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Abstract 
 

The gastrula stage represents the point in development at which the three 

primary germ layers diverge. At this point the gene regulatory networks that 

specify the germ layers are established and the genes that define the 

differentiated states of the tissues have begun to be activated. These networks 

have been well characterized in sea urchins, but not in other echinoderms. 

Embryos of the brittle star Ophiocoma wendtii share a number of developmental 

features with sea urchin embryos, including the ingression of mesenchyme cells 

that give rise to an embryonic skeleton. Notable differences are that no 

micromeres are formed during cleavage divisions and no pigment cells are 

formed during development to the pluteus larva stage. More subtle changes in 

timing of developmental events also occur. To explore the molecular basis for the 

similarities and differences between these two echinoderms, the gastrula 

transcriptome of Ophiocoma wendtii was sequenced and characterized. 

I identified brittle star transcripts that correspond to 3385 genes in existing 

databases, including 1863 genes shared with the sea urchin Strongylocentrotus 

purpuratus gastrula transcriptome. I have characterized the functional classes of 

genes present in the transcriptome and compared them to those found in sea 

urchin. I then examined which members of the germ-layer specific gene 

regulatory networks (GRNs) of S. purpuratus are expressed in the O. wendtii 

gastrula. The results indicate that there is a shared “genetic toolkit” central to the 
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echinoderm gastrula, a key stage in embryonic development, though there are 

also differences that reflect changes in developmental processes. 

The brittle star expresses genes representing all functional classes at the 

gastrula stage. Brittle stars and sea urchins have comparable numbers of each 

class of genes, and share many of the genes expressed at gastrula. Examination 

of the brittle star genes whose sea urchin orthologs are utilized in germ layer 

specification reveals a relatively higher level of conservation of key regulatory 

components compared to the overall transcriptome. I also identify genes that 

were either lost or whose temporal expression has diverged from that of sea 

urchins. Overall, the data suggest that embryonic skeleton formation in sea 

urchins and brittle stars represents convergent evolution by independent 

cooptation of a shared pathway utilized in adult skeleton formation. 

Transcription factors are of central importance to both development and 

evolution. Patterns of their expression and interactions form the gene regulatory 

networks which control the building of the embryonic body. Alterations in these 

patterns can result in the construction of altered bodies. To help increase 

understanding of this process, I compared the transcription factor mRNAs 

present in early gastrula-stage embryos of the brittle star Ophiocoma wendtii to 

those found in two species of sea urchins and a starfish. Brittle star homologs 

were found for one third of the transcription factors in the sea urchin genome and 

half of those that are expressed at equivalent developmental stages in sea 

urchins and starfish. Overall, the patterns of transcription factors found and not 

found in brittle star resemble those of other echinoderms, with the differences 
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largely consistent with morphological differences. This study provides further 

evidence for the existence of deeply conserved developmental genetic 

processes, with various elements shared among echinoderms, deuterostomes, 

and metazoans. 
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Chapter One: 
Introduction 

 
THE GENETICS OF DEVELOPMENT AND EVOLUTION 

The process of turning a one-celled fertilized egg into a complete 

multicellular animal with an array of highly specialized tissues and organs 

requires a system for implementing specific genetic instructions at particular 

times and places. A developing organism must be able to build itself from and 

with the materials and tools at hand—its own genes and proteins—in a process 

of increasingly refined self-organization. This depends on the ability of the gene 

and protein players to talk to each other. 

Transcription of genes to make proteins is controlled by other proteins—

the transcription factors. Each particular transcription factor can bind to certain 

nucleotide sequences—promoters or cis-regulatory elements—upstream from 

the coding regions of target genes. This binding of specific transcription factors to 

DNA can either allow or inhibit assembly and activation of the full transcriptional 

apparatus, thus either promoting or repressing transcription of that gene. The 

ability of a given transcription factor’s DNA-binding domain to attach to a given 

ABBREVIATIONS 
cDNA = complementary DNA (synthesized from mRNA templates) 
EST = expressed sequence tag, GRN = gene regulatory network 

mRNA = messenger RNA, NSM = non-skeletogenic mesenchyme 
PCR = polymerase chain reaction, PMC = primary mesenchyme 

RACE = rapid amplification of cDNA ends 
SMC = secondary mesenchyme, TF = transcription factor 
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gene’s promoter element depends on the exact amino acid and nucleotide 

sequences of these regions, and thus their potential for precise chemical 

interactions. 

Following fertilization, transcription factors initially target genes mostly for 

other transcription factors and signaling pathways. As development proceeds, 

early differences in the locations and concentrations of these molecules establish 

gene regulatory networks (GRNs), regional patterns of gene expression which 

channel different parts of the embryo to mature into different structures. 

Mutations which alter the binding specificity of transcription factors or the 

promoter elements of the genes they regulate can result in changes to the 

location and/or timing of expression of the targeted genes, and therefore to 

alterations in the structures and functions influenced by those genes. Such 

rewiring of developmental gene regulatory networks is a major mechanism 

linking genetic variation to natural selection, and is the focus of study for 

evolutionary developmental biology, or “evo-devo”. 

 

ECHINODERMS AS MODEL ORGANISMS IN DEVELOPMENTAL BIOLOGY 

As basal deuterostomes, echinoderms occupy an important phylogenetic 

position between chordates and all other animal phyla. Sea urchins (Class 

Echinoidea) have been used as model organisms in developmental biology for 

more than a century. Many of the landmark discoveries of biology were made, at 

least in part, through the study of sea urchin embryos, including fertilization, egg 

cytoplasmic determinants, cell-signaling, differential gene expression, and the
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Figure 1.1: Development of Sea Urchin Embryos. (Modified from McClay 2011.)  
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Figure 1.2: Endomesodermal Developmental Gene Regulatory Network for the Sea Urchin Strongylocentrotus purpuratus. The 
large blocks of color represent the different germ-layer regions of the early embryo. Early specification events are toward the top of the 
diagram, with progressively more refined specification in the middle, and the beginnings of tissue differentiation toward the bottom at 
around the time of gastrulation. The horizontal line above each gene name represents the promoter region for that gene. Arrow inputs to a 
promoter indicate transcription factors which promote transcription of the gene. Barred inputs signify transcriptional repression. Arrows 
leaving the end of a gene’s promoter line symbolize transcription and expression. [Figure generated with BioTapestry software.]
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Figure 1.3: Ectodermal Developmental Gene Regulatory Network for the Sea Urchin Strongylocentrotus purpuratus. Symbolism is 
the same as for Figure 1.2 (page 4). [Figure generated with BioTapestry software – www.biotapestry.org] 
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mitotic spindle [reviewed in Pederson 2006, Briggs and Wessel 2006]. A number 

of urchin species have been widely used, including Strongylocentrotus 

purpuratus, Lytechinus variegatus, Paracentrotus lividus, Heliocidaris 

erythrogramma, and others. The key events of sea urchin embryonic 

development are illustrated in Figure 1.1. 

The genome of S. purpuratus has been fully sequenced [Sea Urchin 

Genome Sequencing Consortium 2006, Cameron et al 2009], and its 

developmental gene regulatory network has been extensively studied in the 

stages from egg through gastrulation [Figures 1.2 & 1.3] [Davidson et al 2002a & 

2002b, Oliveri and Davidson, 2004, Cameron et al 2009, Su 2009, Peter and 

Davidson, 2010]. Various techniques were used to uncover the structure of this 

network, including in situ hybridizations, quantitative PCR, and gain- and loss-of-

function perturbation studies [Davidson et al 2002a & 2002b]. Similar studies 

have recently begun using the starfish Patiria miniata (formerly called Asterina 

miniata), and have produced many valuable insights into the ways that features 

of GRNs persist and/or change over the course of evolutionary time [Hinman et 

al 2003a, 2007a & 2007b;  McCauley et al 2010]. The genetics of development in 

the remaining echinoderm classes have been studied very little, if at all. This 

project is the first to investigate these processes in the class Ophiuroidea, the 

brittle stars. 

The precise phylogenetic position of brittle stars relative the other 

echinoderm classes is still unresolved due to conflicting molecular, 

morphological, and embryological evidence [Littlewood et al 1997, Harmon 
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2005]. Adult brittle stars somewhat resemble starfish (Class Asteroidea) in that 

they have 5 arms. However, the arms of brittle stars are long and very flexible—

the name “ophiuroid” is from the Greek for “snake-like”—and are used for both 

locomotion and feeding. The arms of starfish are more like extensions of the 

central body, containing both the gonads and digestive caeca, and are generally 

held more-or-less stationary as the numerous tiny tube feet underneath are used 

for locomotion. 

Brittle star development from egg to swimming larva is quite like that of 

sea urchins [Figure 1.1], with some notable differences. Brittle stars do not have 

unequal 4th and 5th cleavages, and thus do not produce micromeres. 

Nevertheless, mesenchyme cells apparently homologous to urchin micromeres 

ingress to form an embryonic skeleton very similar to that of urchins, giving the 

brittle star larva the same pluteus shape as the urchin larva, but lacking pigment 

cells. The larvae of the other echinoderm classes are very different in shape, and 

lack skeletons. Brittle stars are thus a promising group to explore just how similar 

or different their development gene regulatory network is to those of sea urchins 

and starfish. This project represents a first step toward investigating these 

questions, 

 

RESEARCH DESIGN 

Ophiocoma wendtii is a brittle star species living among the shallow water 

rocks and reefs of the Florida Keys. It was chosen for these studies because of 
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its easy availability and large size. The central body disk is often 2‒2½ cm in 

diameter, with each arm 10‒12 cm long. 

A candidate gene PCR approach was initially tried. Degenerate PCR 

primers were designed based on the most conserved regions of transcription 

factor genes homologous between several echinoderms and other 

deuterostomes, including S. purpuratus and other urchin species, the starfish 

Patiria miniata, the hemichordates Saccoglossus kowalevskii and Ptychodera 

flava, the urochordate tunicate Ciona intestinalis, the cephalochodate 

Branchiostoma floridae (“Amphioxus”), and/or others as the available sequence 

data allowed. These primers were used to attempt to amplify the brittle star 

versions of these genes from O. wendtii cDNA from various embryonic stages. 

The resulting PCR products were then cloned, extended though RACE, and 

sequenced, with intentions for future experiments along the lines of those used to 

unravel the sea urchin GRN. This method led to effective cloning and sequencing 

of several brittle star genes. For several others genes, it was not successful, 

despite numerous attempts. 

Newly available high-throughput pyrosequencing systems inspired a 

different approach. These technologies enable rapid, relatively inexpensive 

sequencing of a very large number of small DNA or cDNA fragments covering a 

large portion of an organism’s genome or transcriptome. The results can then be 

analyzed for large-scale patterns and screened for genes of particular interest. 

The partial gene sequences can also greatly facilitate future full-length 

sequencing, expression and functional studies. 
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Messenger RNAs from early gastrula-stage embryos of the brittle star 

Ophiocoma wendtii were pyrosequenced using systems from 454 Life Sciences. 

The results have yielded important and intriguing additions to understanding the 

phylogenetic conservation and evolutionary remodeling of developmental gene 

regulatory networks. 
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Chapter Two: 
Sequencing and Analysis of the Gastrula Transcriptome of the  

Brittle Star Ophiocoma wendtii 
 

 
 
BACKGROUND  

Sea urchins (Class Echinoidea) have been used as model organisms in 

developmental biology for more than a century. Over the last two decades, 

intensive work has led to a fairly detailed understanding of the gene regulatory 

network (GRN) controlling the differentiation of the embryonic germ layers during 

development in the species Strongylocentrotus purpuratus [Davidson et al 2002a 

& 2002b, Oliveri and Davidson 2004, Su 2009, Peter and Davidson 2010, 

Cameron et al 2009]. An initial draft of the S. purpuratus genome was completed 

in 2006 [Sea Urchin Genome Sequencing Consortium 2006], and is now in its 

third revision [Cameron et al 2009]. Several expression databases for various 

embryonic stages have also been constructed, using expressed sequence tags 

(ESTs) [Poustka et al 1999, Lee et al 1999, Zhu et al 2001, Poustka et al 2003], 

microarrays [Wei et al 2006], and NanoString RNA counting [Materna et al 2010]. 

Here I begin to examine the conservation and divergence in the gene regulatory 

networks expressed at the gastrula stage in a member of a different echinoderm 

class, the Ophiuroidea. Our results indicate that there is a shared “genetic toolkit” 

This chapter has been submitted to EvoDevo for publication 
 under the same title, and is currently under revision. 
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central to the echinoderm gastrula, a key stage in embryonic development, 

though there are differences that reflect changes in developmental processes. 

 

 
 
Figure 2.1: Phylogeny of Echinoderms 
All evidence indicates that crinoids are the most basal. The other four groups all diverged within a 
very short geological timeframe around 500 million years ago. Urchins and sea cucumbers are 
generally considered to form a clade as the most derived. It remains unclear whether the brittle 
stars group more closely with this clade or with starfish, due to conflicts between molecular, 
morphological, and embryological evidence. 
 
 

The echinoderms consist of five living classes: Asteroidea (starfish), 

Echinoidea (sea urchins and sand dollars), Ophiuroidea (brittle stars) 

Holothuroidea (sea cucumbers), and Crinoidea (sea lilies and feather stars). The 

crinoids appear first in the fossil record, and are clearly the most basal 

anatomically. The other four classes appear to have all diverged within a very 

short geological period around 500 million years ago [Paul and Smith 1984], and 

the exact phylogenetic relationship of the brittle stars to the other classes 

remains uncertain due to conflicts between molecular, morphological, and 

embryological evidence [Littlewood et al 1997, Harmon 2005] [Figure 2.1]. The 

embryos of all echinoderm classes share some features, including holoblastic 
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cleavage and similar cell movements during gastrulation. However, there are 

notable differences, such as the formation of micromeres in sea urchins but not 

brittle stars, the absence of pigment cells in brittle stars, and the formation of an 

embryonic skeleton in sea urchins and brittle star embryos, but not in the other 

groups. What is currently unclear is how these similarities and differences in 

development are reflected in the pattern of gene transcription. Davidson and 

Erwin [2006] have suggested that key gene regulatory subcircuits central to the 

formation of major morphological features (“kernels”) are very highly conserved 

by stabilizing natural selection, both because they are critical to the formation of 

a complete viable body, and because their internal linkages and feedback loops 

make their component genes mutually dependent. A refinement of this idea is 

that some of the component transcription factors may be exchanged for others, 

as long the overall input/output logic and reliability of the circuit and its resulting 

function are maintained [Hinman and Davidson 2007]. This would suggest that 

many of the regulatory kernels shown to be important in sea urchin gastrulation 

would be conserved in the other echinoderm groups. 

The set of genes that control skeleton formation in echinoderms may 

represent such a circuit under evolutionary constraints. All echinoderms form 

skeletons as adults, however, only sea urchins and brittle stars form extensive 

embryonic skeletal spicules. It has recently been shown that most of the same 

regulatory genes that underlie skeletogenesis in the sea urchin embryo are also 

expressed in the construction of the adult skeleton in both sea urchins and 

starfish [Gao and Davidson 2008]. The embryonic skeletons of sea urchins and 
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brittle stars are thus thought to be derived characters resulting from early 

activation of an adult gene regulatory network in the embryo. 

The process of embryonic skeletogenesis has been extensively studied in 

sea urchins [Wilt and Ettensohn 2007]. Asymmetric fourth and fifth cleavages 

produce four small micromeres and four larger micromeres at the vegetal pole. 

Descendants of the larger micromeres ingress into the blastocoel just prior to 

gastrulation and become the primary mesenchyme (PMC), which soon produces 

the embryonic skeleton. Micromeres are a derived character unique to crown 

group sea urchins (euechinoids) [Ettensohn 2009]. Brittle stars and more basal 

sea urchin groups form very similar embryonic skeletons from apparently 

homologous mesenchymal cells without prior unequal cleavages [Wray and 

McClay 1988, this study]. 

I have sequenced and characterized the 40h gastrula transcriptome of the 

brittle star Ophiocoma wendtii. The gastrula stage was chosen because it 

represents the point in development at which the three primary germ layers 

diverge, with ingression of mesenchymal cells and invagination of the gut. At this 

point in sea urchins the gene regulatory networks that specify the germ layers 

are established and the genes that define the differentiated states of the tissues 

have begun to be activated. The early gastrula therefore expresses the greatest 

number and diversity of developmentally important genes. I report here that the 

brittle star gastrula expresses genes of all functional classes and appears to 

share many key developmental regulatory components with other echinoderms. 
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Some regulatory genes as well as genes expressed in differentiated tissues in 

the sea urchin gastrula were not found to be expressed in the brittle star gastrula. 

 

METHODS 

Animals and Embryos 

Brittle stars (Ophiocoma wendtii) were collected from reefs and rubble 

piles in the shallow waters of Florida Bay near the Keys Marine Laboratory, Long 

Key, Florida, between April and October. Animals were sorted by sex, with gravid 

females identified by the presence of swollen purple gonads visible through the 

bursal slits. Sperm was obtained from 2-3 males by injection of 1-3mL of 0.5-

1.0M KCl. Shedding of eggs from females was induced by a combination of heat 

and light shock. Animals were placed in containers in the dark with aeration at 30 

to 32°C. Periodically the animals were exposed to bright light. Developing 

embryos were cultured at 25-27°C in filtered sea water. RNA was isolated using 

Trizol (Life Technologies, USA) following the manufacturer’s protocol. 

 

Characterization of Transcriptome Sequences 

Sequencing and assembly of contiguous sequences was carried out as 

described by Meyer, et. al. [2009]. The comparisons of transcriptomes followed 

an all-by-all BLAST [Altschul et al 1997] approach where each comparison was 

databased. These results were then queried for the identification of orthologous 

genes using a reciprocal best BLAST (RBB) strategy, and for the identification of 

gene families following the method of Lerat, et al. [2005] as implemented 
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previously [Cooper et al 2010, Flynn et al 2010].  Gene families and singletons 

were then annotated using Homology Inspector (HomIn) software, a Java 

program that stores and queries a set of gene families using the database tool 

db4o for Java version 7.12.  HomIn links gene families with annotation 

information including Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Orthology Database (KO) categories [Kanehisa and Goto 2000], Clusters 

of Orthologous Groups of proteins (COGs) [Tatusov et al 1997 & 2003], Gene 

Ontology (GO) categories [Ashburner et al 2000], or any other available 

annotation. 

 

Search for GRN Components 

Glean3 predicted protein sequences for genes involved in the S. 

purpuratus developmental gene regulatory network were retrieved from SpBase 

[Cameron et al 2009] using the official gene name. These were used as queries 

to search the brittle star gastrula transcriptome sequences using TBLASTN at 

default settings. The best hit for each query was then used to search back 

against both sea urchin protein sequences and GenBank reference proteins 

using BLASTX. Sea urchin genes which had reciprocal best BLAST hits to brittle 

star with e-values of 1e-9 or better in both directions were designated as present 

in the brittle star gastrula transcriptome. These sequences can be found in 

GenBank using accession numbers JX60016 to JX60067. 
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Database and Analyses 

Results from the automated BLAST searches were saved to a Microsoft 

Access database. This database and Microsoft Excel were used for the analyses 

involving presence/absence of expression, functional classes, and numbers of 

matches to other databases. Rarefaction curves were generated using EcoSim 

software [Gotelli and Entsminger 2011]. For the functional class analysis, KEGG 

ortholog clusters were used if they included genes from at least one animal 

taxon. When a KEGG cluster participates in more than one pathway within a 

functional class, it was counted only once within the larger functional class.  (e.g. 

K00128 aldehyde dehydrogenase (NAD+) is part of five different pathways within 

the class of carbohydrate metabolism and two pathways in lipid metabolism, 

among many others, but was counted only once within each class in Figure 2.6B, 

and once in the total number of distinct KEGG animal clusters in Figure 2.6A.) 

 

RESULTS AND DISCUSSION 

Embryonic Development of Ophiocoma wendtii 

The key stages of Ophiocoma wendtii development are shown in Figure 

2.2. The egg is pigmented, and pigment granules are retained during cleavage 

stages, but disappear in the blastula. Cleavage is radial and holoblastic and is 

equal throughout cleavage, such that the micromeres characteristic of the sea 

urchin fourth cleavage division are not produced. A hollow blastula is formed, and 

cells ingress into the blastula to initiate gastrulation. The number of ingressing 

cells seems much larger than is typical in sea urchins, but we have not 
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quantitated the number or traced the lineage of individual cells. Archenteron 

formation occurs through invagination and convergent extension. A second group 

of mesenchyme cells forms at the tip of the archenteron and gives rise to the 

coelomic pouches, but no pigment cells appear. The skeletogenic mesenchyme 

cells gather in ventrolateral clusters as in sea urchins and begin to form the 

mineralized skeleton. The timing of development to hatching blastula is similar to 

sea urchins. However, following the invagination of endoderm, brittle star 

development proceeds at a slower rate relative to sea urchins. There is an initial 

invagination at 26-30h post-fertilization, but this persists for several hours before 

overt endomesoderm development proceeds. Also, unlike in sea urchins, the 

elongation of the skeletal rods is delayed relative to the extension of the 

archenteron, such that the archenteron has extended one third to halfway across 

the blastocoel before skeletal elements appear. When the gut is fully formed the 

skeleton is still composed of relatively small triradiate spicules. These then 

elongate such that the pluteus larva is very similar to that of sea urchins. The 

stage at which we isolated RNA for sequencing analysis is similar to Figure 2.2F. 

We chose that point when skeletal elements were first visible. 
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Figure 2.2: Ophiocoma wendtii Embryonic Development 
Stages (A) egg, (B) 16 cell (5h), (C) hatched blastula (18h), (D) mesenchyme blastula (24h), (E) 
early gastrula (30h), (F) gastrula (40h), (G) ventrolateral cluster with skeletal spicule (arrow), (H) 
pluteus (80h). 
 
Sequencing and Assembly 

Pyrosequencing was performed on mRNA from gastrula stage brittle star 

embryos. After cleaning and trimming, there were 354,586 sequencing reads with 

a total of 75,031,136 basepairs [Figure 2.3A]. Lengths ranged from 16 to 439 

basepairs, with approximately ¾ between 200 and 300. Less than 1% were 

longer than 300. Reads of 15 basepairs or shorter after trimming were not used 

for contig assembly. A total of 14,261 contigs were assembled, with a combined 

length of 5,488,581 basepairs [Figure 2.3B]. Median length increased by 23% 

over that of the unassembled reads (282 vs. 229), while average length 

A 

H G 

FED 
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increased by 81% (384 vs. 212). Roughly ⅔ had lengths between 100 and 400 

basepairs. The average number of reads per contig was 16.3, with a median of 5, 

a mode of 2, and a maximum of 8989. Coverage or depth ranged from 1x to 

8549.4x, with an average of 7.1, median of 3.5, and standard deviation of 44.6 

[Figure 2.3C]. 

 

Automated Annotation 

Reciprocal best BLAST searches identified brittle star transcripts 

putatively corresponding to a total of 3385 orthologous genes in other databases 

[Figure 2.4]. The brittle star sequences were translated in all six reading frames 

and BLASTP was used to query the SpBase sea urchin Glean3 protein models. 

There were 3303 matches between brittle star and the sea urchin genome [Sea 

Urchin Genome Sequencing Consortium 2006]. Of these, 1863 also matched to 

the sea urchin combined UniGene transcriptome libraries [http://www.ncbi. 

nlm.nih.gov/UniGene/lbrowse2.cgi?TAXID=7668&CUTOFF=1000]. The KEGG 

Orthology database [http://www.genome.jp/kegg/ko.html] produced 1368 

matches. More than two- thirds (2309 or 68%) of the identified brittle star genes 

had matches to more than one dataset. Almost a quarter (840 or 24.8%) 

matched to all three. 

Note that the O. wendtii data were compared against each of the other 

datasets in Figure 2.4 separately. Therefore, brittle star sequences with hits to 

multiple datasets do not necessarily represent reciprocal best BLAST matches 

between every component in the annotation, but merely significant hits between 
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brittle star and more than one of the other datasets independently. Examination 

of the results reveals that the individual hits are mutually consistent in terms of 

genes identified. 

The brittle star data have many times more sequences than the sea urchin 

gastrula UniGene set available on the NCBI UniGene database, and their 

average length is shorter. To assess whether we could make meaningful 

comparisons between these different data sets, we plotted the data as 

rarefaction curves. In ecology, rarefaction uses repeated random resampling of a 

large pool of samples to estimate the species richness as a function of the 

number of individuals sampled. Here we used it to estimate how thoroughly each 

data set represents the full transcriptome. In Figure 2.5, the curve for sea urchin 

has a much steeper initial slope, and therefore matches to a significant number 

of KEGG clusters even with many fewer sequences, probably because the sea 

urchin sequences are longer on average. The brittle star curve rises more 

gradually, but plateaus near the end, indicating that the sequencing captured 

most of the genes present in the transcriptome. If we assume that the two 

organisms express roughly the same number of genes at equivalent 

developmental stages, then the rarefaction curves indicate that this is indeed a 

meaningful comparison. The similar number of matches to the KEGG Orthology 

database for the two organisms also suggests this is the case. 
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Gene Functional Classes 

O. wendtii sequences were compared to the KEGG Orthology database 

[http://www.genome.jp/kegg/ko.html] by reciprocal best BLAST [Figure 2.6A]. The 

KEGG Orthology database contains clusters of genes orthologous among a large 

number of organisms. Of the 3800 clusters relevant to animals, 1368 (36%) had 

significant matches to brittle star. Similarly, 1335 KEGG clusters (35%) had 

matches to sea urchin gastrula. These numbers include 840 KEGG clusters 

(22%) with matches to both organisms. 

When sorted into functional classes [Figure 2.6B], an average of 43%, 

39%, and 28% of the distinct KEGG clusters within each class had matches to 

brittle star, to sea urchin, and to both, respectively, with a range between 2% and 

85%. Each KEGG functional class consists of a number of biochemical 

pathways. On average, 44%, 43%, and 30% of the KEGG clusters within each 

pathway had matches to brittle star, to sea urchin, and to both, respectively. Note 

that there is extensive overlap between the various KEGG functional classes and 

pathways, with many clusters falling into several different ones. 

Overall, genes involved in metabolism and genetic information processing 

were the most highly conserved, as would be expected. The number of these 

“housekeeping” genes found in sea urchins and brittle stars are similar and the 

relationship between the number of genes observed in each group and the 

number shared between them is very consistent. There are fewer orthologs 

detected in the other KEGG orthology groups. Many pathways under “Organ 

Systems” and “Human Diseases” are vertebrate-specific and/or relate to 
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functions which do not operate extensively until later stages of development or 

after metamorphosis and would not be expected to be expressed at the gastrula 

stage. This is found to be true in both organisms. There is also more variation in 

the number of gene matches to sea urchins and brittle stars in these functional 

classes. 

Genes involved with the cytoskeleton and cell junctions had considerably 

more matches to brittle star. Cell-adhesion genes are often large, with many 

exons, and with domains often repeated and shared between multiple genes 

[Whitaker et al 2006]. These characteristics, along with the short lengths of the 

brittle star sequences, have the potential to produce an artificially high number of 

BLAST hits. However, this pattern was the exception, not the rule across the 

other functional classes. 

The sea urchin had a far greater number of matches to genes involved in 

endocytosis, lysosome and RNA degradation. Many of these genes again 

overlap with several other pathways, but there is no clear pattern to account for 

the disparity. 
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Figure 2.3: Pyrosequencing of Brittle Star Transcriptome  
(A) After cleaning and trimming, 354,586 reads totaled 75,031,136 bp. Approximately ¾ had 
lengths between 200 and 300 bp. Less than 1% were longer than 300 bp. (B) A total of 14,261 
contigs were assembled, with a combined length of 5,488,581 bp. Median length increased by 
23% over that of the unassembled reads. Roughly ⅔ had lengths between 100 and 400 bp. Four 
percent were longer than 1000 bp, creating a long right-hand tail to the distribution. (C) The 
number of times a given nucleotide position is present in the reads used to assemble the contigs 
ranged from 1x to 8549.4x. Eighty-one percent were represented 1 to 5 times, while less than 1% 
had more than 100x coverage   

A 

B 
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Figure 2.4: BLAST Identification of Brittle Star Genes 
Automated BLAST was used to align O. wendtii cDNA sequences to both the genome and 
transcriptome of the sea urchin S. purpuratus, as well as to the KEGG Orthology database. The 
areas of the smaller circles represent the number of significant reciprocal best BLAST hits to the 
indicated datasets. Overlaps indicate matches of the same brittle star sequences to more than 
one dataset, and in nearly all such cases the matches from the different datasets are mutually 
consistent. For reference, the large dashed border represents the size of the S. purpuratus 
genome (~23,300 genes).  
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Figure 2.5: Rarefaction Curves for Sea Urchin and Brittle Star 
The steeper initial slope for the sea urchin curve indicates matches to a significant number of 
KEGG clusters even with many fewer sequences. The brittle star curve rises more gradually, but 
becomes asymptotic at the right, indicating that the sequencing captured most of the genes 
present in the transcriptome. If the two organisms express roughly the same number of genes at 
equivalent developmental stages, then the rarefaction curves indicate that comparison of these 
two data sets is indeed meaningful.  
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Figure 2.6: Gene Functional Classes Found in Brittle Star Transcriptome 
(A) O. wendtii sequences were compared to the KEGG Orthology database by reciprocal best 
BLAST. Of 3800 distinct KEGG animal gene clusters, 36% had significant matches to brittle star 
(blue), and 35% had matches to sea urchin (purple). Green indicates the overlap between these 
two sets, i.e. KEGG clusters that match to both organisms (22%). (B) When sorted into functional 
classes, an average of 43%, 39%, and 28% of the KEGG clusters within each class had matches 
to brittle star, to sea urchin, or to both, respectively, with a majority of classes having similar 
representation in both organisms.  
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Comparison to Sea Urchin Developmental Gene Regulatory Network 

The gene regulatory networks that underlie the differentiation of the basic 

tissue types in sea urchin embryos have been fairly well characterized. The 

temporal and spatial expression of these genes has been determined and many 

of the regulatory interactions between the various genes have been determined, 

either directly or inferred by interference with gene expression. The majority of 

these genes are expressed concurrently at the gastrula stage, which makes this 

stage an excellent point to identify a global set of genes important to the process 

of early cell differentiation. Here we use the sea urchin Strongylocentrotus 

purpuratus gastrula GRNs at 21-30h of development [Oliveri and Davidson 2004, 

Su 2009, Peter and Davidson 2010, Cameron et al 2009] as a reference to look 

for conservation of genes expressed in the brittle star gastrula at 40h of 

development, which is equivalent morphologically. At this point the skeletal 

spicules have just begun forming, the archenteron is one third to halfway across 

the blastocoel cavity and the equivalent of secondary mesenchyme has formed. 

The gut is not yet partitioned and no mouth has formed. The presence of the 

same genes expressed at the same stage in these two organisms would suggest 

a conservation of GRNs and a shared gastrula “toolkit” of proteins. The absence 

of genes expressed in either organism would indicate that there is either a 

temporal change in expression or that the gene is not expressed at all in the 

embryo of one group. Either is an indication of a change in a GRN. Reciprocal 

BLAST searches using the brittle star gastrula transcriptome data and the S. 
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purpuratus genome found homologs for a majority of genes involved in the sea 

urchin developmental gene regulatory network. 

In sea urchins, a gradient of β-catenin initiated at the vegetal pole of the 

egg sets up and is soon reinforced by a circuit in the early embryo involving β--

catenin/lef1, wnt8, blimp1, and otx in an intricate shifting relationship, creating a 

ring of gene expression which moves outward from the vegetal pole to specify 

endomesoderm [Smith et al 2007]. Hox11/13b is also soon involved in this circuit 

[Peter and Davidson 2010, Smith et al 2008]. Comparisons between sea urchins 

and starfish have revealed that just downstream from these early endomesoderm 

genes in the endoderm lies an extremely well-conserved kernel involving 

blimp1/krox, otx, gatae, foxa, and brachyury [Hinman et al 2003a ]. In starfish, tbr 

(t-brain) is also part of this kernel, a role which is likely deeply ancestral, as it is 

also expressed in vegetal pole endoderm precursors in both sea cucumbers and 

hemichordates [Maruyama 2000, Tagawa et al 2000]. However, in sea urchins 

tbr has lost this role and has instead been co-opted into skeletogenesis [Hinman 

et al 2007b]. In sand dollars it appears to play both these roles [Minemura et al 

2009]. 

Table 2.1 shows a comparison of some key endomesoderm and 

endoderm specific genes in the sea urchin with the transcripts present in the 

brittle star gastrula. Brittle stars express β--catenin, lef1, otx, blimp1, wnt, 

hox/11/13b, and foxa genes, suggesting that components of the endomesoderm 

and endoderm GRNs expressed early in development are conserved. Gatae, 

however, is not expressed.. Many animal phyla employ gata genes in gut 
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formation [Patient and McGhee 2002]. Gatae is a key component of the 

endoderm GRN in sea urchins and forms a feedback loop that maintains 

expression of these genes in the endoderm [Yuh et al 2004]. Otx and blimp1 

constitute another portion of that feedback loop [Peter and Davidson 2010], and 

this could be sufficient for endoderm differentiation in brittle stars. Two genes that 

are activated by gatae in S. purpuratus, brachyury (bra) and krüppel (krl), are not 

expressed at gastrula stage in brittle stars. Krüppel expression in sea urchins is 

highest in the early blastula, and is mostly gone by the time of gastrulation in S. 

purpuratus [Howard et al 2001]. Its absence from the brittle star data may 

therefore reflect a small shift in timing and/or low transcript abundance at the 

onset of gastrulation. T-brain is not expressed in the brittle star gastrula. This 

would seem to indicate that tbr expression is not required for skeletogenesis in 

brittle star embryos as it is in sea urchins, or for endoderm formation as in 

starfish. 

The endoderm in S. purpuratus is derived from two tiers of blastomeres 

formed during cleavage from the macromeres: Veg2, closest to the vegetal pole, 

and Veg1 above that. The Veg2 derived endoderm in S. purpuratus expresses 

myc, brn1/2/4, tgif and dac genes at the gastrula stage [Peter and Davidson 

2011]. All of these are expressed in the brittle star gastrula [Table 2.1]. In 

contrast, the Veg1 genes eve and hnf1 are not expressed in brittle stars. 

Together this suggests that a central early kernel of the endoderm GRN is 

conserved, although the expression of gatae and some genes it regulates are 

not. The expression of genes found in Veg 2 endoderm is also largely conserved. 
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The most likely explanation of our results is that the equivalent of Veg1 

endoderm has not formed in the brittle star gastrula at the stage we examined. 

This suggests a heterochronic shift in the formation of the second tier of 

endoderm. This could also explain the absence of brachyury.  It is a key player in 

gut formation in both protostomes and deuterostomes, though the details differ 

between taxa [Peterson et al 1999, Shoguchi et al 1999, Mitsunaga-Nakatsubo et 

al 2001, Gross and McClay 2003]. A shift in the timing of Veg1 endoderm 

formation could delay expression of brachyury in the brittle star. A less likely 

explanation is that a loss of this layer of endoderm has occurred in brittle stars, 

and that the gut is formed entirely by the equivalent of Veg 2 endoderm. Endo16, 

one of the major differentiation gene products in endoderm is not expressed in 

brittle star gastrula. 

Following endomesoderm specification, Mesenchyme precursors all 

express ets1/2, erg, and hex in S. purpuratus. All three of these genes are 

expressed in the brittle star gastrula [Table 2.2]. The sea urchin skeletogenic 

primary mesenchyme derived from the micromeres, the homologous vegetal 

plate mesoderm in starfish, and the larval structures that produce the adult 

skeletons in both animals all express many of the same genes as sea urchin 

micromeres [Gao and Davidson 2008, Ettensohn et al 2007, McCauley et al 

2010], and a majority of these genes were found in the brittle star gastrula 

transcriptome as well [Table 2.2]. In all cases of echinoderm skeleton formation 

studied, including brittle star embryos, alx1 is expressed. This is consistent with 

reports that ectopic expression of alx1 in sea urchin non-skeletogenic 
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mesenchyme (NSM) induces skeleton formation [Ettensohn et al 2007]. Ets1 is 

expressed both maternally and zygotically, and is involved in all the above cases, 

activating a great number of downstream genes. Ets1 and alx1 were both found 

in the brittle star gastrula transcriptome. Just downstream from these in both sea 

urchin micromere and starfish vegetal plate mesoderm are a group of three 

genes, erg, hex, and tgif, which form a “lockdown” mechanism, stabilizing the 

specification state by feeding back to each other and to tbr and ets1, and feeding 

forward into tissue- specific differentiation genes [McCauley et al 2010]. All three 

were present in brittle star, as was deadringer (dri), which appears to play a 

similar role in all the skeletogenic cases. Tbr has not been found in brittle stars. 

In starfish, tbr is seen in both endoderm (discussed above) and mesoderm 

[McCauley et al 2010]. It does not appear to be involved in adult skeletogenesis 

in either starfish or sea urchins. Its absence in brittle stars reinforces the idea that 

it was not part of the ancestral skeletal GRN and that its role in sea urchin 

embryonic skeleton formation is derived. 

The downstream differentiation genes found in S. purpuratus skeletogenic 

cells at the gastrula stage are also found in the brittle star gastrula [Table 2.2]. 

The spicule matrix proteins of the sea urchin endoskeleton contain a single C-

type lectin domain and repetitious stretches rich in proline and glycine [Livingston 

et al 2006, Mann et al 2008 & 2010]. The apparently loose constraints on primary 

structure in these proteins, and the resulting low sequence conservation make 

identification of brittle star homologs difficult. However, the brittle star gastrula 

transcriptome contains several transcripts encoding C-type lectin domains and 
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repetitive regions. Several other proteins, including Cyclophilin and Ficolin, are all 

expressed in sea urchin PMC cells and associated with the skeleton, though their 

exact functions remain unclear. The brittle star gastrula transcriptome contains 

matches for cyclophilin and ficolin, but not for MSP130, a major cell surface 

protein in sea urchin PMCs. Overall there is a remarkable conservation of the 

GRN leading to formation of mineralized tissue in the embryos of sea urchins and 

brittle stars. 

In sea urchins, Delta-Notch signalling from the micromeres activates gcm 

in the adjacent NSM to form pigment cells [Ransick and Davidson 2006, Croce 

and McClay 2010]. Brittle star embryos do not form embryonic pigment cells. 

Neither do starfish, but they express gcm in ectoderm rather than mesoderm, 

and it does not depend on Delta signalling [Hinman et al 2007a]. Neither notch 

nor delta is expressed in the brittle star gastrula [Table 2.2]. Gcm is expressed in 

brittle star gastrula, but gatac, gatae. six1/2,and scl are not. This suggests that 

the GRN leading to pigment cells, not surprisingly, is not conserved in brittle 

stars. Likewise, most of the genes that are expressed in the S. purpuratus small 

micromeres (i.e soxe, foxy), which are not formed outside of euechinoids, are not 

expressed in the brittle star gastrula [Table 2.2]. 

In sea urchin ectoderm, Nodal patterns both the ventro-dorsal (oral-aboral) 

and left-right axes [Duboc and Lepage 2008a], but was not found in brittle star 

[Table 2.3]; nor was its antagonist Lefty, which soon limits Nodal to the ventral 

side [Duboc et al 2008b]. On the other hand, a number of genes downstream 

from Nodal and key to specification of different ectodermal regions [Saudemont 
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et al 2010] were found in brittle star [Table 2.3]. Most of the genes expressed in 

the S.purpuratus oral ectoderm are found in the brittle star gastrula 

transcriptome, including chordin and BMP2/4. Sea urchin BMP2/4 is expressed 

in the oral ectoderm, then diffuses to and specifies the aboral ectoderm by 

inhibiting Nodal [Lapraz et al 2009], while Chordin helps pattern neural tissue in 

the ciliary band at the oral/aboral border by excluding BMP2/4 activity from the 

oral side [Bradham et al 2009]. Genes that, in the sea urchin, are activated by 

Nodal-independent early oral ectoderm input are found to be expressed in brittle 

star gastrula. These include otxb1/2 and hnf6. Of the sea urchin genes that are 

activated at the boundary of ectoderm and endoderm, foxj is expressed in brittle 

star gastrula, but lim1 and nk1 are not. 

Genes that are expressed in the sea urchin aboral ectoderm are not as 

uniformly expressed in brittle star gastrula. Genes expressed by 12h of sea 

urchin development such as sim and nk2.2 are expressed in brittle star gastrula, 

but not genes expressed later in sea urchin aboral ectoderm such as hox7 and 

msx, or the differentiation genes spec1 and spec2a. Tbx2/3 is expressed in brittle 

star gastrula, but not irxa and dlx, which are activated by Tbx2/3 in sea urchins. 

Taken together this would suggest two heterochronic shifts in ectoderm 

determination between sea urchins and brittle stars. In sea urchins, all of the 

genes examined are expressed at the gastrula stage. It appears that in brittle 

stars patterning by Nodal and Lefty is complete by gastrula and these genes are 

no longer expressed. Oral ectoderm is determined and specification of the aboral 
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ectoderm is underway, but it appears that this process is not complete in the 40h 

brittle star gastrula. 

 
Table 2.1: Comparison of O. wendtii gastrula transcripts to the S. purpuratus endodermal 
and endomesodermal gene regulatory networks 

Gene 
Found in 

O.w. 
gastrula 

RBB to 
S.p. Genome 

RBB to NCBI 
RefSeq Proteins 

Role in S.p. 

β-Catenin Y 
β-Catenin 

[SPU_004319]
S.p. β-Catenin 
[XP_786059.2] 

Endoderm 

Otx Y 
Otx 

[SPU_010424]
S.p. Otx 

[NP_999753.2] 
Endoderm 

Wnt Y 
Wnt5 

[SPU_026277]
S.k. Wnt2 

[NP_001158455.1] 
Endoderm 

Blimp1 Y 
Blimp1/Krox 

[SPU_027235]
B.f. Zn-finger 

[XP_002587482.1] 
Endoderm 

Hox11/13b Y 
Hox11/13b 

[SPU_002631]
S.p. Hox11/13b 
[NP_999774.1] 

Endoderm 

Bra N   Endoderm 
Krl N   Endoderm 

Myc Y 
Myc 

[SPU_003166]
S.p. Myc 

[NP_999744.1] 
Endoderm 

SoxB1 Y 
SoxB1 

[SPU_022820]
S.p. SoxB1 

[NP_999639.1] 
Endoderm 

Brn1-2-4 Y 
Brn1-2-4 

[SPU_016443]
S.p. Brn1-2-4 

[XP_782909.2] 
Endoderm 

Tgif Y 
Tgif 

[SPU_018126]
I.s. Tgif 

[XP_002433653.1] 
Endoderm 

Hnf1 N   Endoderm 
Eve N   Endoderm 
Hh N   Endoderm 

VEGF Y 
VEGF 

[SPU_030148]
H.p. VEGF 

BAI67115.1] 
Endoderm 

Dac Y 
Dac 

[SPU_028061]
I.s. Dachsund 

[XP_002407755.1] 
Endoderm 

Endo16 N   Endoderm 

FoxA Y 
FoxA 

[SPU_006676]
S.p. FoxA 

[NP_001073010.1] 
Endo+SMC 

GataE N   Endo+SMC 

Kakapo Y 
Syne1 

[SPU_013237]

S.p. Similar to 
CG33715-PD 

[XP_784190.2] 
Endo+SMC 

Apobec Y 
Hnrpr 

[SPU_019557]
S.p. Hnrpr 

[XP_793277.1] 
Endo+SMC 

Gelsolin Y 
Gelsolin 

[SPU_003985]
S.p. Gelsolin 

[XP_788777.1] 
Endo+SMC 

B.f. = Branchiostoma floridae, H.p. = Heliocentrotus pulcherrimus, 
I.s. = Ixodes scapularis, O.w. = Ophiocoma wendtii, 
S.k. = Saccoglossus kowalevskii, S.p. = Strongylocentrotus purpuratus 
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Table 2.2: Comparison of O. wendtii gastrula transcripts to the S. purpuratus 
mesenchymal gene regulatory network 

Gene 
Found in 

O.w. 
gastrula 

RBB to 
S.p. Genome 

RBB to NCBI 
RefSeq Proteins 

Role in S.p. 

HesC Y 
HesC 

[SPU_021608]
S.p. HesC 

[XP_796692.1] 
Mesenchyme 

Erg Y 
Erg 

[SPU_018483]
S.p. Erg 

[NP_999833.1] 
Mesenchyme 

Hex Y 
Hex 

[SPU_027215]
S.p. Hex 

[XP_001197103.1] 
Mesenchyme 

Ets1/2 Y 
Ets1/2 

[SPU_002874]
S.p. Ets1/2 

[NP_999698.1] 
Mesenchyme 

Alx1 Y 
Alx1 

[SPU_025302]
S.p. Alx1 

[NP_999809.1] 
PMC 

Tbr N   PMC 

Tgif Y 
Tgif 

[SPU_18126] 
I.s. Tgif 

[XP_002433653.1] 
PMC 

FoxN2/3 N   PMC 

Dri Y 
Dri 

[SPU_017106]
S.p. Dri 

[NP_999799.1] 
PMC 

FoxB Y 
FoxB 

[SPU_004551]
S.p. FoxB 

[NP_999797.1] 
PMC 

FoxO Y 
FoxO 

[SPU_009178]
S.p. FoxO 

[XP_001183650.1] 
PMC 

VEGFR N   PMC 
Delta N   PMC 

Spicule matrix 
genes 

Possible 
C-lectin 

[SPU_007882]
S.p. C-lectin 

[NP_999805.1] 
Skeletal 

Differentiation 

MSP130 N   
Skeletal 

Differentiation 

G-Cadherin Y 
G-Cadherin 

[SPU_015960]
S.k. G-Cadherin 

[XP_002741140.1] 
Skeletal 

Differentiation 

Ficolin Y 
Fic 

[SPU_023548]
B.f. Ficolin 

[XP_002594892.1] 
Skeletal 

Differentiation 

Cyclophilin Y 
CypL7 

[SPU_008305]
D.m. Cyclophilin 1 

[NP_523366.2] 
Skeletal 

Differentiation 

Gcm Y 
Gcm 

[SPU_006462]
S.k. Gcm 

[XP_002733441.1] 
SMC 

Notch N   SMC 
Six1/2 N   SMC 

Hnf6 Y 
Hnf6 

[SPU_016449]
S.p. Hnf6 

[NP_999824.1] 
SMC 

GataC N   SMC 
Scl N   SMC 

Pks Y 
Pks 

[SPU_028395]
S.p. Pks 

[NP_001239013.1] 
SMC 

FoxF Y 
FoxF 

[SPU_000975]
S.p. FoxF 

[XP_794135.1] 
Small Micromeres 

SoxE N   Small Micromeres 
FoxY N   Small Micromeres 

B.f. = Branchiostoma floridae, D.m. = Drosophila melanogaster, I.s. = Ixodes scapularis, 
O.w. = Ophiocoma wendtii, S.k. = Saccoglossus kowalevskii, 
S.p. = Strongylocentrotus purpuratus 
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Table 2.3: Comparison of O. wendtii gastrula transcripts to the S. purpuratus ectodermal 
gene regulatory network 

Gene 
Found in 

O.w. 
gastrula 

RBB to 
S.p. Genome 

RBB to NCBI 
RefSeq Proteins 

Role in S.p. 

Nodal N   Oral Ectoderm 
Lefty N   Oral Ectoderm 

Chordin Y 
Chordin 

[SPU_004983]
S.k. Chordin 

[NP_001158390.1] 
Oral Ectoderm 

Sip1 N   Oral Ectoderm 
FoxG N   Oral Ectoderm 

BMP2/4 Y 
BMP2/4 

[SPU_000669]
S.p. BMP2/4 

[NP_001116977.1] 
Oral Ectoderm 

FoxA Y 
FoxA 

[SPU_006676]
S.p. FoxA 

[NP_001073010.1] 
Oral Ectoderm 

Bra N   Oral Ectoderm 

Dri Y 
Dri 

[SPU_017106]
S.p. Dri 

[NP_999799.1] 
Oral Ectoderm 

Hes Y 
Hes 

[SPU_006814]
S.k. Hes1 

[NP_001158466.1] 
Oral Ectoderm 

Hnf6 Y 
Hnf6 

[SPU_016449]
S.p. Hnf6 

[NP_999824.1] 
Oral Ectoderm 

FoxJ1 Y 
FoxJ1 

[SPU_027969]
S.p. FoxJ1 

[NP_001073013.1] 
Ecto/Endo Border 

Nk1 N   Ecto/Endo Border 
Lim1 N   Ecto/Endo Border 

Tbx2/3 Y 
Tbx2/3 

[SPU_023386]
S.p. Tbx2/3 

[NP_001123280.1] 
Aboral Ectoderm 

Lhx2 (Lim2) Y 
Lhx2 

[SPU_021313]
M.m. Lhx2 

[NP_034840.1] 
Aboral Ectoderm 

Dlx N   Aboral Ectoderm 

Nk2.2 Y 
Nk2.2 

[SPU_000756]
S.p. Nk2.2 

[NP_001123283.1] 
Aboral Ectoderm 

Hox7 N   Aboral Ectoderm 
Msx N   Aboral Ectoderm 

Klf7 Y 
Klf2/4 

[SPU_020311]
S.k. Klf2 

[NP_001161575.1] 
Aboral Ectoderm 

IrxA N   Aboral Ectoderm 
Hmx N   Aboral Ectoderm 

M.m. = Mus musculus, O.w. = Ophiocoma wendtii, 
S.k. = Saccoglossus kowalevskii, S.p. = Strongylocentrotus purpuratus 
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Table 2.4: Conservation of genes between S. purpuratus and O. wendtii  

    
% conserved 
in O. wendtii 

S. purpuratus Transcriptome   55 

Early Gastrula GRN   65 

Endoderm   53 

  Veg2 Endoderm 70 

  Veg1 Endoderm 20 

Primary Mesenchyme   86 

Non-Skeletogenic Mesenchyme   57 

  Secondary Mesenchyme 64 

  Small Micromeres 33 

Oral Ectoderm   67 

Aboral Ectoderm   58 

 

CONCLUSIONS  

The brittle star Ophiocoma wendtii exhibits radial holoblastic cleavages 

that are equal throughout, giving rise to uniform-sized blastomeres without the 

formation of the micromeres characteristic to sea urchins. Despite this, 

mesenchymal cells ingress and give rise to an embryonic skeleton, a 

developmental structure unique to echinoids and ophiuroids among the 

echinoderms. Mesenchymal cells also give rise to the coelomic pouches, but no 

pigment cells are formed in the embryo. Archenteron formation occurs much the 

same as in sea urchins, although there is a delay in gut elongation following 

invagination as well as in growth of the skeletal spicules initiated in the 

ventrolateral clusters. The resulting pluteus larva closely resembles that of sea 

urchins, albeit without pigment cells. The O. wendtii gastrula expresses genes 

from all functional classes at the gastrula stage. Brittle stars and sea urchins 

have comparable numbers of genes in most functional classes expressed at the 

gastrula stage. 
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A majority of the genes involved in the sea urchin gene regulatory network 

were also found in the brittle star gastrula transcriptome [Table 2.4]. The brittle 

star pyrosequencing data are completely consistent with our earlier results using 

a PCR- based candidate gene approach (not shown). For example, transcripts of 

alx1, dri, gabp, ets1, and erg were found by both methods, whereas tbr, gatac, 

and gatae were not. The percentage of genes involved in gene regulatory 

networks expressed in S. purpuratus gastrula that are also expressed in O. 

wendtii gastrula exceeds the percentage of transcripts conserved overall [Table 

2.4]. However, this conservation is not uniform across the different tissue types 

found in echinoderm gastrulae. Some of these differences can be explained by 

heterochronic shifts in gene expression, although gene loss is also a possibility. 

Some of the endomesoderm genes that are expressed in sea urchin gastrula at 

declining levels could be undetectable by the brittle star gastrula stage. 

Examination of the aboral ectoderm genes expressed in O. wendtii relative to S. 

purpuratus indicates that specification of aboral ectoderm has begun but is 

delayed in the brittle star. The same could be true for the Veg1 endoderm. Other 

differences in gene expression correlate with differences in embryonic 

development. Brittle star embryos do not possess micromeres or pigment cells. 

The second lowest percentage of GRN genes conserved (33%) is seen in the 

genes expressed in S. purpuratus small micromeres and pigment cells [Table 

2.4]. 

The highest percentage of GRN conservation is seen in the skeletogenic 

mesenchyme cells (PMCs in sea urchins). This is not surprising, since all adult 
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echinoderms form mineralized structures. The GRN and differentiation genes 

that lead to mineralized structures must be conserved in order for the adult 

skeleton to form. In sea urchins this GRN is activated in the embryo largely 

intact. The conservation of these genes in the O. wendtii gastrula suggests that is 

the case in brittle stars as well. 

Hesc is a transcriptional repressor ubiquitously expressed in the sea 

urchin embryo, where its role is to keep the skeleton program off. In the sea 

urchin micromeres, hesc is itself repressed by Pmar1 in response to nuclearized 

β-catenin, thereby de-repressing the skeleton circuits [Revilla-i-Domingo et al 

2007]. This double-negative pmar1/hesc gate appears unique to sea urchins as 

the mechanism that coupled the pre-existing programs of skeletogenesis and 

maternal β-catenin-mediated vegetal specification to produce the novelty of the 

embryonic skeleton, as it is not involved in adult sea urchin skeletogenesis [Gao 

and Davidson 2008, Ettensohn et al 2007]. Recent evidence suggests that other, 

as yet unknown mechanisms related to the unequal cleavage that produces the 

micromeres are also involved [Sharma and Ettensohn 2010]. Starfish, which do 

not build an embryonic skeleton, also express hesc throughout most of the 

embryo, but it appears to have no effect on mesodermal genes shared with sea 

urchin skeletogenesis, and pmar1 has never been found in starfish [McCauley et 

al 2010]. 

Sea urchins express pmar1 from fourth cleavage through mid-blastula, so 

it would not be expected to be seen in the O. wendtii gastrula transcriptome. 

Using PCR, our lab has searched for, but never found, pmar1 transcripts from 
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any stage of brittle star development. We have, however, successfully amplified 

the pmar1 homolog from brittle star genomic DNA, identified as such by the 

presence of a conserved intron [unpublished]. This suggests that activation of the 

adult skeletal GRN in embryos occurred differently in brittle stars than in sea 

urchins. Overall, the data suggest that embryonic skeleton formation in sea 

urchins and brittle stars represents convergent evolution by independent 

cooptation of a shared pathway utilized in adult skeleton formation. 
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Chapter Three: 
A Survey of Transcription Factors in the  

Brittle Star Ophiocoma wendtii Gastrula Embryo 
 

BACKGROUND 

Transcription factors are a primary link between genotype and phenotype, 

and a major factor in evolution. The interactions between transcription factors, 

signalling molecules, and the genes which they target form gene regulatory 

networks (GRNs), the means by which developmental instructions scattered 

throughout the genome are organized and implemented at the proper places and 

times. Patterns of transcription in different regions of the egg and early embryo 

specify the primary germ layers and body axes. As development proceeds, the 

various GRN circuits active in each portion of the embryo turn on the genes for 

tissue-specific proteins and pathways, leading toward progressively more refined 

and specialized structures and physiology and mature functional organs. 

Transcription factor proteins regulate transcription of target genes by 

binding to cis-regulatory DNA regions upstream of the coding sequence. 

Transcription factors are thus defined by their DNA-binding domains. Many also 

contain other functional domains such as phosphorylation sites or protein-protein 

interaction domains. Because of their critical roles in the construction of complete 

viable bodies, transcription factors tend to be very highly conserved at the amino 

acid sequence level within their important domains, as well as in the 

arrangements of the different domains within the protein. Regions outside these 
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domains have varying—and often very low—degrees of sequence homology. 

Mutations which alter the binding specificity of transcription factors or the 

promoter elements of the genes they regulate can result in changes to the 

location and/or timing of expression of those targeted genes, thereby altering 

aspects of the GRNs which build bodies, and resulting in bodies which look or 

function differently [Davidson and Erwin 2006, Ettensohn et al 2007, Hinman et al 

2007a]. 

As basal deuterostomes, echinoderms occupy an important phylogenetic 

position between chordates and all other animal phyla. The GRN behind 

development of the purple sea urchin Strongylocentrotus purpuratus has been 

extensively studied in the stages from egg through gastrulation [Davidson et al 

2002a & 2002b, Oliveri and Davidson 2004, Cameron et al 2009, Su 2009, Peter 

and Davidson 2010]. The equivalent GRNs in other echinoderm classes have so 

far been much less studied. As part of the S. purpuratus genome sequencing 

project [Sea Urchin Genome Sequencing Consortium 2006], systematic searches 

were conducted to find all the transcription factor genes in the urchin genome 

[Arnone et al 2006, Howard-Ashby et al 2006a & 2006b, Materna et al 2006a, 

Rizzo et al 2006, Tu et al 2006]. Here, I present the results of a search through 

the early gastrula-stage transcriptome of the brittle star Ophiocoma wendtii for 

homologs of all the S. purpuratus transcription factors. Roughly one third of the 

transcription factor genes in the S. purpuratus genome, and half of those 

expressed in gastrula-stage sea urchin embryos, were found in the brittle star 
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gastrula. Comparisons to the gastrula transcriptomes of the green sea urchin 

Lytechinus variegatus and the starfish Patiria miniata produced similar results. 

 

METHODS 

Protein sequences for the S. purpuratus transcription factor genes listed in 

Arnone et al 2006, Howard-Ashby et al 2006a & 2006b, Materna et al 2006a, 

Rizzo et al 2006, and Tu et al 2006 were retrieved from SpBase 

[http://www.spbase.org/SpBase/, Cameron et al 2009]. These were used as 

queries to search the brittle star gastrula transcriptome sequences using 

TBLASTN [Altschul et al 1997] at default settings. The best hit for each query 

was then used to search back against both sea urchin protein sequences and 

NCBI RefSeq proteins [http://www.ncbi.nlm.nih.gov/RefSeq/] using BLASTX. 

Urchin genes which had reciprocal best BLAST (RBB) hits to brittle star with e-

values of 1e-9 or better in both directions were designated as high-confidence 

homologs and color-coded green in Tables 3.1‒3.15 and Figures 3.1‒3.2. Those 

with e-values of 1e-6 to 2e-9 were designated as possible homologs and coded 

yellow, while those with e-values worse than 1e-6 were considered poor matches 

and coded pink. Brittle star transcripts that matched best to different genes in 

different organisms were coded blue-purple. Genes with matches that fell into 

more than one of these quality categories were assigned an overall quality rating 

based on the preponderance of the evidence, or, if there was no clear 

preponderance, assigned to the lower quality category. Gastrula transcriptome 

sequences from Lytechinus variegatus [http://www.spbase.org/LV/index.php] and 
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Patiria miniata [http://www.spbase.org/PM/index.php] were then used to search 

against brittle star in the same way using TBLASTX. Genes were considered to 

be transcribed at a biologically significant level in S. purpuratus if they had a 

concentration of ≥150 transcripts/embryo at ~30 hours post-fertilization (early 

gastrula stage) according to SpBase [http://www.spbase.org/SpBase/, Cameron 

et al 2009] or Materna et al 2010 [http://vanbeneden.caltech.edu/~m/cgi-bin/hd-

tc/plot.cgi], since this was the threshold used in previous studies of transcription 

factor expression in S. purpuratus [Howard-Ashby et al 2006b]. 

 

RESULTS AND DISCUSSION 

Overview 

The S. purpuratus genome contains 284 transcription factors, not 

including C2H2 zinc-finger genes [Figure 3.1a]. Ninety-nine (35%) of these had 

moderately good (1e-6 to 2e-9) or excellent (≤ 1e-9) matches to the brittle star 

gastrula transcripts, while 164 (58%) were not found. The remaining 21 (7%) had 

either ambiguous results or only poor matches. 

At the 30h early gastrula stage, S. purpuratus expresses 166 (58%) of 

these transcription factor genes at biologically significant levels of at least 150 

transcripts/embryo. Of the genes expressed, 82 (49%) had good matches to 

brittle star, while 44% were not found [Figure 3.1b]. The currently available 

transcriptome data for Lytechinus variegatus and Patiria miniata are less 

complete, containing 111 and 124 transcription factor genes respectively. The 

results, however, are quite similar to those for S. purpuratus, with 52% of L. 
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variegatus transcription factors and 57% of those from P. miniata having good or 

excellent brittle star matches [Figures 3.1c-d]. Forty-two percent of the 

transcription factor genes that were not found in the brittle star gastrula are also 

not expressed at this stage in any of the other three organisms. 

Figure 3.2 depicts the number and quality of brittle star matches for each 

gene family. Within each family, the proportions of high-quality matches are 

rather consistent for all three transcriptomes. The bHLH, nuclear receptor, and 

homeobox families have many genes which are not expressed at the gastrula 

stage in urchins or starfish, and therefore would not be expected to match to 

brittle star gastrula. When unexpressed genes are excluded, the bHLH and 

homeobox families have results similar to those for the other families. With the 

exception of the nuclear receptors, which are more rapidly evolving, the three 

transcriptomes match to brittle star for 45-64% of the expressed genes in each 

family, with the exception of starfish in the bZip and Ets families, where it 

matches to brittle star at 69% and 80% respectively. 

While the spatial expression of these genes, and the precise regulatory 

interactions between them are as yet unknown in brittle stars, the general 

patterns of what was found and not found in the sequencing results, in the 

context of broadly conserved developmental mechanisms and roles played by 

these genes in other organisms, can allow us to draw some tentative conclusions 

about the likely structure of the brittle star developmental gene regulatory 

network. 
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Figure 3.1: Transcription Factor Genes Found in Brittle Star Transcriptome.  
Results of reciprocal best BLAST of transcription factor genes from other organisms vs. the brittle 
star gastrula transcriptome. 
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Figure 3.2: Transcription Factor Families 
Results of reciprocal best BLAST of transcription factor genes from other organisms vs. the brittle star gastrula transcriptome. 
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Ets Gene Family 

The Ets family of transcription factors is defined by the ETS winged helix-

turn-helix DNA-binding domain. Most also contain a PNT (POINTED) domain 

which interacts with other proteins. Such interactions, as well as signalling 

pathways, especially MAPK, and phosphorylation state all contribute to the 

activity and sequence-binding specificity of particular Ets proteins [Sharrocks 

2001]. 

Multiple ets genes have been found throughout the animal kingdom, from 

sponges to mammals [Degnan et al 1993], and duplications have greatly 

expanded the Ets family in vertebrates. The sea urchin genome includes eleven 

ets genes, one homolog corresponding to each vertebrate ets subfamily (except 

one which is mammal-specific) with 73-96% amino-acid sequence identity 

between urchin and human for eight of these [Rizzo et al 2006]. Good matches 

for six ets genes were found in brittle star [Table 3.1]. 

Sp-Ets1/2 is expressed at very high levels. Ubiquitous at the earliest 

stages, it soon localizes to the PMC cells, where it is central to embryonic 

skeleton formation. Ets1/2 was found in brittle star, as were Erg and Tel which 

also participate in urchin PMCs, as well as SMCs in the case of Erg. Two other 

urchin ets genes, Ese and Pea are confined to the SMCs at gastrulation. Ese 

was not found in brittle star. Pea had only moderate e-values (~e-9) vs. S. 

purpuratus, though the match was to the PEA3 MAP kinase activation domain, 

and the matches between Lytechinus and brittle star were better (~e-12). Ets4, 

which helps define the nonvegetal portion of the early urchin embryo, and 
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activates the gene for hatching enzyme [Wei et al 1999], was also found in brittle 

star. 

Of the ets genes not found in brittle star, Elk and Erf are expressed 

ubiquitously in urchin. Sp-Pu1 is not expressed significantly until 72 hpf (pluteus 

stage). Sp-Elf is not expressed until late gastrula, and had only a poor match in 

brittle star. 

 

Forkhead (Fox) Gene Family 

The forkhead gene family, defined by the winged helix-turn-helix 

FORKHEAD [FKH or FOX] DNA-binding domain, is found in abundance in all 

animal phyla, with 15 fox genes in the cnidarian Nematostella [Magie et al 2005] 

and 5 in sponges [Adell and Muller, 2004]. The urchin genome includes 22 fox 

genes, 5 of which have 2 alleles each [Tu et al 2006]. The set of fox genes found 

in brittle star closely corresponds with those expressed in urchin gastrula [Table 

3.2], and the differences are mostly consistent with morphological differences. 

Sp-FoxA, B, and P are all involved with endoderm formation [Hinman et al 

2003a, Oliveri et al 2006, Luke et al 1997]. FoxB is also important to PMC 

specification [Minokawa 2004], along with FoxO. FoxC is seen in the coelomic 

pouches [Ransick et al 2002]. FoxJ1 is found in the apical plate, as is FoxQ2, 

which provides a vital link between the AV and OA axes [Yaguchi et al 2008]. All 

of these were also found in brittle star. Patterning of neuroectoderm through 

restriction of FoxQ2 orthologs to one pole of the early embryo by Wnt signalling 

from the opposite pole has been described in Saccoglossus [Darras et al 2011], 
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Branchiostoma [Yu et al 2007], and even the cnidarian Clytia hemisphaerica 

[Momose et al 2008]. 

Four other fox genes expressed in urchin gastrula [Tu et al 2006] were not 

found in brittle star. Sp-FoxG is seen in oral ectoderm, while Sp-FoxM is 

ubiquitous, and acts in the cell cycle in other organisms. The absence of FoxN2/3 

and FoxY is consistent with the reduced presence of SMCs in brittle star. Sp-

FoxN2/3 is very briefly (but importantly) expressed in PMCs at blastula stage, 

and is thereafter seen only in the small micromeres and veg2 SMCs [Rho and 

McClay 2011], while Sp-FoxY is apparently urchin-specific and confined 

exclusively to the small micromeres. 

Two fox genes found in brittle star likely represent heterochronic shifts: at 

early gastrula, Sp-FoxJ2 is weakly seen only in SMCs, but is present throughout 

the urchin embryo at earlier stages, while Sp-FoxF appears only later in 

gastrulation within the coelomic pouches [Tu et al 2006]. In brittle stars, the 

coelomic pouches form a bit earlier, and are complete before gastrulation is 

finished. The status of two other genes is questionable. Sp-FoxK is very highly 

expressed in both primary and secondary mesenchyme, as well as in aboral 

ectoderm [Tu et al 2006]. Its presence in brittle star is in doubt, as there are only 

poor-quality matches to the FHA domain (also found in many other unrelated 

proteins) and to a short segment just C-terminal to the FKH domain. Sp-FoxQ1 is 

not significantly expressed at all in urchin embryos, and had only a very poor 

match in brittle star. 
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Basic Zipper (bZip) Gene Family 

Basic Zipper transcription factors have hetero- or homo-dimerization 

domains (“zippers”) in their C-terminal ends [Vinson et al 2002]. There are 15 

urchin bZip genes, but the precise roles of most of these remain uncertain. Nine 

had good matches in brittle star [Table 3.3]. Notable among these are Sp-Jun, 

which is seen in the ingressing PMCs, and Sp-Hlf, found in the neurogenic 

ectoderm [Howard-Ashby et al 2006b, Burke 2006]. 

 

Basic Helix-Loop-Helix (bHLH) Gene Family 

The urchin genome contains 48 basic helix-loop-helix genes [Howard-

Ashby et al 2006b]. Many bHLH genes do not operate until the later 

differentiation stages of development. Thus, in urchin gastrula, only 21 (44%) of 

these are expressed, many at a rather low level. Ten of these were also found in 

brittle star, plus another 2 not present in urchin or starfish gastrulae [Table 3.4]. 

Arnt (Ahr Nuclear Translocator) forms heterodimers with several other 

bHLH proteins, including Ahr and Hif1a, which were not found in brittle star, as 

well as with Sim, which was found. In flies and mammals, the Sim-Arnt dimer is 

active in neurogenesis [Kinoshita et al 2004]. 

Hes (Hairy Enhancer of Split) has a complex expression pattern in several 

regions of the urchin embryo, but its precise functions are as yet unclear 

[Minokawa et al 2004]. The paralog HesC is expressed throughout most of the 

starfish embryo with an unknown role [McCauley et al 2010]. In urchins, HesC 

has been co-opted to function as part of the master switch mechanism for the 
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derived embryonic skeleton [Revilla-i-Domingo et al 2007]. Mitf is seen in the 

skeletal precursors and oral ectoderm [Howard-Ashby et al 2006b], while Myc is 

a cell-cycle control gene expressed around the urchin blastopore [Howard-Ashby 

et al 2006b, Peter and Davidson 2011]. Usf (Upstream Stimulatory Factor) is 

found in the SMCs and foregut, and E12 is present throughout the embryo 

[Howard-Ashby et al 2006b]. All of these were found in the brittle star transcripts. 

Notably absent from brittle star were Ac/Sc (Achaete-Scute) which is 

expressed in the urchin apical plate and is very widely employed in neurogenesis 

[Burke et al 2006, Wei et al 2009]. 

 

Nuclear Hormone Receptor (NR) Gene Family 

Nuclear receptors are ligand-activated transcription factors. This family is 

faster evolving than other families [Howard-Ashby et al 2006b], making 

identification of homologs more difficult. Out of 33 urchin nuclear receptor genes, 

only 9 had good-quality brittle star matches. As with bHLH genes, many hormone 

receptors are not active until much later in urchin development, and very little is 

known about the ligands they bind or their specific functions. Nineteen NR genes 

are expressed in urchin gastrula, 6 of which had good matches in brittle star 

[Table 3.5]. The e-values for this gene family were also considerably larger on 

average than for other families. One gene for which more is known is Fxr, which 

is expressed in the oral ectoderm and functions in environmental sensing and 

immune response [Goldstone et al  2006]. 
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The three nr1h urchin genes are recent duplications [Howard-Ashby et al 

2006b]. All three match to the same brittle star cDNA, but with conflicting best e-

values in the forward and reverse directions. It is therefore unclear whether the 

duplication events occurred before or after the last common ancestor. Similarly, 

the two urchin ppar genes are a recent duplication. Only Ppar1 is expressed in 

urchin gastrula, but only Ppar2 was found in brittle star, so this duplication is 

likely urchin-specific. The four nr1m genes are also a recent expansion. Urchins 

express two of these at gastrula, but none were found in brittle star. 

 

Homeobox Gene Family 

The homeobox or homeodomain family is large and diverse, with many 

subfamilies. The S. purpuratus genome contains 96 homeobox genes, 44 of 

which are expressed at gastrula stage [Tables 3.6‒3.11]. 

The classical hox cluster [Table 3.7] contains 11 genes in sea urchins, 

only 2 of which participate in embryogenesis, while the rest are active only in 

adult development [Arenas-Mena et al 2000]. Sp-Hox7 is expressed in the urchin 

archenteron, SMCs, and oral ectoderm [Dobias et al 1996] but was not found in 

brittle star. Sp-Hox11/13b helps specify the vegetal pole and gut [Smith et al 

2008] and in fact, this was the only member of the extended hox class found in 

brittle star. The three urchin parahox genes, Gsx, Lox, and Cdx are not active 

until mid- to late-gastrula [Arnone et al 2006], and were not seen in brittle star. 

In urchins and starfish, a single Otx (Orthodenticle) gene is subject to 

alternative promoters and alternative splicing to yield 2 or 3 distinct proteins 
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which play vital roles in oral ectoderm and the vegetal plate [Li 1997, Hinman et 

al 2003a & 2003b]. The splice-variants share the homeobox and C-terminal 

ends, but differ in their N-terminal regions. Brittle star had matches to all 3 of 

these regions, with the N-terminal sequence matching best to starfish Otxβ-b, the 

ortholog of urchin Otxβ. The β isoform is the ancestral version, and the one more 

widely employed, with the α variant unique to echinoderms [Hinman et al 2003b]. 

There were no matches to the α N-terminus, but if the urchin and starfish pattern 

is conserved, expression of the α form is declining at gastrula stage and greatly 

outnumbered by transcripts of Otxβ. 

Several other homeobox genes with well-characterized roles in urchins 

were also found in brittle star. Alx1 is near the top of the PMC skeletogenic 

program [Ettensohn et al 2003 & 2007]. Hex and Tgif function a bit later in the 

PMCs [Howard-Ashby 2006a], as well as in Veg2 endoderm for Tgif [Peter 2011]. 

Across the animal kingdom, Pax6 plays a central early role in neural and 

especially retinal specification [Vopalensky and Kozmik 2009]. Sp-Six3 is near 

the top of the circuit for the neurogenic animal pole signalling center, and, as in 

vertebrates, excludes Wnt signalling from this area [Wei et al 2009, Lagutin 

2003]. Nk2.2 is found in the ectoderm [Saudemont et al 2010], while Nkx2.1 is 

seen only in non-neurogenic cells of the apical plate [Takacs et al 2004]. Hnf6 

helps pattern the oral ectoderm, and later the ciliary band, as well as contributing 

to activation of the skeletal differentiation genes, and to GataC in the NSM. [Otim 

et al 2004]. 
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Sea urchin Pmar1 is briefly expressed only in the cleavage-stage 

micromeres to initiate skeletogenesis [Oliveri et al 2003].  Our lab has cloned 

brittle star Pmar1 from genomic DNA, but never found it expressed at any 

developmental stage. Nor was it found in the brittle star gastrula sequences. This 

lends support to the idea that brittle stars acquired their embryonic skeleton 

independently of sea urchins through early activation of the skeletal GRN by a 

different gene than Pmar1. 

 

C2H2 Zinc-Finger Gene Family 

The sea urchin genome contains 377 C2H2 zinc-finger genes, less than a 

third of which are expressed during embryogenesis, and the functions of the vast 

majority of these remain unknown [Materna et al 2006a]. The C2H2 zinc-finger 

domain is extremely common in a variety of proteins. Many of these are 

transcription factors, but many others are not, and there is no simple way to 

distinguish these through their sequences alone. Proteins often contain a large 

number of zinc-finger domains repeated in tandem [Laity et al 2001], and the 

amino acid sequences of these domains are generally very similar between 

different proteins, while regions outside the domains tend to be widely divergent 

even among known orthologs [Knight and Shimeld, 2001]. Because of these 

features, my reciprocal-best-BLAST approach proved unsuccessful with zinc-

finger genes, and they were not included in this study. 
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Other Gene Families 

The sea urchin genome contains another 62 transcription factor genes 

belonging to a number of smaller families [Tables 3.12‒3.15], half of which were 

found in brittle star. 

Brittle star gastrula contained SoxB1 but not SoxB2 [Table 3.12]. In 

urchins, these two factors play distinct but overlapping roles in patterning the 

ectodermal end of the animal-vegetal axis [Kenny et al 2003]. Sp-SoxD is seen in 

the ingressing end of the gut, while Sp-SoxC is seen in the same area, plus in 

several distinct patches of the ectoderm [Howard-Ashby et al 2006a], but was not 

found in brittle star. Neither was SoxE, which is seen in the urchin SMCs and 

later in the left coelomic pouch [Juliano et al 2006]. 

Smad proteins are the transcription factors at the ends of TGF-β, Activin, 

and BMP signalling pathways [Itoh et al 2000]. Sea urchins have 4 smad genes, 

one homolog for each of the vertebrate smad types, and brittle star had matches 

of 3 of these [Table 3.13]. Sp-Nodal signals through Sp-Smad2/3 in the oral 

ectoderm to limit neurogenesis to the apical plate [Yaguchi et al 2006]. Smad2/3 

had no reciprocal matches to brittle star, but Smad1/5/8 had reciprocal matches 

to five separate regions covering both the MH1 and MH2 domains. It is possible 

that at least one of these sequences actually represents a transcript of Smad2/3 

in a region with greater sequence divergence. 

Of the 6 urchin members of the tbox gene family, 3 are expressed at 

gastrula [Table 3.14]. One of these was found in brittle star: Tbox2-3, which 

contributes to morphogenic cell movements in the aboral regions of all three 
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urchin germ layers [Gross et al 2003]. Tbr (Tbrain) helps specify starfish 

endoderm, but in urchins has been co-opted into skeletogenesis [Hinman 2003a, 

2007b]. Brittle star had only a very poor match to starfish Tbr, and none at all to 

urchin Tbr. Attempts at PCR amplification from various developmental stages 

were also unsuccessful, and I conclude that Tbr may have been lost in brittle 

stars, or at least not expressed during embryogenesis. 

Similarly, no gata genes were found either in the brittle star sequences or 

through PCR [Table 3.15]. Sp-GataC is active in pigment cells, [Ransick and 

Davidson 2006] which brittle stars lack. GataE plays important conserved roles in 

urchin and starfish endoderm [Hinman and Davidson 2003c, Hinman et al 2003a, 

Kiyama and Klein 2007]. Gata factors are relatively variable even within the DNA-

binding domain, and radically divergent elsewhere [Lowry and Atchley 200]. This, 

in conjunction with the short pyrosequencing reads, could potentially mask the 

presence of brittle star gata factors. 

Several other transcription factors of note were found in brittle star [Table 

3.15]. Cytoskeletal Actin 3a (Sp-CyIIIa) is activated in the aboral ectoderm by Sp-

Runt1 and is inhibited elsewhere by Sp-Myb [Coffman et al 1996 & 1997]. Sea 

urchin Gcm acts downstream of Delta-Notch signalling to specify pigment cells 

[Ransick et al 2002, Ransick and Davidson 2006]. Brittle stars lack pigment cells, 

so Gcm’s role here is unknown. Deadringer (Dri) performs dual roles in the PMCs 

and the oral ectoderm [Amore et al 2003], Groucho is a ubiquitous cofactor which 

partners with Six3 in the animal hemisphere to compete with β-catenin for TCF 
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binding sites [Range et al 2005, Howard-Ashby et al 2006], thus excluding 

vegetalizing signals from the ectoderm. 

 

CONCLUSIONS  

The brittle star gastrula-stage embryo expresses genes from all of the 

transcription factor families. Roughly half of the transcription factor genes 

expressed at gastrula stage in the sea urchins Strongylocentrotus purpuratus 

and Lytechinus variegatus and in the starfish Patiria miniata were also found in 

brittle star gastrula. 

These results are consistent with previous studies. BLAST comparisons of 

the entire S. purpuratus genome to the genomes of human, mouse, tunicate, fly, 

nematode and cnidarian found reciprocal-best-BLAST matches for between 15% 

and 25% of all sea urchin genes, while a comparison of the same sort between 

human and mouse genomes found homologs amounting of 58% of all mouse 

genes and 67% of all human genes [Materna et al 2006b]. Given that the degree 

of relatedness between echinoderm classes is intermediate between these two 

examples, 49%-57% reciprocal-best-BLAST matches among echinoderm 

gastrula transcription factors is in line with expectations. 

Several other lines of evidence also suggest that the pyrosequencing 

captured the vast majority of the brittle star genes expressed at gastrula stage. 

The pyrosequencing results are entirely consistent with previous results from 

attempts at PCR amplification. Alx1, Dri, Ets1, and Erg were found at gastrula 
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stage by both methods, whereas Pmar1,Tbr, GataC, and GataE were not found 

in cDNA from any stage. 

The brittle star pyrosequences also contained matches for all or very 

nearly all the proteins involved in several very highly conserved pathways, 

including mitosis, glycolysis, DNA replication, and ribosomal proteins. The protein 

sequences of transcription factors tend to be highly conserved in the important 

domains, but quite variable elsewhere. They are also sometimes redeployed into 

different temporal expression patterns in the course of evolution, unlike the 

critical housekeeping genes mentioned. On the other hand, housekeeping genes 

are by their nature very highly expressed, while transcription factors are typically 

found at only a few hundred transcripts per embryo. So it is entirely possible that 

some transcription factors were simply missed by the sequencing. However, the 

fact that so many of the most important transcription factors were found suggests 

that most were indeed captured by the sequencing. 

Finally, the overall patterns of genes found and not found in brittle star are 

consistent in several aspects with the morphological differences between brittle 

stars and urchins, such as the presence of nearly all the skeleton genes, and the 

absence of many pigment cell genes. As described in Chapter 2, some of the 

visible events in the brittle star embryo are delayed or proceed at a slower pace 

than in urchins. So it is possible that some of the molecular events of 

specification in the Veg1 endoderm and aboral ectoderm are delayed as well. 

While only very tentative conclusions about the brittle star developmental 

gene regulatory network can be drawn at this point, the evidence presented here 
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can be used to infer some of the larger features of this network. Many of the 

“kernels” [Davidson and Erwin 2006] central to echinoderm development appear 

to be intact. The majority of genes involved in early vegetal plate endomesoderm 

specification, apical pole neuroectoderm specification, and skeletogenesis in 

both sea urchins and starfish were found in brittle star. Given the relative degrees 

of conservation and innovation in these GRN circuits in these other echinoderms 

[Ettensohn et al 2007, Hinman and Davidson 2007a, Gao and Davidson 2008, 

McCauley et al 2010], it seems highly likely that brittle stars employ the same 

general input/output logic of these GRN kernels, as well as many of the specific 

interactions of the regulatory “wiring”.  
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Table 3.1: Ets Transcription Factor Family 

 
 
Table 3.2: Forkhead Transcription Factor Family 

 
 

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
FoxA contig07901 7E-15 1E-15 4E-05 4E-06 2E-25 1E-25 Sp-FoxA 3E-13 7E-15
FoxABL — — — — —
FoxB FKK7YRX02K5B9K 2E-12 1E-10 — — 1E-21 8E-14 Sp-Fkh1 (Sp-FoxB) 2E-07 2E-12

FKK7YRX02ON70S 8E-08 1E-07 — — — — Sp-FoxC 3E-05 8E-08
FKK7YRX02ONMQ2 4E-07 2E-05 — — — — Sp-FoxC 9E-03 4E-07

FoxD — — — — —
FoxF FKK7YRX02OCVUU — — — — Sp-FoxF 6E-37 1E-38
FoxG — — — — — — —
FoxI — — — — —
FoxJ1 FKK7YRX02OIQ9X 4E-13 7E-13 6E-14 1E-14 — — Sp-FoxJ1 2E-10 4E-13
FoxJ2 FKK7YRX02O2DG3 5E-11 9E-11 2E-04 9E-06 — — Sp-FoxJ2 2E-08 5E-11

FKK7YRX02K8XHX 4E-04 5E-04 1E-05 5E-05 8E-05 1E-05 Branchiostoma floridae  hypoth. Fox  protein 6E-02 1E-04
FKK7YRX02MUOT4 3E-01 7E-05 1E-05 6E-06 4E-05 4E-07 Sp-FoxK 1E-03 3E-01

FoxL1 — — — — —
FoxL2 — — — — —
FoxM — — — — — — —
FoxN1/4 FKK7YRX02LTME4 1E-07 1E-06 1E-08 2E-09 8E-10 2E-09 Sp-FoxN1/4 3E-04 1E-07
FoxN2/3 — — — — —
FoxO contig01589 1E-43 4E-44 — — — — Sp-FoxO 6E-42 1E-43
FoxP FKK7YRX02MXRWU 5E-32 7E-32 — — — — Ailuropoda melanoleuca FoxP1-like isoform 2 1E-29 3E-32
FoxQ1 FKK7YRX02NUCL3 — — — — — — —
FoxQ2 FKK7YRX02NDRLV 7E-32 1E-31 3E-38 7E-39 3E-40 4E-41 Sp-FoxQ2 3E-29 7E-32
FoxY — — — — — — —

FoxC

FoxK

2E-011E-01

——

——

——

——

——
——

4E-391E-38



62 
 

Table 3.3: Basic Zipper Transcription Factor Family 

 
 
 
Table 3.4: Basic Helix-Loop-Helix Transcription Factor Family 

 
continued… 
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Table 3.4: Basic Helix-Loop-Helix Transcription Factor Family (continued) 
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Table 3.5: Nuclear Hormone Receptor Transcription Factor Family 

 
 

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Couptf1 — — — — —
Dsf — — — — —
e78, e78a FKK7YRX02NT6JT 1E-15 2E-15 — — — — Sp-e78 6E-16 1E-15
e78b, Rara — — — — — — —
Err — — — — — — —
Fax1 FKK7YRX02LQFET — — — — — — —
Fxr FKK7YRX02KYR42 5E-26 9E-34 — — 6E-43 5E-43 Sp-Fxr 4E-38 5E-26

FKK7YRX02KLFS8 — — 5E-06 8E-10 Sp-Gcnf1 4E-15 3E-14
FKK7YRX02MPSM0 — — 9E-13 2E-16 Sp-Gcnf1 7E-11 1E-13

Grf — — — — — — —
Hnf4 FKK7YRX02L7ADE 1E-22 2E-22 — — — — Drosophila melanogaster Hnf4 isoform C 4E-29 3E-24
Nr1AB, Nr1x FKK7YRX02NUJ5Y 2E-12 3E-12 — — — — Sp-Nr1x 1E-10 2E-12
Nr1h6 FKK7YRX02K0S55 — — — — Sp-Nr1h6 2E-16 1E-10
Nr1h6b FKK7YRX02K0S55 5E-14 9E-16 — — — — Sp-Nr1h6 2E-16 1E-10
Nr1h6c FKK7YRX02K0S55 1E-13 9E-16 — — — — Sp-Nr1h6 2E-16 1E-10
Nr1m1 — — — — —
Nr1m2 — — — — — — —
Nr1m3 — — — — — — —
Nr1m4 — — — — —
Nr2C — — — — — — —
Nr2e6 — — — — —
Nr5a, FtzF — — — — —
Nurr1 — — — — —
Pnr — — — — —
Ppar1 — — — — — — —
Ppar2 FKK7YRX02MESJR — — — — Sp-Ppar2 1E-16 3E-16
Rar — — — — — — —
Reverb — — — — — — —
Rora — — — — —
Rxr — — — — —
Shr2, Tr2.4 FKK7YRX02NRNVZ 2E-04 3E-04 — — — — Ixodes scapularis Retinoid X receptor * 4E-05 9E-10 *
Thr — — — — — — —
Thrb FKK7YRX02MWCT3 1E-02 2E-02 — — — — Nematostella vectensis predicted protein * 4E-02 6E-20 *
Tll — — — — — — —
* GenBank sequences match back to FKK7YRX02L7ADE (Hnf4)

Gcnf1

——

——

——

——

——
——

——

——
——

5E-163E-16

9E-161E-10

1E-143E-14

4E-023E-02

2E-141E-13

——
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Table 3.6: Paired Homeobox Transcription Factor Family 
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Table 3.7: Extended Hox Transcription Factor Family 

 
 
Table 3.8: Atypical Homeobox Transcription Factor Family 

 
 
Table 3.9: Hox/Lim Transcription Factor Family 

 

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Awh — — — — — — —
Isl — — — — — — —
Lhx2 FKK7YRX02MZFIC 3E-10 4E-11 — — — — Mus musculus Lhx2 7E-14 3E-12
Lhx3-4 FKK7YRX02MWWP3 — — — — — — —
Lim1 — — — — —
Lmx1 — — — — —

——
9E-035E-03

——
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Table 3.10: Nk Homeobox Transcription Factor Family 

 
 
Table 3.11: Dl, Cut, Pou, Barx, Zinc Finger Homeobox Transcription Factor Families 
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Table 3.12: Sox/Hmg Transcription Factor Family 

 
 
Table 3.13: Smad Transcription Factor Family 

 
 
Table 3.14: Tbox Transcription Factor Family 

 
 
Table 3.15: Other Transcription Factor Families 

 

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Bbx FKK7YRX02OF6RJ 5E-02 4E-02 — — — — —
Cic — — — — — — —
Lef1 — — — — —
SoxB1 contig13264  3E-70 3E-83 7E-70 4E-88 2E-89 1E-82 Sp-SoxB1 2E-91 3E-70
SoxB2 — — — — — — —
SoxC — — — — — — —

FKK7YRX02L0FKT 2E-29 4E-29 — — — — Sp-SoxD1 1E-32 2E-29
FKK7YRX02L6YD9 2E-16 4E-16 — — — — Sp-SoxD1 3E-16 6E-16
contig06454  4E-11 2E-11 — — — — Sp-SoxD1 9E-11 3E-11

SoxE — — — — —
SoxF — — — — — — —
SoxH — — — — —

SoxD1

——

——

——

——

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
contig10543  1E-50 5E-36 5E-49 1E-59 4E-58 1E-64 Saccoglossus kowalevskii Smad1/5 3E-50 1E-47
FKK7YRX02L3QMQ 2E-41 4E-41 1E-48 2E-49 4E-50 7E-51 Sp-Smad1/5/8 6E-48 2E-41
contig06372  5E-33 2E-32 2E-34 3E-35 3E-38 2E-38 Sp-Smad1/5/8 1E-35 5E-33
FKK7YRX02MYLR3 4E-32 7E-32 6E-34 2E-34 2E-43 8E-44 Sp-Smad1/5/8 3E-36 4E-32
FKK7YRX02KKZCA 3E-15 2E-16 1E-20 3E-21 2E-21 5E-23 Branchiostoma floridae Smad1 6E-19 2E-15

Smad2/3 — — — — — — —
Smad4 FKK7YRX02KKDPL 7E-27 1E-26 — — — — Sp-Smad4 2E-19 7E-27
Smad6/7 FKK7YRX02OAVFY 5E-19 6E-22 2E-19 4E-20 9E-32 2E-32 Sp-Smad6/7 2E-16 5E-19

Smad1/5/8

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Bra — — — — — — —
Tbr FKK7YRX02LPLLP — — — — 2E-01 1E-01 — — —
Tbx1 — — — — —
Tbx2-3 FKK7YRX02OWR5N 2E-14 2E-14 2E-14 2E-15 1E-14 2E-15 Sp-Tbx2-3 3E-10 2E-14
Tbx6/16 — — — — —
Tbx20 — — — — —

——

——
——

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Af9 FKK7YRX02N4DEO 2E-35 4E-35 — — — — Saccoglossus kowlevskii Mll 4E-31 5E-39
Ap2 (AP2) — — — — — — —
Ash1 (trxG) FKK7YRX02NZPR1 2E-14 1E-14 — — 3E-10 7E-11 Sp-Ash1 6E-15 2E-14

FKK7YRX02LIF4B 9E-25 3E-14 — — 3E-27 2E-27 Drosophila yakuba GE23503 6E-36 2E-38
FKK7YRX02LH8HS 3E-24 5E-24 — — 4E-29 2E-29 Sp-Ash2 2E-16 5E-24
FKK7YRX02MFKC3 3E-24 5E-24 — — 1E-28 1E-28 Sp-Ash2 5E-26 5E-24

Cp2 (CP2) contig05027  1E-07 2E-06 — — — — Drosophila melanogaster Gemini isoform D 1E-81 6E-81

Dac (Ski-Sno) FKK7YRX02NQL24 4E-39 8E-39 — — 1E-46 1E-46 Ixodes scapularis Dachshund 5E-35 2E-38
continued

Ash2 (trxG)
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Table 3.15: Other Transcription Factor Families (continued) 

 
 

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Dmtf (myb) — — — — — — —
Dp1 (E2F) contig02393  — — 5E-02 1E-01 — — — — —
Dri (bright) FKK7YRX02NU4PZ 3E-34 5E-34 2E-39 4E-40 5E-41 2E-41 Sp-Dri 2E-38 3E-34
E2f3 (E2F) contig06767  * 2E-19 6E-20 — — — — Drosophila melanogaster E2f2 8E-110 3E-90

contig06767  * 4E-16 6E-20 3E-06 1E-04 — — Drosophila melanogaster E2f2 8E-110 3E-90
FKK7YRX02K0L30 3E-13 6E-13 — — 8E-15 3E-15 Saccoglossus kowalevskii E2f4 9E-12 4E-18

Enz1 (pcg) FKK7YRX02M7OI0 1E-24 3E-24 6E-42 2E-42 Aedes aegypti Enhancer of zeste, Ezh 1E-39 1E-35
Enz2 (pcg) — — — — — — —
GataC — — — — — — —
GataE — — — — — — —
Gcm (gcm) FKK7YRX02N0PUC 5E-31 8E-31 4E-36 3E-37 5E-36 4E-36 Saccoglossus kowalevskii Gcm 5E-20 4E-31
Gro, Groucho FKK7YRX02MS79L 5E-18 7E-18 7E-21 1E-21 6E-22 6E-22 Ixodes scapularis Groucho 3E-19 2E-18
Irf1 (IRF) — — — — — — —
Irf4 (IRF) — — — — —
L3mbt (pcg) FKK7YRX02MBZBN 5E-40 2E-40 — — Sp-L3mbt_1 4E-37 8E-34
Ldb2 (lim) FKK7YRX02N36PD — — 1E-02 1E-02 — — — — —
Lmo2 (lim) — — — — — — —

contig01552  5E-29 2E-30 1E-11 5E-11 — — Drosophila melanogaster CG5708 isoform A 4E-120 2E-96
FKK7YRX02MBU2P 1E-36 2E-10 1E-10 4E-11 — — Drosophila sechellia GM11938 2E-43 1E-36

Lmpt, Fhl2 (lim) — — — — — — —
Mef2 (mads) FKK7YRX02OTQI6 4E-14 6E-14 — — 4E-17 5E-17 Hydra magnipapillata Mef2 4E-16 3E-14
Mll3 (trxG) FKK7YRX02LW0TU — — — — 4E-15 2E-15 Ixodes scapularis Mll 3E-33 3E-28
Mta1 (myb) FKK7YRX02LS90G — — 5E-09 2E-09 4E-06 2E-06 Saccoglossus kowalevskii Mta1 1E-26 1E-24
Myb (myb) FKK7YRX02LBET9 3E-09 5E-09 — — — — Drosophila melanogaster Myb isoform A 5E-38 4E-41
NfiA (NFI) FKK7YRX02N238H — — — — Sp-NfiA 2E-01 2E-07
NfkB (NFI) FKK7YRX02M7BNC 3E-11 5E-11 — — 3E-29 1E-29 Sp-NfkB 1E-21 3E-11
P3a2 contig02928  8E-49 1E-44 1E-50 1E-49 — — Sp-P3a2 3E-45 8E-49
Pric, Prkl2 (lim) FKK7YRX02OM5EK 5E-05 6E-04 — — — — — — —
Rfx3 FKK7YRX02MU6TJ — — 6E-04 1E-10 — — Saccoglossus kowalevskii Rfx 1E-30 3E-28

FKK7YRX02MVIHC 6E-08 8E-04 9E-10 2E-11 3E-09 6E-11 Danio rerio Runt1 8E-08 2E-10
FKK7YRX02KKU0C 8E-06 3E-05 6E-13 4E-08 5E-11 3E-08 Sp-Runt1 6E-04 8E-06

Runt2, Runx1 — — — — — — —
Scml1 (pcg) FKK7YRX02MIB2G — — — — Saccoglossus kowalevskii consrv hyp protein 6E-35 4E-31

FKK7YRX02ONPEM 5E-23 7E-23 2E-39 1E-39 — — Drosophila melanogaster Shrls 5E-24 1E-38
FKK7YRX02KT78U 1E-32 1E-26 2E-32 7E-33 — — Acyrthosiphon pisum Shrls 4E-28 **

Srf (mads) — — — — — — —
Tead4 FKK7YRX02MPMDC 4E-03 7E-03 — — 1E-13 2E-13 Drosophila melanogaster scalloped isoform A 2E-49 3E-42
Trx, Nsd1 (trxG) contig01748  1E-131 2E-98 — — 1E-102 8E-99 — — —
Trx2 (trxG) — — — — —
Tulp4L, Tubby 
(tulp)

FKK7YRX02MD5K1 7E-16 1E-15 — — — — Ornithorhynchus anatinus Tubby-related 4 4E-30 1E-32

* Sp-E2f3 matches contig06767 better than Sp-E2f4 does, but contig06767 matches back to Sp-E2f4 better.
** FKK7YRX02KT78U matches best to Acyrthosiphon pisum Shrls, which matches back to FKK7YRX02ONPEM better.

E2f4 (E2F)

Lmo4 (lim)

Runt1

Shrls, Su(H) 
(IPT)

3E-322E-32

1E-338E-34
——

2E-082E-07

6E-183E-18

——
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Chapter Four: 
Conclusion 

 
SUMMARY 

This study has sequenced and characterized the gastrula transcriptome of 

the brittle star Ophiocoma wendtii, and begun an examination of its 

developmental gene regulatory network in relation to those of other echinoderms. 

Figures 4.1 and 4.2 show the genes in the sea urchin GRN for which homologs 

were found in the brittle star gastrula transcriptome. At this early stage of 

analysis, it appears that brittle stars employ a conserved developmental genetic 

toolkit, with various important features shared with other echinoderms, with other 

deuterostomes, and with the entire animal kingdom. Most of the differences in 

terms of the genes present and absent in the brittle star gastrula transcriptome 

are consistent with morphological differences between brittle stars and other 

echinoderms. In regard to the brittle star embryonic skeleton, the most plausible 

explanation is that it was acquired through an independent early activation of the 

adult skeletogenic program, with an unknown gene other than Pmar1 acting as 

the master switch. 

 

AREAS FOR FURTHER INVESTIGATION 

This study represents only the first few steps toward a full understanding 

of the molecular players and events behind brittle star development. Much work 
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remains to be done in detailing the locations of gene expression, the patterns of 

expression at other developmental stages, and the regulatory interactions 

between genes, as well as sequencing of the full brittle star genome. 

Documentation of the genes active at the important stage of gastrulation provides 

a map to guide further research. 

Tables 4.1 and 4.2 list nine transcription factor genes which warrant 

further inquiry because they were found to be expressed only in brittle star, or 

expressed in brittle star and starfish gastrulae but not in sea urchins. FoxF does 

not appear in urchins until almost the end of gastrulation, when it is seen in the 

coelomic pouches [Tu et al 2006], but its function there is unknown. Brittle stars 

form the coelomic pouches earlier, so its presence in the gastrula transcriptome 

is not surprising. Of the remainder, Ebf3 is seen in the adult urchin nervous 

system, while Meis and NfiA are involved in vertebrate neural development. This 

is consistent with observations that neurogenesis appears to proceed faster in 

brittle stars than in urchins. Most of the key genes seen in urchin apical 

neuroectoderm [Burke et al 2006, Wei et al 2009] and in early neural 

development generally [Angerer et al 2011, Nomaksteinsky et al 2009, 

Vopalensky and Kozmik 2009, Lagutin et al 2003] were also found in brittle star, 

including Six3, FoxQ2, SoxB1, Pax6, Dac, Otx, Mitf, Hlf, BMP2/4, and Chordin. 

Three important genes which function early in urchin neural development, Rx, 

Ac/Sc, and Hbn were not found in brittle star, possibly because they have already 

completed their roles in the accelerated neural program prior to gastrulation. 
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The three genes in Table 4.2 are found in starfish gastrula, but none of 

these, nor the remaining genes in Table 4.1, have been seen to be significantly 

expressed at all during sea urchin embryogenesis, and nothing is known of their 

roles in echinoderm development. Their presence in the brittle star gastrula thus 

invites further investigation of their spatial distributions and regulatory functions. 

In the last few years, several related processes collectively termed RNA 

interference (RNAi) have gained considerable attention. RNAi appears to serve 

several important functions in virtually all eukaryotic taxa, most notably both pre- 

and post-transcriptional silencing of gene expression, but also promotion of 

transcription and antiviral defense [Hannon 2002]. RNAi thus has the potential to 

play a vital role in developmental gene regulatory networks, and much evidence 

is accumulating for this [Stefani and Slack 2008]. 

Examination of RNAi participation in echinoderm development has thus far 

been very preliminary. Both urchins and starfish possess all components of the 

RNAi pathway, and both dynamically express a variety of known and suspected 

miRNAs with significant similarities and differences between the two organisms 

[Rodriguez et al 2005, Song and Wessel 2007, Kadri et al 2011]. Perturbation 

studies have shown that many genes central to echinoderm GRNs are influenced 

by RNAi processes. Urchin embryos in which RNAi is inhibited show major 

defects in germ-layer and axis specification, skeletogenesis, and gastrulation 

[Okamitsu et al 2010, Song et al 2012]. Brittle stars possess homologs for all 

components of the RNAi pathway [Table 4.3]. Investigation of the roles of specific 
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interfering RNAs and their contributions to development in the various 

echinoderm classes is another major area deserving further study. 

The exact position of the brittle stars within the echinoderm family tree 

remains uncertain—but perhaps slightly less so. An independent acquisition of 

the embryonic skeleton would cast into doubt the main evidence for a clade of 

urchins and brittle stars. At the same time, the major argument for placing brittle 

stars with starfish—that they both have five arms—is weak on several 

morphological fronts, as discussed earlier. The brittle star gastrula transcriptome 

has slightly more matches to starfish than to either urchin species for 

transcription factor genes [Figure 3.1], but only slightly (57% vs 49% and 52%). 

Thus no firm phylogenetic conclusions can be drawn at this point. However, this 

first step toward GRN comparisons may still be a step forward in this regard. In 

the same way that specific mutations and chromosomal rearrangements can be 

used as phylogenetic characters to untangle evolutionary relationships, specific 

conservations and alterations in the structure of gene regulatory networks could 

potentially be used in cladistic analyses as well. This will require exploring the 

spatial distributions and definite regulatory interactions between the brittle star 

GRN components, as they have been studied in sea urchins, and are currently 

being examined in starfish. Drawing the GRN structures for the various 

echinoderm groups—and many other groups of organisms as well—will be 

another tool for drawing the tree of life. 
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FINAL THOUGHTS 

The twin mottos of evo-devo might be stated as, “It’s déjà vu all over 

again, but everything old is new again.” On the one hand, many of the 

transcription factors and signalling pathways are as old as the animal kingdom 

itself, if not older, and found in virtually every phylum. Many of these transcription 

factors and signals have functional roles and interactions that have also been 

extremely widely conserved. On the other hand, evolution comes from doing 

something differently. There is nothing absolute that requires gene X to perform 

function Y in the process of developing organ Z. All that is really required is that a 

functional body gets built and is able to pass on more copies of its genes than 

other variations on that body plan currently around in that species’ ecological 

niche. So throughout evolutionary history, transcription factors, signalling 

molecules, and even large pieces of GRN circuitry have frequently been 

redeployed to appear at different times during the lifespan (such as the early—

and independent—activation of the skeleton program in sea urchin and brittle 

star embryos), in different parts of the body (as with the six legs of insects and 

the many legs of centipedes), or to do completely different jobs (as with Tbrain in 

the starfish gut, in the sea urchin skeleton, and in whatever it does—if anything—

in the brittle star) [Ettensohn et al 2007, Gao and Davidson 2008, Galant and 

Carroll 2002, Ronshaugen et al 2002, Hinman et al 2003a]. While currently only 

informed speculations about the exact structure of the brittle star GRN are 

possible, it is certain that, as in all animals, some combination of conservation 

and innovation is at work in brittle star development. 
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An example of this entanglement of sameness and difference is the role of 

BMP/Chordin signalling in axis specification. BMPs are diffusible secreted TGFβ 

signalling proteins, while Chordin binds to BMPs and thereby blocks them from 

binding to their receptors. BMP induces the ectoderm to become skin. Where 

BMP signals are blocked by high levels of Chordin, ectoderm proceeds to its 

default fate as neural tissue. In the embryos of most bilateral animals, including 

insects, a BMP is expressed on the dorsal side and diffuses toward the ventral 

side where it is inhibited by Chordin, thereby setting up a gradient of BMP 

signalling that patterns the dorsoventral axis and allows formation of a ventral 

nerve cord. 

In vertebrates, tunicates, and amphioxus, the polarity is reversed, with 

BMP ventral and Chordin dorsal along the notochord (hence the name), thereby 

leading eventually to a dorsal nerve cord [De Robertis and Sasai 1996, Yu et al 

2007]. The chordate heart is moved from dorsal to ventral, and the locations of 

expression for all the other genes along the DV axis are inverted as well, as are 

those for the left-right axis. It has been suggested that the event leading to this 

was a relocation of the mouth from its ancestral place on the Chordin-expressing 

side (as in insects) to the BMP-expressing side in the chordate common ancestor 

[De Robertis and Sasai 1996].  

In hemichordate acorn worms, the BMP/Chordin DV polarity is the same 

as in insects and opposite that of chordates, but neural development is not 

repressed by BMP, and hemichordates exhibit a more diffuse nervous system, 

though the nerve net still displays some degree of centralization and 
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anteroposterior molecular patterning very similar to chordates [Lowe et al 2003 & 

2006, Nomaksteinsky et al 2009, Röttinger and Martindale 2011]. 

In cnidarians, the nervous system is thoroughly diffuse and unaffected by 

BMP. Cnidarians are traditionally considered radial, but do possess a subtle 

secondary anatomical axis (the “directive axis”) perpendicular to the oral-aboral 

axis. BMP and Chordin are expressed on the same side of the body, but with 

BMP in the endoderm and Chordin in the ectoderm [Matus et al 2006]. They also 

interact in further complex ways along both axes, so that there is no simple 

homology to the bilaterian DV axis [Saina et al 2009].  

Sea urchins put yet another strange twist on this story. Here, both BMP 

and Chordin are expressed on the ventral (oral) side. Bound together, they 

diffuse to the dorsal (aboral) side, where Chordin is cleaved off and BMP binds to 

its receptors to trigger expression of other dorsal specification genes [Lapraz et 

al 2009]. This is likely an urchin-specific trait, since both sea cucumbers (the 

sister taxon to sea urchins), and hemichordates (the sister taxon to echinoderms) 

express BMP on the dorsal side [Harada et al 2002]. Dorsal BMP expression is 

therefore also the most likely pattern for brittle stars. Most of the other DV 

patterning genes appear in the same locations in both urchins and indirectly 

developing hemichordates, and most of these were also found in brittle star. And 

even though urchins and hemichordates express BMP on opposite sides, BMP is 

active only on the dorsal side in both, so the effect is the same [Röttinger and 

Martindale 2011]. 

“It’s déjà vu all over again, but everything old is new again.” 
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Figure 4.1: Genes from the Sea Urchin Endomesodermal Developmental Gene Regulatory Network Expressed in the Brittle Star 
Gastrula-Stage Embryo. Symbolism is the same as for Figure 1.2 (page 4). Genes with homologs found in the brittle star gastrula 
transcriptome are circled in red. [Figure generated with BioTapestry software – www.biotapestry.org] 
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Figure 4.2: Genes from the Sea Urchin Ectodermal Developmental Gene Regulatory Network Expressed in the Brittle Star 
Gastrula-Stage Embryo. Symbolism is the same as for Figure 1.3 (page 5). Genes with homologs found in the brittle star gastrula 
transcriptome are circled in red. [Figure generated with BioTapestry software – www.biotapestry.org] 
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Table 4.1: Transcription Factors Expressed in Brittle Star Gastrula But Not in Urchin or Starfish Gastrulae 

Gene 
Brittle Star 

Sequence ID 
Family Functions in Other Taxa 

Ebf3 FKK7YRX02NS71F bHLH 
Urchin — adult neural 

Vertebrates — tumor suppressor, neural & limb development 

FoxF FKK7YRX02OCVUU Fox 

Urchin — late gastrula in coelomic pouches 
Tunicate — heart 

Vertebrates — sexual development, insulin sensitivity, gut development 
Fly & Nematode — visceral mesoderm 

Meis FKK7YRX02K5EES Homeobox
Vertebrates — neural development, restless leg syndrome 

Fly — Homothorax — pre-blastoderm divisions, head, neural, & limb development 

NfiA FKK7YRX02N238H Other Vertebrates — neural development 

Ppar2 FKK7YRX02MESJR NR Vertebrates — xenobiotic defense 

Scml1 FKK7YRX02MIB2G Other 
Vertebrates & Flies — repression of Hox genes 

Primates — spermatogenesis 

References: Ebf3 – Burke et al 2006, Garcia-Dominguez et al 2003, Mella et al 2004. FoxF – Tu et al 2006, Beh et al 2007, 
Ormestad et al 2006, Zaffran et al 2001. Meis – Larsen et al 2010, Salvany et al 2009, Kurant et al 1998, Noro et al 2006. NfiA – 
Gronostajski 2000. Ppar2 – Goldstone 2006. Scml1 – van de Vosse 1998, Wu and Su 2008. 
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Table 4.2: Transcription Factors Expressed in Brittle Star and Starfish Gastrulae But Not in Urchin Gastrula 

Gene 
Brittle Star 

Sequence ID 
Family Functions in Other Taxa 

Lass6 contig01288 Homeobox Vertebrates — apoptosis 

Maf contig00697 bZip Vertebrates — oxidative stress response, hematopoiesis 

Msxl FKK7YRX02NW07M Homeobox Vertebrates — craniofacial, tooth & limb development 

References: Lass6 – Mizutani et al 2005. Maf – Kusakabe  et al 2011. Msxl – Alappat et al 2003. 
 

 
 
 
 
 
 
Table 4.3: Genes in the RNA Interference Pathway 

 
 
 

Gene Ow ID Sp vs Ow Ow vs Sp Lv vs Ow Ow vs Lv Pm vs Ow Ow vs Pm Ow vs GB Ow vs GB GB vs Ow
Drosha FKK7YRX02OUK17 2E-18 3E-18 — — — — Sp-Drosha 2E-18 3E-18

Dicer FKK7YRX02K01VL 2E-19 4E-19 — — — — Drosophila melanogaster Dicer-2 3E-43 3E-40

Exportin5 FKK7YRX02MJIMD 1E-01 2E-01 — — — — — —

Dgcr8/Pasha FKK7YRX02OYHJV 3E-04 6E-04 6E-04 6E-04 — — — —

Tarbp2 FKK7YRX02KMNNS 7E-09 1E-08 3E-10 9E-11 — — Saccoglossus kowalevskii TARBP2 4E-14 4E-14

Argonaute FKK7YRX02MN77C 2E-22 6E-23 4E-07 2E-07 7E-27 2E-27 Acyrthosiphon pisum Argonaute-2 1E-39 2E-36

Piwi contig04999 1E-107 1E-106 1E-120 1E-121 1E-119 1E-119 Sp-Seawi 6E-123 1E-107
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