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ABSTRACT 

Cytokine and growth factor signaling pathways involving STAT3 are frequently 

constitutively activated in many human primary tumors, and are known for the 

transcriptional role they play in controlling cell growth and cell cycle progression. 

However, the extent of STAT3's reach on transcriptional control of the genome as a 

whole remains an important question. We predicted that this persistent STAT3 signaling 

affects a wide variety of cellular functions, many of which still remain to be characterized.  

We took a broad approach to identify novel STAT3 regulated genes by 

examining changes in the genome-wide gene expression profile by microarray, using 

cells expressing constitutively-activated STAT3. Using computational analysis, we were 

able to define the gene expression profiles of cells containing activated STAT3 and 

identify candidate target genes with a wide range of biological functions. Among these 

genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, 

whose expression is down-regulated at the mRNA and protein levels when STAT3 is 

constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 

using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in 

the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding 

of STAT3 to this region. Necdin expression has previously been shown to be down-

regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis 

of Necdin expression demonstrated repression in a STAT3-dependent manner in human 

melanoma, prostate and breast cancer cell lines.  



 

x 

These results suggest that STAT3 coordinates expression of genes involved in 

multiple metabolic and biosynthetic pathways, integrating signals that lead to global 

transcriptional changes and oncogenesis.  STAT3 may exert its oncogenic effect by up-

regulating transcription of genes involved in promoting growth and proliferation, but also 

by down-regulating expression of negative regulators of the same cellular processes, 

such as Necdin. 
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CHAPTER 1: INTRODUCTION 

 

Signal Transduction and Oncogenesis 

 Normal cells have a network of molecular controls that tightly regulate growth 

and proliferation, preventing cell division in the absence of key environmental stimuli, 

such as mitogenic growth factors and signals from the extracellular matrix (ECM).  

Cancer cells have typically lost some of the molecular controls that regulate normal cell 

division, allowing them to divide in an unregulated manner even in the absence of 

extracellular cues (Hanahan and Weinberg, 2000). 

Oncogenesis, or carcinogenesis, is the process by which normal cells are 

transformed into cancer cells.  The initiation and promotion of cancer is a complex, multi-

step process characterized by progressive cellular and genetic changes that reprogram 

a cell and lead to uncontrolled cell division and the formation of a malignant mass 

(Weinstein, 1987).  Despite the fact that neoplastic development is a highly complex 

process, cancer cells do exhibit certain hallmarks or biological capabilities which are 

acquired during oncogenesis.  These hallmarks include: sustaining a proliferative signal; 

evading growth suppressors; resisting cell death; enabling replicative immortality; 

inducing angiogenesis and activating invasion and metastasis (Hanahan and Weinberg, 

2000), as well as the contribution of the tumor microenvironment (Hanahan and 

Weinberg). 

The underlying trait of oncogenesis is genomic instability, which usually begins 

with changes in the expression of particular genes (proto-oncogenes and tumor 

suppressor genes), caused by mutations in DNA.  This destabilization of the genome 
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during carcinogenesis results in changes in gene activity and stability (Vogelstein et al., 

2000) and affect many genes involved in cell cycle control, DNA damage responses and 

checkpoints, as well as DNA repair.  The expression and activity of growth factors and 

their receptors and signaling molecules are often affected, thus disrupting the tightly 

controlled and orderly signal transduction processes that regulate cell growth and 

division. 

Oncogenes are mutated versions of normal cellular genes (proto-oncogenes), 

which are capable of transforming a cell.  They may contribute to the growth of a tumor 

by causing a cell to divide in an unregulated manner, particularly in the absence of 

normal growth signals.  In contrast, tumor suppressor genes (TSGs) act as protective 

genes that usually limit or block one step in the development of tumors.  A mutation in a 

TSG, or deletion of the gene, can predispose an individual to cancer by causing the loss 

of function of the tumor suppressor protein encoded by the gene (Knudson, 2002).  

Oncogenic mutations are usually ‘dominant’, requiring a mutation in only one 

allele in order for the cellular phenotype to be affected.  Unlike oncogenes, changes in 

tumor suppressor genes are usually recessive.  Tumor suppressor genes follow a ‘two-

hit hypothesis’ (Knudson, 1971), whereby both of the alleles that code for a particular 

gene just be affected before the biological function is sufficiently affected and the 

phenotype of the cell is altered. 

 Signal transduction pathways are the processes whereby the cell mediates the 

sensing and processing of stimuli and are essential for development, cell differentiation 

and homeostasis (Hanahan and Weinberg, 2000).  These cascades act as molecular 

circuits capable of detecting, amplifying and integrating a diverse array of extracellular 

signals to generate appropriate intracellular responses.  For example, an extracellular 

signaling molecule activates a receptor in the cell membrane, initiating a cascade of 

signaling events within the cell in response.  In a two-step process, the extracellular 



3 

signaling molecule binds to a specific receptor on the cell membrane followed by the 

stimulation of a second messenger within the cell which propagates the signal into the 

cell to elicit a full physiological response (Taga and Kishimoto, 1997).   

 Multiple signal transduction pathways exist within a normal cell and their 

dysregulation is frequently associated with the malignant phenotype.  The JAK (Janus 

tyrosine kinase)-STAT (Signal Transducer and Activator of Transcription) pathway is a 

classic example of an evolutionarily conserved signaling cascade that becomes 

disrupted in oncogenic cells (Darnell et al., 1994).  The JAK family tyrosine kinases and 

latent cytoplasmic transcription factor STATs coordinate to transform a wide array of 

intracellular and environmental stimuli into targeted gene expression, resulting in distinct 

phenotypic alterations (Darnell, 1996). 

 

Signal Transducers and Activators of Transcription 

Signal transducers and activators of transcription (STATs) are a family of latent 

transcription factors that normally become activated in response to various extracellular 

polypeptide ligands, including many cytokines and growth factors, through cytokine 

receptors, receptor tyrosine kinases, as well as various non-receptor tyrosine kinases, 

such as c-Src.  STATs were originally identified as signal transduction molecules 

activated during the study of interferon signaling (Shuai et al., 1993). STAT3 was 

originally discovered as being activated during signaling by IL-6 (Zhong et al., 1994).  

Since then IL-6 signaling through the JAK-STAT pathway has been well characterized 

(Aaronson and Horvath, 2002). 

Seven mammalian STAT family members have now been identified and 

characterized, STAT1, 2, 3, 4, 5a, 5b and 6 (Ihle, 1996). They share similar structural 

features and mechanisms of activation.  Localized in three chromosomal clusters, the 

family of transcription factors may have evolved by gene duplication (Copeland et al., 
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1995).  The STAT proteins consist of 750-850 amino acids and have several conserved 

domains that are required for STAT function (Figure 1): 

The N-terminal 130 amino acid region of STAT proteins is necessary for the 

formation of tetramers via STAT dimer-dimer interaction, thus stabilizing DNA-binding at 

weak promoter-binding sites.  This may occur in promoters with closely spaced tandem 

STAT binding sites. There is evidence that STAT1, STAT4, and STAT5 form higher 

order complexes (dimer:dimer or higher) on promoters where there are two or more 

neighboring STAT binding sites  (John et al., 1999; Vinkemeier et al., 1996; Xu et al., 

1996). Cooperation between the dimers exists to allow the interaction, and is lost if the 

N-terminal domain of the STATs is deleted (Vinkemeier et al., 1996; Xu et al., 1996; 

Zhang et al., 1999b). 

The adjacent coiled-coil domain, between the N-terminal and DNA-binding 

domains, contains four long helices and allows interaction with other transcription factors 

and regulatory proteins, such as the interaction between STAT1 N-terminal and the 

histone acetyltransferase CBP/P300 (Zhang et al., 1996).  STAT3-mediated gene 

transcription is also enhanced by the binding of the transcription factor c-Jun to the 

coiled-coil region of STAT3.  This region may also be involved in STAT3 recruitment to 

the receptor leading to tyrosine phosphorylation and downstream signaling, since 

mutation of Asp170 or, to a lesser extent, Lys177 in the alpha-helix 1 results in 

diminished binding of STAT3 to the receptor and also reduced STAT3 tyrosine 

phosphorylation (Zhang et al., 2000a). 

The DNA-binding domain is in the center of the STAT molecules and determines 

the specificity of binding of the different family members.  All STATs bind to similar DNA 

sequences (TTN5AA), most likely due to the highly conserved amino acid sequences of 

the DNA binding domains.  Analysis of STAT binding to synthetic oligonucleotides 

revealed differences in the binding affinity between STAT proteins (Horvath et al., 1995), 
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demonstrating that the space between the palindromic TT-AA core affects the selective 

binding of the STATs to their respective DNA elements.  For example, a 4 bp core 

separating TT-AA results in selective binding of STAT3 dimers, whereas a 6 bp core 

leads to preferential binding of STAT6.  Those sequences with a 5 bp core can bind 

several STAT members, although may demonstrate a preference towards one particular 

STAT protein.  In addition, the specificity of DNA binding may also be affected by the 

composition of the STAT dimers, for examples STAT1-STAT3 heterodimers can bind 

different DNA elements to STAT 1 or STAT3 homodimers, leading to a further level of 

control and complexity (Horvath et al., 1995). 

The Src-Homology 2 (SH2) domain in the C-terminus functions to recruit STATs 

to tyrosine phosphorylated receptors and is also required for homo- and hetero-

dimerization.  Upon ligand stimulation, JAK-mediated phosphorylation of receptor 

tyrosine docking sites enables recruitment of STATs to the receptor and resultant STAT 

phosphorylation. This critical phosphotyrosine residue is located around amino acid 700 

(Tyr 701 for STAT1 and Tyr705 for STAT3) adjacent to the SH2 domain and is required 

for STAT activation via reciprocal SH2-phosphotyrosine interactions between STAT 

monomers.  The negatively charged phosphate of the tyrosine residue at the C-terminal 

end of the SH2 domain is stabilized by the positively charged arginine residue at the N-

terminal of the partner STAT SH2 domain.  These residues are critical for dimer 

formation, since mutation of either the tyrosine or arginine residues abolishes STAT 

dimerization (Yuan et al., 2005). 

At the C-terminus of the molecule is the transcriptional activation domain (TAD), 

required for transcriptional activation of target genes.  STAT1, STAT3 and STAT4 share 

a conserved amino acid sequence in the C-terminus (LPMSP), in which the leucine and 

serine residues are required to achieve maximum transcriptional activity (Kovarik et al., 

2001; Sun et al., 2006).  Following cytokine or growth factor stimulation, the serine 
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residue becomes phosphorylated, which is a critical event for high levels of transcription 

(Zhang et al., 1995).  Interestingly, STAT1β and STAT3β, which both lack C-terminal 

regions, demonstrate reduced transcriptional activity (Dewilde et al., 2008).  Interaction 

of CBP/P300 with both STAT1 and STAT3 C-terminal regions has previously been 

described (Zhang et al., 1996). 

The linker region, between the DNA-binding and SH2 domains may be important 

for regulating transcriptional activity, since mutations in the linker region of STAT1 form a 

protein which can be tyrosine phosphorylated, dimerize, translocate to the nucleus and 

bind to DNA but fails to completely activate gene transcription (Yang et al., 2002). 

 

Figure 1.  General structure of the STAT protein family.  The STAT proteins contain functional 

protein domains. 

 

Alternatively spliced isoforms have been described, apart from STAT2.  STATs 

1,3, (Darnell, 1997; Ihle and Kerr, 1995; Maritano et al., 2004), 4 (Hoey et al., 2003) and 

5 (Wang et al., 1996) are expressed as two isoforms, designated as α and β, which have 

different transcriptional activities.   

Two forms of STAT3 exist: full length, wild-type STAT3 alpha (p92) and a 

truncated version STAT3 beta (p83) (de Koning et al., 2000), both derived from the 

same gene by alternative mRNA splicing.  Sequences in the 3’ untranslated region of the 

STAT3 gene were previously identified as important modulators of RNA splicing and 

determine the balance between α and β  isoforms.  STAT3β lacks the 55 residue C-
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terminal transactivation domain, which is replaced by seven alternative C-terminal 

residues (Caldenhoven et al., 1996) and is expressed is a variety of cell types 

(Chakraborty et al., 1996).  STAT3β has the Tyr705 residue critical for dimerization, but 

lacks the ser727 residue.  It can act as a dominant negative, although there is evidence 

to suggest that it may regulate distinct genes itself. 

 
 
Activation of STATs in Normal Signal Transduction 

Signal transducers and activators of transcription (STATs) are a family of latent 

transcription factors that are usually present in an inactive form in the cytoplasm and 

become activated by tyrosine phosphorylation in response to various extracellular 

polypeptide ligands, including many cytokines and growth factors, through cytokine 

receptors, receptor tyrosine kinases, as well as various non-receptor tyrosine kinases, 

such as c-Src and members of the Janus kinase (JAK) families (Figure 2).  Once 

phosphorylated (on a single C-terminal tyrosine residue), STATs form homo- or hetero-

dimers by the interaction of the SH2 domain of one monomer with the phosphorylated 

tyrosine residue of the other monomer (Figure 1). The dimers then translocate to the cell 

nucleus, bind to specific promoter sequences of target genes and activate their 

transcription.  The STAT proteins are subsequently de-phosphorylated and return to the 

cytoplasm, thus terminating the signaling pathway (Haspel et al., 1996).   

Various modes of activation have been described for STATs: 
 
 

Classical JAK-STAT pathway.  STATs become activated during cytokine 

signaling.  Cytokine binding to receptors leads to dimerization of the receptors followed 

by activation of the receptor-associated Janus Kinases (JAKs).  The JAKs then 

phosphorylate tyrosine residues in the intracellular domain of the receptor to provide 

docking sites for latent cytoplasmic STATs to bind (e.g. pYXXQ in gp130 receptor for 
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STAT3 binding).  STATs then bind the receptor via their SH2 domain allowing JAKs to 

phosphorylate the STATs on a specific tyrosine residue in their cytoplasmic tail.  

Reciprocal binding of this pTyr in one monomer to the SH2 domain of a partner 

monomer allows homo- or hetero-dimerization of the proteins.  Once released from the 

receptor, the dimers translocate to the cell nucleus and bind to specific DNA sequences 

to activate the transcription of cytokine-responsive genes (Akira, 1997). 

  

Growth factor receptors.  STATs are also activated directly by receptors with 

intrinsic tyrosine kinase activity or indirectly via JAKs.  Such receptors include the EGF, 

PDGF and FGF receptors (Garcia et al., 1997; Ruff-Jamison et al., 1994; Sahni et al., 

1999)  

 

Non-receptor tyrosine kinases.  Non-receptor tyrosine kinases, such as v-Src, 

v-abl, v-Sis, v-Fps (Silva, 2004; Turkson et al., 1998) and polyoma virus middle T 

antigen can induce constitutive STAT activation (Garcia et al., 1997). 

 

G-protein coupled receptors (GPCR).  GPCRs, including chemokine receptors, 

can activate STAT1 and STAT3 upon chemokine binding e.g. MCP-1 and RANTES 

receptors (Buettner et al., 2007; Ram and Iyengar, 2001). 

 

Adaptor proteins.  Activation of STATs can be mediated by other adaptor 

proteins which serve to bring JAKs in close proximity to STATs. 
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Figure 2.  Normal and oncogenic STAT signaling pathways. Stimulation of cells with growth 
factors or cytokines results in dimerization of their cognate receptors and activation of intrinsic 
receptor tyrosine kinase activity (as shown for the EGF receptor tyrosine kinase, RTK) or 
activation of receptor-associated tyrosine kinases such as JAKs (as shown with the IL-6 cytokine 
receptor, R). Both receptor intrinsic and associated tyrosine kinases can subsequently 
phosphorylate the receptor cytoplasmic tail to provide docking sites for the recruitment of 
monomeric, non-phosphorylated STATs via their SH2 domain. Once STATs are recruited to 
activated tyrosine kinases, they become themselves substrates for tyrosine phosphorylation.  
Although receptor-associated tyrosine kinases such as JAKs and Src can cooperate in STAT 
activation by both growth factor and cytokine receptors, oncogenic forms such as Src and Abl can 
also phosphorylate STATs independently of receptor engagement. Phosphorylation of STAT 
monomers induces their dimerization via reciprocal phosphotyrosine-SH2 domain interactions 
and translocation of STATs to the nucleus, where the dimers bind to specific STAT DNA-
response elements and directly regulate gene expression. In normal cells, STAT-mediated gene 
regulation is both transient and tightly regulated, whereas constitutive activation of STATs, in 
particular Stat3 and Stat5, is associated with permanent changes in the expression of genes that 
control fundamental cellular processes subverted in oncogenesis. STATs are proposed to 
participate in oncogenesis through up-regulation of genes encoding apoptosis inhibitors (Bcl-xL, 
Mcl-1), cell cycle regulators (cyclins D1/D2, c-Myc), and inducers of angiogenesis (VEGF).  
Adapted and reprinted by permission from the American Association for Cancer Research: 
Buettner et al., Activated STAT Signaling in Human Tumors Provides Novel Molecular Targets for 
Therapeutic Intervention. Clinical Cancer Research, 2002, Vol. 8, #4: 945-954. (Buettner et al., 
2002). 
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Serine phosphorylation of STATs 

As previously mentioned, STATs are phosphorylated prior to dimerization and 

activation, and this is required for DNA-binding activity.  Additional modifications to the 

STAT proteins, such as phosphorylation of serine residues are required to reach 

maximum transcriptional activity.  Phosphorylation of a serine residue in the C-terminal 

transcriptional activation domain, corresponding to Ser-727 in both STAT1 and STAT3, 

enhances the transcriptional activity of these STATs (Wen and Darnell, 1997; Wen et al., 

1995).  The mechanism of transcriptional enhancement may not be completely 

understood,  but may include interactions between STATs and co-activator proteins 

(Decker and Kovarik, 1999) which enhance gene transactivation. 

There is evidence that serine phosphorylation can occur via members of the 

mitogen-activated protein kinases (MAPK) family  (Schaeffer and Weber, 1999) including 

extracellular signal-regulated kinases (ERKs) (Chung et al., 1997b; David et al., 1995; 

Kuroki and O'Flaherty, 1999; Ng and Cantrell, 1997), c-Jun N-terminal kinase (JNK) (Lim 

and Cao, 1999; Turkson et al., 1999) and p38mapk (p38) (Gollob et al., 1999; Turkson et 

al., 1999).  Protein kinase C (PKC) may also play a role (Jain et al., 1999). 

The serine phosphorylation site in both STAT1 and STAT3, (-Pro-Met-Ser-Pro-), 

conforms to the MAPK consensus sequence, -Pro-X-Ser/(Thr)-Pro- (Schaeffer and 

Weber, 1999). Cell-type specific expression of the individual serine kinases along with 

their interactions with individual STAT members most likely affects serine 

phosphorylation status and is complex 

In contrast, repression of STAT signaling by serine phosphorylation has also 

been noted, suggesting that the kinases play a dual role, both enhancing and repressing 

STAT activity under certain conditions.  This may be due to serine phosphorylation 

inhibiting STAT tyrosine residue phosphorylation (Chung et al., 1997b); negative 

feedback effect of the serine kinase on upstream tyrosine kinases (Sengupta et al., 
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1998) or even an indirect effect from STAT proteins preferentially interacting with serine 

kinases versus tyrosine kinases (Jain et al., 1998; Jain et al., 1999; Lim and Cao, 1999).  

However, such repression can occur when the serine kinases are in a ‘superactive’ state 

(Jain et al., 1998), as found with ERK: moderate levels of ERKs enhance, yet 

overexpression of ERKs inhibit, STAT3 transcriptional activity (Turkson et al., 1999).  

 

Nuclear Import and Export of STAT Proteins 

STATs do not exhibit a classical nuclear localization sequence (NLS), despite the 

fact that the interferon-induced nuclear importation of STATs is mediated via the 

importin/Ran system (McBride et al., 2002).  A structural region in the DNA-binding 

domain of STAT1 and STAT2, rich in arginine and lysine residues, is required for nuclear 

import (Melen et al., 2001).  These conserved regions are required to be present in both 

STAT monomers for nuclear import to occur, since dimers with one wild-type STAT and 

one STAT mutated in the arginine/lysine region fail to translocate to the nucleus upon 

stimulation, thus such a dimer acts as a dominant negative.  Previous work also 

suggests that the adapter protein importin-α3 binds to STAT3 and is required for nuclear 

import (Liu et al., 2005), however, the importin-α/importin-β1/Ran mechanism has also 

been shown to traffic STAT3 to the nucleus (Cimica et al., 2011) 

STAT1 also has a nuclear export signal (NES), located adjacent to the NLS 

amino acids 400-409) (Mowen and David, 2000).  STAT1 nuclear export is regulated by 

the CRM1 export protein and is Leptomycin B (LMB)-sensitive.  STAT3 is also exported 

from the nucleus in an LMB-sensitive process, allowing STAT3 to accumulate in the 

nucleus (Bhattacharya and Schindler, 2003).  This accumulation is independent of 

tyrosine phosphorylation, suggesting that a “basal” STAT3 signaling pathway exists.  

STAT3 contains three NES elements, two of which, STAT3 (306-318) and STAT3 (404-
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414), correspond to those previously identified in STAT1, as well as a third NES, 

STAT3(524-535).  STAT3 (306-318) appears to be important in the rapid nuclear export 

of STAT3 seen following stimulation, whereas the STAT3 (404-414) and STAT3 (524-

535) have an important role in regulating basal nuclear export.  Unphosphorylated, latent 

STAT3 shuttles constitutively between cytoplasm and nucleus.  Mutation of a putative 

NLS or NES sequence did not impair nucleocytoplasmic shuttling of latent STAT3 

(Bhattacharya and Schindler, 2003). 

The N-terminal domain (amino acids 1-125) was found to be essential for 

formation of unphosphorylated STAT3 dimers, but not for assembly of tyrosine-

phosphorylated STAT3 dimers.  In resting cells, the monomeric N-terminal deletion 

mutant (STAT3-∆NT) shuttles faster between the cytoplasm and nucleus than the wild-

type STAT3, indicating that dimer formation is not required for nucleocytoplasmic 

shuttling of latent STAT3 (Vogt et al., 2011). 

 

Negative Regulation of STAT Signal Transduction 

Since the JAK/STAT pathway plays such a critical role in cell signaling, there are 

multiple fine-tuning mechanisms that control STAT activation both spatially and 

temporally.  Under normal circumstances STAT activation is transient and is controlled 

by several pos-translational mechanisms, not at the level of gene transcription, including 

(i) negative feedback proteins (ii) expression of nuclear inhibitors of STAT signaling (iii) 

activation of tyrosine and/or serine phosphatases (iv) receptor internalization and (v) 

protein degradation (Greenhalgh and Hilton, 2001; Kile et al., 2001; Wormald and Hilton, 

2004). 
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Suppressors of Cytokine Signaling (SOCS).  Suppressors of cytokine 

signaling comprise a family of inhibitors which also act on the JAK-STAT pathway as 

negative feedback regulators (Masuhara et al., 1997).  Also known as JAK-binding 

proteins (JAB) or STAT-induced STAT inhibitors (SSIs), SOCS are induced by cytokine 

stimulation and inhibit phosphorylation of receptors by interaction with the kinase domain 

of JAKs. For example, IL-6 is capable of inducing transcription of SOCS3, which inhibits 

phosphorylation of gp130 by interaction with the kinase domain of JAK 2. (Endo et al., 

1997).  The SOCS family consists of seven members, SOCS 1-7, of which SOCS-1 and 

SOCS-3 are the most studied.  Structurally, the SOCS proteins share several similarities 

including a central SH2 domain, a highly homologous C-terminal region (SOCS-box), 

and an N-terminal region of varied length and a highly variable amino acid sequence. 

 SOCS-1 inhibits signaling by a wide range of cytokines including IL-6, IL-4, LIF, 

GH, TPO, prolactin, interferons (especially IFN-g) and stem cell factor (kit ligand).  

SOCS-1 binds directly to the kinase domain (JH1) of JAKs to inhibit kinase activity, as 

well as JAK-mediated phosphorylation of downstream substrates, such as the receptor 

and STATs (Endo et al., 1997). Both the SH2 domain and the N-terminal region of 

SOCS-1 are required for inhibitory activity, while the SOCS box appeared to be 

dispensable [104].  However, the SOCS box is conserved in all SOCS proteins, 

suggesting an important physiological role, possibly involving SOCS proteolytic 

degradation (Kamura et al., 1998; Zhang et al., 1999a). 

 SOCS-3 inhibits many of the same cytokine/receptor systems as SOCS-

1, but also downregulates IL-2, IL-3 and leptin signal transduction (Bjorbaek et al., 1999; 

Cohney et al., 1999).  At high concentrations SOCS-3 interacts with JAKs, however, it 

has a much lower affinity for binding JAKs compared to SOCS-1 (Nicola and 

Greenhalgh, 2000).  Instead, SOCS-3 appears to inhibit cytokine signaling by 

associating with the gp130 receptor directly (Nicholson et al., 2000). 
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The N-terminal domains of SOCS-1 and SOCS-3 are interchangeable without 

loss of function, suggesting that both proteins may inhibit JAK kinase activity via this 

domain, and that the SH2 domain either binds JAKs (SOCS-1) or the gp130- receptor 

(SOCS-3) (Nicola and Greenhalgh, 2000). 

 

Protein Inhibitors of Activated STAT (PIAS).  Protein inhibitors of activated 

STAT3 (PIAS) have been shown to associate with STATs and prevent binding of the 

activated nuclear STATs to DNA (Chung et al., 1997a).  PIAS1 was cloned using a yeast 

two-hybrid assay and shown to specifically inhibit STAT1 binding to DNA. (Liu et al., 

1998).  PIAS3 was then identified in a mouse thymus library screened with a human 

EST clone related to PIAS1.  Both proteins bind in vivo to the N-terminal region of their 

target activated STAT dimers and block binding of the transcription factors to their target 

gene promoters, thus preventing STAT-mediated gene transcription.  However, the PIAS 

proteins do not cross-inhibit other STAT proteins e.g. PIAS3 is a specific inhibitor of 

STAT3 only and will not inhibit STAT1 activity. 

PIAS proteins are constitutively expressed in a variety of tissues (Greenhalgh 

and Hilton, 2001; Kile et al., 2001; Wormald and Hilton, 2004).  They have conserved 

putative zinc-binding motifs [C2-(X)21-C2 (Chung et al., 1997a).  PIAS3 was shown to 

bind to STAT3 via the conserved proline, isoleucine, asparagine, isoleucine, threonine 

(PINIT) domain of PIAS3 (Mautsa et al.), however they may also bind to other proteins, 

especially transcription factors.  The PIAS proteins function as SUMO (small ubiquitin-

like modifier)-E3 ligases which catalyzes the covalent attachment of a SUMO protein to 

their specific target substrates (Rytinki et al., 2009).  

 

Dephosphorylation of STAT3.  Tyrosine phosphorylation of proteins is a rapid 

and reversible mechanism that is often used in cell signaling to indicate activation of the 
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target protein.  STATs are one class of proteins activated by phosphorylation as 

previously discussed.  Therefore, one of the most obvious mechanisms of STAT 

regulation is via phosphatases.  For example, SHP-1 has been shown to suppress 

cytokine signaling systems and is composed of two SH2 domains following by the 

phosphatase domain.  SHP-1 is thought to function by direct binding to cytokine 

receptors and dephosphorylating signaling components (Ram and Waxman, 1997). 

 

Receptor Internalization.  Cytokine signaling begins with activation of plasma 

membrane receptors, however, these receptors do not remain permanently at the 

membrane.  The receptors are removed from the cell membrane via endocytosis, which 

has been studied in depth for the gp130 receptor.  IL-6 has been shown to downregulate 

its own receptor.  Following binding of IL-6, the gp130 receptor is quickly internalized 

within 60 minutes, leading to a complete depletion of IL-6 surface binding receptors 

(Zohlnhofer et al., 1992) Since de novo synthesis of the gp130 receptor is required to re-

populate the membrane, this suggests that following internalization, gp130 is degraded. 

 

Proteolysis.  Protein degradation plays a very limited role in controlling STAT 

signaling.  Proteosome inhibitors had little effect on the turnover rate of STAT1 and 

STAT3 (Heinrich et al., 1998) and half-life studies have shown that STAT3 has a long 

half-life >8 h, which is not reduced by stimulation with IL-6.  However, limited proteolytic 

processing of STATs by serine proteases (Azam et al., 1997) or the cysteine protease 

calpain (Hendry and John, 2004; Oda et al., 2002) generates C-terminally truncated 

STAT proteins that are able to negatively regulate STAT3-, STAT5- and STAT6-

mediated signaling.  Designated as STATγ, these molecules function as dominant 

negative regulators of transcription. 
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STAT3 is also cleaved by caspases at multiple sites (Darnowski et al., 2006) 

forming cleavage fragments.  Such cleavage reduces STAT3-DNA binding, STAT3-

driven luciferase reporter activity and represses expression of STAT3-dependent genes 

(Darnowski et al., 2006).  Caspase cleavage of STAT3 was also demonstrated to 

increase sensitivity to apoptotic stimuli.  Thus, proteolytic cleavage of STAT3 reduces its 

expression and leads to the production of cleavage fragments which can modulate 

STAT3 transcriptional activity. 

 

Biological Functions of STAT Proteins   

The STAT family protein structure is highly conserved, yet there are distinct 

differences both in primary sequence and in function. STATs are ubiquitously expressed, 

apart from STAT4, whose expression is restricted to including spleen, heart, brain, 

peripheral blood cells, and testis (Yamamoto et al., 1997).   

The control of normal physiological processes by STAT family members has 

been based on studies using homozygous deletion or tissue-specific, conditional mouse 

knockouts of each STAT family member (Akira, 1999). The different family members 

have been shown to be involved in mediating a variety of biological functions in diverse 

cell types.  

 STAT1-deficient mice have an impaired ability to respond to interferons and 

become susceptible to infections from bacterial and viral pathogens (Durbin et al., 1996; 

Meraz et al., 1996), indicating that STAT1 is required for interferon signaling as well as 

innate immunity.   

Homozygous deletion of the gene encoding either STAT2 (Kimura et al., 1996) or 

STAT3 (Takeda et al., 1997), proteins is embryonic lethal, establishing a critical role for 

both STATs in normal development. STAT3-null animals exhibit mortality at day 6.5 to 7 

during early development, therefore tissue-specific, Cre-Lox systems are more 
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commonly used to generate STAT3-null conditions. Mice lacking STAT3 expression in 

keratinocytes suggest a role for STAT3 signaling in control of cell motogenesis, as it 

pertains to wound healing (Sano et al., 1999). Furthermore, in contrast to wild-type 

littermates, IL-6 fails to prevent apoptosis in T lymphocytes from mice deficient for 

STAT3 signaling, demonstrating that STAT3 is required in hematopoietic cells for IL-6 

signaling as well as anti-apoptosis (Catlett-Falcone et al., 1999)Takeda et al., 1998).  

Targeted disruption of the STAT4 (Kaplan et al., 1996; Thierfelder et al., 1996) or 

STAT6 (Shimoda et al., 1996; Takeda et al., 1996; Thierfelder et al., 1996) genes in 

mice demonstrates that these STATs are required for IL-12- or IL-4-induced proliferation 

of activated T lymphocytes, respectively. 

STAT5 has also been shown to be important in lactation and hematopoiesis 

(Akira, 1999; Frank, 1999).  The STAT5A and STAT5B genes are highly related both at 

the genetic and protein levels, however, targeted disruption of either gene exhibits a 

tissue-specific phenotype that is also gene-specific.  For example, STAT5A knockout 

mice exhibit defects in mammary gland development and lactation during pregnancy (Liu 

et al., 1997), while STAT5B knockout mice display sexually dimorphic patterns of liver 

gene expression (Udy et al., 1997). Additionally, female mice lacking both STAT5A and 

STAT5B proteins are infertile and double-knockout mice indicate a role for STAT5 

proteins in proper immune function (Teglund et al., 1998). 

These studies indicate that STAT proteins are required for regulation of a diverse 

array of cellular functions, which are also affected by the spatial and temporal 

expression of the respective STAT proteins. 

 

Activation of STATs in Oncogenesis 

In oncogenesis, the signal transduction pathways involving STATs are often 

disrupted and since STATs play a critical role in a remarkable variety of biological 
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processes, it is of note that the dysregulation of STAT signaling pathways is becoming 

more frequently associated with oncogenesis.  Mounting evidence suggests that 

constitutively active STATs play a role in cellular transformation induced by multiple 

oncogenes, as well as progression of human tumors. 

Constitutive activation of STATs 1, 3 and 5 have been demonstrated in a variety 

of human tumors and cell lines (Turkson and Jove, 2000), (Table 1) including solid 

tumors and blood tumors.  This persistent signaling of specific STATs, in particular 

STAT3 and STAT5, has been shown to stimulate cell proliferation and prevent apoptosis 

in various tumor cell lines, through upregulating a number of target genes, such as c-

Myc, cyclins and bcl-x. In contrast, inhibition of constitutively activated STAT3 or STAT5 

leads to growth suppression or apoptosis (Buettner et al., 2002). 
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Table 1.  Activation of STATs in human cancers 

Tumor Type STAT(s) Activated
Solid Tumors
Melanoma STAT3

Prancreatic cancer STAT3

Prostate cancer STAT3

Lung cancer STAT3

Renal cell carcinoma STAT3

Ovarian cancer STAT3

Head and neck cancer STAT1, STAT3, STAT5

Breast cancer STAT1, STAT3, STAT5

Blood Tumors
Multiple myeloma STAT1, STAT3

Leukemias:

Acute myelongenous leukemia (AML) STAT1, STAT3, STAT5

Chronic myelogenous leukemia (CML) STAT5

Large granular lymphocyte luekemia (LGL) STAT3

HTLV-I-depdendent STAT3, STAT5

Erythroleukemia STAT1, STAT5

Lymphomas:

Mycosis fungoides STAT3

EBV-related/Burkitt's STAT3

Cutaneous T-cell lymphoma STAT3

Non-Hodgkins lymphoma (NHL) STAT3

Anaplastic large-cell lymphoma (ALCL) STAT3  

Based on references cited in (Turkson and Jove, 2000) 

 

Interaction of STATs with other proteins 

Following research investigating STAT regulated transcription, it is now clear that 

STATs function as part of multi-protein enhanceosomes to stimulate activation of their 

target genes.  The association of STATs with a number of nuclear proteins has 

previously been described (Paulson et al., 1999; Zhang et al., 1996), for example, the 

association of STATs with co-activator proteins, such as CBP/p300, which bridge 
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between activated STATs and the basal transcription machinery (Paulson et al., 1999;.  

CBP/p300 is an important regulator of chromatin remodeling, since it contains a histone 

acetyltransferase (HAT) domain and interacts with a wide range of transcription factors 

(Kadonaga, 1998).  CBP/p300 has been shown to interact with STAT1, via both N- and 

C-terminals of STAT1 (Zhang et al., 1996), as well as STAT5 (Pfitzner et al., 1998) 

STATs have also been shown to interact with hormone receptors, mini-

chromosome maintenance proteins and members of the  AP-1 and IFN regulatory factor 

(IRF) families (Bromberg and Darnell, 2000; Horvath et al., 1995; Zhang et al., 1996)

 STAT3-interacting protein (StIP1) has been identified and may serve as a 

scaffold protein to facilitate the interaction between JAKs and STAT3 (Collum et al., 

2000). 

 The interaction of STAT3 in the nucleus with the zinc-finger protein Gfi-1 has also 

been reported, leading to enhanced IL-6 induced transcription (Rodel et al., 2000). 

 Many gene promoters contain binding sites for multiple transcription factors and 

STAT3 has been shown to cooperate with multiple transcription factors to regulate 

transcription of target genes, including SMAD1, AP-1, Sp-1.  In contrast, some 

promoters have overlapping binding sites for transcription factors, which cannot be 

occupied by both transcription factors at the same time.  For example, overlapping 

binding sites for STAT3 and NF-ΚB are found on promoters of several acute phase 

proteins (APPs).  IL-1 and IL-6, two early-response cytokines expressed during an acute 

inflammatory response regulate the expression of APPs in the liver.  IL-1 stimulates 

transcription via NF-ΚB, whereas IL-6 induces its target genes via STAT1 and STAT3.  

Since both STAT3 and NF-ΚB are active during the inflammatory response, they could 

both potentially bind the overlapping element in the alpha2-macroglobulin promoter and 

may regulate each other via competition for the binding site (Zhang and Fuller, 1997). 
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The Role of STAT3 in Cancer 

STAT3 activation has been seen at a high frequency in a wide variety of solid 

tumors, including those of the breast, head and neck, leukemias, lymphomas, 

melanomas, pancreas, prostate, ovary, lung and brain (Bowman et al., 2000; Turkson 

and Jove, 2000) 

In normal cells, the activation of STAT3 is a highly regulated, transient process 

and has a duration of minutes to several hours, at which point the STAT3 homodimers 

are inactivated by de-phosphorylation. However, constitutive activation of STAT3 has 

been associated with malignant transformation, including transformation by v-Src (Yu et 

al., 1995; (Cao et al., 1996), Eyk (Zong et al., 1996) and other oncogenic tyrosine 

kinases.  Evidence has shown that constitutively active STAT3 is required for v-Src 

transformation (Bromberg et al., 1998) and is alone sufficient to induce transformation 

and tumor formation in nude mice (Bromberg et al., 1999). Moreover, persistent STAT3 

activation is frequently detected in human tumors, both in patient samples and tumor cell 

lines.  The critical role of constitutively active STAT3 in various human cancers has been 

well established for a number of tumor types, including breast (Garcia et al., 2001), 

prostate (Mora et al., 2002), and head and neck squamous cell carcinoma (Song and 

Grandis, 2000). STAT3 is the family member that most frequently shows unregulated, 

persistent activation in human tumors and human cancer cell lines. 

STAT3 itself has not been found to be mutated in human tumors, but it is 

activated by various upstream oncogenic proteins and is required for their transforming 

ability.  For example, STAT3 is activated in cells transformed by v-Src (Bromberg et al., 

1998) or v-Abl oncogenes and has been shown to be required for the transforming ability 

of v-Src (Danial et al., 1995; Turkson et al., 1998; Yu et al., 1995).  
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STAT3 activation can also be induced by a variety of growth factors and 

cytokines which are commonly over-expressed in cancer cells. These include Epidermal 

Growth Factor (EGF) (Garcia et al., 1997; Ruff-Jamison et al., 1994), Platelet Derived 

Growth Factor (PDGF) (Bowman et al., 2001), as well as the cytokine, IL-6 (Akira, 1997).  

As such, STAT3 plays a central role in facilitating many oncogenic signaling pathways. 

STAT3 activation has been associated with both chemoresistance and 

radioresistance, and mediates these responses via interaction with other transcription 

factors, including nuclear factor kappa B, Hypoxia-inducible factor-1 and peroxisome 

proliferator activated receptor-gamma (Aggarwal et al., 2009). 

 

STAT3-regulated genes  

Following tyrosine phosphorylation and subsequent translocation to the nucleus, 

STAT3 binds to promoters containing the consensus sequences TT(N4)AA or TT(N5)AA 

(Horvath et al., 1995).  To date, STAT3 has been show to regulate a handful of target 

genes, including genes which are involved in cell survival, proliferation, inhibition of 

apoptosis, angiogenesis, metastasis and immune evasion. 

So far genes that have been identified as being directly regulated by STAT3, and 

may contribute to oncogenesis, are involved in cell cycle control and proliferation, 

inhibition of apoptosis and angiogenesis. 

 
 

STAT3 Regulation of Cell Growth and Proliferation.  Dysregulated cell growth 

and proliferation is a hallmark of cancer (Hanahan and Weinberg, 2000) and STAT3 

plays a major role in such uncontrolled growth by activating target gene such as Cyclin 

D1, p21WAF1/CIP1, as well as the proto-oncogenes c-Myc and c-fos, all of which play a 

role in proliferation, particularly in cancer (Kiuchi et al., 1999; Sinibaldi et al., 2000).  For 

example, Cyclin D1, encoded by the CCND1 gene, is a G1/S specific protein belonging 
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to the cyclin family and capable of forming a complex with CD4 or CD6, whose activity is 

required for the cell cycle G1/S transition (Reddy, 1994).  Overexpression of this gene is 

observed frequently in a variety of human tumors and contributes to oncogenesis 

(Motokura and Arnold, 1993). 

 p21 / WAF1 also known as cyclin-dependent kinase inhibitor 1 or CDK-

interacting protein 1 is a protein that in humans is encoded by the CDKN1A gene located 

on chromosome 6 (6p21.2).  A potent cyclin-dependent kinase inhibitor, p21 inhibits the 

activity of cyclin-CD2 or –CDK4 complexes to regulate cell cycle progression (Reddy, 

1994).  Transcriptional regulation of p21 was demonstrated in v-Src transformed cells 

(Sinibaldi et al., 2000) where coordinate increases in p21, cyclin D1 and cyclin E 

resulted in an increase in cyclin/CDK/p21 complexes.  Overexpression of p21 and 

cyclins D1 and E most likely gives v-Src transformed cells sufficient active cyclin/CDK 

complexes to proceed through the cell cycle. 

  

STAT3 Regulation of Cell Survival and Apoptosis.  Regulation of cell survival 

and apoptosis are also disrupted in cancer cells and STAT3 has previously been shown 

to increase expression of the pro-survival proteins Bcl-XL, Bcl-2 (B-cell lymphoma 2) 

(Fujio et al., 1997; Grad et al., 2000)and Mcl-1 (Puthier et al., 1999), as well as Survivin 

(IAP) (Diaz et al., 2006; Gritsko et al., 2006).  Frequently overexpressed in human 

tumors, these genes play a critical anti-apoptotic role in a number of cancers, including 

in a number of cancers, including melanoma, breast, prostate, and lung carcinomas. 

 

STAT3 Regulation of Angiogenesis and Metastasis.  Metastasis is a major 

cause of morbidity and mortality in cancer patients.  Many of the molecular mechanisms 

regulating metastasis have been elucidated and commonly involve various signal 

transduction pathways.  STAT3 has been identified as a central regulator of tumor 
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metastasis (Devarajan and Huang, 2009) and STAT3 target genes are involved in 

multiple steps of metastasis.  We have already discussed the role of STAT3 in regulating 

genes involved in cell survival and self-renewal, however, STAT3 also controls 

transcription of genes involved in invasion, angiogenesis and tumor cell immune 

evasion. 

Hypoxia is a state of oxygen deprivation and a characteristic of tumors that are 

actively growing and occurs as a result of rapid oxygen consumption by the cancer cells, 

combined with an insufficient supply of oxygen. Rapidly growing solid tumors outgrow 

their blood supply, leaving hypoxic regions where the oxygen concentration is lower than 

surrounding, healthy tissue (Vaupel, et al., 2001).  As a result, hypoxia triggers specific 

pathways associated with homeostasis in order to maintain cellular metabolism and 

allow the tumor to continue to grow.  The transcription factor HIF1-α is a critical mediator 

required for oxygen homeostasis (Semenza et al., 1999) and HIF1-α expression is know 

to be elevated under hypoxic conditions (Hockel, 2001).  Under normoxia conditions, 

HIF1-α activity is regulated by proteasomal degradation (Cockman, 2000; Ohh et al., 

2000), however, under hypoxic conditions, degradation is reduced and stabilized HIF1-α 

is targeted to the nucleus and forms a heterodimer with HIF1-β.  The complex then binds 

specific hypoxia response elements (HRE) in the promoters and enhancers of HIF1 

target genes.  Among these target genes is vascular endothelial growth factor (VEGF).  

STAT3 can also be activated via SRC kinase through a Notch signaling pathway (Lee 

MCR 2009) leading to downstream expression of HIF1-alpha. 

 Degradation and remodeling of the extracellular matrix (ECM) are essential steps 

in tumor invasion and metastasis.  The role of matrix metalloproteinases (MMPs) in 

metastasis is well established (Coussens, 1996; Stetler-Stevenson 2006; Chamber and 

Matrisian, 1997; Pollet, 1998; Curran and Murray, 1999).  MMPs are key proteolytic 
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enzymes involved in invasion and metastasis, as well as contributing to angiogenesis by 

facilitating the migration of endothelial cells through the ECM in response to angiogenic 

stimuli (Liotta, 1991; Moses, 1997; Stetler 2001).    STAT3 regulates the expression of 

MMP-2 and was shown to correlate with their expression, tumor invasiveness and 

metastasis (Xiw, 2004). 

 
 

STAT3 in Inflammation and Immune Evasion.  Inflammatory conditions can 

increase the risk of cancer (Mantovani et al., 2010) and inflammatory components are 

present in the microenvironment of tumors that are not even related epidemiologically to 

inflammation.  STAT3 has been shown to orchestrate the molecular pathways that link 

inflammation and cancer (Kato, 2011). 

 STAT3 is constitutively expressed in diverse tumor-infiltrating immune cells (Yu 

et al., 2007) leading to the inhibition of a pro-inflammatory cytokine response, reduced 

cytokine production and also the release of factors that actively down-regulate the 

immune response.   

However, STAT3 has been shown to repress expression of nitric oxide synthase 

(NOS) by direct interaction with NF-KB, to terminate NO production by activated iNOS 

following exposure to pro-inflammatory stimuli.  NOS enzymes catalyze the reaction 

between oxygen and L-arginine substrates to produce L-citrulline and NO, which can 

cause unintended injury to host cells during glomerulonephritis and other inflammatory 

diseases (Yu et al., 2002). 

 
Identifying Novel STAT3 Target Genes 

Cytokine and growth factor signaling pathways involving STAT3 are frequently 

constitutively activated in many different human primary tumors, and are best known for 

the transcriptional role they play in the controlling cell growth and cell cycle progression. 
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However, the extent of STAT3's reach on transcriptional control of the genome as a 

whole remains an important question. We predicted that this persistent STAT3 signaling 

affects a wide variety of cellular functions, many of which still remain to be characterized.  

STAT3 is a latent cytoplasmic transcription factor, induced by a variety of 

upstream signals, including growth factors, cytokines and non-receptor tyrosine kinases.  

Upon activation by tyrosine phosphorylation, STAT3 forms dimers, which translocate to 

the nucleus and regulate transcription of target genes.  Under normal physiological 

conditions, STAT3 activity is tightly controlled; however, intracellular signaling pathways 

involving STAT3 are frequently constitutively activated in many different human primary 

tumors.  We and others have shown that constitutive activation of STAT3 provides 

cancer cells with growth and survival advantages and enhances tumor angiogenesis and 

metastasis.  Recent studies have also indicated that STAT3 activation contributes to 

tumor immune evasion.  These findings indicate that aberrant STAT3 signaling affects a 

wide variety of fundamental cellular functions through multiple mechanisms. 

To date, up-regulated expression of numerous STAT3 target genes has been 

identified, including VEGF (Niu et al., 2002), Bcl-2, Bcl-xL (Zushi et al., 1998), p21, 

Cyclin D1 (Sinibaldi et al., 2000) and survivin (Gritsko et al., 2006).  These STAT3 target 

genes have generally been identified on an individual basis, while few studies have 

attempted to identify large numbers of STAT3 regulated genes (Alvarez et al., 2005; 

Dauer et al., 2005; Paz et al., 2004; Sekkai et al., 2005; Snyder et al., 2008).  Our goal 

was to take a broad approach to identify novel STAT3 regulated genes involved in 

oncogenesis by examining changes in the genome-wide gene expression profile by 

microarray, using cells expressing constitutively-active STAT3.   
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Experimental Activation of STAT3 

STAT3 signaling pathways can be induced by many ligands and oncoproteins, 

however, these ligands may also induce other STAT family proteins simultaneously e.g. 

Epidermal Growth Factor induces both STAT1 and STAT3.  In order to identify genes 

which are regulated by STAT3 specifically, we chose techniques which preferentially 

induced STAT3 only.   

 

Activation of STAT3 by IL-6.  IL-6 is a pleiotropic cytokine and mediates 

multiple biological functions within the cell including cell survival, growth, growth arrest 

and differentiation.  Cells stimulated by IL-6 can respond in a variety of different ways as 

a result of the activation of various signaling pathways and the induction of specific 

target gene expression. 

IL-6 signals through the JAK/STAT pathway and also the Ras/MAPK pathway 

(Kishimoto, 1994) Kishimoto 1995).  STAT3 was originally identified as a signal 

transduction molecule that is activated during signaling by IL-6 (Zhong et al., 1994). 

Since then IL-6 signaling through the JAK-STAT pathway has been well characterized 

(Aaronson and Horvath, 2002). 

The JAK/STAT pathway is used by all neuropoietic cytokines, interferons and 

other cytokines (Darnell et al., 1994; Lutticken et al., 1994; Stahl and Yancopoulos, 

1994).  Gp130 is the common subunit for the receptor complexes for the IL-6 cytokine 

family (including IL-6, LIF, CNTF, OnM, IL-11 and CT-1) (Hirano et al., 1994).  These 

cytokines are referred to as ‘IL-6-type cytokines’ since they induce similar and 

overlapping physiological responses. 

IL-6 signals via a receptor consist of a ligand binding α-chain and a signal 

transducing chain, and binding of IL-6 leads to the receptor leads to homodimerization of 

gp130 and activation of the receptor-associated Janus Kinases (JAKs).  The JAKs then 
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phosphorylate tyrosine residues in the intracellular domain of the receptor to provide 

docking sites for latent cytoplasmic STATs to bind (e.g. pYXXQ in gp130 receptor for 

STAT3 binding).  STATs then bind the receptor via their SH2 domain allowing JAKs to 

phosphorylate the STATs on a specific tyrosine residue in their cytoplasmic tail.  

Reciprocal binding of this pTyr in one monomer to the SH2 domain of a partner 

monomer allows homo- or hetero-dimerization of the proteins.  Once released from the 

receptor, the dimers translocate to the cell nucleus and bind to specific DNA sequences 

to activate the transcription of cytokine-responsive genes.   

 JAKs are a family of non-receptor tyrosine kinases from the Janus kinase family 

(JAK1-3 and Tyk2) with molecular masses of 120-140 kDa.  JAK3 is mainly expressed in 

hematopoietic cells, whereas JAK1, JAK2 and Tyk2 are widely expressed and 

associated with the cytoplasmic domain of gp130.  Ligand activation of the receptor 

causes receptor homodimerization and reciprocal tyrosine phosphorylation, resulting in 

activation of the JAKs.  Activated JAKs then phosphorylate the cytoplasmic tail of gp130 

on specific tyrosine residues, which then act as docking sites for SH2 domain-containing 

proteins, such as the STATs. 

IL-6 specifically induces recruitment of STAT1 and STAT3 to these 

phosphorylated sites, and the STATs are then phosphorylated by the activated JAKs.  

Upon activation, the STATs translocate to the nucleus and directly control target gene 

expression.  STAT3 is known to upregulate many IL-6 responsive genes, including 

immediate early genes (Lord 1991, Nakajima and Wall 1991, Yuan 1994) and also acute 

phase response genes (Wegenka 1993). 

Activation of STATs following IL-6 stimulation is rapid, usually with a maximum 

accumulation of STATs within the nucleus within 30 minutes, followed by rapid 

inactivation via dephosphorylation (Haspel et al., 1996).  However, in tumor cells IL-6 

induction of persistent STAT3 activity is achieved as a result of a positive feedback loop 
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wherein STAT3 causes transcription of the gene S1PR1 (sphingosine-1-phosphate 

receptor-1).  S1PR1 is upregulated in STAT3-positive tumors and acts as a G-coupled 

receptor for the lysophospholipid sphingosine-1-phosphate (S1P).  In turn, the S1pr1 

protein enhances STAT3 activity and IL-6 expression, thus completing the loop (Lee et 

al.) 

 

Activation of STAT3 by v-Src.  STAT3 activity is also known to be induced by 

cellular transformation by the activated product of the v-src oncogene, v-Src (Yu et al., 

1995).  The cellular and viral versions of the gene were shown to differ in the carboxy 

terminal region with v-Src having amino acid substitutions and deletions.  The absence 

of the regulatory Tyr530 residue causes v-Src to be a constitutively active kinase.  

Turkson et al (Turkson et al., 1998) demonstrated that v-Src activates STAT3 in 

transformed mouse fibroblasts and that this activation is required for cell transformation, 

resulting in STAT3-specific gene regulation.  NIH3T3 and Balb/c-3T3 cells stably 

transfected with a plasmid containing Moloney murine leukemia virus long terminal 

repeats and the v-Src gene (pMvSrc) were kindly provided by Dr. D. Shalloway (Cornell 

University, New York, USA).  pMvSrc was constructed by ligating the Schmidt Ruppin A 

v-Src fragment from plasmid pN4 into the BglII site of the pEVX plasmid.  The fragment 

contains 276 base pairs of pBR322 DNA followed by 2.8 kb of Rous Sarcoma virus 

(SRV) (Johnson et al., 1985).  

 

Activation of STAT3 by expression of STAT3-C.  STAT3 activity is tightly 

regulated under normal conditions and requires upstream stimulation for STAT3 

phosphorylation and activation.  In order to express STAT3 in a constitutively active 

manner within cells, we used the mutant STAT3-C construct.  STAT3-C is an artificially-

engineered, constitutively dimerized STAT3 molecule (Bromberg et al., 1999).  The 
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STAT3-C expression vector encodes a constitutively active mutant form of the STAT3 

protein that was created using site-directed mutagenesis to substitute two cysteine 

residues in the C-terminal loop of the SH2 domain of STAT3.  The encoded monomers 

dimerize spontaneously, independent of tyrosine phosphorylation, forming a permanent 

homodimer that is capable of binding to DNA and activating transcription.  STAT3-C is 

able to cause cellular transformation of immortalized fibroblasts and the formation of 

tumors in nude mice (Bromberg et al., 1999). Balb/c-3T3 cells stably transfected with 

pRc/CMV-STAT3C-Flag and selected with G418 for stable expression of STAT3-C were 

provided by Dr. H. Yu (Cancer Immunotherapeutics Program, City of Hope 

Comprehensive Cancer Center, Duarte, California, USA).  The STAT3-C transfectants 

stably express the STAT3-C protein, which is capable of binding DNA and stimulating 

target gene expression. 

 

Identifying Changes in Gene Expression 

High-density oligonucleotide expression array technology is a widely used 

method to analyze global gene expression levels within cells.  The Affymetrix 

GeneChip® system is one of the most reliable and commonly used oligonucleotide 

microarray systems.  The system uses oligonucleotides of 35 base pairs that are used to 

probe genes.  Typically each gene us represented by 16-20 pairs of oligonucleotides, 

referred to as a probe set.  Each pair consists of a perfect match (PM) probe and a 

mismatch probe (MM).  The mismatch probe is created by changing the center (13th) 

base, to create a probe which has non-specific binding.  The PM and MM are referred to 

as a probe pair. 

To identify potential novel STAT3-regulated genes, we examined global gene 

expression patterns in cell lines harboring persistently active STAT3. Gene expression 

profiles in such cells are likely to be representative of the genetic profile of a cancer cell 
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with aberrant STAT3 expression, as compared to inducing STAT3 activity transiently 

using exogenous stimulation, such as IL-6 or transient transfection (Paz et al., 2004). 

Previous studies have used microarrays to identify STAT3 target genes under 

certain conditions, such as those which regulate inflammation and wound healing (Dauer 

et al., 2005), differentiation (Snyder et al., 2008), transformation (Paz et al., 2004), 

embryonic stem cells (Sekkai et al., 2005) and STAT3 target genes in human tumors 

(Alvarez et al., 2005).  In this study we aimed to expand on these prior examinations of 

STAT3-regulated gene expression to examine global STAT3 target genes, regardless of 

cell type or other influencing conditions. 

 

Pathway Analysis of Genes 

Microarrays assess simultaneous changes in transcript levels on an individual 

basis, resulting in a long list of genes which have significantly changed transcript levels 

when compared to control cells.  However, these changes in gene expression do not 

occur as independent events within the cell, but are controlled in a coordinated manner 

and are often interconnected.   Pathway Analysis is an unbiased method to determine 

whether differentially expressed genes, and the proteins they encode, are enriched in 

particular pathways, giving insight into the biological meaning of the changes observed. 

 

Functional Analysis of Genes 

The transcriptional profile of a cell expressing constitutively-active STAT3 is 

predicted to be very different compared to a cell where STAT3 is under tight regulation. 

Our initial hypothesis was that constitutive activation of STAT3 within cells leads to 

permanent changes in global gene expression patterns.  We predict that STAT3 

promotes widespread changes in gene expression, including both direct and indirect 

targets, involving multiple signaling pathways and involving a broad range of genes. 



32 

Analysis of the biological meaning behind the large lists of genes generated by 

microarrays can be very difficult.  To determine the functional classification of the 

differentially expressed genes identified, the “Functional Annotation” tool in the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Database 

(http://david.abcc.ncifcrf.gov/) (Dennis et al., 2003; Huang da et al., 2009) is very useful.  

The DAVID Knowledgebase integrates information from multiple databases for a 

particular gene and allows the identification of enriched biological themes, especially 

Gene Ontology (GO) terms, as well as the discovery of enriched functionally-related 

gene groups, leading to meaningful biological interpretations of changes in the gene 

expression profile of a cell. 

 

Necdin – A Negative Growth Regulator 

Through computational analysis of our microarray data, we identified Necdin, a 

negative growth regulator, as a novel potential STAT3 target gene.  Necdin is a potent 

growth suppressor that is predominantly expressed in post-mitotic neurons (Aizawa et 

al., 1992; Hayashi et al., 1995; Maruyama et al., 1991; Uetsuki et al., 1996).  Necdin 

expression has been shown to be down-regulated both carcinoma cell lines and primary 

tumors (Chapman and Knowles, 2009), suggesting that repression of Necdin expression 

may have a role in oncogenesis.   

We verified that Necdin mRNA expression inversely correlates with STAT3 activity in 

cells expressing constitutively-active STAT3 and that STAT3 directly regulates the 

expression of Necdin at the promoter level.  In addition, Necdin expression in human 

tumor cell lines is inversely correlated with activation of endogenous STAT3.  Our 

findings provide further evidence for a role of Necdin as a physiological target of STAT3, 

demonstrating that computational analysis of microarray data can be used to identify 

potential STAT3 target genes for further investigation. 
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Necdin Protein family 

Necdin was originally identified in 1991 by the Yoshikawa lab in Japan 

(Maruyama et al., 1991) as a novel DNA sequence isolated from a subtraction cDNA 

library of murine P19 embryonal carcinoma cells treated with retinoic acid to induce 

neural differentiation of the stem cells.  As a result, the name, Necdin, stands for 

“neurally differentiated embryonal carcinoma cell-derived factor)”. 

 Necdin is a member of the melanoma-associated antigen (MAGE) superfamily of 

proteins.  The MAGE proteins are expressed in melanoma cells and act as antigens 

which are recognized by cytolytic T lymphocytes.  They have been shown to have roles 

in a number of cellular processes, including cell cycle regulation and cell death (Barker 

and Salehi, 2002).  Three groups of related MAGE genes have been identified in 

clusters on the X chromosome (MAGE-A genes are located at Xq28; MAGE-B genes at 

Xq21 and MAGE-C genes at Xp26-27) (reviewed by (Chomez et al., 2001).  In humans, 

10 genes have been identified which lie outside of the MAGE-A, B or C clusters, which 

includes the Necdin gene NDN. 

The MAGE family is divided into two groups of phylogenetically distinct branches 

(Barker and Salehi, 2002).  Type I proteins include MAGE-A, B and C group proteins  

and Type II proteins which include the MAGE genes identified outside these clusters and 

include the gene Necdin (NDN). 

 

Necdin Protein structure 

The Necdin genes encodes a novel protein sequence of 325 amino acids in mice 

and 321 amino acids in humans, with an overall homology of 82% between species.  

The proteins are highly conserved (91%) in the central-to-carboxyl terminal region 

(amino acids 101-325) but less conserved (62%) in the amino-terminal region (residues 
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1-100) (Nakada et al., 1998).  It is of interest to note that Necdin contains regions of 

extremely acidic and basic residues.  Residues 7-65 are proline-rich and highly acidic, 

whereas amino acids 117-160 are highly basic.   

The MAGE family of proteins is characterized by a large central region termed 

the MAGE homology domain (MHD).  Necdin has a MAGE Homology Domain (MHD) 

located at amino acids 160-170.  This region may be involved in protein-protein 

interactions.  MAGEL2, a MAGE-related sequence, encodes a protein that is 

homologous to Necdin and has been found to map closely to the position of the NDN 

gene. 

Amino acids 191-222 may mediate nuclear localization, but Necdin does not 

have a traditional nuclear localization sequence. 

In its native state, Necdin seems to assemble with other proteins through multiple 

protein-protein crosslinking (Maruyama, 1996).  Necdin can also form homo-oligomers, 

confirmed by co-immunoprecipitation of differentially tagged Necdin proteins from 

transfected COS cells (Tcherpakov et al., 2002). 

 

NDN Gene Structure and Regulation of Expression 

Located on human chromosome 15q11.2-q12 and mouse chromosome 7C, the 

gene coding for Necdin is unusual in that it does not contain any introns and its 

upstream region does not have a classical TATA or CAAT box (Uetsuki et al., 1996).  

Necdin is an imprinted gene.  The promoter region of Necdin contains a CpG island 

which is maternally imprinted, leading to expression only from the paternal allele. 

Little is known about the regulation of Necdin expression.  A study by Lui et al 

(Liu et al., 2009) identified NDN as a target gene of p53, demonstrating that the NDN 

promoter contains a p53 binding site and that NDN is a direct transcriptional target of 

p53.  Furthermore, Necdin is an activator of p53 in the hematopoietic stem cells (HSC) 
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used in the study, thus regulating HSC quiescence.  Necdin expression has also been 

found to be regulated by NSCL-1 and NSCL-2, however further research is required to 

understand the mechanisms behind the regulation of Necdin expression (Kruger et al., 

2004).  However, it has been established that Necdin is expressed in a cell-type specific 

manner and its expression is finely controlled, both temporally and spatially, as well as 

control of allelic expression by imprinting.  The maternal allele is genomically imprinted 

and so expression from this allele is silenced.  Expression of Necdin occurs solely from 

the paternal allele (Jay et al., 1997).  Disruption of the paternal allele in NDN knock out 

mice leads to post-natal lethality, approximately 30 hours after birth (Gerard et al., 1999). 

Necdin was shown to be expressed during brain development (Maruyama et al., 

1991) and post-mitotic neurons, but not in other non-neuronal tissues.  Necdin is 

abundantly expressed in the hypothalamus, midbrain, pons and medulla oblongata but 

only in low levels in neocortical neurons.  Necdin is also expressed at a high level in 

peripheral neurons, such as the sympathetic nervous system and retinal neurons and 

abundantly in skeletal myoblasts during myotube formation. During development, Necdin 

is constitutively expressed in mouse brain neurons from early embryogenesis 

(expressed in forebrain as early as E10) and continues to be expressed until adulthood 

(Maruyama et al., 1991). 

 

Necdin Localization 

Whilst Necdin has no nuclear localization sequence, amino acids 191-222 may 

mediate nuclear localization of the protein (Taniura et al., 2005) Immunohistochemical 

studies demonstrated that Necdin was predominantly expressed in the nucleus of 

differentiated neurons in the mouse brain (Aizawa et al., 1992; Maruyama et al., 1991) 

but not in proliferative neuron-like stem cells that originate from tumors (neuroblastoma 

and pheochromocytoma) (Aizawa et al., 1992).  Necdin is expressed and localized in the 
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nucleus in differentiated, post-mitotic neurons in the central and peripheral nervous 

system of mice.  The fact that Necdin is able to interact with p53 and E2F1 also 

suggests that Necdin functions within the nucleus (Taniura et al., 1999; Taniura et al., 

1998).  However, another study showed that a large amount of Necdin is also in the 

cytoplasm of differentiated neurons, with a clear translocation into the nucleus under 

specific physiological changes (Niinobe, 2000) 

Since Necdin does not have a specific organelle targeting sequence, its 

distribution within the cell may be dependent on the localization of its target proteins.  

Necdin localization is known to change when Necdin interacts with different proteins.  

The subcellular distribution of Necdin alters when it interacts with E2F1 and P75NTR 

(Kuwako et al., 2004; Tcherpakov et al., 2002).  For example, in cells transfected with 

HA-tagged Necdin alone, the majority of the signal was in the cytoplasm, specifically in 

the soluble fraction.  However, when HA-tagged Necdin was co-expressed with Myc-

tagged EBNA3C, Necdin was predominantly nuclear, with some localization to the 

periphery of the cytoplasm/cell membrane component (Kaul et al).   

 

Biological Functions, Mechanisms, and Regulation  

 Necdin has been shown to have various biological functions within the cell: 

 

Negative growth regulator.  The biological functions of Necdin are still being 

elucidated.  To date Necdin expression has been shown to cause cell cycle arrest in 

NIH3T3 and is capable of suppressing the growth of Rb-deficient SAOS-2 osteosarcoma 

cells, suggesting that Necdin can act as a substitute for pRb in these cells (Taniura et 

al., 2005; Taniura et al., 1998).  Necdin, therefore, is functionally similar to pRb but the 

two proteins are structurally different. 
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Necdin is a potent growth suppressor that is predominantly expressed in post-

mitotic neurons (Aizawa et al., 1992; Hayashi et al., 1995; Maruyama et al., 1991; 

Uetsuki et al., 1996).  Expression of FLAG-tagged Necdin in melanoma cells suppressed 

growth as demonstrated by a 30% reduction in [3H] thymidine incorporation 4 days after 

transfection (Hoek et al., 2004). 

 

Necdin as a transcription factor.  Necdin is likely to be a DNA binding protein, 

as shown by micrococcal nuclease digestion and may possibly regulate transcriptionally 

active genes involved in cellular differentiation and proliferation.  This DNA-binding 

ability may be coordinated directly by both the amino and acidic regions of the protein 

and may be involved in a complex with both histones and DNA or may be modulated 

through interaction with other transcription factors, such as p53 and E2F1 (Taniura et al., 

1998). 

Necdin may also act as a transcriptional repressor by binding to guanosine-rich 

sequences known as GN boxes.  GN boxes are recognized by the Sp family of 

transcription factors and Necdin was shown, in an in vitro assay, to repress Sp-1 

dependent transcriptional activity of a mouse c-myc P1 promoter via the GN box 

(Matsumoto, 2001).  This suggests that Necdin can bind to these multiple guanosine 

clusters present in promoters of target genes, including cell cycle related genes, allowing 

Necdin to regulate their expression and, thus, cell proliferation. 

 

The role of Necdin in development.  In contrast to highly restricted expression 

in mouse, Necdin expression in human cells is much broader.  Necdin has been shown 

to be expressed in a diverse range of fetal and adult tissue, including brain, lung, liver 

and kidney (Jay et al., 1997).  This suggests that the multi-functional roles of Necdin 

may be relevant in many tissue types. 
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 Necdin has been demonstrated to regulate polarization of the cytoskeleton during 

development and lack of NDN expression impairs cell migration of murine and human 

fibroblasts by impairing polarity initiation via a Cdc42-myosin-dependent pathway (Bush 

and Wevrick, 2008). 

 

Necdin as a tumor suppressor gene.  Necdin has been postulated to be a 

potential tumor suppressor gene (Chapman & Knowles, 2009), functionally similar to 

pRb and capable of repressing the cell cycle proteins (see Protein-Protein Interactions 

section).  In line with this claim, Necdin expression has also been shown to be 

downregulated in several tumor types and cell lines.  However, further research is 

required to validate the function of Necdin as a tumor suppressor gene. 

 

Cell Differentiation.  Necdin is expressed during neuronal differentiation in vivo 

and in vitro (Kuwako et al., 2004) in which many cells undergo apoptosis and protects 

them from apoptosis.  Necdin may serve as an intrinsic anti-apoptotic protein to prevent 

neuronal precursors and postmitotic neurons from E1F1 induced death.  Necdin is also 

expressed during terminal differentiation of sensory neurons that are dependent on NGF 

(Takazaki et al., 2002). 

 

Necdin Protein-Protein Interactions 

Necdin has been shown to interact with various molecules with diverse functions: 

 

p53.  Yeast two-hybrid and in vitro binding assays demonstrated that Necdin 

binds the transactivation domain of p53 in the amino-terminal region of p53, between the 

MDM2-binding site and the proline-rich domain.  Amino acids 35-62 of p53 are required 

for this binding (Taniura et al., 1998).  
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Necdin binding to p53 appears to modulate the activity of p53.  The Necdin/p53 

complex is competent for DNA binding and is able to repress transcription of a 

p21/WAF1 luciferase reporter but Necdin does not have an inhibitory effect on p53-

regulated growth suppression.  Necdin can block p-53 induced apoptosis in U2OS cells, 

suggesting that Necdin has a protective effect.  Necdin therefore appears to exert a 

negative effect on the transactivation domain and apoptosis, via the proline-rich domain. 

Acetylation of p53 leads to transcription of pro-apoptotic genes.  Necdin is 

capable of mediating an interaction between p53 and SRT1 histone deacetylase, leading 

to p53 deacetylation and consequent inhibition of p53-regulated apoptosis in cortical 

neurons (Hasegawa 2008).   

 

SV40 large T antigen.  The Simian Virus 40 large T antigen can bind both p53 

and pRb during cellular transformation (Ludlow, 1993) and studies showed that the 

SV40 large T antigen could also bind to Necdin (Ohman Forslund and Nordqvist, 2001; 

Taniura et al., 1998) .  Indeed, Necdin co-immunoprecipitated with the large T antigen in 

nuclear extract from SV40-transformed COS-1 monkey kidney cells that were 

transfected with Necdin.  Necdin binds to the amino-terminal region of the large T 

antigen (amino acids 84-708, T), with which both p53 and pRb interact (Taniura et al., 

1998).   

 

Adenoviral E1A.  Whilst both pRb and p53 bind to the SV40 large T antigen, 

only pRb is known to bind to the adenovirus E1A viral oncoprotein.  p53, however, 

interacts with the adenoviral E1B protein.  Necdin also interacts with the adenovirus E1A 

viral oncoprotein at the same location as pRb (amino acids 1-185), whereas p53 was not 

able to bind (Taniura et al., 1998). 
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E2F1.  Since Necdin and pRb show similar binding characteristics, it is not 

surprising that Necdin interacts with the carboxy-terminal of E2F1 (amino acids 55-430).  

This domain contains the cyclin A binding site, DNA binding region as well as the 

transactivation domain of E2F1.  Necdin represses E2F1–dependent transactivation in 

vivo   (Taniura 1998) by interacting with the transactivation domain of E2F1. 

E2F1 has previously been suggested to function as a pro-apoptotic factor in 

postmitotic neurons (Azuma-Hara 1999, Hou 2000).  Necdin, however, suppressed 

E2F1-induced apoptosis in differentiated neuroblastoma cells (Taniura 1998, Kobayashi 

2002).  Necdin is also expressed during neuronal differentiation in vivo and in vitro 

(Kuwako 2004) in which many cells undergo apoptosis.  Necdin may serve as an 

intrinsic anti-apoptotic protein to prevent neuronal precursors and postmitotic neurons 

from E1F1 induced death. 

It would appear from deletion mutants, that the central region of Necdin (amino 

acids) 83-292) is required for interaction with SV40 large T antigen, E1A oncoprotein 

and E2F1 (Taniura 1998).   

 

E2F4.  Insulin receptor substrate proteins regulate the interaction of Necdin with 

E2F4, which results in repression of the peroxisome-proliferator-activated receptor 

gamma (PPARgamma) transcription via a cyclic AMP response element binding protein 

(CREB)-dependent pathway (Tseng et al., 2005).  This interaction plays a role in 

regulating brown preadipocyte differentiation. 

 

HIF-1α.  Necdin has been shown to associate with the main transcriptional 

regulator involved in hypoxia, HIF-1α and may directly regulate its activity (Moon et al., 

2005).  Necdin binds to the oxygen dependent degradation (ODD) domain of HIF-1α 
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reducing the transcriptional activity of HIF-1α under hypoxic conditions.  Necdin may 

also play a role in HIF-1α degradation.  As such, Necdin demonstrates an anti-

angiogenic function. 

  

Role of Necdin in Disease 

 

Prada-Willi Syndrome (PWS).  The human Necdin gene, NDN, is located on 

chromosome 15q11.2-q12 (Nakada et al., 1998), a region that is involved in the 

pathogenesis of the neurodevelopmental disease Prader-Willi syndrome (PWS).  PWS is 

a complex and progressive disease.  PWS symptoms include hypotonia (poor muscle 

tone), mental retardation and developmental delay, obesity and respiratory problems.  

PWS is caused by either a large de novo deletion on the paternal chromosome 15, 

maternal disomy 15 or an imprinting defect, all of which result in lack of expression of 

imprinted genes that are active on the paternal chromosome only (Kanber et al., 2009). 

Necdin is an imprinted gene, the maternal allele being hypermethylated at the 

promoter region CpG islands, resulting in silencing of transcription.  As a result, 

expression of Necdin occurs solely from transcription of the paternal allele, which 

remains hypomethylated, as shown in mice (Hanel and Wevrick, 2001).  However, 

Necdin is is not expressed at all in PWS (Jay et al., 1997; MacDonald and Wevrick, 

1997; Sutcliffe et al., 1997).  Necdin lies in a region of the genome that is commonly 

deleted in PWS and is likely the candidate gene to play a role in the syndrome.   

  

Human Malignancy.  Necdin expression has also previously been show to be 

repressed in multiple tumor types.  Oncomine analysis (www.oncomine.org) 

demonstrated that Necdin has reduced expression in bladder, melanoma, cervical, 
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prostate, lung, breast and ovarian cancer, when compared to normal tissue (Chapman & 

Knowles 2009).  In agreement with these data, Necdin expression was shown to be 

suppressed in a drug-resistant ovarian carcinoma cell line (Varma et al., 2005) and also 

in melanoma (Hoek et al., 2004).  In the melanoma study, Necdin was shown to be have 

reduced expression in six of eight melanoma cell strains tested.  This could confer a 

growth advantage for tumors.  Furthermore, Necdin in melanoma cells is localized to a 

different compartment in the cytoplasm compared to normal melanocytes.  This indicates 

that Necdin may be inactivated by sequestration in these cells. 

Together, these results suggest that the multi-functional role of Necdin may be 

significant in the development of an array of different tissue types and that repression of 

Necdin expression may play a role in tumorigenesis, possibly even acting as a tumor 

suppressor gene (Chapman and Knowles, 2009). 

Necdin may also play an indirect role in patients with cancer.  Late stage cancer 

patients often experience cachexia, which presents as progressive wasting of skeletal 

muscles, loss of weight, fatigue, weakness and loss of appetite.  Necdin has been show 

to be expressed in the muscles of cachectic mice and functions to protect the muscle 

fibers from tumor-induced wasting by inhibiting the TNFα cachetogenic signaling 

pathways at various levels (Sciorati et al., 2009) 
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Summary and Rationale 
 

Hypothesis   

Aberrant STAT3 activity is expected to result in permanent genetic alterations 

that participate in the development of a malignant phenotype.  The genes affected 

include regulators of cell cycle progression and cell proliferation, angiogenesis, survival 

and apoptosis. We hypothesize that a universal gene expression pattern exists which is 

characteristic of aberrant STAT3 activity in malignant cells that may be clinically 

relevant.   

 

Rationale 

• Aberrant STAT3 activity is expected to result in permanent genetic alterations 

that play a role in the development of a malignant phenotype.   

• Global gene expression patterns exist that are associated with constitutive 

STAT3 activity, as well as tissue specific gene expression profiles e.g. breast vs. 

prostate cells. 

• The genes regulated by STAT3, when constitutively transcribed, are likely to play 

a major role in the development of malignancy through dysregulation of cell cycle 

progression, cellular proliferation and survival, angiogenesis and apoptosis. 

 

Objective 

The overall objective of this study was to identify global gene expression patterns 

associated with activation of STAT3 and to identify candidate STAT3 primary target 

genes for further analysis in their role in oncogenesis. 
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Aim 1.  To evaluate the efficiency of currently available methods for activating STAT3 

activity with the potential for gene expression analysis. 

Aim 2.  To identify new STAT3 regulated genes in mouse fibroblasts using microarrays. 

Aim 3.  To directly confirm and further investigate putative STAT3 primary target genes. 
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CHAPTER 2: MATERIALS AND METHODS 

 

Cell Culture and Reagents   

NIH3T3 and Balb/c-3T3 mouse fibroblasts were grown in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% bovine calf serum and 1% penicillin 

and streptomycin.  NIH3T3 and Balb/c-3T3 v-Src transformed counterparts (Yu et al., 

1995) as well as Balb/c-3T3 cells stably transfected with STAT3-C were grown in DMEM 

supplemented with 5% bovine calf serum and 1% penicillin and streptomycin.  MDA-MB-

231, MDA-MB-468 and MCF7 cells were obtained from the American Type Culture 

Collection (ATCC) and maintained in DMEM/10% fetal bovine serum supplemented with 

1% penicillin and streptomycin.  PC3 and A375 cells were obtained from ATCC and 

maintained in RPMI/10% fetal bovine serum supplemented with 1% penicillin and 

streptomycin.   

Human recombinant IL-6 was obtained from BD Pharmingen (San Jose, CA, 

USA).  Cells treated with IL-6 were plated at 1 x 106 cells per 10 cm plate and allowed to 

adhere for 24 hours prior to serum-starvation (0.1% bovine calf serum) for 3 hours.  The 

cells were then treated with either IL-6 (10 ng/ml) or cycloheximide (CHX) alone (10 

ug/ml) or pre-treated with CHX for 30 min, followed by the addition of IL-6 (10 ng/ml) for 

1 hour.  

STAT1 (E23X) and STAT3 (C20X) antibodies were obtained from Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA.  CPA-7 was a generous gift from Dr. Nick 

Lawrence (Turkson et al., 2004).   
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Expression Vectors 

pRc/CMV-STAT3C-Flag (constitutively activated STAT3) was a generous gift 

from J. Bromberg and J. Darnell (Bromberg et al., 1999).  The v-Src plasmid expression 

vector, pMvSrc, has been described previously (Johnson et al., 1985).  Transient 

transfections were performed using Lipofectamine PLUS (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s protocol.   

 

siRNA Transfections 

siRNA directed specifically against STAT3 and a non-targeting control siRNA 

were obtained from Dharmacon RNA Technologies (Chicago, IL, USA). Cells were 

transfected using RiboJuice transfection reagent (Novagen, Gibbstown, NJ, USA) as per 

the supplier's instructions. At 48 h after initial transfection, non-adherent cells were 

washed off and the remaining cells were harvested for Western blot. 

 

Isolation of RNA 

At each of 3 passages, cells from the five 10 cm dishes were pooled and total 

RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s protocol.  The RNA in the aqueous phase of the TRIzol reagent was 

further purified using the RNeasy RNA clean-up procedure (Qiagen Inc., Valencia, CA, 

USA).  The quality of the total RNA was assessed by agarose gel electrophoresis and 

RNA concentration analyzed on an Agilent 2100 Bioanalyzer. 

 

Quantitative Real-time PCR  

 For real-time PCR, total RNA was isolated as detailed above.  An aliquot of the 

same RNA used for microarray analysis, was used for Real-Time PCR using TaqMan® 

Gene Expression Assays (Applied Biosystems, Foster City, CA, USA) according to the 
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manufacturer’s instructions.  TaqMan® Gene Expression Assay Mm02524479_s1* was 

used to analyze Necdin expression and Eukaryotic 18S rRNA (4319413E, Applied 

Biosystems) was used as an endogenous control.  Data were analyzed using SDS 

software version 2.2.2 and exported into an Excel spreadsheet. 

 

Preparation of labeled RNA for hybridization 

Total RNA (1 μg) was then used for microarray analysis using Affymetrix Mouse 

Genome 2.0 GeneChips, according to the manufacturer’s protocol.  Briefly, the poly(A) 

RNA was specifically converted to cDNA, amplified then labeled with biotin following the 

procedure initially described by Van Gelder et al. (Van Gelder RN, 1990).  

First-strand cDNA synthesis was carried out using the Superscript Choice 

System (Invitrogen, Carlsbad, CA) with the T7 promoter/oligo (dT) primer (5’-

GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGG-(dT)24-3’) (Genset Corp., 

La Jolla, CA).  Following annealing, the rest of the cDNA synthesis reaction was 

prepared such that the final reaction contains 5 ug RNA, 100 pmol T7-(T)24 primer, 500 

μM each dNTP, 10 mM DTT, 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl2, and 

200 U of Superscript II reverse transcriptase (Invitrogen Corporation, Carlsbad, CA). The 

reaction was incubated for 1 hr at 42°C. A second-strand cDNA synthesis was 

performed at 16°C for 2 hr in a total volume of 150 μL, using 10U of E.coli DNA ligase, 

40 U of E. coli DNA polymerase I, and 2 U of E. coli RNase H in the presence of 200 μM 

of each dNTP, 10 mM (NH4)SO4, 1.3 mM DTT, 26.7 mM Tris-HCl, pH 7.0, 100 mM KCl, 

5 mM MgCl2, and 150 μM β-NAD+ (Invitrogen). Following the second-strand DNA 

synthesis, 10 U of T4 DNA Polymerase (Invitrogen) was added and the samples 

incubated an additional 5 min at 16°C. The reaction was stopped by the addition of 0.5 

M EDTA and subsequently extracted with an equal volume of phenol/chloroform/isoamyl 

alcohol. The double-stranded DNA (dsDNA) will then be precipitated with the addition of 
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0.5 volumes of 7.5 M NH4 Acetate and 2.5 volumes of ice-cold 100% ethanol. The 

dsDNA then serves as a template for a transcription reaction performed with the 

GeneChip IVT Labeling kit according to manufacturer's instructions (Affymetrix Corp., 

Santa Clara, CA) which incorporates biotinylated UTP into the transcripts. The Biotin-

labeled RNA was purified using RNeasy columns (Qiagen) and fragmented to a size of 

35 to 200 bases by incubating at 940 C for 35 minutes in fragmentation buffer (40 mM 

Tris-acetate, pH 8.1/100 mM potassium acetate/30 mM magnesium acetate). The 

integrity of the starting material and the products of each reaction were monitored on 

agarose gels to assess the size distribution of the products and compare them to the 

starting material. 

 

Array Hybridization and Scanning 

The hybridization solution consisted of 20 μg of fragmented RNA and 0.1 mg/ml 

sonicated herring sperm DNA, in 1x MES buffer (containing 100 mM MES, 1 M Na+, 20 

mM EDTA, and 0.01% Tween 20). In addition the hybridization solutions were spiked 

with known concentrations of RNA from the bacterial genes, BioB, BioC, and BioD, and 

one phage gene, Cre, as hybridization standards. The hybridization mixtures were 

heated to 99°C for 5 min followed by incubation at 45°C for 5 min before injection of the 

sample into a probe array cartridge. All hybridizations were carried out at 45°C for 16–17 

h with mixing on a rotisserie at 60 rpm. Following hybridization, the solutions were 

removed and the arrays were rinsed with 1x MES. Subsequent washing and staining of 

the arrays was carried out using the GeneChip Fluidics station protocol EukGE_WS2, 

which consists of 10 cycles of 2 mixes per cycle with non-stringent wash buffer (6x 

SSPE, 0.01% Tween 20) at 25°C followed by 4 cycles of 15 mixes per cycle with 

stringent wash buffer (100 mM MES, 0.1 M Na+, and 0.01% Tween 20) at 50°C. The 

probe arrays were then stained for 10 min in streptavidin-phycoerythrin solution (SAPE) 
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[1x MES solution, 10 μg/ml SAPE (Molecular Probes, Eugene, OR), and 2 μg/μl 

acetylated BSA (Invitrogen) at 25°C. The post-stain wash was 10 cycles of 4 mixes per 

cycle at 25°C. The probe arrays were treated for 10 min with an antibody solution [1x 

MES solution, 2 μg/μl acetylated BSA, 0.1 μg/μl normal goat IgG (Sigma Chemical, St. 

Louis, MO), 3 μg/μl biotinylated goat-anti-streptavidin antibody, (Vector Laboratories, 

Burlingame, CA) at 25°C. The final wash consisted of 15 cycles of 4 mixes per cycle at 

30°C. Following washing and staining, probe arrays were scanned once at 1.5-μm 

resolution using the Affymetrix GeneChip Scanner 3000.  Scanned output files were 

visually inspected for hybridization artifacts. 

 

Normalization of Microarray Data 

When using high density oligonucleotide microarrays, the aim is usually to 

determine how RNA populations may differ in expression in response to experimental 

conditions.  Variations in global gene expression patterns usually result in a change in 

cell phenotype and are referred to as “biological variation”.  However, the observed 

expression of genes can also include variation introduced through non-biological or 

“experimental variation”, which includes sample preparation, array production and 

processing, including labelling, hybridization and scanning.  The raw data from the 

scanned chips therefore needs to be appropriately normalized to reduce unwanted 

variation between chips and allow data from different arrays to be compared in a 

meaningful way. 

Microarray analysis using the Affymetrix GeneChip® system yields a CEL file for 

each GeneChip run.  Each CEL file contains the expression level data for all the 

probesets on the chip.  The first step in preparing the microarray data for analysis is 

referred to as normalization.  This process adjusts the individual hybridization intensities 

to balance them appropriately, allowing meaningful biological comparisons to be made 
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between chips.  Normalization is similar to adjusting expression levels measured by 

Northern blot or quantitative Real Time PCR where expression of a particular gene is 

adjusted relative to the expression of one or more reference genes whose expression 

level us assumed to be constant between experimental samples.  Consequently, 

normalization takes into account different quantities of starting RNA, differences in 

labelling or detection of the fluorescent dyes and any systematic biases in the measured 

expression levels for any probe. 

Normalization methods usually involve the selection and calibration of data 

derived from genes that are known not to be affected by experimental conditions.  In this 

study, we used the Robust Multichip Average (RMA) method of normalization 

established by Irizarry et al.  (Irizarry et al., 2003).  RMA consists of three steps:  a 

background adjustment, quantile normalization and finally summarization.   Background 

correction adjusts for background noise and processing effects; cross-hybridization and 

adjusts estimated expression values to fall on a proper scale.  Quantile normalization is 

a simple and fast algorithm which normalizes the data so that the quantiles of each chip 

of equal. 

The CEL files were normalized using Robust Multichip Average (RMA) (Irizarry et 

al., 2003) using RMAExpress software using background correction, quantile 

normalization and Median Polish summarization.  

 

Significance Analysis of Microarrays 

In order to identify changes in gene expression caused by v-Src or STAT-3C 

expression, CEL files for three Balb/c-3T3 control chips were either normalized with the 

CEL files for the three v-Src chips or normalized separately with the CEL files for the 

three STAT3-C chips.  The expression sets were then exported to a Microsoft Excel 

spreadsheet, formatted for analysis by the Significance Analysis of Microarrays (SAM) 
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add-in tool for Excel (Tusher et al., 2001). SAM was performed twice: first to identify 

differentially expressed genes between control Balb/c-3T3 cells and Balb/c-3T3 cells 

expressing pMvSrc, then again to identify differentially expressed genes between control 

Balb/c-3T3 cells and Balb/c-3T3 cells expressing pRcCMV-STAT3-C.   

The options selected for SAM analysis were as follows: Response Type:  two-

class, unpaired data (Class 1 – Balb/c-3T3, Class 2 – v-Src or STAT3-C); Data logged: 

logged (base 2); Weblink Option: Accession number; Number of Permutations: 100; 

Imputation engine: N/A – no missing data in experiment; Random number seed: 

generate random number seed.  This produced a list of Affymetrix probeset IDs 

differentially expressed in cells expressing v-Src and also for STAT3-C as compared to 

control cells.  We accepted all probesets identified by SAM as differentially regulated by 

at least 1.5-fold. 

Overlap of the Two Microarray Data Sets.   

Microarray analysis and subsequent SAM generated two lists of differentially 

expressed genes: one list identified genes differentially expressed between control 

Balb/c-3T3 cells and cells transfected with v-Src, and the second list contained genes 

differentially expressed between control Balb/c-3T3 cells and cells transfected with 

STAT3-C.  Genes common to both lists are most likely to be directly regulated by 

STAT3.  Probeset IDs in common between the two lists were identified using the Excel 

VLOOKUP function.  The probesets identified were then processed by Affymetrix 

NetAffx to yield a list of genes.  SAM analysis generates a Score (T-statistic) for each 

probeset on each list.  Probesets common to both lists were ranked using the average of 

the two Score values generated from the v-Src and STAT3-C SAM analysis. 

The microarray data have been deposited in the Gene Expression Omnibus 

(GEO) Database at http://www.ncbi.nlm.nih.gov/geo (GEO accession no. GSE22251). 
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Computational Analysis of Microarray Data 

We analyzed and categorized the differentially expressed genes identified by 

SAM using the Functional Annotation tool in the DAVID Bioinformatics Database (Dennis 

et al., 2003; Huang da et al., 2009). Pathway Analysis was carried out using the 

MetaCore Analysis Suite v 5.2 build 17389 GeneGO Maps program (GeneGO, Inc, New 

Buffalo, MI) to identify signaling pathways that were enriched in the list of differentially 

expressed genes. 

 

Nuclear Extract Preparation and EMSA 

For the detection of DNA-binding activity of STAT3 by EMSA, nuclear protein 

extracts were prepared using high-salt extraction as described previously (Garcia et al., 

1997).  For standard EMSA, nuclear protein (5 µg) was incubated with 32P-radiolabeled 

double-stranded DNA oligonucleotides containing a high-affinity variant of the sis-

inducible element (hSIE; sense strand, 5'-AgCTTCATTTCCCTgAAATCCCTA-3') derived 

from the c-fos gene promoter, which binds activated STAT3 and STAT1 proteins as a 

positive control (Kreis et al., 2007; Wagner et al., 1990). 

Supershift assays were performed using anti-STAT3 polyclonal antibodies 

(C20X, Santa Cruz Biotechnology) to identify STAT3. 2 µL of the concentrated STAT3 

antibody was pre-incubated with 5 µg nuclear protein for 20 min at room temperature 

before adding the radiolabeled probe (30 min, 30°C).  Samples were then separated by 

non-denaturing PAGE and detected by autoradiography.   

For competition EMSA, nuclear extract was incubated with a series of unlabeled 

NDN oligonucleotides containing putative STAT3 binding sites, added in a molar excess, 

prior to adding 32-P-labeled hSIE oligonucleotide.  In addition, a wild-type oligonucleotide 

probe derived from the Necdin gene promoter (STAT3 consensus DNA-binding 
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sequence italicized) was used as follows: wild-type Necdin/–558 (sense strand, 16-mer), 

5'-CTACTTCTAgAA-3'.   

 

Western Blot Analysis 

Whole cell lysates were prepared in boiling sodium dodecyl sulphate (SDS) 

sample buffer and equal amounts (100 µg) of total protein were run on a 10% SDS-

polyacrylamide gel. The proteins were transferred to nitrocellulose membrane, washed 

with PBS/0.2% Tween 20, and incubated in 1x PBS/0.2% Tween 20/5% milk overnight 

with anti-phospho-STAT3 antibody (STAT3 Tyr705, Cat. #9131, Cell Signaling, Boston, 

MA, USA), or anti-STAT3 antibody to an epitope in the C-terminus of full-length STAT3-

alpha (sc-482, Santa Cruz Biotechnology, Santa Cruz, CA) or anti-Necdin antibody 

(ab18554, Abcam, Cambridge, MA, USA). The membrane was then washed with 

PBS/0.2% Tween 20, incubated for 1 h at room temperature with alkaline phosphatase–

linked anti-rabbit secondary antibodies, and visualized using ECL Western Blotting 

Detection Reagents (Amersham, Pittsburgh, PA, USA). For detection of ß-actin, the blot 

was stripped with stripping buffer [2% SDS, 62.5 mmol/L Tris (pH 6.8), 0.7% ß-

mercaptoethanol] and re-blotted with anti-ß-Actin (A5441, Sigma) for 1 h at room 

temperature and visualized as described.  Bands were detected by autoradiography.   

For densitometry, images were digitally scanned and optical density of the bands was 

quantified using Scion Image (Scion Corporation, Frederick, MD) and normalized to 

control. 

 

Chromatin Immunoprecipitation 

Chromatin immunoprecipitation was performed using a kit from Upstate as 

described by the supplier. Briefly, 2 million v-Src 3T3 cells were treated with 

formaldehyde for 10 minutes at room temperature. Cells were collected by scraping, 



54 

lysed and the DNA sheared by ultrasonication (Bioruptor XL, Diagenode). 

Immunoprecipitations were performed with the following antibodies (4.0 µg): anti-total 

STAT3 (sc-482, Santa Cruz Biotechnology), and anti-rabbit Ig G (sc-2027, Santa Cruz 

Biotechnology) as a control.  Subsequently, cross-links were reversed, and bound DNA 

was purified.  PCR was performed using NDN/-558 specific primers:  Fwd:  5`-

CATgAgAgACTgTTAggTATC-3` and Rev: 5`-CTATAgATTTgggCTCTCCAT-3`.  Control 

primers were also used as follows:  Fwd:  5’- TAg AAC CTA ggA ATg CCA ACA-3’  and 

Rev: 5’- gAT ACC TAA CAg TCT CTC ATg-3’. 

 

 



55 

 

 

 

CHAPTER 3: RESULTS 

 

PART I: Induction of STAT3 Activity in Mouse Fibroblasts 

As previously described in the introduction, STAT3 can be activated by various 

upstream signalling molecules, including cytokines, non-receptor tyrosine kinases and 

constitutively active mutants, however, these ligands may also induce other STAT family 

proteins simultaneously e.g. Epidermal Growth Factor induces both STAT1 and STAT3.  

In order to identify genes which are regulated by STAT3 specifically, we chose 

techniques which to preferentially induced STAT3 only in mouse fibroblast cells.  We 

chose to examine STAT3 activation in cells using IL-6 stimulation to induce transient 

phosphorylation of STAT3.  We also chose to examine constitutive STAT3 activation in 

cells stably transfected with v-Src or STAT3-C. 

 

IL-6 Induces STAT3 DNA Binding in Mouse Fibroblasts 

Human recombinant IL-6 was used to induce STAT3 activation in Balb/c-3T3 

mouse fibroblasts.  Cells were seeded at 1 x106 per 10cm plate for 24 hours before 

serum starvation (0.1% bovine calf serum) for 3 hours prior to stimulation. Cells were 

then treated with increasing doses of human recombinant IL-6 for 30 minutes.  Nuclear 

extracts were then prepared from cells as previously described Src (Yu et al., 1995) and 

analyzed by Electrophoretic Mobility Shift Assay (EMSA) using a radioactive 

oligonucleotide (hSIE) that specifically detects activated STAT1 and STAT3.  

As shown in Figure 3A, IL-6 activates endogenous STAT proteins in Balb/c-3T3 

cells in a dose-responsive manner. Supershift assays, using antibodies to STAT1 and 
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STAT3-alpha confirm that IL-6 induces STAT3 DNA binding activity (Fig. 3B Lane 4), but 

not STAT1 (Lane 3).  This is critical for specifically identifying STAT3-regulated genes, 

since the presence of active STAT1 would confound the results by activating additional 

signaling pathways. 

 

 

 

Figure 3. IL-6 induces STAT3 DNA binding in Balb/c-3T3 cells.  A. Nuclear extracts prepared 

from cells treated with IL-6 at the doses indicated for 30 min  were incubated with the 32P-labeled 

hSIE oligo-nucleotide probe and analyzed by EMSA.  B. Identification of specific STAT proteins 

activated by IL-6 in Balb/c-3T3 cells by antibody supershift analysis:  nuclear extracts pre-

incubated with STAT1 or STAT3-alpha specific antibodies were incubated with 32P-labeled hSIE. 

* Antibody-shifted STAT3. 
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We then investigated the activation of STAT3 by IL-6 stimulation in NIH3T3 

mouse fibroblast cells.  As before, NIH3T3 cells were serum starved for 3 hours prior to 

treatment with increasing concentrations of IL-6.   

 

 
Figure 4.  IL-6 induces STAT3 DNA binding in NIH3T3 cells.  Nuclear extracts prepared from 

cells treated with IL-6 at the doses indicated for 30 min were incubated with the 32P-labeled hSIE 

oligo-nucleotide probe and analyzed by EMSA.  *, “supershifting” was achieved using anti-STAT3 

antibodies added to the reaction to confirm the presence of STAT3 in the complex. 

 

As shown in Figure 4, STAT3 activation shows maximum saturation at a 

treatment dose of 25 ng/ml and higher doses do not increase STAT3 binding at 30 min.  

We therefore treated NIH3T3 cells with doses of IL-6 lower than 25 ng/ml to see a dose 

response (Figure 5). 

 

 

 
Figure 5.  IL-6 induces STAT3 DNA binding in NIH3T3 cells in a dose responsive manner.  
Nuclear extracts prepared from cells treated with IL-6 at the doses indicated for 30 min were 

incubated with the 32P-labeled hSIE oligo-nucleotide probe and analyzed by EMSA.   



58 

 Figure 5 demonstrates that NIH3T3 cells show a dose response to IL-6 at lower 

doses than Balb/c-3T3 cells, achieving maximal STAT3 activation at 25 ng/ml.  This 

indicates that this cell line is more sensitive to IL-6 stimulation than Balb/c-3T3 cells. 

 

Kinetics of IL-6 Response in Mouse Fibroblasts 

 Activation of STATs is rapid, usually with a maximum accumulation of STATs 

within the nucleus within 30 minutes, followed by rapid inactivation via 

dephosphorylation (Haspel et al., 1996).  We therefore examined the kinetics of STAT3 

phosphorylation in mouse fibroblasts.   

 

 
 
Figure 6.  IL-6 induces STAT3 phosphorylation in Balb/c-3T3 cells in a time-dependent 
manner.  Balb/c-3T3 cells were treated with IL-6 (10 ng/ml) for 0-120 minutes.  Nuclear protein 

was collected, incubated with the 32P-labeled hSIE oligo-nucleotide probe and analyzed by 

EMSA.   

 

Figure 6 demonstrates that maximal induction of active STAT3 occurs at 30 

minutes post IL-6 treatment, then decreases over time as STAT3 is deactivated.  

However, from 90 minutes onwards, there seems to be a slight increase in STAT3 

phosphorylation, possibly suggesting a second wave of STAT3 activation.  To verify this, 

we examined STAT3 activation past the 120 minute time point for cells treated with a 

single dose of IL-6.  Figure 7 shows an early induction of STAT3 phosphorylation as 

expected, followed by a decrease in activated STAT3.  Interestingly, a second surge in 
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STAT3 phosphorylation occurs from 3 hours onwards, despite no further IL-6 being 

added to the cells. 
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Figure 7.  Single dose IL-6 treatment induces STAT3 phosphorylation in Balb/c-3T3 cells at 
multiple time points.  A.  Nuclear extracts were prepared from cells treated with IL-6 (10 ng/ml) 

for the time indicated and were incubated with the 32P-labeled hSIE oligo-nucleotide probe then 

analyzed by EMSA. B. Total protein was collected from cells treated with IL-6 (10 ng/ml) for the 

times indicated and equal amounts of total protein (100ug) were loaded on a 10% SDS-polyacrylamide 

gel, electrophoresed and immunoblotted for pSTAT3 and total STAT3. 
 
 

We then compared the kinetics of STAT3 activation in Balb/C-3T3 cells to that of 

NIH3T3 cells.  Figure 8 demonstrates that a similar induction of STAT3 occurs in 

NIH3T3 cells treated with IL-6, reaching maximum induction at 30 minutes, which rapidly 

degrades by 60 minutes. 

 

A. 

B. 
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Figure 8.  IL-6 induces STAT3 phosphorylation in NIH3T3 cells in a time-dependent 
manner.  NIH3T3 cells were treated with IL-6 (10 ng/ml) for 0-60 minutes.  Nuclear protein was 

collected, incubated with the 32P-labeled hSIE oligo-nucleotide probe and analyzed by EMSA.   
 

 We then examined whether a similar second wave of STAT3 activation occurred 

in these cells.  Figure 9 indicates that after a maximum activation at 30 minutes, followed 

by rapid degradation of the signal, STAT3 phosphorylation does indeed increase again 

at 3 hours. 

 

 

 

Figure 9.  Single dose IL-6 treatment induces STAT3 phosphorylation in Balb/c-3T3 cells at 
multiple time points.  Total protein was collected from cells treated with IL-6 (10 ng/ml) for the 

times indicated and equal amounts of total protein (100ug) were loaded on a 10% SDS-polyacrylamide 

gel, electrophoresed and immunoblotted for pSTAT3 and total STAT3. 
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STAT3 Activation in the absence of de novo protein synthesis  

Cycloheximide (CHX), produced by the bacterium Streptomyces griseus, is 

widely used as an inhibitor of protein biosynthesis in eukaryotic organisms.  It exerts its 

effect by interfering with the translocation step in protein synthesis, blocking translational 

elongation.  In order to examine the requirement of protein synthesis for STAT3 

activation, we pre-treated Balb/c-3T3 cells with CHX for 30 minutes prior to stimulating 

the cells with IL-6.  In Figure 10, STAT3 activation does indeed occur in the absence of 

protein synthesis, both at 30 and 60 minutes following treatment.  Induction of phospho-

STAT3 is even stronger in cells pre-treated with CHX at both time points.  
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Figure 10.  IL-6 stimulates STAT3 activation in the absence of de novo protein synthesis.  
A.  Cells were pre-treated with CHX (10 ug/ml) followed by IL-6 (10 ng/ml) for the time indicated.  

Nuclear extracts were prepared and incubated with the 32P-labeled hSIE oligo-nucleotide probe 

then analyzed by EMSA. B. Total protein was collected from cells treated with IL-6 (10 ng/ml) for 

the times indicated and equal amounts of total protein (100ug) were loaded on a 10% SDS-polyacrylamide 

gel, electrophoresed and immunoblotted for pSTAT3 and total STAT3. 

A. 

B. 
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v-Src Transformation Induces Constitutive STAT3 Activation in Mouse Fibroblasts 

STAT3 is also known to be induced by cellular transformation by v-Src (Yu et al., 

1995). NIH3T3 and Balb/c-3T3 cell lines transformed by v-Src were provided by Dr. D. 

Shalloway (Cornell University, New York).  Compared to their parental, non-transformed 

lines, v-Src transformed cells exhibit high levels of constitutive STAT3 activation (Figure 

11), which was confirmed by supershift EMSA assay.  Both cell lines exhibit comparable 

high levels of STAT3 activation. 

 

 

 

Figure 11.  v-Src transformation induces constitutive STAT3 activity in mouse fibroblasts.  
Nuclear extracts were harvested from transformed and untransformed NIH3T3 and Balb/c-3T3 

cells,  incubated with the 32P-labeled hSIE oligo-nucleotide probe and analyzed by EMSA.  *, 

“supershifting” was achieved using anti-STAT3 antibodies added to the reaction to confirm the 

presence of STAT3 in the complex. 

 

 

 



63 

Activation of STAT3 Signaling by STAT3-C 

A constitutively-activated STAT3 molecule (called STAT3-C) was genetically 

engineered and is capable of dimerization in the absence of tyrosine phosphorylation, 

migrate to the nucleus and bind to STAT3 response elements in promoters to induce 

gene expression (Bromberg et al., 1999). 

Balb/c-3T3 parental cells and Balb/c-3T3 cells stably expressing the 

constitutively active STAT3-C mutant expression vector or v-Src were collected and 

nuclear extracts prepared.  Figure 12 shows an EMSA demonstrating STAT3 binding 

activity in cells expressing either v-Src or STAT3-C (lanes 2 and 4), which is absent in 

parental cells.  When compared to STAT3 binding capability in Balb/c-3T3 cells stably 

transfected with v-Src (lane 2), the STAT3-C cells show lower, yet significant STAT3 

activity. 

 

 

 

Figure 12.  Mouse fibroblasts stably expressing v-Src or STAT3-C show constitutive 
STAT3 activity.  Nuclear extracts were harvested from transformed and untransformed Balb/c-

3T3 cells, incubated with the 32P-labeled hSIE oligo-nucleotide probe and analyzed by EMSA. 

 

 

 

STAT3 
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Summary 

 STAT3 activation can be induced by multiple mechanisms, including cytokines, 

growth factor receptors, non-receptor tyrosine kinases and constitutively active mutants.  

We chose to examine activation of STAT3 in mouse fibroblasts using transient 

stimulation with IL-6 and constitutive activation of STAT3 via v-Src and STAT3-C stable 

transfection. 

IL-6 induces STAT3 activation in a dose- and time-dependent manner in mouse 

fibroblasts.  IL-6 does not induce STAT1 activity in these cells, making them useful to 

study gene expression profiles regulated by STAT3. The experiments revealed 

differences in the sensitivity of the two cell lines to IL-6 treatment, with NIH3T3 cells 

being more sensitive to IL-6.  Stimulation of NIH3T3 cells with IL-6 resulted in maximal 

STAT3 activation at lower doses than seen in Balb/c-3T3 cells. 

 Both cell lines, however, exhibited similar kinetics in response to IL-6 treatment.  

IL-6 induced a maximal STAT3 activation at 30 minutes, followed by a rapid degradation 

of the signal with a surge in STAT3 activation at a later time point, despite no further IL-6 

treatment.  The rapid degradation of the STAT3 signal post-stimulation is most likely due 

to the activation of negative regulators of STAT3, such as SOCS3.  Once SOCS3 has 

down-regulated the STAT3 activation, it is likely to be degraded itself, thus resulting in a 

later surge of STAT3 activity as IL-6 continues to signal via the gp130 receptor. 

 Pre-treating the cells with CHX prior to IL-6 stimulation blocked de novo  protein 

synthesis.  This ensured that IL-6 was stimulating direct activation of latent STAT3 

monomers present in the cytoplasm, but also prevented any other proteins not already 

present from being translated.  In cells pre-treated with CHX, we saw an induction of 

STAT3 activity as expected, which was higher than IL-6-only treated cells at both 30 and 

60 minutes.  This higher level of STAT3 induction is most likely due to the inhibition of 

protein synthesis, particularly in relation to negative feedback proteins such as SOCS3. 
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 v-Src and STAT3-C have both been previously characterized in constitutively 

activating STAT3 (Bromberg et al., 1999; Yu et al., 1995).  We confirmed this in the 

mouse fibroblasts we used for these experiments, however, STAT3-C did not appear to 

induce constitutive STAT3 activity to the same level as v-Src. 

 In summary, we examined three well characterized methods for activating STAT3 

using mouse fibroblast cells.  These cell lines were used for subsequent experiments to 

study gene expression patterns in the presence of active STAT3. 
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Part II:  Analysis of STAT3-Regulated Gene Expression 

Cytokine and growth factor signaling pathways involving STAT3 are frequently 

constitutively activated in many different human primary tumors, and are best known for 

the transcriptional role they play in the controlling cell growth and cell cycle progression. 

However, the extent of STAT3's reach on transcriptional control of the genome as a 

whole remains an important question. We predicted that this persistent STAT3 signaling 

affects a wide variety of cellular functions, many of which still remain to be characterized.  

To date, up-regulated expression of numerous STAT3 target genes has been 

identified, including VEGF (Niu et al., 2002), Bcl-2, Bcl-xL (Zushi et al., 1998), p21, 

Cyclin D1 (Sinibaldi et al., 2000) and survivin (Gritsko et al., 2006).  These STAT3 target 

genes have generally been identified on an individual basis, while few studies have 

attempted to identify large numbers of STAT3 regulated genes (Alvarez et al., 2005; 

Dauer et al., 2005; Paz et al., 2004; Sekkai et al., 2005; Snyder et al., 2008).  Our goal 

was to take a broad approach to identify novel STAT3 regulated genes involved in 

oncogenesis by examining changes in the genome-wide gene expression profile by 

microarray, using Balb/c-3T3 cells expressing active STAT3.   

 

Identification of Potential STAT3 Target Genes Expressed Upon IL-6 Stimulation 

 Balb/c-3T3 cells were treated with IL-6 for 1 h, with or without CHX pre-

treatment.  RNA was collected from control cells (no treatment or CHX only) and treated 

cells (IL-6 only or CHX+IL-6) from 3 consecutive passages.  At each passage, cells from 

five 10cm plates were pooled and RNA collected and purified.  The RNA was hybridized 

to Affymetrix Mouse Genome 430 2.0 GeneChip microarrays and the data analyzed to 

identify differentially expressed genes under the different conditions. 
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Figure 13.  Volcano plot of genes induced by IL-6 at 1 h in mouse fibroblasts.  RNA was 

extracted from Balb/c-3T3 cells serum starved for 3 hours prior to treatment with IL-6 for 1 h.  The 

experiment was performed in triplicate and the RNA collected separately.  Purified RNA from 

each experiment was prepared and hybridized to individual Affymetrix Mouse 2.0 GeneChips.  

Following analysis using Affymetrix MAS 5.0 software and a 2-tailed test for significance, the 

differentially expressed genes were plotted on a volcano plot. 

 
 

A volcano plot is a type of scatter plot used to identify changes in large data sets 

using replicate data.  It plots significance (-log P-value) on the y-axis versus log2 fold-

change (Mean Ratio) on the x-axis allowing many thousands of replicate data points 

(Affymetrix Probesets) between two conditions to be viewed, in this case untreated cells 

versus cells treated with IL-6.  By combining the p-value statistical test with the 

magnitude of the fold-change, visual identification of statistically significant data points is 

made simple.  The two regions of interest, demonstrating the differentially expressed 
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genes that are most highly significant, are found towards the top of the plot and to either 

the far left (underexpressed genes) or to the far right (overexpressed genes).  These 

data points represent values that display large magnitude fold-changes as well as high 

statistical significance.  The upper middle region shows data points with less than 2-fold 

difference, but are statistically significant.  The lower middle region shows data points 

that have less than 2-fold difference and are not statistically significant. 

 As can be seen in Figure 13, few data points represent probe sets that were 

underexpressed, or downregulated, compared to control (top left quadrant), whereas 

many more data points were overexpressed, or upregulated, compared to control (top 

right quadrant) in cells treated with IL-6 for 1 h.  From previous studies, this is to be 

expected, since most genes identified to date as regulated by STAT3 are activated in the 

presence of active STAT3. 

In cells pre-treated with cycloheximide (CHX) prior to IL-6 stimulation, the 

volcano plot (Figure 14) shows fewer significant data points located in the top quadrants.  

Only one gene is significantly underexpressed (downregulated) as shown in the top left 

quadrant and many fewer genes are overexpressed (upregulated) as seen in the top 

right quadrant.  These data plots indicated the extent to which gene expression profiles 

were altered in mouse fibroblasts with IL-6 stimulation, demonstrating that the 

expression of most genes remained unaltered at the 1 h time point. 
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Figure 14.  Volcano plot of genes induced in mouse fibroblasts by IL-6 at 1 h in the 
presence of cycloheximide.  RNA was extracted from Balb/c-3T3 cells serum starved for 3 

hours prior to treatment with CHX for 30 min then IL-6 for 1 h.  The experiment was performed in 

triplicate and the RNA collected separately.  Purified RNA from each experiment was prepared 

and hybridized to individual Affymetrix Mouse 2.0 GeneChips.  Following analysis using 

Affymetrix MAS 5.0 software and a 2-tailed test for significance, the differentially expressed 

genes were plotted on a volcano plot. 

 

 



70 

Identification of Genes Induced by IL-6 Activation of STAT3 
The most significant data points from the above analysis were plotted on 3-

dimensional dot plots.  Data points which were identified as being highly significantly 

altered in all 3 experimental replicates converge on the lower corner of the plot. 

 

Figure 15.  Most significant genes induced by IL-6 compared to control.  Genes identified 

from the previous experiments having composite p-value <0.001 and mean log signal >1 were 

plotted on a dot plot according to p-value. 

 

The most significantly differentially expressed genes are as follows (indicated by 

arrows): SOCS3 (1415899_at), Cebpd (1423233_at), unknown EST (1446309_at), IL-6 

(1450297_at), Ifitm5 (interferon induced transmembrane protein 5) (1440216_at) and a 

gene sequence similar to the prolactin family genes (1437515_at). 
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Table 2.  Average fold-change of the most significant genes upregulated by IL-6. 

Probe ID Gene Av. Fold change (log2) p-value
1416576_at Cish3 (SOCS3) 2.27 0.00002
1455899_x_at Cish3 (SOCS3) 2.07 0.00002
1456212_x_at Cish3 (SOCS3) 1.93 0.00002
1423233_at Cebpd 1.93 0.00002  

 
Table 2 shows the top significantly differentially expressed probesets with fold-

changes greater than 1.5 induced upon IL-6 stimulation (note: the most significant genes 

were the same for both IL-6 only and CHX+IL-6 treatment).  Both SOCS3 and CEBPD 

are known IL-6 regulated genes.  Although the other genes had significant p-values, 

their fold-change was <1.5, therefore the change in expression is unlikely to have a large 

impact on the cell and they are not included in the table. 

The most significant genes differentially expressed in cells treated with CHX and 

IL-6 were also plotted (Figure 16).  Two genes were identified as being significantly 

differentially expressed between CHX treated cells and cells treated with CHX then 

stimulated with IL-6 for 1 h:  Probeset 1416576_at: Cish3 (SOCS3) with an average fold-

change of 2.0 (p-value 0.00002) and probeset 1426730_a_at: prolactin family gene 

Prl2b1 (prolactin family 2, subfamily b, member 1) with an average fold-change of 1.67 

(p-value 0.005). 

 

Summary 

 Treatment of mouse fibroblasts with IL-6 for 1 h induced a number of significant 

genes.  Pre-treatment with CHX inhibited expression of some of those genes.  This is to 

be expected since de novo protein synthesis is inhibited.  The data points shown in 

Figure 15 represent those genes which are direct targets of STAT3 and do not require 

other proteins or transcription factors to be produced in order for the genes to be 
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transcribed.  SOCS3, Cebpd and IL-6 are previously known targets of IL-6 activation of 

the JAK-STAT pathway.  As previously mentioned, SOCS3 is known to be rapidly 

induced by IL-6 as an immediate early gene (Starr et al., 1997).  SOCS3 inhibits JAKs 

by binding to the kinase domain and inhibiting their tyrosine kinase activity.  The early 

induction of SOCS3 fits with the previous results in this study demonstrating a down-

regulation of STAT3 phosphorylation after 30 minutes of IL-6 stimulation.  This rapid loss 

of signal is most likely due to the upregulated expression of SOCS3, as shown by 

microarray.

 

IL6+CHX VS CHX
genes with composite p-value <.001 and mean log signal >1

probe.id = 1416576_at
probe.id = 1426730_a_at

 

 

Figure 16.  Most significant genes induced by IL-6 in the presence of CHX compared to 
CHX control.  Genes identified from the previous experiments having composite p-value <0.001 

and mean log signal >1 were plotted on a dot plot according to p-value. 
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Cebpd (CCAAT/enhancer binding protein (C/EBP), delta) is a bZIP transcription 

factor which can bind as a homodimer to certain DNA regulatory regions. It can also 

form heterodimers with the related protein CEBP-alpha. A known target of IL-6 signaling 

via the JAK-STAT pathway (Yamada et al., 1997), CEBPD is important in regulating 

genes involved in immune and inflammatory responses. 

In conclusion, microarray analysis of IL-6 induced genes in the presence or 

absence of CHX demonstrated the proof of concept that STAT3-regulated genes can be 

identified using microarrays, however the genes identified were already known to be 

regulated by IL-6 via the JAK-STAT pathway.  Using an early time points such as 1 h, 

we were unable to identify any novel STAT3-regulated genes that were differentially 

expressed. 
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Identification of STAT3 Target Genes in Cells Expressing v-Src and STAT3-C 

To identify potential novel STAT3-regulated genes, we examined global gene 

expression patterns in cell lines harboring persistently active STAT3. Gene expression 

profiles in such cells are likely to be representative of the genetic profile of a cancer cell 

with aberrant STAT3 expression, as compared to inducing STAT3 activity transiently 

using exogenous stimulation, such as IL-6 or transient transfection (Paz et al., 2004). 

Balb/c-3T3 cells were chosen for this study, since parental cells and cells stably 

expressing both v-Src and STAT3-C were available.  RNA was harvested from normal 

Balb/c-3T3 cells with low levels of endogenous STAT3 activity, to serve as a control.  

RNA was also extracted from Balb/c-3T3 cells stably transfected with either v-Src, 

known to induce persistent activation of STAT3 (Garcia et al., 1997; Zhang et al., 

2000b), or the constitutively active mutant, STAT3-C (Bromberg et al., 1999).  Triplicate 

samples were collected, one each from three consecutive passages.  At each passage, 

cells from five 10cm plates were pooled and RNA collected and purified.  Each RNA 

sample was hybridized to a single Affymetrix Mouse Genome 430 2.0 GeneChip.  

Significance Analysis of Microarrays (SAM) (Tusher et al., 2001) was used to 

identify differentially expressed genes between parental Balb/c-3T3 cells and cells stably 

transfected with either v-Src or STAT3-C.  We accepted all genes identified by SAM as 

differentially regulated by at least 1.5-fold (Yan et al., 2002).  

 

Overlap of the Two Microarray Data Sets 

Microarray analysis and subsequent SAM generated two lists of differentially 

expressed genes: one list identified genes differentially expressed between control 

Balb/c-3T3 cells and cells transfected with v-Src, and the second list contained genes 

differentially expressed between control Balb/c-3T3 cells and cells transfected with 
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STAT3-C.  Genes common to both lists are most likely to be directly regulated by 

STAT3.  These genes were identified by cross-referencing the data in the two lists using 

the Microsoft Excel VLOOKUP function. 

While v-Src transformed cells have constitutively active STAT3, Src also 

stimulates other STAT3-independent pathways (Brunton and Frame, 2008; Frame, 

2002; Frame, 2004; Odajima et al., 2000).  In contrast, target genes activated by STAT3-

C are limited to direct binding of the activated protein to STAT3 consensus sites in DNA.  

Therefore, using cells stably transfected with either v-Src or STAT3-C allowed us to 

control for clonal variations, as well as divergence in signaling pathways depending on 

the mechanism of STAT3 activation.  The use of multiple microarray replicates in our 

approach further increases confidence in the results.  This allowed us to identify a set of 

common genes as targets of STAT3.  The data were further validated by the 

identification of several previously characterized STAT3-regulated genes, including 

CCND1, p21 (Sinibaldi et al., 2000), VEGFA (Niu et al., 2002), and Mcl-1 (Puthier et al., 

1999).  The most significantly over-expressed (induced) and under-expressed 

(repressed) genes are listed in Table 3 and Table 4, respectively (Top 50 genes are 

listed in Tables A-1 and A-2).  

To date, the majority of studies have examined putative STAT3 target genes which 

are up-regulated or over-expressed when STAT3 is active.  STAT3 has been shown to 

activate transcription of many genes involved in oncogenesis, cell survival, tumor 

progression and metastasis.  STAT3 has also previously been shown to repress the 

transcription of a handful of genes, including p53 (Niu et al., 2005) and nitric oxide 

synthase (Saura et al., 2006) However, our results demonstrate that STAT3 is capable 

of repressing expression of a much larger number of genes.  This novel discovery has 

the potential to profoundly impact the biology of cells harboring constitutively active 

STAT3.  
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Table 3.  Most Significant Probesets Over-Expressed Common to v-Src and STAT3-C  

                v-Src Data                   STAT3-C Data

Accession Affy Probeset Gene Name Gene Description Score(d) Fold Change Score(d) Fold Change Av. Score

NM_024223 1417311_at Crip2 cysteine rich protein 2 51.343 17.4918 72.639 26.6976 61.991

NM_021451 1418203_at Pmaip1 phorbol-12-myristate-13-acetate-induced protein 1 39.681 31.3643 34.058 47.1463 36.869

NM_009701 1418818_at Aqp5 aquaporin 5 21.732 22.2635 45.193 94.0883 33.463

AF352788 1451527_at Pcolce2 procollagen C-endopeptidase enhancer 2 36.947 19.9492 27.024 31.4550 31.986

AV066880 1452592_at Mgst2 microsomal glutathione S-transferase 2 29.291 15.1149 34.651 37.3030 31.971

BF235516 1420842_at Ptprf protein tyrosine phosphatase, receptor type, F 16.848 20.1766 44.849 20.1217 30.848

NM_013867 1415936_at Bcar3 breast cancer anti-estrogen resistance 3 26.309 11.7696 33.804 22.3994 30.056

BI251808 1416613_at Cyp1b1 cytochrome P450, family 1, subfamily b, polypeptide 1 21.870 47.4091 36.953 84.8654 29.412

NM_053132 1449527_at Pcdhb7 protocadherin beta 7 25.742 18.8861 29.613 16.6966 27.677

AF022072 1425458_a_at Grb10 growth factor receptor bound protein 10 29.734 22.6049 23.021 30.5514 26.378

BB041811 1455900_x_at Tgm2 transglutaminase 2, C polypeptide 33.990 5.1505 16.141 19.8117 25.065

NM_011577 1420653_at Tgfb1 transforming growth factor, beta 1 38.605 4.2769 11.154 2.2493 24.879  

The top genes ranked by Average Score identified by SAM as being upregulated in common by v-Src and STAT3-C  
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Table 4.   Most Significant Probesets Under-Expressed Common to v-Src and STAT3-C  

               v-Src Data          STAT3-C Data

Accession Affy Probeset Gene Name Gene Description Score(d) Fold Change Score(d) Fold Change Av. Score

AF081260 1418070_at Cdyl chromodomain protein, Y chromosome-like -72.232 0.0548 -47.865 0.0832 -60.049

NM_010882 1415923_at Ndn necdin -58.571 0.0081 -54.087 0.0102 -56.329

AW743020 1435382_at Ndn necdin -30.525 0.0135 -73.974 0.0122 -52.249

NM_009866 1450757_at Cdh11 cadherin 11 -32.836 0.0055 -52.719 0.0048 -42.778

BB074430 1437853_x_at Ndn necdin -16.328 0.1440 -67.114 0.1065 -41.721

AV228782 1434261_at Sipa1l2 signal-induced proliferation-associated 1 like 2 -43.072 0.0715 -38.883 0.1002 -40.978

BB259670 1437284_at Fzd1 frizzled homolog 1 (Drosophila) -16.598 0.0997 -61.622 0.0879 -39.110

AW743020 1435383_x_at Ndn necdin -40.515 0.0120 -29.383 0.0141 -34.949

BB125261 1448293_at Ebf1 early B-cell factor 1 -46.495 0.0688 -19.975 0.0796 -33.235

NM_007993 1460208_at Fbn1 fibrillin 1 -38.299 0.0180 -26.476 0.0200 -32.388

AV124445 1455792_x_at Ndn necdin -30.296 0.0151 -32.708 0.0189 -31.502

NM_011581 1422571_at Thbs2 thrombospondin 2 -33.293 0.0148 -26.721 0.0124 -30.007  

The top genes ranked by Average Score identified by SAM as being down-regulated in common by v-Src and STAT3C.  
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One such gene which appears to be repressed by STAT3 is the negative growth 

regulator Necdin.  Necdin was one of the most significantly repressed genes identified 

(Table 4) and five Affymetrix probesets corresponding to NDN were ranked in the list of 

the top 12 most significantly repressed probesets, suggesting that Necdin is significantly 

repressed when STAT is constitutively active.  This demonstrates that computational 

analysis of microarray data can be used to identify potential STAT3 target genes for 

further investigation. 

 

Pathway Analysis Reveals Known and Novel Functions of STAT3 

Pathway Analysis is an unbiased method to determine whether differentially 

expressed genes, and the proteins they encode, are enriched in particular pathways, 

giving insight into the biological meaning of the changes observed. 

We subjected the list of differentially expressed genes in common between v-Src 

and STAT3-C expressing cells to the MetaCoreTM Analysis Suite (GeneGO) and 

compared them to known biological pathways in the MetaBaseTM database.  Using this 

analysis we were able to identify known STAT3 pathways, including the JAK/STAT 

pathway and Angiotensin/STAT pathway.  This provides support for the use of such 

analyses to identify novel pathways that may also be regulated by STAT3.   

Cell adhesion and cytoskeletal remodeling were among the most significantly 

enriched pathways identified from the differentially expressed genes (Table 5).  The role 

of STAT3 in cytoskeletal remodeling has previously been reported (Gao and Bromberg, 

2006).  Functional analysis of the genes we identified in cytoskeletal remodeling 

processes, indicates that STAT3 regulates genes involved in protein phosphorylation, 

signaling (MAPKK and Ras pathways), as well as response to hypoxia and cell 

migration.  
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We also examined the genes regulated by STAT3 in cell adhesion and 

demonstrated that proteins involved in cell-matrix adhesion and cell-cell adhesion, 

particularly focal adhesion formation, were particularly enriched when STAT3 is 

constitutively active, as well as several genes in the integrin cell adhesion pathway.  As 

such, we show that computational analysis of microarray data can identify both known 

and novel pathways regulated by STAT3. 
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Table 5.  Enriched Pathways in Genes Differentially Expressed by STAT3-C and v-Src 

 

Cell process Count % p-Value

Cell adhesion - Integrin-mediated cell adhesion and migration 19 42.22 5.56E-05

Cytoskeleton remodeling 32 33.33 6.09E-05

Development - Angiotensin signaling via STATs 13 52.00 6.25E-05

Cell adhesion, cytokine and chemokine mediated signaling pathway 31 33.33 7.93E-05

Transcription - Ligand-dependent Transcription of Retinoid Target Genes 15 46.88 8.03E-05

Proteolysis 12 50.00 1.97E-04

Cytoskeletal remodeling and cell adhesion - Integrin outside in signaling 18 39.13 2.79E-04

Development - WNT signaling, degradation of beta-catenin 10 50.00 6.83E-04

G-protein signaling - RhoA regulation pathway 14 41.18 7.26E-04

Immune response - IFN alpha/beta signaling pathway 11 45.83 9.32E-04
 

Over-represented pathways identified using the MetaCore Analysis Suite (GeneGO Inc.) 
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Functions of Induced Genes. 

To determine the functional classification of the differentially expressed genes 

identified by SAM, we performed Functional Annotation using the tool in the DAVID 

Bioinformatics Database (http://david.abcc.ncifcrf.gov/) (Dennis et al., 2003; Huang da et 

al., 2009).  A wide range of target genes were altered by STAT3 activation, including 

genes involved in multiple pathways regulating biological and cellular processes, 

metabolism, protein localization and transport, as well as organ and system 

development (Table 6, Figure 17).  Genes within these categories include many involved 

in cell growth and maintenance, such as lipid, nucleotide and protein synthesis, 

metabolism and/or localization (including VLDLR, APOL6, AK5, MTAP, UPP1, POP5, 

NUPL1, SEC61B, VDP) as well as signal transduction, all of which are required to 

promote cell growth and proliferation.   

STAT3 has a well characterized role in regulating gene transcription, however, 

we also show through Functional Analysis, that STAT3 controls the expression of genes 

involved in cellular processes required to transport the proteins and regulate their 

subcellular localization.  This supports our hypothesis that STAT3 coordinates multiple 

pathways within the cell and reveals that STAT3 has wide-ranging effects, controlling 

multiple cellular pathways involved in fundamental biological processes.  Our results 

suggest that STAT3 orchestrates transcription, translation, transport and localization 

leading to wide reaching effects on cell growth, proliferation and survival.  In contrast to 

previous studies of STAT3 target genes, we demonstrated that STAT3 regulates a 

diverse array of genes in both a positive and negative manner.  Most genes regulated by 

STAT3 that have been identified to date demonstrate increased expression in cells 

where STAT3 is activated.  However, our results also show that STAT3 signaling causes 

repression of many genes, including Necdin, which could profoundly impact the biology 

of cells harboring constitutively active STAT3.   
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Table 6.  Functional Enrichment (based on GO Biological Process) in Genes Differentially Expressed in Common  

by STAT3-C and v-Src using DAVID. 

GO Category Level GO Term GO Category* Count p Value

GOTERM_BP_3 GO:0050794 Regulation of cellular process 535 1.64E-14

GOTERM_BP_3 GO:0043283 Biopolymer metabolic process 627 5.89E-12

GOTERM_BP_3 GO:0048519 Negative regulation of biological process 170 3.05E-09

GOTERM_BP_3 GO:0008104 Protein localization 140 5.76E-09

GOTERM_BP_3 GO:0045184 Establishment of protein localization 131 9.26E-09

GOTERM_BP_3 GO:0048523 Negative regulation of cellular process 158 1.96E-08

GOTERM_BP_3 GO:0009653 Anatomical structure morphogenesis 187 2.40E-08

GOTERM_BP_3 GO:0015031 Protein transport 123 3.79E-08

GOTERM_BP_3 GO:0048513 Organ development 213 7.26E-08

GOTERM_BP_3 GO:0048731 System development 248 7.76E-07  

The top 10 functionally enriched categories ranked by p-Value for GOTERM_BP_3 identified by DAVID 
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Figure 17.  Biological Processes Regulated by STAT3-C.  Top significant genes differentially expressed in cells expressing constitutively active 

STAT3-C grouped according to biological process. 
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Part III:  Necdin is a Novel STAT3 Target Gene 

Through computational analysis of our microarray data, we identified Necdin, a 

negative growth regulator, as a novel potential STAT3 target gene.  Necdin is a potent 

growth suppressor that is predominantly expressed in post-mitotic neurons (Aizawa et 

al., 1992; Hayashi et al., 1995; Maruyama et al., 1991; Uetsuki et al., 1996).  Necdin 

expression has been shown to be down-regulated both carcinoma cell lines and primary 

tumors (Chapman and Knowles, 2009), suggesting that repression of Necdin expression 

may have a role in oncogenesis.   

 

Constitutively Activated STAT3 Blocks Necdin mRNA Expression 

Microarray analysis of global gene expression patterns produces a large list of 

potential target genes.  Identifying true potential target genes from that list for further 

investigation is a critical decision.  NDN, the gene encoding Necdin, a negative growth 

regulator (Hayashi et al., 1995) and member of the MAGE family of melanoma-

associated tumor antigens, was identified as one candidate STAT3-regulated gene. In 

Table 2, the genes identified as down-regulated in the presence of STAT3 activity were 

ranked according to significance (Score (d)).  Necdin was one of the most statistically 

significantly down-regulated genes.  Of even greater importance, is the fact that 5 

Affymetrix probesets corresponding to NDN are ranked in the top 12 most significantly 

repressed probesets (Table 4).  This indicates that, based on the statistical analysis 

alone, Necdin is highly likely to be down-regulated in expression when STAT3 is active 

in the cell.  These data, together with the fact that Necdin has not previously been 

suggested as a potential STAT3 target gene, prompted us to select Necdin for further 

analysis. 

We first examined Necdin gene expression in the microarray samples we 

collected, including cells treated with IL-6 (+/-CHX), v-Src and STAT3-C.  Figure 18 
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demonstrates that Necdin expression levels are indeed lower in cells expressing v-Src 

and STAT3-C, however, Necdin expression is high in control cells, as well as cells 

treated for only 1 hour with IL-6 (+/-CHX). 

 

 

Figure 18.  Necdin expression in cells with activated STAT3.    Microarray Analysis of Necdin 

mRNA expression levels.  RNA from Balb/c-3T3 cells stably expressing either pMvSrc or pRc-

STAT3-C or treated with IL-6 (+/- CHX) for 1 h was isolated, processed and hybridized to 

Affymetrix Mouse Genome 430 2.0 GeneChips. All microarray experiments were done in triplicate 

independent experiments, and the results are presented for each probe set as average fold 

change in RNA expression.  Data for two different probesets are presented.  The signal intensity 

of the parental Balb/c-3T3 cells was set to 100%.    

 

We set out to verify the computational analysis and confirm whether Necdin is in 

fact a physiological STAT target gene.  When compared with normal control cells, 

analysis of the microarray data demonstrated that NDN expression was consistently 

repressed in the cell lines expressing v-Src or STAT3-C, indicating that NDN is a 

candidate STAT3-regulated gene in both of these cell lines (Fig. 19A).  Figure 19B. 

confirms that NDN mRNA expression is dramatically down-regulated in v-Src and 

STAT3-C expressing cells as measured by quantitative Real-Time PCR. 
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Figure 19. Analysis of Necdin expression in cell lines stably expressing v-Src or STAT3-C.  

A. Microarray Analysis of Necdin mRNA expression levels.  RNA from Balb/c-3T3 cells stably 

expressing either pMvSrc or pRc-STAT3-C was isolated, processed and hybridized to Affymetrix 

Mouse Genome 430 2.0 GeneChips. All microarray experiments were done in triplicate 

independent experiments, and the results are presented for each probe set as average fold 

change in RNA expression.  Data for two different probesets are presented.  The signal intensity 

of the parental Balb/c-3T3 cells was set to 100%.   B. Real-time PCR analysis.  RNA samples 

used for microarray analysis were measured for Necdin mRNA expression using Real-time PCR 

with gene-specific primers and fluorescent-labeled probe (Taqman® Gene Expression Assays, 

Applied Biosystems).  RNA expression was normalized to 18S rRNA.  n = 3 independent 

experiments.   
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Repression of Necdin mRNA Expression is STAT3 Dependent 

NIH-3T3 cells stably expressing v-Src express high levels of active STAT3.  

These v-Src 3T3 cells were treated with either control siRNA or two different doses of 

STAT3-specific siRNA.  Cells treated with control siRNA maintain high levels of STAT3 

and have low levels of Necdin expression (Fig. 20, lane 1).  As expected, STAT3 siRNA 

effectively inhibited expression of total STAT3 (Fig. 20, lanes 2 and 3). In these cells the 

expression of the STAT3 protein was inhibited in a dose-dependent manner, and Necdin 

expression was restored in a manner consistent with STAT3 knockdown in this cell line.  

These results suggest that repression of Necdin is dependent on activated STAT3. 

 

 

 

 

Figure 20.  Inhibition of STAT3 activity correlates with Necdin expression.  Western.  

NIH3T3 cells stably expressing v-Src were seeded (2.5 x 105) in 6 cm tissue culture plates in 

complete medium 24 h before transfection. Cells were then transfected with either 125 nM control 

siRNA or 100 nM or 125 nM STAT3 siRNA.  At 48 h after transfection, total protein was harvested 

and equal amounts of total protein (100�g) were loaded on a 10% SDS-polyacrylamide gel, 

electrophoresed and immunoblotted for Necdin (polyclonal, Abcam ab18554), phosphorylated 

STAT3 (p-STAT3, Cell Signaling 9131), total STAT3 (Santa Cruz, sc-482) and anti-actin 

(monoclonal, Sigma A-4551) proteins.   
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Activated STAT3 binds to the NDN promoter in vitro 

To determine whether STAT3 directly regulates Necdin transcription, we 

analyzed the sequence of the mouse NDN promoter (Uetsuki et al., 1996) for potential 

STAT3 binding sites. STAT3 consensus sites have been defined as palindromic 

sequences with the common sequence 5`-TT(N4-6)AA-3` (Ehret et al., 2001).  Our 

analysis identified several candidate STAT3 binding sites throughout the 1500 base 

pairs upstream of the transcriptional start site. Double-stranded oligonucleotide probes 

were generated for all the potential binding sites and tested in a competition EMSA 

(Figure 21) for their ability to compete for the binding of STAT3 against a high affinity 

variant of the STAT3 binding site in the c-fos promoter (hSIE) (Wagner et al, 1990; Yu et 

al., 1995).   

 

 
 
FIGURE 21.  STAT3 binds directly to the NDN promoter.  A. Competition EMSA.  3T3 v-Src 

nuclear extract was incubated with 32P-labeled double stranded hSIE oligonucleotide (lanes 1 and 

2) or with a series of unlabeled NDN oligonucleotides containing putative STAT3 binding sites, in 

a 103-fold molar excess (lanes 3-13) prior to adding 32P-labeled hSIE oligonucleotide, to compete 

with hSIE for STAT3 binding.  SS, supershift with anti-STAT3 antibodies.  A candidate STAT3 

DNA binding site in the mouse Necdin promoter was identified (position -558, relative to the 

translation initiation site).   
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The oligonucleotide containing the putative binding site at position -558 relative 

to the transcriptional initiation site was identified as being able to compete effectively 

with the hSIE probe (Fig. 21, lane 9).  Furthermore, we confirmed the ability of non-

radioactive NDN/-558 oligonucleotide to compete with the radiolabeled hSIE probe for 

binding of activated STAT3.   

As shown in Figure 22A, increasing amounts of unlabeled NDN/-558 were tested, 

demonstrating that a high molar excess is able to compete with 32P-hSIE for STAT3 

binding.  A double stranded 32P-radiolabeled DNA oligonucleotide corresponding to the 

NDN/–558 sequence identified in the NDN promoter was then used in an EMSA to 

detect STAT3 DNA binding.  The NDN probe, as well as the positive control probe, hSIE, 

were incubated with 5 ug nuclear extract from v-Src 3T3 cells and subjected to native gel 

electrophoresis.  As shown in Figure 22B, activated STAT3 binds to the high affinity 

sequence in the hSIE oligonucleotide (lane 1), as well as to the sequence derived from 

the NDN promoter (lane 3).   The artificial hSIE probe contains a high affinity STAT3 

binding site and yielded a strong EMSA band, whereas the single STAT3 binding site in 

the NDN/-558 probe demonstrated a weaker STAT3 binding activity as expected. 
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FIGURE 22.  A.  Competition EMSA confirms STAT3 binding to the NDN promoter.  3T3 v-

Src nuclear extract was incubated with 32P-labeled double stranded hSIE oligonucleotide (lanes 1 

and 2) or with increasing amounts of unlabeled NDN/-558 oligonucleotide containing the putative 

STAT3 binding site, (lanes 3-5) prior to adding 32P-labeled hSIE oligonucleotide, to compete with 

hSIE for STAT3 binding.  SS, supershift with anti-STAT3 antibodies.  B.  EMSA.  3T3 v-Src 

nuclear extract was incubated with the following 32P-labeled double-stranded oligonucleotides:  

hSIE (lanes 1 and 2), NDN/-558 (lanes 3 and 4); “supershifting” was achieved using anti-STAT3 

antibodies added to the reaction to confirm the presence of STAT3 in the complex.   

 

To confirm that STAT3 is contained in the protein complex binding to the 

oligonucleotides, the nuclear extracts were pre-incubated with anti-STAT3 antibodies 

before adding the radiolabeled probe (lanes 2 and 4).  The addition of anti-STAT3 

antibody supershifted the hSIE band.  Addition of the antibody to the NDN/-558 reaction 

diminished the appearance of the main EMSA band as expected, but the supershift band 

is not visible. The diminished band and absent supershift band may also be due to the 

fact that STAT3 binding to the NDN/-558 oligo was weaker to begin with and the amount 

of supershifted complex is too little to be seen.  It is also possible that the STAT3 

antibody partially blocks binding of the NDN/-558 radioactive probe to STAT3 in the 

nuclear extract and the supershift is not visible.  This could result if the antibody 

recognition site and DNA binding domain for the NDN/-558 oligonucleotide in STAT3 
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were in close proximity, causing the antibody to partially obstruct binding of STAT3 to 

the probe.   

 

Binding of STAT3 to the NDN Promoter in vivo 

To determine whether STAT3 could bind the Necdin promoter in intact cells, 

chromatin immunoprecipitation assays (ChIP) were performed in 3T3 v-Src cells using 

an antibody specific to STAT3.  As shown in Figure 23, PCR yielded Necdin promoter 

DNA immunoprecipitated with an anti-STAT3 antibody in the region of the -558 putative 

STAT3-binding site, but not at a control locus on the NDN promoter.  The specificity of 

this binding interaction was demonstrated by the lack of signal generated when a control 

antibody is used (anti-rabbit IgG).  These data provide evidence that STAT3 can directly 

bind the Necdin promoter in intact 3T3 v-Src cells.   

Together the competition and NDN/-558 probe EMSAs and ChIP assay suggest 

that STAT3 has the ability to bind to the NDN promoter both in vitro and in vivo and 

provide further evidence that control of NDN expression by STAT3 occurs through a 

direct binding event at the promoter and that gene regulation primarily occurs at the level 

of transcription. 
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FIGURE 23.  Chromatin immunoprecipitation assay (ChIP) confirms STAT3 binds the NDN 
promoter in vivo.  Balb/3T3 v-Src cells expressing constitutively active STAT3 were used for 

ChIP.  Briefly, after crosslinking histones to DNA by formaldehyde for 10 min, cells were collected 

and sonicated to shear DNA to an average length of 200-1000 bp.  A portion of this material was 

used as a positive control for PCR (Input).  The remaining sample was incubated with either anti-

IgG or anti-STAT3 antibodies overnight and then immunoprecipitated using protein A-agarose.  

The histone-DNA complex was reverse cross-linked after several washing steps, and samples 

were subjected to PCR using specific primers surrounding the candidate STAT3-binding site at 

position -558 in the NDN promoter or a control region within the NDN promoter. 
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Necdin Expression Is Repressed in Human Melanoma Cells 

We next examined whether down-regulation of Necdin occurred in human tumor 

cells expressing activated STAT3.  Expression of Necdin has been previously shown to 

be repressed in melanoma cells (Hoek et al., 2004) so we examined whether this had a 

correlation with STAT3 activity.   

STAT3 phosphorylation and DNA-binding activity have been shown to increase 

in A375 melanoma cells in a density-dependent manner in the absence of ligand (Kreis 

et al., 2007). A375 cells were plated at increasing density and allowed to grow for 72 h.  

Nuclear extracts were prepared and analyzed by EMSA.  Figure 24A shows that DNA-

binding of STAT3 increased with cell density as expected.  We then analyzed total 

protein by Western blot for Necdin expression.  Figure 24B shows that expression of 

total STAT3 and STAT3 phosphorylation was up-regulated in a density-dependent 

manner.  Conversely, as STAT3 activation increases, Necdin expression was down-

regulated at the protein level.   

To confirm that the repression of Necdin expression is STAT3-dependent, A375 

cells were plated at high density, and allowed to adhere overnight before being treated 

with either DMSO or the STAT3-inhibitor CPA-7 (20 uMol/L) for 24 h (Turkson et al., 

2004).  Western blot analysis shows that when A375 cells are plated at low density (105 

cells), Necdin expression was high, whereas activated STAT3 levels were low (Fig. 25, 

lane 1).  Cells plated at high density (106 cells), (Fig. 25, lane 3) showed higher levels of 

p-STAT3 and decreased expression of Necdin.  Treatment of high density A375 cells 

with CPA-7 for 24 h inhibited STAT3 activation (Fig. 25, lane 2), and Necdin levels in 

these cells were restored to high levels, comparable to cells plated at low density.  This 

demonstrates that Necdin repression in these cells is indeed STAT3 dependent. 

 



 

94  

 

 
 
 
 
FIGURE 24.  STAT3 downregulates Necdin expression in A375 human melanoma cells.  
A375 cells were plated at different densities (Fig. 3A and 3B:  1, 2.5, 5 or 7.5 x 105 cells; Fig. 3C: 

105 and 106 cells) in 10 cm plates and grown for 72 h. Nuclear extracts and total protein were 

collected. A.  EMSA.  Nuclear extracts from A375 cells were incubated with STAT-specific hSIE 
32P-labeled double stranded oligonucleotide.  B.  Western blot.  Total protein extracts were 

harvested from A375 cells plated at different densities and equal amounts of total protein (100�g) 

were loaded on a 10% SDS-polyacrylamide gel, electrophoresed and immunoblotted for Necdin, 

phosphorylated STAT3 (p-STAT3) and total STAT3 proteins.   
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FIGURE 25.  Inhibition of STAT3 expression in A375 human melanoma cells restores 
Necdin expression.  Western blot.  A375 cells were plated at two different densities (105 and 106 

cells) and allowed to adhere overnight.  Plates seeded at 106 cells were then treated with either 

DMSO or CPA-7 (20 �Mol/L) and all cells were grown for a further 48 h.  Total protein was 

harvested and analyzed by Western blot. 
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IL-6 Represses Necdin Expression in Human Prostate Cancer Cells 

IL-6 acts as an autocrine growth factor in prostate cancer (Giri et al., 2001) and 

has been linked to progression of tumors (Drachenberg et al., 1999).  IL-6 signals are 

transmitted via the JAK-STAT pathway from receptors on the cell surface to the target 

genes in the nucleus, involving phosphorylation and activation of STAT3 (Lou et al., 

2000). We therefore examined whether activation of STAT3 via IL-6 stimulation led to 

repression of Necdin expression in the prostate cancer cell lines DU145 and PC3.  

These cell lines harbor low levels of constitutively active STAT3 (Mora et al., 2002; 

Okamoto et al., 1997), which can be further induced by stimulation with IL-6.  Cells were 

serum starved for 3 h prior to treatment with IL-6 (10 nMol/L) for 12 or 24 h.  Total 

protein was prepared and analyzed by Western blot.  Figure 26 shows that IL-6 

stimulation resulted in increased STAT3 activity within the cells and demonstrated 

corresponding down-regulation of Necdin expression upon IL-6 stimulation in both cell 

lines.  This confirms that IL-6 is capable of repressing Necdin expression via STAT3 in 

prostate cancer cells.  

 

Figure 26.  Necdin expression correlates with STAT3 activity in prostate cancer cell lines.  
PC3 and DU145 cells were plated at a density of 106 cells/10 cm plate and allowed to adhere 

overnight and serum starved for 3 h prior to treatment with IL-6 (10 nMol/L) for 12 or 24 h.  Total 

protein was extracted from the cells and analyzed by Western blot. 
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Necdin Expression Correlates with STAT3 Activity in Human Breast Cancer Cells 

Since EGFR and Src signaling pathways contribute to STAT3 activation in breast 

cancers (Garcia et al., 2001; Garcia et al., 1997), we examined Necdin gene expression 

in the microarrays of breast tissue and matched normal tissue.  Figure 27 demonstrates 

that there may indeed be a difference in Necdin expression in tumor versus normal 

tissue.  Normal breast tissue shows a higher level of Necdin transcripts than tumor 

tissues.  

 

Figure 27.  Expression of Necdin mRNA in breast tumors and normal adjacent breast 
tissue.  Graph shows gene expression for the Affymetrix Probeset 209550_at corresponding to 

Necdin in breast tumor and normal (non-tumor) tissue. 

 

However, since only a small group of 13 tumor/non-tumor samples were 

available, we chose to evaluate Necdin expression levels in human breast cancer cell 

lines with varying levels of endogenous STAT3 activity.  Figure 28 shows that p-STAT3 

protein levels were high in MDA-MB-468 cells, slightly lower in MDA-MB-231 and very 

low in MCF-7 cells.   Necdin protein expression inversely correlated with p-STAT3 levels, 

being expressed at a low level in MDA-MB-468 and MDA-MB-231 cells, but exhibited 

much higher expression in MCF-7 cells. 
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Figure 28.  STAT3 activity down-regulates Necdin expression in human breast cancer cell 
lines.  Total protein was harvested from MDA-MB-468, MDA-MB-231 and MCF-7 cells and 

subjected to Western blot analysis.   

 

 

 

Figure 29.  Inhibition of STAT3 restores Necdin expression in MCF7 breast cancer cells.  
MCF-7 cells were seeded and allowed to adhere overnight before being transiently transfected 

with control (GFP) or pMvSrc plasmids using Lipofectamine PLUS.  Total protein was collected at 

48 h post-transfection and subjected to Western blot analysis.  Expression of p-STAT3 was 

measured using densitometry (Scion Image Beta 4.0.3, Scion Corp., Frederick, MD, USA) and 

expressed as fold-change compared to control. 

 

To test the hypothesis that constitutively activated STAT3 has a causal role in 

suppressing Necdin expression in tumor cells, we examined whether transient activation 

of STAT3 signaling could down-regulate Necdin expression.  MCF7 cells express high 
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levels of Necdin (Figure 29, lanes 1 and 4), however when transiently transfected with v-

Src for 48 h, Necdin protein expression is inhibited.  This demonstrates that even a 

transient 2-fold increase in STAT3 activation in these cells is sufficient to effectively 

repress the expression of Necdin (Figure 29, lanes 3 and 6). 

 

Summary 

In this study, we show that Necdin mRNA expression inversely correlates with 

STAT3 activity in cells expressing constitutively-active STAT3.  Inhibition of STAT3 using 

siRNA restores expression of Necdin protein.  Chromatin immunoprecipitation and 

EMSA assays indicate that the Necdin gene is directly regulated by the STAT3 protein.  

In addition, Necdin expression in human tumour cell lines is correlated with activation of 

endogenous STAT3.   

Recently a paper published by Chapman and Knowles (Chapman and Knowles, 

2009) stated that down-regulation of Necdin occurs in both carcinoma cell lines and 

primary tumors, suggesting that Necdin has a tumor suppressor role.  Our results are 

similar to the data reviewed in this paper and also demonstrate that Necdin is a 

physiological target of STAT3 and indicate that Necdin is a candidate for further study in 

this role.  Our findings provide evidence for a role of Necdin in STAT3-dependent 

oncogenesis, suggesting that repression of Necdin expression may be a mechanism by 

which tumour cells gain a growth advantage in response to STAT3 activation.   
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CHAPTER 4: DISCUSSION 
 
The Role of STAT3 in Oncogenesis 

The mechanisms that activate STAT3 in human tumors may differ, but in all 

cases cells with constitutively active STAT3 exhibit dysregulated cell cycle progression 

and/or apoptosis.  In this study, our hypothesis was that aberrant STAT3 activity, as 

present in many human tumors, is predicted to cause permanent alterations in the global 

gene expression patterns, including dysregulated expression of genes involved in cell 

cycle progression and proliferation, survival, apoptosis and angiogenesis, thereby 

contributing to oncogenesis.  A handful of STAT3-regulated genes have been identified 

to date, however, we predicted that there are other STAT3-regulated genes that play a 

role in malignant transformation and oncogenesis that, as yet, remained unidentified. 

To identify potential novel STAT3-regulated genes, we examined global gene 

expression patterns in cell lines harboring active STAT3.  Our initial experiments used 

IL-6 to stimulate STAT3 activation in a time-dependent manner in mouse fibroblasts.  

Since active STAT3 induces a signal transduction cascade, including the expression of 

multiple downstream transcription factors and their own target genes, we chose to 

analyze gene expression at an early time point (one hour) after stimulation with IL-6, in 

the presence or absence of cycloheximide.  This allowed us to study the gene(s) which 

were directly activated by STAT3 and not by a downstream signaling cascade initiated 

by STAT3.  We were able to SOCS3, CEBPD and prolactin genes as a direct STAT3 

target gene, induced by IL-6 at this time point.  However, these experiments gave us 

limited results, demonstrating that at one hour post IL-6 stimulation, in the absence of 

translation, STAT3 has few direct targets.   
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Inducing STAT3 activity transiently using exogenous stimulation, such as IL-6 or 

transient transfection (Paz et al., 2004) is likely to result in induction of some, but not all, 

STAT3 target genes and which genes are expressed may be influenced by the 

conditions in which the cells are maintained.  However, gene expression profiles in cells 

with constitutively active STAT3 are more likely to be representative of the genetic profile 

of a cancer cell with aberrant STAT3 expression.  Further microarray studies were 

therefore carried out using cells which stably expressed either v-Src or the constitutively 

active mutant, STAT3-C.  Constitutive expression of active STAT3 in these cells is 

predicted to result in stable gene expression and global changes in gene expression 

profiles, many of which are likely to play a role in oncogenesis.  

Our experiments also took into consideration the fact that clonal variation is likely 

to exist between cells of the same cell type where STAT3 is induced by different 

mechanisms.  For this reason, we studied gene expression in a mouse fibroblast cell line 

stably transfected with v-Src and compared the results to genes expressed in cells 

stably expressing the constitutively active mutant, STAT3-C.  While v-Src transformed 

cells have constitutively active STAT3, v-Src also stimulates other STAT3-independent 

pathways (Brunton and Frame, 2008; Frame, 2002; Frame, 2004; Odajima et al., 2000).  

In contrast, target genes activated by STAT3-C are limited to direct binding of the 

activated protein to STAT3 consensus sites in DNA.  Therefore, using cells stably 

transfected with either v-Src or STAT3-C allowed us to control for clonal variations, as 

well as divergence in signaling pathways depending on the mechanism of STAT3 

activation.  Genes identified as regulated by STAT3 but not in common between the two 

cell lines are likely to be due to clonal variation.  However, the subset of genes that are 

regulated in common in both cell lines are likely to represent true global STAT3 targets. 
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Identifying Novel STAT3 Regulated Genes 

The transcriptional profile of a cell expressing constitutively active STAT3 is 

predicted to be very different compared to a cell where STAT3 is under tight regulation. 

Our initial hypothesis was that STAT3 promotes widespread changes in global gene 

expression patterns, including both direct and indirect targets.  We took a broad 

approach by studying global gene expression changes using microarray analysis in 

fibroblast cells expressing constitutively-activated STAT3. With this approach we were 

able to identify differential expression of several previously identified STAT3 target 

genes, with a wide range of biological functions and roles in multiple cellular pathways, 

including genes involved in cell cycle progression and proliferation, survival, apoptosis 

and angiogenesis, thereby contributing to oncogenesis. 

The use of multiple microarray replicates in our approach further increases 

confidence in the results.  This allowed us to identify a set of common genes as targets 

of STAT3.  The data were further validated by the identification of several previously 

characterized STAT3-regulated genes, including CCND1, p21 (Sinibaldi et al., 2000), 

VEGFA (Niu et al., 2002), and Mcl-1 (Puthier et al., 1999). 

In the cells used for the microarray experiments, where STAT3 is constitutively 

active and mRNA transcription has reached equilibrium, some mRNA species 

transcribed will be direct targets of STAT3 and some will be indirect targets.  Direct 

targets are those where STAT3 itself binds directly to the gene promoter to induce 

transcription, perhaps in cooperation with other co-activator proteins.  Indirect targets of 

STAT3 are transcribed via binding of a secondary transcription factor.  In this case, the 

secondary transcription factor is directly regulated by STAT3.  STAT3 has been shown 

to regulate the expression of other transcription factors, as well as itself, and is thus 

capable of generating a cascade of gene activation both directly and indirectly.  Since 

microarray technology is based on the interpretation of mRNA levels in control compared 
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to treated cells, we are unable to distinguish direct versus indirect targets of STAT3 gene 

transcription from the data obtained.  Further analysis of the differentially expressed 

genes is required to further validate whether or not the expression of the genes is 

directly regulated by STAT3.   

 

Pathway and Functional Analysis of STAT3 Regulated Genes 

Microarrays assess simultaneous changes in transcript levels on an individual 

basis, resulting in a long list of genes which have significantly changed transcript levels 

when compared to control cells.  However, these changes in gene expression do not 

occur as independent events within the cell, but are controlled in a coordinated manner 

and are often interconnected.   Pathway Analysis is an unbiased method to determine 

whether differentially expressed genes, and the proteins they encode, are enriched in 

particular pathways, giving insight into the biological meaning of the changes observed.  

We predicted that STAT3 controls genes involved in cell cycle progression and 

proliferation, survival, apoptosis and angiogenesis, some of which had not been 

identified before, however, we also predicted that STAT3 would have an effect on other 

signaling pathways which are critical to oncogenesis, progression and metastasis. 

Using pathway and functional analysis of the differentially expressed genes 

identified in our experiments, we were able to identify known STAT3 pathways, including 

the JAK/STAT pathway and Angiotensin/STAT pathway.  This provides support for the 

use of such analyses to identify novel pathways that may also be regulated by STAT3.   

The Pathway Analysis and Functional Annotation indicate STAT3 regulation of 

genes in cell growth and metabolism, including nucleotide, lipid and protein metabolism, 

as well as protein transport and localization.  This analysis also points to a strong link 

between STAT3 and regulation of genes involved in cell adhesion and cytoskeletal 

remodeling.  These results suggest that STAT3 has a wider impact on cellular processes 
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than demonstrated to date and that STAT3 also acts as a central coordinator of its own 

cellular signaling pathways.  In particular, not only does STAT3 promote gene 

transcription, it may also have a role in production of the appropriate proteins for 

transcription to take place and ensure that they are localized correctly within the cell. 

Combining this approach with computational analysis of the microarray results, 

we were able to define the gene expression profile of cells expressing activated STAT3 

and examine the role of STAT3 in both positive and negative regulation of gene 

expression.   

Pathway and functional analysis demonstrate that STAT3 has an important role 

in regulating, both positively and negatively, a diverse array of cellular processes in 

addition to transcription.  STAT3 coordinates expression of genes involved in multiple 

metabolic and biosynthetic pathways, integrating signals that lead to global 

transcriptional changes and oncogenesis.  These include genes involved in cell 

adhesion, cytoskeletal remodeling, nucleotide, lipid and protein metabolism, as well as 

signal transduction.   

Constitutive activation of STAT3 provides cancer cells with growth and survival 

advantages by activating multiple pathways within the cell, involving a broad range of 

genes.  It has also been shown to repress the transcription of a handful of genes, 

including p53 (Niu et al., 2005) and nitric oxide synthase (Saura et al., 2006).   Few other 

genes have been identified to date that are negatively regulated by STAT3.  However, 

computational analysis of our data, suggest that STAT3 is capable of repressing 

expression of a much larger number of genes.  This novel discovery indicates that these 

pathways collaborate to profoundly impact the biology of cells and produce the 

proliferative advantage seen in cells harboring constitutively active STAT3.  

In summary, STAT3 has been shown to up-regulate expression of multiple genes 

involved in cell growth and metabolism, as well as protein transport, localization, cell 
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adhesion and cytoskeletal remodeling.  This study also suggests that STAT3 may exert 

its oncogenic effect not only by directly or indirectly up-regulating transcription of genes 

involved in promoting growth and proliferation, but also by down-regulating expression of 

negative regulators of the same cellular processes.   

 

Necdin, a Novel STAT3 Target Gene 

From the microarray data, we identified Necdin as a novel STAT3-regulated gene 

whose expression is repressed when STAT3 is constitutively activated.  Our studies 

indicate that constitutively active STAT3 may directly cause down-regulation of Necdin at 

the transcriptional level.    We also demonstrated that Necdin expression is repressed in 

several tumor cell types, including melanoma, prostate and breast cancer cell lines, and 

is inversely correlated with STAT3 activity.  This suggests that Necdin is a physiological 

target gene of STAT3.  

The mechanism by which STAT3 represses Necdin expression remains to be 

elucidated.  STAT3 has previously been shown to form a complex with DNA 

methyltransferase 1 and histone deacetylase 1 to mediate epigenetic silencing of the 

tyrosine phosphatase, SHP-1 (Zhang et al., 2005) indicating that this is a possible 

mechanism by which STAT3 could downregulate Necdin expression.  Exploration of the 

potential epigenetic silencing of Necdin would further knowledge regarding STAT3 

repression of gene expression. 

A recent study published by Chapman and Knowles (Chapman and Knowles, 

2009) stated that down-regulation of Necdin occurs in both carcinoma cell lines and 

primary tumors.  Our results are similar to the data reviewed in this paper and indicate 

that Necdin is a candidate for further study in this role and could represent a novel 

cancer therapeutic target.  Repression of Necdin expression by STAT3 may play an 

important role in regulating the cell cycle and proliferation in human cancer cells, which 
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has the potential to give tumor cells a growth advantage.  Necdin is a negative growth 

regulator, capable of interacting with E2F1, resulting in inhibition of E2F1 target gene 

expression and consequent growth inhibitory effects (Taniura et al., 1998).  Two reports 

have previously demonstrated that Necdin expression is down-regulated in melanoma 

(Hoek et al., 2004) and a drug-resistant ovarian cancer cell line (Varma et al., 2005).  

Thus far, no role for Necdin in oncogenesis has been confirmed; but, our results suggest 

that repression of Necdin expression by STAT3 may be one mechanism which could 

potentially contribute to a growth advantage of tumor cells and is of interest for further 

analysis.  The repression of Necdin observed in cell lines need to be confirmed in human 

tumors compared to normal tissues, for example via microarray, Real Time PCR and 

immunohistochemistry, and the effect of Necdin silencing examined with regard to cell 

cycle and proliferation to identify any possible growth advantage that it may provide.  

The reversal of such gene repression represents a target for novel anticancer therapies. 
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CHAPTER 5: CLINICAL SIGNIFICANCE 

Our initial hypothesis was that constitutive activation of STAT3 within cells leads 

to permanent changes in global gene expression patterns that play a role in the 

development of a malignant phenotype.  We predicted that STAT3 promotes widespread 

changes in gene expression, including both direct and indirect targets, involving multiple 

signaling pathways and involving a broad range of genes affecting cell cycle 

progression, cellular proliferation and survival, angiogenesis and apoptosis.  Having 

identified a set of differentially expressed genes in cell lines expressing constitutively 

active STAT3, it would be of clinical relevance to use the data to determine a STAT3 

molecular signature in human tumors. 

A molecular signature is defined as a group of STAT3 regulated genes that are 

co-expressed simultaneously.  Cell lines do not accurately represent the physiology and 

biology of human tumors, lacking the microenvironment and interactions found in vivo.  

Analysis of untreated tumor samples by microarray and comparison of the differential 

gene expression between normal and tumor tissue would allow for validation of the 

expression of the cell line signature in primary human tumors.  The molecular signature 

may vary by tissue type, thus may show differences between breast cancer and prostate 

cancer, however, there may also be a subset of genes which define a general STAT3 

molecular signature in human cancer.  Given the biological and physiological effects of 

STAT3 target genes, such a signature may predict response to chemotherapy and 

prognosis in cancer patients. 

 Transcription factors involved in oncogenesis are chief targets for cancer 

therapy, especially since multiple signaling pathways converge on signaling molecules 
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such as STAT3 (Turkson and Jove, 2000).  STAT3 gene ablation results in inhibited 

tumor growth in various tumor models, therefore targeting a drug to inhibit STAT3 is 

under active pursuit. The use of pharmacological agents to inhibit STAT3 activity may 

lead to a rebalancing of the signaling pathways regulating cell growth and lead to 

inhibition of tumor progression (Buettner et al., 2002; Darnell, 2002; Turkson, 2004; 

Turkson and Jove, 2000; Yu and Jove, 2004).  Whilst targeting STAT3 is not easy, due 

to a lack of enzyme activity, various approaches are producing results, including 

disrupting dimer formation via the SH2 interaction (Turkson et al., 2001), blocking 

protein-DNA binding or platinum-based drugs (Turkson et al., 2004). 

 Computational analysis of global changes in gene expression regulated by 

STAT3 gives further insight into the mechanisms by which STAT3 contributes to 

oncogenesis.  Such gene expression profiles, controlled by STAT3, may be useful in 

identifying potential targets for drug treatment, as well as in tailoring cancer treatment to 

the patient by use of gene expression analysis of tumors.  In this study we identified 

Necdin as a novel STAT3 regulated gene.  Necdin is a negative growth regulator shown 

to be silenced in several tumor types.  Whilst the mechanism of silencing has not yet 

been elucidated, reactivation of NDN expression also represents a novel therapeutic 

target. 
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Table A-1.  Most Significant Probesets Over-Expressed Common to v-Src and STAT3-C 

                          STAT3-C Data         v-Src Data

Probe Set ID Gene Symbol Gene Title Score(d) Fold Change Score(d) Fold Change Av. Score

1417311_at Crip2 cysteine rich protein 2 72.639 26.698 51.343 17.492 61.991

1418203_at Pmaip1 phorbol-12-myristate-13-acetate-induced protein 1 34.058 47.146 39.681 31.364 36.869

1418818_at Aqp5 aquaporin 5 /// similar to aquaporin 5 45.193 94.088 21.732 22.263 33.463

1451527_at Pcolce2 procollagen C-endopeptidase enhancer 2 27.024 31.455 36.947 19.949 31.986

1452592_at Mgst2 microsomal glutathione S-transferase 2 34.651 37.303 29.291 15.115 31.971

1420842_at Ptprf protein tyrosine phosphatase, receptor type, F 44.849 20.122 16.848 20.177 30.848

1415936_at Bcar3 breast cancer anti-estrogen resistance 3 33.804 22.399 26.309 11.770 30.056

1416613_at Cyp1b1 cytochrome P450, family 1, subfamily b, polypeptide 1 36.953 84.865 21.870 47.409 29.412

1449527_at Pcdhb7 protocadherin beta 7 29.613 16.697 25.742 18.886 27.677

1425458_a_at Grb10 growth factor receptor bound protein 10 23.021 30.551 29.734 22.605 26.378

1455900_x_at Tgm2 transglutaminase 2, C polypeptide 16.141 19.812 33.990 5.150 25.065

1420653_at Tgfb1 transforming growth factor, beta 1 11.154 2.249 38.605 4.277 24.879

1420562_at Slurp1 secreted Ly6/Plaur domain containing 1 44.696 61.526 3.888 2.167 24.292

1447845_s_at Vnn1 vanin 1 36.504 13.221 9.977 2.781 23.240

1421038_a_at Kcnn4
potassium intermediate/small conductance calcium-
activated channel, subfamily N, member 4 19.816 9.364 25.477 14.102 22.646

1419758_at Abcb1a
ATP-binding cassette, sub-family B (MDR/TAP), member 
1A 12.054 3.575 33.224 28.079 22.639

1417960_at Cpeb1 cytoplasmic polyadenylation element binding protein 1 18.423 6.037 26.614 7.086 22.518

1420841_at Ptprf protein tyrosine phosphatase, receptor type, F 31.989 7.116 10.485 8.588 21.237

1421870_at Trim44 tripartite motif-containing 44 16.413 10.029 25.530 15.460 20.971

1429778_at Optn optineurin 3.971 3.254 37.760 3.912 20.866  
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                          STAT3-C Data            v-Src Data

Probe Set ID Gene Symbol Gene Title Score(d) Fold Change Score(d) Fold Change Av. Score

1427020_at Scara3 scavenger receptor class A, member 3 20.776 24.700 18.615 5.585 19.695

1450047_at Hs6st2 heparan sulfate 6-O-sulfotransferase 2 24.776 17.182 14.035 6.966 19.405

1434465_x_at Vldlr very low density lipoprotein receptor 20.781 48.594 17.146 27.971 18.963

1433428_x_at Tgm2 transglutaminase 2, C polypeptide 22.679 18.346 15.129 5.749 18.904

1425295_at Ear11 eosinophil-associated, ribonuclease A family,  member 11 14.467 11.001 22.528 39.833 18.498

1427357_at Cda cytidine deaminase 23.520 23.970 13.361 18.933 18.441

1448416_at Mgp matrix Gla protein 6.074 14.732 30.402 83.751 18.238

1447623_s_at Prkcm Protein kinase C, mu 11.240 27.376 25.161 10.360 18.200

1422631_at Ahr aryl-hydrocarbon receptor 23.807 45.461 12.326 28.711 18.067

1424329_a_at Prrg2 proline-rich Gla (G-carboxyglutamic acid) polypeptide 2 6.589 2.662 28.826 5.017 17.707

1460238_at Msln mesothelin 20.555 44.338 14.741 12.442 17.648

1449454_at Bst1 bone marrow stromal cell antigen 1 12.681 47.741 22.073 178.132 17.377

1450380_at Epdr1 ependymin related protein 1 (zebrafish) 19.033 7.667 15.188 9.579 17.111

1416612_at Cyp1b1 cytochrome P450, family 1, subfamily b, polypeptide 1 18.906 43.963 15.256 25.544 17.081

1426795_at Ptprs protein tyrosine phosphatase, receptor type, S 3.744 1.634 29.917 2.950 16.831

1449453_at Bst1 bone marrow stromal cell antigen 1 13.542 46.422 19.747 123.703 16.645

1421869_at Trim44 tripartite motif-containing 44 11.139 2.939 21.807 6.840 16.473

1428547_at Nt5e 5' nucleotidase, ecto 10.955 7.722 21.789 48.296 16.372

1435945_a_at Kcnn4
potassium intermediate/small conductance calcium-
activated channel, subfamily N, member 4 12.135 5.758 20.607 7.620 16.371

1434036_at Mtss1 metastasis suppressor 1 19.032 47.958 13.608 25.882 16.320

1417389_at Gpc1 glypican 1 13.915 14.315 18.707 27.523 16.311

1421369_a_at Mab21l1 mab-21-like 1 (C. elegans) 16.595 8.964 15.947 4.645 16.271
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                          STAT3-C Data            v-Src Data

Probe Set ID Gene Symbol Gene Title Score(d) Fold Change Score(d) Fold Change Av. Score

1416645_a_at Afp alpha fetoprotein 27.332 65.246 4.856 2.934 16.094

1416670_at Setdb1 SET domain, bifurcated 1 5.119 1.727 27.024 3.266 16.072

1454114_a_at Nhedc1 Na+/H+ exchanger domain containing 1 28.946 15.208 2.946 1.163 15.946

1431644_a_at Ica1 islet cell autoantigen 1 17.637 5.303 14.115 8.796 15.876

1418752_at Aldh3a1 aldehyde dehydrogenase family 3, subfamily A1 25.596 52.110 6.152 10.601 15.874

1421001_a_at Car6 carbonic anhydrase 6 21.885 15.720 9.573 10.722 15.729

1444139_at Ddit4l DNA-damage-inducible transcript 4-like 13.772 5.294 17.170 4.739 15.471

1431055_a_at Snx10 sorting nexin 10 16.881 2.809 13.686 2.528 15.283
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Table A-2.  Most Significant Probesets Under-Expressed Common to v-Src and STAT3-C 

                      STAT3-C Data           v-Src Data

Probe Set ID Gene Symbol Gene Title Score(d) Fold Change Score(d) Fold Change Av. Score

1418070_at Cdyl chromodomain protein, Y chromosome-like -47.865 0.0832 -72.232 0.0548 -60.049

1415923_at Ndn necdin -54.087 0.0102 -58.571 0.0081 -56.329

1435382_at Ndn necdin -73.974 0.0122 -30.525 0.0135 -52.249

1450757_at Cdh11 cadherin 11 -52.719 0.0048 -32.836 0.0055 -42.778

1437853_x_at Ndn necdin -67.114 0.1065 -16.328 0.1440 -41.721

1434261_at Sipa1l2 signal-induced proliferation-associated 1 like 2 -38.883 0.1002 -43.072 0.0715 -40.978

1437284_at Fzd1 frizzled homolog 1 (Drosophila) -61.622 0.0879 -16.598 0.0997 -39.110

1435383_x_at Ndn necdin -29.383 0.0141 -40.515 0.0120 -34.949

1448293_at Ebf1 early B-cell factor 1 -19.975 0.0796 -46.495 0.0688 -33.235

1460208_at Fbn1 fibrillin 1 -26.476 0.0200 -38.299 0.0180 -32.388

1455792_x_at Ndn necdin -32.708 0.0189 -30.296 0.0151 -31.502

1422571_at Thbs2 thrombospondin 2 -26.721 0.0124 -33.293 0.0148 -30.007

1450663_at Thbs2 thrombospondin 2 -22.233 0.0320 -37.130 0.0392 -29.681

1423091_a_at Gpm6b glycoprotein m6b -28.982 0.0425 -29.909 0.0375 -29.446

1448254_at Ptn pleiotrophin -32.491 0.0062 -25.948 0.0065 -29.219

1447839_x_at Adm adrenomedullin -31.069 0.0262 -26.688 0.0265 -28.878

1416211_a_at Ptn pleiotrophin -22.711 0.0299 -34.659 0.0271 -28.685

1437983_at Sall1 sal-like 1 (Drosophila) -28.236 0.1429 -28.652 0.0924 -28.444

1416301_a_at Ebf1 early B-cell factor 1 -18.082 0.0881 -38.525 0.0729 -28.304

1425923_at Mycn
v-myc myelocytomatosis viral related oncogene, 
neuroblastoma derived (avian) -27.445 0.0117 -28.305 0.2423 -27.875

1451791_at Tfpi tissue factor pathway inhibitor -17.920 0.0687 -36.868 0.0410 -27.394

1454974_at Ntn1 netrin 1 /// similar to Netrin-1 precursor -24.194 0.1080 -29.321 0.0997 -26.757

1448201_at Sfrp2 secreted frizzled-related protein 2 -23.839 0.0127 -27.235 0.0105 -25.537

1419467_at Clec14a C-type lectin domain family 14, member a -32.540 0.0503 -18.114 0.0674 -25.327
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                      STAT3-C Data            v-Src Data

Probe Set ID Gene Symbol Gene Title Score(d) Fold Change Score(d) Fold Change Av. Score

1428512_at Bhlhb9 basic helix-loop-helix domain containing, class B9 -26.936 0.1109 -23.643 0.0745 -25.290

1450069_a_at Cugbp2 CUG triplet repeat, RNA binding protein 2 -16.465 0.0508 -32.843 0.0564 -24.654

1436363_a_at Nfix nuclear factor I/X -16.947 0.3387 -31.712 0.2372 -24.330

1452296_at Slit3 slit homolog 3 (Drosophila) -20.270 0.0739 -28.152 0.0648 -24.211

1424916_x_at Zfp764 zinc finger protein 764 -27.579 0.3744 -19.797 0.3964 -23.688

1423584_at Igfbp7 insulin-like growth factor binding protein 7 -21.931 0.0125 -25.350 0.0118 -23.641

1448925_at Twist2 twist homolog 2 (Drosophila) -19.924 0.1597 -27.213 0.1029 -23.568

1418532_at Fzd2 frizzled homolog 2 (Drosophila) -13.396 0.2982 -33.577 0.2124 -23.486

1448434_at Rnf103 ring finger protein 103 -11.348 0.1802 -35.593 0.1323 -23.471

1423327_at Rpl39l ribosomal protein L39-like -23.856 0.0196 -22.625 0.0259 -23.240

1419468_at Clec14a C-type lectin domain family 14, member a -17.392 0.0804 -28.276 0.0706 -22.834

1438682_at Pik3r1
phosphatidylinositol 3-kinase, regulatory subunit, 
polypeptide 1 (p85 alpha) -21.729 0.2230 -23.868 0.3169 -22.798

1416077_at Adm adrenomedullin -17.629 0.0131 -27.940 0.0146 -22.784

1451244_a_at Zfp422 zinc finger protein 422 -17.283 0.1541 -27.977 0.2264 -22.630

1451332_at Zfp521 zinc finger protein 521 -18.189 0.0811 -26.803 0.0353 -22.496

1436364_x_at Nfix nuclear factor I/X -15.349 0.3449 -29.551 0.2355 -22.450

1418533_s_at Fzd2 frizzled homolog 2 (Drosophila) -21.614 0.3454 -21.180 0.2157 -21.397

1428185_at Kctd18 potassium channel tetramerisation domain containing 18 -14.620 0.2519 -28.112 0.2738 -21.366

1437341_x_at Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase -12.138 0.1863 -30.589 0.1573 -21.363

1428797_at Setd6 SET domain containing 6 -18.904 0.3470 -23.293 0.1855 -21.098

1421392_a_at Birc3 baculoviral IAP repeat-containing 3 -14.576 0.3042 -27.260 0.2533 -20.918

1424133_at Tmem98 transmembrane protein 98 -20.010 0.1024 -20.928 0.0893 -20.469

1451154_a_at Cugbp2 CUG triplet repeat, RNA binding protein 2 -15.501 0.0413 -24.748 0.0295 -20.124

1449630_s_at Mark1 MAP/microtubule affinity-regulating kinase 1 -23.605 0.1533 -16.523 0.1191 -20.064

1448370_at Ulk1 Unc-51 like kinase 1 (C. elegans) -31.136 0.3260 -8.638 0.3862 -19.887

1422799_at Bat2 HLA-B associated transcript 2 -13.176 0.1644 -26.477 0.1814 -19.827  
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