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The growing field of Body Area Networks (BANs) is providing solutions to the wireless

connectivity of wearable and implantable devices with applications in medicine, enter-

tainment, fitness, and military, amongst others. While electromagnetic wave propaga-

tion has been the main BANs’ enabling technology, the increasingly pervasive nature

of these devices encourages novel solutions with added bio-compatibility and sustain-

ability. In this thesis, a novel communication system is proposed for BANs based on

the natural propagation of tactile stimuli through the nervous system. This system

is composed of a tactile stimulator coupled to an ElectroEncephaloGraphy (EEG)

system, and realizes the propagation of somatosensory signals from the index finger

to the brain cortex. The feasibility of the proposed system is investigated through an

experimental testbed, while an analytical modeling framework that captures the main

processes at the basis of the proposed communication system is obtained by coupling

computational models of somatosensory receptive fields with mathematical expres-

sions of the cortical dynamics. Experimental results are then used to validate the

ability of the proposed models to serve as fundamental tools for the design of systems

based on tactile information transmission. In addition, digital modulation schemes,

i.e., On-Off Keying (OOK) and Differential Pulse Position Modulation (DPPM), are



evaluated as potential strategies to transmit information through the proposed sys-

tem. These preliminary contributions stand as proof-of-concept for the engineering

of nervous-system-enabled BANs.
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Chapter 1

Introduction

Body Area Networks (BANs) are based on cutting-edge communication technologies

for the interconnection of devices on, in, or around the human body for a variety of

possible uses, including medical, entertainment, fitness, and defense [36, 26, 1, 54].

The latest wearable and implantable devices are pushing the limits of these tech-

nologies by providing ubiquitous sensing of human body parameters and actuation

capabilities coupled with enhanced biocompatibility and ergonomics [49, 4]. As the

number of devices in the Internet of Bio-Nano Things (IoBNT) continues to expand,

so does the demand for more efficient and effective interconnection techniques for

BANs. While most research efforts around BANs [36] have been focusing on elec-

tromagnetic (EM) wireless technology and the propagation of EM waves around the

body, as expressed in the standard IEEE 802.15.6 [1], technologies able to propagate

information inside the body, or Intra Body Communication (IBC) [50], such as ul-

trasound [47], and galvanic coupling [29], are limited in their applicability, especially

due to their invasiveness and unnatural characteristics, which could lead to negative

effects on health [3].

Although IBC solutions based opto-ultrasonic communications [48] and Terahertz
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band communications [2] have been proposed as possible alternatives to reduce the

aforementioned invasiveness through the use of nanoscale communication devices and

very short-range EM technologies, a potentially transformative direction stands in the

utilization of biochemical processes already at the basis of natural communications

inside our body [32, 3]. Despite the significant amount of research focused on net-

working for BANs, the specific approach of using the nervous system for transmission

is an almost entirely untapped. [3]

In particular, the study of the nervous system and its neurons as a means to prop-

agate information between future wearable and implantable devices is encouraged

by its ubiquitous distribution within the body and the existence of well-established

techniques for external interfacing, such as [17, 35]. To realize this goal, novel inter-

disciplinary research at the frontier of communication engineering and neuroscience

is needed to develop communication theoretic tools and models that could exploit the

wealth of knowledge built in recent years around modeling the physiological processes

in the nervous system.

Most of the previous literature in this direction from the communication engi-

neering community has mainly focused on the propagation of information in single

or interconnected networks of neurons [6, 53], without addressing the context of the

nervous system in the human body as a whole. While in [7, 10] detailed models are

presented to study the natural propagation of neuro-spikes (or action potentials) in

and between single neurons, in [27, 28] the authors explore the possibility of transmit-

ting artificial (non-natural) information through a neuron without active generation

of action potentials, through the use of the so-called subthreshold electrical stimu-

lation. Other notable works in the literature are focused on the analysis of future

techniques to enable intra-body neuron stimulation of electrochemical spikes through

implantable nanotechnology-enabled devices [34].
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1.1 Background and Motivation

While other approaches to IBC implementations generally focus on propagation of

EM waves through the body, we propose a method that relies on the utilization

of already present information pathways and the natural responses that drive this

information transmission. Consider the following analogy: in the 1990s a dial-up

Internet connection allowed access the World Wide Web, but but did not allow for

simultaneous use of that same line for telephone calls. This was, as is well known,

because the dial-up service used the same frequency range and technologies as was

used for making a phone call. In the late 1990s and early 2000s, Digital Subscriber

Lines (DSL) became broadly accessible, and it became possible to make a phone

call while using the Internet. In this thesis we consider an analogous problem: when

considering the human nervous system as an already present communication network,

we explore the feasibility of using those same lines that regularly transmit natural

information to also transmit artificial information throughout the body.

The nervous system is a collection of electrical wires that span throughout the

entire body and connect the brain, sensory systems, and organs to each other. Not

only is this natural communication network distributed throughout the entire human

body, but it is also easily accessible. Every time you feel a sensation and every time

you move a muscle, information is being transmitted through this natural system.

Every time you think to make a movement, a signal is sent from the brain back

through the body. This system is asymmetric. That is, if we consider the point-to-

point communication between the surface of the skin and the brain, different processes

need to occur for information to go from the skin to the brain than need to occur for

the reverse direction of information transmission. We consider the forward-direction

as the focus of this thesis, while the reverse direction will be the subject of future
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work.

1.2 Contributions

We propose a communication system based on the propagation of tactile stimuli

through the nervous system and its components. In short, we can transmit infor-

mation by initiating a tactile sensation on the skin. This sensation generates an

electrochemical impulse which propagates along the nerves of the somatosensory sys-

tem and it is then received by the brain. The signal’s arrival in the brain results in

activity in the somatosensory cortex. Finally, this activity can be read through an

ElectroEncephaloGraphy (EEG) device, and the received signal cleaned and processed

to reveal the initial sensation pattern.

The contributions of this thesis are as follows:

1. We develop and implement an accurate analytical model that represents the

transmission of artificial data through the human body.

2. We consider Differential Pulse-Position Modulation (DPPM) as a form of digital

modulation and describe its advantages for this system.

3. We show that the analytical and experimental performance of the system are

in agreement.

In a traditional communication system the message is transformed into an electri-

cal signal by an encoder device, and in optical systems the message is translated into

a light signal, in our system we can only modulate the signal by use of the timing and

pressure of skin taps. The non-invasive nature and the availability of well-established

techniques for EEG signal acquisition and analysis, as well as previous neuroscience

literature on the modeling of somatosensory system processes, makes our proposed



5

system ideal to study for the development of IBC networks. In particular, in this

thesis we develop an analytical modeling framework based on computational neuro-

science models of the somatosensory signal propagation [16, 15] the somatosensory

cortex at the brain [11], and the generation of EEG signals [38, 5].

At the same time, we present an experimental study performed through an ad-

hoc experimental testbed, which is also used to validate the ability of the proposed

analytical models to serve as fundamental tools for the design of systems based on

haptic information transmission. Some similarities with this approach can be found in

very recent literature [51, 19], where the cortex representation resulting from Braille

tactile stimulation through the somatosensory system is studied by analyzing the

EEG. In [51] the EEG response to mechanical Braille stimulation is analyzed in order

to later compare to the neural response from electronic Braille stimulation.

Nevertheless, these studies do not aim at building analytical models, and are not

placed in the context of IBC engineering. The latter applies also to [55] where a con-

ceptual network model of each signal transduction step in human nervous system from

a sensory neuron to brain astrocytes is detailed, but this model does not include an

overall model of touch receptive fields and the cortex, nor the signal reception through

EEG. Although an attempt has been made to model the overall touch propagation

through the somatosensory system in [45], this paper does not include numerical data,

nor experimental data or validation of the presented models, which are based on finite

state machines rather than physiological models from neuroscience.

This thesis is organized as follows. In Chapter 2 we provide a high-level description

of the system and its key components. In Chapter 3 we detail the implementation

of an in-vivo experimental test bed for this system. In Chapter 4 we detail our

analytical model of the system and provide key implementation details. In Chapter 6

we provide the results of experiments developed by the experimental and analytical
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implementations. In Chapter 7 we conclude and discuss future research directions.
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Chapter 2

Description of the Proposed

System

Our system, which is based on the idea of transmitting artificial data through the

natural pathways of the human nervous system, is comprised of three primary com-

ponents:

1. The Transmitter, which which encodes information into a somatosensory sig-

nal through tactile stimulation of the skin.

2. The Channel, which is made up of nerve pathways that propagate the signal

to the somatosensory cortex of the brain.

3. The Receiver, which is an EEG device used to record the neural activity in

the somatosensory cortex after a signal is transmitted.

It is useful to note that for this work we focused on one-way data transmission

from the right index finger to the somatosensory cortex. This is because our system

is asymmetric in the sense that sending information from the surface of the skin to
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Figure 2.1: Schematic of the proposed communication system based on tactile infor-
mation transmission.

an internal location is a different problem than transmitting data from an internal

location back to the surface of the skin.
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Figure 2.2: Block diagram of the proposed communication system.

Figure 2.1 provides a graphical sketch of the overall system, and Figure 2.2 pro-

vides a block diagram of the key system components. The transmitter consists of the

computer modulating the taps, and the piezoelectric simulator which provides brief

taps to a small (≈ 1mm2) portion of the skin surface. This initiates the information

transfer which travels along the nerves of the somatosensory system (explained in de-

tail in the following sections) and then arrives at the brain. The receiver includes the

EEG electrodes attached to the scalp record this activity in a localized area on the

scalp and the computer which demodulates and decodes the transferred information.

The following sections present a high-level overview of this system and its main com-

ponents. The following two chapters discuss the experimental and analytical details

of the system respectively.

2.1 The Transmitter

Information bits are encoded into a somatosensory signal by modulating the param-

eters of a tactile stimulation operated by a device. In our system, modulation is

according to either On-Off Keying (OOK) or Differential Pulse Position Modulation

(DPPM) provided in Chapter 5. To modulate the signal, the device controls the time

instants t0 and the duration T of skin taps at a precise location. Since each tap is

realized by protruding a pin with a diameter of 2 mm, we approximate the tapping
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location with a point on the skin surface. Within this thesis, we also assume that

the tapping location is roughly at the center of the right index finger pad, denoted

with the two-dimensional location coordinate ~zin, considered one of the most touch-

sensitive skin locations of the human body [23]. The transmitted signal Tx(~z, t), as

function of the time t and the two-dimensional skin location ~z, is expressed as follows:

Tx(~z, t) = δ (|~z − ~zin|)A rect

(
t− t0
T
− 1

2

)
, (2.1)

where δ(.) and rect(.) are the Dirac delta and the rectangular function, respectively,

A corresponds to the intensity of the tap, which is considered constant and equal

to 1 within the scope of this thesis, as explained in the following, and ||~z − ~zin|| is

the Euclidian distance on the skin surface between a skin location ~z and the tapping

location ~zin.

2.2 The Channel

As described in Sec. 2.1, for the signal produced by the transmitter to enter the chan-

nel, a tactile sensation is produced on a specific location on the skin. Mechanore-

ceptors present on the skin surface transduce a mechanical deflection at the finger

pad into an electrochemical signal [23, 16].

This signal then enters the Dorsal Column Medial Lemniscus (DCML)

Pathway, which includes neurons at the tips of the fingers all the way to the brain.

Neurons are specialized cells which transmit impulses between each other to facil-

itate natural communication through the body. The DCML pathway is a major

physiological pathway for transmitting sensory information in the body. It is an in-

terconnection of three orders of neurons that relay this electrochemical signal to the
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brain by propagating and regenerating the signal along their cell body projections,

or axons [44].

Starting at the finger pad, this pathway continues up the arm past the shoulder,

into the spinal cord. Then it ascends the posterior column of the cord until reaching

the caudal portion of the brainstem, called the medulla. At the medulla, the first or-

der neurons relay the propagated signal to the second order neurons through synapses,

junctions between nerve cells where electrochemical signals are relayed through neu-

rotransmitters diffusing in gaps between the two cell bodies. Neurotransmitters are

chemical substances released by neurons to aid in the propagation of impulses be-

tween neurons. The second order neurons connect their axons to the thalamus, a

central region of the brain where nerve fibers project out to the cerebral cortex in all

directions, where they also cross the midline to the opposite side of the spinal cord

with respect to their origin side, in a region of their axons called medial lemniscus.

At the Ventral Posterior Lateral (VPL) nucleus region of the thalamus, a second set

of synapses connect the incoming second order axons to the third order neurons. The

third order axons relay the incoming electrochemical signals via a third set of synapses

into cortical neurons located at the postcentral gyrus of the brain, which is a region

in the upper side of the brain opposite (at the left side in this case) to the side of the

tapping location. There is evidence that a localized tactile stimulation corresponds

to a localized set of cortical neurons receiving the resulting signal in a point-to-point

fashion, where different stimuli locations correspond to different signaling locations

in the brain [37]. Table 2.1 details key time points in the journey of electrochemical

signal as it travels through the DCML Pathway.
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Table 2.1: Commonly observed average delays of the stimulus response at different
DCML pathway locations

Time (ms) Event
0 Stimulus occurs (tap)
9 Stimulus response at shoulder
13 — at fifth cervical spine
20 — at somatosensory cortex

2.3 The Receiver

Finally, the signal propagation along the cortical neurons stimulates correlated so-

matosensory cortex activity. Neurons in the somatosensory cortex may react with

electrochemical excitatory and inhibitory responses to the signals incoming from the

DCML pathway. That is, any given neuron in a network may be more or less likely

to transmit its own nerve impulse depending on the excitatory or inhibitory activ-

ity, respectively, of neighboring neurons. These electrochemical responses of brain

cortex neurons, organized into mini-columns and functional columns interconnected

through thalamocortical and corticocortical networks [9], result into ionic currents

flowing across the brain cortex that cause the emission of electromagnetic waves,

which are subsequently received at the EEG electrodes [38].

The Receiver uses an EEG system with electrodes placed on the scalp at dif-

ferent locations to measure voltage fluctuations induced by the aforementioned ionic

currents at the brain cortex [38]. We consider a number E of electrodes placed on

the scalp at predetermined standard locations [25]. The voltage fluctuations read by

each electrode are affected not only by the somatosensory cortex activity correlated

to the input tap in (2.1), but also by other brain activities, such as those related

to higher-level cognitive functions. We aim to recognize the voltage fluctuations in-

duced by the aforementioned tap-related somatosensory cortex activity. For this, we

utilize a standard technique for measuring SomatoSensory Evoked Potentials
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(SSEPs) [39], where the voltage fluctuations from each electrode correlated to an

event, i.e., tapping, are preprocessed through averaging and filtering, resulting in the

voltage signals VEEG,e(t), for each electrode e. In addition, we take into consideration

only the electrodes around the postcentral gyrus region of the brain [18], denoted

with the set G, since, as also explained above, other electrodes will not be able to

read SSEP voltage fluctuations from the tap. As a consequence, the received signal

Rx(t), as function of the time t, is defined as follows:

Rx(t) = {VEEG,e(t)|e ∈ G} . (2.2)

In this communication system, we are interested in SSEP signals VEEG,e(t) min-

imally dependent from the particular characteristics and state of each individual’s

nervous system. Based on experimental evidence [39, 42], the SSEP signals in (2.2)

show an overall standard pattern across different experiment realizations within the

first 100 ms from the occurrence of a tap, characterized by local maxima and minima

around precise time instants. These details are experimentally validated in Chapter 3

and then analytically modeled in Chapter 4. After the signal is received and pre-

processed is it demodulated and decoded through a Support Vector Machine (SVM)

based classifier as explained in Chapter 5.
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Chapter 3

Experimental Study

In this chapter we describe the experimental framework used for testing the proposed

communication system. Fig. 3.1 provides an overview of the primary elements of the

experimental testbed. The main experimental elements include the Tactile Stimulator

which attaches to the right index finger and the EEG System which collects the

information the somatosensory signal after it has propagated through the nervous

system. When the data has been recorded a computer records the preprocesses the

data. We discuss these elements in detail in the following sections.

3.1 The Tactile Stimulator

The Tactile Stimulator is a custom made device, courtesy of Electrical Geodesics In-

corporated (EGI), designed to induce computer-controlled discrete tactile stimulation

impulses (taps) on the skin of a test subject, and concurrently send discrete Time-

To-Live (TTL) signals to the EEG recording device. We placed one of the actuators

shown in Fig. 3.1 in contact with the subject’s right index finger pad. Upon an elec-

trical command at t0, as defined in Section 2.1, a plastic pin included in the actuator
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Figure 3.1: Schematic with the main components of the experimental framework for
the proposed communication system.

moves upward and taps the skin. In our experiments, we secured the actuator to the

finger making sure that the plastic pin would tap roughly at the center of the pad,

which is in agreement with the value of the parameter ~zin in Section 2.1 considered

for the model-based simulation, as detailed in Chapter 4. This tactile stimulation

device allows the control three parameters:

1. Tap duration (i.e. the period of time when the pin is in upward position and

causes a skin deflection) which corresponds to the parameter T in (2.1).
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2. Frequency ft of repetition of these taps in a tapping sequence.

3. Overall duration Ts of the tapping sequence.

3.2 The EEG System

For the EEG data acquisition, we use a 256-channel HydroCel Geodesic Sensor Net R©,

shown in Fig. 3.1-B, connected to a Net Amps 300 R© amplifier, while the data have

been recorded through the NetStation software (all EGI products) running on an

Apple MacBook Pro laptop. This equipment was provided by the Center for Brain,

Biology and Behavior (CB3). The 256 electrodes of the sensor net are immersed for

5 minutes in a saline solution containing 1.5 teaspoons of potassium-chloride warmed

to body temperature. Following measurement and marking of the Fz and Cz (vertex)

positions to aid in the alignment of the Net on the participant’s head [30], the Net

is placed on the head and impedances measured with Net Station 5.2 and, following

common practice with high impedance systems, adjusted to under 60 kΩ prior to test

commencement. The collected voltage reading from each of the 256 electrodes are

digitized with a 24-bit A/D converter at a 1 KHz sampling rate.

3.3 Data Collection

The data analyzed in this paper was recorded on a single subject1, right-handed fe-

male in her early 20s. The subject was comfortably seated in a quiet room, and the

piezoelectric stimulator secured to her right index finger as described above. The tap-

ping device was not audible, removing the possibility of cross-sensory contamination.

1The Institutional Review Board at the University of Nebraska-Lincoln has formally approved
the disclosure of these data.
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The tap duration T was set to 1 ms. For tapping repetition frequencies of ft = 1Hz,

ft = 10Hz, and ft = 100Hz, we run tapping sequences involving 5 seconds of stimu-

lation followed by 5 seconds of rest. The goal of this stimulation was to capture the

resulting SSEPs. In particular we want to understand how quickly we can transmit

taps and overcome interference from brain activity associated with previous taps [39]

and other physiological noise. We recorded SSEP data related to over 8, 000 taps in

total.

3.4 EEG Data Preprocessing

For our preprocessing, and subsequent data analysis described in Chapter 6, we used

the MATLAB toolbox EEGLAB, considered a standard computational tool in EEG

data informatics [13]. Initially, the data was cleaned via visual inspection to remove

any major artifact [14]. Next, the data was high-pass filtered at 0.1 Hz to remove

amplitude shifts and other low frequency noise. For standard analysis of SSEPs in

EEG, epoching, or chopping a continuous signal into a set of segments that are time-

locked to a particular event is an important preprocessing step. The aforementioned

data preparation was completed on all experimental data. Since post-experiment

the data collected is essentially the same as that generated by the analytical model

(described in Chapter 4), the final processing for generating these results in detailed

in Chapter 6.
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Chapter 4

Analytical Study

In this section, we present an analytical modeling framework which forms the basis of

the mathematical expressions for the main processes involved in our communication

system, as well as the implementation details. The following mathematical model

was originally presented in our previous work [22]. As displayed in Fig. 4.1, this

modeling framework is composed of four main analytical models, namely, the Finger

Pad model, the DCML Pathway model, the Somatosensory Cortex model, and the

EEG Generator model. The first two models are developed with reference to recent

work in computational neuroscience [16, 15], where the authors build a computational

model of the aforementioned cortical neuron reception of somatosensory signals upon

tactile stimulation of the finger pad. The Somatosensory Cortex model is based on

a formulation of the global theory of neocortical dynamics [11]. Finally, the EEG

Generator model is inspired by the dipole neuron models studied in [38, 5], which

provide mathematical expressions underlying the electromagnetic wave generating

neural activity.
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Figure 4.1: Schematic with the main models of the analytical framework for the
proposed communication system.

4.1 The Finger Pad

Beginning at the finger pad, we consider a 5mm x 5mm patch of skin, with 256

receptors, and thus a receptor density of approximately 10 receptors/mm2. This

value was determined using Merkel’s ending complex (MEC) density [41]. We let

a = 1 and σ = 1 [16]. We consider T = dt, which is defined below, to reflect the same

parameter value adopted in the experimental framework in Chapter 3. Finally, the
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stimulus location ~z = [2.5mm, 2.5mm], which is the center of the finger pad.

The Finger Pad model converts the transmitted signal Tx(~z, t) from (2.1) into the

response si(t) for each mechanoreceptor i = 1, . . . , I placed on the finger pad skin.

With reference to [20], the response si(t) can be approximated for any time t with a

Gaussian function of the distance between the tapping location ~zin and the location

~zi of the mechanoreceptor i for the duration of the tap. This is computed from (2.1)

with the following:

si(t) = Tx(~z, t) ∗ a exp

(
− 1

2σ2
|~z − ~zi|2

)
δ(t)

= Aa rect

(
t− t0
T
− 1

2

)
exp

(
− 1

2σ2
|~zin − ~zi|2

)
, (4.1)

where ∗ denotes the convolution operation with respect to the time t, a and σ are

the intensity of the mechanoreceptor response and the decay of the skin deflection

with the distance from the tapping location, respectively, considered equal for every

mechanoreceptor [20].

4.2 The DCML Pathway

The primary contribution of the DCML pathway is from the weights wi
f which map

the input from tactile stimulus on the skin to the corresponding patch of neurons

in the somatosensory cortex. To obtain these weights, we used the source code and

training procedure associated with [16], and available online at https://github.com

/gdetor/SI-RF-Structure . Constants related to the weights are further explained

in the next section as we utilized the same constants in training and simulation.

The DCML Pathway model takes the response si(t) of each mechanoreceptor

i = 1, . . . , I in input, and outputs the somatosensory signal I(~xn, t) that is received
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by a neuron n at the two-dimensional location ~xn in the brain cortex, as explained

in Chapter 2. The index n identifies signal-receiving neurons, a total of N , present

in a localized region of the postcentral gyrus, i.e., the signaling location, also known

as receptive field, that receives tactile stimuli from the right index finger pad [23].

With reference to [16, 15], the real DCML pathway behavior can be approximated

by computing for each neuron n the average distance between receptor responses

si(t) and feedforward weights wi
f (~xn) associated to the neuron itself. This model is

expressed as follows:

I(~xn, t) = 1− 1

I

I∑
i=0

|si(t)− wi
f (~xn)| . (4.2)

While the relation in (4.2) expresses an instantaneous propagation from the mechanore-

ceptor responses to the somatosensory signals at the cortical neurons, in reality there

is a propagation delay in the DCML pathway as the somatosensory signals go through

the first, second, and third order of neurons and their synapses, as explained in Chap-

ter 2. In the scope of this thesis, since the inclusion of a realistic model for the gen-

eration of this delay would imply the detailed knowledge of physiological parameters

of each individual’s nervous system, we limit ourselves to an empirical estimation

through the experimental data.

4.3 The Somatosensory Cortex

In modeling the Somatosensory Cortex, we selected dt = 1 ms to reflect the sampling

rate in our experimental setup (Chapter 3). We set τ,Ke, Ki, σe, σi to values used by

[15] in their related model. The value v was based on the characteristic velocity of

the brain cortex activity propagation in corticocortial fibers, according to [38]. The
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cortical area was modeled with a 100x100 grid of 10,000 neurons, justified by the

upper limit in the size of a cortical column [38]. A further justification for choosing

this size of cortical area is that during the simulation of the model expressed in (4.3),

we did not observe significant cortex activity after propagating for roughly 30 neurons

outside of the receptive field. We modeled the receptive field of the right index finger

pad at the center of this cortical area with a 32x32 grid of 1024 neurons, a number in

agreement with [16]. As a consequence, each neuron n out of these 1024 is associated

a location ~xn and a set of feedforward weights wi
f (~xn), one for every receptor on

the skin patch. The remaining neurons in the modeled cortical area not part of the

receptive field, and do not have feedforward weights. The purpose of these neurons

is to allow the response signal to propagate through the cortical medium. We choose

a toric distance measure to compute |~x− ~y| in (4.3) and (4.4), as suggested in [11].

The Somatosensory Cortex model computes the somatosensory cortex activity

u(~x, t) at each two-dimensional location ~x within the left postcentral gyrus of the

brain at time t from the somatosensory signal I(~xn, t) received by the each neuron

at location ~xn within the aforementioned right index finger pad receptive field, func-

tion of the time t. According to the neural field model of the neocortical dynamics

(see Appendix A), this computation can be approximated through the Nunez-Amari

integro-differential equation [16, 15], and it is expressed as follows:

τ
∂u(~x, t)

∂t
=− u(~x, t) +

∫
Γ

wl(~x, ~y)f

(
u

(
~y, t− |~x− ~y|

v

))
d~y

+ I(~xn, t)δ(|~x− ~xn|) , (4.3)

where τ is the membrane time constant, v is the speed of propagation of cortex activity

between neighboring neurons, Γ is the set of two dimensional coordinates included in

the postcentral gyrus, wl(~x, ~y) is the lateral connection function between two neurons



23

located at ~x and ~y, respectively, and f(u(~x, t)) is the firing rate, as function of the

cortex activity u at location ~x in the postcentral gyrus, and time t.

The lateral connection function wl(~x, ~y) expresses the interplay between excitatory

neurons, which respond to neighboring neuron activities with a positive signal, and

inhibitory neurons, which respond to the same activities with a negative signal. The

neural field theory (see Appendix A) and the Nunez-Amari equation model cortex

activity as a continuum on the cortex surface, and excitatory and inhibitory neurons

are modeled as part of a homogeneous mixed population [11], resulting in the following

expression:

wl(~x, ~y) = Ke exp

(
− 1

2σ2
e

|~x− ~y|2
)
−Ki exp

(
− 1

2σ2
i

|~x− ~y|2
)

(4.4)

where Ke and Ki quantify the strength of excitation and inhibition of a neuron,

respectively, and σe and σi express the intensity of excitation and inhibition, respec-

tively, as function of the distance between two neurons. Commonly, (4.4) models

the experimentally observed short range excitation and long range inhibition, which

results in the condition σi � σe [16].

The firing rate f(u(~y, t − |~x − ~y|/v)) models the non-linear behavior underlying

the excitability of a cortex neuron at location ~y. This is usually expressed through a

sigmoidal function of the cortex activity propagated at location ~y from location ~x at

time t with velocity v [11]. For simplicity, as suggested in [21], we approximate the

firing rate function f as follows:

f(u) =


u u ≥ 0

0 u < 0 .

(4.5)
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4.4 The EEG Generator

The EEG generator model takes as input the somatosensory cortex activity u(~x, t) at

each location ~x within the left postcentral gyrus as function of the time t, and returns

as output the received signal Rx(t) expressed in (2.2). In agreement with [38, 5], from

the point of view of the aforementioned generation of electromagnetic waves by ionic

currents associated to the neocortex activity, and the consequent voltage recorded at

the EEG electrodes, the somatosensory cortex can be modeled as a two-dimensional

layer of electromagnetic-wave-emitting dipoles. In this model, the EEG electrodes are

approximated as point-wise locations immersed in the conductive medium of the scalp,

to which they are electrically connected through an electrolytic saline solution, gel,

or paste [30]. As a consequence, in agreement with [5], the voltage signals VEEG,e(t)

read by the electrode e as function of the time t can be expressed as

VEEG,e(t) =
σin

4πσex

∫
surf

kvu(P~r, t)dΩ(~r − ~re) , (4.6)

where σin and σex are the intracellular and extracellular conductivity, respectively, P

is the orthogonal projection matrix equal to [100; 010; 000] [8], P~r projects the three-

dimensional coordinate ~r into the two-dimensional coordinate ~x of the somatosensory

cortex, and dΩ(~r − ~re) is the solid angle that an infinitesimal surface unit (surface

differential) subtends at the three-dimensional location ~re of the EEG electrode e [5].

We take σin = σex = 1 S/mm [5]. Finally, kv was estimated computationally based

on the experimental results as detailed in Sec. 6.2. The simulated locations of the

electrodes on the scalp is in agreement with the standard in [25], in the specific case

where 256 electrodes are used. The constant parameter kv converts the somatosen-

sory cortex activity into a proportional electrical potential of the cell membrane of

the cortex neurons at the same location and time. Within the scope of this thesis,
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Table 4.1: Mathematical Notations

~z Location on skin
~zin Tap location on skin
~zi Location of cutaneous receptor
t0 Time instant of tap
G Set of EEG electrodes
~xn Two-dimensional neuron location
wi

f Feed-forward weights

P Orthogonal projection matrix
~r Location in somatosensory cortex
~re Location of EEG electrode

Table 4.2: List of Functions

Tx Transmitted Signal
Rx Received Signal
δ Dirac Delta
rect Rectangle Function
VEEG,e SSEP Signals
si Receptor Response
I Somatosensory input
wl Lateral Connections
f Firing rate

we estimate the parameter kv by scaling the received signal computed through the

analytical model to that obtained from the experiments, as explained in Chapter 6.

4.5 Implementation

For the software implementation of our system, we consider the four main compo-

nents and how they work together. For quick reference to values of constants, see

Table 4.3. Algorithm 1 provides a high-level overview of the implementation of the

aforementioned mathematical model.

Given a list of times at which stimulus should occur, for each numerical time value

(spaced according to dt) in a specified time period ([tstart, tstop]), if the current time
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Table 4.3: Model Parameters

Ke Excitation strength 3.65
Ki Inhibition strength 0.1 mm
σe Excitation intensity 2.40
σi Inhibition intensity 1.0 mm
τ Membrane time constant 1 s
dt Time change 1 ms
T Tap duration 1 ms
a Intensity of response 1
σ Decay of skin deflection 1
v Cortical Propagation velocity 750 cm/s
σin Intracellular conductivity 1 S/mm
σex Extracellular conductivity 1 S/mm
kv Proportionality constant est. (see Chp.6)

value t is in the list-of-stimulus-times the Receptor Response s is generated based

on the tap location x, otherwise the s = 0. From s the Neural Input is generated,

this is essentially the implementation of (2.1) which is the mapping between a tap

on the skin to the corresponding cortical response. The the Lateral Interactions (4.4)

are generated based on the current cortical state u. Finally these values are brought

together to determine the value for du as in (4.3), and then the cortical activity u is

updated for the next time interval. Since the EEG signal at any time point is only

dependent on the cortical state at that time point, the last two lines in the for-loop

include calculating the solid angle formula for the current cortical state u, and then

calculating the EEG response V .
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Algorithm 1: Implementation of Analytical Model of Neural Response

Data: List of stimulus locations ~z and time ~t

Result: Associated EEG response V

initialization;

for t ∈ [tstart, tstop] do

if t ∈ list-of-stimulus-times then

s = ReceptorResponse(x);

else

s = 0;

end

I ← Neural-Input from s;

L← Lateral-Interactions from u;

Update du from dt, u(t), L, I;

u(t+ 1)← u(t) + du;

V (t)← EEG-Response from u(t);

end
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Chapter 5

Digital Modulation Techniques

Our system is limited in options for modulation because the main parameter that

we can exploit for efficient modulation is the time instant at which a tactile stimulus

is applied. This is in contrast to traditional communication systems which allow

modulation though amplitude, phase, and frequency. As a result, our transmitter is

more similar to an optical communications system than it is to an electric system.

Within this thesis, we consider OOK and DPPM as modulation techniques for our

system. This chapter discusses these modulation types in further detail, including

their advantages and disadvantages with respect to our system. In addition this

chapter covers the use of a Support Vector Machine (SVM) classifier to demodulate

received EEG signal.

5.1 On-Off Keying (OOK)

To transmit information via OOK there must be two different possible system states.

In our system these states are distinguished as the presence or absence of a tap (which

correspond to the transmission of a one or a zero, respectively). OOK was chosen
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as an initial modulation due to its simplicity of implementation. To understand the

achievable bitrate with OOK modulation, we need to determine what is the Resting

Period (RP), mathematically denotedRp. We defineRp as the minimal time-domain

spacing between two successive taps such that we can clearly distinguish both taps

in the received signal. Thus to transmit b bits it takes time bRp.

5.2 Differential Pulse Position Modulation

(DPPM)

DPPM is a form of modulation where M bits are encoded by symbols determined by

a single pulse being sent at one of 2M possible times. As soon as a symbol is sent the

next symbol’s transmission begins immediately (thus resulting in a varying bitrate).

We chose DPPM [52] for its advantages related to our system, which are discussed

in the following paragraphs. DPPM works by modulating the time at which a signal

(i.e., tap) is transmitted. An example of this type of modulation (oriented toward

our system) is shown in Fig. 5.1 (also shown are the same bits being transmitted via

OOK). In this example there are two bits transmitted in each symbol, and therefore

a total of four symbols. Symbols are defined by how many time intervals there are

between the end of the last symbol and the start of the following symbol (i.e., the

symbol “01” is defined by two time intervals before the signal is sent). We call

the length of these time intervals the Precision value. Precision is defined by the

minimum time-domain spacing that can occur between potential stimulus such that

we can determine the exact time at which the stimulus was sent. The Precision value

is directly tied to how precisely we can determine the start time of a tap in a signal

where only one tap occurs. Since the time it takes to send a symbol depends on which
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symbol is sent, the bit rate of this system varies depending on exactly which symbols

are being transmitted. Thus, depending on the nature of the information being sent,

it may be possible to further optimize this system by designing a coding scheme that

prioritizes symbols leading to a higher bit rate.

Additionally, DPPM is energy efficient because only one tap is required for each

symbol transmitted. A further advantage of DPPM is that it does not require a

perfectly synchronized clock between the transmitter and receiver. A noteworthy

drawback is that when using DPPM a single symbol error can disrupt the correct

receipt of all following symbols. For this reason it is often beneficial to include a

periodic synchronization sequence to compensate for possible bit errors.

Consider DPPM as paired with our proposed system. Given a precision p, a resting

period Rp, and |S| symbols, we want to determine how long it will take to transmit

a single bit. Due to the variable bitrate in DPPM, a simple way to approximate

the bitrate is to take the average of the slowest and the fastest transmission times

possible.

For the time Tb required to transmit a single bit, the lower bound is

Tb ≥
log2(|S|)
Rp

and the upper bound is

Tb ≤
logs(|S|)

Rp + P × |S|
.

By taking these average of these values we obtain

Tb,avg =
log2(|S|)

2Rp

+
logs(|S|)

2(Rp + P × |S|)

which is the average time it takes to transmit a single bit.
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Bits Timing
00 0
01 1
10 2
11 3

10       11     01   00

1         0          1          1          0          1          0          0

2 3 1 0

OOK

DPPM

Figure 5.1: Example comparison of eight bits transmitted via OOK and DPPM

5.3 Support Vector Machine Based

Demodulation

Standard SSEP analyses tend to focus on gathering many trials and averaging them

in order to reduce the SNR [46], however this is deleterious to obtaining a viable

bitrate for BANs. To combat this issue, we utilize a SVM binary classifer [12]. The

SVM classifier works by determining an optimal hyperplane to separate binary data

(in our case the presence or absence of a tactile stimulus). Figure 5.2 provides a

graphical example of how this works [33]. With proper training the use of an SVM

classifier can greatly reduce the amount of redundancy needed to effectively detect

SSEPs [31, 40].
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Figure 5.2: Diagram representing how an SVM classifies data.
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Chapter 6

Results

In this chapter we discuss our scoring metrics, and then detail the in-vivo experiments

using the testbed described in Chapter 3 followed by the results of our simulation code

developed using the model described in Chapter 4. Finally, we consider these results

in relation to each other. As with the implementation of the analytical model, all

processing and results calculations were done using a combination of MATLAB and

the EEGLAB toolbox.

To understand our data, we quantify the results from the classification in two ways.

On one hand we use the accuracy score, defined as the ratio of correct classifications

to the total number of classified samples. Mathematically this is expressed as

accuracy =
#p1,1 + #p0,0

#p1,1 + #p1,0 + #p0,1 + #p0,0

,

where #pi,j represents the number of occurrences of having classified the received

bit as i given that the transmitted bit is j. On the other hand we used a second

form of evaluation, namely, the scoring function, which represents the distance be-

tween a given sample and the decision boundary. This is done by computing the
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optimal posterior probabilities using Platt’s Method [43]. This is the built in scoring

function provided with MATLAB’s Statistics and Machine Learning Toolbox [33].

Mathematically it is defined as

P (y = 1|x) =
1

1 + exp(Ag(x) +B)
,

where g(x) is the classifier scores, and A and B are two scalar parameters learned by

the algorithm.

6.1 Experimental Results

Using the experimental data obtained as described in Chapter 3, we sought to answer

the two following questions:

1. Is there a localized source of the initial activity that occurs in the brain in

response to tactile stimulation?

2. What is the shape of the waveform that appears in the EEG signal in response

to this stimulation?

To answer the first question, we used the 1 Hz data collected as described in

Chapter 3, and separated it into epochs, which each included a tap response. The 1

Hz data was chosen because it is the lowest tapping frequency, and thus it would be

the cleanest data. As in standard in ERP detection [46] we took the average of these

responses over the whole scalp, and generated the 2D activity plot shown in Fig. 6.1.

This figure was generated using the built-in functions in EEGLAB [13]. In this figure,

we see a distinct neural response at 60 ms on the left posterior side of the scalp. This
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matches what we would expect based on the location of the somatosensory cortex, as

well as the timing of the initial neural response.

After localizing the neural response, we were able to determine the electrode

closest to the center of activity, which provides an answer to the second question.

In Fig. 6.2, we show the voltage signal VEEG,e(t) for an electrode included in the

set G averaged across different numbers of epochs to suppress the noise (variability

among epochs), and reveal the aforementioned standard pattern within the first 100

ms from the occurrence of a tap [39, 42]. This is shown in Figure 6.2 where, as more

epochs are averaged together, a distinct pattern emerges, which can be described in

terms of positive and negative peaks identified with P or N respectively, as well as a

number which represents their occurrence time in ms. In Figure 6.2 we see an N20 or

N25, and a P55, P60, or P65, depending on the number of averaged epochs. While

the shape varies slightly between sums of trials, there is a consistent pattern that

repeats during the period of interest (0-100 ms). When we compare the shape of the

line between 20-100 ms and the shape of the lines thereafter (100+ ms) there is no

longer a common pattern between different curves. We show this data over a 100 ms

epoch in Fig. 6.4 alongside analytically generated data described in the next section.

Additionally, in Fig. 6.5 we show data generated in the same way but displaying the

averaged response when there is no tap stimulus.

With this information, we are able to study the remainder of the simulation-based

data to determine how effectively we can receive taps amidst higher transmission

frequencies, as well as to better understand achievable bit rates. For this purpose we

consider two key parameters from Chapter 5, i.e., Resting Period and Precision.

In order to determine the RP for our data, we took the data collected at different

frequencies (1Hz,10Hz,100Hz) and trained SVM classifiers for each setting. We equal-

ized the training set sizes in each setting to prevent biased results from over-training
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Figure 6.1: Values of the VEEG,k(tp), k = 1, ..., 256, over time -15 to 90 ms averaged
after stimulus onset, and spatially smoothed with respect to the standard coordinate
~rk for each electrode.
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Figure 6.2: The averaged VEEG,e(t) for an electrode e included in the set G across
different numbers of epochs. The tactile tap starts at t0 = 0 ms and lasts for T = 1
ms, as defined in (2.1).

where more experimental data was available (particularly in the 100Hz setting). The

results are shown in Fig. 6.8 alongside the related simulation-based data, which is

described in the following section.

To determine precision, we used the 1 Hz and 10 Hz data, trimmed in order to

only contain a single tap in any given sample. Each of these samples was then cut

into segments according to “possible” tap times (more segments for testing smaller

precision values), and then divided into labeled testing and training data. We sorted

the results according to which values of precision were tested and they are reported
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in Fig. 6.9 alongside the related simulation-based data described in the next section.

6.2 Simulation-based Results

Numerical results are obtained from the analytical framework through a MATLAB R©

software implementation of the models presented, and implemented according to the

psuedocode presented in Chapter 4. In addition, to comply with the experimental

data collection detailed in Chapter 3, we estimated the location of the center of the

cortical patch area with respect to the standard EEG electrode locations [25] by

computing the centroid of the magnitude of the voltage signals VEEG,k(t), where ~rk is

the location of the EEG electrode k for k = 1, ..., 256 at the time tp of the maximum

of the SSEP signal, as follows:

~rcent =
1

256

256∑
k=1

VEEG,k(tp)~rk . (6.1)

In Fig. 6.1 we show a space-smoothed (i.e., the magnitude values in between the elec-

trodes are approximated by the EEGLAB software to generate a continuous image)

EEG electrode output over time -15 to 90 ms where 0 ms corresponds to stimulus

onset. In agreement with the literature [39, 42], the time tp of the maximum occurs

at around 60 ms, which is the value we use to compute (2.2). The center of the

aforementioned cortical patch area is set to ~rcent, as shown in Fig. 6.3.

6.2.1 Validation with Experimental Results

In order to validate our analytical model in relation to the experimental data we

developed a MATLAB script using the equations provided in Chapter 4 and the

associated parameters, which are summarized in Table 4.3 [16, 5]. Using this model,
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Figure 6.3: Plot of the location ~rcent of the center of cortical patch area (larger dot)
with respect to the standard EEG electrode locations ~rk, k = 1, ..., 256.

we produced 12,600 seconds of simulated EEG data corresponding to frequencies

between 10 and 100 Hz.

For each test, we produced a pseudo-random sequence of bits, which determined

whether the simulation would simulate a tactile tap (or not) at each time slot. This

simulation produces essentially noiseless data, the only impairment occurring inher-

ently caused by inter-symbol interference (See Fig. 6.2.1). For our study, we are

interested in the somatosensory cortex activity that is localized to a specific part of

the brain (the post-central gyrus), and so even in clinical settings we need only at

most a few electrodes to record the related voltage signals. For this reason, as well

as for computational simplicity, we only considered a single EEG electrode in our

simulations.

In Figure 6.4, we show a comparison between simulated and experimental numer-

ical values of the signal VEEG,k(t) for the electrode e = 78, which is at the closest

location ~r78 to the centroid ~rcent computed through (2.2), after a tap occurring at
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time 0. The experimental data curve is obtained by averaging the signal VEEG,e(t)

across the maximum number of available epochs, which is 74, as shown in Figure 6.2.

To obtain the simulated curve in the figure, we estimated the parameter kv defined in

Section 4.4 of the results from matching values for the positive and negative peaks of

the pattern shown by simulated data with those of the experimental data. In this way,

we were able to obtain a reliable estimate of how membrane cortex activity u(P~r, t)

converts into the electrical potential of the cell membrane that feeds the dipole layer

model of the EEG generator, as explained in Section 4.4. By visually inspecting the

figure, it is evident that the experimental and simulated curve follow a similar pat-

tern of positive and negative peaks, which is also in agreement with the literature

on SSEP analysis [39, 42]. While we record an N25 and P65 for the experimental

curve, the simulated curve shows an N20 and P60. We believe these small differences

in the timing of the SSEP peaks are due to the subject-to-subject variability in the

processes represented by the parameters we defined in the analytical models, which

have been estimated as averages.

In Fig. 6.5, we show a similar comparison between simulated and experimental

numerical values as above, this time when no tap occurs, for the same electrode

e = 78. To obtain the experimental data curve, epochs have been collected from the

EEG recorded data from 100 ms before the occurrence of a tap, with a tap repetition

frequency ft = 1Hz, defined in Sec. 3.3. As a consequence, the recorded cortex activity

had at least a time interval of 800 ms without receiving a tap-related somatosensory

signal from the index finger pad. The simulated curve shows a constant value equal

to 0 that is given by mechanoreceptor responses si(t) = 0 (Sec. 4.1) at any time

t, somatosensory signal I(~xn, t) = 0 (Sec. 4.2) at every location ~xn of the receptive

field, and at any time t, cortex activity u(~x, t) = 0 at every location ~x (Sec. 4.3)

of the cortex patch at any time t, and finally EEG voltage signals VEEG,78(t) = 0
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Figure 6.4: Plot of the simulated and experimental numerical values of the signal
VEEG,e(t) for the electrode e = 78, occurring after a tap at time 0.
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Figure 6.5: Plot of the simulated and experimental numerical values of the signal
VEEG,e(t) for the electrode e = 78 when no tap occurs for at least 800 ms.
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Figure 6.6: Example of simulated data. From upper to lower, we show a pseudo-
random sequence of bits to be transmitted, each bit with the corresponding slot
sequence number, the resulting EEG signal output from the haptic information trans-
mission system in the case without noise, and with noise, and the decomposition of
individual contributions, one for each bit, that make up the signal.

(Sec. 4.4). From Fig. 6.5, we notice that the experimental curve show values different

from 0, but at the same time these voltage oscillations do not follow the common

SSEP pattern [39, 42], and have attenuated maxima and minima with respect to the

peaks shown in Fig. 6.4.
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6.2.2 Noise Modeling

In order to probe the capacity of our system in the presence of noise, we utilized one

of the most simple and commonly used noise models, the Additive White Gaussian

Noise (AWGN) model. Through this model, we consider the noise to be uncorrelated

and parameterized by diagonal elements made up of the EEG sensor variances [24].

In order to determine a baseline for the Signal-to-Noise Ratio (SNR) in our signal,

we used the built-in MATLAB SNR function [33] to compare the experimental data

in pre-stimulus and post-stimulus periods. The SNR value evaluated from this was

0.56, which was then used to determine the power-level of additive noise used in the

following sections.

6.2.3 Parameters for DPPM

In order to test modulation parameters with our data, we developed a data analysis

pipeline which is provided in Figure 6.7. The data pipeline consists of three primary

blocks: data generation, training, and testing. Bits inputted to the data generation

block are modulated, and then real or simulated EEG data is generated. The resulting

labels and data are accumulated and then distributed into training and testing sets.

The training data is then used to train an SVM classifier, which is used in the testing

block to determine labels for the testing data and determine accuracy scores.

Using our analytical model, we generated simulation-based results by running

our code that implements the analytical models detailed in Chapter 4. To match

the experimental data, we captured a series of taps at constant frequencies of 1Hz,

10Hz, and 100Hz. We utilized the same procedure described in Section 6.1. We

show the results for the RP and Precision values in Figures 6.8 and 6.9, respectively,

and present a quantitative comparison of the data in terms of mean and standard
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Figure 6.7: Flow chart of data collection and analysis.

deviation in Table 6.1. One issue that comes with the experimental data is a limited

training set. In order to manage this issue, we similarly restricted the training set

size of the analytically generated data. This is quite possibly the reason that there

is little variation in the accuracy when considering different conditions in both the

experimental and analytical data. That said, seeing agreement in the analytical and

experimental results serves as further validation that our model is effectively modeling

the experimental conditions.

Table 6.1: Mean and standard deviation of resting period and precision Results

Mean Standard Dev.

An. RP 0.7578 0.0424
Ex. RP 0.7366 0.0441

An. Prec. 0.7712 0.0476
Ex. Prec. 0.7870 0.0176
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Figure 6.9: Comparison of the analytically modeled and experimentally collected
results for Precision.

The value of comparing the experimental and analytical results is two-fold. On

one hand, it is necessary to validate our analytical model by comparing similarities
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between the experimental results and our analytical results. On the other hand,

with a validated model we can effectively propose parameters for implementing these

systems in-vivo, thus saving time and resources for conducting further experiments.

6.2.4 Analytical Comparison of OOK and DPPM

To evaluate the performance of the system through the analytical model described

in Chapter 4, we separated the simulated EEG data into 39,100 epochs. The epoch

length corresponds to the length of each OOK time slot, and its inverse is the bit

rate (e.g. for a transmission frequency of 10 bits per second, the continuous EEG

signal is chopped into lengths of 100 ms each), and each epoch contains either a tap

stimulus or a silence period. After this preprocessing, we utilize the obtained epochs

in combination with an SVM classifier (as explained in Section 5.3). The results are

summarized in Figure 6.10. In order to get a reliable accuracy score, we averaged

the results of 10 SVM classification scenarios for each bit rate, where each scenario

included using different collections of training and testing data. We used a constant

training data set of 5000 samples for each test (e.g. for 10 Hz data we would have a

training set consisting of 5000 epochs of 100 ms long each).

We generated similar data using DPPM with our analytical model. In particular

we generated 200,000 seconds of EEG data testing different DPPM values for Precision

(varying from 8 ms to 34 ms) and values for the number of symbols used (between 2

and 32). To determine the bitrate for any of these settings we used the average bit

rate as provided in Chapter 2, since with DPPM the bitrate is always variable.

For both OOK and DPPM we see a decrease in accuracy as the bitrate increases,

and in both cases the highest accuracy occurs in the range of 30-40 bps. In addition,

we see that the scores for demodulation with DPPM are less than those for OOK. This
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Figure 6.10: Comparison of accuracy by bit rate of analytically generated data for
OOK and DPPM.

is likely due to the fact that DPPM is inherently more complex than OOK. In addition,

situations in DPPM such as the number of possible symbols dramatically increase the

possibility of incorrect symbol determination. For this reason it is highly beneficial

to explore further techniques of effective noise reduction in EEG signals, as well as

enhanced error-reduction modulation techniques such as bit redundancy. Although

these bit rates are much lower than those normally required for the interconnection

of wearable devices, we believe this work can serve as a proof-of-concept for further

research and more advanced implementations.
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Chapter 7

Conclusion

In this thesis, we proposed a communication system based on the propagation of tac-

tile stimuli through the nervous system and its components. This system is motivated

by the ever increasing number of wearable and implantable devices that demand novel

sustainable solutions to realize their connectivity. We have laid the ground work for

exploring the human somatosensory system as a medium to realize IBC for BANs.

In particular, this system is based on an information-transmitting tactile stimula-

tion, realized at the index finger pad, its propagation along the nerves of somatosen-

sory system, and the reception of the resulting somatosensory cortex activity through

an EEG device. The non-invasive nature and the availability of well-established

techniques for EEG signal acquisition and analysis, as well as previous neuroscience

literature on the modeling of somatosensory system processes, makes this an ideal

system to study for the secure and noninvasive interconnection of wearable devices.

We detailed an analytical modeling framework that captures the main physio-

logical processes at the basis of the proposed communication system by coupling

computational models of somatosensory receptive fields with mathematical expres-

sions of the brain cortical dynamics. At the same time, we investigated the feasibility
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of the proposed system through an ad-hoc experimental testbed, which also serves

to validate the ability of the proposed analytical models to serve as fundamental

tools for the design of systems based on haptic information transmission. We demon-

strated simulation-based bitrates of around 30-40 bps, a value that may be improved

with more advanced EEG noise removal as well optimization of the machine learning

techniques used in demodulation.

Future work will be focused further investigation on the noise sources affecting the

received signal as well as more complex noise modeling. In addition, it is necessary

to explore factors such as brain plasticity and issues associated with desensitization

of cutaneous receptors due to constant stimulus, which may present an issue for

consumer implementations of this system.
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Appendix A

List of Definitions

Accuracy The ratio of correctly classified instances to all instances classified. Math-

ematically equivalent to one minus the bit error rate.

Differential Pulse Position Modulation (DPPM) A type of digital modulation

where the encoding of M bits is determined by a single pulse being sent at 2M

possible times.

Dorsal Column Medial Lemniscal (DCML) Pathway The DCML is a key path-

way in the nervous system which transmits information related to touch from

the skin and joints to postcentral gyrus of the brain.

ElectroEncephaloGram (EEG) A method of monitoring electrophysiological data

in the brain.

Epoching A process through which continuous signal data is cut into numerous

constant length segments.

Evoked Poential (EP) An electric response in the nervous system following the

presentation of a stimulus.
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N or P and a number (e.g. N20,P60) A standard in the neuroscience commu-

nity for describing features on plots of EPs. N or P refers to whether the

feature is a local minima or maxima respectively, and the number represents

the location in time (following the related stimulus).

Neural Field Theory Uses tissue-levels models to describe the spatiotemporal char-

acteristics of variables such as the synapse firing rate and membrane potentials.

On Off Keying (OOK) A type of digital modulation characterized by distinguish-

ing between two states (e.g., the presence or absence of a stimulus) in order to

transmit binary data.

Precision The minimum time-domain spacing that can occur between potential

stimulus locations such that the original stimulus time can be effectively de-

termined.

Resting Period (RP) The minimum time-domain spacing between two consecutive

taps such that both taps are clearly distinguishable.

Somatosensory Evoked Potential (SSEP) An SSEP is an EP caused by a phys-

ical stimulus which can be detected through EEG readings. SSEP tests are

often used clinically for detection of the speed of information travel across the

spinal cord.

Support Vector Machine (SVM) A type of binary data classifier which develops

a hyperplane from training data in order to classify testing data into one of two

categories.
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