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ABSTRACT 
 
 
 

MDM2 regulates p53 predominantly by promoting p53 ubiquitination. 

However, ubiquitination-independent mechanisms of MDM2 have also been 

implicated. Here we show that MDM2 inhibits p53 DNA binding activity in vitro 

and in vivo. MDM2 binding promotes p53 to adopt a mutant-like conformation, 

losing reactivity to antibody Pab1620, while exposing the Pab240 epitope. The 

acidic domain of MDM2 is required to induce p53 conformational change and 

inhibit p53 DNA binding. ARF binding to the MDM2 acidic domain restores p53 

wild type conformation and rescues DNA binding activity. Furthermore, histone 

methyl transferase SUV39H1 binding to the MDM2 acidic domain also restores 

p53 wild type conformation and allows p53-MDM2-SUV39H1 complex to bind 

DNA. These results provide further evidence for an ubiquitination-independent 

mechanism of p53 regulation by MDM2, and reveal how MDM2-interacting 

repressors gain access to p53 target promoters and repress transcription. 

Furthermore, we show that the MDM2 inhibitor Nutlin cooperates with the 

proteasome inhibitor Bortezomib by stimulating p53 DNA binding and 

transcriptional activity, providing a rationale for combination therapy using 

proteasome and MDM2 inhibitors. 
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INTRODUCTION 
 
 
 

Carcinogenesis 
Carcinogenesis is a multi-step process by which normal cells are transformed 

into cancer cells, ultimately reprogramming a cell to undergo uncontrolled cell 

division.  Under normal cellular conditions there is a balance between 

proliferation and programmed cell death that is tightly regulated to ensure cellular 

integrity.  Both genetic and epigenetic DNA alterations that lead to cancer disrupt 

this balance, resulting in not only uncontrolled cellular division, but also genetic 

instability (Cahill et al., 1999).  More than one mutation is necessary for 

carcinogenesis, and this genetic instability allows for successive accumulation of 

mutations in certain classes of genes.  This series of mutations is the 

requirement for a normal cell to transform into a cancer cell (Fearon and 

Vogelstein, 1990). 

 Genetic instability is defined as a set of events that are capable of causing 

unscheduled DNA alterations within the genome.  These genetic changes can 

occur at multiple levels, anywhere from gaining or losing an entire chromosome 

to mutating a single oligonucleotide in a particular gene.  DNA mutations at a 

single nucleotide level include point mutations, deletions or insertions.  These 

small changes have the potential to affect the expression of the gene, or alter the 

function or stability of the protein product.  Large-scale mutations will occur at the 

chromosomal level, which results in the loss or gain of portions (or entire) 

chromosomes.  Chromosomal instability can involve genomic amplification, 

causing a cell to gain multiple copies of one or more genes, or translocations, 

which occur when two or more separate chromosome regions become fused at 

uncharacteristic locations (Lengauer et al., 1998). 
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 Epigenetic alterations involve modifications in gene expression from 

mechanisms other than changes in the DNA sequence itself (Bird, 2007).  These 

modifications occur through DNA methylation, histone modifications and gene 

imprinting (Feinberg and Tycko, 2004).  Epigenetic changes occur naturally in 

eukaryotic biology during the process of cellular differentiation, creating multiple 

different cell types that will have activated some genes, yet inhibited others (Reik, 

2007).  In some instances the DNA modifying events may lead to the activation 

of oncogenes or inactivation of tumor suppressor genes, leading to cancer.  A 

variety of compounds or environmental factors are also associated with 

epigenetic alterations and result in increased incidence of tumors.  These include 

environmental factors such as UV and ionizing radiation, tobacco smoke or even 

viral infections. 

 Following tumor initiation via the culmination of mutations that deregulate 

genes necessary to control homeostasis and the selective clonal expansion of 

these unstable, abnormal cells there is tumor progression.  This process results 

in a group of malignant cells that display the following biological properties: 

unchecked cellular growth (self-sufficiency in growth signals and loss of 

sensitivity to anti-grown signals), evasion from cell death, loss of senescence 

leading to limitless replicative potential, and the ability to invade and build 

metastases in other tissues (Hanahan and Weinberg, 2000).  Many of the genes 

that lead to these malignant phenotypes are involved in cell cycle control, DNA 

damage responses and DNA repair, making discovery and characterization of 

these genes critical for development of cancer therapies.  One such example is 

the “Guardian of the genome”, or the tumor suppressor gene, TP53 (Lane, 1992) 

and oncogenes MDM2 and MDMX. 

Tumor Suppressor and Oncogenes 
 Tumor suppressor genes code for proteins that suppress cell growth, 

protecting a normal cell from the path to cancer.  Tumor suppressors have 

several functions, including repression of cell cycle progressing genes, coupling 

the cell cycle to DNA damage and initiating apoptosis if the cell is unable to 

repair the damage (Croce, 2008).  When a tumor suppressor gene is mutated in 
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a way that causes it to lose or reduce its function, the cell has an increased 

probability of tumor formation, combined with other genetic changes.  Tumor 

suppressor genes generally follow the Knudson two-hit hypothesis, first proposed 

by A.G. Knudson for cases of retinoblastoma.  It implies that both alleles that 

code for a particular gene must be affected before an effect is manifested 

(Knudson, 1971).  Therefore, mutated tumor suppressors are recessive, in that if 

only one allele is damaged, the second can still produce the correct protein.  

These observations propose that the development of cancer via mutations in 

tumor suppressors involves at least two mutational events.  There are exceptions 

to this “two-hit” rule for tumor suppressors.  These involve tumor suppressors 

with mutations that exhibit haploinsufficiency, where the mutation of a single 

allele can cause an increase in carcinogen susceptibility (Fero et al., 1998).  

Another exception would be genes that have a “dominate negative” function, 

meaning that the mutated protein can prevent the function of the normal protein 

from the un-mutated allele (Baker et al., 1990).  Certain individuals with 

mutations in the tumor suppressor p53 gene product function with this dominate 

negative effect. 

 Unlike tumor suppressor genes, oncogenes encode for proteins that 

promote cell growth through a variety of ways and they also have the potential to 

cause cancer.  Proto-oncogene functions include proteins that help regulate cell 

growth and differentiation and are involved in signal transduction and execution 

of mitogenic signals.  Following activating mutations, the proto-oncogene then 

becomes an oncogene (Todd and Wong, 1999).  There are three main activation 

mutation types.  First, a mutation that causes a change in the protein structure, 

leading to an increase in enzyme activity or loss of regulation.  Second, an 

increase in protein concentration caused by an increase in expression, mRNA 

stability or gene duplication.  Third, a chromosomal translocation that can cause 

an increase in gene expression in the wrong cell or at the wrong time or 

expression of a constitutively active hybrid protein (Croce, 2008).  Normally these 

genes are critical for growth, repair and homeostasis, it is only when they 

become mutated that growth signals become excessive.  Under this condition 



  4

oncogenes can also inactivate specific tumor suppressor genes, as is the case 

with MDM2 and MDMX regulating p53 activity. 

Tumor Suppressor p53 
 P53 is a tumor suppressor protein that, in humans, is encoded by the 

TP53 gene located on the short arm of chromosome 17 (17p13.1) (Isobe et al., 

1986; Kern et al., 1991; Matlashewski et al., 1984; McBride et al., 1986).  The 

p53 protein belongs to a family of transcription factors that include p53, p63 and 

p73.  All three are required for normal development, yet only p53 seems to 

prevent tumor formation (Yang and McKeon, 2000).  It does this by inducing cell-

cycle arrest, DNA repair or apoptosis in response to various types of damage 

(Levine, 1997; Levine et al., 2004; Vogelstein et al., 2000).  Consequently, 

mutations or deletions in the p53 gene occur in over 50% of all human cancers 

(Soussi et al., 2006).   

P53 History 
 P53 was identified in 1979 by two groups as a 55-kDa protein that co-

precipitated with the large-T antigen of the simian virus (SV40) and accumulated 

in the nuclei of cancer cells (Lane and Crawford, 1979; Linzer and Levine, 1979).  

It was initially presumed to be an oncogene due to these observations and the 

use of cDNA containing missense mutated forms of p53, not the wild type, that 

acquired gain of function activities.  These mutated forms can stabilize p53 due 

to its increased interaction with HSP90, which inhibits ubquitination by MDM2, 

and can suppress the activity of wild-type p53 by binding and forming inactive 

tetramers (Peng et al., 2001; Sigal and Rotter, 2000).  This idea was further 

supported by the fact that p53 was shown to cooperate with the activated Ha-Ras 

oncogene by immortalizing normal embryonic cells, leading to cells sensitive to 

ras transformation (Eliyahu et al., 1984; Parada et al., 1984).  In 1989, the Arnold 

Levine lab was the first to characterized p53 as a protein that suppresses cellular 

transformation (Finlay et al., 1989).  This was further established in studies 

showing p53 was deleted in human colorectal cancers and that DNA viruses, 

such as HPV and the adenovirus E1B 55K, could inactivate p53 (Baker et al., 

1990; Scheffner et al., 1990; Zantema et al., 1985).  In 1992 a consensus 
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sequence to which human p53 could bind was discovered, defining p53 as a 

transcription factor (el-Deiry et al., 1992).  The transcription factor, p53, is now 

widely recognized as a tumor suppressor that responds to a wide variety of 

stress signals and is thought to be the rate-limiting factor in specific steps of 

tumor development.   

P53 Structure and Localization 
 P53 is a polypeptide chain of 393 amino acids, consisting of five major 

domains:  a transactivation domain, a proline rich region, a sequence specific 

DNA binding domain, a tetramerization domain and a regulatory domain (Figure 
1).  The N-terminus transactivation domain (TAD, residues 1- 45) can facilitate 

transcription activity and regulate p53 function by interacting with transcription 

coactivators such as p300/CBP and p21 (Joerger and Fersht, 2008).  This region 

is also involved in negative regulation of p53 by interacting with one of its 

negative regulators, MDM2 (Lin et al., 1994).  The proline rich domain (PxxP, 

residues 61-94) is reportedly necessary for p53 induced cell cycle arrest and 

apoptosis (Sakamuro et al., 1997).  The DNA binding domain (Core domain, 

residues 102-292) is required for sequence specific DNA binding and is basic in 

charge (Wang et al., 1996; Wang et al., 1995).  The most common consensus 

DNA binding sequence consists of two tandem repeats separated by a 0-13 bp 

spacer (el-Deiry et al., 1992). The p53 core domain has poor thermo stability at 

physiological temperatures and can undergo spontaneous denaturation (Bullock 

et al., 1997; Canadillas et al., 2006; Hansen et al., 1996). Changes in p53 

conformation can inhibit the ability of p53 to induce expression of its downstream 

transcriptional targets (Olivier et al., 2002; Soussi et al., 2000).    The 

tetramerization domain (TD, residues 324-355) resides near the C-terminus and 

is required for the efficient oligomerization of p53 tetramers through hydrophobic 

interactions.  The p53 regulatory domain (Carboxyl terminus, residues 311-393) 

is located at the extreme C-terminus and is rich in lysines and arginines, 

subjecting this domain to multiple post-translational modifications that are 

important for p53 regulation (Appella and Anderson, 2000; Brooks and Gu, 

2003). 



 
 
Figure 1:  p53 Structure. P53 is a polypeptide chain consisting of five major 
domains:  a transactivation domain, a proline rich region, a sequence specific 
DNA binding domain, a tetramerization domain and a regulatory domain.  P53 
also contains multiple nuclear export signals and nuclear localization signals. 
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Also located within the carboxyl terminus are nuclear localization signals 

(NLS), and there is a nuclear export sequence located in the oligomerization 

domain and activation domain (Cho et al., 1994; Dang and Lee, 1989; Hainaut et 

al., 1997).  Working mainly as a transcription factor, p53 nuclear import is 

essential for normal function as a tumor suppressor.  Therefore, there are 

multiple cellular mechanisms that exist to regulate the nuclear import and export 

of p53 (Knippschild et al., 1996; Moll et al., 1996; Ryan et al., 1994).  Regulation 

of nuclear localization occurs either by direct modifications of the NLS or NES 

sites or interaction with other proteins that interfere with NLS or NES 

accessibility.  For example, phosphorylation by insulin-like growth factor I, IGFI, 

can induce elevated levels of phosphorylated p53 resulting in high cytoplasmic 

levels in human breast cancer cells (Takahashi et al., 1993).  MDM2 can regulate 

p53 localization both by protein-protein interaction and posttranslational 

modifications.  MDM2 protein interaction itself mediates nuclear export and 

degradation of p53 by shuttling it to the cytoplasm, while ubiquitination of p53 in 

the nucleus unmasks the p53 NES (Inoue et al., 2005; Roth et al., 1998; Tao and 

Levine, 1999).  It is important to note that there are conflicting studies reporting 

that nuclear export of p53 is a MDM2 independent event, yet knockdown of 

MDM2 results in nuclear import and retention, and mutations of the lysine 

residues ubiquitinated by MDM2 abrogate nuclear export (Nakamura et al., 2000; 

Stommel et al., 1999).  It has been suggested that tumorigenesis could result 

from a defect in the regulation of p53 nuclear import and some studies have 
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shown that wild-type p53 is abnormally sequestered in the cytoplasm in a subset 

of human tumor cells (Bosari et al., 1995; Liang and Clarke, 2001; Moll et al., 

1995; Moll et al., 1992). 

P53 Function 

 P53 plays a role in a variety of cell signaling mechanisms by both 

transcription-dependent and independent mechanisms, which lead to cell cycle 

arrest, DNA repair, apoptosis-mediated cell death, inhibition of angiogenesis, 

differentiation and cellular senescence (Figure 2).  The p53 protein is normally 

maintained at low levels in unstressed cells with a short half-life (Shu et al., 

2007).  Once cells encounter stress, post-translational modifications occur, 

leading to an increase in p53 levels due to stabilization (Lakin and Jackson, 

1999; Saito et al., 2003).  Once transcriptionally activated, the p53 protein binds 

to DNA as a tetramer and stimulates the expression of downstream genes, which 

facilitates the repair and survival of damaged cells or eliminates severely 

damaged cells through apoptosis (Ko and Prives, 1996; Levine, 1997; Vogelstein 

et al., 2000).  Occasionally, p53 can act as a transcriptional repressor through 

interactions with basal transcription machinery, co-repressors or other DNA 

binding proteins (Chen et al., 2010; Seto et al., 1992). 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 2:  p53 Function.  P53 plays a critical role in a variety of cell signaling 
mechanisms (Bullock and Fersht, 2001).  
 

 

Cell Cycle Arrest 
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 The cell cycle is a series of events that lead a cell to divide and duplicate.  

Regulating the cell cycle is a critical step to ensure that genetic material is 

correctly passed onto daughter cells, as well as for the detection and repair of 



  9

genetic damage and prevention of uncontrolled cellular division.  Disregulation of 

any number of the cell cycle components can lead to tumor formation.  There are 

four distinct phases to the cell cycle: G1-phase, S-phase, G2-phase and M-

phase.  Each phase has checkpoints that monitor and regulate the progress of 

the cell cycle and prevent cell cycle progression until all necessary phase 

processes and repair of DNA damage occur (Elledge, 1996).  Two classes of 

regulatory molecules, cyclins and cyclin-dependent kinases (CDKs), along with 

CDK inhibitors, control cell cycle progression (Nigg, 1995).  In order for the cell to 

move from G1 to S phase, DNA must be intact.  Upon DNA damage recognition, 

the G1 checkpoint will stop the progression into S phase, giving the cell time to 

repair the damage.  Following DNA damage activated p53 binds DNA and 

activates expression of several cell cycle inhibiting genes, including p21WAF1.  

P21 binds to the G1-S/CDK and S/CDK complexes, inhibiting their activity, and 

preventing the cell from continuing on to the next stage of cell division (el-Deiry et 

al., 1993).  When p53 is unable to bind to the DNA properly, the p21 protein will 

not be available at high enough levels to act as a stop signal for the cell cycle, 

leading to uncontrollable division and tumor formation.   

 Another transcriptional target of p53 that is involved in cell cycle arrest is 

the 14-3-3σ gene (Hermeking et al., 1997).  The 14-3-3σ protein functions at both 

the G1/S and G2/M transitions and regulates cellular activity by binding and 

sequestering phosphorylated proteins.  Following p53 induction, 14-3-3σ binds 

and sequesters CDC2 and Cdc25 into the cytoplasm, which are essential for 

transition into mitosis, causing cell cycle arrest (Chan et al., 1999; Lopez-Girona 

et al., 1999).  The 14-3-3σ protein can also delay apoptotic signaling, resulting in 

G2 arrest, by promoting the translocation of Bax out of the cytoplasm (Samuel et 

al., 2001). 

Apoptosis-Intrinsic and Extrinsic 

 Apoptosis is the process of programmed cell death involving biochemical 

events that lead to changes in cell morphology and eventually death.  Apoptosis 

can be initiated by two distinct pathways: the intrinsic and extrinsic pathways.  

P53 plays a distinct role in both of these pathways.  The intrinsic pathway is 
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initiated from within the cell in response to cellular signals resulting from DNA 

damage and involves the release of pro-apoptotic proteins that activate caspase 

enzymes from the mitochondria (Coultas and Strasser, 2003; Fulda and Debatin, 

2006; Thornberry and Lazebnik, 1998).  This pathway involves a balance 

between the pro-apoptotic (Bax, Bad, Bid) and anti-apoptotic (Bcl-2, Bcl-XL) 

members of the Bcl-2 family of proteins, which ultimately regulate the 

permeability of the mitochondrial membrane and release of cytochrome C 

(Coultas and Strasser, 2003; Green and Evan, 2002).  There are also BH3 

domain-only proteins, such as PUMA and Bim.  Several of the Bcl-2 proteins are 

transactivated by p53, the first one being Bax (Miyashita and Reed, 1995).  Upon 

initiation of apoptotic signaling, p53 transcribed Bax undergoes a conformation 

shift, homodimerizes and inserts into the outer mitochondrial membrane, creating 

pores and promoting the release of cytochrome C (Adams and Cory, 2001; 

Wolter et al., 1997).  P53 can also induce PUMA, Noxa and Bid (Moroni et al., 

2001; Nakano and Vousden, 2001; Oda et al., 2000a; Walensky et al., 2006).  

PUMA and Noxa also promote mitochondrial depolarization via homo- or 

heterodimerization, leading to cytochrome C release.  BID interacts with Bax, 

leading to the insertion of Bax into the mitochondrial membrane. Recently it was 

shown that following extracellular stress signals, p53 can also translocate to the 

mitochondria, bind to Bcl-2 and MDMX, creating mitochondrial outer membrane 

permeabilization (MOMP) and release of cytochrome C (Mancini et al., 2009). 

 The extrinsic pathway begins outside of the cell through activation of 

specific pro-apoptotic receptors on the cell surface, which are activated by 

molecules known as pro-apoptotic ligands (Fulda and Debatin, 2006).  This leads 

to the induction of caspase 8 and 3 activities.  An example of this would be the 

binding of the Fas ligand to the Fas receptor.  P53 can induce the transcription of 

Fas following DNA damage, resulting in the formation of death-receptor-inducing-

signaling-complexes (DISCs).  This leads to the activation of effector caspases 8 

and 3 (Bouvard et al., 2000; Muller et al., 1998).  P53 can also induce the 

transcription of the death-domain-containing receptor DR5 in response to DNA 

damage (Wu et al., 1997).  
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DNA Repair 

 DNA repair refers to the multiple processes by which a cell identifies and 

corrects damage to the DNA that encodes its genome.  P53 has been linked to 

both the base excision repair (BER), nucleotide excision repair (NER) and 

correction of double stranded breaks (Gatz and Wiesmuller, 2006).  P53 induces 

transcription of GADD45, a protein that promotes NER mechanisms following 

gamma irradiation (Smith et al., 2000).  Following DNA damage, p53 induction 

can also transcribe p53R2, a ribonucleotide reductase that is important for repair, 

and lead to an increase in 3-methyladenine (3-MeAde), an enzyme required for 

BER (Guittet et al., 2001; Zurer et al., 2004).  When these normal repair 

processes fail to occur and cellar apoptosis also does not occur, irreparable DNA 

damage accumulates which can lead to tumor formation.  

Senescence 

 Cellular senescence is the phenomenon by which normal diploid cells lose 

the ability to divide.  Normally this occurs after a set number of cellular divisions 

in response to DNA damage (this includes telomere shortening) and the cells 

either age or self-destruct via apoptosis due to damage that cannot be repaired.  

This is called the “Hayflick phenomenon” or “Hayflick limit” (Hayflick, 1965).  

Early on, senescence was found to be mediated by two major tumor suppressor 

pathways, p53 and Rb (Gil and Peters, 2006; Kim and Sharpless, 2006) In fact, 

inactivating these proteins in mouse embryonic fibroblasts is sufficient to evade 

cellular senescence (Dirac and Bernards, 2003).  P53 induces transcription of the 

p21 protein, leading to the activation of the Rb pathway and triggering 

senescence following DNA damage and telomere uncapping (Herbig et al., 

2004).  INK4a/ARF, a critical positive regulator of p53 stability, has been shown 

to have increasing mRNA and protein levels as tissues age, leading to increased 

p53 transcriptional activity (Herbig et al., 2004).  Telomere shortening can be 

prevented by overexpression of the hTERT protein and has been shown to be 

downregulated when p53 is activated.  Overexpression of hTERT can actually 

overcome p53-induced apoptotsis (Xu et al., 2000). 
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Metabolism 

 Metabolism is a set of chemical reactions that happen in living organisms 

necessary to maintain life and allow said organism to grow, reproduce, maintain 

their structure and respond to their environment.  Metabolic alterations are 

common features of cancer cells and have recently been shown to have an 

important role in the maintenance of malignancies (Kroemer and Pouyssegur, 

2008).  Like any other stress signal, the metabolic responses to limited nutrients, 

energy or oxygen availability stimulate p53 activity.  For example, reduced 

nutrients result in the failure to stimulate the MDM2 activator, AKT, leading to 

increased p53 stability by removing the negative regulation normally imposed by 

MDM2 (Mayo et al., 2002; Mayo and Donner, 2002).  Under low oxidative stress 

conditions, p53 can transcribe TIGAR (TP-53 induced glycolysis and apoptosis 

regulator), which results in an inhibition of glycolysis and a decrease in overall 

reactive oxygen species (ROS) levels.  TIGAR can then protect cells from ROS 

induced apoptosis and allow for repair and survival of the cells.  Knockdown of 

TIGAR expression has been shown to sensitize cells to p53-induced death 

(Bensaad et al., 2006).  Under acute oxidative stress, p53 induces pro-apoptotic 

genes, including Bax and PUMA, leading to the removal of the damaged cells 

(Liu et al., 2005).  P53 can also activate AMPK, a protein that drives energy 

producing responses under conditions of metabolic stress, and negatively 

regulates mTOR, a protein that promotes protein synthesis and suppresses 

induction of autophagy (Feng et al., 2005; Hardie, 2007).  A disruption in balance 

of these processes is associated with mutations in p53 and oncogenic 

transformation (Vousden and Ryan, 2009). 

Angiogenesis and Metastasis 

 Angiogenesis is the physiological process involving the growth of new 

blood vessels from pre-existing ones and is the fundamental step in the transition 

of tumors to a malignant state (Weidner et al., 1991).  It can by triggered by 

activation of Hypoxia-inducible factors (HIFS), which are transcription factors that 

respond to changes in available oxygen in the cellular environment (Smith et al., 

2008).  HIF-1 can induce the expression of VEGF (vascular endothelial growth 
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factor), which is necessary for the formation of new blood vessels (Dachs and 

Tozer, 2000).  P53 can mediate the MDM2-dependent proteosomal degradation 

of the alpha subunit of HIF-1, therefore downregulating VEGF expression (Ravi 

et al., 2000).  P53 can also upregulate a number of anti-angiogenic and 

metastasis suppressor proteins, such as Tsp-1 and Nm23-H1 (Bouvet et al., 

1998).  Moreover, a number of matrix metalloproteinases, such as MMP-1 and 

MMP-13, that promote tissue invasion by causing extra cellular matrix 

degradation are repressed by activated p53.  (Sun et al., 2000; Sun et al., 1999).  

Therefore, loss of p53 activity could lead to uncontrolled blood vessel growth and 

eventually metastasis of tumor cells. 

Transcriptional Repression 

 In addition to serving as a DNA binding transcriptional activator, p53 has 

been reported to play a role in repression at a variety of promoters. As previously 

mentioned, p53 can negatively regulate the hTERT gene by interfering with the 

coactivator sp-1 binding at its promoter, contributing to the induction of cellular 

senescence (Xu et al., 2000).  P53 can also mediate cell cycle arrest by not only 

upregulating p21 and 14-3-3σ, but also by repressing cyclin B and cdc2 (Krause 

et al., 2000).  P53 transcriptional repression can also influence apoptotic activity 

by downregulating Survivin, a putative caspase inhibitor (Hoffman et al., 2002).  

P53 can actually compete with other transcription factors for binding to certain 

target promoters, such as AFP (alpha-fetoprotein gene), which results in the 

overlapping of DNA binding for p53 and HNF-3.  This leads to displacement of 

HNF-3 and a reduction of AFP transcription (Lee et al., 1999). 

 Transcriptional repression also seems to be partially due to the 

association of p53 with basal transcription machinery.  For example, p53 has 

been shown to interact with TATA-box binding protein (TBP) and TBP-associated 

factors, which leads to p53 repressed basal transcription via disruption of the pre-

initiation complex assembly (Seto et al., 1992).  However, recent reports have 

suggested that the p53-TBO interaction is not sufficient for transcriptional 

repression by p53 and that it involves the interaction of other factors called TAFs 

(TATA box binding protein associated factor) (Farmer et al., 1996). 
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 P53 can also alter the chromatin structure by recruiting histone 

deactylases and methyltransferases.  P53 has been shown to physically interact 

with HDACS in vivo and even decrease histone acetylation at certain promoters, 

such as Survivin (Murphy et al., 1999).  Histone methyltransferases SUV39H1 

and EHMT1 bind specifically to MDM2 and, following the formation of a 

SUV39H1/EHMT1-MDM2-p53 complex, increase H3 K9 methylation at p53 

target promoters and cause a decrease in p53 mediated transcription (Chen et 

al., 2010).  MDM2 also interacts with several other transcription repressors, 

including YY1 and KAP1, and it is presumed that under certain conditions these 

interactions can actively repress basal activity of p53 target genes by recruiting 

these corepressors to p53 target promoters (Sui et al., 2004; Wang et al., 2005). 
Regulation of p53 

 The p53 protein is normally maintained at low levels in unstressed cells 

with a short half-life to prevent unnecessary cell death (Shu et al., 2007).  Once 

cells encounter stress, post-translational modifications occur, leading to an 

increase in p53 levels due to stabilization (Lakin and Jackson, 1999; Saito et al., 

2003).  This accumulation, followed by p53 activation, results in the transcription 

of genes involved in multiple cellular processes necessary to prevent the 

accumulation of errors in the genome and the outgrowth of cells with malignant 

potential (Ko and Prives, 1996; Levine, 1997).  Increases in rates of transcription 

and translation may affect the cellular level of p53, but post-translational 

modifications, such as ubiquitination, phosphorylation acetylation, methylation, 

sumolyation and neddylation are the most efficient ways to increase p53 stability 

and activity (Appella and Anderson, 2000).  The fact that p53 is highly regulated 

at the post-translational level greatly underscores its importance in maintaining 

cellular homeostasis. 

 



 
 

Figure 3:  p53 Posttranslational Modifications.  (Meek and Anderson, 2009). 
 

 

P53 Ubiquitination 
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 P53 was first shown to be ubiquitinated by cellular factors associated with 

viral E6 protein in papilloma virus infected cells (Scheffner et al., 1993).  Later it 

was determined that p53 is ubiquitinated and degraded mainly through the 

proteosomal pathway (Chowdary et al., 1994).  Ubiquitin begins with the 

formation of the thioester bond between a cysteine residue of an E1 ubiquitin-

activating enzyme and the terminal glycine residue of ubiquitin.  Next, the 

ubiquitin is transferred to a ubiquitin-conjugating enzyme E2, which links the 

ubiquitin molecular to the ε-amino group of a lysine residue on the target protein.  

Once activated E2 is able to ubiquitinate a substrate but needs the targeting 

function provided by E3 ligases.  These E3 ligases are divided into two classes, 

depending on whether they contain a HECT domain or a RING domain (Pickart 

and Eddins, 2004).  Once the polyubiquitin chains are attached to the target 
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protein, the protein is then subjected to 26S proteosomal degradation (Glickman 

and Ciechanover, 2002) 

In normal cells the MDM2 E3 ligase has been shown to bind p53 and 

direct degradation via ubiquitin-dependent proteolysis (Haupt et al., 1997; Honda 

et al., 1997; Kubbutat et al., 1997).  In the absence of stress signals the p53 

protein is kept at low levels in order to allow normal cell proliferation and maintain 

cell viability.  Therefore, p53 assists in its own gene regulation by driving the 

gene expression of MDM2, creating a negative feedback loop (Wu et al., 1993).  

(Haupt et al., 1997)Ubiquitination by MDM2 has actually been shown to catalyze 

either monoubquitination or polyubiquitination of p53 in a dose-dependent 

manner (Li et al., 2003).  Low levels of MDM2 induce monoubquitination and 

nuclear export of p53, in contrast to high levels of oligomerized MDM2, which 

promote polyubiquitination and nuclear degradation of p53 by providing a 

recognition signal for the 26S proteosome (Cheng et al., 2009).  It is likely that 

these distinct mechanisms are exploited under different physiological settings. 

In addition to MDM2, other E3 ligases can mediate the ubiquitination and 

degradation of p53, including Pirh2 and COP1.  Both these genes are also p53 

inducible, thus, similar to MDM2, create a negative feedback loop (Barak et al., 

1993; Dornan et al., 2004; Leng et al., 2003).  Pirh2, a RING domain-H2 

containing, interacts with p53 and promotes MDM2-independent p53 

ubiquitination and degradation (Leng et al., 2003).  COP1, also an E3 ligase, 

promotes MDM2-independent p53 ubiquitination and degradation, and 

knockdown of COP1 enhances p53 mediated G1 arrest and sensitizes cells to 

ionizing radiation (Dornan et al., 2004).  ARF-BP1, a recently identified E3 ligase 

that contains a HECT domain that was purified as an ARF-BP1 binding protein, 

can also ubiquitinate and degrade p53.  ARF-BP1 inactivation has been shown to 

induce tumor suppression in p53 wild-type cells.  However, it is important to note 

that it has also been shown to induce tumor suppression in p53 null cells, 

suggesting that ARF-BP1 has both p53-independent and p53-dependent 

functions (Chen et al., 2005a).  E4F1 is an atypical ubiquitin ligase, as it 

facilitates p53 ubiquitination, but not for degradation.  Rather, ubiquitination at the 
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Lysine 320 residue seems to affect only p53 dependent cell cycle arrest, not 

apoptosis (Le Cam et al., 2006).  Together, these proteins represent an array of 

E3 ligases that the cell requires to regulate p53 stability, suggesting that the cell 

utilizes both MDM2-independent and MDM2-dependent mechanisms to maintain 

tight regulation of p53. 

Deubiquitinates are specific protease enzymes that catalyze the removal 

of ubiquitin from substrates.  The enzymes do this by cleaving the isopeptide 

bond between ubiquitin and the substrate.  The Herpesvirus-Associated-

Ubiquitin-Specific-Protease (HAUSP) was first identified as a cellular factor that 

bound to Herpes simplex virus type 1 regulatory protein ICP0 (Everett et al., 

1997).  HAUSP can bind to and stabilize p53 by directly removing the ubiquitin in 

order to induce growth arrest and apoptosis (Li et al., 2002a).  It has also been 

demonstrated that the p53-HAUSP interaction is enhanced under DNA damage 

(Li et al., 2002a; Lim et al., 2004). However, siRNA knockout of HAUSP in wild-

type p53 containing cells resulted in p53 stability.  This is because HAUSP can 

also interact with MDM2 and deubiquitinate it under certain conditions, 

suggesting that HAUSP is required to maintain sufficient levels of MDM2 in order 

to keep p53 levels regulated (Li et al., 2004). 

P53 Phosphorylation 

 There are multiple residues in both the amino terminus and the carboxyl 

terminus of p53 that are phosphorylated or dephosphorylated in response to 

genotoxic stress, for a total of 23 sites (Appella and Anderson, 2001).  Upon DNA 

damage, ATM, Chk1 and Chk2 phosphorylate p53 on several serine residues. 

ATM phosphorylates Ser-15 and Chk2 phosphorylates Ser-20.  These 

modifications eliminate the p53-MDM2 interaction following double strand DNA 

breaks (Canman and Lim, 1998; Hirao et al., 2000; Unger et al., 1999).  

Threonine 18 phosphorylation by Chk2 is also important for destabilizing the 

MDM2-p53 interaction (Schon et al., 2002).  Phosphorylation at these three 

residues helps recruit other regulatory factors, such as p300, CBP and pCAF to 

p53 in order to facilitate p53 acetylation (Li et al., 2002b).  However, there have 

been reports that when all serine residues were changed to alanine, p53 
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continued to display wild-type stability and transactivation (Wahl, 2006).  Mouse 

models with similar mutations at Ser-15 and Ser-23 (equivilant to Ser-18 and 

Ser-20) had modest, tissue-specific deficiencies and did not destabilize p53, as 

one would have predicted if they were critical residues for blocking MDM2-p53 

binding following DNA damage (MacPherson et al., 2004; Sluss et al., 2004; Wu 

et al., 2002).  The difficulty in showing strong phenotypic changes when these 

sites are mutated suggests a more complex role for these events.  In fact, 

modifications to MDM2 may be required to efficiently block the MDM2-p53 

interaction following stress.  For example, MDM2 can also be phosphorylated on 

Ser-395 by the ATM pathway and can be phosphorylated on Tyrosine 394 by c-

Abl, both shown to destabilize MDM2-p53, resulting in p53 stabilization 

(Goldberg et al., 2002; Mayo et al., 1997). 

 Phosphorylation of p53 on Ser-33, Thr-81 and Ser-315 promotes Pin1-p53 

interaction, a regulator of p53 following genotoxic stress, and results in a p53 

conformational change and activation of p53 (Zheng et al., 2002).  DNA-PK has 

also been shown to induce phosphorylation on N-terminal residues of p53, which 

is necessary but not sufficient alone to initiate p53-DNA binding (Woo et al., 

1998).  Oncogenic stress signaling by Ras can stimulate Ser-33 and Ser-46 

phosphorylation on p53 by stress kinase p38 and has been reported to result in 

senescence and tumor suppression (Bulavin et al., 2002; Ferbeyre et al., 2002). 

Phosphorylation has been shown to contribute to p53 gene target specificity, as 

is the case with CDKs, PKC and CKII phosphorylation on Ser-315, 378, and 392 

(Bischoff et al., 1990; Delphin and Baudier, 1994; Hall et al., 1996).  On Ser-46, 

p53 can be phosphorylated by DRK2 following severe DNA damage resulting in 

p53-mediated apoptosis.  HIPK2, which leads to dissociation of MDM2-p53 also 

induces p53-mediated apoptosis (Di Stefano et al., 2004; Oda et al., 2000b).  

Inhibitory phosphorylation also exists.  For example, phosphorylation of Ser-215 

by aurora kinase A overrides p53 DNA damage induced stress response (Liu et 

al., 2004) 

 Conversely, there are also sites that are constitutively phosphorylated 

under normal conditions that undergo dephosphorylation during stress, resulting 
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in p53 activation.  For example, Ser-376, when dephosphorylated following DNA 

damage, enhances p53-14-3-3ζ interaction and increases p53 DNA binding 

affinity (Stavridi et al., 2001).  Dephosphorylation can also have inhibitory effects 

on p53 activity.  The NOTCH-1 protein can bind p53 and inhibit phosphorylation 

on Ser-15, 37 and 46, leading to a decrease in p53 activation (Kim et al., 2007).   

P53 Acetylation 

 Acetylation is the covalent linkage of an acetyl group to lysine residues 

located on histone tails and other proteins, such as transcription factors.  It is 

involved with transcriptional regulation and correlates with an increase in 

transcriptional activity (Kouzarides, 2000).  CBP/p300, a histone acetyl-

transferase (HAT), acts as a coactivator of p53 and an increase in p53-CBP/p300 

association is observed following DNA damage.  This interaction enhances p53 

acetylation and results in its activation (Barlev et al., 2001).  PCAF also has been 

shown to acetylate the c-terminus of p53, resulting in its activation (Appella and 

Anderson, 2001).  MDM2 has been shown to inhibt the interaction of p53 and 

p300 in normal cellular conditions (Ito et al., 2002).  Phosphorylation at the N-

terminus has been implicated in facilitating an increase in acetylation and in 

CBP/p300 and PCAF binding (Avantaggiati et al., 1997; Dumaz and Meek, 1999; 

Gu et al., 1997; Lill et al., 1997).  Acetylation may have an even more direct role 

in p53 stabilization, as it was shown that c-terminal p53 acetylation can inhibit 

MDM2 mediated ubiquitination, further emphasizing how critically important this 

process is for the activation of p53 (Chuikov et al., 2004).   

 Histone deacetylase complexes (HDACs) are often associated with 

corepressor complexes and repress both histone and non-histone proteins by 

removing acetyl groups.  Much less is known about HDAC activity on p53 

function. However, it was recently shown that Sir2α (SIRT1), a NAD-dependent 

histone deacetylatse can deacetyate p53 and attenuate its transcriptional activity 

(Vaziri et al., 2001).  It is not known if deacetylation can also serve as an 

important step in MDM2-mediated p53 degradation. 
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P53 Methylation 

 Histone and protein methylation is now recognized as an important 

modification linked to both transcriptional repression and activation (Margueron 

et al., 2005).  It is believed that methylation of lysine residues on target proteins 

can influence the signaling potential of the modified protein, leading to diverse 

physiologic consequences (Shi et al., 2007).  Recent reports indicate that there 

are multiple residues on p53 that can be methylated, affecting its transcriptional 

activity.  Set7/9 monomethylation of p53 and Lys-372 activates p53 via 

stabilization of chromatin-associated p53 (Chuikov et al., 2004).  Set 8 

monomethylates p53 at Lys-382, which suppresses p53-mediated transcriptional 

activity.  In fact, Set8 expression is downregulated upon DNA damage (Shi et al., 

2007).  Smyd2 monomethylated p53 at Lys-370, repressing p53 activity which 

can be impeded by Set7/9 methylation at Lys-372 (Huang et al., 2006).  P53 can 

also be demethylated by the lysine demethylase, LSD1, removing both di-and 

monomethylation at Lys-370.  This demethylase activity represses p53-mediated 

transcription and inhibits p53-dependent apoptosis (Huang et al., 2007).  It is 

important to note that while we know monometylation occurs at Lys-370 via 

Smyd2 activity, it is not yet known what methyltransferase creates dimethylation 

at this particular site on p53.   

P53 Neddylation and Sumoylation 

 The Nedd8 protein is in the ubiquitin-like family of proteins and uses E1 

activating and E2 transferring enzymes, similar to that of ubiquitin.  Neddylation 

inhibits p53 transcriptional activation via MDM2 (Xirodimas et al., 2004).  MDM2 

acts as a specific E3 Nedd8 ligase for p53 and also itself.  C-terminal glycine 

residue of Nedd8 can be covalently linked to Lys-372, 372 and 373 of p53.  P53 

proteins with mutations at these residues are no longer transcriptionally inhibited.  

These neddylation residues overlap with lysine residues that can be ubiquitinated 

and acetylated, however, it is not known whether there are de-neddylation 

pathways or if neddylation is in competition with ubiquitin and acetylation, with 

one process favoring the other in certain conditions.   
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 Sumolyation is similar to ubiquitination in that an isopeptide bond is 

formed between the C-terminal carboxy group of the small ubiquitin-like protein 

SUMO1 and the ε-amino group of a lysine residue in the target protein.  It has 

been shown that p53 sumolyation on Lys-386 can enhance transcriptional activity 

and, similar neddylation, seems to be regulated by MDM2 and also ARF 

mediated nuclear targeting (Chen and Chen, 2003; Gostissa et al., 1999). 

P53 Mutations in Cancer 
 P53 mutations occur in more than 50% of human cancers.  A distribution 

of organ specific tumors and percentages of p53 gene mutations are depicted in 

Figure 4.  The most common mechanism in which p53 is inactivated are point 

mutations (93.6%), which have been identified in more than 250 codons of p53.  

About 95% of these lie in the core DNA binding domain of p53, while only about 

5% of the mutations are found in the regulatory domains (Figure 5).  These DNA 

binding domain mutations incapacitate the ability of p53 to transactivate the 

target genes that are necessary for mediation of p53 tumor suppressor functions.  

Of these point mutations, 75% occur as a single missense mutation in one allele 

of p53, rather than deletions, insertions or frameshifts.  The second wild-type 

allele is generally also lost (loss of heterozygosis, LOH), resulting in genetic 

instability.  In fact, a germ-line mutation in just one of the two p53 alleles 

abrogates p53 function and predisposes humans to cancer (Li-Fraumeni 

syndrome).  This creates an extremely stable mutant p53 protein that is seen at 

high expression levels in cancer cells.  There can also be a dominante negative 

effect from the mutant p53, forming inactive hetero-oligomers with the wild-type 

p53, rendering it inactive (de Vries et al., 2002).  A majority of these point 

mutations will either affect the structural integrity of p53 or its ability to contact 

DNA directly. 

 



 
 

Figure 4:  Distrubution of Cancers and p53 Mutations. Soussi, Thierry. Online 
Posting. The TP53 Website. n.d. Web. 14 Oct. 2010. 
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Figure 5:  Distribution of p53 point mutations. Lodish, et. al. Molecular Cell 
Biology 4th Addition. New York: W. H. Freeman, 2000. 
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 There are six hotspot mutations that are clustered in the DNA binding 

surface; two affect p53 DNA contact – Arg248 and Arg273 – and four affect the 

structure of the p53 DNA binding surface – Arg175, Gly245, Arg249 and Arg282.  

The contact mutations are capable of maintaining a wild-type conformation, 

however, the p53 DNA-binding capability is severely compromised.  In fact, the 

most prevalent point mutation that occurs in human cancer is Arg 248 (Ory et al., 

1994).  Structural mutations result in an altered conformation in p53, also 

decreasing its ability to bind DNA (Legros et al., 1994).  There are also less 

common point mutations that affect p53 thermostability, oligomerization and 

interactions with other proteins.  Some mutants of p53 have even been 

suggested to have oncogenic activity by gain-of-function mechanisms (Dittmer et 

al., 1993; Harvey et al., 1995).  For example, mice with the Val135 mutation in 

one allele exhibited accelerated tumor development and an altered tumor 

spectrum, compared to the wild-type only counterparts (Harvey et al., 1995).   
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Non-Mutated p53 in Cancer 
 The remaining 50% of cancers that do not contain mutant p53 actually 

suppress p53 by disrupting its activity.  One of the mechanisms is through 

inhibition by viral oncoprotiens.  In adenovirus transformed cells, the EIB 

oncoprotein can bind to p53 and inhibit its transcriptional transactivation by 

blocking PCAF acetylation (Liu, Colosimo et al. 2000; Zhao and Liao 2003).  The 

E6 protein of human papillomavirus types 16 and 18 facilitates the rapid 

degradation of p53 via ubiquitin dependent proteolytic degradation.  The E6 

protein binds to the cellular E6-AP protein, and this complex interacts with p53 to 

induce ubiquitination (Scheffner et al., 1993). 

 Likewise, cellular proteins that regulate the activity of p53 cause many 

wild-type p53-inactivating lesions.  For example, MDM2 overexpression through 

gene duplication enhances transcription or translation and is frequently observed 

in tumors that retain wild-type p53 (Landers, Haines et al. 1994; Momand, Jung 

et al. 1998; Phelps, Darley et al. 2003).  Increased expression of MDM2 leads to 

the continuous degradation of p53 and therefore suppresses its activity, even 

under conditions of cellular stress.  Hypomorphic MDM2 mice that express 

reduced levels of MDM2 show enhanced p53 activity, but without an increase in 

p53 protein levels.  This suggests that MDM2 mediated degradation is not the 

only way it inactivates p53 (Mendrysa, McElwee et al. 2003).  MDMX, a MDM2 

homologue, is also overexpressed in several tumor types, particularly 

retinoblastomas.  MDMX overexpression does not lead to a reduction in p53 

levels, but rather a reduction in transcriptional activity (Danovi, Meulmeester et 

al. 2004). 

 Proteins that are further upstream in the p53 pathway are inactivated in 

some tumors.  For example, the loss of the INK4A locus through deletions, 

mutations or DNA methylation is frequently seen in cancers (Sherr, 2001).  This 

gene codes for the ARF protein that binds directly to MDM2, preventing MDM2-

mediated degradation of p53 following mitogenic stress.  Without ARF, tumors 

with oncogene activation signaling cannot reach p53 (Ruas and Peters, 1998).  

Mutations in upstream proteins critical in the DNA damage pathway are also 
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frequently inactivated in cancers with wild-type p53.  For example, AT (human 

disease ataxia-telangiectasia) patients have mutations in the ATM protein, 

leaving p53 unphosphorylated following DNA damage and unable to transcribe 

proteins needed for its tumor suppressor activity (Maya, Balass et al. 2001).  Li-

Fraumeni-like syndrome patients that have wild-type p53 have Chk2 germline 

mutations that behave in a similar manner to those with ATM mutations (Bell, 

Varley et al. 1999).  Thus, human tumors frequently select for not only p53 

mutations itself, but mutations in its regulatory proteins to promote tumor 

progression. 

P53 as a therapeutic Target 
 The p53 pathway provides an important target for drug therapy because a 

damaged p53 pathway provides a key difference between tumor cells and normal 

cells (Bell and Ryan, 2007).  In fact, loss of p53 function has been linked with 

unfavorable prognosis and is indicated by more aggressive tumors, early 

metastasis and decreased survival rate (Gallagher and Brown, 1999).  Multiple 

studies have indicated that loss of p53 function confers increased resistance to 

anti-tumor agents (Lowe, Bodis et al. 1994; Ruley 1996).  There are two main 

strategies employed by researchers to reactivate p53 signaling: restore wild-type 

function to mutant p53 and rescue the functionality of wild-type p53 that has been 

compromised by loss or over-expression of its regulators.   

 There are three types of cancer therapies that target mutations within p53 

itself.  One cancer p53-oriented therapy targets the p53 dysfunction itself using 

pharmacological agents.  PRIMA-1 and CP-31398 are compounds that have 

been found to restore transcriptional transactivation function and reduce tumor 

size in animal models with both DNA binding and conformational mutants 

(Foster, Coffey et al. 1999; Bykov, Issaeva et al. 2002).  Another method would 

be to restore functional activity of p53 mutants using a second site suppressor 

mutation.  In theory, these second site mutations will restore the stability of 

mutant p53, resulting in the restoration of normal p53-DNA binding function.  One 

example is the second site mutant N239Y that can restore the hotspot mutation 

G245S, resulting in increased p53-DNA binding (Nikolova, Wong et al. 2000).  
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Unfortunately, the practicality in creating these second site suppressors in a 

clinical setting is not optimal.   

A third approach to treating mutant p53 containing tumors is the use of 

gene replacement therapy with wild-type p53 or proteins that selectively target 

mutant p53 cells.  Using genetic engineering, researchers are looking at both 

viral and non-viral ways to introduce wild-type p53 in hopes to restore its tumor 

suppressor function and to increase sensitivity to conventional anti-tumor agents, 

such as chemotherapy or radiation.  A candidate for this type of therapy are 

retroviruses, which integrate stably into the genome of infected cells, require cell 

division for transduction and are used in the majority of approved gene transfer 

clinical protocols (Roth and Cristiano, 1997).  It has been demonstrated that 

retrovirus gene transfer or wild-type p53 into human lung tumor cells and 

xenograft models could lead to inhibition of tumor cell growth, which was limited 

to tumor cells null or mutated for p53 (Cai, Mukhopadhyay et al. 1993; Fujiwara, 

Grimm et al. 1993; Fujiwara, Cai et al. 1994).  Although promising, this type of 

treatment is in its infancy and requires further improvements before becoming 

part of the standard care.  Another gene therapy that specifically targets mutant 

p53 cancers cells involves an adenovirus called ONYX-015, which encodes the 

E1b protein that specifically targets p53.  In this case the virus is engineered with 

a specific defect that causes it to selectively target cells with or without mutant 

p53.  Preliminary research on animal models were promising, however, 

preclinical testing has been less effective, although better results have been 

obtained when combined with conventional chemotherapies (Heise, Sampson-

Johannes et al. 1997; Yang, You et al. 2001).   

 Rescuing the functionality of wild-type p53 that has been compromised by 

loss or overexpression of its regulators is another popular approach for the 

development of p53 based cancer therapies.  MDM2 is an essential regulator of 

p53 and is a key target in discovering therapeutic ways to activate p53, 

particularly in tumors that retain wild-type p53 but have a functionally inactivated 

pathway through MDM2 overexpression or amplifications.  Reactivating p53 

could serve as a means to reduce tumor size or eliminate tumors all together.  
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The discovery of a small molecular compund, called Nutlin-3 (a cis-imidazoline 

analog), has been shown to inhibit the p53-MDM2 binding with a low IC50 

(Bottger et al., 1996).  Nutlin-3 treatment results in p53 stabilzation and 

transcriptional activation, leading to cells that undergo cell cycle arrest and 

inhibition of tumor growth in vivo (Vassilev 2004; Vassilev, Vu et al. 2004; 

Vassilev 2005).  It is important to note that this compound would be unable to 

target tumor cells overexpressing the MDM2 homolog, MDMX.  Although they 

have similar N-terminal binding regions for p53, Nutlin does not disrupt the 

MDMX-p53 interaction, therefore more work needs to be done to identify small 

molecular inhibitors specific for disruption of MDMX-p53 binding (Hu et al., 2006).  

For instance, using a phage display library, our lab identified a peptide sequence 

that blocks both MDM2 and MDMX-p53 binding.  P53 activation and growth 

arrest are greater with the addition of the peptide than with blocking MDM2-p53 

binding alone (Hu et al., 2007). 

 The E3 ligase activity of MDM2 has also been used as a therapeutic target 

and identification of small molecules that interfere with this activity have resulted 

in suppression of ubiquitination (Lai, Yang et al. 2002; Yang, Ludwig et al. 2005).  

One would conjecture that a problem would be lack of specificity, however, 

preliminary studies revealed that one of the compounds was selective for MDM2 

with no off target effects and the compounds differentiated between MDM2 

ubiquitination of p53 and self-ubiquitination.  

Oncogene MDM2 

History of MDM2 

 The MDM2 (murine double minute 2) protein was first identified as the 

product of gene amplification on murine double-minute chromosomes in a 

3T3DM spontaneously transformed mouse cell line (Cahilly-Snyder et al., 1987).  

Overexpression of MDM2 resulted in tumor formation in nude mice and leads to 

transformation of primary rodent fibroblasts in cooperation with Ras, suggesting 

an oncogenic role for MDM2 (Fakharzadeh, Trusko et al. 1991; Finlay 1993).  

The human homologue of MDM2 (also referred to as HDM2) has been mapped 

to chromosome 12q14.3-15.  In a subsequent study MDM2 was co-purified with 



p53 and found to inhibit p53 transcriptional activity and negatively regulate its 

stability, providing a mechanism for its oncogenic properties (Momand, Zambetti 

et al. 1992; Oliner, Pietenpol et al. 1993).  Concurrently, several tumor types 

have been shown to have amplified MDM2, including many osteosarcomas and 

soft tissue sarcomas that retained wild-type p53 (Momand et al., 1998).   
MDM2 Structure 

 The MDM2 gene is conserved across mammalian species and found in 

other multicellular organisims (Momand et al., 2000).  Expression of MDM2 is 

found ubiquitously and at low levels in normal human tissues.  The human MDM2 

gene is composed of 12 exons and 491 amino acids in length with a predicted 

molecular weight of 56 kDa.  The MDM2 gene can be transcribed from two 

different promoters: an upstream constitutive promoter (P1) and a second (P2) 

promoter within the first intron that is responsive to p53 (Barak et al., 1994).  

MDM2 is a member of the RING finger domain family of E3 ubiquitin ligases that 

contains four domains.  These include: an N-terminal domain (aa 19-102), a 

central acidic domain (aa 223-274), a zinc finger (aa 305-322) and a C-terminal 

RING domain (aa 438-478) (Figure 6). 

 
Figure 6:  MDM2 Structure.  The MDM2 protein contains an N-terminal/p53-
binding domain, a central acidic domain, a zinc finger domain and C-terminal 
RING finger domain.  MDM2 also has a nuclear localization and nuclear export 
signal. 
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 The N-terminus of MDM2 contains a p53-binding domain that interacts 

with the transactivation domain of p53.  The binding between MDM2 and p53 has 

been shown to prevent the association of transcriptional co-activators, inhibiting 

p53 transactivation function (Momand, Zambetti et al. 1992).  The binding of 

MDM2 to p53 also mediates the translocation of p53 from the nucleus to the 
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cytoplasm, which is dependent on the ability of MDM2 to bind to and ubiquitinate 

p53 (Geyer et al., 2000).  However, there are recent studies that have shown 

MDM2 constructs without the N-terminus p53-binding domain retain the ability to 

bind to and inhibit p53 activity (Ma, Martin et al. 2006).  The p53 amino acids 

essential for p53 binding to MDM2 include phenylalanine 19, tryptophan 23 and 

lysine 26 (Lin, Chen et al. 1994). 

 MDM2 contains both a nuclear localization and a nuclear export signal 

between the N-terminal domain and the central acidic domain, however, the 

protein is primarily localized in the nucleus (Hay and Meek 2000).  There is also 

a nucleolar localization signal found in the C-terminus of MDM2, which is 

required for MDM2 to localize to the nucleolus in the presence of the ARF tumor 

suppressor.  This leads to stabilization of p53 in response to oncogene activation 

(Lohrum, Ashcroft et al. 2000; Weber, Kuo et al. 2000). 

 The MDM2 central acidic domain has been shown to play an important 

role in p53 ubiquitination and degradation (Argentini, Barboule et al. 2001; Kawai, 

Wiederschain et al. 2003; Meulmeester, Frenk et al. 2003).  The acidic domain is 

also required for MDM2 binding to a number of proteins that can either attenuate 

or enhance its activity, including p14ARF, p300, YY1, ribosomal subunits, KAP1 

and SUV39H1 (Pomerantz, Schreiber-Agus et al. 1998; Grossman, Deato et al. 

2003; Zhang, Wolf et al. 2003; Jin, Itahana et al. 2004; Sui, Affar el et al. 2004; 

Wang, Ivanov et al. 2005; Chen, Li et al. 2010).  The central domain also 

contains a cluster of serine and threonine residues that are sites for 

phosphorylation and important for regulation of MDM2 function.  Serines 240, 

242 and 246 are CK1δ phosphorylation sites, Ser-256 is a site targeted by 

GSK3β, and Ser-269 is targeted by CHK2 following DNA damage, impairing the 

MDM2-Rb interaction and subsequent proteosomal degradation of pRb (Winter, 

Milne et al. 2004; Allende-Vega, Dias et al. 2005; Kulikov, Boehme et al. 2005).  

In addition, it has been revealed that the central acidic domain contains a second 

p53 interaction site that binds to the core of p53 and is sufficient to target p53 for 

ubiquitination in vitro (Burch, Midgley et al. 2000; Shimizu, Burch et al. 2002; Ma, 

Martin et al. 2006).   
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 MDM2 harbors a central zinc finger domain between the acidic domain 

and the C-terminal RING domain.  In the case of MDM2, the zinc finger domain is 

critical for mediating the MDM2-ribosomal protein interaction and its ability to 

degrade p53 under ribosomal conditions (Lindstrom, Jin et al. 2007). 

 MDM2 also contains a C-terminal RING domain with two zinc ions 

coordinated by a Cis3-His2-Cis3 consensus that is essential for proper folding of 

the domain (Boddy et al., 1994).  The RING domain is typically involved in 

protein-protein interactions (Borden, 2000).  CBP/p300 interaction and 

subsequent acetylation occurs at particular lysine residues in the RING domain 

leading to inhibition of the ubiquitin ligase activity (Wang et al., 2004).  The RING 

can also bind specifically to 5S RNA, although this interaction and its function is 

poorly understood (Elenbaas et al., 1996).  Likewise, the domain is critical for 

binding nucleotides, strongly preferring ATP, which is important for translocation 

of MDM2 from the nucleoplasm to the nucleolus (Poyurovsky, Jacq et al. 2003).   

MDM2 is also capable of self-oligomerization through its RING domain 

and heterodimerizing with MDMX.  The RING domain is also necessary for 

MDM2 ubiquitin E3 ligase activity towards p53 and MDMX, as well as itself 

(Tanimura, Ohtsuka et al. 1999; Borden 2000; Fang, Jensen et al. 2000; Honda 

and Yasuda 2000; Poyurovsky, Priest et al. 2007).  A knock-in mouse model of 

MDM2 with a point mutation inactivating the RING domain functions is embryonic 

lethal and is rescued in a p53 null background, indicating it is essential for 

MDM2-mediated suppression of p53 (Itahana, Mao et al. 2007).  This area also 

contains a cryptic nucleolar localization signal that is only revealed upon 

interaction with p14ARF (Lohrum, Ashcroft et al. 2000).  

MDM2-p53 Interaction 
 MDM2 is a vital regulator of p53, thus this interaction is controlled through 

several mechanisms.  The direct interaction between p53 and MDM2 is mediated 

by a hydrophobic pocket domain located in the N-terminus of MDM2 and 

residues 18-26 in the N-terminus of p53 (Chen, Marechal et al. 1993; Kussie, 

Gorina et al. 1996).  p53 mutants that can not bind MDM2 are resistant to 

degradation by MDM2, and mutations of critical N-terminal residues in MDM2 
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lack p53-binding (Freedman, Epstein et al. 1997; Kubbutat, Jones et al. 1997).  

There are three critical p53 hydrophobic residues that fit into the hydrophobic 

cleft of MDM2 (Phe-19, Trp-23 and Leu-26) and are the target of the previously 

described MDM2-p53 small molecule inhibitor Nutlin.   

The MDM2-p53 interaction allows MDM2 to control p53 through two 

distinct mechanisms: directly binding and masking the N-terminal transactivation 

domain and promoting ubiquitin-dependent proteosomal 26S degradation 

(Momand, Zambetti et al. 1992; Haupt, Maya et al. 1997).  By binding to the p53 

transactivation domain, MDM2 is able to transcriptionally inactivate p53 by 

blocking the recruitment of coactivators and transcriptional machinery.  The most 

prominent target of MDM2 E3 ubiquitin ligase activity is p53, which is constantly 

being ubiquitinated by MDM2.  However, mutants of MDM2 that lack E3 ligase 

activity can still bind wild-type p53 and, although significantly hindered, inhibit 

p53-mediated transcriptional activation (Leng et al., 1995).  The extent of 

ubiquitination can also determine the fate of the p53 protein.  Polyubiquitination is 

believed to target p53 for proteosomal degradation and monoubiquitination 

assists in nuclear export, both regulating p53 localization and its function as a 

transcription factor (Freedman and Levine 1998; Roth, Dobbelstein et al. 1998; 

Yang and Yu 2003).  Recent studies have shown that MDM2 requires p300 to 

catalyze p53 polyubiquitination, but MDM2 alone can only catalyze 

monoubiquitination (Zhu, Yao et al. 2001).  MDM2 can also promote its own 

degradation by autoubiquitination and ubiquitination of MDMX, promoting p53 

stabilization and transcriptional activation (Fang, Jensen et al. 2000).   

MDM2 can influence other forms of p53 posttranslational modifications, 

such as acetylation, sumolyation and neddylation.  MDM2 suppresses CBP/p300 

mediated p53 acetylation, increasing its ability to be ubiquitinated and degraded 

(Grossman, Perez et al. 1998).  MDM2 mediated p53 sumoylation enhances p53 

activity, while promotion of neddylation leads to the inhibition of p53 

transcriptional activity (Chen and Chen 2003; Xirodimas, Saville et al. 2004).   

MDM2 is also a transcriptional target of p53, creating an autoregulatory 

feedback loop (Momand, Zambetti et al. 1992; Barak, Juven et al. 1993; Wu, 
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Bayle et al. 1993).  The MDM2 gene contains two promoter regions: P1 that is 

thought to be constitutively on, and P2 that contains two p53 responsive 

elements (Montes de Oca Luna et al., 1995).  The ability of the cell to maintain 

p53 at low levels is critical for cellular survival and to allow for cell cycle 

progression.  Similarly, decreasing p53 activity will lead to a decrease in MDM2 

protein levels.  Therefore, the ratio of MDM2 to p53 protein is critical for the 

correct response to multiple cellular conditions.  In support of this relationship 

was the observation that the lethality of MDM2 null mice is rescued by 

simultaneous knockout of p53 (Jones, Roe et al. 1995; Montes de Oca Luna, 

Wagner et al. 1995). 

Several reports suggest that MDM2 has additional non-degradation 

mechanisms for regulating p53 activity. A previous study showed that a 

temperature-sensitive p53 mutant does not bind to DNA after forming a complex 

with MDM2 (Zauberman et al., 1993). EMSA experiments showed that full-length 

MDM2 does not interact with p53-DNA complex, suggesting that p53 binding to 

DNA and MDM2 are mutually exclusive (Burch et al., 2000). However, a GST-

MDM2-1-188 fragment was able to super-shift p53-DNA complex (Bottger et al., 

1997). More recent work shows that MDM2-hsp90 complex inhibits DNA binding 

by p53 in vitro and induces p53 unfolding (Burch et al., 2004). However, 

conflicting results suggest that MDM2 acts as a chaperone to promote p53 

folding and stimulates p53 DNA binding in vitro (Wawrzynow et al., 2007).  A 

recent study monitored p53 conformation under conditions in which MDM2 

mediated degradation was inhibited and showed that MDM2 binding promotes 

conformational change, which preceded p53 ubiquitination and degradation 

(Sasaki et al., 2007). MDM2-mediated conformational change may expose lysine 

residues on p53 for ubiquitination, which can be opposed by overexpression of 

hsp90 (Nie et al., 2007; Sasaki et al., 2007). 

MDM2 Regulation 
DNA Damage 

 MDM2 is also controlled at the post-translational level.  Upon DNA 

damage, several kinases can phosphorylate MDM2 on several of its serine or 
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threonine residues which modulate the p53-MDM2 interaction (Moll and 

Petrenko, 2003) (Figure 7).  The DNA-activated protein kinase (DNA-PK) has 

been shown to phosphorylate MDM2 at serine 17, located in the p53-binding site 

leading to decreased binding affinity to p53 (Meek and Knippschild, 2003).  ATM, 

an important DNA damage responsive kinase, phosphorylates MDM2 at Ser-395 

in the RING domain, disrupting the nuclear export signal necessary for efficient 

p53 export to the cytoplasm (Maya, Balass et al. 2001).  The tyrosine kinase c-

Abl, whose activity is stimulated by ATM, phosphorylates MDM2 on Tyr-394, 

suppressing MDM2 mediated degradation of p53 and contributing to DNA 

damage induced apoptosis (Goldberg, Vogt Sionov et al. 2002).  In response to 

growth factors, the PI-3 kinase pathway activated a signaling cascade that 

promotes cell growth and survival.  This included activation of AKT, a 

serine/threonine kinase, that phosphorylates MDM2 on multiple residues leading 

to MDM2 stabilization and increased p53 suppression (Ogawara, Kishishita et al. 

2002).  The mitogenic p38 kinase (MAPK) also phosphorylated MDM2 at the 

same sites of AKT, resulting in a similar outcome (Weber et al., 2005).  

Modifications of MDM2 by cyclin-CDK complexes (cyclin A-CDK2 and cyclin A-

CDK1) stimulated the interaction between MDM2 and ARF and decreased the 

interaction between MDM2 and p53 (Meek and Knippschild, 2003).  The CK2 

kinase has also been shown to phosphorylate MDM2, although the significance 

of this modification is currently unknown (Meek and Knippschild, 2003).   



 
 

Figure 7:  MDM2 Regulation.  Regulation of the MDM2 and p53 interaction 
following DNA damage and mitogenic stress. 
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 Dephosphorylation is also a potential mechanism for MDM2 regulation.  

The association of MDM2 with cyclin G-protein phosphatase 2A (G1-PP2A), a 

serine/threonine protein phosphatase and one of the first p53 responsive genes 

identified, results in dephosphorylation of Ser-166 and Thr-216 (Okamoto and 

Beach, 1994).  This leads to the generation of a positive feedback loop where 

stress activated p53 increases G1-PP2A expression, which then associates with 

MDM2, dephosphorylating it and destabilizing MDM2.  This process leads to the 

liberation of p53 where it can further transcribe target genes (Okamoto, Li et al. 

2002).  Wip1, a nuclear serine/threonine phosphatase, is also a downstream 

target of p53 whose expression is stimulated by stress.  Wip1 dephosphorylates 

MDM2 on Ser-395, the same site that is phosphorylated by ATM following DNA 

damage, resulting in the stabilization and suppression of p53 and returning it to 

basal levels (Lu, Ma et al. 2007).  The acidic domain is phosphorylated under 
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unstressed conditions and dephosphorylation of the acidic domain is also thought 

to play a role in mediating p53 induction.  Ck2 phosphorylates Ser-262 and 269 

reducing Rb binding, GSK3β phosphorylates Ser-256 enhancing MDM2 activity 

toward p53 degradation, and Ser-240, 242 and 246 are Ck1δ/ε targets (Winter, 

Milne et al. 2004; Gotz, Kartarius et al. 2005; Kulikov, Boehme et al. 2005).  

Following ionizing radiation, Ser-240, 242, 260 and 263 are rapidly 

dephosphorylated before p53 starts to accumulate, and alanine mutations at 

these phospho-sites alleviate degradation of p53 suggesting that these 

modifications result in positive regulation of p53 (Blattner, Hay et al. 2002).  

These findings seem to add another layer of complexity to the MDM2-p53 

negative regulatory feedback loop. 

Oncogenic Stress/ARF Induction 

 Deregulation of oncogenes, such as Ras mutants, pRb-E2F, c-myc or viral 

E1A, is another way of interfering with the MDM2-p53 interaction, allowing for the 

stabilization and activation of p53.  Following oncogenic stress there is an 

increase in the p14ARF protein, which binds to the acidic domain of MDM2 and 

inhibits its E3 ligase activity (Honda and Yasuda 1999; Sherr 2006).  It is thought 

that ARF binding sequesters MDM2 in the nucleolus while p53 remains in the 

nucleoplasm resulting in stabilization of nuclear p53 and increased p53 

transcriptional activity (Tao and Levine 1999; Weber, Taylor et al. 1999).   

Ribosomal Stress 

 Ribosomal stress induced by inhibiting rRNA synthesis causes the release 

of ribosomal proteins from the nucleolus to the nucleoplasm.  Once in the 

nucleoplasm, ribosomal large subunit proteins such as L5, L11 and L23, bind to 

the central acidic domain/zinc finger of MDM2 (Marechal, Elenbaas et al. 1997; 

Lohrum, Ludwig et al. 2003; Dai, Zeng et al. 2004).  This leads to the inhibition of 

MDM2 E3 ligase activity towards p53, increasing the expression of p53 target 

genes and cell cycle arrest (Bhat, Itahana et al. 2004; Dai, Zeng et al. 2004).  It is 

believed that MDM2-L protein interactions cause a steric hindrance that prevents 

the transfer of ubiquitin from E2 to p53 (Zhang, Wolf et al. 2003).  Knockdown of 

these L proteins by siRNA can lead to decreased p53 activation following 



ribosomal stress.  Also, point mutations in the MDM2 zinc finger domain (C305F) 

can abrogate L5 and L11, not L23 binding.  This creates an MDM2 protein with 

decreased export capabilities and delayed ubiquitination and degradation of p53.   

 
Figure 8:  MDM2 Regulation by Ribosomal Stress.  Following ribosomal stress 
the L proteins move from the large ribosomal subunit and bind to the MDM2 
acidic domain.  This attenuates MDM2’s ability to degrade p53.  It also increases 
MDM2 ubiquitination of MDMX. 
 

 

MDM2 Mouse Models 

  36

 The importance of MDM2 in regulation of p53 is best exemplified in mouse 

models.  Homozygous knockouts of MDM2 result in embryonic lethality at day 

3.5, mainly due to uncontrolled apoptosis induced by p53.  This lethality is 

rescued in a p53 null background, indicating that the primary role of MDM2 is to 

control p53 activity (Jones, Roe et al. 1995; Montes de Oca Luna, Wagner et al. 

1995).  Other conditional knockout mouse models have shown some tissue 

specificity with regard to MDM2 function.  Conditional deletion of MDM2 in 

osteoblasts results in severe skeletal defects during development and embryonic 

lethality, suggesting MDM2 is required to control p53 activity in these cells 

(Lengner, Steinman et al. 2006).  MDM2 knockout in cardiomyoctyes, red blood 
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cells, smooth muscle cells and in the central nervous system all lead to p53-

dependent lethality at birth, suggesting MDM2 plays a critical role in p53 

regulation in multiple cell types (Boesten, Zadelaar et al. 2006; Grier, Xiong et al. 

2006; Xiong, Van Pelt et al. 2006; Maetens, Doumont et al. 2007).   

 Mice with a hypomorphic allele that expressed 30% of the total MDM2 

levels have decreased body weight, defects in hematopoeisis and increased 

radiosensitivity due to decreased p53 inhibition (Mendrysa, McElwee et al. 2003).  

Also in a p53-dependent manner, MDM2 heterozygous mice are more resistant 

to lymphoid tumor development when crossed to an Eμ-Myc mouse model (Alt, 

Greiner et al. 2003).  Mice overexpressing MDM2 in the mammary epithelium 

were prone to tumor formation and increased hypertrophy, as well as reducing 

the anti-tumor suppressor functions of p53 (Lundgren, Montes de Oca Luna et al. 

1997; Jones, Hancock et al. 1998).   

MDM2 Interacting Proteins 

ARF 

 The ARF tumor suppressor is a protein that is transcribed from an 

alternate reading frame of the INK4a/ARF locus (CDKN2A) (Figure 9).  The gene 

is located on the short arm of chromosome 9 and translated into a 14kDa, 132 

amino acid protein.  ARF is a highly basic and hydrophobic protein with more 

than 20% of its amino acids being arginine, making it a largely unstructured 

protein unless bound to other targets (Sherr, 2001).  It therefore makes sense 

that ARF interacts with the acidic domain of MDM2.  This interaction directly 

inhibits MDM2 E3 ligase activity (Honda and Yasuda 1999).  ARF binding also 

causes MDM2 to be sequestered into the nucleolus, while p53 remains in the 

nucleoplasm, therefore blocking MDM2 mediated exportation of p53 from the cell 

nucleus to the cytoplasm for degradation (Tao and Levine 1999; Weber, Taylor et 

al. 1999).   

 



 
 
Figure 9:  Ink4a/ARF locus.  The ARF tumor suppressor is transcribed from an 
alternate reading frame of the INK4a/ARF locus.  Following mitogenic stress ARF 
expression is increased.  ARF then binds and antagonizes MDM2, permitting the 
transcriptional activation of p53 (Sherr, 2001). 
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 ARF expression is increased following aberrant mitogenic stimulation, 

such as overexpression of MYC or Ras or enforced E2F expression.  By 

antagonizing MDM2, ARF permits the transcriptional activity of p53, which leads 

to cell cycle arrest and apoptosis.  Therefore, loss of function in ARF is 

commonly associated with cancer (Lowe and Sherr, 2003).  In fact, the 

INK4a/ARF locus is deleted or silenced in many kinds of tumors.  For example, 

41% of breast carcinomas have p14ARF defects, while 32% of colorectal 

adenomas have p14ARF inactivation due to hypermethylation of the promoter 

(Yi, Shepard et al. 2004).  Mouse models that lack p19ARF are also more prone to 

tumor development.  This is because without ARF, MDM2 inappropriately inhibits 

p53, leading to increased cell survival.  Therefore, ARF has become a popular 

target in the search for novel cancer treatments.  Some examples would include 

small molecular compounds that would act as ARF and bind to MDM2 in cells 

with INK4a/ARF deletions, or treatments that could reverse hypermethylation in 

cancers with silenced INK4a/ARF loci.   
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SUV39H1 

 Histone-lysine N-methyltransferase SUV39H1 is an enzyme that, in 

humans, is encoded by the SUV39H1 gene (Aagaard, Laible et al. 1999).  The 

SUV39H1 gene is the human ortholog to the Drosphila Su(var)3-9 histone 

methyltransferase.  Mice and humans also express a second isoform, SUV39H2 

(O'Carroll, Scherthan et al. 2000).  The gene encodes a protein with a 

chromodomain and a C-terminal SET domain.  The chromodomain is about 40-

50 amino acid residues in length and found in proteins associated with 

remodeling and manipulation of chromatin.  These domain-containing proteins 

can recognize and bind methylated histones (Nielsen, Nietlispach et al. 2002).  

The function of the SET-domain (130 aa long) is to transfer a methyl group from 

S-adenosyl-L-methionine (AdoMet) to the amino group of a lysine residue on a 

histone or another protein.  This serves as a post-translational epigenetic 

modification that can then control the expression of genes or the activity of 

proteins.  It can also lead to recruitment of certain protein complexes that direct 

the organization of chromatin, or can influence protein function (Dillon et al., 

2005).   

Mouse knockout experiments have shown that the SUV39H1/2 genes are 

required for viability and proper H3 K9 tri-methylation at heterochromatin regions 

(Peters, O'Carroll et al. 2001).  Overall, SUV39H1 plays a vital role in 

heterochromatin organization, chromosome segregation and mitotic progression.  

SUV39H1 null mice are viable but tumor prone (Peters, O'Carroll et al. 2001).  

Recently, our lab has shown that MDM2 recruits SUV39H1 through binding of the 

methyltransferase to the MDM2 acidic domain, leading to the formation of a 

trimeric complex between MDM2, SUV39H1 and p53 (Chen, Li et al. 2010).  This 

interaction promotes histone H3 K9 methylation at p53 target promoters, leading 

to transcriptional repression of p53 target genes (Figure 10).  Knockdown of 

SUV39H1 following DNA damage can further enhance p53 transcriptional output.  

Likewise, overexpression of the tumor suppressor ARF inhibits the MDM2-

SUV39H1 interaction, leading to functionally activated p53.  So far, SUV39H1 



has shown increased expression in 25% of primary colorectal cancers indicating 

it has proto-oncogene characteristics (Kang, Lee et al. 2007).   

 
 

Figure 10:  SUV39H1-MDM2 Interaction.  SUV39H1 binds to the MDM2 acidic 
domain, creating a trimeric protein complex (SUV39H1-MDM2-p53).  This 
interaction promotes histone H3K9 methylation at p53 target promoters, leading 
to transcriptional repression of p53 target genes. 
 
 

Oncogene MDMX 
History of MDMX 
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 In 1996, through a mouse cDNA library screen, a p53 binding protein that 

shared 60% homology at the DNA and protein level with MDM2 was discovered.  

The protein was named MDMX (murine double minute X), also known as MDM4, 

(Shvarts, Bazuine et al. 1997).  Although MDMX is structurally similar to MDM2, it 
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does not have intrinsic E3 ligase activity, nor does it promote p53 degradation 

(Stad, Little et al. 2001).  However, MDMX has emerged as another critical 

regulator of p53 and overexpression of MDMX leads to suppression of p53 

transcriptional activity following stress imposed by DNA damage, aberrant 

mitogenic signaling and ribosomal stress.  Early studies also found that MDMX is 

constitutively expressed during cell proliferation, differentiation and stress 

(Jackson and Berberich 1999).  In addition, overexpression of MDMX resulted in 

cellular transformation when the H-Ras oncogene was also co-expressed 

(Danovi, Meulmeester et al. 2004).   

Several studies have implicated MDMX functions as oncogenic and 

implicated it in tumor formation.  HDMX is located on chromosome 1q32, which is 

an area frequently aberrant in cervical and ovarian carcinomas (Danovi, 

Meulmeester et al. 2004).  A subset of gliomas that were wild-type for p53 were 

found to have amplifications of MDMX, not MDM2 (Riemenschneider et al., 

1999).  Increased MDMX levels were also found in pre-B acute lymphoblastic 

leukemias, tumor cell lines and primary tumors that retained wild-type p53 

(Ramos, Stad et al. 2001; Han, Garcia-Manero et al. 2007).  Notably, elevated 

MDMX levels were found in 65% of retinoblastomas containing wild-type p53 

(Laurie, Donovan et al. 2006).  These data indicate that there is a clear link 

between MDMX overexpression and p53 suppression, making mutations in p53 

unnecessary for tumor formation. 

MDMX Structure and Function 
 The MDMX gene has 11 exons that encodes a protein of 490 amino acids 

in length.  MDMX and MDM2 share significant homology in several functional 

domains (Figure 11).  The highest homology is located in the N-terminal p53-

binding domain (54.6%, aa 42-94).  The residues required for interaction with p53 

are conserved between the two proteins (Shvarts, Steegenga et al. 1996).  

Binding of MDMX to p53 occurs at the N-terminus of both proteins and inhibits 

p53 transactivation function (Jackson and Berberich 2000; Stad, Little et al. 

2001).   



 
Figure 11.  Structure Homology of MDM2 and MDMX.  Both proteins contain 
N-terminal p53-binding domains, central acidic domains, zinc finger domains and 
form heterodimers through their RING finger domains.  Unlike MDM2, MDMX 
does not have distinct nuclear localization and nuclear export signals. 
 

 

 The central domain of MDMX shares little sequence homology with 

MDM2, yet it does contain several acidic residues (Parant, Reinke et al. 2001).  

The MDMX acidic domain, to date, has a relatively unknown function.  A MDM2 

protein containing the MDMX acidic domain is incapable of rescuing the loss of 

degradation that occurs with the deletion of the MDM2 acidic domain (Kawai et 

al., 2003).  The binding of casein kinase 1 alpha (CK1α) to MDMX, not MDM2, 

occurs at the zinc finger domain and phosphorylates Ser-289 in the acidic 

domain, leading to an enhanced MDMX:p53 interaction (Chen et al., 2005c).  

ARF interaction with the MDMX acidic domain is somewhat controversial.  Some 

studies suggest that the binding of ARF to the MDMX acidic domain can 

translocate MDMX to the nucleolus, while another study suggests that there is no 

direct binding between MDMX and ARF (Jackson, Lindstrom et al. 2001; Wang, 

Arooz et al. 2001).  Therefore, there is still work to be done in determining the 

exact function of the MDMX acidic domain. 
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 The zinc finger domain (aa 301-329) shares 41.9% homology to MDM2 

(Marine et al., 2007).  The function of this domain is largely unclear, however, a 

p53-induced caspase cleavage site lies between the zinc-finger and RING finger 

domains that regulates MDMX stability (Gentiletti, Mancini et al. 2002). 

 The RING domain (aa 444-483) shares 53.2% homology with MDMX 

(Marine et al., 2007).  MDMX forms heterodimers with MDM2 through the C-

terminal RING:RING interactions (Sharp, Kratowicz et al. 1999; Tanimura, 

Ohtsuka et al. 1999).  It was long thought the MDMX itself does not contain a 

functional nuclear localization or nuclear export signal, and depends on binding 

to MDM2 through the RING domain to localize to the nucleus (Migliorini, 

Lazzerini Denchi et al. 2002).  However, a recent study by our lab has shown 

that, in response to DNA damage, 14-3-3 binds MDMX revealing a cryptic 

nuclear localization signal and leading to MDMX translocation to the nucleus 

(LeBron, Chen et al. 2006).  A major difference between the MDM2 and MDMX 

RING domain is that MDMX lacks E3 ligase activity.  Yet although MDMX does 

not have intrinsic E3 ligase activity, it can enhance the ability of MDM2 to 

ubiquitinate substrates, including p53 (Badciong and Haas 2002).  Recent 

studies have found that the key difference between the MDM2 and MDMX RING 

lies in the extreme C-terminal residues, and the mutation of these key amino 

acids abrogates MDM2 E3 ligase activity, which interestingly is rescued by 

oligomerization with MDMX (Singh, Iyappan et al. 2007; Uldrijan, Pannekoek et 

al. 2007).   

 At the genomic level, the 5’ ends of MDM2 and MDMX are quite distinct.  

Unlike MDM2, the expression of MDMX is not dependent on p53 activity as it 

does not contain a p53 responsive element (Parant, Reinke et al. 2001).  

However there have been recent reports indicating that MDMX is a weak p53 

responsive gene (Li et al., 2010).  Unlike MDM2 the mRNA levels of MDMX do 

not correlate with a stress response, suggesting the MDMX has a different 

regulatory mechanism (Jackson and Berberich 1999).  In fact, following 

stimulation the mitogen-activated protein kinase pathway upregulates MDMX 
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mRNA levels via activation of c-Ets-1 transcription factors (Gilkes, Pan et al. 

2008).   

MDMX-p53-MDM2 Interaction 
 The importance of MDMX was established when MDMX-null mice were 

found to be embryonic lethal, and that this phenotype can be rescued by crossing 

to the p53-null background.  This process suggests a unique role in the 

regulation of p53 (Parant, Reinke et al. 2001; Migliorini, Lazzerini Denchi et al. 

2002).  MDMX was first reported to inhibit p53-induced transcription following 

ectopic expression on p53 target genes (Shvarts, Steegenga et al. 1996).  

MDMX does this by binding to the same amino acids in the transactivation 

domain that are required for MDM2 binding and are located at the N-terminus of 

p53 (Bottger et al., 1999).  This binding suggests that, similar to MDM2, MDMX 

can inhibit p53 transcriptional activity by interfering with the ability of p53 to 

interact with basal transcription machinery, recruitment of coactivators and 

binding to target promoters.  Indeed, in MDM2 null cells or cells with MDMX 

unable to bind MDM2, MDMX abrogates CBP/p300 acetylation of p53, resulting 

in the stimulation of p53 activation (Sabbatini and McCormick 2002; Danovi, 

Meulmeester et al. 2004).   

 MDM2 binds MDMX through RING:RING domain interactions, resulting in 

changes to the MDM2-p53 autoregulatory feedback loop.  It is well known that 

p53 transcriptionally activates MDM2, which negatively regulates p53 by 

inhibiting its transactivation and affecting its stabilization through ubiquitin-

dependent proteosomal degradation.  Although MDMX does not contain intrinsic 

E3 ligase activity, it has been shown in some studies to stabilize MDM2 by 

blocking auto-ubiquitination.  This relationship leads to an increase in MDM2 

ubiquitination and degradation of p53 (Stad, Little et al. 2001; Badciong and 

Haas 2002; Gu, Kawai et al. 2002). However, other studies have shown that 

knockdown of MDMX via siRNA in certain cancer cell lines either increased or 

had no significant effect on MDM2 or p53 levels and ubiquitination (Jackson and 

Berberich 2000; Stad, Little et al. 2001; Danovi, Meulmeester et al. 2004).  
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Notably, MDMX itself is also a target of MDM2 and is polyubiquitinated by 

MDM2, followed by proteosomal degradation (Pan and Chen 2003).   

 It seems that MDMX works along side MDM2 to maintain correct p53 

stability and transcriptional activity.  The discrepancies in the above findings 

suggest that the key factor is the ratio of MDMX to MDM2 when determining the 

overall effect of the proteins on p53.  When the MDMX to MDM2 ratio is lesser or 

equal to 1, p53 preferentially undergoes MDM2-dependent proteosomal 

degradation.  When MDMX expression is greater than MDM2, MDMX inhibits this 

process.  Because MDM2 and MDMX share a binding site on p53, when MDMX 

is overexpressed it competes with MDM2 for p53 binding, rendering p53 more 

stable (Jackson and Berberich 2000).  This scenario leads to MDMX inhibiting 

p53 transcriptional activity, independent of MDM2 (Marine and Jochemsen, 

2005).  The importance of these ratios and their ability to work together to 

correctly regulate p53 is also evident in a number of mouse model studies.  

These studies show neither protein can compensate for the other in regulating 

p53 function.  Likewise, studies of the CNS with knockouts to both MDM2 and 

MDMX showed a more dramatic phenotype than single knockouts (Xiong, Van 

Pelt et al. 2006).  However, in conditional knockout systems it seems that MDMX 

is only required for the inhibition of p53 in a subset of cell types and only under 

certain physiological conditions.  In fact, one study found that the overexpression 

of the MDM2 transgene could compensate for the embryonic lethality that occurs 

in the MDMX knockout mice, however, the opposite remains embryonically lethal 

(Steinman, Hoover et al. 2005).   

 In the absence of cellular stress it seems that the primary function of 

MDM2 is to maintain p53 at low levels, whereas the function of MDMX is to 

inhibit p53 transcriptional activity.  When DNA damage or other stresses occur, 

p53 is post-translationally modified, which leads to the inhibition of the MDM2-

p53 interaction and p53 stability.  Although MDM2 is a direct target of p53 

transcription, there is a lag between DNA damage p53 activation and an increase 

in MDM2 protein levels, possibly because of the p53-MDMX interaction.  Our lab 

has shown that, following cellular stress, the level of p53 activation is inversely 
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correlated with the amount of MDMX in these cells due to the formation of 

inactive p53-MDMX complexes (Chen, Gilkes et al. 2005; Gilkes, Chen et al. 

2006).  Conversely, MDMX become very unstable following DNA damage.  This 

is due to phosphorylation, enhanced degradation via MDM2 ubiquitination and 

not being transcriptionally induced by p53.   

 The MDM2-MDMX-p53 interaction also influences MDMX localization.  

Exogenous MDMX is mainly localized in the cytoplasm (Rallapalli, Strachan et al. 

1999).  Co-expression of MDM2 recruits MDMX into the nucleus, independent of 

p53, but does require the RING finger domain of both proteins and the NLS of 

MDM2 (Migliorini, Danovi et al. 2002).  Another study reports that MDMX is 

targeted to the nucleus in a p53-dependent, MDM2-independent manner (Li, 

Chen et al. 2002).  However, this same study showed that MDMX nuclear entry 

was also observed following DNA damage in p53/MDM2 null MEFs, suggesting 

that MDMX nuclear localization can also be independent of both p53 and MDM2.   

MDMX Regulation 
DNA Damage 

 The primary mechanism of MDMX regulation occurs at the post-

translational level.  The destabilization of both MDMX and MDM2 are required for 

proper p53 response to DNA damage.  Although MDMX expression is constant 

under non-stressed conditions, there are dramatic changes to the MDMX protein 

levels in response to stress.  Not only is MDMX ubiquitinated and targeted for 

degradation via MDM2 following DNA damage, but phosphorylation also plays a 

key role in efficient degradation (Figure 12). Activation of ATM in response to 

DNA damage leads to phosphorylation on Ser-403 and activation of downstream 

kinases, such as Chk2, phosphorylates Ser-342 and 367 (Chen et al., 2005b; 

Pereg et al., 2005).  DNA damage by ultraviolet radiation results in Chk1 

phosphorylation at Ser-367 (Jin et al., 2006).  Phosphorylation led to increased 

MDMX-MDM2 binding, followed by ubiquitination and degradation of MDMX.  

The increase in MDM2-MDMX binding was necessary for p53 activation following 

DNA damage since cells overexpressing MDMX were unable to undergo cell 

cycle arrest.  (Chen et al., 2005b).  Interestingly, phosphorylation at Ser-367 led 



to 14-3-3 binding, yet did not lead to direct MDMX degradation.  The 

phosphorylation does, however, stimulate nuclear import of MDMX by exposing a 

cryptic NLS region where it is preferentially degraded (LeBron et al., 2006).  

Another suggestion is that following ionizing radiation, the 14-3-3 binding 

prevents the association of HAUSP with MDMX, rendering it less stable 

(Meulmeester et al., 2005a; Meulmeester et al., 2005b).  However, in response to 

UV radiation, where Chk1 leads to 14-3-3 binding, MDMX is sequestered mainly 

in the cytoplasm (Jin et al., 2006).  Although there are multiple pathways, these 

mechanisms explain the ability of DNA damage to preferentially inactivate MDMX 

and stimulate p53 transcription. 

 
Figure 12:  Regulation of MDMX.  Following DNA damage protein kinases 
phosphorylate p53, MDM2 and MDMX on the indicated residues.  MDM2-MDMX 
binding increases leading to MDMX ubiquitination and degradation.  MDM2 also 
undergoes auto ubiquitination.  This leads to enhanced p53 stability and 
transcriptional activity. 
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 There have been reports of other kinases phosphorylaing MDMX.  Ck1α 

phosphorylates MDMX on Ser-289 and stimulates MDMX-p53 binding (Chen et 

al., 2005c).  CDK2 phosphorylates Ser-96 and results in nuclear export of MDMX 

and consequently the export of MDM2 (Elias et al., 2005).  Growth factor 

stimulation of the PI-3 kinase/AKT pathway leads to phosphorylation at Ser-367, 

14-3-3 binding and stabilization of MDMX and MDM2 (Lopez-Pajares et al., 

2008). 

Oncogenic Stress/ARF Induction 

 Mitogenic stimulation can also regulate MDMX protein levels.  Our lab has 

shown that, following oncogenic stress, ARF binds to MDM2 selectively and 

blocks p53-ubiquitination, yet promotes ubiquitination of MDMX (Pan and Chen, 

2003) (Figure 7).  In cells overexpressing MDMX there is a reduction of p21 and 

cell cycle arrest following E2F activation of ARF.  MDMX knockdown has the 

opposite effect, sensitizing the cells to ARF-induced cell cycle arrest.  Another 

study showed that MDMX gene amplification occurs in preneoplastic 

retinoblastoma cells, causing the p53-MDM2-ARF pathway that is usually 

activated following Rb inactivation to become inactive.  Cells with the amplified 

MDMX had a growth advantage over those with an intact ARF-MDM2-MDMX-

p53 pathway resulting in retinoblastoma development (Laurie et al., 2006).  

These studies highlight the importance in finding inhibitors specifically for the 

MDMX-p53 interaction. 

Ribosomal Stress 

 Recent studies have shown that the p53 response to ribosomal stress is 

another important factor in tumor suppression due to aberrant rRNA and 

biogenesis sensed by p53 (Lohrum et al., 2003; Marechal et al., 1994; Zhang et 

al., 2003).  Following the addition of Actinomycin D, a drug that induces 

ribosomal stress, there is an activation of p53 leading to induction of p21 and 

MDM2 target proteins.  However, the MDMX levels decrease due to increased 

L11 stimulating MDM2 to ubiquitinate MDMX (Figure 8).  This process can be 

blocked by overexpression of MDMX in both cell culture and xenograft models 
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(Gilkes et al., 2006).  These observations suggest that MDMX plays an important 

role in regulating the p53 response to ribosomal stress.   

MDMX Mouse Models 
 The physiological importance of MDMX negative regulation of p53 was 

characterized by the embryonic lethality of MDMX null mice at day 8.5, and this 

lethality can be rescued by a concomitant p53 deletion (Parant et al., 2001).  This 

lethality resulted from a severe proliferation deficiency, rather than the 

uncontrolled apoptosis seen in MDM2 null mice.  These results also suggest that 

MDM2 and MDMX have non-redundant roles, as they do not compensate for the 

loss of each other.  In these models MDMX contributes to p53 dependent 

regulation of both proliferating and quiescent cells (Francoz et al., 2006).   

 Studies have also examined the role of MDM2 and MDMX using tissue-

specific knockout systems, some of which were described earlier.  While MDM2 

appears to be important in a majority of different cell types, the only severe 

phenotype observed when MDMX was knocked out occurred in neuronal cells 

and in the CNS (Boesten et al., 2006; Migliorini et al., 2002; Xiong et al., 2006). 

Knockout of MDMX in cardiomyocytes and smooth muscle cells of the GI tract 

only caused minor defects (Boesten et al., 2006; Migliorini et al., 2002; Xiong et 

al., 2006).   

 Despite some increased apoptosis observed in neuronal cells that lack 

MDMX, it is believed that the primary role of MDMX is to regulate cell cycle arrest 

specific p53 transcriptional activity.  In support of this, concomitant deletion of the 

CDK inhibitor, p21, partially rescued the lethality of MDMX knockout mice in 

these cells (Steinman et al., 2004).  It is thought that these mice would retain 

wild-type p53 transcription capabilities and stimulate MDM2 expression, thus 

leading to higher MDM2 levels that can compensate for the loss of MDMX.  In 

fact, this has been observed in transgenic MDM2 mice that rescue the loss of 

MDMX (Steinman et al., 2005).  This phenotype and the difference between the 

MDM2 and MDMX null phenotypes seems to result from the fact that loss of 

MDM2 leads to the accumulation of the p53 protein, whereas loss of MDMX does 

not significantly increase p53 levels in vivo. 
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MDMX interacting Proteins 

CK1α 

 Casein kinase I (CKI) was one of the first serine/threonine protein kinases 

to be isolated and characterized, and functions as a regulator of multiple signal 

transduction pathways.  CK1 is a protein that is highly conserved from 

Saccharomyces cerevisiae to the human and has been genetically linked to the 

regulation of DNA repair, cell cycle progression and cytokines in yeast (Gross 

and Anderson, 1998).  There are seven mammalian isoforms that have been 

cloned and characterized, including: α, β, γ1, γ2, γ3, δ and ε (Rowles et al., 1991).  

CK1α is expressed equally in all tissues and detected in all cellular 

compartments (Zhang et al., 1996).  In addition to containing a catalytic domain 

the CK1α protein posseses a small carboxyl terminus area.  Following DNA 

damage p53 can be phosphorylated by CK1α in vitro, provided that p53 is 

modified at Ser-15 by ATM (Knippschild et al., 1997).  Other isoforms of the CK1 

family of proteins have been linked to phosphorylation of p53 and MDM2 upon 

cellular stress, resulting in a weakening of their interaction (Knippschild et al., 

2005).  Recent studies by our lab have shown that CK1α is a novel MDMX-

binding protein.  Specifically, it binds to the zinc finger domain of MDMX and 

stimulates MDMX inhibition of p53 by increasing the formation of the MDMX-p53 

complex.  The binding of CK1α also leads to phosphorylation on Ser-289, 

although the significance of this is yet to be determined (Chen et al., 2005c).  

These observations suggest that the CK1 family kinases are potential drug 

targets for sensitizing p53 to DNA damaging agents. 
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MATERIALS AND METHODS 
 
 

Cell Lines and Plasmids 

 MDM2, MDMX, p53, ARF and SUV39H1 constructs used in this study 

were of human origin. MDM2-MDMX hybrid constructs were described previously 

(Kawai et al., 2003).  Human pCIN4-HA-FLAG-p53 was kindly provided by Dr. 

Wei Gu (Brooks et al., 2007).  NARF6 (U2OS expressing IPTG inducible ARF) 

was provided by Dr. Dawn Quelle.  MDM2 and MDMX deletion mutants were 

generated by PCR amplification and subcloning.  H1299 (non-small cell lung 

carcinoma, p53-null), U2OS (osteosarcoma, wild-type p53), NARF6, SJSA, 

(osteosarcoma, wild-type p53, amplified MDM2), DLD1 (colon carcinoma, mutant 

p53), MDA-231 (human breast adinocarcinoma, mutant p53), HCT116 +/+ 

(human colon carcinoma, wild-type p53), and HCT116 -/- (human colon 

carcinoma, p53 null) and H1299-V138 (H1299 stably transfected with 

temperature-sensitive mutant p53-V138) were maintained in DMEM with 10% 

fetal bovine serum.  

Drug Treatments 

MDM2 inhibitor Nutlin (Cayman) was used at 5–10 μM and the cells were 

incubated for 5h.  Proteosomal inhibitor Velcade (Selleck) was used at 50 nM 

(unless otherwise indicated) and the cells were incubated for 5 h.  Proteosomal 

inhibitor MG132 (BIOMOL Research) was used at 30 uM for 5h.   

Transfections 
Calcium Phosphate 

 Calcium phosphate transfections were performed in H1299 cells due to 

their high transfection efficiency and the fact that they are p53 null with 

undetectable levels of MDM2 and MDMX.  In transient transfection assays > 2 x 

106 cells were seeded into 10 cm tissue culture dishes for 24 h.  For each 

transfection 40 ug of plasmid DNA was mixed with 450 ul of H2O and 125 mM 
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calcium chloride.  A mixture of 500 ul of HEPES (0.28 M NaCl, 0.05 M HEPES, 

1.5 mM CaCl2) was bubbled with air and the water/DNA mixture was added 

dropwise to the HEPES.  After a 10 minute incubation the mixture was added to 

the cells and incubated for 16 h.  After incubation the transfected cells were 

washed 3 times with PBS and refed with complete medium.  The cell cultures 

were then incubated for another 10 h before harvest.   

Lipofectamine 
 For the LipofectamineTM 2000 (Invitrogen) transfection experiments 5 x 

104 U2OS cells were seeded into 24 well tissue culture plates for 24 h.  The 

following day the cells were washed once with serum free media and refed with 

0.4 ml of serum free media.  For each transfection a total amount of 0.6 μg of 

plasmid DNA was mixed with 37.5 μl of Opti-MEM I Reduces Serum Medium.  

Lipofectomine 2000 was diluted (1.4 μl) in 37.5 μl of the Opti-MEM I Reduces 

Serum Medium and incubated for 5 min.  After incubation the lipofectomine mix 

was combined with the diluted DNA (total volume = 75 μl) and incubated for 20 

min at room temperature.  The mixture was added to each well and mixed gently 

by rocking the plate back and forth at room temperature.  The cell culture plates 

were then incubated at 37°c for 20 h prior to testing for transgene expression.   

Protein Analysis 
Western Blot 
 Cells were lysed in lysis buffer (50 mM Tris-HCl [pH 8.0], 5 mM EDTA, 

150mM NaCl, 0.5% NP-40, 1 mM phenylmethylsulfonyl fluoride), centrifuged for 

10 minutes at 14,000 x g and the insoluble debris was discarded.  Cell lysate (10 

to 50 µg of protein) was fractionated by sodium dodecyl sulfate (SDS)-

polyacrylammide gel electrophoresis and transferred to Immobilion P filters 

(Millipore).  The filter was blocked for 1 h with phosphate-buffered saline (PBS) 

containing 5% nonfat dry milk and 0.1% Tween 20.  The filter was then incubated 

overnight with primary antibodies diluted in blocking buffer.  The filter was 

washed three times (5 min each) with PBS containing 0.1% Tween-20.  Next, 

bound primary antibodies were conjugated with secondary antibody horseradish 

peroxidase IgG goat-anti-mouse or goat-anti-rabbit by incubating the filter with 
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the secondary antibody diluted in blocking buffer for two hours.  The filter was 

then washed three times (5 min each) with PBS containing 0.1% Tween-20.  The 

filters were developed using either Supersignal (Pierce) or ECL-plus reagent 

(Amersham Biosciences).  The following antibodies were used: 

• Human p53 was detected using DO-1 (mouse, Pharmigen) with 1:5,000 

dilution or FL393 (rabbit, Santa-Cruz) with a 1:10,000 dilution 

• Human MDM2 was detected using monoclonal mouse 5B10, 3G9 or 4B2 

with a 1:40 dilution or a rabbit polyclonal antibody at a 1:20,000 dilution 

• Human MDMX was detected using monoclonal mouse 10G11 or 8C6 with 

a 1:40 dilution or a rabbit polyclonal antibody at a 1:20,000 dilution 

• ARF was detected by 14P02 (mouse, Neomarkers) with a 1:1,000 dilution 

• FLAG-tagged proteins were detected with an α-FLAG monoclonal mouse 

antibody (Sigma) at a 1:5000 dilution and a rabbit polyclonal antibody with 

a 1:10,000 dilution 

• Myc-tagged proteins were detected (Sigma) with mouse 9B11 antibody at 

a 1:40 dilution and a rabbit polyclonal antibody at a 1:10,000 dilution 

• P21 was detected using anti-WAF1 (BD Bioscience) at a 1:1,000 dilution 

• PUMA was detected using NT (ProScilnec) at a 1:1,000 dilution 

• Actin was detected using a mouse monoclonal antibody (Sigma) at a 

1:30,000 dilution 

Immunoprecipitation 

 Cells were lysed in lysis buffer (50 mM Tris-HCl [pH 8.0], 5 mM EDTA, 

150mM NaCl, 0.5% NP-40, 1 mM phenylmethylsulfonyl fluoride), centrifuged for 

10 minutes at 14,000 x g and the insoluble debris was discarded.  Cell lysate 

(200-1000 µg of protein) was immunoprecipitated with 30 µl slurry of protein A 

agarose beads (Sigma) and MDM2 antibodies overnight at 4°C.  For 

immunoprecipitations using conformation-specific p53 antibodies the lysate was 

divided into equal halves and each immunoprecipitated for 18 h at 4°C with wild-

type conformation specific antibody (Pab1620) or mutant conformation specific 

antibody (Pab240).  For immunoprecipitation of FLAG tagged proteins the lysate 

was incubated with 50 µl slurry of M2-agarose beads overnight at 4°C (Sigma).  
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The beads were washed three times with lysis buffer, boiled in SDS sample 

buffer, fractionated by SDS-PAGE and analyzed by Western blot. 

DNA Binding Assays 
Chromatin Immunoprecipitation 

 Two confluent 10 cm plates per cell line (2 x 107 – 2 x 108 cells) were used 

per sample, one for the chromatin immunoprecipitation assay and one for protein 

analysis via Western blot.  Formaldehyde was added directly to tissue culture 

media to a final concentration of 1% and incubated on a shaking platform for 10 

minutes at room temperature.  The crosslinking reaction was stopped by adding 

glycine to a final concentration of 0.125 M and mixing for 5 minutes.  The plates 

were rinsed twice with cold PBS plus protease inhibitors and PMSF, scraped and 

centrifuged to collect.  The pellets were resuspended in 0.45 ml of RIPA lysis 

buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1% 

sodium doexycholate) and incubated on ice for 10 min.  Next, samples were 

sonicated to an average chromatin length of about 500-1000 base pairs and then 

centrifuged at 14,000 rpm for 1 minute at 4°c.  The supernatant was transferred 

to a new tube, precleared by adding 60 μl of protein A agarose/salmon sperm 

DNA beads (Millipore) and incubated on a rotating platform at 4°c for 30 min.  

Samples were centrifuged at 4,000 rpm for 1 minute and divided into the 

appropriate aliquots for immunoprecipitation and 50 μl per sample was set aside 

for input control.  The protein-DNA complexes from transiently transfected H1299 

cells were immunoprecipitated with 2 μg DO-1 antibody for p53 or 9B11 for MYC 

tagged proteins.  The final volume of each sample was adjusted to 1 ml using IP 

dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-Cl 

pH 8.0, 167 mM NaCl).  Control samples that were used for experiments 

included an untransfected plate of p53 null-H1299 cells, as well as samples that 

were immunoprecipited with 2 μg of IgG specific antibody.  Samples were 

incubated on a rotating platform overnight at 4°c. 

 The following day a 40 µl slurry of protein A agarose/salmon sperm DNA 

beads (Millipore) was added and incubated on a rotating platform overnight at 

4°c.  Samples were centrifuged at 4,000 rpm for 1 min at room temperature.  
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Beads were washed one time in low salt buffer (0.1% SDS, 1% Triton X-100, 2 

mM EDTA, 20 mM Tris-HCl pH 8.0, 150 mM NaCl), one time in high salt buffer 

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 500 mM 

NaCl), one time in LiCl buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate, 

1 mM EDTA, 10 mM Tris-HCl pH 8.0) and two times in TE (1 mM EDTA, 10 mM 

Tris-HCl pH 8.0).  For each wash samples were rotated for 3 minutes at 4°c and 

then centrifuged at 4,000 rpm for 1 min at room temperature.  Chromatin was 

eluted two times by added 100 μl elution buffer (1% SDS, 0.1 M NaHCO3) while 

shaking at 1000 rpm for 15 min.  To the input control 150 μl of elution buffer was 

also added.  The elutes were combined and then centrifuged at 4,000 rpm for 1 

min at room temperature to remove any remaining beads and transferred to a 

new tube.  The elutes received an addition of 0.3 M NaCl and were incubated at 

65°c overnight, shaking at 650 rpm, to reverse the crosslinking.  The following 

morning 1 ul of a 10 mg/ml RNAse A solution was added and the elutions were 

incubated for 30 min at 37°c, shaking at 640 rpm.  Next, 16 μl of 1.0 M Tris-HCl 

pH 6.8, 2 μl 1 M EDTA and 1 μl of 10 mg/ml proteinase K were added per 

sample and incubated at 45°c for 2 h.  The DNA was purified using the Qiagen 

PCR purification kit and reconstituted in 50 μl of water.  The samples were then 

further diluted 1:4 in water and then 4 μl was utilized per PCR reaction.  For p53, 

ARF and SUV39H1 promoter binding, samples were subjected to SYBR Green 

real-time PCR analysis using the following forward and reverse primers: 

(5’AGGAAGGGGATGGTAGGAGA and 5’ACACAAGCACACATGCATCA) to 

amplify the human p21 promoter and (5’CTGTGGCCTTGTGTCTGTGAGTAC 

and 5’CCTAGCCCAAGGCAAGGAGGAC) to amplify the human PUMA 

promoter, both containing the p53-binding site.  The readouts were normalized 

using 10% input chromatin for each sample [ΔCt [normalized ChIP] = (Ct[ChIP]-

(Ct[input] – Log2(input dilution factor)))].  The % Occupancy was then calculated for 

each ChIP fraction [% Occupancy =2(-ΔCt [Normalized ChIP])].  Samples were analyzed 

in triplicate and standard deviation was calculated [% Occupancy x ((2Ct Dev.)-1)].  

Error bars represent mean + standard deviation.  Each sample was treated with 
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the indicated ‘n’ values and the difference between each condition was 

determined by calculating the p values using a two-tailed student’s t-test.  

 

DNA Affinity Immunoblotting 

 H1299 cells were transiently transfected with FLAG tagged MDM2, MDMX 

and p53, along with Myc-tagged ARF and SUV39H1 when indicated.  Cells from 

a 10 cm plate were lysed in 1 ml lysis buffer [50 mM Tris-HCl (pH 8.0), 5 mM 

EDTA, 150 mM NaCl, 0.5% NP-40, 1 mM phenylmethylsulfonyl fluoride], 

centrifuged for 10 minutes at 14,000 x g and the insoluble debris was discarded.  

The lysate was incubated with 40 µl slurry of M2-agarose beads (Sigma) for 18 h 

at 4°C.  The beads were washed with lysis buffer and the FLAG-tagged proteins 

with their binding partners were eluted with 150 µl of lysis buffer containing 50 

µg/ml FLAG epitope peptide (Sigma) for 2 h at 4°C.  An aliquot of the eluted 

proteins were analyzed for expression levels by western blot. Lysates containing 

equal levels of p53 were added to a 200 µl DNA binding reaction mixture and 

incubated at 4°C for 30 min.  The DNA binding reaction mixture contains 25 nM 

double stranded biotinylated oligonucleotide DNA representing the p53 binding 

site at the p21 promoter (Biotin-5’-TCGAGAGGCATGTCTAGGCATGTCTC 

annealed with 5’-GAGACATGCCTAGACATGCCTCTCGA), 2 µg poly(dI•dC), 5 

mM DTT, 150 mM NaCl, 20 mM Tris-HCl (pH 7.2), 1 mM EDTA, 0.1% Triton X-

100, and 4% glycerol. Mutant control oligonucleotide contains Biotin-5’-

TCGAGAGGTCGCTCTAGGTCGCTCTC annealed with 5’-

GAGAGCGACCTAGAGCGACCTCTCGA.  The DNA/protein complexes were 

captured with 0.1 mg of magnetic Streptavidin beads (Promega) at 4°C for 30 

min.  The beads were collected using a magnet and washed 3 times with DNA 

binding buffer.  The bound proteins were eluted by boiling in sample buffer (4% 

SDS, 20% glycerol, 200 mM DTT, 120 mM Tris pH 6.8, 0.002% bromophenol 

blue).  The protein complexes were resolved by SDS-PAGE, and p53 was 

detected by western blot using DO-1 antibody. 
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Luciferase Assay 
 U2OS cells (50,000/well) were cultured in 24-well plates and transfected 

with a DNA plasmid mixture containing 10 ng p53-responsive BP100-luciferase 

reporter (Freedman et al., 1997), 5 ng CMV1-lacZ, 10 ng MDM2, or 20 ng 

MDMX, 5 ng of GFP and up to 600 ng using ssDNA.  Transfection was 

performed using Lipofectamine 2000 reagent (Invitrogen) as described above 

and cells were analyzed for luciferase and beta-galactosidase expression after 

24 h.  The ratio of luciferase/beta-galactosidase was used as an indicator of p53 

transcriptional activity. 

RNA Isolation and Analysis 
 To determine the levels of p21, PUMA and GAPDH expression, total RNA 

was extracted using the Qiagen Rnease Mini Kit per the manufacturer 

instructions.  Briefly, samples were lysed and homogenized using the 

QIAshredder columns in a highly denaturing guanidine-thiocyanate containing 

buffer.  Ethanol was added and the samples were applied to an RNeasy Mini 

sping column.  The total RNA was bound to the membrane and contaminants 

were washed away.  The RNA was eluted from the column using 50 μl of water.  

cDNAs were prepared by reverse transcription of total RNA using the SuperScript 

III Invitrogen kit. The primers used for Sybrgreen quantitative PCR of human p21, 

PUMA and GAPDH mRNA were as follows.  Human p21 forward: 

5’ATGAAATTCACCCCCTTTCC; reverse: 5’AGGTGAGGGGACTCCAAAGT. 

PUMA forward: 5’TTGGGTGAGACCCAGTAAGG; reverse: 

5’TTGTTACTTCCTGCCCTGCT. GAPDH forward: 

5’GAGTCAACGGATTTGGTCGT; reverse: 5’GACAAGCTTCCCGTTCTCAG.  

Samples were analyzed in triplicate.  Samples were normalized to the GAPDH Ct 

[ΔCt = Ct[Target]-Ct[Gapdh]], the ΔCt was converted to the fold difference between 

samples [ΔΔCt=ΔCt[untreated]-ΔCt[sample being compared]; FOLD=2(-ΔΔCt)] and samples 

were analyzed in triplicate [Standard Deviation Error Bar = -FOLD + FOLD x (2Ct 

Dev.)]. 
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MTT Cell Viability Assay 
 Cell viability was measured by a MTT colorimetric survival assay.  SJSA, 

U2OS, DLD1, MDA-231, HCT +/+ and HCT-/- cells (10,000 per well) were 

seeded into 24 well plates and then treated the next day with different 

concentrations of Velcade (5-150 nM) and/or Nutlin (3-8 μM) for 48 h.  After 

treatment, cells were washed once with 0.5 ml PBS and then incubated with 0.25 

ml PBS containing 10 μl CellTiter 96 Aqueous One Solution Reagent (Promega) 

for 15 min.  Reaction was stopped by placing the plates on ice and the OD490 

was measured using Microplate Manager Version 5.2.1 Build 106 software 

(BioRad).  The absorbance reading correlates with the number of live cells per 

well.  
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RESULTS 
 
 
 

MDM2 inhibits p53 DNA binding 
 A previous study using the McKay assay suggested that MDM2-p53 

complex did not bind DNA (Zauberman et al., 1993).  However, several studies 

reported detection of MDM2 binding to p53 target gene promoters, indicating that 

the MDM2-p53 complex has DNA binding activity in vivo (Arva et al., 2005; Jin et 

al., 2003; Tang et al., 2008; Wang et al., 2004; White et al., 2006).  To further 

investigate the effect of MDM2 on p53 DNA binding, we purified MDM2-p53 

complex from H1299 cells cotransfected with p53 and FLAG-MDM2 using M2 

beads and eluted with FLAG peptide.  The MDM2-p53 complex was incubated 

with biotinylated oligonucleotide DNA containing p53-binding sequence from the 

p21 promoter.  P53-DNA complex was captured by streptavidin beads and 

analyzed by western blot.  The analysis showed that p53 purified as FLAG-

MDM2-p53 complex had very low DNA binding activity, whereas FLAG-p53 

directly purified without MDM2 bound DNA efficiently (Figure 13).  In the same 

assay, purified FLAG-MDMX-p53 complex retained significant DNA binding, 

suggesting that only MDM2 has strong ability to inhibit p53 DNA binding.  As a 

specificity control, FLAG-p53 did not bind to oligonucleotide with mutated p53 

consensus sequence. 



 
Figure 13:  Inhibition of p53-oligonucleotide binding by MDM2.  H1299 cells 
were transfected with FLAG-p53, or un-tagged p53 with FLAG-MDM2 or FLAG-
MDMX plasmids. The protein complexes were purified using M2 Beads and 
eluted using a FLAG peptide. Elutes containing equal amounts of p53 were 
captured with biotinylated oligonucleotide DNA containing p53 binding site (wt) or 
a mutated sequence (mut). An aliquot of eluate was analyzed to confirm similar 
levels of p53 expression. 
 

 

To test whether MDM2 inhibits p53 DNA binding in vivo, H1299 cells were 

cotransfected with p53 and MDM2, treated with MG132 to block MDM2 mediated 

degradation and then followed by p53 ChIP and quantitative PCR (qPCR) 

analysis.  Western blot of duplicate samples confirmed comparable expression of 

p53, MDM2 and MDMX levels (Figure 14 c, lower panels).  The p53 ChIP 

showed that coexpression of MDM2 significantly inhibited p53 binding to the p21 

(n = 3, p = 0.01) and PUMA (n = 3, p = 0.05) promoter (Figure 14 a & b), 

whereas MDMX had a less dramatic effect (n = 3, p = 0.07 and 0.08).  P21 

protein expression was also significantly repressed by MDM2, compared to the 

modest decrease by MDMX (Figure 14 c).  
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Figure 14:  Inhibition of p53-DNA binding by MDM2.  (a) & (b) H1299 cells 
were transfected with p53, MDM2 or MDMX and analyzed by ChIP, followed by 
quantitative PCR (qPCR) to detect p53 DNA binding to the p21 promoter.  (c) 
WCE (whole cell extracts) of parallel samples were analyzed to confirm levels of 
protein expression. 
 

 

Next, to test the effect of MDM2 or MDMX over expression on 

endogenous p53 transcriptional activity, U2OS cells were transfected with the 

BP100-luciferase reporter.  Co-transfection with the MDM2 plasmid resulted in 

strong inhibition of luciferase expression, while MDMX only weakly inhibited p53 

activity (n = 4, p = 0.002 compared to p = 0.07) (Figure 15).  These results 

corroborated the in vitro and in vivo DNA binding assay and showed that MDM2, 

not MDMX, efficiently inhibits p53 DNA binding and transcriptional activity.  
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Figure 15:  MDM2 overexpression inhibits endogenous p53 activity. 
Endogenous p53 activity in U2OS cells was measured by transfection of BP100-
luciferase reporter. Inhibition by MDM2 or MDMX was determined by co-
transfection and luciferase assay. 
 

 

MDM2 acidic domain is critical for inhibiting p53 DNA binding 
 To identify the domain on MDM2 necessary for blocking p53 DNA binding, 

different C terminal mutants of FLAG-MDM2 were tested.  The results showed 

that the MDM2 RING domain mutant (457S) was as active as wt MDM2.  MDM2-

1-300 (without the RING domain and zinc finger) still retained strong activity in 

blocking p53 DNA binding despite being expressed at lower levels.  However, 

further deletion of the acidic domain (MDM2-1-200) completely abrogated the 

ability to inhibit p53 DNA binding (Figure 16 a).  In a control experiment, different 

C terminal truncation mutants of FLAG-MDMX were also tested.  The results 

showed that full length or fragments of MDMX had no effect on p53 DNA binding 

despite forming complexes with p53 efficiently (Figure 16 b).  It is important to 

note that in this assay sample input was equalized for the amount of co-
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precipitated p53.  Some samples may have excess free MDM2, but is not 

expected to influence the result. 

 

 
Figure 16:  MDM2 acidic domain inhibits p53-oligonucleotide binding. (a) & 
(b) H1299 cells were transiently transfected and the FLAG-tagged protein 
complexes were immunopurified. Eluates containing equal amounts of p53 were 
captured with biotinylated oligonucleotide DNA containing p53 binding site. An 
aliquot of eluate was analyzed to confirm similar levels of p53 expression. 
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When p53 DNA binding in vivo was analyzed by ChIP in transfected cells, 

the effects of MDM2 mutants were consistent with the in vitro DNA pull down 

assay.  The full length and MDM2-457S E3 mutant were both efficient in blocking 

p53 DNA binding (n = 3, p = 0.03 and p = 0.08 for p21 and p = 0.06 and p = 0.09 

for PUMA).  However, deletion of both acidic domain and RING domains (MDM2-

1-200) completely restored p53 DNA binding (n = 3, p = 0.55 for p21 and p = 0.2 

for PUMA) (Figure 17 a, b & c).  Treatment with MG132 for 5 hours before ChIP 

analysis produced similar results (n = 3, p = 0.02 and 0.05 versus p = 0.17 for 

p21 and p = 0.24 and 0.33 versus p = 0.53 for PUMA) (Figure 18 a & b), 

suggesting that MDM2 can inhibit p53 DNA binding in vivo without targeting it for 

degradation.  As expected, MDMX wild type or mutants showed no difference in 

regulating p53 DNA binding in ChIP assay, consistent with the in vitro DNA 

binding result (n = 3, p = 0.31, 0.2 and 0.25 for p21 and p = 0.4, 0.21, 0.2 for 



PUMA) (Figure 19 a, b & c).  These results showed that the MDM2 acidic 

domain has an important role in regulating p53 DNA binding. 

 
 

Figure 17:  MDM2 acidic domain inhibits DNA binding.  (a) & (b) H1299 cells 
were transiently transfected with the indicated plasmids, treated with MG132 for 
5 h and analyzed by ChIP qPCR to detect p53 DNA binding to the p21 and 
PUMA promoter.  (c) H1299 cells were transiently transfected with the indicated 
plasmids and analyzed by ChIP to detect p53 DNA binding to the p21 promoter.  
GAPDH promoter primers were used for a specificity control.  Input is 1% of the 
starting lysate material.  WCE of parallel samples were analyzed to confirm 
levels of protein expression. 
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Figure 18:  MDM2 inhibits DNA binding prior to proteosomal degradation.  
(a) & (b) H1299 cells were transiently transfected with the indicated plasmids, 
treated with 30 μM MG132 for 5 h and analyzed by ChIP qPCR to detect p53 
DNA binding to the p21 and PUMA promoter. 
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Figure 19:  MDMX acidic domain does not inhibit p53-DNA binding.  (a) & (b) 
H1299 cells were transiently transfected with the indicated plasmids, treated with 
MG132 for 5 h and analyzed by ChIP qPCR to detect p53 DNA binding to the 
p21 and PUMA promoter.  (c) H1299 cells were transiently transfected with the 
indicated plasmids and analyzed by ChIP to detect p53 DNA binding to the p21 
promoter.  GAPDH promoter primers were used for a specificity control.  Input is 
1% of the starting lysate material.  WCE of parallel samples were analyzed to 
confirm levels of protein expression. 
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MDM2 but not MDMX induces p53 conformational change 
 
 DNA binding by p53 requires proper folding of a conformation-labile core 

domain.  To determine how MDM2 inhibits p53 DNA binding, we tested the ability 

of MDM2 and MDMX in inducing p53 conformational change.  A recent study 

showed that MDM2 induces p53 conformational change as measured by 

reactivity to wild type-specific Pab1620 and mutant-specific Pab240, which 

recognize epitopes located in the p53 core domain (Sasaki et al., 2007).  Using 

this assay, p53 was cotransfected with MDM2 or MDMX into H1299 cells, 

incubated without or with MG132 to prevent p53 degradation, and analyzed by 

Pab1620/Pab240 IP.  The ratios of p53 with wild type and mutant conformation 

were determined by western blot with pan-specific p53 antibody FL393.   

 The results showed that p53 was predominantly in a wild type 

conformation when expressed alone (Figure 20 a).  Coexpression with MDM2 

induced a significant switch from wild type to mutant conformation as reported 

previously (Sasaki et al., 2007).  In addition, MDM2-457S RING mutant retained 

full effect, indicating that E3 ligase function was not required for inducing p53 

conformational change.  Furthermore, MDMX expression did not alter p53 

conformation (Figure 20 a).  In the absence of MG132, p53 with mutant 

conformation did not accumulate, presumably because of subsequent 

ubiquitination and degradation by the proteasome (Figure 20 a).  In contrast, 

MDM2-457S-induced p53 conformational change was readily detectable in the 

absence of MG132 because it did not promote p53 ubiquitination and 

degradation (Figure 20 a).  Direct loads for each transfection were run as well to 

determine p53, MDM2 and MDMX protein expression (Figure 20 b).  These 

results showed that MDM2 inhibition of p53 DNA binding correlates with 

induction of conformational change before ubiquitination. 

 
 
 
 
 
 
 



 
 
Figure 20:  MDM2 but not MDMX induces p53 conformational change.  (a) 
H1299 cells were transfected with the indicated plasmids and left untreated or 
treated with 30 μM MG132 for 5 h.  Cell lysates were immunoprecipitated with 
wild-type conformation specific (Pab1620) or mutant conformation specific 
(Pab240) antibodies.  The precipitated p53 was detected by western blot.  (b) 
WCE were analyzed for protein expression levels.  The amount of sample used 
for the IP was empirically adjusted to compensate for large changes in 
expression levels  p53- 249S is a conformational mutant as a positive control. 
 

 

To test whether MDM2-induced p53 conformational change occurs with 

endogenous proteins, SJSA cells (MDM2 amplification) was analyzed in 

comparison to HCT116 cells (no MDM2 amplification).  The result showed that 

whereas p53 was present mostly in wild type conformation in HCT116, >50% of 

endogenous p53 in SJSA was present in the mutant conformation (Figure 21).  

In comparison, endogenous mutant p53 in DLD1 cells was nearly 100% in the 

mutant conformation.  As another control, the temperature-sensitive p53-V138 

mutant stably expressed in H1299 cells showed conformational switch between 

permissive and non-permissive temperatures as expected (Figure 21).  
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Figure 21:  Amplified MDM2 induces p53 conformational change.  Cell lines 
expression different levels of endogenous MDM2 and wt or mutant p53 were 
treated with 30 μM MG132 for 5 h and immunoprecipitated with Pab1620 or 
Pab240.  Protein expression was confirmed by western blot of WCE. 

 

Nutlin blocks MDM2 mediated p53 conformational change 

 To further test whether mutant conformation p53 in SJSA cells and 

transient transfections was due to interaction with overexpressed MDM2, cells 

were treated with Nutlin to disrupt p53-MDM2 binding.  The result showed that 

Nutlin treatment not only increased total p53 level, but also increased the ratio of 

Pab1620-positive p53 over Pab240-positive p53 in both transient transfection 

assays and SJSA cells (Figure 22 a & b).  As expected, MDM2 coprecipitation 

with p53 was reduced, but not eliminated after Nutlin treatment, presumably due 

to the fact that Nutlin induces very high level MDM2 expression (Figure 22 b, 

  68



right panels).  Taken together, the data suggests that a direct interaction 

between endogenous MDM2 and p53 is needed to change p53 conformation. 

 

 
Figure 22:  Nutlin blocks MDM2 induced p53 conformational change.  (a) & 
(b) Transiently transfected H1299 cells and SJSA cells were treated with 30 μM 
MG132 for 5 h with or without 5 μM Nutlin and analyzed for p53 conformation by 
Pab1620 and Pab240 IP.  MDM2 coprecipitated with p53 was detected by 
western blot.  Protein expression was confirmed by western blot of WCE. 
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MDM2 acidic domain is critical for inducing conformational change 
 To map the MDM2 domain that mediates p53 conformational change a 

panel of MDM2 deletion mutants were co-expressed with p53 in H1299 cells 

(Figure 23 a).  Conformational analysis of p53 showed that deletion of the MDM2 

acidic domain (1-230, 1-200, Δ220-325) abrogated the conformational effect 

(Figure 23 b).  As expected, deleting the N terminal p53-binding domain (50-491, 

230-491) also abrogated the activity, whereas mutations affecting the RING 

domain (1-440, 1-290, 457S) had no effect.  The expression and binding 

between p53 and MDM2 mutants were confirmed by IP-western blot analysis 

(Figure 23 c & d).  Therefore, the MDM2 acidic domain has a critical role in 

inducing the p53 switch to mutant conformation, but requires targeting by the 

high-affinity N terminal p53-binding domain. 

 

 

 

 

 

 



 
 
Figure 23:  Mapping the MDM2 domain that mediates p53 conformational 
change.  (a) Diagram of MDM2 deletion and point mutants.  (b) H1299 cells were 
transfected with the indicated plasmids, treated with MG132 (30 μM, 5 h) and 
analyzed by Pab1620 and Pab240.  (c) MDM2 mutants were co-transfected with 
p53 into H1299 cells.  MDM2 was immunoprecipitated with a mixture of 4B2, 
5B10 and 3G9 antibodies and co-precipitation of p53 was detected by western 
blot. Immunoprecipitation of MDM2 mutants were confirmed by western blot 
(bottom panel). (d) Expression of p53 and MDM2 mutations were confirmed by 
western blot of WCE. 
 
 
 We also attempted to determine whether sub regions of the MDM2 acidic 

domain are critical for p53 conformational change using a series of acidic domain 

small internal deletion mutants (Figure 24 a).  The results showed that all small 

internal deletions had similar defects on the p53 conformational change as the 

complete acidic domain deletion (Figure 24 b & c).  This suggests that different 

parts of the MDM2 acidic domain contribute to p53 conformational change in an 

additive fashion.  Consistent with this notion, a study showed that the binding 

  71



affinity of MDM2 acidic domain to p53 core is proportional to the length of the 

acidic domain tested (Yu et al., 2006). 

 
Figure 24:  Small deletions in the MDM2 acidic domain partially inhibit p53 
conformational change.  (a) Diagram of MDM2 and internal deletions in the 
acidic domain. (b) H1299 cells were transiently transfected with the indicated 
expression plasmids and then treated with 30 µM MG132.  The lysates were 
immunoprecipitated with Pab1620 or Pab240 antibodies, followed by 
immunoblotting for total p53 and FLAG-MDM2.  (c) Western blot of whole cell 
extract showing expression levels of p53 and MDM2 mutants. 
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To further test the functional significance of the MDM2 acidic domain, we 

took advantage of the fact that MDMX has negligible activity in p53 

conformational change.  A panel of MDM2-MDMX hybrid constructs was 

analyzed for induction of p53 mutant conformation (Figure 25 a & c).  The 

results showed that although MDMX did not alter p53 conformation, replacing its 

acidic domain and C terminal half with the MDM2 counterpart conferred partial to 

full activity (Figure 25 a & c, #4, #6).  In contrast, transplanting the MDM2 RING 

domain alone to MDMX had no effect (Figure 25 a & c, #8, #10).  Additionally, 

the MDMX acidic domain had no activity if transplanted to MDM2 (Figure 25 a & 
c, #3, #5).  We should note that the phenotypes of #5 and #6 were somewhat 



ambiguous in multiple experiments, possibly because placement of the junction 

was not optimal for protein function.  Direct loads were run as well to show 

expression of all plasmids in the indicated transient transfections (Figure 25 b).  

Overall, these results corroborate the MDM2 deletion analysis and reveal a 

critical role of the MDM2 acidic domain in p53 conformational change.  

Furthermore, the p53-binding domain of MDM2 simply provided a targeting 

function, which can be replaced by the MDMX N terminus. 

 
Figure 25:  Induction of p53 conformational change by MDM2-MDMX hybrid 
constructs.  (a) H1299 cells were tranfected with p53 and FLAG tagged MDM2-
MDMX hybrid constructs.  Cells were treated with MG132 (30 µM, 5 hr) and 
immunoprecipitated with Pab1620 or Pab240 followed by western blot for p53.  
Co-immunoprecipitation of the hybrid proteins was detected by western blot.  (b) 
Expression of p53 and FLAG-tagged MDM2-MDMX hybrid proteins were 
confirmed by western blot of WCE.  (c) Diagram of MDM2-MDMX hybrid 
constructs and summary of results in (a). 
 

 

  73

 Previous studies suggested that phosphorylation of MDM2 acidic domain 

on S256 is needed for efficient degradation of p53 (Blattner et al., 2002).  Our 

mass spectrometric analysis of MDM2 identified two additional phosphorylation 

sites S232 and S290 in the acidic domain (unpublished results).  While S232A 



and S290A mutants had no obvious effect on p53 degradation, S256A mutation 

caused a moderate defect in p53 degradation as reported (data not shown).  To 

test whether phosphorylation of these sites play a role in p53 conformational 

change, alanine substitution mutants were analyzed.  The result showed no 

significant difference compared to wild-type MDM2 (Figure 26), suggesting that 

acidic domain phosphorylation is not necessary for induction of p53 

conformational change. 

 

 
Figure 26:  Analysis of MDM2 acidic domain phosphorylation mutants.  (a) 
H1299 cells were tranfected with the indicated plasmids, treated with MG132 (30 
µM, 5 hr) and analyzed by Pab1620 and Pab240 IP.  (b) WCE of samples was 
analyzed to confirm similar levels of protein expression for the MDM2 mutants.  
 

 

CK1α-MDMX binding increases MDMX ability to block p53-DNA binding 
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 Next we wanted to determine if increasing MDMX-p53 binding would 

create an MDMX-dependent shift in the p53 conformation.  Despite the N-

terminal switching of the MDM2 and MDMX protein in Figure 25 (#3 & #4) 
having no effect on p53 conformational change, it is possible that the lack of shift 

in p53 to a mutant conformation, when co-transfected with MDMX, is due to 

inefficient overall binding efficiency.  Therefore, we decided to look at a major 

MDMX binding protein that has been shown to increase MDMX-p53 DNA binding 

(Chen et al., 2005c).  Affinity purification of MDMX revealed stable bind of the 

CK1α in HeLa cells stably overexpressing wild-type MDMX (Figure 27 a).  CK1α 

binds to the zinc finger domain of MDMX (data not shown) and a point mutation 

of the conserved cysteine residue (C306S), located in the MDMX-CK1α binding 



region, was deficient for CK1α binding in a coimmunoprecipitation assay (Figure 

27 b). 

 
Figure 27:  CK1α binds to MDMX and requires the 306 cysteine residue.  (a)  
HeLa cells alone or stably transfected with human MDMX.  Molecular mass 
marker (M) (in kilodaltons) is shown to the left of the gel.  Coomassie blue 
staining of affinity-purified MDMX and associated proteins.  The two marked 
bands were identified as CK1α and 14-3-3τ by mass spectrometric peptide 
sequencing.  (b) The indicated plasmids were transiently transfected into H1299 
cells, IPed for MDMX and analyzed for CK1α binding.  WCE were analyzed to 
confirm protein expression. 
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 To determine whether MDMX-p53 binding can be regulated by the CK1α-

MDMX interaction, a panel of MDMX plasmids that retained the p53-binding 

domain was used to determine their p53-binding response when co-expressed 

with CK1α.  Co-transfection of CK1α with wild-type MDMX and p53 showed a 

significant increase in p53-MDMX binding compared to the MDMX-p53 only 

transfection (Figure 28 a).  The C306S mutation, which abrogates MDMX-CK1α 

binding, showed no difference in MDMX-p53 binding whether or not CK1α was 

also transfected (Figure 28 a).  Previous reports indicated that, once bound to 

MDMX, CK1α can phosphorylate Ser-289 located in the MDMX acidic domain 

(Chen et al., 2005c).  The significance of this phosphorylation has yet to be 



established.  Therefore, we also looked at how mutating the serine to an alanine 

residue might affect the ability of CK1α to increase MDMX-p53 binding.  

Compared to similar transfections with wild-type MDMX, there was a significant 

decrease in the ability of CK1α to increase MDMX-p53 binding when Ser-289 

phosphorylation was blocked (Figure 28 a).  Therefore, the MDMX-CK1α 

interaction and its subsequent Ser-289 phosphorylation are critical for increasing 

the MDMX-p53 binding interaction (Figure 28 b).  This raises the question: does 

this increase in MDMX-p53 binding via the MDMX-CK1α interaction lead to an 

increase in MDMX-mediated inhibition of p53 activity? 

 
Figure 28:  CK1α-MDMX binding increases MDMX-p53 binding.  (a) Binding 
efficiency between MDMX mutants and p53 was determined by transient 
cotransfection of H1299 cells with MDMX, p53 and CK1α expression plasmids, 
followed by MDMX IP/p53 western blotting.  WCE were analyzed to confirm 
protein expression.  (b) Diagram of the MDMX-CK1α-p53 interaction. 
 

 

  76

Therefore, to further investigate the effect of MDMX-CK1α binding on p53 

DNA binding activity, we purified MDMX-p53 complex from H1299 cells 

cotransfected with p53 and FLAG-MDMX, with or without CK1α, using M2 beads 

and eluted with FLAG peptide.  The protein complex was incubated with 

biotinylated oligonucleotide DNA containing p53-binding sequence from the p21 

promoter.  P53-DNA complex was captured by streptavidin beads and analyzed 

by western blot.  The analysis showed that p53 purified as FLAG-MDMX-p53 
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complex still had significant DNA binding activity compared to FLAG-p53 only, 

whereas FLAG-p53 copurified with MDMX and CK1α had a significant decrease 

in p53 bound to DNA (Figure 29 a). As a specificity control, FLAG-p53 did not 

bind to an oligonucleotide with a mutated p53 consensus sequence.  To test 

whether MDMX inhibits p53 DNA binding in vivo, H1299 cells were cotransfected 

with p53 and MDMX, with or without CK1α, and analyzed by p53 ChIP-PCR 

analysis.  Western blot of duplicate samples confirmed comparable expression of 

p53, MDMX and CK1α levels (Figure 29 c, red bars).  The p53 ChIP showed 

that coexpression of MDMX with CK1α significantly inhibited p53 binding to the 

p21 promoter (Figure 29 b), whereas the MDMX-only transfection had a less 

dramatic effect.  P21 protein expression was also significantly repressed by 

MDMX-CK1α, compared to the modest decrease by MDMX only (Figure 29 c).   

 

 

 

 

 

 



 
Figure 29:  MDMX-CK1α binding decreases p53-DNA binding.  (a) H1299 
cells were transiently transfected and the FLAG-tagged protein complexes were 
immunopurified. Eluates containing equal amounts of p53 were captured with 
biotinylated oligonucleotide DNA containing p53 binding site. An aliquot of eluate 
was analyzed to confirm similar levels of p53 expression.  (b) H1299 cells were 
transiently transfected with the indicated plasmids and analyzed by ChIP to 
detect p53 DNA binding to the p21 promoter.  (c) WCE of parallel samples were 
analyzed to confirm levels of protein expression. 
 

 

  78

 In order to specifically determine the function of the CK1α-MDMX 

interaction, the effect of CK1α expression on transcriptional activity of p53 was 

examined by our lab using mouse embryo fibroblasts null for both MDMX and 

p53.  Transfection with p53 alone with the Bp100-luciferase reporter containing 

the p53-binding site derived form the MDM2 P2 promoter resulted in strong 

activation of luciferase expression, with or without CK1α co-transfection (Figure 

30).  Cotransfection of MDMX expression plasmid resulted in only a weak 



inhibition of p53 function, whereas cotransfection with CK1α resulted in more 

efficient inhibition of p53 activity (Figure 30).  MDMX-C306S mutant was found 

to be nonresponsive to CK1α stimulation (Figure 30).  Therefore the MDMX-

CK1α interaction is critical for MDMX to efficiently block p53-DNA binding and 

transcriptional activity.  

 
Figure 30:  CK1α binding to MDMX is required for p53 regulation.  P53 
activation of BP100-luciferase reporter was detected after transient transfection 
into MDMX/p53 double null mouse embryonic fibroblast cells.  The effects of 
MDMX mutants and CK1α were determined by cotransfection. 
 

 

Increasing MDMX-p53 binding does not induce conformational change 

  79

 Since CK1α can increase p53-MDMX binding, which leads to a decrease 

in p53-DNA binding and transcriptional activity, could it also cause MDMX to 

switch p53 to a mutant conformation?  To investigate this H1299 cells were co-

transfected with p53, MDMX and CK1α in the indicated combinations and 

surprisingly there was no significant shift in the ratio of wild-type to mutant p53 

when all three proteins were co-transfected (Figure 31 a & b).  Another transient 

transfection assay using increasing amounts of CK1α also showed no p53 shift 

towards a more mutant conformation (Figure 31 c & d).  Therefore, MDMX 

deficiency in causing a p53 conformational shift has little to do with its overall 



binding efficiency.  This observation leads to a significant question: what is the 

difference between MDM2 and MDMX that allows for only a MDM2-mediated p53 

conformational change? 

 
Figure 31:  CK1α expression does not induce MDMX-mediated p53 
conformational change.  (a) & (c) H1299 cells were transiently transfected with 
the indicated expression plasmids and then treated with 30 µM MG132.  The 
lysates were immunoprecipitated with Pab1620 or Pab240 antibodies, followed 
by immunoblotting for total p53 and FLAG-MDM2.  (b) & (d) Western blot of 
whole cell extract showing expression levels of p53 and MDM2 mutants. 
 

 

Acidic domain-p53 binding correlates with p53 conformational change 
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 MDM2 acidic domain has been shown to interact weakly with p53 core 

domain (Ma et al., 2006; Wallace et al., 2006; Yu et al., 2006).  Whether MDMX 

acidic domain has such activity has not been reported.  To further test whether 

the ability to induce p53 conformational switch correlates with p53 core domain 

binding, MDM2-100-361 and MDMX-100-361 fragments were tested for p53 

binding after cotransfection into H1299 cells.  The result showed that MDM2-100-



361 coprecipitated with p53 at a clearly detectable level, although much weaker 

than full-length MDM2 as expected (Figure 32).  In contrast, MDMX-100-361 

showed no interaction with p53.  This result adds further evidence that the MDM2 

acidic domain is unique compared to MDMX in its ability to bind p53, which may 

be why MDM2, not MDMX, promotes p53 misfolding and inhibits p53 DNA 

binding. 

 
Figure 32:  Acidic domain-p53 binding correlates with p53 conformational 
change. The indicated FLAG tagged proteins were transiently co-transfected 
with p53 into H1299 cells. FLAG-MDM2 or MDMX was immunoprecipitated using 
M2 Beads. Co-precipitated p53 was detected by western blot. 
 

 

DNA damage abrogates the ability of MDM2 to shift p53 conformation 

  81

We also examined how this conformational response to high levels of 

MDM2 expression would be affected by phosphorylation of the RING domain of 

MDM2 following DNA damage.  P53 was transfected with or without MDM2 and 

either left untreated or exposed to 10 Gy irradiation. These results showed that 

following DNA damage the 1620/240 ratio of p53, alone or with MDM2, began 

shifting towards a more wildtype conformation (Figure 33 a & b).  Previous 



reports have indicated that ATM phosphorylation of MDM2 is important for 

stabilization of p53 following DNA damage (Cheng, et al., 2009).  Therefore, we 

also transfected p53 with the ATM resistant MDM2 6A mutant containing alanine 

substitution of six ATM phosphorylation sites near the RING domain.  In 

unstressed cells this mutant is still able to shift the p53 conformation, however, 

following DNA damage the increase in 1620-reactive p53 that was observed 

when co-transfected with wild type MDM2 no longer occurs (Figure 33 a & b).   

 
Figure 33:  DNA damage and ATM phosphorylation of the MDM2 RING 
domain inhibit p53 conformational change.  (a) H1299 cells were tranfected 
with the indicated plasmids, treated with MG132 (30 µM, 5 hr) and analyzed by 
Pab1620 and Pab240 IP.  (b) WCE of samples was analyzed to confirm similar 
levels of protein expression for the MDM2 mutants. 
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To test if this DNA damage induced shift takes place with endogenous 

proteins we treated SJSA cells with DNA damage and MG132.  Compared to 

untreated cells, there is a significant shift back to the wild-type conformation 

following DNA damage, regardless of the high levels of MDM2 observed in the 

cell line (Figure 34).  To determine if DNA damage leads to a decrease in the 

MDM2 acidic domain-p53 interaction, p53 was transfected with or without full 

length or a.a. 50-491 MDM2 and either left untreated or exposed to 10 Gy 

irradiation.  The results showed that there was a significant decrease in the p53 

co-immunoprecipitated with the a.a. 50-491 MDM2 protein following gamma 

irradiation (Figure 35). This data suggests that phosphorylation of the MDM2 

RING domain also plays a role in prevention of p53 conformational shift following 

DNA damage by decreasing the MDM2 acidic domain-p53 binding interaction.  

This observation helps explain one way that DNA damage results in a 

transcriptionally activated p53 protein that can bind DNA and stimulate 

expression of downstream genes, facilitating the repair and survival of damaged 

cells or eliminate severely damaged cells through apoptosis (Ko and Prives, 

1996; Levine, 1997; Vogelstein et al., 2000). 

 

 
Figure 34:  DNA damage inhibits MDM2 induced p53 conformational 
change.  SJSA cells were treated with 30 uM of MG132, with or without 10 Gy 
irradiation, for 5 hours.  Lysate was analyzed by Pab1620 and Pab240 IP.  WB of 
WCE used to confirm protein expression.  
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Figure 35:  DNA damage inhibits the MDM2 acidic domain-p53 interaction.  
(a) H1299 cells were tranfected with the indicated plasmids, treated with MG132 
(30 µM, 5 hr) and analyzed by MDM2 IP.  (b) WCE of samples was analyzed to 
confirm similar levels of protein expression for the transfected plasmids. 
 

ARF prevents p53 conformational change and restores DNA binding 

 The ARF protein is critical for p53 activation in response to hyper 

proliferative stress through interacting with MDM2 acidic domain (Sherr, 2006).  

Although the best-established effect of ARF is to cause p53 stabilization, we 

asked whether ARF also stimulates p53 DNA binding by interfering with the 

acidic domain of MDM2. When tested in the oligonucleotide DNA pull-down 

assay, coexpression of ARF significantly rescued the DNA binding activity of 

p53-MDM2 complex (Figure 36a).  Furthermore, ARF expression also stimulated 

p53 binding to the p21 and PUMA promoter in vivo (n = 3, p = 0.07 versus p = 

0.24 for p21 and p = 0.06 versus p = 0.4 for PUMA) (Figure 36 b, c & d).  

Western blots of duplicate samples were used to verify equal p53 expression and 

confirm expression of ARF and MDM2 (Figure 36 c, bottom panels) 
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Figure 36:  ARF expression stimulates p53-DNA binding.  (a) H1299 cells 
were transiently transfected and the FLAG-tagged protein complexes were 
immunopurified. Eluates containing equal amounts of p53 were captured with 
biotinylated oligonucleotide DNA containing p53 binding site.  (b) & (c) H1299 
cells were transiently transfected with the indicated plasmids and analyzed by 
ChIP-qPCR to detect p53 DNA binding to the p21  and PUMA promoter.  (c) 
H1299 cells were transiently transfected with the indicated plasmids and 
analyzed by ChIP to detect p53 DNA binding to the p21 promoter. Input is 1% of 
the starting lysate material.  GAPDH promoter primers were used for a specificity 
control.  WCE of parallel samples was analyzed to confirm levels of protein 
expression. 
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To test the effect of ARF expression on endogenous p53 transcriptional 

activity, U2OS cells were transfected with the BP100-luciferase reporter.  Co-

transfection with the MDM2 plasmid, again, resulted in strong inhibition of 

luciferase expression (n = 4, p = 3.75 x 10-6), while the addition of ARF partially 

restored p53 transcriptional activity (n = 4, p = 1.4 x 10-4) (Figure 37).  These 

results corroborated the in vitro and in vivo DNA binding assay and showed that 

ARF efficiently increases p53 DNA binding and transcriptional activity, even in 

the presence of overexpressed MDM2.  

 
Figure 37:  ARF increases p53 transcriptional activity. Endogenous p53 
activity in U2OS cells was measured by transfection of BP100-luciferase 
reporter. Inhibition or stimulation by MDM2 or MDM2 + ARF was determined by 
co-transfection and luciferase assay. 
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Next, the effect of ARF on MDM2-mediated p53 conformational change 

was analyzed by co-transfection in H1299.  The result showed that ARF blocked 

p53 conformational change in a dose-dependent fashion (Figure 38 a).  This 
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occurred without affecting p53-MDM2 complex formation.  In fact, ARF 

coprecipitated with p53 in the presence of MDM2, indicating formation of p53-

MDM2-ARF trimeric complex (Figure 38 a).  Furthermore, restoring ARF 

expression in SJSA cells (ARF-negative, MDM2 amplification) by infection with 

ARF adenovirus partially reverted endogenous p53 to wild type conformation 

(Figure 38 b).  In additional experiments, expression of ARF in U2OS cells with 

IPTG-inducible ARF (NARF6 cells) also showed that endogenous p53 reverted 

back to wild-type conformation (Figure 39).  To confirm the trimeric complex 

formation FLAG-p53 was transiently transfected with the indicated plasmid 

combinations and only when MDM2 was co-transfected with ARF did p53 co-

precipitate the ARF protein (Figure 40 a & b).  These results showed that ARF 

has a novel function in preventing p53 conformational change mediated by 

MDM2.  

 

 

 

 



 
Figure 38:  ARF inhibits MDM2-mediated p53 conformational change. (c) 
H1299 cells were transiently transfected with the indicated plasmids and 
increasing amounts of ARF. Cells were treated with MG132 (30 µM, 5 hr) and 
analyzed by Pab1620 and Pab240 IP. Co-immunoprecipitation of ARF and 
MDM2 were detected by western blot. (d) SJSA cells were infected with 
adenovirus expressing ARF or GFP (MOI=50) for 24 hr. Cells were treated with 
MG132 (30 µM, 5 hr) and analyzed by Pab1620 and Pab240 IP. Co-
immunoprecipitation of ARF and MDM2 were detected by western blot. 
Expression levels were confirmed by western blot of WCE (right panels).  
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Figure 39:  ARF blocks p53 conformational change. ARF restores p53 wild 
type conformation. NARF6 cells (U2OS with stable IPTG-inducible ARF) were 
treated with or without 1 mM IPTG for 24 hours to induce ARF expression, 
followed by 5 hrs of 30 µM MG132.  Lysates were immunoprecipitated with 
Pab1620 and Pab240 antibodies, followed by immunoblotting for p53, MDM2 and 
ARF. Expression of each protein was confirmed by western blot of WCE. 
 
 
 

 
Figure 40:  p53-MDM2-ARF form a trimeric complex.  (a) H1299 cells were 
transiently transfected with the indicated plasmids followed by 5 h of 30 μM 
MG132.  Lysates were immunoprecipitated with M2Beads, followed by 
immunoblotting for p53, MDM2, ARF and SUV39H1.  (b) Expression of proteins 
were confirmed by western blot of WCE. 
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Since p53-MDM2-ARF trimeric complex was detectable after 

coexpression (Figure 38, 39 & 40), ARF may be recruited to DNA by binding to 

MDM2 and keeping p53 in a wild type conformation.  As expected, ChIP analysis 

using Myc-tagged ARF showed that it was detected at the p21 and PUMA 

promoters in an MDM2 and p53-dependent manner (n = 3, p = 0.05 for p21 and 

p = 0.15 for PUMA) (Figure 41 a & b).  Besides restoring p53 DNA binding, it 

remains to be determined whether chromatin recruitment of ARF has other 

functional consequence. 

 
Figure 41:  ARF binds at p53 target promoters via trimeric complex 
formation.  (a) & (b) H1299 cells were transfected with Myc-ARF, MDM2 and 
p53. Cells were analyzed by ChIP using the anti-Myc antibody. ARF recruitment 
to p21 and PUMA promoters by p53 and MDM2 were detected by qPCR of ChIP 
samples. 
 

 

SUV39H1 blocks p53 conformational change to access p53 target 
promoters 

 
 The MDM2 acidic domain interacts with several transcription repressors 

including YY1, KAP1 and SUV39H1.  These interactions suggest that MDM2 

may actively repress p53 targets by recruiting corepressors to promoters.  We 

hypothesized that similar to ARF, co-repressors may also prevent MDM2 acidic 

domain from blocking p53 DNA binding, thus allowing recruitment of the p53-

MDM2-repressor complex to promoters and repress transcription. 
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 We tested this hypothesis using SUV39H1 as an example due to its 

efficient MDM2 binding (Chen et al., 2010).  In vitro DNA binding assay showed 

that co-expression of SUV39H1 with MDM2 partially restored p53 DNA binding 

function (Figure 42).  Co-expression of SUV39H1 with MDM2 and p53 also led 

to an increase in p53-DNA binding in vivo (n = 3, p = 0.06 versus p = 0.13 for p21 

and p = 0.06 versus p = 0.1 for PUMA) (Figure 43 a, b & c).  

  
Figure 42:  SUV restores p53-oligonucleotide binding. H1299 cells were 
transiently transfected and the FLAG-tagged protein complexes were 
immunopurified. Eluates containing equal amounts of p53 were captured with 
biotinylated oligonucleotide DNA containing p53 binding site. 
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Figure 43:  SUV39H1 restores p53-DNA binding.  (a) & (b) H1299 cells were 
transiently transfected with the indicated plasmids and analyzed by ChIP-qPCR 
to detect p53 DNA binding to the p21 and PUMA promoter.  (c) H1299 cells were 
transiently transfected with the indicated plasmids and analyzed by ChIP to 
detect p53 DNA binding to the p21 promoter. Input is 1% of the starting lysate 
material. WCE of parallel samples were analyzed to confirm levels of protein 
expression. 
 

 

  92

Next, to test the effect of SUV39H1 expression on endogenous p53 

transcriptional activity, U2OS cells were transfected with the BP100-luciferase 

reporter.  Co-transfection with the MDM2 plasmid, again, resulted in strong 

inhibition of luciferase expression and the addition of SUV39H1 was unable to 

restore p53 transcriptional activity (n = 4, p = 0.017 for MDM2 transfected alone 

compared to p = 0.015 for MDM2 and SUV39H1) (Figure 44).  These results 

corroborated the in vitro and in vivo DNA binding assay and showed that 



SUV39H1 efficiently increases p53 DNA binding, even in the presence of 

overexpressed MDM2.  However, SUV39H1 still acts as a transcriptional 

repressor and blocks p53 transcriptional activity.  

 

 
Figure 44:  SUV39H1 increases p53 transcriptional activity. Endogenous p53 
activity in U2OS cells was measured by transfection of BP100-luciferase 
reporter. Inhibition or stimulation by MDM2 or MDM2 + SUV39H1 was 
determined by co-transfection and luciferase assay. 
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To determine if the increase in p53-DNA binding when SUV39H1 is 

overexpressed correlates with a block in MDM2-mediated p53 conformational 

change a p53 conformational analysis was conducted.  Overexpression of 

SUV39H1 partially inhibited the ability of MDM2 to induce p53 mutant 

conformation (Figure 45).  Co-preciptation of p53, MDM2 and SUV39H1 

indicated that these proteins also formed a trimeric complex (Figure 45 & 40).  

SUV39H1 ChIP analysis showed that coexpression of p53 and MDM2 promoted 

SUV39H1 recruitment to p21 and PUMA promoters ( n = 3, p = 0.06 for p21 and 

p = 0.1 for PUMA) (Figure 46 a & b).  Additional attempts to detect recruitment of 

endogenous SUV39H1 to the p21 and PUMA promoters by p53 and MDM2 were 



not informative, possibly limited by the SUV39H1 antibody.  These results 

showed that similar to ARF, SUV39HI binding to MDM2 acidic domain prevents 

p53 misfolding by MDM2, thus allowing the trimeric repressive complex to bind 

p53 target promoters.  

 
Figure 45:  SUV39H1 restores p53 wild-type conformation. H1299 cells were 
transiently transfected with the indicated plasmids and increasing amounts of 
SUV39H1. Cells were treated with MG132 (30 µM, 5 hr) and analyzed by 
Pab1620 and Pab240 IP. Co-immunoprecipitation of SUV39H1 and MDM2 was 
detected by western blot. 
 

 
Figure 46:  SUV39H1 binds at p53 target promoters via trimeric complex 
formation.  (a) & (b) H1299 cells were transfected with Myc-SUV39H1, MDM2 
and p53. Cells were analyzed by ChIP using the anti-Myc antibody.  SUV39H1 
recruitment to p21 and PUMA promoters by p53 and MDM2 was detected by 
qPCR of ChIP samples. 
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Inhibition of MDM2 cooperates with Bortezomib to activate p53 



Given the observation that p53 accumulated after proteasome inhibition is 

partially misfolded due to MDM2 binding, we asked whether this phenomenon 

has clinical relevance. The proteasome inhibitor Bortezomib (Velcade) induces 

cell death independent of p53 (Hideshima et al., 2003b).  Our results suggest 

that proteasome inhibition stabilizes both p53 and MDM2, forming complexes 

that are partially deficient for DNA binding or transcription activation.  Thus the 

p53-mediated anti-tumor activity is not fully exploited. If this is the case, Nutlin 

should cooperate with Bortezomib to induce p53 targets by inhibiting MDM2. 

When SJSA and U2OS cells were treated with Bortezomib, there was 

negligible to weak increase in protein levels of PUMA and p21.  Combination of 

Bortezomib and Nutlin resulted in strong induction of PUMA and p21 compared 

to either drug alone, without further increasing p53 level (Figure 47).  RT-PCR 

analysis showed that in MDM2-overexpressing SJSA cells, Bortezomib caused 

p53 accumulation but did not induce PUMA and p21 mRNA.  Bortezomib and 

Nutlin combination induced PUMA and p21 mRNA to levels similar to Nutlin 

alone (Figure 48 a & b).  ChIP analysis showed that p53 DNA bind was 

moderately induced by Bortezomib in SJSA cells, and was further enhanced by 

Nutlin (n = 3, p = 0.001 increased to p = 0.004 for p21 and p = 0.0085 increased 

to p = 0.009 for PUMA) (Figure 48 c & d).   

 
Figure 47:  Nutlin activates p53 in Bortezomib-treated cells.  (a) SJSA & (b) 
U2OS cells were treated with the indicated drugs and analyzed by western blot at 
indicated time points for expression of p53 targets. 
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Figure 48:  Nutlin increases p53-DNA binding and transcription of target 
genes in Bortezomib treated SJSA cells. (a) & (b) SJSA cells were treated 
with 8 µM Nutlin and 50 nM Bortezomib for 5 hours. Cells were analyzed by p53 
ChIP and qPCR of PUMA and p21 promoters. (c) & (d) SJSA cells were treated 
with 8 µM Nutlin and 50 nM Bortezomib for 5 hours. Total RNA isolated from the 
cells was analyzed by quantitative RT-PCR.  PUMA and p21 mRNA levels were 
normalized to GAPDH. 
 

 

Similar results were observed in U2OS cells (n = 3, p = 0.001 increased to 

p = 0.007 for p21 and p = 0.006 increased to p = 0.05 for PUMA), although 

higher level of PUMA and p21 mRNA were induced by Bortezomib alone (Figure 
49 a - d), as expected from the lower level of MDM2 in this cell line.  These 

results showed that p53 stabilized by Bortezomib has poor DNA binding and poor 

transcriptional activity due to interaction with MDM2.  Inhibition of MDM2 restores 

the DNA binding and activation functions of p53 in Bortezomib-treated cells.  
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Figure 49:  Nutlin increases p53-DNA binding and transcription of target 
genes in Bortezomib treated U2OS cells. (a) & (b) U2OS cells were treated 
with 8 µM Nutlin and 50 nM Bortezomib for 5 hours. Cells were analyzed by p53 
ChIP and qPCR of PUMA and p21 promoters. (c) & (d) U2OS cells were treated 
with 8 µM Nutlin and 50 nM Bortezomib for 5 hours. Total RNA isolated from the 
cells was analyzed by quantitative RT-PCR.  PUMA and p21 mRNA levels were 
normalized to GAPDH.  
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To establish if the inhibition of MDM2-p53 interaction by Nutlin might 

potentiate the effects of the proteosomal inhibitor Bortezomib in a p53-dependent 

manner we assessed the effect of combining the drugs on cell viability using the 

MTT assay.  Following a 48 h exposure of Bortezomib or Nutlin alone, and in 

combination, on cells containing wild type p53 (SJSA, U2OS & HCT +/+) or 

mutant and null p53 (DLD1, MDA-231 & HCT -/-), we showed that the 

combination produced a strong synergistic cytotoxic effect on the wild-type 

containing cell lines, compared to the mutant and null p53 cell lines (Figure 50 a, 
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b & e compared to Figure 50 c, d & f).  Nutlin alone was slightly cytotoxic to the 

wild-type p53 containing cell lines, however, the combination treatment increased 

the cytotoxic effects, as indicated by the drastic decline in cell viability from 0 to 5 

μM Bortezomib, compared to Bortezomib only treatment from 0 to 5 μM. These 

results indicate that the inhibition of MDM2 from Nutlin treatment, which restores 

DNA binding and activation functions of p53 in Bortezomib-treated cells, 

ultimately leads to decreased cell viability in wild-type-p53 containing cancer cell 

lines.   

 

 

 

 

 

 



 
 

Figure 50:  Combination of Bortezomib and Nutlin treatment lead to 
increased cytotoxicity in p53 wild type containing cell lines.  (a), (b), (c), (d), 
(e) & (f) Cell viability of SJSA, U2OS, DLD1, MDA-231, HCT +/+ and HCT -/- cell 
lines after exposure to the indicated drug treatments for 48 h was assessed by 
MTT.  The black line indicates Bortezomib only treatment, the grey line indicates 
combination 8 μM Nutlin and Bortezomib. 
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DISCUSSION 
 
 
 
 The experiments described above showed that MDM2 binding to p53 

leads to its conformational change to a state similar to misfolded mutant p53.  

This activity does not require the ubiquitin E3 ligase activity of MDM2, consistent 

with recent reports from the Maki lab (Nie et al., 2007; Sasaki et al., 2007).  

Furthermore, our study produced several new observations: (1) MDM2 inhibits 

p53 binding to DNA through an E3-independent mechanism. (Gilmore et al., 

2008) The acidic domain of MDM2 is critical for inducing p53 misfolding and 

inhibiting p53 DNA binding. (3) The MDMX acidic domain does not bind p53 or 

induce p53 misfolding. (4) DNA damage blocks MDM2-mediated p53 

conformational change. (5) ARF prevents p53 misfolding by MDM2. (6) 

SUV39H1 binding to MDM2 acidic domain prevents p53 misfolding and allows its 

recruitment to p53 target promoters. 

 The detailed mechanism by which MDM2 binding induces p53 

conformational change remains to be determined.  The core domain of p53 is 

known to have poor thermo stability and spontaneously denatures at 

physiological temperature in vitro (Bullock et al., 1997).  Presumably, p53 in cells 

also exist in a dynamic equilibrium as wild type and mis-folded forms.  A simple 

scenario is that the MDM2 acidic domain preferentially interacts with p53 at a 

mutant-like conformation with exposed internal residues.  The presence of MDM2 

will alter the p53 conformation equilibrium and trap it in a mutant conformation.  It 

is also possible that MDM2 binding to p53 N terminus causes allosteric changes 

in its core domain, which is then trapped by subsequent interaction with the 

MDM2 acidic domain.  Molecular chaperones that normally promote protein 

folding, such as hsp90, have been shown to antagonize the effect of MDM2 

(Sasaki et al., 2007).  
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It is noteworthy that the use of conformation-sensitive p53 antibodies 

resulted in the arbitrary definition of wild type (Pab1620-positive) and mutant 

(Pab240-positive) conformational states.  In reality, p53 is likely to also exist in 

many intermediate states between Pab1620 and Pab240-reactive conformations.  

After binding to MDM2, p53 may rapidly lose DNA binding activity before fully 

adopting a Pab240-positive conformation.  Consistent with this notion, MDM2 

inhibits p53 DNA binding in ChIP assay in the absence of MG132, when most 

p53 complexed with MDM2 are still Pab1620-positive.  The MDM2-457S E3 

mutant also efficiently inhibits p53 DNA binding in vivo while only switching a 

fraction of p53 to Pab240-positive conformation.  Therefore, MDM2-induced p53 

misfolding may be more efficient than the Pab240 reactivity suggests.  This 

distinct function may enable MDM2 to act rapidly without relying on ubiquitination 

and degradation of p53, or serve as backup mechanism as a counter balance to 

p53 deubiquitinating enzymes. 

Our results underscore the importance of the MDM2 acidic domain in p53 

regulation.  The central region between residues 200-300 of MDM2 is a busy hub 

for binding multiple transcription corepressors and coactivators, and contains 

several phosphorylation sites (Blattner et al., 2002; Kulikov et al., 2005).  

Important p53 activators such as ARF and many ribosomal proteins also bind to 

the acidic domain.  The region is predicted to be structurally disordered, which is 

a pre-requisite for interaction with multiple partners by adopting different 

conformations upon binding (Dunker et al., 2008).  The acidic domain has also 

been shown to bind to p53 core domain, and our results add a new function to 

this interaction, which is blocking DNA binding by p53.  Surprisingly, the MDMX 

central domain does not have this activity, probably because of low sequence 

homology to MDM2 acidic domain.  In fact, most MDM2 acidic domain-binding 

partners do not bind MDMX (ARF, L5, L11, L23, SUV39H1, EHMT1).  Although it 

is not clear which is the primitive member of the MDM2/X family, we speculate 

that MDM2 may be an evolved version of MDMX that gained a multitude of new 

regulatory capabilities to control p53.  Alternatively, MDMX may have evolved in 

a different direction to perform distinct but essential functions in p53 regulation. 
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 The specific ability of MDM2 to switch p53 to a mutant conformation 

should enable more effective p53 inhibition than MDMX.  This is consistent with 

findings in animal models that MDM2 is a more critical regulator of p53 than 

MDMX in adult organs (Grier et al., 2006; Maetens et al., 2007).  By 

simultaneously promoting p53 ubiquitination and blocking DNA binding, MDM2 

efficiently neutralizes p53 function without entirely relying on its degradation.  

This function is further enhanced by recruitment of corepressors to p53 target 

genes that directly repress transcription.  It is possible that p53 misfolding by 

MDM2 also serves to increase ubiquitination efficiency by increasing access to 

lysine residues in the core or C terminal domains.  Although the novel activities of 

MDM2 acidic domain are most evident in overexpression assays, they are likely 

to be physiologically relevant, as shown using endogenous proteins in SJSA 

cells. 

 Our results reveal novel mechanisms by which p53 can be regulated 

(Figure 51).  It has been well document that the tumor suppressor, p53, has the 

ability to couple the cell cycle to DNA damage and initiate apoptosis if the cell is 

unable to repair the damage (Croce, 2008).  In fact, following DNA damage p53 

plays a critical role in prevention against malignant transformation by inducing 

not just apoptosis, but also cell cycle arrest and DNA repair depending on the 

level and type of cellular damage that has occurred (Levine, 1997; Levine et al., 

2004; Vogelstein et al., 2000).  Many studies have shown that once the cells 

encounter DNA damage, multiple post-translational modifications occur, leading 

to an increase in p53 levels due to stabilization and an increase in p53 

transcriptional activity (Lakin and Jackson, 1999; Saito et al., 2003).  There are 

still questions as to how DNA damage stabilizes and activates p53.  Here we 

show that one possible mechanism would be through blocking MDM2-mediated 

conformational change.  This would allow p53, now in a mainly wild-type 

conformation, to bind DNA and transcribe target genes.  It is also a possible 

explanation for the observations by our lab and other groups that show DNA 

damage leads to p53 stabilization, yet MDM2-p53 binding is not significantly 

decreased.  DNA damage might prevent the secondary MDM2 acidic domain-



p53 interaction, decreasing p53 ubiquitination and proteosomal degradation while 

also allowing for the protein complex to bind DNA.   

 
Figure 51:   A model for ubiquitin-independent regulation of p53 by MDM2.  
MDM2 binding to p53 leads to subsequent conformational change of p53 core 
domain, resulting in loss of DNA binding.  Following DNA damage MDM2 is not 
longer able to shift p53 to a mutant conformation, leading to DNA binding and 
transcriptional activity.  ARF binding to MDM2 acidic domain inhibits 
ubiquitination of p53, but also prevents p53 conformational change and loss of 
DNA binding activity, resulting in stabilized p53 competent in transcription 
activation.  SUV39H1 binding to MDM2 acidic domain prevents p53 
conformational change, which allows p53-MDM2-SUV39H1 trimeric complex to 
bind DNA and repress p53 target promoters.  
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The ARF tumor suppressor is best known for its ability to block p53 

ubiquitination by MDM2.  Here we showed that ARF binding to the MDM2 acidic 

domain also prevents p53 misfolding, and stimulates p53 DNA binding.  ARF 

binding to MDM2 has been shown to promote stable beta sheet formation 

(Bothner et al., 2001; Sivakolundu et al., 2008), which may trap MDM2 acidic 

domain in a conformation that cannot bind p53 core domain or induce p53 

misfolding.  It is still not clear how p53-MDM2-ARF complex can activate 

transcription after binding DNA.  Possibly because p53 binds DNA as a tetramer, 
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a fraction of the p53 molecules have N terminal domain that are not concealed by 

MDM2.  Furthermore, p53-DNA binding may be more stable than p53-MDM2 

interaction, eventually leaving free p53 on the DNA. 

If MDM2-p53 complex does not bind DNA, why is endogenous MDM2 

detected on p53 target promoters in tumor cells devoid of ARF (Arva et al., 2005; 

Jin et al., 2003; Tang et al., 2008; Wang et al., 2004; White et al., 2006)?  Our 

results suggest that binding of MDM2 acidic domain by SUV39H1 has effects 

similar to ARF, preventing p53 misfolding and allowing p53-MDM2 complex to 

bind DNA.  It is possible that other proteins that interact with the acidic domain of 

MDM2 also protect p53 from misfolding.  Therefore, when MDM2 is detected on 

p53 target promoters, it is likely to be in complexes with acidic domain binding 

partners.  In the case of p53 activators such as ARF and ribosomal proteins, 

these interactions promote p53 DNA binding and transcription activation.  In the 

case of corepressors such as KAP1 and SUV39H1, the interactions allow their 

recruitment to p53 target promoters to repress transcription.  Furthermore, ARF 

has been shown to displace KAP1 and SUV39H1 from MDM2 (Chen et al., 2010; 

Wang et al., 2005), suggesting that ARF binding to p53-MDM2 complex on 

chromatin may block the recruitment of corepressors by MDM2.  These 

mechanisms enable the MDM2 acidic domain to function as an important signal 

conduit for both activators and inhibitors of p53. 

Our findings also have obvious translational implications.  The proteasome 

inhibitor Bortezomib was initially shown to induce cell death independent of p53 

status (Hideshima et al., 2003b).  However, there is evidence that Bortezomib 

induces pro-apoptotic protein NOXA more efficiently in the presence of Wt p53 

(Perez-Galan et al., 2006).  Bortezomib acts as a reversible inhibitor of the 

chymotrypsin-like activity of the 26S proteasome in mammalian cells.  The 

ubiquitin proteasome pathway plays an essential role in regulating the 

intracellular concentration of specific proteins, thereby maintaining homeostasis 

within the cells.  Inhibition of the 26S proteasome can affect multiple signaling 

cascades within the cell, leading to disruption of normal homeostatic 

mechanisms and eventually cell death.  Bortezomib has been reported to induce 
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cytotoxicity in a variety of cancer cell types in vitro and delay tumor growth in vivo 

in pre-clinical tumor models, including multiple myeloma and mantel cell 

lymphoma cells (Perez-Galan et al., 2006; Wang et al., 2008).  Although the drug 

has a variety of effects, bortezomib is capable of activating the p53 apoptotic 

pathway by stabilizing p53 through proteosomal blockade (Lowe et al., 1993).  

Recent studies showed that Nutlin synergizes with Bortezomib to induce 

cell death in multiple myelomas and mantel cell lymphoma.  The molecular 

mechanism of this cooperation was either not investigated (Ooi et al., 2009; Tabe 

et al., 2009), or was shown to be due to induction of p53 target genes (Saha et 

al., 2010).  Our results suggest that proteasome inhibition stabilizes both p53 and 

MDM2, forming complexes that are partially deficient for DNA binding due to 

conformational switch by MDM2, or bind DNA but inactive for transcription due to 

MDM2 recruitment of repressors.  As such, Nutlin cooperates with Bortezomib by 

relieving the repressive effects of MDM2, resulting in high-level expression of p53 

target genes and increased p53-dependent cytotoxicity.  This finding provides a 

molecular rationale for combination therapy using proteasome and MDM2 

inhibitors against tumors that express wild type p53. 

On the basis of a phase 3 clinical trial, Bortezomib is currently approved 

for the treatment of newly diagnosed and relapsed multiple myeloma patients 

(Lee et al., 2008; Richardson et al., 2005; San Miguel et al., 2008).  Nutlin-like 

MDM2 disruptor is also being investigated in a phase 2 clinical trial but at this 

time there is no published data.  Although bortezomib has been shown to be 

active against multiple myeloma, resistance to bortezomib, plus lack of response 

in solid tumors, have been an issue and an obstacle to overcome in order to 

achieve better clinical results.  Our data indicates that the combination treatment 

of Nutlin-3 with bortezomib results in cooperative cytotoxicity in cells from solid 

tumor harboring wild-type p53 and high levels of MDM2.  This combination 

treatment may be able to restore bortezomib sensitivity in advanced multiple 

myeloma patients and extend bortezomib activity against a larger spectrum of 

tumors.  The results also explain why p53 does not seem to play a major role as 

a mediator of the effects of bortezomib in mono therapy.  All though the total p53 
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mRNA and protein levels are increased, it is still functionally inactivated by 

MDM2 (Hideshima et al., 2003a).  Therefore, the combination therapy includes 

the addition of MDM2 inhibition to proteasomal inhibition, not only stablizing p53 

but also increasing its DNA binding activity.  This ultimately makes p53 a more 

functional protein and is now able to induce apoptosis in previously functionally 

compromised cancer cells.   

This information supports the need for a combination clinical trial in order 

to improve patient outcomes with not only multiple myeloma and lymphoma 

malignancies, but also in patients with solid tumors containing wt p53 and high 

levels of MDM2.  Also of significance, the addition of MDM2 inhibitor treatment 

with bortezomib may allow a reduction in the therapeutic dose of this and other 

genotoxic drugs, which has the potential to reduce unwanted side effects.  

Similarly, because bortezomib has already been shown to induce an excellent 

response in some multiple myeloma and mantal cell lymphoma patients, the 

combinatorial effects from the addition of MDM2 inhibitor may allow for more 

flexibility in dosing patients on clinical trials and an increase in quality of life. 

In summary, our basic research on the biochemical activity of MDM2 has 

led to unexpected insight directly relevant to cancer treatment. With the 

anticipated advance of MDM2 inhibitors currently in development, our results 

provide the rationale for implementing clinical trials of novel combination of 

approved and experimental drugs in the near future. 
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