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Abstract

Alzheimer’s disease (AD) is the most prevalent form of dementia affecting the elderly, and as
the aging population increases the social and economic burden of AD grows substantially. Pathological
hallmarks of AD include the accumulation of extracellular amyloid plaques and intracellular
neurofibrillary tangles (NFTs), as well as significant neuron loss. Amyloid plaques consist of aggregated
amyloid beta (AB) peptide, which is generated from the proteolytic processing of amyloid precursor
protein (APP) in addition to several other peptides. While the processing of APP has been
characterized, its primary physiological function and its involvement in AD pathology are poorly
understood. Developing a greater understanding of the function of APP, and the molecular and cellular
functions it is involved in or other proteins it is associated with, could provide insight into its role in AD
pathology. To investigate the function of APP695, the neuronal isoform of APP, we used mass
spectrometry to compare changes in protein expression and phosphorylation between APP-null B103
and APP695-expressing B103-695 rat neuroblastoma cells.

Mass spectrometry-based proteomics has become a powerful technique for the unbiased
identification of proteins from complex mixtures. Quantitative proteomics using labeling techniques,
such as stable isotope labeling by amino acids in cell culture (SILAC), allow relative quantitation of
multiple samples at once. More recently, with advances in mass spectrometer technology, label-free
guantitation has become a reliable quantitative proteomics approach. Additionally, mass spectrometry
can be used for the analysis of post-translational modifications, such as phosphorylation, a dynamic
modification involved in the regulation of many cellular processes. Phosphoproteomics identifies site-
specific phosphorylation and surrounding sequence information, which can be used for consensus

motif analysis to provide further information about potential changes in kinase activity. ldentifying
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changes in phosphorylation and kinase activity also provides information about signaling pathways and
functions that may be affected by APP695 expression. Comprehensive proteomic and
phosphoproteomic datasets can be used to gain insight into the molecular mechanisms that may be
regulated by APP695 expression, or involved in AD progression and pathology, leading to the
development of novel therapeutic and preventative strategies for AD.

Proteomic and phosphoproteomic analysis of B103 and B103-695 cells identified several
significant protein expression and phosphorylation changes that may be mediated by APP695-
expression. Global-scale proteomic analysis identified increased expression of Ras and y-synuclein in
B103-695 cells, which was further validated in human AD brain tissue. Phosphoproteomic analysis
showed increased phosphorylation of Histone H4 at Ser47, and led to the investigation of PCTAIRE-2
(Cdk17), and PCTAIRE-3 (Cdk18) expression, which were all shown to be increased in AD transgenic
mouse tissue, culture primary rat neurons treated with AB, as well as mild cognitive impairment (MCl)
and AD human brain tissue.

Label-free quantitative proteomics was used for the analysis of human brain tissue from the
cortex of individuals affected by AD, MCI, Parkinson’s disease (PD), and progressive supranuclear palsy
(PSP) compared to cognitively normal, control samples. A number of differentially expressed proteins
were identified in AD, MCI, PD, and PSP tissue. Bioinformatic analysis of the comprehensive proteomic
datasets from AD, MCI, PD, and PSP human brain tissue identified several proteins consistent with
corresponding disease pathology and neurodegeneration, such as inflammatory proteins. While some
of the molecular and cellular functions were unique among neurodegenerative diseases, there also
appears to be overlap of affected functions, suggesting there may be a more common mechanism of

neurodegeneration.
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Chapter 1 — Introduction

Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, affecting an
estimated 5.3 million Americans of all ages and costing an expected $226 billion in 2015 [1]. With
advances in medicine, social and environmental conditions, life expectancy has increased, and the
number of people living into their 80s and 90s has also increased. Additionally, a large portion of the
American population, often referred to as ‘the baby boom generation’, is beginning to reach the age of
65 when the risk of developing AD is greater. As the elderly population is expected to grow, the
financial and medical burdens of AD also increase substantially, which increases the need for
development of better treatments and preventative strategies. Symptoms of AD include memory loss
and significant cognitive decline. The two major pathological hallmarks of AD are extracellular amyloid
plaques and intracellular neurofibrillary tangles (NFTs) found in the neocortex, entorhinal cortex, and
hippocampus; brain regions associated with learning and memory [2-4]. Neurofibrillary tangles (NFTs)
are composed of paired helical filaments (PHFs) of hyperphosphorylated tau, a microtubule associated
protein that accumulates within neurons [5, 6]. Tau is a cytoplasmic protein that normally functions to
promote microtubule assembly and stability by binding to tubulin during its polymerization [7].
Hyperphosphorylation of tau affects its ability to bind and stabilize microtubules and impairs axonal
transport [8, 9]. Amyloid plaques consist of aggregated amyloid-beta (AB) peptides, and are typically
surrounded by dystrophic axons and dendrites, as well as activated microglia and reactive astrocytes
[10-12]. Amyloid-beta peptides result from the sequential proteolytic cleavages of APP, which are
secreted and accumulate extracellularly. The precise molecular mechanisms that promote the

formation of amyloid plaques and NFTs in AD are not fully understood. While the symptoms of AD and



the pathology observed in AD brains have been characterized, the cause and progression of AD

pathology is still unclear.

Healthy Brain

Alzheimer’s Disease Brain

' Neurofibrillary._

Figure 1. Pathological hallmarks of Alzheimer’s disease. Extracellular amyloid plaques and intracellular
neurofibrillary tangles (NFTs), as well as significant shrinkage of the cerebral cortex and enlarged ventricles, are
observed in the brains of AD patients. Images adapted from the National Institute of Aging.

Of the 5.3 million Americans living with AD, approximately 5.1 million are age 65 and older [1].
The majority of AD is considered sporadic, or late-onset AD, and is thought to be caused by a variety of
factors including age, environment, and inflammatory proteins [13-15]. The major genetic risk factor for
late-onset AD is Apolipoprotein E4 (ApoE4) [16]. Three major isoforms of ApoE exist; ApoE2, ApoE3, and
ApoE4. ApoE2 is a relatively rare isoform and has been shown to be potentially protective against AD
[17]. ApoE3, the most common isoform, is thought to neither increase nor decrease the risk of AD,
while ApoE4 is associated with increased risk of late-onset AD. ApoE4 may be involved in increased AR
aggregation and reduced AP clearance [18, 19]. A small portion of AD cases (<10%) occur before the age
of 65 and are considered early-onset, referred to as familial AD (FAD). Familial AD is the result of

inherited autosomal dominant gene mutations found in APP or presenilins (PS1 or PS2), proteins



involved in APP processing [20-22]. These mutations will be discussed later in this chapter in the context
of APP proteolytic processing. The pathology of early-onset FAD and late onset or sporadic AD is
identical. While some treatments are available for the symptoms of mild AD, disease progression
remains inevitable as there is no preventative strategy.

The diagnosis of AD remains difficult and relies heavily on neuropsychological findings and the
exclusion of other possible causes of dementia. AD can only be confirmed by post-mortem autopsy.
Measuring levels of AB42, total tau and phosphorylated tau in the cerebrospinal fluid (CSF) is used as an
indication of AD. Decreased levels of AB42, indicating reduced clearance of the peptide, and increased
tau and phosphorylated tau have been observed in the CSF of AD and early AD patients [23]. Brain
amyloid imaging can also be used in combination with measuring CSF levels of AB42, total tau, and
phosphorylated tau. Imaging AP in the brain was made possible in 2004 using Pittsburgh Compound B-
based positron emission tomography (PET) scanning [24]. A specific and effective diagnostic biomarker
for AD is yet to be discovered, and there are no known biomarkers to detect early AD before the
accumulation of AB42 and the eventual onset of symptoms. There is a crucial need to discover
biomarkers for the detection of early AD so that preventative strategies can be implemented to delay or
avoid disease progression.

Amyloid Precursor Protein

The amyloid precursor protein (APP) gene is located on chromosome 21 in humans [25]. Three
major isoforms exist; APP695, APP751, and APP770, composed of 695, 751, and 770 amino acids,
respectively [20]. While APP751 and APP770 are expressed in most tissues, APP695 is predominantly
expressed in neurons. APP is a single transmembrane protein [26] synthesized in the endoplasmic
reticulum (ER) of neurons and transported through the Golgi apparatus to the trans-Golgi-network
(TGN) where it can be shuttled to the cell surface by TGN-derived secretory vesicles where it undergoes

proteolytic processing [27-29].



APP belongs to a protein family that includes APP-like protein 1 (APLP1) and APP-like protein 2
(APLP2) [30, 31]. The protein family includes conserved domains in their extracellular sequence and
APLP1 and APLP2 are processed similarly to APP; however, the Af domain is unique to APP. Studies
using knockout mice have provided some insight into the partially redundant functions of APP protein
family members. APP, APLP1, and APLP2 single knockout mice and APP/APLP1 double knockout mice
are all viable and fertile [32-35]. APP/APLP2, APLP1/APLP2 double knockout mice and
APP/APLP1/APLP2 triple knockout mice, however, show early postnatal lethality, suggesting a crucial
role for APLP2 in the absence of APP or APLP1 [34-36]. A large amount of research has been directed at
understanding the expression, processing, and function of APP and its role in AD pathogenesis.

Proteolytic Processing

APP is proteolysed by 2 different pathways; the amyloidogenic and non-amyloidogenic
pathways. The non-amyloidogenic pathway avoids the generation of AP as APP is first cleaved by a-
secretase between Lys612 and Leu613 (numbering based on the 695 isoform) within the AR domain,
generating a membrane-bound C-terminal fragment (CTFa) C83 and sAPPa from the N-terminal domain.
sAPPa has been shown to be involved in early central nervous system (CNS) development [37], neural
stem cell proliferation [38], and have neuroprotective effects [39, 40]. The membrane bound CTFa
fragment C83 is then cleaved by y-secretase producing P3 and APP-intracellular domain (AICD)
fragments. P3 is rapidly degraded and is unlikely to have an important function. Studies have identified
disintegrin and metalloproteinase domain-containing proteins ADAM10 [41] and ADAM17 (also called
tumor necrosis factor-a converting enzyme, TACE) [42] as the primary a-secretases that cleave APP
within the AR domain.

Alternatively in the amyloidogenic pathway, APP is cleaved between Met596 and Asp597
(numbering based on the 695 isoform) by B-site APP cleaving enzyme (BACE or B-secretase) [43, 44],

producing C-terminal fragment (CTFB) C99, and sAPPB. The sAPPB fragment is very similar to sAPPa,



however, it has been shown to cause defective axonal transport resulting in axonal dystrophy and
neuronal cell death [45, 46]. Cleavage of the membrane bound CTF( fragment C99 by y-secretase
releases the AICD fragment, leaving AP bound to the membrane. Finally, different sizes of Ap fragments
are generated, including the 40-42 amino acid long peptide fragments (AB40 and AB42), as it is thought
that y-secretase cleaves AP at multiple sites every 3-4 amino acids until it is released from the
membrane [47-49]. The APP intracellular domain (AICD) fragment is generated in both the
amyloidogenic and non-amyloidogenic pathways following y-secretase cleavage. AICD is known to be
translocated into the nucleus and regulate the transcription of several genes including APP [50], GSK38
[51], and EGFR [52]. It has also been suggested that AICD can induce apoptosis [53] and increases the

sensitivity of neurons to toxic insult [54].
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Figure 2. Proteolytic processing of Amyloid Precursor Protein (APP). APP is proteolysed by a-, B-, and y-
secretases leading to the generation of several peptides including the AP peptide, which aggregates to form
amyloid plaques in AD.

The y-secretase protease complex is found within the cell membrane and consists of 4 different
proteins: presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin, anterior pharynx-defective 1 (APH1) and

presenilin enhancer 2 (PEN2) [55]. Presenilin 1 and 2 are the catalytic subunits of the y-secretase



complex, possessing two highly conserved aspartate residues required for y-secretase activity [56, 57].
Familial AD mutations in PS1 and PS2 have been shown to promote the production of AP peptides,
especially AB42 [58-60].

Increasing evidence suggests that the intracellular trafficking and subcellular localization of APP
influences its processing and the production of AB; this is likely attributed to the localization of B- and y-
secretases [61]. BACE is found in endosomes and Golgi compartments, and is most efficient at lower pH
[44], while a-secretase activity is observed at the cell surface [62]. The y-secretase complex
components are localized to the endoplasmic reticulum (ER), lysosome, and cell surface [63, 64]. APP
localized to the cell surface is proteolysed by a-secretase in the non-amyloidogenic pathway, while APP
internalized into endosomes is proteolysed by BACE in the amyloidogenic pathways, increasing AB
production.

The exact sites of y-secretase cleavage have a significant influence on the ability of AB to
aggregate. AB42 is more hydrophobic than other AB peptides as it includes C-terminal alanine and
isoleucine amino acid residues causing it to have a strong tendency to aggregate quickly. A large
amount of AD research has focused on determining the role of insoluble AB42 oligomers in amyloid
plagues and its toxicity; however, it is important to consider that proteolytic cleavage of APP generates a
variety of AB peptides, and it is possible that the aggregation and toxicity of AB42 may be influenced by
the presence of other AP peptides [65]. Several types of AP oligomers have been characterized
following isolation from brain tissue, or using synthetic AR peptides. Some of the oligomeric AB
assemblies that have been described and characterized include protofibrils (PFs), annular protofibrils
(APFs), soluble AR oligomers, and amyloid fibrils [65, 66]. While a significant amount of research has
been carried out to determine the involvement of insoluble AB42 oligomers in AD pathogenesis, the
number of amyloid plaques does not correlate with the degree of cognitive decline in AD, and amyloid

plaques are often observed years before the onset of symptoms. Increasing evidence suggests that



soluble AB oligomeric species are involved in AD pathology. Soluble AP oligomers have been extracted
from human brain tissue and have shown stronger correlation with levels of dementia and AD
symptoms than amyloid plaques [67, 68]. Though we are developing a greater understanding of A
oligomerization and the types of AP oligomers that exist, the A assemblies that are primarily
responsible for toxicity and triggering downstream pathology are not fully understood.

Whether the accumulation of AB in the brain is related to increased APP expression, increased
secretase activity, decreased AP clearance, or some other mechanism, remains largely unknown. Some
studies have shown that AP accumulation can be attributed to reduced AP clearance, which may be
mediated by ApoE4 [69]. It has also been suggested that soluble AB is cleared by ApoE4, while
deposited AB is phagocytosed by microglia [70, 71]. APP mutations associated with early-onset AD
occur either within or adjacent to the AP region of APP. Mutations within the AP region of APP involved
in early-onset AD have been shown to promote the aggregation of AP or decrease its degradation, not
affecting AB production [72, 73], while mutations adjacent to AP proteolytic sites promote the
amyloidogenic processing of APP and increase AB42 production [74, 75]. Mutations in PS1 and PS2, also
involved in early-onset AD, have been shown to increase AP generation [58-60]. The oligomerization
and accumulation of AB, the formation of amyloid plaques, and the role of AB in AD pathology
development are highly complex and further research is necessary to understand this process.

Function

While the regulation of APP expression, trafficking, and proteolytic processing are fairly well
described, the primary function of APP has yet to be fully understood. APP has been proposed to be
involved in several processes including cell growth and maturation, neural stem cell proliferation and
differentiation, as well as neurite outgrowth and synaptogenesis [76]. Much of APPs ability to promote
growth may be attributed to sAPPa. It has been reported that sAPPa can promote proliferation of

neural stem cells [38] and progenitor cells [77]. Alternatively, another study reported that APP



influenced neural stem cell and progenitor cell proliferation by cystatin C secretion and not sAPPa
secretion, indicating that APP may increase proliferation through two different mechanisms [78]. It has
also been demonstrated that APP and sAPPa can increase glial cell differentiation [79] as well as the
differentiation of neural stem cells and progenitor cells into neurons [78, 80]. Multiple studies have
shown that APP promotes neurite outgrowth in cell culture [81-83]. The proposed mechanisms for how
APP promotes neurite outgrowth are based on its ability to bind proteins involved in cell-substrate
adhesion that are known to influence neurite outgrowth, such as laminin [84], collagen [85], and heparin
[86]. There is also evidence for the involvement of APP in the regulation of synaptogenesis, as increased
APP expression is observed in pre- and postsynaptic sites during the formation of synapses [87, 88].
Based on the structure of APP, it has also been suggested that it could act as a cell-surface receptor;
however, it has not been established whether it actually functions as a cell-surface receptor and
activating ligands of APP as a receptor have not been identified. It appears that APP likely has a role in
cell growth and differentiation; however, the precise mechanisms of its growth-regulatory function are
still unclear.
Hypotheses of Alzheimer’s Disease Pathogenesis

Many factors are hypothesized to influence the onset and progression of AD. AP deposition, tau
hyperphosphorylation, oxidative stress, mitochondrial dysfunction, cholinergic deficits, progressive
synaptic loss, and neurodegeneration are all characteristics of AD. A considerable amount of research
has been directed at discovering the ultimate cause of AD, hoping to develop therapeutics and
preventative strategies. Several hypotheses have been proposed including the inflammatory and
oxidative stress hypotheses, the tau hypothesis, the cell cycle hypothesis, and the amyloid cascade
hypothesis. Studies have shown that tau pathology has a stronger correlation with the severity of
dementia and neuronal loss than AP deposition and amyloid plaque formation [89-91]. However, it has

also been hypothesized that soluble AB correlates more strongly with severity of dementia than amyloid



plaques [67]. Despite the findings that tau pathology better correlates with AD associated neuronal loss
and dementia than amyloid plaques, it is hypothesized that AD-related tau pathology, occurs
downstream of aberrant AB production. Other pathologies, such as oxidative stress, aberrant cell cycle
re-entry, and mitochondrial dysfunction, have also been proposed to follow AP deposition, and so the
main focus of this research is to examine the role of APP-dependent mechanisms in AD pathology
development.

Amyloid Cascade Hypothesis

The amyloid cascade hypothesis proposes that AB initiates AD pathology and that neurofibrillary
tangles, cell loss, oxidative stress, and dementia are consequences of AB deposition [2, 92, 93]. While
AB may not be primarily responsible for all of the neurodegeneration that occurs in AD, it is argued that
AB acts as a trigger initiating a complex pathogenic cascade. Early-onset FAD provides strong evidence
that AD can be initiated by abnormal APP processing and AB accumulation, as the genes associated with
FAD (APP, PS1, and PS2) are involved in APP processing promoting the production or oligomerization of
AB42. While early-onset AD is a strong indication that APP and AP may be the primary source for the
initiation of AD pathology, a significant amount of controversy surrounds the amyloid cascade
hypothesis.

The primary argument against the amyloid cascade hypothesis is that the localization of tau
pathology and NFTs better correlates with neuronal loss, occurring largely in the entorhinal cortex and
hippocampus, whereas amyloid plaques are found primarily in the frontal cortex [90, 94, 95]. Tau
pathology has been observed in the entorhinal cortex of young, cognitively normal individuals and in the
hippocampus of aging, cognitively normal individuals without AP or amyloid plaque accumulation [96].
It is also possible that soluble AB, which was not tested for in these studies, may be present in these
regions. In the presence of AP pathology, however, tau pathology appears to spread to the neocortex,

and similar cortical tau pathology is not observed in individuals lacking AB pathology [96]. These



observations suggest that AB accumulation and aggregation are required for the increase and spread of
tau pathology. The toxicity of tau pathology appears to require AB accumulation and amyloid plaques,
supporting the idea of the amyloid cascade hypothesis. Haass and Selkoe suggest small soluble AB
oligomers are responsible for neurodegeneration and synaptic dysfunction [66]. Soluble AB oligomers
correlate more closely with the appearance of tau pathology and are found in brain regions such as the
hippocampus that undergo significant neuronal loss [67, 97, 98]. It has been demonstrated that
oligomeric AB can initiate tau phosphorylation in vitro and in vivo [99-101]. The amyloid cascade
hypothesis is complex and controversial, and a greater understanding of the function of APP and the
potential functions of AP are necessary to further understand their role in AD pathology development.

Aberrant Cell Cycle Re-entry

Neuronal cell cycle dysregulation is an early abnormality observed in mild cognitive impairment
(MCI) and AD. Neurons are terminally differentiated and considered quiescent; however, there is
evidence that neurons aberrantly re-enter the cell cycle in AD. Instead of successfully dividing into two
daughter cells, the cells that exhibit aberrant expression of cell cycle regulatory proteins undergo
apoptosis. A relationship exists between cell cycle activation and neuronal cell death, and inhibition of
cell cycle activation aids in preventing neuronal apoptosis [102, 103]. Expression of cell cycle proteins,
including cyclins A, B, D, E, cdc2/cdk1, cdk4, cdk?, proliferating cell nuclear antigen (PCNA), and p16, has
been observed in the brains of AD patients [104-108]. Mitogenic signaling has also been implicated in
AD as increased expression and activation of ERK and Ras have been observed in early stages of AD [109,
110]. Mitotic kinases are also involved in the phosphorylation of tau and APP, potentially contributing
to the formation of neurofibrillary tangles and amyloid plaques. It has recently been proposed that
microglial derived tumor necrosis factor-a (TNFa) may be involved in promoting AD-related neuronal
cell cycle events [111]. Additionally, microRNA MiR-26b has been found to be upregulated in AD and is

shown to be potentially involved in cell cycle activation, tau phosphorylation and apoptosis [112]. Other
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findings have suggested that AB may be involved in induction of aberrant cell cycle re-entry [113].

In vitro studies have shown that APP is phosphorylated at Thr668 (numbering based on APP695
isoform) in a cell cycle-dependent manner and in vivo studies showed that it correlates with the
expression of cell cycle regulatory proteins Cyclin D1, Cyclin E, p-cdc2/Cdk1, and E2F1 in mouse models
of AD [113]. Further, studies suggest that GSK3B [114, 115], JNK3 [116], Cdk5 [117], and cdc2/Cdk1
[118] influence APP phosphorylation at Thr668. It has also been reported that AB peptides can cause
cell cycle activation and apoptosis in primary cortical neurons [119, 120] and that AP also induces
phosphorylation of APP at Thr668 [113]. The mechanisms of aberrant cell cycle activation in AD remain
to be fully understood, but these findings have suggested that APP may be processed in a cell cycle
dependent matter and that AB can cause cell cycle activation.

Proteomics & Alzheimer’s Disease

Mass Spectrometry and Proteomics

Mass spectrometry-based proteomics enables the unbiased, large-scale study of protein
expression changes and post-translational modifications (PTMs) of proteins in various model systems
and tissues. Mass spectrometry-based proteomics does not rely on antibody availability or specificity
for identifying proteins or changes in protein expression. Quantitative proteomic techniques have been
developed that allow for the comparison of control and treated samples or healthy and disease tissue.
Many quantitative proteomic techniques rely on labeling proteins or peptides with isotopic labels, which
was first described by Gygi et al., using isotope-coded affinity tags (ICAT) [121]. Since then, several
other isotopic labeling techniques have been developed. Stable isotope labeling with amino acids in cell
culture (SILAC) is an approach that allows quantification of protein expression changes in cell models by
mass spectrometry. Developed by the Mann lab, cells metabolically incorporate ‘heavy’ and ‘light’
amino acids during protein synthesis, enabling the differentiation of protein from two different

treatment groups simultaneously [122, 123]. SILAC is consistent, reproducible, and also decreases
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variability during sample processing, however it is generally restricted to cultured cells. Other methods
for quantitative proteomics have also been developed, such as iTRAQ (isobaric tags for relative or
absolute quantitation) [124] or isotopic dimethyl labeling [125, 126], which also use isotope-coded
covalent tags for quantitation of peptides within a complex sample, and can be used with tissue samples
as peptides are labeled following protein digestion. With advances in mass spectrometers and increased
mass measurement accuracy and resolution, label free quantification has become possible which
eliminates the need for isotope labels or chemical labeling [127].

Proteomics has become an invaluable tool for the identification and quantification of proteins
within a complex mixture, and reducing sample complexity for the identification of low abundance
proteins has been essential. Using fractionation techniques increases the identification, quantification,
and sequence coverage of low abundance proteins. One of the earliest and most commonly used
techniques was two-dimensional gel electrophoresis (2-DE) [128]. Using 2-DE, proteins are first
separated based on charge using a pH gradient and isoelectric focusing, and proteins migrate until their
net charge is 0. Proteins are then further separated by size using SDS-PAGE in the second dimension of
2-DE. Protein spots can be quantified by comparing staining intensity, and then spots of interest are
excised and enzymatically digested for identification by mass spectrometry [129]. Differential gel
electrophoresis (DIGE) is a variation of 2-DE that involves fluorescent labeling of proteins so that more
than one sample can be run simultaneously on a gel, and can also incorporate an internal standard for
more accurate comparison and quantitation of spots between multiple gels [130, 131]. While 2-DE has
been widely used, it does have limitations as it is not compatible with many detergent-containing lysis
buffers, which are necessary to solubilize membrane proteins. It can also be difficult to detect low
abundant proteins using 2-DE, as well as being time consuming and laborious to perform image analysis

and in-gel digests of many protein gel spots.
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The development of multidimensional protein identification technology (MudPIT) enabled
protein identification from complex mixtures coupled with high performance liquid chromatography
(HPLC) separation techniques [132, 133]. HPLC offers powerful sample fractionation techniques resulting
in multiple fractions from a single sample with reduced complexity allowing for an increased number of
identified proteins. Strong cation exchange (SCX) and anion exchange (ACX) are popular HPLC peptide
fractionation techniques that separate peptides based on charge. SCX columns have a negatively
charged stationary phase that bind positively charged peptides at low pH, which can be subsequently
eluted by increasing the pH and salt content of the mobile phase. Alternatively, ACX columns have
positively charged stationary phase that bind negatively charged peptides at high pH, which can be
eluted by increasing the salt concentration of the mobile phase. These HPLC separation techniques

coupled with mass spectrometry have allowed high-throughput analyses of complex proteomes.

Sample Proteins Peptides Mass Spectrometry Database Searching
& Pathway Analysis
E’} Lysis Digest g 3)) W 3 - ] b
E’% %} S e 5 —
,5\—\% r = wh s

Retention Time

Figure 3. General proteomics workflow. Cells or tissue samples are lysed to extract protein, which are digested to
peptides using proteolytic enzymes such as Trypsin. Peptide samples can be further fractionated using strong-
cation exchange (SCX) before mass spectrometry analysis. Raw data files can be searched using various software
packages against protein sequence databases, and identified proteins can be used for bioinformatics analysis.

Identifying changes in protein expression in AD provides insight into pathways and functions
that may be altered, which can help determine mechanisms of pathology development as well as
development of interventions or therapeutic strategies. There are several challenges associated with
studying neurodegeneration and AD, particularly the complexity of both the brain and the disease. The
brain consists of various cell types, such as neurons and glia, which can function differently in different
regions of the brain. The mechanistic complexity of AD is also challenging as its pathology can be both

stage-specific and region-specific. Proteomic studies have been performed using various cell models,
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animal models, as well as human brain tissue in an effort to identify novel proteins and/or pathways
that may be involved in the onset and progression of AD, which will be discussed in the next sections.
Moreover, proteomic studies using blood and cerebrospinal fluid (CSF) have also been conducted in
search of novel diagnostic and therapeutic biomarkers in an effort to potentially detect and treat AD at
an early stage [134-136].

Proteomic Studies Using Cell Models

While in vitro studies have their limitations, they are useful as they can be easily manipulated to
study the effect of various pharmacological agents or differential expression of proteins and to identify
the specific changes for further studies in more complex models. Immortalized cell lines are cost
effective, convenient, and grow indefinitely. Primary cells, on the other hand, are isolated from tissue;
they have a limited lifespan but are often considered a better representation of that cell type than
immortalized cell lines as they have not been genetically altered. For example, undifferentiated
neuroblastoma cell lines often lack proteins related to neuronal function such as neuronal specific
nuclear protein (NeuN), neuron-specific enolase (NSE) and microtubule-associated protein 2 (MAP2),
which are present in primary neurons. Neuroblastoma cell lines can be differentiated by manipulating
growth conditions to display a more neuronal phenotype [137]. Both primary and immortalized cell
models can be treated with AB oligomers, which can be prepared in vitro from synthetic A peptide.
Alternatively, cell lines can be stably transfected to express different proteins, such as APP695, and
analyzed for specific changes in expression or function of other cellular proteins, which will provide
insights into the function of the newly introduced protein. There have been a number of proteomic
studies on cell models of AD, a few of which are described below [138-141].

Foldi and colleagues performed a study using differentiated SH-SY5Y cells, a human
neuroblastoma cell line, treated with small AB42 oligomers [138]. AB oligomers were prepared in situ

from an AP isopeptide precursor that allows for more standardized aggregation [142]. After an 8 hour
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AB42 treatment, 2-DE was used to separate proteins and quantify expression changes. A total of 1000
spots were detected on the gel, and 649 of these spots matched across treated and untreated gels; 52
of the matched spots were determined to be significantly altered and 47 of them were identified by
matrix-assisted laser deposition ionization (MALDI)-time of flight (TOF) mass spectrometry. Elongation
factor 2 (EEF2) (-3.6 fold) and Heat-shock protein 70 (Hsp70) (3.5 fold), showed the most significant
decrease and increase in expression, respectively, and these changes in expression were further
validated by western blot analysis. In addition to identifying changes in protein expression, the study
also observed decreased cell viability and altered cell morphology with AB42 treatment but did not
identify any differences in post-translational modifications.

Another proteomic study examined the cytosolic fractions of SN56 cells, a mouse cholinergic
neuroblastoma cell line, also using AB treatment and 2-DE. AP treatment resulted in significant changes
in protein expression and phosphorylation [139]. This study also compared the proteomes of AB-
treated cells with H,0,-treated cells to assess whether changes in protein expression could be attributed
to the ‘oxidative potential’ of AB; their findings suggested that AB and H,0, treatment had different
effects on the proteome profile of SN56 cells. Three unique proteins were identified to show altered
expression following AB treatment; Calreticulon, MAPK 6c, and y-actin. The study also identified
decreased phosphorylation of 3 proteins; RHO GDI-1 homolog AHO/GDP dissociation inhibitor, ubiquitin
carboxyl terminal hydroxylase (UCHL1), and tubulin. The findings that AR and H,0, treatment affected
protein expression differently is interesting; however, only a few significant changes in protein
expression were detected, thus limiting detailed mechanistic information regarding the impact of AB on
neuron-like cell function.

Studies by Butterfield and colleagues have investigated AB-mediated protein oxidation using
redox proteomic analysis of AB-treated primary neurons [140, 141]. Redox proteomics focuses on the

addition of protein carbonyls, lipid peroxidation adducts (HNE-adducts), and tyrosine nitration, which
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are protein modifications resulting from oxidative damage [143]. Both studies investigated the impact
of 24hr treatment of primary rat neurons with 10uM A using 2-DE for protein separation and 2D-
Oxyblots for enrichment and quantification of oxidized proteins, which were subsequently identified by
mass spectrometry. One study found that pre-treatment with gamma-glutamylcysteine ethyl ester
(GCEE) increased levels of glutathione (GSH), an endogenous antioxidant found to decrease with aging,
and protects against protein oxidation [140]. The second study identified specific targets of protein
oxidation in response to AP treatment and assessed the protective effect of D609, a known inhibitor of
phosphatidylcholine specific phospholipase-C (PC-PLC), on these oxidized proteins [141]. Both studies
observed increased oxidation of regulatory and structural proteins as well as energy and metabolism-
related proteins following AB treatment, and demonstrated the potential of 2 different compounds for
reducing AB-induced oxidative stress.

The studies mentioned above, using cell models, have focused on AB treatments to examine
changes in protein expression and potentially affected cellular processes and molecular function. The
effectiveness of novel compounds in reducing oxidative modification of proteins, and whether AB-
related protein expression changes are attributed to its oxidative potential, were also investigated.
These types of studies are possible in cell models, and are necessary to assess whether potential
treatments should be further tested in animal models of AD. The sample preparation approaches used
in these studies, primarily relying on 2-DE for protein separation and quantification, may be limiting
their proteome coverage and quantitation. The use of SILAC, which is possible in cell models, in
combination with other fractionation techniques such as SCX, would likely increase the number of
proteins identified and improve relative quantification. It is also interesting that proteomic studies in
cell models have relied on AB treatments and that cell models expressing full-length APP have not been

compared to APP-null cells.
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Proteomic Studies Using Animal Models

In vivo studies using animal models that develop AB pathology have provided major advances in
AD research. While human brain tissue is available post-mortem, animal models allow the study of
disease progression from early, asymptomatic stages, which is essential to determine early molecular
changes for the development and preliminary testing of preventative strategies and therapeutics to slow
disease progression. Proteomic studies have been conducted in a non-mammalian C.elegans model of
AD, as well as transgenic mouse and rat models of AD.

C.Elegans Models

Caenorhabditis elegans is a non-mammalian model useful for testing the in vivo effects of AB42
as they have a short life span, they can be easily grown, and their entire genome has also been
sequenced. The Butterfield group conducted a redox proteomics study of a transgenic model of
C.elegans expressing human AB42 to identify targets of oxidation. The study identified 16 oxidized
proteins associated with similar pathways as in mammalian models [144]. While gene expression
studies have been performed in this C.elegans model of AD, this appears to be the only proteomics
study to date on an in vivo model.

Mouse Models

There are a number of transgenic mouse models of AD with mutations in several different genes
hypothesized to be involved in disease pathology. Some of the more common mouse models include
APP (Tg2576) [145], PS1 (M146L) [146], and PS2 (N1411) [147] single mutant transgenic models, PS/APP
double mutant transgenic models [148], as well as tau (P301L) [149] and APP/PS/Tau triple transgenic
models [150, 151]. Of the APP transgenic mouse models, the APP Swedish mutant, APP
Swedish/London double mutants, and PS/APP double mutants have been used for proteomic studies.

The most common APP transgenic mouse models are Tg2576 and PS/APP mice, with the most

common mutations of APP being the Swedish double mutant (K595N/M596L), and London mutant
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(V642l) (numbering based on the 695 isoform). The Tg2576 transgenic mouse model overexpresses
human APP695 with the Swedish mutation (K595N/M596L). Tg2576 mice develop AB deposits at
around 1 year, but do not form NFTs [145]. The PS/APP double transgenic mouse model was created by
crossing the Tg2576 mouse model with the PSEN1 (M146L) transgenic mouse model. These PS/APP mice
therefore overexpress human APP695 with the Swedish mutation and human PSEN1 with the M146L
mutation. PS/APP mice, like Tg2576 mice, exhibit accelerated plaque pathology and increased AB42
accumulation at an early age, followed by significant fibrillar AR accumulation in the cerebral cortex and
hippocampus at 6 months. Increased plague-associated astrocytes and microglia are also observed in
PS/APP mice which suggest increased neuroinflammation. Neurofibrillary tangles are not seen in
PS/APP mice, however hyperphosphorylated tau is detected [148]. The behavior and cognitive function
of both PS/APP and Tg2576 mouse models have been well characterized [148, 152, 153].

Proteomic analysis of the cortex from 24 month old Tg2576 mice determined changes in protein
expression, oxidation, and nitration using 2-DE, 2D-Oxyblots, and MALDI-TOF mass spectrometry [154].
The study identified several proteins involved in various physiological functions; increased expression of
glial fibrillary acidic protein (GFAP), an inflammatory marker, increased expression of glyeraldehyde-3-
phosphate dehydrogenase (GAPDH), pyruvate kinase (PK), and decreased malate dehydrogenase (MDH),
proteins involved in metabolism, as well as increased dihydropyrimidase-like 2 (DRP2), involved in
synaptic and axonal integrity [154]. Another study performed a proteomic analysis of crude
synaptosomal fractions from cortex and hippocampus of Tg2576 mice using 2D-DIGE and hybrid
quadrupole-TOF (Q-TOF) mass spectrometry. This study detected 1100 spots in crude synaptosomal
fractions where 6 spots were determined to be significantly altered in young Tg2576 mice before AB
deposition compared with non-transgenic mice. Of the 6 spots, only 2 were confidently identified by

mass spectrometry, including Grp75, also referred to as mitochondrial heat shock protein 70 (mtHsp70).
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The study revealed changes in mitochondrial protein expression and function prior to AB deposition
[155].

Proteomic studies of PS/APP transgenic mice have been performed using 2-DE for protein
separation and quantification, and protein identification by mass spectrometry using a hybrid linear ion
trap-Orbitrap mass spectrometer (LTQ-Orbitrap XL). Previously, the antioxidant N-acetylcysteine (NAC)
has been shown to protect against oxidative stress in MCl and AD in PS/APP mice [156]. To investigate
the potential mechanisms by which NAC reduced oxidative stress, a proteomic analysis examined
PS/APP mice that were administered NAC from 4-9 months of age before AB deposition (representing
MCI) and from 7-12 months of age after AB deposition (representing more advanced AD). Significant
changes in protein expression were observed in wild-type (WT), 9-month, and 12-month old mice, and
NAC treatment did appear to reduce protein oxidation [157]. Another proteomic study compared
PS/APP mice with non-transgenic mice at 1 month, 6 months, 9 months, 12 months, and 15 months of
age. The redox proteomic study revealed an age-dependent increase in carbonylated proteins,
particularly beta-actin and pyruvate dehydrogenase (PDH), that also correlated with levels of AB peptide
[158]. These findings support the notion that elevated AP levels are associated with increased oxidative
damage.

The proteomes of cortex samples from 14 month old Thy1-APP751 transgenic mice have been
compared with WT mice. Thy1-APP751 mice express APP751 with both the Swedish and London
mutations, have high levels of human AR peptide and develop fibrillary amyloid deposits at 6 months of
age [159]. Using 2D-DIGE and MALDI-TOF mass spectrometry, this study identified 25 proteins with
altered expression in AD mice, 8 of which have also shown increased expression in human AD including
GFAP, ApoE precursor, peroxiredoxin 6 (Prdx6), DRP2, PK, synaptotgamin I, serum albumin precursor,
and N-ethylmaleidmide sensitive fusion protein, supporting the use of this transgenic mouse as a model

of human AD and increasing the potential that these proteins are involved in AD pathology. The
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identified proteins differentially expressed in AD mice are involved in molecular and cellular functions
consistent with AD, including inflammation and oxidative stress, cholesterol metabolism, and neuronal
and synaptic signaling [160].

Rat Models

Proteomic studies have also been conducted using AB42-injected rat models [161] and
transgenic rats expressing human mutant APP [162] to investigate changes in protein expression and
protein carbonylation to identify oxidatively modified proteins. Redox proteomics were used to examine
the cortex and hippocampus of rats injected with AB42 using 2-DE and 2D-Oxyblots for protein
separation and quantitation, and mass spectrometry for protein identification. A number of oxidatively
modified proteins were identified in different regions of AB-injected rat cortex and hippocampus that
have also been shown to be modified in human AD brains, increasing the possibility that these oxidative
modifications are involved in AD. This study also demonstrated the profound effect that AB-injection
into the nucleus basalis can have in other brain regions [161]. Another study by Wilson and colleagues
examined the proteome of transgenic rats expressing human APP with the Swedish mutation. This
study was primarily focused on developing a proteomic method incorporating laser microdissection to
isolate specific cell types from the brain. Using laser microdissection and 2D-DIGE, they were able to
observe over 5000 protein spots, and 100 protein spots appeared to be significantly altered; however,
with limited amounts of protein only 12 differentially expressed proteins were identified by mass
spectrometry [162]. The study by Wilson and colleagues exemplifies the drawbacks of 2D-DIGE and
MALDI-TOF for protein identification, and the need to use more advanced and sensitive mass
spectrometry approaches for protein identification.

Proteomic Studies Using Human Tissue

While animal models are useful, the differences between the complexity of human biology and

animal models can make direct comparisons difficult. Complexity of the central nervous system and the
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mechanisms underlying the disease, as well as the availability of human brain tissue, however, makes
human studies difficult. One challenge when examining human tissue is the post-mortem interval (PMI)
between time of death and specimen collection/processing. It is also important to consider the region
of the brain being studied, and how different regions are affected by the disease and composed of
different cell types. Different brain regions are also affected at different stages of the disease, while
tissue is collected post-mortem when pathology is most severe. Nevertheless, studies using human
tissue affected by AD are invaluable for gaining a deeper understanding of the molecular changes that
exist with the progression of disease pathology.

Proteomic analyses of the temporal cortex have been performed, which is a brain region
affected early in AD. Andreev and colleagues performed a label-free quantitative proteomic analysis of
the temporal cortex from 10 AD and 10 non-AD brain samples using the accurate mass and time tag
(AMT) approach. The study identified 1400 unique proteins, with 197 proteins determined to be
differentially abundant in AD compared with non-AD brains [163]. A more recent proteomic analysis of
the temporal cortex analyzed brain tissue specimens from 10 AD patients compared with 5 non-AD
controls and used stable isotope dimethyl labeling for protein quantitation. A total of 827 unique
proteins were identified, 227 of which were identified in nine out of ten AD/non-AD pairs. Of the 227
proteins, 69 proteins were differentially expressed in AD compared with non-AD, including 27 novel
proteins not previously reported in AD including neuronal-specific septin-3, septin-2, septin-5,
dihydropteridine reductase and clathrin heavy chain 1 [164].

The hippocampus plays an important role in memory and cognitive function and is one of the
primary brain regions affected early in AD. A study by the Butterfield group examined the hippocampal
proteome from 6 AD and 6 age-matched controls using 2-DE and MALDI-TOF mass spectrometry.
Significant changes were identified in the abundance of 18 proteins [165]. Another proteomic analysis

of the hippocampus was performed by Begcevic et al., using 3 AD and 3 non-AD biological replicates,
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which were pooled together. Using SCX for peptide fractionation, followed by analysis on an LTQ
Orbitrap XL, a total of 2954 proteins were identified with 1203 proteins detected at a minimum of 2
unique peptides. Pooling of biological replicates prevented statistical analysis, instead they reported
that 204 proteins were exclusively identified in AD, and 600 proteins were exclusively identified in
control samples [166].

A number of studies have used proteomics to investigate certain subcellular fractions, such as
membrane or synaptic fractions, while others have been interested in protein post-translational
modifications. Since APP and its secretases are transmembrane proteins, Donovan and colleagues
performed a label free quantitative proteomic analysis of the membrane-enriched proteome from the
frontal cortex of human brain samples. The study identified 1709 proteins from membrane-enriched
fractions, 13 showing significant expression changes. Increased levels of ubiquitin carboxy-terminal
hydrolase 1 (UCHL1) and syntaxin binding protein 1 (Munc-18) in AD compared with non-AD samples
were validated by western blot [167]. Another study examined detergent insoluble proteins from the
temporal cortex of AD, early-AD, and control brains, which include the amyloid plaques that develop
during AD. The study identified 125 proteins from insoluble fractions including proteins involved in AB
production, synaptic scaffolding, and proteins associated with increased risk of AD. The study validated
the expression changes of 15 proteins, however further research is required to determine whether
these proteins are associated with AD pathology or involved in the formation of AB plaques [168].

The synaptic proteome has also been investigated as a considerable amount of synaptic
dysfunction and degeneration is observed in AD, however the underlying molecular mechanisms are
unknown [169-171]. An early analysis of the synaptic proteome from the hippocampus and frontal
cortex of AD and control individuals used 2D-DIGE for protein quantitation and separation prior to mass
spectrometry-based protein identification. The study identified 26 synaptic proteins differentially

expressed in AD compared with control brain involved in energy metabolism, signal transduction, vesicle
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transport, and antioxidant activity [169]. The Chang group then performed targeted analysis of the
synaptic proteome using multiple reaction monitoring (MRM), which allows multiple proteins of interest
to be specifically targeted during mass spectrometry analysis. Ten proteins identified in their previous
study were targeted, and significantly increased levels of peroxiredoxin-1 and dihydropyrimidinase-
related protein-1 (DRP1) were found in AD [170]. More recently, Chang and colleagues examined the
synaptic proteome using a data-independent acquisition (DIA) mass spectrometry approach referred to
as SWATH™ (Sequential Window Acquisition of Theoretical fragment ion spectra). The study identified
2077 unique proteins, with 30 proteins having significant expression changes in AD compared with non-
AD. Seventeen of the 30 significant proteins had not previously been suggested to be involved in AD,
with cellular functions including structural maintenance, oxidative stress, and synaptic-vesicle related
functions [171].

Other published studies have examined human brain tissue using redox proteomics to identify
nitrated proteins [172] and oxidatively modified proteins [173, 174]. Protein nitration was investigated
using 2-DE and western blotting using an anti-nitrotyrosine antibody followed by MALDI-TOF mass
spectrometry for protein identification. An overall increase in protein nitration was observed in AD
compared with control hippocampus samples; a enolase, GAPDH, carbonic anhydrase Il (CAH I1), ATP
synthase alpha chain, and voltage-dependent anion channel protein 1 (VDAC-1) showed significant
increases in levels of nitration [172]. Two separate redox proteomic studies of human cortex used 2-DE
and 2D-Oxyblots with MALDI-TOF mass spectrometry to identify specific targets of oxidation. Increased
oxidation of creatine kinase BB, glutamate synthase, UCHL1 [173], a enolase, (DRP2, and heat shock
cognate 71 (HSC 71) were observed [174]. These redox proteomic studies provide further evidence for
the involvement of protein oxidation in AD pathology and identify specific protein targets of oxidative

modification in AD.
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These proteomic studies using human tissue have provided valuable insight into both protein
expression changes as well as cellular and molecular functions affected in AD. Surprisingly, many of
these studies rely on similar proteomic approaches, often using 2-DE for protein separation and
guantification and MALDI-TOF for protein identification. Implementing more advanced proteomic
techniques, such as gel-free fractionation and using mass spectrometry-based proteomics can greatly
increase protein identification, as was demonstrated by Begcevic’s study; however, pooling of biological
replicates in this study limited statistical analysis to identify robust biomarkers or molecular mechanisms
associated with AD. Increasing number of proteomic studies of different brain regions will also improve
proteome coverage and provide a more complete picture of molecular changes in AD.

Significance of Protein Phosphorylation in Alzheimer’s Disease

Phosphorylation is one of the most important regulatory post-translational modifications
involved in many biological processes including signal transduction, cell cycle, and gene expression.
Serine, threonine, and tyrosine are the most commonly phosphorylated amino acid residues. Protein
phosphorylation is a reversible modification; protein kinases are responsible for the addition of
phosphate groups, while phosphatases remove phosphate groups. Aberrant phosphorylation is often
associated with disease including neurodegenerative diseases such as AD [175]. Mass spectrometry also
enables the investigation of post-translational modifications such as phosphorylation.

Hyperphosphorylation of tau is the primary example of aberrant phosphorylation in AD. The
effect of tau hyperphosphorylation on axonal transport and the ability of tau to stabilize microtubules
exemplifies the impact aberrant phosphorylation can have on protein function and cellular processes [8,
9]. In addition to tau, other proteins demonstrate altered phosphorylation in AD, including neuronal
filaments [176, 177] and MAP1B [178, 179]. Increased expression and/or activity of kinases such as
GSK3 and CDKS5, and decreased expression and/or activity of phosphatases such as PP1, PP2A and PP5

have also been observed in AD brains [175].
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The sorting and processing of APP has been shown to be affected by its phosphorylation state,
as well as the phosphorylation of proteins associated with APP. The dynamic regulation of APP protein
sorting has been reported to be dependent on the phosphorylation state of its interacting proteins
[180]. Phosphorylation of components of TGN vesicles by protein kinase C (PKC) appears to promote
the sorting of APP toward the cell surface, where it is processed by the non-amyloidogenic pathway
avoiding the production of AB [181]. The C-terminal domain of APP contains several amino acid residues
known to be phosphorylated. Phosphorylation of APP at Thr654/Ser655 by PKC has been suggested to
favor non-amyloidogenic processing of APP and to be a protective modification [182]. Decreased PKC
expression and activity has been observed in AD brains, which may contribute to the increased
amyloidogenic processing of APP. Increased phosphorylation of APP695 at Thr668 has been observed in
AD [183]. APP695 phosphorylation at Thr668 is mediated by multiple proline-directed kinases, including
GSK3 [114], Cdk5 [117], cdc2 [118], and JNK3 [116, 184], which have also shown to be elevated in AD.
NMR studies have shown that phosphorylation of APP at Thr668 causes a conformational change
affecting interactions with binding partners [185]. Further, mutation of Thr668 to alanine (T668A)
appeared to significantly reduce AB production in primary neurons [183]. These findings indicate the
potential involvement and significance of phosphorylation in APP processing and AD pathology.

An increasing number of studies suggest aberrant protein phosphorylation is involved in AD
pathology, impacting both tau pathology and AB production. It has become apparent that we need to
gain a deeper understanding of the influence that abnormal phosphorylation has on AD progression and
pathology. The knowledge of specific phosphorylated proteins and affected pathways and functions, as
well as changes in kinase and phosphatase activity will hopefully lead to development of novel

therapeutic and preventative strategies for AD.
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Phosphoproteomics

Mass spectrometry can also be used to determine changes in PTMs, such as phosphorylation,
which can provide further insight into alterations in activity of kinases or phosphatases and associated
signaling pathways. Many of the quantitative techniques used in proteomics can also be applied to
phosphoproteomics, such as SILAC. Phosphopeptides are low abundant in a complex mixture of
peptides based on the low stoichiometry of this modification, and therefore enrichment prior to mass
spectrometry analysis is beneficial in order to increase their identification and site-specific information.
Several phosphopeptide/protein enrichment strategies have been developed at the protein and peptide
level. Phosphoproteins can be separated and identified using 2-DE in combination with the ProQ
Diamond stain, a proprietary fluorescent dye that selectively detects phosphate groups attached to
serine, threonine, and tyrosine residues in polyacrylamide gels [186, 187]. ProQ Diamond is useful as it
does not require the use of phosphorylation specific antibodies or radioisotopes, such as P*.
Alternative approaches have been developed such as immobilized-metal affinity chromatography
(IMAC), that exploit the negatively charged phosphate groups affinity for positively charged metal ions,
such as Fe®*[188-190], Ga>*[191], or Ti*" [192]. Metal oxide affinity chromatography (MOAC) can also
be used for phosphopeptide enrichment, most commonly using TiO, particles [193, 194]. Polymer-based
metal ion affinity capture (PolyMAC) has more recently been introduced for phosphopeptide
enrichment [195]. Strong cation exchange (SCX) has also been used for the enrichment of
phosphopeptides [196]. While each phospho-enrichment technique offers unique advantages, the
combination of multiple phospho-enrichment strategies has proven to be the most effective for
increasing the identification of phosphorylation sites [197-199].

Not only can phosphoproteomics determine changes in protein phosphorylation, but the
identification of specific phosphorylation sites and surrounding sequence information can be used for

further bioinformatics analysis. Most kinases, or families of kinases, phosphorylate serine, threonine, or
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tyrosine residues within a specific amino acid sequence, also referred to as a consensus motif. Gygi and
colleagues developed an approach that uses the phosphorylation site and surrounding sequence
information obtained from mass spectrometry analysis to determine over-represented consensus
sequences, which can reveal potential changes in kinase or phosphatase activity [200].

Phosphoproteomic Studies

There are a limited number of phosphoproteomic studies related to Alzheimer’s disease. With
the advancement of phospho-enrichment techniques and mass spectrometer performance, there will
likely be an increase in the number of phosphoproteomic studies of AD, which is important to further
understand changes in phosphorylation of proteins, kinase activity, and pathway signaling that may be
involved in AD pathology.

Cell Models

It appears that only one phosphoproteomic study has been performed using a cell model of AD.
Wang and colleagues performed a phosphoproteomic analysis of N2aSW cells treated with sodium
selenate, a compound shown to reduce tau hyperphosphorylation, improving spatial learning and motor
performance in AD mice. N2aSW cells are a mouse neuroblastoma cell line expressing human APP with
the Swedish mutation and have increased extracellular AB accumulation. This study used2-DE and ProQ
Diamond stain, where 65 proteins with changes in phosphorylation were identified corresponding to 39
proteins with increased phosphorylation and 26 proteins with decreased phosphorylation [201].

Mouse Models

Wang et al., conducted a phosphoproteomic analysis of an early onset mouse model to identify
changes in phosphorylation that may be involved in the transition from presymptomatic to symptomatic
AD in response to AB42 accumulation [202]. TgCRND8 mice are an early onset transgenic mouse model
of AD overexpressing human APP-695 with the Swedish (K670M/N671L) and Indiana mutation (V717F).

TgCRND8 mice exhibit early amyloid plaque formation, activated microglia, and dystrophic neurites
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[203]. The study compared the phosphoproteomes of the hippocampus from 2 month old
presymptomatic TgCRND8 mice, 6 month old symptomatic TSCRND8 mice, and non-transgenic mice
[202]. Triple isotopic dimethylation labeling was used for quantitation and phosphopeptide enrichment
was performed using Ti**-IMAC microspheres (described by [Ref 19]). Additional sample fractionation
was implemented using a biphasic C18 trap column followed by in-line SCX fractionation and C18
reverse-phase separation. This study identified 1026 phosphopeptides of which 595 phosphopeptides
were confidently quantified, and 139 phosphopeptides were found to be significantly altered.

Human Tissue

There have only been five phosphoproteomic analyses of human brain tissue, 3 of which were
performed using frontal cortex, including one earliest (2008) and most recent (2015) phosphoproteomic
studies. The first phosphoproteomic study of human AD cortex was published in 2008 using calcium
phosphate precipitation for phosphopeptide enrichment and an LTQ Orbitrap mass spectrometer for
protein identification [179]. The most recent published phosphoproteomic study also analyzed the
frontal cortex of AD brains compared with control samples using IMAC for phosphopeptide enrichment
and label free quantitation, also using an LTQ Orbitrap mass spectrometer [204]. The 2008 study
identified 466 phosphorylation sites on 185 proteins, while the 2015 study identified 5569
phosphopeptides, 1559 phosphoproteins, and 4185 unique phosphosites, with 253 phosphopeptides
significantly altered in AD compared with control (>1.75-fold). The 2015 study by Dammer et al.,
identified changes in the regulation of the heat shock and protein misfolding response pathways
between AD and control samples, which may have further implications in maintaining protein quality
and clearance [204]. The third phosphoproteomic analysis examined frontal cortex and substantia nigra
from AD and control patients using 2-DE for protein separation and ProQ Diamond stain to identify
changes in levels of protein phosphorylation, followed by Q-TOF mass spectrometry for protein

identification [205]. Approximately 600 spots were detected, 125 of which appeared to be
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phosphorylated in both the cortex and substantia nigra, and were subsequently identified corresponding
to 72 different proteins. Significant changes in phosphorylation (>2-fold) among both brain regions
were observed in 9 proteins, including GAPDH, DRP2, and aldolase A (ALDOA) [205]. All of the above
studies identified significant changes in phosphorylation of cytoskeletal and microtubule-associated
proteins, as well as proteins involved in synaptic function, which are consistent with AD pathology.
Determining changes in phosphorylation of specific proteins at different sites can further indicate
potential changes in kinase activity and altered signaling pathways that may be associated with the
progression of AD.

Phosphoproteomic analyses of neurofibrillary tangles (NFTs) and neuronal intermediate filament
proteins (NF-M/H) have also been conducted [177, 206]. Rudrabhatla and colleagues characterized the
abundance and sites of phosphorylation of NF-M/H from frontal cortex of AD brain compared with
control brains using TiO, for phosphopeptide enrichment and iTRAQ for quantitative phosphoproteomic
analysis [177]. Phosphorylation of several sites were identified that are proline-directed Ser/Thr
residues suggesting increased activity of proline-directed kinases such as Cdk5, GSK38, or MAPKs or the
down-regulation of protein phosphatases such as protein phosphatase 2A (PP2A) [177]. In a later study
they examined the phosphoproteins associated with NFTs from frontal cortex of AD and control brains,
and found that phosphorylated NF-M and NF-H are integral components of NFTs, which was
controversial prior to this proteomic study due to the cross reactivity of phospho-NF antibodies. Also
identified phosphorylated MAP1B and MAP2 in NFTs isolated from AD patients. These studies further
characterize and quantify the site-specific phosphorylation of cytoskeletal and microtubule-associated
proteins identified in NFTs [206].

There has only been one published phosphoproteomic analysis of the hippocampus, which is
one of the primary brain regions affected by AD. The Butterfield group performed a semi-quantitative

phosphoproteomic analysis of hippocampus from AD and normal brains using 2-DE and ProQ Diamond
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stain to identify changes in phosphorylation [207]. The authors did not report the total number of
phosphorylation site or phosphoproteins that they were able to identify, but they did report significant
changes in phosphorylation of 17 proteins; 9 having increased phosphorylation, and 8 with decreased
phosphorylation in AD hippocampus.

These phosphoproteomic studies contribute to our knowledge of AD pathology and provide
information about potentially altered signaling pathways and cellular processes. While these changes
need to be further studied to determine the mechanisms of altered phosphorylation and related
biological consequences, they are important to the progress of AD research. It will be necessary to
conduct more phosphoproteomic studies to determine the consistency and reproducibility of identified
changes in phosphorylation. Also, more studies of different brain regions and at different stages of
disease progression are needed to increase phosphoproteome coverage and improve our understanding
of the role of phosphorylation in AD. It will also be important to expand the phosphoproteomic
approaches used, as the majority of the phosphoproteomic studies of AD have relied on 2-DE in
combination with ProQ Diamond phosphoprotein gel stain.

Summary of Approaches and Project Aims

Despite the number of proteomic studies in various models of AD, the precise mechanism of
APP and AB-induced neurodegeneration remains unclear. In order to gain a deeper understanding of
proteomic changes in different brain regions at different stages of AD, more studies are needed to
increase proteome coverage, as well as determine reproducible changes. Many of the cell model
studies have relied on treatment with AB42 and have employed somewhat limited mass spectrometry
techniques, primarily relying on 2-DE for protein separation and quantitation, and MALDI-TOF mass
spectrometry for protein identification. In this dissertation, we report APP-dependent proteomic and
phosphoproteomic changes by comparing an APP-null B103 neuroblastoma cell model with a stably

transfected B103-695 cell model expressing APP695. As this cell model expresses moderate levels of
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APP695, it is likely more representative of early AD where changes in protein expression or
phosphorylation may be related to APP695 expression and not the accumulation AB oligomers. We also
use more comprehensive mass spectrometry techniques that enable greater proteome coverage, as well
as SILAC labeling for quantification of proteomic and phosphoproteomic changes. These studies
required optimization of phosphopeptide enrichment techniques to increase phosphoproteome
coverage of B103 and B103-605 cells. Identifying APP-mediated changes in global protein expression
and phosphorylation provides information about the molecular and cellular functions and signaling
pathways that may be affected by APP695. Gaining understanding of changes in protein expression and
phosphorylation, as well as affected cellular functions and signaling pathways that may be associated
with early AD, provides insight into potential biomarkers of early AD and the development of
therapeutic targets to hopefully delay the onset or progression of AD

Finally, we report the proteomic analyses of human tissue from normal, healthy brains
compared with brains affected by several neurodegenerative disorders: AD, mild cognitive impairment
(MCI), progressive supranuclear palsy (PSP), and Parkinson’s disease (PD). Additionally, we developed
an improved sample processing method when working with limited starting material, such as human
tissue or isolated primary cells. Comprehensive proteomic studies provide information about the
cellular and molecular functions that may be involved in disease pathology, and aid in the development
of hypotheses for targeted validation and mechanistic studies. Proteomics can also potentially identify
proteins with altered expression not yet associated with certain neurodegenerative diseases, as well as
identify potential biomarkers, which have been difficult to establish for these neurodegenerative

diseases
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Chapter 2: Global Proteomic Analysis of a Cell Model of Alzheimer’s Disease

Summary

Proteomic studies using cell models to study changes that occur during Alzheimer’s disease (AD)
have primarily relied on AB42 treatment. Investigating the effect of AB42 treatment on protein
expression is important as AB42 levels are significantly increased in AD, however few proteomic studies
have examined the effect of endogenous APP expression. We were particularly interested in the impact
of moderate APP695 expression on the proteome, which may represent molecular changes that take
place during early AD before there is significant accumulation of AB42. To examine APP695-mediated
protein expression changes, we used SILAC-based quantitative proteomics to compare APP-null B103
cells with APP695-expressing B103-695 cells. The results of this study were published in a
Neuroproteomics Special Issue of Electrophoresis in December 2012 (see Appendix A). In addition to
characterizing the proteomes of B103 and B103-695 cells, we were also interested in determining
potential APP-mediated protein expression changes during different stages of the cell cycle, and in
response to neurotoxic insult/inflammation. SILAC-labeled B103 and B103-695 cells were treated with
cell cycle inhibitors or lipopolysaccharide (LPS) to quantify changes in protein expression using mass
spectrometry. These comprehensive datasets identified proteins and related cellular pathways that may
be affected by APP695 expression and are potentially involved in AD pathology. The datasets were also
utilized for bioinformatic analysis to reveal cellular and molecular functions and potentially altered

upstream regulators affected by APP695 expression.
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Introduction

B103 and B103-695 cells

Cell models previously used for proteomic studies of AD include SH-SY5Y human neuroblastoma
cells, N2a mouse neuroblastoma cells, and cultured primary mouse neurons treated with AB42 [138,
140, 201]. Studies by Schubert and colleagues have shown that B103 rat neuroblastoma cells do not
express detectable levels of APP, APLP1 or APLP2 [81]. B103-695 cells were developed by stable
transfection of APP695 into B103 cells. APP695 expression in B103 cells enhanced cell adhesion, neurite
outgrowth, and proliferation; however, the molecular mechanisms by which APP induces these cellular
functions are unclear [81]. APP or a metabolite of APP may induce these changes either on its own or by
affecting expression of genes associated with these functions. B103 and B103-695 cells are a useful
model for studying protein expression changes likely related to APP695 expression, and they can also be
SILAC-labeled for quantitative proteomic analysis as well as easily treated with different pharmacological
compounds to study their effect. The primary goal of this chapter was to characterize the proteomes of
B103 and B103-695 cells using SILAC-based quantitative proteomics to identify protein expression
changes that may be mediated by APP695 under normal, cell cycle-dependent and inflammatory
conditions.

Cell-Cycle Mediated Protein Expression Changes

Cell cycle dysregulation has been suggested to be involved in AD pathogenesis as a number of
cell cycle regulatory proteins have shown increased expression in the brains of AD patients and
transgenic mouse models [104-108, 113, 208]. APP has also been shown to undergo cell cycle-
dependent phosphorylation that influences its metabolism, increasing AP production and promoting cell
cycle re-entry [113, 118]. Cells expressing APP demonstrate faster growth rates, and the localization of
APP to the centromere during mitosis has also been observed, leading to the hypothesis that it may

have a role in cell cycle progression [81, 113]. Cell cycle inhibitors, such as Roscovitine, Taxol, and
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Nocodazole, provide a strategy to evaluate changes in protein expression during different stages of the
cell cycle in B103 and B103-695 cells. Roscovitine is a compound that prevents cell cycle progression at
the G1/S and G2/M transition checkpoints by inhibiting Cdk1, Cdk2, Cdk5, and Cdk7 [209]. Taxol, also
known as paclitaxel, is a microtubule stabilizer that specifically targets tubulin, interfering with their
normal breakdown during cell division and inhibiting progression through the G2/M transition [210].
Nocodazole prevents progression through the G2/M phase by binding tubulin and preventing
microtubule polymerization [211]. The goal of this study was to use quantitative proteomic analysis of
SILAC labeled B103 and B103-695 cells treated with cell cycle inhibitors to identify novel proteins not
previously associated with cell cycle progression that may be mediated by APP695 expression.

Inflammation-Mediated Protein Expression Changes

Inflammation is observed in the brains of individuals affected by AD, and it is believed that
inflammatory pathways are activated in AD [212, 213]. However, as with most hypotheses of AD, it
remains to be understood whether inflammation is a primary cause of AD or a secondary affect, and it is
likely part of a more complex mechanism [213]. To investigate the impact of inflammation on protein
expression, B103 and B103-695 cells were treated with lipopolysaccharide (LPS). LPS is part of the outer
membrane of gram-negative bacteria and elicits a strong immune response in mammalian immune cells,
such as microglia, promoting the secretion of pro-inflammatory cytokines [214, 215]. While LPS
treatment activates inflammatory pathways in immune cells, it has a neurotoxic effect on neurons. One
study showed that the presence of neurons reduced the inflammatory response of glia to LPS treatment
[216]. Using LPS treatment, we investigated the effect of an inflammatory, neurotoxic environment on

protein expression and cellular functions in APP-null B103 and APP695 expressing B103-695 cells.
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Materials and Methods

Protein Kinase A (PKA) Knockdown

B103 and B103-695 cells were grown in DMEM:F12 SILAC media supplemented with 10% FBS
and Penn-Strep-Glutamine. B103 and B103-695 were transfected with increasing amounts of siRNA
against PKA, or control siRNA, to reduce expression levels of PKA. Alternatively, B103 and B103-695
were treated with increasing amounts of KT5720 inhibitor, which reduces PKA activity. Cells were
collected and lysed in RIPA buffer for western blot analysis. Equal amounts of protein were separated
on 15% Tris-glycine gel and probed with antibodies against PKA, p-ERK, and actin.

SILAC Labeling and Roscovitine, Taxol, and LPS Treatments

B103 and B103-695 cells were grown in DMEM:F12 SILAC media supplemented with 10%
dialyzed FBS, Penn-Strep-Glutamine, and either unlabeled L-arginine and L-lysine for B103 cells or heavy
labelled Cq-L-lysine 2HCI and **C¢-°N,-arginine HCI (Cambridge Isotopes) for B103-695 cells. Cells were
grown for 5 doublings to achieve >99% incorporation of labeled amino acids. Cells were treated with
20uM Roscovitine, 100ng/ml Taxol, or 100ng/ml LPS for 24 hours. Cells were collected and lysed in 4%
SDS, 100mM Tris-HCl pH 7.6, 100mM dithiothreitol (DTT), and incubated at 95°C for 5 minutes, followed
by brief sonication. Protein concentrations were determined using the Pierce 660 assay supplemented
with ionic detergent compatibility reagent (IDCR) (Pierce). Equal amounts of protein from B103 and
B103-695 lysates were combined and processed by filter-aided sample preparation (FASP) as described
by Wisniewski and Mann [217]. Proteins were digested overnight at 37°C with Trypsin (Promega) at
1:50 (w/w, enzyme:protein). Peptides were desalted using C18 SPE columns and dried in a vacuum
concentrator. Dried peptide samples were resuspended and fractionated by strong cation exchange

(SCX).
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LC-MS/MS and Data Analysis

Peptide fractions were analyzed using a hybrid linear ion trap-Orbitrap XL (LTQ-Orbitrap XL,
Thermo Scientific) using a 90 minute gradient. Raw data files were searched against the current Rattus
norvegicus UniprotKB protein sequence database using MaxQuant, a quantitative proteomics software
package [218]. Significance A, an outlier test, was carried out using Perseus software to determine the
statistical significance of protein expression using a false discovery rate (FDR)-based approach
developed by Benjamini and Hochberg [219]. Functional and pathway analysis of statistically significant
proteins were performed using Ingenuity Pathway Analysis (IPA).

Cell Synchronization and Treatments

Cells were grown in DMEM/F12 media supplemented with 10% FBS and Penn-Strep-Glutamine.
Cells were washed with PBS before being grown in serum-free DMEM/F12 media, or DMEM/F12 with
10% FBS and Aphidicolin (5ug/ml) to synchronize cells at either the Go/G1 or G1/S transition. After 48
hours in serum-free media, or 12 hours in Aphidicolin-containing media, cells were washed with PBS,
and media was replaced with DMEM/F12 media containing 10% FBS and either Roscovitine, Nocodazole,
or Taxol using the concentrations described above. Cells were collected at various time points following
synchronization and lysed in RIPA buffer for western blot analysis. Western blots were probed with a
phospho-tyrosine (100) antibody (mouse monoclonal, Cell Signaling #9411), which binds phosphorylated
tyrosine independent of surrounding amino acid sequence, PathScan Multiplex Western Cocktail | (Cell
Signaling #5301), which binds phosphorylated p90RSK (Ser380), Akt (Serd73), p44/42 MAPK (ERK1/2)
(Thr202/Tyr204), and phospho-S6 ribosomal protein, and an antibody against phosphorylated GSK3a/B

(Ser21/Ser9) (Cell Signaling #9331).
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Results and Discussion

The results for the global proteomic analysis of B103 and B103-695 cells have been previously
published and can be found in Appendix A. The article has been reproduced with the consent of the
publisher (Appendix C).

Global Proteomic Analysis of B103 and B103-695: Additional Experiments

Some additional experiments were performed to further validate observations from the
proteomic analysis of B103 and B103-695 cells. Increased expression of Ras was shown in B103-695
cells and validated by western blot. Ras is a small GTPase involved in regulating cell growth and
differentiation. It is well established that Ras activates the MAPK signaling pathway, and while Ras-
MAPK signaling is known to have a role in cancer, increasing evidence suggests that it may also be
involved in neurodegenerative disease [110, 220, 221]. We also observed increased levels of the active
phosphorylated form of MAPK (ERK1/2), while non-phosphorylated ERK levels were not affected. To
determine potential mediators of the observed ERK phosphorylation, and to assess potential crosstalk
between protein kinase A (PKA), which can also activate ERK, and MAPK signaling, we investigated the
impact of both siRNA-mediated knockdown and chemical inhibition of PKA on levels of ERK
phosphorylation. KT5720 is an inhibitor of PKA activity through competitive inhibition of the ATP
binding site on PKA catalytic subunit [222]. The siRNA-mediated knockdown of PKA reduced PKA levels
(Figure 4a) while treatment with the KT5720 inhibitor did not appear to affect levels of PKA (Figure 4b).
Additionally, PKA knockdown using siRNA was more effective in B103 cells than in B103-695 cells; which
may be caused by the reduced transfection efficiency of B103-695 cells. Inhibition of PKA appeared to
have no effect on levels of ERK phosphorylation, demonstrating that ERK is activated by an alternative
pathway. These finding suggest that APP expression specifically affects ERK activation but does not

impact its expression (Figure 4).
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Figure 4. PKA Knockdown in B103 and B103-695 cells. To determine whether ERK phosphorylation was mediated
by PKA, a known activator of ERK, PKA was knocked down using siRNA (A) or KT5720 chemical inhibition (B) in
B103 and B103-695 cells. While PKA levels were decreased, there was not a significant reduction in ERK
phosphorylation, suggesting ERK is being activated by an alternative pathway.

Based on our results from proteomic analysis of B103 and B103-695 cells, we were also
interested in further investigating levels of Ras and y-synuclein expression in human tissue samples from
non-AD, mild cognitive impairment (MCIl) and AD brains. MCl involves deficits in memory and is
associated with increased risk of developing more advanced forms of dementia and AD. Increased levels
of both Ras and y-synuclein were observed in MCl and AD compared with non-AD individuals (Figure 5),
which is in accordance with our B103 proteome datasets. Ras showed a moderate increase in MCl and a
statistically significant increase in late-AD (Figure 5a). Levels of y-synuclein were the highest in MCl,
showing a statistically significant increase compared to non-AD samples, but showed less of an increase
in late-AD compared with non-AD (Figure 5b). Increased y-synuclein expression during MCI may indicate
an early molecular change during neurodegeneration. Increased expression of Ras in MCl and further
increase in late AD provides further evidence that Ras likely has a role in AD progression. Increased Ras
activity leads to increased MAPK activity, and it is possible that a Ras-mediated signaling cascade may be
involved in aberrant cell cycle re-entry and neurodegeneration associated with AD pathology and

progression.
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Figure 5. Increased expression of Ras and y-Synuclein in MCI and AD human brain tissue. (A) Ras was increased
in MCl and significantly increased in late-AD (LAD) compared to control tissue. (B) y-synuclein showed a significant
increase in MCl and only a moderate increase in LAD compared with control tissue. *p-value <0.05.

Cell-Cycle Mediated Protein Expression Changes

After completing the SILAC-based global-scale analysis of B103 and B103-695 cells, a similar
global-scale analysis was performed to determine cell cycle-mediated changes in protein expression. A
preliminary experiment was performed using heavy and light SILAC labeled B103-695 cells. Heavy
labeled B103-695 cells were treated with cell cycle inhibitors Roscovitine or Taxol, and changes in
protein expression should be attributed to cell cycle inhibition at the G1/S or G2/M transitions,
respectively. Proteomic analysis of Roscovitine treated B103-695 cells identified a total of 2265
proteins, of which 1588 proteins had minimum of 2 unique peptides. Taxol treated B103-695 cells
identified a total of 2622 proteins, with 1856 proteins having a minimum of 2 unique peptides.
Significant protein expression changes were determined using the Benjamini-Hochberg FDR-based
Significance A test in Perseus, and only proteins with significant changes in at least 2 out of 3 biological
replicates were considered significant. Roscovitine treatment resulted in 43 significantly altered

proteins and Taxol treatment resulted in 38 significantly altered proteins.

39



Roscovitine treatment of B103-695 cells identified several differentially expressed proteins
involved in cell growth and proliferation, DNA replication, and cell death and survival. As Roscovitine
prevents progression through the G1/S, cells are arrested in the G1 phase of the cell cycle during which
biosynthesis takes place in preparation for DNA synthesis during S phase. Therefore, identifying
significant changes in proteins involved in gene expression, cell cycle and proliferation is unsurprising as
cells are preparing for S phase. Bioinformatic analysis of significantly altered proteins also predicted
inhibition of cell cycle progression (z-score: -2.752) based on the decreased expression of several
proteins (Figure 6), further confirming the inhibitory effect of Roscovitine on the cell cycle.
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Figure 6. Ingenuity Pathway Analysis predicted inhibition of cell cycle progression in Roscovitine treated B103-
695 cells. Based on significant expression changes of proteins involved in the cell cycle, cell cycle progression was
predicted to be inhibited, which is expected given that cells were treated with the cell cycle inhibitor Roscovitine.

Bioinformatic analysis of Taxol treated B103-695 cells showed changes in expression of proteins
involved in cellular assembly and organization, cellular function and maintenance, and cell morphology.
Taxol stabilizes microtubules, preventing progression through the G2/M transition and arresting cells in
the G2 phase of the cell cycle, during which microtubule biosynthesis takes place as the cell prepares for
mitosis. The enrichment of molecular and cellular functions involved in cellular assembly, organization,

and morphology are consistent with expectations based on the microtubule stabilizing function of Taxol.

40



Cell Synchronization and Preliminary Phosphorylation Analysis

One of the goals of this project was to investigate APP695-mediated changes in phosphorylation
by comparing B103 and B103-695 cells. Phosphorylation is a dynamic post-translational modification
involved in regulating cell cycle progression, and western blot analysis was performed to evaluate which
cell cycle inhibitor, Taxol, Roscovitine, or Nocodazole, had the greatest impact on levels of
phosphorylation. B103-695 cells were synchronized by serum-starvation or aphidicolin block, commonly
used methods to synchronize cell populations. Aphidicolin is an antibiotic and a selective-inhibitor of
DNA polymerase alpha and delta, preventing cells from entering S phase [223]. Serum starvation forces
cells to enter Gg by eliminating growth factors from media. Removal of Aphidicolin and replenishment
with regular growth medium or addition of serum to the serum-starved cells enables re-entry into the
cell cycle. Following synchronization, B103-695 cells were treated with cell cycle inhibitors Nocodazole,
Taxol, or Roscovitine, and collected at several time points following re-entry into the cell cycle and levels
of phosphorylation were examined using phospho-specific antibodies.

Serum-starved cells were collected 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, and 4
hours following the addition of serum-containing media. Western blot analysis showed increased
phosphorylation in all treatments from 5 minutes to 30 minutes, followed by decreased phosphorylation
after 1 hour. Taxol-treated B103-695 cells showed the most significant increase in phosphorylation
compared with cells treated with regular media, Nocodazole, or Roscovitine (Figure 7). Following
serum-starvation, cells are arrested in G,, and the addition of serum will activation a number of
pathways as cells re-enter G1, resulting in increased phosphorylation. While levels of phosphorylation
increase as cells re-enter the cell cycle at G1, we are more interested in phosphorylation events that

occur during the G2/M transition and during mitosis.
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Figure 7. Levels of phosphorylation in B103-695 cells following serum-starvation and inhibitor treatment. B103-
695 cells were serum-starved for 48 hours to synchronize cells in G, after which cells were treated with either
DMEM/F12+10% FBS alone, or DMEM/F12+10% FBS supplemented with 100ng/ml Taxol or 100ng/ml Nocodazole.
Western blot analysis using PathScan Multiplex Western Cocktail | (CellSignaling) showed increased
phosphorylation in all treatments from 5-30minutes, and decreased after 1 hour. Cells treated with Taxol showed
the greatest increase in phosphorylation.

To investigate phosphorylation changes that occur during S and G2 phases of the cell cycles,
cells were synchronized using aphidicolin, which arrests cells at the G1/S transition, and cells progress
through the S-phase and G2-phase of the cell cycle after Aphidicolin is removed. Following
synchronization with Aphidicolin, cells were collected at 0 minutes (before inhibitor treatment), and 30
minutes, 1 hour, 2 hours, and 4 hours after Taxol or Nocodazole treatment. Changes in phosphorylation
were assessed by western blot using a phospho-tyrosine (100) antibody and PathScan Multiplex
Western Cocktail I. Taxol again showed the most significant increase in phosphorylation from 30
minutes to 1 hour following Aphidicolin release, as cells are replicating DNA during the S phase (Figure
8). Phosphorylation of Akt, a protein kinase essential in controlling survival and apoptosis, is not
detected after 12 hour aphidicolin treatment, while phosphorylation of Akt at Ser473 (p-Akt) is detected
30 minutes following aphidicolin release. Phosphorylation of Akt at Ser473 is activating and has been
proposed to be regulated in a cell cycle dependent manner [224]. In Taxol and Nocodazole treated
B103-695 cells the levels of p-Akt appear to continue to increase until 1 hour, and decrease by 2 hours.
In B103-695 cells treated with regular media, p-Akt levels decrease after 30 minutes. Akt is involved in
cell cycle regulation by preventing GSK-3B-mediated phosphorylation and degradation of cyclin D1

[225]. Cyclin D1 is synthesized and accumulates during G1 and degraded as the cells enters S phase.
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GSK3a is a serine/threonine kinase involved in the phosphorylation of tau protein, regulating the
binding of tau to microtubules, as well as its degradation and aggregation [226]. GSK3a has also been
shown to regulate the production of amyloid B in AD [227]. Akt-mediated phosphorylation of GSK3a at
Ser21 and GSK3p at Ser9 inhibit GSK3 activity [228, 229]. There appears to be in an increase in
pGSK3a/B (Ser21/9) that coincides with the observed increase in p-Akt. There was minimal detection of
pGSKa/B (Ser21/9) in B103-695 cells following 24 hours of aphidicolin block. Following synchronization
with Aphidicolin, activated p-Akt (Ser473) and inhibited pGSK3a/B (Ser21/9) are not detected, however
levels of p-Akt (Ser473) and pGSK3a/B (Ser21/9) appear to increase until 1 hour as cells begin progress
through the S phase, and are reduced by 2 hours. Taxol treated cells appear to undergo the greatest
increase in pAkt (Ser473) and pGSK3a/B (Ser21/9) at 1 hour, followed by Nocodazole treatment, while
untreated cells show the greatest pAkt (Ser473 levels) after 30 minutes following Aphidicolin release,

suggesting delayed progression through S phase with Taxol and Nocodazole treatment.
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Figure 8. Levels of phosphorylation in B103-695 cells following Aphidicolin block and inhibitor treatment. B103-
695 cells were treated with aphidicolin (5ug/ml) for 24 hours to synchronize cells in the S phase, after which cells
were treated with either DMEM/F12, 100ng/ml Taxol, or 100ng/ml Nocodazole. (A) Global levels of
phosphorylated tyrosine were observed used was phospho-Tyrosine(100). (B) Primary antibodies PathScan
Multiplex Western Cocktail | and phospho-GSK3a/B(Ser21/Ser9) revealed changes in phosphorylation following
cell synchronization and release. Actin was used to determine protein loading.

Inflammation Mediated Protein Expression Changes

Lipopolysaccharide is known to promote the inflammatory response in immune cells,

and was used to investigate inflammation and neurotoxicity mediated protein expression changes in
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APP695 expressing B103-695 cells. A total of 1947 unique proteins were identified, and 1808 proteins
were identified with at least 2 unique peptides. Using the Benjamini-Hochberg FDR-based Significance A
test, 32 proteins had significant expression changes after LPS treatment and were used for
bioinformatics analysis. Based on the observed significant protein expression changes, Ingenuity
Pathway Analysis (IPA) predicted activation of interleukin-5 (IL-5) and inhibition of interleukin-10
receptor alpha (IL10ORA). Predicted activation of IL-5 (z-score 2.449) was based on increased expression
of guanylate binding protein 2 (GBP2), ERO1-like protein (ERO1), cysteine-rich protein 1 (CRIP1), annexin
A2 (ANXA2), aldolase C (ALDOC), and prolyl 4-hydroxylase, alpha polypeptide (P4HA1) following LPS
treatment (Figure 7a) [230]. IL-5 is a pro-inflammatory cytokine previously shown to be upregulated in
immune cells in response to LPS treatment [231]. IL10RA is a receptor for interleukin-10 (IL-10), an anti-
inflammatory cytokine, inhibiting the synthesis of pro-inflammatory cytokines. Predicted inhibition of
ILAORA (z-score -2.000) was based on the increased expression of GBP2, ERO1, guanine deaminase
(GDA), and cysteine and glycine rich protein 2 (CRSP2). Inhibition of ILLORA would prevent the
activation of IL-10, no longer inhibiting pro-inflammatory cytokine synthesis, promoting the
inflammatory response of immune cells. These findings are consistent with the pro-inflammatory effect
of LPS on immune cells as a number of the observed protein expression changes in neuroblastoma cells
further indicate the pro-inflammatory response. The significant proteins identified as a result of LPS
treatment appear to be consistent with the literature, and pathway analysis did not provide any novel

insight into inflammation-mediated protein expression changes APP-695 cells.
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Figure 9. Ingenuity Pathway Analysis of LPS treated B103-695 cells predicts changes in inflammatory proteins.

IPA predicted activation of pro-inflammatory cytokine IL-5 (A) and inhibition of anti-inflammatory cytokine
receptor IL-10RA (B) based on changes in protein expression.
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Chapter 3: Phosphoproteomic Analysis of a Cell Model of Alzheimer’s Disease and Validation Using
Cultured Primary Neurons and Human Brain Tissue

Abstract

The Alzheimer’s disease (AD) brain is characterized by the presence of two pathogenic lesions:
amyloid plagues and neurofibrillary tangles (NFTs). Amyloid plaques are primarily composed of the
amyloid-beta (AB) peptide, which is generated following cleavage of amyloid precursor protein (APP).
Production, oligomerization and deposition of AB are thought to be the initiating pathogenic events in
AD, however the processes leading up to these events are largely unknown. There has been significant
interest in the physiological function of APP and how this function is altered under disease state. Our
lab has previously found that under pathogenic conditions, APP undergoes a specific phosphorylation
that is thought to induce significant C-terminal conformational change that allows APP to be more
readily cleaved by B-secretase. Furthermore, we and others have found that aberrant mitotic events in
compromised neurons can initiate this pathogenic modification.

To better understand the molecular events driving mitotic initiation and the subsequent
pathogenic alteration of APP, we utilized a B103 rat neuroblastoma cellular model. B103 cells do not
express detectable levels of APP or APP-like proteins APLP1 or APLP2, and B103-695 cells express the
neuronal APP-695 isoform. Mass spectrometry was used for the identification of phosphopeptides from
a complex mixture, including site localization. Identifying changes in phosphorylation can indicate
potentially altered pathways as well as overrepresented consensus motifs as an indication of changes in
kinase activity. B103 and B103-695 cells were grown in light or heavy SILAC media, respectively, after
which the lysates were combined and FASP digested using Trypsin/LysC, fractionated by strong cation
exchange and enriched for phosphopeptides using PolyMAC before reverse-phase (RP)-HPLC separation

and analysis on a Q-Exactive Plus. A total of 2478 phosphopeptides were identified among 3 biological
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replicates. Increased phosphorylation of Histone H4 at Ser47, and increased expression of PCTAIRE-2
(Cdk17) and PCTAIRE-3 (Cdk18) were identified in B103-695 cells compared with B103 cells, and these
changes were further validated in PS/APP mice, AB-treated primary neurons, and human brain tissue
from individuals affected by mild cognitive impairment (MCI) and AD. The comprehensive
phosphoproteomic dataset provides insight into pathways that may be affected by APP-695 expression
based on changes in phosphorylation as well as consensus motif analysis, providing a foundation for
future mechanistic studies.
Introduction

Alzheimer’s disease (AD) is the most prevalent form of dementia affecting the elderly, and is
associated with decline in higher cognitive function as exhibited through deficits in memory, executive
function and complex attention. One of the pathological hallmarks of AD is the presence of extracellular
amyloid plaques, composed of aggregated AB peptide that accumulates in the brain years before the
onset of symptoms associated with the disease [232]. AB is derived from the sequential cleavage of
APP, a type 1 transmembrane protein [26]. Under pathogenic conditions, APP undergoes proteolytic
cleavage by beta-site APP cleaving enzyme (BACE or B-secretase) and y-secretase, resulting in the
production of AB and the shedding of the sAPPB ectodomain [233]. Alternatively, APP can be cleaved by
a-secretase, liberating sAPPa and precluding the generation of AB by cleaving within the AR domain
[233]. These cleavages lead to generation of additional fragments such as the intracellular domain of
APP (AICD). Since APP expression leads to generation of not only full length APP but also several
fragments with various functions, it is difficult to determine the precise cellular function of APP and how
its metabolites differentially contribute to AD.

While the genetic factors that contribute to familial AD (FAD) have been well described,
relatively little is known about the precise molecular processes that lead to sporadic AD. In both

sporadic and familial AD, AB accumulation precedes the formation of neurofibrillary tangles (NFTs),
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highlighting a key role for AB in disease pathogenesis [234]. Furthermore, another prominent feature
present in most AD cases is neuroinflammation. In the early stages of AD, AB fibrils and oligomers have
been shown to induce microgliosis [235, 236]. Interestingly, this immune response has been shown to
induce abnormal cell cycle events in compromised neurons of the AD brain [104, 107, 237]. Earlier
studies from our lab have demonstrated that mouse models of AD, expressing APP alone or together
with presenilin 1 (PS1), show aberrant expression of cell cycle regulatory proteins with a concomitant
increase in phosphorylation of APP at Thr668 [113]. Phosphorylation of APP at this residue is associated
with enhanced proteolytic processing, and affects APP trafficking [115] and protein-protein interactions
[238]. In vitro studies have shown that A} induces aberrant cell cycle activation and neuronal apoptosis
[107]. Itis possible that chronic AB-induced inflammation in the brain leads to aberrant neuronal cell
cycle initiation and cell cycle dependent modifications of APP, altering its proteolysis and leading to
increased production of AB, thereby promoting the vicious cycle.

Our published studies showing that APP promotes expression of proliferation-associated
proteins support the notion that APP has a role in cell cycle regulation [239]. These studies were carried
out with B103 rat neuroblastoma cells that are APP-null or express the APP695 isoform (B103-695) using
SILAC-based proteomics. These findings indicate that APP expression is able to induce signaling cascades
that may play a role in the cell cycle mediated neuronal degeneration observed in AD. To determine the
global changes in protein phosphorylation upon APP expression we performed a phosphoproteomic
analysis of SILAC-labeled B103 and B103-APP cells. To determine the global changes in protein
phosphorylation upon APP expression, we performed phosphoproteome analysis of SILAC-labeled B103
and B103-695 cells.

Mass spectrometry can be used for the identification of phosphopeptides from a complex
mixture including site localization and relative quantification. Phosphoproteomics involves the

enrichment of phosphopeptides to increase their identification and sequence information, which can be
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useful for bioinformatic analysis of affected pathways. Additionally, phosphoproteomics can further
identify potential changes in kinase activity by analysis of overrepresented phosphorylated consensus
motifs [200]. Several phosphoproteomic enrichment techniques have been developed, including
immobilized-metal affinity chromatography (IMAC), which exploits the negatively charged phosphate
groups affinity for positively charged metal ions, such as Fe** [188-190], Ga>*[191], or Ti* [192]. Metal
oxide affinity chromatography (MOAC), most commonly using TiO, particles [193, 194], and polymer-
based metal ion affinity capture (PolyMAC) enrichment [195] have also be used for phosphopeptide
enrichment. To date, there are only a few phosphoproteomic studies related to Alzheimer’s disease. In
the present study, we used a titanium-based nanopolymer phosphopeptide enrichment in combination
with strong cation exchange (SCX) for the enrichment of phosphopeptides, which were analyzed on a Q-
Exactive Plus. Phosphoproteomic analysis identified over 2000 phosphopeptides in B103 and B103-695
cells. Compared with B103 cells, B103-695 cells showed increased phosphorylation of Histone H4 at
Ser47, and increased expression of PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18). Increased levels of pS47-
Histone H4, PCTAIRE-2, and PCTAIRE-3 were further validated in PS/APP mice, AB-treated primary
neurons, and human brain tissue from individuals affected by mild cognitive impairment (MCI) and AD.
Materials and Methods

B103 and B103-695 Phosphoproteomic Analysis

Cell Culture and SILAC Labeling

B103 and B103-695 cells were grown in DMEM:F12 SILAC media supplemented 10% dialyzed
FBS, Penn-Strep-Glutamine, and either unlabeled L-arginine and L-lysine for B103 or heavy labelled “*C¢-
L-lysine 2HCI and **C¢—"°N,-arginine HCl (Cambridge Isotopes) for B103-695 cells. Cells were grown for 5

doublings to achieve >99% incorporation of labeled amino acids before being collected.
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Sample Preparation and Phosphopeptide Enrichment

Cells were lysed in 100mM Tris-HCI (pH 7.6), 4% SDS, 100mM DTT and Halt protease cocktail
inhibitor (Pierce) and incubated at 95°C for 5 minutes, followed by sonication at 20% amplitude. Protein
was quantified using the Pierce 660 assay supplemented with ionic-detergent compatibility reagent
(IDCR) (Pierce). Experiments were performed in triplicate. A total of 1.2mg B103 and 1.2mg B103-695
lysate were combined and processed by filter-aided sample preparation (FASP) [217], followed by
digestion with Trypsin/Lys-C (Promega) 1:50 (w:w; protease:protein) overnight at 37°C. Peptides were
desalted using C18 SPE columns (Thermo) with a Supelco vacuum manifold and were then dried and
resuspended in mobile phase A prior to fractionation. Peptides were fractionated on a Dionex U3000
HPLC system with a 200 x 4.6mm i.d. strong cation-exchange (SCX) column packed with 5 pm 200A
polySULFOETHYL A-SCX material (PolyLC Inc.). One minute fractions were collected using a 45 minute
gradient (15-200mM ammonium formate, pH 3-6.5, 25% acetonitrile) at a flow rate of 1ml/minute.

Peptide fractions enriched for phosphopeptides using PolyMAC (Expedeon), a nanopolymer
titanium-based enrichment. Following PolyMAC enrichment the samples were dried and resuspended
in 0.25% formic acid for LC-MS/MS analysis.

LC-MS/MS

Peptides were analyzed on a Q-Exactive Plus (Thermo Fisher Scientific) following fractionation
with a 75pum x 50cm reversed-phase UPLC column (Dionex) packed with 5um 300A C18 material using a
90 minute gradient on an EASY-nLC 1000 system (Thermo Fisher Scientific). Full MS survey scans used a
resolving power of 60,000, selecting the top ten most abundant ions for MS/MS fragmentation and
analysis.

Database Searching and Consensus Motif Analysis

Raw data files were processed in MaxQuant (version 1.5.0.30, http://www.maxquant.org) and

searched against the UniprotKB database containing Rattus norvegicus protein sequences. The search
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parameters included a constant modification of cysteine by carbamidomethylation and variable
modifications methionine oxidation and phosphorylation of serine, threonine, and tyrosine. Additional
parameters include multiplicity set to 2, with heavy lysine-6 and arginine-10.

Statistical analysis was carried out using Perseus software (version 1.5.0.31,
http://141.61.102.17/perseus_doku). Statistically significant changes in phosphopeptide abundance
were determined using Significance A, an outlier test with a threshold p-value of 0.05. Only
phosphopeptides identified in at least 2 biological replicates with a minimum ratio count of 2 were used
for statistical analyses. Phosphopeptide ratios were normalized against total protein ratios from our
previous SILAC-based proteomic analysis of B103 and B103-695 cells. Both non-normalized and
normalized median phosphopeptide ratios were analyzed to account for potential changes in
phosphorylation of proteins that were not identified in our initial proteomic analysis.

Raw data files were searched again with the parameters described above with a multiplicity of 1
for only light lysine and arginine, or heavy lysine-6 and arginine-10, to generate separate light and heavy
datasets. Results were analyzed with Scaffold PTM (version 2.1.3) to determine overrepresented kinase
motifs surrounding phosphorylation sites, using the method developed by Gygi and Schwartz [200], as
well as potential enzyme recognition sites.

Transgenic Mouse Tissue

Heterozygous PDGF-hAPP (V717F) mice (Swiss-Webster x C57BL/6) were crossed with PDGF-
hPS1 (M146L) heterozygotes (Swiss-Webster x C57BL/6) to generate APP*"/PS1* genotyped mice. In
this study we used these transgenic mice with age-matched non-transgenic (Ntg) mice to serve as
control. Mice were anesthetized at 9 months with pentobarbital (10 mg/kg body weight) and perfused
with a saline solution. The brains were dissected out and half of each brain was fixed with 4%

paraformaldehyde. The brains were processed prior to immunohistochemical analysis as previously
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described [240]. Brain sections were prepared using a freezing stage microtome and then stored at 4°C
in phosphate buffered saline containing 0.02% sodium azide.

Oligomeric AB42 Preparation

1mg of monomeric AB42 was dissolved in 1ml trifluoroacetic acid (TFA) and lyophilized in 100ug
aliquots. Lyophilized AB42 was solubilized in sterile DMSO to a concentration of 5mM and then diluted
to 100uM in DMEM media and left at 4°C overnight.

B103 and B103-695 Cell Culture and AB Treatment

B103 and B103-695 cells were grown in DMEM:F12 supplemented with 10% FBS and Penn-
Strep-Glutamine. B103 and B103-695 cells were plated on 8-chamber slides treated with poly-L-lysine
(PLL) (Life Technologies) at a density of approximately 5x10° cells per well. After 24 hours, cells were
treated with either 5uM AB42 or DMSO, which served as a vehicle control.

Primary Neuron Culture and AB Treatment

Primary neurons were cultured in Neurobasal Medium supplemented with 2X B-27, 1%
Penicillin/Streptomycin and 2mM glutamine. Neurons were cultured in 8-chamber glass slides and
100mm cell culture dishes that were coated with PLL. Briefly, E18 pregnant rats were euthanized by
pentobarbital injection and feti excised and placed in isotonic solution. The meninges were then
removed and cortices separated. Cortices were titrated into a single cell suspension in isotonic buffer
and spun down at 1500 rpm for 5 mins at 4°C. The neuronal pellet was resuspended in 2ml Neurobasal
media and filtered through a cell strainer. 8 chamber slides were plated with ~5X10* neurons per well
and 100 mm dishes were plated with “6X10° neurons. Neurons were fed every third day and grown for
5 days prior to treatment. Neurons grown on 100mm dishes were treated with either DMSO vehicle or
5uM AB42 and harvested after 24 hrs. Neurons grown on 8-chamber were treated with either DMSO

vehicle or incremental concentrations of AB42 ranging from 1uM to 5uM.
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Nuclear Fractionation

Cells were collected and pelleted by centrifugation at 500 x g for 15 minutes at 4°C. Cells were
resuspended in 1Iml of 10mM Tris-HCI (pH 7.4), 1ImM EDTA, 200mM sucrose, and Halt protease inhibitor
cocktail (Pierce) and subjected to gentle dounce homogenization. Nuclei and cell debris were pelleted
by centrifugation at 900 x g for 10 minutes at 4°C. The nuclei containing pellet was lysed in 100mM Tris-
HCI (pH 7.6), 4% SDS, 100mM DTT and Halt Protease Cocktail Inhibitor (Pierce) as described above.
Protein was quantified using the Pierce 660 assay supplemented with ionic-detergent compatibility
reagent (Pierce) before preparing 1ug/ul samples in Laemmli Buffer for Western blot analysis.

Human Brain Tissue

Human brain tissue was obtained from Dr. David Cribbs at the University of California Irvine
Alzheimer’s Disease Research Center. Brain samples were de-identified and categorized based on post-
mortem Braak stage and pre-mortem clinical MMSE score. Additional information on this brain material
is detailed in Table 1. Samples were categorized based on determined disease stage; Non-AD (NAD),
Mild Cognitive Impaired (MCI) or Late-AD (LAD). Tissue was homogenized in 100mM Tris-HCI (pH 7.6)
containing 4% SDS, 100mM DTT and Halt protease inhibitor cocktail. Homogenates were briefly
sonicated and centrifuged for 15 mins at 14,000 xg. The soluble supernatant fraction was then
separated from the insoluble pellet for sample preparation. Brain lysates were analyzed by western blot
and disease state confirmed using 6E10 (detecting FL-APP and AB) and PHF-1 antibodies (Figure 14).

Immunostaining

For immunostaining analysis of mouse brain sections, sections were mounted onto superfrost
slides, air-dried and rehydrated with TBS for 5 minutes. For antigen retrieval, sections were incubated in
10mM citrate buffer, pH 6.0 for 10 mins at 95°C and cooled to room temperature. After washing with
PBS, sections were blocked with 10% normal goat serum (NGS) in TBST with 0.02% sodium azide (NaAz)

for 2 hours at room temperature. Sections were then incubated with APP (6E10) primary antibody
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(mouse monoclonal 1:500) and either PCTAIRE-2 (1:50) or PCTAIRE-3 (1:50) primary antibody diluted in
1% BSA/TBST at 4°C in a humidified chamber overnight. Next, sections were washed and incubated for 2
hrs at room temperature with goat anti-mouse 1gG Alexa Fluor 488 (1:1000) and goat anti-rabbit IgG
Alexa Fluor 594 (1:4000) diluted in blocking buffer. After washing, cells were incubated in 1pg/ml
Hoechst 33342 DNA dye in PBS for 3 mins. After thorough washing, the slides were coverslipped with
Fluoro-Gel mounting media and analyzed with a Zeiss Fluorescence Axio Imager using AxioVision Rel 4.8
software.

For immunostaining analysis of cultured cells, cells (either B103, B103-695 or primary neurons)
were fixed with 4% paraformaldehyde for 10 mins at room temperature and washed with PBS. After,
cells were blocked in blocking buffer for 1 hr. B103 and B103-695 cells were then incubated overnight at
4°C with a-tubulin (mouse monoclonal, 1:1000) and either PCTAIRE-2 (1:50) or PCTAIRE-3 (1:50) primary
antibodies diluted in 1%BSA/TBST with NaAz. Neurons were incubated with Tau 1 (mouse monoclonal,
1:500) and either PCTAIRE-2 (1:50) or PCTAIRE-3 (1:50) primary antibodies. After incubation, cells were
washed and incubated in goat anti-mouse IgG Alexa Fluor 488 (1:1000) and goat anti-rabbit I1gG Alexa
Fluor 594 (1:4000) diluted in blocking buffer. After brief washing, cells were incubated for 3 mins with
1pg/ml Hoechst 33342 DNA dye. After thorough wash, slides were mounted using Fluoro-gel and
visualized as mentioned previously.

Western Blotting

Proteins were selected for validation by western blot analysis based on significance as well as
function. Proteins were separated on an AnyKD SDS-PAGE gel (BioRad) and transferred to a PVDF
membrane using the Trans Turboblot system (BioRad). Membranes were blocked in 5% non-fat milk in
TBS for 1 hour at room temperature. Primary antibodies specific for phospho-Serine47-Histone H4
(Abcam, rabbit polyclonal), Histone H4 (Cell Signaling, mouse monoclonal), PCTAIRE-2 and PCTAIRE-3

(Santa Cruz, rabbit polyclonal), Actin (Sigma Aldrich, mouse monoclonal), APP (6E10 antibody, Covance,

54



mouse monoclonal), anti-Taul (Millipore), anti-PHF1 (phospho Ser396/Ser404-Tau, kindly provided by
collaborator Dr. Peter Davies, Albert Einstein College of Medicine) and GAPDH (Cell Signaling, rabbit
monoclonal) were diluted in 5% BSA-PBS, with 0.05% NaN; and incubated overnight at 4°C. Membranes
were then incubated with appropriate corresponding secondary antibodies, donkey anti-rabbit HRP-
conjugated (Cell Signaling) or goat anti-mouse HRP-conjugated (Cell Signaling) for 1.5 hours at room
temperature. All blots were developed with Pico Chemiluminescence reagents (Pierce), with the
exception of pS47-Histone H4 which was developed using Femto Chemiluminescence reagents (Pierce),
using an Amersham Imager 600RGB (GE Healthcare).

Table 1. AD, MCl, and non-AD Human Brain Tissue Information.

Case No. Age Sex Braak Stage PMI MMSE Diagnosis
34 91 F 3 3.33 30 NAD
29 83 F 4 5.25 30 NAD
41 91 F 4 4.82 29 NAD
40 91 F 2 3.8 29 NAD
24 86 F 3 2.92 22 MClI
17 86 F 3 6.17 30 MClI

9 87 M 5 6.17 24 MCI
35 94 M 1 3.87 27 MCI
45 95 F 5 5.30 24 Ml
12 82 F 6 5.92 17 LAD
39 90 M 6 4.17 14 LAD
37 88 F 5 4.50 10 LAD
10 82 F 6 4.58 -5 LAD
40 96 F 6 4.50 20 LAD

Results

B103 and B103-695 Phosphoproteome Comparison

A total of 2478 phosphopeptides were identified across 3 biological replicates in B103 and B103-
695 cells; 1082 were quantified in a minimum of 2 biological replicates with a minimum ratio count of 2.
Of the 1082 phosphorylation sites confidently identified and quantified, 712 of them corresponded to
proteins previously quantified by SILAC in our global scale proteomic analysis of B103 and B103-695 cells

[239]. When possible, phosphopeptide ratios were normalized against corresponding protein ratios
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previously determined in the B103 and B103-695 proteomic analysis. Perseus was used to identify
significant changes in phosphopeptide expression across biological replicates using Significance A, a
statistical outlier test, with a p-value threshold of 0.05. Significant changes were identified in 92
phosphosites corresponding to 71 different proteins when using non-normalized ratios, and 50
phosphosites corresponding to 46 proteins when using normalized ratios. Select differentially
phosphorylated phosphosites, both normalized and non-normalized, are listed in Table 2. Bioinformatic
analysis of statistically significant phosphosites was performed using Ingenuity Pathway Analysis (IPA)
which identified several proteins associated with neurological disease and psychological disorders as
well as molecular and cellular functions including cell morphology, cellular assembly and organization,
function and maintenance, and growth and proliferation.

Table 2. Selected phosphoproteins of interest with significant changes in phosphorylation in APP-695 expressing
B103-695 cells compared with APP-null B103 cells. Median phosphopeptide ratios were normalized against
corresponding protein ratios when possible.

. Median Median .
. Gene . Amino . R Normalized
Protein Name Protein . Pos. | Phospho | Variance | Protein .
Name Acid i . Median
Ratio Ratio

Heat shock protein beta-1 Hspb1l P42930 S 86 2.90 0.35 0.64 4.50

Heat shock protein beta-1 Hspb1 P42930 S 115 2.04 0.08 0.64 3.16

A-kinase anchor protein 12 Akap12 | Q5QD51 S 507 1.79 0.36 0.73 2.46

Cyclin-dependent kinase 17 Cdk17 035381 S 146 1.86 0.21 N/A N/A

Cyclin-dependent kinase 17 Cdk17 035381 S 180 2.27 0.92 N/A N/A

Cyclin-dependent kinase 18 Cdk18 035382 S 109 3.85 0.15 N/A N/A

Cyclin-dependent kinase 18 Cdk18 035382 S 66 3.5 0.099 N/A N/A

Histone H4 Histlh4b | P62804 S 47 2.24 0.018 1.18 1.90

Myristoylated alanine-rich C- |\ o | p3o009 | T | 143 | 039 0.002 N/A N/A
kinase substrate

Myristoylated alanine-rich C- | -\ o | p30009 | s 27 | 025 | 64764 | N/A N/A
kinase substrate

Myristoylated alanine-rich C- | -\ o | p3o009 | s | 138 | 026 | 21765 | N/A N/A
kinase substrate

Cell division cycle protein 20 Cdc20 Q62623 T 106 2.15 0.004 0.96 2.25
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Consensus Motif Analysis

Mass spectrometry provides site localization of phosphorylated peptides as well as surrounding
sequence information, which enables consensus motif analysis. Most kinases phosphorylate residues
within a specific consensus motif; determining overrepresented consensus motifs can be an indication
of changes in kinase activity. Consensus motif analysis identified several phosphopeptides that were
phosphorylated within the growth associated Histone H1 kinase substrate motif in B103-695 cells but
not in B103 cells, suggesting increased activity of this kinase in APP695 expressing cells (Figure 10).
Growth associated Histone H1 kinase has been shown to be involved in regulating mitotic entry [241],

suggesting altered cell cycle regulation in B103-695 cells.
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Figure 10. Growth associated Histone H1 kinase motif represented in B103-695 cells but not in B103 cells.
Phosphorylation by growth associated histone H1 kinase, a serine/threonine kinase that phosphorylates substrates
specifically within the above amino acid sequences; was observed in APP-695 expressing B103-695 cells, while
phosphorylation within this motif was not observed in APP-null B103 cells.

Increased Phosphorylation of Histone 4 at Ser47

The normalized ratio of phosphoSer47-Histone H4 (pS47-Histone H4) showed a statistically
significant 1.89-fold increase in B103-695 cells compared to B103 cells and was selected for further
validation. Histone H4 is involved in chromatin structure and function and modification of Histone H4

influences both dynamic and long term gene expression. Histone H4 is phosphorylated at Ser47 by p21-
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protein-activated kinase 2 (Pak2) [242] and Pak2 phosphorylation at Ser141 is required for optimal Pak2
activity [243]. Phosphorylation of Pak2 at Ser141 also showed a very slight increase (1.15-fold after
normalization to total Pak2) in B103-695 cells by phosphoproteomics; however this increase could not
confirmed by western blot analysis (data not shown). The extracted ion chromatogram (XIC) for the
SILAC heavy and light labeled Ser47 phosphorylated Histone H4 peptide identified by LC-MS/MS
analysis, as well as their base peak chromatograms, are shown in Figure 11a and 11b. The area under
the curve for each XIC is representative of peptide abundance, which is significantly greater in the heavy
labeled peptide from B103-695 cells. The annotated MS/MS spectra showing the amino acid sequence
determined by LC-MS/MS of the Ser47 phosphorylated Histone H4 peptide is shown in Figure 11c.
Increased phosphorylation of Ser47-Histone H4 in B103-695 cells was validated by western blot analysis
of nuclear fractions from B103 and B103-695 samples (Figure 12a). To determine whether AB42 could
increase phosphorylation of Ser47-Histone H4, cultured primary rat neurons were treated with 5uM
oligomeric AB for 24 hours, which resulted in significantly increased phosphorylation of Histone H4 at

Ser47 while total Histone H4 levels were not affected (Figure 15).
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Figure 11. Increased phosphorylation of Histone H4 at Ser47 in B103-695 cells compared with B103 cells. (A)
Extracted lon Chromatogram for “Light” (top) and “Heavy” (bottom) Histone H4 peptide RpSGLIYEETR. (B) Base
peak chromatogram showing isotope clusters for both “Light” and “Heavy” peptides with monoisotopic masses
labelled. (C) Annotated MS/MS spectra of Histone H4 peptide showing phosphorylation detected at Serine 47.

For further validation, human brain samples obtained from the superior frontal gyrus, located in
the prefrontal cortex were assessed by western blot analysis. The brain tissue lysate from individuals
was categorized as NAD, MCI or LAD. We found that phosphorylation of Histone H4 at Ser47 was
significantly higher in LAD individuals compared to their NAD counterparts (Figure 18), suggesting that
this phosphorylation is a late-stage modification in AD.

Increased Expression of PCTAIRE-2 and PCTAIRE-3

PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18), members of the cyclin-dependent kinase (Cdk)
family, were found to be differentially phosphorylated in B103-695 cells compared with B103 cells and

were selected for further validation. While PCTAIRE-2 and PCTAIRE-3 were not identified in our initial
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proteomic analysis of B103 and B103-695 cells, their non-normalized phosphopeptide ratios showed
significant increases in phosphorylation. PCTAIRE-2 showed increased phosphorylation at Ser146 (1.86-
fold) and Ser180 (2.27-fold). PCTAIRE-3 showed increased phosphorylation at Ser66 (3.5-fold) and
Ser109 (3.85-fold). Western blot analysis revealed that expression of both PCTAIRE-2 and PCTAIRE-3

were significantly increased in B103-695 cells compared with B103 cells (Figure 12b).
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Figure 12. Western blot validation of pS47-Histone H4, PCTAIRE-2, and PCTAIRE-3 in B103 and B103-695 cells.
(A) Phosphorylation of Histone H4 Ser 47 is significantly increased in B103-695 cells after normalization to Histone
H4. (B) PCTAIRE-3 and PCTAIRE-2 expression are significantly increased in B103-695 cells after normalization to
GAPDH. *p value<0.05, **p value<0.0005.

PCTAIRE-2 and PCTAIRE-3 expression in aged, 9 month old PS/APP double transgenic AD mouse
brains were further examined by western blot (Figure 13) and immunostaining (Figure 14). PS/APP
transgenic mice demonstrate accelerated plague pathology and increased accumulation of AB42 at a
young age, followed by development of fibrillary AR deposits in the cerebral cortex and hippocampus at
6 months old [148]. PS/APP transgenic mice showed a significant increase in PCTAIRE-2 expression
compared with non-transgenic mice (Figure 13a), while PCTAIRE-3 expression was only slightly increased
(Figure 13b). Immunostaining of PCTAIRE-2 and PCTAIRE-3 also revealed increased expression in PS/APP
mice compared to their non-transgenic (non-Tg) littermates (Figure 14). Upon analysis of

immunofluorescent staining of PS/APP mouse brain sections, we observed strong localization of
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PCTAIRE-2 staining to the dense core of the amyloid plaques, detected with 6E10 antibody (Figure 14a).
While PCTAIRE-3 staining was not as elevated in PS/APP mice as compared to PCTAIRE-2, it also showed

punctate staining within the amyloid plaques in these brain sections (Figure 14b).
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Figure 13. Increased expression of PCTAIRE-2 and PCTAIRE-3 in PS/APP transgenic mice. Western blot analysis
showed a significant increase in PCTAIRE-2 (A) and only a slight increase in PCTAIRE-3 (B) in PS/APP transgenic
mice compared with non-transgenic mice after normalization to GAPDH.
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Figure 14. Immunostaining of PCTAIRE-2 and PCTAIRE-3 in PS/APP and non-Tg mice. Co-immunostaining of 6E10
(recognizing AB in amyloid plaques) with (A) PCTAIRE-2 and (B) PCTAIRE-3 reveals localization of PCTAIRE-2 and
PCTAIRE-3 to amyloid plaques in PS/APP mice compared with non-transgenic (Ntg) mice.
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Because there was strong localization of both PCTAIRE-2 and PCTAIRE-3 to amyloid plaques, we
next sought to determine the effect of AB treatment on the expression and localization of PCTAIRE-2
and 3 in primary neurons. Primary cortical rat neurons were cultured and treated with 5uM oligomeric
AB42 for 24 hours and analyzed by western blot (Figure 15) and immunostaining (Figure 16). Western
blot analysis revealed a significant increase in levels of both PCTAIRE-2 and PCTAIRE-3 following 24 hour
5uM AP treatment (Figure 15). Immunostaining of primary rat neurons treated with 1uM, 2.5uM, and
5uM oligomeric AB42 resulted in a dose-dependent alteration of PCTAIRE-2 and PCATIRE-3 expression
and localization. Control neurons treated with DMSO exhibited basal, cytoplasmic staining of PCTAIRE-2
(Figure 16a). Upon treatment of the neurons at even the lowest concentration of AB, PCTAIRE-2
appears to have enhanced staining that accumulates both in the nuclear and perinuclear areas of the
neuron (Figure 16a). PCTAIRE-3 staining in the neurons showed reduced levels of staining compared to
that of PCTAIRE-2, which is in agreement with our western blot analysis. In control, DMSO treated
neurons, PCTAIRE-3 exhibited basal, punctate nuclear staining (Figure 16b). Upon AB treatment,
expression of PCTAIRE-3 is increased, as indicated with enhanced staining and the staining appears to

localize to not only nuclear regions, but extends into the cell body in a fibrillar pattern (Figure 16b)
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Figure 15. Increased levels of pS47-Histone H4, PCTAIRE-2, and PCTAIRE-3 in AB-treated primary neurons.
Primary neurons treated with 5uM AR for 24 hours resulted in significant increases in pSer47-Histon H4, PCTAIRE-
2, and PCTAIRE-3, compared with control cells. *p value<0.05.
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Figure 16. Immunostaining of PCTAIRE-2 and PCTAIRE-3 in AP treated primary neurons. Cultured primary
neurons were treated with 1uM, 2.5uM, and 5uM AB or DMSO (control) for 24 hours and probed for PCTAIRE-2 or
PCTAIRE-3 and Taul. (A) PCTAIRE-2 showed enhanced nuclear and perinuclear staining upon Ap-treatment. (B)
PCTAIRE-3 also showed enhanced nuclear staining that extends into the cell body upon AB-treatment.



Our western blot data in Figure 12b suggests that expression of both PCTAIRE-2 and PCTAIRE-3
are significantly increased in B103-695 cells compared to APP-null B103 cells. This, along with the data
from primary neurons treated with oligomeric AB, suggests that either APP or AB42 are able to induce
these Cdks. AP toxicity has been shown to be mediated by APP present in the cellular membrane [244].
To examine both the independent and concerted roles of AB and APP in inducing expression of PCTAIRE-
2 and PCTAIRE-3, B103 and B103-695 cells were treated with oligomeric AB42 (Figure 17). Upon
treatment of B103 cells with AB, we observed subtle changes in localization of PCTAIRE-2 with no
increase in staining for the protein (Figure 17a). While DMSO treated B103 cells appeared to have
punctate, perinuclear staining in the body of the cell, AR treatment seemed to slightly alter the
localization to become clustered at the cell’s hillock (Figure 17a). B103-695 cells treated with vehicle
DMSO showed staining for PCTAIRE-2 primarily in the cell body and, upon AP treatment, appeared to
translocate to the nucleus of the cell (Figure 17a). Similar to PCTAIRE-2, PCTAIRE-3 showed slight
alterations in staining in B103 cells exposed to AB. Staining under control DMSO treatment shows a
polarized, clustered perinuclear staining and after treatment with A, this staining become slightly more
intense and concentrated (Figure 17b). In B103-695 cells, control treatment with DMSO shows
perinuclear PCTAIRE-3 staining with slight punctate staining in the nucleus (Figure 17b). This staining
was significantly enhanced upon AP treatment, translocating into the nucleus and into perinuclear and

polarized clusters (Figure 17b).

64



a-tubulin PCTAIRE-2 Merged

o ---
(32]
&
m
5uM AB
o ---
Yo} -
D
© N
o)
<
m
5uM AB
B
a-tubulin PCTAIRE-3 Merged
- ,
o
@
5uM AR
o --
wn
(o))
(o] i
o) |
o
m
5uM AB

Figure 17. Immunostaining of PCTAIRE-2 and PCTAIRE-3 in AB-treated B103 and B103-695 cells. Cells were
treated with 5uM AP for 24 hours and probed with PCTAIRE-2 or PCTAIRE-3 and a-tubulin. Both PCTAIRE-2 (A) and
PCTAIRE-3 (B) showed only subtle changes in B103 cells upon AB-treatment, However, AB-treated B103-695 cells
resulted in translocation of PCTAIRE-2 (A) and PCTAIRE-3 (B) to the nucleus.
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Finally, PCTAIRE-2 and PCTAIRE-3 levels were assessed in human brain samples from individuals
categorized as NAD, MCl or AD (see Table 1). Both PCTAIRE-2 and PCTAIRE-3 expression levels were
found to be significantly increased in AD individuals (Figure 18). PCTAIRE-2 expression was also
significantly increased in MCI brain, suggesting that this particular cdk may be relevant in disease
progression (Figure 18). Levels of APP, AB, and phospho Ser396/Ser404-Tau (PHF1) in human brain
tissue were also determined, which confirm disease state pathology based on the increase in AB and

PHF1 from non-AD to late-AD (Figure 18).
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Figure 18. Increased levels of pS47-Histone H4, PCTAIRE-2, and PCTAIRE-3 in MCI and AD human brain tissue.
Levels of phospho Ser396/Ser404-Tau (PHF-1), APP and A (6E10) were assessed to confirm disease state based
on increases in PHF-1 and AB in MCl and late-AD (LAD). Levels of PCTAIRE-2 and PCTAIRE-3, pS47 Histone H4, and
total Histone H4 were also found to be increased in MCl and LAD.

Discussion

Comprehensive phosphoproteomic analysis of the B103 and B103-695 cell model of AD resulted
in the identification of both changes in phosphorylation and protein expression in APP-695 expressing
cells. Selected significant differentially phosphorylated proteins are listed in Table 2. A-kinase anchor

protein 12 (AKAP12) showed significantly increased phosphorylation at Ser507 (2.46-fold) in B103-695
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cells after normalization against total protein expression. AKAP12 is a scaffolding protein that serves as
a negative regulator of G1 to S cell cycle progression [245]. Its regulatory role in cell cycle progression is
thought to be due to contact inhibition and AKAP12 has been shown to physically bind cyclin D1,
resulting in decreased cellular accessibility of cytoplasmic cyclin D1 pools and decreased translocation of
cyclin D1 into the nucleus [246, 247]. AKAP12 is phosphorylated at Ser507/515 by protein kinase C (PKC)
and modification of these sites results in disruption of the cyclin binding motifs present on AKAP12
[246]. Increased phosphorylation of AKAP12 was also observed in an early phosphoproteomic study of
human AD brain at Ser290 [179], however the functional relevance of this residue is not known.

B103-695 cells also revealed increased phosphorylation of heat shock protein beta 1 (Hspb1) at
Ser15 (3.16-fold) and Ser86 (4.49-fold). A recent quantitative phosphoproteomic study of frontal cortex
from human AD brains also identified increased phosphorylation of Hspb1 at Ser82, the human analogue
to rodent Ser86 [204]. HpsB1 is a molecular chaperone that belongs to a family of survival proteins that
modaulate cell proliferation and cytoskeletal reorganization [248-250]. The phosphorylation status of
HspB1 is thought to dictate both its structure and function [251, 252] and this modification can occur
due to a number of kinases that are induced by various stimuli [252]. In an in vitro study using a dorsal
root ganglion sensory neuron model, phosphorylation of HspB1 was shown to induce cytoskeletal
reorganization and promote neurite outgrowth. Further, phosphorylation of Hspb1 at Ser15 and Ser86
has been shown to influence its subcellular localization in hippocampal neurons, increasing its
recruitment to dendrites and synaptic sites [253].

Myristoylated alanine-rich C-kinase substrate (MARCKS) showed significant decreases in
phosphorylation at several sites in B103-695 cells, however these phosphopeptide ratios were unable to
be normalized against total protein ratios as MARCKS was not identified in our global proteomic analysis
of B103 and B103-695 cells. A previous studied showed that human AD cortical neurons exhibited an

overall decrease in MARCKS phosphorylation, however they also reported increased MARCKS
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phosphorylation in microglia from AD brains. MARCKS is phosphorylated by protein kinase C (PKC), and
PKC-mediated phosphorylation of MARCKS has been shown to inhibit the actin crosslinking activity of
MARCKS [254]. Reduced MARCKS phosphorylation in APP695-expressing cells suggests altered PKC
activity, which may further affect actin assembly and organization [255]. We identified a number of
differentially phosphorylated proteins that have previously been reported to have altered
phosphorylation in AD, which provides confidence in our cell model for the study of AD as well as the
quality of our phosphoproteomic dataset.

Phosphorylation of Histone H4 at Serd7, which was significantly increased in B103-695 cells
compared with B103 cells, has not previously been implicated in AD. Histone H4 Ser47 phosphorylation
has been shown to regulate nucleosome assembly, promoting assembly of H3.3-H4 by the histone
chaperone HIRA, while inhibiting CAF-1 mediated assembly of H3.1-H4 [242]. Though Histone variant
H3.3 differs from Histone H3.1 by only 5 amino acids, the functions of H3.3 are unique and cannot be
substituted by H3.1 [256-258]. H3.3 is localized to gene bodies of actively transcribed genes, and
increased levels of H3.3 at gene bodies positively correlates with gene expression [259, 260].
PhosphoSer47-Histone H4 is known to be phosphorylated by Pak2, a member of the p21-activated
serine/threonine kinase (Pak) family [242]. Additionally, phosphatases PP1a, PP1B, and Wip1 also
regulate phosphoSer47-Histone H4 levels [261]. Depletion of PP1a and PP1p results in increased Pak2
phosphorylation at Ser141 [243], which is required for Pak2 activity, suggesting that PP1a and PP1 may
regulate Histone H4 Ser47 phosphorylation through Pak2 activation [261]. Pak2 phosphorylation at
Ser141 was identified in our phosphoproteomic dataset but it was not significantly increased in B103-
695 cells, which may suggest an alternative kinase is responsible for increased phosphorylation of
Histone H4 Ser47. LAD human brain exhibited a significant increase in phosphorylation of Histone H4 at
Ser47 compared to MCl and NAD individuals. Furthermore, increased phosphorylation was observed in

both APP expressing B103-695 cells and AP treated primary neurons, which provides strong evidence
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that APP and/or AP are involved in promoting Histone H4-Ser47 phosphorylation. While the significance
of Histone H4 Ser47 phosphorylation has not been determined, this data suggests that APP-695
expression and AP productions may influence its regulation.

PCTAIRE-2 and PCTAIRE-3 were also shown to be differentially phosphorylated in B103-695 cells
compared to APP-null B103 cells. Phosphorylation of PCTAIRE-2 at Ser146 and Ser180 has been
identified in previous phosphoproteomic studies of human tissue [262-264]. Phosphorylation of
PCTAIRE-3 at Ser66 has been shown previously in rat kidney [265], however only PCTAIRE-3a or 3b
isoforms have a Ser located at amino acid residue 66 in humans. To our knowledge, this is the first
identification of PCTAIRE-3 phosphorylation at Ser109 in rats; none of the human PCTAIRE-3 isoforms
have a Ser located at amino acid residue 109. Changes in levels of phosphorylation at these residues
could not be confirmed as antibodies are yet to be produced against these phosphorylation sites, but
total protein expression was examined.

PCTAIRE-2 and PCTAIRE-3 levels were determined to be significantly increased in B103-695 cells
(Figure 12). PCTAIRE-2 expression was also significantly increased in PS/APP transgenic mice, while
PCTAIRE-3 levels were only slightly increased (Figure 13). This finding was also reflected in the
immunostaining of PCTAIRE-2 and PCTAIRE-3 in corresponding PS/APP Tg mouse brain slices. Staining
for both PCTAIRE-2 and PCTAIRE-3 were localized to the dense, amyloid plaques suggesting a possible
role for AB in inducing their expression (Figure 13). Primary rat neurons treated with oligomeric AB42
showed increased expression of these proteins as demonstrated by immunostaining (Figure 16) and
western blot (Figure 15). Upon AB treatment, PCTAIRE-2 translocated from the cytosol to the
perinuclear and nuclear regions of the neuron. Likewise, PCTAIRE-3 demonstrated altered staining with
AB treatment, translocating into the nucleus and forming fibril structures in the cytoplasmic regions. To
further examine the differential roles of APP and AB, we further determined that the changes in PCTAIRE

localization appear to be APP dependent. APP-null B103 cells treated with AB exhibited a slight increase
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in staining for both PCTAIRE-2 and PCTAIRE-3, however staining for PCTAIRE-2 and PCTAIRE-3 drastically
altered in B103-695 cells upon treatment with AB.

PCTAIRE kinases are relatively uncharacterized members of the cyclin-dependent kinase (Cdk)
family, and are categorized by a serine to cysteine mutation in the PSTAIRE cyclin binding consensus
motif [266]. PCTAIRE-2 and PCTAIRE-3 are Cdc-2-related serine/threonine kinases; however their
functions remain to be discovered. Whether PCTAIREs are involved in cell cycle regulation or are
regulated by the cell cycle is yet be determined. A study by Meek and colleagues (2004) identified
PCTAIRE-2 and PCTAIRE-3 as 14-3-3 binding partners, and furthermore PCTAIRE-2 interacted with 14-3-3
in a cell cycle-regulated manner. Other studies, however, indicate that PCTAIREs may function
independently of the cell cycle [267, 268].

PCTAIRE-2 is expressed in terminally differentiated neurons and has been found to
phosphorylate Ser and Thr residues of Histone H1 [269]. PCTAIRE-3 is expressed in the brain and testis.
A study by Herskovits and Davies (2006) found increased levels of PCTAIRE-3 in the temporal cortex of
AD brains compared with control brains and they also found it was localized within paired helical
filaments (PHFs). Further, they suggested that PCTAIRE-3 is indirectly involved in promoting
phosphorylation of Tau at residues T231 and S235, early modifications in AD pathogenesis [270]. A
separate study recently found that PCTAIRE-3 can be activated through association with Cyclin A and/or
phosphorylation by Protein Kinase A (PKA) [271]. PKA increased phosphorylation of PCTAIRE-3 at Ser12,
Ser66, and Ser109, though only phosphorylation of Ser12 appeared to increase kinase activity; the
function of PCTAIRE-3 phosphorylation at S109 and S66 by PKA is still unknown [271]. Interestingly, PKA
was also found by Herskovits and Davies (2006) in the same PHF fractions that PCTAIRE-3 was observed
in. Bioinformatic analysis of our previous proteomic study of B103 and B103-695 cells suggested

increased PKA signaling in B103-695 cells [239] and phosphorylation of PCTAIRE-3 at S109 and S66 was
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observed in B103-695 cells in this phosphoproteomic dataset. Additional experiments are necessary to
determine the functional significance of PCTAIRE-3 phosphorylation at these sites.

Further investigation is required to determine the function of PCTAIRE-2 and PCTAIRE-3 and
their potential role in Alzheimer’s disease, as well as the significance of the identified phosphorylation
sites. It is possible these phosphorylation sites may be involved in the regulation of PCTAIRE-2 and
PCTAIRE-3 activation or deactivation, or have a potential role in cell cycle progression. PCTAIRE-3 may
have a role in Alzheimer’s disease as an effector of tau phosphorylation, however the mechanism needs
to be elucidated. This comprehensive phosphoproteomic dataset provides insights into pathways that
may be affected by APP695 expression based on changes in phosphorylation as well as consensus motif
analysis, providing a foundation for future mechanistic studies. Additionally, this dataset led to the
investigation of PCTAIRE-2 and PCTAIRE-3 whose expression appears to be influenced by APP and AB in a
number of models of AD including human brain tissue, suggesting their involvement in the complex
pathogenesis of AD; whether their increased expression is causative or is a result of AD still needs to be

determined.
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Chapter 4 — Label-Free Quantitative Proteomic Analysis of Human Neurodegenerative Disorders

Summary

The challenges associated with proteomic analysis of human tissue include the limited
accessibility and quantity of samples that can be obtained, as well as the quantitative proteomic
approaches available. This chapter had two main goals; to perform label-free quantitative proteomic
analysis of human tissue from multiple neurodegenerative diseases, as well as develop a method for
increasing proteome coverage when starting material is limited. Proteomic analyses of human tissue
from the cortex of individuals affected by Alzheimer’s disease (AD), mild cognitive impairment (MCl),
Parkinson’s disease (PD), and progressive supranuclear palsy (PSP) were compared to cognitively
normal, control samples using label-free quantification. Label-free quantitative proteomics has been
made possible with advances in mass spectrometers such as increased mass accuracy and resolution.
Label-free quantitative proteomic analysis of human tissue identified over 4000 proteins and
determined several molecular and cellular functions that may be affected during neurodegeneration.

The filter-aided sample processing (FASP) method typically used for proteomics sample
preparation requires at least 100ug of protein, which may not always be available when working with
human brain samples or primary cells such as microglia. The second goal of this chapter was to optimize
a gel-aided sample processing (GASP) method for proteomic analysis of samples with limited amounts of
starting material, as low as 1ug of protein. The GASP method and results were submitted as a chapter

for a Methods in Neuroproteomics book and can be found in Appendix D.
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Introduction

Mild Cognitive Impairment and Alzheimer’s Disease

Alzheimer’s disease (AD) was reviewed in Chapter 1 and will not be described here. Mild
cognitive impairment (MCIl) involves deficits in memory and is associated with increased risk of
developing more advanced forms of dementia and AD [272, 273]. MCI affects an estimated 10-20% of
Americans age 65 and older [1]. As MCI does not usually result in death, characterizing the
neuropathology of MCl has been difficult since tissue is only obtained when a person with MCI dies of
other causes. However, studies that have successfully examined MCI pathology observed neurofibrillary
tangles (NFTs) in the hippocampus and entorhinal cortex, and AB plaques in the neocortex [96, 274,
275]. While MCl is typically associated with AD, an estimated 25% of Parkinson’s disease (PD) patients
without dementia also suffer from MCI [276]. Additionally, MCl is also known to progress to dementia
with Lewy bodies (DLB) [277, 278]. There is unlikely a single cause of MCl as its pathology and
progression is variable from case to case, and resulting pathology is observed in a number of different
neurodegenerative diseases, such as AD, PD, and LBD. Investigating the molecular changes that occur
during MCl is particularly valuable as MCI represents an early stage of dementia often progressing to
more severe neurodegenerative diseases. Developing a further understanding of MCI and identifying
reliable diagnostic biomarkers would be valuable for earlier diagnosis and the development of
therapeutics to delay progression to more severe dementia and neurodegeneration.

Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after AD. PD
is a progressive movement disorder and symptoms include tremor, rigidity, bradykinesia, weakness, and
sometimes dementia [279]. The major pathological hallmarks of PD are loss of dopaminergic neurons in
the substantia nigra, a brain region involved in movement, and the presence of Lewy bodies. PD is

considered a synucleinopathy as a-synuclein is the primary component of Lewy bodies [280], which are
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intracellular aggregates of insoluble proteins, including ubiquitin [281, 282], and neurofilament proteins
[283, 284] in addition to a-synuclein. Lewy bodies are observed in both PD and LBD. Lewy bodies are
not only found in the substantia nigra where dopaminergic neuron loss occurs, but are also found in the
cerebral cortex, amygdala, and hippocampus [285]. It has been suggested that the presence of Lewy
bodies in the cortex strongly correlates with cognitive impairment in PD [285, 286]. In addition to Lewy
bodies, amyloid plaques and tau-NFTs have also been observed in the brains of PD patients with
dementia [287, 288]. Compared with a-synuclein pathology alone, the combination of a-synuclein and
amyloid plaque pathology are most common in PD with dementia, and often result in shorter survival
and earlier onset of dementia [287]. Tau-NFTs, on the other hand, are not always observed in PD and
are not considered to be a major contributor to dementia associated with PD [287].

The majority of PD cases are sporadic, also referred to as idiopathic PD, affecting individuals
around the age of 65. A smaller portion of PD is considered early onset, referred to as familial PD, and
has been linked to mutations in a number of genes; a-synuclein (SNCA) [289], parkin (PARK2) [290], DJ-1
(PARK?7) [291], leucine rich repeat kinase (LRRK2) [292, 293], ubiquitin carboxy-terminal hydrolase L1
(UCHL1) [294], and PTEN-induced kinase 1 (PINK-1) [295] (reviewed in [296]). The primary cause of PD
remains to be understood, but it is believed to be a complex process involving both genetic and
environmental factors [297]. Mitochondrial dysfunction and oxidative stress, protein folding and
processing are processes that have been proposed to be involved in PD pathology [297, 298]. The loss
of dopaminergic neurons from the substantia nigra results in decreased dopamine production, the
neurotransmitter primarily involved in motor functions, which subsequently results in loss of normal
movement control. One of the most common treatments of PD is L-3,4-dihydroxyphenylalanine (L-
DOPA), a precursor for the neurotransmitters dopamine, norepinephrine, and epinephrine, which
increases dopamine concentrations and improves movement control in PD patients [299]. While

medications exist that improve symptoms of PD, there is no cure or preventative treatment, and the
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cause of sporadic PD remains largely unknown. There is also a lack of diagnostic and therapeutic
markers of PD. Mass spectrometry-based proteomic studies of PD have been performed using animal
models, human cerebrospinal fluid (CSF), human brain tissue from the substantia nigra [300-302], and
frontal cortex [303, 304], as well as Lewy bodies isolated from human frontal cortex [305, 306]. As
cognitive impairment in PD correlates with cortical Lewy body pathology [285], further investigation of
the molecular changes occurring in the cortex may provide insights into the molecular changes involved
in dementia associated with PD, as well as potentially identify novel proteins or biomarkers not
previously associated with PD.

Progressive Supranuclear Palsy

Progressive supranuclear palsy (PSP), also known as Steel-Richardson-Olszewski syndrome, is a
rare neurodegenerative disorder. Symptoms of PSP are associated with loss of balance and gait,
problems with eye movement, speech and swallowing, as well as progression to dementia [307]. PSP
has been described as a tauopathy as tau-NFTs are usually observed in neurons and glia [308, 309].
Deterioration is observed in areas of the brain involved in control of movement and thinking including
the brain stem, substantia nigra and cerebral cortex [307-309]. PSP can be difficult to diagnose as its
symptoms are very similar to other, more common movement disorders, and it is often misdiagnosed as
PD. The cause of PSP remains unknown; however, it is typically associated with age, affecting people
around 60 years old. While PSP is not directly life-threatening, it increases the risk of other
complications, primarily pneumonia, as well as difficulty swallowing, and injuries caused by falls. While
proteomic profiling of CSF from PSP patients has been previously performed [310], as well as proteomic
analysis of caudate nucleus, part of the brainstem involved in voluntary movement [311], there has not
been a comprehensive proteomic analysis of cortex from PSP affected brain compared with normal
brain. As the cause of PSP remains largely unknown, and it is very difficult to diagnose, proteomic

studies can identify changes in protein levels to provide some understanding of the cellular and
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molecular mechanisms altered in PSP, possibly identifying novel biomarkers of the disease, and aiding in
the development of potential therapeutics.

Label Free Quantitative Proteomics

The complexity of the central nervous system and the mechanisms underlying the onset of
cognitive decline and dementia makes studying neurodegeneration particularly difficult. When studying
human brain tissue it is important to consider the region being studied as different regions are affected
at different stages of the disease. One of the limitations of studying human tissue is that tissue is
collected post-mortem when pathology is most severe, limiting the discovery of preclinical biomarkers
associated with early molecular changes. Researching the molecular changes that occur in MCl is
particularly important for the discovery of preclinical biomarkers and molecular changes. Despite the
associated challenges, studies using human tissue affected by AD and other neurodegenerative diseases
are invaluable for gaining a deeper understanding of the molecular changes that occur with the
progression of disease pathology. The causes of disease onset, progression, and pathology are poorly
understood for most neurodegenerative conditions, and there is a need to identify novel diagnostic and
prognostic biomarkers as well as therapeutic targets. There is also a lack of diagnostic biomarkers to
distinguish neurodegenerative diseases from each other, such as PSP from PD. To develop more
effective therapeutic strategies, we need to gain a more comprehensive understanding of the molecular
mechanisms involved in disease progression and pathology, and identifying molecular changes in MCl is
particularly important for the advancement of early diagnosis and development of preventative
therapeutics. Mass spectrometry-based proteomics provides an unbiased approach for large scale
analysis of protein expression changes that can provide information about affected pathways and
functions.

Label free quantitative proteomics does not require metabolic labeling or chemical

derivatization and can be applied to all organisms or tissues. With advances in mass spectrometry,
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including increased resolution and mass accuracy, label-free quantitative proteomics is becoming more
commonly used. Label-free quantitation relies on peptide ion abundance, which has been shown to
correlate with protein abundance [312-314]. Spectral counting has also been shown to correlate with
protein abundance [315], however current label-free approaches typically use peptide ion abundance
based on total or average ion current values [218]. Each peptide ion has a specific mass/charge (m/z)
and their signal intensities are recorded over time. Extracted ion chromatograms (XICs) are created by
plotting the intensity of the peptide ion, based on its m/z, over time. The area under the XIC curve for a
peptide ion is proportional to ion abundance. In this study we used label-free quantitative proteomics
for the analysis of human brain tissue from the cortex of MCl, AD, PDP, and PSP patients compared with
cognitively normal, control samples.

Materials and Methods

Label-free Quantitative Proteomic Analyses of Human Brain Tissue

Sample Processing and LC-MS/MS

Human AD, MCI, and control tissues were obtained from the University of California Alzheimer’s
Disease Research Center (UCI-ADRC) and the Institute for Memory Impairments and Neurological
Disorders. Brain samples were de-identified and categorized based on post-mortem Braak stage and
pre-mortem clinical MMSE score. Additional information on this brain material is detailed in Table 1.
Human PD, PSP, and control tissues were obtained from our collaborator Dr. Werner Geldenhuys at the
Northeast Ohio Medical University (NEOMED).

All human brain tissue samples were lysed in 4% SDS, 100mM DTT, 100mM Tris-HCl, pH 7.4 at
95°C for 5 minutes, followed by sonication and centrifugation. Protein was quantified using the Pierce
660 assay supplemented with ionic detergent compatibility reagent (IDCR) (Pierce). Equal amounts of
protein from each sample were processed by filter-aided sample processing (FASP), and digested with

Trypsin/Lys-C at 1:50 (w:w, enzyme:protein) overnight at 37°C. Peptides were desalted using Thermo
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C18 SPE columns on a Supelco vacuum manifold. Peptides were dried and resuspended in 0.1% formic
acid in H,0 for analysis by mass spectrometry.

Peptides were analyzed on a Q-Exactive Plus (Thermo Fisher Scientific) following separation on a
75um x 50cm reversed-phase (RP) UPLC column (Dionex) packed with 5pm 300A C18 material using a
120 minute gradient on an EASY-nLC 1000 system (Thermo Fisher Scientific). Full MS survey scans used
a resolving power of 60,000, selecting the top ten most abundant ions for MS/MS fragmentation and
analysis.

Database Searching, Statistical Analysis, and Pathway Analysis

Raw data files were processed and searched using MaxQuant (version 1.0.30) against the
current Homo sapiens UniprotKB protein sequence database. Normalization of protein abundances is
especially important for label-free proteomic quantification and the MaxQuant label-free quantification
feature was used when searching raw data files. Ratios were generated by dividing the intensity of each
biological replicate for AD, MCI, PD and PSP by the average of all control intensities. Ratios were
generated using both raw intensities as well as the LFQ intensities generated by MaxQuant [316].
Statistical analysis was carried out using the Significance A outlier test in Perseus. Two different
approaches were used, Benjamini-Hochberg, which uses a g-value of 0.05 for false discovery rate [219],
and a t-test with a p-value cut off of 0.05. Proteins that had a g-value or p-value < 0.05 in five out of
seven biological replicates for PD and PSP, or two out of three biological replicates for MCl and AD, were
considered significant and submitted to Ingenuity Pathways Analysis (IPA) for bioinformatic analysis.

Western Blotting

AD, MCI and control brain lysates were analyzed by western blot and disease state was
confirmed using 6E10 (detecting FL-APP and AB) and PHF-1 antibodies (Figure 24). Proteins were
selected for validation by western blot analysis based on significance as well as function. Proteins were

separated on an AnyKD SDS-PAGE gel (BioRad) and transferred to a PVDF membrane using the Trans
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Turboblot system (BioRad). Membranes were blocked in 5% non-fat milk-PBS for 1 hour at room
temperature. Primary antibodies specific for CPS1 (Abcam, rabbit monoclonal), SNX17 (Santa Cruz,
mouse monoclonal), APP (6E10 antibody, Covance, mouse monoclonal) and GAPDH (Cell Signaling,
rabbit monoclonal) were diluted in 5% BSA-PBS, with 0.05% NaN; and incubated overnight at 4°C.
Membranes were then incubated with corresponding anti-rabbit (Cell Signaling) and anti-mouse (Cell
Signaling) secondary antibodies for 2 hours at room temperature. All blots were developed with Pico
Chemiluminescence reagents (Pierce), with the exception of CPS1 which was developed using Femto
Chemiluminescence reagents (Pierce), using an Amersham Imager 600RGB (GE Healthcare).

Gel-aided Sample Preparation (GASP)

A detailed description of the GASP protocol can be found in Appendix D.
Results and Discussion

Proteomic Analysis of Human PD, PSP, and Control Brain

A total of 4828 proteins were identified from seven biological replicates of control, PD, and PSP
human brain samples, with 3830 proteins having at least 2 unique peptides identified. Of the total
identified proteins, 3329 proteins were identified in PD samples, 3237 proteins in PSP samples, and 3324
proteins in control tissue, all having a minimum of 2 unique peptides. Ratio values were log2
transformed, and statistical analysis was performed using the Significance A outlier test, with the
Benjamini-Hochberg false-discovery rate (FDR)-based g-value cutoff of 0.05. Ratios needed to have a g-
value £0.05 in at least five of seven replicates to be considered significant. In PD compared with
control, 12 proteins were found statistically significant when using raw intensity ratios and 32 proteins
were found statistically significant when using LFQ intensity ratios (Table 3 and Table 4). In PSP
compared with control, 9 proteins were statistically significant when using raw intensity ratios and 17
proteins were statistically significant when using LFQ ratios (Table 5 and Table 6). Alternatively,

statistical analysis using Significance A with a t-test p-value cut off of 0.05 was used to determine
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significant expression changes for bioinformatics analysis in Ingenuity Pathway Analysis (IPA). Again,

ratios needed to have a p-value <0.05 in at least five of seven replicates to be considered significant.

Table 3. Benjamini Hochberg FDR Significant Proteins Using LFQ Intensities: PD vs Control.

Ratios were

generated using LFQ intensity values. LFQ ratios were log2 transformed and analyzed using Significance A with a
Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

false discovery rate (FDR)-based g-value threshold of 0.05.

Protein name Gene name Median Standard
Log2(LFQ Ratio) Deviation

Vacuolar protein sorting-associated protein 37C VPS37C 2.13 0.75

Rho GTPase-activating protein 32 ARHGAP32 3.38 0.45

Sorting nexin-17 SNX17 2.85 0.31

DDRGK domain-containing protein 1 DDRGK1 2.70 0.55

Unconventional myosin-Id MYO1D -2.78 2.05

Tenascin TNC -2.43 1.91

Hormone-sensitive lipase LIPE -1.74 2.09

Ectonucleotide pyrophosphatase/phosphodiesterase family ENPP6E 201 218
member 6

Actin-binding protein anillin ANLN -1.61 2.07

Aspartoacylase ASPA -2.17 2.14

Perilipin-3 PLIN3 -1.42 1.31

Carnosine synthase 1 CARNS1 -2.26 1.97

Glutathione S-transferase Mu 5 GSTM5 -1.79 0.54

Myelin P2 protein PMP2 -1.51 2.07

Ermin ERMN -1.35 1.67

60S ribosomal protein L36 RPL36 3.00 0.47

Inverted formin-2 INF2 -1.67 1.64

Thyroid hormone receptor-associated protein 3 THRAP3 3.75 0.40

MAGUK p55 subfamily member 5 MPP5 3.38 0.52

Uncharacterized protein Clorf198 Clorf198 -1.48 1.32

Target of rapamycin complex subunit LST8 MLST8 3.71 0.43

Caldesmon CALD1 2.79 0.29

60S ribosomal protein L35a RPL35A 3.40 0.04

Glutamate receptor 4 GRIA4 2.80 0.34

Thioredoxin, mitochondrial TXN2 2.54 0.20

Cytochrome c oxidase subunit 1 MT-CO1 2.50 0.53

Bis(5-nucleosyl)-tetraphosphatase NUDT2 2.40 0.40

BRISC complex subunit Abrol FAM175B 291 0.31

Golgin subfamily A member 7B GOLGA7B 2.55 0.19

WD repeat-containing protein 82 WDR82 2.08 0.26

MAP6 domain-containing protein 1 MAP6D1 -2.10 1.37

NAD-dependent protein deacylase sirtuin-5, mitochondrial SIRTS 1.98 0.38
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Table 4. Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: PD vs Control.

Ratios were

generated using raw intensity values. Raw intensity ratios were log2 transformed and analyzed using Significance
A with a false discovery rate (FDR)-based g-value threshold of 0.05. Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

Protein name Gene name Median Standard

Log2(Ratio) Deviation
Signal recognition particle subunit SRP72 SRP72 -2.91 0.59
Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha PIP5K1A -2.37 1.83
39S ribosomal protein L3, mitochondrial MRPL3 2.84 1.00
TBC1 domain family member 10A TBC1D10A 3.76 0.57
Long-chain-fatty-acid--CoA ligase 4 ACSL4 3.25 0.32
Cholecystokinin CCK 4.61 0.38
Coagulation factor VII F7 5.83 0.57
Vacuolar protein sorting-associated protein 41 homolog VPS41 2.74 1.59
Protein CASP Cux1 4.30 0.80
Liprin-beta-1 PPFIBP1 2.73 1.26
Protein RMD5 homolog A RMNDS5A 4.10 0.93
Nuclear receptor-binding protein 2 NRBP2 3.91 0.37

Table 5. Benjamini Hochberg-FDR Significant Proteins Using LFQ Intensities: PSP vs Control. Ratios were

generated using LFQ intensity values. LFQ ratios were log2 transformed and analyzed using Significance A with a
Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

false discovery rate (FDR)-based g-value threshold of 0.05.

Protein name Gene name Median Standard
Log2(LFQ Ratio) Deviation
Vitamin D-binding protein GC -2.69 0.60
Sorting nexin-17 SNX17 3.29 0.35
Malate dehydrogenase, cytoplasmic MDH1 -3.02 1.87
Coronin-7 CORO7 2.48 0.41
Unconventional myosin-Id MYO1D -4.01 2.61
Tenascin TNC -3.59 1.97
Perilipin-3 PLIN3 -2.33 1.34
Myelin P2 protein PMP2 -2.81 1.62
MAP6 domain-containing protein 1 MAP6D1 -2.23 1.16
NAD-dependent protein deacylase sirtuin-5, mitochondrial SIRTS 2.02 0.29
AP-3 complex subunit sigma-1 AP3S1 3.55 0.40
GH3 domain-containing protein GHDC 2.35 0.25
Thiosulfate suIfurtransferasg{cr:si:a;ese-like domain-containing TSTD1 356 0.48
Leucyl-cystinyl aminopeptidase;Leucyl-cystinyl aminopeptidase LNPEP 1.75 0.19
Collagen alpha-1(VI) chain COL6A1 -1.84 0.66
Protein DEK DEK 1.93 0.81
Hamartin TSC1 -1.79 0.46
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Table 6. Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: PSP vs Control. Ratios were
generated using raw intensity values. Raw intensity ratios were log2 transformed and analyzed using Significance
A with a false discovery rate (FDR)-based g-value threshold of 0.05. Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

Protein name Gene name Median Standard

Log2(Ratio) Deviation
Protein RMD5 homolog A RMNDS5A 5.03 0.91
Tubulin beta-6 chain TUBB6 -4.38 2.00
MKL/myocardin-like protein 2 MKL2 3.54 0.47
Signal recognition particle subunit SRP72 SRP72 -2.70 1.61
Liprin-beta-1 PPFIBP1 2.32 0.50
Lck-interacting transmembrane adapter 1 LIME1 2.51 0.63
Muscarinic acetylcholine receptor M3 CHRM3 2.87 0.45
Clathrin heavy chain 2 CLTCL1 3.50 0.76
Zinc finger RNA-binding protein ZFR 3.42 2.05

Functional Enrichment of Differentially Expressed Proteins in PD

Significance A analysis of raw intensity and LFQ intensity ratios comparing PD with control
identified statistically significant changes in 65 and 86 proteins, respectively. Pathway analysis of
proteins with significant LFQ intensity ratios from PD tissue identified a number of proteins that have
previously been shown to be associated with PD and movement disorders (Figure 19). A number of LFQ
significant proteins were also associated with mitochondrial dysfunction, which is hypothesized to be
involved in PD. Pathway analysis of proteins with significant raw intensity ratios revealed molecular and
cellular functions altered in PD, including protein synthesis, cell-to-cell signaling and interaction, and
lipid metabolism. Cholecystokinin (CCK), a peptide hormone that showed a significant increase in PD,
was shown to be involved in a number of altered cellular functions such as protein oligomerization,
dopamine regulation, and cytoskeletal organization. CCK has been shown to exist within dopaminergic
neurons in the brain [317], and its carboxy terminal octapeptide (CCK-8) is suggested to modulate
dopamine release [318, 319]. One early study examined the distribution of CCK-8 in human PD and
control brains, and found that CCK-8 levels were only slightly decreased in the substantia nigra [320].
Our proteomic analysis found CCK significantly increased in the cortex. Two separate studies showed no

correlation between mutations found in CCK and CCK-receptor genes and risk of sporadic PD, however
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both studies showed one polymorphism was associated with increased vulnerability to hallucinations
[321, 322]. While CCK does not appear to be a genetic risk factor for sporadic PD, its function as a

regulator of dopamine release may have implications in PD as dopamine has been shown to modulate

cortical function [323].
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Figure 19. Ingenuity Pathway Analysis of differentially expressed proteins in PD identified a number of proteins
previously associated with PD and movement disorders. IPA analysis of proteins with significant LFQ ratios in
Parkinson’s disease tissue identified a number of proteins previously associated with movement disorders and
Parkinson’s disease.

Another protein with significant expression changes in PD compared with control tissue is NAD-
dependent protein deacylase sirtuin-5 (SIRT5). SIRT5 is a member of the Sirtuin family of protein
deacylases, and is localized to the mitochondria [324, 325]. Increasing evidence suggests the
involvement of oxidative stress and mitochondrial dysfunction in PD pathology and progression [326,
327]. Mutations in PINK1 and PARK2, which are associated with familial PD, both have roles in
mitochondrial function, further implicating mitochondrial dysfunction in PD pathology. The PARK2
encoded protein Parkin can reduce ROS production and is associated with mitochondrial DNA [326].
PINK-1 is localized to the mitochondrial membrane, and has been shown to be involved in mitochondrial
metabolism and dynamics, protein degradation and oxidative stress [328, 329]. SIRT5 has desuccinylase
activity [330], and has been suggested to be the primary regulator of succinylated proteins in the
mitochondria [331]. A previous proteomic study of liver mitochondria from Sirt57 knockout mice and

wild type (WT) mice found hypersuccinylation of mitochondrial proteins in the absence of SIRTS5, causing

83



disruptions in metabolic pathways including in fatty acid-oxidation, oxidative phosphorylation, and
ketone body production [331]. Increased expression of the mitochondrial enzyme SIRT5 in PD brain
tissue compared with control tissue further implicates mitochondrial dysfunction in PD. While SIRT5 has
been shown to desuccinylate proteins in liver mitochondria [331], a mitochondrial succinyl-transferase
has not been identified. Identifying the enzyme(s) responsible for mitochondrial protein succinylation
could provide insight in the mechanisms regulating some of the metabolic pathways altered in the
absence of SIRT5. Additionally, whether SIRT5 found in the brain has the same mitochondrial function
as SIRTS found in liver mitochondria needs to be further determined.

Gamma-aminobutyric acid receptor subunit alpha-4 (GABRA4) is a GABA, receptor, and GABA is
an inhibitory neurotransmitter, reducing neuronal excitability. GABRA4 showed a 4.99-fold increase in
the cortex from PD patients compared with cognitively normal controls. A previous microarray analysis
identified decreased gene transcription of GABRA4 in the substantia nigra of human PD compared with
control samples [332]. Consistent with these observations, another study found decreased GABRA4
mRNA in the substantia nigra by quantitative PCR (gqPCR), and they also observed increased GABRA4
mMRNA in the caudate nucleus of PD patients suggesting the involvement of GABAergic
neurotransmission in neurodegeneration [333]. GABA, receptors and the GABAergic system have also
been implicated in AD pathology, and evidence supports the involvement of GABAergic
neurotransmission in the progression of neurodegeneration. Therapeutics that target GABA and the
GABAergic system are promising targets for the treatment of neurodegenerative diseases such as PD
[334, 335].

Huntington interacting protein 1(HIP1) is a membrane-associated protein that binds to actin and
is involved in actin organization. HIP1 also functions in clathrin-mediated endocytosis and protein
trafficking [336, 337]. HIP1 normally binds to the huntingtin protein [338], however this association is

disrupted in Huntington’s disease (HD), resulting in elevated levels of free HIP1 which is suggested to
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promote neuronal apoptosis in HD. HIP1 contains a region homologous to the death effect domain
found in proteins that promotes apoptosis [339]. As HIP1 is known to be involved in HD, a
neurodegenerative disease that also involves protein aggregation, the increased expression of HIP1 in
cortical tissue from PD brains suggests that it may contribute to PD pathology, causing impaired clathrin-
mediated endocytosis and/or disrupting membrane-cytoskeletal interactions.

Functional Enrichment of Differentially Expressed Proteins in PSP

Significance A analysis of raw intensity and LFQ intensity ratios comparing PSP with control
identified statistically significant changes in 55 and 61 proteins, respectively. Molecular and cellular
functions that appear to be altered in PSP affected brain tissue include cellular development, growth
and proliferation, cell cycle, and carbohydrate metabolism. Bioinformatic analysis also identified a
number of proteins that have previously been associated with neurological disease. For example,
cholinergic receptor, muscarinic 3(CHRM3), myosin, heavy chain 11 (MYH11), voltage gated sodium
channel, type 4 beta subunit (SCN4B), and gamma-aminobutyric acid (GABA) A receptor, beta 1
(GABRB1) all showed significant increases in PSP compared with control samples and have previously
been associated with tauopathies, particularly AD [340-343]. Olanzapine, an antagonist of CHRM3 and
GABRB1, has been shown to reduce aggression and prevent psychosis in AD patients [341]. Riluzole
treatment, an antagonist of SCN4B, has been shown to slow disease progression and prolong survival in
amyotrophic lateral sclerosis (ALS) patients [343]. Additionally, Riluzole was evaluated in a clinical trial
for the treatment of PSP, however did not have a significant effect on survival rate or the rate of
functional deterioration [342]. The differential expression of GABRB1, a multi-subunit chloride channel,
and SCN4B, a voltage gated sodium channel, suggest alterations in postsynaptic transmission in PSP.

The ubiquitin-proteasome system (UPS), responsible for the degradation of misfolded proteins,
has been proposed to be involved in a number of neurodegenerative diseases including AD and PD.

Ubiquitin-conjugating enzyme E2 G1 (UBE2G1) showed a significant 3.81 fold increase in PSP compared

85



with control tissue, and is involved in the protein ubiquitination pathway. UBE2G1 catalyzes the
covalent attachment of ubiquitin to proteins, and is involved in polyubiquitination. UBE2G1 mediates
polyubiquitination of cytochrome P450 3A4 (CYP3A4) in the liver, which oxidizes foreign molecules, such
as toxins or drugs, so that they are degraded [344]. Other components of the UPS, including ubiquitin,
ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme UbcH7 (E2) and ubiquitin C-terminal
hydrolase (UCH-L1) have been identified in Lewy bodies, primarily using immunohistochemistry staining
[345, 346]. Additionally, mutations in UCHL1 have been associated with increased susceptibility for PD
[294]. UPS is a major pathway mediating the degradation of abnormal proteins, and many
neurodegenerative diseases appear to involve aberrant protein aggregation, which may be a result of
reduced protein clearance.

Western Blot Validation of Differentially Expressed Proteins in PD and PSP

Other proteins of interest were selected for western blot validation based on functional
significance. Carbamoyl-phosphatase synthase 1 (CPS1) was selected for further validations as CPS1 is
typically observed in the liver and has not been known to be significantly expressed in the brain. CPS1 is
a mitochondrial enzyme that catalyzes the synthesis of carbamoyl phosphate from ammonia and
bicarbonate in the first step of the urea cycle. Our proteomic analysis showed a 2.43 fold increase in PD
compared with control brains, which was significant without Benjamini Hochberg FDR correction.
Western blot analysis revealed only a slight increased CPS1 expression in PD and PSP (Figure 20). While
CPS1 does not show a significant increase in PD or PSP and therefore may not be involved in PD
pathology, its identification in the cortex suggests CPS1 functions in the brain. While ammonia is
converted to urea in the liver and kidneys with the help of CPS1, in the brain excess ammonia has been
found to react with glutamate and glutamine synthetase to form glutamine which is released into the
blood stream to be absorbed by the liver or kidneys. Further research is needed to determine the

function of CPS1 in the brain and possible involvement in neurodegenerative disease
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Figure 20. Protein expression levels of CPS1 levels in PD, PSP, and control human brain tissue. After
normalization to GAPDH, CPS1 was not significantly increased in PD- or PSP-affected human brain tissue compared
with compared with cognitively normal, control tissue.

Based on the involvement of APP in AD, and the observation of amyloid plaque pathology in PD
with dementia, we further validated APP levels by western blot. Proteomic analysis showed a 1.87-fold
increase in levels of APP in PD, and western blot analysis showed a significant increase in APP in both PD
and PSP (Figure 21). While varying degrees of amyloid plaque pathology have been observed in the
brains of PD patients [288], increased levels of APP have not been confirmed. One study comparing
transgenic mouse models found that AP peptides enhanced a-synuclein accumulation and increased
cognitive deficits [347]. Other studies have reported reduced levels of AB42 in the CSF of PD patients
with cognitive impairment [348-350], which is consistent with observations in CSF of AD and MCI
patients who have increased levels of AB42 in the brain [23]. The mechanisms responsible for AB42
accumulation in PD, and the involvement of AB42 in PD pathology and progression remain unclear.
Increased expression of APP in PD is consistent with observations of amyloid plaque pathology in PD
patients and suggests the potential involvement of APP in PD pathology.
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Figure 21. Increased levels of APP in PD and PSP human brain tissue. Western blot analysis shows significant
increase in full length APP (6E10 antibody) in PSP- and PD-affected human brain tissue compared with control
tissue. *p-value<0.05.
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Comparison of LFQ and Raw Intensity Ratios

Normalization is important for accurate label-free quantification. MaxQuant provides a label-
free quantification normalization feature, which produces an ‘LFQ’ ratio in addition to the non-
normalized, raw intensity ratios [316]. Comparing the distribution of ratios generated using raw
intensity values with that generated using LFQ intensity values shows that the LFQ distribution is slightly

tighter than the raw intensity ratio distribution (Figure 22).
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Figure 22. Distribution of LFQ and raw intensity ratios for PD and PSP compared with control human brain
tissue. The distribution of log transformed ratios generated using either raw intensities (top) or LFQ intensities
(bottom) for proteins identified in either PD or PSP compared with cognitively normal, control tissue. LFQ
normalization increases the number of proteins with fold changes around 0, narrowing the distribution curve.

Statistical analysis of LFQ and raw intensity ratios also identifies different numbers of significant
proteins, and very few of the proteins with statistically significant ratios overlap when comparing raw
intensities and LFQ intensities. In some cases the ratios generated using raw intensities are very
different from those generated using LFQ intensities. For example, sorting nexin-17 (SNX17) showed a
2.36-fold increase in PD and a 2.69-fold increase in PSP when using raw intensity values, which were not
found statistically significant, but when using LFQ intensity values, SNX17 showed a 7.22-fold increase in

PD and a 9.81-fold increase in PSP, in which case both were determined to be statistically significant.
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SNX17 levels in PD, PSP, and control tissue were further examined by western blot to evaluate the
differences between LFQ and raw intensity ratios. SNX17 was also selected based on its function as a
member of the sorting nexin family of proteins, which are involved in membrane and protein trafficking
[351]. SNX17 is localized to early endosomes and has been suggested to have a role in recycling
endocytosed APP to the cell surface, preventing its degradation [352]. SNX17 knockdown in a human
glioblastoma cell line resulted in decreased levels of APP and increased AB production [352]. Western
blots analysis of SNX17 showed no change (1.05-fold) in PSP and was not significantly increased (1.27-
fold) in PD (Figure 23), which are closer to the raw intensity ratios than the LFQ intensity ratios.

APP showed a 1.87-fold increase in PD and a 1.16-fold change in PSP based on raw intensity
ratios, and a 1.1-fold increase in PD and a 1.09-fold change in PSP based on LFQ intensity ratios.
Western blot analysis of APP levels showed a 3.15-fold increase in PD and a 4.59-fold increase in PSP,
both found to be statistically significant. CPS1 showed 2.43-fold and 1.16-fold changes in PD and PSP,
respectively, when using raw intensity values, and a statistically significant 4.40-fold increase in PD and
2.07-fold increase in PSP when using LFQ intensity values. Western blot analysis of CPS1 showed a 1.39-
fold change in PD which is closer to the raw intensity fold change, and a 1.48-fold increase in PSP which
is in-between the raw and LFQ intensity fold changes. In order to control for unequal sample loss that
can occur during sample processing, we have implemented a peptide assay before loading samples onto
the mass spectrometer. Additionally, we have found that loading too much material onto the RP-UPLC
C18 column affects spray stability, which subsequently reduces protein identification and accurate
protein quantification. Following the peptide assay, samples are resuspended to achieve a final
concentration of 0.5-1ug/ul, depending on the available material, so that no more than 5ug are loaded

onto the column with a 5ul injection volume.
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Figure 23. Protein expression levels of SNX17 levels in PD, PSP, and control human brain tissue. After
normalization to GAPDH, expression ofSNX17 was slightly increased in PD- and showed no change in PSP-affected
human brain tissue compared with compared with cognitively normal, control tissue.

Conclusions of PD and PSP Analyses

While multiple studies have examined protein expression changes in the substantia nigra of
human PD brain tissue, we examined proteome changes in the cortex of human PD- and PSP-affected
brain tissue. This appears to be the first proteomic analysis of PSP brain tissue. Identifying proteome
changes in the cortex is important as cortical pathology is associated with increased cognitive decline in
PD [285, 286]. Over 2000 proteins were confidently identified in PD, PSP, and control tissue, and both
PD and PSP brain tissue showed significant expression changes in several proteins. Bioinformatic
analysis of differentially expressed proteins identified a number of cellular and molecular functions that
appear to be altered in PD and PSP. The identification of specific proteins and determination of
corresponding expression changes in proteins associated with these functions provides a foundation for
future mechanistic studies. Increased expression of APP was shown in PD and PSP, which further
implicates the potential involvement of APP in PD. Further validation studies are required to confirm
protein expression levels; however these data provide a foundation for additional mechanistic studies to
determine the functional significance of protein expression changes.

Proteomic Analysis of Human AD, MCI, and Control Brains

A total of 4389 proteins were identified from three biological replicates of control, MCl, and AD
human brain samples, and 3400 proteins were identified with a minimum of 2 unique peptides. Of the

total proteins, 2599 proteins were identified in MCI, 2583 proteins in AD, 2689 proteins in control tissue,
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all having a minimum of 2 unique peptides. Statistical analysis was performed using the Significance A
outlier test, with the Benjamini-Hochberg false-discovery (FDR)-based g-value cutoff of 0.05. Ratios
needed to have a g-value < 0.05 for all three replicates to be considered significant. Of the identified
proteins, 21 proteins were significantly altered in MCl, and 22 proteins significantly altered in AD. MCI
and AD Benjamini-Hochberg significant proteins are listed in Tables 7 and 8, respectively. Alternatively,
statistical analysis using Significance A with a t-test p-value cut off of 0.05 was used to determine
significant expression changes for further bioinformatics analysis in Ingenuity Pathway Analysis (IPA).
Again, ratios needed to have a p-value < 0.05 for all three replicates to be considered significant; 220
significant differentially expressed proteins in MCl and 195 significant differentially expressed proteins
in AD were submitted to IPA.

Table 7. Benjamini Hochberg FDR Significant Proteins Using LFQ Intensities: MCl vs Control. Ratios were
generated using LFQ intensity values. LFQ intensity ratios were log2 transformed and analyzed using Significance A
with a false discovery rate (FDR)-based g-value threshold of 0.05. Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

Protein name Gene name Median Standard

Log2(LFQ Ratio) Deviation
Myosin-11 MYH11 -2.50 3.16
Hemoglobin subunit gamma-1 HBG1 3.42 0.89
Tubulin beta-6 chain TUBB6 -1.83 0.35
Sodium/calcium exchanger 2 SLC8A2 -1.90 1.50
Microtubule-associated protein tau MAPT -3.59 2.02
Prolargin PRELP -2.16 1.34
Collagen alpha-1(XIV) chain COL14A1 -2.26 2.90
Rab3 GTPase-activating protein catalytic subunit RAB3GAP1 2.42 0.13
Calponin-1 CNN1 0.49 3.31
CB1 cannabinoid receptor-interacting protein 1 CNRIP1 -1.21 0.62
Guanine nucleotide-binding protein subunit gamma GNG2 -2.00 1.82
Ubiquitin-conjugating enzyme E2 variant 1 UBE2V1 -1.35 1.06
Adenosylhomocysteinase AHCYL2 -1.33 0.89
T-complex protein 11-like protein 1 TCP11L1 2.44 0.52
Coiled-coil domain-containing protein 92 CCDC92 2.73 0.15
Transportin-3 TNPO3 2.62 0.46
Syntaxin-6 STX6 2.22 0.31
Protein transport protein Sec24A SEC24A 2.43 0.11
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Table 8. Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: MCI vs Control. Ratios were
generated using raw intensity values. Raw intensity ratios were log2 transformed and analyzed using Significance
A with a false discovery rate (FDR)-based g-value threshold of 0.05. Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

Protein name Gene name Median Standard

Log2(Ratio) Deviation
Exportin-2 CSE1L -3.96 0.41
116 kDa U5 small nuclear ribonucleoprotein component SNRP116 -4.55 0.54
Sulfotransferase 1A1 SULT1A1 -3.97 0.23
Dynactin subunit 3 DCTN3 -3.84 1.29
Poly(ADP-ribose) glycohydrolase ARH3 ADPRHL2 3.76 0.36
Tectonin beta-propeller repeat-containing protein 1 TECPR1 3.55 0.32
Putative phospholipase B-like 2 PLBD2 3.52 0.47
Tubulin beta-6 chain TUBB6 -3.54 0.50
Sodium/calcium exchanger 2 SLC8A2 -2.95 2.13
Diablo homolog, mitochondrial DIABLO -2.71 0.24
Zinc transporter 3 SLC30A3 -3.82 143
Trans-2-enoyl-CoA reductase, mitochondrial MECR -2.86 2.40
Microtubule-associated protein tau MAPT -3.74 2.06
Collagen alpha-1(XIl) chain COL12A1 -4.42 3.25
Fibronectin FN1 0.10 4.30
Vacuolar protein sorting-associated protein 13A VPS13A -2.72 1.72
Coagulation factor Xl A chain F13A1 -3.97 2.56
Carbonyl reductase [NADPH] 3 CBR3 -3.18 2.59
40S ribosomal protein S11 RPS11 -2.69 0.94
Golgin subfamily A member 3 GOLGA3 5.20 0.80
Protein TFG TFG -2.69 2.08
Methylthioribose-1-phosphate isomerase MRI1 -2.77 0.55
Ig alpha-1 chain C region IGHA1 -3.97 0.33
1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon AGPAT5S -4.39 0.18
Beta-2-syntrophin SNTB2 -3.20 1.23
Adenylate cyclase type 5 ADCY5 -2.84 0.74
Histone H2A.V H2AFV 2.74 0.20
VPS10 domain-containing receptor SorCS2 SORCS2 3.36 0.37
Protein-arginine deiminase type-3 PADI3 3.18 0.40
39S ribosomal protein L22, mitochondrial MRPL22 -3.51 0.26
Protein DEK DEK 2.83 1.25
Peptidyl-glycine alpha-amidating monooxygenase PAM 3.50 1.13
Apoptosis regulator BAX BAX 3.23 0.39
Semaphorin-4D SEMA4D -3.15 0.26
Isovaleryl-CoA dehydrogenase, mitochondrial IVD -2.97 1.79
Espin ESPN -3.07 0.94
Sodium-coupled neutral amino acid transporter 3 SLC38A3 3.13 0.78
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Table 9. Benjamini Hochberg FDR Significant Proteins Using LFQ Intensities: AD vs Control. Ratios were
generated using LFQ intensity values. LFQ intensity ratios were log2 transformed and analyzed using Significance A
with a false discovery rate (FDR)-based g-value threshold of 0.05. Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

Protein name Gene name Median Standard

Log2(LFQ Ratio) Deviation
Synaptophysin SYP -2.09 1.52
ATP synthase subunit delta, mitochondrial ATP5D -3.54 0.41
Guanine nucleotide—bind;r;gmp;(;tzin G(1)/G(S)/G(0) subunit GNG2 244 0.77
Transgelin TAGLN -1.83 0.93
Prolargin PRELP -2.61 1.39
Synapsin-3 SYN3 -1.96 1.20
Myelin P2 protein PMP2 -1.48 1.19
Coiled-coil-helix-coiled-coil-helix domain-containing protein 3 CHCHD3 -1.70 1.03
Perilipin-3 PLIN3 5.79 0.74
Iron-sulfur cluster assembly enzyme ISCU, mitochondrial ISCU -2.44 1.27
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Table 10. Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: AD vs Control. Ratios were
generated using raw intensity values. Raw intensity ratios were log2 transformed and analyzed using Significance
A with a false discovery rate (FDR)-based g-value threshold of 0.05. Ratios with g-values < 0.05 in five out of seven
biological replicates were considered to be statistically significant.

Protein names Gene names AD Median AD Standard
Log2(Ratio) Deviation

Tubulin beta-6 chain TUBB6 -6.10 1.66
Histone H2A.V;Histone H2A.Z;Histone H2A H2AFV 4.30 0.55
Peroxisomal acyl-coenzyme A oxidase 3 ACOX3 4.47 0.52
Nuclear pore membrane glycoprotein 210 NUP210 4.77 0.83
Prolargin PRELP -4.26 1.68
Calponin-1 CNN1 -4.69 0.28
Zinc transporter 3 SLC30A3 -3.56 0.86
Trans-2-enoyl-CoA reductase, mitochondrial MECR -3.41 2.24
Brain acid soluble protein 1 BASP1 -3.75 0.02
Iron-sulfur cluster assembly enzyme ISCU, mitochondrial ISCU -4.06 3.15
Poly(ADP-ribose) glycohydrolase ARH3 ADPRHL2 3.77 0.69
Methionine--tRNA ligase, cytoplasmic MARS 4.30 2.66
Fatty-acid amide hydrolase 1 FAAH 3.94 0.38
Translational activator GCN1 GCN1L1 4.32 0.29
Cartilage acidic protein 1 CRTAC1 -3.16 1.41
Trifunctional purine biosynthetic protein adenosine-3 GART 4.05 0.38
WD repeat-containing protein 61 WDR61 5.14 1.04
Calcium-binding and coiled-coil domain-containing protein 1 CALCOCO1 5.83 1.08
Gamma-aminobutyric acid receptor-associated protein-like 2 GABARAPL2 -4.33 2.40
Microfibrillar-associated protein 2 MFAP2 -9.43 0.21
Lanosterol 14-alpha demethylase CYP51A1 3.54 0.72
26S proteasome non-ATPase regulatory subunit 8 PSMD8 -4.57 1.21
Alpha-1-antichymotrypsin;Alpha-1-antichymotrypsin His-Pro-less SERPINA3 -3.03 2.02
60S ribosomal protein L3 RPL3 -3.58 0.13
Endothelin B receptor-like protein 2 GPR37L1 -3.14 2.67
SLIT-ROBO Rho GTPase-activating protein 2C SRGAP2C -2.42 1.92
DNA polymerase subunit gamma-1 POLG -4.85 1.28
Heat shock protein beta-6 HSPB6 5.19 1.10
Guanine nucleotide-binding protein subunit gamma GNG10 4.83 0.14
Proteasome subunit beta type;Proteasome subunit beta type-6 PSMB6 -4.20 0.31
Coronin-7 CORO7 3.23 0.22
Rabenosyn-5 ZFYVE20 3.12 0.72
Proteasome subunit beta type PSMB8 4.72 0.51
Potassium-transporting ATPase alpha chain 2 ATP12A -2.97 0.37

%94



Mass spectrometry analysis demonstrated an increase in APP expression, while western blot
analysis showed relatively unchanged levels of full length APP (FL-APP) and a significant increase in Ap
peptide (Figure 24). To further investigate this discrepancy, sequence coverage of FL-APP from mass
spectrometry was examined. While no coverage of the AB region was observed in non-AD samples,
peptides from the AP region were identified in MCl and AD samples (Figure 24). As the AP region of APP
is hydrophobic and near the transmembrane domain, it can be difficult to obtain sequence information
from this region by mass spectrometry, and the presence of AB peptides in MCl and AD samples are
likely contributing to the levels of FL-APP quantified by mass spectrometry, suggesting increased

expression in these samples.
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Figure 24. Analysis of APP and AB levels in MCI, AD, and non-AD control brains. (A) Western blot analysis of

human brain samples show that while full-length APP (FL-APP) levels are not significantly altered in AD or MCI

compared with non-AD samples, there is increased AB peptide. (B) LC-MS/MS analysis of the same human brain
samples showed no coverage of the AB peptide region of APP (outlined in red) in non-AD samples (top), however

peptides were identified in the AB region of APP in MCI and AD samples (middle). Annotated MS/MS spectrum of

LVFFAEDVGSNK peptide found in A region of APP (bottom).

Functional Enrichment Shows AD and MCI Significant Proteins

Bioinformatic analysis revealed several proteins associated with molecular and cellular functions

in AD including post-translational modification, cell cycle, and lipid metabolism. Some of the molecular

and cellular functions enriched in MCl included cell death and survival, protein degradation, and protein
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synthesis. Both AD and MCI had significant proteins involved in mitochondrial dysfunction and related
oxidative phosphorylation as well as EIF2 signaling. Pathway analysis also predicted changes in activity
of upstream regulators based on observed protein expression changes. Activation of APP was predicted
in MCI (z-score 0.574) and AD (z-score 2.434) based on significant protein expression changes, which is
consistent with the disease state (Figure 25). Pathway analysis also predicted the activation of
interferon gamma (IFN-gamma) in MCI (z-score 1.221) and AD (z-score 3.087) based on increased
expression of several proteins consistent with IFN-gamma activation including intracellular adhesion
molecule 1 (ICAM1) [353], ubiquitin-like modifier activating enzyme 2 (UBA2) [354], and ubiquitin-
conjugating enzyme E2L 6 (UBE2L6) [355]. The predicted activation of IFN-gamma is consistent with
inflammation observed in AD. Interestingly, predicted activation z-scores for both APP and IFN-gamma
are not significant in MCI but are significant in AD, suggesting these processes are affected early and are
affected during disease progression.

Proteomic analysis identified significant expression changes in fatty acid amide hydrolase (FAAH)
in MCI (3.78-fold) and AD (15.36-fold) compared with non-AD, control tissue. FAAH, responsible for the
degradation of endocannabinoids in the endocannabinoid system (reviewed in [356]), was significantly
increased in AD compared with control tissue. Increased expression and hydrolase activity of FAAH has
been observed in glia surrounding amyloid plaques in AD [357], and in blood from AD patients [358].
Supporting a role for FAAH in AD neurodegeneration and pathology development, studies in rats had
shown that inhibition of FAAH enhances memory formation [359]. The endocannabinoid system has
previously been implicated in AD. Cannabinoid receptors have been shown to be protective against
excitotoxicity in mutant mice [360], and cannabinoids have been shown to reduce oxidative stress, and
be neuroprotective against AB-induced toxicity [361]. Elevated levels of FAAH in the cortex of MCl and
AD tissue further supports its involvement in AD pathology, and increasing evidence suggests that

dysregulation of the endocannabinoid system may have a role in memory impairment.
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Figure 25. Ingenuity Pathway Analysis predicted activation of APP and IFN-gamma in MCl and AD based on
observed protein expression changes. Activation of APP and IFNG were predicted in both MCI (z-score 0.574, and
1.221, respectively, and in AD (z-score 2.434, and 3.087, respectively). APP and A are known to play key roles in
AD. The predicted activation of IFNG, a cytokine secreted from immune cells in response to pathogen such as
inflammatory proteins, is consistent with inflammation often observed in AD.

Pathway analysis also predicted inhibition of the upstream regulator rapamycin-insensitive

companion of mTOR (RICTOR) in AD (z-score 1.633) based on proteins with significant expression

changes (Figure 26). RICTOR is a subunit of the mTORC2 complex, a serine/threonine kinase involved in

cytoskeletal organization and cell survival. It was previously shown that the RICTOR-mTORC2 complex is

involved in cytoskeletal dynamics. Knockdown of RICTOR in Hela cells resulted in the formation of thick

actin bundles, and it was speculated that RICTOR-mTOR regulation of cytoskeletal organization is
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mediated by PKCa activity [362]. The RICTOR-mTOR complex has also been shown to phosphorylate Akt
at Ser473 and facilitate phosphorylation at Thr308, both phosphorylation events are required for
activation [363]. Akt is known to have a role in cell cycle by preventing GSK-3B-mediated
phosphorylation and degradation of cyclin D1 [225]. Phosphorylation of Akt at Ser477 and Thr479 by
MTORC2 or Cdk2/cyclin A has been shown to trigger Akt activation by promoting mTORC2
phosphorylation of Ser473 [224]. Additionally, it was shown that Akt activation regulates cell cycle
progression [224], suggesting the involvement of mTORC2 signaling in the cell cycle. The mTOR
complex has also been suggested to be involved in AR oligomer induced neuronal cell cycle re-entry
events through the PI3K-Akt-mTOR pathway [364]. Finally, AB treatment of mouse neuroblastoma cells
downregulated mTOR activation, and decreased mTOR activity was also observed in cortex of PS/APP
transgenic mice and lymphocytes of human AD patients [365]. These findings are consistent with our
data suggesting inhibition of RICTOR, a member of the mTORC2 complex, in AD-affected human brain
tissue, suggesting this effect may be mediated by APP or AB. The predicted inhibition of RICTOR-

mMTORC2 may also be involved in aberrant cell cycle re-entry and progression that occurs during AD.
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Figure 26. Ingenuity Pathway Analysis showing predicted inhibition of upstream regulator RICTOR in AD based
on significantly differentially expressed proteins. (Rapamycin-insensitive companion of mTOR) RICTOR (z-score -
1.633 in AD and MCI) is a subunit of the mTORC2 complex, which promotes cell survival through Akt activation and
is involved in cytoskeletal dynamics through activation of PKCa.
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Though these human brain samples were not enriched for phosphopeptides, phosphorylation of
serine, threonine, and tyrosine was included in the database search parameters as a variable
modification to determine if any changes in phosphorylation could be identified. While only a small
number of phosphorylated proteins were identified, decreased phosphorylation of NAD-dependent
protein deacetylase sirtuin-2 (Sirt2) at Ser368 was observed in AD compared with control samples.
Annotated MS/MS spectra of the phosphorylated and non-phosphorylated Sirt2 peptide in control and
AD brain, respectively, are shown in Figure 27. Reduced phosphorylation of Sirt2 has previously been
observed in the hippocampus of AD patients [207], and this phosphoproteomic study provides site-
specific information for the observed decrease in phosphorylation. Sirt2 is phosphorylated at Ser368 by
CDK1/cyclin B at the G2/M transition, and this phosphorylation event is required for regulating the delay
in cell cycle progression [366]. When Sirt2 is constitutively phosphorylated at Ser368 decreased
hyperploidy is observed compared with wild type Sirt2, demonstrating the importance of this
modification in regulating the mitotic checkpoint [366]. Chromosome missegregation and polyploidy
[208], as well as binucleation of hippocampal neurons [367] observed in AD brains further suggest
impaired mitotic checkpoint regulation in AD. The observed reduction in Sirt2 Ser368 phosphorylation
in AD compared with control brains suggests dysregulation of the mitotic checkpoint, and may

contribute to the increased polyploidy observed in the brains of AD patients.
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Figure 27. Mass spectrometry identified decreased phosphorylation of Sirt2 at Ser368. Annotated MS/MS
spectra of NAD-dependent protein deacetylase sirtuin-2 (Sirt2) in non-AD (top) with phosphorylation at Ser368 and
AD (bottom) lacking phosphorylation at Ser368.

Comparison of B103 Cell Model and Alzheimer’s Disease Human Tissue Analyses

To further validate findings from our initial proteomic analysis of APP-null B103 and APP695-
expressing B103-695 cells, and to identify changes in human AD brain that may be attributed to APP
expression, we compared the each dataset. While a number of proteins were identified in each dataset,
five proteins showed significant expression changes (p-value<0.05) in both B103-695 cells and AD
human brain tissue. Of the five proteins with significant expression changes in B103-695 cells and AD
human brain tissue, four of them demonstrated the same trend in expression change; tubulin
polymerization promoting protein family member 3 (TPPP3), Acyl-CoA-binding protein (ACBP), brain
acidic soluble protein 1 (BASP1), and glycolipid transfer protein (GLTP). TPPP3, also known as p20, is a
tubulin polymerization protein that has been shown to bind and stabilize microtubules [368]. TPPP3
showed a 3.34-fold increase in human AD cortex, and a 1.94-fold increase in B103-695 cells. Previously,
a DNA microarray analysis determined increased expression of TPPP3 in the hippocampus of human AD
brain compared with control brains [369]. TPPP3 has also been reported to be necessary for

proliferation and cell cycle progression in Hela cells [370]. Microtubule polymerization has a crucial role
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in mitosis, and TPPP3 may be involved in regulating spindle formation [370]. ACBP is also known as
diazepam-binding inhibitor (DBI) based on its ability to modulate diazepam binding to the
benzodiazepine recognition site on the GABA type A receptor [371]. ACBP showed a 2.69-fold increase
in AD and a 2.04-fold increase in B103-695 cells. While our study found increased ACBP levels in the
cortex, another proteomic analysis of hippocampal tissue observed decreased ACBP levels in human AD
compared with control tissue [372]. Elevated levels of ACBP have been observed in the CSF from
patients with AD and PD with dementia [373]. These evidence suggest that ACBP may be regulated in a
region-specific manner during AD, and may have a role in other neurodegenerative diseases as well.
BASP1 showed decreased expression and GLTP showed increased expression in both B103-695 cells
compared with B103 cells and human AD cortex compared with control non-AD cortex. The increased
expression of TPPP3, ACBP, and GLTP, and the decreased expression of BASP1, in both APP695-
expressing cells compared with APP-null cells and human AD tissue, suggests that these proteins and
their associated functions are likely regulated by APP or a metabolite of APP. Additionally, as the
expression changes observed in human AD tissue are consistent with those observed in APP695-
expressing cells, it also suggests that these changes are mediated in an APP695-dependent manner.

Conclusion of AD and MCI Analyses

The predicted activation of APP and IFN-gamma in MCl and further activation in AD, confirm the
disease state of the MCl and AD brain tissue samples, and also further support the involvement of APP
and IFNG in AD progression. Both APP and IFN-gamma were predicted to be activated in MCl,
suggesting that they are affected early during neurodegeneration, and are not just associated with late-
stage AD. Differential phosphorylation of Sirt2 and predicted inhibition of RICTOR may have
implications in cell cycle deregulation, providing further evidence that aberrant cell cycle re-entry may
be involved in AD pathogenesis. Elevated levels of FAAH may represent a disease-specific protein

biomarker, as increased FAAH was observed in AD and MCI but not PD or PSP brain tissue. Furthermore,
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the findings that FAAH is also increased in the blood samples of AD patients imply that this may serve as
a biomarker for early detection of AD. In addition to being a potential biomarker of AD, the
endocannabinoid system may have a more complex role in cognitive impairment and AD pathology.
Further investigation to further determine the functional significance of the endocannabinoid system in
AD would provide insight into the potential neuroprotective effects of cannabinoids in preventing
neurodegeneration and dementia [374]. These comprehensive datasets provide information about
changes in signaling pathways in MCl and AD brains as well as insight into the mechanisms involved in

MCI and AD progression and pathology.
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Chapter 5 — Conclusions and Future Directions
Conclusions
Overview

The mechanisms involved in the pathology and progression of dementia in a number of
neurodegenerative diseases, including AD, PD, and MCI, are poorly understood. While the
neuropathology, such as the presence of amyloid plaques, neurofibrillary tangles, and Lewy Bodies, have
been described, the precise molecular mechanisms leading to their deposition and their contribution to
the progression of cognitive decline are unclear. As life expectancy has increased, a greater number of
people are living into their 80s and 90, and as ‘the baby boomer generation’ is reaching the age of 65,
the medical and financial burdens are growing substantially. The estimated cost of health care and
hospice for people with AD in the United States in 2015 is $226 billion, which is expected to rise with the
increasing elderly population [1]. There is an increasing need for the identification of reliable
biomarkers and development of better treatments and preventative strategies for AD and other
neurodegenerative diseases such as PD.

A significant amount of research has focused on the function of amyloid precursor protein (APP)
and its role in AD pathology; however, its primary physiological function as well as its involvement in
neurodegeneration and AD still need to be further understood. To investigate the impact of APP
expression on the proteome, we used mass spectrometry-based proteomics to perform a number of
global scale analyses beginning with a cell model of AD, examining both the proteome and
phosphoproteome. We then further compared the proteomes of human brain tissues affected by
diverse neurodegenerative disorders, including mild cognitive impairment (MCl), Alzheimer’s disease

(AD), Parkinson’s disease (PD), and progressive supranuclear palsy (PSP), with cognitively normal,
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control tissue. APP-null B103 and APP695 expressing B103-695 cells were used as a cell model to study
APP function, and SILAC-labeling was used for relative quantitation of protein expression changes in
both the global proteomic and phosphoproteomic profiles. When working with human tissue, a label-
free quantitative approach was used, relying on peptide ion intensity values to determine protein
abundance.

Proteomic analysis of SILAC-labeled B103 and B103-695 cells identified nearly 3000 proteins,
and proteins with significant expression changes were shown to be involved in cellular assembly and
organization, cell cycle, protein folding, and post-translation modification. Increased Ras and y-
synuclein expression were further validated by western blot analysis in human AD, MCI, and non-AD
brain tissue (Figure 5). Increased y-synuclein expression during MCl may indicate an early molecular
change during neurodegeneration, while increased expression of Ras in MCl and further increase in late
AD provides further evidence that Ras likely has a role in AD progression. Phosphoproteomic analysis of
SILAC labeled B103 and B103-695 cells confidently identified over 2000 phosphorylation sites. Several of
the phosphoproteins identified have implications in neurological disease, as well as cellular assembly
and organization, and cell growth and proliferation. Increased phosphorylation of Histone H4 at Ser47
was further validated in human MCI and AD tissue (Figure 18), and AP treated rat primary cortical
neurons (Figure 15). Increased phosphorylation of PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18) were also
found, which led us to further examine their expression in B103 and B103-695 cells (Figure 12), primary
neurons (Figure 15), and human tissue (Figure 18).

Label-free quantitative proteomics was then used to investigate human brain tissue from
multiple neurodegenerative diseases. Proteomic analysis of human brain tissue from MCI, AD, and
cognitively normal, control samples identified a total of 3400 proteins; 2583 in AD, 2599 in MCI, and
2689 in control tissue. A number of proteins with significant expression changes in both MCl and AD are

associated with cellular assembly and organization, and development. Bioinformatic analysis also
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determined a number of proteins with significant expression changes involved in cell growth and
proliferation in AD and cellular morphology in MCI. Identifying significant expression changes in
proteins involved in cellular assembly, organization, and morphology, growth and proliferation in
APP695-expressing cell model compared with APP-null cells, as well as human MCl and AD tissue
suggests that these molecular changes occur early in disease progression and may be mediated by APP.
Additionally, it implicates the involvement or dysregulation of structural proteins in disease pathology.
A separate proteomic analysis of human tissue from PD, PSP, and control brains identified just over 3800
proteins, 3329 in PD, 3237 in PSP, and 3324 in control tissue. Bioinformatic analysis of proteins with
significant expression changes identified a number of proteins involved in protein synthesis and lipid
metabolism in PD and cell cycle, growth and proliferation in PSP.

Each comprehensive proteomic dataset identified a number of proteins with significant
expression changes and bioinformatics analysis determined potentially affected cellular and molecular
functions. Five proteins showed consistent, statistically significant expression changes in the B103 and
B103-695 cell model of AD, as well as human AD tissue, increasing the likelihood that these proteins are
involved in AD and potentially mediated by APP695. While some of the molecular and cellular functions
were unique among neurodegenerative diseases, there also appears to be some overlap of affected
functions, suggesting that there may be more common mechanisms among different forms of
neurodegeneration.

Inflammation, Protein Aggregation, and Cell Cycle in Neurodegeneration

Analyses of human brain tissue from a number of different neurodegenerative diseases,
including MCI, which often progresses to more serious neurodegeneration and dementia, identified a
number of significantly altered proteins involved in inflammation. Inflammation, oxidative stress and
mitochondrial dysfunction are hypothesized to be involved in AD [212, 213] and PD [375]. Activated

microglia are also observed in both AD [10-12, 376] and PD [376, 377] further supporting activation of
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the inflammatory response. Pathway analysis of significant proteins in MCl and AD predicted activation
of interferon-y based on increased expression of several proteins including APP, BCL2-associated X
protein (BAX), ubiquitin-like modifier activating enzyme 2 (UBA2), and ubiquitin-conjugating enzyme E2L
6 (UNE2L6) in both MCI and AD (Figure 24). Pathway analysis also predicted the activation of the
inflammatory cytokines tumor necrosis factor (TNFa) (z-score 2.670) and interleukin 1a (IL1A) (z-score
2.371) in AD, suggesting that inflammation increases during the progression from MCI to AD. These
results are consistent with previous reports supporting the involvement of inflammation in AD, and
provide specific proteins with altered expression that may contribute to this process. While it is not fully
understood whether inflammation is a cause or result of other pathologies, the predicted activation of
inflammatory proteins in MCl and increasing in AD, suggests that the inflammatory response is affected
early and likely contributes to progression of neuropathology and cognitive decline.

Some of the clinical and pathological characteristics of multiple neurodegenerative diseases
overlap. For example, abnormal protein aggregation occurs in AD with the aggregation of AB42 into
amyloid plaques, as well as PD and LBD, with aggregation of a-synuclein into Lewy Bodies. Additionally
tau-neurofibrillary tangles are observed in AD, PSP, and other tauopathies such as frontotemporal lobe
dementia. The occurrence of aberrant protein aggregation in a number of common neurodegenerative
conditions leads to the idea that protein synthesis, folding, or clearance is likely impaired, and supports
the involvement of some more common pathologies leading to cognitive decline. When considering the
abnormal accumulation and aggregation of peptides and proteins, it is important to consider the
ubiquitin proteasome system (UPS), which is responsible for degrading modified, misfolded, or
denatured proteins. Dysregulation of the UPS has previously been implicated in a number of
neurodegenerative diseases [378], including AD [379] and PD [380], and our data also support this idea.
Several proteins that function in the UPS were identified in the analysis of human tissue, and at least

one ubiquitin-related protein showed a statistically significant change after FDR correction in PSP, AD,
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and MCI human tissue: Ubiquitin-conjugating enzyme E2 G1 (UBE2G1) showed a 3.81-fold increase in
PSP, E3 ubiquitin-protein ligase ltchy homolog (ITCH) showed a 7.82-fold increase in AD, and E3
ubiquitin-protein ligase UBR3 (UBR3) showed a 7.37-fold increase in MCI. Decreased phosphorylation of
deubiquitinating protein VCIP135 at Ser473 was observed in APP695 expressing cells compared with
APP-null cells, however the significance of phosphorylation at this site is unknown. Whether abnormal
protein aggregation occurs as a result of UPS dysfunction, or whether UPS-related proteins are found
within Lewy Bodies as a result of failed clearance is still unclear. Increased activity of the UPS has been
associated with activation of the inflammatory response [381, 382]. Understanding the precise
molecular mechanisms mediating protein aggregation and UPS activity and the role of inflammation
could provide novel therapeutic targets as these processes are likely involved in multiple
neurodegenerative diseases.

Previous studies have reported the aberrant expression of cell cycle proteins in MCl and AD
suggesting the involvement of neuronal cell cycle re-entry in neurodegeneration [104-108].
Additionally, APP and AP have been suggested to promote neuronal cell cycle re-entry [113]. Proteomic
analysis of the B103 and B103-695 neuroblastoma cell model of AD identified several proteins involved
in cell cycle with altered expression in APP695 expressing cells compared with APP-null cells. The cell
cycle was also implicated as an altered cellular function in PSP compared with control tissue. Analysis of
proteins with significant expression changes in human AD brain tissue predicted inhibition of RICTOR, a
component of the mTORC2 complex that activates Akt in a cell cycle dependent manner [224]. Reduced
phosphorylation of NAD-dependent protein deacetylase sirtuin-2 (Sirt2) at Ser368 was also found in
human AD brain, which is required for regulation the G2/M checkpoint [366]. Both RICTOR and p-Sirt2
(Ser368) have implications in aberrant cell cycle re-entry and progression. Increased expression of
TPPP3, a tubulin polymerization promoting protein previously shown to be involved in cell cycle

progression, was observed in both APP695-expressing cells and human AD tissue. These findings
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suggest that TPPP3 may be involved in neuronal cell cycle progression, and may be mediated by APP695.
These findings provide further evidence that aberrant cell cycle re-entry and progression are involved in
AD, PD, and PSP, further implicating cell cycle dysregulation in neurodegeneration.

Increased amyloidogenic processing of APP results in increased levels of AB42, which forms
amyloid plaques in AD, and to a lesser extent in MCl. Amyloid pathology has also been observed in the
brains of PD patients with dementia, and the co-existence of a-synuclein pathology and amyloid plaques
are associated with earlier onset of dementia and shorter survival [287, 288]. Additionally, our data
suggest increased expression of APP in the cortex of individuals with PD and PSP (Figure 23). These
findings suggest that APP processing and amyloid pathology can promote cognitive decline in MCI, AD,
as well as PD. APP and AP have been shown to promote the inflammatory response and promote
neuronal cell cycle re-entry [113], which may be involved in MCI, PSP, and PD in addition to AD
pathology. The precise mechanism by which APP and/or AB induces activation of inflammatory
pathways and promotes aberrant neuronal cell cycle re-entry need to be further understood; however,
these datasets present significant protein expression changes that may contribute to the specific
molecular changes. Whether APP or a metabolite of APP cause changes in protein folding or the UPS
needs to be further determined; however, understanding changes in these functions could provide
insight into the pathology of a number of neurodegenerative diseases. While AB42 and amyloid plaques
have been considered major contributors to AD pathology, increasing evidence suggests that soluble AB
oligomers may be responsible for promoting disease pathology [66]. Moving forward, it is important to
consider the potential involvement of other AR peptides, oligomers and metabolites of APP in AD
pathology. The impact of other APP metabolites and AP species on the inflammatory response, cell
cycle re-entry and progression, as well as protein misfolding, may provide additional insights into the
involvement of APP in neurodegeneration, thereby enabling identification of new targets for therapeutic

strategies.
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Future Directions

Cell Cycle and Inflammation Studies in a Cell Model of Alzheimer’s Disease

Global scale proteomic analysis of a cell model of AD was published in Electrophoresis (2012).
Further experiments were performed to investigate protein expression changes associated with cell
cycle and inflammation. Only B103-695 cells were assessed with and without cell cycle inhibitors and
the observed changes in protein expression under this condition should be attributed to cell cycle
inhibition. While expression changes in proteins associated with cell cycle inhibition were observed, a
larger study comparing APP-null B103 cells with and without cell cycle inhibitor treatment would be
beneficial to determine APP-mediated changes during the cell cycle. Additionally, cell synchronization
using aphidicolin treatment and serum starvation synchronizes cells in S phase or G, respectively, and
flow cytometry experiments using fluorescence activated cell sorting (FACS) analysis can be used to
confirm synchronization and monitor progression through the cell cycle. FACS analysis measures DNA
content after staining cells with the intercalating agent propidium iodide, and fluorescence can be
measured using a flow cytometer. As cells progress from G1 to S phase and G2/M, their DNA content
increases until the cell divides, and so the measured fluorescence intensity can be used to assess
whether cells are in G1, S, or G2/M phase of the cell cycle. Optimization of cell synchronization in B103
and B103-695 cells to ensure cell populations are synchronized would provide more information about
APP-mediated protein expression changes at specific stages of the cell cycle.

B103 and B103-695 cells were also treated with lipopolysaccharide (LPS) to study the impact of
inflammation on protein expression; however, LPS has a neurotoxic effect on neurons. A more
informative experiment would be to treat B103 and B103-695 cells with conditioned media from LPS
treated microglia or astrocytes. Additionally, B103 cells treated with LPS conditioned media should be
compared to B103-695 cells treated with LPS conditioned media to determine APP-mediated protein

expression changes and not just LPS-mediated changes.
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PCTAIREs in Neurodegeneration

PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18) are members of the cyclin dependent kinase (Cdk)
family. PCTAIRE-2 and PCTAIRE-3 showed increased expression in B103-695 cells compared with APP-
null B103 cells (Figure 12), as well as in PS/APP transgenic mice compared with non-transgenic control
mice (Figure 13) and human MCI- and AD-affected brain tissue compared with control tissue (Figure 18).
Additionally, AB treatment increased expression of PCTAIRE-2 and PCTAIRE-3 in cultured primary rat
neurons (Figure 15). Immunostaining analysis also revealed altered localization of PCTAIRE-2 and
PCTAIRE-3 in AB-treated primary neurons (Figure 16) and B103 and B103-695 cells (Figure 17). PCTAIREs
are relatively uncharacterized Cdc-2-related serine/threonine kinases. The functions of PCTAIRE-2 and
PCTAIRE-3 have not been discovered; however, increasing evidence suggests that they may be involved
in neurodegeneration. PCTAIRE-3 has been shown to directly promote tau phosphorylation at Thr231
and Ser235, which are early modifications in AD pathogenesis [270]. PCTAIRE-3 has been shown to be
activated through association with Cyclin A or phosphorylation by PKA at Ser12 [271], and PKA and
PCTAIRE-3 have both been observed in paired helical filament (PHF) fractions [270]. Additionally, our
initial proteomic analysis suggested increased PKA signaling in APP-695 expressing B103-695 cells [239].
PCTAIRE-2 and PCTAIRE-3 were initially selected for further validation based on observed changes in
phosphorylation; increased phosphorylation of PCTAIRE-2 Ser146 and Ser180, and increased
phosphorylation of PCTAIRE-3 at Ser66 and Ser109. After determining increased expression of PCTAIRE-
2 and PCTAIRE--3, the levels of phosphorylation may not be significantly increased following
normalization to total protein expression. The functional significance of phosphorylation at these sites is
unknown.

The functions of PCTAIRE-2 and PCTAIRE-3 can be further investigated by knockdown and
overexpression experiments in B103 and B103-695 cells. Knockdown can be achieved using siRNA

against PCTAIRE-2 and PCTAIRE-3. Stable or transient transfection of PCTAIRE-2 and PCTAIRE-3 can be
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used to increase expression. Levels of PCTAIRE-2 and PCTAIRE-3 can be determined by western blot
analysis to confirm knockdown and overexpression. Mass spectrometry can be used to compare the
proteomes and phosphoproteomes of PCTAIRE-2 and PCTAIRE-3 knockdown or overexpression cells to
determine affected proteins, pathways and functions. In addition to characterizing the function of
PCTAIRE-2 and PCTAIRE-3, the functional significance of the phosphorylation sites can also be further
investigated. The functional significance of the identified phosphorylation sites can be determined by
creating mutations in PCTAIRE-2 and PCTAIRE-3 at known and/or predicted phosphorylation sites.
Mutation of phosphorylated serine resides to aspartic acid, which is chemically similar, is commonly
used to mimic a phosphorylated protein. Conversely, phosphorylation can be inhibited by mutation of a
phosphorylated serine to alanine, a chemically similar amino acid that is not phosphorylated. Reducing
endogenous levels of PCTAIRE-2 and PCTAIRE-3 using siRNA, and expression of constitutively
phosphorylated or non-phosphorylated PCTAIRE-2 or PCTAIRE-3 may provide insight into the kinase
activity, functional significance, and activating or deactivating phosphorylation sites. Validation of
phosphorylated PCTAIRE-2 and PCTAIRE-3 is challenging as antibodies have not been generated, and the
production of an antibody against phosphorylated residues on PCTAIRE-2 and PCTAIRE-3 could benefit
future studies. Knockdown studies can also be performed in existing mouse models of AD, or transgenic
models can be developed using siRNA to inhibit PCTAIRE-2 and/or PCTAIRE-3 expression.

phospho-Serine47-Histone H4

Phosphoproteomic analysis showed increased phosphorylation of Histone H4 at Ser47 in
APP695 expressing B103-695 cells compared with APP-null B103 cells. Increase pSer47-Histone H4 was
further validated by western blot analysis in B103 and B103-695 cells (Figure 12) and in human MCI- and
AD-affected tissue compared with control tissue (Figure 18). Treatment of primary neurons with AB also
increased phosphorylation of Histone H4 at Ser47 (Figure 15). Phosphorylation at Ser47 has been

reported to promote the assembly of H3.3-H4 by the histone chaperone HIRA, while inhibiting CAF-1
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mediated assembly of H3.1-H4 [242]. While the functional significance of this process is not fully
understood, the functions of H3.3 are unique and cannot be substituted by H3.1 [256-258]. H3.3 is
localized to gene bodies of actively transcribed genes, and levels of H3.3 at gene bodies positively
correlates with gene expression [259, 260]. Chromatin immunoprecipitation (ChlP) sequencing can be
used to identify what sequences and genes Histone H4 is associated with when phosphorylated at
Ser47. During ChIP sequencing, proteins are cross-linked to DNA and immunoprecipitated using an
antibody against the proteins of interest, in this case pSer47-Histone H4, conjugated to beads for
purification. Following purification of the protein of interest and associated DNA, protein is dissociated
and DNA can be sequenced. As increased pSer47-Histone H4 was observed in APP695-expressing cells
compared with APP-null cells, and in human AD brain tissue compared with control tissue, determining
sequences or regions that pSer47-Histone H4 binds to would indicate genes that may be differentially
transcribed in AD compared with control tissue. Histone H4 Ser47-phosphorylation may be implicated
in expression of proteins that have or have not been considered in AD pathology. If ChIP sequencing is
successful in B103 and B103-695 cells, it can also be performed using human control, AD, and MCI brain
tissue. ChlIP sequencing of pS47-Histone H4 would also provide insight into the function and significance
of this modification. Mutation of Ser47 to aspartic acid or alanine could also be used to examine
proteome changes and functional consequences of constitutively modified or unmodified Histone H4
Ser47. Phosphorylation of Histone H4 at Ser47 may be involved in regulating gene transcription or
mitosis, with implications in AD pathology.

Human Tissue Analysis

Future directions include further validation of proteins with statistically significant expression
changes in MCI, AD, PD, or PSP, after FDR correction. To date, there are a very limited number of
phosphoproteomic analyses of human brain tissue affected by neurodegenerative diseases.

Phosphoproteomic analysis of MCl and AD human brain samples can provide insight into
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phosphorylation changes that may be involved in the onset and progression of AD. Phosphoproteomic
datasets can be used for bioinformatic and consensus motif analysis, which provides further information
about changes in kinase activity and affected signaling pathways. One of the limitations of the
phosphoenrichment strategy described in Chapter 3 is that it requires of large amounts of starting
material, and the filters used with FASP procedure have a loading capacity of 400ug. Gel-aided sample
processing (GASP), which was shown to be effective when working with small amounts of protein, does
not have a loading capacity and may be more appropriate for phosphoproteomic workflows.
Theoretically, GASP could also be applied to very large amounts of protein; however, the efficiency of
GASP for processing large amounts of starting material needs to be further tested. As there have been
several proteomic analyses of various regions from human MCI and AD brain, increasing the number of
phosphoproteomic analysis of human brain tissue would provide insights into affected kinases,
phosphatases, and signaling pathways that may be important for progression and development of

disease pathology.
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SILAC-based proteomic analysis

to investigate the impact of amyloid
precursor protein expression in
neuronal-like B103 cells

Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly. Amyloid
plaque formation through aggregation of the amyloid beta peptide derived from amyloid
precursor protein (APP) is considered one of the hallmark processes leading to AD pathol-
ogy; however, the precise role of APP in plaque formation and AD pathogenesis is yet to
be determined. Using stable isotope labeling by amino acids in cell culture (SILAC) and
MS, protein expression profiles of APP null, rat neuronal-like B103 cells were compared
to B103-695 cells that express the APP isoform, APP-695. A total of 2979 unique protein
groups were identified among three biclogical replicates and significant protein expression
changes were identified in a total of 102 nonredundant proteins. Some of the top biological
functions associated with the differentially expressed proteins identified include cellular
assembly, organization and morphology, cell cycle, lipid metabolism, protein folding, and
PTMs. We report several novel biological pathways influenced by APP-695 expression in
neuronal-like cells and provide additional framework for investigating altered molecu-
lar mechanisms agsociated with APP expression and processing and contribution to AD

pathology.
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1 Introduction

Alzheimer’s disease (AD) is the most common form of de-
mentia that affects elderly and is associated with cognitive de-
cline and loss of executive function. The two major patholog-
ical characteristics of the disease are the presence of neuritic
plaques and neurofibrillary tangles in the areas of the brain as-
sociated withlearning and memory [1-3]. Neuritic plaques are
formed by extracellular accumulation of amyloid beta (AR), a
peptide derived from amyloid precursor protein (APP). APP
is a single transmembrane domain protein that is expressed
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at high levels in brain. Studies in AD brains have shown that
APP is cleaved by beta-site APP cleaving enzyme {BACE or
beta secretase) and gamima secretases to generate Af, a pep-
tide fragmentthat is 40-42 amino acids long (AR40 and AR42)
[4-8]. In addition to beta and gamma secretases, APP is also
cleaved by alpha secretase; this secretase cleaves APP within
the AP domain and thus excludes the formation of AR from
APP. The secretase cleavages of APP generate ectodomains
and intracellular domains of APP in addition to AR (Fig. 1A).
APP has been reported to enhance neurite outgrowth, inhibit
neurodegeneration, and exert anti-apoptotic activity. Out of
the different APP fragments, A and AICD (APP intracellu-
lar domain) have been shown to enhance neurodegeneration
while the secreted alpha-cleaved ectodomain of APP (SAPPw)
has been shown to have growth promoting activity.

A number of factors such as age, environment, and in-
flammatory proteins appear to affect the onset of AD. Several

*Dr. Stanley M. Stevens Jr. and Dr. Jaya Padmanabhan are equal last
authors.
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Colour Online: See the article online to view Figs. 1 and 3 in colour.
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Figure 1. (&) Schematic of protechytic processing of APP by o,
B, and v secretases. (B) SILAC experimental workflow used for
differential protein expression profiling in B103 cells expressing
APP-695.

independent studies have shown that cell cycle deregulation
correlates with patholegy development in AD. Analysis of
brains from AD patients and mice expressing AD transgenes
has shown increased expression of cell eyde regulatory pro-
teing in neurons, which correlated with APP and tau phos-
phorylation and pathelogy development [9-21]. We recently
showed that phospherylation and cellular distribution of APP
are affected in a cell cycle-dependent manner and this is as-
sociated with altered processing of APP [10]. The discover-
ies demonstrating that cdls expressing APP show enhanced
growth rate and the observation that APPlocalizes to centro-
somes under mitetic conditions led to the hypothesis that it
may play a role in cell cyde progression. The exact role of
APP in cell cycle activation and cell proliferation is not yet
identified. Here we sought to determine the mechanismis)
by which APP affects cellular functions using APP null E103
nerve cells.

Hegant studies by Schubert et al. have shown that
B103 nerve cells do not express either APP or the APPlike
proteins APLP1 or APLP2 [22]. Therefore, these cells are
appropriate for studying the cdlular functions of APP.
These investigators showed that expression of APP in B103
cells erhances cell adhesion, neurite cutgrowth, and cell
praliferation but the melecular mechanisms by which APP
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induces these cellular functions are not quite clear. It is
possible that APP or a metabelite of APP can induce these
either by itsdf or by affecting expression of genes associated
with these functions. In order to determine whether APP
affects expression of proteins assoclated with cell adhesion or
cell cyde progression or cell signaling processes in general,
we performed an unbiased, glebal-scale analysis to assess
APP-mediated protein expression changes in B103 cells. We
used the stable isctopelabeling by amino acids in cell culture
[SILAC) approach for comparing the protein complement
of B103 cells expressing the 695 iscform of APP (referred
to as B103-695) to B103 APP null cells (referred to as B103)
as shown in Fig. 1B. The advantage of this approach is that
B103 cells can be grown in media containing nommal or
“light” versions of amine acids and B103-695 in media with
“heavy” amine acids. The labded (heavy) amine acids are
added to media that are deficient in specific amine acids {in
this case L-arginine and Llysine) and the cells metabelically
incorporate these amine acids during protein synthesis. This
technique allows one to differentiate proteins from one cell
system to the other and analyze both simultanecusly using
MS/MS. This approach decreases experimental variability
that cccurs during sample processing and provides more
consistent and reliable data for relative protein quantitation.
Here we provide evidence for protein expression changes in
B103 cells expressing APP-695 versus APP null cells and val-
idate changes in selected proteins invelved in cell signaling
as well as cell morphology, assembly, and organization.

2 Matenals and methods
2.1 Cell culture and SILAC labseling

B103 and B103-695 rat neurcblastoma cells were initially
cultured in DMEM /F12 {1:1) media supplemented with 10%
fetal bovine serum, 50 U/mL penicillin, and 50 pg/mL strep-
tomycin, at 37°C and 5% COy [23]. Cells were grown in T75
e’ flasksto near confluence, and then splitinto3 x T75 cm?
flasks for stable isetope labeling with heavy or light amine
acids in cell culture (SILAC).

BE103 and B103-695 cells were labeled for quantitation
using SILAC media supplemented with 10% dialyzed fetal
bowine serum, pen/strep, and either Llysine and L-arginine
for B103 or 13C6-L-Lysine 2HCI and 13C6_15N4-Arginine HC1
[Therme Scientific) for B103-695 cells, Cells were grown in
SILAC media for 7 days, during which they were passaged
once and media was changed every 48 h, fora minimum of
five doublings, corresponding to greater than 98% labeling
efficiency.

Cells were collected using Trypsin-EDTA and washed
three times with PES to remove serum proteins. Cells were
lysed in 250 pL of 100 mM Tris-HCl (pH 7.6) containing
4% 5DS, 100 mM DTT, and Halt protease inhibiter codk-
tail {Plerce) at 95°C for 5 min. Lysed samples were briefly
sonicated. Protein concentrations were determined using
the Pierce 660 nm protein assay with the ionic detergent
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compatibility reagent (Pierce). These experiments were done
in triplicate.

2.2 Sample preparation

Whole cell lysates were digested using the filter-aided sam-
ple preparation kit (Protein Discovery), as developed by Wis-
niewski and Mann [24]. Four digestions of approximately
100 pg of protein were performed for each biological replicate,
which were then pooled for a total of 400 g per biological
replicate. Thirty microliters of protein sample and 8 M urea
were mixed and added to the 30kDa filter-aided sample prepa-
ration spin filter for buffer exchange. Samples were alkylated
according to manufacturer’s instructions with iodoacetamide
for 30 min in the dark. Following alkylation, samples under-
went further buffer exchange with 3 x 100 pL additions of
50 mM ammonium bicarbonate, followed by centrifugation
at 14 000 x gfor 10 min. Samples were incubated with trypsin
at 1:100 (wrw, trypsin:protein) for proteolytic digestion of pro-
teins and incubated overnight at 37°C. Peptides were collected
by centrifugation with the addition of 2 x 40 L 50 mM am-
monium bicarbonate and 40 pL NaCl. Peptides were desalted
using Supelco Discovery DSC-18 SPE columns in combina-
tion with a Supelco vacuum manifold. Samples were dried
using a vacuum concentrator (Thermo) and resuspended in
20 pL of 0.1% formic acid in HyO.

Peptides were fractionated on a Dionex U3000 HPLC
system with a 15 cm x 1.0 mm id strong cation-exchange
(SCX) column (PolyLC Inc) packed with 5 pm 300 A
polySULFOETHYL A-SCX material. Two-min fractions were
collected using a 30-min gradient, where ammonium formate
increased from 15200 mM in 25% ACN at a flow rate of
250 pL/min. Ten peptide-containing fractions were selected
for LC-MS/MS analysis from each biological replicate (1 =
3 total). Peptides were again dried in a vacuum concentrator
and resuspended in 10 L of 0.1% formic acid in H,O.

2.3 LC-MS/MS

SCX peptide fractions were separated on a 10 em x 75 pm id
RP column (New Objective) packed with 5 pm 300 A C18 ma-
terial (ProteoPep II). MS/MS analysis was carried out using
a hybrid linear ion trap-Orbitrap instrument (LTQ Orbitrap
XL, Thermo). A 90 min gradient was used, where 0.1% formic
acid in ACN increased from 2 to 40%, increasing to 80% at 95
min through 100 min. Orbitrap full MS scans were collected
at a mass resolving power of 60 000, with positive polarity in
profile mode, and a scan range of m/z 350-1500. The top five
most abundant ions were selected for further fragmentation
in the ion trap. Global settings include dynamic exclusion of
90 8, with an exclusion list size of 500, and a repeat count of 2.

2.4 Database searching and pathway analysis

Raw files were processed in MaxQuant version 1.2.0.13, a
quantitative proteomics software package for the analysis
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of large, high-resolution M3 data sets [25]. The raw files
were processed and searched against the current UniprotKB
database containing Raftus norvegicus protein sequences as
well as a second MaxQuant database of known contaminants.
The search parameters included a constant modification of
cysteine by carbamidomethylation and variable modification
of methionine oxidation. Additional parameters include mul-
tiplicity set to 2, with a heavy set of lysine-6 and arginine-10.
The search tolerance was set to 8 ppm and the fragment ion
mass tolerance was set to 0.5 Da with a false discovery rate of
less than 1%.

Statistical analysis was carried out using Perseus soft-
ware, which assesses the statistical significance of protein ex-
pression based on the approach developed by Benjamini and
Hochberg [26]. A threshold g-value of 0.05 for the Benjamini-
Hochberg false discovery rate was used. Functional and path-
way analysis of identified proteins was carried out using In-
genuity Pathway Analysis (IPA, Ingenuity Systems).

2.5 Western blotting

Proteins were selected for Western blot validation of protein
expression changes based on significance as well as func-
tion. Twenty micrograms of B103 and B103-695 cell lysate
were separated on a 15% Tris/Glycine SDS-PAGE gel, run at
90V for 90 min. Proteins were semi-wet transferred to a nitro-
cellulose membrane (Whatman) at 30V for 90 min. The mem-
brane was subsequently blocked in 5% nonfat milk-TBS for
1h at room temperature, and washed using PBS containing
Tween-20 (PBST). Primary antibodies specific for Ras (Ab-
cam, mouse monoclonal, 1:1000), P-ERK, and ERK44/42 (Cell
Signaling, rabbit polyclonal, 1:1000}, and actin (Sigma, mouse
monoclonal, 1:7000) were diluted in 3% BSA/TBS/0.02%
sodium azide and incubated overnight at 4°C. Membranes
were then incubated with corresponding anti-rabbit (Pierce)
and anti-mouse (Pierce) secondary antibodies for 90 min at
room temperature and washed thoroughly. The blots were de-
veloped using the Super Signal chemiluminescence reagents
(Pierce).

2.6 Immunostaining analysis

B103 and B103-695 cells were plated onto poly-lysine-coated
eight chamber slides and cultured overnight in DMEM/F12
(1:1) medium with serum and Pen-Strep. After 24 h of
culturing, cells were washed with PBS and fixed with 49
paraformaldehyde for 10 min at room temperature. Atthe end
of the fixation, cells were washed and incubated in 1% BSA in
TBS containing 0.1% Triton X-100 (BSA/TBST) to block any
nonspecific binding. After 1 h incubation at room temper-
ature, y-synuclein (Millipore, rabbit monoclonal, 1:500) and
actin (Sigma, mouse monoclonal, 1:500) antibodies diluted in
BSA/TBST were added to the cells and incubated overnight
at 4°C by gentle rocking. The slides were washed with PBS
thoroughly and incubated with Alexa Fluor 488 anti-motse
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C

Figqure 2. “enn diagram representing the number of unigue pro-
tein groups identified in biological replicate A, B, and C, and the
crvetlap of proteins identified between the biological replicates.

and Alexa Fluor 5% anti-rabbit secondary antibedies (Invitre-
genGibea) for 1-2h at room temperature in the dark. At the
end of the incubation, cells were washed again and incubated
with 1 pg/mL Hoechst 33258, diluted in PES, for 10 min at
roomtemperature protected from light. Afterfurther washes,
the slides were mounted using Fluore-gel mounting media
{Blectron Microscopy Sciences) and analyzed under a Zeiss
Flucrescent microscope using AxioVision Rel 4.8 software

program.

3 Results and discussion
3.1 B103 and B103-695 proteome compatison

Atotal of 2979 protein groups were identified among three bi-
clogical replicates, excluding contaminants and false pesitive
identifications. The entire MaxQuant output is provided in
Supporting Information Table 51 and theproteinlist is sorted
by H/L ratio counts in order to approximately organize the
data in terms of quantitation confidence at the protein level.
Biclogical replicates A, B, and C identified 2549, 2335, and
2542 protein groups, respectively. Over 1900 protein groups
were shared by all three biological replicates. Replicates Aand
B shared 2053, replicates A and C shared 2228, and replicates
B and C shared 2080 protein groups. The ovedap of protein
identifications between biclogical replicates is demonstrated
by the Venn diagram shown in Fig. 2.

Perseus was used to identify proteins with statistically
significant changes in expression across multiple biclogi-
cal replicates. Two significance tests were employed, Signifi-
cance Aand Significance B, where the A significance gives no
weight to signal intensity and B significance is weighted by
signal intensity. Significance A test identified 79 significant
proteins, while 83 significant proteins were identified using
Significance B, for a combined tetal of 102 nonredundant
proteins that were differentially expressed in B103-695 cells
{listed in Supporting Infermation Table 52). Qut of the 102
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differentially expressed proteins, seven proteins were down-

regulated and 95 proteins were upregulated.

3.2 Functional enrichment

Several proteins that are important in cellular and melecular
functions induding cellular assembly and organization, cell
cydle, cell morphology, lipid metabelism, protein felding, and
PTMs were identified as having differential expression upon
proteome comparison in B103 and B103-695 cellsusing [PA
{Fig. 3). Many of the proteins identified are also involved in
regulating physiclegical system develepment and function
processes such as connective tissue, cardiovascular system,
and nervous system development and function, as well as
embryonic tissue development (Fig. 3).

IPA also identified significant canonical pathways asso-
clated with a number of identified proteins that were differ-
entially expressed induding CDKS5 signaling, cell cyde G2/M
DMNA damage chedipoint regulation, actin cytoskeleton sig-
naling, protein kinase A signaling, and ERKS signaling as
shown in the selected canonical pathways in Fig. 3. CDIS
signaling is invelved in cell differentiation and morphelegy
regulation and has been implicated in neuron degeneration
[27]. CDIG signaling is important for proper brain develop-
ment and dysregulation in CDES leads to defects in cell mi-
gration, plasticity, and other neurclegical defects [5, 28-30].
Additienally, actin cytoskdeton and protein kinase A sig-
naling were also over-represented from the SILAC dataset.
Actin cytoskeleton signaling is associated with cell motility,
axon guidance, cellular assembly, organization, function, and
maintenance whereas protein kinase A is a serine/threcnine
kinase that functions as a second messenger regulating a
variety of diverse functions induding growth, development,
and memory. Interestingly, the G2/ DNA damage check-
point was identified as a potential altered pathway from the
SILAC dataset aswdll and provides additional evidence of the
involvement of cell cyde-dependent mechanisms upon APP
expression in this cell model system. The G2/M DNA damage
chedipoint is the second chedepeint within the cell cycle and
is important for maintaining genomic stability as it prevents
damaged DNA from entering M -phase.

3.3 Pathway analysis reveals APP-mediated
alterations in cell morphology and Ras signaling

The top pretein interaction network identified using IPA is
primarily invelved in cell morphalegy, assembly, and organi-
zation, as well as nervous system development and function
which is shown in Fig. 4. Proteins of particular interest in-
dude y-synuclein and Ras, which are both found to be up-
regulated in B103-695 cells. Western blots were performed
to validate the increased expression of v-synudein and Ras
in B103-695 cells. While Ras showed a significant increase
by Western blot analysis (Fig. 5B), we were unable to detect
the y-synuclein with this technique. We believe that this is
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Figure 4. Top-scoring pathway from
Ingenuity pathway analysis associ-
ated with cellular assembly and or-
ganization based on differentially ex-
pressed proteinsidentified from B103
cells expressing APP-695. The net-
work diagram uses different shapes
to represent protein functions: en-
zymes (diamond), kinases (inverted
triangle), transporters (trapezoid),
and other (circles). Single lines rep-
resent protein-protein interactions;
solid or dashed linesrepresent direct
or indirect interactions, respectively.
Proteinsthat regulate another protein
are indicated by arrows.
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Figqure5. (&) Immunogtaining: B103 and B103-695 cells were co-immunostained using y-synuclein (rabbit polyconal) and actin (mouse
monoclonal)l primary antibodies and Alexa Fluor 534 anti-rabbit and Alexa Fluor 438 anti-mouse secondary antibodies. Hoachst was used
to wisualize the nuclei. The expression of y-synuclein was significantly higher in B103-695 than that in B103 cellsand it seemsto localize
tothe nucleus and cytoplasm. Images were taken on a Zeiss fluorescent microscope fitted with an Axiocam MRm carmera and analyzed
using Axiovision Rel 4.8 software [magnification: 63x). The bar graph shows the percent increase in ~-synuclein intensity measured
using Imaged, image analysis tool, after converting the images to 8-bit gray. The intensity of y-synuclein in three independent images
taken from B103 and B103-695 cells were normalized to the intensity of Hoech st within the same sample for comparison. (Bl Western blot
validation: Equal amounts of proteins from B103 and B103-6%95 cell extract s done in quadruplicate were separated on a 15% Tris-glycine
gel and probedwith Ras, and P-ERK antibodies. Both Ras and P-ERK were significanthy increasedin B103-695 cells comparedto B103 cells
(bar graphs labeled Ras and P-ERK). Re-probe ofthe Ras blot with actin antibody shows equal amount of preteing on gel and re-probe of
P-ERK blot with ERK antibody showsno change in expression of ERE upon expression of APP (bar graph labeled EREK).

due to thelimited antibody reactivity on Western blots asim- analysis (179 RSD) and also validate with an alternative
munestaining analysis using the anti-y-synuclein antibedy protein  expression measurement approach. Increased
showed a significant increase in this pretein in B103-695 expression of y-synuclein mRNA has been observed in the
cells compared to B103 (Fig. 5A). Co-staining of the cells with brains of AD patients, supporting its potential centribution
an actin antibedy showed altered actin staining in B103-695, in AD pathelegy [31] y-synudein has also been shown
providing some additional support to the funectional enrich- to bind microtubule and promete tubulin pelymerization
ment analysis results in whidh actin cytoskeleton signaling and cell adhesion [32]. Studies in cancer cells have shown
and subsequent cytoskeletal organization could potentially be that it enhances cell migration and protects against mitotic
altered through APP expression. inhibiter-mediated apoptosis. It was initially identified as a
Gamma synudein, a member of the synuclein family, breast cancer specific gene and was associated with breast
was the most significantly upregulated protein, showing a turner progression [33,34). v—Synudein has been shown to
59.6fold increase. It is important to note that even with interact with the chedkpeint protein BubR1 to bring about
relatively high variability at the peptide level, low ratio counts the defects in mitosis [35, 36].
and such a significant increase in protein expression for Ras, a small GTPase, is invelved in signal transdue-
y-synuclein, we were able to obtain fairly consistent protein tion regulating cell growth, differentiation, and survival.
ratic values across three biclogical replicates with the SILAC Increased Ras expression has been implicated in AD brains
© 2012 WILEY CH Verlag GmbH & Co. KGaA, Weinheim v electrophoresis-journal com
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but the functional significance of this in AD pathology
development is not known [37]. Interestingly, nerve growth
factor receptor protein in the plasma membrane, which is
upregulated in our dataset as a result of APP expression
in B103 cells, has been shown to increase activation of Ras
protein(s) in the cytoplasm [38]. Ras activation consequently
results in increased MAP-kinase activity. It is possible that
a Rag-mediated cell signaling cascade may play a role in
the aberrant cell cycle activation and neurodegeneration
associated with pathology development in AD.

Mitogen-activated protein kinase (MAPK) functions
downstream from1 Ras in this signal transduction pathway
and responds to extracellular signals by inducing different cel-
lular functions such as proliferation, mitosis, differentiation,
and apoptosis. Rag activation of the MAPK signaling
pathway has been well established. Although the Ras-MAPK
signaling pathway has a well-known role in cancer, there is
increasing evidence for its involvement in neurodegenerative
disease as well [39]. The Ras-MAPK signaling pathway has
been found to be induced during very early stages of AD,
prior to the formation of plaques and tangles [40,41]. MAPK
is also involved in the regulation of vy-synuclein mRNA
expression [42]. Analysis of the active phosphorylated form
of mitogen-activated protein kinase P44 /42 MAPK (ERK1/2)
showed that it is significantly induced in B103-695 cells
while the nonphospho ERK levels were unaffected by APP
expression (Fig. 5B). Given potential crosstalk between PKA
and MAPK signaling, we also investigated the impact of
siRNA-mediated knockdown and chemical inhibition of PKA
and found no effect on ERK phosphorylation status (data
not shown). These findings sugpgest that APP expression
specifically affects activation of ERK and do not have any
effect on the expression of the protein.

Downregulated proteins in the pathway shown in Fig. 4
include PD2 and LIM domain 1 (PDLIM1j protein, a tran-
scription regulator that has been shown to be responsive to
hypoxia and also oxidative stress [43]. Differential PDLIM1
mRNA expression in human vastus lateralis muscle has been
associated with Huntington’s disease, making PDLIM1 a po-
tential biomarker [44]. SYNCRIP is a member of the hetero-
geneous nuclear ribonuceloprotein family, and was recently
identified in a microarray study as a gene potentially involved
in AD [45]. Our SILAC study provides additional evidence for
these potential markers of AD at the protein level.

3.4 Implications in AD

Bioinformatic analysis of the 102 statistically significant pro-
teins identified numerous proteins with roles in a variety of
neurological diseases. We have listed differentially expressed
proteins from our SILAC analysis that have been implicated
in neurodegenerative disease in Table 1 ag determined by
IPA analysis, reporting only those proteins with ratios hav-
ing less than 309% RSD values. For example, hypoxanthine
phosphoribosyltransferase 1 was increased 10-fold and nerve
growth factor receptor was increased 3.5-fold, and both of
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these proteins have been associated with neurodegeneration
[46]. Nerve growth factor receptor as well as y-synuclein also
have emerging roles in AD [47]. There are two different types
of nerve growth factor receptors; the low-affinity nerve growth
factor receptor, also known as p75V'r, which binds all nen-
rotrophins and the Trk family of tyrosine kinase receptors
that bind specific neurotrophins. Both of these receptors have
been associated with neurodegeneration and are implicated
in AD pathology as these receptors bind AR, and are upregu-
lated in AD [48,49].

B103 cells expressing APP showed a decrease in Retic-
ulon 4 (RTN4), an endoplasmic reticulum (ER) associated
protein that is involved in neuroendocrine secretion. RTN4
has been shown to inhibit neurite outgrowth, and conse-
quently has also been named neurite outgrowth inhibitor
or Nogo. Increased expression of RTN4 has been shown to
decrease AP peptide production by reducing beta-site APP
cleaving enzyme 1 activity [50]. Park et al. found that RTN4
and its receptor RTN4R demonstrate altered subcellularlocal-
ization in AD. In normal brain, RTN4 shows reduced cellular
and enhanced neuropil localization whereas in AD brain, it
shows enhanced cellularlocalization. Similarly, while RTN4R
is mainly localized to cell soma in normal brain, it showed re-
duced cellular localization with more diffuse staining in the
neuropil and plaques in AD brain. RTN4R was also found
to physically interact with APP and AR, limiting AP accu-
mulation [51]. Another protein that showed downregulation
in the B103-695 cells is the eukaryotic translation initiation
factor 4A2 (elF4A2), which showed a 7.98-fold decrease and
is also associated with the ER. A decrease in expression of
the proteins associated with ER may indicate that expres-
sion of APP leads to an induction of ER stress. ER responds
to stress by activating various signaling pathways including
the unfolded protein response, which leads to attenuation of
protein translation. Studies have shown that APP induces ER
stress-mediated apoptosis in cells and further studies are nec-
essary to confirm that APP expression in B103 cells lead toan
induction in ER stress-associated signaling pathways [52]. In
AD, ER stress has been shown to induce inflammation, which
leads to enhanced pathology development in AD. Moreover,
elF4A2 has been suggested as one of the two suitable refer-
ence genes for RT-qPCR studies in human AD post-mortem
brain samples, as its mRNA is stably expressed [53].

Several studies algo indicate a link between APP process-
ing and lipid metabolism (see the reviews [54, 55]). Analysis
of cellular distribution of APP, BACE, and v-secretase have
gshown that these proteins colocalize in the lipid-rich raft
domains leading to enhanced amyloidogenic processing
of APP whereas a-secretase-mediated cleavage occurs at
membrane domains outside of the lipid rafts [56]. It has
also been shown that people with high-cholesterol levels
have increased risk of developing AD. Analysis of data
from AD patients have shown that people carrying the
apolipoproteing E4 allele (ApoE4) are more prone to get the
disease than those carrying apolipoprotein E2 or E3 allele
[57,58]. It is hypothesized that ApoE4 is a genetic risk factor
for AD however, not all carriers of ApoE4 get the disease.
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Table 1. Selected differentially expressed proteins implicated in neurodegenerative disease that were identified in B103-695 cells using
SILAC-based quantitative proteomic analysis

Fold change sSD 1D Symbal Entrez gene name Location
59,650 1017 F1L096 SNCG Synuclein, gamma {breast cancer-specific protein 1) Cytoplasm
11.433 218 0811A3 PLOD2 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 Cytoplasm
8.363 0.78 FILSL3 ITPR3 Inositol 1,4,5-tnsphosphate receptor, type 3 Cytoplasm
7.953 0.78 B2BaB0 EPHB2 EPH receptor B2 Plasma membrane
4.284 0.65 D37763 FLNC Hlamin C, gamma Cytoplasm
3.819 0.4 FIMA96 NCAMI Neural cell adhesion molecule 1 Plasma membrane
3.770 0.85 P50442 GATM Glycine amidinotransferase {£-arginine:glycine Cytoplasm
amidinotransferase)
3.638 0.52 F1LNX0 DDAH1 Dimethylarginine dimethylaminohydrolase 1 Cytoplasm
3.547 021 05HZV9 PPP1RT Protein phosphatase 1, regulatory subunit 7 Nucleus
3519 0.15 PO7174 NGFR Nerve growth factor receptor Plasma membrane
2970 0.59 P70636 LAMAS Laminin, alpha 5 Extracellular space
2872 0.27 06MG60 DDAH2 Dimethylarginine dimethylaminohydrolase 2 Unknown
2.768 017 FIMB5WE AFAP1L2 Actinfilament-associated protein 1-like 2 Cytoplasm
2.765 0.08 P05942 S100A4 S100 calcium-binding protein A4 Cytoplasm
2.657 0.43 FILNU6 FADS2 Fatty acid desaturase 2 Plasma membrane
2.653 0.42 080WE1 FMR1 Fragile X mental retardation 1 Nucleus
2557 017 FILYK? CFL2 Cofilin 2 {muscle} Nucleus
2375 0.40 FLZM7 HSDL2 Hydroxysteroid dehydrogenase like 2 Cytoplasm
2317 019 D4A4TO STUB1 STIP1 homology and U-box-containing protein 1, E3 Cytoplasm
ubiguitin protein ligase
2.309 0.10 091ZN1 CORDA Coronin, actin-hinding protein, 1A Cytoplasm
2.298 0.22 F1LV02 DBI Diazepam-binding inhibitor (GABA receptor Cytoplasm
modulator, acyl-CoA-binding protein)
2292 0.18 FILND?7 FDPS Farnesyl diphosphate synthase Cytoplasm
2.206 0.17 068641 ECI1 enoyl-CoA delta isomerase 1 Cytoplasm
2.156 0.38 046053 SAMDIL Sterile alpha motif domain containing 9-like Unknown
2144 0.16 PA0615 DKC1 Dyskeratosis congenita 1, dyskerin Nucleus
2118 0.08 P10368 GAMT Guanidinoacetate N-methyltransferase Cytoplasm
2072 0.06 063081 PDIAB Protein disulfide isomerase family A, member 6 Cytoplasm
1.880 0.03 P13233 CNP 7 % -cyclic nucleotide 3 phosphodiesterase Cytoplasm
1.865 0.03 D4ABVS Calm1 Calmodulin 1 Nucleus
1.853 0.05 D37M53 Ywhaq Tyrosine 3-monooxygenase/tryptophan Cytoplasm
5-monooxygenase activation protein, theta
polypeptide
1.850 021 D4A2YY GPI Glucose-6-phosphate isomerase Extracellular space
1.831 0.28 P16617 PGK1 Phosphoglycerate kinase 1 Cytoplasm
1.819 013 P21263 NES Nestin Cytoplasm
1.733 0.13 P07336 CKB Creatine kinase, brain Cytoplasm
1.714 0.10 035244 PRDX6 Peroxiredoxin 6 Cytoplasm
—2.015 0.1 06URK4 HNRNPA3 Heterogeneous nuclear ibonucleoprotein A3 Nucleus
—2.143 0.05 D4ASDS FLNB Filamin B, beta Cytoplasm
—2.342 0.03 F1M3G6 HSPH1 Heat shock 105kDa/110kDa protein 1 Cytoplasm
—2.941 0.06 050173 RTN4 Reticulon 4 Cytoplasm
—-3.017 0.10 Q7TP47 SYNCRIP Synaptotagmin binding, cytoplasmic RNA-interacting Nucleus
protein
—3.615 0.06 P52944 POLIM1 PDZ and LIM domain 1 Cytoplasm
—1.977 0.07 FILP27 EIF4A2 Eukaryotic translation initiation factor 442 Cytoplasm

Fold change for expression ratios less than 1 were reported as the negative reciprocal of the expression ratio.

The exact mechanism by which ApoE4 affects pathology
development in AD is not clear. It has been shown that
ApoE4 promotes the aggregation of AP leading to accelerated
plaque formation and cognitive deficit [59, 60]. Also, it
appears that ApoE4 is less effective in clearing Ap, thus
leading to its accumulation [61]. Studies in mouse models
of AD have shown that drugs that lower cholesterol levels
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can reduce the levels of AR and therefore plaque pathology
[62]. Our analysis showed a 2-3-fold increase in expression
of sterol O-acetyl transferase 1 and Acyl CoA: cholesterol acyl
transferase 2 in cells expressing APP compared to the
parental B103 cells. These enzymes are involved in es-
terification of cholesterol and play a role in controlling
the equilibrium between free and esterified cholesterol.
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These enzymes have been shown to have an effect on APP
processing; RNAi-mediated inhibition of ACAT1 led to a
decrease in processing of APP to generate AP indicating that
changes in cholesterol esterification can influence pathology
development in AD [63]. Studies by others have shown that
Acyl CoA: cholestercl acyl transferase 2 can more efficiently
esterify cholesterol than ACAT1 [64]. The upregulation
of these enzymes in B103-695 cells supgests that APP
may affect modification of lipids that in turn affects APP
processing. Alterations in cholesterol esterification may in-
fluence the membrane lipid composition and therefore APP
processing. Altogether these data suggest that APP and lipids
may be regulated by a feed-forward mechanism, where the
expression and processing of APP affects lipid composition
and function that in turn induces further APP processing.
Analyses of AD brains have shown aberrant expression
of cell cycle regulatory proteins in neurons. The roles of the
cell cycle repulators in neurons as well ag the mechanisms
that lead to the induced expression of these proteins are not
known. It is possible that either APP or a metabolite of APP
may enhance expression of proteins such as y-synuclein and
Ras, thus affecting cell proliferation of transformed cells and
degeneration of terminally differentiated cells. y-Synuclein
has already been shown to bind and alter microtubule dy-
namics. Qur co-immunostaining analysis with actin and +y-
synuclein antibodies show altered localization of actin in the
cells expressing APP. This is a significant finding and sug-
gests that APP-mediated induction in y-synuclein may lead
to alterations in cytoskeletal and microtubule-associated pro-
teins, which in turn affects neuronal signaling and synaptic
function in AD. Since y-synuclein affects the mitotic check-
point, it is possible that the neuronal expression of this pro-
tein may not only alter the neuronal cytoskeleton but also
affects the differentiation state of neurons. Neurons are ter-
minally differentiated cells and do not have an active cell cycle
machinery and therefore may respond to cell cycle activation
by undergoing apoptosis instead of transformation. In ad-
dition to a role in AD, studies from different groups have
shown that cancers of different organs show increased levels
of APP or a metabolite of APP. Thus, a careful analysis of APP
function may enhance our knowledge on the role of APP in
bringing about pathologies associated with not only AD but
also cancers of different organs.

4 Concluding remarks

This study represents the first comprehensive proteomic anal-
ysis of B103 and B103-695 rat neuronal-like cellg, incduding
relative quantitation of protein expression using SILAC-based
proteomics. Several proteins were identified as being signifi-
cantly upregulated or downregulated in B103-695 cells, many
with potential implications in AD pathology. The comprehen-
sive dataset provides insight into proteins that may be affected
by APP-695 expression and provides a foundation for future
mechanistic studies. The proteins identified are associated
with a number of diverse processes including cellular assem-
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bly and organization, cell cydle, lipid metabolism, protein
folding, PTMs, as well as physiological system development
and function. These findings suggest that several different
processes are influenced by APP expression, which may con-
tribute to synaptic dysfunction, amyloid plaque formation,
and AD pathology.
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Supplementary Table 2. Significant hits identified using Perseus. Fold change for expression ratios < 1 were

reported as the negative reciprocal of the expression ratio.

Majority Protein Name Majority Protein Gene Fold
ID Change

Synuclein, gamma, isoform CRA D4ACBO Sncg 59.6

Sodium channel FiLQQ7 Scn7a 32.2

Taste receptor type 2 member 135 F1LS99 Tas2r135 29.3
Myosin-10 F1LQ02 Myh10 19.7

Uncharacterized protein (Fragment) F1M6H4 13.2
RCG25923, isoform CRA D3ZQR7 Plod2 11.4
Hypoxanthine-guanine phosphoribosyltransferase F1ILNYO Hprtl 10.2
Renin receptor Q6AXS4 Atpb6ap2 8.8
Microtubule-associated protein 1A DAACP6 Map1la 8.6
Echinoderm microtubule-associated protein-like 1 Q4vac3 Eml1 8.5
Inositol 1,4,5-trisphosphate receptor type 3 C7E1V1 Itpr3 8.4
Ephrin receptor F1MAJO Ephb2 8.0

Armc6 protein B2RYL4 Armc6 7.6

Uncharacterized protein FIMAA7 Lamcl 7.3

Astrocytic phosphoprotein PEA-15 Q5U318 Peal5 6.4
Prefoldin subunit 2 BOBN18 Pfdn2 5.5

Ras-related protein R-Ras D3z8L7 Rras 5.1

Cell adhesion molecule 4 Q1WIM1 Cadm4 5.0

B-cell receptor-associated protein 29 Q5Xx1u4 Bcap29 4.4
Transcriptional activator protein Pur-alpha (Fragments) F1LPS8 Pura 4.3
PHD and RING finger domain-containing protein 1 Q63625 Phrfl 4.3
Prefoldin 5 (Predicted), isoform CRA B5DFN4 Pfdn5 4.3
Uncharacterized protein D3ZHAO Finc 4.3
Uncharacterized protein (Fragment) F1LUD3 Ahnak2 4.2
Uncharacterized protein D4A6US8 Tial 4.1
Uncharacterized protein (Fragment) F1M692 4.1
Fructose-bisphosphate aldolase C P09117 Aldoc 4.1
Uncharacterized protein D4ASFO Faml14al 3.9

RCG38845, isoform CRA F1LZC5 Ndufal3 3.8

Neural cell adhesion molecule 1 F1LUV9 Ncam1 3.8

CD97 molecule E9PT32 Cd97 3.8

Glycine amidinotransferase, mitochondrial P50442 Gatm 3.8
N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 008557 Ddah1 3.6
Apolipoprotein D P23593 Apod 3.6

Protein phosphatase 1 regulatory subunit 7 Q5HZV9 Ppplr7 3.5
Tumor necrosis factor receptor superfamily member 16 P07174 Ngfr 3.5
Calcium-regulated heat stable protein 1 Q9wu49 Carhspl 3.3
Sterol O-acyltransferase 1 070536 Soatl 3.3
Uncharacterized protein (Fragment) F1M903 Arhgap23 3.2

Dnal (Hsp40) homolog, subfamily B, member 4 Q5XIPO Dnajb4 3.2
Transglutaminase 2, C polypeptide Q6P6R6 Tgm2 3.2
Erythrocyte protein band 4.1-like 3, isoform CRA Q9JMB3 Epb4.113 3.1
3-hydroxyisobutyrate dehydrogenase, mitochondrial P29266 Hibadh 3.1
ERO1-like protein alpha D3ZNL3 Eroll 3.0
Phosphatidylinositide phosphatase SAC1 F1LYTO Sacm1l 3.0
Laminin chain (Fragment) F1MANS Lama5 3.0
N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 Q6MG60 Ddah2 2.9
Sperm antigen with calponin homology and coiled-coil domains 1 D3ZSR4 Cytsb 2.8
2-hydroxyacyl-CoA lyase 1 Q8CHM7 Hacll 2.8
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Msh2 protein B1WBQ7 Msh2 2.8
Uncharacterized protein (Fragment) F1IM5W8 Afap1l2 2.8
Protein S100-A4 P05942 S$100a4 2.8
Uncharacterized protein D3zC00 2.8
Tax1-binding protein 1 homolog F1LS64 Tax1lbpl 2.7

Fatty acid desaturase 2 Q97122 Fads2 2.7

Fragile X mental retardation protein 1 homolog E9PSS4 2.7
Uncharacterized protein D4A389 2.6
Uncharacterized protein (Fragment) F1IM2X2 2.6
Uncharacterized protein (Fragment) F1LYK7 Cfl2 2.6
RCG46052 D3ZKH6 Rabgapl1l 2.5

Hydroxysteroid dehydrogenase-like protein 2 Q4V8F9 HsdlI2 2.4
Probable saccharopine dehydrogenase Q6AY30 Sccpdh 2.3
Uncharacterized protein (Fragment) F1M8Y4 Depdc6 2.3
STIP1 homology and U-Box containing protein 1, isoform CRA D4AA4TO Stub1l 2.3
L-lactate dehydrogenase BSDEN4 Ldha 2.3
Coronin-1A Q917ZN1 Corola 2.3
Acyl-CoA-binding protein P11030 Dbi 2.3
Uncharacterized protein D3ZFJ2 2.3

Ac2-125 Q7TPKO Fdps 2.3

Brain-specific alpha actinin 1 isoform Q61487 Actnl 2.2
Large neutral amino acids transporter small subunit 1 Q63016 Slc7a5 2.2
Growth arrest-specific protein 7 055148 Gas7 2.2
Enoyl-CoA delta isomerase 1, mitochondrial P23965 Ecil 2.2
Uncharacterized protein D4ACC2 LOC100361376 2.2

Similar to protein 4.1G (Predicted), isoform CRA D3z5M1 Epb4.112 2.2
Uncharacterized protein E9PTD6 Samd9l 2.2

H/ACA ribonucleoprotein complex subunit 4 P40615 Dkc1l 2.1
Guanidinoacetate N-methyltransferase DAADWS Gamt 2.1
Protein disulfide-isomerase A6 Q63081 Pdiab 2.1
RGD1308350 protein (Fragment) Q5I0K2 RGD1308350 2.0
Uncharacterized protein D3Zz09 Vgll3 2.0
RCG25591, isoform CRA B2RYD7 RGD1311563 1.9
2,3-cyclic-nucleotide 3-phosphodiesterase P13233 Cnp 19
Calmodulin D4ADE9 Calm1l 1.9

14-3-3 protein theta P68255 Ywhaq 1.9
Glucose-6-phosphate isomerase Q6P6V0O Gpi 1.9
Phosphoglycerate kinase 1 P16617 Pgkl 1.8

Nestin P21263 Nes 1.8

Tubulin polymerization-promoting protein family member 3 Q5PPN5 Tppp3 1.8
Psmg4 protein B2RZB8 Psmg4 1.8

Creatine kinase B-type P07335 Ckb 1.7
Peroxiredoxin-6 035244 Prdx6 1.7
Mannose-P-dolichol utilization defect 1 D3Z865 Mpdul 1.7
Uncharacterized protein D3ZVAS5 Fbll1 1.3
Membrane-associated DHHC13 zinc finger protein E9PU37 Zdhhc13 1.2
Heterogeneous nuclear ribonucleoprotein A3 Q6URK4 Hnrnpa3 -2.0
Filamin, beta (Predicted) D3zD13 FInb -2.1

Heat shock protein 105 kDa Q66HA8 Hsphl -2.3
Reticulon-4 F1LQN3 Rtn4 -2.9

Heterogeneous nuclear ribonucleoprotein Q D3ZME6 Syncrip -3.0
PDZ and LIM domain protein 1 P52944 Pdlim1 -3.6
Eukaryotic initiation factor 4A-II Q5RKI1 Eif4a2 -8.0
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Summary

One challenge associated with mass spectrometry-based proteomics is the preparation of
samples from small amounts of starting material. Studies using primary cell cultures isolated from
various tissues often provided limited numbers of cells (eg. microglia). Additionally, accessibility to
human tissue and the quantity of tissue that can be obtained is also often limited. To date, a number or
proteomic sample processing methods have been used, some of which show variable results when
working with small amounts of protein. We have successfully implemented a gel-aided sample
processing (GASP) method for proteomic analysis of cell lysates and human brain tissue samples with as
low as 1ug of protein. Based on proteome coverage obtained using high-resolution mass spectrometry,

GASP is a reliable and reproducible method for processing samples with limited amounts of protein.

Key Words

Proteomics, gel-aided sample processing, GASP, protein
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1. Introduction

A number of sample preparation strategies have been developed for various proteomics
applications. In-solution digests are useful when the sample buffer is compatible with digestion and
downstream analytical detection, primarily relying on urea for sample lysis and protein solubilization.
Additionally, SDS-PAGE and 2-dimensional electrophoresis (2-DE) are commonly used for protein
separation/fractionation followed by in-gel digest of proteins [128, 129, 383]. While these techniques
are commonly used, lysis buffer compatibility is usually limited to mild reagents when mass
spectrometry is the downstream characterization technique. Another point to consider is that
solubilization of membrane proteins and other hydrophobic proteins often requires harsher lysis buffers
that include detergents, such as sodium dodecyl sulfate (SDS), which increase protein solubilization, and
therefore increase proteome coverage [384]. While detergents increase protein solubilization, they are
typically incompatible with mass spectrometry as they can suppress analyte ion formation and reduce
chromatography performance and, therefore, detergent removal improves protein identification [385,
386]. The Mann lab developed the filter-aided sample preparation (FASP) method for removing ionic
detergents, which uses a filter for buffer exchange followed by protein digestion [217]. While FASP is a
commonly used and efficient method for proteomic sample processing using SDS, it also has its
limitations; for example, it relies on filters that are known to absorb proteins, especially hydrophobic
proteins, and these filters occasionally fail to retain protein. These issues can be particularly
problematic when working with limited amounts of protein as the majority of it may be retained by the
filter or lost entirely.

Recently, a gel-aided sample preparation (GASP) approach was described [387] that
demonstrated effective and reproducible protein recovery when working with very small amounts of
protein. During GASP, protein samples are combined with acrylamide to generate a solidified piece of

gel matrix that encapsulates the protein lysate. The gel is minced to increase buffer access, while
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proteins are retained in the gel. After washing the gel pieces, proteins are digested overnight asin a
typical in-gel digestion, and peptides can be subsequently extracted. To determine the effectiveness of
GASP in the analysis of brain-derived cell and tissue lysate, we report the application of the GASP
method for proteomic analysis of limited amounts of protein extracted from human brain tissue.
2. Materials
Solutions should be prepared using HPLC-grade water, or at minimum nanopure water, and
analytical grade reagents.
2.1 Lysis buffer composition
1. Lysis buffer composition: 4% SDS, 100mM dithiothreitol (DTT), 100mM Tris pH 7.4,
protease and phosphatase inhibitors (optional). A stock of 100mM Tris pH 7.4 can be
prepared in advance and stored at room temperature. We prepare 100mM Tris pH 7.4
by solubilizing Tris-base in water and adjusting the pH with HCl. 4% SDS (w/v) and
100mM DTT should be prepared fresh before each use in 100mM Trish pH 7.4.
2. Pierce 660 assay reagent and ionic detergent compatibility reagent (IDCR) (Pierce).
2.2 Acrylamide and polymerization reagents
1. Protogel (40% w/v, 37.5:1, acrylamide/bisacrylamide solution, National Diagnostics).
2. 10% ammonium persulfate (APS) (w/v) should be made fresh before each use. To make
10% APS, add 100mg APS to 850ul water, for a final volume of 1ml. Amounts can be
scaled depending on the requirements for the experiment.
3. Tetramethylethylenediamine (TEMED).
4. Spin-X filter inserts (Costar, Corning) are used to mince gel pieces and should be placed
in 2ml centrifuge tubes.
2.3 GASP buffers

1. Fixing solution: 50% methanol, 40% acetic acid, 10% water (v/v/v).
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2. Wash solution: 6M urea in 100mM Tris pH 8.5. A stock of 100mM Tris pH 8.5 can be
prepared in advance and stored at room temperate. 6M urea should be prepared fresh
for each experiment.

3. Dehydrating solution: acetonitrile.

4. Rehydrating solution: 50mM ammonium bicarbonate (ABC) in water.

5. Peptide extraction solution: 5% formic acid (v/v) in water.

2.4 Digest solution resuspension and composition.

1. Resuspend 200ug lyophilized Trypsin/Lys-C (Promega) in 20ul resuspension buffer
(50mM acetic acid). Dilute to 0.1pg/pl using 25mM ammonium bicarbonate (ABC).
Depending on the amount of trypsin required, Trypsin/Lys-C can be further diluted using
25mM ABC.

2.5 LC-MS/MS Peptide Resuspension Buffer
1. 1% acetonitrile, 0.1% formic acid, water.
3. Methods
3.1. Sample Lysis

1. Weight brain tissue samples and calculate required lysis buffer volume based on the
addition of 5ul lysis buffer/1mg tissue weight.

2. Add lysis buffer to cell pellet or tissue. Incubate at 95°C for 5 minutes. Centrifuge at
16,000xg for 10 minutes to pellet any remaining insoluble material. When working with
small cell pellets or pieces of tissue, there should only be a minimal pellet, if any can be seen
at all. After the addition of 4% SDS lysis buffer, boiling, and sonication, protein samples
should be kept at room temperature when in use to avoid SDS precipitation.

3. Determine protein concentration using the Pierce 660 assay supplemented with ionic

detergent compatibility reagent (IDCR) (see Note 1).
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3.2. Gel-Aided Sample Processing (GASP)

All procedures carried out at room temperature unless otherwise specified.

1.

10.

Bring desired amount of protein to 50-100ul in 100mM Tris pH 7.4. Add an equal volume of
Protogel (40%) to achieve a 20% acryalmide solution (see Note 2). Gently mix until
homogenous and incubate at room temperature for 20 minutes.

Add 5ul 10% APS and 5ul TEMED to lysate/acrylamide. Let gel polymerize for 15 minutes, or
until solid (see Note 3).

Transfer gel piece to a Spin-X filter insert placed in a 2ml centrifuge tube (see Note 4).
Centrifuge at 16,000xg for 5 minutes. If a significant amount of gel has not passed through
filter, re-position the gel in the filter and re-centrifuge (see Note 5).

Add 1ml fixing solution to the minced gel pieces. Incubate while vortexing for 10 minutes
(see Note 6). Briefly centrifuge the samples and discard the supernatant (see Note 7).

Wash 1: Add 500ul of 6M urea to gel pieces. Incubate while vortexing for 10 minutes.
Dehydrate gel pieces with 1ml of acetonitrile and incubate while vortexing for 10 minutes.
The gel pieces will turn white. Briefly centrifuge and discard supernatant.

Wash 2: Add 500ul of 50mM ABC to gel pieces. Incubate while vortexing for 10 minutes.
Dehydrate gel pieces with 1ml of acetonitrile. Incubate while vortexing, until gel pieces turn
white. Briefly centrifuge and discard supernatant.

Repeat dehydration with 500ul acetonitrile for 10 minutes while vortexing.

Add Trypsin/Lys-C solution to the dry gel pieces (1:50, w/w, enzyme:substrate). Bring the
volume of the Trypsin/Lys-C solution to twice the volume of the original gel piece using

25mM ABC (see Note 8). Incubate at 37°C overnight (~16 hrs).
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3.3. Peptide Extraction

Add 1 volume (equal to the volume of the overnight digest solution) of acetonitrile (see
Note 9). Incubate while vortexing for 10 minutes.

The supernatant contains desired peptides. Briefly centrifuge and transfer the supernatant
to a fresh, labelled 1.5ml centrifuge tube.

Rehydrate gel pieces with 1 volume of 5% formic acid in water. Incubate while vortexing for
10 minutes.

Dehydrate gel pieces with 1 volume of acetonitrile. Incubate while vortexing for 10 minutes.
Briefly centrifuge and pool supernatant with previously collected supernatant.

Further dehydrate gel pieces with 1 volume of acetonitrile. Incubate while vortexing for 10
minutes.

Briefly centrifuge and pool supernatant.

Completely dry peptides in a vacuum concentrator (see Note 10). Resuspend peptides in
0.1% formic acid, 1% acetonitrile. Vortex for 5 minutes. Place in sonicator bath for 10

minutes. Centrifuge at 16,000xg for 10 minutes. Transfer to autosampler vial (see Note 11).

3.4. Database Searching

1.

4. Notes

GASP results in the addition of propionamide on N-termini of lysine, cysteine, and histidine

residues. Need to consider as variable modification in database searches (see Note 12).

While we use the Pierce 660 assay for determining protein concentration, other protein
assays may be compatible with the lysis buffer as well. The use of IDCR with the 660 assay
when using the 4% SDS, 100mM DTT lysis buffer is critical in order to obtain fairly accurate
measurements of total protein amounts (for downstream mass spectrometry-based

guantitation).
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10.

11.

12.

If sample/lysate volume is 100ul, add 100ul of 40% acrylamide. The desired concentration
is 20% acrylamide.

If the gel does not harden, more acrylamide and APS can be added.

The gel piece should be oriented so that the widest part is against the filter (see Figure 1a).
It is important to use 2ml centrifuge tubes as volumes of 1.5ml are used during some
steps.

Not all gel pieces will pass through the Spin-X filter. Any gel pieces that do not pass
through and remain in the filter should be added to the minced gel pieces in the centrifuge
tube.

All steps involving incubation while vortexing were performed using a Fisher Scientific
vortex mixer at setting 1 (lowest setting, approximately 300rpm).

All supernatant removal and discard steps should be performed using gel loading tips. A
gel loading tip can be attached to a 1ml pipette tip to more conveniently remove large
supernatant volumes (see Figure 1b).

If the total volume of the lysate and acrylamide was 100ul (ex. 50ul lysate and 50ul
acrylamide), dilute Trypsin/Lys-C to 200ul for overnight incubation.

A ‘volume’ should be equal to the volume used above (in Note 8). For example, if
Trypsin/Lys-C was diluted to a final volume of 200ul, a ‘volume’ is 200pl.

Additional desalting steps are not necessary but could be incorporated into the protocol.
Resuspend dried peptides in ~0.5-1pl more than intended to transfer to autosampler vial
whenever possible. Use a gel loading tip to transfer sample to the autosampler vial being
careful to avoid any pelleted insoluble material or gel pieces.

Monomeric acrylamide reacts with nucleophilic amino acids and can result in the addition

of propionamide to the N-termini of cysteine, histidine, and lysine residues. This needs to
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be considered as a variable modification when searching raw data files. In our experience,
based on the total number of propionaminde modifications, lysine undergoes this
modification the most, followed by histidine and then cysteine.

Table 1. Number of proteins identified from human tissue after GASP. GASP was used to process 0.5ug, 5ug,
10pg, 25pg, and 50ug of protein from 2 biological replicates (Rep 1 and Rep 2) of human brain tissue. Peptides
were separated on an EasyNano-LC with a 50cm C18 reverse-phase (RP)-UPLC column and analyzed on a Q-
Exactive Plus with a 1 hour gradient. The number of proteins identified with a reported intensity value increases as
the amount of protein increases. Additionally, the number of proteins identified with a minimum of 2 peptides is
reported.

Number of Quantified Proteins Number qf'P roteins lden'tified with
Minimum 2 peptides
GASP Amount Rep 1 Rep 2 Rep 1 Rep 2
(ng)
0 1023 832 700 507
5 1960 1882 1555 1447
10 2076 2148 1642 1667
25 2210 2012 1744 1589
50 2163 2252 1683 986

Table 2. Protein quantitation accuracy following GASP of human tissue. Generating a ratio of intensity values
comparing 0.5ug and 5ug digests, we would expect a 25-fold increase in intensity from the 5ug digest. The
average median ratio of 5ug/0.5ug protein intensities was 28.51, slightly above the expected increase. We
speculate, based on the peptide digest amount resuspended and analysed by LC-MS/MS, that with the 50ug GASP
we are surpassing the column loading capacity of the analytical column which is affecting protein quantitation .

Ratio Median Ratio Avg. Median St. Dev.

5/0.5-1 26.497

28.51 2.85
5/0.5-2 30.53
10/5-1 2.168

1.92 0.35
10/5-2 1.677
25/10-1 2.305

2.29 0.02
25/10-2 2.277
50/25-1 1.377

0.99 0.54
50/25-2 0.618
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Figure 1. Orientation of gel in Spin-X filter insert and attachment of gel loading tip for GASP. (a) Orientation of
gel piece in Spin-X filter before centrifugation. b) Gel-loading pipet tip stacked on 1ml pipet tip.
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