this case, indexing is performed on an iterator object. The hierarchy of

index maps is just a single layer, thus the number of map operations,K() inCR, is relatively

small. More importantly, more than 90% of the events are next and these self-loop in state

1 of Figure 3.2. Thus, the cost of processing state 1 in the summation of the second term

of CV is low and for the other states K() serves to drive down monitor traversal costs.

The relatively low overhead of JavaMOP in row 5 is also due to indexing. Unlike

Tracematches, JavaMOP provides indexing for all symbols making traversal dependent

only on the number of monitors and not on the intermediate object maps as shown in CV

and CT . Row 3 varies just the program and the overhead jumps to 3291.7%. This is due to

the fact that bloat incurs more than 80 million events and in suffix mode, creates over 160

million monitors, whereas pmd creates just over 4.4 million monitors and incurs about 2.2

million events.

Rows 8 and 15 highlight the effect of monitoring the property HasNext which tends

to flip-flop monitor states. For both tools, the cost of CC and CI are dominant since both

approaches create monitors in suffix mode for every symbol seen. Moreover, for this prop-

erty Tracematches is able to fully index the single object involved which keeps CV low.

The difference between tools is due to the cost of CT which is higher for Tracematches

since states are changing continually, and the ζ term’s first case is not active. Since a single

monitor is associated with any iterator object at any time, η() in the definition of CT is low.

Hence, the performance of the tools would mainly depend on how efficiently JavaMOP

deals with the large numbers of monitors.
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When the number of events grows large enough, as shown in rows 10 and 12, Trace-

matches can outperform JavaMOP. In suffix mode all events produce new monitors, bloat

generates more than 80 million events leading to 160 million monitors. We believe their is

room for improving the efficiency of suffix matching in JavaMOP since, as shown in row

11, the same monitoring using complete matching mode incurs a much smaller overhead

of 172.9%.

Although not comprehensive, this examination of unexplained variations in the light

of the cost models illustrates the different dimensions they capture and provide glimpse of

their explanatory potential. We explore this potential further in the next section.

3.5 Partial Validation of the Cost Models

The cost models presented in Section 3.3 are based on our understanding of modern moni-

toring tools, mainly JavaMOP and Tracematches. The question that we would like address

at this point is whether the key factors highlighted by the models indeed influence the cost

of monitoring as expressed by the models. In order to answer this question convincingly,

we will have to perform a complete validation of the models. However, a complete vali-

dation of both object-based as well as state-based monitoring tools would be a big effort

and may take a few months. Nonetheless, it would help increase our confidence in the cost

models and we plan to do that in future.

In this section, we present the results of our profiling studies performed in order to

understand the influence of one of the key factors identified by the models on the cost of

monitoring. Our inspection of the models shows that the number of monitors associated

with the objects is a factor that may have a big influence on the monitoring overhead as it

appears as a dominant term in the definitions of both, CV and CT as shown in Figures 3.7

and 3.8. The terms corresponding to θ, η and β reflect the number of monitors associated
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with the objects. Clearly, they influence the costs of monitor traversals and transitions. This

factor does not affect CC , CR and CI . Hence, keeping other factors unchanged would keep

the other costs including CC , CR and CI unchanged. Hence, by controlling the number of

associated monitors and the number of events, one at a time, we should be able to observe

the effect of the number of monitors on the total cost of monitoring.

In order to validate the effect of the number of associated monitors, we performed two

small profiling studies using JavaMOP and Tracematches. In the first study, we used Java-

MOP to understand the effect of the number of associated monitors on object-based moni-

toring. We selected FailSafeIter property for monitoring because it is a multi-object

property that could reveal the effect of the number of associated monitors on handling

events.

We developed small Java programs 2 that create and perform set and iterator operations.

The variables that we considered for this study were the number of monitors associated with

receiver objects and the number of events. We analyzed the change in execution times by

varying values of variables one at a time and keeping the remaining variables unchanged.

In order to understand their effect in isolation, we divided the events into two types. The

first type includes update events that would lead to multiple transitions, whereas the

second includes mainly next events that may trigger only one transition. The second type

also includes those update events that are guaranteed to cause only one transition. These

events correspond to the update events on sets that do not have associated iterators, but

have only a default monitor. We analyzed the results in the context of events of exactly one

type at a time. The results of this study are presented in Table 3.3.

The first column in Table 3.3 corresponds to the variable, the effect of which we are ana-

lyzing. The column also provides the number of monitors created and the number of events

generated during the execution. The second column specifies the event type that indicates
2All the programs used in this study have been provided in Appendixes A and B
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Variable Event Type Mons/Evts Scaling Factor (SF)
1 10 100 1000 10000

Monitors uni 100× SF, 108 64 71.4 155.1 268 252.8
multi 10× SF, 106 12.8 25.9 249.6 7275.7 83095.7

Events uni 104, 104 × SF 7.7 12.4 67.8 172.2 165.2
multi 104, 100× SF 16.2 151.6 1045.7 5058.6 8566.7

Table 3.3: JavaMOP: Overhead due to events and monitors associated with receiver objects
(Time as relative overhead).

whether the events would trigger multiple transitions. The type multi represents multi-

monitor events that trigger multiple transitions and the type uni represents uni-monitor

events that trigger exactly one transition. The scaling factor corresponds to the factor of

increase in the value of the parameter that is varied. For example, scaling factor of 100

corresponding to events would mean that the events generated by the monitored program

are 100 times that generated by the base case corresponding to the scaling factor 1. Sim-

ilarly, scaling factor of 10 on monitors associated with receiver objects would mean that,

the number of monitors associated with receiver objects is 10 times larger compared to

the base case. The figures represent relative overhead, i.e., a factor by which the execution

time reported by the instrumented version of the program compares with the execution time

reported by the uninstrumented version of the program.

The row corresponding to the number of monitors associated with receiver objects and

uni-monitor property events, indicates that the overhead factor increases logarithmically

from the scaling factor 10 to 1000 and then does not increase much for the scaling factor

10000. However, the overhead factor increases very rapidly in the case of multi-monitor

events, as indicated by the next row. This shows that with the increasing number of associ-

ated monitors, the time required to process each event starts increasing rapidly. Hence, the

number of associated monitors has a great impact on the overhead when observed events

are of multi-monitor type.
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The next rows corresponding to the number of events show a similar pattern about

the overhead factor. For uni-monitor type, the overhead factor increases but only steadily.

However, for multi-monitor type, it increases rapidly. In other words, this indicates that

compared to multi-monitor events, uni-monitor events are cheaper to process. It should be

noted that the last two columns corresponding to scaling factors 1000 and 10000 show no

increase in the overhead factor for uni-monitor properties in both cases.

These results show that the number of monitors associated with the objects influences

the cost of monitoring for object-based monitoring tools. In order to understand its effect

on state-based monitoring tools, we used Tracematches and two synthetic properties that, in

addition to the effect of number of associated monitors, would also reveal the difference in

the way Tracematches handles looping transitions and non-looping transitions. Remember

that we used function λ and ζ , to distinguish between costs associated with looping and

non-looping events. In order to isolate the effect of the number of associated monitors

on the costs of monitor traversal and transitions, we used Tracematches annotations for

indexing. We used the synthetic properties, because we wanted a multi-object property

with looping as well as self-looping transitions. Property HasNext has a looping structure,

but it is not a multi-object property, whereas property FailSafeIter is a multi-object

property, but it does not have a looping structure. In addition, we wanted loops as well

as self-loops to be performed by transitions that are associated with single and also with

multiple monitors to show their effects in the case of state-based monitoring. The synthetic

properties allow us to have a control over all of these attributes.

Note that the properties that we have built here do not capture real API rules, but are

built for their structure, i.e. either looping or self-looping characteristics, and multi and uni-

object nature that reveal interesting behavior of monitoring tools. In practice, the behavior

of a monitoring tool would depend on these characteristics of a property as well as its
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Variable Event Type Scaling Factor (SF)
1 10 100 1000 10000

Monitors
(#mon = 1× SF uni 26.32 23.48 23.24 24.6 24.25
#evt = 2× 106) multi 286.44 324.33 555.56 3931.31 87020.94
Events
(#mon = 104 uni 25.5 23.0 35.33 19.22 23.8
#evt = 200× SF ) multi 2243.0 2961.5 2773.88 17318.38 91858.13

Table 3.4: Tracematches (Property 1): Overhead due to events and monitors associated
with receiver objects (Figures indicate relative overhead).

Variable Event Type Scaling Factor (SF)
1 10 100 1000 10000

Monitors
(#mon = 1× SF uni 7.05 6.24 6.43 6.85 6.55
#evt = 106) multi 272.69 284.47 269.19 229.88 266.44
Events
(#mon = 104 uni 21 26.5 20.33 7.67 14.52
#evt = 100× SF ) multi 2125.5 2140.5 1472.67 532.12 264.88

Table 3.5: Tracematches (Property 2): Overhead due to events and monitors associated
with receiver objects (Figures indicate relative overhead).

interaction with a program. In our study we control program-property interaction to observe

the monitoring tool behavior.

Table 3.4 presents the results of monitoring property create ((update empty)

| (hasNext next))+ empty. We refer to this property as Property 1. Fig-

ure 3.14 shows an FSA corresponding to this property. Symbol empty corresponds to

the method call isEmpty on a collection. This property has alternating states, and the

programs being monitored are written in such a way that the monitors would continuously

change their states. Moreover, we can control the loop that we want to execute. The loop

formed by (update empty) can be executed with the help of a collection object that

is associated with multiple monitors. On the other hand, the loop formed by (hasNext

next) can be executed with the help of an iterator object that is associated with a single
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Figure 3.14: Property 1: create ((update empty) | (hasNext next))+
empty

monitor. Tracematches incurs heavy cost for traversing and transitioning numerous moni-

tors as seen by the events that are of multi-monitor type. The uni-monitor type events are

associated with only one object, hence although there is state-transitioning, the overhead

is not too high as work performed in traversing a monitor list and performing a transition

over one monitor is much smaller than the previous case. These costs are captured in the

cost models by CV and CT , which are high when the number of associated monitors (β and

η) is large. Note that, accessing the associated monitors directly is possible because of the

indexing option that we used.

Table 3.5 presents the results of monitoring property create (update |

next)+ empty. We refer to this property as Property 2. Figure 3.15 shows an

FSA corresponding to this property. This property does not have continuously changing

states. Instead it has a self-loop. As in the previous case, we can control the self-loop

that we want to execute. The loop formed by update can be executed with the help of

a collection object that is associated with multiple monitors. On the other hand, the loop

formed by next can be executed with the help of an iterator object that is associated with
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Figure 3.15: Property 2: create (update | next)+ empty

a single monitor. As indicated by the cost models, Tracematches efficiently handles the

self-looping transitions and hence, the multi-monitor events are handled efficiently. The

overhead figures are with respect to the execution time of the uninstrumented version of

a program. The decrease in the overhead is because of increase in the execution time of

the uninstrumented program version. The actual time taken by the instrumented version

remains almost constant irrespective of the scaling factor. These costs are captured in the

cost models by the function λ and the condition s = δ(s, bi) for CV and CT . This shows

that Tracematches is insensitive to the number of associated monitors (β and η) when it

comes to handling self-loops.

Although these preliminary studies target only one key cost factor which is the number

of associated monitors, they help increase our confidence in the cost models. More studies

that target other factors would provide additional evidence for the claim that the cost models

highlight influential factors and explain how they impact the runtime overhead.
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Program Complete Suffix Suffix
(JavaMop) (JavaMop) (Tracematches)

next indexed
Unopt. Opt. Unopt. Opt. Unopt. Opt.

bloat 173 73 2533 340 1169 115
pmd 15 7 74 11 91 4

Table 3.6: Property HastNext - Overheads are expressed in percentages over the orig-
inal uninstrumented versions (4.8s for bloat and 4.6s for pmd with a default input load).
Optimization corresponds to the loop transformation to reduce the number of monitored
events.

Program Complete Suffix Suffix Suffix
(JavaMop) (JavaMop) (Tracematches) (Tracematches)

next indexed update indexed
Unopt. Opt. Unopt. Opt. Unopt. Opt. Unopt. Opt.

bloat 702 298 3292 410 2492217 2939060 * *
pmd 57 9 87 11 9120 3754 28883 4759

Table 3.7: Property FailSafeIter - Overheads are expressed in percentages over the
original uninstrumented versions (4.8s for bloat and 4.6s for pmd with a default input load).
Optimization corresponds to the loop transformation to reduce the number of monitored
events. * Indicates that the process was stopped after 172800 seconds and overhead of
3599900.

3.6 Revisiting Previous Findings

In this section, we look at some of the previously published techniques and studies from

the fresh perspective provided by the cost models. We use the model to help us under-

stand the scope and generalizability potential of one of our own techniques, to validate

and investigate conjectures about sources of overhead, and to reveal missing optimization

opportunities.
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3.6.1 Techniques’ scope and generalization

Recently we introduced a program transformation technique to reduce runtime overhead

caused by events occurring in loops [68]. The key insight behind the technique is that a

monitor must observe a few iterations of the loop in order to judge whether the program

violates or satisfies the property, but it can effectively ignore the rest of the loop iterations.

The program transformation then enables this discrimination between relevant and irrel-

evant iterations. The technique was very effective at reducing the number of generated

events. Yet, the results were unsatisfying on two levels.

First, for several cases, the reduction in the number of events did not translate into sig-

nificantly smaller overheads. When mapping this technique to the cost models it is evident

that it attacks some terms but not others. In particular, the costs of monitor traversal and

update, CT and CV , are not considered by this technique. As these costs become dominant,

the overhead reduction from cutting down the number of observed events becomes inconse-

quential. For example, for property FailSafeIter, handling update is usually much

more expensive than handling next events as the former events are associated with collec-

tion objects. This means that the per iteration cost that is saved by transforming loops that

contain next events may be overcome by the cost of state traversal and changes caused

by update events. This type of analysis would not be possible without the cost models

which provide insights into the scope of effectiveness of our proposed loop optimization

technique.

Second, our results were from an object-based approach and it is not obvious what

would happen with a state-based monitoring approach. For a program where loops are

dominant, when the proposed technique is used with an object-based approach, the cost

of monitoring would depend primarily on the number of monitors associated with the ob-

served objects, where more monitors imply a higher cost of CV and CT . For state-based
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approaches, except for CR and CV , all the costs become negligible. If indexing is available,

then CR would be low and CV would also be low since the technique would ensure that

most of the monitors would move to self-looping states that generate no events after a few

iterations. In the absence of indexing, however, the number of monitors at non-self-looping

states would decide the cost ofCV . Overall, since the object-based approach would be inde-

pendent of the monitors’ states, we would expect for its performance to be more consistent

when other variables change.

In order to validate the last conjecture hinted by mapping the technique to the cost mod-

els, we reproduced part of the study originally performed on this technique but considering

both object-based (JavaMOP) and state-based (Tracematches) approaches. Tables 3.6 and

3.7 show the results of monitoring the HastNext and FailSafeIter properties on the

bloat and pmd programs from the Dacapo benchmark using different types of matching

and indexing to explore the variations in CR and CV . We see that the overhead differences

between the unoptimized and optimized versions under JavaMOP range from about 54%

to 88%, while for Tracematches they vary from about 15% to about 95%. This shows that

the benefits for JavaMOP are more consistent than benefits for Tracematches. Compara-

tively smaller reduction for JavaMOP for property HasNext could be due to the dominant

cost of CC , CI and CR as our loop optimization technique only targets the number tran-

sitions and not the number of monitors which is extremely large in this case. Overall, the

results confirm the intuition provided by the cost model: the proposed technique general-

izes to state-based approaches, but the gains in performance will exhibit more variability

depending on then number of monitors and their states.
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3.6.2 Conjectures about sources of overhead

Meredith et al. [62] reported that PQL and Tracematches overheads are more susceptible

to the complexity of the monitored property than JavaMOP. Although complexity is not

explicitly defined in their work, we derived from the text that it means the property has

more symbols and operators. When trying to map this conjecture to the cost models we

find limited support for it, that is, there was not a way for the cost models to support this

conjecture. This lead to the investigation of other potential sources of overhead.

We start by mapping the transition cost, CT , from the cost model for the state-based

approach. When compared with the object-based approach, this cost for state-based is

high if it requires changing the state of the monitor, but low if the transition is a self-loop

over the property automaton. So, based on analysis performed using the cost model it is

conceivable that a large property would work better for state-based monitoring if there is

an abundance of self-loops and scarce monitor transitions. Although there are examples of

those properties, we also find at least one property with these attributes in the cited study,

FailSafeIter, that incurs a high overhead in Tracematches compared to JavaMOP. So

we set out to analyze another potential factor that may explain this result.

The second term we analyze is CV . In the presence of a large number of monitors

the cost of monitor traversal can be high, particularly if no indexing is provided. On the

other hand, it would be prohibitively expensive for a state-based tool to provide full in-

dexing support for all symbols (as monitors are moved after a transition, index maps at

the source and target state must be updated). That is the reason for state-based tools to

provide very limited indexing (e.g., for a subset of objects). Given this insight about the

potential impact of CV due to indexing, we briefly studied the overhead produced by state-

based versus object-based monitoring with the indexing factor controlled. In order to do

this, we developed an object-based monitor using JavaMOP, and then used a copy of it as
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Property bloat pmd
Object State Object State

FailSafeIter 702 577 43 20
HastNext 354 808 17 41

Table 3.8: Percentage of overhead across program-property pairs when running object- and
state-based monitors in complete-matching mode.

a template from which we implemented a state-based monitor that kept the same index-

ing structure. We then run those implementations on bloat and pmd while monitoring the

FailSafeIter and HasNext properties, considered complex and simple respectively

in the cited study.

Table 3.8 shows the results of running the two monitors in complete-matching mode.

When looking at FailSafeIter row, we see that the trend is not uniform. For the bloat

and FailSafeIter combination, the state-based monitor performs better than object-

based monitor, however, the trend does not hold for pmd. So, more complex properties

in terms of size do not necessarily imply greater overhead. Furthermore, as we observe

the second row of the table for the much simpler HasNext property, we note that object-

based monitoring is consistently better. The reason is that this property causes a monitor to

change state, which we have established as detrimental for the state-based approach. These

results reveal that attributing overhead differences to property complexity in terms of size

is insufficient. The reasons, as explained by the cost models, are much more subtle and

cross-cutting.

3.6.3 Missed optimizations opportunities

To address the general indexing weakness of state-based approaches, Avgustinov et al.

introduced an optimization technique for Tracematches that analyzes a property to decide

what symbol should be indexed at a state [8]. Apart from a default scheme that identifies
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objects for indexing based on some heuristics, the technique can be configured by the user

to specify what symbols may occur more frequently and should be prioritized for indexing.

In general, leveraging user domain knowledge seems like a good idea. However, as we

have already seen, the factors causing the overhead may interact in subtle and unexpected

ways that even an expert user may not predict. In this particular case, the frequency of a

symbol clearly matters but its ability to change many states may have a significant influence

as well. So, for example, if a highly frequent symbol self-loops over a state in which most

of the monitors are to be found at any time, then choosing that symbol for indexing may

not be so beneficial, as those monitors would anyway be processed efficiently. Similarly,

choosing a symbol that self-loops in most of the states would not be beneficial. For such a

symbol, the costs CV and CT would be zero for the self-looping states.

For illustration purposes, the last four columns of Table 3.7 show monitoring over-

heads for bloat and pmd for the property FailSafeIter, when indexing is performed

on next and on update. Indexing next is clearly a better choice because next events

are about 35 times more frequently than update events, and both events self-loop in most

of the states. However, if a program generates a similar number of events for update

and next, and if one of the two symbols was continuously state-changing (like next

in the property HasNext), then identifying that symbol for indexing would be a better

choice. Clearly, a heuristic based on the combination of these factors would lead to more

complete optimizations. In general, we note that mapping algorithmic runtime monitoring

techniques to cost models helps to explain how the technique works, when it may perform

more effectively, and what other opportunities for optimization remain to be incorporated.
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3.7 Evolution of Cost Models

We have discussed the most relevant related work on runtime monitoring in previous sec-

tions. Here we identify some broader related themes from the literature and how we plan

to further evolve our cost modeling work to support prediction in addition to explanation.

Our cost models bear some resemblance to algorithmic complexity models except that

our goal is to capture the effects of a number of variants of two well-established techniques

for runtime monitoring of FSA properties. In general, algorithmic complexity characteri-

zations focus exclusively on the dominant term that governs performance, but we believe

that approach to be too coarse to allow for insights into how to make monitoring less costly

for certain classes of properties.

One inspiration for our approach are the detailed complexity models for sorting algo-

rithms on the CM-2 machine which capture a number of parameters of the machine and its

interconnection network [15]. In this work, the authors were able to run a series of bench-

marks to approximate their model parameters and then compare the models results with

runtime data. We believe a similar approach would add value to our work in validating the

fidelity of the model, however, several of the cost components we identify may vary signif-

icantly with the platform, e.g,, the JVM, OS, and architecture, so generalizing our findings

across platforms presents a challenge. In addition, the functions in our cost models, e.g.,

H , θ, are very dependent on the program, input values, and property being monitored. It

makes little sense to compute those values in one setting and using them for predictions in

another setting, thus, we plan to focus on validating the explanatory power of our models.

One setting in which our models could be used for prediction is within a run of the

program. Currently, the available runtime monitoring infrastructures configure monitoring

offline. We believe that it is possible to build on the trend in modern JIT compilers [50]

to perform “trace based” runtime monitoring. In such a setting, our models could be cal-
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ibrated during the early parts of a program execution and then used to predict the relative

performance benefits of using, for example, object-based versus state-based monitoring,

or specific indexing or matching approaches, and switch to the most beneficial monitoring

configuration. Continuing predictions would then lead to the dynamic adaptation of the

monitoring strategy to fit the characteristics of the “hot” program paths. Inherent in such

an approach is the simultaneous use of distinct monitoring strategies for different proper-

ties. We are working to realize this type of adaptive trace-based monitoring strategy within

a modern JVM.
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Chapter 4

Residual Analysis

4.1 Introduction and Motivation

Our optimization techniques are guided by the cost models that we presented in Chapter 3.

The cost models indicate that the techniques that target the number of events should be

developed first as those techniques would reduce the number of terms in the summation of

the cost models and would result in indirectly targeting all the operational costs associated

with the optimized events. In particular, considering that this technique would mainly

target the transition event, this would save the costs of retrieving monitors (CR), inserting

monitors (CI), traversing a monitor list (CV ) and performing transitions (CT ). This would

obviously reduce the total cost of monitoring. For example, the techniques that allow us

to simply skip some events without compromising error reporting would save the entire

cost of handling the skipped events. As a result, we have prioritized our research so as to

develop the techniques that target the number of events first and the other key factors later.

In this chapter and in Chapter 5, we provide two such techniques that target the number of

events. We leave the development of techniques that target other factors as future work.
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Ideally, software systems would be statically checked for compliance with a typestate

property. In practice, however, scaling to large software systems and providing precise

analysis results in the presence of aliasing, data, thread and context-sensitive program be-

havior is very difficult. In recent years, researchers have combined multiple techniques to

dramatically improve the cost-effectiveness of static typestate analyses [11, 28, 29, 32, 40].

However, as we discussed in Section 2.5.1, it is challenging to develop a static analysis

that is both, scalable and precise. Hence, most static analysis techniques produce false

positives. In this chapter1, we present a technique for exploiting the intermediate results of

inconclusive static typestate analyses to reduce the overhead of monitoring a program for

typestate conformance at runtime.

Figure 4.1 sketches the high-level architecture of our approach. Conceptually, one runs

an existing static typestate analysis to check conformance (˜) of the program with a set

of typestate properties represented as finite-state automata (FSA). The properties, e.g.,

propertyi, for which the analysis is inconclusive are the subject of residual analysis. Resid-

ual analysis uses the call graph, control flow graphs, and data flow analysis information

leftover from the static typestate analysis to identify safe regions of program behavior that

cannot lead to property violations. The analysis reformulates the typestate property by cal-

culating FSA transitions that are only ever exercised in safe regions and deleting them. In

order to monitor typestate conformance, the dynamic component of the analysis then only

exercises the transitions that are generated by the remaining instrumentation such as insti

from the regions that were not identified as safe.

The contributions of this work are (a) presentation and definition of residual dynamic

typestate analysis a novel approach to reducing the cost of dynamic analysis of path-

oriented properties by exploiting static analysis results, (b) an algorithm for calculating
1This work is an extended version of our paper that appeared in the proceedings of ASE, 2007 [37]. In

particular, we have added Section4.3 on the soundness and the completeness of the analysis.
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Figure 4.1: Residual Typestate Analysis Architecture.

regions of the program in which analysis instrumentation can be removed without impact-

ing error reporting and using those regions to reformulate the typestate analysis problem,

and (c) description of an implementation of the algorithm and experiences applying it to

several applications that use non-trivial Java library APIs.

We begin with an overview of our technique in Section 4.2. Section 4.3 presents a

discussion on the soundness and the completeness of the analysis. It identifies the condi-

tions under which the analysis may produce unsound and incomplete results. Section 4.4
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p u b l i c c l a s s Socke tChanne l {
s t a t i c Socke tChanne l open ( ) . . .
s t a t i c Socke tChanne l open ( S o c k e t A d d r e s s . . .
Socke tChanne l c o n n e c t ( S o c k e t A d d r e s s . . .
char r e a d ( B y t e B u f f e r d s t ) . . .
i n t w r i t e ( B y t e B u f f e r s r c ) . . .
f i n a l vo id c l o s e ( ) . . .

}

p u b l i c vo id t r a n s f o r m D a t a ( ) {
Socke tChanne l sc ;
B y t e B u f f e r buf ;
t r y { . . .

s c = Socke tChanne l . open ( ) ;
s c . c o n n e c t ( new I n e t S o c k e t A d d r e s s ( . . . ) ) ;
whi le ( s c . r e a d ( buf ) != −1) {

. . . t r a n s f o r m b u f f e r d a t a . . .
s c . w r i t e ( buf ) ;

}
} ca tch ( E x c e p t i o n e ) { . . .
} f i n a l l y {

i f ( s c != n u l l )
s c . c l o s e ( ) ;

}
}

Figure 4.2: SocketChannel API Example

provides background and define new terms in order to set the stage for the presentation of

the rationale for and details of our algorithm for calculating the residual dynamic analysis

problem. Our experiences to date, which we describe in Section 4.5, provide promising

evidence that residual dynamic analysis can significantly reduce the cost of monitoring for

path properties at runtime.

4.2 Overview

We illustrate the principles of residual dynamic typestate analysis through an example. The

top of Figure 4.2 sketches a portion of the java.nio.channels.SocketChannel
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API; the close method is actually inherited, but we show it here for completeness. The

documentation for this API defines a number of constraints on its proper usage. For exam-

ple, calls to the read and write operations can only be performed on connected channels,

channels should eventually be closed, and once closed, connections and I/O operations

cannot be performed. Figure 4.3 illustrates an FSA that captures the typestate constraints

for this API 2. The states of this FSA capture abstract post-states of operations, for example,

after a call to open (connect) returns normally the channel is considered opened (con-

nected). Consequently, labels on transitions in this automaton represent the normal, i.e.,

non-exceptional, return from an API method call. We note that there are several operations

in the SocketChannel API that are independent of typestate, e.g., validOps, which

do not appear in the FSA. Furthermore, open is a factory method which generates a refer-

ence to an internal, hidden sub-type of SocketChannel, consequently each successfully

returning call to open generates a new instance upon which successive calls are judged

relative to the typestate FSA. Since opening and then connecting a channel is the common

usage pattern, a convenience method open(SocketAddress ...) is provided.

The bottom of Figure 4.2 sketches a simple method that uses the SocketChannel

API to read data, transform it and write it back to the sender. It opens and then connects

a channel, and then proceeds with a sequence of calls on the API to read the contents of the

channel’s data stream, transform the data, and write it back to the channel. Since calls on

this API may throw a variety of exceptions they are embedded in try-catch-finally

blocks. The finally block exhibits the common idiom of guarding calls to close a channel

with a nullness test. Based on the typestate FSA, this code contains four points of potential

failure (PPF) – the calls to connect, read, write and close.
2A complete set of typestate constraints would capture the interactions between SocketChannels and

other java.nio classes, such as ServerSocketChannel, and java.net classes, such as Socket.
Our intention here is to capture the complexity of SocketChannel typestate, but we make no claim of
completeness.
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Figure 4.3: SocketChannel API Typestate FSA

To understand this code relative to the typestate constraints one can consider three

equivalence classes of executions of this method. (1) The open call fails by throwing

an exception. No instance of SocketChannel is created so no close call is needed,

i.e., the typestate constraints are not active. (2) The open succeeds, but the connect

call fails by throwing an exception. The channel will be closed in the finally block. (3)

open and connect calls succeed and then the loop either terminates or a call to read or

write throws an exception. The channel will be closed in the finally block.

From this analysis, it seems clear that even with the subtleties of exceptional return that

are possible when using this API, the typestate constraints are obeyed by this code.

4.2.1 A Simple Static Typestate Analysis

A flow-sensitive static typestate analysis, for example, stages 2-4 in [40], propagates and

updates information about the possible type states at different points along paths through
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a program’s source code. The left side of Figure 4.4 illustrates the control flow graph

(CFG) for the example method; exceptional transfers of control are illustrated as dashed

edges. In the Figure, edges in the CFG are annotated with sets of typestates that reflect

the cumulative effects of the execution paths reaching those edges in terms of the typestate

FSA. The analysis of the method begins in the start state, 1. The open call can either return

normally, in which case the typestate FSA transitions to state 2, or exceptionally, in which

case no state transition occurs. The connect call drives analogous state transitions based

on normal or exceptional return. Once connected, the calls to read and write within

the loop maintain a typestate of 3 regardless of normal or exceptional return. In the finally

block, the exceptional and normal control flows merge at the entry of the if (sc !=

null) to form the set {1, 2, 3}. That set flows to the (implicit) return from the method,

which is problematic since neither 2 nor 3 is an accept state, and to the close call which

drives transitions to state 1, from 2 and 3, and to err, from 1.

This simple static typestate analysis is unable to confirm the satisfaction of the con-

straints encoded in the FSA. One way to resolve this is to integrate information about

program data to form a path-sensitive typestate analysis. For the example, reasoning about

the value of sc != null will improve the precision of typestate information accumu-

lated along paths on which the close call will be executed. This could be achieved, for

example, by propagating pairs of sets of typestates and predicate values. The right side of

Figure 4.4 illustrates the results of such an analysis; some values on edges within the loop

are elided. The open call would propagate the pair ({1}, false) out of the exceptional

control flow edge and ({2}, true) out of the normal edge. Ultimately, this results in a flow

into the finally block of {({1}, false), ({2, 3}, true)}. At the conditional those pairs are

filtered according to the predicate value and propagated along outgoing edges of the con-

ditional. This results in the pair ({1}, false) flowing along the false branch to the return

and the value ({2, 3}, true) flowing across the true branch to the close which transitions
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return

sc = ...open()

sc.connect(...)

sc.close()

sc != null

{1}

{2}{1}

{2}
{3}

sc.read(...)
{3}

{3}

{3}
sc.write(...)

{3}{3}

{1,2,3}

{err,1}

{1,2,3}

return

sc = ...open()

sc.connect(...)

sc.close()

sc != null

{({1},false)}

{({2},true)}{({1},false)}

{({3},true)}

{({2,3},true)}
{({1},false)}

{({1},true)}

{({2},true)}
sc.read(...)

sc.write(...)

{({3},true)}

{({3},true)}

Figure 4.4: Example CFG and Static Typestate Analyses

both typestate values to ({1}, true) on entry to the return. While incorporation of data

context in this example is relatively simple, and effective in conclusively demonstrating

typestate conformance, in general, enhancing a typestate analysis to achieve this kind of

path-sensitivity can severely limit its scalability.

4.2.2 Leveraging Inconclusive Analysis Results

A traditional approach to dynamically analyzing typestate conformance would instrument

the program to report the execution of each method call of the SocketChannel API that

labels an edge in the FSA; essentially monitoring each PPF. For a program trace where

the open and connect calls return normally and k buffers of data are read such an

instrumented program will generate 3 + 2k observations to be processed by the dynamic

analysis which steps through the FSA and reports an error whenever the err state is reached.
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For programs that regularly call transformData, this may result in significant run-time

overhead.

The simple static typestate on the left of Figure 4.4, while unable to confirm the type-

state property, provides a rich source of information that can be used to reduce the cost of

dynamic typestate analysis. Specifically, the gray region which begins with normal return

from the connect call and ends with either the termination of the loop or an exception

raised in either the read or write call has an interesting property. All program execu-

tions in the region have the same cumulative effect relative to the typestate automata; on

entry to the region the typestate is 2 and on exit the typestate is 3. Furthermore, the err

state is not reached within the region. A CFG region which is error-free and for which its

cumulative effects can be summarized deterministically is termed safe.

The identification of safe regions lies at the heart of our proposed technique. We present

an algorithm for calculating safe regions in Section 4.4. Based on the results of that algo-

rithm, we can configure a dynamic analysis that elides all instrumentation within such

regions and inserts a single region observable event that will trigger a typestate FSA tran-

sition to simulate the cumulative effects of the region. For the gray region in Figure 4.4,

the automaton would be modified to introduce transitions from 2 to 3 on a new symbol,

regionwhile, and transitions to the error state on that symbol from all other states. Then,

every time the gray region is exited instrumentation will generate regionwhile, which will

drive the new transition in the typestate automaton and thereby reflect the cumulative be-

havior of the path taken through the region. We note that in the special case where a region

has no cumulative effect no such region event is needed; we call these identity regions.

The resulting dynamic typestate analysis is termed residual since it only reasons about

the portions of the program that the static typestate analysis is unable to fully verify. A

residual dynamic typestate analysis for the program trace described above will process 3

observable events : open, regionwhile, and close. Thus, even an imprecise static types-
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tate analysis has the potential to significantly reduce dynamic analysis cost. The techniques

described here are largely independent of the specifics of the static analysis. In general, a

more precise static analysis, such as a path-sensitive analysis, will generate larger or more

safe regions which will eliminate more instrumented events from the program. At present,

we only consider relatively simple static typestate analysis techniques and leave the assess-

ment of the benefit of more precise analyses to future work.

4.3 Soundness and Completeness

In general, our analysis produces correct results, which means that it is sound as well as

complete with respect to the observed program behavior. However, the analysis may not

produce correct results in the presence of unchecked exceptions if certain conditions are

met. For example, Figure 4.5 shows a code snippet and let us assume that the property that

is being monitored is FailSafeIter, which is shown in Figure 1.2.

For this property, statements 1, 2 and 3 are observables. Hence, they have been instru-

mented as shown using calls to corresponding methods in the class OBSERVE. The residual

analysis may efficiently optimize this method by dropping the instrumentation from observ-

ables 2 and 3, and then adding an instrumented call to a summary method summary id

that performs summary transition. This summary transition will result in the monitoring

tool pushing the monitor corresponding to the objects s and iter that is in state 1 to state

2, saving many transitions that would have otherwise needlessly taken. The output of the

analysis is shown in Figure 4.6.

The analysis results are correct in this case, provided method process does not throw

any unchecked exception that is caught at some higher level during execution. If the

method throws an exception, the control may not reach the instrumented call to method

summary id and the monitor will not get an opportunity to update its state to 2. If there
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void foo ( Set<I tem> s ) {
i n t MAXELEM = 100 ;
I t e r a t o r <I t e r > i t e r = s . i t e r a t o r ( ) ; / / S t a t e m e n t 1
OBSERVE . c r e a t e ( s , i t e r ) ;

whi le ( i t e r . hasNext ( ) ) {
I t em i t em = i t e r . n e x t ( ) ; / / S t a t e m e n t 2
OBSERVE . n e x t ( i t e r ) ;
i t em . p r o c e s s ( ) ;

}

f o r ( i n t i = 0 ; i < MAXELEM; i ++){
s . add ( new I t em ( ) ) ; / / S t a t e m e n t 3
OBSERVE . u p d a t e ( s ) ;

}

. . .

}

Figure 4.5: An instrumented code snippet.

are any events related to either the set object referenced by s or the iterator object referenced

by iter, they will either not get monitored or the monitor monitoring them may not be in

a consistent state. This problem happens because the methods that may throw unchecked

exceptions may not be soundly approximated by the underlying static analysis, as these

exceptions do not appear in the method signatures. Hence, the exceptional control flow

graph may not correctly capture the control flow that is associated with these exceptions.

Note that the results are of interest only if the program throwing these exceptions handles

the exception and continues execution. Our observation of many open source benchmarks

including DaCapo showed that unchecked exceptions are either seldom caught or if they

are caught the program often terminates as soon as they are caught possibly by logging

some information, as these exceptions are thrown in unexpected situations. For example,

for benchmark bloat, out of the total 108 occurrences of catching an exception, we ob-

served that only in 8 cases the thrown exception was unchecked and the program apparently
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void foo ( Set<I tem> s ) {
i n t MAXELEM = 100 ;
I t e r a t o r <I t e r > i t e r = s . i t e r a t o r ( ) ; / / S t a t e m e n t 1
OBSERVE . c r e a t e ( s , i t e r ) ;

whi le ( i t e r . hasNext ( ) ) {
I t em i t em = i t e r . n e x t ( ) ;
i t em . p r o c e s s ( ) ;

}

f o r ( i n t i = 0 ; i < MAXELEM; i ++){
s . add ( new I t em ( ) ) ;

}

OBSERVE . summary id ( s , i t e r ) ; / / S t a t e m e n t 2
. . .

}

Figure 4.6: Residual Analysis Output.

was allowed to continue its execution. Hence, program typically crashes or only does min-

imal logging work before it terminates instead of recovering from these exceptions and

continuing its execution.

In general, a statement that lies inside an optimized safe region may impact soundness

or completeness of the analysis only if (1) the statement throwing an unchecked exception

is both, dominated as well as post-dominated, by observable statements within the region,

and (2) the part of the region that is not executed due to the thrown exception may change

the state of the monitor after the other part that has been executed, and (3) the thrown

unchecked exception is caught and handled.

Note that the correctness in the presence of unchecked exceptions is a general issue that

is applicable to most hybrid analysis techniques that are based on dropping instrumentation

at some program points.
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4.4 Residual Program Analysis

In this section, we provide a detailed account of how static typestate analysis results are

processed to calculate safe regions that can be used to eliminate instrumentation. We be-

gin by defining basic typestate concepts and terminology, then describe several forms of

intermediate static typestate analysis results, and follow that by presenting the safe region

identification algorithm and justifying its correctness.

4.4.1 Typestate Checking

Typestate properties, and more general safety properties, can be expressed as finite-state

automata or regular expressions, e.g., [34]. Developers define properties in terms of ob-

servations of a program’s run-time behavior. In general, an observation may be defined in

terms of a change in the data state of a program, the execution of a statement or class of

statements, or some combination of the two. For simplicity, in our presentation we only

consider observations that correspond to the entry and exit of a designated program method;

our implementations support richer sets of observations.

Static typestate checking was outlined in Section4.2. Such an analysis is typically for-

mulated as a monotone flow-sensitive data flow analysis over a lattice of sets of FSA states,

using set union to merge values at control flow join points, and using δ to define the space

of transfer functions, e.g., [35]. The terms used in a monotone flow-sensitive data flow

analysis have been formally defined in other literature, e.g., [67]. Much more sophisticated

typestate analyses than this have been developed, such as [32, 40], but we will illustrate our

approach in this simple setting.

The left-side of Figure 4.4 illustrates the data flow facts calculated for each control

flow edge once the simple static typestate analysis converges to a fixpoint. These facts

are sets of typestate FSA states so we refer to such an analysis as set-based. Analysis
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p u b l i c vo id doTransform ( Socke tChanne l sc )
throws E x c e p t i o n {
B y t e B u f f e r buf ;
whi le ( s c . r e a d ( buf ) != −1) {

. . . t r a n s f o r m b u f f e r d a t a . . .
s c . w r i t e ( buf ) ;

}
}

Figure 4.7: Refactored transformData Example

of real programs requires the ability to summarize the behavior of a method body and

consume that summary at call sites of the method. A set-based analysis naturally produces

a set summary. Consider a refactoring of the transformData method to isolate the

while loop in the doTransform method shown in Figure 4.7. A set summary for this

method would account for all possible behaviors of the method from all possible start states.

Analyzing the structure of the automaton indicates that this method can end in only two

states {3, err} regardless of the start state. Unfortunately, such a set summary is generally

too imprecise to be of value in an inter-procedural typestate analysis. For example, we

know that the only typestate value that flows to the entry of the loop in transformData

in Figure 4.4 is 3, so this value would flow to the input of doTransform in the refactored

version. For that particular start state, the only possible end state is 3.

An alternative formulation of analysis summaries represents the behavior of a method

relative to the typestate property as a function, F | S → P(S), and we refer to these as

functional summaries. The functional summary for doTransform would be: FdoT =

[1→ {err}, 2→ {err}, 3→ {3}, err → {err}]. Each individual mapping in the function

represents the cumulative effects of the set of possible executions of the method when start-

ing from the given typestate. This summary allows the typestate analysis of a refactored

transformData method to accurately calculate the typestate effects of paths through

calls to doTransform by applying the functional summary to each typestate flowing
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into the call-site and accumulating the output typestates. While more precise, calcula-

tion of functional summaries can be more expensive. In the worst-case, it requires |S|

flow analyses of each method, but in practice calculation of summaries is performed on

demand, whenever a new start state is generated at a method call-site. This typically re-

sults in a very small number of repeated method body analyses – in our small example,

the method summary need only be calculated once for typestate 3. A special case of F

is the identity function which is used whenever it is determined that no observables are

executable during any execution of a method which is quite common in practice. We de-

fine a domain-restricted functional summary for Q ⊆ S as the partial function, F 〈Q〉,

where ∀s∈Q : F 〈Q〉(s) = F (s) and ∀s∈S−Q : F 〈Q〉(s) ↑. Here, ↓ indicates that a function

is defined and ↑ indicates the lack of a definition.

4.4.2 Safe program regions

Central to our technique is the identification of regions of the program within which static

typestate analysis identifies no erroneous PPFs and for which the cumulative effects of all

paths through the region can be summarized deterministically. A control flow graph region

is a connected single entry, single exit sub-graph of a control flow graph; in some cases,

dummy nodes may be introduced to achieve a single entry or exit for the region – such a

node would be introduced prior to the finally block in transformData of Figure 4.4 to

merge the exceptional and normal flows out of the shaded region. We denote the, potentially

unbounded, set of paths through a region, r, as Paths(r). A path, p, gives rise to sequence

σ(p) ∈ Σ∗ which encodes the program observations on the path.

Definition 4.4.1 (Safe Region) A CFG region, r, is safe for an FSA, (S,Σ, δ, s0, A), if

∀p, p′ ∈ Paths(r)∀s ∈ S − {err} : ∆(s, σ(p)) = ∆(s, σ(p′)) ∧∆(s, σ(p)) 6= err
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Intuitively, such a region will never force the typestate FSA to its error state and starting

from a given typestate s, every path through the region drives the FSA to a common types-

tate ∆(s, σ(p)). This is a strong condition since it demands path equivalence, relative to the

FSA, from all region start states. The refactored doTransform method is not safe for the

SocketChannel typestate FSA since it transitions to the err state. In practice, we relax

the definition to consider safety of regions relative only to the sub-sets of the typestates that

reach its entry.

Definition 4.4.2 (Reachably Safe Region) A CFG region, r, is reachably safe if for the

subset, Q ⊆ S, of typestate FSA states calculated at its entry

∀p, p′ ∈ Paths(r)∀s ∈ Q− {err} : ∆(s, σ(p)) = ∆(s, σ(p′)) ∧∆(s, σ(p)) 6= err

Since the value 3 is the only one that reaches entry of doTransform, we can observe its

domain-restricted summary FdoT 〈{3}〉 to see that it is a reachably safe region. In the rest

of the section, we refer to both safe and reachably safe regions as safe; if the distinction is

important we will use the more precise terminology.

Identity safe regions have no net effect on a typestate property and obey the constraint

that

∀p ∈ Paths(r)∀s ∈ S : ∆(s, σ(p)) = s

For our analysis, we distinguish three classes of regions that require support. Individual

statements in the program are trivial regions, method bodies are regions, and compound

statements, such as, conditionals, loops, or try blocks, are regions; note that a region may

contain other regions. The safety of regions can be inferred by reasoning about region

functional summaries. We overload the symbol ∆ to denote summaries over the set of all

program regions R as ∆ | R → S → P(S). For regions that are statements, t, ∀s ∈
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S : ∆(t)(s) = {δ(s, obs(t))}. For method, m, ∆(m) is simply the method’s functional

summary. For compound statements, we calculate a functional summary for the region

corresponding to the statement. Conceptually, this can be thought of as refactoring the

compound statement into a separate method and calculating the functional summary for that

method; the refactoring of doTransform in the example illustrates exactly this concept.

Summarization of portions of the program in this way allows us to view a program’s

control flow graph as a sequence of region summary nodes. The successor (predecessor)

relation for such summary nodes can be easily inferred from the underlying control flow

graph – it amounts to the semantics realized by most debuggers when providing a step

over functionality. We distinguish compound statements and method calls from simple

statements with the predicate isCompound.

4.4.3 Calculating safe regions

Safe regions are calculated using a top-down traversal of the program’s source text consum-

ing the typestate sets produced by a preceding static analysis and expanding, on demand,

imprecise typestate analysis results into more precise function based summaries.

The algorithm calculates information for sub-sequences of regions to assess their po-

tential safety. Specifically it calculates an upper triangular matrix whose cells store a

domain-restricted functional summary for each region sub-sequence that is specialized to

the typestate values that reach the entry of the first region in the sequence. The region

sub-sequence matrix, D | Z+ × Z+ → (S → P(S)), has the following structure. The di-

agonal elements, D[i, i] = ∆(ri)〈in(ri)〉, encode domain-restricted functional summaries

based on the input values to ri calculated by the typestate analysis. The interior elements,

D[i, j], encode the domain-restricted region functional summaries restricted to the com-

posed application of preceding region summaries to the typestate value on input to ri,
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D[i, j] = ∆(rj)〈∆(rj−1)(...(∆(ri)(in(ri)))...)〉. The approach potentially increases the

precision of our safe region analysis since it forces the use of function summaries even if

the preceding typestate analysis was set-based. We have observed that it is not uncommon

for set-based analyses to produce sufficiently precise results that they can be trivially con-

verted to functional summaries. For example, any control flow region with a singleton set

flowing out of it can be converted to a functional summary with each of its input values

mapping to the single output value.

Algorithm 4.8 uses D to identify an estimate of candidate safe regions and then per-

forms a more focused analysis of those regions to determine the ones that are actually safe.

The algorithm is called on a region, r, with a set of states, Q; initially the region is the main

program and the initial set of states is the typestate FSA start state. If a region correspond-

ing to a method has already been processed for all of the states, then it is not reprocessed

(line 1). The algorithm operates in two phases: (1) lines 2-15 perform a high-level analysis

of the sequence of regions that comprise r, and (2) lines 16-23 recursively process regions

that are not contained within a safe region as determined by the first phase. In phase (1)

the algorithm opens a window across r, bounded by the start and cur regions, expanding

it as long as possible (lines 6-12), then marks safe regions within the window (line 13), and

finally advances the window (lines 13-15). Each iteration of loop 6-12 serves to test the

region at the end of the window to determine whether it is a region boundary and, if not, it

adds an additional column to D; we suppress the low-level details of memory management

for D in this algorithm description.

Finding Safe Region Boundaries D is used to determine when a sequence of regions

cannot be extended further. A region, rj , is a boundary of a sequence r1 . . . rj−1 if ∆(rj)
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FIND SAFE REGIONS(r, Q)
1 if ∀s∈Q : ∆(r)〈{s}〉 ↓ then return
2 start = cur = r1

3 cur.in = cur.prev.out = {s|s ∈ Q ∧∆(r)〈{s}〉 ↑}
4 while start! = null do
5 j = 1
6 while ¬ IS BOUNDARY(cur,D) do
7 cur.out = ∅
8 D[j, j] = ∆(cur)〈cur.prev.out)〉
9 foreach i ∈ 1 . . . j − 1 do

10 D[i, j] = D[i, j − 1] ◦∆(cur)
11 cur.out =

⋃
i∈1...j ran(D[i, j])

12 cur = cur.next; j + +
13 MARK SAFE REGIONS(start, cur.prev,D)
14 start = cur = cur.next;
15 cur.in = cur.prev.out
16 foreach stmt ∈ r |!isMarked(stmt) do
17 if stmt is method call on m then
18 FIND SAFE REGIONS(mbody, stmt.in)
19 else if stmt is loop, l then
20 FIND SAFE REGIONS(loopbody, stmt.out)
21 else if stmt is conditional then
22 FIND SAFE REGIONS(thenbody, stmt.in)
23 FIND SAFE REGIONS(elsebody, stmt.in)
end FIND SAFE REGIONS()

Figure 4.8: Calculating Safe Regions.

can drive the analysis to an error state from a typestate reaching its input.

IS BOUNDARY(rj, D) = err ∈
⋃

s∈out(D[1,j])

∆(rj)(s)

Marking Safe Regions Once a sequence of candidate safe regions is identified we must

confirm that those regions satisfy Definition 4.4.2. Algorithm 4.10 does this and then marks

the individual regions to indicate their safety. The algorithm attempts to find the longest re-

gion sequences that have deterministic functional summaries. It begins with D[1, D.size],
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Add  

Figure 4.9: Region matrix and typestate flow example.

where D.size is the number of columns (and rows) in the matrix. It tests (line 3) to see

whether the image of the summary on all input values to r1 are singletons – if so the sum-

mary is deterministic and the region is safe. If the test fails, the algorithm tests region

sequence prefixes beginning with r1 (line 2) and if that fails it then begins to test region

sequences that begin at later regions (line 1).

Once a region subsequence is found to be safe, it is tested to determine whether it is an

identity region (line 4). Identity regions are simply marked as safe, whereas non-identity

safe regions are marked and the typestate automaton is customized. Specifically, for each

safe region a new symbol is introduced into the automaton (line 8) and then the automaton

transition function is defined to be the deterministic region summary D[i, j] (line 9). Note
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MARK SAFE REGIONS(D)
1 foreach i = 1 . . . D.size do
2 foreach j = D.size . . . i do
3 if ∀s∈in(ri) : (|D[i, j](s)| == 1) then
4 if ∀s∈in(ri) : D[i, j](s) == {s} then
5 mark ri . . . rj as safe (identity) region
6 else
7 mark ri . . . rj as safe region
8 Σ = Σ ∪ {regioni,j}
9 ∀s : δ(s, regioni,j) = D[i, j](s)

10 i = j + 1
11 goto 1

Figure 4.10: Mark Safe Regions.

while D[i, j] is domain-restricted it is safe to extend it to a total transition function by

simply defining transitions for the undefined typestates that lead to err; those transitions

are guaranteed to never be taken.

Since the algorithm works from the end of the region towards the beginning, whenever

it identifies a safe region sequence, ri . . . rj , it is known that any additional safe region

sequences must begin after rj . Consequently the algorithm skips all processing of regions

that are already marked safe (line 10).

An Example Figure 4.9 illustrates the algorithm on a synthetic example. We choose a

different example here because the example in Section 4.2 is relatively simple and does not

illustrate the complexity of problem. The left-side shows D when assessing r6. The image

of D[2, 2] on both 1 and 2 is 2. This merging of typestate values after r2 is illustrated in

the region typestate flow diagram on the right-side of the Figure; a column in the diagram

corresponds to a typestate, each row corresponds to the in and out states for a region,

and when read downward the edges encode functional summaries. We observe several

interesting features of this typestate flow diagram.
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(1) Region r1 has a non-deterministic summary. This can occur when a region is a method

or compound statement with internal behavior that drives the typestate automata into differ-

ent states. Despite the presence of a non-deterministic summary within the region sequence

r1, r2 the overall summary for the sequence, in D[1, 2], is deterministic. This is an essential

property of safe regions. This region is not an identity, consequently,

MARK SAFE REGIONS generates a new symbol, region1,2, to instrument its exit and the

state transition function for the typestate automaton is extended such that:

δ(1, region1,2) = 2, δ(2, region1,2) = err,

δ(3, region1,2) = 3, δ(err, region1,2) = err

(2) The region sequence r4, r5 is also safe, since it is clearly deterministic, D[4, 5]. Further-

more, despite the fact that it it contains multiple state changes along typestate flows within

the region the net effect is an identity function summary, hence it is an identity region and

needs no extra symbol.

(3) The typestate flow diagram shows that r6 drives state 3 to the err state, consequently

it will be regarded as a boundary. This is a function of the fact that the static typestate

analysis calculated that state 3 reaches the input of region r1. If that were not the case, then

the domain-restricted summary would capture the typestate flow region in the dashed box.

In that flow, there is no error transition so r6 would be absorbed into the candidate region

sequence, and ultimately into the identity region beginning at r4. This illustrates why we

use domain-restricted summaries in our analysis.

Correctness (proof sketch) Algorithm 4.8 will only mark a region as safe if it is guaran-

teed to satisfy Definition 4.4.2. It is clear that IS BOUNDARY will not allow a transition

to an error state to be subsumed within a safe region sequence – it will force a break in

regions. It is also clear that even if IS BOUNDARY allows for non-determinism to be

included into a region, then MARK SAFE REGIONS will only judge a region sequence
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safe if non-deterministic branching merges in the typestate flow within the sequence. If

such branching were to persist at the end of a region sequence, then there would have to be

a state that produces a summary image with more than one state. Such a summary would

disqualify a region sequence from being marked safe by MARK SAFE REGIONS.

For the converse, we must be content with a relative notion of correctness. Our algo-

rithm is limited in its precision, i.e., in its ability to detect maximal safe regions, by the

static typestate analysis information it starts with. If there exists a (reachably) safe region

that is detectable based on the static typestate analysis information, it will be marked by

the algorithm.

FIND SAFE REGIONS expands and slides a region sequence window across the entire

candidate region such that no safe region can span the window boundary. MARK SAFE -

REGIONS then finds maximal length safe sub-sequences within window. The only pos-

sibility for missing a maximal safe region is if it overlaps two safe sub-sequences identi-

fied within MARK SAFE REGIONS, however, safe regions cannot overlap. Assume the

existence of two overlapping safe regions ri . . . rj and rj−c . . . rk where i < (j − c) <

j < k; note that region ri . . . rk cannot be safe, since it would have been marked by

MARK SAFE REGIONS whenD[i, k] was considered. While safe regions allow branches

in the typestate flow, those branches must merge prior to the end of the region. Conse-

quently, there can be no un-merged typestate flow branches at rj – it is the end of a safe

region; the same holds for rk. This means however that flow from rj to rk must be deter-

ministic implying that ri . . . rk is safe which contradicts our initial assumption about the

existence of overlapping safe regions.

Complexity While not optimized for complexity, this algorithm is clearly polynomial in

the number of program statements. In practice, we believe that it is sub-quadratic due to
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the on-demand nature of region expansion and the heuristic in IS BOUNDARY that is used

to identify boundary regions which helps to control the size of D.

4.4.4 Program analysis residue

Safe region marking can be used to reduce the cost of dynamic typestate analysis by elim-

inating instrumentation for all observables that are marked as safe or that lie within safe

regions. No such observable can ever lead to an error and the effects of those observables in

driving transitions in the typestate automaton are accounted for in MARK SAFE REGIONS.

Specifically, if observables lie in an identity region, then even if they give rise to non-

identity typestate transitions the region analysis is able to determine that there is a com-

pensating transition later in the region that results in no net transition for the region. If

observables lie in safe but non-identity regions, then their effects are captured by the region-

specific symbols and transitions added to the typestate automaton.

The residual dynamic typestate analysis consists of instrumentation for all observables

that lie outside safe regions and instrumentation at safe, non-identity region boundaries that

generate the region-specific symbols. If all of the instrumentation associated with a given

observable symbol is eliminated then that symbol can be eliminated from the alphabet of

the typestate FSA thereby simplifying it. The reformulated typestate automaton is then

used to monitor the execution of the instrumented program and reports property violations.

4.5 Evaluation

We have implemented prototype analysis components that realize the residual typestate

analyses architecture in Figure 4.1 for Java programs. In the following subsections, we

describe the tool support for the current implementation and its application to several Java

programs that use standard Java libraries.
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4.5.1 Implementation

There are three essential elements of our analysis architecture: (1) a static typestate analy-

sis, (2) an implementation of the safe region identification algorithm, and (3) a configurable

dynamic typestate analysis. We describe each of these in turn.

Developing a fully-featured, precise, scalable static typestate analysis for Java is a

multi-person-year effort [40]; our analysis is much more modest. We implemented a flow-

sensitive set-based typestate analysis, in the style of [35], as an inter-procedural summary-

based data flow analysis in the Soot framework [72] using its type-based call graph sup-

port construction and building functional method summaries on-demand during call graph

traversal.

Precise static analysis of typestate properties requires the correlation of receiver objects

appearing in API calls. We implemented two techniques proposed in the literature to handle

two special cases. We analyze the occurrence of new expressions for instances of the API

under analysis to determine whether they occur in loops. (1) If not, we specialize the flow

analysis facts on a per-allocation site basis [40]. (2) If so, we use a simple form of must

value-flow analysis for reference expressions [32] to correlate receiver object expressions

so that the typestate analysis can perform strong updates. We chose these approaches since

they are relatively simple and inexpensive with the understanding that they are relatively

imprecise. Despite the lack of precision, however, we have found that they are sufficient

to reveal large safe regions in programs even when the analysis cannot conclusively prove

typestate conformance.

We use Sofya and, specifically, its object-sensitive FSA (OSFSA) conformance checker

application as our dynamic typestate analysis [54, 69, 36]. This implements the basic

checking approach described in Section 4.4.1, i.e., δ is evaluated at run-time to maintain

the current state, while automatically handling the correlation of observables to receiver



121

objects by capturing object ids in instrumentation. This allows the typestate analysis to

precisely track sequences of API calls on the same receiver object.

Sofya is a good choice for our purposes since it allows for precise specification of the

program scopes within which an observable should be instrumented. Specifically, it allows

for instrumentation of observables to be enabled (disabled) within a specific static scope.

For a residual analysis, where an observable o occurs at two locations in the program one

of which is in a safe region and one which is not, this allows instrumentation for o to be

disabled only in the safe region. In addition, the goal of our study is to understand the

effectiveness of residual analysis relative to the unoptimized instrumented version of the

program. We do not intend to compare the runtime data of the optimized version with any

previous studies performed using any other monitoring tools. Hence, we do not expect the

choice of a monitoring tool to influence our results as long as the tool provides necessary

features.

Our implementation of the Algorithm in Figure 4.8 uses the data flow facts and function

summaries that have been calculated by the flow-sensitive typestate analysis. This results in

the reformulation of the original typestate analysis by (a) dropping instrumentation within

safe regions, (b) eliminating automaton symbols for observables that are no longer instru-

mented, and (c) adding transitions for safe region summary symbols. In our experience, the

alphabet of the residual typestate FSA often requires a smaller number of observable sym-

bols and, more importantly, the analysis eliminates observables that can occur frequently

during program execution, i.e., within loops. This residual typestate FSA is fed to Sofya’s

OSFSA conformance checker yielding a residual dynamic typestate monitor.
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4.5.2 Artifacts

Informal typestate properties can be found in the documentation of many standard java

libraries. We selected two challenging properties found in the header comments of the

classes encoded as typestate FSA:

java.nio.channels.SocketChannel

henceforth named SocketChannel, and:

javax.mail.Folder

henceforth named Folder. Residual analysis has the potential to reduce the cost of

challenging properties that may require an arbitrary number of occurrences of program

observations to decide property conformance. For example, response [34], or bounded

liveness, properties can be regarded as challenging and the typestate properties we selected

have this structure.

For SocketChannel we chose the property that was presented in Figure 4.3. For

Folder we chose the property presented in Figure 4.11. In this FSA we use wildcards

“*” to denote sets of method names, e.g. get* denotes all methods beginning with “get”.

The property captures the behavior of a READ ONLY Folder by only allowing get*

and fetch calls when a folder instance is open. We note that a closely related property,

which allows set* calls in state 3, encodes READ WRITE Folder behavior. Due to

the presence of cyclic behavior in these FSA these properties may require monitoring of

arbitrarily long sequences of program observations to determine conformance.

We performed a limited search for programs that used Folder and SocketChannel.

Our goal was to find programs that use the APIs in ways that are related to the two selected

typestate properties. Furthermore, we wanted programs in which sequences of API calls

span method boundaries, are dependent on program input values, and occur in both normal
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getFolder

close,

close

open

fetch,
get*,

open, close, get*, fetch, set*

getFolder

fetch,
get*

.

getFolder
open,

err

21 3

set*,

set*

Figure 4.11: Folder API Typestate FSA.

close

open

.

close, set*
open

err

2 3

set*,

Figure 4.12: Residual Folder API Typestate FSA

and exceptional program code blocks. We selected three relatively small programs, that

consisted of 2-3 classes, 6-17 methods and 177-346 lines of source code.

We studied two variations of TimeQuery.java a small program distributed with the

programmer’s guide to the Java NIO library. These programs use SocketChannels to

connect to NTP time servers and then print out the time values. We checked the typestate

property from Figure 4.3.

The first version we considered (v1) is the code from the Java NIO guide that we em-

bellished with functionality to calculate the maximum and minimum time accessed from

the set of queried time servers. This code includes the guarding of the close call in a

finally block with a test for SocketChannel nullness as in Figure 4.3. Consequently,

path-insensitive static typestate analysis cannot prove conformance. The second version
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Socke tChanne l sc ;
t r y {

sc = open ( ) ;
s c . c o n n e c t ( ) ;
. . .

} catch ( . . . ) {
} f i n a l l y {

i f ( s c != n u l l )
c l o s e ( ) ;

}

Socke tChanne l sc ;
t r y {

sc = open ( ) ;
} ca tch ( . . ) {

re turn ;
}
t r y {

sc . c o n n e c t ( ) ;
. . .

} ca tch ( . . . ) {
} f i n a l l y {

c l o s e ( ) ;
}

Figure 4.13: Conditional Close Refactoring.

(v2) refactors v1 to process primary NTP servers differently than secondary servers and

introduces a typestate property error when contacting secondary servers. The distinction

between servers is determined by comparison with a table of known primary NTP servers.

Figure 4.13 illustrates a property preserving refactoring that eliminates the need for the

nullness test in the finally block. This allows the static typestate analysis, and our

safe region algorithm, to determine that the code that interacts with primary servers is an

identity safe region.

We studied a program that implements a command-line interface to access Gmail via

POP3 using the GmailUtilities library. The application code uses the javax.mail

package indirectly through the library. Portions of this application write to Folders by

executing calls to set*, thus it is impossible for even a perfect static typestate analysis

to judge the entire program a safe region relative to the READ ONLY Folder property.

Nevertheless the typestate analysis determines that much of the program is safe with re-

spect to the READ ONLY property. Figure 4.12 shows the reformulation of the FSA in

Figure 4.11 where the associated reduction in instrumentation is apparent from the reduced

FSA alphabet.
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Program Input Time(s) Result OSFSA Residual OSFSA
Size No Inst. Time Over. #Obs. Time Over. #Obs.

TQ v1
(SC)

100 2.41 pass 4.08 69 400 3.31 37 200

TQ v2
(SC)

100 2.37 fail 4.11 73 420 2.86 21 100

TQ v2
(SC)

200 4.70 pass 6.23 33 800 4.73 1 0

POP3
(FR)

40 2.96 pass 4.32 46 43 3.24 9 3

POP3
(FR)

200 3.76 pass 5.68 51 203 4.00 6 3

Table 4.1: Sample programs and analysis times. TQ = TimeQuery, POP3 = Gmail
POP3. SC = Socketchannel, FR = Folder. Times in seconds and Overhead in
percentage.

4.5.3 Results and Discussion

Table 4.1 presents data on several dynamic typestate analysis runs. The table reports for

pairs of programs and input sizes, the time for the program to execute without any analysis

instrumentation; all reported run-times are the average of three program runs of seconds of

user and system time on an Athlon XP 2600+ workstation running SUSE 10.1 linux. The

variation in run times was small and not significant relative to the overhead. For example,

for TimeQuery v1 it was less than 4%, where the runtime overhead for the unoptimized

version was 69% and the optimized version reported an overhead of 37%.

We ran two dynamic typestate checkers: the OSFSA checker on the original typestate

FSA and the OSFSA checker on the residual typestate FSA. Upon program exit the check-

ers indicate the result of each analysis as pass or fail. For each of these analyses, we report

the run-times, the percentage overhead relative to the un-instrumented program, and the

number of observations processed at runtime.
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The inputs sizes were chosen to make the programs perform moderate amount of work

that would be monitored. Inputs for TimeQuery consist of a list of NTP server URLs. We

used the same server lists for uninstrumented, FSA checker, and residual versions so they

would have incurred the same execution time related to network latency. The list of length

100 consists of 80 primary and 20 secondary servers; the presence of secondary servers will

cause the inserted error in TimeQuery v2 to be revealed by both dynamic analyses. The

list of length 200 consists only of primary servers. Residual analysis is able to determine

that the code which processes primary servers is safe and hence all observables in that code

are removed. Inputs for Gmail consist of a list of mail commands – specifically queries

to print headers and sets of specific messages. The two inputs differ only in their size; the

input of size 200 is simply 5 copies of the smaller input.

Static typestate and residual analysis and code instrumentation incur a cost. The types-

tate analysis time and safe region calculation times ranged, on these small programs, from

4 to 6 seconds and the instrumentation time was always less than 2 seconds. Most of the

analysis time was spent in call graph construction. These can be regarded as compile time

costs. Our data show that those costs are easily compensated for by the reduction in run

time of programs deployed with residual dynamic typestate monitors. In fact, the invest-

ment pays off very quickly – in as few as five program runs.

We report both, time and the number of observations, for our dynamic analyses. We

believe that these data together would give a better idea about the benefits that may be

expected by using other monitoring tools such as JavaMOP or Tracematches. We believe

that the benefit of residual analysis can be seen clearly through comparison of observa-

tion counts per analysis run as well as through comparison of time per analysis run. For

some properties and inputs the number of observations are halved, suggesting a halving of

analysis overhead, whereas for other properties the number of observations is independent

of changes in program input, suggesting that the runtime of residual dynamic typestate
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analysis will grow at the same rate as that of the un-instrumented program. We can also

see, in the case of TimeQuery v2 with an input of size 200, that residual analysis can

completely eliminate the need to monitor the program on certain inputs.

There is some variation in the effectiveness of residual analysis across this set of pro-

grams, properties and inputs, but residual analysis always reduces overhead significantly.

In total the number of observations processed is reduced by a factor of 6 over unoptimized

OSFSA and the analysis overhead is reduced on average from 54% to 14%. It is noteworthy

that these reductions are achieved by applying residual analysis to the results of a relatively

simple static typestate analysis. Further advances in static analysis promise to produce even

larger safe regions and thereby further drive down the cost of dynamic typestate analysis.

4.6 Lessons Learned from the Evaluation

The residual analysis is an effective optimization technique as shown by our study. How-

ever, it performs a whole-program analysis which is very expensive. Moreover, the analysis

requires that a region needs to have a completely deterministic summary to be identified

as safe. However, it does not perform a precise analysis of path conditions and hence, in

general, cannot predict infeasible program paths. Moreover, an imprecision in the analysis

sometimes prevents it from accurately identifying a monitor state that would reach the en-

try of a region. The result is that a region may get identified as unsafe, whereas in practice,

it may always behave like a safe region. One way would be to identify such regions as safe

conditionally and then instrument the program with those conditions that may be evaluated

dynamically. We plan to explore this idea as future work.

The cost of a program region not getting identified as safe could be high if it the region

is a loop. This is because a loop may contain observables that are frequently executed

generating a large number of events. A loop may not get identified as safe either because
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of the imprecision in the static analysis or because the loop region indeed may have a

nondeterministic summary. In either case, the analysis would have no other option but

to retain the instrumentation on the observable statements. In Chapter 5, we present a

technique that targets such loops for optimization.
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Chapter 5

Stutter-Equivalent Loop Transformation

5.1 Introduction and Motivation

In this chapter1, we present a technique that targets program loops for monitor optimization.

We leverage the observation that path properties are typically insensitive to the number of

times that a loop iterates. In other words, a monitor must observe a few iterations of the

loop in order to judge whether the program violates or satisfies the property, but it can

effectively ignore the rest of the loop iterations.

The motivation for this work comes from the cost models as explained in Section 4.1

and also from the weaknesses of the residual analysis technique that we discussed in

Section 4.6. In order to counter the weaknesses of the residual analysis, we develop a

static analysis that is flow-sensitive at intra-procedural level and context-insensitive and

summary-based at inter-procedural level that reduces the cost of it. Secondly (and more

importantly), using program transformation techniques we reduce the cost of monitoring

loops, that residual analysis might fail to optimize.
1This work is an extended version of our paper that appeared in the proceedings of OOPSLA, 2010 [68].

In particular, we have added two algorithms, one each for checking a loop for stuttering distance 1 and for
stuttering distance 2 in Section 5.5.4.
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Our major contributions for this chapter are as follows:

1) We build on the theory of stutter-invariance [55] to formalize a general framework for

analyzing and transforming loops that offers the potential to significantly reduce the over-

head of runtime monitoring; (2) We define an instance of that framework that realizes a

common special case arising in Java programs and implement a property-driven loop op-

timization; and (3) We evaluate the effectiveness of that optimization on a collection of

properties and programs that are drawn from previous runtime monitoring work and that

exhibit high monitoring overhead. The evaluation results provide strong preliminary evi-

dence of the potential of the technique for reducing cost of monitoring for path property

conformance.

The next section provides an overview of our approach and highlights each of these

contributions.

5.2 Overview

We illustrate the principles of our approach by way of of an example. Figure 5.1 shows an

excerpt of a method from the bloat Dacapo benchmark [14]. This is one of the 424 call

sites within the bloat code base that creates an Iterator to process the contents of a

collection.

A well-known, widely studied [8, 26, 16] and previously seen in Chapter 2, HasNext

property of the Iterator interface is that a call to the hasNext() method should pre-

cede each call to next(), which returns the next element. We reproduce the FSA for this

property in Figure 5.2 for a quick reference, and denote the property as φit.

The code in Figure 5.1 creates the iterator by a call to the iterator()method and the

while loop condition guards calls to next() in the loop body to ensure that they always

follow hasNext(). This example is simple enough that by studying the code one can
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p u b l i c vo id v i s i t P h i S t m t (
f i n a l Ph iS tmt s t m t ) {

. . .
f i n a l I t e r a t o r i t =

s t m t . o p e r a n d s ( ) . i t e r a t o r ( ) ;
whi le ( i t . hasNext ( ) ) {
/ / i n s t r u m e n t a t i o n : hasNex t ( i t )

f i n a l Expr op =
( Expr ) i t . n e x t ( ) ;

/ / i n s t r u m e n t a t i o n : n e x t ( i t )
i f ( op i n s t a n c e o f VarExpr )

i f ( op . d e f ( ) != n u l l )
p h i R e l a t e d U n i o n (

op . d e f ( ) ,
s t m t . t a r g e t ( ) ) ;

}
}

p u b l i c vo id v i s i t P h i S t m t (
f i n a l Ph iS tmt s t m t ) {

. . .
f i n a l I t e r a t o r i t =

s t m t . o p e r a n d s ( ) . i t e r a t o r ( ) ;
o u t e r : {

i n n e r : {
whi le ( i t . hasNext ( ) ) {
/ / i n s t r u m e n t a t i o n : hasNex t ( i t )

f i n a l Expr op =
( Expr ) i t . n e x t ( ) ;

/ / i n s t r u m e n t a t i o n : n e x t ( i t )
i f ( op i n s t a n c e o f VarExpr )

i f ( op . d e f ( ) != n u l l )
p h i R e l a t e d U n i o n ( op . d e f ( ) ,

s t m t . t a r g e t ( ) ) ;
break i n n e r ;

}
break o u t e r ;

}
/ / u n i n s t r u m e n t e d rema inder
/ / o f l oop
whi le ( i t . hasNext ( ) ) {

f i n a l Expr op =
( Expr ) i t . n e x t ( ) ;

i f ( op i n s t a n c e o f VarExpr )
i f ( op . d e f ( ) != n u l l )

p h i R e l a t e d U n i o n ( op . d e f ( ) ,
s t m t . t a r g e t ( ) ) ;

}
}

}

Figure 5.1: Example from class SSAPRE: original (left) and transformed (right)

see that all possible sequences of calls on the iterator are consistent with the HasNext

property. When calls occur in multiple methods or in complex control flow constructs it

becomes much more difficult to determine that a program is consistent with a property.

In recent years, a number of researchers [5, 8, 26, 52] have proposed the use of runtime

monitors to check program executions for conformance with such properties. A simple

such analysis would create an instance of the property FSA on each call to iterator(),

which would be defined as the property creation event [26], and then for each relevant call
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0

err

hasNext

next

1

next

hasNext

Figure 5.2: HasNext property, φit, as an FSA

on the Iterator instance the monitor would update the current FSA state based on the

FSA’s state transition function. This requires, of course, that all potentially relevant calls

be instrumented to generate symbols in the language of the FSA.2

There are two dominant components of the runtime overhead introduced by monitor-

ing: (1) the number of FSA instances needed and (2) the number of transitions simulated

for each instance. Except in rare circumstances, whose details are elided in Figure 5.1,

every time method visitPhiStmt() is called an instance of φit is created and if the

Collection iterates over has k elements, then 2k symbols are generated. The overhead

adds up quickly. When using the default Dacapo input load for bloat, monitoring for this

property generates more than 157 million symbols generated for nearly two million FSA

instances.
2In our presentation, we use the terms symbol when discussing automata-theoretic concepts and observ-

able when discussing program statements that are related to a property; the term event is used in [26] to
describe the same concept.
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To reduce monitoring overhead while preserving the semantics of the original monitors,

techniques such as Tracematches [8] and JavaMOP [26] heavily optimize the first overhead

component, e.g., by eliminating FSA instances when they are no longer needed. The second

overhead component has been addressed using static analysis to remove instrumentation of

statements that do not contribute to the monitoring problem [37, 20, 17]. Unfortunately,

these techniques do not help much with bloat because most of its monitoring overhead

is incurred in loops that generate millions of events that change the FSA state, like the

one in Figure 5.1, and consequently the best reported results in the literature still have

unacceptable overhead – 154% [26] and 258% [16].

An alternative dynamic approach to reduce the second source of overhead consists of

inserting and removing instrumentation on the fly during program execution [36, 5]. Such

optimization, however, requires potentially frequent dynamic re-writing of program code

to insert and remove instrumentation, and it only applies when cyclic patterns of behavior

are comprised of symbols that do not cause the property state to change. Again, the code

in Figure 5.1 would cause such techniques to perform very poorly, since on every itera-

tion the loop body would be re-written twice and no occurrences of the statements whose

instrumentation was removed will ever be executed.

5.3 Our Approach

Independent of whether the approach is static or dynamic, a common objective across the

existing body of work on property monitoring is the determination of whether instrumenta-

tion for generating a symbol can be completely removed without impacting the monitoring

results. We believe that aiming for complete removal has limited optimization opportuni-

ties that might be applied to monitoring instrumentation where a majority, but not all, of its

executions can be removed.
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Our technique leverages this realization by performing a semantics preserving program

transformation to reduce the frequency of executing instrumentation in a loop. Our key

insight is to calculate the loop iteration after which the behavior of any subsequent iteration

is guaranteed to preserve the state of the monitored property – at that iteration the remaining

loop iterations are said to stutter relative to the property [55].

The technique has several desirable properties: (i) it does not require dynamic re-

writing of the program; (ii) it accommodates complex behaviors within loop bodies; (iii) it

considers each loop independently and thus scales well; and (iv) it preserves the semantics

of runtime property monitoring.

Consider the loop in Figure 5.1 and the HasNext property. Our analysis calculates

all possible sequences of symbols in the property alphabet that can be executed by a loop

iteration on the same object – in this case it is simply the sequence hasNext;next.

Table 5.1 illustrates the analysis of the first two loop iterations for each possible state

of φit on entry to the loop. When entering the loop in state 1, an execution of the loop body

assures that monitor transitions to state 2 (after hasNext) and then back to 1 (after next).

Since subsequent loop iterations are guaranteed to preserve the state of this property, we can

assert that from state 1 the loop stutters immediately on its first iteration; state identifiers

written on a black background indicate the point at which stuttering begins. Whenever the

monitor is in the err state the remainder of the program is trivially stuttering.

When entering the loop in state 2, the first iteration transitions the monitor to state 2

(via the self-loop on hasNext) and then to 1. Since state 1 was determined to immediately

stutter, we can conclude that when initially entering the loop in state 2 the loop stutters on

the second iteration. In fact, this is the longest iteration distance at which the loop stutters

for any entry state.

For the given code and property, the analysis has determined that only the first loop it-

eration that generates the sequence hasNext;next needs to be monitored since subsequent
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Entry Iteration
State 1 2

1 2 1 2 1
2 2 1 2 1

err err err err err

Table 5.1: Stutter distance for φit on hasNext;next

iterations cannot reveal anything new about that property. Hence, only the first iteration of

the loop needs to be instrumented and only that iteration will introduce runtime overhead.

Figure 5.1 illustrates, on the right, how the loop is transformed based on the analysis re-

sults. Note that in this case it appears as if we have simply unrolled the loop one time, but

in general, the transformation must account for the fact that multiple loop iterations may

be performed that bypass the instrumented statements in the original loop. The correctness

of our transformation requires that instrumented statements be executed a specific number

of times before falling through to the uninstrumented loop.

Clearly, this technique offers significant potential for overhead reduction for runtime

monitoring. The transformed loop in Figure 5.1 will always require processing of 2 sym-

bols, rather than 2k, regardless of the size of the collection. In the context of the bloat

benchmark nearly all of the more than 900 thousand dynamic instances of Iterators

are processed in similar loops, consequently, monitoring using our loop optimization will

result in fewer than 2.5 million, rather than 211 million, symbols that need processing – a

significant overhead reduction.

In the next Section we formalize the key concepts behind our transformation and es-

tablish a sufficient condition on loop transformation that if met ensures the preservation

of runtime property checking. Following that we detail, in Section 5.5, the design and

implementation of our stutter-equivalent loop transformation for optimizing runtime moni-
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toring of Java programs. We then present, in Section 5.7, the results of an evaluation of the

effectiveness of that optimization.

5.4 Terminology and Definitions

In this section, we define the requirements on program transformations that ensure that they

preserve soundness and completeness of runtime monitoring of path properties.3

5.4.1 Runtime Path Property Monitoring

Path properties can be expressed in a variety of formalisms [34]. Regardless of the for-

malism, developers define properties in terms of observations of a program’s behavior. In

general, an observation is defined in terms of a program statement, such as a method call or

return, coupled optionally with a predicate defined over program variables. In our presenta-

tion, we abstract away from such details by assuming the definition of a property alphabet,

Σ, which is a set of symbols that encode observations of program behavior that are relevant

to a property.

We have presented monitoring fundamentals in Section 2.3. For convenience, we repro-

duce the relevant part of that discussion here. For run-time monitoring, the most common

form of path property specification used is a deterministic finite state automaton (FSA)

[49]. An FSA is a tuple φ = (S,Σ, δ, s0, A) where: S is a set of states, Σ is the alphabet

of symbols, s0 ∈ S is the initial state, A ⊆ S are the accepting states and δ : S × Σ → S

is the state transition function. We use ∆: S × Σ+ → S to define the composite state

transition for a sequence of symbols from Σ; we refer to such a sequence as a trace and

denote it π. We lift the transition function from traces to sets of traces, Π, and define
3The transformation can be unsound and incomplete in the presence of unchecked exceptions if certain

conditions described in Section 5.6 are met. Henceforth, in this section, wherever we use the terms sound
and complete, we mean sound and complete in the absence of unchecked exceptions.
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∆(s,Π) = {s′|∃π ∈ Π : ∆(s, π) = s′}4, i.e., the set of states reached from s via any trace

in Π. We define an error state as err ∈ S such that ¬∃π ∈ Σ∗ : ∆(err, π) ∈ A. A property

defines a language L(φ) = {π | π ∈ Σ∗ ∧∆(s0, π) ∈ A}; for convenience we overload L

so that L(r) denotes the language defined by regular expression r.

FSA monitoring involves instrumenting a program to detect each occurrence of an ob-

servation, a ∈ Σ. A simple runtime monitor stores the current state, sc ∈ S, which is

initially s0, and at each occurrence of an observation a, it updates the state to sc = δ(sc, a)

to track the progress of the FSA in recognizing the trace of the program execution. We say

that a program execution violates a property, φ, if the generated trace, π, ends in a non-

accepting state, i.e., ∆(s0, π) 6∈ A; violations can be detected as soon as the monitor enters

an error state, i.e., sc = err.

Based on the Definition 2.4.1, the simple runtime monitoring approach described above

is both sound and complete, provided that certain conditions in the presence of unchecked

exceptions are not met. This is explained in detail in Section 5.6.

5.4.2 Stutter Equivalence

Our objective is to reduce monitoring overhead by transforming a program that would gen-

erate a trace, π, to generate a shorter trace, π′, such that the two traces are equivalent relative

to the property, i.e., π ∈ L(φ)⇔ π′ ∈ L(φ). We achieve this by building on Lamport’s no-

tion of stuttering equivalence [55], which he introduced as a means of describing desirable

limitations on the expressive power of temporal logics and which has been leveraged as a

basis for partial order reductions in model checking [9].

A program execution defines a sequence of concrete program states, σ = c0 . . ., where

ci records the values of program variables, call stacks, execution locations, etc. Reasoning
4∆ inside the set comprehension corresponds to the composite state transition for a sequence of symbols

from Σ.
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about sequences of states at runtime is prohibitively expensive, so most existing research

[52, 8, 26] instead reasons about a trace of observations, π = a0 . . ., where ai ∈ Σ, gen-

erated by the program execution. We note that such an approach abstracts a concrete state

sequence to a sequence of property states, i.e., states of φ, such that σφ = s0, . . ., where

si ∈ S and δ(si, π[i]) = si+1; we refer to the sequence of property states for a trace as

states(π).

An adjacent pair of states in states(π), i.e., si, si+1, is a stutter step if si = si+1; one

can also define stutter steps in terms of the observation in the trace that transitions from

si, i.e., δ(si, π[i]) = si+1 = si. Two traces are stutter equivalent if their state sequences

differ only in stutter steps. Since we are concerned with runtime monitoring, we restrict

our attention to stuttering equivalence of finite traces by adapting the definition of Baier

and Katoen [9, Definition 7.86].

Definition 5.4.1 (Stutter Equivalent Traces) Traces π and π′ are stutter equivalent for a

given property φ, denoted π
φ
= π′, if there exists a finite sequence s0s1 . . . sn, where si ∈ S,

such that states(π) ∈ L(s+
0 s

+
1 . . . s

+
n ) and states(π′) ∈ L(s+

0 s
+
1 . . . s

+
n ), where s+

i is a

sequence of one or more occurrences of state si.

In this definition, we judge trace equivalence by relating sequences of automaton states

reached throughout the trace. We characterize such sequences as regular expressions over

state values, si. Such an expression gives rise to a language, e.g., L(s+
0 s

+
1 ), defining a set of

state sequences, e.g., {[s0, s1], [s0, s0, s1], [s0, s1, s1], . . .}, where each sequence satisfies the

constraints of the expression, e.g., that one or more s0 precede one or more s1. Judging trace

equivalence based on states is powerful as it permits traces involving different symbols to

be judged equivalent, e.g., if φ is defined such that δ(si, a) = δ(si, b) then two equivalent

traces reaching state si may extend the trace by a and b, respectively.
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For runtime monitoring, this focus on states is appropriate since judgement about prop-

erty violations is based solely on property states. We note that property states, S, play the

role of atomic propositions in our adaptation of traditional stuttering frameworks, e.g., [9,

Chapter 7].

5.4.3 Phrase Stuttering

A stutter step reflects the fact that an observation is irrelevant with respect to a property

since it does not cause a state change. We extend this notion to phrases, or sequences, of

symbols, i.e., elements of Σ+, that do not cause a state change. A phrase, denoted α, is

defined as a regular language over the observation alphabet.

A sequence of states si, . . . , sj is a stutter step for phrase α if ∀π ∈ L(α) : (∆(si, π) =

sj) ∧ (si = sj). Phrase stuttering trace equivalence is concerned only with the differences

among non-stuttering steps in the trace.

Definition 5.4.2 (Phrase-Stutter Equivalent Traces) Traces π and π′ are stutter equiv-

alent for phrase α and property φ, denoted π
α:φ
= π′, if there exists a finite sequence

σ0σ1 . . . σn, where σi is a sequence of states in S, such that the following three condi-

tions hold

∀πα ∈ L(α) : ∆(σi[1], πα) = σi[|σi|] (5.1)

states(π) ∈ L(σ+
0 σ

+
1 . . . σ

+
n ) (5.2)

states(π′) ∈ L(σ+
0 σ

+
1 . . . σ

+
n ) (5.3)

In the remainder of the section, we only consider phrase stuttering since it generalizes

the simpler stuttering definitions in which the phrases are individual symbols in Σ.
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5.4.4 Stutter Equivalent Loops and Programs

Since a significant source of overhead in monitoring arises due to observations processed

repeatedly in loops, we start by focusing on defining loops that are guaranteed to be phrase

stutter equivalent. A loop is an iterative structure in a program, i.e., every while, do and

for statement in a Java program. A loop, l, may perform a wide a variety of different

computations on any given iteration and consequently it may generate a variety of different

phrases. We define the phrases that a loop body may generate as Π(l) which can be encoded

as a regular expression or an FSA. We note that in general it is possible that ε ∈ L(Π(l)),

i.e., a loop with observables may not execute them.

A loop, l, stutters for property φ if, regardless of the state on entry to the loop and

the instance of the phrase generated by the loop iteration, the iteration can be viewed as a

stutter step, i.e., ∀s ∈ S : ∀π ∈ Π(l) : ∆(s, π) = s.

In our experience, it is uncommon for a loop to stutter immediately on the first iteration

for a non-trivial property. As we have observed in bloat, however, it is frequently the case

that after the execution of several iterations involving observations the possible states of

the monitor will converge to a set of states from which the remainder of the loop iterations

stutter.

Definition 5.4.3 (Loop Stutter Distance) A loop, l, stutters at distance d for property φ if

∀s ∈ S : ∀s′ ∈ ∆(s, (Π(l)− {ε})d) : ∆(s′,Π(l)) = {s′}

Note that this definition does not “count” iterations of the loop that do not execute any

observations, i.e., we remove ε from the set of loop phrases then take the d closure of the

remaining phrases; we refer to these as non-trivial iterations.
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We are interested in the minimum loop stutter distance which defines the number of

non-trivial loop iterations after which the loop will stutter regardless of the property state

on entry to the loop; henceforth when we refer to stutter distance we always mean the

minimum such distance.

Π(l) defines the set of traces that a loop body may execute. To reason about the equiv-

alence of loops, we must relate possible execution paths through the loop to the elements

of Π(l) in more detail.

Definition 5.4.4 (Path Traces) Given a program fragment f , let paths(f) define the set

of input constraints that force execution along each path through f . Given a constraint,

c ∈ paths(f), the execution of f on any input satisfying c generates a trace π(f, c) for a

given property φ.

We first consider the equivalence of fragments comprised just of loops, then extend our

notion of equivalence to programs.

Proposition 5.4.1 (Stutter Equivalent Loops) Given a loop l that stutters at distance d

for property φ. Loop l and a sequence of loops u are phrase stutter equivalent if they

perform identical computations on the first d non-trivial iterations, and on all subsequent

iterations u performs the same computation as l except that it generates no observations.

Proof 5.4.1 The fact that l and u perform the same computation, other than the generation

of observations, means that paths(l) = paths(u), yet for some constraints c ∈ paths(l)

π(l, c) may not be identical to π(u, c).

By Definition 5.4.3, we can write π(l, c) = πdπrest, where πd ∈ L((Π(l) − {ε})d). In

this case, π(u, c) = πd. Moreover from any state, s, of φ on entry to the loop, ∆(s, πd) is

a state from which any additional instances of a phrase of l is a stutter step; note that the
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phrase ε produces a (trivial) stutter step. Thus, ∆(∆(s, πd), πrest) = ∆(∆(s, πd), ε) and

we conclude that ∀c ∈ paths(l) : π(l, c)
Π(l):φ

= π(u, c). �

When a loop that iterates n times can be replaced by a stutter-equivalent sequence of

loops, the cost of monitoring the loop is reduced from O(n) to O(d). In many cases d is

very small and the cost of monitoring a loop is significantly reduced and independent of

the number of iterations of the loop.

While we focus only on analyzing and transforming loops in this work, stutter equiv-

alence naturally extends to entire programs. We define a loop partition of a trace π as a

sequence of traces [π1, . . . , πn] such that π1 . . . πn = π and where each πi consists of sym-

bols that are either all generated within a single execution of a loop or are generated outside

of any loop; note that a loop execution may be comprised of multiple iterations. Let l(π)

be a function that maps π to the loop that generated all of the symbols in π or ⊥ if π was

not generated by a loop.

Definition 5.4.5 (Stutter Equivalent Programs) Two programs p and p′ are stutter equiv-

alent for a given property φ, if for every execution path, c, each program generates a trace

that can be loop partitioned into

σ = [π(p, c)1, . . . , π(p, c)n] and σ′ = [π(p′, c)1, . . . , π(p′, c)n] such that

∀1 ≤ i ≤ n : ((l(σ[i]) 6= ⊥) =⇒ σ[i]
Π(l(σ[i])):φ

= σ′[i]) ∧ (l(σ[i]) = ⊥) =⇒ σ′[i] =

σ′[i])

Intuitively, this definition requires an exact equivalence of corresponding traces that do

not involve loops and phrase stuttering equivalence for corresponding traces from loops.

In the next section, we present an algorithm that transforms a program to a phrase stut-

ter equivalent by only transforming observables that lie within loops that satisfy Defini-

tion 5.4.3.
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Our focus on loops reflects our insights about the current dominant source of monitoring

overhead. As monitoring becomes more prevalent we expect that other program structures,

e.g., recursion, may lead to significant overhead. We leave such extensions to future work.

5.5 Analysis and Algorithms

The framework presented in the previous section is quite general, but we have found that

focusing on even the simplest instance of the framework, where d = 1, can yield significant

reductions in the cost of monitoring real programs. We present an analysis to detect whether

a loop enjoys this property, which we term unit stuttering, and prove that it calculates a

sufficient condition for Definition 5.4.3. We then present a program transformation that

eliminates instrumentation from all but the first iteration of such loops thereby assuring

that Proposition 5.4.1 holds and that the resulting program meets Definition 5.4.5.

5.5.1 Static Analysis

We begin with a set of static analyses that calculate three properties that are necessary

to ensure the soundness and completeness of the transformation process. These analyses

assure that (1) all observables that can be executed within a loop have been identified, (2)

those observables are related to a common set of objects, and (3) all paths involving those

observables can be safely and efficiently approximated.

The first of these is assured by scanning the program for syntactic occurrences of ob-

servables. Standard techniques are used to construct a program call-graph. Methods are vis-

ited in reverse topological order for further analysis. For each method, an intra-procedural

flow-insensitive analysis checks for the existence of observables inside the method; the

methods that do not have any observables are not analyzed further. For methods with ob-

servables, an abstract syntax tree like representation is constructed and it is analyzed to
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determine if any observables lie within loops. This analysis is an efficient flow-insensitive

check within each loop body, since the analysis tool that we use directly provides an AST-

like data structure. When loops with observables are found in a method, an exceptional

control flow graph is built and additional analyses are run to assure the second and third

properties. First, a must points-to analysis is calculated within the scope of the method to

determine whether all observable method calls within a loop, including the ones that occur

in the loop condition, involve the same object; for multi-object properties [66] we perform

the points-to analysis for all of the object references related to the property observable.

Second, a side-effects analysis is performed within loop bodies to determine that they are

free of statements that reference any object involved in the property being checked.

While restrictive, these conditions help to ensure the preservation of monitor correct-

ness in our transformation process. Several of these limitations can be relaxed, e.g., at

the end of this section we describe how nested loops that contain multiple receiver objects

that satisfy certain conditions can be transformed. In spite of these restrictions that help

to ensure the correctness of the transformation process, the analysis can still yield prop-

erty monitors that produce false positives and false negatives results for programs that use

unchecked exceptions in certain ways – we explain this in detail in Section 5.6.

5.5.2 Checking for Unit Stuttering

We assume at this point that a loop l containing observables has been detected and deter-

mined to meet the conditions described above. The first step in our process is to summarize

the phrases that l may generate. We do this by constructing an NFA from the control-flow

graph (CFG) of l’s body. CFG nodes whose statements contain an observable are mapped

to an NFA transition labeled with a symbol for that observable and all other nodes generate

ε-labelled transitions.



145

p u b l i c vo id v i s i t P h i S t m t (
f i n a l Ph iS tmt s t m t ) {

. . .
f i n a l I t e r a t o r i t =

s t m t . o p e r a n d s ( ) . i t e r a t o r ( ) ;
whi le ( c t r ++ < buf . l e n ) ) {

i f ( i t . hasNext ( ) ) {
/ / i n s t r u m e n t a t i o n : hasNex t ( i t ) : t
f i n a l Expr op = ( Expr ) i t . n e x t ( ) ;
/ / i n s t r u m e n t a t i o n : n e x t ( i t )
i f ( op i n s t a n c e o f VarExpr )
i f ( op . d e f ( ) != n u l l )

p h i R e l a t e d U n i o n ( op . d e f ( ) ,
s t m t . t a r g e t ( ) ) ;

}
}

}

Figure 5.3: Example from class SSAPRE: Modified to show the effect of m.

In general, a loop’s observables may be executed conditionally on an iteration. Defini-

tion 5.4.3 requires that we only consider iterations that execute an observable. To distin-

guish such iterations, we extend the NFA with an additional initial symbol, m, that marks

the beginning of each loop iteration. The NFA is determinized and minimized to produce

φl which compactly encodes the possible loop phrases. We note that since this process

ignores the semantics of branch conditions within the loop body, φl overapproximates the

actual phrases that can be generated by loop executions.

The top of Figure 5.4 illustrates this construction for a loop that is similar to the loop

on the left of Figure 5.1, except that we have added an extra condition inside the while

loop to show how presence of symbol m alters the structure of this automaton. Notice that

the start state itself would have been an accept state in the absence of m. The changed code

is shown in Figure 5.3.

The algorithm in Figure 5.5 checks whether a loop capable of generating phrases φl

stutters at unit distance for a property φ. The algorithm operates by relating φl to a series
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Figure 5.4: Loop phrase automaton construction

of closely related variants of φ. Those variants are constructed in lines 1–8, with their

common elements defined in lines 1–6. Lines 1–3, define a set of shadow states for each

non-error state of φ. Lines 4–5 extend the alphabet of φ with the marker symbol, m, from

φl and define all states of φ as accept. Line 6 defines the transition function for the variants

by extending φ’s function with transitions from each state of φ to its shadow on m and

self-loop transitions on m for all shadows. For each state in φ, its transitions are mirrored
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UnitStutteringCheck(φl, φ = (S,Σ, δ, s0, A))
1 let S ′ be a set of states, such that S ′ ∩ S = ∅
2 let R|S − {err} → S ′ be a bijective map
3 let Ss = S ∪ S ′
4 let Σs = Σ ∪ {m} where m ∈ Σl

5 let As = S
6 let δs = δ∪⋃

s∈S−{err}{((s,m), R(s)), ((R(s),m), R(s))}∪⋃
a∈Σ,s∈S−{err}((R(s), a), δ(s, a))

7 for s ∈ S do
8 let φs = (Ss,Σs, δs, s, As)
9 let φp = φl × φs

10 minimize(φp)
11 if |Ap| 6= 1 then return false
12 return true

Figure 5.5: Checking a Loop for Unit Stuttering Distance.

!"#$%

hasNextt !"#$%

hasNextt &'%!"#$'%
()*+"#$$%

",,%-% .%

-/% ./%
&%&%

!"#$%

&% &% hasNextt 

Figure 5.6: Shadow property automaton

by its shadow state. Figure 5.6 illustrates the shadow property automaton constructed for

the property in Figure 5.2.

The loop on lines 7–11 considers each state of φ and constructs a variant of the au-

tomaton with that state as the start state. It forms the product of that automaton with φl
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and minimizes the product. Intuitively, the accept states of the product define sequences of

symbols that are common to both the loop and a sub-sequence of a string of the property

that begins in state s. If there is exactly one such state, then all of the strings in L(φl) drive

φs to a single accept state. If that property holds when starting in all states of φ, then the

loop stutters after its first non-trivial iteration.

To illustrate, consider the loop and property automata in Figures 5.4 and 5.6, respec-

tively. There are two non-error states in φ that may correspond to monitor states on entry

to the loop; the error state is trivially stuttering. Tracing the product φp = φl × φs, starting

with s0 = (1, 1) on the sequence of symbols m,hasNext, next results in the sequence of

states (1, 1), (2, 1′), (3, 2), (1, 1) where (1, 1) ∈ Ap; all other traces fail to reach an accept

state. Tracing φp, starting with s0 = (1, 2) on the sequence of symbols m,hasNext, next

results in the sequence of states (1, 2), (2, 2′), (3, 2), (1, 1); all other traces fail to reach an

accept state. Thus, the resulting products confirm that a single accept state is present in the

minimized products for each start state of φ.

Theorem 5.5.1 (Sufficient Unit Stutter Distance Check) If the algorithm in Figure 5.5

returns true for loop l and property φ, then l stutters at distance 1 for φ.

Proof 5.5.1 When d = 1 Definition 5.4.3 requires that ∀s ∈ S : ∀s′ ∈ ∆(s,Π(l) − {ε}) :

∆(s′,Π(l)) = {s′}.

Consider a single state s ∈ S. The algorithm calculates ∆(s,Π(l) − {ε}) by forming

the product of φl, which overapproximates the phrases mΠ(l), and φs, with start state s.

That product accepts every string that is accepted by both φs and φl.

Accepting strings of φl correspond to a sequence of iterations of the loop. An initial

sequence of k trivial iterations generates the string mk, which drives φs into the shadow

state of s–a non-accepting state. The first non-trivial iteration produces a stringmα, where
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α 6= ε, which drives φs to state ∆(s,mkmα) which by definition is an accepting state. Con-

sequently, the product is guaranteed to have at least one accept state (s0,∆(s,mkmα)).

A subsequent non-trivial iteration, perhaps preceded by k′ trivial iterations, may pro-

duce a string mβ. If

(s0,∆(s,mkmα)) 6= (s0,∆(s,mkmαmk′mβ)

then the product has at least two accept states. Clearly, if this is the case then the property

reaches one state after the first non-trivial iteration and another state after the second, thus

it does not stutter at distance one. If the two states are equal, then there is a single accept

state and the loop stutters at distance one.

The product construction considers all possible loop iterations, i.e., all possible α and

β. Moreover, the loop at line 7 considers each state in turn varying φs appropriately,

thereby enforcing the single product accept state test for all states of φ. �

We note the algorithm in Figure 5.5 may return false for loops that stutter at distance

one. We discuss the generalization of the algorithm in Section 5.5.4.

5.5.3 Transforming Unit Stuttering Loops

A loop that satisfies the unit stuttering condition defined above may be transformed to

eliminate instrumentation for any iteration after the first non-trivial iteration. To achieve

this we must (1) insert a dynamic test to determine when a non-trivial iteration has been

executed and (2) when that test is true we must transfer control to an uninstrumented version

of the loop. These must be achieved in a manner that preserves the semantics of the loop.

It is easy to determine when a non-trivial iteration has been executed – simply detect

when some observable in the loop has been executed and exit the instrumented loop after

the iteration completes. However, such an approach would incur overhead even on itera-

tions of the instrumented loop that do not execute any instrumentation. We have developed
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TransformLoop(l)
1 linst = l.clone()
2 blockinner = block(linst, breakouter)
3 blockouter = block(blockinner, l.clone())
4 for o ∈ obs(linst) do
5 instrument(o)
6 for o ∈ postDom ∧ o ∈ obs(linst) do
7 replace o, n with o, trailer(o), n
8 for s ∈ trailer(o) do
9 if (s = continue) ∨ (s = goto))∧

target(s) = entrylinstthen
10 replace s with break blockinner
11 else if s = break then
12 replace s with break blockouter

Figure 5.7: Unit Stuttering Loop Transformation

a transformation that completely avoids overhead on trivial loop iterations. The key to this

approach is the calculation of a loop trailer for an observable. The trailer for an observable

statement, trailer(o), is defined by the control flow subgraph rooted at the statement and

ending at a loop backedge, continue, or break statement. We clone the trailer for each ob-

servable statement, re-target selected branches within the trailer, and splice the trailer into

the loop immediately after the observable.

All continue statements that lie within a trailer are replaced with break statements

that transfer control to the succeeding uninstrumented loop. A loop backedge, i.e., the fall

through case at the end of a loop body, is also replaced with a similar break statement.

Explicit break statements are retargeted to skip the succeeding uninstrumented loop.

There may be many observables in a loop, but only a subset need to have trailers created

for them. Specifically, for any pair of observables o and o′, if o post-dominates o′ then only

a trailer for o is needed. We collect all observables that are not post-dominated by another

into the set postDom.
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Figure 5.7 defines the steps in transforming a unit stuttering loop l. Lines 1-3 create

and populate a pair of nested blocks. Within the inner block a clone of l, linst, is inserted

followed by a break statement– this skips execution of the successor loop when the first

linst exits. The inner block and a clone of l are inserted into the outer block.

Lines 4-5 instrument all observables within linst; no instrumentation is inserted into the

other loop clone.

The loop in lines 6-10 handles each of the post-dominating observables in linst. The

trailer for observable statement o is calculated and spliced into linst between o and the

next statement n. The trailer is then processed to replace all continue statements and

backedges with break statements targeted at the inner block, and all break statements

are retargeted to exit the outer loop.

Figure 5.8 shows the pseudo-code for a simple loop and its transformed version. The

calls to methods a and b are observables. The ∗ indicates that the call is instrumented. The

trailer consisting of S4, S5 and the loop backedge is inserted after o.b(); it post-dominates

o.a(). The backedge has been converted to a break. Note that this transformed loop only

incurs instrumentation overhead when it executes an observable and upon completion of

that iteration it transitions to the uninstrumented copy of the loop.

5.5.4 Generalizations

The approach described in the preceding section handles a limited, but valuable set of

special cases. In this section, we describe several extensions that we have developed to

generalize the set of loops that are amenable to stutter-equivalent optimization.

Supporting nested loops In certain cases, loop nesting can make stutter-equivalent trans-

formation very complex. We identify two commonly occurring cases that can be supported

safely; in all other cases we do not transform the loop nest.
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1 while Cond1 do 1 outer : {
2 S1 2 inner : {
3 if Cond2 then 3 while Cond1 do
4 S2 4 S1

5 o.a()∗ 5 if Cond2 then
6 S3 6 S2

7 o.b()∗ 7 o.a()∗
8 S4 8 S3

9 S5 9 o.b()∗
10 S4

11 S5

12 break inner // if ends
13 S5 // while ends
14 break outer } // inner ends
15 while Cond1 do
16 S1

17 if Cond2 then
18 S2

19 o.a()
20 S3

21 o.b()
22 S4

23 S5 } // while and outer end
Figure 5.8: Original loop (left) and Transformed loop (right).

We can distinguish each loop in the nest by its depth. When observable statements

only occur at one depth in the loop nest we can transform that loop to a stutter-equivalent

sequence of loops. Any loops that are deeper in the nest are treated as any other code

in our transformation, i.e., trailers are computed branches are retargeted. Any loops that

are shallower remain unchanged and simply enclose the now transformed loop. When

observables can occur at multiple depths, it must be the case that the objects involved at

each depth are provably distinct. If this condition is met, transformation can proceed from

the inner-most loop with observables outwards.
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Stuttering at d > 1 The algorithm in Figure 5.5 only treats a stutter distance of one. The

condition on line 11 is stronger than required. It can be relaxed and the algorithm can be

made more precise as shown in Figure5.9.

UnitStutteringCheck(φl, φ = (S,Σ, δ, s0, A))
1 let S ′ be a set of states, such that S ′ ∩ S = ∅
2 let R|S − {err} → S ′ be a bijective map
3 let Ss = S ∪ S ′
4 let Σs = Σ ∪ {m} where m ∈ Σl

5 let As = S
6 let δs = δ∪⋃

s∈S−{err}{((s,m), R(s)), ((R(s),m), R(s))}∪⋃
a∈Σ,s∈S−{err}((R(s), a), δ(s, a))

7 for s ∈ S do
8 let φs = (Ss,Σs, δs, s, As)
9 let φp = φl × φs

10 minimize(φp)
11 for s′ ∈ Ap do
12 let φs′ = (Ss′ ,Σs′ , δs′ , s

′, As′)
13 let φp′ = φl × φs′
14 minimize(φp′)
15 if {s′} 6= Ap′ then return false
16 return true

Figure 5.9: More Precise Algorithm for Checking a Loop for Unit Stuttering Distance.

The difference between this algorithm and the one in Figure 5.5 is the nested loop that

allows more than one end state for a start state after the first nontrivial iteration of the

loop. The nested loop in lines 11–15 checks that after the first nontrivial iteration the end

state does not change. In general, the loops starting with the outermost loop find the end

states reachable from every start state for the iteration that corresponds to the loop’s level

of nesting.

Generalizing the loop transformation process to distance d requires the introduction of

d copies of the loop where those loops are nested within blocks in a cascading fashion. For

example, for loop l with d = 2 one would produce:
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d0 : { d1 : { d2 : { l2 } l1 } l }

where the trailers in the l2 copy of l break using label d2 and transition to l1. The staging

of loop copies serves to perform a “count down” of the non-trivial loop iterations, until the

original uninstrumented loop l is reached.

This shows that the transformed code grows linearly with the stuttering distance. How-

ever, for the algorithm in Figure 5.9 the time grows exponentially in terms of the number

of states with respect to the stuttering distance. This is because increasing the stuttering

distance by a unit length would result in adding another level of nesting to the nested loops

in lines 7–15, and every loop would iterate as many times as |Ap| which in the worst case

would be equal to |A|.

This algorithm can be made more efficient if we keep a set of stuttering states at every

level, so that the state which has already been found to be stuttering at that distance need

not be recomputed. This means that the total loop iterations at every level would be bound

by |S|. In other words, for this algorithm, the time grows linearly in terms of the number

of states with respect to the stuttering distance. This algorithm is presented in Figure 5.10

for stuttering distance 2.

The algorithm has a newly added lines 12 and an extra condition in line 11 in addition

to the original corresponding to set stutter1. This set ensures that the nested loops are

executed only if the new start state at that level has not seen by it previously. We have not

shown a similar set for the outermost loop at line 7. Since the outermost loop iterates for all

states, keeping such a set would be needless. We plan to implement this efficient algorithm

in the future. Note that this algorithm is also as precise as the one presented in Figure 5.9.

Supporting distinct loop traces The algorithm in Figure 5.5 is too restrictive in that it

requires all loop phrases, Π(l), to lead to the same state, i.e., the second component of the



155

UnitStutteringCheck(φl, φ = (S,Σ, δ, s0, A))
1 let S ′ be a set of states, such that S ′ ∩ S = ∅
2 let R|S − {err} → S ′ be a bijective map
3 let Ss = S ∪ S ′
4 let Σs = Σ ∪ {m} where m ∈ Σl

5 let As = S
6 let δs = δ∪⋃

s∈S−{err}{((s,m), R(s)), ((R(s),m), R(s))}∪⋃
a∈Σ,s∈S−{err}((R(s), a), δ(s, a))

7 for s ∈ S do
8 let φs = (Ss,Σs, δs, s, As)
9 let φp = φl × φs

10 minimize(φp)
11 for s′ ∈ Ap ∧ s′¬ ∈ stutter1 do
12 let stutter1 = stutter1 ∪ {s′}
13 let φs′ = (Ss′ ,Σs′ , δs′ , s

′, As′)
14 let φp′ = φl × φs′
15 minimize(φp′)
16 if {s′} 6= Ap′ then return false
17 return true

Figure 5.10: Efficient and Precise Algorithm for Checking a Loop for Stuttering Distance
2.

single product accept state. This can be relaxed by using the iterated product construction

approach described above and, particularly, the Ap fixed point test.

This approach for unit stutter distance checking requires two products to be constructed,

the first to generate an Ap and the second to confirm that it is a fixed point. In addition, we

observed a high frequency of cases with unit distance. Hence, we favored the algorithm in

Figure 5.5 which is more efficient for the unit stuttering case.

5.6 Soundness and Completeness

Java provides checked as well as unchecked exceptions. Although the problems associated

with both types of exceptions are similar, the analysis handles them differently because
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methods are not required to declare unchecked exceptions, and such exceptions may be

thrown by many different statements within a program.

For the purpose of the analysis, it only matters if a statement that may throw an ex-

ception lies inside a loop that contains at least one observable. Any other statement will

not be considered in the loop analysis and transformation process, and hence cannot affect

the soundness or completeness of the resulting property monitor. The occurrence of such

a statement inside a loop may introduce a new loop phrase, but that new phrase impacts

the loop transformation process only if it causes the failure of the unit stuttering distance

check. This depends on both the loop phrase and the property being monitored.

Formally speaking, a statement that lies inside a loop that is processed may impact

soundness or completeness only if (1) the statement throwing an unchecked exception is

both, dominated as well as post-dominated, by observable statements within the loop, and

(2) the suffix of the loop phrase that is not executed due to the thrown exception may change

the state of the monitor after the prefix has been executed, and (3) the thrown unchecked

exception is caught and handled.

This problem with the handling unchecked exceptions also impacts the residual analy-

sis. We have discussed it in detail in Section4.3.

We illustrate how exceptions can impact the operation of our monitor optimization ap-

proach through examples in the remainder of this subsection, and conclude with a discus-

sion of the limitations of our current analysis implementation.

5.6.1 Checked exceptions

Our analyses operate on exceptional CFGs for each method in the program that includes

a loop containing property observables. These CFGs, in addition to edges that represent

normal control flow, include an edge to represent the exceptional control flow introduced
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t r y {
whi le ( i t . hasNext ( ) ) {

x . t h r o w s E x c e p t i o n ( ) ;
i t . n e x t ( ) . doSomething ( ) ;
. . .

}
} ca tch ( CheckedExcep t ion e ) {
}

Figure 5.11: Stutter distance checking in the presence of exceptions.

by statements that are declared to throw an exception.5 A throw of a checked exception

must be explicitly declared in Java.

The loop phrase automaton construction process overapproximates the execution paths

based on this CFG which ensures that the loop phrases corresponding to the loop executions

that throw exceptions are taken into account. Consequently, the algorithm in Figure 5.5 that

checks for unit stuttering distance handles checked exceptions directly.

Figure 5.11 shows a simple loop inside a try block that has a statement which in-

vokes method throwsException() and catches CheckedException, which is a

subtype of Exception but not of RuntimeException – in other words it is a checked

exception.

Here we consider the case where the method may throw a checked exception. Sup-

pose the property being monitored is the HasNext property in Figure 5.2 for which both

hasNext and next are observables. The invocation of throwsException() lies on

the path that connects the two observables and the exceptional control flow makes the loop

phrase hasNext possible; since the call to next() may be bypassed.

The loop phrase automaton construction process ensures that all possible loop phrases,

i.e., the exception related phrase hasNext and the non-exceptional phrase hasNext;next,

are taken into account. The unit stuttering check calculates that the loop does not have a unit
5Our discussion in this section is based on the exceptional CFG provided by the Soot Java analysis

framework [70] which we use in our implementation as discussed in Section 5.7
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stuttering distance, due to the fact that the two phrases drive the the property automaton into

distinct states, and hence this loop would not be transformed. Note that whether method

doSomething() might throw an exception has no impact on the loop transformation

process since it does not lie on a back-edge free path connecting two observables.

5.6.2 Unchecked exceptions

In Java, methods are not required to declare that they throw unchecked exceptions. This

makes construction of an exceptional CFG a challenge. Many different Java statements, in

addition to method invocation, may potentially throw unchecked exceptions. An extremely

conservative analysis may overapproximate exceptional control flow by including an ex-

ceptional edge at every such statement. This approach, however, would make for a very

imprecise CFG and significantly degrade the precision of any analysis performed using it.

We adopt the approach used in recent work [20, 17] which handles many common uses

of unchecked exceptions. The exceptional CFG we use includes an exceptional edge when-

ever the program includes a throw statement regardless of whether the exception thrown

is checked or unchecked. In addition, it conservatively adds an exceptional flow edge for

every statement that may throw an unchecked exception, if an appropriate catch target

is specified in the same method body. If neither of these cases hold, then our exceptional

CFG may not model all possible exceptional transfers of control, since it does not determine

whether method invocations may throw an unchecked exception.

In general, if a transformed loop contains more than one observable and a statement

that lies on a path between any two observables can throw an unchecked exception that

is not declared and is not caught in containing method, then the property monitor may be

in an incorrect state as a result of our transformation. In this situation, our analysis is not

guaranteed to produce property monitors that are sound and complete.
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We illustrate using the HasNext property and the example in Figure 5.11, but this time

we consider the case where throwsException() may throw an unchecked exception.

By not modeling this unchecked exception, our approach would transform the loop. During

any iteration after the first one, if throwsException() actually throws an unchecked

exception, then that exception would not be caught by the catch of CheckedException.

In this case, the loop exits and the program continues execution with the property monitor

in state 2, since the hasNext observable has been processed. This is potentially prob-

lematic because our unit stutter distance check, which was misinformed about exceptional

control flow, calculated that the loop is always exited in state 1.

An incorrect property monitor state can give rise to either false or missing reports of

property violations. Thus the treatment of undeclared unchecked exceptions means that our

analysis and transformation approach may produce monitors that are unsound and incom-

plete.

In future work, we plan to investigate the use of additional analyses that focus on the

set of unchecked exceptions that are explicitly caught in the program, but that are not de-

clared as thrown by methods in the program. Unchecked exceptions that are not caught

will abnormally terminate program execution thereby indicating a failure that the devel-

oper should investigate. Unchecked exceptions that are caught may be problematic for our

analysis, but only if methods that throw them are called within loops that our analysis tar-

gets for transformation. Information about the absence of such methods within loops can

be used to confirm the soundness and completeness of our monitor optimization.

5.6.3 Try-catch blocks inside loops

The presence of exception throw statements and try-catch blocks containing observ-

ables inside of loops complicates the detection of stuttering loops and their transformation.
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Moreover, the computation of trailers for observable statements within try-catch blocks

inside of loops is also complicated and we leave its general treatment for future work. At

present, even if a loop is determined to unit stutter, we do not transform it if it contains a

try-catch block containing an observable statement.

5.7 Evaluation

In this section we investigate the potential of the proposed technique and assess its perfor-

mance against existing monitoring approaches. More specifically, we wish to explore two

questions: (RQ1) How effective is the optimization in reducing the number of events pro-

cessed?, and (RQ2) How well does the optimization perform when the monitoring problem

is scaled?

5.7.1 Artifacts

We did not reuse the artifacts that we used in Section 4.5.2 as we have a more complete

implementation of our analysis that can be evaluated on larger benchmarks and we wanted

to evaluate the effectiveness of our analysis by comparing its results with those presented by

other researchers [20, 16, 26]. Hence, the natural choice was to use the same artifacts that

were used by other researchers. To assess RQ1 we consulted [26] which reports data on the

number of events generated and monitoring overhead incurred when checking 6 finite-state

properties against 11 Dacapo [14] benchmarks. Of the 66 program-property pairs reported

in Table 3 of [26], we systematically selected the ones that incurred overhead of greater

than 25% when using JavaMOP (the ones where further optimization seemed valuable).

This selection resulted in 4 pairs comprised of the combination of two programs, bloat and

pmd, and two properties, HasNext (shown in Figure 5.2) and FailSafeIter which checks that

no call to update a collection is made between any pair of calls to next on an iterator
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for that collection. The FailSafeIter property is a multi-object property and the analysis

must keep track of events on both an iterator object and the collection being iterated over.

The latter are generally spread across multiple methods making them a challenge for the

analysis.

To expand the scope of our study, we selected an an additional open source artifact for

which monitoring overhead promised to be high. JGraphT version 0.8.1 is a substantial

library, consisting of 172 classes, that is designed for manipulating large graphs. It exhibits

a number of design features that promote reuse, configurability, and high-performance.

JGraphT includes a load test which we analyzed against both properties selected above.

5.7.2 Design

The overhead of runtime monitoring, and the effectiveness of our optimization depend on

the program, the property, and the input to the monitored program execution. There are

some programs that never instantiate the type(s) that are related to the property – overhead

in this case is trivial. In other situations, only specific program inputs will give rise to

significant monitoring overhead. Finally, the details of the property encoding can give rise

to variation in overhead.

For RQ1 we consider three monitoring treatments. The first treatment, original, con-

sists of no monitoring at all, serving as a baseline to assess the other approaches. The

second treatment, control, consists of inserting the property monitor into the application,

representing the state of the practice and an upper bound on performance overhead. The

third treatment, optimized, corresponds to applying our optimization technique, then insert-

ing the property monitor after the program transformation.

For each combination of program and property, we apply each of the three treatments

to integrate the property monitor into the program, and execute the program with its default
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input. This design results in the collection of 6 observations (3 programs and 2 properties)

per treatment, 18 for the whole study.

For RQ2 we consider two dimensions of scalability: the program input size and the

per-event monitor processing.

For input size, we investigated the use of large Dacapo inputs, but found that those in-

puts are not simply larger versions of the default input. They are structurally quite different

and thus one cannot compare performance on default and large inputs directly to infer a

technique’s scalability. For jgrapht, we are able to manipulate the size of the input while

maintaining its structure. We use three input size treatments: 0.25 times the default size,

the default size, and 4 times the default size, where size is defined by the number of nodes

and edges of the graph that serves as input to jgrapht.

For monitor processing, we used three treatments to vary the per-event processing in

monitoring. The low cost monitor does the absolute minimum processing and corresponds

to the properties used in [26]. In reality, it is likely that some information will be recorded

during monitoring to aid in fault diagnosis and debugging. We use our instrumented aspect

as a representative of a high cost monitor. Finally, we consider a monitor that records

significantly less information, but still permits the developer to identify the source locations

that incur high overload. We refer to this as a medium cost monitor.

5.7.3 Measures

Our primary measure is the number of events generated during the execution of a bench-

mark. This measure is valuable since it represents a platform independent measure of the

work performed during monitoring. Reducing the number of events generated is guaran-

teed to reduce monitoring overhead.
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We also report the runtime overhead incurred due to monitoring. We consider this a

secondary measure, since variations in the execution platform can give rise to variation in

measured overhead that is not due to our optimization. For example, when two measures

of monitoring overhead are within 3% of one another the benefit of the optimization is

obscured; comparing events permits that benefit to be observed.

So as to not conflate these measures, we use two variants of each property to collect

data. To record overhead we use the exact same property encodings as were used in [26].

To record events, we customize the property to record the number of events during a run

and the source line of the program at which each event is generated.

For a given program and property, a subset of the program loops will involve events

appearing in the property – these are candidates for our optimization. We record the number

of candidate loops that are transformed. This provides an indirect indication of the potential

for our optimization to reduce monitoring costs across a range of input values; the higher

the percentage of transformed loops the larger the space of inputs our technique is effective

on.

5.7.4 Infrastructure

The technique presented in Section 5.5 could be implemented in any number of compiler

infrastructures. It requires access to a high-level representation of the program, to ease the

detection and analysis of loops, and a low-level representation, to enable analyses of the

semantics of instructions within the loops. We chose to prototype the analysis in Soot [70],

since we were familiar with it and it is a rich analysis infrastructure, and used its Dava

[64, 65] decompilation framework to provide the high-level information we required.

Figure 5.12 shows an architecture of the stutter-equivalent loop transformation analy-

sis. The Dava toolchain works in multiple phases. First, Soot processes a .class file
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Figure 5.12: Architecture for the stutter-equivalent loop transformation analysis.

to produce Jimple, a 3-address representation of bytecodes, and call graph construction

is performed, using either class hierarchy analysis (CHA) or the more precise Spark [57]

points-to analysis framework. We used Spark for bloat, but were forced to revert to CHA

for pmd and jgrapht to control analysis time. Second, Dava constructs an AST-like repre-

sentation of the program based on Grimp, another higher level representation of code. It is

after this second step where our analyses is inserted. The transformed loops are encoded

in Dava’s AST representation, with appropriately cloned versions of the underlying Grimp

representation. The remainder of Dava involves analysis of the AST, optimization of its

structure for pretty printing, and generation of Java source.
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Dava was not designed to be used as a high-level program representation and, unlike the

rest of Soot, it has not been actively maintained since 2006. This presented two significant

problems: (1) Dava includes significant functionality for creating programmer friendly

decompiled output and this leads to poor runtime performance, and (2) Dava’s evaluation

did not include the Dacapo benchmarks and those programs exposed numerous latent bugs

in its implementation. These problems impacted our study in two ways.

First, bugs in Dava caused our transformation to fail, through no fault of our technique,

and we had to detect and workaround those problems. We did this in two ways: (a) We

instrumented our analysis and transformation implementations to log information about the

methods they processed so that we could detect when a Dava bug aborted that process. In

such cases, we simply output the original method leaving it untransformed. This means

that limitations in Dava force us to underestimate the benefit of our optimization. (b) For

each program-property pair we manually inspected the transformed program comparing it

to the original program to ensure that the program semantics were preserved. Note that

the transformation log allowed us to focus on just the methods that were transformed, but

in some of the benchmarks there were hundreds of such methods. We also executed each

transformed program and compared its output to the original program to confirm that it

computed the same result.

Second, the cost of running Dava and, especially, the efforts we went to confirm the cor-

rect operation of Dava and of the transformed programs made performing our experiments

quite expensive. The combination of bloat and hasNext is representative of the cost of

analyzing all of the program property pairs. Running Soot’s points-to and call-graph con-

struction takes 150 seconds for this program, a necessary precursor of our analysis which

takes 45 seconds, including the processing related to the logs described above. The rest

of Dava’s execution involves constructing and optimizing ASTs and generating Java code
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Program Control Optimized
Property events events ratio

bloat
HasNext 157126421 2272471 0.01
FailSafeIter 80970380 2733640 0.03

pmd
HasNext 4457941 120399 0.03
FailSafeIter 2261768 72576 0.03

jgrapht
HasNext 16120016 80024 0.005
FailSafeIter 8040006 8040006 1.0

Table 5.2: Events processed during monitoring

which takes about 20 to 25 minutes. Auditing the log files and working around Dava bugs

takes approximately 2 hours per program-property pair.

In the future work, we plan to shift our analysis to a framework that eliminates the limi-

tations we encountered with Dava which will allow us to significantly scale our evaluation.

We use JavaMOP 2.0 as the mechanism for encoding properties and generating them

in aspectJ. Those aspects are then woven, using ajc 1.6.8, and the resulting Java program

is executed on an Opteron 250 running CentOS 5.2 and JVM 1.6.0 with 16 Gigabytes of

memory.

For the Dacapo benchmarks, we run them using the -converge option until the vari-

ation in execution time is less than 3%. We report the average execution time and use it

to compute runtime overhead. For jgrapht, we take a less rigorous approach. We run the

program five times and then use the average execution time.

5.7.5 Results and Discussion

Table 5.2 reports, for each program-property pair, the number of events generated by Java-

MOP on the original program and on the optimized program. It also reports the ratio of
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Program Original Control Optimized
Property time time time loops

bloat 5.2
HasNext 173% 73% 232/293
FailSafeIter 702% 298% 192/349

pmd 5.7
HasNext 8.8% 3.5% 108/131
FailSafeIter 3.5% 3.5% 122/164

jgrapht 4.8
HasNext 808% 69% 29/31
FailSafeIter 594% 594% 5/38

Table 5.3: Monitoring time and loops optimized

Scaling events per-event monitor cost
factor ctl. opt. orig. low medium high

ctl. opt. ctl. opt. ctl. opt.
0.25 4060016 40024 1.0 34.8 18.9 84.4 44.6 91.5 41.1
1.0 16120016 80024 4.6 15.5 3.5 80.2 21.4 88.9 22.7
4.0 64240016 160024 29.2 7.7 6.3 70.6 4.1 83.7 6.7

Table 5.4: Effects of scaling on jgrapht-HasNext. Overhead in percentage.

events reported under optimization to those reported without optimization. In 5 of the 6

pairs, we observe reductions in generated events ranging from between 1 and 3 orders of

magnitude. The data for jgrapht-FailSafeIter indicates that the optimization was completely

ineffective in this case; we discuss this in detail below.

Table 5.3 reports the execution time of the original program execution in seconds, with

no monitoring, and the overhead of the control and optimized treatments. For the optimized

treatment, we also report the fraction of candidate loops that could be optimized. We

observe that in 4 out of 6 cases the use of optimization significantly reduces overhead.
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It is interesting to note that for pmd-FailSafeIter the overhead of optimized and control

treatments are the same, despite a significant reduction in events processed. We discuss

this issue in detail below.

As a final observation, we see in Table 3 that the performance of jgrapht-FailSafeIter

was due to the fact that its execution did not transit any of the 5 loops in the program that

were transformed. We present a more detailed analysis of this case below.

Table 5.4 reports on our limited study of scalability. The second and third columns

present data on how the number of events generated varies with input size. The event

measure is independent of monitor processing, but overhead is not. The fourth column

shows the execution time of the unmonitored program as input scales. The remaining

columns report, for each monitoring cost treatment, how overhead varies with input size.

The event data indicates that the number of events scales linearly with input size for

the optimized program, whereas in the control treatment the number of events appears to

grow exponentially with input size. For low cost monitors, the trend of reduced overhead

appears to be somewhat obscured by measurement noise, but for higher cost monitors it is

quite clear. The significant reduction in execution time when using monitoring gives rise

to a strong downward trend in overhead as input size scales; this is due in no small part to

the fact that program execution time appears to be growing super-linearly.

5.8 Observations and Lessons Learned for the Evaluation

The data suggest that stutter-equivalent loop transformation can significantly reduce the

number of events generated during program monitoring. That reduction can yield signif-

icant reductions in runtime overhead and, based on limited data, those reductions appear

to increase as programs run longer and when more realistic monitors that record data, e.g.,

for fault localization, are used.



169

While generally positive, these results point to the need for additional optimization of

program monitoring if it is to become a technology that is widely deployed. In addition to

the number of events generated, the number of objects that are monitored is a significant

source of overhead – and one that our optimization does not directly target. Our recording

aspects provided data on the number of monitors created during monitoring. We found

that bloat had upwards of 1 million, pmd had approximately 58 thousand, and jgrapht

approximately 25 thousand monitors generated for each program run. Unlike processing

an event, the time required to create a monitor is non-trivial and we conjecture that for

pmd-FailSafeIter the bulk of the overhead is comprised of monitor creation, thus obscuring

differences related to reductions of generated events.

Research targeting at reducing the number of monitors is sorely needed. Several re-

searchers have investigated object sampling techniques [18, 5] that make a randomized

choice when object creation events occur and either create a monitor or not. These can dra-

matically reduce monitoring cost, but they sacrifice fault detection – our event reduction

optimization does not.

There is an existing line of research that has explored the use of static analysis to re-

duce the cost of property monitoring. Eric Bodden’s doctoral thesis [16, 17], reports the

results of a sequence of different static analysis culminating in a Nop-shadows analysis.

We cannot directly compare to that analysis since it is designed specifically for reasoning

about properties expressed as Tracematches [8]. We note, however, that the application

of Nop-shadows to the four Dacapo program-property pairs that we studied led to mod-

est reductions (see Table 5.6 in [16]) whereas we observed greater than 2 times overhead

reduction on three of those four programs.

We observed that in the data we report the overhead of monitoring program-property

pairs with JavaMOP differs, in some cases significantly, with the data reported in [26]. Our

platform differs from the one they used in two significant ways: we use linux and they used
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Windows and we use JavaMOP 2.0 – their latest release. We have shared our experimental

results with the developers of JavaMOP to determine whether the performance differences

are related to optimizations in their latest release or whether some other factor is the cause.

We will investigate this in the future.

Of the 38 loops in jgrapht that involve events in the FailSafeIter property our technique

transformed 5. Unfortunately the application we studied only executed 4 of the 38 loops

and none were one’s that were transformed. Moreover, a single loop was responsible for

generating over 8 million events – 99.5% of the events generated during monitoring. That

loop is part of a custom iteration framework that supports the efficient iteration over graphs

using different strategies, e.g., breadth-first or depth-first. That framework implements a

next method that tests and updates internal collections to ensure that a vertex, or edge,

is only visited once during an iterator traversal. The points-to analyses that support our

optimization are unable to determine that the updates to the internal collections are not

updates to the collection being iterated over and thus, the loop is not transformed. A modest

extension of the points-to analysis would allow this loop to be transformed, but we refrained

from implementing problem-driven extensions to our framework to better understand its

strengths and weaknesses.

We plan to explore two such extensions that we believe will allow our technique to

perform significantly better on properties like FailSafeIter and other properties that follow

the structure of a constrained-response pattern [34]. We will report our findings in the

future.

Additionally, the number of monitors associated with the objects in the case of multi-

object properties can be a major source of runtime overhead as discussed in Chapter 3. We

present an analysis technique that we call monitor reclamation analysis in Section 6.2.1.1

and would like to implement that in the future. This analysis would target the monitors that

do not need to be tracked as they can never reach the error state and reclaim those, thereby
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limiting the number of monitors associated with the objects. Hence, this analysis would

reduce the cost of monitor traversal and transitions (CV and CT as mentioned in Chapter 3)

which would result in reduced runtime overhead.

Our implementation currently handles only two commonly occurring special cases of

nested loops. Moreover, it does not support transformation of loops when the observables

within loops are associated with possibly more than one receiver objects. This indicates that

our results underestimate the potential overhead reduction that could be achieved given a

more comprehensive engineering of our analysis implementation. We did not perform a de-

tailed analysis of the optimization opportunities that were lost due to this limitation. How-

ever, we studied our log data for PMD-FailSafeIter and determined 19 nested loops were

not optimized and 9 loops with multiple monitored objects were not optimized. Clearly,

handling those loops would make it possible to achieve better overhead reduction, but for

the Dacapo workloads those 28 loops contributed a total of just 24 of the 2.2 million events

produced when performing monitoring; so for this program, property, and workload the

lost optimization opportunity was negligible.

We intentionally performed a focused evaluation to target the most costly program-

property pairs reported in the literature, but the scope of the evaluation is limited. Our

findings should be interpreted as providing preliminary evidence that the number of events

generated in runtime monitoring can be significantly reduced through the use of stutter-

equivalent loop transformation. In the future, we would like to perform followup studies

that consider more programs, properties, and a diversity of program inputs to establish the

breadth of applicability and effectiveness of the technique.

Both of the analysis techniques that we developed including the residual analysis pre-

sented in Chapter 4 target the number of events. This target was chosen based on the

insights provided by the cost models in Chapter 3, as it indirectly targets all the operational

costs by skipping some events. Based on the evaluation, we see that these optimization
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techniques indeed reduced the runtime overhead. The stutter-equivalent loop transforma-

tion was motivated by the weaknesses that we observed in the residual analysis technique.

In particular, we had observed some safe regions being rejected by the analysis due to

imprecision in it. We also observed that the cost missing those regions was high partic-

ularly when the regions were loops. The stutter-equivalent loop transformation technique

provides a solution by transforming such a failed loop, if that stutters at distance k, into

a sequence of k + 1 copies of the loop where all except the last copy may be unsafe. An

execution of the loop in the original program is semantically equivalent to the execution of

the loop of the whole sequence of the copies of the loop in the transformed program. The

benefits of this techniques come from the fact that each of the potentially unsafe copy of

the loop executes the instrumentation inside at the most once during the execution of the

sequence of the copies of the loop.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the work that has been performed and presented in this disserta-

tion. In addition, it also provides directions for the future work. In the future work, we

provide an outline for the optimization techniques that we would like to develop in the near

future.

6.1 Conclusion

In this dissertation, we presented our research that focuses on developing techniques to

reduced the overhead of runtime monitoring without compromising error reporting. We

presented our hybrid approach that combines static analysis with dynamic analysis and

exploits program and property structures. The approach is motivated by the insights pro-

vided by the cost models for runtime monitoring presented in Chapter 3. We identified

two basic algorithmic approaches used in the development of runtime monitoring tools and

presented the cost models that describe the key factors that influence the runtime overhead

for both approaches. We revisited some of the previous results and explained those based

on the new perspective provided by the cost models. Our research is guided by the cost



174

models. The optimization techniques that we have developed as well those that we plan to

develop in future target various cost factors described by the models and the targets have

been prioritized based on the insights provided by the models.

In this dissertation, we presented two optimization techniques, namely, the residual

typestate analysis and the stutter-equivalent loop transformation in Chapters 4 and 5 re-

spectively. Both techniques target the number of events, but can be extended to target the

number of monitors. We gave highest priority to developing techniques that target the num-

ber of events as doing so would indirectly target all the factors that appear in the cost defi-

nitions of the models. The residual analysis identifies safe regions in the program that may

not contribute to property violations. The analysis then drops the instrumentation inside

those regions and, if required, adds an instrumentation that triggers a summary transition

at the of the region. Although effective as shown by its evaluation, we observed two weak-

nesses of this analysis technique. The first weakness was the high cost of static analysis as

it requires expensive whole-program analysis. The second weakness was its imprecision

that may fail to identify a region as safe, even when it is. This may result into higher mon-

itoring overhead particularly when the region is a loop, as observable statements inside a

loop may get executed frequently. We addressed both of these weaknesses by developing

an optimization technique based on the transformation of stuttering loops. This transfor-

mation aims at minimal generation of events occurring within loops while still ensuring

correct error reporting. Both analyses generate correct results except when certain condi-

tions are met in the presence of unchecked exceptions. We explained the conditions that

may affect the analysis correctness in Sections 4.3 and 5.6. Due to the reasons explained

in Section 4.3, we believe that these scenarios would be infrequent in practice. The results

of the evaluation of the techniques using some open source benchmarks and applications

show that the techniques can effectively reduce the runtime monitoring overhead for most

of the program and property combinations.
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In the future, we would like to target other key factors that influence runtime monitoring

overhead for optimization. In the following section, we outline a technique that targets a

factor that impacts the cost of monitor traversal and transition. We also provide an outline

for a technique that may improve the effectiveness of residual as well as loop transformation

analysis techniques by targettng conditional program regions.

6.2 Future Work

In spite of the optimization that we have achieved using the two analysis techniques pre-

sented in Chapters 4 and 5, we have occasionally observed that monitoring may still incur

unacceptably high overhead especially for multi-object properties. Here we describe a

novel optimization technique that may limit the monitoring overhead in the case of multi-

object properties by targeting the factors that impact the cost of monitor traversal and tran-

sition. We also provide an outline for a technique that may improve the effectiveness of

residual as well as loop transformation analysis techniques by identifying target program

regions conditionally. In addition, we describe a monitoring approach that we call symbol-

based and propose an optimization that can be performed using this approach for efficient

monitoring. We plan to conduct a study that would include wider range of properties and

benchmarks. At the end, we provide some interesting research directions that extend the

current scope of dynamic analysis.

6.2.1 A Novel Optimization Technique

The results of our previous studies presented in Sections 4.5 and 5.7 as well the results of

the partial validation of the models, indicated that apart from the number of events, the cost

of monitor traversal and transitions may severely affect the runtime overhead. This cost

may be controlled, in the case of multi-object properties, if the number of monitors associ-
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ated with objects can be controlled by eliminating the monitors that are no longer needed.

This is shown by the θ, η and β related terms in the cost model definitions of CV and CT

in Figures 3.7 and 3.8. The monitor reclamation analysis introduced in Section 6.2.1.1 will

target these unwanted monitors. This technique is based on our hybrid approach and would

perform optimizations based on the results of a static analysis.

6.2.1.1 Monitor Reclamation Analysis

We illustrate the main idea behind the technique using the same code snippet that we used

in Figure 1.3 and the property FailSafeIter shown in Figure 1.2. For the code snippet,

the monitor reclamation analysis would first perform an escape analysis that would infer

that after the loop is executed, the reference variable iter becomes dead as it is never read

later. Moreover, the object referenced by iter does not escape the method, hence it becomes

unreachable at the end of the method. At this point, the analysis can infer from the FSA of

the property FailSafeIter that, a monitor may never reach the error state, irrespective

of its state, as it will never observe next events in future.

Figure 6.1 shows the output of the analysis that has all relevant method calls instru-

mented. In addition it has an extra statement OBSERVE.reclaimMonitor(iter) at

the end of the loop, that advises the monitoring system about reclamation of the monitor.

We would also like to explore the strategy in which the system may even reuse a monitor

by resetting and pushing it back to the free monitor object pool. We hope that this approach

would reduce the burden of memory management by reusing existing monitors and would

also reduce monitor creation time that is indicated by CC terms in Figures 3.7 and 3.8.

The goal of this analysis is similar to the goal of memory leak elimination proposed

by Avgustinov et al. [8]. Their technique is completely dynamic which eliminates the

cost of static analysis. However, the technique in its current form can be applied only to

state-driven monitoring tools. Moreover, it may result in higher overhead during runtime,
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void makeEquiv ( Node node1 , Node node2 ) {
S e t s1 = e q u i v a l e n t ( node1 ) ;
S e t s2 = e q u i v a l e n t ( node2 ) ;

i f ( s1 != s2 ) {

I t e r a t o r i t e r = s2 . i t e r a t o r ( ) ;
OBSERVE . m o n i t o r ( s2 , i t e r , ” c r e a t e ” ) ;

whi le ( i t e r . hasNext ( ) ) {
Node n = ( Node ) i t e r . n e x t ( ) ;
OBSERVE . m o n i t o r ( i t e r , ” n e x t ” ) ;
e q u i v . p u t ( n , s1 ) ;

}
OBSERVE . r e c l a i m M o n i t o r ( i t e r ) ;

}
}

Figure 6.1: Monitor Reclamation.

as disjuncts need to be freshly created when states are changed and if required, reordered.

Additionally, its performance is VM dependent, that is, the unwanted disjuncts are elimi-

nated by a garbage collector, and hence it depends on how frequently it is invoked. Inter-

estingly, as mentioned by the authors, systems with larger heap suffer more than the ones

with smaller heap as a garbage collector is typically invoked when less memory is avail-

able. Our newly proposed technique can overcome all these deficiencies mainly at the cost

of static analysis. However, we believe that runtime cost is more crucial to programmers

and our technique has only a small runtime overhead.

6.2.2 Symbol-based Monitoring

In Chapter 3, we discussed two algorithmic approaches to monitoring, namely object-based

and state-based. Our choice for this division was mainly driven by the state-of-art moni-

toring tools that are based on one of the two approaches. In particular, JavaMOP uses
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 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        s1.addAll(s2); 
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

hasNext - Map 
i1 
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i1 

i2 . 
i3 . 
… … 
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next - Map 
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… … 
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(a) Before the generation of a creation event

 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        s1.addAll(s2); 
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

hasNext - Map 
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(b) After the generation of a creation event

 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        s1.addAll(s2); 
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

hasNext - Map 
i1 
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i1 

i2 . 
i3 . 
… … 

. 
i2 
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i3 
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… 

next - Map 
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. 
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0 i . 

i . 

(c) After the generation of event next

Figure 6.2: Simple symbol-based monitoring scheme for complete matching.
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 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        s1.addAll(s2); 
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

i-Map 
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. 
i2 
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i3 
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… 

(a) Before the generation of a creation event

 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        s1.addAll(s2); 
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

i-Map 
i1 
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i1 

i2 . 
i3 . 
… … 
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1 
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(b) After the generation of a creation event

 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        s1.addAll(s2); 
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

i-Map 
i1 
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(c) After the generation of event next

Figure 6.3: Simple object-based monitoring scheme for complete matching.
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object-based approach and Tracematches is an implementation of state-based approach.

Here, we propose an orthogonal approach that is based on symbols. The intuition behind

our approach comes from the fact that if an object-based monitoring tool could distinguish

between the monitors based on the states, then it would track the associated monitors only

if the input symbol is going to change its state. In other words, the tool can then directly

exploit the property structure by skipping the symbols that result in self-loops. Hence, we

felt a need for a symbol-based monitoring approach that would use symbol-specific index

trees to keep monitors based on their states. We would like to illustrate our approach with

an example.

We use the same code snippet in Figure 6.2 that we used in Section 3.2.3. However, we

illustrate our new approach using property HasNext shown in Figure 2.3 as this property

would highlight the key differences between this approach and other approaches discussed

in Chapter 3. For property HasNext, hasNext and next are the relevant symbols.

Figure 6.3(a) shows the monitoring data structures before the execution of a creation call,

which in this case would be a call to method hasNext. The call generates a monitor-

ing event which consists of a tuple (l, b) where l is a set of associated objects, in this

case {i}, and b is an FSA symbol, which in this case is hasNext. The scheme pro-

vides two maps corresponding to two symbols. The maps, as we have seen before in Sec-

tion 3.2.3, are keyed by sets of related objects that have been involved in previous events.

We see that both maps have the same set of keys, because both symbols are related to the

same sets of objects. Note that, if we were monitoring for a multi-object property such as

FailSafeIter that has symbols associated with different sets of objects, then the maps

would have different keys.

Figure 6.3(b) shows the situation after the scheme handles the creation event. Since no

monitors are associated with iterator i, a new monitor is created and references to it are

associated with a new key i in both maps.
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Figure 6.3(c) shows how a subsequent next(i) event, which is triggered by a call

to i.next(), is handled. The map associated with symbol next is accessed and the

monitors (in this case only 1) associated with i in the map are retrieved. For each such

monitor, an FSA transition is simulated to update the state. In this example, the monitor

associated with i was previously in state 1 so it is updated to δ(1,next) = 0 based on the

FSA in Figure 2.3.

To contrast this approach with object-based monitoring approach, we show how the

object-based approach would handle the same events in Figure 6.3. The main difference

here is the usage of only one map irrespective of the number of symbols as all symbols are

associated with only one kind of objects i.e. iterator objects.

An object-based approach with optimized indexing has a set of sets of related objects,

each member of which serves as a key to one index tree. The set is partitioned among

different trees that correspond to symbols for efficient monitor access. In other words,

there is only one index tree for symbols that have common sets of objects. In contrast,

the symbol-based approach would keep all the sets of objects that are related to a symbol

in the index tree associated with the symbols. This means that multiple index trees may

have a few common keys. The symbols will share the trees only if their behavior with

respect to the property is identical. For example, in the property SocketChannel shown

in Figure 1.1 has symbols read and write whose behavior with respect to the property

is identical and hence they can share their index trees.

It is clear that when compared with the object-based approach, symbol-based approach

may need to perform the extra work to update multiple symbols trees during creation events.

So an obvious question is how can symbol-based approach be useful? We provide an

answer to this question in Section 6.2.2.1. We describe an optimization technique that

leverages the fact that the symbol-based approach can maintain separate monitor lists and
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the lists can be manipulated depending on characteristics of a property. That means that

symbol-based approach allows a useful optimization that other approaches cannot.

6.2.2.1 Targeting Property Self-loops

The cost of monitoring can be controlled if traversals and transitions are performed only

when required, that is only when, these operations may change the state of monitors. As we

discussed in Chapter 5, the looping sequences of transitions cannot contribute to an error

and hence need not be observed. A majority of the events during program execution may

generate such sequences of transitions and hence can be skipped while monitoring. The

stutter-equivalent transformation technique targets such events when they are generated

by program loops and as the results show, can effectively control the overhead for many

of the program-property combinations. However, we noticed that an imprecise points-to

analysis may result in rejecting a valid loop transformation for transformation because the

analysis may fail to show the relationship among associated objects. The analysis may

also reject a valid loop, because it might consider infeasible start states in the computation

that a program may never reach. Moreover, it does not consider stuttering events that are

generated by recursion and not by loops. All of these weaknesses may result in retaining

instrumentation over some observable statements that otherwise could have been dropped.

In order to deal with these deficiencies, we propose an optimization technique based on

symbol-based monitoring that would effectively control the extra cost of monitor traversals

and transitions, which would otherwise be incurred due to stuttering events. We demon-

strate the technique with the help of property FailSafeIter in Figure 1.2. We propose

the technique for a symbol-based monitoring tool that supports complete centralized index-

ing.

It is obvious that for every state in the property FSA shown in Figure 1.2, only the

outgoing transitions that do not self-loop may change the state. For example, in state 1, only
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update transitions may change the state and for state 2 only next transitions may change

the state. This means that, we only need to have the indexing support for the monitors

with respect to outgoing transitions. Hence, in symbol-based monitoring, we maintain

an index tree for every symbol. This is in contrast to the object-based monitoring where

indexing would be provided only to the related set of objects. In other words, an object-

based monitoring indexing scheme would keep a common index tree for two symbols that

are related to the same set of objects, whereas a symbol-based monitoring indexing scheme

will keep two separate trees. For example, for property HasNext in Figure 2.3, an object-

based monitoring approach would keep only one index tree for both observables hasNext

as well as next, as both symbols are related to an iterator object. However, a symbol-based

monitoring would keep two trees corresponding to symbols hasNext and next. In the

case of property FailSafeIter, an object-based monitoring tool would keep 3 maps;

for a collection, an iterator, and a pair of collection and iterator. In this case, symbol-based

monitoring approach would also result in the same 3 maps as there are only three symbols in

this property. A transition in the case of optimized symbol-based monitoring would involve

adding entries to the maps that are associated with outgoing transitions of the target state

and deleting monitor entries from the currently active maps that will not be active in the

target state. It should be noted here that if there are multiple monitors associated with an

event, the cost of performing a transition would be linear with respect to the product of the

number of monitors and the symbols that are affected in both, source and target states.

Figure 6.4 shows how the maps will be maintained and a transition would be performed.

For simplicity, we have shown only two maps, one corresponding to update and the other

corresponding to next, and the transition from state 1 to 2 after receiving an update

event on collection c is shown.

After receiving an update symbol related to a collection, the monitoring tool would

first retrieve the associated monitors by performing a lookup on the index tree associated



184

0 
create 

next 

update 
1 2 

update 

next 

update-Map 

s1 

s2 . 
c . 

. 

c i 

1 
next-Map 

i1 

i2 . . 

s1 

s2 . . 

c i 

2 

next-Map 

i1 

i2 . 
i . 

. 

update-Map 

Figure 6.4: Transitioning from state 1 to state 2.

with the incurred symbol. For each one of the monitors, it would check the target state and

update the relevant index tree corresponding to the non-self-looping outgoing transitions

at the target state. In this case, symbol update is received by a collection c. The tool

would retrieve monitors associated with c, which in this case is only one with associated

iterator i. Since update symbol would push the monitor to state 2, the tool checks the

non-self-looping outgoing transitions at 2 which in this case is next. The tool then inserts

an entry corresponding to iterator i in the index tree that corresponds to next and deletes

the entry for collection c from the tree that corresponds to update as shown in Figure 6.4.

If the monitoring tool after receiving an event cannot find an entry for the related objects

in the corresponding index tree, it will assume that updating a state, that is performing a

transition, is not required as it only self-loops. It will perform a transition only when the

lookup is successful, that is when it finds any associated monitors. For clarity, we have
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shown in Figure 6.4 only one monitor associated with collection object. In practice there

could be more monitors associated with collection objects. It is easy to see that the rewards

for optimization are higher, when the monitoring tool skips transitions for objects that have

more than one monitor associated.

Unlike stutter-equivalent loop transformation technique, this optimization comes with

a non-zero but small cost for referencing. However, an update corresponding to non-self-

looping transitions could be expensive depending on the number of associated monitors and

symbols. Moreover, it may only optimize self-loops and not any arbitrary loops of length

greater than one. However, it can optimize repeating symbols irrespective of their source in

the program. In addition, it does not incur an extra cost of expensive static program analysis

as it only needs to analyze the property structure. In general, we expect it to be effective

for the properties that have frequently occurring self-looping symbols. For example, the

technique may be more effective for properties like FailSafeIter that have self-loops

and change their states very infrequently. At the same time it may not be effective for

properties like HasNext that continuously change the monitor states. Hence, it would be

useful to develop a program or property analysis that can predict the effectiveness of this

technique.

Dwyer et al.’s technique [36] can be seen as an instance of symbol-based approach, that

drops the symbol instrumentation dynamically when there are no monitors interested in the

symbol. Compared to their technique approach, our new technique is more light-weight

and does not need any additional infrastructure or dynamic instrumentation that Dwyer

et al.’s technique needs. Moreover, unlike Dwyer et al.’s technique, it targets individual

monitors that are not interested in a symbol. That means it would track only those monitors

that would change their states for the incurred symbol. On the other hand Dwyer et al.’s

technique would disable the instrumentation only when there is no monitor that would

change its state for the incurred symbol. A program execution that generates a large number
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void foo ( Set<I tem> s1 , Set<I tem> s2 ) {
i n t l e n = 0 ;

whi le ( l e n < MAXSIZE) {
I t em i t em = new I t em ( l e n ) ;
s1 . add ( i t em ) ∗ ; / / i n s t
i f ( ! i t em . i s S t a n d a r d ( ) )

s2 . remove ( i t em ) ; / / i n s t
l e n ++;

}
}

Figure 6.5: Conditionally transformed loop: original code.

of monitors, such a scenario would be infrequent. Due to these reasons, we expect our new

approach to be more effective than Dwyer et al.’s technique.

6.2.3 Improvement Techniques

The results of the study presented in Section 5.7 indicate that although the technique was

effective for most of the program and property combinations, a few combinations still in-

curred a high overhead. Our investigation revealed that many of the failed loops were

discarded by the analysis due to an imprecision in the pointer analysis. As we mentioned

earlier, it is very difficult to have a highly precise static analysis that scales to real soft-

ware systems. However, an object aliasing can be checked at a very small cost during

runtime. Here, we try to exploit the hybrid nature of our approach and first use the conclu-

sive must-alias results statically. However, the conditions that remained unresolved due to

imprecision in the analysis would be added back to the program in the form of predicates,

whenever possible, and would be checked dynamically. If such a condition is satisfied,

control flow will be directed toward an optimized transformed loop; if not, the program

would execute as it would have executed normally taking the unoptimized path. This tech-

nique can also be applied to residual analysis to find conditional safe regions, that behave



187

void foo ( Set<I tem> s1 , Set<I tem> s2 ) {
i n t l e n = 0 ;

i f ( s1 == s2 ){
whi le ( l e n < MAXSIZE) {

I t em i t em = new I t em ( l e n ) ;
s1 . add ( i t em ) ∗ ; / / i n s t
i f ( ! i t em . i s S t a n d a r d ( ) )

s2 . remove ( i t em ) ; / / i n s t
l e n ++;
break ;

}
whi le ( l e n < MAXSIZE) {

I t em i t em = new I t em ( l e n ) ;
s1 . add ( i t em ) ; / / u n i n s t
i f ( ! i t em . i s S t a n d a r d ( ) )

s2 . remove ( i t em ) ; / / u n i n s t
l e n ++;
break ;

}
} e l s e {

whi le ( l e n < MAXSIZE) {
I t em i t em = new I t em ( l e n ) ;
s1 . add ( i t em ) ∗ ; / / i n s t
i f ( ! i t em . i s S t a n d a r d ( ) )

s2 . remove ( i t em ) ; / / i n s t
l e n ++;

}
}

}

Figure 6.6: Conditionally transformed loop: transformed code.

like safe regions under certain conditions that are checked by added predicates. Moreover,

it can be extended to have predicates based on typestates, so that a condition that failed the

analysis due to an infeasible start state, can be checked dynamically for better optimization.

The technique is illustrated using an example in Figure 6.5. The property that we are

checking is FailSafeIter. The technique performs a static analysis that is bottom-up

and a pointer analysis that is intraprocedural. Our loop transformation analysis would fail

here, if it cannot conclude whether s1 would point s2 or not. If s1 does not point to s2,
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then symbol update may be encountered by both objects, that is the one referenced by s1

and the other referenced by s2. The conditional statement inside the loop indicates that the

symbol may not be encountered by the object referenced by s2 during the first iteration of

the loop, and hence, the loop transformation may not be safe. However, the analysis can still

conclude that the references do not change within the loop and if they are aliases of each

other, the loop would be safe to transform. Our proposed analysis would use this partial but

useful result to generate the condition “s1 == s2” as shown in Figure 6.6 by the if-else

statement enclosing the loop and directs the control-flow accordingly. That means if the

condition is satisfied the control will be directed toward optimized path, otherwise toward

unoptimized path.

We expect the technique to improve the effectiveness of both, the residual analysis

as well as the loop transformation analysis, at a small cost of additional instrumentation

required to test the predicates.

The future work also includes improvements mentioned in this dissertation such as

extending the analyses to target the number of monitors and perform property simulation.

6.2.4 Broader Study

Most of the current research [19, 20, 25, 62, 68] is based on evaluation using DaCapo

benchmarks and properties that specify legal rules for using Java API. It is evident from

the previous studies, that monitoring overhead is influenced by the factors related to the

program and property interaction. Hence, even the properties with similar structure may

incur different overheads depending on their application usage. Although interesting in

many ways, these studies are narrow and indicate a need for more richness and diversity

particularly in properties. A question that a researcher may ask is what properties really

matter?.
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Before we attempt to answer this question, we need a formal way of characterizing

properties. What are the attributes of a property that may be of interest? We provide a

list of some attributes that may make one property different than another as well as more

interesting than another.

a) Structure: A property monitoring may be influenced by the structural attributes of

the property. This may include the number of states, the number of symbols, the number of

self-looping symbols, being related to multiple objects or expressed by a richer formalism

such as context free grammars. A monitoring approach such as object-based monitoring

may not be sensitive to the number of states, but another approach such as state-based

monitoring may be. Similarly, state-based monitoring may be sensitive to self-looping

symbols. The properties that have been recently studied by the researchers [19, 20, 25, 62,

68] have typically less than 4 or 5 states and a similar number of symbols. It is possible

that the real properties that would matter have a much larger number of states and symbols.

The answer to the question of whether the current properties that have been studied or

being studied matter or not would also be influenced by the practitioners who will start

using these techniques and tools in the future.

b) Program Behavior: Generally speaking, faults are hard to detect when they cause

property failures only during certain program executions or for certain program states.

Such faults may easily go undetected during the testing phase. Based on this intuition,

we broadly divide properties into following categories based on the program behavior at

the time of a failure: i. the program always throws an exception, ii) semantics are not

clearly defined, and iii) the program throws an exception depending on its state defined by

variable values. We see clearly that the faults that are related to the last category of prop-

erties may be hardest to detect as the program may behave normally for most of the states

and hence, such faults may get undetected during the testing phase. On the other hand,

program may invariably throw an exception for certain types of violations and such faults
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are more likely to get detected during testing. Hence, we feel that properties that properties

that fall under second and third categories are likely candidates for runtime monitoring.

6.2.5 Beyond Error Detection

Detecting faults during runtime that may lead to failures is certainly helpful. However, a

question that a researcher may ask at this point is can we do more?. It will be very useful if

dynamic analysis can not only detect a fault, but also steer the program execution to avoid

a failure? This would be particularly useful for mission-critical applications where avoid-

ing a failure would be of utmost importance. Similarly an approach could be to diagnose

faults and a timely proactive recovery that would keep the system under control by avoid-

ing unexpected failure [38]. An interesting question would be to find out the information

that needs to be generated during runtime for this kind of advanced dynamic analysis, es-

pecially considering the resource constraints and functional requirements of these software

applications. These are some challenging future research directions that would be critical

to the success of mission-critical systems.
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Appendix A

Java programs used in the study with

JavaMOP

In this appendix, we provide the Java programs that we used in the study with JavaMOP

presented in Section 3.5.
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p u b l i c c l a s s ChangeThetaUni1 {

p u b l i c s t a t i c vo id main ( ) {
long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet<I n t e g e r > ( ) ;

f o r ( i n t i = 0 ; i < 1000000; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i < 100 ; i ++){

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
whi le ( i t e r . hasNext ( ) ) {

i n t s o m e i n t = ( I n t e g e r ) i t e r . n e x t ( ) ;
foo ( s o m e i n t ) ;

}
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;

System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”
+ ( endTime − s t a r t T i m e ) ) ;

}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.1: Changing the number of associated monitors keeping the number of uni-
monitor events same. Scale = 1.



193

p u b l i c c l a s s ChangeThetaUni10
{

p u b l i c s t a t i c vo id main ( ) {
long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet<I n t e g e r > ( ) ;

f o r ( i n t i = 0 ; i < 100000; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i < 1000 ; i ++){

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
whi le ( i t e r . hasNext ( ) ) {

i n t s o m e i n t = ( I n t e g e r ) i t e r . n e x t ( ) ;
foo ( s o m e i n t ) ;

}
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.2: Changing the number of associated monitors keeping the number of uni-
monitor events same. Scale = 10.
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p u b l i c c l a s s ChangeThe taMul t i1 {

p u b l i c s t a t i c vo id main ( ) {
long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet<I n t e g e r > ( ) ;
Set<I n t e g e r > s2 = new HashSet<I n t e g e r > ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i< 1 ; i ++){

s2 . add ( i ) ;
}
f o r ( i n t i = 0 ; i < 1 0 ; i ++){

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
i f ( i t e r . hasNext ( ) ) {

foo ( 1 ) ;
}

}
f o r ( i n t i = 0 ; i < 99990 ; i ++) {

I t e r a t o r <I n t e g e r > i t e r = s2 . i t e r a t o r ( ) ;
i f ( i t e r . hasNext ( ) ) {

foo ( 1 ) ;
}

}
f o r ( i n t i = 0 ; i < 1000000; i ++){

s1 . add ( i ) ;
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.3: Changing the number of associated monitors keeping the number of multi-
monitor events same. Scale = 1.
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p u b l i c c l a s s ChangeThe taMul t i10 {

p u b l i c s t a t i c vo id main ( ) {
long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet<I n t e g e r > ( ) ;
Set<I n t e g e r > s2 = new HashSet<I n t e g e r > ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i< 1 ; i ++){

s2 . add ( i ) ;
}
f o r ( i n t i = 0 ; i < 100 ; i ++){

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
i f ( i t e r . hasNext ( ) ) {

foo ( 1 ) ;
}

}
f o r ( i n t i = 0 ; i < 99900L ; i ++) {

I t e r a t o r <I n t e g e r > i t e r = s2 . i t e r a t o r ( ) ;
i f ( i t e r . hasNext ( ) ) {

foo ( 1 ) ;
}

}
f o r ( i n t i = 0 ; i < 1000000; i ++){

s1 . add ( i ) ;
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.4: Changing the number of associated monitors keeping the number of multi-
monitor events same. Scale = 10.
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p u b l i c c l a s s ChangeTransUni1 {

p u b l i c s t a t i c vo id main ( ) {
long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000 ; i ++) {

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
whi le ( i t e r . hasNext ( ) ) {

i n t j = i t e r . n e x t ( ) ;
foo ( j ) ;

}
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.5: Changing the number of uni-monitor events keeping the number of associated
monitors same. Scale = 1.
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p u b l i c c l a s s ChangeTransUni10 {

p u b l i c s t a t i c vo id main ( ) {
long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet ( ) ;

f o r ( i n t i = 0 ; i < 1 0 ; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000 ; i ++) {

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
whi le ( i t e r . hasNext ( ) ) {

i n t j = i t e r . n e x t ( ) ;
foo ( j ) ;

}
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.6: Changing the number of uni-monitor events keeping the number of associated
monitors same. Scale = 10.
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p u b l i c c l a s s ChangeTransMul t i1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000 ; i ++){

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
i f ( i t e r . hasNext ( ) ) {

foo ( 1 ) ;
}
f o r ( i n t j = 0 ; j < 100 ; j ++){

foo ( j ) ;
}

}
f o r ( i n t i = 0 ; i < 100 ; i ++){

s1 . add ( i ) ;
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.7: Changing the number of multi-monitor events keeping the number of associ-
ated monitors same. Scale = 1.
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p u b l i c c l a s s ChangeTransMul t i10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . nanoTime ( ) / 1 0 0 0 ;
Set<I n t e g e r > s1 = new HashSet ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
s1 . add ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000 ; i ++){

I t e r a t o r <I n t e g e r > i t e r = s1 . i t e r a t o r ( ) ;
i f ( i t e r . hasNext ( ) ) {

foo ( 1 ) ;
}
f o r ( i n t j = 0 ; j < 100 ; j ++){

foo ( j ) ;
}

}
f o r ( i n t i = 0 ; i < 1000 ; i ++){

s1 . add ( i ) ;
}
long endTime = System . nanoTime ( ) / 1 0 0 0 ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}

s t a t i c vo id foo ( i n t i ){
i f ( i == −10){

System . e r r . p r i n t l n (−10) ;
}

}
}

Figure A.8: Changing the number of multi-monitor events keeping the number of associ-
ated monitors same. Scale = 10.



200

Appendix B

Java programs used in the study with

Tracematches

In this appendix, we provide the Java programs that we used in the study with Tracematches

presented in Section 3.5.
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p u b l i c c l a s s ChangeThetaUni1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1000000; i ++){
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 1 ; i ++){

l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 9999 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 3 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.1: Changing the number of associated monitors keeping the number of uni-
monitor events same (Property 1). Scale = 1.
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p u b l i c c l a s s ChangeThetaUni10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1000000; i ++){
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 1 0 ; i ++){

l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 9990 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 3 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.2: Changing the number of associated monitors keeping the number of uni-
monitor events same (Property 1). Scale = 10.
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p u b l i c c l a s s ChangeThe taMul t i1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;

}
f o r ( i n t i = 0 ; i < 9999 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 1000000; i ++){

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 3 . s i z e ( ) ) ;
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.3: Changing the number of associated monitors keeping the number of multi-
monitor events same (Property 1). Scale = 1.
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p u b l i c c l a s s ChangeThe taMul t i10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1 0 ; i ++){
l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;

}
f o r ( i n t i = 0 ; i < 9990 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 1000000; i ++){

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 3 . s i z e ( ) ) ;
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.4: Changing the number of associated monitors keeping the number of multi-
monitor events same (Property 1). Scale = 10.
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p u b l i c c l a s s ChangeTransUni1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 100 ; i ++){
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000L ; i ++){

l 2 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 2 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.5: Changing the number of uni-monitor events keeping the number of associated
monitors same (Property 1). Scale = 1.
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p u b l i c c l a s s ChangeTransUni10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1000 ; i ++){
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000L ; i ++){

l 2 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 2 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.6: Changing the number of uni-monitor events keeping the number of associated
monitors same. Scale = 10.
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p u b l i c c l a s s ChangeTransMul t i1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 10000L ; i ++){
I t e r a t o r i t e r = l 1 . i t e r a t o r ( ) ;
l 2 . a d d L a s t ( i t e r ) ;

}
f o r ( i n t i = 0 ; i < 100 ; i ++) {

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.7: Changing the number of multi-monitor events keeping the number of associ-
ated monitors same (Property 1). Scale = 1.
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p u b l i c c l a s s ChangeTransMul t i10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 10000L ; i ++){
I t e r a t o r i t e r = l 1 . i t e r a t o r ( ) ;
l 2 . a d d L a s t ( i t e r ) ;

}
f o r ( i n t i = 0 ; i < 1000 ; i ++) {

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.8: Changing the number of multi-monitor events keeping the number of associ-
ated monitors same (Property 1). Scale = 10.
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p u b l i c c l a s s ChangeThetaUni1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1000000; i ++) {
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 1 ; i ++){

l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 9999 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 3 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.9: Changing the number of associated monitors keeping the number of uni-
monitor events same (Property 2). Scale = 1.
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p u b l i c c l a s s ChangeThetaUni10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1000000; i ++) {
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 1 0 ; i ++){

l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 9990 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 3 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.10: Changing the number of associated monitors keeping the number of uni-
monitor events same (Property 2). Scale = 10.
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p u b l i c c l a s s ChangeThe taMul t i1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1 ; i ++){
l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;

}
f o r ( i n t i = 0 ; i < 9999 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 1000000; i ++){

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 3 . s i z e ( ) ) ;
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.11: Changing the number of associated monitors keeping the number of multi-
monitor events same (Property 2). Scale = 1.
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p u b l i c c l a s s ChangeThe taMul t i10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 3 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 4 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1 0 ; i ++){
l 3 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;

}
f o r ( i n t i = 0 ; i < 9990 ; i ++){

l 4 . a d d L a s t ( l 2 . i t e r a t o r ( ) ) ;
}
f o r ( i n t i = 0 ; i < 1000000; i ++){

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 3 . s i z e ( ) ) ;
foo ( l 4 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.12: Changing the number of associated monitors keeping the number of multi-
monitor events same (Property 2). Scale = 10.
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p u b l i c c l a s s ChangeTransUni1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 100 ; i ++){
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000 ; i ++){

l 2 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 2 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.13: Changing the number of uni-monitor events keeping the number of associated
monitors same (Property 2). Scale = 1.
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p u b l i c c l a s s ChangeTransUni10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 1000 ; i ++){
l 1 . a d d L a s t ( i ) ;

}
f o r ( i n t i = 0 ; i < 10000 ; i ++){

l 2 . a d d L a s t ( l 1 . i t e r a t o r ( ) ) ;
}
I t e r a t o r i t e r = ( I t e r a t o r ) l 2 . g e t L a s t ( ) ;
whi le ( i t e r . hasNext ( ) ) {

foo ( ( I n t e g e r ) i t e r . n e x t ( ) ) ;
}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.14: Changing the number of uni-monitor events keeping the number of associated
monitors same (Property 2). Scale = 10.
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p u b l i c c l a s s ChangeTransMul t i1 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 10000L ; i ++){
I t e r a t o r i t e r = r1 . i t e r a t o r ( ) ;
l 2 . a d d L a s t ( i t e r ) ;

}
f o r ( i n t i = 0 ; i < 100 ; i ++){

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.15: Changing the number of multi-monitor events keeping the number of associ-
ated monitors same (Property 2). Scale = 1.
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p u b l i c c l a s s ChangeTransMul t i10 {

p u b l i c s t a t i c vo id main ( ) {

long s t a r t T i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
L i n k e d L i s t l 1 = new L i n k e d L i s t ( ) ;
L i n k e d L i s t l 2 = new L i n k e d L i s t ( ) ;

f o r ( i n t i = 0 ; i < 10000L ; i ++){
I t e r a t o r i t e r = r1 . i t e r a t o r ( ) ;
l 2 . a d d L a s t ( i t e r ) ;

}
f o r ( i n t i = 0 ; i < 1000 ; i ++){

l 1 . add ( i ) ;
i f ( ! ( l 1 . i sEmpty ( ) ) ) {

foo ( l 1 . s i z e ( ) ) ;
}

}
foo ( l 2 . s i z e ( ) ) ;
long endTime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . o u t . p r i n t l n ( ” TimeTakenForExecu t ion : ”

+ ( endTime − s t a r t T i m e ) ) ;
}
s t a t i c vo id foo ( i n t i ){

i f ( i == −10){
System . e r r . p r i n t l n (−10) ;

}
}

}

Figure B.16: Changing the number of multi-monitor events keeping the number of associ-
ated monitors same (Property 2). Scale = 10.
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Collaborative runtime verification with tracematches. In Proceedings of the 7th inter-

national conference on Runtime verification, RV’07, pages 22–37, Berlin, Heidelberg,

2007. Springer-Verlag.
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