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Bcl-2 Related Ovarian Killer, Bok, is Cell Cycle Regulated and Sensitizes to 

Stress-Induced Apoptosis 

José M. Rodríguez 

    ABSTRACT 

Bok/Mtd (Bcl-2-related ovarian killer/Matador) is considered a pro-apoptotic 

member of the Bcl-2 family.  Though identified in 1997, little is known about its 

biological role. We have previously demonstrated that Bok mRNA is upregulated 

following E2F1 over-expression.  In the current work, we demonstrate that Bok RNA is 

low in quiescent cells and rises upon serum stimulation. To determine the mechanism 

underlying this regulation, we cloned and characterized the mouse Bok promoter. We 

find that the mouse promoter contains a conserved E2F binding site (-43 to –49) and that 

a Bok promoter-driven luciferase reporter is activated by serum stimulation dependent on 

this site. Chromatin immunoprecipitation assays demonstrate that endogenous E2F1 and 

E2F3 associate with the Bok promoter in vivo.  Surprisingly, we find that H1299 cells can 

stably express high levels of exogenous Bok. However, these cells are highly sensitive to 

chemotherapeutic drug treatment. Taken together these results demonstrate that Bok 

represents a cell cycle-regulated pro-apoptotic member of the Bcl-2 family, which may 

predispose growing cells to chemotherapeutic treatment.
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Chapter 1: Introduction 

 

E2F Family of Transcription Factors 

The E2F family of transcription factors has key roles in regulating the G1/S 

transition 67,79,85,90. There are nine E2F members identified, so far 12,20,24,42,62,89,114,132.  

This family can be divided into three distinct groups based on both structure and 

function. E2F1, 2 and 3A make up the first distinct group. Structurally, a long N-terminal 

region, of unclear function, distinguishes these E2Fs (Fig 1). They also contain a cyclin A 

binding domain important for their down regulation in S phase 72,76,144. At the C-terminus, 

each possesses a potent transcriptional activation domain that contains an Rb binding 

motif 1,44,69,78,78. Functionally, these E2Fs appear necessary for cell cycle progression 

1,57,90, they are primarily expressed at the G1/S boundary 1,27,52,59,65,79,92,116 and they 

potently drive S phase when expressed in otherwise quiescent rodent fibroblast 22,67,75,85. 

 

In contrast, members of the second group of E2Fs (3B, 4 and 5) lack the N-

terminal region (Fig 1) and are expressed ubiquitously through the cell cycle 134. They 

can activate transcription of G1/S genes when over expressed in rodent fibroblast, 

particularly E2F3B 43, but do so less efficiently than E2F1-3A 22,85. These E2Fs appear 

essential to maintain growth arrest 31,109 and contribute to differentiation 103,109.  

Mechanistically these E2Fs may primarily serve to tether Rb to E2F-regulated promoters  
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Figure 1. Schematic representation of the E2F family of proteins. 
Shaded boxes indicate important and conserved domains. What all E2F’s 
have in common is the DNA binding domain. E2F1-3 are the activating 
E2F’s, where as E2F3B-8 are implicated in growth repression. 
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 3

during G0 31,103, and may also serve to generate an initial pulse of E2F activity that is 

subsequently amplified by activating the transcription of the more potent E2F1, 2 and 3A. 

 

Finally, E2F6, 7 and 8 represent the third group (Fig 1). These E2Fs appear to 

lack the transcriptional activation/Rb binding domain present in other E2Fs and serve 

exclusively to repress transcription via interaction with transcriptional repressors 

12,20,24,83,89,97,132. For example, E2F6 binds to transcriptional co-repressors due to its ability 

to bind polycomb protein molecules and generally serves to repress growth 97.  

 

E2F Role in Cell Cycle 

Progression through the cell cycle is regulated by many proteins, which include 

cyclins, cyclin dependent kinases (CDK), cyclin dependent kinase inhibitors (CKI), E2F 

family members and the retinoblastoma protein (pRb) family members among others 

2,6,9,14,23,32,36,41,45,66,71,73,95,98,106,115,120,121,124,127,128,131,133,146,147. In a resting cell, 

hypophosphorylated pRb and its family members p107 and p130, bind and inactivate the 

E2F transcription factors forming the checkpoint during the G1/S boundary. This 

checkpoint regulates the transition between cell proliferation and terminal differentiation. 

Studies in mouse fibroblast with deleted pRb, p107 or p130 suggest their important role 

in the arrest of the G1 phase of the cell cycle 15. When a cell receives mitogenic signals 

by growth factors, cyclins become upregulated and form complexes with CDKs. The 

main regulators of the G1/S transition are the D type cyclins and their binding partners 

CDK4/6 (Fig 2). After mitotic stimulation, cyclin D/CDK4 and cyclinD/CDK6 complex 

hyperphosphorylates pRb family leading to the release and activation of E2F. The E2F
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Figure 2. Role of E2F in cell cycle control. After mitogenic stimulation 
(top left), cyclin D/CDK 4/6 lays the initial phophorylation on RB. 
Cyclin E/CDK 2 then continues to phosphorylate RB and this leads to the 
hyperphosphorylation and degradation of RB. Thus, E2F’s are free to 
transactivate genes required for DNA synthesis. Once in S phase, cyclin 
A/CDK 2 in a negative feedback loop targets E2F’s for degradation.  
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 5

transcription factor then mediates cell cycle-dependent expression of genes important for 

DNA synthesis such as thymidylate synthase (TS), dihydrofolate reductase (DHFR) and 

DNA polimerase α 21. Though in vitro E2F1 can bind DNA as a homodimer, in cells E2F 

binds promoters as a heterodimer with a memberof the DP family 104,149,150. Association 

with a DP protein significantly increases its sequence-specific binding to its target genes. 

After S phase induction Cyclin A/CDK2 down regulates E2F by phosphorylating it and 

targeting it for degradation 125 (Fig 2). Down regulation of E2F is important for cell 

survival because otherwise the cell would undergo apoptosis. In addition to the regulation 

of genes required for cell cycle progression E2Fs also regulate genes involved in growth 

arrest, differentiation and apoptosis.  

 

Another layer of regulation involves CKI, which mediated growth arrest through 

the inhibition of the phosphorylation of pRB and the stabilization of p53; and are 

therefore involved in tumor suppression. The CKIs are grouped in two families, the INK4 

and the Cip/Kip family 13,40,117. The first family, the INK4 (inhibitors of cdk4) proteins, is 

composed of 4 members and selectively inhibits CDK4 and CDK6. The four INK4 

inhibitors are p16INK4a, p15INK4b, p18INK4c and p19INK4d, and they do not bind any other 

CDKs. The second family, Cip/Kip inhibitors (CDK interacting protein/Kinase inhibitory 

protein) are p21Cip1, p27Kip1 and p57Kip2, and in contrast to the INK4 family, they are not 

as selective in their activity, and are able to inhibit cyclin E/CDK2 and cyclin A/CDK2. 
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Role of E2F1 in Apoptosis 

 The most striking functional difference between E2F family members is the 

unique ability of E2F1 to induce apoptosis and our laboratory and others have 

demonstrated this role of E2F1 by over-expressing it in tissue culture cells and measuring 

apoptosis 1,10,22,28,29,33,50,51,53,58,64,81,82,99,100,105,113,122,123,143. Physiologically, E2F1’s role in 

apoptosis is suggested by experiments showing that mice deficient in E2F1 develop 

tumors in the reproductive tract, lung and lymphatic system, presumably for the lack of 

apoptosis 26,139,148. E2F1 can induce apoptosis by both p53-dependent 1,63,100,112 and p53-

independent pathway 80,123 (Fig 3). 

 

In tissue culture, over-expression of E2F1 leads to the increase of p53 and 

subsequent apoptosis. One of the molecular pathways this is achieved is by the direct 

transcriptional activation of p14ARF gene (p19ARF in mouse) by E2F1 5,48,82,129,130. 

Accumulation of p14ARF leads to its interaction with the Hdm2 (Mdm2 in mouse) E3 

ubiquitin ligase. The binding between p14ARF and Hdm2 inhibits the ability of Hdm2 to 

target p53 for degradation. As a net consequence the E2F1 increase in p14ARF levels 

leads to stabilization and activation of p53. In addition, E2F1 can lead to the 

accumulation of a p53 relative by directly transactivating p73. p73 is a homolog of p53 

that regulate the p53 promoter 82,136. p73 transactivates some of the same targets genes as 

p53 68,82,119 and also has the ability to induce apoptosis in mouse embryonic fibroblast 

that are deficient of p53 61 indicating a tumor control mechanism that runs parallel. 

Additionally E2F1 can elevate the activity of the ataxia-telangiectasia-mutated kinase 49 

promoter and induces an increase in the ATM mRNA and protein. In turn ATM leads to
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Figure 3. E2F1 pathways towards apoptosis. E2F1 is the best inducer 
of apoptosis among the E2F family and it does this trough a p53-
dependent (top lanes), and p53-independent (bottom lanes) pathways. 
E2F1 can lead to the stabilization of p53 by transactivating ARF, which 
leads to the inhibition of Hdm-2 (a protein that targets p53 for 
degradation), or by inducing an ATM-dependent phosphorylation of p53. 
In addition, E2F1 can induce apoptosis independently of p53 protein by 
directly transactivating apoptotic genes or directly repressing survival 
genes. 
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the phosphorylation and stabilization of p53 as well as E2F1 (in a positive feedback loop) 

in response to genotoxic stress 105. 

 

Many cancer cells evade apoptosis by deregulating or mutating the tumor 

suppressor gene p53. Most chemotherapeutic agents work by inducing apoptosis incancer 

cells, but in many cancer cells the apoptotic induction of p53 is not functional. In the 

other hand E2F1 is not found mutated in human cancers and it can induce apoptosis in a 

p53-independent manner 19,47,61. Thus, E2F1 and the apoptotic proteins that it induces are 

excellent targets that might be used in cancer chemotherapy. 

 

Figure 3 also highlights the fact that E2F1 can induce apoptosis independent of 

p53 by transactivating genes involve apoptosis and repressing genes involved in survival 

pathways. Our lab showed in a microarray and Northen blot analysis that E2F1 can 

repress the survival genes such as myeloid cell leukemia-1 (Mcl-1), amyloid-β precursor 

protein binding protein 2(APP-BP2), programmed cell death 4 (PDCD4), and carnitine 

palmitoyltransferace I (CPT-I) 87. On top of that, E2F1 can activate genes involved in the 

induction of apoptosis such as Bok, apoptosis protease-activating factor 1 (Apaf-1), and 

caspase 7 102,111. Increase E2F1 activity leads to the release of cytochrome C from the 

mitochondria to the cytoplasm as a consequence of the action of the aforementioned 

genes. Thus, E2F1 can tip the balance between pro-survival and pro-apoptotic genes 

towards cell death. 
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Bcl-2 Family of Proteins 

Apoptosis or programmed cell death is an important process for the maintenance 

of tissue homeostasis and the prevention of diseases such as cancer. A number of targets 

in E2F-regulated cell death have been identified and these include members of the Bcl-2 

family 19,25,39.  The Bcl-2 family of proteins consists of different anti- and pro-apoptotic 

members that mediate cytochrome C release from mitochondria and thus play important 

roles in the “decision” step of the intrinsic apoptotic pathway 16,108. All members of the 

Bcl-2 family are characterized by containing at least one of the four Bcl-2 homology 

domain (BH). Traditionally anti-apoptotic members, contain all four BH domains, where 

as pro-apoptotic members contain only three or less. Within the pro-apoptotic members 

there is a subgroup that contain only one BH domain (the BH3-only members), which is 

presume as a critical death domain in the pro-apoptotic 91. Bok, a pro-apoptotic member 

of the Bcl-2 family, was first cloned in a yeast two hybrid screen of an ovarian cDNA 

library for proteins that interacted with Mcl-1, BHRF1 and Bfl-1 55. The mouse homolog 

(Mtd) was identified bioinformatically 60. Bok contains Bcl-2 homology domains (BH1, 

2, 3) and can heterodimerize with Mcl-1, BHRF-1 and Bfl-1, but not Bcl-2 or Bcl-xl 

54,55,60. Bok can induce apoptosis in a variety of cell types 7,54,55,60,126 and this activity is 

inhibited by Mcl-1, BHRF-1 and Bfl-1, but not Bcl-2 or Bcl-xl. There have been reports 

that Bok has a nuclear export signal within its BH3 domain and that Bok localizes to the 

nucleus as well as the cytoplasm 4. They also showed that accumulation of Bok in the 

nucleus increases Bok’s apoptotic activity. In the present work, we investigated the 

transcriptional regulation of Bok and its potential roles in cell cycle. We find that Bok is 

an E2F-regulated gene activated by serum stimulation that localizes mainly in the 
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cytoplasm, and that it may function as a checkpoint sensitizing growing cells to stress-

induced apoptosis. 

 

Chemotherapeutic Agents 

One of the hallmarks of cancer is the limitless replicative potential, which is not 

under strict regulatory control as in a normal cell. Cancer cells lose the ability to respond 

to contact inhibition. In addition cancer cells bypass cell cycle checkpoints and apoptosis 

that otherwise a normal cell will undergo after “sensing” an imbalance or an uncontrolled 

regulation of cell division. Most of the chemotherapeutic agents developed target this 

characteristic of a rapidly dividing cancer cell. The first chemotherapeutic agent was 

discovered by accident during World War I when Mustard gas was used as a chemical 

warfare agent. The observation that people that were exposed to this gas had low blood 

cell count intrigued scientist and motivated them to study it further. During the decade of 

the 1940s, patients with lymphomas were given the drug intravenously (instead of 

inhaling the irritating gas) and scientist saw a remarkable improvement, although 

temporary 101,137. Thereafter many studies have focus on discovering or developing other 

chemical agents to kill rapidly dividing cells such as cancer cells. Most of the 

chemotherapeutic agents can be classified as alkalating agents, antimetabolites, kinase 

inhibitors or topoisomerase inhibitors. In my research I used the chemotherapeutic agent 

Flavopiridol, which is a kinase inhibitor, and VP-16 (a.k.a. etoposide) that is a 

topoisomerase II inhibitor because they function via E2F1. We believe that Flavopiridol 

inhibits cyclin A/cdk 2’s ability to phosphorylate E2F1 and target it for degradation, 

leading to its stabilization and consequent transactivation of apoptotic target genes, where 
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as VP-16 induces cell death by stabilizing topo II-double stranded breaks complex, which 

leads to the accumulation of ATM kinase, and subsequent phophorylation and 

stabilization of E2F1.  

 

Flavopiridol 

 Flavopiridol is one of the most studied CDK inhibitors. A semi-synthetic N-

methylpiperidinyl chlorophenyl flavone alkaloid compound originally isolated from the 

leaves of Amora rohituka. It was first intended to be used as an inhibitor of EGFR, 

however upon examination it was found to inhibit the cell replication CDKs at a far lower 

concentration. At nanomolar concentrations, Flavopiridol was shown to inhibit CDK4 

and CDK6 11,93, the main kinases known to regulate the G1/S transition and E2F1 

activity, among others. Its been shown in clinical trials that combination of Flavopiridol 

treatment and other chemotherapeutic drugs, such as docetaxel, can increase apoptosis in 

cancer cells 34. Flavopiridol induces cell cycle arrest in G1 in vivo and in vitro 96,107,142. It 

is cytotoxic to cells synthesizing DNA and can induce apoptosis in a p53-independent 

manner 118. Flavopiridol stabilizes E2F1 protein levels in a dose-dependent manner and 

the inverse effect is seen on the Mcl-1 levels 86. One of the proposed mechanisms in 

which Flavopiridol can lead to apoptosis is by antagonizing cyclin/cyclin dependent 

kinase 2’s ability to target E2F1 for degradation. This leads to E2F1 stabilization and 

subsequent reduction in Mcl-1, a pro-survival protein, and presumably the accumulation 

of pro-apoptotic E2F1 target genes such as Bok, p73, caspases and others. In this study 

we assess the importance of Bok, an E2F1 target gene, in the sensitivity of Flavopiridol-

induced apoptosis. We found that higher expression of the Bok protein, the faster the 
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induction of apoptosis by Flavopiridol. This observation suggests that assessing a 

patient’s levels of Bok might predict the outcome response of the flavopiridol treatment.  

 

VP-16 

 Topoisomerase II is a ubiquitously express enzyme that regulates the winding of 

DNA 30,77. It removes the knots and tangles generated during DNA replication and 

transcription, through the creation of double-stranded breaks in the double helix. VP-16 is 

a chemotherapeutic agent that targets topoisomerase II enzyme 3,8,38,84,94,151, and has been 

used for several types of cancer including lung, prostate, ovarian and testicular cancer. 

VP-16 works by stabilizing a covalent enzyme-cleaved DNA complex. After treatment 

with VP-16, cells accumulate enzyme-cleaved DNA complexes, which results in the 

generation of permanent DNA strand breaks that in turn trigger recombination/repair 

pathways and mutagenesis. The massive accumulation of these breaks can overwhelm the 

cell and can trigger the initiation of death pathways. Thus, VP-16 converts topoisomerase 

II from an essential enzyme to a potent cellular toxin that fragments the genome. 



 13

Experimental Procedures 

Cloning the Bok promoter- Approximately 5x105 plaques from a Sau3A I 

partially digested 129SV mouse genomic library in λFIXII (Stratagene) were screened in 

duplicate with a mixture of Bok cDNA probes.  The probes consisted of full-length 

human Bok cDNA (nt 247-882 of NM_032515) (human and mouse sequences are 88% 

identical in the coding region) and a 3’ UTR mouse Bok probe (nt 940-1430 of 

NM_016778).  Screening was performed in 50% formamide and filters were washed at 

high stringency.  Ten positive plaques were identified and rescreened in secondary and 

tertiary screens using the same combination of probes.  Following plaque purification and 

a quaternary screen, seven purified positive plaques were identified.  Plate lysates were 

prepared from these seven clones to serve as phage stocks.  The phage stocks were 

titered, then used to prepare plate lysates to extract the phage DNA.  Phage DNA was 

extracted using the Qiagen MIDI lambda kit according to manufacturer’s specifications.  

NotI digestion of the phage DNA indicated that each clone had a different sized insert, 

each in the ~15-20 kb range.   

 

Each of the phage DNAs was digested with a panel of restriction enzymes, then 

loaded on duplicate 0.8% agarose gels.  The digested DNA was Southern blotted 

overnight to Immobilon Ny+ membranes.  The duplicate blots were hybridized to each of 

the Bok probes individually to roughly map the 5’ and 3’ ends of the inserts.  Comparison 

of the hyridization to each of the probes revealed similar, but not identical, patterns of 

hybridizing bands.  This indicated that the clones were unique.  
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Each of the phage DNAs was then digested with NotI to excise the entire insert 

for cloning into pBluescript (pBS).  In addition, based on differential hybridization 

patterns, phage DNAs was also digested with XhoI or SstI to subclone smaller fragments 

into pBS.  Bluescript clones containing inserts were sequenced with T3 and T7 promoter 

primers using the Moffitt Cancer Center Molecular Biology Core Facility.  Sequences 

were BLASTed against the mouse genome database to confirm the ends of each clone.  

Each clone matched an area of the Mus musculus chromosome 1 genomic contig 

NT_039173.2.  Overlapping clones covering the entire Bok locus are shown in Figure 1.  

Clones 8N1 (approximately 15 kb, 8090408- (the 3’ and has not been determined due to 

suboptimal sequencing), 11N6 (16.2 kb, 8083204-8099427) and 15N9 (16.8 kb, 

8089917-8106754) contain the entire phage insert.  In particular, clone 11N6 contains the 

entire Bok coding region and will be used to prepare the targeting construct. 

 

Plasmids-Mouse Bok promoters were generated by digestion of pBS-13S2 with 

Sst I and ligated into pGL3 basic. Initial PCR primers were design to amplify 331 bp (-

244/+87) of our sequenced Bok promoter, which are numbered relative to the 

transcriptional start site. The forward (192 F) and reverse (141 R) PCR primers for the 

Bok promoter were 5’-GGTACCAGAACTTGTGCTGGCCTTTCT-3’ and 5’-

AAGCTTAGTTCTGGTTTCAGGACCCGC-3’, respectively. The forward primer added 

a Kpn I site, and the reverse added a Hind III site to facilitate sub-cloning. The E2F 

binding site mutant of the Bok promoter was generated by site-directed mutagenesis with 

PCR. The initial reaction was done using 192 F and 192 R (5’-

TCCGCCGGTCTTCCATCGCGC-3’); a second reaction used primer 141 F (5’-
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CGCGATGGAAGACCGGCGGA-3’) and 141 R. The PCR products from these 

reactions, 192 bp and 141 bp respectively, were band purified, phenol/chloroform 

extracted and ethanol precipitated. They were then resuspended in water, combined, and 

used as template in another PCR reaction using the flanking primers 192 F and 141 R. 

The resulting PCR product was inserted in pCRII-TOPO, followed by digestion with Kpn 

I and Hind III (to excise PCR insert). Insert was run in a 1% agarose gel and band 

purified using QIAquick gel extraction kit (Quiagen) and ligated to pGL3 luciferase 

vector. The E2F1 mutant constructs, E2F1 (1-284) and E2F1 (Eco 132) have been 

previously described 17,18.  

 

Cell culture- Mouse NIH 3T3 fibroblasts were cultured in Dulbecco’s Modified 

Eagles Medium (DMEM) supplemented with 5% calf serum. The H1299 lung cancer cell 

line was cultured in DMEM supplemented with 5% fetal bovine serum. H1299 cells that 

constitutively express Flag-Bok fusion protein were obtained by transfecting with 

pcDNA3-Flag-Bok (a gift from Gabriel Nunez, Univ. of Michigan) and selecting for 

transformants in 400 µg/ml G418. G418-resistant lines were screened for expression of 

Flag-Bok. Adenoviruses were described previously 18,87 and were tittered by plaque 

assay. Cell cycle parameters were measured by fixing cells with 70% ethanol-PBS, 

staining with propidium iodide (PI) and analyzing by FACS, using ModFit. 

 

Biochemical assays- Transfections were performed using LipofecAMINE 

PLUSTM Reagent from Invitrogen with test DNA totaling 2.85 µg of DNA per 60-mm 

dish. Transfections included 100 ng of expression plasmids (pcDNA3-based vectors), 2.5 
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µg of test construct firefly luciferase reporter plasmid (pGL3, Promega), and 250 ng of 

renilla luciferase reporter plasmid (pRL-TK, Promega). Cells were harvested 48 hrs after 

transfection, and luciferase assays were performed using the Dual-Luciferase Reporter 

Assay System following the manufacturer’s protocol (Promega). Experiments were done 

in duplicate or triplicates, and the relative activities and standard deviation values were 

determined. To control for transfection efficiency, firefly luciferase values were 

normalized to the values for renilla luciferase. Western blots were performed as 

previously described 18,86 using monoclonal antibody against Flag epitope (F3165, 

Sigma) or against PARP antibody (Cell signaling 9542). Western blots were stripped and 

re-probed with an antibody to actin (A5441, Sigma) to ensure equivalent loading. 

 

RT-PCR-Isolation of total RNA was done using the RNeasy mini kit (Qiagen 

74104) as recommended by manufacturer. Total RNA was primed with random hexamers 

and cDNA created using SuperScripTM First Strand Synthesis System for RT-PCR 

(Invitrogen 11904-018). PCR primers were designed to amplify 490 bp. The forward and 

reverse primers were 5’-CGCTCGCCCACAGACAAGGAG-3’ and 5’-

TCTGTGCTGACCACACACTTG-3’. 

 

Chromatin Immunoprecipitation- ChIP assays were performed as previously 

described 18,37,86,110,138-140. Briefly, asynchronously growing NIH 3T3 cells were treated 

with formaldehyde to create protein-DNA cross-links, and the cross-linked chromatin 

was then extracted, diluted with ChIP buffer, and sonicated. Sonicated chromatin was 
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divided into equal samples for immuno-precipitation. Antibodies used included E2F1 (sc-

193X), E2F3 (sc-878X), and IgG (sc-2027) (from Santa Cruz Biotechnology). 
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Chapter 2: Characterizing the Bok Promoter 

 

Identification of Bok as a Potential E2F1 Target  

In a previous microarray screen 87, we identified Bok as a potential E2F1 target 

gene. To confirm this observation, we tested if over-expression of E2F1 would correlate 

with increased expression of Bok mRNA. NIH 3T3 cells were brought to quiescence by 

48-hrs incubation in 0.5% calf serum. Cells were then stimulated with 10% fetal calf 

serum or were infected with ten plaque-forming units of the indicated adenovirus per cell. 

Fig. 4 highlights the observation that Bok mRNA is very low in quiescent NIH3T3 

fibroblasts (lane 3), but is highly induced following infection with an E2F1-expressing 

adenovirus (lane 1). Lane 4 reveals that serum treatment, which stimulates quiescent cells 

to enter S phase, also elevated Bok message (lane 4), suggesting that Bok is E2F and cell 

cycle regulated. As a control we wanted to determine the cell cycle status of the treated 

cells (Fig 4) by harvesting half of the samples and fixing the NIH 3T3 cells with 70% 

ethanol-PBS, stained with PI and analyzed by FACS. Figure 5 demostrate that NIH 3T3 

cells were brought to quiescence by 48-hrs incubation in 0.5% calf serum (accumulation 

in G0/G1), and upon stimulation with 10% fetal calf serum or infection with ten plaque-

forming units of E2F1 adenovirus, cells progress through the cell cycle, in contrast to 

empty-vector control virus. 
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Figure 4. Bok mRNA is activated by E2F1 or serum stimulation. NIH 
3T3 cells were brought to quiescence by 48-hrs incubation in 0.5% calf 
serum.  Cells were then stimulated with 20% fetal calf serum or were 
infected with ten plaque-forming units of the indicated adenovirus per 
cell.  Total RNA was harvested after 24 hrs (serum) or 30 hrs (virus).  
Twenty microgram of RNA were subjected to Northern analysis using 
the indicated cDNA probes. 
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Figure 5. Cell cycle status of NIH 3T3. NIH 3T3 cells were brought to 
quiescence by 48-hrs incubation in 0.5% calf serum. Cells were then 
stimulated with 10% fetal calf serum or were infected with ten plaque-
forming units of the indicated adenovirus per cell. Cells were harvested 
after 24 hrs (serum) or 30 hrs (virus). NIH 3T3 cells were fixed with 70% 
ethanol-PBS, stained with PI and analyzed by FACS. 
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The Bok Promoter Contains a Conserved E2F Binding Site Between Mouse and 

Human.  

To understand how Bok is regulated in an E2F/cell cycle-dependent manner, we 

compared the genomic sequences of human (AC110299) and mouse Bok (NT_039173). 

To obtain authentic Bok genomic sequence from mouse, we screened a lambda phage 

library using a mixture of human cDNA probes and mouse UTR Bok probes. Fig 6 shows 

a schematic of the various clones obtained. One of the sub-clones, 13S2, which contains 

the first two Bok exons and over 900 bp of upstream promoter region, was sequenced.  

Comparison of the mouse and human Bok 5’ regions (shown in Fig. 7) revealed 

significant sequence homology within the first exon (non-coding) and in a region –244 

upstream of the putative transcriptional start site in mouse 141. 

 

Crude deletion analysis localized the promoter to –244/+87 (not shown). 

Potentially important motifs within this region include numerous SP1 binding sites and, 

most importantly, a conserved E2F1 consensus-binding site. We used PCR to generate a 

luciferase reporter vector using the mouse genomic sequence from –244/+87. To examine 

the role of the conserved E2F1 site spanning from position –43 to –49, we also generated 

a mutated version of the –244/+87 construct in which the E2F1 site was rendered 

nonfunctional. Fig. 8 shows a schematic representation of the constructs generated. They 

differ in that the consensus E2F binding site CGCGCGGGAAGACCGGCGGA (wild type) is 

changed to CGCGATGGAAGACCGGCGGA (mutant).  
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 Figure 6. Overlapping subclones in pBS encompassing the entire Bok 
genomic locus. (A) Subclones were excised from the phage clones with 
Sst I (S), Xho I (X) or Not I (N). Not I subclones represent the entire 
insert of the phage clones, whereas Sst I and Xho I subclones contain only 
part of the original phage clone. Numbering is relative to the Mus 
musculus chromosome 1 genomic contig NT_039173.2, which contains 
the Bok locus. Solid boxes indicate exons. Exon 1 is noncoding. The 
ATG start codon is located at position 8083483 in exon 2.  The stop 
codon is located at position 8092198 in exon 5. (B) The pBS-13S2 was 
further subcloned into pGL3 luciferase vector using Sst I, Sma I or Xba I. 
These subclones contain the Bok promoter region and the longest four 
putative E2F binding sites marked by black circles. 
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ATCCTATTGTTCAAACTGTGTGAGGTTGATTCAAGGATAAAGAAATAAACCAGTGGGATAGAGTTCCGAG hbok 
TTCCTGCAGGTTGGACCAGCT**GGTCAACACAGAGCTCCAGA**CAAGCCTCT***CTCTCTTTGTGAG mBok (-843/-781) 
 
ACACACACACACACACACACACACTCTTCAGCTGATTTATGTTGAGATGTTGGGGACTCCTCCAATTCGG hbok 
TCTCTC*******TGTCTCTGCCTCTCTCTGTGTCTCTGTCTC****TCTCCCTCCCTCCCCTTTTTCTG mBok (-780/-722) 
 
TGGAAAAAAAATGA**TGCTTTTCAATAAATGATGCCAGGTCAATTGGATATCTACACGAAAAAAAATGA hbok 
TCAAAGGGAAATACCCTAATGAGAGATAACTAACTACAAAA*GATTATATATTGGATTGGATATAAATAA mBok (-721/-653) 
 
GCTCTAGCCCCGTA****CCACACCATTCACAATAATTAATATGTAATCAATCATAG*ATCTAAATATGA hbok 
G*TCCAGCTCATTAAAAGCAAAGCTAGACTTGAGTGGGAATGGATGGGTATTTGTAGTATCTTCAACCAT mBok (-652/-584) 
 
GCCCTAAAACAAGCTTCTAAAAGGAAATACAGGAGGATATCCCAATAAAAAGGTACTAACCATAAAGAAA hbok 
GTACATACCCAAGTCTTCACCACACTCCAAAGG*********CTCTATTAAG***CCAAGAATGCAGAAT mBok (-583/-526) 
 
ATATTGATAAATTGGACATCACTAAGAGTAACTCCTGTTCATCCAAAGCAAAAGTAAACCACAAAATAGA hbok 
CTATTTTTAAATAT****TTACTTATTGTTATTTTTGTT**TTGTGTATGAATGTTTGCCT********G mBok (-525/-470) 
 
GGAAGATATTTGCAATAACTTCAATAAATGCGAATCCAATAATCCATCTACAATACAA*AGGGCATGCG* hbok 
CCTCCATGTCTGTG**AATCCCCGTGCATGC****CTGGTG*TCCTTGGAGATCAGAAGAGGGCATCAGA mBok (-469/-407) 
 
TCCGGACCAAGAACACGTCTCCAGACTCTGGAAAGAACCTCTACGAACGAAGAAGACAACCCAA****** hbok 
TCTCCTACAACTTCAAGAATCCAGGATCTTTAAGGAGCCTCTATAAGACAATAAGGAAATATAAGTCAGC mBok (-406/-337) 
 
***TTTTCAAATGGACCCCGGGGAACACCCAGGCGGCTGGGGCTGGCTCTAGGTCCCCACTGCTCTGCCT hbok 
TCATTTTAAAATGGAACTTGGTGCGC*CCCAGTGGGTTGGTGTCAGAGCTGGATGTTCTTCGCGCTGCCT mBok (-336/-268) 
 
TGCGGGGGCCGCTCCGGCCTGGTCGCCTTCTCCGGGCGCATCCAGGGAACTCGCTC*GGTCCTCCTTAAG hbok 
*GCCGGGACAGCTCCAGTCTGGCGGCGTTC*CCGGGCGCATCCCGAGAACTTGTGCTGGCCTTTCTTAAA mBok (-267/-200) 

          Sp1 
 
 
 
 
 
 
 

Figure 7. Evolutionary conserved E2F binding site. An alignment 
between the mouse (NT_039173) and human (AC110299) Bok gene 
sequences using MegAlign (DNASTAR, Inc) showed a conserved 
putative E2F binding site that extends from position –42 to –49 relative 
to the putative transcriptional start site in the mouse sequence. Shaded 
blocks indicate sequence identity of at least five base pairs. Boxed areas 
indicate putative transcription factor binding sites identified by 
MatInspector (Genomatix). The highlighted G at +1 in the mouse 
sequence indicates the putative transcription start site based on NCBI 
annotations (1). 
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C*GGGGAAGC*TCGGAAAGCGTCT**CCCCGACTCCGCCCCCA*GGGTTGCCTTTCCCTTAGAAGGCCAA hbok 
CCAGGGAGGCGTTGGGCAGAGCTGGGCTGCGGCTCCGCCCCCGGGGGTTGCCGTTTCCTTAGAAGGCGAA mBok (-199/-130) 
                                   Sp1         Myb 
 
GCCCCAAGCCCAGCCTCTCGCCAGCTGGGAGTCGCGCGCTGCCCACCTCGCTGCCCAGGCCCCCGACGCC hbok 
GCCCTAAGCCTGGCTTCTCGCCCGCGGGGAGAC*CGCGGTACGCCTCCCGC*****AC*CCCTCGGGACC mBok (-129/-67) 
                 Sp1 
 
GCGGCAGGAGCCCCCCAAGAGCGCGGGAAGCCCCGTGGACCTGGCGCTCCCGGCTCGGGCGTGGACGGGG hbok 
*****AGGACTTCTGCGAGCGCGCGGGAAGACCGGCGGAGCCTGTGCTTC*AGCTCGGGTGTGGACGGGG mBok (-66 to -3) 
        E2F/Ets1                                Sp1       
 
 
CGGGCGCCGGGGCGGGGCGCGCGTCCTCGCGGGTCTGAATGGAAGGGTCGAGGTCGTCGT***CGGCGGC hbok 
CGGGCGCTGGGGCGGGGCGCGCG**CTCGCGGGTTTGAATGGAAGGGTCTAGACCGCCGGAGACGGCAGC mBok (-2 to +66) 
Sp1         Sp1 Sp1          Ets1 
 
 
GAGCAGATCCTGAAGCCAGAACTCCACCCCGGCGCC*CGCGCCATGCGGCGGGAGA*end exon I    hbok 
GAGCGGGTCCTGAAACCAGAACTCCACCGCCGCCCCGCGCGCCATGAGGCGGGAGAGGTGAGTCGGGCGG mBok (+67/+136) 
                        Sp1              NF-1   Sp1 

-43-49 

+1 

                                                                       Hbok  
GCGTGGCGTCGGTGCCCTGGATGT*end exon I                                    mBok (+137/+160) 
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Figure 8: Schematic representation of the Bok promoter. Site-
directed mutagenesis assay was used to mutate the putative E2F binding 
site. The Bok promoter containing wild type (closed circle) or mutated 
(X) E2F binding site are shown. These fragments were then cloned into 
pGL3. 
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Regulation of the Bok Promoter Throughout Cell Cycle 

To characterize the activity of the cloned Bok promoter throughout the cell cycle, 

NIH 3T3 cells were transfected with Bok –244/+87 WT or MUT promoter/reporter. Cells 

were brought to quiescence by incubation with 0.5% calf serum for 48 hrs and were then 

serum stimulated with 10% fetal calf serum and harvested every 6 hrs. In parallel, cells 

were fixed with 70% ethanol-PBS, stained with PI and analyzed by FACS to determine 

cell cycle status. Fig. 9A shows that the activity of the WT Bok promoter is maximal at 6 

and 12 hrs after addition of serum corresponding to the mid to late G1 phase of the cell 

cycle (Fig 9B). This pattern of regulation is very typical of an E2F1-regulated gene.  In 

contrast, the activity of the MUT Bok promoter is unaffected by serum addition. This 

supports the conclusion that the conserved E2F binding site at -49/ -43 is central to the 

cell cycle regulation of Bok.   

 

Activation of the Bok Promoter is Not Specific to E2F1.  

E2F1 is the most potent inducer of apoptosis amongst the E2F family of proteins 

and appears essential for E2F-induced apoptosis 22,74. Since Bok is a known pro-apoptotic 

protein, we anticipated that E2F1 might be a specific activator of Bok. To test this idea, 

we compared the ability of various E2Fs to induce the Bok luciferase reporter. We co-

transfected the wild type (Bok –244/+87 WT) promoter, or the E2F site mutant (Bok –

244/+87 MUT) in the presence and absence of exogenous E2F proteins (Fig 10A). E2Fs 

1, 2 and 3B expression each led to promoter activation. This result suggests that 
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Figure 9: The Bok promoter is activated by addition of serum 
dependent upon a conserved E2F binding site. (A) NIH 3T3 cell were 
transfected with the WT or MUT –244/+87 Bok promoter luciferase 
construct and then brought to quiescent by 48-hrs incubation with 0.5% 
calf-serum. Following starvation cells were stimulated with 10% fetal 
calf serum and harvested every 6-hrs and assayed for luciferase activity. 
(B) Cells cycle progression of NIH 3T3 cells after treatment as above. 
Cells were fixed with 70% ethanol-PBS, stained with PI and analyzed by 
FACS. Luciferase assay was performed three time in triplicates each. p 
values were less than 0.05 at 6 and 12 hrs after serum treatment. 
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activation of Bok is not specific to E2F1. The growth-repressing members of the E2F 

family E2F4, 5 and 6 did not significantly activate the promoter and neither did two E2F1 

mutants. E2F11-283 is a C-terminally truncated version of E2F1 18 that does not have a 

transcriptional activation domain, indicating that activation of the Bok promoter requires 

the activation domain. Likewise, the DNA binding E2F1 mutant, Eco 132 17, was unable 

to activate transcription. Thus, DNA binding is required for activation of the Bok 

promoter.  

 

Since E2F1 and E2F3B were the most potent activators of the Bok promoter in 

the comparison of Fig. 5A, we focused experiments comparing E2F1, E2F3A and 

E2F3B. Together Fig. 10A and 10B reveal that E2F3A is the most potent inducer of the 

Bok promoter followed by E2F3B, E2F1 and E2F2. Although the importance of this 

pattern of activity is not certain, it is clear that E2F1 is unlikely to be the sole regulator of 

Bok.  The observation that over-expression of E2Fs can stimulate the MUT Bok reporter 

suggests that additional functional E2F binding sites may exist in the promoter, if E2F 

levels are sufficiently high. 

 

The Bok promoter is Not Activated by p53 Expression.  

A recent report suggested that Bok was a p53 target and that Bok was an essential 

mediator of p53-mediated apoptosis during treatment with chemotherapuetic drugs 145. In 

their study they evaluated the role of caspases and new protein synthesis in the induction 

of the intrinsic pathway of apoptosis. They demonstrated that if protein synthesis was 

inhibited by treatment of cyclohexamide they would block the induction of apoptosis by 
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the DNA damaging agent VP-16. They also demonstrated that the activity of the tumor 

suppressor p53 was also necessary for apoptosis induction by VP-16. They then 

investigated what pro-apoptotic members of the Bcl-2 family were up-regulated by VP-

16, in which Bok and Noxa were identified. Furthermore, experiments with RNAi 

targeting exogenous Bok ans Noxa demonstrated their importance in the apoptosis 

induction after VP-16 treatment. Taken together their results suggested that p53 activity 

and new protein synthesis was required for apoptosis induction after DNA damage by 

VP-16 and that decreasing the expression of exogenous Bok and Noxa significantly 

protected from cell death after VP-16 treatment. In their discussion they strongly 

suggested the possibility of p53 elements on the promoter of Bok and Noxa that would 

account for the activation of these proteins. However, sequence analysis did not reveal a 

p53 element in the Bok promoter, calling to question whether Bok is indeed a direct p53 

target. To test this, we cotransfected NIH 3T3 cells with our –244/+87 WT Bok construct 

in the presence or absence of p53 expression (Fig 11A). In this experiment we can 

conclude that E2F1 is a stronger inducer of the Bok promoter than p53. However, we do 

not exclude the possibility of other p53 binding sites further upstream or downstream of 

the E2F binding site that are not present in our Bok promoter construct (-244/+87). In 

addition, we are also limited by our control, a p53-regulated reporter that was induced 

two-fold under identical conditions, similar to the induction of the Bok promoter (Fig 

11B). Future experiments with larger Bok promoter constructs and additional controls 

such as a Bax promoter construct could proof or disproof the hypothesis that the Bok 

promoter is regulated by the tumor suppressor p53. 
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Figure 10: S phase promoting members of the E2F family activate 
the Bok promoter. (A) E2F binding site MUT and WT Bok promoters 
were co-transfected with expression vectors for different members of the 
E2F family and their ability to activate the Bok promoter was measured. 
(B) Same as in A except focusing on strongest S phase promoting E2Fs.  
E2F3A is the most potent activator of the Bok promoter. Experiments 
were performed in twice in triplicates each. p values were less than 0.05 
for E2F-1, -2, -3a and -3b. 
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Figure 11. p53 protein does not activate the Bok promoter. (A) E2F 
binding site MUT and WT Bok promoters were co-transfected with either 
E2F1 expression vector or p53 expression vector and measure their 
ability to activate the Bok promoter. (B) As a control p53 was co-
expressed with a known p53 regulated promoter, BP100. Experiment was 
performed twice in triplicates each. p values were less than 0.05. 
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E2F1 and E2F3 Associate With the Bok Promoter in vivo.  

In light of the fact that E2F1 and E2F3A potently activate the Bok promoter in 

context of a luciferase reporter, we wanted to determine whether E2Fs associate with the 

Bok promoter in vivo. For this, we turned to chromatin immunoprecipitation assay of 

asynchronous NIH 3T3 cells. As shown in Fig. 12, using Bok specific oligonucleotide 

primers that span    –244 to +87 of the murine Bok gene, E2F1 and E2F3 each associate 

with the Bok promoter in vivo, in agreement with the aforementioned luciferase result. 

The fact that immunoprecipitation with a control antibody (anti-IgG) results in absence of 

signal from the Bok promoter, demonstrates the specificity of the interaction between 

E2Fs and the Bok promoter. In addition, the lower panel in Fig. 12 reveals that the 

murine albumin promoter, which does not possess E2F sites and has been shown not to 

associate with E2F (98), is not immunoprecipitated with E2F antibodies under identical 

conditions. 



 

 

1k
B 

La
dd

er

In
pu

t

N
o 

Ab

E2
F3

 A
b

E2
F1

 A
b

Ig
G

Ab

N
o 

D
N

A

mBok

mAlbumin

1 3 4 5 6 72

1k
B 

La
dd

er

In
pu

t

N
o 

Ab

E2
F3

 A
b

E2
F1

 A
b

Ig
G

Ab

N
o 

D
N

A

mBok

mAlbumin

1 3 4 5 6 72
 

 

 
Figure 12. E2F1 and E2F3 associate with the Bok promoter in vivo. 
Asynchronously growing NIH 3T3 were subject to chromatin 
immunoprecipitation analysis with antibodies against E2F1 (lane 4), 
E2F3 (lane 5), or IgG (lane 6). Following DNA purification, samples 
were subject to PCR with primers designed to amplify the Bok promoter 
or the albumin promoter as control. 
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Chapter 3: Functional Relevance of Bok 

 In chapter two we demonstrate that E2F1 binds to the Bok promoter and leads to 

its transcriptional activation. Since E2F1 is the most potent inducer of apoptosis amongst 

the E2F family, it was interesting to see that other members of this family also regulate 

the Bok promoter. Furthermore, the observation that Bok mRNA increases after serum 

stimulation and that the Bok promoter is cell cycle regulated, suggested to us that Bok 

might have an unprecedented role in cell cycle. In this chapter we will investigate the role 

of Bok in cell cycle, E2F1-induced apoptosis and stress-induced apoptosis. We will use 

RNA interference to deplete cells from Bok and test its effect in the aforementioned 

context  

 

Bok d-siRNA Shuts Down the Expression of Bok.  

To determine the functional effect of increased Bok expression, we created H1299 

cells lines that constitutively express a Flag epitope-tagged version of Bok. Expression of 

the introduced Flag-Bok transgene was confirmed via RT-PCR and Western blot (Fig. 

13A and 13B). Surprisingly, constitutive expression of Flag-Bok did not necessarily 

induce spontaneous apoptosis in these cells, and several lines were developed. Clone #8 

expressed the highest level of Flag-Bok and was this used for subsequent experiments.  
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Figure 13. Stable over-expression of Flag-Bok protein. Flag-Bok 
expressing H1299 cell lines were generated by transfection with 
pcDNA3-Flag-Bok followed by selection with G418 (see Methods). 
G418-resistant colonies emerged with same efficiency as control 
pcDNA3. Of the first six lines emerging from this screen three expressed 
Flag-Bok as measured by anti-Flag Western blot. Clone #8 was used for 
subsequent experiments. 
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In order to block Bok expression we decided to turn to RNAi, and we utilize an 

approach that would target the most of the Bok mRNA. Using plasmid pcDNA3 Flag-

Bok as template, we PCR amplified a 561 bp fragment of Bok and that PCR product 

cloned it into pCRII-TOPO vector. We then transformed this plasmid into bacteria, grew  

it up and screened for insert orientation. We finally identified one plasmid with each 

orientation. Using a RiboMaxTM Large Scale RNA production System under the T7 

promoter we in vitro transcribed and produced milligram quantities of RNA from both, 

the sense and the antisense strand of Bok. We then continue and combine 60 µg of each 

RNA strand and let them anneal by heating up to 65˚C and letting it slowly cool down to 

room temperature. As control we ran an aliquot on a 4% agarose gel to make sure the 

RNAs anneal and form a single band ~561 bp (not shown). After annealing we performed 

the Dicer reaction (Block ITTM Dicer kit from Invitrogen) followed by purification. With 

this experiment we generated a pool of ~21 bp diced-small interfering RNA (d-siRNA) 

(Figure 14, lanes 2 and 3) directed to many different parts of the of the Bok mRNA 

transcript. We then tested if these Bok d-siRNAs shut down the expression of Bok on 

H1299 cell lines that constitutively express Bok (Flag-Bok). Figure 15 shows Western 

blot analysis against Flag Bok protein after transfection of Bok d-siRNA at 24, 48 and 72 

hours post transfection. 

 

Bok is Not Necessary for E2F1-Induced Apoptosis.  

We have shown that E2F1 overexpression increases Bok mRNA (Fig 4). For this 

reason we hypothesize that Bok is down stream of E2F1 and being a pro-apoptotic 

member of the Bcl-2 family it might be an important player in E2F1-induce apoptosis. In  
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Figure 14. Generation of Bok d-siRNA. Bok d-siRNA was produced by 
in vitro transcription of the sense and anti-sense strand of Bok cDNA. 
The product was then purified, mixed and heated to 65° followed by slow 
cool down in order to anneal both ssRNA. The 561 bp dsRNA was then 
diced using Invitrogen’s Dicer enzyme kit. This generated a pool of 21-
23 bp dsRNAi that was visualized in a 4% agarose gel after the reaction 
(lane 2) and after purification (lane 3). Lane 1 is a 50bp ladder for size 
comparison. 
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Figure 15. Bok d-siRNA shuts down the expression of Bok. H1299 
Flag-Bok cell line were mock transfected with GFP or transfected with 
Bok d-siRNA at 0 and 24 hrs. Cells were harvested at the indicated times 
and 100 µg of cell lysate was run on a 12 % SDS-PAGE. Western blot 
was against Flag-Bok and actin as a control. 
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 Figure 16. Bok deficiency does not block E2F1-induced apoptosis. 
This experiment was done in H1299 cells that stably express ER-E2F1 
fusion protein. A. Mock transfected. B. Mock transfected and treated 
with OHT. C. Transfected with Bok d-siRNA. D. Transfected with Bok 
d-siRNA and treated with OHT. Note that there is no difference between 
B. and D. therefore Bok is not necessary for E2F1 induced apoptosis. 
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order to test this hypothesis, we used a cell line that stably expresses ER-E2F1 fusion 

protein. When these cells are treated with 4-Hydroxytamoxifen (OHT) they undergo 

apoptosis induced by E2F1 following its nuclear re-localization. Cells were mock  

transfected or transfected with Bok d-siRNA and after 24, 48 and 72 hrs post-transfection 

they were harvested, fixed with 70 % ethanol-PBS, stained with PI and sub-G1 content 

measured by FACS analysis. We expected that cells lacking Bok by virtue of Bok d-

siRNA would be more resistant to E2F1-induce apoptosis. Surprisingly Bok deficient 

cells were not significantly resistant to the induction of apoptosis by E2F1 (Figure 16). 

This suggests that Bok is not an essential player in the induction of apoptosis by E2F1, at 

least in the limited context of our experimental model. 

 

Bok is Not Necessary for Cell Cycle Progression.  

We were very surprised by the observation that Bok message is up regulated by 

E2F1 as well as by serum, since Bok is an apoptotic protein. However, this pattern of 

regulation suggested that Bok plays a role in cell cycle control. The idea that Bcl-2 family 

members regulate cell cycle progression is not new since there have been reports that 

Bcl-2 negatively regulates cell cycle progression by increasing the activity of p27Kip1 135, 

which leads to the formation of a repressive E2F4/p130 complex that in turn block cell 

cycle progression through the G1/S boundary.  

 

To determine if transient Bok deficiency would affect cell cycle progression, 

H1299 cells were transiently transfected with Bok RNAi and cell cycle distribution was 

determined. Since endogenous Bok is difficult to detect with current antibodies it was  
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Figure 17. Bok is not required for cell cycle progression. The pattern 
of Bok regulation suggested that Bok might have an important role in the 
progression of cell cycle. However, neither over-expression nor depletion 
of Bok significantly affected the cell cycle compared to control 
counterparts. Experiment was performed more than three times and 
representative data is shown. p values were more than 0.05.  
 

 

 

 

 

 

 41



 42

necessary to use a surrogate cell line to demonstrate that the Bok RNAi was functional. 

Having established that the Bok RNAi was active (Fig 15), the parental H1299 cell line 

was transfected with the Bok siRNA and cell cycle distribution was measured. Figure 17 

shows a cell cycle analysis of cells that were mock transfected with pcDNA3-empty 

vector, transfected with Flag-Bok plasmid, control RNAi or Bok d-siRNA. After 

repeating this experiment several times we did not find any significant evidence that Bok 

is required for cell cycle progression. 

 

Bok Localizes to the Cytoplasm 

 The mechanism by which the Bcl-2 family of proteins induce cell death is not 

completely understood, yet a key component is the activation of caspases. The Bcl-2 

family of proteins regulate the activation of caspases by controling the release of 

cytochrome C from the mitochondria; which with Apaf-1 and procaspase 9 form the 

apoptosome. In the traditional view, pro- and anti-apoptotic members of the Bcl-2 family 

are found as heterodimeric proteins in the cytosol. After stress such as DNA damage, pro-

apoptotic proteins such as Bok, Bax, and Bak, release anti-apoptotic members and 

oligomerizes or heterodimerizes with other pro-apoptotic members in the mitochondrial 

membrane. It is propose that the pro-apoptotic proteins form “pores” in the mitochondrial 

membrane bringing about the release of cytochrome C, and this event triggers the 

apoptosis cascade. 

 

 In the traditional view Bok should be cytosolic, however a recent report from 

Bartholomeusz et al. 4 suggests that Bok contains a nuclear export sequence (NES)  
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Figure 18. Bok localizes to the cytoplasm. H1299 cells were co-
transfected with GFP-Bok and either Bok d-siRNA or control RNA and 
cell were then visualized by fluorescent microscopy. Over-expression of 
GFP-Bok demonstrate that Bok is mainly cytoplasmic. Top row, 
separation from blue (DAPI) and green (GFP-Bok). As expected co-
transfection with Bok d-siRNA abrogated the expression of Bok. 
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and is also found in the nucleus, where its apoptotic activity is enhanced. In order to 

determine where does Bok localizes we turned to fluorescent microscopy using a green 

fluorescent protein (GFP) tagged Bok construct. H1299 cells were co-transfected with 

GFP-Bok and either Bok d-siRNA or siControl using lipofectamine reagent and observed 

under the fluorescent microscope after 24 hrs. Figure 18 demonstrates that GFP-Bok 

localizes primarily to the cytoplasm. Thus, in our hands nuclear Bok appears minimal. 

 

 In order to determine if Bok’s apoptotic activity is enhanced in the nucleus we 

developed H1299 cells that stably express an HA tagged- estrogen receptor (ER) tagged-

fusion of Bok (Fig 19A). Western blot against HA reveal that all three cell lines express 

HA-ER-Bok fusion protein, however cell line number 2 less strong. Figure 19B 

demonstrate that HA-ER-Bok fusion protein is express in the cytoplasm and after 

treatment with the ER ligand, OHT, the fusion protein is forced into the nucleus, however 

some stays in the cytoplasm. Using this experimental approach H1299 HA-ER-Bok cell 

lines were treated with or without 300nM OHT and analyzed by FACS for subG1-DNA 

content as a measure of apoptosis. In contrast to reports this did not induce any 

spontaneous apoptosis at 48 or 72 hrs (Fig 20 lanes 2, 6 and 10). We also performed a 

similar experiment where H1299 HA-ER-Bok cell line was treated with and without 

OHT and also 200nM Flavopiridol, since H1299 cells undergo apoptosis after FP 

treatment (86). Consistent with our previews result this did not enhance Bok’s apoptotic 

activity. If observed carefully, shuttling Bok into the nucleus slightly decreased sub-G1 

DNA content (Fig 20, compare lanes 3 and 4, 11 and 12) suggesting that Bok’s apoptotic 

role is in the cytoplasm. Similar results were seen in an additional experiment; however,  
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Figure 19. Generation of responsive H1299 HA-ER-Bok cell line. 
HA-ER-Bok expressing H1299 cell lines were generated by transfection 

toplasm 
 

with pcDNA3-HA-ER-Bok followed by selection with G418 (see 
Methods). (A) At least three cell lines emerging from this screen 
expressed HA-ER-Bok as measured by anti-HA Western blot. (B) 
Fractionatio experiment reveal that ER-Bok is expressed in the cy
and after treatment with 300 nM OHT more than half of ER-Bok is
shuttled into the nucleus. 
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Figure 20. Bok’s apoptotic role is not enhanced in the nucleus. H1299 
HA-ER-Bok cell lines1, 2 and 4 were treated with or without 300 nM 

b-
 

t 
 

OHT in order to shuttle Bok into the nucleus. In contrast to reports this 
did not induce any spontaneous apoptosis as measured by FACS for su
G1 DNA content, after 48 and 72 hrs of OHT treatment (compare lane 1
and 2, 5 and 6, 9 and 10). We also combined OHT and flavopiridol 
treatment (to induce apoptosis) and tested if Bok in the nucleus had an 
enhance apoptotic activity, however we saw a slightly opposite effec
(compare lanes 3 and 4, 7 and 8, 11and 12). Experiment was performed
twice in singles each. Representative result is shown. 
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further experimentation in duplicates or triplicates is needed to solidify this observation. 

Additionally this experiment is limited by the lack of good antibody against endogenous 

Bok, since tagging Bok with GFP or HA-ER might affect the ability of Bok to move to 

different compartments in the cell. 

 

Bok Expression Sensitizes Cells to Stress-Induced Apoptosis  

The Flag-Bok expressing cells generated in Figure 13 grew at the same rate as 

parental H1299s (Fig 21). In light of the observation that Bok over-expression alone is 

not sufficient for apoptosis induction, we sought to determine whether over-expression of 

Bok sensitizes cells to stress-induced apoptosis. To this end, the H1299-Flag-Bok #8 cell 

line (as well as parental H1299s) were assayed for viability after treatment with the 

cyclin-dependent kinase inhibitor flavopiridol, which we have previously shown to 

induce apoptosis in H1299 cells 86,88. Fig. 21 reveals that flavopiridol-induced loss of 

viability is greatly accelerated in Bok expressing cells.  

 

We next sought to verify our viability assay in a more direct measurement of 

apoptosis induction. The H1299–Flag-Bok cell line and control H1299s were treated with 

flavopiridol, harvested at 24 hrs intervals, stained with propidium iodide (PI) and assayed 

for sub-G1 DNA content via flow cytometry. In agreement with low viability, there was a 

significant increase in sub-G1 content within the flavopiridol treated H1299-Flag-Bok 

cell lines in comparison to the parental controls (Fig. 21). Similar results were obtained 

with other genotoxic agents (Fig 22). For further confirmation, we conducted Western 

blot analysis for the presence of poly-ADP ribose polymerase (PARP) cleavage (a 
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oticeable 48 hrs and maximal at 72 hrs within the 

1299 parental controls (Fig. 23). Taken together, these data suggest that expression of 

measurement of apoptosis) within the same experiment. As expected, both H1299-Flag-

Bok and parental H1299s displayed cleavage of PARP, however, PARP cleavage began 

24 hrs post flavopiridol treatment and was maximal at 48 hrs in the Bok expressing cell 

line, whereas PARP cleavage was n

H

Bok sensitizes cells to rapid apoptosis induction. 
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Figure 21. Kinetics of apoptosis induction in response to Flavopiridol 
treatment. H1299 and H1299 Flag-Bok cell line #8 were plated in 60-
mm plates and their growth rate/survival was measured by trypsinization, 
followed by counting trypan blue excluding cells after treatment with 
DMSO control or flavopiridol [200 nM]. H1299 and H1299 Flag-Bok 
cell lines grow at similar rates (circles and squares), however upon 
treatment with FP, the Flag Bok cell line dies faster. Experiment was 
performed in triplicates and p values were less than 0.05. 
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 the first example of a pro-apoptotic member of the Bcl-2 family found to have its 
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ro-apoptotic the Bcl-2 family (PUMA, Noxa, Bim, and Hrk/DP5) 

re also activated by E2F1 46. In the current work, we find that E2F1 can directly activate 

xpression of Bok. Since E2F1 is a well-characterized inducer of apoptosis its effects on 

cl-1, PUMA, Noxa, Bim, Hrk/DP5 and Bok are logical. The net consequence of over-

active E2F1 is thus to tip the balancing act within the Bcl-2 family toward apoptosis.  

Chapter 4: Discussion 

In the current work we show that the Bok promoter is activated by serum addition 

anner dependent upon a conserved E2F site in the promoter.  The Bok promoter is 

also activated by over-expression of S phase promoting members of the E2F family.  We 

also show by ChIP assay that E2F1 and E2F3 both bind the Bok promoter region in vivo.  

Finally we find that Bok over-expression sensitizes to flavopiridol-induced apoptosis.   

Our understanding of the interactions between the E2F and Bcl-2 families of 
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The transcriptional activation of Bok at the G1/S boundary by serum stimulation 

was not anticipated since Bok is considered a ember of the Bcl-2 family.  

Bok might have a number of roles at G1/S. Bok might serve a specific G1/S or S phase 

function.  For example, recent work has shown that BID (a pro-apoptotic Bcl-2 protein) 

can induce an S phase arrest following its phosphorylation by ATM .  While we 

cannot formally exclude the possibility that Bok has a specific G1/S function, we have 

performed extensive siRNA and shRNAi experimentation aimed at depleted proliferating 

cells of Bok.  Though we are confident in our ability to deplete cells of 80-90% of 

endogenous Bok mRNA or exogenous protein, we obtained no convincing evidence that 

Bok deficiency affects cell cycle progression. Of course these studies are hampered by 

the lack of good quality antibody to Bok, and so, it is possible that future studies will find 

an additional role for Bok in cell cycle. 

 

An alternative role for Bok induction at the G1/S boundary would be to serve as a 

checkpoint.  G1/S phase cells are known to be highly sensitive to apoptosis induction and 

it reasonable that expression of Bok might mediate this sensitivity, at least in part.  This 

model would lead to the prediction that cells expressing exogenous Bok would survive 

and grow normally, but would be sensitive to apoptosis-inducing stresses.  Indeed, this 

appears to be the case since Flag-Bok expressing H1299 cell lines are obtained with high 

efficiency and they grow normally, yet they are much more readily killed by treatment 

with flavopiridol, as well as by other death-inducing agents.  Taken together the results in 

 pro-apoptotic m

35,70,152
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is dissertation demonstrate that Bok is a cell cycle regulated member of the Bcl-2 

family . 

d 

ric 

 at 

nts should use the reagents we have developed 

 generate Bok-deficient mice using the conventional targeting approach. 

 

behavior in aspects such as appearance, viability, growth rate, fertility and longevity. Any 

th

that serves as a checkpoint sensitizing replicating cells to stress-induced apoptosis

 

Future Studies 

 Throughout my graduate studies, we have demonstrated that Bok mRNA is 

upregulated by serum stimulation and by E2F1 over-expression. We have also cloned an

characterized the Bok promoter and demonstrated that E2F1 directly binds and 

transactivates it via a conserved E2F element. In addition we have shown that high 

expression of Bok sensitizes cells to apoptosis after treatment with chemotherapeut

agents. Furthermore, it is known that appropriate patterns of apoptosis are essential for 

normal tissue development, and since Bok is an inducer of apoptosis and it is expressed

various levels in diverse tissues 126, it may play a significant role in mouse development.. 

To test these hypotheses future experime

to

Bok mRNA expression is highest in the uterus, ovaries and testes; therefore these 

tissues are most likely to be dramatically affected by Bok deficiency. However, we may 

also expect to see tumor suppressor effects in other tissue that express Bok including 

lung, brain, liver, mammary epithelium and lymphoid tissues. Assuming that Bok 

heterozygous mice are viable and fertile, we expect them to be developmentally normal, 

however litter sizes and animal weights will be monitored and recorded to detect any 

differences from control animals. Mice will be observed carefully for overall health and 
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m 

bnormalities and weighed to determine if Bok deficiency affects organ size. The organs 

ly interested include the testes, ovaries, uterus, lung, brain, liver and 

mph  for 

at 

t 

h as TUNEL 

nd apo-BrdU would reveal fewer positive cells compared to wild type counter parts. For 

exampl

 

 think 

 

be 

outstanding abnormalities will be noted and affected animals euthanized. Organs fro

age matched wt and heterozygous animals will be removed, examined for gross 

a

we are particular

ly nodes. Once weighed, organs will be fixed, paraffin-embedded and sectioned

histological examination and immunohistochemistry for BrdU, TUNEL and levels of Bok 

protein.  

 

 Two heterozygous mice will be crossed and by Mendelian genetics we expect th

about twenty-five percent of the offspring to be homozygous null. The first question tha

this analysis will answer is whether we can establish Bok-deficient mice. Since Bok is an 

apoptotic protein we predict that Bok-deficient mice will display apoptotic defects in 

multiple tissues. The defects we may observe could be organ enlargement, but perhaps 

poor organization and differentiation due to impaired apoptosis. Assays suc

a

e, mice over-expressing Bcl-2 in the ovaries results in suppression of follicular 

cell apoptosis, enhancement of folliculogenesis and increased germ cell tumorigenesis 56. 

Interestingly, the Bcl-2 transgenic mice were fertile and their litters were on average 2

pups larger than litters of wild-type females, due to enhanced folliculogenesis.  We

that it is likely that the effects of Bok deficiency, at least within the ovary, will be similar

to the effects of Bcl-2 over-expression, and thus, Bok deficient animals will probably 

more fertile than control mice. Again, health and behavior will be monitored for up to 

twenty-four months to determine these animals develop spontaneous tumors. 



 56

s these 

le, 

ere the Bcl-2 family members are co-expressed at high levels. In addition, 

ombined deficiencies may result in a stronger predisposition toward tumor formation. 

ia 

 

 

 In the case of successfully developing Bok-deficient mice, we could cros

animals with commercially available Bax- and Bak-deficient animals in order to identify 

unique versus redundant or cooperative functions within this family of proteins. If viab

we anticipate that pathological effects of either Bax or Bak deficiency may be 

significantly aggravated by deficiency of Bok, particularly in lymphoid or reproductive 

tissue wh

c

 

 In summary, future studies with a Bok-deficient animal will seek to determine the 

role of Bok in vivo and in mouse tumorgenesis. We anticipate that Bok will be found to 

be a tumor suppressor and that Bok-deficient animals will be predisposed to hyperplas

and neoplasia. We also anticipate that Bok may play a role in reproductive development

or physiology. 
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