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ABSTRACT 

 

 Lung cancer is the leading cause of cancer-related death and the second most 

diagnosed cancer in the United States. Unfortunately, many patients either do not have 

any common mutations for which there are already targetable agents, or they eventually 

become resistant to these compounds. As such, there is a high demand for new, 

effective methods of treating this disease as well as predicting patient prognosis and 

potential benefit from chemotherapy. In this work, numerous strategies for treating this 

disease are explored.  

 The first method of targeting lung cancer described here is through the use of a 

pan-early 2 factor (E2F) inhibitor, HLM006474. This small-molecule inhibitor was 

considered to have chemotherapeutic potential in lung cancer because the 

CDK/Rb/E2F pathway is commonly disrupted. The IC50s (determined through viability 

assays) for this compound in a panel of non-small cell lung cancer (NSCLC) and small 

cell lung cancer (SCLC) cell lines varied between 15-75 µM. Combination experiments 

between 6474 and common chemotherapeutic agents revealed synergy with paclitaxel, 

but not cisplatin nor gemcitabine. Due to previously published results suggesting a 

relationship between E2F3 activity and paclitaxel sensitivity, paclitaxel IC50s were 

compared to endogenous E2F3 mRNA and protein expression in a panel of NSCLC cell 

lines. These results showed a correlation between high E2F3 expression and paclitaxel 

sensitivity that was then confirmed through E2F3a and E2F3b siRNA experiments. 
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Furthermore, measurements of E2F expression as a function of time showed increased 

expression of E2F3 and several E2F-regulated genes shortly following the addition of 

6474, while E2F1 and E2F4 levels were not dramatically altered.  

 Next, we explored the use of an E2F signature that is prognostic and predictive 

of early-stage NSCLC patient benefit from adjuvant chemotherapy (ACT). Currently, 

there is only a small five-year survival benefit observed in early-stage NSCLC patients 

who receive ACT following surgery. Therefore, a gene signature that could predict 

which patients would benefit from ACT could be clinically useful. The E2F signature was 

created by targeting several Rb/E2F family members with RNAi, analyzing the samples 

through microarrays, and filtering the resulting probesets for those that were altered in 

five out of six of the knockdowns in both cell lines and altered in tumor versus normal 

samples. Principal component analysis (PCA) of this signature within the Molecular 

Classification of Lung Adenocarcinoma (MCLA) dataset from the Director’s Challenge 

and the SPORE442 dataset from H. Lee Moffitt Cancer Center’s Total Cancer Care 

Network demonstrated that the signature is prognostic. Comparison of the efficacy of 

the E2F signature versus Ki67 (a common proliferative marker) in a lung carcinoma 

tissue microarray (TMA) demonstrated that the signature was a better prognostic 

marker. Analysis of the signature within the JBR.10 trial data demonstrated that the 

signature is predictive of patient benefit from adjuvant chemotherapy. In order for this 

signature to be clinically viable, we needed to be able to measure it in formalin-fixed, 

paraffin-embedded (FFPE) patient samples. To this end, 32 paired fresh frozen (FF) 

and FFPE-derived RNA samples were measured via NanoString (a “barcode”-based 

platform) and compared to one another. A strong correlation was noted between the 
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paired NanoString readings. Likewise, no difference in correlation was observed 

between the NanoString results using either type of RNA and microarray results.  

 The third project examines possible targets to enhance sensitivity to cisplatin in 

NSCLC lacking Kirsten rat sarcoma viral oncogene homolog (KRAS) and epidermal 

growth factor receptor (EGFR) mutations and anaplastic lymphoma receptor tyrosine 

kinase (ALK) fusions (“triple-negative”), for which cisplatin is one of the few treatment 

options. Examination of five cyclin-dependent kinases (CDKs) resulting from a 

previously published protein-protein interaction screen showed that depleting cells of 

CDK12 via RNAi led to enhanced sensitivity to cisplatin. Analysis of a lung carcinoma 

TMA showed that tumors have higher levels of CDK12 protein than normal tissues, and 

that CDK12 and Ki67 protein expression levels positively correlate. These results 

suggested that CDK12 might serve as an oncogene. Real-time polymerase chain 

reaction (PCR), microarrays, and Western blots were utilized in order to investigate 

potential explanations for the increased sensitivity to cisplatin observed in cells depleted 

of CDK12. We were unable to confirm previously published results by others that cells 

depleted of CDK12 have decreased expression of genes involved in DNA damage 

response (DDR), but did demonstrate that cells transfected with CDK12 siRNA had 

decreased ataxia telangiectasia mutated (ATM) mRNA and protein expression. 

Considering that ATM is known to be involved in DDR (a process induced by cisplatin), 

this could be a potential explanation for the observed changes in cisplatin sensitivity.   
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CHAPTER ONE:  

INTRODUCTION 

 

Lung Cancer Background 

 Cancers of the lung and bronchus are the leading cause of cancer-related 

death in both men and women (estimated to be nearly 160,000 in 2014) in the United 

States and over 224,000 new cases are predicted to be diagnosed in 2014 [1]. The 

overall five-year survival for this group of diseases is unfortunately still only around 

17%. This is partially due to the fact that only 15% of patients are diagnosed at a 

localized stage. As expected, the 5-year survival rates tend to be much higher for those 

diagnosed with localized stage disease (54%) as compared to those diagnosed with 

distant stage lung cancer (4%) [1].  

 The first reported cases of lung cancer were in the eighteenth century, and 

remained a relatively rarely reported disease until the late 1800s. This dramatic 

increase in lung cancer rates was coincident with a rise in tobacco smoking, largely due 

to advanced mechanization in the industry that allowed for cheaper cigarette production 

and enhanced marketing. While numerous studies throughout the world linked smoking 

and lung cancer in the 1930s-1950s, a relationship between smoking and lung cancer 

was not officially recognized by the US government until the landmark Surgeon 

General’s report in 1964 [2, 3]. Fortunately, tobacco use and lung cancer rates in 

general have decreased in the past few decades, particularly in men. Since that report, 
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cigarette smoking among adults 18 and older in the US decreased from 42% in 1965 to 

19% in 2011 [4]. Smoking rates are still higher in men than women (listed at 20.5% 

versus 15.8% in 2012) [5], and lung cancer deaths related to smoking therefore follow a 

similar pattern (87% versus 70%) [1]. However, it has been suggested that these lung 

cancer death rates will soon be identical to each other due to the stabilization of male 

rates while female rates continue to increase [6, 7]). 

Small Cell Lung Cancer (SCLC) 

 SCLC is a less common type of lung cancer and makes up approximately 15% of 

cases. The five-year survival for SCLC patients is unfortunately only ~6% [1], and 

according to Surveillance, Epidemiology, and End Results (SEER) data from 1988-2001 

varies from 31% for stage I patients to 2% for stage IV patients. Typically, nonsmokers 

do not get this type of lung cancer [1]. Previously, this cancer was known as “oat cell 

sarcoma tumor,” but was changed to its current title in 1988 by the International 

Association for the Study of Lung Cancer (IASLC) [8]. 

Histological subtypes While there are not any histological subtypes of SCLC, 

this cancer can still be classified as either pure or combined. The combined SCLC 

subtype is comprised of a mixture of SCLC and NSCLC cells. If the NSCLC portion is 

adenocarcinoma or SCC, then the proportion of NSCLC versus SCLC cells does not 

factor into the diagnosis. However, if the NSCLC portion is large cell carcinoma (LCC), 

then at least 10% of the tumor must be LCC to receive this diagnosis [9, 10]. 

 Molecular subsets As compared to NSCLC, less is known about molecular 

subsets of SCLC. This is partially due to the fact that very few SCLC patients undergo 

surgery, thus leaving fewer samples available for genetic analysis [11]. The most 



 3 

commonly altered genes in SCLC are RB1 and TP53. In fact, both of these genes are 

inactivated in approximately 90% of SCLC [12, 13]. These mutations have been shown 

to be integral for the development of SCLC in mouse models [14-17], and result in 

neuroendocrine tumors that proliferate rapidly and are very aggressive [18]. Other 

genes that have been found to be altered in SCLC include CREBBP, EP300, MLL, 

PTEN, SLIT2, EPHA7, and FGFR1 [11].  

 Treatment methods The stages of SCLC can be described by using the 

Veterans’ Administration Lung Study Group (VALSG) or the IASLC Tumor, Node, 

Metastasis (TNM) system. VALSG uses either “limited disease” or “extensive disease” 

to describe staging, where “limited disease” means that the tumor is limited to one 

hemithorax and can be covered within a single radiotherapy port, and “extensive 

disease” applies to all other cases [8, 19]. TNM staging is less commonly used since it 

typically requires surgical resection, which is rarely used in SCLC patients. As such, it 

has been shown to be prognostic in patients and is still therefore recommended [20, 

21].  

Typically, SCLC is identified at late stages, and thus surgery is not typically used. 

Instead, radiation and chemotherapy are the most commonly used therapies [1]. Since 

there either are not any approved inhibitors for recognized targets in SCLC and not a 

great deal of research has been done to identify other potential targets, no targeted 

therapies are used for treating this cancer.  

Non-Small Cell Lung Cancer (NSCLC) 

 NSCLC is the most common type, accounting for approximately 85% of cases 

and can be divided into three histological subtypes (as discussed below). Five-year 
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survival among all NSCLC patients is only around 18% [1], and according to SEER data 

from 1998-2000 varies between 49% for stage IA patients to 1% for stage IV patients. 

The majority of cases occur in smokers, though there is a subset of cases that occur in 

never-smokers who tend to be of Asian ancestry, female in gender, and present with 

EGFR mutations [22]. 

Histological subtypes The most commonly recognized histological subtypes of 

NSCLC are LCC, squamous cell carcinoma (SCC), and adenocarcinoma. LCC makes 

up approximately 2-10% of all NSCLC cases [10, 23]. This tumor subtype is comprised 

of large polygonal cells in no recognizable pattern [9]. According to the 2004 WHO 

classification, the five subtypes of LCC are basaloid carcinoma, clear cell carcinoma, 

LCC with rhabdoid phenotype, large cell neuroendocrine carcinoma, and 

lymphoepithelioma-like carcinoma [9]. Little is known about large cell carcinoma as a 

class, largely due to it typically being used as a diagnosis for tumors that do not exhibit 

any of the common features of adenocarcinoma, SCC, nor SCLC [9, 24]. As such, 

surgical resection samples are needed to demonstrate that differentiation is not present 

in any portion of the tumor and be able to make this diagnosis [9, 25]. This requirement 

means that histological analysis of small biopsy samples cannot lead to LCC diagnosis, 

and are therefore typically diagnosed as NSCLC [9] (which accounts for 12.6% of all 

NSCLC [23]).  

SCC is the second most common histological subtype of NSCLC, accounting for 

approximately 20-25% of all NSCLC cases [10, 23]. SCC typically arises from cells in 

the lung central bronchus. Cells of this subtype typically exhibit keratinization and 

intercellular bridges [9, 26]. In order to diagnose this subtype, at least 10% of the 
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resected tumor must exhibit these features [26]. According to the 2004 WHO 

classification, the four variants of SCC are basaloid, clear cell, papillary, and small cell 

[9, 26]. This subtype used to be most commonly associated with smoking in the late 

1800s-early 1900s, but is now less common than adenocarcinoma among smokers 

today. 

Adenocarcinoma is the most common subtype, making up approximately 40% of 

all NSCLC cases [10, 23]. This subtype is made up of cells from peripheral lung tissue 

and has become increasingly common. This increase in frequency of the 

adenocarcinoma histology is largely believed to be due to the tobacco market switch to 

filtered cigarettes with lower tar and nicotine levels, leading many smokers to breathe in 

more deeply and therefore leading peripheral tissues to be more exposed to 

carcinogens in cigarette smoke [3]. According to the 2004 World Health Organization 

(WHO) Classification, the subtypes of adenocarcinoma are pre-invasive lesions 

(atypical adenomatous hyperplasia and bronchioalveolar carcinoma (BAC), 

adenocarcinoma (mixed subtype, acinar, and papillary), and solid (for which there are 

the variants mucinous cystadenocarcinoma, colloid, fetal, signet ring, and clear cell) [27, 

28]. However, this classification (particularly in regards to BAC) led to a great deal of 

confusion because previously BAC could apply to either invasive or noninvasive well-

differentiated tumors that could grow along alveolar structures, whereas under the new 

WHO classification where it only applied to noninvasive lesions [27]. As such, in the 

IASCL classification completed in 2011, the term BAC was removed and 

adenocarcinoma in situ (AIS) was added in its place. Other changes in the IASCL 

classification include the introduction of minimally invasive adenocarcinoma (MIA), 
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lepidic predominant, micropapillary predominant, and mucinous adenocarcinoma 

classifications as well as the addition of mucinous adenocarcinoma variant and 

replacement of the signet ring and clear cell variants with the enteric variant [27, 28]. 

Molecular subsets While histological subtyping predominately guided treatment 

paradigms in the past, oncologists are increasingly making treatment decisions for 

NSCLC based upon molecular subtyping. NSCLC is one of several cancers that have 

an extremely high mutation rate and only a handful of targetable driver mutations are 

common. The molecular profiles vary greatly in NSCLC depending on histological 

subtype (particularly SCC and adenocarcinoma). In the SCC molecular profile, the most 

common gene alterations are PI3KCA amplifications and mutation [29-33], AKT1 

mutations [34, 35], SOX2 amplifications, FGFR1 amplifications, and PTEN mutations 

[26]. In adenocarcinoma, the typically altered genes (ranked from most common to 

least) [36, 37] are KRAS (typically mutated at residues G12 or G13 in 20-30% of 

patients) [38-40], EGFR (typically mutated either by a deletion within exon 19 or a 

missense mutation in exon 21; present in approximately 5-15% of patients) [41-43], ALK 

(most commonly fused with EML4; seen in approximately 3-5% of patients) [44-46], 

ERBB2 (amplified in 2-4% and mutated via exon 20 insertions in 2-4% of patients) [47-

50], BRAF (mutated either at V600 or within exons 11 and 15 in 1-5% of patients) [51, 

52], PIK3CA (mutated in approximately 2-4% of patients) [32, 33, 53], AKT1 (typically 

mutated at E17 in less than 1% of patients) [54], MAP2K1 (mutated in approximately 

1% of patients) [55], NRAS (mutated in less than 1% of patients) [56, 57], ROS1 (most 

commonly fused with CD74, present in approximately 1-2% of patients) [58], and RET 

(typically fused with KIF5B, present in approximately 1-2% of patients) [58]. 
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Furthermore, there are dramatic differences in molecular profiles between 

adenocarcinomas from smokers and non-smokers. Smokers tend to have more 

mutations overall than non-smokers [54, 59]. Also, EGFR mutations are much more 

common in non-smoking Asian females than in smokers. Likewise, C:G to A:T 

mutations are much more common in smokers than in non-smokers [59, 60].  

Treatment methods Disease stage upon diagnosis plays an important part in 

determining which treatments will be used. For those diagnosed at early stages, 

surgical resection and/or chemotherapy or radiation are the most common treatments. 

Unfortunately, few patients are diagnosed at the early stages, so the vast majority of 

NSCLC patients are diagnosed with late stage disease. As such, most of these patients 

must then rely on radiation and chemotherapy treatments. For patients with any of the 

actionable alterations mentioned previously, therapy can include agents targeted to 

these genes (such as erlotinib, gefitinib, or panitumumab for those with EGFR 

mutations; crizotinib for those with ALK fusions; etc). Unfortunately, approximately 40% 

of NSCLC patients do not have any of these mutations [61, 62]. Also, of the patients 

who can receive these targeted agents, the vast majority will eventually become 

resistant. As such, most patients will eventually have to use common chemotherapies 

for treating this disease, which is typically a platinum doublet with gemcitabine, a 

taxane, or pemetrexed. Treatment options are also somewhat dependent on histological 

subtype. For example, pemetrexed should only be used for patients with non-squamous 

histology as it tends to not be effective in patients with SCC, possibly due to higher 

levels of thymidylate synthase in this histological subtype [63]. Also, it is important to 
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note that SCC patients are not recommended to receive bevacizumab (a VEGF 

inhibitor) due to it being associated with hemorrhage [25, 64].  

The CDK/Rb/E2F Pathway Background Information 

 The retinoblastoma protein (commonly called Rb) was the first tumor suppressor 

identified, and is widely recognized as one of the most important tumor suppressors in 

humans [65-67]. The gene encoding this protein, RB1, is commonly altered in 

retinoblastoma, a recessive genetic disease in children that involves the formation of 

tumors in the retina. It was identified in 1971 that a likely explanation for the differences 

in retinoblastoma presentation in patients (such as unilateral tumors (meaning tumors 

form in one eye) versus bilateral tumors (where there are tumors in both eyes), age of 

disease presentation, family history) could be related to mutations of both copies of a 

gene in each patient. For example, those with a family history of retinoblastoma would 

inherit one mutated copy of the gene and would only need the other gene copy to 

become mutated in order for tumors to form (thus leading to a higher frequency of 

bilateral tumors and earlier age onset of the disease), while those without a family 

history would need both copies of a gene to become mutated before tumors could form 

(thus making unilateral tumors and later age onset of the disease more common in 

these patients). This “two-hit” hypothesis could therefore serve as an apt explanation for 

this disease [68].  

Along with the similar “pocket” proteins p107 and p130, Rb is responsible for 

regulating cell cycle progression [69, 70]. The pocket protein family regulates cell cycle 

through binding and inhibiting the transcriptional activity of early 2 factors (E2Fs), and 

its ability as a tumor suppressor activity is strongly linked to this role [71-77] (Figure  
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1.1). In G0 or early G1 of the cell cycle, these pocket proteins are unphosphorylated and 

bound to E2Fs [78, 79]. Mitogenic stimulation encourages the activity of cyclin-

dependent kinases (CDKs), which are kinases that typically need to be bound to a 

cyclin in order to phosphorylate various substrates. Throughout G1, CDKs -2, -4, and -6 

phosphorylate and inactivate these pocket proteins. Once these proteins are 

inactivated, E2Fs are freed to transcribe genes (such as dihydrofolate reductase 

(DHFR)) that are important for S phase entry [80, 81]. In order to avoid aberrant cell 

cycle entry, CDK inhibitors from the INK4 family (such as CDKN2A (commonly known 

Figure 1.1: The CDK/Rb/E2F pathway and cell cycle regulation. (A.) In G0 or early G1, 
pocket proteins such as Rb can bind in a repressive complex with E2Fs and their 
dimerization partner (DP) proteins on the promoters of genes needed for S phase entry. 
(B.) Throughout G1, CDKs -2, -4, and -6 can phosphorylate and inactivate Rb, thus 
allowing for the transcription of S phase genes. (C.) Later in S phase, E2F transactivation 
of S phase genes is no longer necessary. E2Fs and DPs detach therefore from these 
promoters, then are phosphorylated and targeted for degradation. 
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as p16), CDKN2B (p15), CDKN2C (p18), CDKN2D (p19)) [82] and the CIP/KIP family 

(such as CDKN1A (p21) CDKN1B (p27), and CDKN1C (p57)) [83] prevent CDKs from 

phosphorylating pocket proteins and force cells to remain in G1 [84, 85]. 

E2Fs have been implicated in a variety of cellular functions, including metastasis 

[86-91], angiogenesis [88, 90, 92-97], apoptosis [98-108], and cell cycle regulation [100, 

105-110]. Traditionally, E2Fs are classified as either transcriptional activators 

(commonly E2F1-3) or repressors (commonly E2F4-8) based on the results of previous 

overexpression experiments [111]. However, these classifications are not rigid, and E2F 

activity varies depending on the cellular context. As activators, E2Fs are important for 

proliferation through their transcription of S phase genes, thus driving the cell cycle 

forward. E2Fs activate transcription via association with histone acetyltransferase (HAT) 

activity [112, 113]. As repressors, E2Fs inhibit transcription of genes utilized in S phase 

entry by binding to their promoters as part of repressive complexes that also contain a 

pocket protein which can then recruit chromatin modifiers such as histone deacetylases 

(HDACs) [112-114]. By repressing this transcription, repressor E2Fs can inhibit cell 

cycle progression. 

The CDK/Rb/E2F Pathway in Lung Cancer 

The CDK/Rb/E2F pathway is disrupted in virtually every instance of human lung 

cancer, thus playing a major role in the unrestrained proliferation, metastasis, and 

angiogenesis observed in the disease. This pathway tends to be altered very differently 

in SCLC versus NSCLC. 

In SCLC, the most common mechanism of disruption of this pathway is mutation 

or deletion of RB1. In fact, approximately 90% of small cell lung cancers lack a 
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functional Rb protein [12, 13]. The CDK inhibitors CDKN2B, CDKN2A [115, 116], 

CDKN1B [117], and CDKN1A [118] are typically not mutated, deleted, nor expressed to 

a lesser degree compared to normal tissue. However, CDKN2A can be found to be 

either mutated or deleted in SCLC where RB1 is still wildtype [119]. SKP2 is sometimes 

amplified and overexpressed [120], while mutation of RBL1 or RBL2 is very uncommon 

in SCLC [121]. 

In contrast, Rb mutation occurs in 15–30% of NSCLC [12, 122], and deregulation 

of the CDK/Rb/E2F pathway more commonly occurs via silencing of the CDK inhibitor 

CDKN2A [115, 116, 119, 123-125]. Interestingly, an inverse relationship between Rb 

and p16 expression has been noted in lung cancer [119, 123, 126, 127]. CDKN2B is 

deleted in NSCLC at a lower frequency than CDKN2A, but is typically not mutated nor 

methylated [116, 128, 129], while CDKN2C deletions and mutations are also uncommon 

[128, 129]. The CDK inhibitor protein p27 is commonly shown to be expressed to a 

lesser degree in NSCLC [117, 130] largely due to increased protein degradation [131] 

by proteins such as SKP2 [132], which can be overexpressed in NSCLC [133, 134]. 

There is decreased protein expression of p57 in approximately 90% NSCLC, both 

because of degradation by SKP2 and methylation of the CDKN1C promoter [132, 135]. 

CCND1 is also commonly altered in NSCLC, where it is amplified in 5-30% [136-138] 

and overexpressed in 18-76% of tumors [136-139]. KRAS mutations are common in this 

disease, and one interesting observation in transgenic mouse models is that mice with 

KRASG12V  mutations have a synthetic lethal interaction with CDK4, suggesting that 

targeting this CDK may be a useful strategy in treating this molecular subset of NSCLC 

[140]. Mutation of CDKN1A [118], RBL1, or RBL2 is very uncommon in NSCLC [121].  
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In most cases of NSCLC where the RB1 gene is intact, inhibitors of CDK4 and 6 

would represent a potential way to target this pathway. This hypothesis has been 

examined in several clinical trials where preliminary results in breast cancer were 

promising [141-143], suggesting that CDK/Rb/E2F pathway inhibitors may have an 

important role to play in the treatment of various cancers. 

Regarding the importance of this pathway in lung cancer, determining novel 

strategies for targeting and identifying its activity could prove to be very useful in the 

treatment of this disease. In this dissertation, three studies in relation to this pathway in 

lung cancer (especially adenocarcinoma) will be discussed. The first of these is the 

investigation of the efficacy of a small-molecule pan-E2F inhibitor in lung cancer, 

especially in relationship to its potential synergy with common chemotherapeutic 

agents. Next, we discuss our studies with an E2F signature that is both prognostic and 

able to predict early-stage lung adenocarcinoma patient benefit from adjuvant 

chemotherapy. The third project discussed here is in relation to CDK12, a serine-

threonine kinase that appears to have a role in DNA damage response (in which DNA 

damage leads to the activation of proteins to repair the DNA and which can lead to cell 

survival, cell cycle arrest, and possibly apoptosis) and its relationship to cisplatin 

sensitivity in cells lacking KRAS and EGFR mutations and ALK fusions.  
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CHAPTER TWO: 

MATERIALS AND METHODS 

 

Cell Lines and Therapeutic Compounds 

 Cell lines (obtained either from ATCC or originators) were authenticated and 

provided by the Moffitt SPORE’s Lung Cancer Cell Core facility. All cell lines were 

grown in sterile conditions at 37°C with 5% CO2 and maintained free of Mycoplasma. 

All NSCLC cell lines were grown in either RPMI with 5% FBS or RPMI with 10% FBS 

without antibiotics, while all SCLC cell lines were grown in RPMI with 10% FBS (from 

either Sigma or Atlanta Biologicals) and penicillin/streptomycin (10,000 units/mL of 

penicillin and 10,000 µg/mL of streptomycin stock solution, catalog number 15140, 

Gibco).  

 HLM006474 was synthesized and validated by the Moffitt Chemistry Core as 

previously described [144] and dissolved in dimethyl sulfoxide (DMSO). Cisplatin (from 

Sigma) and paclitaxel (from Sigma) were dissolved in DMSO. Gemcitabine (from the 

Moffitt Pharmacy), carboplatin (from Selleck Chemicals), and pemetrexed (from 

Chemietek) were dissolved in water. The CDK inhibitors indirubin (from Fisher), 

purvalanol B (from R&D Systems), roscovitine (from Sigma), and dinaciclib (from 

Chemietek) were dissolved into DMSO, while SNS-032 (from Jack Hunt at Bristol-Myers 

Squib) was dissolved in water.  
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Western Blotting 

 Approximately 30 µg of whole cell lysates were resolved in each lane of 10-12% 

gels via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

Protein was then wet-transferred onto polyvinylidene fluoride (PVDF) membranes for 

two hours at 100 volts on ice. Membranes were blocked in 5% milk for 30 minutes at 

room temperature, rinsed for 5 minutes in water, then placed in primary antibodies 

diluted 1:1000 in phosphate buffered saline (PBS). Antibodies used for immunoblotting 

were as follows: E2F1 (C-20, sc-193, Santa Cruz), E2F3 (C-18, sc-878, Santa Cruz), 

PARP (#9542L, Cell Signaling Technology), monoclonal β-actin (clone AC-15, cat no: 

A5441, Sigma), E2F4 (c-108, sc-512, Santa Cruz), Rb (Ab-1, #OP28, Calbiochem), 

CDK5 (C-8, sc-173, Santa Cruz), CDK9 (D-7, sc-13130, Santa Cruz), CDK12 (ab57311, 

Abcam), and ATM (D2E2, #2873s, Cell Signaling Technology). Detection of proteins 

was accomplished using horseradish-peroxidase-conjugated secondary antibodies and 

enhanced chemiluminescence (ECL) purchased from Amersham or Thermo Scientific. 

For all densitometric analysis of protein expression, Adobe Photoshop CS was used to 

quantify Western blot band intensity readings directly from exposed films using the 

rectangular marquee tool/histogram and the inverted scanned film image. This same 

square was used for all further band readings in order to ensure that the same area was 

analyzed for each band. The readings were then adjusted to account for actin and 

background and arbitrarily normalized to the cell line H23 (assigned a value of 1). 

Real-Time Polymerase Chain Reaction (PCR) 

 Total RNA was harvested from cells via RNeasy RNA extraction kit (Qiagen), and 

then converted to cDNA through use of the iScript cDNA synthesis kit (Bio-Rad). This 
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cDNA was then utilized in real-time PCR with either iQ SYBR Green Supermix (Bio-

Rad) or PerfeCTa SYBR Green SuperMix (Quanta Biosciences, VWR) and primers 

from Integrated DNA Technology. The sequences for the real-time PCR primers used 

throughout this work are detailed in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2.1: Summary of human real-time PCR primers.  

Gene

Forward or 

Reverse primer? Sequence (5'-3')

Forward GCTGGACCACCTGATGAATATC

Reverse TCTGCAATGCTACGAAGGTCCTG

Forward CGTCTCTTGGTCTGCTCAC

Reverse CACTTCTGCTGCCTTGTTC

Forward CTGAAGAGTGTGAGTGGTC

Reverse GCAGAGGTGGAGGTGTAG

Forward CTGTGTGTGGTGAGGGACAC

Reverse CTTGTCCTGGTCCATCTGGT

Forward CGTCAGTGAGCAGCATGAAT

Reverse TCCCGTTCCCATTTGTAGAG

Forward CAGGTTTGGAGTGGGACAGT

Reverse ACTTCCTCCAGCATAGCCAA

Forward GGGGCTGGGTAAATGGCAAA

Reverse TGGCACTGGCTCTGGGTTCG

Forward ATTCCCGTCCGCTGTTAC

Reverse TCCTCTTCAACTGGTCATCG

Forward ATTGACCTGTGGGGTGCTGGGT

Reverse TGGAGCCGCAGAGCTGACTGAT

Forward ATCGTCACCACCAGCACAG

Reverse CATAGTCATCAGTCTCCTCATTCG

Forward CAGGTCCTCAACAGGGTTGT

Reverse CAGTCTGAAGGGGCAGAAAG

Forward ATTTGAAAACCCCAAGGGAC

Reverse CTTGTTTCCCGACTGTGGTT

Forward TGCTGGCCTATCTACAGCCT

Reverse ATTTTGTGCCTCCACTGTCC

Forward GAGTCAACGGATTTGGTCGT

Reverse TTGATTTTGGAGGGATCTCG

CDK9

CDK12

GAPDH

FANCI

BRCA1

ATM

MCM10

CCNE2

Tubulin

CDK5

E2F1

E2F3

E2F4

MCM2
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APO-BrdU TUNEL Assays 

 Apoptosis levels of Rb +/+ and Rb -/- cells were measured through APO-BrdU 

Terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) 

assays (Apoptosis Detection Kit (APO-BrdU) (Cat. No. 556405, BD Pharmingen)) as 

published previously [103, 110, 144-147]. Briefly, floating and attached cells (following 

trypsinization) were harvested, washed in PBS, and resuspended in PBS with 95% 

ethanol added drop-wise while vortexing to reach a final concentration of 70% ethanol 

to fix. Cells were then pelleted, washed, and processed for analysis according to 

manufacturer protocol. At least 1 × 104 cells per experimental condition were analyzed 

for fluorescence on a Becton-Dickinson FACScan using Cell Quest software. 

Cell Viability Assays 

 For the CellTiter-Blue cell viability assays of Chapter Three, 1 x 103 cells in 24 μL 

were plated in each well of 384-well plates and incubated overnight at 37°C, 5% CO2. 

The following day, drugs were diluted in media and 6 μL of each dilution was added to 

the appropriate wells using an automated pipetting station. Four replicate wells were 

used for each drug concentration. The cells were incubated with the drug for 120 hrs 

and then 5 μL CellTiter-Blue reagent (Promega Corp., Madison, WI) was added. Cell 

viability was assessed by the ability of the remaining treated cells to bioreduce resazurin 

to resorufin (579 nm Ex/584 nm Em). Fluorescence was read with a Synergy HT 

microplate reader (Bio-Tek Instruments, Inc., Winooski, VT). IC50s were determined 

using a sigmoidal equilibrium model regression using XLfit version 4.3.2 (ID Business 

Solutions Ltd.) and were defined as the concentration of drug required for a 50% 

reduction in growth/viability.  
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 For 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium (MTS) cell viability assays in Chapter Three, CellTiter 96 AQueous One 

Solution (Promega) was added according to vendor instructions to cells for 2 hours 

following drug treatment for 72 hrs. Cells were maintained at 37°C and 5% CO2 for all 

incubations. All experiments were performed in triplicate and repeated at least three 

times. 

 For the CellTiter-Glo cell viability assays of Chapter Five, 40 µL of cells at 1000 

cells/well were seeded in triplicate for testing ten different concentrations of cisplatin (30 

wells total for each cell type) into 384-well plates. Two wells along all outer edges of the 

plate were each filled with 80 µL of media alone. The following day, 10 µL of each drug 

at 1/3 serial dilutions for ten concentration points were added to the cells along with 

sufficient DMSO to maintain constant DMSO concentrations in all treatments. Cells 

were maintained at 37°C and 5% CO2 for all incubations. Following 120 hours of 

treatment, 10 µL of CellTiter-Glo assay reagent (Promega) was added to each well and 

measured in a Molecular Dynamics M5 Spectrophotometer Luminescence reader. 

Calculations were made using GraphPad Prism. 

Combination Indices Calculation 

 IC50s as calculated via the CellTiter-Blue experiments were used to design the 

drug combination experiments. 6474 was combined with cisplatin, gemcitabine, and 

paclitaxel at ratios of 1:1, 500:1, and 4000:1, respectively. CellTiter-Blue assays were 

used to determine cell viability and results were analyzed for synergistic, additive, or 

antagonistic effects using the combination index (CI) method by Chou and Talalay 
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[148]. Combination indices of CI < 1, CI = 1, and CI > 1 indicate synergism, additive 

effects, and antagonism, respectively. 

Bliss Cooperation Calculation 

 Cells were seeded in triplicate into 384 well plates at 2.5 x 104 cells/mL in 40 µL 

(or 1000 cells) per well. The next day, 10 µL of cisplatin and CDK inhibitors were added 

to cells in serial ¼ dilutions for 6 different dosages. Cisplatin was the base drug and its 

dosages ranged from 0 µM to 192 µM in H322 cells and 0 µM to 128 µM in H1648 cells 

(based on previously determined IC50s), while all CDK inhibitors ranged from 0 µM to 10 

µM in both cell lines. DMSO concentrations were kept constant in all wells. Cells were 

maintained at 37°C and 5% CO2 for all incubations. Approximately 72 hours later, 10 µL 

of CellTiter-Glo assay reagent was added to each well and read in a PE Envision 

Luminometer. Analysis was conducted in GraphPad Prism following the Bliss additivity 

model [149].  

Statistical Analysis 

 For the 6474 real-time PCR analysis for time point experiments, the difference in 

expression of each experimental gene and expression of the control gene was 

calculated for each cell line at each time point. Then, the difference between each of the 

non-0 hour time points and the 0 hour time point readings for each gene in each cell line 

was calculated using T-Tests with Welch’s correction. For Chapter Three, all paclitaxel 

IC50s were log-transformed to improve normality. The correlation of E2F3 mRNA and 

protein expression with log paclitaxel IC50s was calculated using Pearson correlation 

coefficient. Wilcoxon rank-sum tests were used to explore the difference of cell viability 

in control siRNA treatment with either E2F3a or E2F3b siRNA treatment. 
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 The correlation between CDK12 IHC and Ki67 IHC results were determined via 

Pearson correlation coefficient. 

Small Interfering RNA (siRNA) Transfections 

 Cells were plated at ~50% confluency, then transfected with siRNA (all from 

Dharmacon) using Lipofectamine 2000 per manufacturer instructions. The siRNA used 

were siGENOME Non-Targeting siRNA #2, E2F1 ON-TARGETplus SMARTpool siRNA, 

E2F4 ON-TARGETplus SMARTpool siRNA, RB1 ON-TARGETplus SMARTpool siRNA, 

CDK5 custom siRNA (sense sequence GAGCUGAAAUUGGCUGAUU, ON-TARGET 

enhanced antisense loading, standard A4 processing, UU overhangs), CDK9 custom 

siRNA (sense sequence GGCCAAACGUGGACAACUA, standard A4 processing, UU 

overhangs), CRKRS ON-TARGETplus SMARTpool siRNA, CDC2L5 ON-TARGETplus 

SMARTpool siRNA, PCTK1 ON-TARGETplus SMARTpool siRNA, and E2F3a, E2F3b, 

and E2F3a+b sequences from Hurst et al [150]. Cells were trypsinized and aliquoted for 

each respective experiment either approximately 24 hours following transfection or 

while changing the media after the transfection (per standard manufacturer protocol).  

Animal Studies 

 Four immunodeficient NU/NU nude female mice from Charles River (8 weeks, 

~20 grams) were used to determine the maximum tolerated dose (MTD) of 6474 in 

accordance to a protocol approved by the Institutional Animal Care and Use Committee 

at the University of South Florida. Two mice were given injections of DMSO only while 

the two other mice were given escalating doses of 6474 (at 5, 10, 20, 30, and 40 mg/kg) 

twice a week for one week per dosage. Doses were prepared from a stock solution with 

PBS added so that all injections were 200 μL. After each treatment, mouse weights 
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were measured and animal behavior noted. Following the highest dosage, any 

remaining mice were sacrificed and necropsies performed to harvest the organs. Lungs, 

hearts, livers, spleens, kidneys, pancreases, and intestines of each mouse were stored 

in formaldehyde, and then used to create formalin-fixed, paraffin-embedded (FFPE) 

blocks. These tissues were analyzed via immunohistochemistry by the Pathology Core 

at H. Lee Moffitt Cancer Center following their standard protocol for hematoxylin and 

eosin (H&E) and cleaved caspase 3 (#9661, Cell Signaling Technology) staining. 

Microarray Analysis 

H322, H1648, and H1666 cells were transfected with CDK12 siRNA, and total 

RNA was harvested and analyzed via Affymetrix U133A microarrays. These 

microarrays were normalized against the median sample (H1648 CDK12 siRNA) using 

IRON [151].  For each knockdown versus control pair, probesets were filtered by 

requiring a log2 intensity >5 for at least one of the two paired samples, and a fold-

change in magnitude ≥ 1.5. H1666 behaved in a very different manner from the other 

two cell lines and were removed from the analysis. A further filter was then applied, 

requiring each probeset to pass the above cutoffs in the two remaining cell lines and 

change in the same direction, yielding 1395 probesets. 

Signature Development 

 Samples from A549 and H1299 cell lines were normalized separately with the 

RMA method using Affymetrix Power Tools software, v1.12.0 (Affymetrix, Inc., Santa 

Clara, CA, USA), due to large differences in gene expression between cell lines.  Log2 

ratios were then calculated between knockdown and control.  The following filters were 

then applied to identify differentially expressed probesets.  1) For each knockdown, low 
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expressing probesets were discarded by requiring at least one sample to express a 

normalized log2 intensity greater than 6. 2) Second, we required both cell lines to agree 

in direction of change, to change by more than ±1.1-fold, and at least one of the cell 

lines must change by at least ±1.5-fold. 3) The final list of E2F-related genes was 

assembled by including all probesets that were differentially expressed in at least 5 of 

the 6 knockdown conditions, yielding 471 probesets. 4) As a final filter to reduce the 

number of genes in the signature, probesets that differ between tumor and adjacent 

normal lung tissue were identified using GEO [152] datasets GSE18842 (45 adjacent 

normals and 46 tumors) and GSE19188 (58 adjacent normals and 87 tumors, after 

discarding outlier samples).  Each dataset was normalized with IRON [151] and 

analyzed separately.  For each probeset, the average and standard deviation (SD) of 

the adjacent normal log2 intensities were calculated.  Upper and lower bounds for 

baseline adjacent normal expression were set at ± 3 SD from average.  The number of 

samples outside ± 3 SD was counted for both adjacent normals and tumors.  A probeset 

was identified as differentially expressed within a subset of tumors if the following 

criteria were met: (A) must have at least three log2 intensities ≥5 across all samples, (B) 

must have at least three tumor samples outside 3 SD (significant), (C) the frequency of 

significant samples within tumors must be at least twice that observed within adjacent 

normals, and (D) significant tumor samples must be at least 1.5-fold further from the 

adjacent normal average than significant adjacent normals.  The lists of differentially 

expressed probesets from each dataset were then intersected to yield the final 5604 

probesets.  The intersection of this list with the E2F-related signature results in 145 

probesets. 
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GeneGo Analysis 

 Entrez GeneIDs for the 471-probeset and 145-probeset E2F-related signatures 

were entered into GeneGo MetaCore for pathway enrichment analysis.  Both signatures 

returned cell cycle, followed by cell division-related pathways involving DNA damage, as 

the most significant pathways. 

Overall Survival Analysis 

 An overall E2F score was generated by principal component analysis to reflect 

the combined expression of the E2F signature genes. Specifically, we used the first 

principal component (a weighted average expression among the E2F signature genes), 

as it accounts for the largest variability in the data, to represent the overall expression 

level for the signature. That is, E2F score = ∑wixi, a weighted average expression 

among the E2F genes, where xi represents gene i expression level, wi is the 

corresponding weight (loading coefficient) with ∑w2i=1, and the wi values maximize the 

variance of ∑wixi. This approach has been used to derive various gene signatures in 

breast cancer and lung cancer [153, 154]. For classifying patients as having either low 

or high E2F scores, the median split of E2F score was used to stratify patients. Patients 

were placed in the low group if the E2F score was less than the median of E2F score 

and in the high group if the E2F score was greater than or equal to the median of the 

E2F score. 

To determine the prognostic value of the E2F signature in both MCLA and 

SPORE 442 cohorts, the Kaplan-Meier method with log rank-test was used to test if the 

survival curves were different between the two groups (low and high E2F score). To find 

the predictive value in JBR.10 cohort, the Cox proportional hazards model with an 
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interaction term was used to investigate a statistically significant interaction between 

ACT and the E2F gene signature, which could suggest differential treatment effects 

among those in the high or low E2F score groups. A p-value less than 0.05 was 

considered statistically significant. For the TMA data, the Kaplan-Meier method with log 

rank-test was used to test if (A) high/low E2F had a significant survival difference, (B) 

high/low Ki67 yielded a significant survival difference. A p-value of less than 0.05 was 

considered as statistically significant. 

Clinical Data for Patient Samples 

 The Molecular Classification of Lung Adenocarcinoma (MCLA) from the 

Director’s Challenge Consortium is a dataset comprised of microarray data from 442 

lung adenocarcinoma tumors from H. Lee Moffitt Cancer Center, the University of 

Michigan Cancer Center, Dana-Farber Cancer Institute, and Memorial Sloan-Kettering 

Cancer Center. Samples were processed and analyzed through microarray on U133A 

GeneChip microarrays from Affymetrix [155]. 

The SPORE442 was composed of microarray data from 442 lung 

adenocarcinoma patients as part of H. Lee Moffitt’s Total Cancer Care Network. Patient 

samples were analyzed via U133A GeneChip microarrays from Affymetrix.  

The JBR.10 clinical trial included 482 stage IB-II NSCLC patients, of which 169 

had their frozen tumor tissues banked. Of these, 133 were analyzed on U133A 

GeneChip microarrays by Affymetrix and are listed as GSE14814 on Gene Expression 

Omnibus (GEO). Sixty-two of these patients were only observed following surgical 

resection, while the other 71 patients received cisplatin and vinorelbine adjuvant 

chemotherapy (ACT) [156].  
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Tissue Microarray 

 Paraffin-embedded samples from 152 patients (which are a subset of the 

SPORE442 patients from H. Lee Moffitt Cancer Center) were cut into slides and stained 

with H&E. Following analysis by a board-certified clinical pathologist, blocks were 

released for further use as appropriate. Tumor and corresponding normal tissues were 

marked in each sample, and samples where the tissue diameter was at least 0.6 mm 

were punched and arrayed into a paraffin block using a tissue arrayer (Beecher 

Instrument, Silver Spring, MD). The final product contains 145 cores from primary 

adenocarcinomas, 58 cores of adjacent normal tissue, 14 cores from non-lung tissue 

controls (both normal and tumors), and 10 samples of lung cancer cell lines. The 

decrease in the number of primary adenocarcinoma tissues used was due to either the 

core containing tissue other than tumor or due to there being a lack of tissue in the core. 

TMA slides were prepared in 4 µm sections and stained with a rabbit anti-CDK12 

antibody (HPA008038, Sigma-Aldrich). Staining details are available upon request. A 

board-certified clinical pathologist then analyzed the stained TMA using the normal 

tissue cores to determine staining criterion. Cores were scored based on staining as 

positive or negative. 

NanoString Analysis 

 A cohort of 32 patients for whom there were 1) FFPE blocks from which RNA 

could be derived, 2) fresh frozen tissue from which matching RNA could be obtained, 

and 3) microarray data derived from the fresh frozen RNA was identified primarily based 

on availability. Blocks were physically acquired though an established, honest broker 

system under the supervision of the University of South Florida (USF) Institutional 
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Review Board (IRB). The analysis began with 112 candidates that fit all criteria. 

Samples were first reviewed by a certified pathologist to release the blocks for study 

and for pathologic confirmation of a diagnosis of adenocarcinoma, percent malignancy, 

cellularity, stroma, and immune infiltration. Samples with inadequate characteristics or 

that did not match recorded histology were excluded from analysis. Two 5-μm sections 

of each FFPE block were cut for H&E staining and five sections of 25-μm thickness 

were cut for RNA extraction. Each tissue specimen was processed in Moffitt’s Tissue 

Core facility using Qiagen’s RNeasy FFPE kit. All samples were quality-controlled using 

an Agilent 2100 Bioanalyzer, barcoded, and provided to us. Although the RNA from 

FFPE tissue was highly degraded (see Chapter Four), these amounts of tumor tissue 

produced well over 1000 ng of total RNA (which is sufficient for five NanoString assays). 

These findings suggest that adequate RNA from a single slide should be sufficient for a 

single NanoString assay in the future. The NanoString Assays were performed using 

200-ng aliquots of RNA by Sean Yoder in the Molecular Genomics Core Facility. He 

performed the assays using the NanoString nCounter Analysis system with codesets 

and reagents designed and provided directly from NanoString. After codeset 

hybridization overnight, the samples were washed and immobilized to a cartridge using 

the NanoString nCounter Prep Station. Cartridges were scanned in the nCounter Digital 

Analyzer at 555 fields of view (FOV) for the maximum level of sensitivity. Raw 

NanoString counts (number of counts/gene/sample) were normalized technically using 

spiked-in positive control probe sets and biologically using codesets corresponding to 

nine genes (PRDM4, SART3, GIGYF2, HDAC3, USP4, C2orf42, MUS81, TATDN2, 

DEDD). These nine genes were elected as highly invariant among tissues in published 
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work [157] and were further selected based on having the least variation in the 

SPORE442 based on microarray. 

Protein Microextraction 

 Per protocol kindly provided by Alvaro Monteiro’s lab [158, 159], 100 mm plates 

of cells were washed with PBS and then scraped in 500 µL PBS into an Eppendorf tube. 

Cells were pelleted by centrifugation at 4°C at 5000 rpm for 5 minutes, then supernatant 

was aspirated and 60 µL of Buffer A (732.3 µL of ddH2O, 20 µL of 1M Tris pH 7.4, 200 

µL 50% glycerol, 10 µL 1M KCl, 20 µL 10% NP-40, 2 µL 0.5M EDTA pH 8.0, 10 µL 

PMSF, 10 µL protease inhibitors, 2.4 µL 250 mM β-mercaptoethanol) was added to 

each pellet. Cells were resuspended by flicking and left for 2 minutes on ice. Samples 

were then centrifuged at 4°C at 13,200 rpm for 5 minutes, and the supernatant (the 

cytoplasmic extract) was harvested and stored at -70°C. Pellets were then resuspended 

in 20 µL Buffer B (223.15 µL ddH2O, 10 µL 1M Tris pH 7.4, 200 µL 50% glycerol, 5 µL 

1M KCl, 50 µL 4M NaCl, 1 µL 0.5M EDTA pH 8.0, 5 µL PMSF, 5 µL protease inhibitors, 

1.2 µL 250 mM β-mercaptoethanol) by pipetting and incubated for 30 mins on ice. 

Samples were centrifuged at 4°C at 13,200 rpm for 5 mins, and the supernatant (the 

nuclear extract) was harvested and stored at -70°C. Finally, 20 µL of acid extraction 

buffer (75 µL ddH2O, 125 µL 2M HCl, 100 µL 50% glycerol, 200 µL 250 mM β-

mercaptoethanol) was added to each pellet and vortexed to mix. Cells were incubated 

for 2 mins at room temperature, centrifuged at 9,600 rpm at room temperature for 5 

minutes, and then supernatant was harvested. This supernatant (the chromatin extract) 

was mixed with 7.5 µL of neutralization buffer (220.8 µL ddH2O, 9.6 µL 1M Tris pH 7.4, 

9.6 µL protease inhibitors) and 2.5 µL  of 4M NaOH, and then stored at -70°C. 
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CHAPTER THREE: 

E2F INHIBITION SYNERGIZES WITH PACLITAXEL IN LUNG CANCER CELL LINES 

 

Introduction 

As mentioned earlier, E2Fs are important within lung cancer for their role in a 

variety of processes. The E2Fs that will be most discussed in this work include E2F1, 

E2F3, and E2F4. E2F1 is traditionally recognized as an activator E2F, and is widely 

recognized for its roles in proliferation [109, 160-164] and apoptosis [100] (both p53-

dependent [163, 165-173] and p53-independent mechanisms [174-177]), depending on 

the situation. Interestingly, this apoptotic ability appears to be important as a means of 

preventing cancer development, and loss of E2F1’s apoptotic ability is believed to be 

the cause of tumor formation [98] and excessive amounts of mature T cells [99] in  

E2F1-/- transgenic mice. Of all the E2F family members, E2F3 is one of the most 

commonly implicated as having highly oncogenic properties. Like E2F1, it is commonly 

classified as a transcriptional activator E2F. It is the only family member individually 

required for cellular proliferation to occur [178-182], and is important for transcription of 

various genes needed for S phase entry as well as G2/M phases (such as AURKA 

[183], CDC2 [184], and CCNB1 [184, 185]). There are two E2F3 isoforms, E2F3a and 

E2F3b, each resulting from transcription at two different promoters. E2F3b levels 

remain constant throughout the cell cycle, whereas E2F3a expression levels fluctuate 
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and peak around the G1/S transition [186-188]. Mouse knockout studies reveal that 

E2F3a and E2F3b are generally compensatory for one another [189, 190], but deletion 

of both isoforms is lethal [178, 189]. E2F3 is more highly expressed in multiple cancers 

(see [111] for a review), including lung [191], and its activity has been correlated with 

increased sensitivity to taxane treatment in ovarian cancers [192] and ER-negative 

breast cancer [193]. E2F4 is traditionally recognized as a repressor E2F. E2F4 is the 

most abundant E2F protein present in cells [194], and its protein expression levels 

remain constant throughout the cell cycle [195]. It is known to shuttle between the 

nucleus and the cytoplasm depending on the cell cycle stage [196, 197]. Previously, our 

lab demonstrated that depleting cancer cells of this E2F enhances sensitivity to a 

variety of chemotherapeutic agents, suggesting that E2F4 may be involved in promoting 

cell survival [146]. Transgenic E2F4-/- mice have been shown to have craniofacial 

defects, which can thus increase their susceptibility to infections and eventually lead to 

death [198]. 

Numerous methods of targeting the CDK/Rb/E2F pathway have been explored in 

cancer. One method involves the use of demethylating agents, such as 5-aza-2’-

deoxycytidine, which can demethylate the promoters of genes such as CDK inhibitors 

CDKN2A and CDKN1C and restore their expression, thus promoting cell cycle arrest 

[199-202]. However, this method is not very specific. A different, popularly explored 

method of targeting this pathway has been through the use of ATP-competitive CDK 

inhibitors. Kinases have been more commonly targeted for inhibitor development, thus 

making them a more desirable target. However, there can be issues with specificity to 

cell cycle-related CDKs alone (such as those seen with flavopiridol), thus leading to off-
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target effects and high toxicity [203]. Also, in regard to inhibitors that are sufficiently 

specific to cell cycle related CDKs (such as palbociclib, also known as PD-0332991), 

another issue can present itself where the compound is only effective in tumors that still 

contain a functional, wildtype Rb protein [142, 204-211]. These compounds would 

therefore not be useful in Rb mutant cells. As such, targeting even further downstream 

in the pathway appeared to be an ideal method for treating a variety of cancers that may 

or may not have RB1 mutations (such as lung cancer), and E2F inhibitors were 

explored. HLM006474 (also discussed here as 6474) is a small molecule pan-inhibitor 

of E2F-DNA binding [144]. Although the IC50 of HLM006474 is relatively high (30 µM), it 

has found use as a tool compound in the laboratory [212-215]. Previous in vivo studies 

in melanoma indicated that the effects of 6474 treatment on different cell lines included 

a reduction in cell proliferation, an increase in apoptosis, and reduced invasion in a 

three-dimensional tissue culture model system [144]. Others have shown that 

HLM006474 may be useful in cancer prevention by leading to an increase in apoptosis 

and decrease of proliferation in tumorigenic human embryonic stem cells [214], as well 

as leading to a decrease in tumor formation in mouse embryos prone to retinoblastoma 

[215]. Together, these results suggest that interference with E2F activity using small 

molecules may have clinical application in cancer therapy.  

In the current work, we provide a more thorough characterization of 6474 in the 

context of lung cancer. HLM006474 reduced the viability of a wide variety of cell lines. 

In combination with several common chemotherapeutic agents, HLM006474 synergized 

with paclitaxel but not with cisplatin nor gemcitabine. In consideration of previously 

published data suggesting a relationship between E2F3 activity and paclitaxel 
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sensitivity, E2F3 was examined further in NSCLC cell lines to determine if this protein 

could possibly explain the observed synergy between paclitaxel and 6474. The data 

demonstrate that E2F3 can alter cellular sensitivity to paclitaxel, and that increased 

expression of this protein observed in short treatments with the compound may have 

enhanced the synergy between paclitaxel and 6474. Taken together, these results 

suggest that specific E2F inhibition may be an effective therapy for lung cancer patients, 

especially if combined with other chemotherapeutic agents such as paclitaxel. Also, 

these results suggest that E2F3 could be useful as a biomarker for paclitaxel sensitivity 

in NSCLC. 

Results 

 Sensitivity to 6474 in Lung Cancer Cell Lines Vary Between 15-75 μM 

 Seventeen lung cancer cell lines (eight NSCLC cell lines and nine SCLC cell 

lines) were treated with 6474 for 120 hours to determine their IC50s (Table 3.1). These 

IC50s ranged from 15 to 75 μM, and the overall average IC50 (31.41 ± 6.11 µM) is 

roughly equivalent to the previously determined biochemical IC50 (29.8 ± 7.6 µM) [144]. 

No significant difference between the average IC50s for NSCLC (27.99 µM) versus 

SCLC (34.46 µM) was detected.  

 Rb-Null Cells Are More Sensitive to 6474 than Syngeneic Rb+/+ Cells 

 Since 6474 is a pan-E2F inhibitor, it was expected that cells lacking RB1 would 

have increased sensitivity to 6474. However, it was surprising to note that SCLC cell 

lines were not more sensitive to 6474 than NSCLC cells (as shown in Table 3.1) even 

though they almost universally lack functional Rb [12, 13]. To explore whether 6474 

would function as expected in syngeneic cell lines where the only variable is Rb status, 
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Rb+/+ and Rb-/- mouse embryonic fibroblasts (MEFs) (kindly provided by Dr. Frederic 

Kaye’s lab at the University of Florida) were treated with varying concentrations of 6474.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following confirmation of the cells’ Rb status using Western blots (Figure 3.1A), cells 

were treated with 0, 20, 40, or 60 µM 6474. Rb-/- cells analyzed via Western blots 

demonstrated apoptosis following lower doses of 6474 as demonstrated by PARP 

cleavage (Figure 3.1B). Likewise, APO-BrdU TUNEL assays gave similar results, 

Table 3.1: 6474 IC50s vary in lung cancer cell lines from 15-75 μM. 

Note: Table reprinted from the following: Kurtyka, C.A., L. Chen, and W.D. Cress, E2F 
inhibition synergizes with paclitaxel in lung cancer cell lines. PLoS One, 2014. 9(5): p. 
e96357.  

Cell Line Tumor Type IC50 (in μM) STDEV

A549 NSCLC 31.80 12.90

NCI-H1299 NSCLC 27.30 16.50

NCI-H1650 NSCLC 34.00 3.60

NCI-H1975 NSCLC 44.30 12.10

NCI-H292 NSCLC 28.90 3.10

NCI-H358 NSCLC 19.10 4.60

NCI-H441 NSCLC 15.50 3.40

NCI-H661 NSCLC 23.00 3.20

DMS-79 SCLC 22.30 3.10

SCLC-16HC SCLC 24.90 4.00

SCLC-16HV SCLC 51.40 10.90

SCLC-86M1 SCLC 15.70 2.40

DMS114 SCLC 23.80 1.50

NCI-H209 SCLC 21.90 7.19

NCI-H69 SCLC 53.70 5.44

NCI-H82 SCLC 21.30 3.02

NCI-N417 SCLC 75.10 6.96

NSCLC Average 27.99 7.43

SCLC Average 34.46 4.95

Overall Average 31.41 6.11
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showing greater levels of terminal deoxynucleotidyl transferase dUTP nick end labeling 

in Rb-/- cells (Figure 3.1C). Further confirmation was shown via CellTiter-Blue cell 

viability assays, where Rb-/- cells had 6474 IC50s that were less than half of those for 

Rb+/+ cells (Figure 3.1D). Therefore, these experiments demonstrate that for syngeneic 

cell lines, those lacking Rb are more sensitive to E2F inhibition as expected.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Rb-null MEFs are more sensitive to 6474 than syngeneic Rb+/+ cells. Rb+/+ 
and Rb-/- mouse embryonic fibroblasts (MEFs) were confirmed to have the expected levels 
of Rb (A.), then treated with varying concentrations of 6474. Rb-/- cells were shown to be 
more sensitive to 6474 via increased PARP cleavage (B.), increased APO-BRDU 
incorporation (C.), and lower 6474 IC50s (D.).  

A. 

- PARP

- cleaved PARP

:6474, μM 0 20 40 60 0 20 40 60

MEF Rb-/-MEF Rb+/+

C. 

Rb

-/-+/+

- Rb

- pRb (807/811)

- Actin

B. 

- Actin

D. HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120

MEFs Rb+/+

Ave. IC50: 16+3 μM

MEFs Rb-/-

Ave. IC50: 7+2 μM

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

10 20 40 605

μM 6474, log scale

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120
HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120
HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120

MEFs Rb+/+

Ave. IC50: 16+3 μM

MEFs Rb-/-

Ave. IC50: 7+2 μM

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

10 20 40 605

μM 6474, log scale

MEFs Rb+/+

MEFs Rb-/-

0

5

10

15

20

25

30

35

0 20 40 60

Rb +/+

Rb -/-

%
 A

P
O

-B
rd

U
 i
n
c
o
rp

o
ra

ti
o
n

μM 6474

MEF Rb-/-

MEF Rb+/+

A. 

- PARP

- cleaved PARP

:6474, μM 0 20 40 60 0 20 40 60

MEF Rb-/-MEF Rb+/+

C. 

Rb

-/-+/+

- Rb

- pRb (807/811)

- Actin

B. 

- Actin

D. HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120

MEFs Rb+/+

Ave. IC50: 16+3 μM

MEFs Rb-/-

Ave. IC50: 7+2 μM

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

10 20 40 605

μM 6474, log scale

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120
HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120
HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120

MEFs Rb+/+

Ave. IC50: 16+3 μM

MEFs Rb-/-

Ave. IC50: 7+2 μM

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

10 20 40 605

μM 6474, log scale

MEFs Rb+/+

MEFs Rb-/-

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120

MEFs Rb+/+

Ave. IC50: 16+3 μM

MEFs Rb-/-

Ave. IC50: 7+2 μM

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

10 20 40 605

μM 6474, log scale

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120
HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 20.52E-6

[HLM6474-Hi]
-5

%
o

f
u

n
tr

e
a
te

d

-20

0

20

40

60

80

100

120

HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120
HLM6474-Hi

1227 cells:MEFS Rb+/+, -/- r= 0.998 IC50= 8.7E-6

[HLM6474-Hi]
-5

%
o
f

u
n
tr

e
a

te
d

-20

0

20

40

60

80

100

120

MEFs Rb+/+

Ave. IC50: 16+3 μM

MEFs Rb-/-

Ave. IC50: 7+2 μM

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

%
 g

ro
w

th
 o

f 
u

n
tr

e
a

te
d

10 20 40 605

μM 6474, log scale

MEFs Rb+/+

MEFs Rb-/-

0

5

10

15

20

25

30

35

0 20 40 60

Rb +/+

Rb -/-

%
 A

P
O

-B
rd

U
 i
n
c
o
rp

o
ra

ti
o
n

μM 6474

MEF Rb-/-

MEF Rb+/+

0

5

10

15

20

25

30

35

0 20 40 60

Rb +/+

Rb -/-

%
 A

P
O

-B
rd

U
 i
n
c
o
rp

o
ra

ti
o
n

μM 6474

0

5

10

15

20

25

30

35

0 20 40 60

Rb +/+

Rb -/-

%
 A

P
O

-B
rd

U
 i
n
c
o
rp

o
ra

ti
o
n

μM 6474

MEF Rb-/-

MEF Rb+/+



 33 

6474 Synergizes with Paclitaxel, but Not Cisplatin nor Gemcitabine, in 

NSCLC Cell Lines 

 In order to examine whether 6474 would synergize with common 

chemotherapeutic agents used to treat NSCLC patients, combination indices were 

calculated for each combination of 6474 with cisplatin, gemcitabine, and paclitaxel. In 

H1299 cells, 6474 is antagonistic with cisplatin (Figure 3.2A, CI = 1.40) and gemcitabine 

(Figure 3.2B, CI = 1.39), but weakly synergistic with paclitaxel (Figure 3.2C, CI = 0.98). 

This synergy was confirmed via Western blot where there was PARP cleavage in 

samples treated with both 6474 and paclitaxel, but not when untreated or with either 

compound alone (Figure 3.2D). Similar results were seen in H292 cells, where 6474 

was antagonistic with cisplatin (Figure 3.2E, CI = 1.51) and gemcitabine (Figure 3.2F, CI 

= 1.46), but synergistic with paclitaxel (Figure 3.2G, CI = 0.96). 

 Sensitivity to Paclitaxel Correlates to E2F3 Levels 

 It has been previously shown that high E2F3 activity correlates with enhanced 

sensitivity to paclitaxel in ovarian cancer [192] and ER-negative breast cancer [193]. 

Therefore, we wanted to examine whether this might hold true in NSCLC as well. First, 

we compared endogenous E2F3 mRNA levels to log paclitaxel IC50s from ten NSCLC 

cell lines (Figure 3.3A). This analysis demonstrated that there is a significant negative 

correlation between E2F3 mRNA levels and log paclitaxel IC50s. Also, endogenous 

E2F3a and E2F3b protein levels from the same cell lines (Figure 3.3B) were compared 

to IC50s and shown to correlate in a similar, though insignificant, manner (Figure 3.3C). 

To further confirm these findings, H1299 cells were transfected with control, E2F3a, or 

E2F3b siRNA (Figure 3.4A) and treated with paclitaxel, and then their cell  
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Figure 3.2: 6474 synergizes with paclitaxel, but not cisplatin nor gemcitabine, in 
NSCLC cell lines. H1299 cells were treated with 6474 in combination with common 
chemotherapeutic agents and analyzed for synergy using CellTiter Blue assays and Chou-
Talalay analysis. 6474 was antagonistic with cisplatin (A.) and gemcitabine (B.), but 
synergistic with paclitaxel (C.), as confirmed via Western blot (D.). Similar results were 
seen in H292 cells with 6474 and cisplatin (E.), gemcitabine (F.), and paclitaxel (G.). Note: 
Figure reprinted from the following: Kurtyka, C.A., L. Chen, and W.D. Cress, E2F inhibition 
synergizes with paclitaxel in lung cancer cell lines. PLoS One, 2014. 9(5): p. e96357. 
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viability was analyzed via MTS assays (Figure 3.4B). These studies showed that cells 

depleted of E2F3a and E2F3b were more viable in the presence of paclitaxel, thus 

confirming the E2F3 level-paclitaxel IC50 relationship that was previously observed. 
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Figure 3.3: Endogenous E2F3 mRNA and protein levels correlate to paclitaxel 
sensitivity. Ten NSCLC cell lines were harvested for mRNA and protein for analysis. The 
mRNA expression was analyzed via real-time PCR and compared to the corresponding 
paclitaxel log IC50s for each cell line. This analysis showed a significant negative 
correlation between E2F3 mRNA levels and paclitaxel log IC50 (A.). Furthermore, Western 
blots were used to determine the endogenous E2F3a and E2F3b protein levels in these 
cell lines (B.). Following densitometric analysis of the Western blots, protein levels were 
compared to log paclitaxel IC50s. This analysis revealed a similar negative correlation as 
seen in the mRNA versus paclitaxel log IC50 analysis (C.). Note: Figure reprinted from the 
following: Kurtyka, C.A., L. Chen, and W.D. Cress, E2F inhibition synergizes with 
paclitaxel in lung cancer cell lines. PLoS One, 2014. 9(5): p. e96357. 
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Short Treatments of NSCLC Cell Lines with 6474 Leads to Increased 

Expression of E2F-Regulated Genes 

 H1299 and H292 cells were treated with 6474 for 0, 3, 6, 9, 12, and 24 hours and 

harvested for protein and RNA extraction. Upon analysis of protein expression levels 

through Western blots, it was discovered that cells treated with 6474 for 6-9 hours had 

increased E2F3a and E2F3b protein levels while E2F1 levels were not dramatically 

affected (Figure 3.5A). To determine if the increased levels of E2F3 protein were at 

least partially due to a change in mRNA expression of this gene, real-time PCR was 

used to analyze the expression of a variety of genes. These studies showed that E2F3 

mRNA expression significantly increased at 3 hours (Figure 3.5B), while E2F1 mRNA 
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Figure 3.4: NSCLC paclitaxel sensitivity is affected by E2F3 levels. H1299 cells were 
transfected with control, E2F3a, and E2F3b siRNA (A.) and then treated with paclitaxel. 
Following MTS analysis, it was determined that cells deficient of E2F3 were significantly 
more viable than control cells (B.). These results therefore corresponded to the previously 
observed correlations between E2F3 levels and paclitaxel sensitivity. Note: “*” signifies p-
value ≤ 0.05, “**” signifies p-value ≤ 0.01; Figure reprinted from the following: Kurtyka, 

C.A., L. Chen, and W.D. Cress, E2F inhibition synergizes with paclitaxel in lung cancer cell 
lines. PLoS One, 2014. 9(5): p. e96357.  
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expression only significantly increased at 3 hours in H292 cells (Figure 3.5C) and E2F4 

mRNA expression decreased at each time point after 0 hours (Figure 3.5D). 

Furthermore, examination of the commonly-known E2F-regulated genes MCM10 

(Figure 3.6A), MCM2 (Figure 3.6B), and CCNE2 (Figure 3.6C) showed that all of these 

genes had increased mRNA expression at 3 hours as well. 

 At the Doses Expected for Lung Cancer Treatment, 6474 Toxicity Is High in 

Nude Mice 

 To assess the potential efficacy of this compound in vivo, preliminary 

experiments with nude mice were conducted. Four mice were injected twice a week with 

either DMSO or escalating concentrations of 6474 (at 5, 10, 20, 30, and 40 mg/kg) for 

one week per dose. After each treatment, mouse weights were measured and animal 

behavior was recorded. The mice weights and health remained consistent until 40 

mg/kg. At this dosage, the treated mice became lethargic, one mouse died, and weights 

dropped dramatically (Table 3.2). Following sacrifice and necropsy of the remaining 

mice, the major difference observed between the control and treated animals was a 

darkening of the intestines (possibly due to bleeding). Organs were fixed into FFPE 

blocks and used for analysis of cleaved caspase 3 protein expression via IHC. The most 

drastic difference between the control and treated mice was that a great deal of cleaved 

caspase 3 was observed in the germinal centers of spleens of treated mice (Figure 3.7). 

Discussion 

 The CDK/Rb/E2F pathway represents a good target for the treatment of various 

cancer types. Although development has been slow due to the toxicity of early  
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Figure 3.5: Short treatment with 6474 leads to an increase in E2F3 protein and 
mRNA expression. H1299 and H292 cells were treated with 6474 for 0, 3, 6, 9, 12, and 
24 hours, then harvested for mRNA and protein. Approximately 6-9 hours following the 
addition of 6474, protein levels of E2F3 dramatically increased (A.). Analysis of mRNA 
expression showed consistent increases in E2F3 levels in both cell lines (B.), but E2F1 
(C.) and E2F4 (D.) levels were not similarly affected. Note: “*” signifies p-value ≤ 0.05, “**” 
signifies p-value ≤ 0.01; Figure reprinted from the following: Kurtyka, C.A., L. Chen, and 

W.D. Cress, E2F inhibition synergizes with paclitaxel in lung cancer cell lines. PLoS One, 
2014. 9(5): p. e96357. 
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Table 3.2: High doses of 6474 lead to dramatic weight loss in mice. 

Figure 3.6: Short treatment with 6474 leads to an increase in the mRNA expression 
of various E2F-regulated genes. H1299 and H292 cells were treated with 6474 for 0, 3, 
6, 9, 12, and 24 hours. mRNA was harvested from these samples and analyzed via real-
time PCR for (A.) MCM10, (B.) MCM2, and (C.) CCNE2 expression. All of these E2F-
regulated genes showed a significant increase in mRNA expression following 3 hours of 
treatment with 6474. Note: “*” signifies p-value ≤ 0.05, “**” signifies p-value ≤ 0.01; Figure 

reprinted from the following: Kurtyka, C.A., L. Chen, and W.D. Cress, E2F inhibition 
synergizes with paclitaxel in lung cancer cell lines. PLoS One, 2014. 9(5): p. e96357. 

Week # Mouse Weight (grams) Dose (mg/kg)

1 27.7 0

2 26.2 0

3 21.8 40

4 17.5 405



 40 

 

 

 

 

 

 

 

 

compounds, CDK inhibitors have recently become more tolerable in patients and 

popular in clinical trials [141, 216, 217]. We propose that targeting the CDK/Rb/E2F 

pathway even further downstream, at the E2F level, may also be of value. Thus, we 

have examined the potential of a pan-E2F inhibitor, HLM006474, in the treatment of 

lung cancer. 

It is interesting to note that SCLC cell lines were not on average more sensitive 

to 6474 than NSCLC cell lines in our limited comparisons. This is somewhat surprising 

since one would anticipate that in cells lacking wildtype RB1 (such as the majority of 

SCLC), there would be unrestrained E2F activity, and therefore these cells would be 

more sensitive. Considering that the experiments using genetically-defined Rb wildtype 

and deficient MEFs showed the expected results, it can be assumed that this theory 

holds in syngeneic cell lines. It is also interesting to note that the IC50s of 6474 vary 

much more greatly in SCLC (15-75 μM) than in NSCLC (15-44 μM) cell lines. This 

would hint that there are perhaps some other alterations in this lung cancer subtype that 

DMSO 6474

Figure 3.7: High levels of cleaved caspase 3 were detected in the germinal centers of 
spleens of mice treated with 6474. Nude mice were treated with either DMSO or 40 
mg/kg 6474, and organs were harvested and analyzed via immunohistochemistry. 
Investigation of the spleens from these mice showed that there were higher levels of 
cleaved caspase 3 in the germinal centers. 
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are not present in NSCLC. However, since there have not been as many studies in 

regards to molecular subtypes of SCLC and the main focus has been TP53 and RB1 

alterations, it is possible that these other putative mutations could be associated with 

sensitivity to 6474.  

 Due to the observations made in the aforementioned data (especially the real-

time PCR experiments), perhaps a de-repression model would provide the best 

explanation for the patterns we observed (Figure 3.8). This model would allow that the 

promoters of various E2F-regulated genes (such as E2F3, MCM10, MCM2, and 

CCNE2) are bound by inhibitory complexes until 6474 is added. The inclusion of 6474 

leads to these genes becoming de-repressed so that they can be transcribed for a short 

period of time before 6474 inhibits all E2F-DNA binding. This could then lead to a brief 

rise in E2F3 expression (as well as an increase in the expression of other unidentified 

genes that are similarly activated), which could then alter the cell’s sensitivity to 

paclitaxel as described earlier. Also, it is possible that there are other mechanisms in 

motion involving protein stability following 6474 treatment, for the observed increase in 

E2F3 mRNA expression appears to modest to fully account for the increase in protein 

expression. 

At this point, we can only speculate which 6474 de-repressed gene or genes may 

be responsible for the observed sensitization to paclitaxel, but we do note that E2F3 is a 

reasonable candidate based on our data and the literature. E2F3 activity levels have 

been previously reported to correlate with paclitaxel sensitivity in ovarian [192] and ER-

negative breast cancer [193], but this is the first time that similar trends have been 

discovered in NSCLC [218]. Several explanations for the correlations between E2F3  
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levels and sensitivity to paclitaxel involve E2F3’s regulation of the expression of a 

variety of genes. One possibility could be that higher E2F3 levels leads to increased 

proliferation, therefore providing more opportunities for the cells to enter G2/M phase 

where paclitaxel would be effective. However, this explanation would also imply that 

more proliferation would allow for increased entry into S-phase as well, therefore 

suggesting that cells would be more sensitive to chemotherapeutic agents such as 

gemcitabine and would not match our observations. As such, perhaps a better 

explanation would be that higher E2F3 levels could lead to greater expression of 

apoptosis-regulating genes. Also, others have shown that overexpression of E2F3 leads 

to an enrichment of microtubule-related genes [192], so this could also potentially 
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Figure 3.8: A de-repression model for synergy between HLM006474 and paclitaxel. 
Untreated cells have repressive complexes that inhibit the expression of various genes, 
including E2F3. Shortly after 6474 is added to the cells, these genes become “de-
repressed,” thus allowing for the expression of genes such as E2F3 as well as other 

unknown genes that have yet to be identified. Increased expression of these genes can 
then enhance the cell’s sensitivity to paclitaxel. Note: Figure reprinted from the following: 

Kurtyka, C.A., L. Chen, and W.D. Cress, E2F inhibition synergizes with paclitaxel in lung 
cancer cell lines. PLoS One, 2014. 9(5): p. e96357. 
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explain the relationship observed here. Likewise, as discussed earlier, E2F3 has a role 

in regulating the G2/M checkpoint through altering expression of AURKA [183], CDC2 

[184], and CCNB1 [184, 185], which could possibly explain why higher levels of E2F3 

could lead to increased sensitivity to paclitaxel. While 6474 may not have a future as a 

clinical agent, information gathered here could suggest that E2F inhibition combined 

with paclitaxel could prove to be an effective treatment method in the future.  

In this chapter, we have demonstrated that 6474 has IC50s ranging from 15 – 75 

μM within lung cancer cell lines, and that it can synergize with paclitaxel within NSCLC 

cell lines. This synergy may be due to an increase in E2F3 levels, which has been 

shown to correlate to paclitaxel sensitivity. Overall, these results suggest that specific 

and potent inhibition of E2Fs could be an effective therapy for lung cancer patients, 

especially if combined with other chemotherapeutic agents such as paclitaxel. Likewise, 

these results suggest that E2F3 could be useful as a biomarker for paclitaxel sensitivity 

in NSCLC. 
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CHAPTER FOUR: 

AN E2F SIGNATURE PREDICTS BENEFIT OF ADJUVANT CHEMOTHERAPY IN 

EARLY-STAGE NSCLC 

 

Introduction 

 As mentioned earlier, E2Fs are mainly known for their role in cell cycle 

regulation. Some of the most common mutations in lung cancer lead to deregulation of 

E2F activity, allowing for largely unrestrained proliferation. Considering that proliferation 

is one of the main hallmarks of cancer [219], having a means of measuring this process 

in lung cancer patients could be very useful.  

 For early stage NSCLC patients, surgery is still a common option. Standard 

practice typically involves giving adjuvant chemotherapy (ACT) following surgery. 

Unfortunately, there has not been any major effect on enhancing overall survival (OS), 

leaving the 5-year benefit of ACT at approximately 4-10% [220-223]. Due to the low 

amount of survival benefit, high chemotherapeutic toxicity levels, and increasing cost of 

treatment, a tool that could predict which patients would be most likely to benefit from 

receiving ACT would be extremely useful. To try to fill this need, we examined 

proliferative markers/gene signatures as tools. 

 The most well-known proliferative marker for cancer samples is Ki67 (typically 

analyzed through immunohistochemistry (IHC)). Ki67 was first discovered in 1983 [224], 
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and it was determined to only be expressed by proliferating cells [224, 225] (please see 

[226] for a review). Ki67 staining has been shown to be present in every stage of 

proliferating cells [225], and increases in S-phase [227, 228] and the rest of the cell 

cycle until reaching its highest expression levels in metaphase in mitosis [227, 229-231] 

before decreasing [229, 231]. The first Ki67 antibody that could be used to examine 

FFPE samples was identified in 1992 [232]. Since then, Ki67 expression has been 

analyzed via immunohistochemistry in a variety of solid tumor samples, including lung 

cancer. Increased Ki67 expression has been shown to trend towards lower rates of 

overall survival and disease-free survival in NSCLC, though there is often not a 

statistically significant difference [233-235]. Some of this lack of significance may be 

related to issues with using IHC analysis for prognostic proliferative markers. These 

may include antibody variability across lots and companies as well as inconsistency in 

staining analysis between institutions. Also, using only one marker may not be very 

informative. Therefore, it has been suggested that detecting multiple markers 

simultaneously may give a better reflection of cell cycle [226]. 

As such, others have explored using gene signatures for calculating proliferation and 

predicting patient prognosis.  

Several prognostic gene signatures for early-stage NSCLC patients have been 

created in the past few years [154, 156, 236-243], several of which mainly measure 

proliferation. Unfortunately, markers that only serve prognostic functions are not 

particularly useful for the clinic since they do not offer further guidelines for patient care 

[244, 245]. As such, a great deal more interest is in predictive gene signatures that can 

offer information on patient benefit from receiving ACT. Several gene expression 
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signatures have been found that can potentially serve this purpose [154, 156, 237]. 

However, current research with these signatures still reflects issues that can make the 

transition into the clinic more difficult [244-248]. For example, some studies rely on use 

of fresh frozen RNA for testing these signatures, which is not as commonplace in the 

clinic as FFPE blocks (from which RNA quality is much poorer than fresh frozen 

tissues). Likewise, some studies tend to rely on either microarrays or real-time PCR for 

measuring signals for their signatures, which can be impractical for clinical translation. 

In order to avoid these pitfalls to making the transition to clinical use, NanoString was 

investigated as a platform for use of our signature. 

 NanoString is a relatively new technology that is capable measuring mRNA 

expression in a very specific and easily multiplexed manner that does not rely on the 

use of enzymatic reactions. This platform involves the use of two approximately 50-base 

single-stranded DNA probes (a capture probe which are biotinylated in order to bind the 

probe-mRNA complexes to streptavidin-coated nCounter cartridges, and a reporter 

probe that has a unique “barcode” for each target mRNA and is eventually counted) for 

each gene that needs to be measured in the assay. These probes can hybridize to their 

target mRNA, are purified upon the removal of excess probes, become immobilized and 

aligned on nCounter cartridges, and then are counted based on the “barcode” reading 

through a nCounter Digital Analyzer [249, 250]. Due to this ease of use, NanoString is 

becoming more commonly recognized as a good clinical tool. In fact, a NanoString 

signature called the Prosigna Breast Cancer Gene Signature Assay (which is composed 

of 50 genes for predicting early-stage breast cancer patient prognosis) has recently 

been approved for use in the European Union and Israel as well as receiving FDA 
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clearance [251-253]. In light of this, it seemed reasonable to explore whether this 

platform could be used to apply our signature to patient samples. 

 In these studies, we examined the application of an E2F gene expression 

signature derived from NSCLC cell lines depleted of various Rb/E2F family members. 

This signature was analyzed in two large lung adenocarcinoma patient cohorts in order 

to demonstrate its prognostic ability. The prognostic efficacy of this signature was then 

examined further in comparison to the common proliferative biomarker Ki67. This E2F 

signature was also examined in a large cohort of early-stage lung adenocarcinoma 

patients who were either observed only or who received ACT in order to determine the 

signature’s effectiveness at predicting patient benefit from receiving ACT. Lastly, we 

explored whether NanoString could be used to apply this signature to FFPE-derived 

RNA in a comparable manner to fresh frozen RNA. Taken together, these results 

suggest that this E2F signature has prognostic and predictive abilities that could be 

clinically applicable through the use of NanoString.  

Results 

 The E2F Signature Is Representative of Cell Cycle 

 The NSCLC cell lines H1299 and A549 were transfected with control, E2F1, 

E2F3a, E2F3b, E2F3a+b, E2F4, and Rb siRNA and harvested after 36 hours for RNA 

and protein extraction. All siRNA were specific to each target (Figure 4.1). RNA was 

used for microarray analysis and then developed into a signature by filtering for 

probesets that significantly changed in 5 out of 6 of the knockdowns in both cell lines 

and altered in tumor versus normal samples. This signature of 145 probesets was then 
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used for GeneGo analysis, where it was demonstrated that, as expected, the cell cycle 

was the most significantly correlated pathway (Table 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The E2F Signature Is Prognostic in Several Large NSCLC Datasets 

 Principal component analysis (PCA) was used to analyze this E2F signature 

within two large NSCLC data cohorts, the Molecular Classification of Lung 

Adenocarcinoma (MCLA) from the Director’s Challenge Consortium and the 

SPORE442. The MCLA is comprised of 442 lung adenocarcinoma patient samples from 

University of Michigan Cancer Center, Memorial Sloan-Kettering, Dana-Farber Cancer 

Institute, and H. Lee Moffitt Cancer Center, while the SPORE442 is comprised of 442 
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Figure 4.1: RNAi effectively and specifically inhibits expression of the targeted 
E2F/Rb family members. NSCLC cell lines H1299 and A549 were transfected with 
control, E2F1, E2F3a, E2F3b, E2F3a+b, E2F4, and Rb siRNA. Western blots confirmed 
that the siRNA is capable of specifically knocking down expression of each target.  
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lung adenocarcinoma patient samples from Moffitt’s Total Cancer Care Network. 

Analysis of the signature showed that those with high E2F signature scores had 

significantly shorter overall survival (OS) times than those with low E2F signature 

scores in both the MCLA (Figure 4.2A) and SPORE442 (Figure 4.2B) datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1: Cell cycle is the most significantly altered pathway represented in 
the E2F signature.  

The 145 probeset E2F signature was analyzed via GeneGo. As expected due to what is 
already known about E2Fs, cell cycle was the most strongly represented pathway in the 
signature. Other expected pathways (such as apoptosis represented by the E2F1 
knockdowns) are represented as well. 

Maps (145-probeset TN filter) p-value

Cell cycle_The metaphase checkpoint 1.740E-06

Cell cycle_Chromosome condensation in prometaphase 5.525E-06

Cell cycle_Role of APC in cell cycle regulation 3.168E-05

Cell cycle_Start of DNA replication in early S phase 8.043E-04

Apoptosis and survival_DNA-damage-induced apoptosis 3.287E-03

Cell adhesion_ECM remodeling 3.304E-03

Cell cycle_Initiation of mitosis 9.052E-03

G-protein signaling_TC21 regulation pathway 9.052E-03

DNA damage_ATM / ATR regulation of G2 / M checkpoint 9.771E-03

Neurophysiological process_Role of CDK5 in presynaptic signaling 1.128E-02

Cell cycle_Role of SCF complex in cell cycle regulation 1.207E-02

DNA damage_Role of Brca1 and Brca2 in DNA repair 1.289E-02

DNA damage_ATM/ATR regulation of G1/S checkpoint 1.459E-02

Cell cycle_Role of Nek in cell cycle regulation 1.459E-02

Cell cycle_ESR1 regulation of G1/S transition 1.547E-02

Apoptosis and survival_Caspase cascade 1.547E-02

Development_TGF-beta-dependent induction of EMT via SMADs 1.731E-02

Cell adhesion_Plasmin signaling 1.731E-02

Influence of low doses of Arsenite on Glucose stimulated Insulin secretion in pancreatic cells 1.826E-02

Cell adhesion_Chemokines and adhesion 1.992E-02

Cytoskeleton remodeling_Cytoskeleton remodeling 2.099E-02

Cell adhesion_PLAU signaling 2.124E-02

Development_VEGF-family signaling 2.333E-02

Nicotine signaling in dopaminergic neurons, Pt. 2 - axon terminal 2.551E-02

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 2.615E-02
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Figure 4. Kaplan-Meier survival curves for the molecular signatures 
on the SPORE444 lung adenocarcinoma dataset. (A) E2F (B) MR 

(C) NF-kB and (D) TGFB. 
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Figure 4.2: The E2F signature is significantly prognostic in two large data cohorts. 
The E2F signature was analyzed via principal component analysis (PCA) to the microarray 
patient data from (A.) the Molecular Classification of Lung Adenocarcinoma (MCLA) from 
the Director’s Challenge Consortium and (B.) the SPORE442 from Moffitt’s Total Cancer 

Care Network. In both data cohorts, the overall survival (OS) rates for patients with high 
E2F signature scores were significantly lower than for those with low E2F scores. 
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The E2F Signature Is a More Sensitive Proliferative Marker than Ki67  

Another question that we needed to answer to confirm the potential usefulness of 

this signature as a prognostic and/or predictive patient tool was how the E2F signature 

compared to Ki67 as a proliferative marker. In order to examine this, a tissue microarray 

of 145 lung carcinoma patient samples (Table 4.2) was stained with a Ki67 antibody and 

scored by a pathologist (Figure 4.3A). Upon comparison of Ki67 staining scores and 

OS, those with high Ki67 levels tended to have lower OS than those with low Ki67. 

While this data trended in the expected manner, there was no significant difference in 

OS based on Ki67 levels (Figure 4.3B). However, comparison of the E2F signature (as 

calculated from microarrays from the patient samples) to the OS showed that those with 

high E2F signature scores have significantly lower OS than those with low scores 

(Figure 4.3C). Overall, these results suggest that the E2F signature may be more 

sensitive than Ki67 as a proliferative marker. 

 

 

 

 

 

 

  

 

 

 

Table 4.2: Summary of samples in tissue microarray.  

Diagnosis # of cores
Lung carcinoma 145 (84 untreated, 61 ACT)

Normal lung tissue 58

Cell lines 10

Controls 14

Empty 6

Missing tissue 3

No tumor 4

Total 240
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The E2F Signature Is Predictive of Early-Stage NSCLC Patient Benefit from 

Adjuvant Chemotherapy 

 The E2F signature was then analyzed in the JBR.10 trial (using the microarray 

data on GEO labeled as GSE14814), which is composed of 133 stage IB-II NSCLC 

patient samples. Sixty-two of these patients were observed only following surgical 

resection and the other 71 patients received cisplatin and vinorelbine adjuvant 

chemotherapy (ACT). For the analysis, the observed patients (OBS) and the ACT 

patients were divided into high or low E2F signature scores, and then OS was analyzed 
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Figure 4.3: The E2F signature is a more sensitive proliferative marker than Ki67. (A.) 
Representative examples of Ki67 staining of the lung tissue microarray. (B.) There is no 
significant difference in OS between those with high and low Ki67 staining. However, the 
data follows the expected trend where those with high Ki67 staining tend to have lower 
OS. (C.) Through use of microarray data to analyze the E2F signature expression, it was 
determined that those with high E2F signature scores have significantly lower OS.  



 53 

for each group. While there was no major difference in OS between low E2F signature 

score groups that were OBS or ACT, there was a significant difference in OS between 

OBS and ACT groups for those with high E2F signature scores (Figure 4.4).  

 

 

 

 

 

Figure 4.4: The E2F signature is predictive of patient benefit from adjuvant 
chemotherapy in the JBR.10 trial. One-hundred and thirty-three patients (62 who were 
observed only, 71 who were given adjuvant chemotherapy (ACT)) were divided into 
groups with high or low E2F signature scores following PCA of the E2F signature in this 
trial. While there was no significant difference in OS between those with low E2F signature 
scores who were observed only (E2F.L_O) and those who received ACT (E2F.L_A), those 
who had high E2F signature scores who were observed only (E2F.H_O) had significantly 
lower OS than those with high E2F signature scores who received ACT (E2F.H_A). This 
data suggests that those with low E2F signature scores may therefore not benefit from 
receiving ACT as much as those with high scores. 
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NanoString Analysis of the E2F Signature in Patient Samples Was Equally 

Effective Using Either Fresh Frozen RNA or FFPE-Derived RNA  

In order to confirm the clinical viability of this signature, it needed to be analyzed 

in several other large data cohorts. To this end, NanoString will be utilized due to its 

specificity, ease in multiplexing, and previous approval for use as a clinical test for 

breast cancer prognosis [254]. Before this could be accomplished, we needed to 

confirm that this platform would work equally well using FFPE-derived RNA as fresh 

frozen RNA. Being able to utilize FFPE patient samples for this analysis would be 

especially useful since it is more readily available than fresh frozen RNA and is 

therefore more practical for assay use. In order to test how use of these two RNA 

sources would compare to one another, 32 paired patient samples of both types of RNA 

were utilized for NanoString analysis of the E2F signature and the results were 

compared to each other. Though the quality of the RNA from the FFPE samples was, as 

expected, much worse than that of the fresh frozen RNA (Figure 4.5A), the NanoString 

results of the paired samples were highly correlated with an average r of 0.9070, 

median r of 0.9290, and standard deviation (SD) of 0.0859 (Figure 4.5B). To examine 

this further, the NanoString results for each RNA type were compared to the microarray 

results for each sample. Even though NanoString and microarray are different 

platforms, the results still correlated reasonably well. The correlations between the fresh 

frozen RNA NanoString versus microarray (average r of 0.5585, median r of 0.5608, 

and SD of 0.0718) (Figure 4.5C) and the FFPE-derived RNA NanoString versus 

microarray (average r of 0.5384, median r of 0.5401, and SD of 0.0891) (Figure 4.5D) 
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were not significantly different between the two RNA types, thus confirming that 

NanoString works equally well for FFPE-derived RNA and fresh frozen RNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: NanoString analysis of the E2F signature is equally effective using FFPE-
derived RNA and fresh frozen RNA. (A.) Fresh frozen and FFPE-derived RNA from 
early-stage NSCLC patients were analyzed via an Agilent 2100 Bioanalyzer Instrument. As 
expected, the fresh frozen RNA (RNA Integrity Numbers (RIN) from 4.2-5.9) was in better 
condition than the FFPE-derived samples (RIN from 2.3-2.4). (B.) NanoString results from 
fresh frozen RNA were correlated to paired NanoString results from FFPE-derived RNA 
(representative shown here). Paired NanoString results correlated r=0.9 on average. 
Microarray results were then correlated to (C.) NanoString fresh frozen results and (D.) 
NanoString FFPE results for each sample. No significant differences between these two 
correlations were noted for any of the samples. 
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Discussion  

These studies have shown that higher E2F activity indicates poor outcome in 

early stage NSCLC patients. In NSCLC, high E2F activity tends to stem from Rb or p16 

inactivation and is relatively common. Since this E2F signature has been shown to 

mainly represent proliferation, the correlation between those with high E2F signature 

scores and worse prognosis is sensible. Considering that this signature has been 

shown to be prognostic in several large datasets, it would not be unreasonable to 

suggest that this could possibly become a useful clinical tool in the future. 

This E2F signature could also potentially have clinical utility for predicting which early-

stage NSCLC patients would benefit most from receiving adjuvant chemotherapy. The 

most likely explanation for this is that those with high E2F signature scores should have 

the highest proliferative rates, so it would be reasonable to expect that those who were 

observed only would have the lowest OS. Likewise, since most chemotherapeutic 

agents are expected to affect tumor tissues more than normal tissues due to the tumor’s 

higher rates of proliferation, it would be logical to expect those with high E2F signature 

scores to have a greater response to adjuvant chemotherapy. This explanation 

suggests that those with high E2F signature scores should be more sensitive to ACT 

than those with low scores, but the JBR.10 trial analyzed here only used cisplatin with 

vinorelbine, so further study would be needed to confirm that this is the case. If these 

results were reproducible among a wide variety of chemotherapies, perhaps this 

signature could possibly become a test to predict which patients should receive 

adjuvant chemotherapy as well as which patients would be less likely to benefit.  
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NanoString is a relatively new platform that is capable of measuring mRNA 

expression of genes in a specific, reproducible manner. These studies have shown that 

NanoString is equally effective using FFPE-derived RNA as fresh frozen RNA, 

confirming the results of previous studies [255, 256]. This would prove very useful for 

clinical testing since using fresh frozen RNA only is largely impractical in research, and 

being able to use samples with even low levels of RNA quality would make it easier to 

apply to patient samples. Furthermore, considering that the Prosigna assay (a 

prognostic NanoString-based kit that measures the expression of 50 target genes and 8 

normalization genes) [257] has received clearance from the US Food and Drug 

Administration (FDA) for clinical use for early-stage breast cancer [252, 253], it would be 

reasonable to predict that there could be a similar future utility for our E2F signature for 

testing early-stage NSCLC patients. 

 It was not incredibly surprising to see in these studies that the E2F signature may 

be a more sensitive proliferative marker than Ki67 considering that the signature can 

account for the expression of over 100 genes while Ki67 is only measuring one. 

Likewise, issues with immunohistochemistry as a platform for measuring proliferation 

may pose issues due to lot variability in antibodies and lack of reproducibility among 

institutions would make continued use of Ki67 as a proliferative marker somewhat 

problematic in the clinic. As such, a NanoString-based test based on the E2F signature 

would be able to sidestep these issues and potentially prove to be a useful tool in the 

clinic. 
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CHAPTER FIVE: 

CDK12 IS UPREGULATED IN LUNG ADENOCARCINOMA AND ITS KNOCKDOWN 

SENSITIZES NSCLC CELLS TO PLATINUM THERAPY 

 

Introduction 

 As mentioned previously, platinum agents such as cisplatin and carboplatin are 

commonly used in the treatment of NSCLC, especially for patients who do not have 

mutations that can be treated with a targeted agent. Platinum agents cause DNA 

crosslinking. This crosslinking induces the DNA damage response (DDR), which can 

lead to cell cycle arrest and DNA repair or lead to cell death. Since cancer cells tend to 

proliferate more rapidly than normal cells, platinum agents possess increased toxicity 

toward tumor cells relative to normal cells [258]. Two of the most commonly used 

platinum agents are cisplatin and carboplatin. Cisplatin was the first of these two 

compounds, gaining approval for clinical use in 1978. It has two chloride groups 

attached to a central platinum atom that can be rapidly displaced by water (in a process 

called aquation), which can in turn be displaced by reaction with DNA bases and other 

biomolecules. Carboplatin (approved in 1986) has a bulkier subgroup than cisplatin that 

undergoes aquation much more slowly. It is thus less toxic and is commonly used when 

cisplatin is unlikely to be tolerated [259]. Though most studies have shown that cisplatin 

and carboplatin have comparable efficacy in the clinic with no statistically significant 
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difference in survival rates [260-263], another study has shown that cisplatin may be 

slightly more effective than carboplatin in regards to significantly enhancing the survival 

rate at 1 year [264]. Other meta-analyses have shown that using third generation drugs 

in doublets with cisplatin can have a survival advantage over the same agents with 

carboplatin [261, 262].  

 DDR is typically triggered by stalled replication forks and a variety of DNA lesions 

resulting from many different biological insults (UV exposure, reactive oxygen species, 

ionizing radiation, etc). For double-strand breaks (DSBs), the DNA damage sensor 

proteins Mre11, Rad50, and Nbs1 bind to the altered DNA. Ataxia-telangiectasia 

mutated (ATM) is then recruited to this complex and binds to the C-terminus of Nbs1 

[265, 266], which is assisted by 53BP1 and BRCA1 [267]. ATM can then phosphorylate 

a number of proteins downstream, though it is well known for activating Chk2, which 

can then phosphorylate and inactivate CDC25A, leading to a decrease in CDK activity 

and cell cycle arrest [268, 269]. DNA damage can also trigger ATM and Rad3-related 

(ATR) protein, which can activate Chk1 and likewise lead to inactivation of CDC25 

protein family members and cell cycle arrest [270-272]. Furthermore, ATM and ATR can 

also phosphorylate p53, triggering transcription of p21 and cell cycle arrest [273-275].  

 Recently, a screen of protein interactions with the BRCA1 carboxyl-terminal 

(BRCT) domain (known to be involved with DDR) was completed. This screening 

involved the use of previous literature, yeast two hybrid (Y2H) screens, and tandem 

affinity purification (TAP) coupled with mass spectrometry (MS) of seven tandem BRCT 

domains utilized as baits in the presence and absence of ionizing radiation to induce 
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DDR. This screen yielded 18 serine/threonine protein kinases, of which five were CDKs 

[276].  

The most well-known CDKs have roles in cell cycle regulation (CDK1/2/4/6) or 

phosphorylation of the C-terminal domain (CTD) of RNA polymerase II for 

transcriptional regulation (CDK7/9) [80, 277]. However, there are other CDKs present in 

cells, and these CDKs are capable of binding different cyclins. The CDKs that were 

identified in this screen (CDK5, CDK9, CDK12, CDK13, and CDK16) are some of the 

less commonly studied members of the protein family, and have been previously shown 

to be involved in a variety of cellular activities. CDK5 is mainly known for its roles in 

central nervous system (CNS) formation and function [278-281], and has been shown to 

be involved in DDR in post-mitotic neurons by phosphorylating ATM at serine 794 [282]. 

CDK9 is well known for its role in phosphorylating the C-terminal domain (CTD) of RNA 

polymerase II, leading to greatly enhanced transcriptional processivity [283-288]. CDK9 

has also been implicated in DNA damage, where CDK9 bound to cyclin K can bind to 

ATR as part of maintaining genome integrity [289], and also cells where ATM has been 

knocked down have less CDK9-bound transcriptional elongation complexes attached to 

the promoters of NFκB-dependent early cytokine genes [290]. CDK12 has also been 

found to be involved in phosphorylating the CTD of RNA polymerase II [291, 292], as 

well as being involved in alternative splicing [293]. CDK13 has been shown to be 

involved in alternative splicing [294, 295]. CDK16 has not been implicated in cancer, 

though it is highly expressed in mouse brains and testes [296], has been suggested to 

have roles in CNS formation [297], and is phosphorylated and activated by CDK5 [298, 

299]. 
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Although historically understudied, CDK12 has gained a lot of interest recently as 

several studies have implicated it in human cancer. CDK12 has been shown to be 

highly mutated in ovarian cancer [300, 301], and many of these mutations have been 

shown to be unable to phosphorylate the CTD of RNA polymerase II [302]. It has been 

noted that its depletion can lead to a decrease in the expression of genes involved in 

DDR such as BRCA1, FANCI, and ATR due to a lack of RNA polymerase II activity, 

while knockdown of CDK13 (which also binds to cyclin K) does not alter expression of 

these genes [291]. Likewise, it has been noted that cells deficient of CDK12 can 

become more sensitive to DNA damaging agents such as etoposide [291] and also 

have decreased homologous recombination (HR) abilities, thus making cells more 

sensitive to PARP inhibitors [302-304].  

In the following studies, cell lines with wildtype KRAS and EGFR that lacked ALK 

fusions (later discussed as “triple-negative”) were used to represent the many patients 

who do not have actionable mutations and therefore cannot benefit from targeted agent 

therapy, and who must instead rely upon standard chemotherapy such as cisplatin. 

Considering that cisplatin is an agent that induces DDR, it was considered that targeting 

some of the kinases discovered in the BRCT screen might sensitize cells to cisplatin. 

Since multiple CDK family members were found in the screen, they were specifically 

targeted. To investigate this, siRNA specific to the aforementioned CDKs and existing 

CDK inhibitors were tested for enhancing sensitivity to cisplatin in triple-negative 

NSCLC cell lines. The most promising target from these studies, CDK12, was then 

investigated further to understand the mechanism behind its role in platinum sensitivity. 
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Overall, these studies suggest that CDK12 may be a useful target in triple-negative 

NSCLC. 

Results 

CDK12 Depletion in Triple-Negative NSCLC Enhances Sensitivity to 

Cisplatin 

 The triple-negative NSCLC cell lines H1666, H1648, and H322 were transfected 

with control, CDK5, CDK9, CDK12, CDK13, and CDK16 siRNA and used in cell viability 

assays to determine their cisplatin IC50s. These experiments showed that in all three cell 

lines, CDK12 depletion led to increased sensitivity to cisplatin (Figure 5.1). Therefore, 

CDK12 was investigated further to determine its role in NSCLC as well as in platinum 

sensitivity. 

 Also, we tested whether CDK inhibition would alter sensitivity of triple-negative 

NSCLC cell lines to cisplatin by using several commercially available CDK inhibitors (as 

shown in Table 5.1). These CDK inhibitors were tested in H1648 and H322 cells for 

synergy with cisplatin according to the Bliss model. Unfortunately, none of these 

compounds showed any synergy (Figure 5.2). However, considering that newly 

discovered CDKs such as CDK12 have not been greatly studied and are quite different 

in structure from previously identified CDKs, it is possible that these existing CDK 

inhibitors may not effectively target CDK12. Likewise, results discussed here were 

somewhat confirmed by Bösken et al, who showed that CDK12’s kinase activity was not 

strongly affected by roscovitine and purvalanol B [305]. 
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Figure 5.1: CDK12 
knockdown enhances 
sensitivity to cisplatin in 
triple-negative NSCLC cell 
lines. The cell lines H1666 
(A.), H1648 (B.), and H322 (C.) 
were transfected with either 
control (gold square), CDK5 
(olive triangle), CDK9 (green 
triangle), CDK12 (blue 
diamond), CDK13 (purple 
circle), or CDK16 (pink square) 
siRNA and utilized for cell 
viability assay analysis. After 
120 hours of treatment with a 
variety of concentrations of 
cisplatin, CellTiter-Glo assay 
reagent was added to the cells 
and cell viability was 
determined. The Bliss model 
was used for all IC50 
calculations. In all cell lines, 
cells transfected with CDK12 
siRNA were most sensitive to 
cisplatin. 
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CDK12 Protein Levels Are Higher in Tumor Tissue than in Normal and 

Correlate with Ki67 Expression 

 Studies have shown that CDK12 is commonly mutated in ovarian cancer, 

suggesting that it may be a tumor suppressor [300, 301]. However, CDK12 expression 

has not been extensively studied in NSCLC. To investigate this, a tissue microarray of 

145 lung carcinoma samples and 58 paired normal tissues was stained with an antibody 

against CDK12 and scored by a pathologist (Figure 5.3 shows representative staining). 

All CDK12 staining was nuclear, and typically levels were highest in tumor samples as 

compared to normal (Figure 5.4A). Likewise, upon comparison to the Ki67 staining 

results using the same TMA (as discussed in Chapter Four), it was noted that CDK12 

staining positively correlates with Ki67 staining in both normal and tumor samples 

(Figure 5.4B; r = 0.463 for the normal samples and r = 0.534 for the tumor samples). In 

fact, many tissue samples showed that the same areas with high CDK12 levels tended 

to also have high Ki67 levels (for example, compare the bottom of normal core 11’s 

Ki67 and CDK12 staining in Figure 5.3).  

 

 

 

Table 5.1: Known targets of CDK inhibitors tested for synergy with cisplatin. 

Inhibitor Main targets

SNS-032 (BMS-387032) CDK1, CDK2, CDK4, CDK7, CDK9, GSK3β

Roscovitine (seliciclib, CYC202) CDK1, CDK2, CDK5, CDK7, CDK8, CDK9

Dinaciclib (SCH-727965) CDK1, CDK2, CDK5, CDK9

Purvalanol B CDK1, CDK2, CDK5

Indirubin CDK1, CDK2, CDK4, CDK5, GSK3β



 65 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (In
d

)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200

0.400

0.600

0.800

1.000

1.200

Cisplatin/Indirubin in H1648

Cisplatin/Indirubin

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SC
H

)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600
0.800

1.000

1.200

Cisplatin/SCH727965 in H1648

Cisplatin/SCH727965

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (P
u

rB
)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600
0.800

1.000

1.200

Cisplatin/Purvalanol B in H1648

Cisplatin/Purvalanol B
0

.0
0

0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SN
S)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/SNS-032 in H1648

Cisplatin/SNS-032

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (R
o

s)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/Roscovitine in H1648

Cisplatin/Roscovitine

A.

B.

Cisplatin/Indirubin Cisplatin/SCH727965Cisplatin/Purvalanol B

Cisplatin/SNS-032 Cisplatin/Roscovitine

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (In
d

)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/Indirubin in H322

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (P
u

rB
)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400
0.600
0.800
1.000

1.200

Cisplatin/Purvalanol B in H322
0

.0
0

0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (R
o

s)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/Roscovitine in H322

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SC
H

)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600
0.800

1.000

1.200

Cisplatin/SCH727965 in H322

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SN
S)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/SNS-032 in H322

Inhibition 

relative to 

control

Purvalanol B (μM)

Indirubin (μM)

SCH727965 (μM)

SNS-032 (μM)

Roscovitine (μM)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

Inhibition 

relative to 

control

Inhibition 

relative to 

control

Purvalanol B (μM)

SCH727965 (μM)
C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

Indirubin (μM)

SNS-032 (μM)

Roscovitine (μM)
C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

Inhibition 

relative to 

control

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (In
d

)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200

0.400

0.600

0.800

1.000

1.200

Cisplatin/Indirubin in H1648

Cisplatin/Indirubin

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SC
H

)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600
0.800

1.000

1.200

Cisplatin/SCH727965 in H1648

Cisplatin/SCH727965

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (P
u

rB
)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600
0.800

1.000

1.200

Cisplatin/Purvalanol B in H1648

Cisplatin/Purvalanol B
0

.0
0

0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SN
S)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/SNS-032 in H1648

Cisplatin/SNS-032

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (R
o

s)

2
.5

1
0

0
.0

0
0

2
.0

0
0

3
2

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/Roscovitine in H1648

Cisplatin/Roscovitine

A.

B.

Cisplatin/Indirubin Cisplatin/SCH727965Cisplatin/Purvalanol B

Cisplatin/SNS-032 Cisplatin/Roscovitine

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (In
d

)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/Indirubin in H322

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (P
u

rB
)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400
0.600
0.800
1.000

1.200

Cisplatin/Purvalanol B in H322
0

.0
0

0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (R
o

s)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/Roscovitine in H322

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SC
H

)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600
0.800

1.000

1.200

Cisplatin/SCH727965 in H322

0
.0

0
0

0
.0

3
9

0
.1

5
6

0
.6

2
5

 (SN
S)

2
.5

1
0

0
.0

0
0

3
.0

0
0

4
8

0.000
0.200
0.400

0.600

0.800
1.000

1.200

Cisplatin/SNS-032 in H322

Inhibition 

relative to 

control

Purvalanol B (μM)

Indirubin (μM)

SCH727965 (μM)

SNS-032 (μM)

Roscovitine (μM)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

Inhibition 

relative to 

control

Inhibition 

relative to 

control

Purvalanol B (μM)

SCH727965 (μM)
C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

Indirubin (μM)

SNS-032 (μM)

Roscovitine (μM)
C
is
pl

at
in

 (μ
M

)

C
is
pl

at
in

 (μ
M

)

Inhibition 

relative to 

control

Figure 5.2: Cisplatin does not synergize with commercially available CDK inhibitors 
in NSCLC cell lines. H322 (A.) and H1648 (B.) cells were treated with varying 
concentrations of cisplatin and the CDK inhibitors Purvalanol B, Indirubin, SCH727965, 
SNS-032, and roscovitine, then analyzed for synergy by cell viability assays with CellTiter-
Glo. In these assays, none of the tested CDK inhibitors synergized with cisplatin. 
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Figure 5.3: Representative Ki67 and CDK12 IHC staining in the lung carcinoma TMA. 
A tissue microarray of paired normals (A.) and lung adenocarcinoma (B.) was stained with 
CDK12 and Ki67 antibodies.  
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Figure 5.4: CDK12 protein levels are higher in lung tumor than normal tissue, and 
CDK12 protein levels correlate with Ki67 protein in both tumor and normal samples. 
(A.) Upon comparing the percent positive pixels for CDK12 and Ki67 in both tumor and 
normal patient samples, it was noted that tumor samples had higher levels of CDK12 and 
Ki67. (B.) Comparison of percent positive pixels for CDK12 versus Ki67 for each sample 
showed that there is a positive correlation between the two (r = 0.463 for normal and r = 
0.534 for tumor). 
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CDK12 Depletion Does Not Alter BRCA1 nor FANCI mRNA Expression, But 

Does Lead to a Decrease in ATM Expression 

 Since a relationship between CDK12 levels and mRNA expression of various 

genes involved in DNA damage response has previously been published [291], this 

relationship was first tested as a possible explanation for the enhanced sensitivity to 

cisplatin that was observed in CDK12-depleted cells. H1648 and H322 cells were 

transfected with control, CDK5, CDK9, and CDK12 siRNA and RNA harvested for real-

time PCR analysis. In these experiments, it was noted that there was no significant 

effect on BRCA1 and FANCI expression following CDK12 knockdown in both cell lines 

(Figure 5.5). In order to expand the genes being studied, Affymetrix U133A GeneChip 

microarrays were used to analyze H322 and H1648 cells transfected with either control 

or CDK12 siRNA. In this analysis, the top 20 and lowest 20 probes that were most 

altered in the same manner in both cell lines were not related to DNA damage (Table 

5.2). Therefore, it was presumed that a change in DDR-related protein activity, 

translation, or stability could potentially explain the changes in cisplatin sensitivity. In 

order to investigate this, the DNA Damage Antibody Sampler Kit from Cell Signaling 

Technology (#9947) was used to examine several activated proteins. It was observed 

that total ATM protein levels were much lower in cells transfected with CDK12 siRNA 

and was the most consistently altered member of the DNA damage pathway (Figure 

5.6A). Upon this finding, the microarray results were re-examined. Although ATM wasn’t 

one of the most dramatically altered genes in the analysis, it was the only major DDR 

gene that was affected in the CDK12 knockdowns (ATM expression was ~0.5376 
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Figure 5.5: CDK12 knockdown does not lead to a decrease in BRCA1 nor FANCI 
mRNA expression in triple-negative NSCLC cell lines. Triple-negative NSCLC cell lines 
H322 (A.) and H1648 (B.) were transfected with either control, CDK5, CDK9, or CDK12 
siRNA and harvested for RNA extraction 36 hours following transfection. Real-time PCR 
analysis showed that contrary to what has been previously published, CDK12 knockdown 
cells do not have lower BRCA1 and FANCI mRNA expression as compared to control 
siRNA cells. 
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in cells transfected with CDK12 siRNA versus control siRNA for both cell lines). In order 

to investigate this further, real-time PCR was used to examine ATM mRNA expression 

levels at different times following CDK12 siRNA transfection. These results confirmed 

the microarray results that ATM mRNA expression levels are ~0.5-0.6 in the CDK12 

siRNA cells compared to the control siRNA cells shortly after transfection (Figure 5.6B). 

Likewise, as mRNA expression of CDK12 increased over time (due to loss of siRNA), 

ATM mRNA expression typically increased in a corresponding manner. These results 

therefore suggest that alterations in CDK12 levels may affect ATM levels at least 

partially by a decrease in ATM transcription. 

Table 5.2: Genes involved in DNA damage were not dramatically affected in 
triple-negative NSCLC cells depleted of CDK12 

Symbol AvgLog2Ratio Symbol AvgLog2Ratio

CDK12 -2.2211 C1orf96 1.038092

RFPL3-AS1 -2.1878 TMEM87A 1.035743

CDK12 -2.084 TMED5 1.035311

CARD8 -1.9979 GSTCD 1.03462

CDK12 -1.8841 NAP1L1 1.031837

RPGRIP1L -1.7926 NFIB 1.030515

CDK12 -1.7819 SUB1 1.029845

MTRF1 -1.7187 NAP1L1 1.025201

SLC2A12 -1.6436 USP12 1.025061

LOC100506418 -1.6435 SLC16A1 1.021511

SYTL5 -1.6234 PAK2 1.020837

SLC2A12 -1.6211 RRAS2 1.017765

TBC1D8 -1.5788 DHTKD1 1.016188

MUC15 -1.5695 SNAI2 1.010863

LOC100272217 -1.5681 USP45 1.010157

FAM149B1 -1.5532 NOL9 1.008509

FAM46C -1.5516 SPAG9 1.006687

CCDC121 -1.5508 ARFIP1 1.005406

ALG13 -1.5423 RASAL2 1.0028

TTC30A -1.5273 MTMR6 1.00247

20 Lowest Expressed Genes in 

CDK12 siRNA genes

20 Highest Expressed Genes in 

CDK12 siRNA genes
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Figure 5.6: Cells depleted of CDK12 have decreased levels of ATM protein and 
mRNA. (A.) H322 and H1648 cells were transfected with either control, CDK5, CDK9, or 
CDK12 siRNA and either left untreated or treated with cisplatin or pemetrexed for 120 
hours. Samples were then analyzed via Western blot, where it was shown that cells 
transfected with CDK12 siRNA were more sensitive to cisplatin but not pemetrexed (as 
shown by PARP cleavage) and had lower levels of ATM protein. (B.) H322 and H1648 cells 
were transfected with either control or CDK12 siRNA and then split into multiple plates. 
These samples were harvested from RNA at 24, 72, and 120 hours following transfection 
and analyzed via real-time PCR, where it was observed that ATM mRNA was ~50% what it 
was in CDK12-depleted cells following 24 hour transfection. 
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ATM Does Not Accumulate in the Nucleus and Become Insoluble 

 It was previously published that ATM can bind to double-strand breaks and would 

otherwise be undetectable unless microextraction protocols were used [306]. Therefore, 

one possible explanation for the observed decrease in ATM protein levels was that the 

ATM was accumulating in the nucleus and therefore just becoming more difficult to 

extract. Therefore, H322 and H1648 cells transfected with control and CDK12 siRNA 

were harvested for protein using either our normal whole-cell lysis protocol (as 

discussed in Chapter Two) or using a microextraction protocol kindly provided by Alvaro 

Monteiro’s lab at H. Lee Moffitt Cancer Center [158, 159]. In these experiments, it was 

shown that regardless of methodology for protein extraction, ATM protein levels were 

dramatically lower in cells where CDK12 was knocked down (Figure 5.7). These 

experiments thus showed that the alterations in ATM protein levels were not due to 

alterations in ability to extract ATM. 

ATM Protein Levels Do Not Decrease until 60-72 Hours after CDK12 siRNA 

Transfection 

 To gain a better understanding of the timeline for the observed alterations in ATM 

expression levels following CDK12 knockdown, ATM was measured by Western blotting 

as a function of time. H322 and H1648 cells were transfected with either control or 

CDK12 siRNA and split into multiple plates while changing the media (per manufacturer 

protocol). Protein was extracted from treated cells at 12, 24, 36, 48, 60, and 72 hours 

following transfection and analyzed via Western blots. These results showed that while 

CDK12 protein levels decreased between 12-36 hours following transfection, ATM 

protein levels did not decrease until much later (within 60-72 hours following  
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transfection) (Figure 5.8). The timeline of these results suggest that the observed 

decrease in ATM is not due to an off-target effect of the CDK12 siRNA, where it would 

be expected that ATM would decrease in approximately the same time interval as 

CDK12. Also, considering that ATM mRNA levels decreased as early as 24 hours 

following transfection with CDK12 siRNA, it is unlikely that the observed decrease in 

ATM protein can be solely accounted for by an alteration in mRNA expression. 

Therefore, it is anticipated that the decreased protein levels of ATM could be in relation 

to decreased protein stability. 
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Figure 5.7: ATM does not localize to the nucleus in cells where CDK12 expression is 
knocked down. One possible explanation for the apparent loss of ATM protein in CDK12 
knockdown cells was that the ATM could be localizing to double-strand breaks in the 
nucleus and therefore potentially become more difficult to extract. To test this, a 
microextraction protocol was used to isolate different fractions of the cell lysate, then these 
fractions were compared to the lysates from the normal extraction protocol. In both H322 
and H1648 cells, ATM protein levels were dramatically lower in the CDK12 knockdown cells 
as compared to the controls. 
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Figure 5.8: ATM protein levels decrease approximately 60-72 hours following 
transfection with CDK12 siRNA. H322 and H1648 cells were transfected with either 
control or CDK12 siRNA, then split into multiple plates. Cells were harvested for protein 
extraction 12, 24, 36, 48, 60, and 72 hours following transfection, then analyzed via 
Western blots. Though CDK12 protein decreased in the CDK12 siRNA samples between 
12-36 hours following transfections, ATM protein levels did not decrease in the same 
samples until 60-72 hours following transfection.  
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Discussion 

Considering that none of the existing CDK inhibitors we tested are known to 

target CDK12, it is not surprising that synergy was not observed between these 

compounds and cisplatin. Nonetheless, we still believe that CDK12-specific inhibitors 

may have merit. It has been noted by others that CDK12 activity is greatly inhibited by 

flavopiridol [305], which was not included in the CDK inhibitor screen shown here. It is 

also known that flavopiridol synergizes with cisplatin [307]. However, flavopiridol (which 

is well known to be highly toxic) may still have proven unsafe for combination with 

cisplatin for clinical use, so the development of a specific CDK12 inhibitor may still be 

beneficial.  

One interesting observation made here is that CDK12 levels tend to be higher in 

NSCLC tumors rather than in normal tissues. These findings offer support that at least 

in NSCLC, CDK12 may act as an oncogene. Furthermore, the findings that CDK12 

levels correlate with Ki67 in lung tumor tissues (particularly that they stain the same 

portions of cores) suggest that CDK12-targeted agents will primarily affect the tumor 

cells that proliferate most rapidly. All of these findings suggest that CDK12 may 

therefore be a useful target for cancer therapy. 

Also, the findings that CDK12 knockdown enhanced sensitivity to cisplatin further 

imply that CDK12 inhibition may prove useful for cancer therapy. Considering that 

platinum agents are commonly used for NSCLC treatment, combining this agent with a 

CDK12 inhibiting agent could prove to be a useful combination in the future. Since 

CDK12 is a kinase, developing a small molecule inhibitor may be less difficult to target 

compared to other protein classes. 
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Our data suggest that the increased cisplatin sensitivity observed in cells 

depleted of CDK12 may be due to a concurrent decrease in ATM. This would be a 

sensible putative explanation due to ATM’s well known role in DNA damage response 

and cisplatin treatment’s induction of DNA crosslinking. It could prove useful to study 

how big of a role ATM is playing in cisplatin sensitivity. If it were found that ATM were 

the main reason for increased platinum sensitivity in CDK12-depleted cells, then further 

development of ATM inhibitors might be most important for synergy with platinum 

agents in patients with high CDK12 levels in the future. Of course, inhibiting ATM in 

normal tissues could prove dangerous, so CDK12 might still be a better target for future 

research. 
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CHAPTER SIX: 

FINAL CONCLUSIONS AND FUTURE WORK 

 

Final Conclusions 

 The high incidence and mortality rates of lung cancer have motivated this work. 

This dissertation explores three therapeutic approaches that could impact therapeutic 

management of lung cancer, particularly NSCLC.  

First, we examined the utility of a novel pan-E2F inhibitor in lung cancer. As an 

undergraduate student, I was part of the Cress lab team that initially identified this 

compound from library screens [144]. Considering that the CDK/Rb/E2F pathway is 

altered in some way in most lung cancers, this was an obvious target to explore in my 

dissertation work. Though the lead compound we studied has a low likelihood of being 

used clinically for lung cancer due to its limited potency and toxicity, our studies do point 

to the potential use of E2F-targeted compounds. For example, we have shown that E2F 

inhibition (especially targeting E2F3, one of the most commonly implicated E2Fs for 

worse prognosis [308-316]) could be effective, and may also be even more successful 

when combined with common chemotherapeutic agents such as paclitaxel. It could be 

efficacious to develop more specific compounds since pan-E2F inhibitors such as 6474 

can cause effects that essentially cancel each other out. Likewise, since E2Fs are 

further downstream within the CDK/Rb/E2F pathway, development of E2F inhibitors 
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could be theoretically useful since it could be applicable in samples with a variety of 

pathway deregulation methods. For example, while CDK4/6 inhibitors require wildtype 

Rb in order to be effective, an E2F inhibitor could work regardless of the method of 

pathway alteration.  

Next, we examined a tool that could be applicable for determining patient 

prognosis and predicting benefit from adjuvant chemotherapy. This project began as a 

component of the E2F target project as we wanted to define the specificity of E2F family 

member function. However, as we examined the E2F signature in publically-available 

data, it became clear that the common E2F signature is a powerful biomarker. Also, the 

predictive ability of this signature could be exceptionally useful for revealing which early-

stage NSCLC patients should receive adjuvant chemotherapy. Should clinical viability 

for this signature be proven, it could save patients from being administered 

chemotherapy from which they are unlikely to benefit, as well as be ultimately more 

cost-effective. As such, this signature could provide another step towards more 

personalized medicine being used in cancer therapy. 

The third project of this dissertation on CDK12 emerged from Dr. Alvaro 

Monteiro’s work on DDR, and I was recruited to the project due to my expertise in 

siRNA depletion studies and interest in therapeutic interventions in NSCLC. For the 

CDK12 chapter, we focused on identifying new targets in order to assist a large 

population of NSCLC patients for whom there are no applicable targeted therapies who 

therefore have to rely on common chemotherapeutic agents such as cisplatin. The 

identification of CDK12 as a potential target in triple-negative NSCLC could be 

important for the development of specific inhibitors in the future to synergize with 
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platinum agent therapy. Likewise, further study of this little-known protein could lead to 

the development of other inhibitors once its function in DNA damage as well as other 

pathways is better understood.  

  Taken together, these studies have explored several novel possibilities for lung 

cancer therapy. While these studies are still relatively early, we believe that they could 

lead to some exciting and useful tools for lung cancer treatment. 

Future Work 

 There are a variety of questions that still should be answered, especially before 

these findings could be clinically useful. Here, we will discuss some of the research 

areas that could be examined in future investigations. 

 In relation to the 6474 findings, it could be interesting to examine this compound 

in other cancers. For example, it was previously noted that in screening this compound 

against the NCI60 panel, leukemia and lymphoma cell lines were the most sensitive 

(Figure 6.1). These results were confirmed in CellTiter-Blue cell viability assays where 

the 6474 IC50s in several blood cancer cell lines were much lower than the average 

6474 IC50 (Table 6.1). Likewise, the caspase 3 cleavage in the germinal centers of the 

spleens from the mouse experiments (discussed in Chapter Three) would further 

support the potential utility of targeting blood disorders with this compound. As such, 

perhaps there could be a chance that this compound would still be useful in the clinic if 

much lower doses could be used.  

 Furthermore, considering what we and others have shown in relation to high 

E2F3 levels corresponding to increased sensitivity to paclitaxel, it might be interesting to 

explore the utility of this compound in bladder cancer. This cancer type commonly  
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Figure 6.1: Blood cancers are more sensitive to 6474 than other cancer types 
included in the NCI60. Cell lines within the NCI60 were treated with 10 μM and analyzed 
for cell viability. Results were determined as mean growth percent less growth percent, so 
cell lines with negative growth values were most sensitive to the compound. Overall, blood 
cancers were most sensitive to 6474. 
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contains E2F3 amplification and overexpression [308, 309, 311, 317], which is a rather 

uncommon mechanism for the CDK/Rb/E2F pathway to become deregulated. This 

overexpression has been noted to correlate with stage and a tumor’s ability to 

proliferate and metastasize [308, 309, 311]. As such, it could be useful to determine if 

there is a correlation between E2F3 levels and paclitaxel sensitivity (which can be used 

as a monotherapy for bladder cancer [318]) that could be useful to determine which 

patients would benefit most from receiving this therapy. Considering that correlations 

between high E2F3 activity/expression levels have been noted in ovarian [192], ER-

negative breast [193], and now NSCLC samples [218], this relationship could exist in 

bladder cancer as well and be worth exploring. Also, it could be interesting to determine 

if bladder cancer (which is not strongly represented in the NCI60) might be sensitive to 

6474 therapy at lower doses, and therefore possibly be clinically useful. 

 For the E2F signature project, more patient samples need to be analyzed in 

order to further tighten the gene signature. This analysis should also confirm the 

signature’s ability to determine patient prognosis and predict benefit of receiving 

adjuvant chemotherapy. To this end, patient samples from the previously discussed 

lung carcinoma tissue microarray, the Lung Cancer Biospecimen Resource Network 

Table 6.1: Blood cancers have 6474 IC50s ranging from 5-20 μM. 

Cell Line Tumor Type IC50 (in μM) STDEV

HL60 Leukemia 19.34 6.62

K562 Leukemia 18.89 10.04

CCRF-CEM Leukemia 5.18 2.11

SR Lymphoma 12.00 5.28

Average 13.85 6.01
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(LCBRN), and the Spanish Lung Cancer group will be analyzed via NanoString. The 

LCBRN is comprised of lung cancer samples from the Medical University of South 

Carolina, the University of Virginia, and Washington University in St. Louis and receives 

support from the Congressionally Directed Medical Research Program through the 

Department of Defense Lung Cancer Research Program [319]. The Spanish Lung 

Cancer group samples are from a phase III clinical trial of randomized early-staged 

NSCLC patients treated with either surgery alone or surgery and ACT [320]. All of these 

cohorts should be useful for determining the signature’s prognostic utility, while the TMA 

and Spanish Lung Cancer group samples may be useful for determining if the signature 

is predictive. Also, if there were other clinical trials similar in design to the JBR.10 that 

included different chemotherapeutic agents (especially paclitaxel or pemetrexed due to 

previously published results on their relationships with E2Fs [146, 192, 193, 218, 321, 

322]), it could be interesting to see if there were any differences in sensitivity based on 

E2F signature scores. Furthermore, since the signature is mainly proliferative, it is 

highly possible that the signature may be equally effective in other cancer types as well. 

Therefore, it could be interesting to do similar analyses using samples from clinical trials 

in other tumor types. Another area that might be worth further exploration is the ability of 

the signature to predict patient benefit from neoadjuvant and radiation therapy as well. 

Since this signature is proliferative, it is anticipated that it may be effective for these 

treatment types as well and thus even more useful in the clinic. 

 As for the CDK12 project, many future studies are needed to confirm the 

potential of this protein as a biomarker for cisplatin sensitivity. First, it should be 

determined whether the observed decrease in ATM levels following CDK12 siRNA 
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transfection is due to off-target effects of the siRNA. In order to investigate this, 

individual siRNAs that were included in the pool could be tested to ensure that each 

siRNA lead to a decrease in ATM protein levels. Another method that could be used to 

determine this is creating stable CDK12 knockdown cell lines by transfecting shRNA 

that is specific to a different region of CDK12 than the sequences that are targeted by 

the siRNA used in the pool. 

 Next, it would be important to determine if the decrease in ATM levels is the 

reason for the enhanced sensitivity to cisplatin. One test that could examine this would 

be using ATM siRNA alone to see if that leads to a similar sensitivity to cisplatin as 

when CDK12 is knocked down. Another way to test this could be through a comparison 

of stable CDK12 knockdown cells either with or without exogenous ATM to see if the 

cells’ sensitivity to cisplatin is altered.  

Furthermore, it could be useful to explore CDK12’s relationship to cisplatin 

sensitivity through different cellular manipulations. For example, it would be interesting 

to determine if overexpressing CDK12 would lead to a decrease in cisplatin sensitivity. 

Also, it could be important to examine which domains of CDK12 are important for 

altering cisplatin sensitivity. One way to examine this could be through the creation of 

stable cell lines expressing kinase-dead CDK12 to determine not only if ATM levels are 

altered, but also if cisplatin sensitivity is altered. If ATM levels are not altered while 

cisplatin sensitivity is still affected in the CDK12 kinase-dead cells, then it is unlikely that 

ATM plays a major role in this process. If cisplatin sensitivity were not affected in 

CDK12 kinase-dead cells, then stable cell lines expressing mutants of different CDK12 

protein domains could be useful to determine which domain is important. However, it 
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could also be possible that kinase-dead CDK12 could be more harmful to cells than 

knocking down CDK12 expression (possibly due to an ability to still bind to and recruit 

some other proteins, but an inability to act). In that case, another method that could be 

used to alter CDK12 kinase activity is through knockdown of its cyclin partners, such as 

cyclin K [291, 323]. Though cyclin K is also known to associate with CDK13, knockdown 

of this cyclin would be expected to alter cisplatin sensitivity mostly in relation to CDK12 

activity because our previous results showed that CDK13 knockdown cells did not have 

altered sensitivity to cisplatin. Another aspect of the relationship between CDK12 and 

cisplatin sensitivity that would need to be explored is whether CDK12 knockdown in 

normal cells would also greatly enhance their sensitivity to platinum agents. If so, then 

this would suggest that CDK12 inhibitors could be quite toxic to non-cancerous tissues 

when combined with cisplatin.  

 Should it appear that ATM is important for cisplatin sensitivity, then it would be 

important to determine the mechanism behind its lessened expression upon CDK12 

depletion. Considering that ATM mRNA expression decreases by approximately 50% 

24 hours following CDK12 siRNA transfection but ATM protein levels do not decrease 

until 60-72 hours following transfection, it is unlikely that decreased transcription or 

mRNA degradation can completely account for the decrease in ATM protein levels. With 

all of these aspects in consideration, it could be useful to determine if adding a 

proteasome inhibitor would lead to an increase in ATM protein levels.    

 Lastly, it is interesting to note that CDK12 is very close to ERBB2 on 

chromosome 17. Since ERBB2 amplifications occur in approximately 2-4% of NSCLC 

[47, 48, 324], it could be interesting to see if any correlation could be noted between 
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NSCLC samples with ERBB2 amplifications and lowered cisplatin sensitivity. Likewise, 

it could be interesting to explore CDK12 in breast cancer, where ERBB2 amplifications 

are much more common (approximately 20%) [325-328], and CDK12 is already known 

to be typically amplified whenever ERBB2 is as well [329]. Since cisplatin is a common 

chemotherapeutic agent used for treating this cancer as well, then it could be important 

to determine if HER2 expression could serve as a substitute marker for cisplatin 

sensitivity. Our group had been interested in examining CDK12 and cisplatin sensitivity 

in ovarian cancer cell lines due to the dearth of chemotherapeutic options for patients 

with this cancer. However, no difference in sensitivity was noted in cell lines transfected 

with CDK12 siRNA where ATM levels also decreased (data not shown). These results 

have been confirmed by others, where it was shown in ovarian cancer cell lines that 

ATM inhibition and cisplatin did not synergize [330], whereas ATM inhibition does 

synergize with radiation [331]. As such, it could also be important to determine in both 

NSCLC and breast cancer whether CDK12 may sensitize cells to radiation as well. 
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