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ABSTRACT 

 

 The overall goal of this dissertation is to define the hydrological, geochemical, and biological 

characteristics of a Karst Estuary. These types of estuaries represent a unique ecosystem created 

by freshwater inputs from direct flow through karst conduits and/or diffuse flow through a karst 

matrix. In order to determine the characteristics of a Karst Estuary we monitored short-term tidal 

fluctuations, long-term rainfall patterns, aquifer levels, spring discharge, multiple geochemical 

parameters, microbial communities in the water column and sediment, and macrofaunal 

communities in the sediment along a transect from a submarine spring through the Gulf of 

Mexico. Four sites were selected along a spring/marine transect and one nearby freshwater 

spring was used as a reference site. Datasondes were deployed in the nearshore brackish 

submarine spring to measure discharge volume, tidal fluctuations, and physical water parameters 

for two years. Water column and sediment samples were collected quarterly from both springs 

and the surrounding surface sites over the same time period. An isotopic/trace element mass 

balance method was used to determine the hydrogeological conditions of the spring discharge 

with three possible sources: 1) freshwater from the upper portion of the Upper Floridan aquifer, 

2) freshwater from the lower portion of the Upper Floridan aquifer, and 3) saltwater from the 

Gulf of Mexico. Archaea, Bacteria, and microbial eukaryote communities were analyzed using 

molecular techniques, and macrofauna communities were determined using light microscopy. 

Correlation analyses were conducted to compare all studied biological communities to the 

hydrological and geochemical data in order to determine the influence of aquifer discharge. 

Within the water column of the submarine spring conduit, there were no significant differences 
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of the sampled parameters over short sampling distances (<400 m) and periods (<1 hr). Spring 

discharge was found to be negatively correlated with tidal level and directly correlated with 

aquifer level. The brackish nature of the spring discharge is primarily due to simple mixing 

between the Gulf of Mexico saltwater and freshwater from the lower portion of the Upper 

Floridan aquifer originating from the mixing zone beneath the estuary. The composition of the 

spring discharge varied seasonally, showing increased marine influence at the beginning of the 

wet season. Tropical Storm Debby, June 2012, resulted in measurable freshwater inputs to spring 

discharge from the upper portion of the Upper Floridan aquifer. The number of spring reversals 

(salt water intrusion events) increased as the dry season progressed, stopped reversing 

immediately after Tropical Storm Debby, and then gradually increased into the next dry season. 

Statistically significant geochemical differences were found along the spring/marine transect on 

each collection date and seasonally at the individual sites. The major finding was that the 

primary driver of change in all of the studied biological communities of this Karst Estuary is the 

volume of aquifer discharge and the gradients formed by aquifer discharge and not the 

geochemical fluctuations within the system. Events that result in shifting the mixing zone inland 

have dramatic impacts on the biological communities of these environments. Karst Estuaries are 

a newly discovered type of ecosystem that are different from surface estuaries in that they are 

formed by aquifer discharge which is more stable in terms of geochemistry than water 

discharged to the sea via surface rivers. 
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CHAPTER ONE: INTRODUCTION
 

 

 Submarine groundwater discharge (SGD) through subterranean estuaries has been recognized 

as a major source of nutrients to coastal ecosystems (Burnett et al., 2006; Moore, 2010). This 

influx of nutrients may have dramatic impacts on the ecology of the surrounding estuaries 

(Johannes, 1980; Kotwicki et al., 2014) and can be seen by the geochemical gradients they form 

(Burnett et al., 2003; Kim et al., 2005). Increased aquifer usage and/or increased sea levels may 

result in increased salt water intrusion resulting in the permanent inland shift of the mixing zone 

underneath estuaries turning them from estuarine to salt marsh habitats and having dramatic 

effects on the biological communities of the area which currently serve as nurseries for numerous 

invertebrate and fish species (Beck et al., 2001). The primary goal of this study is to define the 

hydrological, geochemical, and biological characteristics of a Karst Estuary. 

 Estuaries are semi-enclosed bodies of water which have a free connection to the open sea and 

within which sea water is measurably diluted with freshwater derived from land drainage 

(Pritchard, 1967). This definition generally applies to freshwater inputs from surface rivers and 

streams which may be secondary to subterranean drainage in karst regions. Moore (1999) 

defined the subterranean estuary as a coastal aquifer where terrestrial groundwater measurably 

dilutes seawater that has invaded the aquifer through a free underground connection to the sea. In 

karst regions, these subterranean estuaries are the primary source of freshwater and nutrient 

inputs to the sea. I refine these definitions as they apply to karst regions and define a Karst  
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Estuary as a semi-enclosed body of surface water, which has a free connection to the open sea 

and within which seawater is measurably diluted by freshwater from direct flow through karst 

conduits and/or diffuse flow through a karst matrix. 

 The study of SGD has primarily focused on diffuse flow over large regions (Moore, 1996; 

Santos et al., 2008) but less research has been conducted on point-source discharges such as 

conduit flow through submarine springs (Swarzenski et al., 2001; Peterson et al., 2009). In 

Florida there are over 700 documented springs (http://www.dep.state.fl.us/springs/), most of 

which are inland, but there are also numerous undocumented springs along the Florida coast 

(Fig. 1-1). Some of these springs discharge aquifer water directly to the Gulf of Mexico forming 

Karst Estuaries and act similarly to surface rivers bringing freshwater and nutrients to the estuary 

(Harrington et al., 2010).  

 Submarine springs may also be potential points for salt water intrusion to the aquifer that 

could be harmful to the freshwater sources used by many coastal communities (Fleury et al., 

2007; Vera et al., 2012). Terrestrial coastal springs typically discharge freshwater but are also 

tidally influenced because of underlying marine water. Nearshore and offshore springs may 

discharge fresh or brackish water depending on inland hydrological conditions (Michael et al., 

2005). Changes in long term weather patterns and human water use can have deleterious impacts 

on coastal springs (Wetland-Solutions-Inc., 2007; Quinlan et al., 2008), and thus these springs 

can act as sentinels of hydrological change in coastal regions. For example, an offshore 

submarine spring known as Jewfish Sink (Garman & Garey, 2005), approximately one km 

offshore of West Central Florida, ceased flow completely in 1962 following a prolonged drought 

and increased aquifer use by a nearby citrus industry. 

  

http://www.dep.state.fl.us/springs/
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Figure 1-1. Location of documented and undocumented springs along the 

west central gulf coast of Florida. The blue circles are springs documented 

by the Florida Department of Environmental Protection 

(http://www.floridasprings.org/). The red circles are coastal submarine 

springs not documented by the Florida DEP but identified by a local dive 

team (Brett Hempill, personal communication). Only the top half of the map 

has been surveyed to date. 
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 Storm events play an important role in determining the hydrological conditions of coastal 

springs (Lerner et al., 1990). A few studies have been conducted on the influences that tidal 

fluctuations and rainfall patterns have on submarine spring discharge but more are needed 

(Ozyurt, 2008; Valle-Levinson et al., 2011; Exposito-Diaz et al., 2013). In karst regions, rainfall 

events are the primary source of direct aquifer recharge (Lerner et al., 1990). These events result 

in raising the water table and subsequently increasing aquifer discharge through springs 

(reviewed in de Vries and Simmers, 2002). Heavy rainfall due to storm events can create a surge 

of freshwater through the system that may contribute as much as 25 % of the total spring 

discharge (Lakey & Krothe, 1996). This surge plays an important role in not only aquifer 

recharge but in defining the geochemical gradients formed by aquifer discharge through coastal 

springs. 

 River-fed estuaries are well known for the many ecosystem services they provide (Luisetti et 

al., 2014). They are areas of high primary productivity (MacIntyre et al., 1996; Underwood & 

Kromkamp, 1999), they serve as nursery habitats for organisms ranging from microbes to 

vertebrates (Beck et al., 2001), they protect coastal communities from storms events (Turner et 

al., 2007), and they provide important commercial and economic benefits (Lenanton & Potter, 

1987). In karst regions, estuaries can also indicate the health of the aquifer, are indicators of sea 

level change and aquifer overuse, and can be points of saltwater intrusion to an aquifer. Unlike 

river-fed estuaries, little is known about the characteristics of Karst Estuaries or how they 

function. 

 Nutrient fluctuations in river-fed estuaries are well known and have been shown to impact 

biological communities (for reviews see Vitousek et al., 1997; Carpenter et al., 1998; and Kemp 

et al., 2005). For example, in a study of phytoplankton in Chesapeake Bay, Fisher el al. (1992) 
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found that during periods of high runoff phytoplankton biomass was limited by the amount of 

phosphorus in the system but during periods of low runoff phytoplankton biomass was limited by 

the amount of nitrogen in the system. In a more recent study of dinoflagellates in Kochi estuary, 

Kerala, Kumar at al. (2014) found that changing salinity and nitrogen values due to rainfall may 

be responsible for the observed succession of species resulting in a change of the phytoplankton 

community structure. Less well studied are the impacts of submarine springs on biological 

communities. Water from spring discharge is more geochemically stabile in terms of nutrient 

concentrations (Knight et al., 2008) and less prone to the fluctuations observed in surface rivers 

and streams (Tsiaras et al., 2014). In a study comparing a near-shore sink to an active submarine 

spring, Garman et al. (2011) found decreased benthic richness and diversity in the vicinity of the 

spring compared to the sink most likely due to increased spring discharge during the rainy season 

and not nutrient fluctuations. 

 Ecosystems comprising Karst Estuaries could be controlled by inland hydrological conditions 

and sea level. Events that shift the balance between these two forces may have a dramatic impact 

on the biological communities of these environments. The overall goal of this dissertation is to 

define the hydrological, geochemical, and biological characteristics of a Karst Estuary. In order 

to do this I 1) describe the influence of tidal fluctuations on spring discharge, 2) demonstrate the 

impact rainfall patterns have on aquifer level and spring discharge, 3) define the hydrogeological 

conditions of the nearshore brackish submarine spring discharge, 4) show the geochemical 

gradients formed by spring discharge within the surrounding Karst Estuary, 5) estimate 

biological richness and relative abundance of microbial communities using length heterogeneity 

PCR and macrofaunal communities by morphological measurements, 6) estimate relative change 

of biological abundance of microbial communities using quantitative PCR, 7) evaluate 
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community structure using multidimensional scaling plots, and 8) correlate changes of the 

biological communities to multiple geochemical and hydrological parameters. 

Site Description 

 Approximately one km south of the town of Aripeka on the west coast of central Florida is 

Double Keyhole Spring, a nearshore brackish submarine spring that discharges directly into the 

Gulf of Mexico forming a surface estuary (Figs. 1-1 & 1-2). I initially expected that the brackish 

discharge was the result of two conduits (one with inland fresh groundwater, and one with 

offshore saltwater) that merged at some point below Double Keyhole Spring. Five sites were 

monitored in the area, Double Keyhole Spring, Double Keyhole Pond directly outside of Double 

Keyhole Spring, an ‘estuary’ site 100 m west of Double Keyhole Spring, a ‘marine’ site two km 

west-southwest of Double Keyhole Spring in the Gulf of Mexico, and an inland freshwater 

spring, Isabella Spring, one km south-southeast of Double Keyhole Spring (Fig. 1-2). These sites 

were chosen to investigate geochemical gradients between freshwater and marine sources  

associated with Double Keyhole Spring in order to determine the amount of mixing between the 

Upper Floridan aquifer and the Gulf of Mexico. 

Geological and Hydrological Background 

 The Floridan aquifer system encompasses approximately 160,000 km
2
 and underlies the 

southern parts of Alabama, Georgia, and South Carolina, and all of Florida (Miller, 1986). The 

system is split into two parts based on the permeability of the rock (Upper and Lower Floridan 

aquifer) which are separated by a Middle Confining Unit. The Upper Floridan aquifer is 

composed of Tertiary karstic rocks of which the thickest and most productive are the Eocene 

Avon Park Formation and Ocala Limestone (Miller, 1986). Near the town of Aripeka, Florida the 

Upper Floridan aquifer is unconfined at the surface (Sprinkle, 1989) allowing for rapid recharge 
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and increased discharge soon after rainfall events. In this area the Upper Floridan aquifer 

consists of undifferentiated sands near the surface, limestone from one – 151 m, followed by 

dolostone and limestone layers from 151 – 248 m (Fig. 1-3). The lower portion below 151 m is 

interspersed with multiple layers of clay (Decker, 1983). 

 The hydrogeological framework of the area can be divided into three sections, the upper 

portion of the Upper Floridan aquifer consisting of low salinity, low sulfate water, the lower 

portion of the Upper Floridan aquifer consisting of low salinity, high sulfate water, and the Gulf 

of Mexico consisting of high salinity, high sulfate water. Each section has distinct geochemical 

signatures distinguished by strontium concentrations and δ
18

O values that can be used to 

Figure 1-2. Site map showing the studies sites in west central Florida. ROMP TR 18-2 is 

approximately two km north of the town of Aripeka. 
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determine the extent of mixing found in Double Keyhole Spring discharge. Strontium 

concentration and δ
18

O values were used as they are well known conservative tracers that are 

able to differentiate different sources of water (Epstein & Mayeda, 1953; Craig & Gordon, 1965; 

Peterman et al., 1970; Veizer et al., 1999; Bigg & Rohling, 2000). The δ
18

O values reported are a 

measure of the ratio of two oxygen isotopes, 
18

O:
16

O. This ratio changes over time due to 

mechanisms such as biologically mediated isotopic fractionation (Kendall & McDonnell, 1999) 

and evaporation (Dansgaard, 1964). The δ
18

O values and strontium concentrations present during 

the formation of the Floridan aquifer system due to CaCO3 deposition are reflected in the water 

discharged from the aquifer due to the dissolution of the karst. This results in a chemical 

signature found in the water that can be used to differentiate the different levels of the Floridan 

aquifer system from each other and from the Gulf of Mexico.  

 Pump tests of wells in the area around Aripeka indicate that the karstic rocks from the surface 

to 157 m are filled with low salinity, low sulfate freshwater. A transition zone between 

freshwater and saltwater was determined to be between 157 – 166 m below which the water 

increases in salinity and sulfate concentration. High sulfate concentrations (3,155 mg/L) were 

found at a depth of 280 m near the highest concentration of gypsum in the lower portion of the 

Upper Floridan aquifer (Decker, 1983). Further inland from this site, Sacks et al. (1995) found 

low salinity, high sulfate waters at the bottom of the Upper Floridan aquifer near the Middle 

Confining Unit.  
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Figure 1-3. Double Keyhole Spring profile and the geology of the nearby area. On the left 

side is the cross section of Double Keyhole Spring showing the direction of water flow. The 

red X near the entrance indicates the datasonde deployment location. The dashed line across 

the conduit path estimates the location of the deepest penetration of surface water during 

reversals noted during the study period. The right side of the figure shows the geology of the 

nearby area with data from Decker (1983). Black X’s indicate the approximate depth of 

SWFWMD hydraulic head gauges. The dashed line across the middle of the figure indicates 

the edge of the mixing zone between the Gulf of Mexico and the Upper Floridan aquifer. 
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CHAPTER TWO: HYDROLOGY AND GEOCHEMISTRY
 

 

Materials and Methods 

Sample Collection 

 Monitoring of the study sites was conducted from September 2011 through September 2013 

to examine spring discharge patterns and to establish correlations to local rainfall and aquifer 

hydrology. Datasondes were deployed nearly continuously within Double Keyhole Spring to 

measure water velocity and direction using an Argonaut-Acoustic Doppler Velocimeter (ADV) 

(SonTek, USA) as well as water temperature, dissolved oxygen (DO), pH, and salinity using a 

HACH Hydrolab DS3 or DS5X multi-parameter datasonde (HACH, USA). All datasondes were 

serviced annually and calibrated prior to each deployment. Datasondes deployed in the spring 

conduit were set to record measurements every 30 minutes. Spring discharge volumes were 

calculated by multiplying the area of the conduit at the datasonde deployment location (6.12 m) 

by the water velocity determined by the ADV. Five 500 mL replicate water samples were 

collected from the springs and surface sites quarterly for geochemical, stable isotopic, and trace 

element analyses. Spring samples were collected by scientific divers using closed-circuit 

rebreathers under the auspices of the University of South Florida (USF) scientific diving 

program. Within the spring conduit, previously sterilized 500 mL bottles filled with autoclaved 

deionized water were purged three times with helium to prevent the introduction of surface water 

and air into the spring samples. All samples were kept on ice for transport to the lab. Concurrent 

with all surface water sample collections, a HACH Hydrolab DS3 or DS5X multi-parameter 

datasonde was used to measure the same parameters as those in spring conduit. Strontium 
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concentrations (12.2 ppb) and δ
18

O values (-2.08‰) for the lower portion of the Upper Floridan 

aquifer were used from Sacks et al. (1995). Aquifer hydraulic head from a nearby well, ROMP 

TR 18-2, and total daily rainfall data from the Engle Park, Shady Hills, and Summer Tree sites 

was retrieved from the Southwest Florida Water Management District (SWFWMD) Water 

Management Information System (WMIS) website 

(http://www18.swfwmd.state.fl.us/ResData/Search/ExtDefault.aspx). 

Water Sample Analysis 

 All water samples were filtered through GTTP 04700 0.2 µm membrane filters (Millipore, 

USA). Samples were divided into 50 mL tubes for trace element analysis, 10 mL bottles for 

stable isotope analysis, and the remainder was transferred to a 500 mL bottle for major ion 

analysis. Trace element concentrations were determined using an ELAN DRC II ICP Mass 

Spectrometer (PerkinElmer SCIEX, USA) following the procedures described by Eggins et al. 

(1997). Standard curves were created using serial dilutions of known concentrations of trace 

elements obtained from High-Purity Standards (USA) and Fisher-Scientific (USA). NIST 1640a 

and CRM-SW (High-Purity Standards, USA) were used to verify the efficiency of the 

measurements and to account for drift resulting from measuring multiple samples consecutively. 

The average standard deviation for trace element concentration was less than 0.15% of the values 

based on replicate measurements of internal standards in each run. Oxygen isotopic composition 

was determined by the USF Stable Isotope Laboratory using a Finnigan Delta V 3 keV Isotope 

Ratio Mass Spectrometer (Thermo Fisher Scientific, USA) and a Gasbench II (Thermo Fisher 

Scientific, USA) preparation device using the equilibration method. The ratio of 
18

O:
16

O in the 

water samples was compared to the Vienna Standard Mean Ocean water standard ratio of 

18
O:

16
O and is reported as δ

18
O values where δ

18
O = (((

18
O/

16
O)sample/(

18
O/

16
O)standard) – 1) * 1000 

http://www18.swfwmd.state.fl.us/ResData/Search/ExtDefault.aspx
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‰. The average standard deviation of the δ
18

O values was less than 0.25% of the values based on 

replicate measurements of internal standards in each run. An isotopic/trace element mass balance 

analysis of the trace element strontium and δ
18

O values was conducted to determine the 

hydrogeological composition of Double Keyhole Spring discharge and the surrounding estuarine 

waters assuming three end-members following the methods described by Lazareva and Pichler 

(2011). Strontium concentration and δ
18

O values were used in conjunction as they are well 

known conservative tracers (Epstein & Mayeda, 1953; Craig & Gordon, 1965; Peterman et al., 

1970; Veizer et al., 1999; Bigg & Rohling, 2000). The three end-members used in the mixing 

calculations consisted of Gulf of Mexico water represented by samples collected from the marine 

site (Mar), the upper portion of the Upper Floridan aquifer represented by samples collected 

from Isabella Spring (Isa), and the lower portion of the Upper Floridan aquifer (LFA) 

represented from samples collected by Sacks et al. (1995). The following equation was used to 

determine the individual contribution from each source at each site where x represents the 

individual sites along the transect (Double Keyhole Spring, Double Keyhole Pond, and estuary): 

mx = mMar + mIsa + mLFA = 1. 

 Water samples were analyzed for ammonia, nitrate, phosphate, sulfate, and total hardness 

using a HACH DR/2400 spectrophotometer (HACH, USA). The average standard deviations for 

geochemical parameters based on replicate samples were 0.01 mg/L, 0.1 mg/L, 0.08 mg/L, 68 

mg/L, and 4.4 µg/L, respectively. Total alkalinity was measured using an Orion Total Alkalinity 

kit (Thermo Fisher Scientific, USA) and pH measured using a Jenco 6250 pH meter (Jenco, 

USA). The average standard deviation for total alkalinity based on replicate samples was 4.1 

mg/L. Field measurements of DO, pH, water temperature, and salinity were conducted using a 

HACH Hydrolab DS3 or DS5X multi-parameter datasonde (HACH, USA). The average standard 
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deviations for DO (mg/L), pH (units), water temperature (°C), and salinity (psu) based on 

replicate samples were all 0.01. All sampled geochemical parameters were plotted using 

Microsoft Excel. 

Statistical Analyses 

 Statistical analyses were performed using IBM SPSS 22.0 (IBM, USA). One-Way ANOVAs 

were conducted on all geochemical data to determine statistical significance (p < 0.05) between 

sample sites collected on the same date and between sample dates at the same site. Partial 

correlation analyses were conducted to determine statistically significant correlations between 

the studied parameters controlling for study site or collection date (Bai et al., 2010). 

Results 

Double Keyhole Spring Profile 

 The Double Keyhole Spring profile (Fig. 1-3) shows that the depth of the conduit generally 

stays near 33 m until the ‘Deep Room’ at the end of the diver accessible conduit. The linear 

distance from the spring entrance to the ‘Deep Room’ is approximately 150 m although divers 

must travel approximately 400 m due to the meandering of the conduit. During a 50 min dive, 

datasonde measurements of temperature, salinity, pH, and DO taken every five seconds along the 

conduit path from the beginning of the spring to the ‘Deep Room’ show no significant difference 

in any of the variables collected (Fig. 2-1).  

Double Keyhole Spring ‘Deep Room’ Profile 

 The ‘Deep Room’ in Double Keyhole Spring extends from 10m below the surface of the 

estuary to a depth of 76 m (Fig. 1-3) and is only accessible by divers through the main conduit at 

27 m depth. The water within the ‘Deep Room’ is well mixed from the conduit entrance up to a 

halo/chemo/thermocline at an approximate depth of 19 m where DO and pH increase and 
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temperature and salinity decrease (Fig. 2-2). Datasonde measurements of temperature, salinity, 

pH, and DO of the brackish water discharging from the ‘Deep Room’ show no significant 

difference in any of the variables collected until reaching the halo/chemo/thermocline (Fig. 2-2).  

 

 

Rainfall Patterns 

 Rainfall data was retrieved from three SWFWMD data collections sites (Engle Park, Shady 

Hills, and Summer Tree, site IDs 20546, 20552, and 20461 respectively) located within a two km 

radius of Double Keyhole Spring. The average daily rainfall between these three sites ranged 

from nil – 20 cm (Fig. 2-3). Rainfall in Florida generally follows a wet/dry season pattern with 

the wet season coinciding with hurricane season from June through November, and the data 

Figure 2-1. Datasonde profile along the Double Keyhole Spring conduit path from the 

entrance of the spring through the ‘Deep Room’ over the course of a 50 minute dive. 
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follows this pattern. Maximum average daily rainfall (20 cm) was observed during Tropical 

Storm Debby in June 2012. 

 

 

Tidal Fluctuations and Flow Reversals 

 Short-term monitoring of Double Keyhole Spring indicates that spring discharge is inversely 

related to tidal level (Fig. 2-4). The data shows regularly timed salinity increases that correspond 

to increased aquifer discharge at low tide. It also shows irregularly timed salinity increases that 

correspond to spring reversals at some high tides. Spring reversals are accompanied by increases 

in DO and salinity. Reversals of aquifer discharge (saltwater intrusion events) can be seen on 

Figure 2-4 as all points that fall below zero L/s Estimated Aquifer Discharge. The frequency of 
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Figure 2-2. Datasonde profile of the ‘Deep Room’ in Double Keyhole Spring. 
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Figure 2-3. Hydraulic head data from four depths within ROMP TR 18-2 in the Upper 

Floridan aquifer, total daily rainfall around the study sites, and estimated aquifer discharge 

from fall 2011 through winter 2013. 
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reversals increased throughout the dry season with a maximum occurring just before Tropical 

Storm Debby (Table 2-1). Immediately after Tropical Storm Debby, spring reversals stopped but 

gradually increased through the dry season until the next rainy season in May 2013. Datasondes  
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were deployed from February 12
th

 through March 16
th

 2013 at different depths (16 m and 40 m) 

in Double Keyhole Spring. During that time there were a total of 39 high tides that included 10 

reversal events of which seven reached a depth of 16 m (24 m from the entrance) and four 

reached a depth of 40 m (110 m from the entrance). 

 

 

 

 

 

Sample dates

Average 

discharge 

(L/s)

Maximum 

discharge 

(L/s)

Minimum 

discharge 

(L/s)

Discharge vs. 

Tide r
2

Total data 

points

Total data points 

reversing

Percent 

reversing

10/27/2011  3:00:00 PM - 12/12/2011  4:00:00 PM 765.56 1313.04 -708.78 0.6279 2211 114 5.16

12/15/2011  4:00:00 PM - 2/9/2012  2:00:00 PM 754.81 1260.54 -307.13 0.7758 2685 162 6.03

3/22/2012  1:00:00 PM - 5/3/2012  11:00:00 AM 552.64 1591.19 -1449.11 0.81 2013 294 14.61

5/3/2012  12:30:00 PM - 6/25/2012  12:30:00 AM 505.99 1753.87 -1261.05 0.7036 2521 465 18.45

6/27/2012  2:00:00 PM - 7/19/2012  2:00:00 PM 1548.65 2576.68 40.26 No data 1057 0 0.00

7/19/2012  2:00:00 PM - 9/17/2012  2:30:00 PM 1279.47 2288.32 -190.25 0.6515 2882 10 0.35

9/20/2012  4:30:00 PM - 10/29/2012  1:00:00 PM 1082.07 1894.91 -264.73 0.7571 1866 16 0.86

11/5/2012  4:00:00 PM - 1/24/2013  12:30:00 PM 1028.90 2127.03 -588.26 0.7544 3834 92 2.40

2/7/2013  1:30:00 PM - 4/25/2013  11:30:00 AM 896.88 1742.41 -689.19 0.739 3693 107 2.90

4/25/2013  1:30:00 PM - 5/9/2013  11:30:00 AM 786.36 1874.65 -347.77 0.8306 669 32 4.78

5/9/2013  2:00:00 PM - 6/9/2013  4:30:00 PM 775.57 1766.78 -575.07 0.815 1494 91 6.09

8/20/2013  12:30:00 PM - 12/15/2013  2:30:00 AM 1154.17 2130.85 -510.74 0.7189 5597 91 1.63
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Figure 2-4. Estimated aquifer discharge, tidal height (as datasonde depth at deployment 

location in meters), salinity, and dissolved oxygen concentration over a two day period in 

April 2012. 

Table 2-1. Discharge data of Double Keyhole Spring from fall 2011 through winter 2013. 
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Aquifer Hydraulic Head Measurements 

 Aquifer hydraulic head data relative to mean sea level (National Geodetic Vertical Datum of 

1929) were retrieved from the SWFWMD WMIS website (Fig. 2-3). Four depths (63.7 m, 143 

m, 160 m, and 240 m) within the same well (ROMP TR 18-2) located approximately two km 

northeast of Double Keyhole Spring in the Upper Floridan aquifer (Fig. 1-2) were used to 

compare long-term hydraulic head changes to rainfall patterns and aquifer geochemistry. The 

hydraulic head at 143 m was higher (2.17 - 3.08 m) than any of the other three locations 

monitored, 63.7 m (0.73 - 1.92 m), 160 m (-1.27 - 2.88 m), and 240 m (-1.37 - 3.02 m). Tropical 

Storm Debby in June 2012 resulted in a noticeable increase at all locations but the greatest 

changes were seen at 160 m and 240 m, +3.34 m and +4.15 m respectively. Approximately nine 

months after Tropical Storm Debby hydraulic head at 160 m showed a 3.53 m decrease. 

Aquifer Discharge 

 Monitoring of Double Keyhole Spring discharge over a two year period shows that spring 

discharge ranges from approximately -1449 L/s to 2576 L/s (Table 2-1). Average daily discharge 

and maximum daily discharge both correlated to all four aquifer levels but not to total rainfall the 

week prior to or total rainfall between sampling dates (Table 2-2). The lowest discharge rate 

observed (-1449 L/s) was in April 2012 during the dry season. The highest discharge rate 

observed (2576 L/s) was immediately following Tropical Storm Debby in June 2012.  

Approximately nine hours after Tropical Storm Debby aquifer discharge from Double Keyhole 

Spring increased from an average of 506 L/s to 1549 L/s (Table 2-1). Correlations of aquifer 

discharge to tidal height are shown in Table 2-1. The highest correlations were seen during the 

dry seasons (r
2
 = 0.81-0.83) while the lowest were seen in the wet seasons (r

2
 = 0.63-0.65). 
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Strontium Concentration and δ
18

O Values 

 Strontium concentration and δ
18

O values are shown in Table 2-3 and plotted versus salinity 

in Figure 2-5. Strontium concentrations ranged from a high of 8916 ppb at the Double Keyhole 

Spring site in summer 2013 to a low of 3008 ppb at the estuary site in late-summer 2012. 

Samples taken from Isabella Spring are representative of the upper portion of the Upper Floridan 

aquifer and ranged from 262 - 866 ppb. The δ
18

O values ranged from a low of -1.5 ‰ at Double 

Keyhole Spring in fall 2012 to a high of 2.4 ‰ at the marine site in summer 2013. Samples taken 

from Isabella Spring are representative of the upper portion of the Upper Floridan aquifer and 

range from -2.8 to - 3.2 ‰ which is indicative of more evaporatively 
18

O-enriched water from 

surficial aquifers. 

 

 

Total rainfall 

the week prior 

to sampling

Total rainfall 

between sample 

collections

Average 

Daily 

Discharge

Maximum 

Daily 

Discharge

Aquifer water 

elevation guage 

@ 63.7m

Aquifer water 

elevation guage 

@ 143m

Aquifer water 

elevation guage 

@ 160m

Correlation .643

Significance (2-tailed) .000

df 47

Correlation

Significance (2-tailed)

df

Correlation .721

Significance (2-tailed) .000

df 47

Correlation .543 .815 .388 .573

Significance (2-tailed) .000 .000 .006 .000

df 47 47 47 47

Correlation .592 .615 .764 .888

Significance (2-tailed) .000 .000 .000 .000

df 47 47 47 47

Correlation .565 .868 .499 .804

Significance (2-tailed) .000 .000 .000 .000

df 47 47 47 47

Correlation .694 .799 .635 .871 .870

Significance (2-tailed) .000 .000 .000 .000 .000

df 47 47 47 47 47

Aquifer water 

elevation guage 

@ 143m

Aquifer water 

elevation guage 

@ 160m

Aquifer water 

elevation guage 

@ 240m

Total rainfall 

between 

sample 

Average Daily 

Discharge

Maximum 

Daily 

Discharge

Aquifer water 

elevation guage 

@ 63.7m

Table 2-2. Correlations of rainfall, Double Keyhole Spring discharge, and aquifer hydraulic 

head. 
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Water Quality Along the Estuarine Transect 

 Monitored water quality parameters are shown in Figures 2-6 & 2-7. Water temperature, 

salinity, pH, and DO showed statistically significant differences between all sites and dates. 

Water temperature remained close to 24 °C in Double Keyhole Spring throughout the sampling 

period. Seasonal variations were observed at the marine site where water temperatures fluctuated 

from 17 °C during the fall and winter to 28 °C during the summer. Salinity values ranged from a 

low of 13.1 psu at the Double Keyhole Pond site in late-summer 2013 to a high of 23.9 psu 

during summer 2013 at the marine site. There was a general linear increase of pH from Double 

Keyhole Spring through the marine site. The pH ranged from a low of 6.2 at Double Keyhole 

Spring in winter 2011 to a high of 8.03 in fall 2013 at the marine site. Dissolved oxygen 

concentrations displayed a general increasing linear trend from nil - 2.62 mg/L at Double 

Keyhole Spring to nil - 2.62 mg/L at the marine site. Total hardness concentrations ranged from 

5.8 µg/L in late-summer 2012 at Double Keyhole Spring to 31.4 µg/L in late-summer 2012 at the 

estuary site. Alkalinity ranged from 28 mg/L in spring 2012 at Double Keyhole Spring to 136 

Strontium (ppb) Fall 2011 Winter 2011 Spring 2012 Summer 2012 Late-Summer 2012 Fall 2012 Winter 2012 Spring 2013 Summer 2013 Fall 2013

Marine - Average 2107 3883 4234 4270 3642 5442 4974 4370 7434 5074

Marine - Std Dev 300 446 231 372 514 697 536 234 483 217

Estuary - Average 3655 5632 4418 4549 3008 4230 4151 4834 4771 4229

Estuary - Std Dev 229 37 614 446 309 159 126 268 319 177

Double Keyhole Pond - Average 4603 4775 5481 5109 3906 3755 4051 4211 5146 4577

Double Keyhole Pond - Std Dev 269 639 816 67 357 197 439 76 490 34

Double Keyhole Spring - Average 3794 4392 5130 8916 3062 3603 3534 4287 5470 4852

Double Keyhole Spring - Std Dev 441 223 235 1337 346 388 514 430 394 492

Isabella - Average 425 262 350 867 496 499 369 480 519 494

Isabella - Std Dev 30 25 22 101 16 29 18 19 0 4

δ
18

O (‰) Fall 2011 Winter 2011 Spring 2012 Summer 2012 Late-Summer 2012 Fall 2012 Winter 2012 Spring 2013 Summer 2013 Fall 2013

Marine - Average 0.8 0.0 1.3 2.4 -0.3 1.0 0.6 0.8 1.1 0.9

Marine - Std Dev 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1

Estuary - Average -0.8 -0.4 0.1 0.8 -0.9 -0.3 -0.9 -0.7 -0.1 -0.3

Estuary - Std Dev 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1

Double Keyhole Pond - Average -1.0 -0.8 -0.2 -0.1 -1.0 -0.8 -0.9 -0.8 -0.6 -0.9

Double Keyhole Pond - Std Dev 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1

Double Keyhole Spring - Average -1.0 -0.6 -0.6 0.3 -1.4 -1.5 -1.0 -1.0 -0.6 -1.0

Double Keyhole Spring - Std Dev 0.3 0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1

Isabella - Average -2.9 -2.9 -2.9 -2.8 -3.0 -2.9 -3.2 -3.0 -3.1 -3.0

Isabella - Std Dev 0.3 0.3 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1

Table 2-3. Strontium concentrations and δ
18

O values at all sites from fall 2011 through fall 

2013. 
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mg/L in winter 2011 at the estuary site. Ammonia concentrations ranged from 0.002 mg/L during 

summer 2012 at the marine site to 0.056 mg/L during fall 2011 at Double Keyhole Spring. 

Nitrate concentrations ranged from zero mg/L at the estuary and Double Keyhole Pond sites 

(late-summer and summer 2012 respectively) to one mg/L in fall 2012 at the marine site. Sulfate 

concentrations ranged from 550 mg/L in summer 2013 at Double Keyhole Spring to 1350 mg/L 

in summer 2012 at the marine site. Phosphate concentrations ranged from 0.01 mg/L at the 

marine and estuary sites (fall 2013 and winter 2011 respectively) to 1.26 mg/L in summer 2012 

at the estuary site. Correlations of rainfall, aquifer discharge, and aquifer hydraulic head to the 

studied geochemical parameters at all sites along the spring/marine transect are shown in Tables 

2-4 to 2-7. Ammonia concentration was the only measured variable that did not show significant 

correlation to the hydrologic parameters monitored during the study period. There were generally 

more significant and higher correlations of the monitored geochemical parameters to rainfall, 

aquifer discharge, and aquifer hydraulic head at sites closer to Double Keyhole Spring than the 

marine site.  

Discussion 

Double Keyhole Spring Profile 

 Datasonde results from Double Keyhole Spring suggest that once water enters the conduit 

system from the ‘Deep Room’ it has already been well mixed and remains constant over 

distances of 400 m or less and in time frames of less than one hour (Fig. 2-1). In anchialine and 

submarine caves in Bermuda, Van Hengstum and Scott (2011) found differences of salinity, 

organic matter, δ
13

C values, and C:N ratios near cave entrances but once inside those parameters 

remained relatively constant throughout the conduit. Liu et al. (2004) found similar results in a 

karst conduit system in China where prior to major rainfall events there were no short-term 
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changes observed in water temperature or pH of spring discharge. The data suggests that there 

are no other water sources entering the conduit path between the surface and ‘Deep Room’ or if 

so, their impacts on the geochemistry of the spring discharge are negligible over short time 

scales. 

Double Keyhole ‘Deep Room’ Profile 

 The depth profile of the ‘Deep Room’ in Double Keyhole Spring indicates that the water is 

well mixed from the conduit entrance up to the halo/chemo/thermocline at the top of the room 

(Fig. 2-2). I suspect that the level of the halo/chemo/thermocline in the ‘Deep Room’ of Double 

  

Figure 2-5. Strontium concentration and δ
18

O values plotted versus salinity. Saltwater 

samples were collected from the marine site in the Gulf of Mexico. Brackish samples are 

from the estuary, Double Keyhole Pond, and Double Keyhole Spring sites. Freshwater 

samples are from Isabella Spring. 
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Figure 2-6. Plots of alkalinity, dissolved oxygen, pH, salinity, and water temperature at all 

sites from fall 2011 through fall 2013. The dashed line indicates the occurrence of 

Tropical Storm Debby. 
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Figure 2-7.Plots of phosphate, sulfate, nitrate, ammonia, and total hardness at all sites 

from fall 2011 through fall 2013. The dashed line indicates the occurrence of Tropical 

Storm Debby. 
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Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved 

Oxygen (mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Correlation .444 .337 .474

Significance (2-tailed) .001 .018 .001

df 47 47 47

Correlation .730 -.567 .338 -.395

Significance (2-tailed) .000 .000 .017 .005

df 47 47 47 47

Correlation .411 -.562 .352 -.345

Significance (2-tailed) .003 .000 .013 .015

df 47 47 47 47

Correlation .497 -.623 .386 .517

Significance (2-tailed) .000 .000 .006 .000

df 47 47 47 47

Correlation .560 -.815 .533

Significance (2-tailed) .000 .000 .000

df 47 47 47

Correlation .459 -.951 .625

Significance (2-tailed) .001 .000 .000

df 47 47 47

Correlation -.749 -.320 .373 .599

Significance (2-tailed) .000 .025 .008 .000

df 47 47 47 47

Correlation -.801 .461

Significance (2-tailed) .000 .001

df 47 47

Aquifer water 

elevation guage 

@ 143m

Aquifer water 

elevation guage 

@ 160m

Aquifer water 

elevation guage 

@ 240m

Estuary

Total rainfall 

the week prior 

to sampling

Total rainfall 

between 

sample 

Average Daily 

Discharge

Maximum 

Daily 

Discharge

Aquifer water 

elevation guage 

@ 63.7m

Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved 

Oxygen (mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Correlation .510 -.497

Significance (2-tailed) .000 .000

df 47 47

Correlation .736 -.527 -.544 -.748

Significance (2-tailed) .000 .000 .000 .000

df 47 47 47 47

Correlation -.538 -.494

Significance (2-tailed) .000 .000

df 47 47

Correlation .456

Significance (2-tailed) .001

df 47

Correlation .583 -.591 -.504

Significance (2-tailed) .000 .000 .000

df 47 47 47

Correlation .443 -.693

Significance (2-tailed) .001 .000

df 47 47

Correlation -.396

Significance (2-tailed) .005

df 47

Correlation -.623

Significance (2-tailed) .000

df 47

Aquifer water 

elevation guage 

@ 143m

Aquifer water 

elevation guage 

@ 160m

Aquifer water 

elevation guage 

@ 240m

Marine

Total rainfall the 

week prior to 

sampling

Total rainfall 

between sample 

collections

Average Daily 

Discharge

Maximum Daily 

Discharge

Aquifer water 

elevation guage 

@ 63.7m

Table 2-4. Correlations of rainfall, Double Keyhole Spring discharge, and aquifer hydraulic 

head to studied geochemical parameters at the marine site. 

Table 2-5. Correlations of rainfall, Double Keyhole Spring discharge, and aquifer hydraulic 

head to studied geochemical parameters at the estuary site. 
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Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved 

Oxygen (mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Correlation .777 -.536

Significance (2-tailed) .000 .000

df 47 47

Correlation .377 .515

Significance (2-tailed) .008 .000

df 47 47

Correlation .455 -.531 -.690 -.402 -.339 .448

Significance (2-tailed) .001 .000 .000 .004 .017 .001

df 47 47 47 47 47 47

Correlation .595 -.461 -.698 -.416 .439

Significance (2-tailed) .000 .001 .000 .003 .002

df 47 47 47 47 47

Correlation .675 -.370 .453

Significance (2-tailed) .000 .009 .001

df 47 47 47

Correlation .600 -.614 .447 -.465 .420

Significance (2-tailed) .000 .000 .001 .001 .003

df 47 47 47 47 47

Correlation .538 -.433 .604 -.654 .407

Significance (2-tailed) .000 .002 .000 .000 .004

df 47 47 47 47 47

Correlation .491 -.677 .598 -.530 .382

Significance (2-tailed) .000 .000 .000 .000 .007

df 47 47 47 47 47

Aquifer water 

elevation guage 

@ 143m

Aquifer water 

elevation guage 

@ 160m

Aquifer water 

elevation guage 

@ 240m

Double Keyhole Spring

Total rainfall the 

week prior to 

sampling

Total rainfall 

between sample 

collections

Average Daily 

Discharge

Maximum Daily 

Discharge

Aquifer water 

elevation guage 

@ 63.7m

Table 2-6. Correlations of rainfall, Double Keyhole Spring discharge, and aquifer 

hydraulic head to studied geochemical parameters at the Double Keyhole Pond site. 

Table 2-7. Correlations of rainfall, Double Keyhole Spring discharge, and aquifer 

hydraulic head to studied geochemical parameters at the Double Keyhole Spring site. 

Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved 

Oxygen (mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Correlation .498 .333 -.375

Significance (2-tailed) .000 .019 .008

df 47 47 47

Correlation .675 -.431 -.355

Significance (2-tailed) .000 .002 .012

df 47 47 47

Correlation .499 -.369 .481

Significance (2-tailed) .000 .009 .000

df 47 47 47

Correlation .571 -.572 -.420 .479 .430

Significance (2-tailed) .000 .000 .003 .000 .002

df 47 47 47 47 47

Correlation .495 -.579 -.405 .402

Significance (2-tailed) .000 .000 .004 .004

df 47 47 47 47

Correlation .407 -.754 -.535 .464

Significance (2-tailed) .004 .000 .000 .001

df 47 47 47 47

Correlation -.737 -.533 .376 .367 .492

Significance (2-tailed) .000 .000 .008 .010 .000

df 47 47 47 47 47

Correlation -.699 -.332 .366 .465

Significance (2-tailed) .000 .020 .010 .001

df 47 47 47 47

Aquifer water 

elevation guage 

@ 143m

Aquifer water 

elevation guage 

@ 160m

Aquifer water 

elevation guage 

@ 240m

Double Keyhole Pond

Total rainfall 

the week prior 

to sampling

Total rainfall 

between 

sample 

Average Daily 

Discharge

Maximum 

Daily 

Discharge

Aquifer water 

elevation guage 

@ 63.7m
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Keyhole Spring varies daily with tidal fluctuations and seasonally with rainfall patterns and 

aquifer levels although long term monitoring has not yet been conducted. In a nearby off-  shore 

sink Garman et al. (2011) found seasonal variations of temperature, salinity, pH, and DO with 

depth indicating the upward and downward movement of the halo/chemocline over time which 

may also be occurring in the ‘Deep Room’ of Double Keyhole Spring. The mixing diagram 

showing the ratio of salinity to δ
18

O values versus salinity (Fig. 2-8) suggests that the water 

found at the top of the ‘Deep Room’ underneath the estuary inside Double Keyhole Spring (δ
18

O 

= 1.2‰) has a composition more similar to evaporatively 
18

O-enriched water from surficial 

aquifers and surface water (δ
18

O = -1.04‰ to 2.93‰ (Sacks et al., 1998)) than to Isabella Spring 

(δ
18

O = -2.8 to -3.2‰). This suggests that the freshwater at the top of the ‘Deep Room’ in 

Double Keyhole Spring is terrestrial runoff that followed the topologic gradient through the 

karst, which is distinct from the water from Isabella Spring that has made its way through the 

Upper Floridan aquifer system. This is further supported by the increase of pH shown in Figure 

2-2. Kempe (1990) found that in anaerobic carbonate basins, sulfate reduction in the presence of 

organic matter results in the production of bicarbonate (HCO3
-
) which in turn increases the 

alkalinity and pH of the surrounding water at the chemocline. 

Tidal Fluctuations 

 Monitoring of Double Keyhole Spring discharge shows a direct correlation of tidal height to 

spring discharge where spring discharge increases at low tide (Fig. 2-4, Table 2-1). These 

correlations were generally higher during the dry season than the wet season. The lower 

correlations observed during the wet season are most likely due to the added variable of rainfall 

which recharges the aquifer and results in increased aquifer discharge. Koizumi (1993) also 

found tidal influences on groundwater discharge from an artesian well in Japan where discharge  
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increased at low tide. Numerous papers modeling SGD also support this observation (Ataie-

Ashtiani et al., 1999; Li et al., 1999; Robinson et al., 2007; Abarca et al., 2013). 

 The observed salinity increase during periods of both low tide and increased spring discharge 

may be due to reduction of overhead tidal pressure allowing more input from the mixing zone 

and less input from the freshwater portion of the ‘Deep Room’ in Double Keyhole Spring or a 

venturi-type effect where increased aquifer discharge draws higher salinity water from the 

surface estuary down through the karst into the spring conduit (Maramathas et al., 2006) (Fig. 2-

4). Maramathas et al. (2006) assume that two conduits (one containing fresh groundwater and 

one containing sea water) mix at a single point inland of the spring entrance resulting in brackish 
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Figure 2-8. Mixing diagram showing the ratio of δ
18

O values to salinity versus salinity 

from water samples. Freshwater samples were collected from Isabella Spring. Saltwater 

samples include all samples collected from the Double Keyhole Spring, Double Keyhole 

Pond, estuary, and marine sites. The red diamond indicates the sample collected from the 

top of the ‘Deep Room’ in Double Keyhole Spring. Freshwater lakes in central Florida 

have salinity concentrations near zero and δ
18

O values ranging from -1.04‰ to 2.93‰ 

(Sacks et al., 1998). 
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spring discharge. I originally assumed that there were two conduits (one with inland fresh 

groundwater, and one with offshore saltwater) that merged at some point below Double Keyhole 

Spring forming the brackish spring discharge. If this were the case, I would have expected a 

large decrease in salinity following Tropical Storm Debby which was not observed. Another 

explanation is that the inland movement of the mixing zone (Michael et al., 2005) that occurs 

during high tide forces more saline mixing zone water into Double Keyhole Spring (Fig. 1-3). 

These salinity increases were not due to saltwater intrusion events as this situation is indicated by 

increased DO concentrations and negative discharge volumes. The DO concentrations and 

discharge volume data demonstrate that estuarine water brought in during reversal events is 

washed out within the same approximate amount of time in which the reversal occurred. 

Rainfall Patterns 

 Analysis of rainfall patterns shows the connectivity of Double Keyhole Spring to the Upper 

Floridan aquifer (Fig. 2-3, Table 2-2). Hydraulic head data from ROMP TR 18-2 at a depth of 

63.7 m shows significant correlations (r
2
 = 0.543) to total rainfall the week prior to sampling. 

Hydraulic head data at both 63.7 m and 143 m show significant correlations (r
2
 = 0.815 and 

0.592, respectively) to the total amount of rainfall between sample collections. These data 

suggest a rapid recharge of the upper portion of the Upper Floridan aquifer as was seen in June 

2012 when Tropical Storm Debby produced over 20 cm of rainfall in the area surrounding the 

study sites. After Tropical Storm Debby, aquifer discharge from Double Keyhole Spring and the 

hydraulic head at all four monitored well depths within ROMP TR 18-2 increased. Studies by 

Lakey and Krothe (1996), Doctor et al. (2006), and Herman et al. (2009) all show similar 

responses of storm events to spring discharge although the lag times vary depending on the 

amount of rainfall and geological setting. In a study of the Santa Fe river basin in north-central 



30 

 

Florida where the geology is very similar to the area around Double Keyhole Spring, Ritorto et 

al. (2009) found that diffuse recharge following storm events results in increased river and 

conduit discharge. They also found that in between storm events, river discharge generally 

decreased with decreasing hydraulic heads in wells nearby. Although the study only focused on 

conduit discharge, the same patterns can be seen between the Santa Fe river basin and Double 

Keyhole Spring in that discharge amounts increased following storm events and generally 

decreased with decreasing hydraulic heads in nearby monitoring wells (Fig. 2-3) that accompany 

drought or overuse of the aquifer. 

Aquifer Hydraulic Head Measurements 

 There were no significant correlations between hydraulic head in the lower portions of the 

Upper Floridan aquifer to rainfall indicating a slower recharge of this part of the Floridan 

aquifer. This is most likely due to the differences in porosity and permeability between the 

limestone and dolostone layers as well as the multiple layers of clay that may act as semi-

confining units (Table 2-2). Ehrenberg et al. (2006) showed that buried dolostone tends to have 

higher porosity than buried limestone in the same area and that the buried limestone may act as a 

barrier to water flow due to chemical compaction and cementation. The slower recharge may 

also be due to multiple layers of clay in the lower portion of the Upper Floridan aquifer that 

creates semi-confining units. A review by Back (1986) describes how semi-confining units can 

determine the rates of infiltration and discharge in aquifers. The hydraulic head at 160 m shows a 

sudden decrease in May 2013 but no concurrent change at 240 m (Fig. 2-3). There are several 

possible explanations for the observed decline in hydraulic head at 160 m but not at 240 m. The 

most likely explanation, given the geology of the aquifer layers (Fig. 1-3), is that the multiple 

layers of clay between 160 m and 240 m are acting as a semi-confining unit preventing the rapid 
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discharge of water from 240 m. Other possible explanations for the rapid discharge seen at a 

depth of 160 m but not at 240 m include: the permeability of the rocks around 160 m may be 

greater than 240 m; there may be a break in the single layer of clay above 160 m; there could be 

a connection to a conduit at 160 m; or there could be increased pumping of freshwater from the 

same depth as 160 m but at more inland locations. All locations appear to increase with wet 

season rainfall and decrease during the dry season. Only the hydraulic head at 63.7 m had a 

significant correlation (r
2 

= 0.543) to total rainfall the week prior to sample collection but the 

hydraulic head at both 63.7 m and 143 m had significant correlations to the total rainfall between 

sample collection dates (r
2 

= 0.815 and 0.592, respectively) (Table 2-2). 

Aquifer Discharge 

 The mass balance analysis indicates that the brackish water found in Double Keyhole Spring 

originates from the mixing zone created by saltwater from the Gulf of Mexico and high sulfate 

freshwater from the lower portion of the Upper Floridan aquifer (Fig. 2-9). It also indicates 

seasonal variations in the amount of mixing between the Gulf of Mexico, the lower portion of the 

Upper Floridan aquifer, and the upper portion of the Upper Floridan aquifer. Two sample sets 

collected after Tropical Storm Debby in late-summer and fall 2012 contained all three end 

members while the others contained only water from the Gulf of Mexico and the lower portion of 

the Upper Floridan aquifer. The marine portion of the brackish water found in Double Keyhole 

Spring ranged from a low of 22% during fall 2011 to a high of 63% during summer 2013. 

Generally there was more of a marine influence following rainfall events. This suggests that 

during the wet season, increased hydraulic head of the aquifer is increasing the hydraulic head of 

the mixing zone, pushing it offshore and resulting in increased water from the mixing zone to 

discharge through Double Keyhole Spring (Fig. 1-3) thereby protecting inland freshwater  
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Figure 2-9. Hydrogeological conditions of the Double Keyhole Spring, Double Keyhole 

Pond, and the estuary sites showing the proportions of Upper Floridan and Gulf of Mexico 

water from fall 2011 through fall 2013. The dashed line indicates the occurrence of Tropical 

Storm Debby. 
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resources. A study by Michael et al. (2005) of Waquoit Bay, Massachusetts, also found seasonal 

movement of the mixing zone that is dependent on the inland hydrologic cycle. They noted that 

during the dry season there is an inland shift of the mixing zone as the water table falls, and 

during the wet season, when it reverses, moving off-shore as the water table rises. Seasonal shifts 

such as this can also be seen at all of the sites where the proportion of marine water changes with 

rainfall and aquifer hydraulic head. 

 The effects of Tropical Storm Debby were apparent during the late-summer and fall 2012 

collections. In late-summer 2012, approximately 17% of the estuarine water was from the upper 

portion of the Upper Floridan aquifer. This was the only time during the two year study when 

water from the upper portion of the Upper Floridan aquifer was detected in the estuary. This 

indicates that during times of heavy rainfall, freshwater bypasses the Double Keyhole Spring 

conduit and discharges directly into the estuary by diffuse flow through the karst or through 

small conduits. In fall 2012 there was a measureable percentage of water (4%) from the upper 

portion of the Upper Floridan aquifer found within Double Keyhole Spring discharge and a 

smaller percentage (0.5%) found within Double Keyhole Pond water (Fig. 2-9) that occured 3-4 

months after Tropical Storm Debby. This was the only time that water from the upper portion of 

the Upper Floridan aquifer was detected in Double Keyhole Spring discharge indicating the 

minor influence this portion of the aquifer has on the composition of the spring discharge. 

Although this suggests that it takes three to four months for rainwater from tropical storms to 

pass through the aquifer and discharge from the spring, time series analysis of total daily rainfall 

to average daily discharge and maximum daily discharge found the most significant correlations 

(r
2
 = 0.208 and 0.197 respectively) at six weeks. This suggests that is takes six weeks for rainfall 

to pass through the aquifer and push water already in the mixing zone through the conduit that 
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feeds Double Keyhole Spring. The smaller percentage of upper Floridan aquifer water found at 

the Double Keyhole Pond site compared to the Double Keyhole Spring site suggests that the 

discharge from the spring is quickly diluted as it moves into the estuary. 

 

 

 

 

 

Water Quality Along the Estuarine Transect 

 Geochemical profiles along the transect from Double Keyhole Spring through the marine site 

in the Gulf of Mexico show the influences of aquifer fed spring discharge on geochemical 

gradients in the surrounding estuary (Figs. 2-6 & 2-7). In an examination of submarine 

groundwater discharge near the island of Hawaii, Grossman et al. (2010) found that SGD 

extended between 100 m and 1,000 m offshore showing the range of impact SGD may have on 

the surrounding area. I found the effects of Double Keyhole Spring discharge two km from the 

spring at the marine site. 

 Water temperature appears to be the most seasonally influenced factor along the transect 

(Fig. 2-6E, Tables 2-4 to 2-7). In the summer, the cool discharge water warms up to Gulf 

temperatures by the time it reaches the estuary site while in the winter the discharge water cools 

to Gulf temperature well past the estuary site. Water temperature at the surface of the pond, 

estuary and marine sites correlated significantly (r
2
 = 0.444 to 0.510) to total rainfall in the week 

prior to the sample but water temperature within the spring did not correlate significantly. Even 

higher correlations were found when comparing water temperatures to total rainfall over the 

Aveage Daily 

Discharge

Maximum Daily 

Discharge

Correlation .208 .197

Significance (2-tailed) .000 .000

df 629 629

Control Variables

Total 

Daily 

Rainfall

Table 2-8: Correlations of total daily rainfall, average 

daily discharge, and maximum daily discharge at 

Double Keyhole Spring with a six week delay. 
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three months prior to sampling (r
2
 = 0.675 to 0.736) and these correlations were also significant 

to water temperature within the spring (r
2
 = 0.377). These correlations support the hypothesis 

that there is a three to four month lag between a major rainfall event and discharge of that water 

from the spring, despite the fact that increased discharge from the spring occurs in less than a 

day. Therefore the immediate increase in discharge after a major rainfall event is due to existing 

water being pushed out by increased inland hydraulic head but it takes months for the actual 

rainwater to be discharged from the spring. 

 Dissolved oxygen, pH, and salinity also show seasonal variations (Fig. 2-6B-D). During the 

dry season, DO and pH gradients extend further out from Double Keyhole Spring toward the 

marine site than during the wet season. Dissolved oxygen concentration only correlated to 

hydraulic head at the estuary and Double Keyhole Pond sites suggesting the presence of 

additional SGD from diffuse flow or small conduits in these areas that bypass the Double 

Keyhole Spring conduit (Tables 2-4 to 2-7). Salinity had the highest correlation to aquifer level 

at all sites except for within Double Keyhole Spring which had the highest correlation (r
2 

= 

0.777) to rainfall the week prior to sampling. This suggests the importance of aquifer discharge 

in creating the salinity gradient found along the estuarine transect. 

 The effects of Tropical Storm Debby can be seen in the changes of geochemistry at the 

estuary and Double Keyhole Pond sites. Some parameters showed extensive differences both 

before and after Tropical Storm Debby (Fig. 2-6). Prior to Tropical Storm Debby, there were 

more changes of some geochemical parameters over time and space close to Double Keyhole 

Spring than there were at the Pond, estuary, and marine sites. After Tropical Storm Debby, there 

appeared to be more differences between geochemical parameters at the sites farther away from 

Double Keyhole Spring. This was most apparent with phosphate, sulfate, and nitrate (Fig. 2-7A - 
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C) where there were fewer significant differences prior to Debby and more significant 

differences after Tropical Storm Debby. Other parameters (DO, pH, salinity, and water 

temperature) showed fewer differences before and after Tropical Storm Debby, but the patterns 

of distribution changed dramatically most likely due do increase aquifer discharge (Fig. 2-6B - 

E). 

 At the estuary and Double Keyhole Pond sites total hardness and ammonia concentrations 

increased while salinity decreased immediately after Tropical Storm Debby (Figs. 2-6D & 2-

7DE). This is most likely due to increased submarine groundwater discharge diffusely flowing 

through the karst or small conduits that bypass the Double Keyhole Spring conduit and discharge 

directly into the area surrounding the Double Keyhole Pond and estuary sites. 
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CHAPTER THREE: MICROBIAL AND MACROFAUNAL COMMUNITIES
 

 

Materials and Methods 

Sample Collection 

 Water column, sediment, and macrofauna samples were collected quarterly from September 

2011 through September 2013 along the transect from Double Keyhole Spring through the 

marine site. Water column samples consisted of five replicates of 500 ml collected from mid-

water column. Sediment samples for microbial community analysis consisted of five replicates 

of one ml by volume of surface sediment (approximately one g wet weight). Five sediment cores 

(3.8 cm internal diameter) were collected randomly within a one m
2
 area to a maximum depth of 

30 cm for macrofauna community analysis. All spring samples were collected by scientific 

divers using closed-circuit rebreathers under the auspices of the University of South Florida 

Scientific Diving Program. Water column samples within the spring were purged three times 

with helium prior to sample collection. All samples were kept on ice during transport to the lab 

for processing. No sediment or macrofauna samples were collected from Double Keyhole Spring 

in late-summer 2012 due to logistical constraints. 

Sample Preparation 

 All sediment and water column samples were filtered through 47 mm diameter 0.2 µm pore 

size filters (Millipore, USA). The filters were stored at -20 °C until processing. Microorganisms 

were extracted from the filters using a sterile DNA-free spatula in 1.5 ml of pH 7 phosphate 

buffered saline, followed by 30 seconds of vortexing in a 15 ml conical tube. The filters were 

washed two times in this manner. DNA extractions were performed using an Ultraclean Fecal 
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DNA Kit (MoBIO, USA) as described by Menning et al. (2014a). The concentrations of purified 

environmental DNA were determined using a Thermo Scientific Nanodrop 2000 

Spectrophotometer (Fisher Scientific, USA). 

Quantitative Polymerase Chain Reaction 

 Quantitative PCR was conducted separately on all environmental DNA samples to estimate 

the total abundance of Archaea, Bacteria, and microbial eukaryotes in the water column and 

sediment using SYBR Premix Ex Taq II (Takara, USA) and a Realplex
2
 Mastercycler 

(Eppendorf, USA). The universal primers used for each domain are listed in Table 3-1. The PCR 

conditions have been described previously in Menning et al. (2014a). Five replicate samples 

were run for each primer set. A positive control (DNA from a pure culture, see Table 3-1) and a 

negative control (no DNA) were run to verify PCR efficiency. Log-linear standard curves were 

made using 1:10 serial dilutions of DNA of control organisms from full concentration to 10
-5

 

dilution (Table 3-1). Estimated abundance provided in this study was determined by comparing 

the cycle threshold (Ct) values generated from the samples to a standard curve created at the 

same time from a pure culture of a known organism with a known DNA concentration and 

extrapolating the estimated abundance from the standard curve. 

 

 I tested multiple organisms with each primer set to validate the use of q-PCR as a proxy for 

determining changes in the size of environmental microbial communities (Ollivier et al., 2014) 

Primer Sequence (5'-3')
Variable region 

covered

Annealing 

Temperature (°C)
Positive Control Source

Archaea

A1098F CNGGCAACGAGCGMGACCC 7-8 50 °C Sulfolobus solfataricus Reysenbach and Pace, 1995

UA1406R ACGGGCGGTGWGTRCAA Baker et al., 2003

Bacteria

27F AGAGTTTGATCCTGGCTCAG 1-2 50 °C Escherichia coli Lane, 1991

355R GCTGCCTCCCGTAGGAGT Giovannoni, 1991

Eukaryote

1961F TGGTGCATGGCCGTTCTTAG 5-6 55 °C Caenorhabditis elegans Modified from Sogin and Gunderson, 1987

2532R CGGTGTGTACAAAGGGCAGGG Modified from Sogin and Gunderson, 1987

Table 3-1. List of primers used for LH-PCR and q-PCR with associated data. 
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Domain Organism Standard curve r
2

Archaea Halobacterium salinarum Y = -1.496 ln(x) + 16.549 0.9973

Archaeoglobus fulgidus Y = -1.592 ln(x) + 18.015 0.9901

Sulfolobus solfataricus Y = -1.516 ln(x) + 17.504 0.9988

Bacteria Escherichia coli Y = -1.595 ln(x) + 12.495 0.9993

Staphylococcus epidermidis Y = -1.723 ln(x) + 12.693 0.9992

Bacillus subtilis Y = -1.614 ln(x) + 12.591 0.9904

Eukaryota Caenorhabditis elegans Y = -1.677 ln(x) + 13.433 0.9988

Penicillium notatum Y = -1.442 ln(x) + 13.450 0.9915

Saccharomycyes cerevisiae Y = -1.508 ln(x) + 10.159 0.9979

Table 3-2. List of organisms used for q-PCR validation 

experiment, standard curves produced for each organism and 

associated r
2
 values. 

(Table 3-2). Halobacterium salinarum (ATCC 700922D-5), Archaeoglobus fulgidus (ATCC 

49558D-5), and Sulfolobus solfataricus (ATCC 35092D-5) were used for Archaea; Escherichia 

coli K-12 (ATCC 700926), Staphylococcus epidermidis (ATCC 14990p), and Bacillus subtilis 

(ATCC 6051p) were used for Bacteria; and Caenorhabditis elegans N-2, Penicillium notatum 

(ATCC 85w4702), and Saccharomycyes cerevisiae (ATCC 85w5000) were used for microbial 

eukaryotes. DNA from each organism was serially diluted from full concentration to 10
-5

 and 

log-linear standards curves were made. A Ct value was determined for 10 ng of DNA from each 

standard curve. The average of the Ct values for the three species each of Archaea, Bacteria and 

eukaryotes was then used to determine a mean and standard deviation (Table 3-3). To test for 

differences of primer affinity and potential bias due to mixed environmental samples I combined 

equal portions of DNA from each pure archaeal and bacterial species in three molar ratios of 

archaeal: bacterial DNA; 1:1, 1:10 and 10:1 (Table 3-4). Each of the mixed samples was 

subjected to q-PCR measurements using archaeal primers in one experiment and bacterial 

primers in another experiment. 

Length Heterogeneity Polymerase Chain Reaction 

 Length heterogeneity PCR was conducted on all sediment and water column DNA samples 

to estimate the species richness and relative species abundance of Archaea, Bacteria, and 
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Table 3-3. Estimated amount of DNA 

determined from the standard curves 

when using 10ng of DNA. 

Archaea Estimated DNA

Halobacterium salinarum 6.19

Archaeoglobus fulgidus 13.92

Sulfolobus solfataricus 11.34

DNA Average 10.48

DNA Standard Deviation 3.94

Bacteria Estimated DNA

Escherichia coli 10.09

Staphylococcus epidermidis 9.54

Bacillus subtilis 10.42

DNA Average 10.02

DNA Standard Deviation 0.45

Eukaryota Estimated DNA

Caenorhabditis elegans 15.94

Penicillium notatum 25.16

Saccharomycyes cerevisiae 2.46

DNA Average 14.52

DNA Standard Deviation 11.41

microbial eukaryotes in the water column and sediment using an ABI 3130 four-capillary 

Genetic Analyzer (Applied Biosystems, USA). Ten ng of DNA was used in each PCR reaction. 

The universal primers used were selected to amplify two variable regions of the target 16S or 

18S rRNA genes (Table 3-1). Each forward primer contained a 56/FAM fluorescent tag for 

fragment detection. A positive control (DNA from a pure culture, see Table 3-1) and negative 

control (no DNA) were run to verify PCR efficiency. Length heterogeneity PCR conditions have 

Table 3-4. Prokaryotic DNA concentrations when using three 

different mass ratios. 

Mix 1 Mix 2 Mix 3

2ng Archaea + 

2ng Bacteria

2ng Archaea + 

0.2ng Bacteria

0.2ng Archaea 

+ 2ng Bacteria

Average Archaeal DNA (ng/µL) 10.7860 9.9841 2.0669

Archaeal Standard Deviation 0.8095 0.6927 0.2036

Average Bacterial DNA (ng/µL) 0.8089 0.0788 0.7702

Bacterial Standard Deviation 0.1090 0.0122 0.0796

Expected ratio 1:1 10:1 1:10

Actual ratio 13:1 127:1 3:1



41 

 

been previously described in Menning et al. (2014a). Electropherograms were analyzed using 

Gene Mapper v4.0 (Applied Biosystems, USA). The expected amplicons contain two conserved 

flanking regions and two internal variable regions. Peaks from fragments of a size representing 

only the conserved flanking regions or less (250 bp for Archaea, 300 bp for Bacteria and 

microbial eukaryotes) were omitted from further analysis (Suzuki et al., 1998). Species richness 

was determined by calculating the total number of peaks from each electropherogram. Relative 

species abundance was determined by dividing the area of each individual peak by the total area 

of all peaks in the sample. 

Macrofauna  

 Sediment samples used for macrofauna collection were washed through a 500 µm sieve using 

pre-filtered water from the sample collection sites. Samples were placed in 10 % formaldehyde 

Rose Bengal solution for three days after which the samples were washed and transferred to a 70 

% ethyl alcohol Rose Bengal solution. Sorting and identification of macrofaunal organisms to the 

lowest practical taxonomic unit was conducted using light microscopy. 

Statistical Analyses 

 Partial correlation analyses were conducted using IBM SPSS 22.0 (IBM, USA) to determine 

statistically significant correlations (0 < 0.025) between the biological communities and the 

hydrological and geochemical parameters, described by Menning et al. (2014b), controlling for 

study site or collection date (Bai et al., 2010). Relative species abundance and estimated total 

abundance of each dataset were combined to calculate estimated absolute abundance of Archaea, 

Bacteria, and microbial eukaryotes (Yarwood et al., 2010; Menning et al., 2014a). The estimated 

absolute abundance of the archaeal, bacterial, microbial eukaryotes, and macrofauna data were 

combined and analyzed by non-parametric multivariate analysis of multidimensional scaling 
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(MDS) based on Bray-Curtis similarity using Primer v6 statistical software (Primer-E Ltd, UK) 

(Clarke & Ainsworth, 1993). The biological portion of the MDS dataset was square root 

transformed and correlated to the log transformed geochemical and hydrological data (Clarke, 

1993). 

Results 

Testing q-PCR Methods Using Known DNA 

 The r
2
 values for all standard curves made from DNA of a single species was greater than 

0.98 in all cases (Table 3-2). For Archaea, with a theoretical DNA concentration of 10 ng/µL, the 

mean calculated DNA concentration from the three species was 10.48 ± 3.94 ng/µL. For Bacteria 

the mean calculated DNA concentration was 10.02 ± 0.45 ng/µL and for eukaryotes was 14.52 ± 

11.41 ng/µL (Table 3-3).When an equimolar mixture of DNA from three archaeal species was 

mixed in varying proportions (1:1, 10:1, 1:10) with an equimolar mixture of DNA from three 

bacterial species, the archaeal DNA concentration was approximately ten times higher than 

bacterial DNA concentration (Table 3-4). 

Estimated Abundance 

 The q-PCR data of environmental DNA samples shows that the highest concentrations of 

extractable bacterial and microbial eukaryote DNA in the water column were at the Double 

Keyhole Pond site in summer 2012 (10.06 ng/L and 1.92 ng/L respectively) while archaeal DNA 

concentrations were highest (110.58 ng/L) at the estuary site in fall 2012 (Fig. 3-1). DNA 

concentrations were highest in the sediment at the Double Keyhole Pond site (48777 ng/L, 6187 

ng/L, 2036 ng/L for Archaea, Bacteria and microbial eukaryotes) in fall 2013, fall 2011, and 

summer 2013 respectively. Macrofauna were most abundant (487 organisms/L) at the estuary 

site in winter 2012 (Fig. 3-2). 
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Species Richness 

 Species richness data indicate that average archaeal and bacterial richness in the water 

column (21.2 and 31.2 peaks respectively) were highest in late-summer 2012 at the Double 

Keyhole Spring and Pond sites respectively while average microbial eukaryote richness was 

highest in summer 2012 at the estuary site (35.8 peaks) (Fig. 3-3). In the sediment, average 

archaeal and bacterial richness (27.6 and 37 peaks respectively) were highest in spring 2013 at 

the Double Keyhole Pond and Spring sites respectively (Fig. 3-4). Average microbial eukaryote 

diversity was highest in winter 2012 at Double Keyhole Pond (42.4 peaks) and macrofaunal 

diversity was highest (12.2 peaks) in summer 2013 at the estuary site. 

Macrofauna 

 A total of 62 different macrofaunal organisms were found along the transect from Double 

Keyhole Spring through the marine site. The most abundant organisms identified over the course 

of the collection period were an amphipod Americorophium ellisi, a bivalve Parastarte triquetra, 

an annelid from the family Turbificidae and an isopod Xenanthura brevitelson (Table 3-5). All of 

the macrofauna found within Double Keyhole Spring were also found at one or more of the other 

sites and were less numerous inside the spring with the exception of a polychaete Stenoninereis 

martini. 

Multi-Dimensional Scaling Plots 

 Multi-Dimensional Scaling Plots of estimated absolute species abundance for the combined 

communities are shown in Figures 3-5 – 3-8. Examination of communities along the transect 

during the same collection period indicate that the Double Keyhole Spring samples are generally 

distinct from the other three sites but during certain times of the year overlap with the other sites 

along the transect (Figs. 3-5 & 3-6). Generally, the samples fall into two categories, samples 
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Figure 3-1. Estimated abundance of Archaea, Bacteria, and microbial eukaryotes in the 

water column as determined by q-PCR. The dashed line indicates the occurrence of Tropical 

Storm Debby. The top pane shows average daily discharge from Double Keyhole Spring on 

the sample collection date. Arrows on the far left indicate the general direction of water 

flow. 

DK Spring

F
a
ll 

2
0
1
1

W
in

te
r 

2
0

11

S
p
ri
n

g
 2

0
1

2

S
u
m

m
e

r 
2
0
1

2

L
a
te

-S
u

m
m

e
r 

2
0

1
2

F
a
ll 

2
0
1

2

W
in

te
r 

2
0

1
2

S
p
ri

n
g
 2

0
1
3

S
u

m
m

e
r 

2
0

1
3

F
a

ll 
2
0

1
3

DK Pond

Water
Flow

Water
Flow

Water
Flow

Estuary

Marine

DK Spring

DK Pond

Estuary

Marine

DK Spring

DK Pond

Estuary

Marine

A
ve

ra
g
e

 D
a

i ly
D

is
c
h
a
rg

e
 (

L
/s

)

500

1000

1500

A
rc

h
a
e

a
E

s
tim

a
te

d
 D

N
A

 (
n
g

/L
)

39.9 41. 0 5 5.0 69. 6

43 .6 33.8 82 .0 84.3 20 .4 221 .2

15 .0 16.8 20 .5 35.6 16 .5 91.9

1.9 40.2 35 .9 109.7 8.4

8. 5

71.3 65. 9 6 1.7 63. 4

79.7

1.9 2.8 6.1 14.8 1.6 35.0 5. 8 8.2 17. 2

31.3 81. 0 7 3.3 46. 5

240
220
200
180
160
140
120
100
80
60
40
20
0

0 .94 2 .621.5 6 2.1 4

11.01 7.81 1 6.04 18. 65 6.01 6.9 1

4. 39 4.18 5.12 6.27 4.92 2.5 8

0. 57 9.77 8.55 20. 13 3.10

0.2 1

1 .74 2.4 6 2 .00 1.9 4

2.5 4

1. 01 0.62 1.15 2.70 0.43 0 .19 0.1 8 0 .18 0.4 5

0 .71 2.3 9 2 .76 1.4 0

20
18
16
14
12
10
8
6
4
2
0

B
a

ct
e
ri

a
E

st
im

a
te

d
 D

N
A

 (
n

g
/L

)

M
ic

ro
b
ia

l 
E

u
k
a
ry

o
te

E
s
ti
m

a
te

d
 D

N
A

 (
n
g

/L
)

0.001 0.001 0.002 0. 164

0 .554 0.161 0 .279 1. 740 0.304 0.255

0 .035 0.039 0 .104 0. 701 0.247 0.076

0 .009 0.510 0 .113 3. 837 0.038

0.002

0.005 0.062 0.059 0. 746

0.037

0 .002 0.001 0 .003 0. 129 0.003 0.000 0.000 0.008 0. 001

0.001 0.072 0.067 0. 045

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0



45 

 

 

  

Figure 3-2. Estimated abundance of Archaea, Bacteria, microbial eukaryotes, and 

macrofauna in the sediment as determined by q-PCR and light microscopy. The 

dashed line indicates the occurrence of Tropical Storm Debby. The top pane shows 

average daily discharge from Double Keyhole Spring on the sample collection date. 

Arrows on the far left indicate the general direction of water flow. 
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Figure 3-3. Species richness of Archaea, Bacteria, and microbial eukaryotes in the 

water column as determined by LH-PCR. The dashed line indicates occurrence time 

of Tropical Storm Debby. The top pane shows average daily discharge from Double 

Keyhole Spring on the sample collection date. Arrows on the far left indicate the 

general direction of water flow. 
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Figure 3-4. Species richness of Archaea, Bacteria, microbial eukaryotes, and 

macrofauna in the sediment as determined by LH-PCR and light microscopy. The 

dashed line indicates the occurrence of Tropical Storm Debby. The top pane shows 

average daily discharge from Double Keyhole Spring on the sample collection date. 

Arrows on the far left indicate the general direction of water flow. 
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Phylum Class Order Family Genus Species Marine Estuary DK Pond DK Spring Scale

Annelida Clitellata Haplotaxida Tubificidae 1058 1425 871 130 4000

Arthropoda Malacostraca Amphipoda Aoridae Grandidierella bonnieroides 647 749 226 114 3500

Annelida Polychaeta  Paraonidae Aricidea taylori 437 136 117 7 3000

Annelida Polychaeta Phyllodocida Nereididae Stenoninereis martini 300 168 85 464 2500

Annelida Polychaeta  Capitellidae Capitella 212 298 465 33 2000

Annelida Polychaeta  Paraonidae Paraonis fulgens 146 27 11 7 1500

Cnidaria Hydrozoa 53 20 5 13 1000

Arthropoda Maxillopoda Copepoda 37 100 62 3 500

Nemertea 34 51 7 10 0

Annelida Polychaeta  Capitellidae Mediomastus ambiseta 20 349 189 2

Arthropoda Malacostraca Isopoda Idoteidae Edotia triloba 20 5 35 23

Nematoda 344 178 83 0

Arthropoda Malacostraca Tanaidacea 273 588 108 0

Annelida Polychaeta Sabellida Sabellidae Fabricinuda trilobata 260 21 3 0

Arthropoda Ostracoda 227 106 3 0

Annelida Polychaeta Phyllodocida Nereididae 178 189 393 0

Mollusca Bivalvia Veneroida Tellinidae Macoma constricta 113 148 6 0

Arthropoda Malacostraca Isopoda Hyssuridae Xenanthura brevitelson 105 700 1036 0

Annelida Polychaeta  Paraonidae Aricidea philbinae 92 4 4 0

Arthropoda Malacostraca Amphipoda Corophiidae Americorophium ellisi 78 2969 3647 0

Mollusca Bivalvia Veneroida Veneridae Parastarte triquetra 62 501 1528 0

Annelida Polychaeta  Orbiniidae Leitoscoloplos 59 302 532 0

Arthropoda Malacostraca Cumacea Leuconidae Leucon americanus 54 26 31 0

Mollusca Gastropoda Neogastropoda Marginellidae Prunum apicinum 53 49 141 0

Annelida Polychaeta  Maldanidae 39 165 54 0

Sipuncula Sipunculidea Golfingiida Phascolionidae Phascolion 34 42 12 0

Annelida Polychaeta Eunicida Onuphidae Kinbergonuphis simoni 33 95 21 0

Mollusca Gastropoda Cephalaspidea Bulloidea Bullidae bulla 29 65 49 0

Annelida Polychaeta  Capitellidae Heteromastus filiformis 10 40 26 0

Mollusca Gastropoda Neogastropoda Marginellidae Granulina ovuliformis 8 22 6 0

Mollusca Gastropoda Neogastropoda Marginellidae Hyalina pallida 7 17 28 0

Annelida Polychaeta Spionida Magelonidae Magelona pettiboneae 21 5 0 0

Arthropoda Malacostraca Mysidacea 19 27 0 0

Annelida Polychaeta Terebellida Cirratulidae Monticellina 16 353 0 0

Arthropoda Malacostraca Cumacea Nannastacidae Almyracuma bacescui 11 7 0 0

Mollusca Gastropoda Neogastropoda Nassariidae Nassarius vibex 4 7 0 0

Mollusca Gastropoda Pulmonata Ellobiidae Melampus bullaoides 15 20 0 2

Echinodermata Ophiuroidea 50 0 17 0

Annelida Polychaeta Phyllodocida Goniadidae Glycinde solitaria 17 0 14 0

Annelida Clitellata Haplotaxida Tubificidae Tubificoides 10 0 3 0

Mollusca Gastropoda Pulmonata Ellobiidae Melampus bidentatus 9 0 21 0

Arthropoda Malacostraca Amphipoda Oedicerotidae Hartmanodes nyei 103 0 0 0

Arthropoda Malacostraca Cumacea Diastylidae Oxyurostylis 92 0 0 0

Annelida Polychaeta Sabellida Sabellidae Augeneriella 71 0 0 0

Annelida Polychaeta Sabellida Serpulidae Spirorbides 45 0 0 0

Arthropoda Malacostraca Amphipoda Caprellidae Deutella incerta 42 0 0 0

Arthropoda Malacostraca Isopoda Idoteidae Erichsonella attenuata 14 0 0 0

Annelida Polychaeta Sabellida Sabellidae Chone 13 0 0 0

Arthropoda Malacostraca Amphipoda Corophiidae 12 0 0 0

Mollusca Gastropoda Pulmonata Ellobiidae Ellobium dominicense 8 0 0 0

Mollusca Bivalvia Veneroida Semelidae Semele proficua 6 0 0 0

Mollusca Gastropoda Neogastropoda Columbellidae paravanachis obesa 5 0 0 0

Mollusca Gastropoda Pyramidelloidea Pyramidellidae Turbonilla vinidaria 5 0 0 0

Mollusca Gastropoda Neogastropoda Buccinidae Gemophos tinctus 0 13 0 0

Mollusca Bivalvia Veneroida Veneridae Anomalocardia cuneimeris 0 3 0 0

Mollusca Gastropoda Cephalaspidea Cylichnidae Acteocina canaliculata 0 6 6 0

Mollusca Gastropoda Caenogastropoda Janthinidae Recluzia rollandiana 0 4 22 0

Mollusca Gastropoda Littorinimorpha Littorinidae Littoraria angulifera 0 0 53 0

Mollusca Gastropoda Caenogastropoda Litiopidae Alaba incerta 0 0 45 0

Mollusca Gastropoda Littorinimorpha Rissoinidae Rissoina angleli 0 0 6 0

Mollusca Gastropoda Neogastropoda Olividae Oliva fulgerator 0 0 5 0

Mollusca Gastropoda Neogastropoda Muricidae Calotrophan ostrearum 0 0 3 0

Table 3-5. List of macrofauna identified to the lowest practical taxonomic unit in the 

sediment from Double Keyhole Spring through the marine site. Numbers indicate the 

total number of organisms found from September 2011 through September 2013. 
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collected prior to and samples collected after Tropical Storm Debby, which occurred shortly after 

the summer 2012 collection (Figs. 3-7 & 3-8). 

Statistical Analyses 

 Partial correlation analyses of biological abundance and richness data to hydrological and 

geochemical data described in Chapter Two are shown in Tables 3-6 – 3-11. Analyses indicate 

that across sites during the same collection period, water temperature, pH, salinity, and dissolved 

 

 

Figure 3-5. Multi-Dimensional Scaling plots of the combined archaeal, bacterial, and microbial 

eukaryote communities in the water column on each collection date at each site. Each of the 

five replicate samples from each site are indicated by different colored shapes. Colored circles 

around the samples represent the percentage of similarity between samples. 
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oxygen have the highest number of statistically significant correlations (Tables 3-6, 3-7, 3-9 & 3-

10). The same analyses of biological data at each site over time indicate that aquifer level had the 

most numerous significant correlations followed by aquifer discharge and rainfall (Tables 3-8 & 

3-11). Other geochemical data collected indicate sporadic correlations and but no distinct 

patterns. Correlations of community structure (MDS analyses) to geochemical and hydrological 

 

 

 

Figure 3-6. Multi-Dimensional Scaling plots of the combined archaeal, bacterial, microbial 

eukaryote, and macrofaunal communities in the sediment on each collection date at each site. 

Each of the five replicate samples from each site are indicated by different colored shapes. 

Colored circles around the samples represent the percentage of similarity between samples. 
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data are shown in Tables 3-12 – 3-15. Only correlations with r
2
 values greater than 0.20 are 

shown in the tables. 

Discussion 

 The purpose of this study is to explore the interactions between the biotic and abiotic factors 

within Karst Estuaries. Results from this study indicate that there are complex interrelationships 

among hydrological, geochemical, and biological components of this Karst Estuary. Previous 

work by Menning et al. (2014b) has shown that the volume of aquifer discharge directly 

correlates to rainfall and aquifer levels. They also showed that the water temperature, pH, 

dissolved oxygen, salinity, and alkalinity gradients along the transect from Double Keyhole 

Spring through the marine site are directly related to the volume of aquifer discharge. Results 

Figure 3-7. Multi-Dimensional Scaling plots of the combined archaeal, bacterial, and microbial 

eukaryote communities in the water column at each site from Fall 2011 through Fall 2013. 

Each of the five replicate samples from each site are indicated by different colored shapes. 

Colored circles around the samples represent the percentage of similarity between samples. The 

dashed lined separates samples before and after Tropical Storm Debby with samples collected 

after Tropical Storm Debby on top. 
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from this study show that the primary driver of biological change in this Karst Estuary is the 

volume of aquifer discharge and the geochemical gradients formed by aquifer discharge. 

 In June 2012, Tropical Storm Debby produced over 20 cm of rain in the area surrounding the 

study sites. This caused a three meter increase in the aquifer water level and resulted in an almost 

three-fold increase in aquifer discharge from Double Keyhole Spring (Menning et al., 2014b). 

All of the data in this study suggests two distinct patterns based on aquifer discharge conditions; 

1) increased abundance and decreased species richness during the low aquifer discharge 

conditions observed prior to Tropical Storm Debby, and 2) decreased abundance and increased 

species richness during the high aquifer discharge conditions observed after Tropical Storm 

Debby. No clear seasonal cycles were noted because Tropical Storm Debby occurred during the  

Figure 3-8. Multi-Dimensional Scaling plots of the combined archaeal, bacterial, microbial 

eukaryote, and macrofaunal communities in the sediment at each site from Fall 2011 through 

Fall 2013. Each of the five replicate samples from each site are indicated by different colored 

shapes. Colored circles around the samples represent the percentage of similarity between 

samples. The dashed lined separates samples before and after Tropical Storm Debby with 

samples collected after Tropical Storm Debby generally on top. 
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middle of the study period, although the biological data near the end of the study (Fall 2013) 

appeared to be similar to the data collected at the beginning of the study (Fall 2011) (Figs. 3-2 – 

3-4). 

Testing q-PCR Methods Using Known DNA 

Table 3-6. Partial correlation analyses of estimated microbial abundance in the water column 

to hydrological and geochemical data described in Chapter Two controlling for sample 

collection date. All values shown are statistically significant (p<0.025). 

Archaea
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 .971 --- -.968 --- .832 .806 --- -.791 -.589 ---

Winter 2011 .628 .949 --- .940 --- --- --- --- --- ---

Spring 2012 .602 -.856 -.749 .617 .692 --- --- --- --- ---

Summer 2012 .967 -.981 -.974 .980 .883 --- -.533 --- --- ---

Late-Summer 2012 --- --- -.553 .810 .718 .635 --- --- --- ---

Fall 2012 --- --- -.888 .980 .637 --- --- --- --- ---

Winter 2012 .758 -.823 -.618 -.813 -.544 .724 --- --- --- ---

Spring 2013 .514 --- --- .732 --- --- --- --- --- ---

Summer 2013 --- .785 -.636 .537 --- --- --- --- --- ---

Fall 2013 .598 -.653 -.548 .659 --- --- --- -.528 --- ---

Bacteria
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 .883 --- -.881 --- .780 .693 --- -.727 -.559 ---

Winter 2011 .586 .954 --- .922 --- --- --- --- --- ---

Spring 2012 .687 -.900 -.665 .699 .749 --- --- --- --- ---

Summer 2012 .924 -.979 -.984 .980 .920 --- -.517 --- --- ---

Late-Summer 2012 --- --- -.546 .639 --- .601 --- --- --- ---

Fall 2012 --- --- -.897 .977 .587 --- --- --- --- ---

Winter 2012 .754 -.799 -.622 -.805 -.589 .614 --- --- --- ---

Spring 2013 .608 --- --- .598 --- --- --- --- --- ---

Summer 2013 --- .545 --- --- --- --- --- --- --- ---

Fall 2013 --- -.534 --- .540 --- --- --- --- --- ---

Eukaryota
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 .945 -.514 -.940 --- .810 .811 --- -.756 -.578 ---

Winter 2011 --- .966 -.711 .787 -.622 --- --- --- --- ---

Spring 2012 --- -.731 -.652 .523 .566 --- --- --- --- ---

Summer 2012 .945 -.895 -.870 .890 .730 --- -.531 --- --- ---

Late-Summer 2012 --- -.516 --- .582 .726 --- --- --- --- ---

Fall 2012 .567 --- -.749 .942 .755 --- --- --- --- ---

Winter 2012 --- -.628 --- -.553 -.522 --- --- --- --- ---

Spring 2013 .700 --- --- .596 --- --- --- --- --- ---

Summer 2013 .526 .910 -.847 .787 --- --- --- --- --- ---

Fall 2013 --- -.584 -.808 --- --- --- --- --- --- -.515
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 The use of q-PCR to measure changes in abundance using DNA from a single organism for 

the standard curve (see Methods) was validated by the experiment using DNA from pure cultures 

of different archaeal, bacterial, and microbial eukaryote species separately for the standard curve. 

The results show that using DNA from different species used to calculate abundance of rDNA by 

q-PCR introduces some variance, but the variance was small for the prokaryotes (Table 3-3). I 

found that when DNA from three different eukaryotes were used for standard curves the variance 

was unacceptably large, suggesting that comparisons should only be made among studies that 

use DNA from the same eukaryote species for the standard curve (Table 3-3). The large variance 

measured with eukaryotes species could be due to the large range of 18S rRNA gene copy 

number between different eukaryotic species (Koid et al., 2012). 

 I also wanted to know if I could compare the abundance of archaeal species to bacterial 

species. According to the q-PCR results, there appeared to be far more archaeal DNA than 

bacterial DNA in the samples. The experiments using different equimass mixtures of archaeal 

and bacterial DNA in q-PCR experiments (Table 3-4) suggests that the archaeal rDNA primers 

are approximately ten times more efficient at binding to archaeal DNA than the bacterial primers 

bind to bacterial DNA which may be due to the degenerate bases incorporated into the archaeal 

primers. Therefore, the DNA concentrations I report are estimates of community size and are 

used to reflect general increases/decreases in population size and should not be considered 

absolute values. 

Estimated Abundance 

 The estimated species abundance data indicates differences of microbial abundance between 

all sites but was generally highest at the Double Keyhole Pond and estuary sites (Figs. 3-2 & 3-

3). Aquifer discharge had significant negative correlations (r
2
 = -0.321 to -0.776) to the  
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Archaea
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- -.802 --- -.949 --- --- --- --- --- ---

Winter 2011 .685 .868 --- .915 --- --- --- --- --- ---

Spring 2012 --- --- -.684 --- --- --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- .666 ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 .696 --- --- --- .600 --- --- --- --- ---

Winter 2012 .744 --- -.773 -.707 --- .614 --- --- --- ---

Spring 2013 --- --- --- -.642 --- --- --- --- --- ---

Summer 2013 --- --- --- --- --- --- --- --- --- ---

Fall 2013 -.583 --- --- --- --- --- --- --- --- ---

Bacteria
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- -.830 --- -.829 --- --- --- --- --- ---

Winter 2011 .561 --- --- --- --- --- --- --- --- ---

Spring 2012 --- --- --- --- --- --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- --- ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 --- --- --- --- --- --- --- --- --- ---

Winter 2012 .870 -.618 -.821 -.872 -.654 .671 --- --- --- -.617

Spring 2013 --- --- --- --- --- --- --- --- --- ---

Summer 2013 --- --- --- --- --- --- --- --- --- ---

Fall 2013 -.574 --- --- --- --- --- --- --- --- ---

Eukaryota
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- -.735 --- -.850 --- --- --- --- --- ---

Winter 2011 --- .667 -.546 .513 --- --- --- --- --- ---

Spring 2012 --- --- --- --- --- --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- .611 ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 --- --- --- .584 --- --- --- --- --- ---

Winter 2012 --- --- -.787 -.788 -.541 .554 --- --- --- ---

Spring 2013 .518 -.731 -.643 -.543 --- --- --- --- --- ---

Summer 2013 .902 --- -.668 .752 .749 --- --- --- --- ---

Fall 2013 --- --- -.605 --- --- --- --- --- --- ---

Macrofauna
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- --- --- --- --- --- --- --- --- ---

Winter 2011 --- .843 -.791 .593 -.718 --- --- --- --- ---

Spring 2012 --- --- --- --- --- --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- .617 ---

Late-Summer 2012 -.636 .636 .636 -.636 --- --- --- --- --- ---

Fall 2012 --- .719 -.739 .539 --- .597 --- --- --- ---

Winter 2012 .832 -.711 -.743 -.856 -.665 .755 --- --- --- ---

Spring 2013 --- --- --- .635 --- --- --- --- --- ---

Summer 2013 --- .621 -.579 .539 --- --- --- --- --- ---

Fall 2013 .815 -.576 --- .665 --- --- --- --- --- -.523

Table 3-7. Partial correlation analyses of estimated microbial and macrofaunal abundance in 

the sediment to hydrological and geochemical data described in Chapter Two controlling for 

sample collection date. All values shown are statistically significant (p<0.025). 
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abundance of all microbial communities within the water column and sediment at the study sites 

(Table 3-8). This is evident in the reduction of prokaryote abundance within the sediment 

immediately following Tropical Storm Debby in late-summer and fall 2012 (Fig. 3-3). 

 Examination of individual peaks during the periods of increased abundance in the water 

column, summer and fall 2012, indicate that the majority of the increases observed were due to 

relatively few species (Fig. 3-9). In summer 2012, before Tropical Storm Debby, when aquifer 

Archaea
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- -.881 --- -.824 --- --- --- --- --- ---

Winter 2011 -.570 -.949 --- -.910 --- --- --- --- --- ---

Spring 2012 -.904 .877 --- -.906 -.839 --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- .651 ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 .783 --- --- .821 .835 --- --- --- --- ---

Winter 2012 --- .634 --- --- --- --- --- --- .803 ---

Spring 2013 --- --- --- .934 --- --- --- --- --- ---

Summer 2013 --- .946 -.852 .776 --- --- --- --- --- ---

Fall 2013 .695 -.959 -.952 .915 .731 --- --- -.528 --- -.773

Bacteria
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 -.586 -.640 .599 -.993 -.642 --- --- .641 --- ---

Winter 2011 --- .874 -.892 .574 -.834 --- --- --- --- ---

Spring 2012 -.931 .751 --- -.926 -.847 --- --- --- --- ---

Summer 2012 -.976 .906 .875 -.899 -.715 --- .543 --- --- ---

Late-Summer 2012 .878 .824 -.828 --- --- .638 --- --- -.735 .581

Fall 2012 .803 --- --- .789 .828 --- --- --- --- ---

Winter 2012 .985 -.650 -.946 -.978 -.652 .742 --- --- --- ---

Spring 2013 --- --- --- --- --- --- --- --- --- ---

Summer 2013 --- --- --- --- -.666 --- --- --- --- ---

Fall 2013 --- --- .601 --- --- --- --- --- --- ---

Eukaryota
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- .706 --- --- --- -.628 --- --- --- ---

Winter 2011 --- -.574 --- -.520 --- --- --- --- --- ---

Spring 2012 -.734 .626 --- -.731 -.648 --- --- --- --- ---

Summer 2012 .764 -.676 -.642 .668 .535 --- --- --- --- ---

Late-Summer 2012 -.703 --- .685 --- --- -.518 --- --- .666 ---

Fall 2012 --- --- -.769 .919 .709 --- --- --- --- ---

Winter 2012 --- --- -.577 --- --- --- --- --- --- ---

Spring 2013 --- .782 --- .932 --- --- --- --- -.537 ---

Summer 2013 .831 .861 -.922 .927 --- --- --- --- --- ---

Fall 2013 --- --- --- --- --- --- --- --- --- ---

Table 3-9. Partial correlation analyses of microbial species richness in the water column to 

hydrological and geochemical data described in Chapter Two controlling for sample collection 

date. All values shown are statistically significant (p<0.025). 
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Archaea
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- -.729 --- -.548 --- --- --- --- --- ---

Winter 2011 --- .698 -.670 --- -.563 --- --- --- --- ---

Spring 2012 --- -.675 -.873 --- --- --- --- --- --- ---

Summer 2012 .606 -.681 -.695 .684 .658 --- --- --- --- ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 --- --- -.620 .638 --- --- --- --- --- ---

Winter 2012 .585 --- -.760 --- --- --- --- --- .635 ---

Spring 2013 .571 -.763 -.690 -.534 --- --- --- --- --- ---

Summer 2013 .900 .647 -.793 .846 .653 --- --- --- --- ---

Fall 2013 -.685 .812 .730 -.803 -.650 --- --- .512 --- .745

Bacteria
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- -.661 --- --- --- .577 --- --- --- ---

Winter 2011 --- --- --- --- --- --- --- --- --- ---

Spring 2012 .904 --- --- .899 -.833 --- --- --- --- ---

Summer 2012 .879 -.932 -.938 .934 .761 --- -.630 --- --- ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 --- .616 -.733 .609 --- --- --- --- --- ---

Winter 2012 -.867 --- .891 .828 --- -.570 --- --- --- ---

Spring 2013 --- --- --- --- --- --- --- --- --- ---

Summer 2013 --- .822 -.650 .538 --- --- --- --- --- ---

Fall 2013 --- --- --- --- --- --- --- --- --- ---

Eukaryota
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- --- --- --- --- --- --- --- --- ---

Winter 2011 --- .675 -.749 --- -.690 --- --- --- --- ---

Spring 2012 --- --- --- --- --- --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- .669 ---

Late-Summer 2012 --- --- --- --- --- --- --- --- --- ---

Fall 2012 --- --- --- --- --- --- --- --- --- ---

Winter 2102 .708 --- -.776 -.651 --- --- --- --- --- ---

Spring 2013 --- --- --- -.525 --- --- --- --- --- ---

Summer 2013 --- --- --- --- --- --- --- --- --- ---

Fall 2013 --- --- --- --- --- --- --- --- --- ---

Macrofauna
Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 --- --- --- --- --- --- --- --- --- ---

Winter 2011 --- .636 --- .552 --- --- --- --- --- ---

Spring 2012 .535 -.524 --- .537 --- --- --- --- --- ---

Summer 2012 --- --- --- --- --- --- --- --- --- ---

Late-Summer 2012 -.692 .692 .692 -.692 -.734 --- --- --- -.690 .701

Fall 2012 -.594 .883 -.674 --- --- .711 --- --- --- ---

Winter 2012 .750 --- -.770 -.717 -.552 --- --- --- --- -.553

Spring 2013 .760 --- -.596 --- --- --- -.596 --- --- ---

Summer 2013 --- .752 -.593 --- --- --- --- --- --- .524

Fall 2013 .787 -.674 --- .730 --- --- --- --- --- -.583

Table 3-10. Partial correlation analyses of microbial and macrofaunal species richness in the 

sediment to hydrological and geochemical data described in Chapter Two controlling for 

sample collection date. All values shown are statistically significant (p<0.025). 
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level and discharge were at seasonal lows, bacterial and microbial eukaryote abundance 

increased at the Double Keyhole Pond site. Of the 48 bacterial fragments detected in the water 

column in summer 2012 by LH-PCR, only two fragments (311 and 317 bps), were responsible 

for over half of the community. During that same period there were 57 microbial eukaryote 

fragments detected in the water column. Of those microbial eukaryote fragments, only two (370 

and 372 bps) were responsible for over 80 % of the community. In fall 2012, when there was an 

increase in archaeal populations in the estuary, 39 peaks were detected but only three (286, 299, 

and 327 bps) were responsible for over 75 % of the community. Partial correlation analyses of  

Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Total Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 0.834 0.455 0.469 0.447 0.652 --- --- --- --- 0.526

Winter 2011 0.414 0.964 0.308 0.820 0.302 --- --- --- --- ---

Spring 2012 --- --- 0.598 0.815 0.805 0.271 0.396 --- --- ---

Summer 2012 0.627 0.474 0.867 0.565 0.670 --- --- --- --- ---

Late-Summer 2012 0.891 0.880 0.428 0.857 0.203 0.485 0.359 --- 0.570 0.532

Fall 2012 0.424 0.641 0.327 0.693 0.367 0.210 0.207 --- --- ---

Winter 2012 0.666 0.738 0.406 0.974 0.208 --- --- --- --- ---

Spring 2013 0.663 0.601 0.731 0.864 --- --- --- --- --- ---

Summer 2013 0.661 0.709 0.582 0.603 0.278 --- --- --- 0.226 ---

Fall 2013 0.953 0.619 0.323 0.953 0.714 --- --- --- --- ---

Table 3-12. Correlations of microbial community structure in the water column (MDS 

analyses) across all sites on the same collection date to geochemical and hydrological data 

described in Chapter Two. Only correlations with r
2
 values greater than 0.20 are shown and 

all are statistically significant (p<0.01). 

Water 

Temperature (°C)

pH 

(units)

Salinity 

(psu)

Dissolved Oxygen 

(mg/L)

Alkalinity 

(mg/L)

Total Hardness 

(µg/L)

Nitrate 

(mg/L)

Ammonia 

(mg/L)

Phosphate 

(mg/L)

Sulfate 

(mg/L)

Fall 2011 0.464 0.388 0.219 0.205 0.280 --- --- --- --- 0.268

Winter 2011 0.497 0.540 0.422 0.703 0.251 0.248 0.247 --- 0.330 ---

Spring 2012 0.436 0.593 0.506 0.805 0.232 0.205 0.251 --- 0.522 ---

Summer 2012 0.714 0.482 0.712 0.663 0.641 --- --- --- --- 0.228

Late-Summer 2012 0.665 0.725 0.725 0.508 0.274 --- --- --- --- 0.212

Fall 2012 0.365 0.618 0.306 0.688 0.200 0.380 --- --- --- 0.339

Winter 2012 0.433 0.568 0.376 0.844 --- 0.218 --- --- --- ---

Spring 2013 0.503 0.377 0.589 0.737 --- --- --- --- --- ---

Summer 2013 0.687 0.865 0.299 0.844 --- --- --- --- 0.355 0.297

Fall 2013 0.771 0.442 0.272 0.902 0.617 --- --- --- --- 0.362

Table 3-13. Correlations of microbial and macrofaunal community structure in the sediment 

(MDS analyses) across all sites on the same collection date to geochemical and hydrological 

data described in Chapter Two. Only correlations with r
2
 values greater than 0.20 are shown 

and all are statistically significant (p<0.01). 
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Figure 3-9. Estimated DNA of individual peaks during the periods of increased abundance in 

the water column. Archaeal peaks are from the estuary site during the fall 2012 collection. 

Bacterial and microbial eukaryote peaks are from the Double Keyhole Pond site during the 

summer 2012 collection. 
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these peaks to hydrological and geochemical data indicate strong negative correlations of the 

bacterial and microbial eukaryote populations to average daily discharge (r
2
 = -0.506 to -0.517) 

and strong positive correlations to alkalinity (r
2
 = 0.477 to 0.614) and rainfall the week prior to 

sample collection (r
2
 = 0.619 to 0.692) (Table 3-16). There were multiple factors that impacted 

the archaeal community in the estuary, but the strongest correlation to all fragments was to 

nitrate concentrations (r
2
 = 0.631 to 0.688). In a study of the Parker River estuary of 

Massachusetts, Crump et al. (2004) noted seasonal increases in bacterial communities that 

correlated to longer residence times of the water within the estuary. I find similar results at the 

study sites where microbial abundance in the water column increased when aquifer discharge 

was at seasonal low volumes. This suggests that the increased aquifer discharge reduces the 

amount of microbes throughout the system and prevents the build-up of microbes as was seen 

before Tropical Storm Debby. The peak of archaeal abundance in the water column in fall 2012 

after Tropical Storm Debby indicates that while increased aquifer discharge reduced the 

abundance of bacterial and microbial eukaryotes it increased the archaeal abundance possibly 

due to changes of nitrate concentration (Table 3-16). I expect that when drought conditions 

return or if there is an increase in aquifer use, microbial abundance in the estuary will again 

increase due to the increased residence time of the water in the estuary. 

Species Richness 

 Aquifer discharge also has a major influence on species richness within the system. 

Generally, species richness increased during periods of high aquifer discharge in both the water 

column and sediment with the exception of macrofauna in the sediment at the estuary site (Figs. 

3-4 & 3-5). The loss of macrofaunal species richness at the estuary site following tropical Storm  
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Debby highlights the impacts of submarine groundwater discharge in the area. Menning et al. 

(2014b) showed that following Tropical Storm Debby there was increased submarine 

groundwater discharge in the estuary that bypassed Double Keyhole Spring. This water was 

hypothesized to be the result of a freshwater wedge following the topological gradient through 

the karst discharging in the estuary. This event coincides with a transient loss of macrofaunal 

diversity in the estuary suggesting that increased submarine groundwater discharge and 

subsequently lower salinity have negative impacts on macrofaunal species richness. 

Macrofauna 

 Macrofaunal species richness was greatest at the marine site (53 species) compared to the 

other sites (41, 42, and 12 species, at the estuary, Double Keyhole Pond and Spring sites 

respectively) (Table 3-5) and species abundance was greatest at the estuary and Double Keyhole 

Pond sites (9998 and 9979 total organisms respectively). A notable event occurred at the estuary 

site following Tropical Storm Debby when macrofaunal abundance and richness decreased from 

an average of 272 organisms per sample representing 22 species prior to TS Debby to an average 

of 55 organisms per sample representing 16 species after TS Debby (Fig. 3-4). This reduction in 

abundance (217 organisms) and richness (six species total, 13 species were lost and seven 

species were gained) coincided with increased aquifer discharge from Double Keyhole Spring 

and through the karst matrix that also resulted in decreased salinity at the site (Figs. 2-6D and 2-

9). Approximately 77% of the abundance lost (167 organisms) was from 15 species that either do 

not tolerate physical perturbations or do not tolerate very low salinity water (Lloyd, 1964; Bloom 

et al., 1972; Santos & Simon, 1974; Swennen et al., 1982; Hsieh & Simon, 1991; Mikkelsen et 

al., 1995; Sarda et al., 1995; Mannino & Montagna, 1997; Gamenick et al., 1998; Brewster-

Wingard & Ishman, 1999; Castanedo et al., 2012). In general, the rapid decrease of salinity after 
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Tropical Storm Debby could not be tolerated by the stenohaline members of the macrofaunal 

community and other species could not tolerate the increased rate of discharge of the spring.  

 Species richness and abundance was lowest within Double Keyhole Spring with the 

exception of one polychaete, Stenoninereis martini. This is a nereid polychaete known to live in 

a variety of habitats throughout the Gulf of Mexico (Williams et al., 1976). Originally, S. martini 

was thought to only inhabit brackish sinkholes as it was first found in tidally influenced ponds or 

sinkholes in the West Indies and Sarasota County, Florida. It was later found in Tampa Bay, 

Florida and Cedar Bayou, Texas, with more variable environments than sinkholes. The data 

suggests that the environment within Double Keyhole Spring is more favorable for S. martini 

than the surrounding estuary. Although not formally studied, there is a large population of 

juvenile game fish present within the estuary. At low tide they congregated at high density in the 

pond near the mouth of the spring, appearing to take refuge from shallower water and in winter, 

from the much colder water in the main part of the estuary. 

Multi-Dimensional Scaling Plots 

 Examination of the MDS plots of the communities at all four sites at each collection time 

(Figs. 3-6 & 3-7) show spatial variations between sites with the Double Keyhole Spring samples 

generally grouped away of the other sites. The exception to this pattern can be seen in both the 

water column and sediment communities in summer 2012 when all four sites showed a 20% 

similarity. This event coincides with the lowest aquifer discharge noted during the two year 

study. The correlations of abundance, species richness, and community structure along the 

transect to the corresponding geochemical data (Tables 3-6, 3-7, 3-9 & 3-10) consistently show 

the greatest number of significant correlations are to the geochemical gradients formed by 

aquifer discharge (water temperature, pH, salinity, dissolved oxygen, and alkalinity). This 
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indicates that the primary driver of change between sites in this Karst Estuary are the 

geochemical gradients formed by aquifer discharge. 

 The MDS plots of the communities at each site over the two-year study also indicate 

variations within the communities are determined by aquifer discharge (Figs. 3-8 & 3-9). The 

communities within this Karst Estuary generally divide into two groups; 1) low aquifer 

discharge, as seen prior to Tropical Storm Debby, and 2) high aquifer discharge, as seen after 

Tropical Storm Debby. There was one exception found in the estuarine community when the low 

aquifer discharge summer 2012 samples grouped with the high aquifer discharge communities 

observed after Tropical Storm Debby. The sediment communities showed less distinct groupings 

than the water column communities. In a study of the Chesapeake Bay, USA, Malone et al. 

(1988) found seasonal variations of phytoplankton biomass that were associated with variations 

in freshwater flow and fluctuations in nitrate concentrations. Although the results do not show 

seasonal variations over time it does show variations based on aquifer discharge which varies 

seasonally with local rainfall. The correlations of abundance, species richness, and community 

structure at each site over time to hydrological and geochemical data (Tables 3-8 & 3-11) 

consistently show the greatest number of significant correlations to aquifer level, aquifer 

discharge, and rainfall which are all interrelated. This suggests that the primary driver of change 

at each site over time is the volume of aquifer discharge. Both the sediment and water column 

microbial communities appear to be robust and responsive to environmental changes within the 

system suggesting that they are likely active in nutrient cycling. 

 The effects of aquifer discharge on community interactions indicate a clear connection 

between aquifer discharge and community structure. The MDS plots of community structure 

(Figs. 3-5 and 3-6) indicate the greatest amount of similarity between all sites occurred during 
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the period of lowest aquifer discharge noted in the collection prior to Tropical Storm Debby 

(Summer 2012). The remainder of the MDS plots also indicate high similarity between the 

communities only if the Double Keyhole Spring site is excluded. These similarities occur during 

times of both low aquifer discharge and high aquifer discharge. I suspect that during periods of 

low aquifer discharge the communities are dominated by organisms from the marine 

environment due to the general flow of water towards Double Keyhole Spring and during times 

of high aquifer discharge the communities are dominated by organisms from the Double Keyhole 

Pond environment due to the general flow of water towards the Gulf of Mexico. 

 To determine if the observed correlations were due the disturbance caused by Tropical Storm 

Debby the biological data was correlated to the geochemical parameters in this study without the 

two samples immediately following Tropical Storm Debby (Fall and Winter 2012) (Tables 3-17 

and 3-18). This data indicates minor differences from the previous analyses but the general 

pattern of highest and most numerous correlations continued to be due to aquifer discharge. This 

indicates that while Tropical Storm Debby had a major influence on the communities in the karst 

estuary surrounding Double Keyhole Spring the storm itself was not the primary driver of the 

observed change throughout the system over time.   
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CHAPTER FOUR: CONCLUSIONS
 

 

 The major findings from this dissertation are that: 1) the primary driver of the geochemical 

gradients in this Karst Estuary appears to be the rate at which water discharges from the spring, 

2) the primary drivers of biological change within this Karst Estuary is the volume of aquifer 

discharge and the geochemical gradients formed by aquifer discharge, 3) estimated abundance 

varies inversely and species richness varies directly to aquifer discharge, and 4) community 

structure varied over the two year study with no observable seasonal trends but a clear 

delineation was observed between low and high aquifer discharge patterns noted before and after 

Tropical Storm Debby. 

 Double Keyhole Spring is located in a transition zone between an inland nearshore 

freshwater spring (Isabella Spring) and an offshore inactive spring (Jewfish Sink) (Fig. 1-2). The 

spring discharges brackish water directly into the Gulf of Mexico forming a Karst Estuary which 

represents a previously undescribed type of ecosystem that links the nearshore Gulf of Mexico to 

the Floridan aquifer. This type of estuary differs from surface estuaries in that the hydrological 

factors that create Karst Estuaries are driven by the fluctuating hydrology of the aquifer and not 

surface rivers and streams which drive surface estuaries. The original assumption was that there 

were two conduits (one with inland fresh groundwater, and one with offshore saltwater) that 

merged at some point below Double Keyhole Spring forming the brackish nature of Double 

Keyhole Spring discharge. Instead, I discovered that the brackish water discharging from Double 

Keyhole Spring originates from the mixing zone of the Upper Floridan aquifer and Gulf of 

Mexico below the estuary (Fig. 2-9). The increased inland aquifer head resulting from periods of 
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heavy rainfall push downward on the mixing zone, so that more mixing zone water enters the 

deep conduit that feeds Double Keyhole Spring. It seems that the storm recharged the aquifer 

which caused a sustained increase in aquifer discharge resulting in long-term changes in the 

estuary communities after Tropical Storm Debby. The impacts of tidal fluctuations, rainfall, and 

aquifer level on submarine spring discharge can be used as a baseline for the impacts of future 

development in the area as well as in other Karst Estuaries around the world.  

 The datasonde data from Double Keyhole Spring suggests unique hydrological patterns 

within the system (Figs. 2-1 & 2-2). Over short time frames along the conduit path there are no 

statistically significant differences of collected parameters. The ‘Deep Room’ showed no 

geochemical differences until the halocline at a depth of 19 m. At the top of the ‘Deep Room’ is 

a layer of freshwater that is isotopically distinct from the freshwater found at Isabella Spring and 

is more similar to surface water than aquifer water suggesting that a shallow freshwater lens 

extends offshore under the estuary. 

 The composition of the Double Keyhole Spring water is most often the result of simple 

mixing between water from the Gulf of Mexico and the lower portions of the Upper Floridan 

aquifer (Fig. 2-9). The amount of each portion (Floridan Aquifer vs. Gulf of Mexico) varies 

seasonally and is determined by inland hydrological conditions. During the dry season, when 

aquifer levels fall, the mixing zone moves inland resulting in increased amounts of the salt water 

component from the Gulf of Mexico. I expected that storm events, such as Tropical Storm 

Debby, would result in a higher volume of less brackish water being discharged, but instead I 

measured a higher volume of brackish water of nearly the same salinity as prior to the storm. I 

hypothesize that the increased hydraulic head inland caused by Tropical Storm Debby pushed 

brackish water already in the mixing zone out through the spring within a day or two. It appears 
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that a limited amount of freshwater was discharged into the estuary several months after Tropical 

Storm Debby. 

 Aquifer discharge through Double Keyhole Spring varies daily with tidal fluctuations and 

seasonally with local rainfall and aquifer levels (Figs. 2-3 & 2-4). The frequency of reversals 

increases as the inland water table decreases. Reversals were observed to a depth of 40 m 

approximately 110 m within the Double Keyhole Spring conduit from the entrance (Fig. 1-3). 

Future sea level rise and/or increased aquifer use may increase this distance with the potential to 

reach the freshwater portion of the Floridan aquifer. Should this situation arise in conjunction 

with a surface water contamination event such as an oil spill, the conduit would provide a direct 

path for contamination to enter the Upper Floridan aquifer. 

 Correlations of hydraulic head from the Floridan aquifer and Double Keyhole Spring 

discharge to the geochemical parameters in this study (Tables 2-4 to 2-7) indicate that the 

primary driver of the geochemical gradients seen between Double Keyhole Spring and the 

surrounding Karst Estuary appears to be the rate at which water discharges from the spring. 

These differences are due to volume of Double Keyhole Spring discharge and were observed at 

the marine site almost two km away. With the exceptions of ammonia and alkalinity, there were 

more differences between the geochemical parameters along the transect from Double Keyhole 

Spring through the marine site after Tropical Storm Debby than before Tropical Storm Debby 

with more differences at the sites farther away from the spring. 

 The geochemical variations observed, indicate that during periods of heavy rainfall, such as 

Tropical Storm Debby, diffuse SGD from the upper freshwater portion of the Upper Floridan 

aquifer bypass the Double Keyhole Spring conduit and discharge directly into the surrounding 

estuary (Figs. 2-6D & 2-7E). This water was characterized by higher total hardness and lower 
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salinity concentrations at the estuary and Double Keyhole Pond sites than either the marine or 

Double Keyhole Spring sites. During the dry seasons when aquifer discharge was at a minimum, 

the observed gradients were less partitioned, indicating more water input from the Gulf of 

Mexico. This was evidenced by the lack of statistically significant differences in the geochemical 

parameters along the transect prior to Tropical Storm Debby (Fig. 2-7). 

 The correlation analyses of microbial and macrofaunal communities in the water column and 

sediment to hydrological and geochemical parameters collected (Tables 3-6 to 3-16) show that 

although there are some geochemical parameters that impact microbial abundance at various 

sites and times, the primary factors influencing microbial and macrofaunal communities in this 

Karst Estuary are the amount of aquifer discharge and geochemical gradients formed by that 

discharge (water temperature, pH, salinity, dissolved oxygen, and alkalinity). A major 

implication of this conclusion is that reduced aquifer discharge during the dry season may be 

detrimental to the ecology of the estuary in that the majority of increased abundance of the 

bacterial and microbial eukaryote communities was due to two or three species. Generally, algal 

blooms are the result of a dramatic increase of only a few species (for a review see Hallegraeff, 

1993). The species found in this study may be a contributing factor to the development of 

harmful algal blooms (Anderson et al., 2002) in Karst Estuaries in Florida and around the world. 

 This study suggests that this Karst Estuary ecosystem was relatively stable over the two year 

study period. There were only a few changes of some geochemical parameters (nitrate, ammonia, 

phosphate, and sulfate) (Tables 3-6 to 3-16) during the study period and subsequently few 

significant correlations of these parameters to the studied biological communities. However, this 

stability could be greatly impacted by minor changes to the geochemical concentrations due to 
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aquifer overuse and/or contamination (Sophocleous, 2005), coastal pollution (Kennish, 2002), 

sea level rise (Gornitz, 1991), and/or development in the area (Mallin et al., 2000). 

 In its current state the estuary surrounding Double Keyhole Spring is considered pristine 

according to the conditions set by the Florida Department of State Rule Chapter 62 - 302 

(http://www.dep.state.fl.us/legal/Rules/shared/62-302/62-302.pdf). These types of spring/estuary 

systems appear to be common along the Florida Gulf Coast (Fig. 1-1). However, if drought, 

increased aquifer usage, and/or increased sea levels cause the mixing zone underneath Double 

Keyhole Spring to permanently move inland it could result in turning the area around Double 

Keyhole Spring from a Karst Estuary to a salt marsh having dramatic effects on the biological 

communities of the area which currently serves as a nursery for a number of invertebrate and 

game fish species. A model of this Karst Estuary depicting the general geochemical and 

hydrological patterns, and biological interactions between the different sites is shown in Figure 

4-1. 

 

 

 

 

Marine Estuary     DK Pond DK Spring
Discharge

Community
Interactions

Water Flow
Pattern

Tidal Flow

Marine

Spring

Rainfall

Sea level

Aquifer
level

Spring Flow 

Spring Reversals

Karst Estuary Model

Water
Chemistry

Increasing pH, dissolved oxygen, salinity, alkalinity

Figure 4-1. Karst Estuary model representing the general geochemical and hydrological 

patterns, and biological interactions between the study sites. Solid lines in the Community 

Interactions portion represent the extent of community similarity between sites during low 

aquifer discharge conditions. Dashed lines in the Community Interactions portion represent 

the extent of community similarity between sites during high aquifer discharge conditions. 
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 Globally, karst covers approximately 20% of the land surface with between 20-25% of the 

world’s population dependent on water found within karst aquifers (Ford & Williams, 2007). In 

coastal regions, much of this water discharges directly to the sea through submarine springs (see 

Fleury et al. (2007) for a review). My study shows that submarine spring discharge forms Karst 

Estuaries in Florida and likely in coastal karst regions worldwide (Menning et al., 2014b). Karst 

Estuaries represent unique ecosystems that are controlled by inland hydrological conditions and 

sea level. While river-fed estuaries are well known and well documented for the many ecosystem 

services they provide, submarine spring fed Karst Estuaries also provide such services. In 

particular, the Karst Estuary of Double Keyhole Spring carries out nutrient dispersal, nutrient 

cycling, primary production, as well as habitat for juvenile game fish and is a sentinel of 

saltwater intrusion to the aquifer and sea level change. 
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