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ABSTRACT 

 

Strawberries can be considered a functional food because their consumption has 

been associated with several health benefits. They are important sources of bioactive 

compounds, such as vitamins and polyphenolic compounds, with recognized antioxidant 

capacity (AOC). However, strawberry overall quality and bioactive content are greatly 

affected by environmental conditions during pre- and post-harvest and, little is known 

about the stability of its bioactive compounds, specifically ascorbic acid (AA) and 

polyphenolics compounds. Furthermore, additional research that addresses the impact 

of polyphenolic compounds on in vitro and in vivo models is needed to understand the 

mechanisms behind their potential health benefits. Therefore, the objectives of the work 

presented in this thesis were to: 1) evaluate the impact of different disease control 

treatments on strawberry bioactive compounds and AOC; 2) understand the relationship 

between bioactive compounds and AOC in strawberries and fruit juices; 3) investigate 

the origin of AOC in strawberries by identifying their major polyphenolic compounds 

and, 4) explore the effects of polyphenol-rich fruits and fruit juices on the proliferation of 

cancer cells and lifespan of Caenorhabditis elegans. 

 Conscientious consumers are aware of the health benefits of substantial fruit and 

vegetable consumption but are also concerned about the amount of pesticide residues 

that can be found in conventionally grown produce, with pesticide-free produce (i.e., 

organic) becoming more popular. However, the market price for organic strawberries 
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can be more than twice that of conventionally grown fruit which discourages the 

average American from purchasing this fruit on a regular basis. Therefore, in the first 

study presented in this thesis, we hypothesized that reducing pesticide usage would 

provide the consumer with a “sustainable strawberry” that would have better or similar 

quality at a lower cost than organic fruit while it would also reduce environmental impact 

and risk to pesticide applicators. Results from this study showed that strawberries from 

a reduced fungicide treatment, had better or similar bioactive content and AOC than fruit 

from the conventional disease control treatment. After cold storage, strawberries from 

the reduced or conventional disease control treatments showed comparable amounts of 

bioactive compounds and AOC. These results indicate that growing strawberries with a 

reduced number of fungicide applications can be an alternative to the conventional 

disease control or organic practices as it may reduce residual fungicides in the fruit, 

decrease production costs while still retaining important bioactive compounds.  

 In order to understand the relationship between bioactive compounds and AOC 

in strawberries and fruit juices, 56 different types of commercial beverages were chosen 

for the second study presented in this thesis. Overall, results showed that the higher the 

total phenolic contents (TPC) in the beverage the higher their AOC. Amongst all 

beverages studied, aronia, blackcurrant, and pomegranate juices contained the highest 

amount of TPC and AOC. Furthermore, after opening the bottles, these juices were 

maintained for 14 days at 4 °C, to test the stability of their TPC which was in general 

relatively stable throughout storage. 

 Further investigation on individual polyphenolic compounds and their possible 

contribution to the overall AOC of fruits and fruit juices, led to a third study. Overall, 
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results showed that the AOC of major individual polyphenolic compounds found in 

strawberries (i.e., pelargonidin, cyanidin, ellagic acid, quercetin, kaempferol, catechin, 

epicatechin, caffeic acid, p-coumaric acid, ferulic acid) was significantly higher than that 

of mixtures of the same compounds. In addition, the AOC of strawberries correlated 

with its major bioactive compounds (i.e., polyphenolic compounds and ascorbic acid) in 

a form of a synthetic bioactive strawberry model (“Powerberry”) composed of major 

strawberry polyphenolic compounds, vitamin C, fructose and glucose in the same ratios 

found in a real strawberry. These results suggest that even though strawberries contain 

many different polyphenolic compounds and vitamins, their AOC might only depend on 

few compounds that are found in significant quantities in the fruit. 

 Finally, using cell and worm models we were able to demonstrate that 

conventional and organic strawberry, raspberry and blueberry fruits, and aronia, 

blackcurrant and pomegranate juices successfully inhibited the proliferation of HeLa 

cervical cancer cell lines. In addition, when introduced in low doses (0.75 mg ml-1 or 

lower) to the C. elegans diet, aronia, blackcurrant and pomegranate juices promoted 

longevity. Overall, results suggest that using whole fruit or fruit juices might constitute 

an alternative of treating cancer cells in vivo and that polyphenolic compounds 

contained in fruits and fruit juices displayed significant bioactivity in a worm model. 
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CHAPTER ONE: INTRODUCTION 
 

 Strawberries can be considered a functional food because they contain 

biologically active compounds that provide clinically proven health benefits for the 

prevention, management or treatment of diseases. Strawberry bioactivity has been 

associated primarily with the high levels of vitamins (particularly vitamin C) and 

polyphenolic compounds such as flavonols, flavanols, anthocyanins and phenolic acids. 

These compounds, mainly polyphenolic compounds, are sought to contribute to the in 

vitro and in vivo antioxidant capacity (AOC) of strawberries (Azzini et al., 2010; Pineli et 

al., 2011; Singh et al., 2011). For example, recent studies demonstrated that 

polyphenolic compounds can decrease reactive oxygen species (Wang et al., 2011), 

reduce cancer by affecting the survival and metastasis of tumors (Chirumbolo, 2012), 

and inhibit the growth of various human cancer cells (Scalbert et al., 2005). The study of 

strawberry polyphenolic profiles has provided increased understanding about the AOC 

of each individual polyphenolic compound and their potential health benefits when 

included in a balanced diet. Although several studies suggested that AOC is 

significantly correlated with the total phenolic content (TPC) of various foods and 

beverages (Gardner et al., 2000; Long et al., 2001), there is a lack of information on 

how strawberry polyphenolic compounds are affected by pre- and post-harvest 

conditions because these compounds are not regulated or recognized as nutrients. 

 The polyphenolic profile of strawberries can vary tremendously with weather 

conditions, agricultural practices, and environmental conditions during supply chain 
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(Nunes et al., 2003; Nunes et al., 2006). Therefore, the composition of the fruit may 

significantly vary between harvests and it is also affected by the stage of ripeness at 

harvest. Pre-harvest conditions such as increased environmental stress, water 

availability and pesticide treatments used to reduce fruit rot may all negatively affect the 

amount of polyphenolic contents in strawberries (Laura et al., 2009; Pineli et al., 2011). 

In addition, poor post-harvest conditions (i.e., temperature and relative humidity) during 

storage have shown to decrease the overall quality and shelf life of strawberry fruit 

(Nunes and Emond, 1999; Nunes et al., 2005; Moraga et al., 2006). The pre- and post-

harvest treatments may, therefore, have a major influence on the final “bioactive quality” 

of the fruit and its corresponding AOC. 

 The research work presented here is unique because it introduces a new insight 

about polyphenolic compounds and their AOC in strawberries as affected by pre- and 

post-harvest conditions. In addition, the identification of specific polyphenolic 

compounds in fruit juices will also bring a new understanding about the major 

polyphenol contributors to the AOC of processed fruit juices and the stability of such 

compounds during simulated consumer storage. Studies demonstrated that processing 

methods and/or enzymatic mechanisms can contribute to positive and negative 

physiochemical changes that will affect the overall polyphenolic content of juices (Dugo 

et al., 2005; Patras et al., 2010; Rodríguez-Roque et al., 2015). Overall, the 

identification and quantification of specific polyphenols will lead to a deeper 

understanding regarding the compounds responsible for the AOC in strawberries and in 

polyphenol-rich fruit beverages and will provide additional knowledge on their potential 

AOC once ingested. Furthermore, this work establishes a platform to identify and 
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evaluate the impact of other polyphenolic compounds both in vitro and in vivo. In vivo 

models already demonstrated that plant polyphenolic compounds are capable of 

inducing apoptosis-mediated cell death in cancer cells (Bulzomi et al., 2012; Kim et al., 

2012). Finally, this research introduces a synthetic bioactive strawberry model 

composed of major strawberry polyphenolic compounds, vitamin C, fructose and 

glucose in the same ratios found in a real strawberry. This unique model can further be 

used to test other hypothesis related to, for example, the effect of abiotic stresses on 

the bioactive compounds of strawberry. Results from polyphenolic research are 

important to the field of food and beverages because they will help to better understand 

the function of these compounds and may also be used as a basis for future 

development of dietary supplementation that can possibly be used in the treatment of 

specific health problems. 

 The objectives of the work presented in this thesis were to: 1) evaluate the 

impact of different disease control treatments on strawberry quality, particularly on 

bioactive compounds; 2) determine the relationship between bioactive compounds and 

antioxidant capacity in strawberries and fruit juices; 3) investigate the origin of 

antioxidant capacity in strawberries and, 4) explore the effects of whole polyphenol-rich 

fruits and fruit juices on the proliferation of cancer cells and lifespan of Caenorhabditis 

elegans. 
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CHAPTER TWO: 

REVIEW OF LITERATURE 

 

Polyphenolic Compounds 

Classification and Chemical Structure 

Polyphenolic compounds are secondary plant metabolites that belong to the 

phenylpropanoid family. They are composed by a wide range of chemical structural 

classes and biological functions and are believed to accumulate in the vacuole of the 

plants, usually as glycosides or other conjugates (Strack and Sharma, 1985). The two 

major classes of polyphenolic compounds found in plant tissues are flavonoids and non-

flavonoids. The flavonoid group includes the flavanones, flavones, dihydroflavonols, 

flavonols, flavan-3-ols, anthocyanidins, isoflavones and proanthocyanidins. The non-

flavonoids are the phenolic acids, phenols, benzoic acids, hydrolyzable tannins, 

acetophenones, phenylacetic acids, cinnamic acids, coumarins, benzophenones, 

xanthones, stilbenes, chalcones, lignans and secoiridoids (Laura et al., 2009). Structural 

diversity among these compounds is due to a variety of modifications including region 

specific hydroxylation, acylation, sulfation, glycosylation, prenylation and methylation 

(Dixon and Paiva, 1995).  

The flavonoid compounds are composed of two aromatic rings (A and B) linked 

by an oxygenated heterocycle (C). The different subclasses of flavonoids depend on the 

degree of hydrogenation and substitution of the heterocycle (Laura et al., 2009). 
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Flavonoids, particularly anthocyanidins, are commonly found in nature conjugated to 

glucose and rhamnose but can also be linked to galactose, xylose, galactose, and 

arabinose or other sugars (Clifford 2000; Laura et al., 2009). The glycosylated 

anthocyanidins are then classified as anthocyanins. The only flavonoids found in nature 

in non-glycosylated (aglycone) monomer form, or proanthocyanidins, are catechin and 

epicatechin which are also known as flavan-3-ols. These flavonoids have a saturated 

three-carbon chain with a hydroxyl group in the C3 position (Laura et al., 2009). The 

action of the flavonoid 3'-hydroxylase determines the 3'-hydroxylation pattern of the B-

ring of each flavonoid (Carbone et al., 2009).  

Phenolic acids are classified into two different groups: hydroxybenzoic acids and 

hydroxycinnamic acids based on the C1-C3 and C3-C6 skeletons and their 

hydroxylation and methylation pattern of the aromatic cycle, respectively (Laura et al., 

2009). These are further categorized according to the number of carbons in their 

chemical structure (Carbone et al., 2009; Laura et al., 2009). The structural base of 

these compounds include the trans-cinnamic acid, the p-coumaric acid and their 

derivatives, the phenylpropanoid lactones or coumarins, benzoic acid derivatives 

(monodyroxy, dihydroxy) and other complexes that form by additions of these basic 

carbon skeletons (Laura et al., 2009). Several simple phenylpropanoids with a basic C6-

C3 carbon skeleton are produced through biosynthetic pathways from cinnamate by 

either hydroxylation, methylation or dehydration reactions. Those include p-coumaric, 

caffeic, ferulic and sinapic acids and simple coumarins (Dixon and Paiva, 1995).  
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Biosynthetic Pathways in Plants 

Even though there are hundreds of polyphenolic compounds found in nature, 

their main precursor is the amino acid L-phenylalanine (Heim et al., 2002). Depending 

on the environmental conditions during growth (i.e., light, water, nutrients, and presence 

of predators) the biosynthetic key enzyme, phenylalanine ammonia lyase (PAL), 

induces the production of different polyphenolic compounds at different time periods, in 

function of the demand for plant protection (Halbwirth, 2006). 

The enzyme PAL catalyzes the first step in the biosynthetic pathway of 

phenylpropanoids, which with further synthesis results in a wide variety of compounds, 

including flavonoids, phenolic acids and hydrolysable tannins (Manach et al., 2004). The 

initial step of the phenylpropanoid pathway involves the conversion of phenylalanine or 

tyrosine to cinnamic acid involving an ammonia elimination reaction that is catalyzed by 

PAL (Jones, 1984; Laura et al., 2009). The biosynthetic pathway begins from 

phenylalanine to produce phenylpropanoids that are channeled into the flavonoid 

pathway by the enzyme chalcone synthase (Carbone et al., 2009). Further metabolism 

involves the enzymes chalcone isomerase, flavanone 3-beta-hydroxylase, 

dihydroflavonol 4-reductase and anthocyanidin synthase that lead to the synthesis of 

anthocyanidin pigments (Winkel-Shirley, 2001). Flavonol synthase produces flavonols 

while leucoanthocyanidin reductase and anthocyanidin reductase synthesize flavan-3-

ols, the precursors of proanthocyanidin polymers (Aron and Kennedy, 2008). The 

concentration of PAL is usually low throughout most of the fruit developmental stages 

and starts to significantly increase at the beginning of anthesis or onset of blossom 

(Cheng and Breen, 1991). Halbwirth (2006) showed that the first PAL activity peak 



7 
 

corresponded to the formation of flavanols while the second peak was related to the 

accumulation of anthocyanin and flavonols. Accordingly, fruit has a developmental-

dependent expression of PAL activity and accumulation of polyphenolic compounds 

derived from the phenylpropanoid pathway.  

 

Metabolism 

Plant stress has shown to be one of the major inducers of the phenylpropanoid 

pathway leading to specific biotransformation in plants. Biotic and abiotic stresses 

stimulate the phenylpropanoid pathway by translation and protein modification through 

increased transcription of PAL mRNA. Multiple genes encoding for PAL are only 

activated in specific tissues or under certain environmental signaling (Lincoln and 

Zeiger, 2006). Stress-induced phenylpropanoids are derived from the C15 flavonoid 

skeleton which is synthesized by chalcone synthase to yield a tetrahydroxychalcone. 

This compound can be further metabolized into other classes of flavonoids such as 

flavones, flavanones, flavanols and anthocyanins (Lincoln and Zeiger, 2006; Laura et 

al., 2009). In addition, these metabolites constitute the plant defense mechanisms and 

are usually synthesized in response to biotic or abiotic stresses such as pathogen 

invasion or adverse environmental conditions (Szajdek and Borowska, 2008). 

Coumarins and silbenes may also play a defense role in plants, exhibiting fungicidal 

properties and toxicity against insects and parasites (Lincoln and Zeiger, 2006). 

Dimerization of monolignols (i.e. 4-coumaric alcohol, coniferyl alcohol, and sinapyl 

alcohol) produces lignans which also have defense capabilities against bacteria and 

fungi (Laura et al., 2009). The polymerization of flavonoid molecules produces tannins 
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and phenolic acids which in high concentrations have an astringent taste (Quideau et 

al., 2011). Tannins are more resistant to water, microbes and heat because their 

structure includes collagen proteins bound together with phenolic groups (Laura et al., 

2009).  

Various abiotic and biotic stresses may also induce the synthesis of certain 

phenylpropanoids such as the phytoalexins (Laura et al., 2009). Other antimicrobial 

compounds, mostly synthesized in response to pathogen attack, include the 

pterocarpans, isoflavans, isoflavonoids, stilbenes, psoralens, coumarins, and flavonols, 

(Bailey and Mansfield, 1982; Dixon et al., 1995). These compounds are usually 

detected at elevated levels around infection sites to concentrations toxic to foreign 

pathogens (Laura et al., 2009). Anthocyanins and flavones have been detected in high 

levels in plants exposed to increased UV light. These compounds help reduce the 

amount of light that reaches the photosynthetic cells and also provide protection against 

damaging UV-B rays which cause DNA dimerization and breakage, leading to cell death 

(Beggs et al. 1987; Li et al., 1993). Cold stress and nutritional stresses also increase 

anthocyanin production (Christie et al., 1994).  

 

Importance in Human Health 

 Recent studies have shown that the health benefits of polyphenolic compounds 

found in fruits, vegetables and beverages are not strictly related to their direct impact in 

the human metabolism but to their action as metabolites, formed in the small intestine 

and hepatic cells (Manach et al., 2004; Scalbert et al., 2005). For example, several 

studies have shown the ability of polyphenolic compounds to fight free radicals (Gong et 
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al., 2010), help against atherosclerosis by restoring endothelial function (Engler et al., 

2003), display anticancer properties by inhibiting cancer growth and stimulating 

apoptosis of cancer cells (Seeram et al., 2006), and their capability of reducing 

inflammation by inhibiting inflammatory proteins and oxidative stress (La et al., 2009; 

Mukai and Sato, 2010). Others have also suggested that only approximately five 

percent of the polyphenols in the diet are absorbed into the bloodstream, acting as 

antioxidants, while the remaining seemed to reach the small and large intestine as 

digestible polyphenols or as indigestible condensed tannins and hydrolysable 

polyphenols. These compounds, which can benefit the health of bacterial microflora, 

only become bioavailable upon enzyme digestion and colonic fermentation (Clifford, 

2004; Saura-Calixto, 2007).  

 Although the bioavailability of polyphenolic compounds in humans is poorly 

understood, it is now well established that they undergo extensive metabolism after 

being ingested (Manach et al., 2004; Donovan et al., 2006). Their metabolism seems to 

begin in the lumen of the small intestine where they are absorbed and modified to their 

metabolites in the liver and other organs (Manach et al., 2004; Mullen et al., 2006). In 

addition to some absorption in the small intestine, some flavonoids have shown to pass 

to the large intestine, where they are further metabolized and modified by colonic 

microflora. The degradation of these polyphenolic compounds by the colonic microflora 

to simple phenolic acids metabolites promotes their absorption into the blood stream 

(Parkar et al., 2008). Therefore, polyphenols and their catabolites may influence the 

microflora and impact the colonic health by increasing the total number of beneficial 

microorganism in the gut (Parkar et al., 2008; Tzounis et al., 2008).  
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 Several studies have also shown that some plant polyphenolic compounds are 

capable of inducing apoptosis-mediated cell death in human cervical carcinoma 

(Scalbert et al., 2005; Chirumbolo, 2012; Kim, 2012). Results from these studies 

suggest that fruits and their corresponding juices may be an excellent source of 

bioactive compounds that, when ingested in generous amounts as part of a balanced 

diet, can help prevent various types of cancer (Scalbert et al., 2005). In addition, single 

synthetic polyphenol extracts could also constitute an emerging approach to reducing 

cancer growth. For example, studies showed that quercetin enhanced apoptosis and 

inhibited proliferation of various cancer cell lines (Mertens-Talcott et al., 2003; Bulzomi 

et al, 2012). In another study, the anticancer properties of polyphenolic extracts from 

several types of berries were displayed by inhibiting cancer growth and stimulating 

apoptosis of cancer cells (Seeram et al., 2006). 

 

Selected Food Models Particularly Rich in Polyphenolic Compounds 

Strawberry Fruit 

History and Origin. Long before the production of the well-known garden 

strawberries, monks of Western Europe were incorporating strawberry fruits as seen in 

the wild into their religious paintings. Monks first began drawing strawberry plants 

because of their graceful form and pure colors making it a popular focal point of 

medieval art (Darrow, 1966). After this period, the French began transplanting wild 

strawberry plants from the forest to their gardens (Darrow, 1966) and, by the end of the 

16th century three European strawberry species including Fragaria vesca, Fragaria 
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moschata, and Fragaria viridis were commonly grown for fruit production (Wilhelm and 

Saga, 1974). 

 The original garden strawberry (Fragaria x ananassa) was believed to be grown 

for the first time in France, towards the end of the 18th century, from a cross of Fragaria 

virginiana from eastern North America and Fragaria chiloensis from Chile (Darrow, 

1996). The mild climate of Chile produced a larger fruit whereas the North American 

climate resulted in a smaller fruit that was better adapted to heat, drought and cold 

(Darrow, 1966). Throughout the years, the extensive crossing of these two plant 

varieties resulted in a strawberry fruit larger in size, with improved tasting and less 

sensitive to adverse growing conditions (Darrow, 1966). 

 When the F. chiloensis was first introduced to Europe, the plants grew vigorously 

but produced no fruit (Darrow, 1966). Later, it was discovered that the female plants 

could only be pollinated by plants that produced large fruit such as the F. virginiana. The 

Europeans then became aware that plants had the ability to produce male-only or 

female-only flowers. The modern strawberry plant is referred to as Fragaria ananassa 

because its fragrance and flavor resemble that of the pineapple fruit (Fletcher, 1917). In 

addition, the name Fragaria is derived from the Latin word Frago, which describes the 

delicate and sweet flavor of the fruit (Wilhelm and Saga, 1974). 

 Currently, the United States is the world's largest producer of strawberries 

followed by Turkey, Spain, Egypt and Mexico (FAO, 2013). California accounts for 

about 90% of the total annual production with Florida producing about 7% of the 

nation’s strawberries during the winter (Perez and Pollack, 2009). The mild, cool, 

coastal climate of California creates an ideal breeding ground for strawberries year-
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round but the most productive months are from April to December. The main goal of the 

strawberry breeding programs in California was to produce a larger and firmer fruit 

which could be picked at three-quarter red, withstand shipping conditions and arrive full 

red to the east coast of the United States (Darrow, 1966). In 2015, California produced 

2.55 billion pounds of strawberries (92% of the total U.S. production) and Florida 

produced around 243 million pounds of strawberries, representing 6% of the nation’s 

production and virtually all the fruit grown during the winter (USDA-ERS, 2015). Thus, 

from late November to early April most of the nation’s strawberries are grown in Florida, 

mainly in the Plant City area (Darrow, 1996).  

 In Florida, strawberries remain the most important small fruit crop which tend to 

be larger in size and superior in flavor compared to other berries (Peres et al., 2009). 

Today, there are many different strawberry cultivars grown worldwide, each having their 

own advantages and created for specific regions with particular soil and weather 

conditions. Some of the strawberry varieties commonly grown in Florida include 

‘Camarosa’, ‘Carmine’, ‘Camino Real’, ‘Gaviota’, ‘Strawberry Festival’, ‘Sweet Charlie’, 

‘Treasure’, ‘Ventana’, and ‘Winter Dawn’ (Peres et al., 2009). Currently, the major 

cultivars grown in Florida include ‘Florida Radiance’ with more than 75% of the total 

cultivated acreage, followed by ‘Strawberry Festival’ and the new cultivar Sweet 

Sensation® ‘FL127’. 

 

Morphology and Physiology. The strawberry fruit is not considered a true 

berry, but rather a fleshy receptacle bearing multiple fruits on its surface which are 

referred to as achenes (Szczesniak and Smith, 1969). Since strawberries belong to the 
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genus Fragaria, it makes them more closely related to the Rosacea family. The flowers 

appear hermaphroditic in structure but can also function as either male or female. 

Fragaria X ananassa plants have short, woody stems and a basal rosette of compound 

leaves (Darrow, 1996). The strawberry plants are characterized by stolons which are 

rooting runners that form new plantlets at their tip (Darrow, 1996). 

 The fleshy receptacle of the strawberry fruit accumulates sugars, vitamins, and 

polyphenolic compounds and ripens into a fruit that contains on average 92% water, 7% 

carbohydrates, 0.6% proteins and 2% fiber (Lundergan and Moore 1975; McCance and 

Widdowson 1978; USDA, 2010). The strawberry fruit is composed of five tissue zones: 

the epidermis, hypodermis, cortex, bundle zone and the pith (Szczesniak and Smith, 

1969). The fruit’s loosely bound structure and cells, that tend to be large with thin walls, 

make the tissue extremely fragile. Smaller cells are usually found near the periphery 

and larger cells toward the inside of the fruit (Avigdori-Avidov, 1986). The epidermis of 

the fruit consists of polygonal cells and stomata with thick-walled hairs while the 

hypodermis consists of meristematic cells with no intercellular spaces. The cortex of the 

fruit consists of rounded cells with intercellular spaces that are composed of pectin and 

cellulose (Harris, 2001). In addition, the fibrovascular bundles are comprised of 

cellulose that radiates out from the center of the fruit and connects the cortex to the 

achenes (Harris, 2001). The pith consists of thin-walled cells that usually separate 

during maturation, and may create smaller to large holes in the core of the fruit 

(Szczesniak and Smith, 1969). Nutrients and water are transported through long hollow 

strands of vessels that form spirals and nets referred to as xylem (Szczesniak and 

Smith, 1969). Vascular bundles are similar in function and may also transport water and 
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nutrients from the stem throughout the central cylinder to the flesh and the achenes 

(Suutarinen et al., 1998).  

 The achenes, produced by many species of flowering plants, are small one-

seeded fruits with hard coverings that do not split open when ripe and, are considered 

the ovaries of the strawberry plant (Szczesniak and Smith, 1969). The achenes contain 

a single hard seed enclosed by an outer coat, located in the ripened receptacle of the 

strawberry flesh (Lyle, 2006). They are found on the outside of the receptacle of the 

strawberry and contribute to the overall fiber and polyphenolic content of the fruit 

(Avigdori-Avidov, 1986; Aaby et al., 2005). Lignin is the major fiber component of the 

achenes and vascular bundles (Suutarinen, 1998). It has also been shown that the 

achenes are critical to the normal fruit development, where their removal results in 

abnormal fruit coloration and shape (Avigdori-Avidov, 1986).  

 Variations in the morphology of different strawberry genotypes range from a very 

firm cortex and soft pith to a tender cortical layer and hard pith (Darrow, 1996). 

Therefore, genetic variations also significantly influence the overall quality of 

strawberries during ripening of the plant and after harvest. During development and 

ripening, strawberry fruit undergo a series of changes in their characteristic quality 

attributes, namely in color, texture, flavor, and chemical composition (Darrow, 1996). 

 

 Quality Attributes. The quality of strawberries is based primarily on the 

appearance, texture, flavor and chemical composition. The appearance of strawberries 

is primarily based on the color and overall freshness of the fruit which may directly affect 

the consumers’ purchasing decisions (Brosnan and Sun, 2004). Additional factors such 
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as texture and flavor are equally important and play a major role in consumer 

acceptance of strawberries. These aspects are directly related to the composition of 

major chemical components such as water, sugar, and organic acids but also to minor 

bioactive components present in the fruit. Strawberries have been acclaimed as a rich 

source of bioactive compounds that include predominantly vitamins (i.e., vitamin C also 

known as ascorbic acid) and polyphenolic compounds (i.e., anthocyanins and phenolic 

acids). The quantity and quality of phenolic compounds have shown to be superior in 

fruit matrices such as strawberries when compared to vegetables (Vinson et al., 2001). 

 Appearance. Strawberry appearance is a dominant aspect in the perception of 

the freshness of the fruit (Péneau et al., 2007). The external appearance of strawberries 

is also a good indicator of the internal quality of the fruit.  Furthermore, the appearance 

of strawberry fruit plays a significant role in consumer acceptance because visual 

attributes give the first impression of quality experienced by the consumer (Hutchings et 

al., 2002). Therefore, fresh strawberries are highly appreciated for their attractive bright 

red color, which is associated with the preservation of their quality characteristics 

(Kovacevic et al., 2015).  

 The color of strawberries derives from major pigments namely, anthocyanins, 

carotenoids and chlorophyll (Woodward, 1972; Gross, 1982; Cheng and Breen, 1991). 

However, the pigments that have the biggest impact on strawberry color are the 

anthocyanins. Anthocyanins are the most abundant flavonoid compound in strawberries 

(Aaby et al., 2012), and are mainly located in the epidermal and hypodermic layers of 

the fruit, being also important indicators of fruit ripeness (Gross, 1987). The main 

anthocyanins of strawberry fruit are pelargonidin-3-glucoside and cyanidin-3-glucoside, 
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making up about 89-95 % and 3.9-10.6 % of the total anthocyanin content of the fruit, 

respectively (Lopes da Silva et al., 2002; da Silva Pinto et al., 2008). As the strawberry 

fruit ripens anthocyanin content increases and chlorophyll content decreases 

(Woodward, 1972; Nunes et al., 2006). An increase of about 31% in the total 

anthocyanin content of strawberry was observed as the strawberry fruit ripened (Nunes 

et al., 2006). The difference in shades of red between strawberry cultivars is due to the 

different concentrations of these two anthocyanin compounds in the fruit. Pelargonidin is 

responsible for a bright red color while cyanidin is responsible for the orange color 

shade of the fruit (Gössinger et al., 2009). As the strawberry matures and becomes 

overripe, the red color is replaced by a brownish or purplish coloration resulting from the 

loss of anthocyanins, caused by oxidation or by other natural chemical reactions 

(Hartmann et al., 2008; Gössinger et al., 2009; Holzwarth et al., 2012). Strawberry 

discoloration and thus anthocyanin degradation, is mainly attributed to temperature, 

light, oxygen, pH, irons, and to the action of certain enzymes (Bordignon-Luiz et al., 

2007; Holzwarth et al., 2012) such as polyphenoloxidase and peroxidases (Grommeck 

and Markakis, 1963; Serradell et al., 2000). Since the color of anthocyanins is highly 

dependent on the pH, minor changes in pH values have a major impact on the quality of 

the pigments (Zhao et al., 2008). Variations in the color of different strawberry cultivars 

have been shown to occur due to the acidic (average pH values range from 3.70-4.15) 

environment within the vacuole of the cells (Markakis, 1982). Differences in the pH of 

the vacuole cause anthocyanins to undergo reversible structural transformation 

reactions that influence their color (Aaby et al., 2012). In addition, the color of 

strawberries can be influenced by condensation or co-pigmentation of anthocyanins 
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with other polyphenols leading to the development of compounds that have a higher 

stability than anthocyanin monomers (Markakis, 1982; Brouillard and Dangles, 1994). 

 Texture and Flavor. The texture of strawberry fruits is mainly related to the 

structural integrity of the cell wall and middle lamella, as well as to turgor pressure 

(Jackman and Stanley, 1995). The firmness of strawberries is determined by the levels 

of cellulose, hemicellulose, and pectin which are three types of polysaccharides present 

in plant cell walls. Pectin is the most water-soluble polysaccharide in the cell wall, and 

thus the most susceptible to changes caused by enzymatic and non-enzymatic 

reactions during ripening and storage. These reactions can lead to transformations in 

the structure and composition of pectin resulting in fruit softening (Jackman and 

Stanley, 1995; Brett and Waldron, 1996). 

 Strawberries are one of the most popular fruits in the world mainly due to their 

unique taste and aroma (Chandler et al., 2012). Volatile compounds are responsible for 

the distinctive aroma of strawberries despite their minute quantities (Buttery, 1981). In 

addition to aroma volatiles, sugars and acids give sweetness and tartness to ripe 

strawberries, providing the characteristic strawberry flavor. The sugar/acid ratio is 

critical to the intensity of sweetness or acidity perception and, therefore, has a major 

effect on strawberry flavor (Zabetakis and Holden, 1997). Strawberry flavor volatiles 

comprise about 350 components, with 2,5-dimethyl-4-hydroxy-2H-furan-3-one being the 

most important strawberry flavor component (Zabetakis and Holden, 1997). 

Major Components: Water, Sugars and Acids. Strawberries are mostly 

composed of water (92%) and minor amounts of macro and micronutrients such as 
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sugars, acids, fiber, vitamins and minerals (Lundergan and Moore 1975; USDA, 2010), 

and also contain important polyphenolic compounds.  

Sugars are the main soluble compounds in ripe strawberry fruit, with glucose, 

fructose, and sucrose accounting for almost 99% of total sugar content (Sturm et al., 

2003). However, glucose and fructose which are normally present in a 1:1 ratio are 

predominant over sucrose. In fact, some studies have shown that the levels of sucrose 

in strawberry are normally very low, with some cultivars showing no presence at all 

(Sturm et al., 2003; Gündüz and Özdemir, 2014). In addition, daily temperatures during 

ripening have shown to directly affect the sugar content of strawberries, with cold nights 

and warm days promoting the increase in sugar content (Wang and Camp, 2000). 

Although during ripening of the plant, the levels of fructose, glucose and sucrose 

increase, they tend to decrease after harvest, particularly if the fruit is kept at 

temperatures higher than 0°C. For example, sugar content of 'Chandler' strawberries 

stored at 0, 5, and 10°C remained steady until five days of storage but decreased 

afterward especially in strawberries stored at 10°C (Ayala-Zavala et al., 2004). The 

decrease in sugars during storage at higher temperatures is due to higher respiration 

rates leading to depletion of sugars (Ayala-Zavala et al., 2004). Nunes et al. (2002) also 

reported a greater reduction in sugar content in strawberries stored at 10°C compared 

to fruit stored at 4°C.  

Organic acids (i.e., malic, tartaric, citric acid and ascorbic acid) are minor 

components of strawberry fruit but they are important contributors to the flavor. In 

combination with sugars, organic acids have a significant impact on the overall sensory 

quality of strawberry fruit. Organic acids affect fruit flavor by regulating cellular pH and 
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by directly affecting the acidity of the fruit (Manning, 1993). In strawberries, citric acid is 

the major organic acid found in ripe-red fruit and is typically present at concentrations 

10 times higher than ascorbic acid which is the second most abundant acid. Tartaric 

acid and malic acid are present at much lower concentrations (Koyuncu and 

Dilmaçünal, 2010). However, as the strawberry fruit matures a significant increase in 

ascorbic acid and a decrease in other organic acids is observed (Montero et al., 1996). 

For example, Cordenunsi et al. (2002) reported the decline in the acidity of strawberries 

during ripening but noted an increase in the levels of ascorbic acid. 

 Bioactive Compounds: Vitamin C, Polyphenolic Compounds and 

Antioxidant Capacity. Strawberries are a good source of ascorbic acid (AA), a water-

soluble vitamin (vitamin C), recognized for its plentiful health benefits (Loewus, 1987). 

Depending on the cultivar, maturity at harvest and pre-harvest conditions the levels of 

AA may range from 23 to 85 mg 100 g-1 of fresh fruit (Szajdek and Borowska, 2008; 

Pineli et al., 2011; Crecente-Campo et al., 2012). In adults, the recommended dietary 

allowance (RDA) for AA is about 75 mg day-1 which can easily be met with an average 

intake of about 100 g of strawberries a day (USDA, 2016). In fruits and vegetables, the 

total AA content is assumed to be the sum of L- ascorbic acid and dehydroascorbic acid 

(DHAA) (Combs, 1998). In general, the synthesis of AA increases with exposure of the 

fruit to sunlight and is better retained when the nights are cool and the metabolism of 

the fruit is lower (Hardenburg, 1986). The outer layer of the strawberry fruit was 

reported to contain more AA than the inner layers, and fruit ripened in the shade had 

less AA than those exposed to sunlight (Burkhart and Lineberry, 1942; Ezell, 1949). 

During development and ripening, AA content of strawberries increases. Therefore, the 
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levels of AA are normally higher in full red fruit compared to fruit at other color stages 

(Burkhart and Lineberry, 1942; Cordenunsi et al., 2002; Nunes et al., 2006).  

 Polyphenolic compounds in strawberries have also been extensively studied due 

to their acclaimed bioactive properties. The flavonoids are the major polyphenolic group 

in strawberries and are commonly found in the tissues conjugated to glucose or 

rhamnose (Clifford, 2000; Laura et al., 2009). For example, anthocyanidins are the non-

glycosylated or aglycone form of the anthocyanins, with pelargonidin-3-glucoside and 

cyaniding-3-glucoside being the major anthocyanins found in strawberries (Lopes da 

Silva et al., 2002; da Silva Pinto et al., 2008). The only flavonoids found in strawberries 

in the non-glycosylated (aglycone) monomer form are catechin and epicatechin, also 

classified as flavan-3-ols. The flavonols quercetin and kaempferol, and their 

glycosylated counterparts have also been identified in different strawberry varieties 

(Vallejo et al., 2004; Lopes da Silva et al., 2007). Strawberries also contain flavanones 

and isoflavones and non-flavonoid compounds such as phenolic acids (Shier et. al, 

2001; Laura et al., 2009). Phenolic acids present in significant amounts in strawberries 

include p-coumaric, ferulic and caffeic acids (Aaby et al., 2007). In addition, 

hydrolysable tannins which are mixtures of polygalloyl glucoses and/or poly-galloyl 

quinic acid derivatives containing gallic acid residues have also been isolated from 

strawberries (Ishikura et al., 1984). The most common hydrolyzable tannins occur in 

plant tissues as simple esters of glucose, tartaric acid and quinic acid (Rice-Evans et 

al., 1996; Laura et al., 2009). Ellagic acid has also been detected in strawberries in 

significant amounts (Häkkinen and Törrönen, 2000; Aaby et al., 2012). Plants may 

produce ellagic acid from hydrolysis of tannins such as ellagitannin and gallic acid 
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(Laura et al., 2009). Other non-flavonoid compounds found in minute quantities in 

strawberries include coumarins, benzophenones, xanthones, stilbenes, chalcones, 

lignans, secoridoids and acetophenones (Aaby et al., 2007). 

Ascorbic acid and polyphenolic compounds are important components of 

strawberries because they not only contribute to the color and flavor of the fruit but are 

also highly correlated with their antioxidant capacity (Wang and Lin, 2000). Strawberries 

are considered photosynthetic plant systems, particularly vulnerable to reactive oxygen 

species (ROS). The fruit is often exposed not only to high levels of external oxygen but 

also to high levels of internal oxygen resulting from the production of ROS. In this case, 

in the chloroplasts, there is a transfer of high-energy electrons from the photosynthetic 

electron transport chain to the oxygen molecule instead of NADP (Dalton, 1995). Low-

molecular-weight antioxidants such as AA, carotenoids, and polyphenolic compounds 

are able to interact directly with ROS on a non-enzymatic basis (Dalton, 1995; Foyer et 

al., 1997). Thus, in strawberries, AA may interact with damaging ROS at the enzymatic 

and non-enzymatic level. However, the biological importance of AA as an antioxidant is 

that unlike other low-molecular weight antioxidants (i.e., carotenoids and flavonoids), AA 

is able to reduce to non-radical products such as DHAA and diketogulonic acid (Dalton, 

1995 and Seib and Tolbert, 1982). Further, since AA is only mildly electronegative, it 

can donate electrons to a wide range of substrates and, therefore, may play a more 

active role in antioxidant radical scavenging (Halliwell, 1996). Previous studies have 

shown that strawberries have high oxygen radical absorbance activity against peroxyl 

radicals, superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen 

(Wang and Jiao, 2000; Wang and Lin, 2000).  
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 Impact of Pre-Harvest Conditions on Strawberry Quality 

 Strawberries have exceptional health benefits due to their high levels of bioactive 

compounds, including AA, phenolic acids and flavonoids. However, the quality and 

quantity of these compounds can be greatly influenced by pre-harvest and post-harvest 

conditions. Strawberry growers in central Florida face a major challenge when it comes 

to keeping diseases and fruit rot as low as possible. The warm and humid climate of 

Florida and other southeastern regions of the U.S. appear to be highly conducive to 

fungicide resistance by plant pathogens, enabling fungi to thrive and multiply. 

Anthracnose fruit rot, caused by Colletotrichum acutatum, and Botrytis fruit rot, caused 

by Botrytis cinerea, are the most common diseases of strawberries in Central Florida 

and worldwide (Pavan et al., 2011). Even in well-managed fields, losses from fruit rots 

can exceed 50% when conditions favor disease development (Ellis and Grove, 1982). 

These diseases pose major challenges for strawberry growers because they may 

contribute to major crop losses. Therefore, in order to fight field fruit rots and avoid 

considerable crop losses, strawberry growers need to apply pesticides weekly 

throughout the season (Legard et al., 2001; Peres et al. 2010). However, well-informed 

consumers are gaining awareness of the health and environment risks of extensive 

pesticide use with alternative cultivation practices (i.e., organic), although more costly, 

gaining popularity. Organic agricultural practices constitute a good alternative to 

conventional production because they exclude the use of synthetic fertilizers and 

pesticides, but require soil building and biological pest control. In addition, labor 

requirements may be as much as twice those of a conventional system (Pritts and 

Handley, 1999).  
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In terms of fruit quality, controversial results have been published regarding the 

sensory and chemical characteristics of organic versus conventional strawberries. For 

example, some studies reported that organic strawberries have lower water content and 

acidity, and higher anthocyanins, phenolic and AA contents and also higher AOC 

compared to conventionally grown fruit (Olsson et al., 2004a; Abu-Zahara et al., 2007; 

Jin et al., 2011). Similarly, Reganold et al. (2010) reported that organic strawberries 

have higher dry matter, AA and phenolic contents, and longer shelf life, and some 

cultivars have also better taste and appearance than conventional strawberries. 

Nevertheless, other studies reported that the levels of polyphenolic compounds in 

organic strawberries were similar to that of conventionally grown fruit (Häkkinen and 

Törrönen, 2000) and, even though, organic strawberries had higher soluble solids 

content, no significant differences were found in the AA content between fruit from the 

two different agricultural practices (Kahu et al., 2010). Also, Hargreaves et al. (2008) 

found no significant differences in the sugar content and antioxidant capacity of organic 

compared to conventionally grown strawberries. Conversely, Cardoso et al. (2011) 

reported that AA content was significantly higher in conventionally grown strawberries 

than in organic fruit. Finally, Leskin et al. (2002) concluded that the quality of organic 

strawberries is similar to that of conventional grown strawberries. 

 An alternative approach to organic and conventional farming practices is the use 

of reduced pesticide applications based on disease forecast systems where, depending 

on the weather conditions (i.e., high field temperature and humidity), growers are 

advised to spray or not. Peres and Mackenzie (2009) showed that this system reduces 

the number of fungicide sprays by 50% without compromising disease control. By 
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reducing the amount of fungicides used to control diseases through accurately targeting 

the right application time, the overall postharvest quality of strawberry can be 

maintained, production costs reduced while providing an alternative to health-aware 

consumers. This type of approach has already been implemented by strawberry 

growers in Florida showing good results in terms of fruit yield and disease control. 

 

 Impact of Post-Harvest Conditions on Strawberry Quality 

 Strawberries are very perishable fruits and their quality and shelf life greatly 

depends on the environmental conditions (i.e., temperature and relative humidity) to 

which the fruit is exposed from the field to the consumer. Poor storage and handling 

conditions may negatively affect the overall quality of the fruit, resulting in excessive 

loss of water and more specifically, reducing the amount of bioactive compounds in 

strawberry and potentially their antioxidant capacity. 

Temperature. Good temperature management is the most important and 

simplest way of delaying deterioration of strawberry fruit and extend shelf life (Kalt et al., 

1993; Nunes et al., 2005; Nunes et al., 2006; Nunes, 2008). Optimum storage 

temperature, as close as possible to 0°C, has shown to delay senescence of 

strawberries due to ripening, softening, and textural and color changes, metabolic 

changes, moisture loss, and spoilage due to fungal invasion (Hardenburg et al., 1986; 

Nunes et al., 2003). Exposure of strawberry to temperatures higher than 0°C can 

drastically reduce shelf life and diminishes the quality of the fruit, with post-harvest life 

of strawberries being 7 to 8 days even at optimal conditions (Mitcham, 2004; Nunes, 

2008). For example, when the storage temperature is raised from 0 to 10°C, the rate of 
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quality deterioration increases by two- to four-folds (Mitchell et al., 1996) due to an 

increase in the respiration rate and consequent depletion of sugars and acids (Moraga 

et al., 2006). 

 Temperature also has a negative impact on the bioactive quality of strawberry 

fruit, namely on ascorbic acid and polyphenolic compounds (Nunes et al., 2005; Shin et 

al., 2007; Laura et al., 2009). Shin et al. (2007) reported that total ascorbic acid 

concentrations in strawberry declined significantly when the fruit was stored at 0.5 and 

20 °C, but remained unchanged at 10 °C. Ascorbic acid is readily oxidized, especially 

when exposed to elevated temperatures, increased storage time, cations (i.e. copper 

and iron), oxygen, alkaline pH, light, or degradative enzymes (Fennema, 1977; Gregory, 

1996). The first oxidation product of AA is the radical monodehydroascorbate (MDHA), 

also known as semidehydroascorbate, or ascorbate free radical (Washko et al., 1992). 

Shin et al., (2007) also reported that AA has been shown to be readily oxidized when 

exposed to elevated temperatures and increased storage time. If further degradation 

occurs, two molecules of MDHA may also spontaneously disproportionate to AA and 

DHAA (Washko et al., 1992). The oxidation of AA to DHAA does not result in loss of 

biological activity since DHAA is readily reconverted into AA which makes the oxidation 

of AA to DHAA reversible (Deutsch, 1998). However, DHAA may also undergo 

irreversible hydrolysis to diketogulonic acid, which is not biologically active as AA (Padh, 

1990; Russell, 2004).  

In strawberries, AA losses during cold storage can be significant and normally 

increase as temperature increases. For example, AA content decreased by 

approximately 7% in ‘Oso Grande’ strawberries stored at 1°C for 8 days (Nunes et al., 
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2006). When stored at 6°C for 6 days, ‘Oso Grande’ strawberries experienced a 

decrease of about 50% in their initial AA content (Cordenunsi et al., 2003). These 

results show that post-harvest storage temperature has a significant effect on the AA 

content of strawberries, even at a minimal storage temperature difference. 

 There is little information available about how temperature influences the 

bioactive content in strawberries. Shin et al. (2007) showed that the overall quality of 

‘Jewel’ strawberry stored for 4 days at 0.5, 10 and 20 °C, declined more rapidly at 20 °C 

with total phenolic compounds showing higher stability at 20 °C than at other 

temperatures, and total AOC showing better stability at 10 °C than at 0.5 and 20 °C. In 

addition, Ayala et al., (2004) reported that strawberry fruit stored at 10°C or 5°C showed 

higher total phenolic and anthocyanin contents than those stored at 0°C. Finally, 

storage temperatures of 0°C were also associated with lower concentrations of 

anthocyanins and phenolic content and higher polyphenol oxidase (PPO) activity 

(Nunes et al., 2005). Jin et al. (2011) reported that although temperature can be 

manipulated for production of secondary metabolites, it may lead to a decrease in 

anthocyanins and polyphenolic compounds in general. 

Since AOC can be used to estimate the potential health benefits of strawberries, 

it is of great interest to evaluate the impact of post-harvest environmental conditions on 

the antioxidant status of strawberries. Several studies have shown that the levels of 

bioactive compounds in strawberries and their AOC can vary tremendously depending 

on the cultivar, ripening stage and storage conditions (Olsson et al., 2004a; Shin et al., 

2007). For example, Pineli et al. (2011) evaluated the antioxidant characteristics of 

strawberries at different ripening stages (green, pink, or ripe) and found that higher AOC 
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was observed at the pink stage which was also related to higher amounts of total 

phenolic and AA in 'Osogrande' and 'Camino Real' strawberry cultivars. Lower AOC 

during storage was associated with fruit harvested before the pink stage and with lower 

concentrations of total flavonoids and phenolic concentrations in strawberries stored at 

10 °C compared to those stored at 3 °C (Shin et al., 2008). In general, strawberry fruit 

stored at 10°C or 5°C showed higher total phenolic and anthocyanin contents and 

higher AOC than those stored at 0°C (Ayala et al., 2004).  Although previous studies 

showed a decrease in strawberry stored at lower compared to higher temperature, the 

authors did not express the data in terms of dry weight and therefore did not account for 

potential water loss during storage that may contribute to a concentration effect of 

polyphenolic compounds and AA rather than to an actual increase. 

Relative Humidity. In addition to optimum temperature conditions, relative 

humidity (RH) can also have a major effect on the quality and shelf life of fresh fruit and 

vegetables. However, when stored under the same temperature and RH conditions, not 

every fruit and vegetable lose water at the same rate. The rate of water loss differs 

mainly with the type of protective tissue (i.e., waxed versus non-waxed), skin thickness 

and surface area (Hardenburg, 1986). The amount of water lost by a fruit or vegetable is 

caused by the movement of water vapor which moves from higher to lower humidity 

concentrations until the equilibrium is attained. Since most fruits and vegetables have 

an internal RH higher than 90%, when the RH of the surroundings is lower, the fruit 

transpires and releases water into the atmosphere (Hardenburg, 1986). The rate of 

transpiration can be reduced by raising the RH, lowering the air temperature, reducing 

the movement of air around the product and by providing protective packaging. 
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 Loss of weight after harvest is one of the major causes of quality deterioration in 

strawberries and other fresh fruits and vegetables. As weight loss increases, firmness 

decreases, and wilting, shriveling, or browning increase and render the fresh 

commodities unacceptable for sale (Nunes and Emond, 2007). It is well established that 

the maximum permissible water loss for strawberries before marketability is impaired is 

between 3 and 6% (Hardenburg, 1986; Nunes and Emond, 2007). Water loss higher 

than 5% may lead to excessive shriveling and a dull appearance of the epidermis, with 

negative impact on the appearance of the fruit (Hardenburg, 1986). Weight loss can 

also negatively affect the nutritional composition of strawberries. As the fruit loses 

water, water soluble vitamins and other bioactive compounds may also be easily lost 

(Lee and Labuza, 1975; Nunes et al., 1998; Ayala-Zavala et al., 2004; Shin et al., 2007). 

For example, Nunes et al. (2008) showed that ‘Oso Grande’ strawberries stored at 1°C 

for 8 days experienced a decrease of about 7% in total AA. At higher temperatures 

strawberries from the same cultivar experienced a decrease of about 50% of AA content 

when stored for 6 days at 6°C (Cordenunsi et al., 2003). These results suggest that 

post-harvest storage temperature has a significant effect on the AA content of 

strawberries, even at a minimal storage temperature difference. 

Strawberry polyphenolic compounds are also significantly affected when the fruit 

water content decreases. Shin et al. (2007) reported little water loss but changes in total 

phenolic content and AOC of strawberry stored in 75, 85 or 95% RH. On the other hand, 

bioactive compounds such as polyphenolic compounds that are water soluble, have 

shown to significantly decrease when weight loss of strawberry increases above 5% or 

more (Nunes and Dea, 2015). In addition, Nunes et al. (2005) reported that during 
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storage of strawberries at 1°C, excessive water loss was associated with lower 

concentrations of anthocyanins and phenolic compounds and higher polyphenol 

oxidase (PPO) activity. PPO activity increased as a result of water loss and not only 

contributed to the development of surface browning but increased anthocyanin 

degradation and oxidation of soluble phenolic compounds.  

 In summary, in order to avoid loss of bioactive compounds during post-harvest 

storage, low temperatures and maintenance of high humidity are imperative (Nunes et 

al., 1998). 

 

Fruit Juices 

 Composition and Processing of Commercial Beverages and Fruit Juices

 Changes in lifestyles and increased consumer health awareness have been 

driving the food industry to develop new functional foods and beverages with added 

health benefits. Fruit juice beverages are extremely popular because they represent an 

easy and convenient way of consuming fruits, which are important sources of health-

promoting compounds. In the United States, juice drinks are a $15.5 billion market with 

refrigerated juice and smoothie sales alone showing a 27% increase in 2012 (BNP 

Media, 2014). This rapid increase is most likely related to the addition of functional 

ingredients that are believed to have desired nutritional health benefits. 

Commercial fruit juices are mainly composed of water (97%) and by a non-

aqueous fraction that contains natural sugars such as glucose and fructose, and also 

starch, cellulose, vitamins, mineral and numerous polyphenolic compounds (Ashurst, 

1995). Trace amounts of natural water-soluble organic acids such as acetic, ascorbic, 
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citric, malic, lactic and tartaric acids are responsible for the taste and character of fruit 

juices (Ashurst, 1995). In addition, fruit juices are high in polyphenolic compounds such 

anthocyanins, phenolic acids, and tannins, and also in carotenoids which provide color 

and astringency. In addition to polyphenolic compounds, juices can also be high in 

vitamins and minerals depending on the fruit used for juicing and are usually low in 

other nutrients such as lipids and proteins (Somogy et al., 1996). 

 The production of fruit juices involves several steps, from the raw material to the 

final juice product. The first step is to determine if the quality of the raw product is 

acceptable. Since the quality of the juice greatly depends on the quality of the raw 

product, fruit arriving at the processing plant should have an optimum overall quality. 

Prior to juicing, the fruit is washed, thoroughly inspected and sorted. Inspection and 

removal of unfit fruit are very important since bad units can cause contamination of an 

entire batch of juice (Wills et al., 1998). The goal of juice production is to remove as 

much as possible of the desirable components from the fruit without extracting any of 

the undesirable compounds such as seeds, skin, core, etc. In addition, to extend the 

shelf life of fruit juices, good sanitation practices, to reduce microbial load, and low 

temperature management throughout juice processing are key factors (Chen et al., 

1993). In order to obtain a maximum storage life, the holding temperature of the fruit 

juice should be as close as possible to the freezing point (Chen et al., 1993; Wills et al., 

1998). Good temperature management and the natural acidic pH (less than 4.5) of the 

juice are the most important factors in restricting microbial growth (Chen et al., 1993). 

 After sorting, the fruit is pressed to extract the juice. The pulpy fraction of the fruit 

either floats or sinks for easy separation which results in loss of all dietary fiber and 
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some phenolic compounds that are bound to the fibrous parts of the fruit (Brody et al., 

2000). Juices, where turbidity is not acceptable, are further processed using 

centrifugation or filtration to yield a clear juice whereas juices with natural cloudiness 

generally do not require filtration (Somogy et al., 1996). There are many filtration 

systems used in the juice industry, ranging from plate and frame filters to plastic, 

ceramic, or metal membranes (Somogy et al., 1996). Extreme filtration such as sterile 

filtration filters juice through pores that are small enough to physically remove 

microorganisms from the juice (Chen et al., 1993; Somogy et al., 1996). Centrifugation 

may also be used to simplify subsequent filtration steps and thus it is an essential step 

used in many juice processing operations (Fellows and Hamptonnes, 1992). When 

processing techniques such as pressing, centrifugation and filtration are used, the fruit 

juice is subjected to considerable aeration. The inclusion of oxygen into the juice can 

promote enzymatic browning, destroy vitamins and phenolic compounds, modify flavor 

and damage the overall quality of the juice. To protect the fruit juice from exposure to 

too much oxygen careful handling and de-aeration (e.g., using a vacuum or an inert 

gas) of the juice may be necessary (Chen et al., 1993).  

Until recently, to prevent microbial contamination and spoilage, fruit juices were 

preserved using exclusively a thermal treatment (TT) (Barbosa-Cánovas et al., 2005). 

Thermal treatment consists of heating the juice to about 70ºC to inactivate native 

enzymes and reduce the microbial load (Chen et al., 1993). The downside of this 

treatment is that delicate flavor compounds can be destroyed and unacceptable 

darkening due to enzymatic and non-enzymatic browning can occur. In addition, TT 

may also contribute to loss of many health promoting compounds. To overcome some 
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of these problems, rapid heating and cooling are usually necessary (Brody et al., 2000). 

In order to satisfy consumer demand for nutritious, healthy and safe products, non-

thermal food preservation technologies, such as pulsed electric fields (PEF) and high-

pressure processing (HPP), have been implemented as alternative methods to heat 

treatments (Barba et al., 2012).  

 The acidic nature of most juices allows the use of pasteurization which uses 

temperatures near 100ºC to reduce the amount of spoilage organisms (Brody et al., 

2000). However, at a pH greater than 4.6, temperatures higher than 115ºC need to be 

used for extended time periods in order to reduce spoilage microorganisms (Brody et 

al., 2000). To reduce overall microbial load, the fruit also needs to be treated before 

processing through heat cleaning (1 minute at 80ºC). This method greatly reduces 

surface contamination without damaging the underlying flesh (Chen et al., 1993). 

Another process that is used in fruit juices is hot filling where the juice is heated to 

around 95ºC following aseptic packaging (Brody et al., 2000). Hot fill has the additional 

advantage of driving air from the juice and ensuring a partial vacuum in the sealed 

container. Processing technologies such as aseptic packaging may be preferable to 

maintain certain nutrients. In this case, the juice is pasteurized using high heat for a 

short time followed by rapid cooling before filling into sterile containers (Brody et al., 

2000). This rapid heating and cooling of the juice guarantees microbial and enzyme 

destruction while preserving most of the health-promoting constituents (Brody et al., 

2000). Other preservation methods include the use of preservatives such as sulphur 

dioxide which inhibits both microbial growth and enzymatic and non-enzymatic 

reactions. Other preservatives include benzoic acid, sorbic acid, sodium benzoate and 
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potassium sorbate that can be used individually or synergistically (Branen, et al., 1989). 

Benzoates and sorbates are often used in combination with low temperatures to extend 

the shelf life of minimally processed juice drinks (Somogyi, et al., 1996). Newer methods 

include high pressure processing (HPP) technologies that use high pressure at low 

temperatures or ionizing irradiation processing technologies (Thayer and Rajkowski, 

1999).  

 Today, most juices that are available as ready-to-drink are composed by blends 

of juices. Blending different juices offers the opportunity to adjust sugar/acid ratios and 

compensate for other imbalances in the juice from single harvests or cultivars (Somogyi, 

et al., 1996). In addition to adjusting flavor, blending can also improve the content of 

important nutrients such as AA and polyphenolic compounds (Somogyi, et al., 1996). 

Finally, fruit juices are usually packaged in glass containers because of their 

impermeable nature and transparency which increases product appeal (Brody et al., 

2000). However, the use of clear packaging may cause light-induced deterioration of 

polyphenolic compounds and AA (Pérez‐Vicente et al., 2004). 

 

 Fruit Juices Particularly Rich in Polyphenolic Compounds 

 The polyphenolic content of the juice is directly related to the composition of the 

raw fruit (Somogy et al., 1996). Amongst fruits, berries have shown to contain important 

amounts of polyphenolic compounds (Giusti and Jing, 2007). For example, 

pomegranate contains high levels of polyphenolic compounds, including anthocyanins, 

ellagic acid, punicalins, granatins, and different flavanols such as catechins and 

gallocatechins (González-Molina et al., 2009). These compounds are the main 
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contributors to the pomegranate juice sensory qualities (i.e., color, astringency, and 

bitterness). Several studies have reported a very high AOC in pomegranate juices (Gil 

et al., 2000; Noda et al., 2002) which significantly correlates with their polyphenolic 

composition, particularly with the levels of hydrolysable tannins and anthocyanins. 

Anthocyanins (i.e., delphinidin, cyanidin, and pelargonidin) are the main pigments 

responsible for the red color of pomegranates (Mousavinejad et al., 2009). However, the 

significant decrease in anthocyanin content of the juice observed after TT often results 

in undesirable changes in color and nutritional attributes of the juice. Nevertheless, TT 

of pomegranate juice have shown to decrease the percentage of polymeric 

anthocyanins and increase the levels of monomeric anthocyanins, resulting in increased 

AOC (Vegara et al., 2013). Furthermore, the intrinsic properties of pomegranate juice 

(i.e., pH, chemical structure, enzymes, co-pigments, metallic ions and sugars) may 

influence the degradation of polyphenolic compounds, depending on the magnitude and 

duration of heating, the storage time and temperature, and the presence of oxygen 

(Patras et al., 2010). Higher anthocyanin degradation was observed in pomegranate 

juices after storage at 25 °C compared to 5 °C (Vegara et al., 2013).   

 Blackcurrant juice also contains large amounts of polyphenolic compounds. The 

fruit and juice have a dark purple color because of the high levels of anthocyanins, the 

most prevalent of the flavonoids in these berries (Giusti and Jing, 2007). Blackcurrants 

contain various polyphenolic compounds, mainly anthocyanins, hydroxycinnamic acids, 

flavanols and flavonols, and AA. Anthocyanins are the major flavonoids, constituting 

approximately 90% of total polyphenols in blackcurrant juices. The major anthocyanins 

found in blackcurrant juice are conjugated forms of delphinidin and cyanidin (Schrage et 
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al., 2010). The high levels of polyphenolic compounds in blackcurrant juices seem to 

protect AA from oxidation (Miller and Rice Evans, 1997) 

 Aronia berry (also known as chokeberry) is one of the richest berries in 

polyphenolic compounds. However, the polyphenols that are present in the highest 

amounts in aronia juice (i.e., anthocyanins and proanthocyanidins) are easily lost during 

processing (Denev et al., 2012). Aronia berries are rich in chlorogenic acid, 

proanthocyanidins, containing also quercetin, flavonols, and anthocyanins such as 

cyanidin 3-galactoside, cyanidin 3-arabinoside, cyanidin 3-xyloside, and cyanidin 3-

glucoside (Taheri et al., 2013; Wangensteen et al., 2014; Bolling et al., 2015). These 

polyphenols contribute to the high in vitro AOC of aronia extracts (Jakobek et al., 2011). 

However, anthocyanins and proanthocyanidins are known to be the least well absorbed 

polyphenolic compounds (Denev et al., 2012). 

 

Effect of Processing and Storage on Ascorbic Acid, Polyphenolic 

Compounds and Antioxidant Capacity 

Fruit juices may contribute significant amounts of AA if consumed as part of a 

balanced diet. However, AA is extremely unstable and very susceptible to chemical and 

enzymatic oxidation during processing (Hotz and Gibson, 2007). Therefore, the quality 

of any fruit juice and its value as a source of AA depends on the type of processing, 

packaging material, and storage conditions. Storage duration and temperature are 

important variables that need to be controlled after the juice has been processed. To 

compensate for losses experienced throughout processing, fruit juices may be fortified 

with a synthetic form of AA. These may include esters of ascorbic acid, synthetic forms 
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such as 6-deoxy-l-ascorbic acid, isoascorbic acid (IAA) and oxidized compounds 

(Davey et al., 2000). The addition of IAA to beverages has shown to be only about 5% 

as active as the natural AA and may lead to an overestimation of the total AA content of 

the juice (Rodríguez-Roque, 2015).  

Thermal treatment processing has shown to have the greatest impact on AA, and 

losses can be as high as 31%, compared to untreated beverages (Rodríguez-Roque, 

2015). In addition, significant losses (11 to 16%) in AA bioavailability were observed in 

TT-treated orange, kiwi, pineapple and mango beverages (Rodríguez-Roque, 2015).  

On the other hand, TT has shown to promote nutrient release through cell rupture or cell 

separation which can, in turn, enhance the bioavailability of several other nutrients (i.e., 

phenolic compounds) (Wollstonecroft et al., 2008). However, the same TT may disrupt 

the beverage matrix and bring AA and oxidative enzymes (i.e., ascorbic acid oxidase 

and peroxidase) in contact accelerating degradation (Yeom et al., 2000). Non-thermal 

processing technologies such as PEF and HPP have shown to inactivate some of these 

oxidative enzymes and, therefore, prevent AA oxidation (Sánchez-Moreno et al., 2005). 

In fact, several studies showed that the use of PEF and HPP results in a higher 

retention of AA in juices (Yeom et al., 2000; Sánchez-Moreno et al., 2005; Torregrosa et 

al., 2006; Morales-de la Peña et al., 2010; Zulueta et al, 2013). For example, 

Torregrosa et al., (2006) showed that the remaining concentration of ascorbic acid after 

pasteurization of orange–carrot juice was 83%, whereas in the PEF-treated juice it was 

90%.  

Storage time and temperature after processing can also contribute to a decline in 

important components of the fruit juice. For example, storage of commercial fruit juices 
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(orange, peach, grapefruit, pineapple, apple, mango, kiwi, lemon and apricot) in closed 

containers for 4 months at room temperature resulted in AA losses ranging from 29 to 

41% (Kabasakalis et al., 2000). When containers were opened for consumption and 

then stored in the refrigerator for 31 days, commercial orange juice lost up to 67% of its 

AA whereas, under the same conditions, AA losses in fresh orange juice were much 

lower (7–13%) (Kabasakalis et al., 2000). In the same study, when containers of 

commercial orange juice were kept for 10 days outside the refrigerator, AA losses were 

as high as 12.5%, decreasing to about 9% when the containers were refrigerated 

(Kabasakalis et al., 2000). In another study, non-pasteurized orange juice containing no 

preservatives lost 36% of its initial AA over a period of 14 days, while orange juice with 

added preservatives lost 21% of its AA content (Haddad, 1997).  

 Some types of beverages are considered functional foods because of the amount 

of polyphenolic compounds that they contain. The polyphenolic compounds in 

beverages are also believed to be more bioavailable compared to more complex food 

matrices (Clifford, 2004; Saura-Calixto, 2007). Furthermore, the effect of processing on 

polyphenolic compounds depends on the type of food, the nature and location of 

compounds in the food matrix, and the intensity and duration of treatment. Food 

processing may change some of the physicochemical properties of polyphenolic 

compounds and thus, increase or reduce their bioavailability. Several changes in the 

phenol structure or the formation of phenolic derivatives may occur during processing 

(Dugo et al., 2005). For example, handling and aeration may negatively affect the 

flavonoid content in fruit juices because these compounds are not bound to any fibrous 

tissue and thus are relatively unstable in pulp-free juices (Patras et al., 2010). 
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Oxygenation during processing may cause degradation of flavonoids and accelerate the 

degradation either through a direct oxidative mechanism and/or through the action of 

oxidizing enzymes such as polyphenol oxidase (Patras et al., 2010). In juices with a 

high concentration of anthocyanins, an unacceptable brownish coloration can develop 

during processing. This discoloration can, however, be prevented by the addition of 

chemical preservatives such as benzoic acid, sorbic acid, sodium benzoate or 

potassium sorbate (Maccarone et al., 1985; Marchese, 1995). In general, storage at 

high temperatures for long periods of time also has a negative effect on the 

anthocyanins and total polyphenolic contents of juices (Torres et al., 2011; Mazur et al., 

2013). Therefore, current research suggests the use of a mild pasteurization, of less 

than 80 °C, to minimize the degradation of anthocyanins in fruit juices (Marchese, 

1995). The stability of anthocyanins may also be influenced by their interaction with AA 

which may lead to mutual degradation in various fruit juices (Starr and Francis, 1968). 

Both the color and nutritional quality of juice products may decrease due to the 

interaction of AA with anthocyanin pigments. This may be caused by either excessive 

hydrogen peroxide formation through oxidation or condensation of AA with anthocyanin 

pigments (Markakis, 1982). 

 Phenolic acids seem to be more stable than anthocyanins to processing 

technologies. For example, TT resulted only in a slight change in phenolic acid 

concentrations as compared with untreated beverages (Rodríguez-Roque, 2015). 

Actually, the levels of phenolic acids significantly increased after PEF and HPP 

processing resulting most likely from the release of phenolic components from other 

food constituents or improving their extractability (Rodríguez-Roque, 2015). Wang et al. 
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(2014) reported that high pressure and high temperature increased the content of 

polyphenolic compounds due to the breakdown of the cell wall structure and hydrolysis 

of polysaccharides. Additionally, it is possible that these treatments inactivate enzymes 

that would otherwise contribute to the loss of phenolic substances (such as the 

polyphenol oxidase) or increase the activity of enzymes that participate in the 

biosynthesis of phenols (i.e., PAL), as shown in orange juice treated by PEF or HPP 

(Sánchez-Moreno e al., 2005; Morales-de la Peña et al., 2011). One problem that may 

arise from a too high phenolic content is the precipitation of ellagic acid in the juice. 

While ellagic acid is a desirable polyphenol in strawberries, in juice it forms an 

undesirable, powdery sediment. This precipitate which forms slowly in clear juices, even 

after microfiltration or sterile filtration, is accelerated by pasteurization (Musingo et al., 

2001). 

 Beverages represent a good food model to measure the antioxidant capacity 

(AOC) of polyphenolic compounds because of less interference from dietary fibers, 

lipids and proteins that can be naturally found in other foods. Polyphenolic compounds 

in fruit juices exert antioxidant effects, and their level of activity is closely related to their 

synergistic interactions (Chandrasekara et al., 2012). Therefore, the decrease in the 

AOC of juices after processing could be explained by the oxidation of AA and 

polyphenolic compounds. Otherwise, it has also been suggested that processing could 

improve the AOC of fruit juices through the release of additional polyphenolic 

compounds from the food matrix or by inactivation of degradative enzymes (Morales-de 

la Peña et al., 2011; Rodríguez-Roque, 2015). Changes in AOC during storage of fruit 

juices usually parallels changes in the levels phenolic compounds, but not anthocyanin 
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or AA which suggests that the phenolic compounds are less modified during storage 

than anthocyanins and AA (Shin et al., 2007). 

  

 Chemical and Biological Activity of Food Polyphenolic Compounds 

 Antioxidants are molecules that can scavenge unstable free radicals which are 

highly reactive compounds commonly produced by various cellular biochemical 

processes. Free radicals may behave as reactive oxygen species in mammal and in 

plant systems through cellular processes. These include superoxide, singlet oxygen, 

hydrogen peroxide, and the highly reactive hydroxyl radical (Halliwell, 1996). In these 

systems, the mitochondria produce ROS as byproducts of normal cellular metabolism. 

However, ROS production is enhanced by a variety of environmental stresses, including 

drought, starvation, wounding, excessive exposure to UV light and pollutants (Bowler et 

al., 1992; Dalton, 1995). In excessive stress situations, ROS may damage the 

polyunsaturated fatty acids in lipoproteins and in cell membranes, thereby disrupting the 

transportation of vital substances in and out of the cells. Therefore, ROS can cause 

damage by initiating a cascade of reactions that lead to the production of the hydroxyl 

radicals and other destructive species that can cause protein damage, lipid 

peroxidation, DNA damage and cell death (Dalton, 1995). Antioxidants can delay or 

inhibit this oxidation process by donating their own electrons or by hydrogen donation to 

become more stable free radicals themselves. Normally, organisms have the ability to 

cope with free radicals using both enzymatic and non-enzymatic mechanisms. The 

enzymes involved in this process include superoxide dismutases, ascorbate 

peroxidases and glutathione peroxidases (Bunkelmann et al., 1995). However, in some 
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cases, the organism may need dietary antioxidants such as vitamins and polyphenolic 

compounds to help reduce the levels of ROS. On the other hand, the production of ROS 

can also be beneficial because, when controlled, it can produce a cytotoxic effect to 

invading pathogens, and may also stimulate cell wall peroxidase activity to hinder 

pathogen penetration (Schopfer, 1996; Alvarez et al., 1998). 

 Polyphenolic compounds are defined as antioxidants when they have the ability 

to retard or prevent the autoxidation or free radical-mediated oxidation of certain 

compounds, and the ability to reduce a radical into a stable form through intermolecular 

hydrogen bonding that prevents further oxidation (Halliwell, 1990). The availability of the 

phenolic hydrogens as hydrogen-donating radical scavengers further predicts their AOC 

(Shahidi and Wanasundara, 1992). Overall, structurally important features that define 

the AOC of polyphenolic compounds include the hydroxylation patterns, in particular the 

3’, 4’-dihydroxyl cathecol group in the B-ring which gives the structure higher stability 

and participates in more electron delocalization; the planarity of the molecule or the 

presence of 2,3-unsaturation in conjugation with a 4-oxo-function in the C-ring which 

has shown to be responsible for electron delocalization from the B ring; and the 3- and 

5-OH groups with 4-oxo function in the A and C rings (Halliwell, 1990; Shahidi and 

Wanasundara, 1992; Huang et al., 2005). For example, quercetin satisfies all of the 

properties mentioned above and thus has shown to be more effective at radical 

scavenging than the flavanols (i.e., catechin and epicatechin) which lack the additional 

4-oxo function in the C ring (Zhou and Zheng, 1991). Furthermore, flavonoids are often 

found naturally glycosylated which makes them more water-soluble but less antioxidant 

effective. Common glycosylation positions include the 7-hydroxyl in flavones, 
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isoflavones and dihydroflavones, the 3- and 7- hydroxyl in flavonols and the 3- and 5-

hydroxyl in anthocyanidins. Glucose, galactose, rhamnose, xylose, arabinose, as well 

as disaccharides, are usually constituents in the glycoside formation of anthocyanins. 

Glycosylation, however, tends to reduce their AOC when compared to their 

corresponding aglycones because the addition of sugar seems to block the 3-hydroxyl 

group in the C ring (Shahidi and Wanasundara, 1992). Conversely, AOC of phenolic 

acids and their esters depend on the number of hydroxyl groups in the molecule 

because the carboxylate group in the benzoic acid structure negatively influences 

hydrogen-donation (Rice-Evans et al., 1996). Regarding hydroxycinnamic acids, the 

addition of an ethylenic group between the phenyl ring carrying a p-hydroxyl group and 

a carboxylate group has a positive effect on AOC properties of the OH groups (Rice-

Evans et al., 1996). Glycosylation of the carboxylate group in hydroxycinnamic acids 

such as in caffeic and p-coumaric acids does not result in a decrease in AOC as seen 

with anthocyanins (Grootveld and Halliwell, 1986). The AOC or hydroxybenzoic acids 

(i.e., gallic and salicylic acids) is strongly related to the relative positioning of the 

hydroxyl groups on the benzoic ring. Thus, dihydroxybenzoic acid derivatives showed 

higher AOC in either ortho and meta positions than monohydroxy benzoic acids in the 

same positions (Grootveld and Halliwell, 1986; Cuvelier et al., 1992). 

 Overall, it can be assumed that there is a positive correlation between AOC and 

the polyphenolic content of fruits and vegetables (Wang and Lin, 2000). However, there 

are no official recommendations for daily dietary antioxidant intake, data is limited, and 

developing a model for dietary intake is yet to be established (Prior, 2005). 

Nevertheless, several studies showed that the use of high doses of synthetic 
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antioxidants have an antagonistic effect on the AOC by decreasing the cell defense 

mechanisms and potentially inducing apoptosis of healthy cells (Hercberg et al., 1998). 

These findings suggest that antioxidants are only a minute component of the human 

diet and may have enhanced bioactive properties when ingested naturally from fruit and 

vegetables rather than from nutritional supplements. 

 

Chemical Assays: Antioxidant Capacity 

 Several analytical methods have been developed to measure the AOC of foods. 

These methods are typically classified according to the chemical reactions involved, 

which are basically hydrogen atom transfer (HAT) or electron transfer (ET) reactions 

(Huang et al., 2005). In HAT-based assays, the applied antioxidant and substrate 

compete for thermally generated peroxyl radicals through the decomposition of azo 

compounds. These assays include the oxygen radical absorbance capacity (ORAC), 

total radical trapping antioxidant parameter (TRAP) and crocin bleaching assays (Huang 

et al., 2005). The ET-based assays measure the capacity of an antioxidant to reduce an 

oxidant, resulting in a change of color that can then be read with a spectrophotometer. 

ET-based assays include the total phenols assay by Folin-Ciocalteu reagent (FCR), 

Trolox equivalents antioxidant capacity (TEAC), ferric ion reducing antioxidant power 

(FRAP), and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging capacity assay (DPPH) 

(Huang et al., 2005). Depending on the food matrix, different methods, alone or in 

combination, are generally used to measure the AOC of a particular food product (Stratil 

et al., 2007). Specifically, these assays measure the same electron transfer reaction 

between the added oxidant and the antioxidants in a solution and give fast, reproducible 
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and comparable results (Huang et al., 2005). For example, because of the complex 

kinetics and potential interactions of multiple phenolic compounds in fruit samples, it is 

necessary to use more than one method to accurately measure AOC (Ozgen et al., 

2006). The FRAP, DPPH and TEAC have been proven to accurately measure the AOC 

in fruits and vegetables as well as in individual phenolic compounds (Stratil et al., 2006; 

Thaipong et al., 2006). 

 

 Cell Models: Cancer Cells 

 Numerous studies have shown that a high consumption of fruits and vegetables 

promotes health and is associated with a reduced risk of cancers and other 

degenerative diseases (Seeram et al., 2006; Parkar et al., 2008; Tzounis et al., 2008; 

La et al., 2009; Lewandowska et al., 2016). In the last decade, polyphenolic compounds 

found in fruits, vegetables and plants have received special interest because of their 

potential in vitro and in vivo AOC. These naturally occurring compounds can scavenge 

ROS, which might have the potential to damage cell components, such as DNA, 

proteins, and lipids (Lewandowska et al., 2016). Recent studies indicate that oxidative 

damage might be involved in initiating events in cancer, and free radicals may help to 

induce the initiation of apoptosis and help in the promotion and progression of 

carcinogenesis (Matés and Sánchez-Jiménez, 2000; Lewandowska et al., 2016). The 

increased cellular level of ROS is associated with key aspects of carcinogenesis, 

including induction of genetic alterations and cellular proliferation (Lewandowska et al., 

2016).  
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 Cancer cell proliferation is important in the progression of tumors. Unregulated 

cell proliferation together with suppressed apoptosis is common in cancer evolution and 

progression (Evan and Vousden, 2001). Individual polyphenolic compounds have 

shown to inhibit in vitro cancer cell proliferation of human colon cancer and breast 

cancer cells (Kuntz et al., 1999; Prakash et al., 2001). However, it is difficult to evaluate 

the relative importance of individual polyphenolic compounds as anticancer promoters. 

The protective effect might be due to additive or synergistic actions of several 

compounds, but most investigations on the inhibitory effects of polyphenolic compounds 

on the proliferation of cultured cancer cell focused on individual compounds 

(Lewandowska et al., 2016). The relative importance of the individual compounds in 

comparison with a complex mixture of polyphenolic compounds found naturally in fruits 

and vegetables is usually not determined. Seeram et al. (2006) published one of the few 

studies where fruit extracts (blackberry, black raspberry, blueberry, cranberry, red 

raspberry, and strawberry) were used. The authors showed the ability of these complex 

polyphenolic fruit extracts in decreasing the proliferation of both colon cancer and breast 

cancer cells. In another study, Mertens-Talcott et al. (2003) reported enhanced 

apoptosis and inhibition of cell proliferation in human leukemia cell lines treated with 

quercetin plus ellagic acid and emphasized the importance of a synergistic rather than 

an additive effect.  
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Worm Models: Caenorhabditis elegans 

 The nematode Caenorhabditis elegans is a multicellular organism, with the 

presence of tissue and organ systems which creates an ideal model for lifespan assays. 

Another advantage of using C. elegans as an in vivo model is the short lifespan of the 

worms, maturing into an adult in about 45 hours and their average lifespan of about 2-3 

weeks (Félix and Braendle, 2010). At optimal conditions, the organism is also able to 

reproduce at a high rate and lay about 300-1000 eggs (Félix and Braendle, 2010). A 

significant percentage (60 to 80%) of human genes homologues have been identified in 

C. elegans (Kaletta and Hengartner, 2006). Thus, because of its morphological 

characteristics, its short life span and its well-studied cellular and genetic features, that 

show a strong correlation with mammals in cellular and molecular principles, the C. 

elegans has become an important in vivo model for the study of ageing, stress 

resistance, and degenerative diseases and an ideal model to test the biological efficacy 

and toxicity of certain metabolic compounds (Kaletta and Hengartner, 2006). In addition, 

C. elegans is easy to culture on solid and liquid media, is highly reproductive, and its 

small size allows easy storage and culturing on Petri dishes. C.elegans occupy various 

environments that contain different bacteria and nutrients. They feed on the bacteria 

such as E.coli but can survive on a diet of a variety of many kinds of bacteria and 

nutrients which makes them ideal in vivo models to test the effects of fruit extracts rich 

in polyphenolic compounds. 

 Various studies have shown that exposure of C. elegans to blueberry extracts 

rich in polyphenolic compounds and to individual polyphenols resulted in increased 

oxidative and thermal resistance and extended lifespan (Wilson et al., 2006; Kampkötter 
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et al., 2008). The authors attributed these responses to the AOC and to the ability of 

polyphenolic compounds to reduce the accumulation of intracellular ROS (Kampkötter 

et al., 2007). Xue et al. (2011) studied the impact of quercetin and rutin on C. elegans 

lifespan and showed that quercetin derivatives extended the worm’s life by 12 to 20%. 

The mechanisms involved in the extension of lifespan by polyphenolic compounds are 

questionable. Some studies report that polyphenolic compounds are able to act as in 

vivo toxic pro-oxidants (Braeckman et al., 2002). Other studies associate the beneficial 

effect of polyphenolic compounds when used at lower dosages, to their ability to trigger 

light pro-oxidant mechanisms that in turn activate antioxidant defenses, leading to an 

overall cytoprotection (Halliwell, 2011).  
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CHAPTER THREE: 
IMPACT OF DIFFERENT DISEASE CONTROL TREATMENTS ON ASCORBIC ACID, 

POLYPHENOLIC COMPOUNDS AND ANTIOXIDANT CAPACITY OF FLORIDA-

GROWN STRAWBERRIES 

 

Introduction 

Strawberries are an important crop to the Florida industry because of their high 

economic value and consumer demand. However, strawberry growers in central Florida 

face a major challenge when it comes to keeping fruit diseases and fruit rot as low as 

possible. This area of the country appears to be highly conducive for fungicide 

resistance development in plant pathogenic fungi because of the characteristic warm 

and humid climate enabling fungi to thrive and multiply. Therefore, in order to fight field 

fruit rots and avoid considerable crop losses, strawberry growers need to apply 

pesticides weekly throughout the season (Legard et al., 2001; Peres et al., 2010) which 

in turn may affect the overall quality of strawberries (Häkkinen and Törrönen, 2000; 

Magkos et al., 2003; Laura et al., 2009; Fernandes et al., 2012). Consequently, the U.S. 

Department of Agriculture has been directing agricultural research towards finding 

alternatives to conventional pesticide usage that are considered a potential 

environmental and health hazard (Kuchler et al., 1997). This is of special interest to the 

strawberry industry because growers apply ample amounts of pesticides weekly 

throughout the season to avoid fruit rot and crop losses which increase their production 

cost (Legard et al., 2001; Peres et al., 2010).  
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Poor post-harvest conditions (i.e., temperature and relative humidity) during 

storage have also shown to decrease the overall quality and shelf life of strawberry fruit 

(Nunes and Emond, 1999; Nunes et al., 2005; Moraga et al., 2006). Storage 

temperatures higher than 0°C during post-harvest storage greatly reduce strawberry 

quality, specifically the levels of fruit bioactive compounds. Even if kept at the optimum 

storage conditions, the post-harvest life of strawberries can be as short as seven to 

eight days (Mitcham, 2004; Nunes, 2008).   

Pre- and post-harvest treatments, therefore, may have a major influence on the 

final “bioactive quality” of the fruit and its corresponding antioxidant capacity. However, 

it is still unclear if the sensory and compositional attributes are superior in organic 

strawberries compared to fruit grown under conventional or reduced pesticide disease 

control treatments. The controversial results are often attributed to the lack of direct 

comparative studies and to the great variability in the data available. Therefore, the 

objectives of this study were to: 1) determine the effect of repeated conventional, 

reduced or no fungicide applications (i.e., organic) on the overall quality of strawberry 

fruit, and specifically on the major bioactive compounds of strawberry namely, ascorbic 

acid, polyphenolic compounds and their AOC, and 2) the interaction between disease 

control treatments and cold storage on strawberry weight loss, and on the levels of 

ascorbic acid and polyphenolic compounds and their AOC. 
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Materials and Methods 

Plant Material and Fungicide Treatments 

‘Florida Radiance’ and ‘Strawberry Festival’ strawberry cultivars used in this 

study were grown under three different disease management conditions: conventional, 

reduced-fungicide using a disease forecasting system (Peres and MacKenzie, 2009) 

and organic. Strawberries grown conventionally or under a reduced-fungicide disease 

control treatment were harvested from commercial fields in Plant City and Floral City, 

respectively. ‘Strawberry Festival’ grown under organic conditions was obtained from a 

commercial field in Duette. ‘Florida Radiance’ strawberries grown under organic 

conditions were not available in Florida, therefore only organic ‘Strawberry Festival’ 

were evaluated against conventional and reduced-pesticide disease control treatments. 

The main commercial pesticides applied to the fruit were: Captan, Captec, QuiltXcel, 

Thiram, Switch, Elevate, Torino, and Fontelis. For conventionally grown strawberries, 

single or combinations of different pesticides were applied early in the season, during 

the bloom and late in the season, with up to 24 applications during the season. For 

reduced-pesticide fruit, fungicides were applied only when environmental conditions 

were favorable for disease. Organic strawberries were grown according to the USDA 

National Organic Program (NOP) guidelines.  

 

Postharvest Treatments  

Strawberries from each cultivar and disease control treatment were harvested 

twice during the 2014 strawberry production season: ‘Florida Radiance’ from the two 

different disease control treatments (conventional and reduced-pesticide) were 
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harvested on January 21 (Harvest 1) and on February 18 (Harvest 2) and ‘Strawberry 

Festival’ from the three different disease control treatments (conventional, reduced-

pesticide and organic) were harvested on February 7 (Harvest 1) and March 7 (Harvest 

2). Fruit was brought to the Food Quality Laboratory at the University of South Florida in 

Tampa with minimal delay after harvest (30 min to 1 h, depending on the location of the 

field). Upon arrival to the laboratory, fruit were selected for uniformity of size, color and 

freedom of defects, carefully packed into 0.453 kg-clamshells (Wasserman Bag Co., 

Inc, New York, USA) and stored at 1.5°C and 85% RH inside temperature and RH-

controlled chambers (Forma Environmental Chambers Model 3940 Series, Thermo 

Electron Corporation, OH, USA). These conditions simulated the lowest temperature 

and highest RH measured during strawberry handling (Nunes et al., 2009; Lai et al., 

2011; Pelletier et al., 2011). Temperature was monitored throughout the study using 

Stow Away XTI02 temperature loggers (-5 C to +37 C) (Onset Computer 

Corporation, Pocasset, Mass). RH was monitored with Stow Away RH loggers (10 to 

95% RH) (Onset Computer Corporation, Pocasset, Mass.). 

 

Visual Characteristics  

The fruit was evaluated at harvest and daily during a seven-day storage period. 

Visual subjective quality attributes were determined subjectively by internal and external 

appearance based on uniformity and intensity of red color. Pit size and appearance of 

the achenes were also evaluated subjectively. 
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Weight Loss and Dry Weight  

Weight loss of three replicated samples of 15 strawberries each was calculated 

from the initial weight of the fruit and every day during a seven-day storage period. 

Concentrations of chemical constituents were expressed in terms of dry weight in order 

to show the differences between cultivars and treatments that might be obscured by 

differences in water content. The following formula was used for water loss corrections: 

[chemical components (fresh weight)  100 g  strawberry dry weight + weight loss 

during storage (g)]. Strawberry dry weight was determined by drying three weighed 

aliquots of homogenized strawberry tissue at 80 °C, and until weight stabilized. 

 

Total Ascorbic Acid Content  

Total ascorbic acid content was quantified by mixing 2 g of homogenate with 20 

mL metaphosphoric acid mixture (6% HPO3 containing 2 N Acetic acid). Samples were 

then filtered (0.22 μm) prior to HPLC analysis. Ascorbic acid analysis was conducted 

using a Hitachi LaChromUltra UHPLC system with a diode array detector and a 

LaChromUltra C18 2μm column (2 × 50 mm) (Hitachi, Ltd., Tokyo, Japan). The analysis 

was performed under isocratic mode at a flow rate of 0.5 mL/min with a detection of 254 

nm. Sample injection volume was 5 µL, each with duplicate HPLC injections. Mobile 

phase was buffered potassium phosphate monobasic (KH2PO4, 0.5%, w/v) at pH 2.5 

with metaphosphoric acid (HPO3, 0.1%, w/v). The retention time of the ascorbic acid 

peak was 2.5 min. After comparison of retention time with the ascorbic acid standard, 

the peak was identified. The amount of total ascorbic acid content in strawberry was 

quantified using calibration curves obtained from different concentrations (0.01 g L-1, 
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0.02 g L-1, 0.03 g L-1, 0.05 g L-1, 0.10 g L-1
, 0.15 g L-1, 0.20 g L-1 and 0.30 g L-1) of 

ascorbic acid standards. Total ascorbic acid content was expressed in terms of dry 

weight (g kg-1) to compensate for water loss during storage.  

 

 

 

Figure 1. Identification of polyphenolic Standards at 280 nm. 1. Catechin 2.Chlorogenic 
acid 3. Caffeic Acid 4. Epicatechin 5. p-Coumaric Acid 6. Ferulic Acid 7. Ellagic Acid 8. 
Quercitin-3-glucoside 9. Kaempferol-3-glucoside 10. Myricetin 11. Quercitin 12. 
Kaempferol.  
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Figure 2. Identification of polyphenolic Standards at 520 nm. 1. Malvidin-3-glucoside 

2.Cyanidin-3-glucoside 3. Delphinidin 4. Pelargonidin-3-glucoside 5. Cyanidin 6. 

Pelargonidin 7. Malvidin. 

 

Total Phenolic and Anthocyanin Contents  

Total soluble phenolic compounds were measured using the Folin-Ciocalteau 

reagent as described by Nunes et al. (2005). Anthocyanins were extracted in 0.5% (v/v) 

HCl in methanol and measured using the procedure described by Nunes et al. (2005). 

The amount of total phenolic and anthocyanin were expressed in g kg-1 on a dry weight 

basis. 

 

Polyphenolic Profiles 

For polyphenol extraction, identification and quantification, frozen fruit puree (5 g) 

was blended with 15 mL of acetone using a Polytron, sonicated for 10 minutes and 

filtered through Whatman No.4 paper filter. The filtrate was concentrated to 5 mL in a 

rotary evaporator (Buchi Rotavapor R-114, Birkmann Instruments, Inc., USA) and 
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passed through a classic C18 Sep-Pack cartridge (Waters Technologies Corp., USA) 

previously activated with methanol, followed by water and 3% formic acid. Acidified 

water (10 mL; 3% formic acid) was then passed through the cartridge to remove the 

sugars and the polyphenols were recovered by passing 1.8 mL of methanol containing 

3% formic acid through the cartridge. The extract was finally filtered through a 0.20 μm 

syringe filter into auto-sampler vials and stored at -80°C until HPLC analysis.  

Individual polyphenols were identified and quantified using the extracts prepared 

from fruit samples as described above. Polyphenol analysis was conducted using a 

Hitachi LaChroma Ultra system (Hitachi, Japan) with a diode array detector and a 

Hypersil Gold C18 1.9 μm, 100 × 2.1 mm column (Thermo Fisher Scientific Inc., USA). 

An isocratic solvent delivery of 0.5% formic acid in water (mobile phase A) and 0.1% 

formic acid in acetonitrile (mobile phase B) was set at 0.6 µL/min with a detection of 280 

nm (general polyphenols), and 520 nm (anthocyanins). Sample injection volume was 50 

µL, each with duplicated HPLC injections. The retention time was set at 20 min. After 

comparison of retention times with those of polyphenolic standards, the peaks were 

identified at both 280nm (Fig. 1) and 520 nm (Fig. 2). Quantification of individual 

polyphenolic contents was based on surface area (%) of each individual peak. 

 

Antioxidant Capacity 

  Antioxidant capacity was measured using the Trolox equivalents antioxidant 

capacity (TEAC), ferric ion reducing antioxidant power (FRAP), and 2, 2-Diphenyl-1-

picrylhydrazyl radical scavenging capacity (DPPH) assays. The FRAP assay was 

conducted according to the method of Benzie and Strain (1996) with some 
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modifications. The reagent (160 µL) was mixed with 40 µL of sample in a 96 - well plate 

and then incubated at 37 °C for 30 min before measuring the absorbance at 593 nm. 

The DPPH assay was conducted according to the method of Brand-Williams et al. 

(1995) with some modifications. The reagent (950 µL) was mixed with 50 µL of sample 

and then incubated at room temperature for 1 hour in the dark. The absorbance of 200 

µL of the mixture was read at 515nm. The TEAC assay was conducted according to the 

method of Arts et al. (2004) with some modifications. The diluted reagent (980 µL) was 

mixed with 20 µL of sample and the absorbance of 200 µL of the resulting mixture was 

read at 734 nm.  

 

Statistical Analysis  

The Statistical Analysis System computer package (SAS Institute, Inc., 2004) 

was used for the analysis of the data from these experiments. The data was treated by 

two-way analysis of variance (ANOVA) with harvest, cultivar and disease control 

treatment as main effects. Significant differences between cultivars and disease control 

treatments were detected using the least significant difference (LSD) at the 5% level of 

significance. 

 

Results and Discussion 

 Visual Characteristics 

Significant differences were observed in the quality characteristics of 

strawberries from the different disease control treatments. The size of the fruit, external 

and internal flesh color, the pit size, and the appearance and density of the achenes in 
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conventional ‘Strawberry Festival’ were not significantly different from the reduced 

disease control treatment fruit (Fig 3). However, when compared to fruit from the 

conventional and reduced disease control treatments, organic ‘Strawberry Festival’ 

were smaller, had a darker internal flesh and a smaller pith size (Fig. 4). In addition, the 

achenes from organic ‘Strawberry Festival’ were denser (more achenes per surface 

area) and more protuberant towards the surface of the fruit. 

 

 

 

Figure 3. External appearance of ‘Strawberry Festival’ strawberries from different 
disease control treatments. 
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Figure 4. Internal appearance of ‘Strawberry Festival’ strawberries from different 
disease control treatments. 

 

Weight Loss 

Weight loss is an important factor when evaluating postharvest strawberry quality 

because excessive loss of moisture results in accelerated quality deterioration and loss 

of economic value (Nunes and Emond, 2007). Most weight loss of stored fruit is caused 

by transpiration that results in strawberry fruit losing water and consequently their 

bioactive contents. Since bioactive compounds such as ascorbic acid and some 

polyphenolic compounds are water soluble, when weight loss of strawberry increases 

above a certain level (5% or more) the amounts of these compounds significantly 

decrease (Nunes and Dea, 2015).  

In this study, there was a significant loss in weight of the fruit for both ‘Strawberry 

Festival’ and ‘Florida Radiance’ after seven days of storage, regardless of the treatment 

(Fig. 5).  However, ‘Strawberry Festival’ showed on average a higher weight loss 
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compared to ‘Florida Radiance’ strawberries, regardless of the harvest or the disease 

control treatment used. In the first harvest, ‘Florida Radiance’ from the conventional and 

reduced disease control treatments showed on average 6% weight loss after seven 

days of storage, with no significant difference between treatments. On the other hand, 

after seven days of storage weight loss of ‘Strawberry Festival’ was significantly lower in 

fruit from the conventional treatment compared to that of fruit from the reduced 

treatment. Organic ‘Strawberry Festival’ showed significantly lower weight loss (7.9 %) 

compared to conventional ‘Strawberry Festival’ (9.4%) and reduced ‘Strawberry 

Festival’ (10.2%). In the second harvest, there was a less marked difference in the 

weight loss of fruit from the different treatments (Fig. 5). Nevertheless, weight loss of 

‘Florida Radiance’ strawberry from the conventional treatment was significantly higher 

than that of fruit from reduced disease control treatment (9.1 and 7.7%, respectively). 

‘Strawberry Festival’ from the reduced disease control treatment showed the lowest 

weight loss (7.5%) compared to the conventional and organic treatments (8.9 and 9.1%, 

respectively). On average, fruit from the reduced pesticide treatment tended to have 

similar or lower weight loss than that of strawberry from the conventional disease 

control treatment.  

Differences in weight loss between cultivars and disease control treatments may 

be a result from variations in the morphological characteristics of the fruit. For example, 

the thickness of the skin may determine the amount of moisture lost during storage. 

That is, the thicker the skin of the fruit the lower the loss of moisture and thus the lower 

the weight loss (Nunes and Emond, 2007). 
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Figure 5. Changes in weight loss of ‘Strawberry Festival’ and ‘Florida Radiance’ 
strawberries from different disease control treatments during storage at 1.5°C and 85% 
RH. F = ‘Strawberry Festival’. R = ‘Florida Radiance’. 
 

Total Ascorbic Acid Content 

Unlike Pincemail et al. (2012) who reported that difference strawberry cultivars 

can differ significantly in their initial AA contents (51.0 to 184.7 mg/100g-1 fruit fresh 

weight), AA content of strawberry cultivars from different disease control treatments 

used in this study was similar, ranging from 44.6 to 46.7 mg/100g-1 fruit fresh weight. 

The data reported in the literature is somehow controversial in regards to the AA 

content of organic versus conventional fruit. For example, a significantly higher AA 

content has also been previously reported for organic (86.4 mg 100 g-1 fruit fresh 

weight)  versus conventional (71.2 mg 100 g-1 fruit fresh weight) strawberry fruit (Abu-

Zahra et al., 2007; Crecento-Campo et al., 2012). Cardoso et al. (2011) reported that 

AA content was significantly higher in conventionally grown strawberries than in organic 
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fruit whereas Häkkinen and Törrönen (2000) reported no difference in AA of organic 

versus conventional fruit.  

In the present study, ‘Strawberry Festival’ from the second harvest and from the 

reduced pesticide treatment had higher AA content at harvest (557.6 mg 100g-1 fruit dry 

weight) compared to conventional fruit (Fig. 6). In addition, the levels of AA in 

‘Strawberry Festival’ from the reduced disease control treatment were not significantly 

different compared to ‘Florida Radiance’ strawberry from the conventional disease 

control treatment; but were higher (516.1 mg 100g-1) than in ‘Florida Radiance’ 

strawberry from the reduced disease control treatment. 

During storage, AA of strawberries significantly decreased, regardless of the 

cultivar, disease control treatment and date of harvest (Fig. 6). In the first harvest, there 

was on average a 59.6% decrease in the AA of ‘Florida Radiance’ strawberries from the 

reduced pesticide treatment, followed by a 57.8 and 52.1% decrease in ‘Florida 

Radiance’ and ‘Strawberry Festival’ from the conventional and organic treatments, 

respectively. Although at harvest organic ‘Strawberry Festival’ showed significantly 

higher AA content (632.7 mg 100g-1 fruit dry weight) when compared to the other 

treatments, after seven days of cold storage the AA levels were comparable to that of 

fruit from the other disease control treatments (Fig. 4). In fact, after storage, AA content 

of organic ‘Strawberry Festival’ was not significantly different from that of conventional 

or reduced ‘Florida Radiance’.  
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Figure 6. Changes in ascorbic acid content of ‘Strawberry Festival’ and ‘Florida 
Radiance’ strawberries from different disease control treatments during storage at 1.5°C 
and 85% RH. F = ‘Strawberry Festival’. R = ‘Florida Radiance’. 
 

In the second harvest, there was on average a 53.9% decrease in the AA content 

of conventional Strawberry Festival’, followed by a 51.8 and 49.8% decrease in ‘Florida 

Radiance’ and ‘Strawberry Festival’ fruit from the reduced and organic disease control 

treatments‘, respectively (Fig. 6). In addition, there was a similar trend with organic 

‘Strawberry Festival’ showing significantly higher AA content (620.5 mg 100g-1 fruit dry 

weight) when compared to fruit from the conventional or reduced pesticide treatments, 

at harvest and after seven days of cold storage (308.7 mg 100g-1 fruit dry weight). 

Overall, after seven days of cold storage AA values were on average reduced by 

approximately 50%, with AA levels decreasing by similar amounts in fruit from the 

conventional and reduced disease control treatments. These results are in agreement 

with previously published data where AA in strawberries showed to be readily oxidized 

Time (days)

0 1 2 3 4 5 6 7

A
s
c
o

rb
ic

 a
c
id

 (
m

g
 1

0
0

g
-1

)

200.0

300.0

400.0

500.0

600.0

700.0

Time (days)

0 1 2 3 4 5 6 7

200.0

300.0

400.0

500.0

600.0

700.0

F-Conventional

F-Reduced

F-Organic

R-Conventional

R-Reduced

Harvest 1 Harvest 2

LSD0.05= 10.107LSD0.05= 21.995



63 
 

when fruit was exposed to elevated temperatures and increased storage times 

(Torregrosa et al., 2006; Shin et al., 2007). 

 

Total Phenolic Content 

In the first harvest, organic 'Strawberry Festival' showed significantly higher total 

phenolic content (TPC) at harvest (2852.78 mg 100 g-1 fruit dry weight) than fruit from 

any other treatment (Fig. 7). However, no significant difference in TPC was found 

between conventional or reduced 'Strawberry Radiance' and 'Strawberry Festival'. 

Results from the present study are in agreement with previously published data, where 

organic strawberries contained significantly higher TPC than conventional fruit (Asami et 

al., 2003; Crecente-Campo et al., 2012). The higher TPC in organic fruit could be 

related to an increased activity of the enzyme PAL in response to environmental stress 

(i.e., less protection from pesticide applications) which in turn results in the synthesis of 

secondary plant metabolites (Manach et al., 2004). These secondary plant metabolites 

may consist of a wide range of polyphenolic compounds including but not limited to 

hydroxycinnamic acids, phenolic acids, and flavonoid compounds. These polyphenolic 

compounds are synthesized in larger quantities in organic fruit since this type of growing 

method requires the synthesis of more compounds that are capable of acting as a 

defense mechanism for the plant since it does not have an extra layer of protection from 

pesticide applications. 

 



64 
 

 

Figure 7. Changes in total phenolic contents of ‘Strawberry Festival’ and ‘Florida 
Radiance’ strawberries from different disease control treatments during storage at 1.5°C 
and 85% RH. F = ‘Strawberry Festival’. R = ‘Florida Radiance’. 

 

In the second harvest, ‘Strawberry Festival’ strawberries from the conventional 

and reduced treatments showed at harvest the highest TPC (2303.9 and 2268.3 mg 100 

g-1 fruit dry weight, respectively). No significant difference in TPC between conventional 

and organic strawberries was found which is supported by previously published data 

(Häkkinen and Törrönen 2000). Although the fruit used in this study was harvested from 

the same area and sorted by color, the variations in TPC at harvest can be related to 

differences in strawberry cultivars, maturity at harvest as reported previously (Hakala et 

al., 2003). Conventional and reduced 'Strawberry Radiance' also showed a significantly 

lower TPC at harvest (1453.7 and 1079.2 mg 100 g-1 fruit dry weight, respectively) when 

compared to 'Strawberry Festival' from the conventional and reduced disease control 

treatments (2188.6 and 2304.0 mg 100 g-1 fruit dry weight, respectively). 
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After seven day storage, TPC decreased significantly for all cultivars, regardless 

of the disease control treatment used (Fig. 7). In the first harvest, there was on average 

a 56.1% decrease in TPC of conventional 'Strawberry Festival', followed by a 46.8 and 

45.3% decrease in fruit from the organic and reduced treatments, respectively. This 

drastic change in TPC was most likely due to the significant loss of weight (i.e., water 

loss) during storage which may have contributed to an increased oxidation of 

polyphenolic compounds (Nunes et al., 2005). For organic strawberries, after seven 

days of storage, the TPC levels were within the range of the 'Florida Radiance' 

strawberries. All strawberry cultivars from the first harvest showed on average a 54.3% 

decrease in TPC after seven days of cold storage, regardless of the treatment. Although 

the TPC in 'Strawberry Festival' and ‘Florida Radiance' strawberries from the 

conventional and reduced treatments were not significantly different at harvest, 

significant differences were observed between these two cultivars after seven days of 

cold storage. 

For the second harvest, strawberries experienced on average a 50.7% decrease 

in TPC after seven days which agrees with results from previous studies (Nunes et al., 

2005; Shin et al., 2007). After seven days of storage, conventional and reduced 

'Strawberry Radiance' showed a significantly lower TPC (786.1 and 719.5 mg 100 g-1 

fruit dry weight, respectively) compared to 'Strawberry Festival'. There was no 

significant difference in TPC levels between 'Strawberry Festival' and 'Strawberry 

Radiance' from the conventional and reduced treatments. Organic 'Strawberry Festival' 

strawberries had similar TPC compared to fruit from conventional and reduced 

treatments after seven days of storage. 
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Total Anthocyanin Content 

In the first harvest, strawberry cultivars had different total anthocyanin contents at 

harvest ranging from a minimum of 88.7 mg 100 g-1 fruit fresh weight in conventional 

‘Strawberry Festival’ to a maximum of 157.8 mg 100 g-1 fruit fresh weight in 

conventional ‘Florida Radiance’ strawberry (Fig 8). Although Crecento-Campo et al. 

(2012) reported a higher anthocyanin content in organic strawberries than in 

conventional (193.0 versus 98.1 mg 100 g-1 fruit fresh weight), in the present study 

organic strawberries from the first harvest had lower anthocyanin contents (132.4 mg 

100 g-1) than ‘Florida Radiance’ strawberries from the conventional treatment (157.8 mg 

100 g-1). Unlike in the first harvest, in the second harvest, total anthocyanin content at 

harvest, ranged from a minimum of 148.6 mg 100 g-1 fruit fresh weight in ‘Florida 

Radiance’ strawberries from the reduced pesticide treatment to a maximum of 249.7 mg 

100 g-1 fruit fresh weight in organic ‘Strawberry Festival’ which agrees with results 

reported by Crecente-Campo et al. (2012). In addition, even though anthocyanin 

content has been shown to be higher in organic strawberries compared to conventional 

fruit (Reganold et.al., 2010), organic 'Strawberry Festival' from the first harvest had at 

harvest significantly lower anthocyanin contents than 'Florida Radiance' from the 

conventional disease control treatment (132.44 and 157.81 mg 100 g-1 fruit fresh weight, 

respectively). 

Overall, anthocyanin content decreased during cold storage regardless of the 

cultivar, disease control treatment or date of harvest (Fig. 8). In the first harvest, the 

total anthocyanin content fluctuated across cultivars and disease control treatments. A 

similar pattern was previously reported for strawberries and was suggested that the 



67 
 

production of secondary metabolites, that may lead to an increase or decrease of 

anthocyanins and/or phenolics (Jin et al., 2011; Ayala-Zavalaa et al., 2004) can be 

caused by specific antioxidant enzymes such as catalase and superoxide dismutase 

which activity was higher in strawberries stored at 0 or 5°C versus 10°C (Jin et al., 

2011). 

 

 

Figure 8. Changes in total anthocyanin contents of ‘Strawberry Festival’ and ‘Florida 
Radiance’ strawberries from different disease control treatments during storage at 1.5°C 
and 85% RH. F = ‘Strawberry Festival’. R = ‘Florida Radiance’. 
 

In the present study, there was a significant decrease in anthocyanin content in 

fruit from both the conventional and reduced pesticide treatments for both cultivars 

stored for seven days at 1.5°C (Fig. 8). The anthocyanin content of organic ‘Strawberry 

Festival’ remained relatively stable throughout storage showing the smallest decrease 

(6.4%) after seven days, compared to the fruit from the conventional (22.9%) and 

reduced pesticide treatments (49.5%). For ‘Florida Radiance’, the decrease in the 
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anthocyanin content in fruit from the conventional treatment was higher (35.9%) 

compared to the decrease in fruit from the reduced pesticide treatment (27.2%). 

Although at harvest fruit from the reduced pesticide treatment had a lower anthocyanin 

content (147.7 mg 100 g-1 fruit fresh weight) compared to fruit from the conventional 

treatment (157.8 mg 100 g-1 fruit fresh weight), the decrease during cold storage was 

significantly higher in conventional fruit. In the second harvest, anthocyanin content also 

fluctuated throughout storage with a significant decrease after seven days of storage, 

regardless of the cultivar and disease control treatment (Fig. 8). Organic 'Strawberry 

Festival' experienced a significant decrease (56.3%) during storage when compared to 

fruit from the conventional (60.0%) and reduced (34.7%) treatments. ‘Florida Radiance’ 

from the conventional treatment showed a smaller decrease (38.4%) in anthocyanin 

content during storage compared to reduced ‘Florida Radiance' strawberry (48.8%). 

Fruit from the reduced pesticide treatment tended to have similar or significantly higher 

anthocyanin content compared to the conventional fruit whereas organic fruit had 

consistently higher anthocyanin contents compared to the other treatments after seven 

days at cold storage (Fig. 8). Overall, losses in anthocyanin content ranged from 6.4% 

for organic 'Strawberry Festival' from the first harvest to 60.0% for conventional 

'Strawberry Festival' from the second harvest.  

 

Polyphenolic Profiles 

On the day of harvest, the major polyphenolic compounds identified from 

strawberries, regardless of the cultivar and disease control treatment, were 

pelargonidin-3-glucoside followed by quercetin and quercetin-3-glucoside (Fig. 7). 
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These results are in agreement with previously published studies where pelargonidin-3-

glucoside was the major polyphenolic compound identified from strawberry tissue 

(Lopes da Silva et al., 2002). ‘Strawberry Festival’ fruit from the reduced pesticide 

treatment showed significantly higher pelargonidin-3-glucoside content (65.1%) than 

fruit from the conventional (60.0%) or organic (63.4%) diseases control treatments (Fig. 

9). Significant differences in the polyphenolic profiles of strawberries from conventional 

and organic production was also reported by Jin et al. (2011) where pelargonidin-3-

glucoside was found in significantly higher amounts in organic strawberries when 

compared to conventional fruit. The levels of quercetin-3-glucoside in ‘Strawberry 

Festival’ from the reduced disease control treatment (7.8%) was significantly higher 

than that of conventional and organic fruit (5.6% and 5.8%, respectively). The ferulic 

acid content showed the same pattern, where ‘Strawberry Festival’ from the reduced 

treatment contained significantly higher amount (6.5%) than conventional (5.0%) and 

organic strawberries (4.8%). On the other hand, organic ‘Strawberry Festival’ had 

significantly higher kaempferol-3-glucoside content (6.9%) than fruit from the 

conventional (4.1%) and reduced (4.2%) treatments. All other polyphenolic compounds 

identified were present in significantly lower amounts, regardless of the treatment. 

There was not a significant difference in the levels of catechin, cyanidin, epicatechin, 

kaempferol, caffeic acid, p-coumaric acid and ellagic acid, which were identified in minor 

amounts, between treatments. 

Overall, the major polyphenolic compounds identified in highest concentrations 

from strawberries from different cultivars and disease control treatment belonged to the 

flavonoid family whereas phenolic acids and hydrolysable tannins were measured at 
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much lower concentrations. Results from this study are in agreement with previously 

published data (Lopes da Silva et al., 2002; Aaby et al., 2007; Aaby et al., 2012). In 

addition, the significant higher amounts of pelargonidin-3-glucoside, quercetin-3-

glucoside and ferulic acid in ‘Strawberry Festival’ from the reduced treatment may 

possibly be related to an optimal level of pesticide applied that in turn protects the 

strawberry just enough from disease while enhancing the production and accumulation 

of polyphenolic compounds. 

 

Figure 9. Polyphenolic profile for ‘Strawberry Festival’ from different diseases control 
treatments. 
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 Antioxidant Capacity 

In the first harvest, organic ‘Strawberry Festival’ showed consistently higher 

FRAP, DPPH and TEAC values when compared to the other treatments (Fig. 10). 

These results are in agreement with previously published studies, where TEAC was 

higher in organic strawberries when compared to conventional fruit (Reganold et. al., 

2010). In addition, Jin et al. (2011) reported that organic strawberries have a 

significantly higher activity of antioxidant enzymes and AOC when compared to 

conventional fruit. ‘Strawberry Festival’ from the reduced pesticide treatment had, in 

general, similar or slightly lower FRAP, DPPH and TEAC values compared to 

conventional fruit which was also true for ‘Strawberry Radiance’. In the second harvest, 

there was a similar trend, with organic ‘Strawberry Festival’ showing consistently higher 

FRAP, DPPH and TEAC values compared to the conventional or reduced pesticide fruit 

(Fig. 10).  In addition, ‘Strawberry Festival’ from the reduced pesticide treatment had, in 

general, similar or slightly lower FRAP, DPPH and TEAC values compared to 

conventional fruit which was also true for ‘Strawberry Radiance’. 

The AOC of strawberries significantly decreased during storage, regardless of 

the cultivar, disease control treatment and date of harvest (Fig. 10). In addition, the 

different AOC assays used showed similar decreasing trends, regardless of the cultivar, 

disease control treatment and date of harvest. In the first harvest, there was on average 

a 57.9% decrease in the AOC in conventional ‘Strawberry Festival’, followed by a 56.3 

and 52.1% decrease in fruit from the reduced and organic treatments, respectively. In 

general, there was no significant difference between the AOC of ‘Strawberry Festival’ 

from the conventional and reduced pesticide treatments. Similarly, conventional ‘Florida 
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Radiance’ showed on average a higher decrease in AOC after cold storage (46.8%) 

when compared to fruit from the reduced pesticide treatment (40.7%). Overall, there 

was no significant difference in the AOC of ‘Florida Radiance’ strawberries from the 

conventional and reduced pesticide treatment. For the second harvest, ‘Florida 

Radiance’ strawberries from the conventional treatment showed on average a smaller 

decrease in AOC after seven days of cold storage compared to the reduced pesticide 

fruit (57.1 and 42.2%, respectively). However, there was no significant difference in the 

FRAP, DPPH and TEAC values between ‘Florida Radiance’ strawberries from the 

conventional or reduced pesticide treatments (Fig. 8). In addition, ‘Strawberry Festival’ 

from the organic treatment showed on average the least decrease in AOC throughout 

storage (52.9%) when compared  to conventional (55.4%) and reduced pesticide fruit 

(56.1%).  

Overall, after seven days of cold storage AOC values were on average reduced 

by approximately 50% (Fig. 10). Previous studies showed that strawberry anthocyanins 

and AOC vary significantly among growing environments (Wang and Lin, 2003; Wang 

and Zheng, 2001) but during cold storage both experience the same decrease. 

However, the decrease in AOC did not positively correlate with the total anthocyanin 

content that fluctuated from day to day but did not consistently decrease throughout 

cold storage. On the other hand, TPC was positively correlated with the decrease in 

AOC, both showing approximately 50% decrease in initial values after seven days of 

cold storage. These results further suggest that even though anthocyanins make up the 

majority of the polyphenols in strawberries, other compounds such as vitamin C and 

phenolic acids may also contribute to the overall AOC. 
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Figure 10. Changes in antioxidant capacity of ‘Strawberry Festival’ and ‘Florida 

Radiance’ strawberries from different disease control treatments during storage at 1.5°C 

and 85% RH. F = ‘Strawberry Festival’. R = ‘Florida Radiance’. TE = trolox equivalents. 
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Conclusions 

Results from this study showed that loss of weight during storage was cultivar 

dependent, as ‘Strawberry Festival’ tended to lose more weight during storage 

compared to ‘Florida Radiance’ strawberry. However, fruit from the reduced pesticide 

treatment tended to have on average similar or lower weight loss than strawberry from 

the conventional disease control treatment. Differences in weight loss between cultivars 

and disease control treatments may be a result from variations in the observed 

morphological characteristics of the fruit (i.e., fruit size, pith size or/and achene density). 

Results also showed that weight loss influenced significantly the levels of bioactive 

compounds in strawberries, regardless of the disease control treatments used. Although 

at harvest bioactive contents and AOC were significantly higher in organic fruit, after 

cold storage the differences between organic and reduced pesticide fruit were slight or 

non-significant. Furthermore, fruit from the reduced disease control treatment tended to 

have higher bioactive contents and higher AOC compared to conventional fruit. After 

storage, TPC decreased significantly for all cultivars with no differences between fruit 

from the conventional and the reduced treatments. As for anthocyanins, the 

conventional disease control treatment did not offer better protection from losses than 

the reduced treatment. The major polyphenol compounds found in strawberry fruit were 

flavonoids (i.e., pelargonidin-3-glucoside and quercetin-3-glucoside), regardless of the 

cultivar and disease control treatment used, and smaller amounts of non-flavonoid 

compounds were also detected. However, ‘Strawberry Festival’ from the reduced and 

organic disease control treatments had higher levels of pelargonidin-3-glucoside and 

quercetin-3-glucoside than fruit from the conventional disease control treatment. 
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Overall, strawberries from the reduced pesticide treatment, particularly ‘Florida 

Radiance’, showed a better or similar bioactive content and AOC than fruit from the 

conventional disease control treatment. After seven days of cold storage, both 

strawberry cultivars from the reduced or conventional disease control treatments 

showed comparable results for bioactive compounds and AOC. These results indicate 

that growing strawberries with reduced fungicide applications can be an alternative to 

conventional disease control or organic practices as it reduces fungicide residues and 

production costs while still retaining important bioactive compounds in the fruit. 
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CHAPTER FOUR: 
 ASCORBIC ACID AND MAJOR POLYPHENOLIC COMPOUNDS IN 

STRAWBERRIES AND FRUIT JUICES AND COMPOSITE ANTIOXIDANT CAPACITY 

 

Introduction 

 In the food industry, “antioxidant” foods and beverages have become 

increasingly popular because of their potential health benefits, attributed mostly to their 

bioactive compounds. Therefore, to attract consumers, companies design packages 

that include in their labels words such as "antioxidant", "polyphenol" and/or "superfruit". 

These words can be found on numerous beverages such as nutritional drinks, 

conventional juices, organic juices, smoothies and teas to make them stand out from 

competitors. However, the U.S. Food and Drug Administration (FDA) regulates the 

labeling of the word “antioxidant” and requirements include that the word can only be 

used for nutrients that have a Reference Daily Intake (RDI), recognized antioxidant 

activity and/or must be present as a Daily Reference Value (DRV) of 10% or higher 

(FDA, 2008). Therefore, since there is no established RDI, polyphenolic compounds 

found in foods and beverages cannot be used to claim antioxidant activity (FDA, 2008). 

Nevertheless, attributing the antioxidant activity (AOC) exclusively to vitamins (e.g., 

vitamin C) and, excluding the potential AOC of other compounds such as polyphenols, 

can mask the real antioxidant potential of a particular food or beverage.  

 There is current evidence that polyphenolic compounds not only are powerful 

radical scavengers but they are also involved in other biological mechanisms and are 
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thought to be more bioavailable when consumed in a beverage (Clifford, 2004; Saura-

Calixto et al., 2007). Beverages, particularly fruit juices, also represent a good model to 

measure the AOC of polyphenols because of less interference from dietary fibers, lipids, 

and proteins that can be naturally found in other foods. Further, little data is available on 

the fate of polyphenolic compounds and AOC of fruit juices during traditional consumer 

storage. Finally, there is a need to determine the exact source of AOC in beverages and 

fruit juices, based on their individual polyphenolic profiles. Therefore, the objectives of 

this study were to: 1) determine the relationship between ascorbic acid, polyphenolic 

compounds and AOC in different types of beverages; 2) identify specific polyphenolic 

compounds in selected beverages, and 3) investigate the effect of consumer storage on 

total phenolic compounds and AOC of selected beverages. 

 

Materials and Methods 

 Beverages 

 The beverages used in this study were purchased from three different major 

retail stores in Tampa, Florida, USA, during June and July 2014. A total of 56 beverages 

(3 samples each) including nine nutritional drink, 25 juices, seven organic juices, four 

smoothies and 11 teas were used in this study. Additionally, fresh juice from 

conventional and organic strawberries obtained from local farms in Florida was used as 

a control. The beverages were listed by category and the total volume of the sample 

used from each beverage is shown in parenthesis. 

 Nutritional Drinks: N1 (591 mL), Vitamin Water XXX (The Coca Cola Company, 

Atlanta, GA); N2 (591 mL), Vitamin Water XXX Zero (The Coca Cola Company, Atlanta, 
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GA); N3 (591 mL), 365 Everyday Value Cranberry + Antioxidants (Whole Foods Market, 

Inc., Austin, TX); N4 (591 mL), 365 Everyday Value Pomegranate + Polyphenols 

(Whole Foods Market, Inc., Austin, TX); N5 (3 L), Propel Berry (PepsiCo Inc., Purchase, 

NY); N6 (245 ml), Verve (Vemma Nutrition Company, Tempe, AZ); N7 (245 ml), Verve 

Zero Sugar (Vemma Nutrition Company, Tempe, AZ) (245 ml); N8 (960 mL), Vemma 

(Vemma Nutrition Company, Tempe, AZ); N9 (245 ml), Vemma Renew Juice (Vemma 

Nutrition Company, Tempe, AZ). 

 Fruit Juices: J1 (480 mL), POM Wonderful 100% Pomegranate (POM Wonderful 

LLC, Los Angeles, CA); J2 (480 mL), POM Wonderful Blueberry (POM Wonderful LLC, 

Los Angeles, CA); J3 (480 mL), Stanton Orchards Tart Cherry (Stanton Orchards, 

Leelanau, MI); J4 (1.2 L), Welch's 100% Grape Juice (Welch Foods Inc., Concord, 

Massachusetts); J5 (1.78 L), Ocean Spray Cranberry (Ocean Spray Cranberries, Inc., 

Lakeville-Middleboro, MA); J6 (1.78 L), Ocean Spray Diet Cranberry (Ocean Spray 

Cranberries, Inc., Lakeville-Middleboro, MA); J7 (976 mL), Sunsweet Prune Juice 

(Sunsweet Growers Inc., Yuba City, CA); J8 (1.9 L), Northland Superfruits 100% Juice 

Blueberry Blackberry Acai Juice (Apple & Eve, Port Washington, NY) ; J9 (500 mL), 

Fuze Slenderize Blueberry, Raspberry (The Coca Cola Company, Atlanta, GA); J10 

(960 mL), R.W. Knudson Cranberry (Knudsen & Sons, Inc., Chico, CA); J11 (960 mL), 

R.W. Knudson Mega Antioxidant (Knudsen & Sons, Inc., Chico, CA); J12 (960 mL), 

R.W. Knudson Just Aronia (Knudsen & Sons, Inc., Chico, CA); J13 (355 mL), Tropicana 

Orange Juice (PepsiCo Inc., Purchase, NY); J14 (1.75 L), Tropicana 50 Orange Juice 

(PepsiCo Inc., Purchase, NY); J15 (480 mL), Trader Joe's Tart Cherry (Trader Joe's 

Company, Inc., Monrovia, CA); J16 (960 mL), R.W. Knudson Cranberry Nectar 



79 
 

(Knudsen & Sons, Inc., Chico, CA); J17 (960 mL), R.W. Knudson Just Blueberry 

(Knudsen & Sons, Inc., Chico, CA); J18 (960 mL), R.W. Knudson Just Black Currant 

(Knudsen & Sons, Inc., Chico, CA); J19 (960 mL), R.W. Knudson Mega C (Knudsen & 

Sons, Inc., Chico, CA; blend of apple, concorde grape and aronia juices); J20 (960 mL), 

Lakewood Pure Pomegranate (Lakewood Juices Inc., Miami, FL); J21 (1.75 L), Minute 

Maid Orange Juice (The Coca Cola Company, Atlanta, GA); J22 (1.75 L), Minute Maid 

50 Orange Juice (The Coca Cola Company, Atlanta, GA); J23 (1.36 L), Tropicana 

Farmstand (PepsiCo Inc., Purchase, NY); J24 (1.75 L), Tropicana 50 Pomegranate 

Blueberry (PepsiCo Inc., Purchase, NY); J25 (1.75 L), Minute Maid Pomegranate 

Blueberry (The Coca Cola Company, Atlanta, GA). 

 Organic Fruit Juices: O1 (960 mL), Sambazon Acai, Pomegranate, Blueberry 

(Sambazon Inc., San Clemente, CA); O2 (960 mL), Lakewood Pomegranate with 

Blueberry (Lakewood Juices Inc., Miami, FL); O3 (960 mL), Lakewood Tart Cherry 

(Lakewood Juices Inc., Miami, FL); O4 (960 mL), Lakewood Acai (Lakewood Juices 

Inc., Miami, FL); O5 (960 mL), R.W. Knudson Organic Cranberry (Knudsen & Sons, 

Inc., Chico, CA); O6 (960 mL), R.W. Knudson Acai Berry (Knudsen & Sons, Inc., Chico, 

CA); O7 (1)(960 mL), Lakewood Cranberry (Lakewood Juices Inc., Miami, FL). 

 Fruit Smoothies: S1 (480 mL), Naked Blue Machine (PepsiCo Inc., Purchase, 

NY); S2 (480 mL), Bolthouse Farms (Campbell Soup Company Inc., Camden, NJ); S3 

(355 mL), Odwalla Blueberry B (The Coca Cola Company, Atlanta, GA); S4 (960 mL), 

Trader Joe's Power Berry (Trader Joe's Company, Inc., Monrovia, CA). 

 Teas: T1 (960 mL) Steaz Iced Green Tea Superfruit (The Healthy Beverage 

Company, Doylestown, PA); T2 (960 mL), Steaz Iced Green Tea Blueberry 
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Pomegranate (The Healthy Beverage Company, Doylestown, PA); T3 (960 mL), 

CelebriTea Pomegranate Blueberry (Celebrity Tea LLC, Tampa, FL) ; T4 (960 mL), 

POM Wonderful Lychee Green Tea (POM Wonderful LLC, Los Angeles, CA); T5 (960 

mL), Bai 5 Pomegranate (Bai Brands LLC, Trenton, NJ); T6 (960 mL), Bai 5 Blueberry 

(Bai Brands LLC, Trenton, NJ); T7 (1 L), Yogi Super Antioxidant Green Tea (East West 

Tea Company LLC, Springfield, OR); T8 (1 L), Trader Joe's Blueberry and Pomegranate 

Green Tea (Trader Joe's Company, Inc., Monrovia, CA); T9 (1 L), Trader Joe's Green 

Tea (Trader Joe's Company, Inc., Monrovia, CA); T10 (591 mL), Pure Leaf Sweet Tea 

(PepsiCo Inc., Purchase, NY); T11 (591 mL), Pure Leaf Unsweet Tea (PepsiCo Inc., 

Purchase, NY).  

 Fresh Strawberry Juice: freshly harvested conventional (J26) and organic (O8) 

strawberries were obtained from commercial fields in Florida. Strawberries from each of 

the cultivation methods were harvested twice during the strawberry season in Florida 

(January through April 2014). 

 

 Sample Preparation 

 Samples for analysis were prepared by centrifuging triplicate samples of 20 mL 

of each beverage at 1600 gn for 20 min. The supernatant was then filtered through a 

two-layer Kimwipe and stored at -30 °C until use. Beverages that needed special 

preparation (i.e., dried teas or juice concentrates) were prepared following the 

instructions on the label. For dried teas, one tea bag was submerged into 240 mL of 

boiling water and soaked for three minutes. Juice concentrate (Stanton Orchards Tart 

Cherry) was prepared by mixing one part of juice concentrate with seven parts water. 
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 Fresh strawberry juice was prepared using two replicated samples of 250 g of 

strawberries each. The calyces were removed, and the fruit was homogenized in a 

laboratory blender at high speed for 2 min and the resulting puree immediately frozen 

and kept at -30 °C until use. After thawing, the strawberry puree was again 

homogenized and centrifuged at 1600 gn for 20 min and then filtered through cotton 

cloth. The clear juice was used for analysis. 

 

 Storage 

 The impact of storage on the quality of the juices was determined only on fruit 

containing high levels of TPC. These juices were aronia, blackcurrant, and 

pomegranate. After purchase, bottles containing each of the three different juices were 

opened, samples were collected at day 0 and the remaining of the juice was kept at 4 

°C for 14 days to simulate consumer storage at home. Samples were taken every two 

days and kept frozen at -30 °C until analysis.  

 

Total Ascorbic Acid, Total Phenolic Content, Polyphenolic Profiles and 

Antioxidant Activity 

 Total ascorbic acid (AA), Total phenolic content (TPC), polyphenolic profiles and 

antioxidant activity (AOC) were determined using the methodology described previously 

(See Chapter Three: Material and Methods Section). 
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 Statistical Analysis 

 The Statistical Analysis System computer package (SAS Institute, Inc., 2004) 

was used for the analysis of the data. To determine the differences between beverages 

for each chemical attribute measured, the least significant difference (LSD) at the 5% 

significance level was used. LSD values were also used to compare the polyphenolic 

profiles of aronia, blackcurrant, and pomegranate juice, and for the comparison of 

changes in TPC and AOC after storage. For each beverage, the strength of the 

relationship between TPC or AA content and AOC was measured using the Pearson 

correlation coefficient (r) and the coefficient of determination (r2) and, the significance of 

the relationship was expressed by probability levels (p = 0.05). 

 

Results and Discussion 

 Total Phenolic Compounds and Antioxidant Capacity 

 Ready-to-drink (RTD) beverages are complex mixtures containing water, sugar 

and various other ingredients that can contribute in different ways to the AOC of a 

beverage. For the beverages used in this study, total phenolic compounds (TPC) and 

total ascorbic acid (AA) were the main antioxidants measured. Nutritional drinks used in 

this study, in general, had low amounts of TPC with the exception of Vemma (N8) which 

had a significantly higher TPC compared to the other beverages in this category (Table 

1). The TPC of fruit juices varied significantly, depending on the ingredients used to 

make the juice. For example, Minute Maid Orange Juice (J21) had the lowest TPC (77.2 

mg 100 mL-1) whereas R.W. Knudson Just Black Currant (J18) had the highest TPC 

(545. 3 mg 100 mL-1). Other juices in this category with high TPC included R.W. 
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Knudson Just Aronia, followed by pure pomegranate (J20), POM Wonderful 100% 

Pomegranate, POM Wonderful Blueberry, Mega C (J19; contains a blend of apple, 

concorde grape, and aronia juices) and tart cherry (J15). Results from the present study 

are in agreement with those previously published by Seeram et al. (2008) where 

pomegranate juice also showed higher TPC than blueberry, cranberry, and orange 

juices.  

 Aronia (also known as chokeberry) and blackcurrant berries have been shown to 

contain major polyphenol compounds such as anthocyanins and proanthocyanidins 

(Denev et al., 2012; Wojdylo et al., 2013) thus these polyphenols most likely contributed 

to overall TPC of the beverages produced from these fruits. In addition, beverages 

containing pomegranate juice were also high in TPC probably due to the contribution of 

its major polyphenols, ellagitannins such as ellagic acid, gallic acid and punicalagins 

(Qu et al., 2012). Further, Lakewood Pure Pomegranate (J20) had a significantly higher 

TPC compared to POM Wonderful 100 % Pomegranate Juice (J1) due to the type of 

processing methods used in the production of POM Wonderful 100 % Pomegranate 

Juice. In fact, processing methods such as filtering or fining have been shown to lower 

TPC in pomegranate juices (Fischer et al., 2011). In addition, pomegranate juice 

showed significantly lower TPC than blackcurrant and aronia juice yet AOC values were 

not different when compared to the other two juices. These results suggest that 

polyphenolic compounds found in pomegranate juice may be more efficient at radical 

scavenging than polyphenols found in other beverages (Table 1). Besides, the TPC 

may also vary depending on which part of the fruit is used for juicing (Fischer et al., 

2013). However, intrinsic properties of pomegranate juice (i.e., pH, chemical structure, 
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enzymes and co-pigments, metallic ions and sugars) in combination with the magnitude 

and duration of heating, storage temperature and time, and exposure to oxygen seem to 

have an influence on polyphenolic degradation (Patras et al., 2010). Even though 

Lakewood Pure Pomegranate (J20) showed higher TPC, higher anthocyanin 

degradation was observed in pomegranate juices after storage at 25 °C when compared 

to 5 °C (Vegara et al., 2013). Since all types of Lakewood and R.W. Knudson brand 

juices used in this study are usually commercialized at room temperature, one may 

expect that degradation in anthocyanins and other polyphenolic compounds are likely to 

occur from processing to consumption of the juice. 

 Among the organic juices evaluated, Lakewood Pomegranate with Blueberry 

(O2) had the highest TPC (184.9 mg 100 mL-1) which was comparable to non-organic 

juices containing pomegranate and blueberry (J24 and J25). Lakewood Cranberry juice 

(O7) had the lowest TPC among the organic juices (75.8 mg 100 mL-1) while non-

organic juices containing cranberry showed similar (J5 and J16) or higher (J10) TPC. 

The differences between non-organic and organic juices containing similar ingredients 

may be due to several factors including formulation (i.e., water content) and processing 

techniques. Smoothies were, in general, low in TPC with the exception of Trader Joe’s 

Power Berry (S4; 181.2 mg 100 mL-1). Teas had variable TPC, with the highest value 

(99.0 mg 100 mL-1) obtained for Trader Joe’s Green Tea (T9). Green tea products 

contain mostly flavonoids, known as catechins, with (-) epigallocatechin-3-gallate 

representing about 50 to 80% of total catechin contents (Bansal et al., 2012). 

 Since strawberry was considered to be the most popular beverage flavor (Sloan, 

2014) and because the fruit is considered an excellent source of vitamin C and 
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polyphenols, juice from fresh strawberries was used as a control. Strawberry juice from 

conventionally-grown fruit had similar TPC compared to Tropicana Orange Juice (J13) 

but significantly higher TPC than for example juices containing tart cherry (J3), 

cranberry (J5 and J16), superfruits (J8) and added antioxidants (J11). Strawberry juice 

from organic fruits had similar TPC compared to organic juice containing pomegranate 

and blueberry (O2) but significantly higher TPC when compared to strawberry from 

conventionally-grown fruit (J26) and to all other organic juices used in this study. 

 

Table 1. Total phenolic content, total ascorbic acid content and antioxidant capacity of 
selected beverages. 
 
Beverage 

TPCa  (mg 
100 mL-1) 

AA (mg 
100 mL-1) 

FRAP (µmol 
TEb 100 mL-1) 

DPPH (µmol 
TE 100 mL-1) 

TEAC (µmol 
TE 100 mL-1) 

  

Nutritional Drinks     
N1 NDc 39.1 167.6 252.8 228.1   
N2 ND 41.2 193.1 368.3 258.6   
N3 ND 6.69 82.3 82.8 225.4   
N4 ND 5.61 75.9 62.5 219.8   
N5 ND 7.45 61.6 76.3 79.3   
N6 73.1 50.71 909.5 940.4 1097.7   
N7 72.9 120.9 961.8 1004.3 1049.1   
N8 229.3 129.6 1171.3 1082.3 1442.4   
N9 65.5 130.2 1001.9 1064.3 1188.8   
LSD0.05 3.7 3.3 89.4 90.7 225.1   
        
Fruit Juices        
J1 317.4 ND 1782.2 1719.6 2802.0   
J2 311.2 ND 1716.5 1441.4 2596.4   
J3 149.5 ND 437.1 527.2 460.5   
J4 218.0 34.9 859.1 778.4 1090.8   
J5 79.6 31.8 323.1 334.9 366.1   
J6 ND 32.1 240.5 253.9 269.8   
J7 226.1 ND 881.1 629.4 948.0   
J8 103.0 54.2 413.6 340.3 470.8   
J9 ND 60.7 267.3 325.6 325.8   
J10 176.2 ND 478.5 679.6 974.1   
J11 92.8 70.0 458.2 486.3 682.8   
J12 511.3 ND 3277.9 2983.3 4261.8   
J13 153.5 38.6 203.4 227.5 267.8   
J14 83.6 53.5 222.7 295.9 317.6   
J15 280.9 ND 906.3 942.5 1468.3   
J16 96.1 ND 261.8 342.0 306.5   
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Table 1 (continued)       

 
Beverage 

TPCa  (mg 
100 mL-1) 

AA (mg 
100 mL-1) 

FRAP (µmol 
TEb 100 mL-1) 

DPPH (µmol 
TE 100 mL-1) 

TEAC (µmol 
TE 100 mL-1) 

  

J17 220.0 ND 856.5 737.8 1180.0   
J18 545.3 ND 3140.4 2919.5 4139.6   
J19 294.5 460.6 2851.4 2558.0 3617.3   
J20 336.2 ND 3281.8 3138.3 4537.3   
J21 77.2 33.4 266.8 257.1 367.5   
J22 95.6 40.8 136.5 239.5 310.1   
J23 108.1 41.7 405.9 340.9 372.5   
J24 160.3 44.1 628.8 471.9 765.8   
J25 173.9 44.8 560.7 501.0 669.6   
J26 153.4 41.2 591.4 939.8 1618.2   
LSD0.05 5.2 7.4 68.9 145.4 359.4   
        
Organic Fruit Juices 
O1 153.7 76.01 667.8 906.6 824.0   
O2 184.9 ND 1260.2 1280.5 1352.9   
O3 169.3 ND 616.0 638.9 839.5   
O4 148.2 ND 563.4 438.2 591.3   
O5 146.0 ND 316.8 458.0 598.8   
O6 76.1 ND 189.5 198.2 242.7   
O7 75.8 ND 203.6 225.7 271.4   
O8 184.1 45.06 638.4 1045.6 1973.2   
LSD0.05 2.76 4.4 45.5 138.4 155.3   
        
Fruit Smoothies 
S1 70.1 26.2 323.4 294.7 370.3   
S2 71.1 27.8 333.7 259.4 339.7   
S3 75.8 ND 281.3 233.9 334.2   
S4 181.2 ND 749.8 711.8 972.0   
LSD0.05 3.3 1.2 37.8 90.2 149.1   
        
Teas        
T1 ND ND 176.9 267.9 265.4   
T2 ND ND 190.2 381.1 291.6   
T3 87.3 ND 426.1 521.4 700.3   
T4 93.3 ND 800.9 694.0 900.5   
T5 ND ND 198.9 229.7 209.3   
T6 ND ND 158.7 330.4 185.0   
T7 43.2 ND 280.9 331.1 363.3   
T8 88.6 7.1 457.2 541.1 801.6   
T9 99.0 4.3 496.8 594.2 896.6   
T10 ND ND 198.0 322.8 269.4   
T11 ND ND 189.0 302.8 286.2   
LSD0.05 8.5 0.6 14.4 121.9 108.2   

LSD0.05
d  4.8 2.6 61.1 126.9 280.2   

aTPC=Total Phenolic Content.  
bTE = trolox equivalents.  
cND = Not detectable.  
dLSD for all beverages, regardless of the category. 
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 Chemical assays used to determine AOC of food and beverages give a good 

insight on how antioxidant vitamins and polyphenol compounds may act as in vivo 

radical scavengers (Lewandowska et al., 2016). Overall, the three different AOC assays 

used in this study gave similar results in terms of ranking the beverages according to 

their potential AOC (Table 1). AOC of nutritional drinks was considerably low except for 

all Vemma products (N6-N9). Vemma (N8) had the highest FRAP (1171.3 µmol TE 100 

mL-1) and TEAC (1442.4 µmol TE 100 mL-1) values but the DPPH values obtained for 

Vemma (N8) were not significantly different from that of Verve Zero (N7) and Vemma 

Renew (N9). The fruit juice category contained the beverages with the highest AOC 

values overall, with pomegranate (J20) and aronia (J12) juices showing the highest 

values for both FRAP (3281.8 and 3277.9 µmol TE 100 mL-1, respectively) and TEAC 

(4537.3 and 4261.8 µmol TE 100 mL-1, respectively). However, DPPH values obtained 

for pomegranate juice (J20) were significantly higher (3138.3 µmol TE 100 mL-1) than 

those obtained for all other juices. Results from the present study were similar to those 

previously reported by Seeram et al. (2008), where pomegranate juice also had higher 

FRAP, DPPH and TEAC values compared to grape, blueberry, cranberry and orange 

juices. The FRAP value of blackcurrant juice (J18; 3140.4 µmol TE 100 mL-1) used in 

this study, was comparable to values previously reported for whole blackcurrant fruit 

(2993 ± 133 µmol TE 100 mL-1) whereas other fruit juices such as pomegranate showed 

lower values than those previously published (Podsedek et al., 2014). The lowest FRAP 

values were obtained for orange juices (J22 and J13). DPPH and TEAC values were 

also low and not significantly different for beverages in the fruit juice category that 

contained either several different juice blends, orange juice or the least percentage of 
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juice reported in the label (Table 1). AOC of Pure Pomegranate (J20) was significantly 

higher than that of POM Wonderful (J1). These differences in AOC between juices 

containing 100% pomegranate juice were most likely due to the removal of ellagitannins 

during processing of POM Wonderful (J1). Because these polyphenolic compounds can 

contribute to an astringent taste, the juice is often processed to reduce the levels of 

ellagitannins (Quideau et al., 2011). However, gallic acid, ellagic acid and punicalagins 

which are also found in high quantities in POM Wonderful do not contribute to the 

astringent taste of the pomegranate beverage (Qu et al., 2012; Fischer et al., 2013). 

Furthermore, in the beverage POM Wonderful Blueberry (J2) the blend of 15 % 

blueberry juice with 85 % pomegranate juice did not contribute to differences in the 

FRAP or TEAC values. However, DPPH values were significantly higher in the 100% 

pomegranate juice (J1) compared to POM Wonderful Blueberry (Table 1).  

 AOC was also determined between products that were labeled with the same 

fruit name, for example, tart cherry products (J15, O3, J3), acai products (O4, O6), and 

cranberry products (J10, O5, O7). However, the AOC value could not be attributed to 

the fruit stated on the label since these beverages contained several other fruit 

concentrates that may have also influenced the total AOC of the juice blend (Somogyi, 

et al., 1996). The blending of juices during processing may cause an increase or 

decrease in desired nutrients (i.e., polyphenols and AA) and influence AOC accordingly.  

 Although juicing of strawberries has been shown to contribute to lower FRAP and 

TEAC values (Yvonne et al., 2005), FRAP and DPPH values of organic strawberry juice 

(O8) were similar to that of conventional strawberry juice (J26) but the TEAC values 

were higher in organic fruit juice. Conventional strawberry juice (J26) had similar FRAP 
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values compared to Tropicana 50 Pomegranate Blueberry (J25) but significantly higher 

AOC than products including 100 % orange juice (J13 and J21), tart cherry (J3), and 

cranberry (J5, J6, J10). In addition, conventional strawberry juice had similar DPPH and 

TEAC values to that of tart cherry (J15) but significantly higher AOC than grape juice 

(J3), prune juice (J7) and blueberry juice (J17). Organic strawberry juice (O8) had 

similar AOC when compared to beverages containing pomegranate and blueberry (O1, 

O2) and tart cherry (O3) but had significantly higher AOC values than products 

containing acai (O4, O6) and cranberry (O5, O7). When compared to conventional 

strawberry juice (J26), organic strawberry juice (O8) had similar FRAP and DPPH 

values but significantly higher TEAC values most likely due to their significantly higher 

TPC (Table 1). 

 Organic pomegranate with blueberry (O2) showed the highest values for FRAP 

(1260.2 µmol TE 100 mL-1) and DPPH (1280.5 µmol TE 100 mL-1) but organic 

strawberry juice (O8) had higher TEAC values (1973.2 µmol TE 100 mL-1). Organic 

cranberry (O6) and organic acai berry (O7) juices had the lowest AOC amongst the 

organic juices. In the smoothie category, AOC of Power Berry (S4) was significantly 

higher than that of other smoothies. In the tea category, the POM Pomegranate Lychee 

Green Tea (T4) had significantly higher FRAP values (800.9 µmol TE 100 mL-1) 

compared to other teas.  However, DPPH or TEAC values were not significantly 

different than that of Trader Joe's Green Tea (T9) or Trader Joe's Blueberry and 

Pomegranate Green Tea (T8), probably due to their higher vitamin C content (7.1 and 

4.3 mg 100 mL-1). 
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 Overall, regardless of the beverage category and the AOC assay used, the 

relationship between AOC and TPC was significantly high (p<0.0001). None of the 

beverages with high AOC contained significant amounts of AA but contained the highest 

amounts of TPC, except for beverage Fuze Slenderize Blueberry, Raspberry (J19) that 

did not contain polyphenolic compounds but significant amounts of AA (Table 1).  

 

 Polyphenolic Profiles 

 Out of the 56 beverages used in this study, the juices that contained the higher 

TPC and AOC (i.e., aronia, blackcurrant and pomegranate) were selected for further 

analysis. Aronia, blackcurrant and pomegranate fruits and their juices are of special 

interest considering the higher correlation between TPC and AOC with reported health 

benefits (Scalbert et al., 2005). Even though there are many studies that report the TPC 

and AOC of pomegranate juice, studies on aronia and blackcurrant are scarce.  

 In this study, several major polyphenol compounds were identified from 

blackcurrant, aronia and pomegranate juices (Fig. 11). The major polyphenolic 

compounds identified from aronia juice were myricetin (10 %), malvidin (6%), caffeic 

acid (4%), kaempferol-3-glucoside (4%), quercetin-3-glucoside (3%), chlorogenic acid 

(4%), pelargonidin-3-glucoside (2%) and delphinidin (1%). Taheri et al. (2013) also 

reported high amounts of anthocyanins and proanthocyanins in aronia juice. Other 

polyphenolic compounds were also identified but in quantities lower than 1% (i.e., 

catechin, epicatechin, p-coumaric acid, ferulic acid, kaempferol, cyanidin, malvidin-3-

glucoside, cyanidin-3-glucoside, pelargonidin). In blackcurrant juice, the major 

polyphenolic compounds identified were myricetin (8%), pelargonidin (7%), kaempferol-
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3-glucoside (6%), ferulic acid (5%), malvidin (5%), quercetin-3-glucoside (5%), 

pelargonidin-3-glucoside (4%) and delphinidin (2%) (Fig. 11). Other compounds were 

also identified but at levels below 2% (i.e. catechin, epicatechin, p-coumaric acid, caffeic 

acid, kaempferol, chlorogenic acid, cyanidin, malvidin-3-glucoside, cyanidin-3-

glucoside). These results agree with previously published studies where high amounts 

of anthocyanins were also detected in blackcurrant juices (Parkar et al., 2014). 

 

Figure 11. Polyphenolic profiles for aronia, blackcurrant, and pomegranate fruit juices. 
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 In pomegranate juice, epicatechin (4%), catechin (3 %), ellagic acid (2%), ferulic 

acid (2%) myricetin (2 %), quercetin (2%), p-coumaric acid (2%), cyanidin (1%) and 

pelargonidin (2%) were the major polyphenolic compounds identified. Mousavinejad et 

al. (2009) also reported that the major compounds identified included from pomegranate 

juices were flavonols. Chlorogenic acid, kaempferol, delphinidin, malvidin-3-glucoside, 

cyanidin-3-glucoside, pelargonidin-3-glucoside, malvidin, kaempferol-3-glucoside 

quercetin-3-glucoside were identified at quantities below 1%.  

 Overall, aronia and blackcurrant juices contained significantly higher amounts of 

myricetin and malvidin compared to pomegranate juice (Fig. 11). Pomegranate juice 

contained significantly higher amounts of epicatechin and catechin than aronia or 

blackcurrant juices but lower amounts of other polyphenolic compounds. These results 

parallel those found for TPC, where pomegranate juice had significantly lower TPC than 

blackcurrant and aronia juice (Table 1). Thus, aronia and blackcurrant showed 

significantly higher TPC with a correspondingly higher amount of individual polyphenolic 

compounds (Fig. 11). Furthermore, these results suggested that AOC might not 

necessarily be related to overall TPC but rather to a synergistic effect between 

polyphenolic compounds at an ideal ratio that probably yields greater free radical 

scavenging potential. For example, pomegranate juice has significantly lower TPC than 

blackcurrant and aronia juices but did not show significantly different in AOC. The 

individual polyphenolic compounds found in higher quantities in pomegranate juice 

(catechin, epicatechin) may, therefore, be more efficient as radical scavengers by 

potentially creating a unique synergism with the other polyphenolic compounds 

identified.  
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 Total Ascorbic Acid and Antioxidant Capacity 

 Ascorbic acid (AA; vitamin C) has been shown to have powerful antioxidant 

properties (Loewus and Loewus, 1987). Normally found in whole fruits, adding vitamin C 

to beverages has become increasingly popular not only because of its known 

antioxidant activity but also to increase the nutrient content and/or to provide an 

extended shelf-life by delaying oxidation (Manso et al., 2001). In this study, AA was 

detected in the nutritional drink and juice categories, and also in beverages to which it 

was added during processing (Table 1). The addition of AA has been shown to 

positively affect AOC in apple and other fruit juices possibly due to its own AOC or 

through protecting juice’s phenolic acids from oxidation (Miller and Rice-Evans, 1997; 

Kolniak-Ostek et al., 2013).  

  Results from the present study showed that AA content was not in agreement 

with the AA/vitamin C contents listed on the beverage nutrition label (data not shown). 

This disparity could have been caused by several factors including the complex 

matrices of the beverages, the form of vitamin C added to the beverage during 

production (i.e., L-ascorbic acid, sodium ascorbate, calcium ascorbate or ascorbyl 

palmitate), and/or to the method used for processing the juice. For example, 

pasteurization of juice has shown to significantly reduce vitamin C (Yvonne et al., 2005; 

Hiatt et al., 2011) whereas PEF or HPP treatments result in higher retention of AA and 

polyphenols in juice. Further, the addition of synthetic AA to beverages has shown to be 

only 5% active compared to the natural AA, and this may lead to a decreased AOC 

(Rodríguez-Roque et al., 2015). The low amounts of AA measured could also be related 

to the time-temperature history during storage which also negatively affects AOC 
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(Klimczak et al., 2007). In addition, since vitamin C is light sensitive, the type of 

packaging may also play an important role in its degradation as most of the beverages 

were filled into either clear glass or clear plastic bottles. However, the amounts of AA 

measured in the beverages used in this study seemed to only have had a minor 

contribution to the AOC (Table 1). This was obvious in the beverages with high TPC 

and AOC that contained insignificant amounts of naturally occurring vitamin C, and also 

in the beverages that had low AOC and contained an added form of vitamin C but had 

no detectable phenolic compounds. The beverage Vemma (N8) had significantly higher 

TPC and AOC values than its counterparts Verve Zero (N7) and Vemma Renew (N9) 

which contained similar AA but differentiated only in their TPC, suggesting that TPC 

was the main contributor for its AOC. Even beverages such as R.W. Knudson Mega C 

(J19; contains a blend of as apple, concorde grape, and aronia juices), that listed 600 

mg of vitamin C per serving (240 mL), did not have considerably higher AOC than 

beverages that listed lower AA content.  

 In conventional strawberry juice (J26), vitamin C content was similar to that of 

orange juice (J13, J22) but significantly higher than grape (J4) and cranberry juice (J5, 

J6). Organic strawberry juice (O8) had significantly higher AA content than juice from 

conventional strawberries and was one of the only two beverages in the organic juice 

category (O1 and O8) with detectable AA. It is interesting to note that the juices with 

highest AOC did not contain any detectable AA but had the highest TPC. The 

contribution of AA to the total AOC of berries has shown to have only a minor effect 

when compared to polyphenolic compounds. For example, Aaby et al. (2007) reported 

that the contribution of AA to the AOC of strawberries was 24% whereas individual 
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polyphenols such as ellagitannins, anthocyanins and flavanols contributed 42%. In 

addition, polyphenolic content in juices from Rubus fruit, oranges, apples and grapes 

was positively correlated with the majority of their AOC whereas AA had only a minor 

contribution (Wang et al., 1996; Deighton et al., 2000). 

 

 Effect of Storage on Total Phenolic and Antioxidant Capacity of 

 Aronia, Blackcurrant and Pomegranate Juices 

 Commercial bottles of juices from brands such as Lakewood and R.W. Knudson 

normally contain about 960 mL of juice in a very concentrated form therefore, it is 

difficult for one consumer to use the contents of the entire bottle at once. Consequently, 

these juices are usually stored under refrigerated temperatures at home and consumed 

as pleased. However, the effect of refrigerated storage at home after opening the 

bottles as well as the contact with air may affect the TPC of the juices and their potential 

AOC. Furthermore, since polyphenolic compounds are not officially recognized as 

nutrients the expiration date on the bottle does not take these compounds into 

consideration.   

 In the present study, after opening the bottles, aronia, blackcurrant and 

pomegranate juices were stored under simulated consumer conditions (refrigerator at 

4°C) for 14 days, to evaluate the effect of storage on TPC and AOC of the juices. 

Results showed significant losses in the TPC of aronia and blackcurrant juices during 

14 days of storage (Fig. 12). Pomegranate juice, on the other hand, showed no 

significant losses after 14 days of storage. These results may be related to the lower 

concentration of anthocyanins in pomegranate juice compared to aronia and 
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blackcurrant juices. Overall, TPC in pomegranate juice was significantly lower than in 

aronia and blackcurrant juice which is in agreement with the results obtained for 

individual polyphenolic compounds (Fig. 11). In addition, results from this study showed 

that there is a significant variation in TPC between batches of juices, particularly for the 

aronia juice. Therefore, the amount of bioactive compounds that are available for 

consumption and their potential health benefits can vary tremendously between 

individual batches from each juice. 

 

Figure 12. Total phenolic contents of aronia, blackcurrant, and pomegranate juices 
during 14 days of simulated consumer storage at 4°C. 
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from the two AOC assays used were also significantly different but the pattern was 

similar in that there was little difference between day 0 and day 14 (Fig 13). For 

pomegranate juice, the results from the two AOC assays were not significantly different 

and the juice showed no significant reduction in AOC after 14 days of storage (Fig 13). 

The non-significant reduction of TPC in pomegranate juice was most likely related to the 

fact that fewer anthocyanins but more flavonols and phenolic acids are found in 

pomegranate juice when compared to blackcurrant and aronia juices (Giusti et al., 2007; 

González-Molina et al., 2009; Schrage et al., 2010; Denev et al., 2012). 

 

Figure 13. Antioxidant capacity of aronia, blackcurrant and pomegranate juices during 
14 days of simulated consumer storage at 4°C. 
 

 There was no significant difference between batches of juices for FRAP whereas 

DPPH measurements showed a significant difference between batches of juices. FRAP 
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pomegranate juice. Therefore, these results emphasize the importance of using multiple 

assays to measure AOC in fruit juices and other foods since certain antioxidants have 

been shown to react differently with an introduced oxidant (Huang et al., 2005). Overall, 

the AOC assays used in this study showed a significant correlation with TPC 

(p<0.0001).  

 

Conclusions 

 Results from this study showed that beverages containing high amounts of TPC 

also have a higher AOC which can be related to a synergistic interaction between 

multiple polyphenolic compounds. Even though vitamin C has proven to be a powerful 

antioxidant, the addition of synthetic forms of the vitamin showed little effect on AOC but 

could potentially help stabilize the polyphenolic compounds and protect them from 

oxidation. The following fruit juices contained the highest amount of TPC and showed 

the highest AOC amongst all beverages evaluated:  Blackcurrant (J18) > Aronia (J12) > 

Pure Pomegranate (J20) > POM 100% Pomegranate (J1) > POM Blueberry (J2) > 

Mega C (J19) > Tart Cherry (J15). Major polyphenolic compounds identified in aronia, 

blackcurrant, and pomegranate juice were anthocyanins, hydroxycinnamic acids, and 

flavonols. When held for 14 days at 4 °C, TPC of aronia, blackcurrant, and pomegranate 

juices showed to be relatively stable throughout storage. Overall, results from this study 

suggest that TPC and AOC in processed fruit juices are relatively stable during cold 

storage even when the bottles have been exposed to air. Finally, since numerous 

factors can influence the AOC of foods and beverages, further research needs to be 

done to establish a relationship between polyphenols and major food components such 
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as sugars, lipids, proteins and fiber that together make up the complex matrices of fruits 

and their beverages. 
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CHAPTER FIVE: 
ANTIOXIDANT CAPACITY OF SYNTHETIC INDIVIDUAL POLYPHENOLIC 

COMPOUNDS AND THEIR MIXTURES COMPARED TO STRAWBERRY FRUIT 

 

Introduction 

 Dietary reference intake (DRI) is a system developed by the Institute of Medicine 

that provides the most current scientific knowledge of nutrient needs for healthy people. 

The recommended dietary allowance (RDA) guidelines list the average daily level of 

nutrients’ intake sufficient to meet the requirements established by the DRI for healthy 

people (USDA, 2016). Strawberries provide several micronutrients including several 

vitamins and minerals in minute quantities. The most recognized nutrient in strawberries 

is ascorbic acid (vitamin C) which is well known for its health benefits (Loewus and 

Loewus, 1987). In healthy adults, the RDA for vitamin C is 60 mg day-1 which can easily 

be met with an average intake of about 100 g of strawberries a day (USDA, 2016). 

Strawberries also contain polyphenolic compounds which in the last decade, have been 

acclaimed for their health promoting benefits. However, these compounds are not 

considered nutrients and thus so far there is no official recommendation for daily dietary 

intake. In addition, data is limited and so determining a model for polyphenolic dietary 

intake is difficult to establish (Prior et al., 2005). Studies that used high doses of 

synthetic polyphenolic compounds showed antagonistic, pro-oxidant rather than 

antioxidant effects resulting in a decrease in cell defense mechanisms and potentially 

induction of apoptosis of healthy cells (Hercberg et al., 1998; Metodiewa et al., 1999). 
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These results suggest that polyphenols are only a minute part of the diet and that their 

antioxidant properties in humans seem to be enhanced when these compounds are 

ingested in their natural form, from fruits and vegetables.  

 Several studies have shown the ability of polyphenolic compounds to fight free 

radicals (Gong et al., 2010), display anticancer properties by inhibiting cancer growth 

and stimulating apoptosis of cancer cells (Seeram et al., 2006), reduce inflammation by 

inhibiting inflammatory proteins and oxidative stress (La et al., 2009; Mukai and Sato, 

2010) and even showed anti-microbial properties (Badjakov et al., 2008). Results from 

these studies suggest that polyphenolic compounds may have a potential to be used as 

emerging treatments of several health conditions. In addition, because of their 

acclaimed health benefits, there is a growing interest to increase the amount of 

polyphenolic compounds in the human diet either by using functional foods or dietary 

supplements. However, there is a lack of information available on the specific amounts 

necessary to promote antioxidant effects in humans or whether individual or multiple 

polyphenolic compounds should be used to positively impact human health. Reber et al. 

(2011) showed that there are unique interactions between polyphenolic compounds 

found in strawberries that may either lead to antioxidant or pro-oxidant effects. In 

addition, Hercberg et al. (1998) suggested that the optimal effect of antioxidant vitamins 

(e.g., beta-carotene, vitamins C and E) may be expected only when these are given in 

combination with other nutrients, at levels similar to those found in a healthy diet. This 

synergistic effect suggests that when included in functional foods or in dietary 

supplements, multiple polyphenolic compounds should be used since this is how they 

are found in nature. In fact, Grootveld and Halliwell (1986) suggested that some 
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polyphenolic compounds are unable to act as radical scavengers on their own and thus 

may have reduced AOC compared to when included in a mixture.  

 The chemical structure of polyphenolic compounds and whether these are 

present in glycoside or aglycone forms may also impact the AOC of foods (Fukumoto 

and Mazza, 2000). Structurally important features that define the AOC of polyphenolic 

compounds include the hydroxylation patterns, in particular the 3’, 4’-dihydroxyl catechol 

group in the B-ring which gives the structure higher stability and participates in more 

electron delocalization; the planarity of the molecule or the presence of 2,3-unsaturation 

in conjugation with a 4-oxo-function in the C-ring which has shown to be responsible for 

electron delocalization from the B-ring; and the 3- and 5-OH groups with 4-oxo function 

in the A and C rings (Halliwell, 1990; Shahidi and Wanasundara, 1992; Huang et al., 

2005). Glycosylation seems to reduce AOC by blocking the 3-hydroxyl group in the C-

ring because of the addition of sugar to the polyphenol structure. On the other hand, 

aglycones have shown to have superior AOC since an additional sugar molecule is 

lacking in its structure (Shahidi, 1992). 

 Strawberries contain several polyphenolic compounds and also ascorbic acid 

which have been shown to possess antioxidant activity (Hannum, 2004). The major 

polyphenolic compounds in strawberries include pelargonidin, cyanidin, ellagic acid, 

quercetin, kaempferol, catechin, epicatechin, caffeic acid, p-coumaric acid and ferulic 

acid. Most of these compounds are naturally present in strawberry fruit in their 

glycosylated forms (Clifford, 2000; Laura et al., 2009). One study reported the AOC of 

some individual compounds found in strawberry fruit but the authors did not use the 

same concentrations naturally found in the fruit. Besides, this study did not consider 
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nutrients naturally occurring in the fruit (e.g., sugars, vitamins) and thus did not emulate 

the natural state and/or concentrations of polyphenolic compounds found in 

strawberries (Reber et al., 2011). Since anthocyanins, flavonols, and phenolic acids 

have shown to make up the majority of phytochemical compounds in strawberries, it is 

important to determine if they are the major contributors to the overall AOC of 

strawberry fruit. Therefore, the objectives of this study were to: 1) determine the 

relationship between chemical structure and  AOC of major individual strawberry 

phytochemicals and mixtures of aglycones and glycosides, and 2) identify the specific 

source of AOC in strawberry fruit by creating a synthetic replica of a strawberry 

(“Powerberry”) containing the same amounts of each major individual strawberry 

polyphenolic compounds as well as vitamin C, fructose and glucose and compare its 

AOC to that of different strawberry cultivars.  

 

Material and Methods 

 Preparation of Fruit Extracts 

 Strawberry cultivars Sweet Sensation®, ‘Strawberry Festival’, ‘Florida Radiance’ 

and ‘Winterstar’ were harvested twice from commercial fields in Florida and sorted by 

color and freedom of defects upon arrival to the laboratory. Strawberry samples for 

analysis were prepared using two replicated samples of 250 g of strawberries each. The 

calyces were removed, and the fruit was homogenized in a laboratory blender at high 

speed for 2 min and the resulting puree immediately frozen and kept at -30 °C until use. 

After thawing, strawberry puree was again homogenized, centrifuged at 1600 gn for 20 

min, filtered through cotton cloth and the clear juice used for analysis. 
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Table 2. Major polyphenolic compounds, vitamins, and sugars, and their amounts found 
in strawberries. 

Class Group Compound Amount  

(mg100 g-1) 

References 

Flavonoids Anthocyanidins Cyanidin 0.3-18.5  Määttä- Riihinen et 

al., 2004; Del Pozo-

Insfran et al., 2006; 

Reber et al., 2011; 

Bhagwat et al., 

2013; Phenol-

Explorer, 2015 

     
  Pelargonidin 4.1-109.0 Del Pozo-Insfran et 

al., 2006; Reber et 

al., 2011; Bhagwat 

et al., 2013; Phenol-

Explorer, 2015 

     

 Anthocyanins 

 

Cyanidin-3-

glucoside 

0.1-6.7  Määttä- Riihinen et 

al., 2004; Almeida et 

al., 2007; Lopes da 

Silva et al., 2007; 

Buendía et al., 

2010; Kelebek and 

Selli, 2011; Aaby et 

al., 2012; Phenol-

Explorer, 2015 

     
  Pelargonidin

-3-glucoside 

4.3-68.3  Määttä- Riihinen et 

al., 2004; Almeida et 

al., 2007; Lopes da 

Silva et al., 2007;  

Buendía et al., 

2010; Kelebek and 

Selli, 2011; Aaby et 

al., 2012; Phenol-

Explorer, 2015 

 Flavonols 

 

Quercetin 0-4.4 Häkkinen and 

Törrönen, 2000; 

Bhagwat et al., 2013  
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Table 2 (continued) 

Class Group Compound Amount  

(mg100 g-1) 

References 

 

 

 

 

 

 

Kaempferol 

 

0-2.3 

 

Häkkinen and 

Törrönen, 2000; 

Reber et al., 2011; 

Bhagwat et al., 2013  

     
  Quercetin-3-

glucoside 

0.3-5.2 Almeida et al., 2007; 

Reber et al., 2011; 

Aaby et al., 2012  

     
  Kaempferol-

3-glucoside 

0.1-2.1 Määttä- Riihinen et 

al., 2004; Almeida et 

al., 2007; Kelebek 

and Selli, 2011; 

Reber et al., 2011; 

Aaby et al., 2012; 

Phenol-Explorer, 

2015 

     
 Flavanols 

 

Catechin 0-18.7 Bhagwat et al., 

2013; Phenol-

Explorer, 2015 

  Epicatechin 0-2.2 Mattila et al., 2006; 

Bhagwat et al., 

2013; Phenol-

Explorer, 2015 

     

Phenolic acids 

 

Hydroxycinnamic 

acids 

 

p-Coumaric 

acid 

0.9-4.9 Häkkinen and 

Törrönen, 2000; Del 

Pozo-Insfran et al., 

2006; Almeida et al., 

2007; Reber et al., 

2011; Phenol-

Explorer, 2015 
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Table 2 (continued) 

Class Group Compound Amount  

(mg100 g-1) 

References 

  Ferulic acid 0.6-2.1 Buendía et al., 

2010; Kelebek and 

Selli, 2011 

     
  Caffeic acid 0.3-5.0 Del Pozo-Insfran et 

al., 2006; Kelebek 

and Selli, 2011 

     
 Hydroxycinnamic 

quinic esters 

 

Chlorogenic 

acid 

 

1.3-5.4 

 

Del Pozo-Insfran et 

al., 2006; Aaby et 

al., 2012 

 

Hydrolyzable 

tannins 

 

Ellagitannins 

 

Ellagic acid 

 

0- 52.2  Häkkinen and 

Törrönen, 2000; 

Määttä- Riihinen et 

al., 2004; Del Pozo-

Insfran et al., 2006; 

Almeida et al., 2007; 

Buendía,et al., 

2010; Reber al., 

2011; Aaby et al., 

2012; Phenol-

Explorer, 2015 

Vitamins 

 

Water-soluble  

 

Ascorbic 

acid 

 

23.8–84.7 Szajdek and  

Borowska, 2008; 

Pineli et al., 2011; 

Crecente-Campo et 

al., 2012  

 

Carbohydrates 

 

Sugars 

 

Glucose 1300-4260 Kafkas et al., 2006; 

Giampieri et al., 

2012 

     
  Fructose 1330-4200 Kafkas et al., 2006; 

Giampieri et al., 

2012 
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Preparation of Synthetic Polyphenolic Compounds and Mixtures 

Based on data from the literature, the major polyphenolic compounds, vitamins 

and sugars identified from strawberry fruit were selected for this study (Table 2). Pure 

polyphenolic compounds (cyanidin, pelargonidin, cyanidin-3-glucoside, pelargonidin-3-

glucoside, quercetin, kaempferol, quercetin-3-glucoside, kaempferol-3-glucoside, 

catechin, epicatechin, p-coumaric acid, ferulic acid, caffeic acid, chlorogenic acid, 

ellagic acid, L-ascorbic acid, glucose, and fructose) used in this study were purchased 

from Fisher Scientific or Sigma-Aldrich. Individual compounds were prepared by mixing 

each individual compound with methanol to a concentration of 0.1 mg ml-1. The mixtures 

of the different polyphenolic compounds are shown in Table 3. Ascorbic acid, fructose, 

and glucose were added to each mixture at same concentrations (0.1 mg ml-1). In 

addition, based on the type and amounts of the major individual strawberry polyphenolic 

compounds, vitamin C, fructose and glucose reported in the literature, a synthetic 

replica of a strawberry (“Powerberry”) was created based on the median amount from 

the lowest and highest values found in the literature (Table 4). After preparation, the 

solutions were stored at -30 °C until used. 

  

Antioxidant Capacity 

 Antioxidant capacity was determined using the assays previously described (See 

Chapter 3: Materials and Method Section). The three AOC assays used were repeated 

twice using three replicated samples for each compound/mixture analyzed. For ease of 

interpretation, results from the three assays used (FRAP, DPPH, and TEAC), and since 



108 
 

there was not a significant difference between the results from all assays, the AOC 

values were averaged. 

 

Table 3. Composition of the mixtures containing flavonoids and flavonols in their 
aglycone or glycosylated forms plus flavanols, phenolic acids, ellagic acid, and ascorbic 
acid, fructose, and glucose. 

Mixture A Mixture B Mixture C Mixture D 

Cyanidin Mixture A Mixture A Mixture A 
Pelargonidin Ascorbic acid Fructose Ascorbic acid 
Quercetin  Glucose Fructose 
Kaempferol   Glucose 
Catechin    
Epicatechin    
p-Coumaric acid    
Ferulic acid    
Caffeic acid    
Chlorogenic acid    
Ellagic acid    
    

Mixture E Mixture F Mixture G Mixture H 

Cyanidin-3-glucoside Mixture E Mixture E Mixture E 
Pelargonidin-3-glucoside Ascorbic acid Fructose Ascorbic acid 
Quercetin-3-glucoside  Glucose Fructose 
Kaempferol-3-glucoside   Glucose 
Catechin    
Epicatechin    
p-Coumaric acid    
Ferulic acid    
Caffeic acid    
Chlorogenic acid    
Ellagic acid    
    

Mixture I Mixture J Mixture K Mixture L 

Mixture A Mixture I Mixture I Mixture I 
Mixture E Ascorbic acid Fructose Ascorbic acid 
  Glucose Fructose 
   Glucose 
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Table 4. Composition of the synthetic strawberry mixture “Powerberry”. 

Compoundsa mg g100-1b mg mL-1 

Cyanidin-3-glucoside 3.4 0.03 
Pelargonidin-3-glucoside 36.3 0.36 
Quercetin-3-glucoside 2.6 0.03 
Kaempferol-3-glucoside 1.1 0.01 
Catechin 9.4 0.09 
Epicatechin 1.1 0.01 
p-Coumaric acid 2.6 0.03 
Ferulic acid 1.6 0.02 
Caffeic acid 2.3 0.02 
Chlorogenic acid 3.0 0.03 
Ellagic acid 26.1 0.26 
   
Ascorbic acid 54.0 0.54 
   
Fructose 2440.0 24.40 
Glucose 2540.0 25.40 
a = Bioactive compounds and sugars found in significant amounts in strawberry (see Table 2). 
b = Median amounts found in strawberry (see Table 2). 
c = Amounts used to prepare the “Powerberry” mixture; the compounds were diluted in methanol. 

 
 

Statistical Analysis 

 The Statistical Analysis System computer package (SAS Institute, Inc., 2004) 

was used for the analysis of the data. To determine the differences between the AOC of 

individual and mixtures of polyphenolic compounds and strawberries, the least 

significant difference (LSD) at the 5% significance level was used. The relationship 

between antioxidant assays and antioxidant capacity was measured using the Pearson 

correlation coefficient (r) and the coefficient of determination (r2) and, the significance of 

the relationship was expressed by probability levels (p = 0.0001). 
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Results and Discussion 

Relationship between Chemical Structure and Antioxidant Capacity of 

major Individual Strawberry Polyphenolic Compounds  

  The most prevalent group of polyphenolic compounds in strawberries is the 

flavonoid group, which structures are composed of two aromatic rings (A and B) linked 

by an oxygenated heterocycle (C). The aromatic hydroxyl groups in flavonoids have 

been shown to be responsible for their AOC (Chen et al., 1996). The different 

subclasses of flavonoids are based on the degree of hydrogenation and substitution of 

the heterocycle. In this study, the AOC of specific anthocyanidins, anthocyanins, 

flavonols and flavanols found in strawberries was evaluated (Fig. 14). The AOC of 

anthocyanidins (cyanidin and pelargonidin) and anthocyanins (cyanidin-3-glucoside and 

pelargonidin-3-glucoside) were determined since the chemical structures of these 

compounds are similar. Cyanidin-3-glucoside contains a glycoside on 3' of the B-ring 

whereas cyanidin contains a hydroxyl group. Since the presence of hydroxyl groups at 

the 3' and 5' positions have been linked to a higher AOC, the lack of a hydroxyl group at 

that positions in the cyanidin-3-glucoside molecule could potentially be the reason for 

the significantly lower AOC when compared to cyanidin. The same trend was observed 

between pelargonidin-3-glucoside and pelargonidin (Fig. 14). Furthermore, the number 

of hydroxyl groups available for radical scavenging can possibly explain the higher AOC 

values obtained for cyanidin compared to cyanidin-3-glucoside (691.9 and 497.8 µmol 

TE g-1, respectively). The same pattern was observed in pelargonidin and pelargonidin-

3-glucoside (649.7 and 520.4 µmol TE g-1, respectively). The lower AOC of the 

glycosides is most likely related to the addition of a sugar molecule at position 3' on the 
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C-ring. Similarly, using the DPPH assay, Fukumoto and Mazza (2000) showed that 

glycosylation of cyanidin, pelargonidin and quercetin resulted in lower AOC. 

 

Figure 14. Antioxidant capacity of individual polyphenolic compounds at equal 
concentrations. TE = trolox equivalents. 
 

 From the flavonols found in strawberries, in addition, to cyanidin and pelargonidin 

which are the main pigments found in the fruit, quercetin and kaempferol can also 

contribute to the red color of the fruit (Mousavinejad et al., 2009). The chemical 

structure of quercetin and kaempferol differ only in the number of hydroxyl groups 

present in their molecules. Quercetin has a hydroxyl group on position 3' on the B-ring 

Ella
gi
c 
Aci

d

p-
C
ou

m
ar

ic
 a

ci
d

Fer
ul
ic
 A

ci
d

C
af

fe
ic
 A

ci
d

C
hl
or

og
en

ic
 A

ci
d

Q
ue

rc
et

in

Q
ue

rc
et

in
-3

- g
lu

Kae
m

pf
er

ol

(+
) C

at
ec

hi
n

(-
) E

pi
ca

th
ec

in

C
ya

ni
di
n

Pel
ar

go
ni
di
n

Pel
ar

go
ni
di
n-

3-
 g

lu

C
ya

ni
di
n-

3-
 g

lu

Asc
or

bi
c 
Aci

d

µ
m

o
l 
T

E
 g

-1

0

200

400

600

800

1000

1200

1400

1600

LSD0.05= 49.43



112 
 

which is essential for its electron donating properties (Moalin, 2011) whereas 

kaempferol contains only a hydrogen at position 3' on the B-ring which may further 

explain its significantly lower AOC when compared to quercetin (Fig. 14). The AOC of 

kaempferol-3-glucoside was not detected by any of the assays used in this study, 

possibly because of loss of one hydroxyl group due to glycosylation. This most likely 

resulted in the presence of only one hydroxyl group in the B-ring that alone, must have 

been too weak against the introduced oxidant. Further, these results can also be 

attributed to the fact that some polyphenolic compounds are inefficient radical 

scavengers without the synergistic action of other polyphenolic compounds (Lila and 

Raskin, 2005). The two flavanols found in significant amounts in strawberries were 

catechin and epicatechin. These two compounds are isomers and differ only in the 

arrangement of the hydroxyl group at position 3' of the C-ring. In epicatechin, this group 

lies below the plane and in catechin above the plane. This arrangement seemed to have 

had a significant impact on AOC because catechin showed significantly higher AOC 

compared to epicatechin (893.0 and 834.2 µmol TE g-1, respectively). 

 Within the phenolic class, compounds are distinguished according to their 

underlying structure of either cinnamic or benzoic acids (Laura et al., 2009). The 

hydroxycinnamic acids present in significant quantities in strawberries include p-

coumaric, ferulic and caffeic acids. Chlorogenic acid was the only hydroxycinnamic 

quinic ester found in significant quantities in strawberries (Fig. 9). Even though 

chlorogenic acid contains the most hydroxyl groups in its structure when compared to 

other cinnamic acids, the hydroxyl groups attached to the benzene ring showed to be 

more related to the AOC since caffeic acid had significantly higher AOC than 
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chlorogenic acid (746.4 and 454.7 µmol TE g-1, respectively). Ellagic acid, a 

hydrolyzable tannin in the subclass of ellagitannins, had significantly higher AOC than 

cyanidin (1080.8 and 691.9 µmol TE g-1, respectively) even though these two 

compounds both contain four hydroxyl groups. These results may be attributed to the 

structure of ellagic acid in which collagen proteins are often bounded together with 

phenolic groups making the structure more stable and more resistant to free radical 

stress (Laura et al., 2009). However, AA also with four hydroxyl groups in its structure, 

rated significantly lower in AOC (Wang and Lin, 2000). 

 

Mixtures of Polyphenolic Compounds and their Effect on Antioxidant 

Capacity 

 In strawberries, glycosylated forms of polyphenolic compounds are naturally 

present in higher quantities than their aglycone counterparts (Mousavinejad et al., 

2009). Unlike glycosides, aglycones are polyphenolic compounds that do not contain a 

sugar molecule linked to the carbon 3' on the C-ring. The major aglycones found in 

strawberries include cyanidin, pelargonidin, quercetin, kaempferol and, the major 

glycosides found in strawberries are cyanidin-3-glucoside, pelargonidin-3-glucoside, 

quercitin-3-glucoside and kaempferol-3-glucoside (Clifford 2000; Laura et al., 2009). In 

this study, aglycones showed on average a significantly higher AOC than glycosides 

(Fig. 14).  

Since in nature, polyphenolic compounds are not typically found in their single 

form, a combination of multiple compounds was used to understand the effect of a 

mixture versus that of single compounds on the AOC. Overall, individual polyphenolic 



114 
 

compounds showed significantly higher AOC compared to their mixtures (Figs. 14 and 

15). The aglycone mixture (mixture A: 708.9 µmol TE g-1) showed significantly higher 

AOC than the glycoside mixture (Mixture E: 636.8 µmol TE g-1) (Fig. 15). These results 

were somehow expected since, in previous studies, glycosides have also shown lower 

AOC compared to their aglycone forms (Fukumoto and Mazza, 2000). However, AOC of 

the aglycone-glycoside mixture (mixture I) was not significantly different from that of the 

aglycone mixture (mixture A) or to that of the aglycone-AA mixture (mixture B). 

Furthermore, the addition of AA to the aglycone or aglycone-glycoside mixtures did not 

have a major effect on AOC but it significantly lowered the AOC of the glycoside-AA 

mixture (Fig. 15). Even though AA is a well-established antioxidant, its addition to a 

mixture of polyphenolic compounds tended to diminish the overall AOC of the mixture.  

In addition, to investigate the impact of sugars naturally found in strawberries in 

the overall AOC, mixtures containing glucose and fructose were also tested. Overall, the 

results showed significantly lower AOC for all mixtures containing sugars (Fig. 15). 

Therefore, the addition of fructose and glucose to a mixture of polyphenolic compounds 

seemed to lower the AOC possibly by interfering with the radical scavenging capacity of 

the hydroxyl groups (Shahidi, 1992). Since glucose and fructose have shown no AOC 

(data not shown), the significant lower AOC when glucose or fructose was present was 

most likely unrelated to the competition between sugar and polyphenols in scavenging 

free radicals but possibly due to a blockage of the hydroxyl groups. Further, when AA, 

glucose and fructose were added to the aglycone or glycoside mixtures, the AOC of the 

mixtures did not change significantly (Fig. 15).  
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Figure 15. Antioxidant capacity of the mixtures containing flavonoids and flavonols in 
their aglycone or glycosylated forms plus flavanols, phenolic acids, ellagic acid, and 
ascorbic acid, fructose and glucose (see Table 3).TE = trolox equivalents. 
 

Antioxidant Capacity of Strawberry Compared to the “Powerberry” Mixture 

 The type and amount of each polyphenolic compound, vitamin C, glucose and 

fructose naturally found in strawberries was established from previously published data 

(Table 1). The polyphenolic compounds chosen were those measured in the highest 

amounts in strawberries (Fig. 9). Only these compounds were selected because 

strawberries are not considered a significant source of other nutrients such as fats, 
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proteins or other vitamins that could potentially affect the AOC (Giampieri et al., 2012). 

Vitamin C (AA) was chosen because strawberries are an excellent source of this vitamin 

with amounts ranging from about 23 to 85 mg 100 g-1 in fresh fruit (Szajdek and 

Borowska, 2008; Pineli et al., 2011; Crecente-Campo et al., 2012). Glucose and 

fructose were chosen since these sugars make up almost 99% of total sugar content in 

strawberries (Sturm et al., 2003). Based on this information, a synthetic strawberry 

model (“Powerberry”) was created and its AOC measured (Fig. 16). When compared to 

the AOC of strawberries from different cultivars, the average AOC of the “Powerberry” 

was not significantly different from that of ‘Florida Radiance’ and Sweet Sensation® 

(Fig. 16). Since the AOC values of the “Powerberry” were comparable to that of real 

strawberries, it is possible that these major polyphenolic compounds along with AA 

could be responsible for the overall AOC in strawberries, whereas glucose and fructose 

showed no AOC-increasing effect (Fig. 15).  
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Figure 16. The antioxidant capacity of four different strawberry cultivars compared to 
that of the synthetic strawberry “Powerberry”. TE = trolox equivalents. 
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"Powerberry" mixture which also contained AA, fructose and glucose. The variation in 

the AOC obtained for individual compounds could be explained by the instability of 

polyphenolic compounds when in their isolated state which is not common in nature. For 

Festival Radiance Sensation Winterstar Powerberry

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

µ
m

o
l 
T

E
 g

-1

a

bc

bc

d



118 
 

the combination of compounds, results suggested that mixing individual polyphenolic 

compounds decreases their overall AOC. These results also suggest that when 

combined, polyphenols may compete for radical scavenging which in turn may reduce 

the overall AOC of the mixture. Further, the AOC of strawberries was correlated with its 

major bioactive compounds (i.e. polyphenolic compounds and ascorbic acid). Finally, 

although synthetic compounds may behave differently once ingested, in this study the 

AOC of these compounds as a mixture (“Powerberry”) was comparable to that of real 

fruit. These results suggest that even though strawberries contain many different 

polyphenolic compounds and vitamins, their AOC might only depend on few bioactive 

compounds that are found in significant quantities in strawberry fruit. 
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CHAPTER SIX: 
THE EFFECTS OF POLYPHENOL-RICH FRUITS AND FRUIT JUICES ON THE 

PROLIFERATION OF CANCER CELLS AND LIFESPAN OF CAENORHABDITIS 

ELEGANS 

 

Introduction 

 The effect of dietary polyphenolic supplementation on human lifespan is difficult 

to assess since various factors such as lifestyle and genetic makeup of human subjects 

are highly variable, and the duration of the studies constitutes a major impediment. The 

aspects of aging are similar between nematodes and mammals where oxidative stress 

appears to be a major factor in limiting lifespan in Caenorhabditis elegans and humans 

(Finkel and Holbrook, 2000). As an alternative to human studies, C. elegans has been 

used as a model for lifespan studies because the worms mature into an adult in about 

45 hours and have an average lifespan of about 2-3 weeks (Félix and Braendle, 2010). 

C. elegans occupy various environments that contain different bacteria and nutrients. 

They feed best on Escherichia coli but can survive on a diet of a variety of bacteria and 

nutrients which makes them ideal for testing the effect of polyphenolic compounds on 

their lifespan. For example, various studies showed that blueberry extracts rich in 

polyphenolic compounds as well as individual polyphenols extended C. elegans lifespan 

by increasing their oxidative and thermal resistance (Wilson et al., 2006; Kampkötter et 

al., 2008). Even when used individually, polyphenolic compounds such as quercetin and 

rutin were able to extend C. elegans lifespan by 12 to 20%, respectively (Xue et al. 
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2011). In addition, green tea extracts also extended the lifespan and enhanced stress 

resistance in C. elegans (Zhang et al., 2009). However, the exact mechanisms involved 

in the extension of C. elegans lifespan by polyphenolic compounds are still unknown. It 

is believed that at low dosage polyphenolic compounds have the ability to trigger light 

pro-oxidant mechanisms that in turn activate antioxidant defenses leading to an overall 

cytoprotection (Halliwell, 2011).  

 Several studies have shown that a high consumption of fruits and vegetables 

promotes health and reduces the risk of cancer and other degenerative diseases 

(Seeram et al., 2006; Tzounis et al., 2008; La et al., 2009; Mukai and Sato, 2011; 

Lewandowska et al., 2016). It has also been shown that some plant polyphenolics found 

in mangos are capable of inducing apoptosis-mediated death of HeLa human cervical 

cancer cells (Kim, 2012). These results suggest that fruits and their juices may be an 

excellent source of bioactive compounds and thus help to prevent various cancer types. 

Olsson et al. (2006) showed the ability of polyphenolic extracts from conventional and 

organic strawberry in decreasing the proliferation of both colon and breast cancer cells. 

Most of the current research focus on utilizing individual synthetic polyphenols to 

determine their potential impact on cell survival. Therefore, single synthetic polyphenolic 

compounds could also constitute an emerging approach in reducing cancer growth. For 

example, Mertens-Talcott et al. (2003) showed that quercetin and ellagic acid enhanced 

apoptosis and inhibited proliferation of human leukemia cell lines. Seeram et al. (2006) 

showed that polyphenolic extracts from several types of berries inhibited cancer growth 

and stimulated apoptosis of cancer cells (Seeram et al., 2006). In addition, polyphenolic 
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compounds isolated from apple peels showed a potent antioxidant and anti-proliferative 

activity against breast and liver cancer cells (He and Liu, 2007; He and Liu, 2008). 

 Although there are several published studies that explored the effects of plant 

polyphenolic extracts or single polyphenolic compounds on apoptosis of cancer cells, to 

our knowledge there are no published studies that have shown the potential of whole 

fruit or fruit juices in inhibiting cancer cell proliferation and extending C. elegans 

lifespan. Therefore, the objectives of this study were to: 1) determine the ability of 

selected polyphenolic-rich fruits and juices on inhibiting the proliferation of HeLa human 

cervical cancer cells and, 2) determine the impact of the same polyphenolic-rich juices 

on C. elegans lifespan.  

 

Material and Methods 

 Fruits and Fruit Juices 

 Blueberry, raspberry, conventional and organic strawberries (3 replicated 

samples of 100g each) were dried in an oven at 80°C until weight stabilized. After 

drying, the samples were grinded using a pestle and mortar and the resulting powder 

was passed thru a sieve (U.S. Standard Test Sieve No. 45, Hogentogler & Co., Inc., 

Columbia, MD) to yield a finer powder. Aronia (R.W. Knudson Just Aronia), 

pomegranate (Lakewood Pure Pomegranate) and blackcurrant (R.W. Knudson Just 

Black Currant) juices (3 replicated samples of 250 mL each) were evaporated at 45°C to 

yield a concentrate of 50 mL. Before use, fruit powders and juice concentrates were 

dissolved in water at a concentration of 0.15g mL-1 and then filter sterilized before a final 

concentration of 15ng µL-1. 
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Cell Models 

  HeLa cells were maintained in DMEM medium (CellGro, cat#15-017-CV) 

supplemented with 10% fetal bovine serum (GIBCO, cat#10437-028) and 1% Pen-

Strep-Glutamine (CellGro, cat#30-0090CI) at 37°C with 5% CO2. For viability assays, 

HeLa cells were plated at a density of 1.5x105 cells/well in a 96 well plate and allowed to 

adhere overnight. Dried blueberry, raspberry, conventional and organic strawberry, and 

concentrated aronia and blackcurrant juices were dissolved in water at a concentration 

of 0.15 g mL -1 then filter and sterilized before addition to the cells. Puromycin was used 

at a dose of 5 µg mL -1 as a positive control. After 24 hours, the viability reagent 

PrestoBlue® (ThermoFisher Scientific, cat#A-13261) was added at a 10% concentration 

to the cells and fluorescence was measured at an excitation of 525+/−20 nm and an 

emission of 590+/−35 nm.  

  

Worm Models 

 C. elegans wild-type (N2) strain was maintained at 23°C on standard nematode 

growth medium plates seeded with Escherichia coli OP50. Synchronous worms were 

obtained by standard 20% hypochlorite treatment followed by a 24 hour rotation at 220 

rpm in M9 buffer without food. For lifespan assays, synchronous wild-type worms were 

treated with no compound (control) or with various doses of concentrated aronia, 

blackcurrant, or pomegranate juice concentrates diluted in sterile water. Worms were 

picked to new plates daily to avoid progeny contamination during their reproductive 

period (~5 days). Standard NGM plates seeded with OP50 supplemented with sterile 

water were used as the control. Worms were scored for survival every other day starting 
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at day one of adulthood, and death was determined by lack of response to poking with a 

platinum wire pick. All lifespan assays were performed using at least 100 worms for 

each treatment condition in biological duplicates.  

  

Statistical Analysis 

 Statistical analysis for the HeLa cell viability assay was performed using 

GraphPad Prism (GraphPad Software, version 5.0, La Jolla, California, USA) using 

ANOVA followed by the Bonferroni post-test when an interaction term was significant. 

C.elegans survival was analyzed by the Log-rank Mantel-cox test using with GraphPad 

Prism (GraphPad Software, version 5.0, La Jolla, California, USA).  

 

Results and Discussion 

 Ability of Whole Dried Fruits and Juice Concentrates in Inhibiting the 

 Proliferation of HeLa Human Cervical Cancer Cells 

 Several studies have shown that plant polyphenolic compounds are capable of 

inducing apoptosis-mediated death in human cervical cancer cells (Kuntz et al., 1999; 

Prakash et al., 2001; Scalbert et al., 2005; Chirumbolo, 2012; Kim, 2012). Results from 

these studies suggest that fruits and their juices may help prevent various types of 

cancer when ingested in generous amounts as part of a balanced diet, mostly because 

of their bioactive compounds (Scalbert et al., 2005). In such studies, the decrease in cell 

proliferation rates was used as a marker for the effectiveness of polyphenolic 

compounds as putative cancer chemo-preventives (Joseph et al., 2005). In the present 

study, dried fruits and concentrated juices in a concentration of 0.15 g mL -1 induced 



124 
 

cancer cell death (Fig. 17). Amongst the fruits, raspberry was the most effective in 

inhibiting cancer cell growth (34% cell survival) when compared to strawberry and 

blueberry. Organic strawberry showed a slightly higher effect in controlling cancer cell 

growth compared to conventional strawberry (73 and 78% cell growth survival, 

respectively). These results are in agreement with those previously published by Olsson 

et al. (2006) where polyphenolic extracts from conventional and organic strawberry 

decreased the proliferation of colon and breast cancer cells. This may due to the 

significantly higher levels of bioactive contents and AOC found in organic strawberries 

compared to conventional fruit (see Chapter 3).  

Fruit juices were, in general, more effective than fruit in decreasing cancer cell 

proliferation, except for pomegranate juice that showed inferior results compared to 

raspberry fruit (Fig. 17). In addition, blackcurrant, and aronia juices showed more 

significant results (8 and 17% cell survival, respectively) compared to pomegranate 

juice (57% cell survival). Even though pomegranate juice had similar AOC when 

compared to blackcurrant and aronia juices (Table 1), its ability to inhibit cervical cancer 

cell growth was much lower than that of blackcurrant or aronia juices probably because 

of its significantly lower TPC. Since the AOC of pomegranate juice was comparable to 

that of aronia and blackcurrant juices the reduction of cancer cell survival was probably 

not related to an antioxidant effect but possibly to other mechanisms involving 

polyphenolic compounds and their secondary metabolites. It is also interesting that the 

blackcurrant and aronia juices had a higher impact on cancer cell survival compared to 

puromycin (30% cell survival) which has previously shown a high cytotoxicity in cancer 

cells (Young, 1966; Oguma et al., 2009).  
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Figure 17. The effect of fruit (strawberry, raspberry and blueberry) and fruit juices 
(blackcurrant, aronia and pomegranate) on HeLa human cervical cancer cell survival 
compared to control (no treatment) or positive control (puromycin). 
 

 Ability of Juice Concentrates in Extending the Lifespan of Wildtype 

 Caenorhabditis elegans 

 Previous research suggested that the dietary consumption of polyphenolic 

compounds found in fruits and vegetables may be effective in reversing aging through 

anti-inflammatory and anti-oxidant effects (Joseph et al., 2005). In this study, 

pomegranate juice at doses higher than 0.75 mg mL-1 (18-22 days) reduced C. elegans 

lifespan whereas doses lower than 0.75 mg mL-1 increased the worm lifespan (26-30 
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days) when compared to the control (Fig. 18). Similarly, when added to the usual diet of 

the worm, aronia juice at doses of 0.75 mg mL-1 or lower decreased lifespan of C. 

elegans (14-18 days) while concentrations of 0.375 mg mL-1 or lower increased the 

worms’ lifespan (26-30 days) when compared to the control (Fig. 18). The same pattern 

was observed for blackcurrant juice where a concentration of 0.75 mg mL-1 or higher 

resulted in shorter lifespan (10-18 days) and a concentration of 0.375 mg mL-1 or lower 

increased C. elegans lifespan (26-30 days) when compared to the control (Fig. 18). 

Overall, all fruit juices at doses lower than 0.75 mg mL-1 were efficient in 

extending the lifespan of C. elegans whereas higher doses were apparently cytotoxic as 

they decreased the lifespan of the worms. In fact, higher doses of synthetic polyphenolic 

compounds have shown to display antagonistic, pro-oxidant rather than antioxidant 

effects resulting in a decrease in cell defense mechanisms and potentially induction of 

apoptosis of healthy cells (Metodiewa et al., 1999) which could be the cause of the 

shorter lifespan in the C. elegans. 
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Figure 18. The effect of pomegranate, aronia and blackcurrant concentrated juices on 
the lifespan of C. elegans. 
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 Conclusions 

 Conventional and organic strawberry, raspberry and blueberry fruits, and aronia, 

pomegranate and blackcurrant juices were successful in inhibiting the proliferation of 

HeLa cervical cancer cells. Compared to fruits and pomegranate juice, aronia and 

blackcurrant juices displayed the most powerful effect towards inhibiting cancer cell 

proliferation most likely because of their significantly higher TPC and AOC. In addition, 

polyphenolic compounds in pomegranate, aronia and blackcurrant juices seem to have 

a significant bioactivity impact in the lifespan of the C. elegans. Thus, at doses lower 

than 0.75 mg ml-1, all juices contributed to an increase of up to eight days in the lifespan 

of C. elegans. Higher doses were presumably toxic to the worms as their lifespan was 

reduced by four days, regardless of the juice used in their diet. Therefore, these results 

showed the importance of consuming an optimal amount of foods that are naturally high 

in polyphenolic compounds. Besides, these results raised a question about the safe 

dose of polyphenolic compounds when used as dietary supplements. In summary, 

careful doses should be considered when administering polyphenolic compounds in 

humans or other mammals because if given at too high concentrations may result in 

negative health effects. 
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CHAPTER SEVEN: GENERAL CONCLUSIONS 
 

Strawberries are greatly appreciated worldwide due to their pleasant flavor and 

nutritional qualities. However, pre- and post-harvest abiotic stresses may lead to 

deterioration of strawberry quality, reduce vitamin C and polyphenolic compounds and 

ultimately result in a decrease of its bioactivity. Overall, results from this work showed 

that strawberries treated with a reduced fungicide regime had similar quality to that of 

fruit treated with a conventional regime. In addition, specific polyphenolic compounds 

(i.e., pelargonidin-3-glucoside, quercetin-3-glucoside, and ferulic acid) were detected in 

significantly higher amounts in fruit from the reduced pesticide treatment, suggesting 

that this treatment may provide balanced stress conditions for the synthesis of bioactive 

compounds. These results suggest that reducing the use of fungicides in the field can 

be an alternative to conventional disease control treatments as it may help reduce 

residual fungicide levels while still retaining important bioactive compounds in the fruit.  

 The levels of polyphenolic compounds in foods seemed to be highly correlated 

with their potential antioxidant capacity (AOC) in vitro and in vivo. Thus, in order to show 

the relationship between AOC and total phenolic content (TPC), fruit juices as well as 

strawberries were used as food models. Results showed a positive significant 

correlation between TPC and AOC in beverages, specifically in fruit juices, whereas 

vitamin C showed little effect on AOC. Juices made from 100% blackcurrant, aronia, 

and pomegranate contained the highest amount of TPC and showed the highest AOC. 
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Major polyphenolic compounds identified from these juices included anthocyanins, 

hydroxycinnamic acids, and flavonols. 

 Numerous factors can influence the AOC of foods, namely vitamin C and sugar 

contents as well as the chemical structure of the individual polyphenolics compounds 

present in the food. Results showed that when compared at an individual level or when 

combined with other polyphenolic compounds, AOC was significantly higher in aglycone 

polyphenolic compounds than in their glycoside counterparts. In addition, combining 

individual polyphenolic compounds with glucose, fructose and/or vitamin C decreased 

their overall AOC, suggesting that polyphenols may compete for radical scavenging. 

Finally, a mixture containing polyphenolic compounds, vitamin C, glucose and fructose 

at levels found in real strawberries, showed similar AOC to that of real fruit. These 

results suggest that even though strawberries contain many different polyphenolic 

compounds and vitamins, their AOC might only depend on few bioactive compounds. 

 Many studies have shown that the potential health benefits of fruits and 

vegetables are highly correlated with their levels of TPC and consequently to their AOC. 

Results showed that fruits such as conventional and organic strawberry, raspberry and 

blueberry and fruit juices such as aronia, pomegranate, and blackcurrant inhibited the 

proliferation of HeLa cervical cancer cells. Compared to fruits and pomegranate juice, 

aronia and blackcurrant juices displayed the most powerful effect towards inhibiting 

cancer cell proliferation, most likely because of their significantly higher TPC and AOC. 

In addition, polyphenolic compounds in pomegranate, aronia and blackcurrant juices 

increased the lifespan of C. elegans worms at doses lower than 0.75 mg ml-1 whereas 

higher doses reduced their lifespan. These results emphasize the importance of 
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consuming a well-balanced diet, rich in fruit and vegetables but providing just the right 

amount of polyphenolic compounds. 
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