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Immunomodulatory properties of flagellin in antigen presenting cells 

Ildefonso Vicente-Suarez 

ABSTRACT 

Toll-like receptors (TLRs) expressed by cells of the immune system play a central role in 

the generation of immune responses against pathogens. Following TLR ligation, both 

pro-inflammatory and anti-inflammatory mediators are produced in order to elicit an 

immune response that controls the microbial infection while limiting tissue damage. 

Among these mediators, the proinflammatory cytokine IL-12 and the anti-inflammatory 

cytokine IL-10 are known to play major roles. Here, we show that in vitro or in vivo 

stimulation with flagellin, the TLR5 ligand, does not result in IL-10 production. 

Furthermore flagellin inhibits IL-10 production by other specific TLR ligands at the 

protein and mRNA levels while increasing IL-12p70 production. Several studies have 

linked the activation of extracellular signal regulated kinases (ERKs) with IL-10 

induction by TLRs. Our findings that LPS-induced ERK activation is significantly 

decreased in flagellin-treated macrophages suggest that this pathway might play a role in 

the inhibition of IL-10 production by flagellin. Flagellin-mediated IL-10 inhibition was 

not observed in cells that do not express TLR5 supporting that this effect is TLR5-

dependent.  

Flagellin used as an adjuvant is capable of priming antigen specific T cell responses in an 

in vivo model of tolerance using high dose peptide. Furthermore, DCs differentiated in 

tolerogenic conditions (tolerogenic-DCs) express higher levels of TLR5 mRNA than 



 xiv

standard BM-DCs and respond more vigorously to flagellin stimulation. Antigen 

presentation by LPS-matured tolerogenic-DCs results in the differentiation of IL-10 

producing T cells with a Tr1-like phenotype. On the contrary, antigen presentation by 

tolerogenic-DCs that have been stimulated with flagellin results in the differentiation of a 

typical Th1 response 

This study provides a new insight of the role of flagellin recognition by TLR5 in shaping 

the immune response elicited by flagellated microorganisms.  
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INTRODUCTION 

 

T cell tolerance and antigen presenting cells 

Bone marrow-derived antigen presenting cells (APCs) and in particular dendritic 

cells (DCs) play a central role in the generation of antigen-specific T-cell responses (1). 

However, these same cells are also required for the induction of T-cell tolerance (2). This 

seemingly dual function of APCs was attributed initially to the existence of specific APC 

subpopulation(s) that induce T-cell priming while other subpopulations induce T-cell 

anergy (3-5). The demonstration that priming and tolerance can be induced by a single 

APC subpopulation (6) led to the alternative explanation that the functional status of the 

APC would be the major factor determining T-cell activation versus T-cell tolerance. 

Antigen encounter in the presence of inflammatory mediators and/or microbial products 

triggers the maturation of the APC to a functional status capable of priming T cell 

responses (Figure 1A). In contrast, antigen capture by these same APCs in the absence of 

inflammatory signals, or in the presence of inhibitory mediators, leads to the development 

of antigen specific T-cell tolerance (Figure 1B) (2).  

Dendritic cells (DCs), macrophages and B-cells are all bone marrow (BM)-

derived cells that express major histocompatibility complex class II (MHC II) as well as 

costimulatory molecules and, as such, can potentially present antigens to the T-cells. 

Although it is plausible that under particular conditions each subpopulation might induce 
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T-cell tolerance (7-12), several lines of evidence have pointed to the DCs as the 

main cell type involved in the development of peripheral tolerance (13-16). Immature 

DCs constantly migrate within tissues and secondary lymphoid organs (17). Under 

steady-state conditions, immature DCs capture apoptotic bodies arising from cell 

turnover and migrate to the draining lymph nodes where antigen presentation takes place. 

Phagocytosis of apoptotic bodies does not cause DC maturation, and therefore antigen 

presentation of tissue antigens phagocytosed by immature DCs might represent a 

common mechanism of tolerance-induction to self antigens (17). Tumor growth 

especially at early stages when the tissue architecture has not been yet disrupted does not 

induce the release of inflammatory mediators. Therefore, it was proposed that uptake of 

tumor antigens occurs in an identical manner as uptake of tissue self-antigens and the 

same mechanisms that establish T-cell tolerance against self will also prevent the immune 

response against tumors (18). In the mid 90’s, the demonstration by the Bogen’s and 

Levitsky’s groups that antigen-specific CD4+ T-cells were rendered tolerant during tumor 

growth in vivo provided the first experimental evidence supporting the tumor-induced 

tolerance hypothesis (19-20). 

Since then, several studies have confirmed that antigen specific CD4+ as well as 

CD8+ T cell tolerance occurs during the progression of both hematologic and solid 

tumors expressing model or true tumor antigens (21-28).  Furthermore, data from our 

laboratory and others have demonstrated that bone marrow (BM)-derived APCs are 

required for the induction of tolerance to antigens expressed by tumor cells (21) (29). 

These studies also provided evidence that the intrinsic antigen presenting capacity of 
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tumor cells has little influence over T cell priming versus tolerance, a critical decision 

that is regulated at the level of the APC. 

Antigen presentation by immature DCs, self-antigens or tumor antigens alike, 

induces a modest T cell proliferation but not polarization into T helper 1 (Th1) or Th2 

subsets. Instead, after several rounds of cell division almost all the antigen specific T-

cells are deleted. The remaining T cells are functionally anergic upon antigen 

restimulation even when the antigen is administered with a strong adjuvant such as 

Complete Freund Adjuvant (CFA) (30-31). Furthermore, antigen presentation by 

immature DCs can also result in the development of regulatory T cells with the ability to 

suppress effector responses by other T cells (32) (Figure 1B).  

In the tumor bearing host, antigen encounter by DCs might occur not only in the 

absence of inflammatory signals, but also in the presence of inhibitory factors such as 

interleukin (IL)-10, transforming growth factor-beta (TGF-β) (33), phosphatidylserine 

(PS) and prostaglandin E2 (PGE2) (34-36)  that further suppress the APC’s function. In 

this adverse environment, DCs acquire features as the production of IDO, and IL-10 that 

result in strong suppression of immune responses (37) (38). IL-10 production by DCs 

induces the differentiation of regulatory T cells that themselves produce high levels of 

IL-10 and further suppress inflammatory responses (38). The goal of immunotherapy is 

to disrupt this vicious cycle in order to elicit an effective immune response against the 

tumor. Microbial products recognized by Toll-like receptors (TLRs) are considered the 

strongest stimulus to induce APC maturation and as such, in this proposal we focus in the 

better understanding of their inflammatory properties as a potential strategy to effectively 

harness antitumor immune responses (39). 



FIGURE 1. T cell priming versus tolerance is determined by the state of activation of 
the APC

(A) In the course of an infection, microbial products are recognized by the APC through 
TLRs. TLR stimulation results in APC maturation, a process that increases the levels of 
costimulatory molecules and cytokine production. Antigen presentation by mature APCs 
leads to efficient priming of naïve T cells that proliferate and differentiate into effector 
cells. (B) Phagocytosis of self-antigens or tumor antigens in a non-inflammatory 
environment does not cause APC maturation. Immature APCs display low levels of 
costimulatory molecules and cytokine production. Antigen presentation by immature 
APCs to naïve T cells results in transient proliferation followed by induction of anergic 
and/or regulatory T-cells.
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TLRs 

The immune system has evolved to fight off microbial invasions that represent a 

constant thread to any multicellular organism. The mammalian immune system is divided 

in two broad categories, innate and acquired immunity. The acquired branch of immunity 

is only present in vertebrates and is characterized by a specialized cell type known as 

lymphocytes. There is two major lineages of lymphocytes called T (for thymus-derived) 

and B (for bursa- or bone-marrow-derived). The attribute that makes lymphocytes 

different from other cells of the immune system is the presence of antigen receptors in 

their cellular surface. Engagement of these receptors results in clonal amplification, 

cellular differentiation, and in B cells, production of antibodies with the same antigen 

binding specificity. Somatic diversification of the antigen-receptor genes generates a vast 

repertoire of cells, each of which expresses a different antigen receptor. This feature 

provides the acquired immune system with the ability to recognize an unlimited array of 

ligands. The T cell receptors (TCRs) bind peptide fragments presented by other cells 

within cell-surface molecules encoded by the MHC class I and class II genes. Therefore, 

T lymphocytes typically recognize antigens that have been partially digested by the 

antigen-presenting cells, primarily dendritic cells. In contrast, the B cell receptor (BCR) 

and antibodies recognize exposed determinants (epitopes) of intact molecules.  

Innate immunity is ancient, characterized by the presence of phagocytic cells and 

found in every organism studied.  Innate immune cells express receptors that are present 

on all cells of a given type and are not subject to rearrangement. These receptors 

recognize microbial products that are not present in the host, and therefore discriminate 

“non-infectious self” from “infectious non-self” (40). Microorganisms have the ability to 
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rapidly change under environmental pressure; consequently innate immune receptors 

have evolved to target molecules essential for the microorganism survival and therefore 

less susceptible to be altered. These molecules have been denominated pathogen-

associated molecular patterns (PAMPs) (41) and the receptors that sense them, pattern-

recognition receptors (PRRs) (42). Toll-like receptors are the most studied family of 

PRRs and received their name from the Drosophila receptor Toll (43), a receptor 

involved in embryonic development but also in the defense against fungal infection (44). 

The first indication that mammalian TLRs may function as pattern recognition receptors 

came with the description of a human homologue of Drosophila Toll, now known as 

TLR4 (45). So far 11 members of the TLR family have been identified based on the 

homology in the cytoplasmic region that exists among all of them. The TLR intracellular 

domain is homologous to the IL-1R domain and for that reason it has been named 

Toll/IL-1R homology (TIR) domain. The TLR extracellular domains contain a varying 

numbers of leucine-rich-repeat (LRR) motifs. These motifs form a horseshoe structure, 

and it is thought that the concave surface of this structure is directly involved in the 

recognition of PAMPs (46). The TLR family members identified so far and their ligands 

are summarized in Table 1. 

 

 

 

 

 

 



Microbial Components Species  TLR/s 

BACTERIA    
LPS Gram-negative bacteria TLR4 
Diacyl lipopeptides Mycoplasma TLR6/ TLR2 
Triacyl lipopeptides Bacteria and mycobacteria TLR1/ TLR2 
LTA Group B Streptococcus TLR6/ TLR2 
PG (Peptidoglycan) Gram-positive bacteria TLR2 
Porins Neisseria TLR2 
Lipoarabinomannan Mycobacteria TLR2 
Flagellin Flagellated bacteria TLR5 
CpG-DNA Bacteria and mycobacteria TLR9 
Non-defined Uropathogenic bacteria TLR11 

FUNGUS   
Zymosan Saccharomyces cerevisiae TLR6/ TLR2 
Phospholipomannan Candida albicans TLR2 
Mannan Candida albicans TLR4 
Glucuronoxylomannan Cryptococcus neoformans TLR2 and TLR4 

PARASITES   
tGPI-mutin Trypanosoma TLR2 
Glycoinositolphospholipids Trypanosoma TLR4 
Hemozoin Plasmodium TLR9 
Profilin-like molecule Toxoplasma gondii TLR11 

VIRUSES   
DNA Viruses TLR9 
dsRNA Viruses TLR3 
ssRNA RNA viruses TLR7 and TLR8 
Envelope proteins RSV,MMTV TLR4 
Hemagglutinin protein Measles virus TLR2 
Non-defined HCMV,HSV1 TLR2 
 

Modified from Akira S 2006 Cell (46) 

TABLE 1. Toll-like receptors and their ligands

7

(Lipoteichoic acid)



Certain TLRs (TLRs 1, 2, 4, 5, and 6) are expressed on the cell surface while others (TLRs 

3, 7, 8, and 9) are found almost exclusively in intracellular compartments such as 

endosomes (46-48) (Figure 2). Intracellular TLRs recognize nucleic acids, suggesting that 

degradation of the viral particles or the bacterial cell walls might be needed to release the 

microbial nucleic acids and allow their recognition by TLRs. 

FIGURE 2. TLR localization

8
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cate together with 

TRAF6 and TAB1 to the cytoplasm. TAK1 is subsequently activated in the cytoplasm, 

ading to the activation of inhibitor of kappaB factor kinases (IKKs) and MAPKs. 

TLR common signaling pathway (MyD88-dependent pathway) 

Ligand binding by TLRs results in receptor dimerization and conformational 

changes required for the recruitment of TIR-domain-containing adaptor molecules to the 

TIR domain of the TLR. Four adaptor proteins, MyD88 (myeloid differentiation factor 

88) (49-50), MAL/TIRAP (MyD88-adaptor-like/TIR-associated protein) (51-54), TRIF 

(Toll-receptor-associated activator of interferon) (55-56) and TRAM (Toll-receptor-

associated molecule) (56-57) have been identified. MyD88 is essential for responses 

against a broad range of microbial components since MyD88-deficient mice display 

impaired cytokine production when exposed to IL-1 (58) or the TLR2-4-5-7or 9 ligands 

(59-62). MyD88 is characterized by the presence of a TIR domain that interacts with the 

cytoplasmic domain of the TLRs and IL-1R, and a death domain (DD) that binds DD 

containing proteins situated downstream in the signaling pathway. Serine-threonine 

kinases that belong to the interleukin-1 receptor-associated kinase (IRAK) family contain 

an N-terminal DD. MyD88 functions as an adaptor recruiting IRAK4 and IRAK1 

proteins to the TLRs/IL-1Rs through interaction with their DD domain. Activated IRAK1 

auto-phosphorylates residues in its N terminus and recruits TNF receptor associated 

factor 6 (TRAF6) to the TIR signaling complex. The IRAK1–TRAF6 complex then 

uncouples from the receptor and interacts at the plasma membrane with members of the 

mitogen-activated protein kinase kinase kinase (MAPKKK) family transforming growth 

factor β–activated kinase (TAK) and TAK-1-binding protein (TAB). This interaction 

induces phosphorylation of TAB2/TAB3 and TAK1, which then translo

le



MAPKs activate the transcription factor activating protein-1 (AP-1) while activated IKKs 

phosphorylate the inhibitors of kappaB (IκBs) leading to their degradation and 

consequently the release of nuclear factor kappa B (NFκB) (Figure 3). 

FIGURE 3.  TLR common signaling pathway

10
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rates the 

existen

3, a transcription 

factor involved in the induction and response to type I IFNs, was also impaired (56). The 

downstream events of TRIF activation that result in NFκB and IRF3 activation are still 

unclear

The activated NFκB complex translocates into the nucleus and binds the DNA at 

kappa-B-binding motifs.  As a result NFκB and AP-1 (46) activate genes that code for 

cytokines, chemokines, growth factors and cell adhesion molecules.  

TRIF dependent pathway (MyD88-independent pathway) 

LPS stimulation results in MAPK activation and recruitment of NFκB to the 

nucleus in MyD88-deficient macrophages even when cytokine production was impaired 

(59). Furthermore, LPS-treatment induces MyD88-deficient DC maturation as 

demonstrated by upregulation of costimulatory molecules (CD80, CD86 and CD40) and 

increased ability to induce T cell proliferation (55-56). These data demonst

ce of a MyD88-independent pathway/s that can be activated by specific TLR 

ligands but not all since TLR2-5-7 and 9 signaling is completely abrogated in MyD88-

deficient cells (60-62). Analysis of the gene expression pattern elicited by LPS in 

MyD88- deficient macrophages identified IFN-β and IFN-inducible genes (63). 

TRIF (also known as TICAM1) was identified as an interacting partner with 

TLR3 by yeast two-hybrid screening (64). Following generation of TRIF-deficient mice, 

it was revealed that they were impaired in the induction of IFN-β and IFN-inducible 

genes by the TLR3 and TLR4 ligands. Furthermore, activation of IRF

. NFκB activation by TRIF might depend on TRAF6 meanwhile TANK binding 

kinase (TBK)-1 has been shown to be involved in IRF3 activation (65). 
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 type I IFN production in addition to 

matory signals. Interestingly, TLR7- and TLR9-mediated IFN-α secretion 

occurs 

 in 

t mice indicating that TRAM is involved in the activation of the MyD88-

indepen

 by TLR1-2-4 and -6 ligands. In contrast, the TLR4-mediated maturation of DCs 

nd activation of IRF3 were intact in TIRAP-deficient mice (52). As explained above 

F3 activation and DC maturation can be achieved by the TRIF-dependent pathway 

 TIRAP participates in the MyD88-dependent pathway of specific 

TLRs. 

TLR7 and TLR9 also induce

proinflam

in a MyD88-dependent manner (66-68), in contrast to TLR3- or TLR4-mediated 

IFN responses, which are dependent on TRIF but not on MyD88. 

Other TIR-domain containing proteins 

TRAM  

TRAM associates with TLR4 and TRIF suggesting that its function is to bring 

them together (57). LPS induced production of IFN-β and IRF3 activation are impaired

TRAM-deficien

dent pathway by TLR4 (69).  

 TRAM’s role as an adaptor might be specific for TLR4 signaling since cytokine 

production by TLR2 -3-7 and 9 ligands remained intact in TRAM-deficient mice (69). 

MAL/TIRAP  

Expression of dominant-negative TIRAP, which encodes only the TIR domain, 

blocked NFκB activation by TLR4 (51). Furthermore TIRAP-deficient mice are impaired 

in inflammatory cytokine production and activation of the NFκB and MAPK pathways 

induced

a

IR

alone, suggesting that
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TLR5 and flagellin 

Flagella are complex organelles that play a major role in bacterial motility and 

chemotaxis. The body of the flagellum consists of a mass of protofilaments, each of 

which is a long, end-to-end polymer of a single protein, flagellin. Many important human 

pathogens are flagellated and for a long time expression of flagella has been examined as 

a virulence trait, but this examination has been largely in the context of motility rather 

than immune stimulation (70-72). As mentioned before TLRs are characterized by the 

presence of an intracellular TIR domain shared by them and the IL-1R. TLR5 was 

identified in human and mice based on the presence of the TIR domain (73). TLR5 is 

expressed in epithelial cells, endothelial cells, macrophages, DCs, and T cells (72). Initial 

identification of flagellin as the ligand for TLR5 came from a study that isolated 

stimulatory components from Listeria culture supernatant proteins by high-performance 

liquid chromatography (HPLC) (61). Parallel studies examining the activation of 

epithelial cells in response to Salmonella also identified flagellin as a stimulatory ligand 

for TLR5 (74). Analysis of the flagellin amino acid sequences from Gram-positive and -

negative bacteria revealed the presence of highly conserved sequences at the amino and 

carboxyl termini (75). TLRs target conserved sequences making the carboxy- and amino-

terminus the predictable candidates for TLR5 recognition. Studies from Eaves-Pyles et al 

initially confirmed this hypothesis. In their study constructs consisting of only the amino, 

central or carboxy regions of flagellin lacked stimulatory capacity, as evaluated by in 

vitro activation of NFκB and IL-8 production in intestinal epithelial cells. However, a 

fusion protein composed of the conserved amino and carboxyl termini, induced a 

response that was identical to the response induced by wild-type flagellin suggesting that  
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raction to a group of amino acids from both 

ends br

duction of inflammatory mediators 

and consequently the recruitment of inflammatory cells to the site of infection, 

recognition of flagellin promote systemic dissemination of the pathogen. Supporting this 

conclusion TLR5-/- mice survived oral Salmonella infection better than wild-type mice 

as shown in a recent work from Uematsu et al (79).  

both ends of the protein but not the central variable region are needed for flagellin 

recognition by TLR5 (76).  Further and deeper studies by Aderem’s group targeted the 

specific location of the TLR5-flagellin inte

ought together in the folded protein (77).  Interestingly, mutation of those specific 

residues greatly diminished the bacteria’s motility (77) supporting the paradigm that 

TLRs target molecules that are conserved since their mutation would affect functions that 

are vital for the microorganism.  

TLR5’s binding site is buried within the flagella since it acts as part of the 

anchorage region that binds one monomer to another in order to form the flagellum 

filament (Figure 4). Accordingly, it has been shown by cross-linking studies that flagellin 

monomers are much more potent than polymers to elicit TLR5 activity (77). It is not yet 

clear how the internal structure of the flagellum filament would come in contact with 

TLR5.  One possibility is that flagellin monomers are released in the phagosome or may 

be exposed during the flagellum assembly. A surprising finding is that lysophospholipids 

produced by epithelial cells stimulate the synthesis and release of monomeric flagellin 

from Salmonella (78). It is unclear how this evidence affects our understanding of 

Salmonella infection but it could be that through in

 

 



FIGURE 4. TLR5 binds the conserved domains in flagellin
The flagella present in the different species of Salmonella (A) are polymers of the protein 
flagellin. The flagellin monomers are assembled leaving the D3 and D2 domains exposed 
while the D1 domain is enclosed within the filament structure (B). The exposed region of 
the flagella will act as a paddle to facilitate the bacterial movement while the internal part 
is necessary for its assembly. TLR5 binds a group of aminoacids from the carboxy and 
amino terminus that are brought together in the folded protein as part of the D1 domain 
(C). Probably due to their structural role aminoacids in the D1 domain are highly 
conserved among flagellated bacteria while the other domains show a much higher 
variability.
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 but 

ria. TLR5 is also highly expressed in the airway 

epitheli

TLR5 in the epithelia 

The epithelial surfaces of the host represent principal entry sites for many 

pathogens and the expression of TLR5 by epithelium allows for rapid recognition of 

flagellated organisms. Studies by Gewirtz et al. identified flagellin as the bacterial factor 

inducing IL-8 production following the interaction of Salmonella with human intestinal 

epithelial cells (74). The effects of flagellin on epithelial gene expression are not 

restricted to interleukin-8, but rather flagellin has been shown to be Salmonella’s 

dominant proinflammatory determinant, being necessary and sufficient for nearly all 

induction of epithelial proinflammatory gene expression induced by Salmonella 

typhimurium (80). Interestingly, the activation of this inflammatory response was 

dependent upon the translocation of flagellin to the basolateral surface of the epithelial 

cells, where TLR5 is expressed (81). Presumably, this requirement limits epithelial cell 

activation to pathogens that can translocate flagellin, and therefore, avoids TLR5 ligation 

by the normal intestinal flora since flagellin expression is not restricted to pathogens

rather is expressed by all motile bacte

a and it is a potent inducer of inflammation in the lung (82). Flagellin detection 

plays an important role in the defense against pathogens of the respiratory tract since 

suppressing TLR5 signaling increases susceptibility to infection by Legionella (83).  

TLR5 and innate immunity 

Flagellin has been shown to induce production of cytokines and upregulation of 

costimulatory molecules from human DCs (84). The results with mouse DCs have been 

more controversial and while TLR5 expression and flagellin-induced maturation of 

mouse splenic and BM derived DCs have been reported by several groups (85-87), others 
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trast, the cytokine profile seen in flagellin 

roduction of proinflammatory cytokines in the absence 

of IL-1

at flagellin induces Th1-biased responses in vivo (89). These 

found murine DCs not to be responsive to flagellin stimulation due to very low or absent 

TLR5 expression (79) (84). The cause for these discrepancies is not clear since the purity 

of the flagellin preparation is well documented in the majority of these studies. One 

possibility is that these discrepancies are due to the plasticity of TLR expression on APCs 

that is rapidly modulated in response to cytokines and environmental stresses. Uematsu et 

al. recently demonstrated that high levels of TLR5 are expressed by murine lamina 

propria DCs. These DCs when stimulated with flagellin produced high levels of IL-6, IL-

12 but not IL-10 (79). Interestingly, DCs from the gut stimulated with microbial products 

or CD40L have been shown to produce higher levels of IL-10 than those from the spleen 

(88). IL-10 production by intestinal DCs probably plays an important role in the 

establishment of tolerance towards commensal bacteria and food antigens through the 

development of regulatory T cells. In con

stimulated lamina propria DCs (p

0) suggests that these cells would induce inflammatory responses rather than 

tolerance. These data supports the prior notion that flagellin plays an important role in 

eliciting inflammatory responses in the gut. 

TLR5 and adaptive immunity 

Flagellin’s ability to work as an adjuvant for T cell responses has been evaluated 

by several studies. The first report came from Gewirtz group demonstrating that 

Salmonella’s flagellin was capable of enhancing antigen specific CD4+ T cell expansion 

and memory development in vivo. Antigen-specific transgenic T cells primed in vivo with 

antigen in the presence of flagellin produced IFN-γ but not IL-4 upon in vitro 

restimulation suggesting th
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data is 

related with regulatory T 

ell development as FOXP3-transfected naïve T cells suppressed inflammatory responses 

 vitro and in vivo (93). Interestingly, treatment of CD4+CD25+ T cells with flagellin 

creased FOXP3 expression which could explain the enhancement of the suppressive 

henotype observed in  flagellin-treated regulatory T cells (91).  

 

at odds with reports from other groups supporting that flagellin induces a Th2 

response in vivo. In the latter a Th2 antibody response was observed in flagellin 

immunized animals followed by the production of IL-4 and IL-13 by lymph node cells 

restimulated in vitro (85). 

In addition to flagellin’s ability to prime the adaptive immune response through 

its effects on APCs, recent evidence supports that flagellin could also directly stimulate 

lymphocytes. Expression of mRNA from different TLRs has been detected in human and 

murine T cells among them TLR5. In addition, flagellin has been shown to increase 

proliferation and IFN-γ production by memory-effector T cells and also to directly 

enhance IL-2 production and proliferation by naïve T cells (90-91). In murine and human 

T cells, TLR5 expression has been shown to be selectively enhanced in CD4+CD25+ T 

cells as compared with their CD4+CD25- naïve counterparts (91-92). Furthermore, 

treatment of human CD4+CD25+ T cells with flagellin increased their ability to suppress 

the proliferation of naïve T cells stimulated with anti-TCR and anti-CD28 antibodies 

(91). Forkhead box p3 (FOXP3) is a transcription factor directly 

c

in

in

p
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m directed towards cytokine production (45). Cytokines act 

lar messengers shaping and expanding the immune response, furthermore they are 

respons

roduced in excess over IL-12p35 

 limiting factor for IL-12p70 formation (96). IL-12p40 

can be 

ccessible to 

 

IL-10 and IL-12  

Recognition of viral or bacterial products through TLRs induces profound 

changes in APCs, many of the

as cellu

ible to terminate an ongoing response before tissue damage might occur. The 

cytokines IL-12 and IL-10 play key roles in expanding and limiting inflammation usually 

acting in opposition. 

IL-12  

Macrophages, monocytes, neutrophils, and DCs, are the main sources of IL-12 

(94).  The biologically active form of IL-12, IL-12p70, is a heterodimer formed by a 35-

kDa light chain (known as p35 or IL-12α) and a 40-kDa heavy chain (known as p40 or 

IL-12β) (95). IL-12p40 has been shown to be p

suggesting that IL-12p35 acts as a

secreted as a monomer but not IL-12 p35 that is secreted only when associated 

with p40 (96). IL-12p40 homodimers have been observed in mice in vivo but their 

function has not been completely elucidated (97-99). 

Regulation of IL-12 production 

IL-12 p35 and IL-12p40 are encoded by two genes located in different 

chromosomes and regulated independently. Regulation of IL-12p40 expression has been 

reported to occur only at the transcriptional level while IL-12p35 might be regulated by 

transcriptional and translational mechanisms (100). The endogenous p40 promoter is 

assembled in four tightly positioned nucleosomes (101) and therefore is not a
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the tran

-12p35 expression even in activated cells have complicated 

the stu

 microbial products is the strongest stimulus to induce IL-12 

produc

scriptional machinery. LPS stimulation has been shown to result in chromatin 

remodeling that allows binding of the transcription factor CCAAT enhancer-binding 

protein (C/EBP) (102). However, C/EBP by itself is not enough to induce IL-12p40 

transcription and cooperation with other elements as NFκB is necessary (94). 

The low levels of IL

dy of the mechanisms that regulate its transcription. Nonetheless, cloning of the 

IL-12p35 promoter region from murine and human cells have served to identify binding 

sites for the transcription factors specificity protein 1 (SP1), IFN-γ response element (γ-

IRE) and C/EBP (103-104). 

TLR activation by

tion that can be further enhanced by the cytokines IFN-γ and IL-4 (105-106). On 

the contrary, IL-10 plays a major role in the negative regulation of IL-12 production by 

blocking transcription of the p40 and p35 genes (107-108). 

IL-12 biological activity 

The IL-12 receptor (IL-12R) is mainly expressed in activated T and NK cells 

making them the main target for this cytokine (94). Engagement of the IL-12R, as other 

cytokine receptors, activates the Janus kinase (JAK) family of protein tyrosine kinases, 

which in turn activate cytoplasmic signal transducer and activator of transcription 

(STAT) proteins. Activated STATs dimerize and translocate to the nucleus, where they 

induce expression of STAT-regulated genes (109). Although STAT1-3-4 and 5 have been 

reported to be activated by the IL12 receptor (110), STAT4 appears to be the major 

player in the IL-12-induced response (111-112). The proinflammatory nature of IL-12 is 

mainly due to its strong ability to induce IFN-γ production by T cells and NK cells. IL-12 
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t also the production of inflammatory mediators that block 

nesis and/or have a direct toxic effect over the tumor (113). Finally, the powerful 

proinfla

PCs, to block T cell function (116-117). 

IL-10 primarily acts by inhibiting a broad spectrum of 

activate

is required for differentiation of CD4+ T cells into IFN-γ producing T helper cells that are 

denominated T helper 1 (Th1) cells. Th1 cells are fundamental in the development of 

cellular immune responses as the differentiation of cytotoxic CD8+ T cells (CTLs) and 

increase phagocytosis and microbial killing by members of the innate immune system 

(94). Treatment with IL-12 has been shown to have a marked anti-tumor effect on mouse 

models by inhibiting the establishment or inducing the regression of tumors (113). The 

anti-tumor effect of IL-12 is complex and involves not only antigen-specific responses 

against the tumor bu

angioge

mmatory nature of IL-12 plays a central role not only in the immune responses 

against tumors and pathogens but also in the development of organ-specific 

autoimmunity (114).  

IL-10 

IL-10 was discovered in the early 1990s by Mossman’s group using an assay to 

isolate factors that could suppress T cell activity (115). Later on, the same group and 

others showed that IL-10 acted indirectly, via A

The current understanding is that 

d functions in macrophages and dendritic cells. The functions inhibited include 

cytokine and chemokine production and expression of MHC class II and costimulatory 

molecules such as CD80 and CD86 (118-121). 

Regulation of IL-10 production 

The molecular mechanisms that regulate expression of the IL-10 gene are poorly 

understood. The transcription factors specificity protein (Sp) 1 (122-123), Sp3 (123), 
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PS and other stimuli results in histone 3 (H3) phosphorylation at specific 

oter and enhanced chromatin accessibility (126). Furthermore 

mRNA

ly activated STAT3 recreates the anti-inflammatory effects 

induced

CCAAT/enhancer-binding protein(C/EBP)-β (124), IFN regulatory factor 1 (IRF-1), and 

STAT3 (122) have been reported to be involved in IL-10 transcription and among them 

Sp1 seems to play a central role in the induction of IL-10 by LPS in macrophages (122). 

Sp1 is ubiquitously expressed suggesting that other mechanisms of control exist to ensure 

IL-10 production upon stimulation and not in a constitutive manner. One mechanism 

would be through restricted accessibility to the promoter. Supporting this possibility ERK 

activation by L

regions of the IL-10 prom

 stability might also play an important role in IL-10 regulation as the presence of 

AU-rich elements that increase mRNA degradation have been described in the IL-10 

mRNA (127).  

IL-10 biological activity 

Macrophages, DCs and certain T cell subsets are the main source of IL-10. The 

main targets seem to be the antigen presenting cells even when the IL-10 receptor (IL-

10R) is expressed in most hematopoietic cells (128-129). IL-10R signaling results in the 

activation of STAT3 (121). STAT3 activation is essential for the anti-inflammatory 

properties of IL-10 signaling since blockade of the STAT3 function abrogates IL-10 

mediated suppression of LPS-induced cytokines and costimulatory molecules (130-132). 

Conversely, constitutive

 by IL-10 (133). The anti-inflammatory response induced by IL-10 has been 

shown to require the synthesis of new proteins suggesting that STAT3 induces one or 

more genes that execute the anti-inflammatory response but the identity of these proteins 

is still unknown (134).  
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ial and fungal infection these mice develop strong 

Th1 res

r prognosis for some cancers is 

not com

lin and its receptor (TLR5). The goals of our project were 

asically two. First, characterize the response elicited by TLR5 in APCs. Second, 

valuate the ability of flagellin to prime immune responses in tolerogenic conditions. 

IL-10 deficient mice spontaneously develop chronic intestinal inflammation as a 

result of aberrant immune responses to the microbiota of the gastrointestinal tract (135). 

Disease development depends on IL-12 and requires the presence of resident enteric 

bacteria (136). Furthermore upon bacter

ponses that results in enhanced clearance of the pathogen but also in toxicity and 

death due to massive inflammatory responses (137-138). Disease development in IL-10 

deficient mice demonstrates that IL-10 is essential to limit immune responses and other 

factors can not compensate for its loss. 

Elevated IL-10 serum levels have been reported as a negative prognostic factor 

for survival in lymphoma, lung cancer, hepatocellular, renal or gastric carcinoma and 

other solid tumors (121). How IL-10 contributes to a poo

pletely elucidated and probably its role might vary for different malignancies. 

Nonetheless, it is clear that the presence of IL-10 will blunt the induction of an immune 

response against tumor cells by inhibiting DC function. Furthermore, IL-10 might serve 

as a growth factor for certain cell types as B cells (139).  

The main objective of tumor immunotherapy is to induce productive and specific 

immune responses against malignant cells. The powerful proinflammatory nature of TLR 

ligands led us to explore the possibility of using them to achieve this goal. Among all 

TLR ligands, flagellin is the only protein, this characteristic facilitates its use for 

vaccination purposes as it can be cloned or modified easily. Therefore, we decided to 

focus our research in flagel

b

e
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urthermore, we also investigated the translation of these studies into a suitable anti-

mor vaccination strategy. 
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tion were detectable using the 

Limulu

 

 

MATERIALS AND METHODS 

TLR ligands.  

Salmonella typhimurium flagellin was isolated as previously described (140). 

Briefly, Salmonella typhimurium is grown in a chemically defined media, in order to 

avoid the contamination of the flagellin preparation with other proteins. The dissociation 

of flagella from the bacterial cells was achieved by reducing the pH to 2.0 with HCl for 

only 30 min. The reduction in pH results in the detachment and breakdown of flagella 

into its monomeric form, but it does not cause the death or disruption of the bacteria. The 

monomeric form of the flagella, flagellin protein, is no longer centrifugable. This 

property is exploited to remove pH 2.0 insoluble contaminants before protein 

precipitation. Protein precipitation was achieved by saturating the preparation with 

ammonium sulfate (2.67 M final concentration). After which the protein precipitate is re-

suspended in an appropriate volume of endotoxin free water and dialyzed overnight in 

distilled water plus activated charcoal. Even after all these purification steps the presence 

of small amounts of endotoxin in the protein prepara

s Amebocyte Lysate method (Cambrex, Rutherford, NJ). Further purification 

steps combining filtration through 100 Kd pore size centricon columns (Millipore, 

Billerica, MA) and polymixin B columns, Detoxi-Gel AffinityPak columns (Pierce, 

Rockford, IL)  were used to remove the remaining LPS. 
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e K were used, 

erformed with commercially available S. typhimurium 

flagelli

LB/c mice were injected intraperitoneally with 1 mL of thioglycollate (DIFCO 

Labora

 

crophages was achieved by 5-6 days incubation of the cells 

SDS-PAGE analysis revealed no contaminating proteins accompanying the 

expected flagellin doublet at around 50kDa. In addition western blot using a monoclonal 

antibody against flagellin further confirmed the protein’s identity (Igen 

international,Gaithersburg, MA). In those experiments in which flagellin was digested 

with proteinase K (Sigma Aldrich, St Louis ,MO ) 100 μg/ml proteinas

digestion carried for 4 hours at 37°C and the protease was inactivated at 100°C for 1 

hour. Experiments were also p

n (InVivoGen, San Diego, CA) which yielded identical results. LPS was obtained 

from Sigma (Sigma, St Louis, MO). CpG, and Zymosan were obtained from InVivoGen, 

(InVivoGen,San Diego, CA) and they were used as indicated in the text. 

Isolation of peritoneal elicited macrophages (PEM) and generation of bone marrow 

(BM)-derived macrophages.  

BA

tories, Detroit, MI). Four days later, PEMs were obtained by peritoneal lavage as 

previously described (141). For CK analysis by ELISA 105 cells per well are plated in a 

96 well plate, for RNA analysis 1 x 106 cells per well are plated in a 24 well plate. After 2 

hours those cells that did not adhere to the plate are washed off using ice-cold HBSS (2 

washes).   

 BM-derived macrophages were differentiated from bone marrow cells by 

harvesting the hind legs and flushing the bone marrow with RPMI. Red blood cells were 

lysed using ACK lysis buffer and the remaining cells extensively washed. Differentiation

of bone marrow cells into ma
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in com

Mice were treated with flagellin (10 μg/animal), LPS (10 μg/animal) or HBSS 

and the volume injected was 0.1 ml via tail vein. Ninety minutes later the animals were 

sacrificed and blood obtained by heart puncture. Blood was spun down at maximum 

speed in a minicentrifuge to separate the serum from the cellular components of the 

blood. Cytokine levels were quantified by sandwich ELISA following manufacturer’s 

n Diego, CA). For in vitro determination of cytokine 

produc

Two million PEMs or BM-derived macrophages were plated per well in a 24 well 

plate. After 2 hours non-adherent cells were washed off with media and attached cells 

were then treated as indicated. Total RNA was extracted using TriZol reagent 

(Qiagen,Valencia,CA) and cDNA obtained with the iScript cDNA synthesis kit (Bio-

Rad,Hercules,CA). Target mRNA was quantified using MyIQ single color real time PCR 

detection system (Bio-Rad) and iQ SYBR green Supermix (Bio-Rad,Hercules,CA). IL-

plete media (20% FBS, 100μM β-mercapto-ethanol in DMEM) supplemented with 

L-929 cells supernatants as a source of M-CSF (142). At the end of the incubation period 

the plates are washed vigorously with ice-cold HBSS and the strongly attached cells are 

macrophages. FACS analysis of these cells showed that they are CD11b high Gr1 low/+ 

Quantification of cytokines 

instructions (BD Pharmingen, Sa

tion, 1x105 PEMs were plated by triplicate in 96 well-plates and treated for 24 

hours unless otherwise specified. Supernatants were harvested and kept at -70°C until 

ELISA for IL-10; IL12p40-70 (BD Pharmingen, San Diego, CA) or IL-12 p70 

(Ebioscience San Diego, CA)  was performed following manufacturer’s instructions  

Real time (RT)-PCR analysis.  
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TCCTAC, right oligo 

sed for PCR amplification (cycling parameters 3 

min 95

ticles (Fluoresbrite YG carboxylate microspheres 1 

re used for covalent coupling of flagellin by 

activating the carboxyl groups with water-sol

12p35 primers  (left oligo ATGGTGAAGACGGCCAGAG, right oligo 

CAGGTCTTCAATGTGCTGGTT) IL-12p40 primers, (left oligo  

GCAACGTTGGAAAGGAAAGA, right oligo AAAGCCAACCAAGCAGAAGA), IL-

10 primers (left oligo CAGGGATCTTAGCTAACGGAAA, right oligo 

GCTCAGTGAATAAATAGAATGGGAAC), TLR5 primers (left oligo 

GCATAGCCTGAGCCTGTTTC, right oligo AAGTTCCGGGGAATCTGTTT) and 

GAPDH primers (left oligo ATGGCCTTCCGTGT

CAGATGCCTGCTTCACCAC) were u

°C, 15 secs 95 °C, 30 secs 60°C 40 reps, 1 min 95°C). Single product 

amplification was confirmed by melting curve analysis and primer efficiency was near to 

100% in all the experiments performed. Quantification is expressed in arbitrary units and 

target mRNA levels were normalized to GAPDH expression. 

Preparation of flagellin-coated beads 

Carboxyl (COOH) micropar

μm Polysciences Inc, Warrington, PA) we

uble carbodiimide. The carbodiimide reacts 

with the carboxyl group to create an active ester that is reactive toward primary amines 

on the protein of interest (PolyLink Protein Coupling Kit for COOH Microspheres 

Polysciences Inc, Warrington, PA)  

Antigen-specific T-cell tolerance model.  

Single cell suspensions were made from peripheral lymph nodes and spleen 

collected from anti-HA TCR transgenic donors (BALB/c HA+/- mice). The percentage of 
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 by triplicate in a 96 well plate at a 

ells per well, in the presence or not of synthetic HA-

peptide

bitors cocktail (Sigma Aldrich, St Louis ,MO ) and phosphatase inhibitors 

igma Aldrich, St Louis ,MO )  and subjected to SDS-PAGE-

immun

lymphocytes double positive for CD4 and the clonotypic TCR was determined by flow 

cytometry. Cells were washed three times in sterile Hanks balanced salt solution (HBSS), 

and injected into the tail vein of male recipients such that a total of 2.5x106 CD4+ anti-

HA TCR+ T cells were transferred into BALB/c mice. One day later, mice were injected 

intravenously (i.v) with a tolerogenic dose of HA-peptide110-120 (200 μg) in combination -

or not- with 10 μg of flagellin. Two weeks later the animals were sacrificed and the 

spleen harvested. Transgenic T cells numbers in the spleen were assessed by Flow 

Cytometry with FITC conjugated rat anti mouse CD4 antibodies (Pharmingen) and 

byotinilated rat anti-clonotypic TCR antibody MAb 6.5 (kindly provided by Dr Hyam 

Levitsky, John Hopkins University) and analyzed by Flow-Jo software (Treestar Inc). For 

in vitro restimulation analysis, splenocytes were plated

final concentration of 1x106 c

110-120. After 48 hours stimulation supernatants were collected and the production 

of IFN-γ and IL-2 was assessed by ELISA. Values for cells cultured in media alone are 

less than 10% of the values for antigen-stimulated cells. Data are expressed as the amount 

of cytokine produced by 100 clonotype+ T cells/well. 

Cell lysates and western blot 

Total cell lysates were prepared in RIPA buffer (150 mM NaCl, 10 mM Tris-HCl, 

pH 7.4, 5 mM EDTA, pH8.0, 0.1% SDS, 1% deoxycholate, 1% Triton X-100) containing 

protease inhi

cocktail (I and II) (S

oblot analysis with anti-phospho-p44/42 MAPKinase (Thr202/Tyr204) polyclonal 

antibody (Cell Signaling), phospho-IkappaB-alpha (Ser32) (14D4) rabbit monoclonal 
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l GM-CSF plus 40 

ented (144) we noticed that the 

additio

 APCs 

ter 48 hours restimulation supernatants were collected and 

CK production was quantified by ELISA. T cell proliferation was assessed after 72 hours 

restimulation by pulsing the cells with [3H]thymidine (1 μCi/well, NEN Life Science, 

antibody (Cell Signaling) and anti-MAPKinase (ERK1+ERK2) monoclonal antibody 

(Invitrogen) 

Generation of DCs.  

Dendritic cells were differentiated as in (146). Briefly bone marrow was collected 

from the femur and tibia of 6-10 week old BALB/c mice. Red blood cells were lysed in 

ACK lysis buffer and CD4+, CD8+ cells depleted using complement-mediated lysis 

followed by extensive washing. Cells were cultured for 7 days in media supplemented 

with 20 ng/ml GM-CSF plus 20 ng/ml IL-4 (BM-DCs) or 20 ng/m

ng/ml IL-10 plus 2.5 ng/ml TNF-α (as already docum

n of TNF-α did not alter the DCs phenotype or ability to produce cytokines but it 

helped to expand the yield of these cells.). Every 2 days old media was removed from the 

plate and fresh media added. After 7 days in culture cells were harvested. Around 90% of 

the cells harvested were CD11c + as determined by FACS analysis. 

Naïve T cell preparation and in vitro differentiation 

Naïve T cells were purified from HA +/- BALB/c mice using magnetic column 

separation. The phenotype of these T cells (CD4+ CD62L+) was confirmed by FACS 

analysis before culture and cells plated with BM-DCs or tolerogenic-DCs and antigen for 

7 days. After this incubation period cells were washed twice with ice cold HBSS and 

transferred to a new plate where they were restimulated using fresh splenocytes as

plus antigen (HA peptide). Af
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The ATTCAGTGCCGATACCAAGG (left primer) and 

ACGTGTCGGTGAATCAATC (right primer) oligos were designed to amplify the whole 

fliC coding sequence from Salmonella typhimurium (Genbank accession number 

D13689).  The PCR product was identified as a unique band running at the expected size 

of 1.6 Kb and purified from the agarose gel using the Qiaquick gel extraction kit 

(Qiagen).  The PCR product obtained was initially cloned into the pCR 2.1 vector 

(Invitrogen TA cloning kit).  The proper orientation of the insert was verified by 

sequen

ct the murine melanoma 

cell line B78H1 using the Lipofectamine plus t (Gibco).  Transfected cells were 

initially selected in complete media plus 400 μ l of Hygromicin.  Cells that survived 

were further selected in media containing 1200 μg/ml of Hygromicin.  Flagellin 

expression by these cells was confirmed by wes n blot analysis of cell lysates using an 

anti-flagellin specific monoclonal antibody ational). 

 

MA). Eighteen hours later, cells were harvested with a Packard Micromate cell harvester 

and thymidine incorporation into DNA was measured as counts per minute (cpm). 

FliC expressing tumor cells 

cing using an oligo for the T7 promoter present in the plasmid.  Following this 

step, the construct was digested with the restriction enzymes XhoI and HindIII and 

subcloned into the pcDNA 3.1 (-)Hygro vector (Invitrogen) for IL-10 protein expression 

in mammalian cells.  The inserted fragment was sequenced and identified as the fliC gene 

of Salmonella typhimurium. 

The pcDNA 3.1/fliC construct was then used to transfe

reagen

g/m

ter

 (Igen Intern



 

77 kd 
50 kd 

Flagellin preparation 

 Flagellin was purified from Salmonella typhimurium as explained in the Materials 

and Methods section. Briefly, the dissociation of flagella from the bacterial cells was 

achieved by reducing the pH to 2.0 with HCl for  30 min. The reduction in pH results in the 

detachment and breakdown of flagella into its monomeric form, but it does not cause the 

death or disruption of the bacteria. Soluble flagellin is precipitated using ammonium 

sulfate at saturating conditions and further purified using dialysis, ultrafiltration and 

polymyxin B beads to eliminate endotoxin contamination. 

 SDS-PAGE analysis of the flagellin preparation revealed no contaminating 

proteins accompanying the expected flagellin doublet at around 50kDa (Figure 5A). 

RESULTS

FIGURE 5. Flagellin protein 
preparation
(A) SDS PAGE followed by 
Coomasie staining of a Salmonella  
flagellin preparation. (B)Western 
blot analysis of the same protein 
preparation using monoclonal 
antibodies against flagellin 
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ella known as FliC (flagellin phase type 1/H1) and FljB 

(flagellin phase type 2/H2) (145). The FliC and FljB Salmonella flagellin proteins display 

78% sequence identity and seem to activate TLR5 signaling with similar potency (145). 

The iden

etic studies showed that even after 

72 hours of treatment IL-10 was still not detected in the supernatants of flagellin-treated 

PEM (Figure 6C-open squares). In contrast, when PEM were stimulated with LPS, IL-10 

The presence of two bands is due to the expression of two different flagellin 

proteins by wild type Salmon

tity of both proteins was verified by western blot using a monoclonal antibody 

against flagellin (Figure 5B). 

Flagellin-stimulated PEM produce IL-12 but not IL-10  

Peritoneal elicited macrophages (PEM) were treated in vitro with increasing 

concentrations of purified flagellin or with LPS for 24 hours. At this time the 

supernatants were collected and production of IL-12 p40/p70 and IL-10 was determined 

by ELISA. Reminiscent of previous studies (121), LPS-treated PEM produce both the 

proinflammatory cytokine IL-12 as well as the anti-inflammatory cytokine IL-10 in a 

dose-dependent manner (Figure 6A). Treatment of PEM with flagellin also resulted in a 

dose dependent production of IL12p40/p70 (Figure 6B). The magnitude of this response 

was however not as potent as the one induced by LPS (Figure 6A versus 6B, black 

squares). IL-10 is commonly produced by macrophages upon stimulation with different 

TLR ligands, but to our surprise we did not detect any IL-10 production in flagellin-

stimulated PEM (Figure 6B-open squares). The lack of IL-10 production was not the 

result of delayed production of this cytokine since kin
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FIGURE 6. IL-12p40-70 but not 
IL-10 is detected in the 
supernatants of flagellin-
stimulated PEM.
(A-B) PEM from BALB/c mice 
(1x10 cells/well) were cultured for 
24 hours with the indicated 
concentrations of LPS, flagellin or 
proteinase K digested flagellin  
(FD, volume added equivalent to 5 
µg/ml flagellin) Supernatants 
were then collected and 
IL12p40/70 or IL-10 were 
determined by ELISA. Data 
represent mean ± s.d. of triplicate 
cultures. Shown is a representative 
experiment of three independent 
experiments with similar results. 
(C) PEM were treated with 
flagellin (5 µg/ml), LPS (1 µg/ml) 
or with HBSS. Supernatants were 
collected at the indicated time 
points and the production of IL-10 
was determined by ELISA. Data 
represent mean ± s.d. of triplicate 
cultures. Shown is a representative 
experiment of two independent 
experiments with similar results. 

was detected at early time points and its levels remained elevated throughout the duration 
of the incubation period (Figure 6C-open diamonds).
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, our data shows that the observed effects 

induced by flagellin on macrophages are not due to LPS contamination and require 

expression of TLR5 in the responding cells.   

 

One concern in the interpretation of the results described above is the possibility 

that the flagellin preparation would be contaminated with other bacterial products that 

could activate macrophages, especially lypopolysaccharide (LPS). However we have 

used several controls to rule out this possibility. First, we tested the flagellin preparation 

with the Limulus amebocyte lysate test (LAL). This chromogenic method is based on the 

activation of a proenzyme on the lysate when in contact with endotoxin and it is of 

standard use in pharmaceutical and medical facilities. Using this test we could not detect 

LPS contamination in our flagellin preparation. Second, digestion of the flagellin 

preparation with proteinase K resulted in loss of its ability to induce IL-12 production in 

PEM (Figure 6B-FD, and Figure 7A) indicating that this effect is induced by a protein 

and not by other non-proteinaceous potential contaminants in the preparation. Finally, 

given the previous demonstration that the inflammatory effect of flagellin requires 

binding to TLR5 (61) (79), we treated the macrophage cell line RAW 264.7, which lacks 

TLR5 (146 and Figure 7B), with flagellin or LPS. While treatment with LPS resulted in 

IL-12 production by these cells, treatment with flagellin failed to induce such a response, 

indicating that induction of IL-12 by flagellin requires expression of TLR5 in the target 

cell (Figure 7C). The absence of IL-12 production in RAW 264.7 cells also provides 

additional support to our claim that the flagellin preparation used in our experiments was 

LPS-free, since some LPS contamination might have otherwise resulted in IL-12 

production by RAW 264.7 cells. To conclude
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FIGURE 7. IL-12 p40-70 
production by flagellin- 
stimulated macrophages is not 
caused by endotoxin 
contamination
(A) Proteinase K digested flagellin 
does not induce IL-12 production 
by PEM. Peritoneal macrophages 
were cultured in media alone or in 
the presence of flagellin (5 μg/ml) 
digested or not with proteinase K. 
Supernatants were collected after 
24 hours and IL-12 p40-70 was 
quantified by ELISA. Shown is one 
of at least three experiments made. 
(B) and (C) RAW 264.7 do not 
express detectable TLR5 mRNA 
levels and do not respond to 
flagellin stimulation. (B) TLR5 
mRNA level from PEM or RAW 
264.7 cells was determined by 
quantitative real-time RT-PCR. 
GAPDH mRNA levels were similar 
among the samples compared. 
Shown is a representative 
experiment of two independent 
experiments with similar results. 
(C) RAW 264.7 cells were cultured 
for 24 hours with flagellin 
(5µg/ml), LPS (1 µg/ml) or media 
alone. Supernatants were collected 
and the levels of IL12p40/70 were 
measured by ELISA. Data 
represent mean ± s.d. of triplicate 
cultures from a representative 
experiment of three with similar 
results. 
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IL-12 but not IL-10 is detected in the serum of flagellin-treated mice.

 To confirm the above in vitro results, we assessed next the production of IL-10 and 

IL-12 in mice that received a single intravenous (iv) injection of either flagellin or LPS. As 

shown in Figure 8A, similar levels of IL-12 p40-70 were detected in the serum of LPS or 

flagellin treated mice. In contrast, IL-10 production showed a completely divergent 

outcome upon treatment with either TLR ligand. While significant levels of IL-10 were 

detected in the serum of LPS-treated mice, this cytokine could not be detected in the serum 

of flagellin-treated mice (Figure 8B).
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FIGURE 8. Serum levels of IL-12p40-70 and IL-10 in mice treated with LPS 
or flagellin.

BALB/c mice were injected iv with either flagellin (10 µg), LPS (10 µg) or an equal 
volume of HBSS (0.1 ml). Blood was collected 1.5 hours later and serum levels of 
IL-12p40-70 (A) or IL-10 (B) were determined by ELISA. Shown is a 
representative experiment with four animals per group of two independent 
experiments with similar results. Each dot represents an animal and the line 
indicates the group’s mean.
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FIGURE 9. IL-6 and TNF-α blood serum levels in flagellin-treated 
animals  
BALB/c mice were injected iv with either flagellin (10 µg) or an equal 
volume of HBSS (0.1 ml). Blood was collected 1.5 hours later and serum 
levels of IL6 or TNFα were determined by ELISA. Shown is a representative 
experiment with three animals per group 

 Other proinflammatory cytokines as IL-6 were also detected in flagellin-treated 

mice. Of notice, TNF-α was absent from the serum of these animals (Figure 9). Several 

lines of evidence indicate that TNF-α is the principal mediator in the pathogenesis of septic 

shock. First, neutralizing anti-TNF-α antibodies can prevent the pulmonary failure and 

death associated with administration of endotoxin or Escherichia coli in mice (147). 

Second, intravenous infusion of TNF-α leads to a toxic syndrome indistinguishable from 

that caused by endotoxemia and gramnegative sepsis (147-148). These observations might 

indicate that the low toxicity observed by previous studies and also in our own experiments 

in flagellin-treated as compared with LPS-treated mice might be due to the absence of 

TNF-α in the serum of flagellin-treated animals.
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IL-10 mRNA dynamics in flagellin-stimulated PEM

 In order to assess if flagellin stimulation of macrophages results or not in the 

induction of IL-10 mRNA we determined the IL-10 mRNA kinetics in flagellin treated 

macrophages and compare them to those obtained in LPS-treated macrophages 

(Figure 10). 

 In response to LPS stimulation, a rapid increase in IL-10 mRNA was observed by 

3 hours, followed by a peak response at 6 hours after treatment. This induction is followed 

by a progressive decline and, after 12 hours of exposure to LPS, the IL-10 mRNA levels 

were back to baseline (Figure 10-white squares). The magnitude and kinetics of IL-10 

mRNA were significantly different in flagellin-treated PEM. Following three hours of 

incubation, only a weak induction of IL-10 mRNA was detected by RT-PCR.  This initial 

response was followed by a rapid decline and by 6 hours, IL-10 mRNA levels in flagellin-

treated PEM were equivalent to those found in untreated cells (Figure 10-black squares).
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FIGURE 10. IL-10 mRNA dynamics in flagellin-stimulated macrophages.
PEM were cultured in media or stimulated with LPS (1 µg/ml) or flagellin (5 µg/ml) and 
the cells harvested in TriZol at the indicated time points. RNA was extracted and IL-10  
relative to GAPDH mRNA was determined by quantitative RT-PCR. Data shows the 
ratio expressed in arbitrary units of treated  versus untreated cells obtained at each of the  
time points. Shown is one of three independent experiments with similar results.
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FIGURE 11. IL-10 mRNA dynamics in flagellin stimulated BM-derived 
macrophages.
(A) BM-derived macrophages  were cultured in complete media and stimulated with either 
LPS (1 µg/ml) or flagellin (5 µg/ml). Cells were then harvested in TriZol at the indicated 
time points. RNA was extracted from these cells and IL-10 mRNA relative to GAPDH 
mRNA was determined by quantitative RT-PCR. Data shows the ratio expressed in 
arbitrary units of treated cells versus untreated cells obtained at each of the indicated time 
points. Shown is a representative experiment of three independent experiments with 
similar results.

IL-10 mRNA dynamics in bone marrow-derived macrophages   

 PEM are elicited using a mild inflammatory agent (thyoglicollate). Therefore they 

have been exposed to maturating signals that might have affected their ability to respond to 

flagellin. In other to assess this possibility we generated macrophages from bone marrow 

(BM-macrophages) and exposed them to either LPS or flagellin. As shown in Figure 11 

a similar pattern of IL-10 mRNA expression was observed in flagellin-treated BM-derived 

macrophages as compared to PEM (black squares). 

 BM-derived macrophages express TLR5 (Figure 12A). Reminiscent of our 

findings with PEM (Figure 6B), no IL-10 protein was detected in the supernatants of 

BM-derived macrophages stimulated with flagellin (Figure 12B). The lack of IL-10  
40
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FIGURE 12. BM-derived 
macrophages express TLR5 
and produce IL-12p40-70 but 
not IL-10 when stimulated 
with flagellin. 
(A) RNA from BM-derived 
macrophages was analyzed for 
TLR5 mRNA expression 
relative to GAPDH using 
realt-time RT-PCR. (B) and (C) 
BM-derived macrophages were 
cultured for 24 hours with LPS 
(1 µg/ml) or flagellin (5 µg/ml). 
Supernatants were collected and 
the levels of IL-10 and 
IL-12p40-70 were measured by 
ELISA. Data represent mean ± 
s.d. of triplicate cultures. Shown 
is a representative experiment of 
two independent experiments 

production is not due to the unresponsiveness of these cells since they produce significant 

levels of IL-12 p40-70 when stimulated with flagellin (Figure 12C)
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Taken together, our data indicates that flagellin induces a short-lived expression of IL-10 

mRNA in macrophages. The transient induction of IL-10 expression by flagellin might 

not be enough to result in detectable levels of IL-10 protein production 

LPS-induced IL-10 mRNA and protein are inhibited by flagellin   

Several TLR ligands can be found in any microbial organism; furthermore APCs 

and other immune cells express more than one TLR. Therefore during an ongoing 

infection, flagellin and other TLR ligands expressed in flagellated bacteria are likely to be 

recognized by cells of the immune system either simultaneously or sequentially. In order 

to find whether flagellin could influence the production of IL-10 in response to other 

TLR ligands, we treated PEM with flagellin and the TLR4 ligand (LPS) either 

simultaneously (Figure 13) or sequentially (Figures 14 and 15).  As shown in Figure 13A, 

no differences in IL-10 mRNA levels were observed in peritoneal macrophages after 2 

hours of exposure to either LPS alone (white squares) or LPS in the presence of flagellin 

(F/LPS: black squares). However, unlike stimulation with LPS alone, IL-10 mRNA levels 

declined rapidly by 4 and 6 hours of simultaneous engagement of TLR4 and TLR5. The 

inhibition of IL-10 by flagellin was also reflected at the protein level. As displayed in 

Figure 13B, a dose dependent inhibition of IL-10 production was observed when PEM 

were treated with LPS (1 μg/ml) in the presence of increasing concentrations of flagellin. 

Inhibition of IL-10 was not observed when the TLR5-deficient cell line RAW 264.7 was 

treated with LPS and flagellin, indicating that flagellin-induced IL-10 inhibition in 

response to LPS requires TLR5 expression (Figure 13C).  
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FIGURE 13. Flagellin inhibits LPS- 
induced IL-10 protein and mRNA 
(A) PEM were stimulated with 1 µg/ml 
LPS alone (open squares) or with LPS 
(1µg/ml) in the presence of 20 µg/ml 
flagellin (F/LPS, black squares). Cells 
were then harvested at the indicated 
time points. IL-10 mRNA levels were 
determined as in Figure 10. Data shows 
the ratio expressed in arbitrary units of 
treated cells versus untreated cells 
obtained at each of the indicated time 
points. Shown is a representative 
experiment of two independent 
experiments with similar results. (B, C)  
PEM or RAW 264.7 cells were 
stimulated with LPS alone (1 µg/ml) or 
LPS plus increasing concentrations of 
flagellin for 24 hours as indicated. 
Supernatants were then collected and 
the levels of IL-10 were determined by 
ELISA. Data represent mean ± s.d. of 
triplicate cultures. Shown is a 
representative experiment of two 
independent experiments with similar 
results.
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FIGURE 14. A short pretreatment with flagellin affects IL-10 and IL-12 
induction in an opposite way
PEM were cultured with flagellin (5 µg/ml) or just media for the indicated time 
length after which LPS (final concentration 1µg/ml) was added. Cells were 
harvested 2 hours after LPS addition and the levels of IL-10 (white squares) and 
IL-12 p40 (black squares) mRNA relative to GAPDH quantified using real-time 
RT-PCR.

Pretreatment of macrophages with flagellin results in stronger inhibition of LPS-

induced IL-10

 Flagellin treatment decreased LPS-induced IL-10 mRNA levels at later times when 

macrophages are simultaneously stimulated with flagellin and LPS. This result prompted 

us to investigate how LPS induced IL-10 mRNA would behave if the cells are exposed to 

flagellin before LPS stimulation (Figure 14).
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Figure 14 shows IL-10 (white squares) and IL-12p40 (black triangles) mRNA 

after 2 hours of treatment with LPS in cells that have received or not flagellin 

pretreatment. IL-10 mRNA inhibition by flagellin was substantially increased when the 

cells were exposed to flagellin 3 hours before LPS treatment. Increasing the time in 

contact with flagellin to 6 hours before LPS stimulation resulted in similar levels of 

inhibition to those observed after 3 hours treatment.  

Interestingly, IL-12p40 mRNA production by LPS was enhanced by pretreatment 

with flagellin for 3 hours. However the observed enhancement was gone when flagellin-

pretreatment was increased to 6 hours. Treating the cells for 12 hours with flagellin prior 

to LPS stimulation made the cells refractory to further stimulation with LPS (149-150).  

Given these results, in our next experiments we used macrophages that have been 

stimulated with flagellin for a short period of time (3 hours) before adding LPS to the 

media. A profound inhibition of IL-10 mRNA expression was observed when PEM were 

exposed to flagellin (5 μg/ml) for 3 hours prior to LPS stimulation (Figure 15A). In 

addition decreased levels of IL-10 protein were observed in PEM pretreated with flagellin 

(5μg/ml) and then stimulated with increasing concentrations of LPS (Figure 15B). In the 

pretreatment setting, flagellin at a dose of 5μg/ml, which has minimal inhibitory effect 

when used simultaneously with LPS (Figure 13B), displayed stronger IL-10 inhibitory 

properties. Conversely, the inhibitory effect of flagellin on IL-10 production was not 

observed when the TLR5-deficient cells RAW 264.7 were pretreated with flagellin 

(Figure 15C). 
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FIGURE 15. Inhibition of IL-10 
by flagellin is enhanced by a 
short pretreatment  
(A) PEM were treated with 5 
µg/ml flagellin (black bars) or 
with media alone (white bars) for 
3 hours, followed by the addition 
of LPS (1µg/ml). Cells were 
harvested at the indicated time 
points after the addition of LPS. 
IL-10 mRNA relative to GAPDH 
mRNA was determined by quanti-
tative real-time RT-PCR.  Shown 
is a representative experiment of 
four independent experiments 
with similar results. (B, C) PEM 
or RAW 264.7 cells were cultured 
with flagellin (5 µg/ml) or media 
alone for 3 hours, followed by 
stimulation with LPS (1µg/ml). 
Supernatants were collected 24 
hours after LPS addition and the 
levels of IL-10 were determined 
by ELISA. Data represents mean 
± s.d. of triplicate cultures. Shown 
is a representative experiment of 
three independent experiments. 
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IL-10 inhibition by flagellin is restricted to specific TLRs 

To determine whether a similar inhibitory effect over IL-10 production occurs 

when PEM are exposed to TLR-ligands other than LPS, we treated PEM with flagellin 

followed by stimulation with either zymosan (TLR2/6 ligand) or CpG (TLR9 ligand). As 

shown in Figure 16A, treatment of PEM with increasing concentrations of zymosan 

results in IL-10 production in a dose dependent manner (white bars). However, when 

these cells were treated with flagellin and then zymosan, a dramatic decrease in IL-10 

production was observed (Figure 16A-black bars). In contrast, such an inhibitory effect 

on IL-10 protein production was not observed when PEM were pretreated with flagellin 

followed by CpG (Figure 16B). In order to assess if flagellin pretreatment decreased 

CpG-induced IL-10 at the mRNA but not at the protein levels we quantified the levels of 

IL-10 mRNA in PEM pretreated with flagellin or media followed by CpG. In agreement 

with the results obtained at the protein level, flagellin did not affect the IL-10 mRNA 

levels induced by CpG in PEM (Figure 16C). To summarize, our results have unveiled a 

previously unknown effect of flagellin in the negative regulation of IL-10 production in 

response to specific TLR ligands.  

Interestingly zymosan, flagellin and LPS engage TLRs that localize in the cellular 

membrane while CpG is detected by an intracellular receptor. IL-10 production by 

surface receptors but not by intracellular receptors is affected by flagellin stimulation 

suggesting that receptor colocalization might be required for TLR5-mediated IL-10 

repression. 
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FIGURE 16. IL-10 production 
by macrophages treated with 
flagellin and other TLR 
ligands.     
PEM were cultured in media 
alone (white bars) or with  5 
µg/ml of flagellin (black bars) for 
3 hours, followed by 
stimulation with either 
Zymosan (A) or CpG (B). 
Supernatants were collected 24 
hours later and the production 
of IL-10 protein was 
determined by ELISA. Data 
represent +/- s.d. of triplicate 
cultures. Shown is a 
representative experiment of two 
independent experiments with 
similar results. (C) Cells were 
harvested at the indicated time 
points after the addition of CpG. 
IL-10 mRNA relative to 
GAPDH mRNA was 
determined by  real-time 
RT-PCR. Shown is a 
representative experiment of two 
independent experiments with 
similar results.
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FIGURE 17. Macrophages 
stimulated with flagellin-coated 
beads showed impair IL-10 
induction by CpG
PEM were cultured with flagellin 
coated beads (equivalent to 5µg/ml 
protein) (black bars) or beads coated 
with an irrelevant protein (OVA) 
(white bars). After 3 hours cells were 
washed and fresh media or media 
with CpG (final concentration 0.25 
µM) added. Cells were harvested at 
the indicated time points after the 
addition of CpG. IL-10 mRNA 
relative to GAPDH mRNA was 
determined by quantitative real-time 
RT-PCR.

IL-10 inhibition might depend on receptor colocalization

 In unstimulated macrophages and DCs TLR5 and TLR9 have been shown to be 

expressed in different cellular compartments. TLR5 localizes to the cellular membrane 

(47) while TLR9 has been detected in the ER (endoplasmic reticulum) (48). Nonetheless, 

TLRs present in the cellular membrane have been shown to be recruited to phagosomes 

(151). In addition, phagosomes contain ER-resident proteins since ER membranes are a 

source of phagocytic membranes in macrophages and other cells (152). Therefore, in the 

context of phagocytosis it would be possible that TLR5 and TLR9 could localize in the 

phagosomal/lysosomal compartment. To test this hypothesis we used beads as a vehicle to 

introduce flagellin into the phagosomal/lysomal compartment (Figure 17).
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As shown in Figure 17 CpG stimulation of macrophages that have phagocyted 

flagellin-coated beads resulted in inhibition of IL-10 mRNA as compared to those that 

uptook control protein (ova)-coated beads. These data could support that signaling from 

the same compartment is required for TLR5 negative regulation of IL-10 induction by 

other TLRs. 

Flagellin treatment does not affect LPS-induced IL-10 mRNA stability 

Stimulation of macrophages with LPS causes a dramatic increase in the IL-10 

mRNA levels that might be due to an increase in the IL-10 gene transcription and also in 

the IL-10 mRNA stability (126-127), (153). In order to determine whether suppression of 

LPS-induced IL-10 by flagellin was caused by an increase in IL-10 mRNA degradation, 

we treated macrophages with actinomycin D, an inhibitor of mRNA synthesis, and 

followed the changes induced by flagellin in the stability of LPS-induced IL-10 mRNA. 

Figure 18A shows that actinomycin D suppresses mRNA synthesis. For this control 

experiment, cells were treated with LPS plus actinomycin D or LPS plus media for two 

hours. Cells were then harvested and the levels of IL-10 mRNA were measured by RT-

PCR. Actinomycin D (5 μg/ml) completely blocked the synthesis of new mRNA (LPS + 

ActD). In our next set of experiments, PEM were cultured for 3 hours with either 

flagellin or media and then LPS was added. Actinomycin D was added to the cultures 2 

hours after LPS treatment and cells were harvested at the indicated time points after 

actinomycin D treatment. As shown in Figure 18B, an almost identical rate of IL-10 

disappearance was observed; suggesting that pretreatment with flagellin does not affect 

IL-10 mRNA stability in response to LPS stimulation.  
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FIGURE 18. IL-10 repression by flagellin is not caused by a decrease in IL-10 mRNA 
stability
(A) PEM were cultured with LPS (1 µg/ml) plus actinomycin D (5 µg/ml) or vehicle. After 2 
hours treatment the cells were harvested and the IL-10 mRNA levels relative to GAPDH mRNA 
were determined by RT-PCR. (B) Actinomycin D or vehicle were added to the media 2 hours after 
LPS treatment of PEM that had been cultured with (black squares)or without flagellin (without 
squares). Cells were harvested 2,4 and 6 hours after actinomycin D addition and the IL-10 mRNA 
levels relative to GAPDH mRNA were determined by RT-PCR. Shown is a representative 
experiment of two independent experiments with similar results
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Flagellin stimulation decreases ERK activation by LPS in macrophages 

A general outcome upon TLR engagement is the activation of the NFκB and the 

mitogen-activated protein kinase (MAPK) signaling pathways. Among the MAPKs, 

several studies have linked the extracellular signal regulated kinases (ERKs) with IL-10 

regulation by TLRs. These studies found that IL-10 induction by different TLRs depends 

on ERK activation (154-158). In order to assess if flagellin stimulation would affect LPS-

induced ERK phosphorylation we treated PEM with flagellin or media followed by LPS 

stimulation. Since significant changes in the LPS-induced IL-10 mRNA levels are 

detected in flagellin-treated macrophages at 2 hours stimulation with LPS (Figure 15A) 

we decided to quantify ERK phosphorylation at earlier time points (30 and 60 minutes). 

Interestingly, LPS-induced phosphorylated ERK 1/2 levels were significantly reduced in 

flagellin-treated macrophages as compared with media-treated macrophages (Figure 19). 

This result suggests that decreased ERK activation could play a role in flagellin-mediated 

IL-10 inhibition. 

NFκB activation plays a central role in inducing the expression of 

proinflammatory mediators by TLRs.  In resting cells NFκB is sequestered in the 

cytoplasm by molecules known as inhibitor of nuclear factor-κB (IκB). Phosphorylation 

of IκB results in its degradation and in the release of NFκB that now can translocate to 

the nucleus and activate its target genes (62). Macrophages treated with flagellin or LPS 

alone showed increased IκB phosphorylation suggesting that treatment with these TLR 

ligands results in NFκB activation. As seen in Figure 19, flagellin treatment in 

combination with LPS did not result in decreased p-IκB levels as compared with cells 

treated with LPS alone. These data suggest that the NFκB activation by LPS is not 
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p-IκB

ERK 1/2

FIGURE 19. Flagellin treatment decreases ERK activation by LPS in 
macrophages

PEM were cultured with 5 µg/ml flagellin (F/) or just media for 3 hours (-/) followed 
by the addition of 1 µg/ml LPS (/L). Cells were harvested 30 minutes and 1 hour after 
LPS addition. Whole-cell lysates were obtained and subjected to SDS-PAGE 
immunoblotting with the indicated antibodies. Unphosphorylated ERK 1/2 was used 
as loading control. Shown is a representative experiment of two independent 
experiments with similar results.

affected by flagellin treatment and therefore is not involved in flagellin-induced IL-10 
inhibition  
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FIGURE 20. Flagellin-
stimulated PEM produce higher 
levels of IL-12p35 and IL-12p40 
mRNAs  in response to LPS.  
(A-B) PEM were cultured with 5 
µg/ml flagellin (F) for three hours. 
Then supernatants were removed 
and media (-) was added (F/-, 
white bars). In parallel, PEM were 
cultured with media alone (-) for 
three hours and then LPS was 
added (-/LPS, gray bar). A third 
group consisted of PEM pretreated 
with flagellin (F) for three hours 
and then stimulated with LPS 
(F/LPS, black bar). Cells were 
harvested at the indicated time 
points after the addition of LPS 
and the levels of IL-12p40 (A) and 
IL-12p35 mRNA (B) relative to 
GAPDH were determined by 
quantitative RT-PCR. Shown is a 
representative experiment of four 
independent experiments with 
similar results. 
Statistical analysis was performed 
using t-test.
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Flagellin enhances IL-12 production in response LPS 

 To further confirm the data suggesting that a short pretreatment with flagellin 

results in enhanced IL-12 production by LPS (Figure 14), we determined the IL-12 p40/ 

IL-12 p35 mRNA levels in macrophages treated with flagellin and LPS (Figure 20).
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Flagellin pretreatment increased the level of IL-12p40 mRNA in response to LPS 

stimulation for two hours (Figure 20A, black bar-2 hours). This increase is short-lived 

since at 4 hours IL-12p40 mRNA levels were back to those observed in PEM treated with 

LPS alone (Figure 20A- 4 hours). In addition, an increase in IL-12p35 mRNA levels was 

observed in PEM treated with flagellin and subsequently stimulated with LPS (F/LPS: 

black bars) (Figure 14B). The response duration was longer than the one observed for IL-

12p40 mRNA induction, since enhanced levels of IL-12p35 mRNA were still observed 

after 4 hours of exposure to LPS (Figure 20B-4 hours).  

The biologically active form of the cytokine IL-12 is a heterodimer composed of 

the IL-12 p40 and p35 proteins and known as IL-12 p70 (94). IL-12 p40 has been 

reported to be produced in excess over IL-12p35 which acts as a limiting factor for IL-12 

p70 production (96). Therefore, an increase in IL-12 p35 might result in elevated IL-12 

p70 protein production that would not be detected using standard ELISA methods that do 

not discriminate between IL-12p40 and IL-12p70 production. For this reason, we 

specifically analyzed IL-12p70 production by PEM pretreated with flagellin followed by 

LPS. As shown in Figure 21, when PEM are pretreated with flagellin and then exposed to 

increased concentrations of LPS (black bars) they produced higher levels of IL-12p70 

relative to PEM treated with LPS alone (white bars). In summary, PEM treated with 

flagellin and then stimulated with LPS display enhanced expression of both IL-12p40 

mRNA (Figure 20A) and IL-12p35 mRNA (Figure 20B) as well as increased production 

of IL-12p70 protein (Figure 21).  
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FIGURE 21 Flagellin-
stimulated PEM  produce 
higher levels of IL-12p70 in 
response to TLR4  ligands.  
PEM were cultured with media 
alone (open bar) or with 
flagellin 5 µg/ml (black bar) 
for 3 hours. Then, PEM were 
treated with increasing 
concentrations of LPS. IL-12 
p70 was quantified as in Figure 
22. Shown is a representative 
experiment of three with 
similar results

FIGURE 22 Flagellin-stimulated 
PEM  produce higher levels of 
IL-12p70 in response to  TLR9 
ligands.
 PEM were cultured with media 
alone (open bar) or with flagellin 5 
µg/ml (black bar) for 3 hours. 
Then, PEM were treated with  0.25 
µM CpG. Supernatants were 
collected after 24 hours and IL-12 
p70 levels were determined by 
ELISA. Data represent mean ± s.d. 
of triplicate cultures. Shown is a 
representative experiment of three 
with similar results. 

Flagellin enhances IL-12p70 production in response to CpG

 To determine whether flagellin-mediated enhancement of IL-12p70 production 

occurs only in response to LPS-stimulation or could also be observed in response to other 

TLR ligands, PEM were treated with flagellin in combination with either zymosan or CpG. 

While treatment with flagellin did not enhance IL-12p70 production in response to 

zymosan that remained undetectable (data not shown), a significant increase in IL-12p70 

production was observed when PEM were treated with flagellin and CpG (Figure 22). 

Statistical analysis used was t-test
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FIGURE 23. IL-10 blockage increases IL-12p70 production by 
LPS-stimulated macrophages
Macrophages were cultured with LPS (1 µg/ml) (black squares) or 
media alone (white bars) plus IL-10 blocking antibody at the indicated 
concentration. After 24 hours culture the supernatants were harvested 
and IL-12 p70 production quantified by ELISA.

 These results (Figure 21 and 22) indicate that ligation of TLR5 in macrophages 

influences the inflammatory response of these cells to TLR4 and TLR9 ligands (LPS and 

CpG) resulting in enhanced production of the proinflammatory mediator IL-12p70. 

Blocking IL-10 increases IL-12p70 production by LPS-stimulated macrophages

 IL-10 has been shown to act as a powerful inhibitor of IL-12 production (107-108). 

Therefore, in the next experiment we assessed if blocking IL-10 signaling would enhance 

IL-12p70 production by LPS-treated PEM (Figure 23). 
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 Incubating the cells with increasing amounts of IL-10 blocking antibody increases IL-12 

p70 production in a dose dependent manner (Figure 23). This result indicates that IL-10 repression 

by flagellin could be, at least in part, responsible for the increase in IL-12 p70 production observed 

in macrophages treated with flagellin in combination with LPS. Nonetheless, other mechanisms 

must be also playing a role since enhanced IL-12 p70 production was  observed in macrophages 

treated with a combination of flagellin and CpG even when on those cells IL-10 production was 

not affected by flagellin stimulation (Figure 16).

Flagellin elicits CD4+ T-cell activation in a tolerogenic setting in vivo 

 In previous studies we have shown that APCs that produce significant levels of IL-12 in the 

absence of the inhibitory cytokine IL-10 effectively prime naïve antigen-specific CD4+ T-cells 

and are capable of restoring the responsiveness of tolerized CD4+ T-cells (141). This finding, 

along with our data demonstrating that flagellin-treated APCs produce IL-12 but not IL-10, led us 

to explore whether treatment with this TLR-ligand could overcome antigen-specific CD4+ T-cell 

tolerance in vivo.    

Day 0 Day +2 Day +15

Anti-HA
CD4+T-cells HA-peptide Analysis
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FIGURE 24. High dose peptide model of antigen-specific CD4+ Tcell tolerance 
(I)
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To answer this question, we followed the experimental design outlined in Figure 

24. Briefly, 2.5x106 naïve CD4+ T-cells specific for a MHC class II-restricted epitope of 

influenza hemagglutinin (HA) were adoptively transferred intravenously (iv) into 

BALB/c mice. Twenty-four hours later, mice were given iv a tolerogenic dose of HA-

peptide (200 μg), a combination of HA-peptide together with flagellin (10 μg), or left 

untreated. Two weeks later, all the mice were sacrificed and the splenocytes harvested. 

Previous studies have shown that antigen encounter by clonotypic CD4+ T-cells in mice 

treated with a high dose of their cognate antigen leads to progressive T-cell deletion (159-

160). Indeed, as shown in Figure 25, in those mice treated with high dose HA-peptide, we 

observed a dramatic decrease in the percent of clonotypic CD4+ T-cells (0.34% in HA-

peptide treated mice versus 1.02% in untreated mice).   Such a decrease in clonotypic T-

cells was prevented however in mice treated with tolerogenic dose of HA-peptide plus 

flagellin (Figure 25A).  Assessment of cytokine production by clonotypic T-cells isolated 

from the different experimental groups also showed important differences. While 

treatment with high dose HA-peptide resulted in slight decrease in the production of IFN-

γ by clonotypic T-cells isolated from these mice relative to the untreated group, the 

opposite outcome was observed in mice treated with a high dose of peptide together with 

flagellin. Clonotypic T-cells from these mice produced higher levels of IFN-γ in response 

to restimulation with cognate antigen, indicating that they have been primed in vivo in 

response to an otherwise tolerogenic dose of peptide (Figure 25B)  



0

50

100

150

200

250

IF
N

-γ
 (p

g/
m

l)

Untreated HA peptide HA + Flagellin

A

B

100 101 102 103 104
100

101

102

103

104

1.02

100 101 102 103 104
100

101

102

103

104

0.34

100 101 102 103 104
100

101

102

103

104

0.96

Untreated HA peptide HA + Flagellin

6.
5 

PE

CD4 FITC

FIGURE 25. Flagellin elicits CD4+ T-cell activation in a tolerogenic 
setting (I). 
BALB/c mice received 2.5 x 10   anti-HA TCR+ transgenic CD4+ T cells iv 
Twenty-four hours later mice were left untreated, given HA-peptide (200 
µg/iv) alone or HA peptide (200 µg/iv) in combination with flagellin (10 
µg/iv). Two weeks later mice were sacrificed and T cells were purified from 
their spleens as described in Methods. (A) Shows two-color FACS analysis of 
splenocytes from one animal in each experimental group (each consisted of 
four animals). Upper right quadrant numbers represent the percentage of 
double positive CD4+ T- cells. (B) Purified T-cells from untreated mice or 
mice treated with high dose HA-peptide in vivo or HA-peptide plus flagellin 
were restimulated with HA-peptide (12.5 µg/ml) in vitro for 48 hours. 
Supernatants were collected and assayed for IFN-γ production by ELISA. 
Each dot represents an animal and the bar represents the group’s average. 
Shown is a representative experiment of three independent experiments with 
similar results. Data is expressed as the amount of cytokine produced by 100 
clonotype+ T cells/well. 
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 In this model of  antigen-specific T-cell tolerance we have also demonstrated that 

anergic anti-HA CD4+ T-cells are unable to respond to  inflammatory stimuli provided by 

a recombinant vaccinia virus encoding HA (vaccHA). Therefore, in our next experiment 

we asked whether flagellin treatment could change this outcome and preserve 

antigen-specific T-cell responsiveness to the model antigen expressed by vaccinia virus. 

For this experiment we followed the esperimental design outlined in Figure 26. 

Day 0 Day +2 Day +15

Anti-HA
CD4+T-cells HA-peptide AnalysisVacc-HA

Day +9

  First, antigen-specific T-cells reisolated from vaccinia HA-infected mice produced 

significant levels of IL-2 in response to in vitro stimulation with cognate HA-peptide 

(Figure 27, Untreated). Clonotypic T-cells from mice treated with a tolerogenic dose of 

HA-peptide failed to respond to vaccHA immunization in vivo as determined by their lack 

of IL-2 production in response to cognate HA-peptide (Figure 27, HA peptide). In sharp 

contrast, flagellin treatment preserved the response to vaccination in this tolerogenic 

setting, since clonotypic T-cells isolated from these mice produce levels of IL-2 that are 

equivalent to those produced by antigen-specific T-cells from control mice (Figure 27, HA  

+ flagellin).
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Flagellin IV Day +2

FIGURE 26. High dose peptide model of antigen-specific CD4+ T cell tolerance (II) 
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FIGURE 27. Flagellin elicits 
CD4+ T-cell activation in a 
tolerogenic setting (II).
Untreated mice, mice treated with 
high dose HA peptide or mice that 
received high dose HA-peptide 
plus flagellin in vivo were 
immunized with 1x10 pfu of 
recombinant vaccinia encoding HA 
(vaccHA) on day +9 after T-cell 
adoptive transfer. Six days later 
animals were sacrificed and T-cells 
isolated from their spleens. Purified 
T cells were stimulated with 
HA-peptide plus fresh splenocytes 
for 48 hr. Supernatants were 
collected and assayed for IL-2 
production by ELISA. Data 
represent mean ± s.d. of triplicate 
cultures from three mice in each 
group. 

 Summarizing, in vivo treatment with flagellin converts a tolerogenic environment 

into an inflammatory one in which antigen-specific CD4+ T-cells not only are not deleted 

but are efficiently activated and capable of responding to a subsequent immunization with 

recombinant vaccinia encoding HA.  

DC differentiation in the presence of IL-10

 Several studies have shown that DC differentiation in the presence of IL-10 results 

in the development of DCs that produce high levels of IL-10 and induce T cell anergy and 

regulatory T cell differentiation (143-144). DCs differentiated in these conditions have 

been shown to induce tolerance (144), therefore to  avoid confusion between BM-DCs 

differentiated using different protocols, DCs differentiated with GM-CSF plus IL-4 will be 

called just BM-DCs and those differentiated in the presence of IL-10 will be called 

tolerogenic-DCs.
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FIGURE 28. CD11c expression in DCs 
differentiated in the presence of IL-10
Bone marrow cells were cultured for 7 
days in the presence of GM-CSF and 
IL-4 (A) or GM-CSF, IL-10 and TNF-α 
(B). On day 8, loosely adherent cells 
were harvested by flushing the plate with 
ice-cold HBSS and expression of the 
dendritic cell specific marker CD11c 
quantified by FACS analysis. (C) Shows 
a histogram comparing the magnitude of 
CD11c expression in both DC subsets 
and the isotype control antibodies.

 Our first goal for the series of experiments described bellow, was to generate DCs 

in the presence of IL-10 and evaluate their ability to present antigen. Differentiation of DCs 

in the presence of the anti-inflammatory cytokine IL-10 rendered similar yield of CD11c+ 

cells to those obtained by standard procedures (around 90%) even when these cells are 

characterized by a lower expression of this marker (Figure 28).
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FIGURE 29. Tolerogenic-DCs 
express lower levels of 
costimulatory molecules than 
BM-DCs
Bone marrow cells were cultured for 
7 days in the presence of GM-CSF 
and IL-4 (BM-DCs) (shaded area) or 
GM-CSF, IL-10 and TNF-α 
(tolerogenic-DCs) (solid line). On 
day 8, loosely adherent cells were 
harvested by flushing the plate with 
ice-cold HBSS and expression of the 
costimulatory molecules B7-2 (A) 
and MHC class II (B) were quantified 
by FACS analysis. 

 As previously shown by others, expression of costimulatory molecules as MHCII 

or B7.2 was reduced in those cells that have been differentiated in the presence of IL-10 as 

compared with those differentiated following a standard protocol (Figure  29).
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FIGURE 30. T cell differentiation diagram

Tolerogenic-DCs induce T cell unresponsiveness in vitro.

 In order to compare T cell priming by tolerogenic-DCs and BM-DCs we developed 

a protocol for T cell priming and differentiation in vitro, summarized in Figure 30
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FIGURE 31. T cells differentiated using 
tolerogenic-DCs showed impaired 
responses upon antigen restimulation
T cells were differentiated as in Figure 30 
and their responses upon antigen restimu-
lation evaluated in terms of (A) prolifera-
tion (H3 incorporation) and IFN-γ produc-
tion (B).
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 Briefly, naïve CD4+ T cells (CD4+ CD62L high) from HA +/- mice were cultured 

with DCs and antigen (HA peptide) for 7 days. This period of time is enough to allow T 

cell differentiation. After 7 days T cells were washed and transferred to a second plate were 

they were restimulated with antigen and fresh splenocytes used as antigen presenting cells.

Culture of naïve CD4+ T cells with tolerogenic-DCs resulted in significantly lower levels 

of IFN-γ production and proliferation relative to T cells that have been cultured with 

BM-DCs (Figure 31) indicating that the antigen presenting function in tolerogenic-DCs is 

impaired. Lower expression of MHCII and costimulatory molecules by tolerogenic-DCs 

could account for the deficient priming of antigen specific CD4+ T cell responses. 
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FIGURE 32. LPS stimulation 
of  tolerogenic-DCs results in 
enhanced production of IL-10
BM-DCs (white squares) or 
tolerogenic-DCs (black squares) 
were cultured in the presence of 
increasing concentrations of LPS 
(0.5, 1 and 2 µg/ml). After 24 
hours the supernatants were 
removed and IL-10 and IL-12 
p40-70 quantified by ELISA  

LPS stimulation of tolerogenic-DCs results in enhanced production of IL-10

 Cytokine induction in tolerogenic-DCs by TLR ligands has not been fully 

characterized but evidence in the literature suggests an increase in IL-10 production 

associated with a decrease in proinflammatory cytokine production (144). In Figure 32 

tolerogenic-DCs or BM-DCs were treated with LPS and the production of IL-10 or 

IL-12p40-70 quantified after 24 hours treatment. 
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FIGURE 33. TLR5 expression is specifically enhanced in tolerogenic-DCs
 
BM-DCs (white bars) and tolerogenic-DCs (black bars) were obtained as 
detailed in the materials and methods section. After harvesting the cells, RNA 
was isolated using Trizol reagent and the levels of TLR5, TLR4 and TLR9 were 
quantified by real time RT-PCR using GAPDH as an internal control. In the 
graph the levels of TLR expression in tolerogenic-DCs are quantified relative to 
the levels of expression in BM-DCs.

 In agreement with others (165), Figure 32B shows that tolerogenic-DCs produce 

much higher levels of IL-10 than BM-DCs. Nonetheless, IL-12 p40-70 production by both 

DC subsets was similar (Figure 32A) suggesting that the capacity to produce IL-12p40-70 

was not diminished in DCs that have been exposed to IL-10 during differentiation. 

TLR5 expression is specifically enhanced in tolerogenic-DCs

 The increased capacity to produce IL-10 by tolerogenic-DCs prompted us to 

investigate whether they would produce this cytokine in response to flagellin. First, we 

evaluated their ability to respond to flagellin stimulation by measuring TLR5 expression in 

BM-DCs and tolerogenic-DCs using quantitative RT PCR (Figure 33). 
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FIGURE 34. IL-10 treatment of 
BM-DCs does not result in TLR5 
upregulation

BM-DCs were differentiated as 
described in the materials and 
methods section. DCs were 
harvested and cultured for 24 hours 
in media alone (white bar) or media 
plus IL-10 (10 ng/ml) (black bar). 
After the treatment period RNA was 
extracted using Trizol and TLR5 
expression relative to GAPDH 
quantified using real-time RT PCR

 Surprisingly, TLR5 expression was greatly enhanced in DCs differentiated in the 

presence of IL-10. To assess if increased TLR expression in tolerogenic-DCs was specific 

for TLR5 or also occurred with other TLRs we quantified TLR4 and TLR9 expression in 

both DCs subsets. As shown in Figure 33, TLR4 and TLR9 expression levels are similar 

between BM-DCs and tolerogenic-DCs suggesting that IL-10 signaling might specifically 

enhance TLR5 expression in DCs. 

IL-10 treatment of BM-DCs does not result in TLR5 upregulation

 DCs differentiated in the presence of IL-10 display higher levels of TLR5 

expression than regular BM-DCs. To test whether a similar effect would occur when the 

DCs are already differentiated, we cultured BM-DCs in media alone or supplemented with 

IL-10. DCs were harvested 24 hours after treatment and TLR5 mRNA expression analyzed 

using quantitative RT-PCR (Figure 34). 
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FIGURE 35.  Flagellin stimula-
tion of tolerogenic-DCs results in 
enhanced production of IL-
12p40-70 in the absence of IL-10
BM-DCs and tolerogenic-DCs 
were differentiated as described in 
the methods section. DCs were 
treated with flagellin (at the 
indicated concentrations 2.5, 5 and 
10 µg/ml). After 24 hours culture 
the supernatants were harvested 
and IL-12 p40-70 (A) and IL-10 
(B) production were analyzed by 
ELISA.
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 TLR5 expression levels were virtually identical in DCs treated with IL-10 or those 

treated with media suggesting that TLR5 expression is not enhanced by IL-10 in DCs that 

are completely differentiated.

Flagellin stimulation of tolerogenic-DCs results in enhanced production of IL-12p40-

70 in the absence of IL-10

 Tolerogenic-DCs express higher levels of TLR5 mRNA than BM-DCs. In 

agreement flagellin-treated tolerogenic DCs produced much higher levels of IL-12p40-70 

than flagellin-treated BM-DCs (Figure 35A).
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Flagellin-stimulated DCs, both BM and tolerogenic, did not produce IL-10. IL-10 

production by tolerogenic-DCs plays a fundamental role in regulatory T cell 

differentiation and inhibition of antigen-specific T cells (38) (144). Therefore, regulatory 

T cell differentiation and inhibition of antigen-specific T cells should not occur when 

tolerogenic-DCs are activated with flagellin since there is no production of IL-10. 

LPS-treated tolerogenic-DCs but not flagellin-treated tolerogenic-DCs induce T cells 

that produce high levels of IL-10 

The differences in cytokine production encountered among BM-DCs and 

tolerogenic-DCs prompted us to investigate how they could affect CD4+ T cell priming 

and differentiation. Dendritic cell maturation and T cell priming and restimulation were 

carried out as detailed in Figure 30.  Briefly, BM-DCs or tolerogenic-DCs were cultured 

for 24 hours in the presence of LPS, flagellin or just media. At this time supernatants 

were collected and the cells were washed before adding fresh media, antigen and naïve 

antigen-specific transgenic T cells. Antigen restimulation of T cells that have been 

differentiated in the presence of BM-DCs resulted in production of IFN-γ, IL-10 and IL-

4. Effector T cells with a Th1 phenotype produce IFN-γ while IL-10 and IL-4 are 

produced by Th2 cells. Therefore, our data suggest that Th1 as well as Th2 cells are 

obtained when the APCs used are LPS- or flagellin-matured BM-DCs (Figure 36) 
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FIGURE 36.  T cells cultured 
with BM-DCs produce Th1 and 
Th2 cytokines
BM-DCs  were matured with LPS 
(1µg/ml) or flagellin (5µg/ml) and 
used to prime naïve CD4+ T cells as 
indicated in Figure 30. 
Supernatants were collected after 
48 hours of T cell restimulation and 
analyzed by ELISA to detect IFN-γ, 
IL-4 or IL-10 production.
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FIGURE 37. LPS-treated but not 
flagellin-treated tolerogenic-DCs 
induce T cells that produce high 
levels of IL-10
BM-DCs or tolerogenic-DCs were 
matured with LPS (1µg/ml) or 
flagellin (5µg/ml) and used to 
prime naïve CD4+ T cells as 
indicated in Figure 30. 
Supernatants were collected after 
48 hours of T cell restimulation and 
analyzed by ELISA to detect 
IFN-γ, IL-4 or IL-10 production.
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 Interestingly, antigen presentation by LPS-activated tolerogenic-DCs resulted in 

the differentiation of T cells that produce IFN-γ, very low levels of IL-4 and high levels of 

IL-10 (Figure 37). 
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On the contrary, T cells that encounter antigen in flagellin-activated tolerogenic-

DCs are primed to produce IFN-γ but not IL-10 or IL-4. Taken together, our data 

indicates that antigen presentation by LPS-matured tolerogenic-DCs results in the 

differentiation of T cells with the potential to suppress the immune response as they 

produce high levels of IL-10. This outcome was not observed when T cells were primed 

with flagellin-matured tolerogenic-DCs as T cells differentiated this way seem to have a 

typical Th1 phenotype. 

Flagellin-expressing B78-H1 cells induce IL-12p40-70 production by PEM 

As shown by our data and by others flagellin might function as an adjuvant to 

induce inflammation in tolerogenic environments as the gut (79), lungs (83) and of 

important relevance for our studies in the tumor microenvironment. A good strategy to 

administer flagellin with a therapeutic purpose would be flagellin-expressing tumor cells. 

Using these cells as a vaccine would ensure a continuous release of flagellin (as long as 

the cells would live inside the host). Furthermore, the flagellin produced by these cells 

would be free of bacterial products such as LPS that are highly toxic. To explore this 

possibility, we constructed a flagellin-expressing cell using the murine melanoma cell 

line B78-H1. This cell line does not express MHC class I antigens or class II molecules 

(163) so it does not raise strong alloresponses against the MHC class antigens.  A strong 

alloresponse would divert the immune system from the antigens of therapeutic interest, 

and it may also rapidly eliminate the flagellin-expressing cell from the host. We 

transfected B78-H1 cells with a construct expressing the fliC gene from S.typhimurium as 

described in the methods section. Figure 38A shows that flagellin production can be 

detected in fliC transfected cells using a monoclonal antibody. Furthermore lysates from 
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FIGURE 38. Flagellin-expressing cells stimulate production of 
IL-12p40-70  by PEM
(A) shows the production of flagellin by B78-H1cells transfected with a 
construct expressing the fliC gene from S.typhimurium as assessed by 
western blot using a monoclonal antibody against flagellin. (B) shows the 
production of ILp40-p70 cytokine by PEM upon 24 hours of treatment 
with lysates from B78-H1cells transfected (FLAG) or untransfected (WT) 
with the fliC expressing construct.  HBSS shows the results from 
vehicle-treated PEMs.
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fliC expressing cells induce IL-12p40-70 production by PEM more than twice as 

effectively as the wild-type, untransfected cell (Figure 38B).
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 These results provide the basis for the future development of a tumor-cell based 

vaccine to be used first in experimental models (to assess efficacy and side effects) and 

ultimately as an immunotherapeutic strategy to treat cancer patients. 
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DISCUSSION 

 

In this study we found that flagellin, the TLR5 ligand does not induce IL-10 

protein production either in vitro or in vivo. This occurs in contrast to other TLR ligands 

tested by us and others that induced production of this anti-inflammatory cytokine. 

Therefore, our results unveil a distinctive feature of flagellin relative to other TLR 

ligands. In addition, flagellin modifies the response elicited by specific TLR ligands by 

inhibiting IL-10 and/or increasing IL-12p70 production in macrophages. 

Immune cells specifically macrophages and dendritic cells display a broad 

repertoire of TLRs. Furthermore, different TLR ligands (PAMPs) are often expressed 

within one microorganism. These features suggest that pathogen recognition in vivo 

involves more than one TLR and imply that the final cellular output will arise from the 

combination of several specific responses. Combined activation of APCs with different 

PAMPs has shown that specific TLRs synergize resulting in increased production of 

specific cytokines, mainly IL-12p70 and IL-23 (164-165). The mechanism by which 

stimulation with selected TLR pairs results in increase induction of certain genes remains 

to be established. One possibility could be that this increase is due to the activation of a 

novel signaling pathway/s not activated by engagement of a single TLR. Other 

explanation would be that more sustained signaling occurs when TLRs act in 

combination.  
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Making the portrayal of pathogen recognition even more complex certain TLRs 

(TLRs 1, 2, 4, 5 and 6) are present on the cell surface while others (TLRs 3, 7, 8 and 9) 

are restricted to intracellular compartments (47-48). Recognition of PAMPs by TLRs in 

different cellular compartments probably affects the dynamics of engagement of the 

different ligands resulting in stimulation of surface receptors earlier than intracellular 

receptors. In summary, detection of microorganisms by APCs probably involves 

activation of several TLRs that will occur simultaneously of sequentially depending on 

their cellular location 

Little is known whether signaling through a TLR may result in the suppression of 

a specific cytokine or signaling pathway. To our knowledge, this work represents the first 

evidence that flagellin specifically suppresses IL-10 production by macrophages in 

response to other TLR ligands. IL-10 inhibition by flagellin does not affect all TLR 

ligands and seems to be rather selective. Our results show that flagellin’s engagement to 

the membrane receptor TLR5 decreases IL-10 production in response to ligands whose 

receptors are also in the cellular membrane such as TLR4 or TLR2/6 (47). In contrast, 

flagellin does not decrease IL-10 production in response to a ligand (CpG) that binds to 

an intracellular receptor (TLR9) (48). These findings suggest that some degree of TLR 

colocalization might be needed for flagellin-mediated IL-10 suppression. Also our data 

showing that CpG-induced IL-10 production is dramatically reduced in macrophages 

treated with flagellin-coated beads as compared to those treated with control beads 

provide some support to this possibility. 

After ligand binding, TLRs dimerize and recruit TIR-containing adaptor 

molecules to the TIR domain of the TLR (62). Although TLRs have been fundamentally 
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described to work as homodimers, the existence of TLR heterodimers has also been 

reported (46). TLR2 has been shown to interact with TLR1 and TLR6 to form 

heterodimers that play an important role in the recognition of bacterial and yeast wall 

components (166). Recently, TLR5 has been shown to dimerize with TLR4 in flagellin-

treated macrophages (167). If TLR5 is able to form heterodimers with TLRs that co-

localize with it, then specific adaptor molecules recruited to the TLR5 intracellular 

domain might influence their responses. However, if TLR colocalization and/or 

dimerization with TLR5 are required for IL-10 inhibition in response to flagellin remains 

undetermined.   

The mechanism(s) by which flagellin inhibits IL-10 production are not elucidated 

yet. However, the finding that flagellin-treated macrophages display a transient and short-

lived expression of IL-10 mRNA along with the decrease in IL-10 mRNA observed when 

macrophages are treated with flagellin and LPS suggest that the suppression occurs at the 

IL-10 gene transcriptional level and/or IL-10 mRNA stability. We did not find 

differences in the stability of IL-10mRNA in macrophages treated with LPS alone or with 

LPS plus flagellin, what might indicate that the mechanism of suppression operates at the 

transcriptional level of the IL-10 gene.  

The use of specific MAPKs inhibitors and studies in mice deficient in MAPK 

phosphatases have shown significant alterations on the cytokine profile induced by 

different TLRs (168-169) indicating that MAPKs activity regulates TLR-induced 

cytokine production. ERK, a MAPK family member, have been shown to play an 

important role in the induction of IL-10 by LPS (154) and other TLR ligands (155-157) 

but not in the production of other cytokines such as IL-12 (158). Recent evidence 
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indicates that ERK might be involved in chromatin remodeling of the IL-10 promoter in 

macrophages in order to allow binding of transcription factors and gene expression (126). 

In our study we report that ERK activation by LPS is significantly impaired in flagellin-

treated macrophages. These data suggests that flagellin might inhibit IL-10 production 

through impairing ERK activation by other TLR ligands. Nonetheless, further 

experiments need to be done in order to confirm the role of the ERK signaling pathway 

and the potential contribution of other pathways. Furthermore, LPS-induced 

phosphorylation of IκB was not altered in flagellin-treated macrophages suggesting that 

the NFκB pathway is not involved in the negative regulation of IL-10 observed in 

flagellin-treated macrophages. Since NFkB is a master regulator of TLR mediated 

cytokine induction, our data indicating that activation of this pathway by LPS is not 

affected in flagellin-treated macrophages supports that TLR5 engagement is not affecting 

the global immune response elicited by other TLRs but targeting specific pathways.   

We observed that flagellin enhances the production of IL-12p70 by macrophages 

in response to other TLR ligands such as LPS or CpG. Given the previous demonstration 

(107-108) (and also in our data) that IL-10 is a powerful inhibitor of IL-12p70 

production, one possible explanation for our findings is that flagellin enhances IL-12p70 

by inhibiting IL-10.  However, this assumption might not be the only explanation. 

Treatment of macrophages with flagellin and CpG resulted in increased IL-12p70 

production, but it was not accompanied by inhibition of IL-10. Therefore, the inhibitory 

effect of flagellin on IL-10 and its ability to enhance IL-12p70 production might be 

independent from each other and mediated by different mechanisms.   
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Overall our findings suggest a potential scenario in which the ability of flagellin 

to inhibit IL-10 could facilitate the induction of inflammatory responses by flagellated 

bacteria. This effect would be particularly important in organs such as colon and lungs. In 

these organs immune responses are tightly regulated mainly by the production of IL-10 to 

avoid inflammation caused by commensal microorganisms (170-171) (88). Furthermore, 

flagellin has been shown to play a central role in inducing inflammatory responses in 

lungs and gut (80) (83) (172). Our data support that in the absence of flagellin, IL-10 

would be produced in response to other TLR ligands such as LPS that is also expressed 

by flagellated bacteria. In this scenario, it is likely that the inhibitory effects of IL-10 

would prevail and lead to minimum or none inflammatory response. Conversely, in the 

presence of flagellin and its IL-10 inhibitory effects, proinflammatory pathways (i.e. IL-

12) triggered by flagellin itself or other TLR-ligands would unleash stronger 

inflammatory responses. Interestingly, enhanced inflammation might favor systemic 

dissemination of flagellated bacteria (173). This concept is supported by recent studies in 

mice with genetic disruption of TLR5 (79). In these mice, it was predicted that if the 

main effect of flagellin’s recognition by TLR5 is to induce host’s protective 

inflammatory responses then the absence of TLR5 would lead to increased susceptibility 

to infection by flagellated microorganisms. At odds with this prediction, TLR5 -/- mice 

were found to be less susceptible to systemic infection following oral challenge with 

Salmonella typhimurium (79). Given our results, it is possible that in the absence of 

flagellin-TLR5 interaction, IL-10 would continue to be produced in response to other 

TLR ligands. In this case, resistance rather than susceptibility will be the outcome due to 
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the inability of the bacteria to induce inflammation, not as a protective mechanism but as 

a mechanism to facilitate its systemic dissemination.  

Therefore, for the first time our studies show the effect of a TLR ligand inhibiting 

the production of a specific cytokine. Furthermore, the observation that flagellin 

specifically suppresses IL-10 production in response to selected TLR ligands provides a 

potential explanation to how TLR5 might shape the inflammatory responses elicited by 

flagellated pathogens.   

Studies coming from Groux’s group (144) among others have shown that 

differentiation of bone marrow derived DCs in the presence of IL-10 results in cells with 

increased ability to produce IL-10. These cells (tolerogenic-DCs) in our hands responded 

in a similar way producing much higher levels of IL-10 than regular BM-DCs upon LPS 

stimulation. As observed before in vivo and also in macrophages, flagellin treatment of 

BM-DCs or tolerogenic-DCs did not result in IL-10 protein production. Surprisingly, 

flagellin-treatment of tolerogenic-DCs resulted in much higher levels of IL-12 p40-70 

production than treatment of BM-DCs. One possible explanation for this result could 

come from the differences in TLR5 expression among these DC subsets, as TLR5 mRNA 

was much more abundant in tolerogenic-DCs than in BM-DCs. Interestingly, TLR5 

expression might be specifically enhanced in tolerogenic-DCs since a similar increase in 

expression was not observed in other TLRs such as TLR4 or TLR9. Based on the fact 

that the major difference between both subsets has been the exposure or not to IL-10, we 

explored the possibility that IL-10 treatment of DCs would result in increase expression 

of TLR5 mRNA. In our experiments treatment of differentiated BM-DCs with IL-10 did 

not induce any changes in TLR5 expression. This result indicate that IL-10 might 
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enhance TLR5 expression in non-differentiated cells but not in fully differentiated DCs or 

perhaps a longer exposure to IL-10 might be needed.  

IL-10 production by APCs has been shown to induce differentiation of regulatory 

T cells that produce high levels of IL-10 and limit inflammation (38). Based on this 

evidence we could hypothesize that antigen presentation by flagellin-matured 

tolerogenic-DCs would not result in regulatory T cell differentiation. In order to verify 

this hypothesis we decided to differentiate naïve CD4+ T cells in vitro using tolerogenic-

DCs treated with flagellin or LPS and analyze their responses upon restimulation. Naïve 

CD4+ T cells primed with flagellin or LPS-activated BM-DCs produced IFN-γ, IL-4 and 

IL-10. IFN-γ is a hallmark of Th1 differentiation while IL-4 in combination with IL-10 is 

produced by Th2 cells. The presence of these cytokines might indicate that Th1 and Th2 

cells are induced by activated BM-DCs. T cells differentiated by tolerogenic-DCs showed 

a different phenotype when the DCs were treated with LPS or flagellin. LPS-treated 

tolerogenic-DCs induced T cells that produced IFN-γ, IL-10 and very low levels of IL-4. 

Differentiation of T cells with this same phenotype  has already been described by 

Roncarolo’s group (161) when antigen presentation occurred in the presence of IL-10. In 

their study in order to assess if T cells differentiated in the presence of IL-10 had a 

regulatory/suppressor phenotype they explored the ability of these cells to block 

inflammatory responses using an inflammatory bowel disease model (IBD). In this model 

transfer of CD45RBhigh (naïve) CD4+ T cells into SCID mice, mice that lack T and B 

cells, induces the development of IBD that results in colitis and weight lost. Cotransfer of 

IL-10 producing T cells together with CD45RB high CD4+T cells prevented colitis 

development and weight lost indicating that T cells differentiated in the presence of IL-10 
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display regulatory properties. Due to their regulatory properties IL-10 producing T cells 

are commonly denominated IL-10 secreting type 1 regulatory T cells (Tr1) (38). Tr1 

differentiation might be abrogated when flagellin-treated tolerogenic-DCs act as APCs 

since T cells differentiated in these conditions did not produce IL-10 upon restimulation. 

T cells differentiated with flagellin-treated tolerogenic-DCs produced IFN-γ but very low 

levels of IL-4 and IL-10 suggesting that the dominant response elicited has a Th1 

character. 

 In summary, our results might indicate that antigen presentation by tolerogenic-

DCs activated with LPS results in naïve T cell differentiation into Tr1 cells meanwhile 

flagellin-treated tolerogenic-DCs induce Th1 differentiation. Tr1 differentiation has been 

shown to be dependent on IL-10 (174) that seems to act on the APC and not directly over 

the T cell (119-121) (175). This evidence suggests that the differences in T cell 

differentiation between flagellin-treated and LPS-treated tolerogenic-DCs might be 

mainly due to the production or not of IL-10 by the APC. Our data supports that the use 

of flagellin or other TLR5 agonists as adjuvant in situations associated with the presence 

of high levels of IL-10 would be specially indicated. In contrast the use of other TLR 

ligands could result in enhanced suppression of immune responses through the expansion 

of T cells with a regulatory phenotype.  

IL-10 production can be detected at steady conditions in gut and lungs (170) (176) 

where it plays a fundamental role in the prevention of anti-microbial responses (135). 

Interestingly, analysis of the TLR5 expression levels in different murine tissues have 

found the highest expression in the gut (79) an evidence that supports  our data  

suggesting that exposure to IL-10 increases TLR5 expression.  
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IL-10 signaling in the mucosa is likely to affect DCs in a similar way as seen in 

our in vitro experiments. In fact DCs from the gut but not from the spleen produce high 

levels of IL-10 upon stimulation with CD40 and microbial products (88). A similar 

phenomenon might also be occurring in the lungs, since pulmonary DCs produce IL-10 

and have been shown to induce Tr1 development and antigen specific T cell tolerance 

(171).  

 Furthermore, IL-10 has been also detected in many tumors produced by tumor 

cells or immune cells recruited to the tumor site (121). The presence of IL-10 in the 

tumor environment has been linked with the generation of regulatory T cells (38). 

Furthermore, in a recent study exploring the phenotype of tumor infiltrating DCs (TIDC)  

using different carcinoma models (mammary, liver lung and colon) these cells were 

characterized as having low expression levels of costimulatory molecules (CD86 and 

CD40) and hyporesponsiveness to maturating stimuli. Interestingly, in order to induce 

maturation of TIDC using CpG (TLR9 ligand) in vivo, CpG should be administered along 

with IL-10 blocking antibodies bringing even more evidence of the suppressive role of 

IL-10 on TIDCs (177). This evidence points towards a similar phenotype between TIDCs 

and tolerogenic-DCs as IL-10 might be acting as the shaping agent in both situations.  

 A question that remains to be answered in order to use TLR5 agonists to activate 

TIDCs would be if the degree of differentiation at which TIDCs are exposed to IL-10 

could make a difference in their ability to express TLR5. Our data suggest that IL-10 

might enhance TLR5 expression in DCs going through the differentiation proccess but 

not in those that are fully differentiated. Nonetheless, DC precursors circulate in the 
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blood and they have been shown to be recruited to the tumor environment (178) where 

exposure to IL-10 might result in increase of TLR5 expression .  

In summary, our study supports that stimulation of TLR5 might play an important 

role in counteracting the anti-inflammatory effects of IL-10. TLR5 engagement limits the 

production of IL-10 by innate immune cells. Furthermore it abrogates the differentiation 

of IL-10 producing T cells that otherwise dominate the immune response in IL-10 rich 

environments. Further studies will explore the flagellin-based vaccine we have created in 

our laboratory. The finding that flagellin can prime T cell responses in tolerogenic 

situations supports the use of this novel strategy to overcome tolerance to tumor antigens, 

a barrier that we need to remove if we want to effectively harness antitumor immune 

responses 
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