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Introduction 

 

Staphylococcus aureus is an Opportunistic Pathogen. Staphylococcus aureus is a 

Gram-positive, non-sporeforming bacteria, first observed in the 1880s [Ogston, 1984]. 

Cells of this organism arrange as clusters of round golden spheres, or cocci; and have a 

range in diameter of between 0.7 µm to 1.2 µm. The genome of S. aureus is 

approximately 2.8 Mbp with a G+C content of 33% [Gill et al., 2005; Kuroda et al., 

2001]. As a facultative anaerobe, S. aureus can respire in the presence of oxygen, or 

undergo fermentation in the absence of oxygen. Optimal growth of S. aureus is achieved 

at temperatures of 25°C to 43°C and at pH levels of 4.8 to 9.4 [Novick, 2006]. 

 

Manifestation of S. aureus Infection. S. aureus is ubiquitous throughout nature as both 

a pathogen and commensal organism of humans, which are its natural reservoir [Lowry, 

1998]. Approximately 30% of the adult population harbors this microbe 

asymptomatically in the anterior of their nares. This carrier population contributes to the 

transmission of S. aureus primarily through direct contact with sites of infection or areas 

of colonization [Wertheim et al., 2004]. The manifestation of S. aureus infection or 

disease is remarkably broad and diverse, ranging from localized acute soft tissue 

infections to life threating septicemia. Soft tissue or localized wound infections 

commonly begin as a small pimple at the site of infection. Often these lead to boils, 

carbuncles, or furuncles as the infection progresses [Lowry, 1998]. Further, these initial 
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foci of infection can rapidly lead to more invasive diseases, which can often result in the 

irreversible degradation of host tissues and muscle. Severe S. aureus infections can 

manifest as necrotizing diseases (e.g. necrotizing fasciitis and necrotizing pneumonia), 

systemic bacteremia, endocarditis, osteomyelitis and septic arthritis [Fowler et al., 2005]. 

The pathogenic success of S. aureus is largely based on regulatory networks that 

coordinate the expression of bacterial virulence factors. This is achieved by global 

regulators that modulate temporal gene expression according to changes in the 

environment [Chan and Foster, 1998; Novick, 2006; Yarwood et al., 2001]. 

 

Antibiotic Resistance in S. aureus. S. aureus is a remarkably successful pathogen, with 

overwhelming resistance to antibiotic therapies. The incidence of infections due to 

antibiotic resistant strains has achieved epidemic proportions, and is primarily the 

consequence of methicillin resistant S. aureus, or MRSA, strains [Chambers, 2001; 

Kaplan et al., 2005; Klevens et al., 2007]. In 2004, MRSA accounted for nearly 60% of 

all S. aureus infections reported for patients staying in intensive care units [National 

Nosocomial Infections Surveillance (NNIS) System Report, 2004. Methicillin resistant S. 

aureus is now believed to be the leading cause of death by a single infectious agent in the 

United States [Kobayashi and DeLeo, 2009]. The antibiotic penicillin was first 

introduced in the early 1940s, and by 1944, the first resistant isolates of S. aureus to 

emerged [Barber and Rozwadowska-Dowzenko, 1948]. These strains developed in 

healthcare settings from an acquired penicillinase encoded on a plasmid [Ridley et al., 

1970]. Penicillinase inactivates the functional β-lactam ring though a targeted cleavage 

event, negating the activity of the drug [Discussion on Penicillin, 1994; Wu et al., 2001]. 
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Despite these efforts, by 1960 80% of all S. aureus strains were penicillin resistant, and 

were spreading at pandemic proportions throughout both the community and hospital 

settings [Ridley et al., 1970]. As of 2008, more than 90% of all S. aureus isolates 

possessed penicillinase-mediated penicillin resistance [Tenover, 2008]. In 1959, 

methicillin was developed for the treatment of penicillin resistant S. aureus infections 

[Batchelor et al., 1959]. Methicillin is a semi-synthetic antimicrobial with an ortho-

dimethoxyphenyl side group, which prevents penicillinase access to the β-lactam ring by 

steric hindrance [Klein and Finland, 1963]. The use of methicillin for treating penicillin 

resistant S. aureus infections was short lived, and within two years of its introduction the 

first resistant strain was isolated [Jevons, 1961]. In S. aureus, methicillin resistance 

occurs through the chromosomally encoded mecA gene, which specifies a low affinity 

binding protein PBP2a. The β-lactam activity of methicillin inactivates native penicillin 

binding proteins, which is counteracted through the transpeptidase activity of PBP2a. 

Thus, the controlled expression of PBP2a allows cell wall synthesis to continue even at 

high β-lactam concentrations [Ito et al., 1999; Wu et al., 2001]. The mecA gene resides on 

the mobile cassette element SCCmec, and integrates into the chromosome at a locus of 

unknown function, orfX. The procurement of SCCmec by S. aureus confers resistance to 

the entire class of β-lactam antibiotics, and is presumed to have initially evolved in 

Staphylococcus sciuri [Wu et al., 2001]. Therefore, glycopeptides are often the preferred 

therapy for severe MRSA infections and include the antibiotic vancomycin. Vancomycin 

targets cell wall transpeptidation by blocking or altering the D-Ala-D-Ala motif of the 

glycan chains. Isolation of S. aureus strains with reduced vancomycin susceptibility 

(VISA) was first reported in 1996 in Japan [Reduced susceptibility of Staphylococcus 
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aureus to vancomycin, 1997]. Reduced vancomycin susceptibility evolved in S. aureus 

according to the selective pressures associated with the over utilization of the antibiotic to 

treat S. aureus infections. Many studies attribute this to minor changes in key regulatory 

elements involved in cell wall metabolism [Cui et al., 2009; Meehl et al., 2007; Mwangi 

et al., 2007]. True vancomycin resistant S. aureus (VRSA) first surfaced in the United 

States in 2002, presenting a serious threat public health [Staphylococcus aureus resistant 

to vancomycin–United States, 2002, vancomycin-resistant Staphylococcus aureus–

Pennsylvania, 2002]. Resistance in VRSA strains is primarily mediated by the vanA gene, 

which seems to be acquired through a conjugation event with enterococcal species [Evers 

et al., 1996].  

 

Community-Acquired S. aureus. S. aureus infections have historically been confined to 

the hospital setting, largely populated with immunocompromised individuals [Deresinski, 

2005]. However, in 1999 highly virulent MRSA strains were reported in the community, 

outside of the nosocomial setting [Four Pediatric Deaths From Community-Acquired 

Methicillin-Resistant Staphylococcus aureus—Minnesota and North Dakota, 1999; 

Fridkin et al., 2005]. Infections caused by Community-associated S. aureus strains (CA-

MRSA) began emerging in healthy young adults, having no predisposing factors for S. 

aureus infections; including recent hospitalizations, underlying medical issues or history 

of S. aureus infection [Kobayashi and DeLeo, 2009]. These strains were highly virulent, 

causing severe necrotic skin and soft tissue infections, and demonstrated an affinity for 

individuals in highly populated or overcrowded areas, thereby contributing to increased 

rates of transmission. These areas include places such as jails and military barracks 
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[Aiello et al., 2006; Pan et al., 2003]. Factors contributing to the pathogenic success of 

CA-MRSA remain largely controversial and undefined; however two theories prevail 

regarding the virulent phenotype associated with these strains. In a study by Li et al., [Li 

et al., 2009], the virulent CA-MRSA phenotype was shown to be the result of 

differentially expressed intrinsic elements, largely attributable to an overactive agr locus. 

These findings differ from previous observations, in which acquired mobile genetic 

elements were implicated in the hyper-virulent phenotype, largely mediated through the 

pro-phage encoded Panton-Valentine leukocidin toxin (PVL), and the arginine catabolic 

mobile element. These mobile genetic elements have been suggested to aid in the 

increased rates of transmission observed in CA-MRSA strains, as well as immune 

evasion strategies associated through the cytolytic activity of the PVL toxin [Deresinski, 

2005; Diep et al., 2008; Li et al., 2009]. CA-MRSA strains, while highly virulent, remain 

susceptible to many non β-lactam antibiotics [Chambers, 2001]. Treatment options are 

however limited, particularly in light of reported CA-MRSA isolates with decreased 

vancomycin susceptibility [Graber et al.]. 

 

Toxin Production in S. aureus. S. aureus is a highly ubiquitous organism that has been 

implicated in a wide spectrum of diseases ranging from skin and soft tissue infections to 

life threatening septicemia [Lowry, 1998]. These manifestations of disease are the result 

of virulence factors expressed by the organism, and include toxins, hemolysins, and 

proteases [Novick, 2006]. Typically, these are secreted factors which directly interact 

with the host during infection, and facilitate invasion and colonization [Cheung et al., 

1992, 2008; Janzon et al., 1989; Peng et al., 1988]. The secretion of toxins in S. aureus is 
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controlled by global regulators that coordinate gene expression in a cell density and 

growth phase dependent manner. This is achieved through the upregulation of factors for 

invasion, adhesion and colonization, which facilitate the initial stages of infection. This 

differs from cells approaching later growth phases, in which factors for invasion are 

upregulated and those for colonization are down regulated. These later stages of growth 

utilize exotoxins to spread throughout host tissues; achieved through the activities of 

hemolysins, cytotoxins, proteases and leukocidins, etc. [Janzon et al., 1989; Novick, 2006, 

1993; Peng et al., 1988]. 

 

Proteolytic Enzymes. Proteases function in a wide variety of essential regulatory and 

housekeeping functions. Their importance is demonstrated by the observation that 2-3% 

of the total gene products in all organisms are proteolytic enzymes [Rawlings et al., 2002]. 

Proteases are proteins that catalyze the cleavage of amide bonds in peptides via 

exopeptidase or endopeptidase activity [Sarnovsky et al., 1929; Rawlings and Barrett, 

1995]. Exopeptidases cleave peptide bonds proximal to the amino or carboxy terminus, 

releasing free amino acids or small peptides [McDonald, 1986]. Endopeptidases cleave 

internal peptide bonds, and release oligopeptides. Protein hydrolysis is further defined 

according to the functional roles of active site residues [Taylor, 1993]. These functional 

groups required for catalysis consist of serine, aspartic, cysteine, prolyl or metal cofactor 

requiring metallo amino acid residues [Rawlings et al., 2002]. Serine proteases contain a 

serine residue at their active site that covalently binds and processes substrates of broad 

specificity [Rawlings and Barrett, 2004]. Aspartic proteases catalyze the hydrolysis of 

peptide bonds from each end of aromatic or bulky amino acid residue containing 
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substrates. These proteases catalyzed acid-base reactions by virtue of two aspartic 

residues located at their active site [Rawlings and Barrett, 1995]. Cysteine proteases 

contain an active site cysteine residue, which requires a reducing agent for enzymatic 

activity [Rawlings and Barrett, 2004]. Prolyl proteases are proline specific peptidases that 

catalyze the cleavage of amide bonds following a proline residue or an imide bond that 

precedes it. These proteases demonstrate full activity in the presence of manganese ions, 

and maintain substantial sequence homology to various peptidases that require divalent 

metal ions for catalysis [Bazan et al., 1994; Yaron and Naider, 1993]. Metalloproteases 

require divalent metal ions at their active site to drive peptide hydrolysis, and are highly 

diverse. These proteases are organized according to the conserved sequences that bind 

metal ions at their active sites, often HEXXH [Bazan et al., 1994; Rawlings et al., 2002; 

Taylor, 1993].  

 

Proteases are further differentiated according to their cellular location, either 

intracellularly, membrane/wall associated or secreted into the external environment. This 

is largely dependent on the target substrates, enzymatic specificity and the fate of the 

peptides released during hydrolysis. Generally, intracellular proteases function in 

processes such as cell metabolism or sporulation [Dancer and Mandelstam, 1975; 

Sussman and Gilvarg, 1971]. For example, the Lon and ATP-dependent proteases of 

Escherichia coli regulate the destruction of damaged proteins in response to 

environmental stress [Chung and Goldberg, 1981]. This type of response is necessary to 

prevent the aggregation of hydrophobic residues that are exposed when proteins denature 

due to heat or acid shock. Endopeptidase activities mediated by outer membrane 
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permeases provide the required transport of oligopeptides into the cell, once produced by 

extracellular proteases. This activity is commonly vital for cell viability, and provides 

exogenous sources of amino acids [Sussman and Gilvarg, 1971]. In addition to nutritional 

roles, secreted proteases regulate protein maturation and activation events. This can be 

achieved at the post translational level, when proteins are secreted in inactive zymogen 

configurations [Drapeau et al., 1972; Rice et al., 2001; Schneewind et al., 1992; Shaw et 

al., 2004]. One such example is seen in the programmed cell death and/or apoptosis of 

eukaryotic cells. Apoptosis is mediated by caspase proteins that are synthesized and 

secreted in an inactive form. To achieve a functional state, post translational proteolytic 

processing must occur. This level of regulation ensures cell death signals are not 

prematurely released [Kerr et al., 1972]. Further, the secreted protease of Pseudomonas 

aeruginosa, elastase, has been implicated in the activation of host matrix 

metalloproteases, and ultimate deregulation of host tissue destruction [Sorsa, 1992]. 

Membrane bound proteases serve an array of functions in the microbial cell, including 

regulatory and nutritional roles, including the membrane bound protease of E. coli, RseP.  

RseP functions in a two-step proteolytic cleavage process, known as regulated 

intramembrane proteolysis, and assists in the induction process of σ
E
 under conditions of 

stress, allowing for the rapid modification of gene transcription profiles [Akiyama et al., 

2004].  

 

Proteases of S. aureus. The S. aureus genome encodes 132 putative proteases and 42 

non-peptidase homologs [Merops]. Ten of the putative or characterized proteases are 

secreted into the external environment in a temporally-regulated manner; V8 serine-
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protease (SspA), staphophain A (ScpA), staphophain B (SspB), aureolysin (Aur), and the 

serine-protease like enzymes (SplABCDEF) [Chan and Foster, 1998; Karlsson and 

Arvidson, 2002; Rice et al., 2001; Shaw et al., 2004]. Many of these secreted proteases 

have been characterized extensively and have been shown to contribute to the progression 

of disease in S. aureus [Karlsson and Arvidson, 2002; Lindsay and Foster, 1999; 

McAleese et al., 2001; McGavin et al., 1997]. The switch of infectious states from 

adhesion to invasion has been suggested to be primarily driven by the interplay of these 

secreted proteases, and cell adhesion and colonization factors [McGavin et al., 1997]. 

Indeed, multiple groups [Boles and Horswill, 2008; Beenken et al., 2010; Tsang et al., 

2008] identified this kind of modification of protein profiles during the detachment stages 

of S. aureus biofilm. Specifically, an increase in the proteolytic activities of Aur and 

SplABCDEF was observed during detachment, whereas adhesion proteins were down 

regulated. These results are in accordance with the previously reported cleavage of an S. 

aureus adhesion protein clumping factor B, ClfB, by Aur [McAleese et al., 2001]. 

Moreover, bacterial sepsis, aided by the cysteine proteases ScpA and SspB, was shown to 

impact the severity and progression of infection and invasion [Imamura et al., 2005].  

 

Aminopeptidases. Aminopeptidases are exopeptidases that liberate small peptides from 

oligopeptides providing cellular sources of energy and nutrition [Christensen et al., 1999; 

Li et al., 2009; Matsui et al., 2006]. This is typically achieved through the generation of 

free amino acids, which are later catabolized for use as intermediates in central metabolic 

pathways. Aminopeptidases are often substrate specific, and maintain conserved active 

site residues and folding patterns. These specific properties enable the sub-categorization 
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of proteolytic enzymes into the following evolutionary based clans according to the 

catalytic metals required for their active site residues, clans MF, MG, and MH, and are 

explained in further detail below [Rawlings et al., 2002, Rawlings and Barrett, 2004; 

Sussman and Gilvarg, 1971]. 

 

Metalloaminopeptidases. The metalloaminopeptidases are the largest and the most 

homogenous aminopeptidase family. They are arranged into 25 families according to the 

three conserved active site residues, histidine, glutamine, lysine and/or aspartate. These 

families are further defined by evolutionary derived clans; MF, MG, and MH respectively 

[Rawlings et al., 2002, Rawlings and Barrett, 2004]. Many of these peptidase families 

require divalent metal ions at their active site to drive catalysis; most commonly zinc. 

Metalloaminopeptidase clan MF is characterized by aminopeptidases that require two 

zinc ions at their active site for catalysis, and includes the leucine aminopeptidase from 

bovine lens [Kim and Lipscomb, 1993]. Clan MG metallopeptidases require either 

divalent cobalt or manganese ions for activity. One such example of peptidases typified 

by this clan is the highly conserved methionine aminopeptidases, which is required for 

the maturation of newly synthesized proteins [Bazan et al., 1994; Ben-Bassat et al., 

1987]. The proteolytic enzymes characterized by clan MH represent a diverse mixture of 

aminopeptidases, carboxypeptidases and dipeptidases, and typically require divalent zinc 

ions at their active site, commonly aspartyl aminopeptidases [Russo and Baumann, 2004; 

Franzetti et al., 2002]. 
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Leucine Specific Aminopeptidases. The M17 family of the metallopeptidases clan MF 

represents one of the most extensively studied classes of aminopeptidases. These are the 

leucyl aminopeptidases, and require divalent zinc ions for catalysis [Kim and Lipscomb, 

1993]. These peptidases have distinct active sites, with paired lysine and aspartic residues 

for zinc ion binding, in addition to the catalytically active glutamic acid residues 

[Rawlings and Barrett, 2004]. Leucine specific aminopeptidases drive hydrolysis of the 

amide bonds from hydrophobic N-terminal amino acids, as well as di- and tripeptides. 

The best studied of these aminopeptidases is that from bovine lens, which assembles into 

a bilobal hexamer consisting of six 54 kDa subunits [Cuypers et al., 1982]. This structure 

is maintained by hydrogen bonds and van der walls interactions, and inhibited by metal 

chelating agents [Sussman and Gilvarg, 1971]. A homolog of the bovine leucine 

aminopeptidase was identified in E. coli, and is termed aminopeptidase A or PepA 

[Strater et al., 1999]. Protein sequence analysis reveals that PepA shares 31% amino acid 

identity overall, and a 52% amino acid identity at the carboxy terminus, with the bovine 

lens enzyme [Stirling et al., 1989]. E. coli aminopeptidase A is a multifunctional protease 

with DNA-binding activities, regulated by three distinct promoters [Woolwine and 

Wozniak, 1999]. It is catalytically activated in the presence of manganese and presumed 

to function in peptide turnover and/or metabolism [Miller, 1996]. In addition, the DNA-

binding activities of PepA are essential to ColE1 plasmid inheritance and Xer site 

recombination [Cheung et al., 1992]. 

 

Aminopeptidases of S. aureus. Thirteen aminopeptidases are encoded in the genome of 

S. aureus, many of which remain uncharacterized. These include aminopeptidases: pepA1, 
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pepA2, pepA3, pepF1, pepF2, pepM, pepP, pepQ, pepS, pepT1, pepT2, pepV and pepZ [Gill 

et al., 2005; Sobral et al., 2007; Shaw unpublished observation]. The peptidases PepA1, 

PepA2 and PepA3 are glutamyl serine aminopeptidases, all of which are approximately 

350 amino acids in length. Aminopeptidase PepM is an essential methionine 

aminopeptidase that modifies nascent polypeptides by removing the N-terminal 

methionine upon ribosomal release [Chang et al., 1989]. Crystal structure analysis of 

PepM performed by Oefner et al. [Oefner et al., 2003] reported the inhibition of this 

essential aminopeptidase by 1, 2, 4-triazols, thus presenting a possible new target for 

novel therapies against S. aureus. The catalytic and substrate processing activities of the 

proline dipeptidases PepP and PepQ, and peptidase PepT1 have yet to be determined and 

remain uncharacterized. Aminopeptidase PepS is an intracellular aminopeptidase, with a 

substrate preference for the hydrophobic amino acid residues, Leu, Val, Phe, and Tyr. 

The crystal structure analysis of PepS identified impaired catalytic activity in the 

presence of the metal chelating agent EDTA, which was restored with the addition of 

zinc or cobalt ions [Odintsov et al., 2005]. Additionally, analysis using antisense RNA 

technology identified an impaired phenotype for growth in cells with reduced pepS 

mRNA transcript levels [Yinduo et al., 2001]. PepV, a dipeptidase in S. aureus, has been 

reported to vary among clonal variants of S. aureus, as peptidase activity was observed in 

methicillin resistant strains only, and was absent in methicillin susceptible strains [Staub 

and Sieber, 2009]. Additionally, the potential association for PepV and resistance in 

MRSA strain has been suggested as a result of activity-based protein profiling 

experiments, which identified the selective overexpression of dipeptidase activity in these 

strains [Staub and Sieber, 2009]. Aminopeptidase PepZ is a putative cytosolic leucine 
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specific aminopeptidase based on sequence homology with a leucine aminopeptidase of E. 

coli, PepA. A recent publication [Majerczyk et al., 2010] identified the decreased 

expression of pepZ in a codY deficient S. aureus strain. In bacteria such as Lactococcus 

lactis, CodY is a transcriptional regulator that senses available nutrients mediated through 

interactions with branch chain amino acids, and often regulates aminopeptidases for 

nutritional purposes accordingly [Majerczyk et al., 2010].  

 

Aminopeptidases in Bacterial Pathogenesis. In addition to secreted toxins, there are a 

number of components within bacterial genomes that do not directly participate in host 

interactions, but still facilitate the infectious process. One such example is found within 

the proteolytic activities of aminopeptidases. The role for intracellular bacterial 

aminopeptidases in the aid and progression of disease remains largely uncharacterized; 

however, secreted or surface exposed aminopeptidases have been associated with 

virulence in some pathogens. In a study by Kumagai et al. [Kumagai et al., 1999], a 

secreted dipeptidyl aminopeptidase (DPPIV) from Porphyromonas gingivalis was found 

to be implicated in the formation of abscesses in mice. This was determined using a 

model of wound formation, which identified decreased wound formation and mortality in 

mice infected with aminopeptidase DPPIV deficient cells, compared to wild-type strain 

infections [Kumagai et al., 1999]. A later report corroborated these findings, in which the 

proteolytic activity of aminopeptidase DPPIV in P. gingivalis was shown to function in 

the degradation of collagen in host tissues [Kumagai et al., 2005]. Further, a proteomic 

analysis performed on membrane bound proteins from the zoonotic pathogen 

Streptococcus suis revealed increased levels of two aminopeptidases in virulent strain 
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proteomes: a leucine aminopeptidase and aminopeptidase T. Moreover, the leucine 

aminopeptidase was recently determined to have antigenic properties in 

immunoreactivity assays [Wang et al., 2011]. This differential protein analysis performed 

on proteomes from both virulent and avirulent strains of S. suis further substantiates the 

potential of aminopeptidases as virulence factors in bacteria. 
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Materials and Methods 

 

Culture Media 

All media was prepared using deionized water (diH2O) and was sterilized by autoclaving 

at 121°C for 30 minutes unless otherwise indicated.  

 

Tryptic soy broth (TSB) 

3% tryptic soy 

 

Luria-Bertani (LB) [Miller, 1972] 

Tryptone 10 g L
-1

 

Yeast  5 g L
-1

  

NaCl  10 g L
-1 

 

Top agar 

0.7% agar in TSB 

 

Biofilm broth 

3%  TSB 

0.5% dextrose 

3.0% NaCl 
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B2 

1%      casein acid 

2.5% yeast 

0.1% K2HPO4 

2.5% NaCl 

 

Chemically defined limiting media 

 

Solution 1  

L-Aspartic acid  3 g 

L-Alanine   2 g 

L-Arginine   2 g 

L-Cystiene   1 g 

Glycine   2 g 

L-Glutamic acid  3 g 

L-Histidine   2 g 

L-Isoleucine   3 g 

L-Lysine   2 g 

L-Leucine   3 g 

L-Methionine   2 g 

L-Phenylalanine  2 g 

L-Proline   3 g 

L-Serine   2 g 
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L-Threonine   3 g 

L-Tryptophan   2 g 

L-Tyrosine   2 g 

L-Valine   3 g 

Na2HPO4   140 g 

KH2PO4   60 g 

diH2O    1400 ml 

 

Solution 2  

Biotin    0.4 mg 

D-Pantothenic acid             8 mg 

Pyridoxal              16 mg 

Pyridoxamine diHCl             16 mg 

Riboflavin    8 mg 

Nicotinic acid    8 mg 

Thiamine HCl    8 mg 

diH2O    400 ml 

 

Sterilize by filter sterilization. 

 

Solution 3 

Adenine sulphate  400 mg L
-1 

Guanine HCl   400 mg L
-1
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HCl    0.1M 

 

Solution 4 

CaCl26H2O    1 g 

MnSO4    500 mg 

Ferric Ammonium Sulphate  600 mg 

HCl     0.1M 

diH2O     100 ml  

 

Solution 5 

Glucose   100 g L
-1 

MgSO47H2O   5 g L
-1 

 

Amino acid limiting 

Combine the following solutions and filter sterilize: 

Solution 1 0.07% 

Solution 2 0.02% 

Solution 3 0.05% 

Solution 4 0.001% 

Solution 5 0.1% 
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Glucose limiting 

Prepare as indicated in the amino acid-limiting media protocol, with the exception of a 

ten-fold reduction of glucose in solution 5. 

 

Phosphate limiting 

Prepare as indicated in the amino acid-limiting media protocol, with the exception of a 

five-fold reduction of Na2HPO4 and KH2PO4 in solution 1. 

 

Mannitol salt agar  

Mannitol salt media was purchased from Fischer Scientific and prepared according to the 

manufactures specifications.  

 

Milk broth 

Dried skim milk was reconstituted in diH2O at a 10% concentration and sterilized for 15 

minutes by autoclaving  

 

Purple broth 

Purple both media was purchased from Fischer Scientific and prepared according to the 

manufacture’s specifications.  
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Buffers and Reagents 

 

PBS 

0.8%     sodium chloride 

0.14%  disodium phosphate 

0.02%   potassium chloride 

0.02%   potassium dihydrogen phosphate 

pH 7.4 

 

Phage buffer 

1M  MgSO4 

4mM  CaCl2 

5.9 g L
-1 

NaCl 

1 g L
-1  

gelatin 

50mM   Tris-HCl, pH 7.8 

 

UDS buffer  

6M  urea 

5mM  DTT 

1%  SDS 

50mM  Tris-HCl, pH8 
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2D-DIGE IEF buffer  

7M  urea 

2M  thiourea 

4%  CHAPS 

0.2%  SDS 

0.1M    DTT 

10mM  Tris-HCl, pH8.5 

 

Laemmli buffer 

diH2O    4.0 ml  

0.5M Tris-HCl, pH6.8  1.0 ml 

10% SDS    1.6 ml 

100% glycerol   0.8 ml 

β-Mercaptoethanol   0.4 ml 

Bromophenol blue   0.05% 

 

Stacking gel 

diH2O    3.05 ml 

10% SDS   50 µl 

10% APS   25 µl 

0.5M Tris-HCl, pH6.8  1.25 ml 

TEMED   5 µl 

Acrylamide   650 µl 
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Separating gel 

diH2O     3.35 ml  

10% SDS   100 µl 

10% APS   50 µl 

1.5M Tris-HCl, pH8.8  2.5 ml 

TEMED   7 µl 

Acrylamide    4.0 ml  

 

Destain solution 

Methanol  10% 

Acetic acid  5% 

 

Coomassie blue stain 

Methanol   50% 

Acetic acid   10% 

Coomassie blue  0.25% 

 

10x electrophoresis buffer 

Glycine 144 g L
-1

 

Tris base  30.3 g L
-1

 

SDS  10 g L
-1 
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Transfer buffer 

Tris base, pH 8.5 5.8 g L
-1

 

Glycine   2.9 g L
-1

 

SDS   0.4 g L
-1

 

Methanol  200 ml 

 

TBST 

25mM  Tris, pH 7.6  

0.05%  Tween-20 

0.15M  NaCl 

 

Blocking reagent 

TBST     7.5 ml 

10 mg ml
-1

 BSA or 10% milk  3 ml 

 

HisProbe working solution  

TSBT  10 ml 

His-probe 2 µl 

 

SuperSignal®West Pico Substrate  

SuperSignal®West Pico Substrate was purchased from Pierce and prepared according to 

the manufacture’s specifications. 
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Bacterial Strains, Plasmids and Primers 

 

Table 1. Bacterial Strains and Plasmids  
 

 
*Cloning vectors pAZ106 and pMK4 where used for the molecular manipulation of bacterial strains 

constructed in this study. Cm
R

, chloramphenicol resistance; Ery
R

, erythromycin resistance and Amp
R

, 

ampicillin resistance. 
 

Table 2. Primer Sequences 

 

*Underlined sequences identify cloning restriction sites. Italicized sequences represent histidine tags added 

for the construction of overexpression strains.  

 

Transformations. All molecular manipulations were performed as described by 

Sambrook and Russell [Sambrook et al., 2001]. 
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Electroporation of S. aureus. 20 ng of plasmid DNA was extracted and resuspended in 

70 µl of competent RN4220 cells and transferred to a 1 mm gapped electroporation 

cuvette. Electroporation was performed at room temperature using a BioRad Gene Pulser, 

followed by cell recovery at 37°C shaking in 1 ml of B2 media for 90 minutes. Cells 

were then plated onto TSA containing the correct antibiotic for selection, and incubated 

overnight at 37°C. 

 

Phage Transductions of S. aureus. Transductions were performed using overnight 

bacterial cultures from transformants, combined with 1M CaCl2 and previously prepared 

80α phage lysate, which were incubated at in a 37°C water bath for 20 minutes. The cells 

were then recovered by centrifugation following the addition of 1% sodium citrate and 

resuspension in TSB containing 0.5% sodium citrate. Cells were then incubated for one 

hour in a 37°C water bath and centrifuged again prior to a second resuspension in TSB 

containing 0.5% sodium citrate and plating onto selective media for overnight incubation 

at 37°C [Mani et al., 1993].  

 

Construction of a pepZ mutant. An S. aureus pepZ mutant was Available from 

laboratory stocks, which was made as follows. A PCR fragment was cloned into the 

vector pAZ106, which was purified and transformed into electrocompetent S. aureus 

RN4220 cells. Clones were selected for based on the plasmid encoded erythromycin 

resistance, and confirmed by PCR analysis. A representative clone was used to generate 

an 80α phage lysate for the transduction of S. aureus SH1000, Newman and USA300 
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FPR. Clones were then again selected for according to the erythromycin cassette and 

confirmed by PCR analysis.  

 

Construction of pepZ-lacZ Reporter Gene Fusions. The reporter fusions were 

constructed from a 1211 bp fragment, which was PCR amplified using forward primer 

895 located 626 bp upstream from the pepZ start codon and reverse primer 462 located 

544 bp downstream of the start codon (Table 2). This fragment was then cloned into the 

suicide vector pAZ106, which contains a promoterless lacZ cassette located downstream 

of the multiple cloning site, for the construction of transcriptional fusions. Once this 

construct was confirmed in E. coli, purified plasmid was electroporated into the S. aureus 

strain RN4220 and a prepared lysate was then transduced into the wild-type strains 

SH1000, USA300 FPR and Newman for characterization experiments [Mani et al., 1993; 

Sambrook et al., 2001; Schenk and Laddaga, 1992]. 

 

Transcriptional Analysis 

 

Transcriptional Analysis of pepZ Expression. Exponentially growing pepZ-lacZ 

reporter fusion cells were standardized to an OD600 of 0.05 in TSB and returned to 37°C 

shaking. Optical density measurements and 1 ml sample collections were obtained hourly 

for eight hours, with a final measurement and collection at 24 hours. A standard β-

galactosidase assay was then performed from duplicate samples to determine the 

expression profile of pepZ under standard conditions and values averaged [Sambrook et 
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al., 2001]. One unit of β-galactosidase activity was defined as the amount of enzyme that 

catalyzed the production of 1 pmol MU min
-1

 OD600 unit
-1

. 

 

Transcriptional Disk Diffusion Assays. Sterile filter disks (7 mm, 3MM Whatman 

Paper) were placed onto of a TSA plate overlayed with TSA top agar (0.7% w/v), 

containing pepZ-lacZ reporter strain fusion cells and 40 µg ml
-1

 X-GAL [Cao et al., 

2002]. Chemical stressors were then applied to the filter disks in volumes of 10 µl and 

incubated overnight at 37°C (hydrochloric acid, phosphoric acid, trichloroacetic acid, 

formic acid, acetic acid, sulfuric acid, nitric acid, sodium hydroxide, sodium chloride, 

glucose, ethanol, methanol, isopropanol, SDS, Triton X-100, Tween-20, N-lauroyl 

sarcosine, hydrogen peroxide, menadione, pyrogall, sodium nitroprusside, 4-

methylmethanesulfonate, penicillin-G, vancomycin, phosphomycin, spectinomycin, 

ampicillin, tetracycline, erythromycin, lincomycin, kanamycin, neomycin, rifampicin, 

chloramphenicol, puromycin, oxacillin, bacitracin, mupirocin, diamide, berberine Cl, 

peracetic acid, EDTA, DTT and triclosan). The upregulation of pepZ expression was 

determined by screening for blue color changes in the media [Sambrook et al., 2001]. 

 

Growth and Nutrition Profiling  

 

Growth Analysis in Peptide Based Media. Bacterial cells were grown to exponential 

phase at 37°C while shaking, washed in PBS and resuspended in 10% autoclaved milk to 

an OD600 of 0.05. Viable cell counts were performed in PBS every hour for 30 hours by 
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serial plating onto TSA. Plates were incubated overnight at 37°C and measured the 

following day by exact colony counts to determine CFU ml
-1

. 

 

Long-Term Starvation Analysis. Starvation analysis was examined from three 

independent cultures prepared using exponentially growing cells, which were washed in 

PBS and resuspended in 10% autoclaved milk or sterile TSB to an OD600 of 0.05. 

Cultures were grown shaking or static at 37°C and monitored by viable cell counts 

performed daily for seven days (shaking and static) cultures or weekly for four weeks 

(static cultures). Data was analyzed using a Student’s t test with a 5% confidence limit to 

determine statistical significance 

 

Competitive Growth Analysis. Competitive growth analysis was performed by 

inoculating sterile 10% reconstituted dried skim milk and TSB with exponentially 

growing wild-type and pepZ mutant cells in a 1:1 ratio, following PBS washes. 

Cocultures were grown shaking or static at 37°C and monitored by viable cell counts 

performed daily for seven days (shaking and static cultures) or weekly for four weeks 

(static cultures). Viable cell counts were performed by serial plating onto both TSA, and 

TSA containing erythromycin, which were incubated overnight at 37°C. The exact 

enumeration of both viable wild-type and pepZ mutant cells was used to calculate the 

competitive index (CI) [Shaw et al., 2008]. Data was analyzed using a Student’s t test 

with a 5% confidence limit to determine statistical significance. 
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Proteomic Analysis 

 

Cytoplasmic Protein Extraction. Synchronized cultures were harvested from cultures 

grown continuously while shaking at 37°C, hours 1 through 8 and 15. Cultures were 

centrifuged for ten minutes at 4150 RPM and the resulting pellet was washed three times 

in PBS. The final pellet was resuspended in either 750 µl UDS buffer for subcellular 

localization profiling or 200 µl of IEF buffer for 2D-DIGE. Cells were then lysed using a 

BioSpec Mini-BeadBeater, with 0.1 mm glass disruption beads for a total of four minutes 

in one minute intervals. Lysed cells were then centrifuged at 4°C for ten minutes at 

13,300 RPM and the protein fractions were transferred into new tubes and measured for 

protein concentration using a Pierce 660 nm protein assay kit. 

 

Secreted Protein Extraction. Proteins were harvested from synchronized cultures grown 

continuously at 37°C shaking at hours: 1 through 8 and 15. Cultures were centrifuged for 

ten minutes at 4150 RPM and the remaining supernatants were filter sterilized to remove 

residual whole bacterial cells. Supernatants were then precipitated at final concentrations 

of 10% trichloroacetic acid overnight at 4°C. The following day, precipitated secreted 

proteins were centrifuged for ten minutes at 4150 RPM at 4°C and washed with 100% ice 

cold ethanol three times. Protein pellets were then air dried and resuspended in either 750 

µl UDS buffer for subcellular localization profiling or 200 µl of IEF buffer for 2D-DIGE, 

and measured for protein concentration using a Pierce 660 nm protein assay kit.  
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Western Blot Detection. Western blot detection of pepZ 6-His tagged proteins was 

performed using a Pierce PVDF Transfer Membrane and SuperSignal West HisProbe Kit. 

Intracellular and secreted proteins were extracted at various time points from cultures 

containing standardized pMK4::pepZ 6-His tagged cells. As a negative control, proteins 

were extracted from cells containing the pMK4 vector only, concurrently. Protein 

concentrations were quantified and then resolved using SDS-PAGE and transferred onto 

a polyvinylidene diflouride membrane. Following protein transfer, the membrane was 

blocked for one hour at room temperature or overnight at 4°C, washed in TBST, and 

probed for 6-His tagged proteins. Chemoluminescent substrate detection was then 

performed using horse radish peroxidase and hydrogen peroxide in equal volumes and 

proteins were visualized by X-ray detection.  

 

2D Difference Gel Electrophoresis (DIGE). Intracellular and secreted protein fractions 

were extracted from continuously grown USA300 FPR wild-type and pepZ mutant strain 

cultures after three hours and prepared as previously described. The purified protein 

fractions were then transferred to the ICBR facility at the University of Florida for 2D-

DIGE CyDyeTM analysis. 50 ug of protein from the pepZ mutant and wild-type samples, 

and internal standard were labeled with either, Cy5, Cy2 and Cy3 CyeDyeTM, and 

separated based on charge using two dimensional isoelectric focusing. The proteins were 

then further separated by molecular weight using SDS-PAGE. This was followed by the 

in-gel analysis of wild-type and pepZ mutant labeled samples using a Typhoon 9600 

Variable Mode Imager. Changes in protein abundance were determined by DeCyderTM 

v.7.0 Differential Analysis Software and then extracted by ProPicTM. The extracted 
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proteins were then digested with trypsin and analyzed for identification using mass 

spectrometry and MASCOT software.  

 

Trypsin Digestion. Trypsin digestion was performed using 100 µg of standardized 

protein. Protein samples were reduced at room temperature for one hour using 50 µl of 

200mM dithiothreitol (DTT). Alkylation was then performed for one hour in the dark 

using 200 µl of 200mM iodoacetamide (IAA). An additional 200 µl of 200mM DTT was 

added to the samples to consume residual IAA. The samples were then diluted with 

25mM ammonium bicarbonate to 5 ml, and digested with trypsin in a ratio of 1: 30 of 

trypsin weight to protein for 16 hours at 37˚C, and desalted the following day.  

 

Desalt. Peptide desalting was performed using C-18 Vydac columns. The columns were 

activated with the addition of 1 ml of 100% acetonitrile, and repeated once. Column 

equilibration was carried out by applying 1 ml of 0.1% formic acid in diH2O to the 

columns, and repeated once. The peptides were then applied to the columns and washed 

two times with 1 ml of 0.1% formic acid in diH2O. Peptides were then eluted from the 

columns using 300 µl of 0.1% formic acid in acetonitrile, and repeated two times. The 

peptide samples were dried using SpeedVac centrifugation and resuspended in 100 µl of 

0.1% formic acid in diH2O. Peptides were further prepared by sonication for ten minutes 

and then analyzed using mass spectrometry.  
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Virulence Assays 

 

Murine Model of Septic Arthritis. Female NRMI mice, 6 to 8 weeks old were 

inoculated intravenously with either 1 x 10
7
 Newman wild-type or Newman pepZ mutant 

bacterial cells via tail vein injection, and evaluated for 12 days for the progression and 

severity of infection. Following animal sacrifice, septic dissemination and persistence 

was quantified as CFU ml
-1

 from kidney cellular homogenates harvested twelve days post 

inoculation, which were serial diluted in PBS and plated on horse blood agar plates and 

incubated for 24 hours. Clinical arthritic index measurements ranging from 0 to 3 were 

used to define the severity of erythema and/or swelling of at least one joint resulting from 

systemic infections using a double blind method. Each mouse limb was evaluated and 

scored for septic arthritis severity according to the following criteria: 1, mild swelling 

and/or erythema; 2, moderate swelling and erythema; 3, marked swelling and erythema. 

The sum of these scores corresponds to an arthritic index value used to quantify the 

severity of arthritis for each animal [Calander et al., 2004; Shaw et al., 2008]. 

 

Biofilm Formation Analysis. Biofilm formation was examined in triplicate from 

bacterial cells grown overnight in sterile biofilm media. The following day, 200 µl of 

culture was resuspended in sterile biofilm media to an OD600 of 0.1 and used to inoculate 

wells of a 96 well microtiter plate previously overlain with 20% human plasma. The 

microtiter plate was then incubated overnight at 37°C, before the culture was carefully 

removed and washed three times with PBS and allowed to air dry the following day. The 

biofilms were then fixed with 100% ethanol, air dried, stained with 10% crystal violet 
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and washed with PBS again. The plate was dried overnight at room temperature, and with 

the addition and removal of 100% ethanol, biofilm formation was measured via 

absorbance readings at 610 nm using a microtiter plate reader the following day 

[Beenken et al., 2003]. 

 

Human Macrophage Survival and Clearance. A human model of macrophage survival 

and clearance was performed in two independent experiments using Newman wild-type 

or pepZ mutant cells to inoculate wells of a microtiter plate containing human 

macrophages, in a ratio of 1: 50. Cell viability per well was monitored by quantitative 

plating at hours 0, 2, 24, 48, 72 and 96 post-inoculum [Koziel et al., 2009]. 

 

Murine Model of Wound Formation. Ten hairless, SKH-1 immunocompetent mice 

were inoculated subcutaneously in the right flank with 1.00 x 10
8
 USA300 FPR wild-type 

or pepZ mutant cells for each strain. Infection was monitored for seven days and any 

abscesses formed were harvested following animal euthanasia [Bunce et al., 1992; Chan 

and Foster, 1998]. Viable S. aureus cells were quantified by serial diluting harvested 

abscess homogenates in PBS, and plating onto TSA. Plates were incubated overnight at 

37°C, and CFU per abscess and percent recovery was determined the following day by 

colony enumeration. Data was analyzed using a Student’s t test with a 5% confidence 

limit to determine statistical significance. 

 

Murine Model of Bacterial Sepsis. Twenty female six-week old CD-1 Swiss, outbred 

and immunocompetent mice (Charles River Laboratories) were inoculated via tail vein 
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injection with 100 µl of 1.00 x 10
8 

CFU
 
ml

-1 
USA300 FPR wild-type or pepZ mutant cells 

in PBS for each strain. Mouse survival was monitored daily for seven days.  

 

Phenotypic Characterization  

 

Growth Profiling using Chemically Defined Media. Agar plates (amino acid limiting, 

mannitol salt agar, and phosphate limiting) were inoculated using three single wild-type 

or pepZ mutant colonies, and grown in parallel, aerobically and anaerobically overnight 

at 37°C. The following day, changes in growth patterns were observed for the various 

conditions. 

 

Evaluating Carbon Utilization. Carbon utilization was explored in triplicate using 5 µl 

of standardized bacterial culture to inoculate wells of a microtiterplate containing 250 µl 

of sterile purple broth enriched with 2.5 µg ml
-1

 of; galactose, ribose, lactose, mannose, 

fructose, trehalose, raffinose, D-glucosamine or xylose. The plate was covered and 

incubated overnight at 37°C, and the following day, color changes from purple to yellow 

were used to determine utilization of the carbon sources. 

 

Lysis Kinetics. Conditions of cell lysis were explored using exponentially growing 

bacterial cells washed in PBS, and resuspended to an OD600 of 2.0, in either sterile TSB 

containing 0.4 ug ml
-1

 penicillin-G or 0.05M Tris-HCl (pH7.6) containing 0.05% Triton-

X-100. Cell lysis was measured by changes in turbidity every 30 minutes [Fujimoto and 
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Bayles, 1998; Mani et al., 1993; Shaw et al., 2005]. Data was analyzed using a Student’s t 

test with a 5% confidence limit to determine statistical significance. 

 

Heat Shock. Exponentially growing bacterial cells were resuspended in sterile TSB to 

OD600 of 0.2. Heat shock was induced by placing cultures in a 55°C water bath for 30 

minutes, which were promptly returned to standard growth conditions at 37°C shaking. 

Cell viability was monitored in 30 minute intervals by optical density readings at OD600 

[Shaw et al., 2008].  

 

Heat Stress. Exponentially growing bacterial cells were resuspended in sterile TSB to 

OD600 of 0.05. Bacterial cells were assayed for adaptation to heat stress at 55°C shaking, 

which was measured by viable cell counts performed every 20 minutes for two hours. 

Serial diluted TSA plates were incubated at 37°C overnight and observed for CFU ml
-1

 

percent survival the following day [Shaw et al., 2008]. Data was analyzed using a 

Student’s t test with a 5% confidence limit to determine statistical significance. 

 

Oxidative Stress. Exponentially growing bacterial cells were washed and resuspended in 

sterile PBS containing 7.5mM hydrogen peroxide. Cultures were incubated while shaking 

at 37°C and monitored in 20 minute intervals by viable cell counts diluted in PBS 

containing 10 mg
-1

 catalase, for hydrogen peroxide inactivation. Serial diluted plates 

were incubated at 37°C overnight and observed for CFU ml
-1

 percent survival the 

following day [Watson et al., 1998]. 
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Disk Diffusions. General stress profiling was investigated using a modified Kirby-Bauer 

Assay performed in triplicate. As described previously, sterile filter disks (7 mm, 3MM 

Whatman Paper) were placed onto of a TSA plate overlayed with TSA top agar (0.7% 

w/v), containing wild-type or pepZ mutant strain cells [Cao et al., 2002]. Chemical 

stressors were then applied to the filter disks in volumes of 10 µl and incubated overnight 

at 37°C without the addition of X-GAL [Shaw et al., 2008]. Zones of inhibition were 

measured to identify changes in susceptibility to the various chemical compounds: 

hydrochloric acid, phosphoric acid,  trichloroacetic acid, formic acid, acetic acid, sulfuric 

acid, nitric acid,  sodium hydroxide, sodium chloride, glucose, ethanol, methanol, 

isopropanol, SDS, Triton X-100, Tween-20, N-lauroyl sarcosine, hydrogen peroxide, 

menadione, pyrogall, sodium nitroprusside, 4-methylmethanesulfonate, penicillin-G, 

vancomycin, phosphomycin, spectinomycin, ampicillin, tetracycline, erythromycin, 

lincomycin, kanamycin, neomycin, rifampicin, chloramphenicol, puromycin, oxacillin, 

bacitracin, mupirocin, diamide, berberine Cl, peracetic acid, EDTA, DTT and triclosan.  
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Results 

 

Analysis of the Virulence of a S. aureus pepZ mutant using a Murine Model of Septic 

Arthritis. During a previous screen in our laboratory focused on the role of proteases in 

S. aureus virulence, we identified a mutant in aminopeptidase Z as being attenuated in 

disease causation. Specifically, the role of PepZ in S. aureus virulence was examined 

using a murine model of septic arthritis, in collaboration with Dr. Andrej Tarkowski from 

the University of Goteborg, Sweden. Female NRMI mice, 6 to 8 weeks old were 

inoculated intravenously with either the Newman wild-type or Newman pepZ mutant 

strain, and evaluated over twelve days for the progression and severity of infection. Mice 

infected with pepZ mutant cells displayed markedly reduced levels of septic 

dissemination, weight loss, and severity of infection. Septic dissemination and 

persistence within the host was quantified as CFU ml
-1

 from kidney cellular 

homogenates, harvested twelve days post inoculation. Dissemination of the pepZ mutant 

was severely attenuated compared to the wild-type (Fig. 1A), with an approximate one 

log reduction of mutant cells recovered from the kidneys of infected mice. In addition, 

infection associated weight loss was strikingly reduced in the pepZ mutant (Fig. 1B). 

Twelve days post inoculation, mice infected with pepZ mutant cells averaged a decline in 

weight of 10%, varying considerably from the average 27% weight loss in wild-type 

infections. Clinical arthritic index measurements ranging from 0 to 3 were used to define 

the severity of erythema and/or swelling of at least one joint resulting from systemic 
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infection. Each mouse limb was evaluated and scored for septic arthritis severity 

according to the following criteria: 1, mild swelling and/or erythema; 2, moderate 

swelling and erythema; 3, marked swelling and erythema. The sum of these scores 

corresponds to an arthritic index value used to quantify the severity of septic arthritis for 

each animal [Calander et al., 2004]. Symptoms of clinical arthritis measured at five and 

twelve days post infection showed significant reductions in pepZ mutant strain infections 

(Fig. 1C). Histological evaluation of athritic synovitis and erosion of bone and cartilage 

showed decreases in serverity in mutant strain infections as well (Fig. 1D). 

 

 
 
Figure 1. Characterization of the Role of PepZ in Systemic Dissemination using a Murine Model of 

Septic Arthritis. S. aureus strain Newman and its pepZ mutant were injected into 10 mice per strain and 

evaluated for 12 days to identify variations in pathogenesis. (A) Septic dissemination to the kidneys 

represented as CFU/ml. (B) Weight loss over 12 days (C) Arthritic index measurements 5 and 12 days post 

inoculation. (D) Histological index. 
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Profiling pepZ Expression using a lacZ Reporter Fusion. Given the obvious 

importance of aminopeptidase Z in S. aureus infection, we set out to characterize pepZ 

expression to further understand the way in which the cell employs this enzyme. This was 

achieved using pepZ-lacZ reporter fusion strains. These were constructed from a 1211 bp 

fragment, which was PCR amplified using a forward primer located 626 bp upstream 

from the pepZ start codon and a reverse primer located 544 bp downstream of the start 

codon. This fragment was then cloned into the suicide vector pAZ106, which contains a 

promoterless lacZ cassette located downstream of a multiple cloning site, for the 

construction of transcriptional fusions (Fig. 2).  

 

 
 
Figure. 2. Physical Map of the Plasmid pAZ106 used to construct pepZ-lacZ Reporter Gene Fusions 

in S. aureus. Restriction sites within the multiple cloning site upstream of the lacZ gene are shown on the 

map. The pepZ promoter fragment was inserted at the XbaI and BamHI restriction sites, in which the 

promoter region is indicated by a blue arrow. The pAZ106 vector contains ampicillin and erythromycin 

antibiotic resistance genes for selection in E. coli and S. aureus, respectively, as shown. 
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This construct was confirmed in E. coli, with purified plasmid then being electroporated 

into the S. aureus strain RN4220. Clones were selected via the erythromycin resistance 

cassette, and confirmed by PCR using forward primer 895 located 626 bp upstream from 

the pepZ start codon and reverse primer 761 located at 7458 bp on the suicide vector 

pAZ106 (Table 2). A confirmed clone was then used to generate an 80α phage lysate, for 

the transduction of the wild-type S. aureus strains SH1000, USA300 FPR and Newman. 

These pepZ-lacZ reporter fusion strains were again, selected for based on erythromycin 

resistance and confirm by PCR. The activity of the pepZ promoter was quantified using 

fluorescent light absorbance assays, which were achieved using 4-MUG as a substrate for 

β-galactosidase activity. We determined maximal levels of pepZ expression are achieved 

consistently during exponential growth (2-3h) in all backgrounds tested (Fig. 3). 

 

 
 
Figure 3. Transcriptional Analysis of pepZ Expression in Liquid Media. Expression analysis using 

pepZ-lacZ fusion strains grown in TSB, in SH1000 (◆), Newman (X) and USA300 FPR (●). Maximal 

expression of pepZ occurs consistently during exponential growth (2-3h), regardless of the strain tested. 
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Evaluating the Effects of Environmental Stimuli of pepZ Transcription. To further 

characterize the transcriptional regulation of pepZ, we employed transcriptional disk 

diffusion assays. This allowed us to identify changes in pepZ expression in response to a 

variety of chemical stressor compounds (Table 3). This was performed using pepZ-lacZ 

fusion strains in the SH1000, USA300 FPR and Newman backgrounds. Briefly, sterile 

filter disks (7 mm, 3M Whatman Paper) were placed on a TSA plate previously 

overlayed with TSA top agar (0.7%), containing 4 µg ml
-1

 X-GAL, and reporter fusion 

cells grown overnight, and diluted 1: 1000 [Cao et al., 2002]. Chemical stressors were 

then applied to the filter disks in a volume of 10 µl, and incubated overnight at 37°C. The 

upregulation of pepZ expression was determined by screening for blue color changes in 

the media, resulting from the cleavage of X-Gal by β-galactosidase [Sambrook et al., 

2001]. This method of analysis identified the induction of pepZ in response to oxidative 

stress, cell wall perturbation and protein synthesis disruption. Specifically, the Newman 

pepZ-lacZ strain demonstrated pepZ expression in response to: hydrogen peroxide, 

oxacillin, rifampicin and bacitracin. Similar results were observed from the SH1000 

pepZ-lacZ fusion strain, in which hydrogen peroxide, oxacillin, rifampicin, bacitracin, 

penicillin-G, peracetic acid and N-lauroyl sarcosine upregulated pepZ expression. The 

upregulation of pepZ in response to sulfuric acid, Triton X-100, N-lauroyl sarcosine, 

hydrogen peroxide, vancomycin, ampicillin, oxacillin, triclosan and bacitracin was 

identified in the USA300 FPR reporter fusion strain (Table 4).  
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Table 3. Chemical Stress List 

 
Stress Agent Concentration 

Acid HCl 1M 

 
Phosphoric Acid 85% 

 
TCA 100% 

 
Formic Acid 88% 

 
Acetic Acid 12M 

 
Sulphuric Acid 12M 

 
Nitric Acid 12M 

Alkaline Sodium Hydroxide 3M 

Osmotic NaCl 1M 

 
Glucose 1M 

Alcohol Ethanol 100% 

 
Methanol 100% 

 
Isopropanol 100% 

Detergent SDS 10% 

 
Triton X-100 1% 

 
Tween-20 1% 

 
N-lauroyl sarcosine 

 
Oxidative Hydrogen peroxide 30% 

 
Menadione 1% 

 
Pyrogall 400 mg/ml 

Nitrostative Sodium Nitroprusside 2.5M 

DNA Damaging 4-methyl methanesulfonate 1M 

Antibiotic Penicillin-G 2 mg/ml 

 
Vancomycin 2 mg/ml 

 
Phosphomycin 2 mg/ml 

 
Spectinomycin 5 mg/ml 

 
Ampicillin 100 mg/ml 

 
Tetracycline 5 mg/ml 

 
Erythromycin 5 mg/ml 

 
Lincomycin 5 mg/ml 

 
Kanamycin 50 mg/ml 

 
Neomycin 50 mg/ml 

 
Rifampicin 5 mg/ml 

 
Chloramphenicol 10 mg/ml 

 
Puromycin 20 mg/ml 

 
Oxacillin 5 mg/ml 

 
Bacitracin 5 mg/ml 

 
Mupirocin 2 mg/ml 

Disulfide Diamide 500mM 

Misc. Berberine Cl 12.8 mg/ml 

 
Peracetic Acid 4.2M 

 
EDTA 0.1M 

 
DTT 1mM 

 
Triclosan 10% 

*Stressor compounds used for general stress profiling of pepZ mutant strains, and transcriptional profiling 

for the activity of the pepZ promoter using reporter fusion strains.  
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Table 4. Stressor Compounds Identified to Induce pepZ Transcription 

 

 
*Transcriptional disk diffusion assays using pepZ-lacZ reporter fusion strains were performed in triplicate 

and identified compounds associated with oxidative stress and cell wall synthesis disruption induced pepZ 

expression. 

 

Investigation of the Role of PepZ during S. aureus Growth in Peptide Rich Media. 

Aminopeptidases commonly have a role in cellular nutrition, resulting from their 

cleavage of imported oligopeptides [Linderstrom-Lang, 1929; McDonald, 1986; 

Rawlings and Barrett, 2004]. The resulting free amino acids can then be utilized as 

intermediates in central metabolic pathways required for continued cell growth and 

propagation [Sussman and Gilvarg, 1971]. Accordingly, the potential role of PepZ in S. 

aureus nutrition was explored in peptide based media (dried skimmed milk) using wild-

type strains USA300 FPR and Newman, and their pepZ mutant derivatives. Dried 

skimmed milk contains limited free amino acids, and abundant amounts of casein, a milk 

protein cleaved by aminopeptidases in other bacterial species. As such, strains deficient 

in aminopeptidases, such as PepZ, might perhaps be expected to have a reduced capacity 

for nutrient acquisition when grown under such conditions, resulting in decreased 

survival and viability. Experiments were performed with Newman and USA300 FPR 
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wild-types and pepZ mutant strains grown continuously in 10% milk for 30 hours, with 

shaking at 37°C. Cell viability was measured hourly and quantified by viable cell counts, 

plated in duplicate. In this experiment we identified similar peptide utilization profiles 

across all strains assayed (Fig. 4). Interestingly, at later time points, both the Newman 

wild-type and Newman pepZ mutant cells were identified to reach higher population 

densities when compared to USA300 FPR wild-type and USA300 FPR pepZ mutant 

cells. Specifically, the USA300 FPR wild-type and pepZ mutant strains both achieved an 

approximately 5-fold increase in cell density after 30 hours of continuous growth in milk 

media, when compared to their starting inocula. Viable cell counts from the Newman 

lineage strains, however, revealed a 28-fold increase from the initial inoculum of the 

parent, and a similar 29-fold increase for the mutant. These results suggest that Newman 

lineage strains are perhaps better adapted for growth in peptide rich environments than 

USA300 FPR strains; and that, more generally, PepZ is dispensable for growth in media 

where peptides form the sole carbon and nitrogen source. 

 



45 
 

 
 
Figure 4. Analysis of Growth in Peptide Based Media. Growth analysis was performed over thirty hours 

in sterile 10% reconstituted milk media and monitored by duplicate CFU mlˉ¹ plating hourly in strains: 

USA300 FPR (X), USA300 FPR pepZ (■), Newman (●) and Newman pepZ (◆). In this experiment we 

identified similar peptide utilization profiles across all strains assayed. Data is expressed as CFU mlˉ¹ 

averages from serial plating at the indicated time intervals.  

 

Investigating the Role of PepZ during Long-Term Starvation. The potential role for 

PepZ in long-term starvation survival was then explored using milk media and TSB, 

under both static and shaking conditions at 37°C. TSB is a complex medium containing 

abundant free amino acids, as well as carbon sources; differing significantly in 

composition from the peptide-rich milk media. Starvation analysis was examined from 

three independent cultures of TSB or milk containing exponentially growing Newman, 

USA300 FPR, Newman pepZ or USA300 FPR pepZ mutant cells. Cultures were grown 

shaking or static at 37°C and monitored by viable cell counts performed daily for seven 

days (shaking and static cultures) or weekly for four weeks (static cultures only). Shaking 

and static growth conditions were both used for analysis to determine changes in cell 
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viability while limited for oxygen in static culture, or in environments rich in oxygen, in 

shaking cultures. Cultures grown aerobically in TSB for one week resulted in similar cell 

death patterns across all strains tested (data not shown). Viable cell counts showed peak 

cell densities were achieved at day one, and steadily declined through day seven of the 

experiment. These results differ from TSB cultures grown under static conditions. 

Newman strains grown statically in TSB showed no distinct alterations between mutant 

and wild-type following one week of growth. At two weeks of static growth, we 

identified a 5% cell survival for the Newman pepZ mutant cells and a 24% cell survival 

for the Newman wild-type cells (Fig. 5A). At three weeks of starvation, a 15% cell 

survival for the Newman wild-type cells was determined; corresponding to an increase of 

4.59-fold in growth when compared to the 7% survival of the mutant. Even larger 

variations were observed at four weeks of starvation, in which the 12% Newman wild-

type cell survival measured 4-fold greater than that of the 3% cell survival identified for 

the mutant. Interestingly, viable cell counts from USA300 FPR wild-type and pepZ 

mutant cells grown statically in TSB identified a consistently larger viable cell population 

in pepZ mutant cells, compared to the wild-type (Fig. 5B). The USA300 FPR pepZ 

mutant was determined to remain at viable cell densities approximately 2.45-fold greater 

than the wild-type throughout the first three weeks of the experiment, which decreased to 

1.75 after four weeks. The USA300 FPR wild-type cells resulted in cell survivals of 11% 

at one week of growth, 7% at two weeks of growth, 5% at three weeks of growth and 4% 

following four weeks of growth. In comparison, USA300 FPR pepZ mutant cell survival 

was determined to be 27% after one week of growth, 18% at two weeks of growth, 12% 

at three weeks of growth and 7% following four weeks of static growth in TSB. 
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Figure 5. Long-Term Starvation Response of pepZ mutants Grown in TSB. (A) Newman wild-type (●) 

and pepZ mutant (■), and (B) USA300 FPR wild-type (●) and pepZ mutant (■) cells were grown 

statically in complex media at 37˚C. Viable cell counts were measured weekly at the specified time 

intervals. At four weeks of static starvation Newman wild-type cell survival measured 4-fold greater than 

that of the mutant. Viable cell counts from the USA300 cultures identified a consistently larger viable cell 

population in pepZ mutant cells, compared to the wild-type. Data is represented as percent survival from 

the inoculum from 3 independent experiments (+/- SD). Significant values (*) were determined using a 

Student’s t test (p<0.05). 

 

Starvation experiments performed in peptide based media for one week identified 

decreased survival of Newman pepZ mutant cells when cultured in static or shaking milk 

media, when compared to the parent. Static starvation assays performed in milk media 

revealed wild-type cell recovery was 3.7-fold greater than the mutant at day five, and 4-

fold larger at day six (Fig. 6A). At seven days post inoculation we determined viable cell 

densities of 118% for Newman wild-type cells and 65% for pepZ mutant cells, 

representing a 1.8-fold change. The percent recovery for aerated milk cultures seven days 

post inoculation was determined to be 18% for Newman wild-type cells and 7% for 

Newman pepZ mutant cells, representing an approximately 4.5-fold change. Similar fold 

changes were observed between these two strains between days 3-6 (Fig. 6B). Starvation 
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analysis of USA300 FPR wild-type and pepZ mutant strains cultured in static peptide 

based media failed to identify any changes in cell fitness or survival, suggesting no 

apparent role for PepZ under these conditions (data not shown). In contrast, phenotypic 

variations were identified between the two USA300 FPR strains when cultured in peptide 

based media with shaking (Fig. 7). USA300 FPR pepZ mutant cells demonstrated an 

impaired cell survival of approximately 6.41-fold when compared to wild-type cells after 

only four days of growth under these conditions. The percent survival of viable cells 

remaining in cultures after seven days was determined to be 37% for wild-type cells and 

5% for pepZ mutant cell cultures, representing an almost 8.9-fold change.  

 

Analysis of pepZ mutants during long-term starvation was carried out for four weeks, and 

failed to provide any additional insights beyond the seven day starvation experiments 

(data not shown). This suggests that the aminopeptidase activity of PepZ is most 

important during initial periods of long-term starvation. 
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Figure 6. Starvation Response of Newman pepZ mutants Grown in Peptide Based Media. Newman 

wild-type (●) and pepZ mutant (■) strains grown (A) statically in 10% milk media at 37˚C or (B) in milk 

media with shaking at 37°C. At seven days of growth, static milk cultures demonstrated a 1.8-fold change 

in cell viabilities between mutant and wild-type, whereas aerated cultures identified a 4.5-fold change 

between the two strains. Data is represented as an average percent survival of the inoculum from 3 

independent experiments (+/- SD). Significant values (*) were determined using a Student’s t test (p<0.05). 

 

 
 
Figure 7. Starvation Response of CA-MRSA pepZ mutants in Peptide Based Media. USA300 FPR 

wild-type (●) and pepZ mutant (■) cells were grown in 10% milk media at 37°C with shaking. Viable cell 

counts were measured daily at the specified time intervals and the pepZ mutant cells demonstrated an 

impaired cell survival of approximately 6.41-fold when compared to wild-type cells consistently observed 

after only four days of growth. Data is represented as average percent survival of the inoculum from 3 

independent experiments (+/- SD). Significant values (*) were determined using a Student’s t test (p<0.05). 
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Competitive Growth Analysis Reveals pepZ mutants are Impaired in their Ability to 

Compete with Wild-Type Strains. In order to further explore the hypothesis that the 

aminopeptidase activity of PepZ is important for nutrient acquisition in S. aureus we next 

performed coculture experiments in either TSB or 10% milk media. These were 

inoculated in a 1:1 ratio with either exponentially growing Newman wild-type and 

Newman pepZ mutant cells, or with USA300 FPR wild-type and USA300 FPR pepZ 

mutant cells. Cocultures were grown at 37°C and monitored by viable cell counts 

performed daily for seven days (shaking and static cultures) or weekly for four weeks 

(static cultures). Viable cell counts were performed by serial plating onto both TSA, and 

TSA containing erythromycin. In doing so, the exact enumeration of both viable wild-

type and pepZ mutant cells was obtained to determine the competitive index (CI). This 

was achieved via the erythromycin resistance cassette carried on the pAZ106 plasmid 

used to generate the pepZ mutant strains, creating a method for selection of pepZ mutant 

cells only [Shaw et al., 2008].  

 

From these experiments, we derived significant impairment in the ability of pepZ mutant 

strains to compete for nutrients while in coculture with S. aureus wild-types. This 

phenotype was observed in both backgrounds when cultured either static or shaking in 

peptide based media or TSB. Newman wild-type strains inoculated with its pepZ mutant 

in a 1:1 ratio in 10% milk media resulted in a 1: 0.37 ratio after 24 hours of static growth, 

which declined further to 1: 0.14 after 48 hours, 1: 0.011 days 5-6 and 1: 0.009 following 

seven days of competitive growth (Fig 8A). A similar phenotype, although not as 

pronounced, was observed when the Newman wild-type and pepZ mutant were 
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cocultured with shaking in peptide based media. The ratio of pepZ mutant to parent cells 

recovered after 24 hours of growth was 1: 0.68, which steadily decreased to 1: 0.43 at day 

5, and 1: 0.283 following seven days of growth (Fig. 8B). Competitive growth analysis of 

the USA300 FPR wild-type and pepZ mutant strain inoculated together in 10% milk 

media in 1:1 ratio resulted in a ratio of 1: 0.125 after 24 hours of static growth (Fig. 9A). 

This was followed by a continual decline of viable pepZ mutant cells recovered over 

seven days of competitive growth; resulting in a ratio of 1: 0.01 at day 7. Further 

coculture analysis of the USA300 FPR strains performed in aerated milk media showed 

an impaired phenotype for the pepZ mutant as well, in which the ratio of parent to mutant 

cells was 1: 0.49 after 24 hours, 1: 0.17 at day 3, 1: 0.13 at day 4, and approximately 1: 

0.01 days 5-7 (Fig. 9B).  

 

 
 
Figure 8. Competitive Growth Analysis of a Newman pepZ mutant and Parent Strain in Peptide 

Based Media. Newman wild-type and pepZ mutant strains were cocultured in 10% milk media at 37˚C (A) 

static and (B) shaking. The competitive index was derived from daily viable cell counts relative to the 

initial 1:1 inoculum. The standard deviation of 3 independent experiments is shown. Significant values (*) 

were determined using a Student’s t test (p<0.05). 
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Figure 9. Competitive Growth Analysis of a USA300 FPR pepZ mutant and Parental Strain in 

Peptide Based Media. USA300 FPR wild-type and pepZ mutant strains were cocultured in 10% milk 

media at 37˚C (A) static and (B) shaking. The competitive index was derived from daily viable cell counts 

relative to the initial 1:1 inoculum. The standard deviation of 3 independent experiments is shown. 

Significant values (*) were determined using a Student’s t test (p<0.05). 

 

When grown statically in TSB, the Newman wild-type and pepZ mutant resulted in a 

growth ratio of 1: 0.311 after 24 hours, and a final ratio of 1: 0.052 after seven days (Fig 

10A). Newman wild-type and pepZ mutant strains grown in aerated TSB coculture 

showed a decrease in viable pepZ mutant cells after 24 hours (ratio of 1: 0.516) followed 

by six and seven day ratios of 1: 0.03 (Fig. 10B). In the USA300 FPR wild-type and pepZ 

mutant static TSB cocultures, growth ratios of 1: 0.09 after 24 hours, and 1: 0.003 after 

seven days of competitive growth, were identified (Fig. 11A). USA300 FPR wild-type 

and pepZ mutant cocultures grown in aerated TSB yielded impaired mutant cell viability 

after 24 hours, resulting in a growth ratio of 1: 0.405. Further loss of viability was 

demonstrated in the pepZ mutant following seven days of competitive growth, declining 

to a ratio of 1: 0.018 (Fig. 11B).  
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Figure 10. Competitive Growth Analysis of a Newman pepZ mutant and Parent Strain in TSB. 

Newman wild-type and pepZ mutant strains were cocultured in TSB at 37°C (A) static and (B) shaking. 

The competitive index was derived from daily viable cell counts relative to the initial 1:1 inoculum. The 

standard deviation of 3 independent experiments is shown. Significant values (*) were determined using a 

Student’s t test (p<0.05). 

 

 
 
Figure 11. Competitive Growth Analysis of a USA300 FPR pepZ mutant and Parent Strain in TSB. 

USA300 FPR wild-type and pepZ mutant strains were cocultured in TSB at 37°C (A) static and (B) shaking. 

The competitive index was derived from daily viable cell counts relative to the initial 1:1 inoculum. The 

standard deviation of 3 independent experiments is shown. Significant values (*) were determined using a 

Student’s t test (p<0.05). 
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USA300 FPR wild-type and pepZ mutant cocultures exploring long-term competitive 

growth under static growth conditions identified that maximum loss of viability in the 

mutant occurs after one week in both TSB and peptide based media. When cultured in 

TSB, USA300 FPR wild-type and pepZ mutant growth ratios of 1: 0.118 after one week, 

1: 0.036 after three weeks of growth and 1: 0.129 after four weeks of static growth (Fig. 

12A). Growth ratios observed of 1: 0.01 were determined after one week of growth for 

the USA300 FPR cocultures in milk media, which continued through week four (Fig 

12B). In the Newman wild-type and pepZ mutant cocultures, a growth ratio of 1: 0.025 

was identified after one week of competitive growth in static peptide based media, with 

an apparent recovery (CI=1: 0.161) after two weeks (Fig. 13A). This was followed by a 

decline in pepZ mutant cells to a ratio of 1: 0.08 following competitive growth after three 

weeks and, 1: 0.06 after four weeks. Competitive growth analysis of Newman wild-type 

and pepZ mutant cocultures grown under static growth conditions in TSB resulted in an 

average growth ratio of 1: 0.05 following one week of competitive growth, slightly 

decreasing to growth ratios of 1: 0.04 weeks 2-4 (Fig. 13B). 
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Figure 12. Competitive Growth Analysis of a USA300 FPR pepZ mutant and Parent Strain. USA300 

FPR wild-type and pepZ mutant strains were cocultured together in (A) TSB and (B) 10% milk media at 

37˚C static. The competitive index was derived from weekly viable cell counts relative to the initial 1:1 

ratio inoculum. The standard deviation of 3 independent experiments is shown. Significant values (*) were 

determined using a Student’s t test (p<0.05). 

 

 
 
Figure 13. Competitive Growth Analysis of a Newman pepZ mutant and Parent Strain. Newman wild-

type and pepZ mutant strains were cocultured together in (A) 10% milk media and (B) TSB while grown at 

37˚C static. The competitive index was derived from weekly viable cell counts relative to the initial 1:1 

ratio inoculum. The standard deviation of 3 independent experiments is shown. Significant values (*) were 

determined using a Student’s t test (p<0.05). 

 

Anaerobic Stress Profiling of PepZ using Chemically Defined Media. The role of 

PepZ in response to anaerobic conditions was assessed using chemically defined media, 

to identify changes in growth patterns when limited for both oxygen and a variety of 

A

  

B 
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nutrient sources. This was performed using amino acid limiting media, mannitol salt agar 

(MSA), phosphate limiting media, and glucose limiting media. Agar plates for each of 

these conditions were inoculated using three single Newman or USA300 FPR wild-type 

or pepZ mutant colonies, and grown in parallel, aerobically and anaerobically, overnight 

at 37°C. We identified that, in the absence of oxygen, the Newman and USA300 FPR 

pepZ mutant strains fail to proliferate when limited for amino acids (Fig. 14). The 

USA300 FPR pepZ mutant also showed impairment when grown under anaerobic 

conditions limited for phosphate, when compared to the wild-type (Fig. 15). Furthermore, 

the USA300 FPR pepZ mutant also failed to grow under anaerobic conditions when 

grown on MSA, suggesting impaired mannitol utilization when grown in oxygen limited 

conditions (Fig. 16). 

 

 
 
Figure 14. Anaerobic Growth Analysis of pepZ mutants using Amino Acid Limited Media. Anaerobic 

growth comparison on chemically defined media limited for amino acids demonstrated an impaired ability 

in the mutant strains (A) USA300 FPR pepZ and (B) Newman pepZ to grow. WT refers to wild-type, and 

the associated pepZ mutant is indicated as pepZ on the figure. 

 

WT              pepZ WT              pepZ 
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Figure 15. Anaerobic Growth Analysis of a USA300 FPR pepZ mutant Limited for Phosphate. 

Anaerobic growth comparison of  USA300 FPR and its pepZ mutant on phosphate limiting media identified 

an impaired ability in the mutant strain to grow. USA300 FPR wild-type is shown as WT and the associated 

pepZ mutant is indicated as pepZ on the figure. 

 

 
 
Figure 16. Anaerobic Growth Analysis of a USA300 FPR pepZ mutant on Mannitol Salt Agar. 

Anaerobic growth comparison of USA300 FPR and its pepZ mutant on MSA demonstrates a decreased 

ability in the mutant strain to utilize mannitol. USA300 FPR wild-type is shown as WT and the associated 

pepZ mutant is indicated as pepZ on the figure.  

 

Evaluating the Role of PepZ in S. aureus Carbon Utilization using Chemically 

Defined Media. The proteolytic activity of aminopeptidases in part provides cellular 

sources of energy and nutrition. This is often achieved through the catabolism of amino 

acids, which result in metabolic by-products that converge as intermediates in central 

metabolic pathways. We therefore explored the role of PepZ in carbon utilization using 

WT              pepZ 

WT              pepZ 
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chemically defined liquid media, enriched with 100 µg
 
ml

-1
 of galactose, ribose, lactose, 

mannose, fructose, trehalose, raffinose, D-glucosamine or xylose. Exponentially growing 

cells of USA300 FPR, SH1000 and Newman were assessed in parallel with their pepZ 

mutants. In this experiment, identical carbon utilization profiles and patterns of growth 

were identified across all strains (data not shown). These results suggest no direct role for 

PepZ in the carbon based cellular energy status of S. aureus. 

 

Characterization of the Role of PepZ in Membrane Integrity and Autolysis. The 

intracellular processing of damaged proteins is vital to cell stability in all organisms 

[Nandi et al., 2006]. As such, peptide turnover is often mediated through the proteolytic 

activities of aminopeptidases, which may be crucial to cell wall degradation and 

biosynthesis as a result of cell autolysis [Rawlings and Barrett, 2004]. We therefore 

sought to characterize the role of PepZ in cell wall stability. This was examined using 

penicillin-G and Triton X-100 to induce cell lysis in the parent strains USA300 FPR and 

Newman, and their respective pepZ mutants. Penicillin-G induced cell lysis was assayed 

using exponentially growing cells in TSB containing 0.4 ug ml
-1

 penicillin-G [Fujimoto 

and Bayles, 1998]. Cell lysis, monitored in 30 minute intervals by turbidity change, did 

not reveal any alterations in either background between the pepZ mutant and wild-type 

strains (data not shown). Triton X-100 cell lysis experiments were carried out using 

exponentially growing cells resuspended in 0.05M Tris-HCl (pH 7.6) containing 0.05% 

Triton X-100. Cultures were incubated at 30°C shaking and measured for changes in 

turbidity in 30 minute intervals [Mani et al., 1993; Shaw et al., 2005]. In this experiment 

we identified an increase in parent strain viability when compared to the mutants (Fig. 
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17). This phenotype was more prominent in Newman, in which mutant strain survival 

decreased by approximately 2-fold at 60, 90 and 120 minutes. This was followed by a 

3.86-fold final reduction of pepZ mutant cells when compared to the parent. As for the 

USA300 FPR strains, a decrease in survival of 1.2-fold was identified at 30 minutes for 

the mutant, followed by decreases of 1.4-fold at 60 minutes, 1.3-fold at 90 minutes, 1.2-

fold at 120 minutes and 1.4-fold at 150 minutes when compared to the parent strain after 

exposure to cell lysis inducing conditions.  

 

 
 
Figure 17. The Role of PepZ in Membrane Integrity and Autolysis. The effect of Triton X-100 

mediated cell lysis on parent strains Newman (◆) and USA300 FPR (X), and their mutant derivatives 

Newman pepZ (■) and USA300 FPR pepZ (●). Results are represented as percent survival measured as 

OD600 at the specified time intervals from 3 independent experiments (+/- SD). Significant values (*) were 

determined using a Student’s t test (p<0.05). 

 

Evaluating the Role of PepZ in Cellular Survival Following Exposure to Elevated 

Temperature. We next sought to investigate the role of PepZ in response to increased 

temperatures, using heat shock and adaptation experiments, as proteolytic processing or 
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turnover of misfolded proteins due to increased temperatures is a common function of 

aminopeptidases. These experiments were performed at temperatures of 55°C using cells 

resuspended in sterile TSB at an OD600 of 0.2. Heat shock was induced by placing 

cultures in a 55°C water bath for 30 minutes and before returning them to standard 

growth conditions at 37°C, with shaking. Cell viability was monitored in 30 minute 

intervals by optical density readings at OD600 [Shaw et al., 2008]. We identified no 

alteration in either background between the pepZ mutant and wild-type strain when 

grown under these conditions (data not shown). A role for PepZ in heat adaptation was 

assessed using exponentially growing cells in TSB, incubated at 55°C with shaking. Cell 

death was monitored by viable cell counts performed in 20 minute intervals for two hours 

from two independent experiments [Shaw et al., 2008]. What we identified was a 

decreased capacity for survival in the Newman pepZ mutant strain compared to the wild-

type (Fig. 18). Following 20 minutes of incubation at 55˚C, Newman pepZ mutant cells 

decreased by 60-fold when compared to the parent, followed by undetectable levels of the 

mutant at 40 minutes. The USA300 FPR wild-type and pepZ mutant strains lost viability 

at equivalent rates, and were undetectable after 60 minutes of incubation at 55°C. 
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Figure 18. The Role of PepZ in Response to Elevated Temperatures. Wild-type strains Newman (■) 

and USA300 FPR (▲) with their mutant derivatives Newman pepZ (●) and USA300 FPR pepZ (◆) were 

characterized for variations in adaptation to heat stress at 55°C. We identified a decreased capacity for 

survival in the Newman pepZ mutant strain compared to the wild-type, whereas the USA300 FPR wild-

type and pepZ mutant strains lost viability at equivalent rates. Data are represented as an average percent 

survival from duplicate experiments. Significant values (*) were determined using a Student’s t test 

(p<0.05). 

 

Assessing the Role of PepZ in Response to Oxidative Stresses. Many stresses the 

bacterial cell encounters can result in protein denaturing and damage; one such being 

oxidative stress. We therefore sought to explore the potential role of PepZ in protein 

stability and turnover in response to oxidative stress induced by hydrogen peroxide. This 

was explored in the wild-type strains Newman and USA300 FPR, and their mutant 

derivatives. We performed this assay using PBS washed cells resuspended in sterile PBS 

containing 7.5mM H2O2. Cultures were incubated with shaking at 37°C, and monitored at 

20 minute intervals by viable cell counts, performed in PBS containing 10 mg ml
-1

 

catalase for H2O2 inactivation [Watson et al., 1998]. We identified decreased cell 
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viability for all strains, with no variation between the wild-types and mutants (data not 

shown). These results suggest no role for PepZ in the cellular response to oxidative stress, 

at least under the conditions tested. 

 

General Stress Profiling of pepZ mutant Strains using a Modified Kirby-Bauer 

Assay. We examined the role of PepZ in cellular survival using a variety of chemical 

stressors. This was explored using disk diffusion assays to identify changes in 

susceptibility of pepZ mutants and their parent strains. Disk diffusion assays were 

performed in triplicate as described above, without the addition of X-Gal [Peng et al., 

1988]. Zones of inhibition were measured in mm to identify changes in susceptibility to 

the various chemical compounds (Table 3). In doing so we identified increased 

menadione resistance in the USA300 FPR pepZ mutant (15.6 mm) when compared to the 

parent (36 mm), resulting in a 2.3-fold change. Further analysis revealed the average 

minimum inhibitory concentration of menadione in the USA300 FPR strain was 1.46 µg 

ml
-1

, whilst the mutant was 5.1 µg ml
-1

. In the Newman strain, a limited increase in 

susceptibility to hydrogen peroxide was identified in the Newman pepZ mutant (51 mm) 

when compared to the parent (46.3 mm). Additionally, limited increased menadione 

susceptibility in the Newman pepZ mutant (17 mm) was identified when compared to the 

parent (21 mm). 

 

Characterization of the Subcellular Localization of PepZ. Subsequent to the 

nutritional analysis of PepZ in S. aureus, we sought to explore a role for PepZ in protein 

stability using proteomic analysis. The analysis of preliminary mass spectrometry data 
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obtained in our laboratory had previously identified PepZ in secreted protein fractions 

from 15 hour cultures harvested from the SH1000 wild-type. This identified extracellular 

localization of PepZ may be the result of stationary phase cell lysis, or legitimate 

secretion. Therefore we sought to investigate further the subcellular localization of this 

aminopeptidase, as it is predicted to be an intracellular protein. To examine this, we 

constructed wild-type strains of S. aureus USA300 FPR and Newman containing a pepZ 

gene bearing a 6-His tag, using the shuttle vector pMK4. We then purified both 

intracellular and secreted proteomes from these strains at hours 5 and 15, to monitor the 

levels of PepZ both inside and outside of the cell. Extracting proteomes at these time 

points corresponds to post exponential and stationary phase growth, respectively, 

allowing us to clarify the potential for PepZ secretion during earlier growth stages that 

would not be associated with cell lysis. We used Western blot detection methods, 

targeting the 6-His tag, to identify levels of PepZ expression using a SuperSignal West 

HisProbe Kit. Using this method, we identified PepZ in intracellular and secreted protein 

fractions extracted from USA300 FPR and Newman cultures at hours 5 and 15. Protein 

fractions collected from the Newman background at hours 5 (Fig.19A) and 15 (Fig. 19B) 

identified a 55 kDa band corresponding to the expected size of PepZ at both of the time 

points in the cytoplasmic and secreted fractions. 
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Figure 19. Western Blot Detection of PepZ in Strain Newman. Western blot analysis of Newman 

pMK4::pepZ 6-His and empty vector controls detected a 55 kDa protein band in both intracellular (I/C) and 

secreted (E/C)  protein samples collected at (A) 5 and (B) 15 hours. Empty vector controls are labeled as 

control. Protein samples were standardized to 1 µg of total protein per lane. 

 

Further, a pMK4 empty vector was run concurrently as a negative control from 

intracellular and secreted protein samples collected from 5 and 15 hour cultures, which 

did not detect protein bands at 55 kDa. Similarly, a 55 kDa band was identified in the 

USA300 FPR background at hours 5 (Fig. 20A) and 15 (Fig. 20B) from both intracellular 

and secreted protein fractions. Again, a pMK4 empty vector was run concurrently as a 

negative control from intracellular and secreted protein samples collected from 5 and 15 

hour cultures, which did not detect protein bands at 55 kDa. Including the pMK4 negative 

control ensured the produced 55 kDa band was not a false positive produced from protein 

samples collected from the pMK4 vector, which was used to construct the 6-His strains. 

 

 
 
Figure 20. Western Blot Detection of PepZ in Strain USA300 FPR. Western blot analysis of USA300 

FPR pMK4::pepZ 6-His and empty vector control detected a 55 kDa protein band in both intracellular (I/C) 

and secreted (E/C) protein samples collected at (A) 5 and (B) 15 hours. Empty vector controls are labeled 

as control. Protein samples were standardized to 1 µg of total protein per lane. 
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Proteomes were further explored for cellular localization patterns of PepZ from 

intracellular and secreted protein samples collected hourly for eight hours from 

synchronized cultures in the Newman background. Protein samples demonstrated an 

increased abundance of PepZ in cytoplasmic fractions at hours two through four, which 

decreased at later time points (Fig. 21A). In comparison, PepZ detection in the secretome 

remained relatively consistent through the eight hour period, with a 55 kDa band detected 

at similar levels of protein abundance at hours three through eight (Fig. 21B). From these 

experiments, we have identified the potential for PepZ secretion in S. aureus, suggesting 

a possible extracellular role for this aminopeptidase. 

 

 
 
Figure 21. Detection of PepZ during Continuous Growth of Strain Newman. Western blot analysis of 

Newman bearing a pepZ::6-His identified changes in PepZ (55 kDa) abundance over an eight hour period 

from intracellular (A) and extracellular samples (B). Samples collected at hour 1 failed to identify any 

detectable protein, and are not shown. Protein samples were standardized to 1 µg of total protein per lane. 

 

Exploring Potential Substrates for the PepZ Enzyme using 2D Difference Gel 

Electrophoresis (DIGE) and Tandem Mass Spectrometry. Experimental data 

collected thus far demonstrates an important role for PepZ in S. aureus virulence. 

Additionally, we have shown that PepZ is capable of being externalized during the 

growth of S. aureus strains. We therefore sought to clarify how PepZ fulfills its 

enzymatic role at the level of protein stability. Accordingly, we probed the proteomes of 
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pepZ mutant and parental strains to identify alterations in the stability of proteins both 

within, and outside, the cell. Proteome profiling of secreted and intracellular proteomes 

from USA300 FPR wild-type and pepZ mutant strains using 2D-DIGE coupled with mass 

spectrometry was performed in collaboration with the ICBR facility at the University of 

Florida. 2D-DIGE analysis provides the ability to quantify sample specific changes in 

protein abundance using a single gel and fluorescent labeling. Protein samples are mixed 

and run together with an internal standard, allowing protein samples to be resolved to the 

same intensity and measured relative to the internal reference. Gels can then them be 

visualized for changes in color, indicating altered protein abundance levels or changes in 

proteolytic processing. As such, this method of analysis was selected to identify the effect 

of PepZ on changes in the protein profile of S. aureus. Briefly, intracellular and secreted 

proteomes were collected in triplicate from USA300 FPR wild-type and pepZ mutant 

strains from three hour cultures, corresponding to peak expression of pepZ. Protein 

fractions were then purified and transferred to the ICBR facility at the University of 

Florida. Protein spots determined with increased or decreased protein levels of 1.2-fold or 

more were then extracted and analyzed for identification using mass spectrometry and 

MASCOT software.  

 

Differential analysis of intracellular fractions identified eleven protein spots that 

demonstrated fold changes ranging from -7 to 1.74 in at least six of nine 2-D protein map 

images (p<0.05) between the wild-type and mutant strains (Fig. 22). From the eleven 

spots identified from in gel analysis, mass spectrometry identified 30 total proteins with 

two unique peptides and a 95% protein identification probability as determined by protein 
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Prophet using Scaffold software, in which multiple proteins were identified for each spot 

(Table 5). Additionally, protein spots 1425, 1780, 1806, 1818, 1831, 2046 and 2139 

identified variations in protein molecular weight, which may be due to altered protein 

cleavage in the absence of PepZ (Table 6). These proteins include: autolysin, alpha-

hemolysin, N-acetylmuramoyl-L-alanine amidase domain protein, 50s ribosomal 

proteins, 30s ribosomal proteins, elastin binding proteins, staphopain A, foldase, Alkaline 

shock protein, putative lipoprotein and ATP-dependent Clp protease.  

 

 
 
Figure 22. Intracellular Proteome Analysis of S. aureus USA300 FPR and its pepZ mutant using 2D-

DIGE. (A) Differential analysis of intracellular proteins from the USA300 FPR wild-type and pepZ mutant 

strains following isoelectric focusing using a 24 cm pH 3 to 10 non linear IPG strip at 10 k volts. USA300 

FPR wild-type proteins are indicated by the green fluorescent color and pepZ mutant proteins are shown in 

red. (B) In gel analysis identified 11 proteins with varied levels of abundance by at least 1.5 fold (p<0.05), 

which were further characterized using mass spectrometry analysis. 
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Table 5. Intracellular Proteome Analysis of S. aureus USA300 FPR and its pepZ mutant using Mass Spectrometry 

 

Spot  Protein [A] 

Peptides 

[A] Protein [B] 

Peptides 

[B] Protein [C] 

Peptides 

[C] Protein [D] 

Peptides 

[D] Protein [E] 

Peptides 

[E] Protein [F] 

Peptides 

[F] 

Fold 

∆ 

1831 

50S 

ribosomal 

protein L4 
RplD 

(USA300) 4 

Uncharacteri
zed 

leukocidin-

like protein 2 
SAUSA300_

1975  3 

50S 

ribosomal 

protein L6 
RplF 

(USA300) 2             -7 

1806 

50S 

ribosomal 

protein L6 
RplF 

(USA300)  4 

50S 

ribosomal 

protein L4 
RplD 

(USA300) 3 

Staphopain 

A 
SAUSA300_

1890  3 

ATP-
dependent 

Clp protease 

proteolytic 
subunit 

(USA300) 2 

Uncharacteri
zed 

leukocidin-

like protein 2 
SAUSA300_

1975  2     

-

5.37 

1520 

5'-

nucleotidas
e, 

lipoprotein 

e(P4) 
family 

SAUSA300

_0307  6 

ABC 
transporter, 

substrate-

binding 
protein 

SAUSA300_

0618 3 

Secretory 

antigen SsaA 

(USA300)]  2 

Uncharacteri

zed 

leukocidin-
like protein 2 

SAUSA300_

1975  2         

-

5.01 

1425 

N-

acetylmura

moyl-L-
alanine 

amidase 

Sle1(USA3
00)  3 

Foldase 

protein PrsA 
(USA300) 2 

50S 
ribosomal 

protein L25 

PlY 
(USA300) 2 

30S 
ribosomal 

protein S2 

RpsB 
(USA300) 2 

 

      
-

3.68 

2046 

50S 

ribosomal 
protein L19  

RplS 

(USA300) 5 

50S 

ribosomal 
protein L14 

RplN 

(USA300) 4 

50S 

ribosomal 
protein L21 

RplU 

(USA300) 4 

Putative 

uncharacteri
zed protein 

SAUSA300_

0602 3 

30S 

ribosomal 
protein S11 

RpsK 

(USA300) 3 
 

  

-

3.22 

2139 

Alkaline 
shock 

protein 23 

Asp23 
(USA300)  3 

 

                  
-

2.34 

1818 

ATP 

synthase 

subunit 
delta AtpH 

(USA300)  3 

Elastin-

binding 
protein EbpS 

(USA300) 2                 

-

1.54 
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1685 

50S 

ribosomal 
protein L1 

RplA 

(USA300) 4 

Uridylate 

kinase PyrH 

(USA300) 2                 

-

1.54 

1780 

50S 

ribosomal 

protein L6 
RplF 

(USA300) 7 

Putative 

lipoprotein 
SAUSA300_

0372 4 

50S 

ribosomal 

protein L4 
rplD 

(USA300) 3 

Uncharacteri
zed 

leukocidin-

like protein 2 
SAUSA300_

1975  2 

ATP-
dependent 

Clp protease 

proteolytic 
subunit 

(USA300) 2   

 

-

1.49 

1026 

Enolase 
Eno 

(USA300) 3 

Autolysin 
Atl 

(USA300) 3 

NAD-
specific 

glutamate 

dehydrogena
se GudB 

(USA300)  2             1.51 

1048 

Protein 

RecA 
(USA300) 9 

3-oxoacyl-

[acyl-carrier-
protein] 

synthase 2 

FabF 
(USA300) 7 

Enolase Eno 
(USA300) 4 

Autolysin 

Atl 
(USA300) 3 

Immunoglob

ulin-binding 

protein Sbi 
(USA300) 3 

Adenylosuc

cinate lyase 

PurB 
(USA300) 2 1.74 

*Mass spectrometric analysis identified 30 proteins from the 11 protein spots having fold changes of 1.5 fold or greater (p<0.05) between the USA300 

FPR and pepZ mutant intracellular proteomes. Proteins were identified by unique peptide values of two or more and a 95% protein identification 

probability as determined by protein Prophet for each spot using Scaffold software. 



70 
 

Table 6. Intracellular Protein Spots Identified by 2D-DIGE and Mass Spectrometry 

Analysis to Have Altered Protein Stability 

 

Spot  
2D 

MW 
Protein 

[A] 
Expected 

MW [A] Protein [B] 
Expected 

MW [B] Protein [C] 
Expected 

MW [C] Protein [D] 
Expected 

MW [D] 

1425 33 kDa 

Foldase 

protein 

PrsA 

(USA300) 36 kDa 

N-

acetylmuram

oyl-L-alanine 

amidase Sle1 

(USA300)           

1780 18 kDa 

50S 

ribosomal 

protein L6  

RplF 

(USA300) 20 kDa 

Putative 

lipoprotein 

SAUSA300_

0372 21 kDa 

ATP-

dependent 

Clp protease 

proteolytic 

subunit 

ClpP 

(USA300) 22 kDa 

Uncharacteri

zed 

leukocidin-

like protein 

2 

SAUSA300

_1975 40 kDa 

1806 17 kDa 

50S 

ribosomal 

protein L6 

RplF 

(USA300) 20 kDa 

ATP-

dependent 

Clp protease 

proteolytic 

subunit ClpP 

(USA300) 22 kDa 

Uncharacteri

zed 

leukocidin-

like protein 

2 

SAUSA300

_1975 40 kDa 

Staphopain 

A 

SAUSA300

_1890  44 kDa 

1818 18 kDa 

ATP 

synthase 

subunit 

delta  

AtpH 

(USA300) 20 kDa 

Elastin-

binding 

protein EbpS 

(USA300)  53 kDa         

1831 
181 

kDa 

50S 

ribosomal 

protein L6 

RplF 

(USA300) 20 kDa 

50S 

ribosomal 

protein L4  

RplD 

(USA300) 22 kDa 

Uncharacteri

zed 

leukocidin-

like protein 

2 

SAUSA300

_1975  40 kDa     

2046 10 kDa 

50S 

ribosomal 

protein 

L21 RplU 

(USA300) 11 kDa 

50S 

ribosomal 

protein L14 

RplN 

(USA300) 13 kDa 

30S 

ribosomal 

protein S11 

RpsK 

(USA300) 14 kDa 

Putative 

uncharacteri

zed protein 

SAUSA300

_0602 19 kDa 

2139 9 kDa 

Alkaline 

shock 

protein 23 

Asp23 

(USA300) 19 kDa             

*In the absence of PepZ, protein spots 1425, 1780, 1806, 1818, 1831, 2046 and 2139 were identified to 

have variations in 2D-DIGE predicted molecular weight values compared to mass spectrometry predicted 

protein molecular weight values. These results indicate potential changes in intracellular protein 

processing events in the absence of PepZ. Protein cleavage was determined by +/- 2 kDa in protein 

molecular weight changes, determined between the two analyses. 
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2D-DIGE performed on the secreted protein fractions produced 83 protein spots that 

demonstrated fold changes ranging from -1.33 to 15.05 (p<0.05) between the USA300 

FPR wild-type and pepZ mutant strains (Fig. 23). Mass spectrometry and Scaffold 

software analysis identified 43 proteins from the 83 spots shown to vary in protein 

intensity and abundance between the pepZ mutant and wild-type secretomes (Table 7). 

 

 
 
Figure 23. Secretome Analysis of S. aureus USA300 FPR and its pepZ mutant using 2D-DIGE. (A) 

Differential analysis of secreted proteins from the USA300 FPR wild-type and pepZ mutant strains 

following isoelectric focusing using a 24 cm pH 3 to 10 non linear IPG strip at 10 k volts. USA300 FPR 

wild-type proteins are indicated by the green fluorescent color and pepZ mutant proteins are shown in red. 

(B) In gel analysis identified 83 proteins with varied levels of abundance by at least 1.5 fold (p<0.05), 

which were further characterized using mass spectrometry analysis. Mass spectrometry analysis failed to 

identify proteins for 28 of the 83 spots, which are listed in appendix 1. 

 

Scaffold software analysis identified the proteins according to unique peptide sequences, 

in which to two unique peptides and a 95% protein identification probability as 

determined by protein Prophet was used for protein identification. Based on these 

parameters, proteomic analysis failed to identify proteins in 28 of the 83 protein spots. 

Additionally, protein spots 3074, 591, 535, 630, 586, 2351, 579, 575, 736, 819, 619, 

1788, 791, 1337, 1282, 1405, 1271, 2639, 2095, 2083, 1675, 2159, 2831, 3347, 2617, 
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Table 7. Secretome Analysis of S. aureus USA300 FPR and its pepZ mutant using Mass Spectrometry 
 

Spot  

Protein [A] 

Peptides 

[A] Protein [B] 

Peptides 

[B] Protein [C] 

Peptides 

[C] Protein [D] 

Peptides 

[D] 

Fold 

∆ 

581 
Triacylglycerol lipase 
SAUSA300_0320  2             -2.41 

577 

Triacylglycerol lipase 

SAUSA300_0320  7             -2.38 

3074 Thermonuclease Nuc (USA300) 5             -2.15 

546 

Triacylglycerol lipase 

SAUSA300_0320  8           

 

-2.12 

591 

Triacylglycerol lipase 

SAUSA300_0320  15 Autolysin Atl (USA300) 13         -2 

535 Autolysin Atl (USA300) 22 

Triacylglycerol lipase 

SAUSA300_0320  10 

 

      -1.94 

630 Autolysin Atl (USA300) 7 

Triacylglycerol lipase 

SAUSA300_0320  4         -1.9 

586 

Triacylglycerol lipase 

SAUSA300_0320  11 Autolysin Atl (USA300) 3         -1.88 

211 

Triacylglycerol lipase 

SAUSA300_0320  2             -1.88 

1736 

Uncharacterized leukocidin-like 

protein 1 SAUSA300_1974 7             -1.83 

280 

Serine-aspartate repeat-

containing protein E SdrE 
(USA300) 5             -1.83 

2351 

Uncharacterized leukocidin-like 

protein 1 SAUSA300_1974 4             -1.74 

579 Autolysin Atl (USA300) 7 

Triacylglycerol lipase 

SAUSA300_0320  3 

Elongation factor G 

(USA300) 2     -1.73 

603 
Triacylglycerol lipase 
SAUSA300_0320  9 

N-acetylmuramoyl-L-alanine 

amidase domain protein 
SAUSA300_2579 5         -1.72 

575 Autolysin Atl (USA300) 13 

Triacylglycerol lipase 

SAUSA300_0320  7         -1.66 

736 

Triacylglycerol lipase 

SAUSA300_0320  17 

N-acetylmuramoyl-L-alanine 
amidase domain protein 

SAUSA300_2579 4 

Dihydrolipoamide 
acetyltransferase 

SAUSA300_0995 3     -1.65 

819 

N-acetylmuramoyl-L-alanine 
amidase domain protein 

SAUSA300_2579 4             -1.64 

619 

Triacylglycerol lipase 

SAUSA300_0320  10 

Triacylglycerol lipase 

SAUSA300_0320  10 Autolysin Atl (USA300) 5     -1.62 
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1788 
Uncharacterized leukocidin-like 
protein 1 SAUSA300_1974 8 

N-acetylmuramoyl-L-alanine 

amidase domain protein 
SAUSA300_2579 2         -1.61 

605 

Triacylglycerol lipase 

SAUSA300_0320  6 

N-acetylmuramoyl-L-alanine 

amidase domain protein 

SAUSA300_2579 6         -1.59 

791 

Triacylglycerol lipase 

SAUSA300_0320  15 

Dihydrolipoamide 

acetyltransferase 

SAUSA300_0995 6 

N-acetylmuramoyl-L-alanine 

amidase domain protein 

SAUSA300_2579 2     -1.58 

433 
Triacylglycerol lipase 
SAUSA300_0320  3             -1.58 

1337 Autolysin Atl (USA300) 16 
Putative cell wall surface anchor 
family protein SAUSA300_2436  8 

Glycerol phosphate 

lipoteichoic acid synthase 
ItaS (USA300) 8 

Triacylglycerol lipase 
SAUSA300_0320  3 -1.57 

1170 

Dihydrolipoyl dehydrogenase 

IpdA (USA300)  4             -1.57 

1282 

Putative cell wall surface anchor 

family protein SAUSA300_2436  13 

Glycerol phosphate lipoteichoic 
acid synthase ItaS strain 

USA300) 3         -1.56 

1405 

Putative cell wall surface anchor 

family protein SAUSA300_2436  10 Autolysin Atl (USA300) 3 Enolase Eno (USA300)  2     -1.55 

1293 

Putative cell wall surface anchor 

family protein SAUSA300_2436  17             -1.55 

1294 

Putative cell wall surface anchor 

family protein SAUSA300_2436  12             -1.53 

1424 

Putative cell wall surface anchor 

family protein SAUSA300_2436  10 Autolysin Atl (USA300) 5         -1.51 

232 
Clumping factor A ClfA 
(USA300)  9 

Clumping factor B ClfB 
(USA300) 7         -1.51 

1271 

Putative cell wall surface anchor 

family protein SAUSA300_2436  7 Autolysin Atl (USA300) 6         -1.5 

2639 Serine protease SplE (USA300)  6 Serine protease SplF (USA300)   3         1.46 

2095 
Alpha-hemolysin 
SAUSA300_1058 14 

N-acetylmuramoyl-L-alanine 
amidase Sle1 (USA300)  3 

Panton-Valentine leukocidin, 
LukS-PV (USA300)  2     1.49 

2083 

Alpha-hemolysin 

SAUSA300_1058 5             1.51 

1675 
Triacylglycerol lipase 
SAUSA300_0320  8 

Immunoglobulin-binding protein 
Sbi (USA300)  3         1.52 

2159 

Alpha-hemolysin 

SAUSA300_1058 2             1.54 

2831 Staphopain A SAUSA300_1890 8             1.55 

3347 
Alpha-hemolysin 
SAUSA300_1058 20 

Panton-Valentine leukocidin, 
LukS-PV (USA300)  2         1.56 

2617 Serine protease SplE (USA300)   2 Serine protease SplF (USA300)   3         1.57 
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2198 
Alpha-hemolysin 
SAUSA300_1058 14 

Panton-Valentine leukocidin, 
LukS-PV (USA300)  9 

1-phosphatidylinositol 

phosphodiesterase Plc 
(USA300) 4 

Leukotoxin LukE 
(USA300) 2 1.57 

2094 

Alpha-hemolysin 

SAUSA300_1058 13 

N-acetylmuramoyl-L-alanine 

amidase Sle1 (USA300) 4         1.58 

2098 
Alpha-hemolysin 
SAUSA300_1058 8 

Panton-Valentine leukocidin, 
LukS-PV (USA300)  3 

N-acetylmuramoyl-L-alanine 
amidase Sle1 (USA300)  2     1.59 

2150 

Alpha-hemolysin 

SAUSA300_1058 8 

1-phosphatidylinositol 

phosphodiesterase Plc 

(USA300) 6         1.61 

2162 

Alpha-hemolysin 

SAUSA300_1058 13 

1-phosphatidylinositol 

phosphodiesterase Plc 

(USA300) 2         1.63 

2092 

Alpha-hemolysin 

SAUSA300_1058 18             1.64 

2882 Staphopain A SAUSA300_1890 2             1.65 

2147 
Alpha-hemolysin 
SAUSA300_1058 10 

1-phosphatidylinositol 

phosphodiesterase Plc 
(USA300) 2         1.7 

2152 
Alpha-hemolysin 
SAUSA300_1058 12 

Panton-Valentine leukocidin, 
LukS-PV (USA300)  3 

Uncharacterized leukocidin-

like protein 1 
SAUSA300_1974 6     1.75 

2131 

Alpha-hemolysin 

SAUSA300_1058 6             1.77 

2177 
Alpha-hemolysin 
SAUSA300_1058 20 

Panton-Valentine leukocidin, 
LukS-PV (USA300)  3         1.82 

2144 

Alpha-hemolysin 

SAUSA300_1058 16             1.82 

2093 
Alpha-hemolysin 
SAUSA300_1058 6             1.82 

2086 

Alpha-hemolysin 

SAUSA300_1058 7 

1-phosphatidylinositol 

phosphodiesterase Plc 

(USA300) 2         1.93 

2220 

1-phosphatidylinositol 

phosphodiesterase Plc 

(USA300) 7             2.74 

2261 

Alpha-hemolysin 

SAUSA300_1058 5 

1-phosphatidylinositol 
phosphodiesterase Plc 

(USA300) 3         15.05 

* Mass spectrometric analysis identified 43 proteins from the 83 protein spots having fold changes of 1.5 fold or greater (p<0.05) in the USA300 FPR and pepZ 

mutant secretomes. Proteins were identified by unique peptide values of two or more and a 95% protein identification probability as determined by protein 

Prophet for each spot using Scaffold software. 
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2198, 2094, 2098, 2150, 2162, 2092, 2882, 2147, 2152, 2131, 2177, 2144, 2093, 2086, 

2220 and 2261 identified variations in protein molecular weight size due to potential 

altered protein stability in the absence of PepZ (Table 8). These proteins include: 

autolysin, alpha-hemolysin, N-acetylmuramoyl-L-alanine amidase domain protein, 

glycerol phosphate lipoteichoic acid synthase, serine proteases SplE and SplF, 

immunoglobulin-binding protein, staphopain A, 1-phosphatidylinositol 

phosphodiesterase, thermonuclease, uncharacterized leukocidin-like protein 1, 

triacylglycerol lipase and Panton-Valentine leukocidin, LukS-PV. 

 

Table 8. Secreted Protein Spots Identified by 2D-DIGE and Mass Spectrometry 

Analysis to Have Altered Protein Stability 

 

Spot  

2D 

MW 

Protein 

[A] 

Expected 

MW [A] 

Protein 

[B] 

Expected 

MW [B] 

Protein 

[C] 

Expected 

MW [C] 

Protein 

[D] 

Expected 

MW [D] 

535 

86 

kDa 

Autolysin 
Atl 

(USA300) 137 kDa             

575 
85 

kDa 

Autolysin 

Atl 
(USA300) 137 kDa             

579 
84 

kDa 

Autolysin 

Atl 
(USA300) 137 kDa             

586 

86 

kDa 

Autolysin 

Atl 

(USA300) 137 kDa             

591 

84 

kDa 

Autolysin 

Atl 

(USA300) 137 kDa             

619 

82 

kDa 

Autolysin 
Atl 

(USA300) 137 kDa             

630 

77 

kDa 

Autolysin 
Atl 

(USA300) 137 kDa             

736 
68 

kDa 

Triacylgly
cerol 

lipase 

SAUSA3
00_0320  76 kDa             

791 

65 

kDa 

N-

acetylmur

amoyl-L-
alanine 

amidase 

domain 
protein 

SAUSA3

00_2579 69 kDa 

Triacylgly

cerol 
lipase 

SAUSA3

00_0320  76 kDa         
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819 
64 

kDa 

N-

acetylmur
amoyl-L-

alanine 

amidase 
domain 

protein 

SAUSA3
00_2579 69 kDa             

1271 

52 

kDa 

Autolysin 

Atl 

(USA300) 137 kDa             

1282 
52 

kDa 

Glycerol 

phosphate 

lipoteicho
ic acid 

synthase 

ItaS 
(USA300) 74 kDa             

1337 
52 

kDa 

Glycerol 

phosphate 

lipoteicho
ic acid 

synthase 

ItaS 
(USA300) 74 kDa 

Triacylgly
cerol 

lipase 

SAUSA3
00_0320  76 kDa 

Autolysin 

Atl 
(USA300) 137 kDa     

1405 
51 

kDa 

Autolysin 

Atl 
(USA300) 137 kDa             

1675 
41 

kDa 

Immunogl

obulin-
binding 

protein 

Sbi 
(USA300)  50 kDa 

Triacylgly
cerol 

lipase 

SAUSA3
00_0320  76 kDa         

1788 

41 

kDa 

N-

acetylmur

amoyl-L-

alanine 

amidase 

domain 
protein 

SAUSA3

00_2579 69 kDa             

2083 
33 

kDa 

Alpha-

hemolysin 

SAUSA3
00_1058 36 kDa             

2086 

32 

kDa 

Alpha-
hemolysin 

SAUSA3

00_1058 36 kDa 

1-

phosphati

dylinosito
l 

phosphodi
esterase 

Plc 

(USA300)  37 kDa         

2092 

33 

kDa 

Alpha-
hemolysin 

SAUSA3

00_1058 36 kDa             

2093 
33 

kDa 

Alpha-

hemolysin 

SAUSA3
00_1058 36 kDa             

2094 
33 

kDa 

Alpha-

hemolysin 

SAUSA3
00_1058 36 kDa             
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2095 
32 

kDa 

Panton-

Valentine 
leukocidin

, LukS-

PV 
(USA300)  35 kDa 

Alpha-

hemolysin 

SAUSA3
00_1058 36 kDa         

2098 

32 

kDa 

Panton-

Valentine 

leukocidin
, LukS-

PV 

(USA300)  35 kDa 

Alpha-
hemolysin 

SAUSA3

00_1058 36 kDa 

Autolysin 

Atl 

(USA300) 137 kDa     

2131 
29 

kDa 

Alpha-

hemolysin 

SAUSA3
00_1058 36 kDa             

2144 

29 

kDa 

Alpha-

hemolysin 

SAUSA3

00_1058 36 kDa             

2147 

29 

kDa 

Alpha-
hemolysin 

SAUSA3

00_1058 36 kDa 

1-

phosphati
dylinosito

l 

phosphodi
esterase 

Plc 

(USA300)  37 kDa         

2150 

29 

kDa 

Alpha-

hemolysin 
SAUSA3

00_1058 36 kDa, 

1-

phosphati

dylinosito
l 

phosphodi

esterase 
Plc 

(USA300) 37 kDa         

2152 

29 

kDa 

Panton-

Valentine 

leukocidin

, LukS-
PV 

(USA300)  35 kDa 

Alpha-

hemolysin 
SAUSA3

00_1058 36 kDa 

Uncharact

erized 

leukocidin

-like 

protein 1 
SAUSA3

00_1974 39 kDa     

2159 

29 

kDa 

Alpha-
hemolysin 

SAUSA3

00_1058 36 kDa             

2162 

29 

kDa 

Alpha-

hemolysin 
SAUSA3

00_1058 36 kDa 

1-
phosphati

dylinosito

l 
phosphodi

esterase 
Plc 

(USA300) 37 kDa         

2177 
29 

kDa 

Panton-

Valentine 
leukocidin

, LukS-

PV 
(USA300)  35 kDa 

Alpha-

hemolysin 

SAUSA3
00_1058 36 kDa         
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2198 

28 

kDa 

Panton-

Valentine 

leukocidin
, LukS-

PV 

(USA300)  35 kDa 

Alpha-
hemolysin 

SAUSA3

00_1058 36 kDa 

1-

phosphati
dylinosito

l 

phosphodi
esterase 

Plc 

(USA300) 37 kDa 

Autolysin 

Atl 

(USA300) 137 kDa 

2220 
28 

kDa 

1-
phosphati

dylinosito

l 
phosphodi

esterase 

Plc 
(USA300) 37 kDa             

2261 

28 

kDa 

Autolysin 

Atl 

(USA300) 36 kDa 

1-

phosphati
dylinosito

l 

phosphodi
esterase 

Plc 

(USA300)  37 kDa         

2351 
29 

kDa 

Uncharact
erized 

leukocidin
-like 

protein 1 

SAUSA3
00_1974 40 kDa             

2617 
23 

kDa 

Serine 

protease 

SplE 
(USA300)  26 kDa 

Serine 

protease 

SplF 
(USA300)   26 kDa         

2639 

22 

kDa 

Serine 

protease 
SplE 

(USA300) 26 kDa 

Serine 

protease 
SplF 

(USA300)  26 kDa         

2831 

18 

kDa 

Staphopai

n A 
SAUSA3

00_1890 44 kDa             

2882 

17 

kDa 

Staphopai
n A 

SAUSA3

00_1890 44 kDa             

3347 

33 

kDa 

Panton-
Valentine 

leukocidin

, LukS-
PV 

(USA300)  35 kDa 

Alpha-

hemolysin 
SAUSA3

00_1058 36 kDa         

3074 

12 

kDa 

Thermonu
clease 

Nuc 

(USA300)   25 kDa             

* In the absence of PepZ, the listed proteins were identified to have variations in 2D-DIGE predicted 

molecular weight values compared to mass spectrometry predicted protein molecular weight values. These 

results indicate potential changes in secreted protein cleavage, maturation and or activation events in the 

absence of PepZ. Protein cleavage was determined by +/- 2 kDa protein molecular weight change 

determined between the two analyses.  
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Exploring the Role of PepZ in the Formation of Biofilms. Biofilms are sessile 

microbial aggregates assembled in an adhesive structural matrix composed of 

polysaccharides, DNA and proteins [Lawrence et al., 1991]. The switch of infectious 

states from adhesion to invasion has been suggested to be primarily driven by the 

interplay of proteases, and cell adhesion and colonization factors [McGavin et al., 1997]. 

Indeed, a number of recent studies [Boles and Horswill, 2008; Beenken et al., 2003; and 

Tsang et al., 2008] have identified the modification of protein profiles via proteases 

during the detachment stages of S. aureus biofilm formation. As such, we decided to 

explore the role of PepZ on the formation of a biofilm. This experiment was performed in 

triplicate in the wild-type strains, Newman and USA300 FPR, and their associated pepZ 

mutants. The S. aureus strain RN6390 was used as a negative control in the biofilm 

assays. From this experiment, we identified a minor defect in the ability the USA300 FPR 

pepZ mutant to form a biofilm, where the average absorbance readings from eluted 

crystal violet at 595 nm for the wild-type was determined to be 0.94 and 0.81 for the 

pepZ mutant, which was measured using a BioTek Synergy2 96-well plate reader (Fig. 

24). These results overall suggest a limited role for PepZ in the formation of a biofilm 

under the conditions tested. 
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Figure 24. The Role of PepZ in the Formation of an S. aureus Biofilm. Biofilm formation assays 

performed in triplicate detected a slight reduction in the biofilms formed by the USA300 FPR pepZ mutant 

strain when compared to the USA300 FPR parent strain. Biofilm formation was determined by crystal 

violet absorbance readings at 595 nm using a 96-well BioTek Synergy-2 plate reader, identified to be 0.94 

for the wild-type and 0.81 for the pepZ mutant. RN6390 was used as a negative control, with an average 

biofilm absorbance reading of 0.088.  

 

Analysis of the Importance of PepZ during Interaction with Components of the 

Human Immune System. Evasion of host immune factors is vital to the survival and 

persistence of pathogens within the host. Thus, experiments exploring the role of PepZ in 

response to interactions with the human immune system were performed in collaboration 

with Dr. Jan Potempa from the Jagiellonian University, Krakow, Poland. A human model 

of macrophage survival and clearance was performed with the Newman wild-type and its 

pepZ mutant strain in two independent experiments. Cell viability was monitored by 

quantitative plating at hours 0, 2, 24, 48, 72 and 96 post-inoculum, yielding reduced 

levels of survival in the Newman pepZ mutant strain. Viable counts identified a 15-fold 

decrease in survival at 2 hours for the pepZ mutant when compared to the wild-type (Fig. 

25). This was followed by further declines in mutant survival of 240-fold at 24 hours and 

129-fold at 48 hours. These results suggest PepZ is important for host immune system 

interaction, and evasion. 
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Figure 25. Characterization of the Role of PepZ in Human Immune System Interactions. Human 

models of macrophage survival and clearance was performed in strains Newman (X) and Newman pepZ (+). 

The pepZ mutant showed a consistent impairment in viability while interacting with components of the 

human immune system. Data is represented as CFU/well measured at the indicated time intervals from 2 

independent experiments. 

 

Further Characterization of the Role of PepZ in S. aureus Virulence using a Murine 

Model of Wound Formation. We sought to corroborate our findings of alterations in 

systemic virulence of pepZ mutant strains by investigating the role of this enzyme in 

localized infections, using a murine model of abscess formation. Ten hairless, SKH-1 

immunocompetent mice were inoculated subcutaneously in the right flank with 1 x 10
8
 

CFU of either the USA300 FPR wild-type or pepZ mutant. Infections were monitored for 

seven days and any abscesses formed were harvested following animal euthanasia [Bunce 

et al., 1992; Chan and Foster, 1998]. The bacterial load per abscess was determined by 

recovery from abscess homogenates, and yielded 8.10 x 10
7
 CFU per abscess for the 

wild-type, or 85% of the original inoculum (Fig. 26). In contrast, 35% of the pepZ mutant 

inoculum was recovered, or 3.51 x 10
7
 CFU per abscess. This resulted in a 2.3-fold 

reduction in bacterial load of the USA300 FPR pepZ mutant, which was found to be 
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statistically significant (p<0.03). This further suggests that PepZ is required for full 

virulence of S. aureus, and is not confined to a single strain or lineage. 

 

 
 
Figure 26. PepZ is Required for Full Virulence of CA-MRSA Strains in a Murine Model of Wound 

Formation. The USA300 FPR wild-type and pepZ mutant were used to subcutaneously inoculate 10 mice 

each with a bacterial load of 1 x 10
8

. A 2.3-fold (p<0.03) bacterial load reduction of the USA300 FPR pepZ 

mutant was identified Results are represented as CFU/abscess. The average CFU/abscess is indicated by a 

bold marker for both wild-type and mutant.  

 

Evaluating the Role of pepZ in CA-MRSA Sepsis using a Mouse Model. We next set 

out to characterize the role of PepZ in S. aureus virulence using a CA-MRSA model of 

murine sepsis. Ten CD-1 immunocompetent mice were inoculated via tail vein injection 

with 100 µl of 1.00 x 10
8 

CFU
 
ml

-1 
USA300 FPR wild-type or pepZ mutant cells. 

Strikingly, all mice inoculated with the USA300 FPR wild-type strain died within 24 

hours following injection. In comparison, two of the ten mice injected with the USA300 

FPR pepZ mutant strain died two days post inoculation, with the remaining eight 

surviving the seven day experimental period (Fig. 27). These results are in accordance 

A 
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with all former virulence assays performed; further substantiating that PepZ is required 

for full virulence of S. aureus. 

 

 
 
Figure 27. The Role of pepZ in CA-MRSA Sepsis. Ten mice each were tail vein inoculated with either 

the USA300 FPR (◆) wild-type or USA300 FPR pepZ (■) mutant. All mice inoculated with the USA300 

FPR wild-type strain died within 24 hours following injection, compared to only two deaths for mice 

injected with pepZ mutant cells. Data is represented as percent survival over time. 

A 
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Discussion 

 

During a previous screen in our laboratory focused on the role of proteases in S. aureus 

virulence, we identified a mutant in aminopeptidase Z as being attenuated in disease 

causation. This phenotype, as determined using a murine model of septic arthritis, led us 

to begin the initial characterization of PepZ to determine the role(s) it fulfills in S. aureus 

physiology, nutrition and pathogenesis. BLAST analysis of the PepZ protein sequence 

PepZ revealed homology to the cytoplasmic aminopeptidase M17 family of 

exopeptidases (Fig. 28). Aminopeptidases serve an array of functions in the microbial cell 

ranging from the degradation of damaged proteins, to providing sources of energy and 

nutrition [Taylor, 1993, Chandu and Nandi, 2003; Patil et al., 2007; Miller, 1978]. It has 

been speculated that the primary role of externalized aminopeptidases is to liberate free 

amino acids from exogenous peptides, which are required for nutritional purposes and 

continual cell growth [Maeda et al., 1996]. In addition to roles in nutrition, 

aminopeptidase activity may be important in proteolytic cleavage events in a variety of 

organisms [Gonzales and Robert-Baudouy, 1996]. Proteomic analysis using CA-MRSA 

strains identified aminopeptidase PepV in early exponential and stationary phase 

secretomes, as well as aminopeptidases PepS, PepP and PepT2 in stationary phase 

secretomes [Burlak et al., 2007], suggesting a role for aminopeptidases beyond the 

confines of the cell membrane. Thus, the basis of this study is driven by two 
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hypothesized roles for PepZ in S. aureus; the first being in the processing of exogenous 

oligopeptides for nutrition, and the second in protein stability, activation and degradation.  

 

 

Figure 28. BLAST Analysis of PepZ Reveals Homology to Intracellular Leucine Specific 
Aminopeptidases from Other Organisms. BLAST analysis of the amino acid sequence of PepZ 
demonstrates homology to N-terminal cytoplasmic exopeptidases from the aminopeptidase family M17. 
The M17 family of aminopeptidases includes the hexametric leucine aminopeptidases, which contain metal 
ions within their catalytic domain. 
 

The proteolytic processing of imported oligopeptides by cellular aminopeptidases is 

important for nutrition and continued cell viability [Linderstrom-Lang, 1929; McDonald, 

1986; Rawlings, 2004]. As such, we sought to investigate the role of PepZ in S. aureus 

nutrition, using both peptide rich (milk) media and TSB. Growth analysis performed in 

milk media using wild-type strains Newman and USA300 FPR, and their respective pepZ 

mutants, identified similar growth profiles, with only one distinct phase of exponential 

growth, indicating the use of free peptides only [Borezee-Durant et al., 2009]. Conversely, 

previous observations identified decreased growth for Lactobacillus lactis cells lacking 

aminopeptidase PepN when provided casein as a carbon source, necessitating the 
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proteolytic activity of this aminopeptidase when grown in peptide rich media [Mierau et 

al., 1996]. We therefore contend that PepZ is dispensable for growth in media where 

peptides form the sole nitrogen source, possibly resulting from the redundant activities of 

cellular peptidases or a potential function for growth in other specialized conditions or 

environmental niches [Yen et al., 1980; Conlin and Miller, 1995]. 

 

Starvation analysis performed using cultures grown in aerated TSB also failed to identify 

any changes in cell viability. This dispensable role for PepZ under these conditions 

reflects previous observations in Salmonella typhimurium, which found that 

aminopeptidase PepN did not contribute to growth in nutrient rich media [Patil et al., 

2007]. Conditions of growth were performed both static and shaking, to monitor the 

effects of oxygen tension on PepZ, in accordance with previous observations associating 

increased levels of oxygen with protease maturation and activation [Lindsay and Foster, 

1999]. We found reduced survivability for pepZ mutant cells grown in milk under static 

conditions after four weeks, or aerobic growth after one week. These results indicate the 

aminopeptidase activity of PepZ is most important during the initial periods of long-term 

starvation; consistent with the abundance of nutrients present during early time periods, 

which dissipates over time as they are used by the cell. Indeed, nutritional analysis in L. 

lactis identified that the starvation response is limited to the first few hours following 

media carbohydrate exhaustion, which may indicate the presence of additional 

mechanisms for cell survival under conditions of starvation in S. aureus [Otto et al., 1983; 

Poolman and Konings, 1988]. Further, decreased growth rates of  pepZ mutants cells 

grown in milk possibly indicates reduced activities of oligopeptide transport systems, due 
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to the intracellular pooling of peptides in the absence of the peptidase [Mierau et al., 

1996]. In response to decreased protease activities for PepZ deficient cells, an 

intracellular accumulation of unprocessed peptides is likely, reflecting a nutrient surplus 

and decrease in the activities of oligopeptide transport systems. This type of regulation 

has been observed in S. aureus, in which CodY, a negative regulator of genes involved in 

amino acid synthesis and transport, was shown to repress oligopeptide transporters due to 

the intracellular accumulation of branched-chain amino acids and GTP [Pohl et al., 2009]. 

A potential regulatory role for CodY on pepZ is supported in a study by Majerczyk et al., 

2010, which showed decreased expression of pepZ in a codY deficient S. aureus strain 

[Majerczyk et al., 2010]. Interestingly, CodY has been shown to regulate the activation of 

various virulence determinants as well, potentially associating PepZ with virulence. Cells 

deficient in pepZ were also grown competitively in cocultures with their respective parent 

strains, in either milk or TSB. The pepZ mutants showed decreased fitness in both 

backgrounds when cultured either statically or while shaking, in peptide based media or 

TSB. The impaired ability of pepZ mutant strains to compete for nutrients while in 

coculture with S. aureus wild-types, suggests a possible intracellular proteolytic role for 

PepZ and increased cellular fitness. Additionally, pepZ mutant cells grown in static 

cocultures compared to shaking cocultures showed a greater ability to compete for 

nutrients while in competition with the parent strain, possibly due to increased oxidative 

stresses, associated with the greater oxygen levels. Therefore, one can conclude that PepZ 

may negatively affect the ability of S. aureus to counteract oxidative stress. This 

hypothesis is in accordance with our general stress analysis experiments, which identified 

increased menadione resistance in a USA300 FPR pepZ mutant (15.6 mm) when 
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compared to the parent (36 mm). Of note, previous research has shown that organisms 

deficient in aminopeptidase activity are better placed for survival when some cellular 

stresses are incurred. In E. coli, it was shown that aminopeptidase PepN negatively 

regulates sodium-salicylate-induced stress, and the protease activity of PepN on certain 

peptides may result in a decreased ability of the organism to resist such conditions 

[Chandu and Nandi, 2003]. 

 

The role of PepZ during anaerobic growth was investigated using chemically defined 

media, in accordance with previous observations that both oxygen and nutrient limiting 

conditions impact aminopeptidase expression [Strauch et al., 1985; Jamieson and 

Higgins, 1984]. The inability to proliferate when limited for amino acids in the absence 

of oxygen was observed for both the Newman and USA300 FPR pepZ mutant strains 

compared to the wild-type. Interestingly, NAD-specific glutamate dehydrogenase, a 

protein that functions in amino acid degradation, was identified in our proteomic analysis 

to be of greater abundance in USA300 FPR PepZ deficient intracellular proteomes 

compared to the wild-type. Additionally, aminopeptidase PepA has been hypothesized to 

maintain housekeeping roles, including amino acid recycling in E. coli and S. 

typhimurium [Miller, 1996]. As such, these results suggest a potential intracellular role 

for PepZ in peptide turn over and amino acid recycling during nutrient limiting 

conditions. 

 

Further, the USA300 FPR pepZ mutant showed impairment when grown under anaerobic 

conditions limited for phosphate, compared to the wild-type. These results are similar to 
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the reported increase in the transcription of aminopeptidase pepN in E. coli when 

subjected to conditions of phosphate starvation, anaerobiosis, and growth in minimal 

media [Gharbi et al., 1985]. In addition, the same study identified a slight impact on the 

expression of aminopeptidase pepN by an alkaline phosphatase (AP) encoded in the pho 

operon [Gharbi et al., 1985]. Alkaline phosphatase activity has previously been shown to 

increase under phosphate limiting conditions [Horiuchi et al., 1959]. Indeed, AP is 

typically synthesized during conditions of low phosphate, and repressed when it is 

abundant. It is also produced by bacteria limited for organic carbon substrates, which are 

the end product of phosphodiester hydrolysis [Hoppe, 2003; Hoppe and Ullrich, 1999]. 

Thus, it would be expected that alkaline phosphatase would be induced when grown on 

chemically defined media and limited for various nutrients. It is therefore tempting to 

speculate that pepZ expression is controlled by nutrient sensing regulators (such as CodY 

and CcpA) in S. aureus and contributes to cell viability in environments deficient in 

phosphate. 

 

Interestingly, the failure of a USA300 FPR pepZ mutant to grow on MSA media under 

conditions of anaerobiosis suggests either a role for PepZ in the utilization of mannitol or 

osmotic stress. In Listeria monocytogenes, large accumulations of certain peptides 

resulted from either high or low levels of osmolarity, with the accumulated peptides 

found to contribute to osmoregulation [Maria-Rosario et al., 1995]. As such, the failure of 

a pepZ mutant to grown on media containing elevated sodium chloride levels, MSA, 

tends to suggest a possible role for PepZ in osmotic stress, resulting from an increase in 
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intracellular peptides due to a deficiency in aminopeptidase activity, or in the utilization 

of mannitol as a carbon source for nutrition. 

 

The role of PepZ in protein degradation and turnover in response to protein denaturing 

conditions was investigated using heat shock and adaptation experiments. We identified a 

decreased capacity for survival in the Newman pepZ mutant strain compared to the wild-

type strain, which suggests a role for PepZ at higher temperatures in the Newman 

background. A previous study identified mutants defective in aminopeptidase PepS 

produced a similar phenotype in response to elevated temperatures in Streptococcus 

thermophilus, resulting from of decreased degradation of malformed proteins, negatively 

affecting growth [Thomas et al., 2010]. 

 

Western blot analysis performed using proteomes collected from wild-type and pepZ 

mutant strains at hours 5 and 15, identified PepZ in the secretome during both 

exponential and post exponential growth. This subcellular localization of PepZ beyond 

the cytoplasm indicates a probable extracellular role for this enzyme. The lack of an 

identifiable signal sequence for PepZ does not preclude its potential for secretion and 

possible extracellular activity. Specifically, Ess, a type VII-like secretion system 

identified in S. aureus has been implicated in the development of staphylococcal 

infections, and deficiencies in the Ess system demonstrated reduced virulence in mice 

[Burts et al., 2008; Anderson et al., 2011]. As such, it appears that PepZ, while lacking an 

identifiable signal sequence, could potentially be externalized by the Ess system, in 

which the externalized protease activity could contribute towards virulence in S. aureus 
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by potentially degrading host factors. Future work could seek to characterize the potential 

for PepZ secretion by the Ess pathway using various methods of proteomic analysis to 

identify potential protein-protein interactions. 

 

Profiling of secreted and intracellular proteomes from USA300 FPR wild-type and pepZ 

mutant strains using 2D-DIGE was performed on three hour cultures to elucidate how 

PepZ fulfills its enzymatic role at the level of protein stability. 2D-DIGE secretome 

analysis identified variations in protein molecular weight due to altered protein stability 

in the absence of PepZ. Many of the proteins identified were found to be involved in cell 

wall turnover and maintenance, nucleic acid processing and virulence [Fischer et al., 

1981; Oshida et al., 1995; Cuatrecasas et al., 1967; Tucker et al., 1978; Gillett et al., 

2002; Dunman et al., 2001]. A protein involved in the synthesis of the cell wall, 

lipoteichoic acid synthase, was reduced in two spots by 1.57-fold and 1.56-fold, and 

differentially processed in the absence of PepZ. It has been shown previously [Gründling 

and Schneewind, 2007] that S. aureus cells lacking lipoteichoic acid synthase result in 

defects in cell envelope and cell division. Further, a proposed function of lipoteichoic 

acid includes targeting of autolysins to the bacterial envelope [Fischer et al., 1981]. Our 

2D-DIGE analysis also found the major autolysin (Atl) to be reduced by 1.57 to 1.94-fold 

in five different spots, with modified stability in the absence of PepZ. In S. aureus, Atl is 

a bifunctional protein that must undergo proteolytic processing to release two functional, 

lytic enzymes that participate in cell division and separation, cell lysis, and the release of 

peptidoglycan at the cell surface [Foster, 1995; Oshida et al., 1995]. Interestingly, the N-

terminal domain of Atl, an N- acetylmuramoyl-L-alanine amidase, was determined to be 
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reduced by 1.49-fold to 1.72-fold from nine different spots in our 2D-DIGE analysis, and 

have modified protein stability in PepZ deficient strains. Thus, it appears possible that 

PepZ aids in cell wall turnover, corroborating our data from cell lysis experiments, which 

demonstrate decreased membrane stability under lytic conditions for cells deficient in 

PepZ. 

 

2D-DIGE analysis performed on the cytoplasmic proteomes identified changes in protein 

abundance and stability for various proteins involved in protein synthesis, amino acid 

transport and metabolism, protein folding and degradation, peptide transport, and 

virulence [Kuroda et al., 2001; Frees et al., 1999; Gaillot et al., 2000; Park et al., 1999; 

Golonka et al., 2004, Highlander et al., 2007]. The wide range of functional roles for the 

identified proteins, as well as the abundance of proteins (30) identified from only eleven 

spots, demonstrates the limitations of this method of analysis. Image analysis performed 

following the first method for protein separation, isoelectric focusing, produced 

suboptimal protein separation patterns, with protein clustering at the acidic regions. As a 

result, protein overlapping and clustering was observed due to incomplete separation. 

This lack of protein separation can be attributed to the use of a broad pH range 

immobilized pH gradient (IPG) strip for protein separation during isoelectric focusing. 

IPG strips provide stable pH gradients for protein focusing according to the isoelectric 

points of the proteins [Bjellqvistn et al., 1982]. Therefore, the use of narrow range IPG 

strips allows proteins with similar isoelectric points to separate over a greater distance, 

resulting in enhanced protein resolution, and added specificity for mass spectrometry 

based protein identification [Issaq and Veenstra, 2008]. As such, the analysis of USA300 
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FPR wild-type and PepZ mutant intracellular proteomes could be optimized with the use 

of a narrow range IPG strip for greater specificity of proteins in the acidic pH range. 

 

Strains deficient in pepZ were identified to be attenuated in both in vivo and in vitro 

models of virulence. In vitro analysis performed using murine models of wound 

formation and bacterial sepsis and dissemination, both demonstrated a significantly 

attenuated ability of pepZ mutants to sustain infection. Further, Newman wild-type and 

pepZ mutant cells were used to infect human macrophages, and a reduced survivability 

was observed for cells lacking pepZ by 240-fold following 24 hours of incubation, and 

129-fold following 48 hours, when compared to the parent strain. These results conflict 

with a previous observation for aminopeptidase activity in S. typhimurium, in which a 

pepN mutant was impaired in its ability to interact with components of the immune 

system [Patil et al., 2007]. Collectively, these results suggest that the novel 

aminopeptidase activity of PepZ is important for host immune system interaction and 

evasion, and is required for full virulence in S. aureus, regardless of strain lineage. This 

was determined using strain USA300 FPR, a CA-MRSA clinical strain and strain 

Newman, a methicillin sensitive, MSSA, clinical strain, in the models of infections. The 

use of a CA-MRSA model, USA300 FPR, allowed for the analysis of PepZ using a 

current clinically relevant strain for analysis. The data we present herein suggests a 

possible role for PepZ in the degradation of host factors that may control bacterial growth, 

or potentially cleave a variety of secreted staphylococcal proteins that directly stimulate 

and maintain intracellular infections. Proteases function in a wide variety of essential 

regulatory and housekeeping functions, and secreted proteases regulate protein 
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maturation and activation events. In S. aureus, proteases are secreted in a temporal 

manner, many of which have been shown to contribute towards the progression of disease 

[Chan and Foster, 1998; Karlsson and Arvidson, 2002; Lindsay and Foster, 1999; 

McAleese et al., 2001; McGavin et al., 1997; Rice et al., 2001; Shaw et al., 2004].  

 

S. aureus is a highly ubiquitous organism that has been implicated in a wide spectrum of 

diseases ranging from skin and soft tissue infections to life threatening septicemia 

[Lowry, 1998]. These manifestations of disease are the result of virulence factors 

expressed by the organism, and include toxins, hemolysins, and proteases [Novick, 

2006]. Typically, these are secreted factors which directly interact with the host during 

infection, and facilitate invasion and colonization [Cheung et al., 1992, 2008; Janzon et 

al., 1989; Peng et al., 1988]. In this study, we have demonstrated that PepZ, a novel 

leucine-specific aminopeptidase is essential for pathogenesis in S. aureus, with no direct 

role in S. aureus nutrition. The data presented here suggests that PepZ may function in 

the degradation of host factors that may control bacterial growth, or potentially cleave a 

variety of secreted staphylococcal proteins that directly stimulate and maintain 

intracellular infections. Phenotypic characterization of PepZ has shown that S. aureus 

strains deficient in the aminopeptidase have a decreased capacity for survival under stress 

conditions associated with protein denaturing. These phenotypes tend to indicate a role 

for PepZ in protein stability, activation and degradation, which could be associated with 

the nutritional status of the cell via various regulatory proteins. This is in accordance with 

transcriptional regulators such as CcpA and CodY that have been shown to link cell 
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metabolism to the regulation of virulence determinants in S. aureus [Iyer et al., 2005; 

Seidel et al., 2006; Abranches et al., 2008; Majerczyk et al., 2008]. 
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Future Directions 

 

Future approaches for further elucidating the role of aminopeptidase PepZ in S. aureus 

virulence could explore potential alterations in the global metabolism of wild-type and 

pepZ deficient strains. This method of analysis would seek to identify potential substrates 

of PepZ according to cellular metabolites. Additional characterization may seek to 

explore the roles of the remaining twelve aminopeptidases in S. aureus for further insight 

into the role of PepZ by virtue of the activity of the remaining peptidases. This method of 

investigation could be performed through the construction of single and multiple 

peptidase mutants, followed by nutritional analysis and phenotypic characterization 

experiments. Future directions may also include the investigation of oligopeptide 

transport systems to identify specific substrates for PepZ or peptide cleavage sites, 

according to imported peptides and their subsequent processing by PepZ. Again, the 

investigation of the transport systems could be performed through the construction of 

single and multiple mutants in their respective genes, followed by nutritional analysis and 

phenotypic characterization experiments. Further analysis of pepZ regulation by CodY 

under conditions of limited nutrients could potentially clarify a role for the 

aminopeptidase in S. aureus virulence. This method of analysis could be carried out using 

murine models of infection to investigate the impact of a pepZ/codY double mutant on the 

ability of S. aureus to cause infection. In addition, the construction of pepZ-lacZ reporter 

fusion strains deficient in codY could explore the regulatory effects of CodY on pepZ 



 

96 
 

expression, which could also be investigated using RT-PCR. Exploring the potential for 

regulation of PepZ by CodY may identify regulatory roles for PepZ in transcription, in 

accordance with previous reports that PepA, a M17 leucine specific aminopeptidase, was 

found to regulate pyrimidine biosynthesis at the transcriptional level in E. coli [Charlier 

et al., 2000]. 
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Appendix 1. Secreted Spots Determined by Mass Spectrometry Analysis to Have 
Undetectable Protein Levels 
 

Spot  Fold ∆ 
2382 -6.31 
220 -2.22 
150 -1.84 
215 -1.8 
1155 -1.69 
279 -1.69 
310 -1.66 
188 -1.66 
458 -1.63 
2280 -1.56 
1277 -1.55 
2293 -1.51 
800 -1.5 
167 -1.5 
485 -1.33 
1661 1.41 
2796 1.53 
1609 1.54 
2104 1.59 
1601 1.71 
1563 1.71 
1078 1.92 
3088 2.02 
2216 2.72 
2233 2.89 
446 3.26 

1729 7.8 
*USA300 FPR wild-type and pepZ mutant 2D-DIGE secreted protein spots that mass spectrometry analysis 
failed to detect protein for. 
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