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Abstract 

 Alzheimer’s disease (AD) is the most prevalent form of dementia affecting the elderly, and as 

the aging population increases the social and economic burden of AD grows substantially.  Pathological 

hallmarks of AD include the accumulation of extracellular amyloid plaques and intracellular 

neurofibrillary tangles (NFTs), as well as significant neuron loss. Amyloid plaques consist of aggregated 

amyloid beta (Aβ) peptide, which is generated from the proteolytic processing of amyloid precursor 

protein (APP) in addition to several other peptides.  While the processing of APP has been 

characterized, its primary physiological function and its involvement in AD pathology are poorly 

understood.  Developing a greater understanding of the function of APP, and the molecular and cellular 

functions it is involved in or other proteins it is associated with, could provide insight into its role in AD 

pathology.  To investigate the function of APP695, the neuronal isoform of APP, we used mass 

spectrometry to compare changes in protein expression and phosphorylation between APP-null B103 

and APP695-expressing B103-695 rat neuroblastoma cells. 

 Mass spectrometry-based proteomics has become a powerful technique for the unbiased 

identification of proteins from complex mixtures.  Quantitative proteomics using labeling techniques, 

such as stable isotope labeling by amino acids in cell culture (SILAC), allow relative quantitation of 

multiple samples at once.  More recently, with advances in mass spectrometer technology, label-free 

quantitation has become a reliable quantitative proteomics approach.  Additionally, mass spectrometry 

can be used for the analysis of post-translational modifications, such as phosphorylation, a dynamic 

modification involved in the regulation of many cellular processes.  Phosphoproteomics identifies site-

specific phosphorylation and surrounding sequence information, which can be used for consensus 

motif analysis to provide further information about potential changes in kinase activity.  Identifying 
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changes in phosphorylation and kinase activity also provides information about signaling pathways and 

functions that may be affected by APP695 expression.  Comprehensive proteomic and 

phosphoproteomic datasets can be used to gain insight into the molecular mechanisms that may be 

regulated by APP695 expression, or involved in AD progression and pathology, leading to the 

development of novel therapeutic and preventative strategies for AD. 

 Proteomic and phosphoproteomic analysis of B103 and B103-695 cells identified several 

significant protein expression and phosphorylation changes that may be mediated by APP695-

expression.  Global-scale proteomic analysis identified increased expression of Ras and ƴ-synuclein in 

B103-695 cells, which was further validated in human AD brain tissue.  Phosphoproteomic analysis 

showed increased phosphorylation of Histone H4 at Ser47, and led to the investigation of PCTAIRE-2 

(Cdk17), and PCTAIRE-3 (Cdk18) expression, which were all shown to be increased in AD transgenic 

mouse tissue, culture primary rat neurons treated with Aβ, as well as mild cognitive impairment (MCI) 

and AD human brain tissue. 

 Label-free quantitative proteomics was used for the analysis of human brain tissue from the 

cortex of individuals affected by AD, MCI, Parkinson’s disease (PD), and progressive supranuclear palsy 

(PSP) compared to cognitively normal, control samples.  A number of differentially expressed proteins 

were identified in AD, MCI, PD, and PSP tissue.  Bioinformatic analysis of the comprehensive proteomic 

datasets from AD, MCI, PD, and PSP human brain tissue identified several proteins consistent with 

corresponding disease pathology and neurodegeneration, such as inflammatory proteins.  While some 

of the molecular and cellular functions were unique among neurodegenerative diseases, there also 

appears to be overlap of affected functions, suggesting there may be a more common mechanism of 

neurodegeneration. 
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Chapter 1 – Introduction 

Alzheimer’s Disease 

 Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, affecting an 

estimated 5.3 million Americans of all ages and costing an expected $226 billion in 2015 [1].  With 

advances in medicine, social and environmental conditions, life expectancy has increased, and the 

number of people living into their 80s and 90s has also increased.  Additionally, a large portion of the 

American population, often referred to as ‘the baby boom generation’, is beginning to reach the age of 

65 when the risk of developing AD is greater.  As the elderly population is expected to grow, the 

financial and medical burdens of AD also increase substantially, which increases the need for 

development of better treatments and preventative strategies.  Symptoms of AD include memory loss 

and significant cognitive decline.  The two major pathological hallmarks of AD are extracellular amyloid 

plaques and intracellular neurofibrillary tangles (NFTs) found in the neocortex, entorhinal cortex, and 

hippocampus; brain regions associated with learning and memory [2-4].  Neurofibrillary tangles (NFTs) 

are composed of paired helical filaments (PHFs) of hyperphosphorylated tau, a microtubule associated 

protein that accumulates within neurons [5, 6].  Tau is a cytoplasmic protein that normally functions to 

promote microtubule assembly and stability by binding to tubulin during its polymerization [7].  

Hyperphosphorylation of tau affects its ability to bind and stabilize microtubules and impairs axonal 

transport [8, 9].  Amyloid plaques consist of aggregated amyloid-beta (Aβ) peptides, and are typically 

surrounded by dystrophic axons and dendrites, as well as activated microglia and reactive astrocytes 

[10-12].  Amyloid-beta peptides result from the sequential proteolytic cleavages of APP, which are 

secreted and accumulate extracellularly.  The precise molecular mechanisms that promote the 

formation of amyloid plaques and NFTs in AD are not fully understood.  While the symptoms of AD and 
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the pathology observed in AD brains have been characterized, the cause and progression of AD 

pathology is still unclear. 

 

Figure 1.  Pathological hallmarks of Alzheimer’s disease.  Extracellular amyloid plaques and intracellular 
neurofibrillary tangles (NFTs), as well as significant shrinkage of the cerebral cortex and enlarged ventricles, are 
observed in the brains of AD patients.  Images adapted from the National Institute of Aging. 

 

 Of the 5.3 million Americans living with AD, approximately 5.1 million are age 65 and older [1].  

The majority of AD is considered sporadic, or late-onset AD, and is thought to be caused by a variety of 

factors including age, environment, and inflammatory proteins [13-15].  The major genetic risk factor for 

late-onset AD is Apolipoprotein E4 (ApoE4) [16].  Three major isoforms of ApoE exist; ApoE2, ApoE3, and 

ApoE4.  ApoE2 is a relatively rare isoform and has been shown to be potentially protective against AD 

[17].  ApoE3, the most common isoform, is thought to neither increase nor decrease the risk of AD, 

while ApoE4 is associated with increased risk of late-onset AD.  ApoE4 may be involved in increased Aβ 

aggregation and reduced Aβ clearance [18, 19].  A small portion of AD cases (<10%) occur before the age 

of 65 and are considered early-onset, referred to as familial AD (FAD).  Familial AD is the result of 

inherited autosomal dominant gene mutations found in APP or presenilins (PS1 or PS2), proteins 



3 

involved in APP processing [20-22].  These mutations will be discussed later in this chapter in the context 

of APP proteolytic processing.  The pathology of early-onset FAD and late onset or sporadic AD is 

identical.  While some treatments are available for the symptoms of mild AD, disease progression 

remains inevitable as there is no preventative strategy. 

 The diagnosis of AD remains difficult and relies heavily on neuropsychological findings and the 

exclusion of other possible causes of dementia.  AD can only be confirmed by post-mortem autopsy.  

Measuring levels of Aβ42, total tau and phosphorylated tau in the cerebrospinal fluid (CSF) is used as an 

indication of AD.  Decreased levels of Aβ42, indicating reduced clearance of the peptide, and increased 

tau and phosphorylated tau have been observed in the CSF of AD and early AD patients [23].  Brain 

amyloid imaging can also be used in combination with measuring CSF levels of Aβ42, total tau, and 

phosphorylated tau.  Imaging Aβ in the brain was made possible in 2004 using Pittsburgh Compound B-

based positron emission tomography (PET) scanning [24].  A specific and effective diagnostic biomarker 

for AD is yet to be discovered, and there are no known biomarkers to detect early AD before the 

accumulation of Aβ42 and the eventual onset of symptoms.  There is a crucial need to discover 

biomarkers for the detection of early AD so that preventative strategies can be implemented to delay or 

avoid disease progression. 

Amyloid Precursor Protein 

 The amyloid precursor protein (APP) gene is located on chromosome 21 in humans [25].  Three 

major isoforms exist; APP695, APP751, and APP770, composed of 695, 751, and 770 amino acids, 

respectively [20].  While APP751 and APP770 are expressed in most tissues, APP695 is predominantly 

expressed in neurons.  APP is a single transmembrane protein [26] synthesized in the endoplasmic 

reticulum (ER) of neurons and transported through the Golgi apparatus to the trans-Golgi-network 

(TGN) where it can be shuttled to the cell surface by TGN-derived secretory vesicles where it undergoes 

proteolytic processing [27-29]. 
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 APP belongs to a protein family that includes APP-like protein 1 (APLP1) and APP-like protein 2 

(APLP2) [30, 31].  The protein family includes conserved domains in their extracellular sequence and 

APLP1 and APLP2 are processed similarly to APP; however, the Aβ domain is unique to APP.  Studies 

using knockout mice have provided some insight into the partially redundant functions of APP protein 

family members.  APP, APLP1, and APLP2 single knockout mice and APP/APLP1 double knockout mice 

are all viable and fertile [32-35].  APP/APLP2, APLP1/APLP2 double knockout mice and 

APP/APLP1/APLP2 triple knockout mice, however, show early postnatal lethality, suggesting a crucial 

role for APLP2 in the absence of APP or APLP1 [34-36].  A large amount of research has been directed at 

understanding the expression, processing, and function of APP and its role in AD pathogenesis. 

Proteolytic Processing 

 APP is proteolysed by 2 different pathways; the amyloidogenic and non-amyloidogenic 

pathways.  The non-amyloidogenic pathway avoids the generation of Aβ as APP is first cleaved by α-

secretase between Lys612 and Leu613 (numbering based on the 695 isoform) within the Aβ domain, 

generating a membrane-bound C-terminal fragment (CTFα) C83 and sAPPα from the N-terminal domain.  

sAPPα has been shown to be involved in early central nervous system (CNS) development [37], neural 

stem cell proliferation [38], and have neuroprotective effects [39, 40].  The membrane bound CTFα 

fragment C83 is then cleaved by ƴ-secretase producing P3 and APP-intracellular domain (AICD) 

fragments.  P3 is rapidly degraded and is unlikely to have an important function.  Studies have identified 

disintegrin and metalloproteinase domain-containing proteins ADAM10 [41] and ADAM17 (also called 

tumor necrosis factor-α converting enzyme, TACE) [42] as the primary α-secretases that cleave APP 

within the Aβ domain. 

 Alternatively in the amyloidogenic pathway, APP is cleaved between Met596 and Asp597 

(numbering based on the 695 isoform) by β-site APP cleaving enzyme (BACE or β-secretase) [43, 44], 

producing C-terminal fragment (CTFβ) C99, and sAPPβ.  The sAPPβ fragment is very similar to sAPPα, 
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however, it has been shown to cause defective axonal transport resulting in axonal dystrophy and 

neuronal cell death [45, 46].  Cleavage of the membrane bound CTFβ fragment C99 by ƴ-secretase 

releases the AICD fragment, leaving Aβ bound to the membrane.  Finally, different sizes of Aβ fragments 

are generated, including the 40-42 amino acid long peptide fragments (Aβ40 and Aβ42), as it is thought 

that ƴ-secretase cleaves Aβ at multiple sites every 3-4 amino acids until it is released from the 

membrane [47-49].  The APP intracellular domain (AICD) fragment is generated in both the 

amyloidogenic and non-amyloidogenic pathways following ƴ-secretase cleavage.  AICD is known to be 

translocated into the nucleus and regulate the transcription of several genes including APP [50], GSK3β 

[51], and EGFR [52].  It has also been suggested that AICD can induce apoptosis [53] and increases the 

sensitivity of neurons to toxic insult [54]. 

 

Figure 2.  Proteolytic processing of Amyloid Precursor Protein (APP).  APP is proteolysed by α-, β-, and ƴ-
secretases leading to the generation of several peptides including the Aβ peptide, which aggregates to form 
amyloid plaques in AD. 

 

The ƴ-secretase protease complex is found within the cell membrane and consists of 4 different 

proteins: presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin, anterior pharynx-defective 1 (APH1) and 

presenilin enhancer 2 (PEN2) [55].  Presenilin 1 and 2 are the catalytic subunits of the ƴ-secretase 
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complex, possessing two highly conserved aspartate residues required for ƴ-secretase activity [56, 57].  

Familial AD mutations in PS1 and PS2 have been shown to promote the production of Aβ peptides, 

especially Aβ42 [58-60]. 

 Increasing evidence suggests that the intracellular trafficking and subcellular localization of APP 

influences its processing and the production of Aβ; this is likely attributed to the localization of β- and ƴ-

secretases [61].  BACE is found in endosomes and Golgi compartments, and is most efficient at lower pH 

[44], while α-secretase activity is observed at the cell surface [62].  The ƴ-secretase complex 

components are localized to the endoplasmic reticulum (ER), lysosome, and cell surface [63, 64].  APP 

localized to the cell surface is proteolysed by α-secretase in the non-amyloidogenic pathway, while APP 

internalized into endosomes is proteolysed by BACE in the amyloidogenic pathways, increasing Aβ 

production. 

 The exact sites of ƴ-secretase cleavage have a significant influence on the ability of Aβ to 

aggregate.  Aβ42 is more hydrophobic than other Aβ peptides as it includes C-terminal alanine and 

isoleucine amino acid residues causing it to have a strong tendency to aggregate quickly.  A large 

amount of AD research has focused on determining the role of insoluble Aβ42 oligomers in amyloid 

plaques and its toxicity; however, it is important to consider that proteolytic cleavage of APP generates a 

variety of Aβ peptides, and it is possible that the aggregation and toxicity of Aβ42 may be influenced by 

the presence of other Aβ peptides [65].  Several types of Aβ oligomers have been characterized 

following isolation from brain tissue, or using synthetic Aβ peptides.  Some of the oligomeric Aβ 

assemblies that have been described and characterized include protofibrils (PFs), annular protofibrils 

(APFs), soluble Aβ oligomers, and amyloid fibrils [65, 66].  While a significant amount of research has 

been carried out to determine the involvement of insoluble Aβ42 oligomers in AD pathogenesis, the 

number of amyloid plaques does not correlate with the degree of cognitive decline in AD, and amyloid 

plaques are often observed years before the onset of symptoms.  Increasing evidence suggests that 
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soluble Aβ oligomeric species are involved in AD pathology.  Soluble Aβ oligomers have been extracted 

from human brain tissue and have shown stronger correlation with levels of dementia and AD 

symptoms than amyloid plaques [67, 68].  Though we are developing a greater understanding of Aβ 

oligomerization and the types of Aβ oligomers that exist, the Aβ assemblies that are primarily 

responsible for toxicity and triggering downstream pathology are not fully understood. 

 Whether the accumulation of Aβ in the brain is related to increased APP expression, increased 

secretase activity, decreased Aβ clearance, or some other mechanism, remains largely unknown.  Some 

studies have shown that Aβ accumulation can be attributed to reduced Aβ clearance, which may be 

mediated by ApoE4 [69].  It has also been suggested that soluble Aβ is cleared by ApoE4, while 

deposited Aβ is phagocytosed by microglia [70, 71].  APP mutations associated with early-onset AD 

occur either within or adjacent to the Aβ region of APP.  Mutations within the Aβ region of APP involved 

in early-onset AD have been shown to promote the aggregation of Aβ or decrease its degradation, not 

affecting Aβ production [72, 73], while mutations adjacent to Aβ proteolytic sites promote the 

amyloidogenic processing of APP and increase Aβ42 production [74, 75].  Mutations in PS1 and PS2, also 

involved in early-onset AD, have been shown to increase Aβ generation [58-60].  The oligomerization 

and accumulation of Aβ, the formation of amyloid plaques, and the role of Aβ in AD pathology 

development are highly complex and further research is necessary to understand this process. 

Function 

 While the regulation of APP expression, trafficking, and proteolytic processing are fairly well 

described, the primary function of APP has yet to be fully understood.  APP has been proposed to be 

involved in several processes including cell growth and maturation, neural stem cell proliferation and 

differentiation, as well as neurite outgrowth and synaptogenesis [76].  Much of APPs ability to promote 

growth may be attributed to sAPPα.  It has been reported that sAPPα can promote proliferation of 

neural stem cells [38] and progenitor cells [77].  Alternatively, another study reported that APP 
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influenced neural stem cell and progenitor cell proliferation by cystatin C secretion and not sAPPα 

secretion, indicating that APP may increase proliferation through two different mechanisms [78]. It has 

also been demonstrated that APP and sAPPα can increase glial cell differentiation [79] as well as the 

differentiation of neural stem cells and progenitor cells into neurons [78, 80].  Multiple studies have 

shown that APP promotes neurite outgrowth in cell culture [81-83].  The proposed mechanisms for how 

APP promotes neurite outgrowth are based on its ability to bind proteins involved in cell-substrate 

adhesion that are known to influence neurite outgrowth, such as laminin [84], collagen [85], and heparin 

[86].  There is also evidence for the involvement of APP in the regulation of synaptogenesis, as increased 

APP expression is observed in pre- and postsynaptic sites during the formation of synapses [87, 88].  

Based on the structure of APP, it has also been suggested that it could act as a cell-surface receptor; 

however, it has not been established whether it actually functions as a cell-surface receptor and 

activating ligands of APP as a receptor have not been identified.  It appears that APP likely has a role in 

cell growth and differentiation; however, the precise mechanisms of its growth-regulatory function are 

still unclear. 

Hypotheses of Alzheimer’s Disease Pathogenesis 

 Many factors are hypothesized to influence the onset and progression of AD.  Aβ deposition, tau 

hyperphosphorylation, oxidative stress, mitochondrial dysfunction, cholinergic deficits, progressive 

synaptic loss, and neurodegeneration are all characteristics of AD.  A considerable amount of research 

has been directed at discovering the ultimate cause of AD, hoping to develop therapeutics and 

preventative strategies.  Several hypotheses have been proposed including the inflammatory and 

oxidative stress hypotheses, the tau hypothesis, the cell cycle hypothesis, and the amyloid cascade 

hypothesis.  Studies have shown that tau pathology has a stronger correlation with the severity of 

dementia and neuronal loss than Aβ deposition and amyloid plaque formation [89-91].  However, it has 

also been hypothesized that soluble Aβ correlates more strongly with severity of dementia than amyloid 
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plaques [67].  Despite the findings that tau pathology better correlates with AD associated neuronal loss 

and dementia than amyloid plaques, it is hypothesized that AD-related tau pathology, occurs 

downstream of aberrant Aβ production.  Other pathologies, such as oxidative stress, aberrant cell cycle 

re-entry, and mitochondrial dysfunction, have also been proposed to follow Aβ deposition, and so the 

main focus of this research is to examine the role of APP-dependent mechanisms in AD pathology 

development. 

Amyloid Cascade Hypothesis 

 The amyloid cascade hypothesis proposes that Aβ initiates AD pathology and that neurofibrillary 

tangles, cell loss, oxidative stress, and dementia are consequences of Aβ deposition [2, 92, 93].  While 

Aβ may not be primarily responsible for all of the neurodegeneration that occurs in AD, it is argued that 

Aβ acts as a trigger initiating a complex pathogenic cascade.  Early-onset FAD provides strong evidence 

that AD can be initiated by abnormal APP processing and Aβ accumulation, as the genes associated with 

FAD (APP, PS1, and PS2) are involved in APP processing promoting the production or oligomerization of 

Aβ42.  While early-onset AD is a strong indication that APP and Aβ may be the primary source for the 

initiation of AD pathology, a significant amount of controversy surrounds the amyloid cascade 

hypothesis. 

 The primary argument against the amyloid cascade hypothesis is that the localization of tau 

pathology and NFTs better correlates with neuronal loss, occurring largely in the entorhinal cortex and 

hippocampus, whereas amyloid plaques are found primarily in the frontal cortex [90, 94, 95].  Tau 

pathology has been observed in the entorhinal cortex of young, cognitively normal individuals and in the 

hippocampus of aging, cognitively normal individuals without Aβ or amyloid plaque accumulation [96].  

It is also possible that soluble Aβ, which was not tested for in these studies, may be present in these 

regions.  In the presence of Aβ pathology, however, tau pathology appears to spread to the neocortex, 

and similar cortical tau pathology is not observed in individuals lacking Aβ pathology [96].  These 
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observations suggest that Aβ accumulation and aggregation are required for the increase and spread of 

tau pathology.  The toxicity of tau pathology appears to require Aβ accumulation and amyloid plaques, 

supporting the idea of the amyloid cascade hypothesis.  Haass and Selkoe suggest small soluble Aβ 

oligomers are responsible for neurodegeneration and synaptic dysfunction [66].  Soluble Aβ oligomers 

correlate more closely with the appearance of tau pathology and are found in brain regions such as the 

hippocampus that undergo significant neuronal loss [67, 97, 98].  It has been demonstrated that 

oligomeric Aβ can initiate tau phosphorylation in vitro and in vivo [99-101].  The amyloid cascade 

hypothesis is complex and controversial, and a greater understanding of the function of APP and the 

potential functions of Aβ are necessary to further understand their role in AD pathology development. 

Aberrant Cell Cycle Re-entry 

 Neuronal cell cycle dysregulation is an early abnormality observed in mild cognitive impairment 

(MCI) and AD.  Neurons are terminally differentiated and considered quiescent; however, there is 

evidence that neurons aberrantly re-enter the cell cycle in AD.  Instead of successfully dividing into two 

daughter cells, the cells that exhibit aberrant expression of cell cycle regulatory proteins undergo 

apoptosis.  A relationship exists between cell cycle activation and neuronal cell death, and inhibition of 

cell cycle activation aids in preventing neuronal apoptosis [102, 103].  Expression of cell cycle proteins, 

including cyclins A, B, D, E, cdc2/cdk1, cdk4, cdk7, proliferating cell nuclear antigen (PCNA), and p16, has 

been observed in the brains of AD patients [104-108].  Mitogenic signaling has also been implicated in 

AD as increased expression and activation of ERK and Ras have been observed in early stages of AD [109, 

110].  Mitotic kinases are also involved in the phosphorylation of tau and APP, potentially contributing 

to the formation of neurofibrillary tangles and amyloid plaques.  It has recently been proposed that 

microglial derived tumor necrosis factor-α (TNFα) may be involved in promoting AD-related neuronal 

cell cycle events [111].  Additionally, microRNA MiR-26b has been found to be upregulated in AD and is 

shown to be potentially involved in cell cycle activation, tau phosphorylation and apoptosis [112].  Other 
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findings have suggested that Aβ may be involved in induction of aberrant cell cycle re-entry [113].

 In vitro studies have shown that APP is phosphorylated at Thr668 (numbering based on APP695 

isoform) in a cell cycle-dependent manner and in vivo studies showed that it correlates with the 

expression of cell cycle regulatory proteins Cyclin D1, Cyclin E, p-cdc2/Cdk1, and E2F1 in mouse models 

of AD [113].  Further, studies suggest that GSK3β [114, 115], JNK3 [116], Cdk5 [117], and cdc2/Cdk1 

[118] influence APP phosphorylation at Thr668.  It has also been reported that Aβ peptides can cause 

cell cycle activation and apoptosis in primary cortical neurons [119, 120] and that Aβ also induces 

phosphorylation of APP at Thr668 [113].  The mechanisms of aberrant cell cycle activation in AD remain 

to be fully understood, but these findings have suggested that APP may be processed in a cell cycle 

dependent matter and that Aβ can cause cell cycle activation. 

Proteomics & Alzheimer’s Disease 

Mass Spectrometry and Proteomics 

 Mass spectrometry-based proteomics enables the unbiased, large-scale study of protein 

expression changes and post-translational modifications (PTMs) of proteins in various model systems 

and tissues.  Mass spectrometry-based proteomics does not rely on antibody availability or specificity 

for identifying proteins or changes in protein expression.  Quantitative proteomic techniques have been 

developed that allow for the comparison of control and treated samples or healthy and disease tissue. 

Many quantitative proteomic techniques rely on labeling proteins or peptides with isotopic labels, which 

was first described by Gygi et al., using isotope-coded affinity tags (ICAT) [121].  Since then, several 

other isotopic labeling techniques have been developed.  Stable isotope labeling with amino acids in cell 

culture (SILAC) is an approach that allows quantification of protein expression changes in cell models by 

mass spectrometry.  Developed by the Mann lab, cells metabolically incorporate ‘heavy’ and ‘light’ 

amino acids during protein synthesis, enabling the differentiation of protein from two different 

treatment groups simultaneously [122, 123].  SILAC is consistent, reproducible, and also decreases 
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variability during sample processing, however it is generally restricted to cultured cells.  Other methods 

for quantitative proteomics have also been developed, such as iTRAQ (isobaric tags for relative or 

absolute quantitation) [124] or isotopic dimethyl labeling [125, 126], which also use isotope-coded 

covalent tags for quantitation of peptides within a complex sample, and can be used with tissue samples 

as peptides are labeled following protein digestion.  With advances in mass spectrometers and increased 

mass measurement accuracy and resolution, label free quantification has become possible which 

eliminates the need for isotope labels or chemical labeling [127]. 

 Proteomics has become an invaluable tool for the identification and quantification of proteins 

within a complex mixture, and reducing sample complexity for the identification of low abundance 

proteins has been essential.  Using fractionation techniques increases the identification, quantification, 

and sequence coverage of low abundance proteins.  One of the earliest and most commonly used 

techniques was two-dimensional gel electrophoresis (2-DE) [128].  Using 2-DE, proteins are first 

separated based on charge using a pH gradient and isoelectric focusing, and proteins migrate until their 

net charge is 0.  Proteins are then further separated by size using SDS-PAGE in the second dimension of 

2-DE.  Protein spots can be quantified by comparing staining intensity, and then spots of interest are 

excised and enzymatically digested for identification by mass spectrometry [129].  Differential gel 

electrophoresis (DIGE) is a variation of 2-DE that involves fluorescent labeling of proteins so that more 

than one sample can be run simultaneously on a gel, and can also incorporate an internal standard for 

more accurate comparison and quantitation of spots between multiple gels [130, 131].  While 2-DE has 

been widely used, it does have limitations as it is not compatible with many detergent-containing lysis 

buffers, which are necessary to solubilize membrane proteins.  It can also be difficult to detect low 

abundant proteins using 2-DE, as well as being time consuming and laborious to perform image analysis 

and in-gel digests of many protein gel spots. 
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 The development of multidimensional protein identification technology (MudPIT) enabled 

protein identification from complex mixtures coupled with high performance liquid chromatography 

(HPLC) separation techniques [132, 133]. HPLC offers powerful sample fractionation techniques resulting 

in multiple fractions from a single sample with reduced complexity allowing for an increased number of 

identified proteins.  Strong cation exchange (SCX) and anion exchange (ACX) are popular HPLC peptide 

fractionation techniques that separate peptides based on charge.  SCX columns have a negatively 

charged stationary phase that bind positively charged peptides at low pH, which can be subsequently 

eluted by increasing the pH and salt content of the mobile phase.  Alternatively, ACX columns have 

positively charged stationary phase that bind negatively charged peptides at high pH, which can be 

eluted by increasing the salt concentration of the mobile phase.  These HPLC separation techniques 

coupled with mass spectrometry have allowed high-throughput analyses of complex proteomes. 

 

Figure 3.  General proteomics workflow.  Cells or tissue samples are lysed to extract protein, which are digested to 
peptides using proteolytic enzymes such as Trypsin.  Peptide samples can be further fractionated using strong-
cation exchange (SCX) before mass spectrometry analysis.  Raw data files can be searched using various software 
packages against protein sequence databases, and identified proteins can be used for bioinformatics analysis. 
 

 Identifying changes in protein expression in AD provides insight into pathways and functions 

that may be altered, which can help determine mechanisms of pathology development as well as 

development of interventions or therapeutic strategies.  There are several challenges associated with 

studying neurodegeneration and AD, particularly the complexity of both the brain and the disease.  The 

brain consists of various cell types, such as neurons and glia, which can function differently in different 

regions of the brain.  The mechanistic complexity of AD is also challenging as its pathology can be both 

stage-specific and region-specific.  Proteomic studies have been performed using various cell models, 
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animal models, as well as human brain tissue in an effort to identify novel proteins and/or pathways 

that may be involved in the onset and progression of AD, which will be discussed in the next sections.  

Moreover, proteomic studies using blood and cerebrospinal fluid (CSF) have also been conducted in 

search of novel diagnostic and therapeutic biomarkers in an effort to potentially detect and treat AD at 

an early stage [134-136]. 

Proteomic Studies Using Cell Models 

 While in vitro studies have their limitations, they are useful as they can be easily manipulated to 

study the effect of various pharmacological agents or differential expression of proteins and to identify 

the specific changes for further studies in more complex models.  Immortalized cell lines are cost 

effective, convenient, and grow indefinitely.  Primary cells, on the other hand, are isolated from tissue; 

they have a limited lifespan but are often considered a better representation of that cell type than 

immortalized cell lines as they have not been genetically altered.  For example, undifferentiated 

neuroblastoma cell lines often lack proteins related to neuronal function such as neuronal specific 

nuclear protein (NeuN), neuron-specific enolase (NSE) and microtubule-associated protein 2 (MAP2), 

which are present in primary neurons.  Neuroblastoma cell lines can be differentiated by manipulating 

growth conditions to display a more neuronal phenotype [137].  Both primary and immortalized cell 

models can be treated with Aβ oligomers, which can be prepared in vitro from synthetic Aβ peptide.  

Alternatively, cell lines can be stably transfected to express different proteins, such as APP695, and 

analyzed for specific changes in expression or function of other cellular proteins, which will provide 

insights into the function of the newly introduced protein. There have been a number of proteomic 

studies on cell models of AD, a few of which are described below [138-141]. 

 Foldi and colleagues performed a study using differentiated SH-SY5Y cells, a human 

neuroblastoma cell line, treated with small Aβ42 oligomers [138].  Aβ oligomers were prepared in situ  

from an Aβ isopeptide precursor that allows for more standardized aggregation [142].  After an 8 hour 
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Aβ42 treatment, 2-DE was used to separate proteins and quantify expression changes.   A total of 1000 

spots were detected on the gel, and 649 of these spots matched across treated and untreated gels; 52 

of the matched spots were determined to be significantly altered and 47 of them were identified by 

matrix-assisted laser deposition ionization (MALDI)-time of flight (TOF) mass spectrometry.  Elongation 

factor 2 (EEF2) (-3.6 fold) and Heat-shock protein 70 (Hsp70) (3.5 fold), showed the most significant 

decrease and increase in expression, respectively, and these changes in expression were further 

validated by western blot analysis.  In addition to identifying changes in protein expression, the study 

also observed decreased cell viability and altered cell morphology with Aβ42 treatment but did not 

identify any differences in post-translational modifications. 

 Another proteomic study examined the cytosolic fractions of SN56 cells, a mouse cholinergic 

neuroblastoma cell line, also using Aβ treatment and 2-DE.  Aβ treatment resulted in significant changes 

in protein expression and phosphorylation [139].  This study also compared the proteomes of Aβ-

treated cells with H2O2-treated cells to assess whether changes in protein expression could be attributed 

to the ‘oxidative potential’ of Aβ; their findings suggested that Aβ and H2O2 treatment had different 

effects on the proteome profile of SN56 cells.  Three unique proteins were identified to show altered 

expression following Aβ treatment; Calreticulon, MAPK 6c, and ƴ-actin.  The study also identified 

decreased phosphorylation of 3 proteins; RHO GDI-1 homolog AHO/GDP dissociation inhibitor, ubiquitin 

carboxyl terminal hydroxylase (UCHL1), and tubulin.  The findings that Aβ and H2O2 treatment affected 

protein expression differently is interesting; however, only a few significant changes in protein 

expression were detected, thus limiting detailed mechanistic information regarding the impact of Aβ on 

neuron-like cell function. 

 Studies by Butterfield and colleagues have investigated Aβ-mediated protein oxidation using 

redox proteomic analysis of Aβ-treated primary neurons [140, 141].  Redox proteomics focuses on the 

addition of protein carbonyls, lipid peroxidation adducts (HNE-adducts), and tyrosine nitration, which 
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are protein modifications resulting from oxidative damage [143].  Both studies investigated the impact 

of 24hr treatment of primary rat neurons with 10μM Aβ using 2-DE for protein separation and 2D-

Oxyblots for enrichment and quantification of oxidized proteins, which were subsequently identified by 

mass spectrometry.  One study found that pre-treatment with gamma-glutamylcysteine ethyl ester 

(GCEE) increased levels of glutathione (GSH), an endogenous antioxidant found to decrease with aging, 

and protects against protein oxidation [140].  The second study identified specific targets of protein 

oxidation in response to Aβ treatment and assessed the protective effect of D609, a known inhibitor of 

phosphatidylcholine specific phospholipase-C (PC-PLC), on these oxidized proteins [141].  Both studies 

observed increased oxidation of regulatory and structural proteins as well as energy and metabolism-

related proteins following Aβ treatment, and demonstrated the potential of 2 different compounds for 

reducing Aβ-induced oxidative stress. 

 The studies mentioned above, using cell models, have focused on Aβ treatments to examine 

changes in protein expression and potentially affected cellular processes and molecular function.  The 

effectiveness of novel compounds in reducing oxidative modification of proteins, and whether Aβ-

related protein expression changes are attributed to its oxidative potential, were also investigated.  

These types of studies are possible in cell models, and are necessary to assess whether potential 

treatments should be further tested in animal models of AD.  The sample preparation approaches used 

in these studies, primarily relying on 2-DE for protein separation and quantification, may be limiting 

their proteome coverage and quantitation.  The use of SILAC, which is possible in cell models, in 

combination with other fractionation techniques such as SCX, would likely increase the number of 

proteins identified and improve relative quantification.  It is also interesting that proteomic studies in 

cell models have relied on Aβ treatments and that cell models expressing full-length APP have not been 

compared to APP-null cells. 
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Proteomic Studies Using Animal Models  

 In vivo studies using animal models that develop Aβ pathology have provided major advances in 

AD research.  While human brain tissue is available post-mortem, animal models allow the study of 

disease progression from early, asymptomatic stages, which is essential to determine early molecular 

changes for the development and preliminary testing of preventative strategies and therapeutics to slow 

disease progression.  Proteomic studies have been conducted in a non-mammalian C.elegans model of 

AD, as well as transgenic mouse and rat models of AD. 

C.Elegans Models 

 Caenorhabditis elegans is a non-mammalian model useful for testing the in vivo effects of Aβ42 

as they have a short life span, they can be easily grown, and their entire genome has also been 

sequenced.  The Butterfield group conducted a redox proteomics study of a transgenic model of 

C.elegans expressing human Aβ42 to identify targets of oxidation.  The study identified 16 oxidized 

proteins associated with similar pathways as in mammalian models [144].  While gene expression 

studies have been performed in this C.elegans model of AD, this appears to be the only proteomics 

study to date on an in vivo model. 

Mouse Models 

 There are a number of transgenic mouse models of AD with mutations in several different genes 

hypothesized to be involved in disease pathology.  Some of the more common mouse models include 

APP (Tg2576) [145], PS1 (M146L) [146], and PS2 (N141I) [147] single mutant transgenic models, PS/APP 

double mutant transgenic models [148], as well as tau (P301L) [149] and APP/PS/Tau triple transgenic 

models [150, 151].  Of the APP transgenic mouse models, the APP Swedish mutant, APP 

Swedish/London double mutants, and PS/APP double mutants have been used for proteomic studies.   

 The most common APP transgenic mouse models are Tg2576 and PS/APP mice, with the most 

common mutations of APP being the Swedish double mutant (K595N/M596L), and London mutant 



18 

(V642I) (numbering based on the 695 isoform).  The Tg2576 transgenic mouse model overexpresses 

human APP695 with the Swedish mutation (K595N/M596L).  Tg2576 mice develop Aβ deposits at 

around 1 year, but do not form NFTs [145].  The PS/APP double transgenic mouse model was created by 

crossing the Tg2576 mouse model with the PSEN1 (M146L) transgenic mouse model. These PS/APP mice 

therefore overexpress human APP695 with the Swedish mutation and human PSEN1 with the M146L 

mutation.  PS/APP mice, like Tg2576 mice, exhibit accelerated plaque pathology and increased Aβ42 

accumulation at an early age, followed by significant fibrillar Aβ accumulation in the cerebral cortex and 

hippocampus at 6 months.  Increased plaque-associated astrocytes and microglia are also observed in 

PS/APP mice which suggest increased neuroinflammation.  Neurofibrillary tangles are not seen in 

PS/APP mice, however hyperphosphorylated tau is detected [148].  The behavior and cognitive function 

of both PS/APP and Tg2576 mouse models have been well characterized [148, 152, 153]. 

 Proteomic analysis of the cortex from 24 month old Tg2576 mice determined changes in protein 

expression, oxidation, and nitration using 2-DE, 2D-Oxyblots, and MALDI-TOF mass spectrometry [154].  

The study identified several proteins involved in various physiological functions; increased expression of 

glial fibrillary acidic protein (GFAP), an inflammatory marker, increased expression of glyeraldehyde-3-

phosphate dehydrogenase (GAPDH), pyruvate kinase (PK), and decreased malate dehydrogenase (MDH), 

proteins involved in metabolism, as well as increased dihydropyrimidase-like 2 (DRP2), involved in 

synaptic and axonal integrity [154].  Another study performed a proteomic analysis of crude 

synaptosomal fractions from cortex and hippocampus of Tg2576 mice using 2D-DIGE and hybrid 

quadrupole-TOF (Q-TOF) mass spectrometry.  This study detected 1100 spots in crude synaptosomal 

fractions where 6 spots were determined to be significantly altered in young Tg2576 mice before Aβ 

deposition compared with non-transgenic mice.  Of the 6 spots, only 2 were confidently identified by 

mass spectrometry, including Grp75, also referred to as mitochondrial heat shock protein 70 (mtHsp70). 
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The study revealed changes in mitochondrial protein expression and function prior to Aβ deposition 

[155]. 

 Proteomic studies of PS/APP transgenic mice have been performed using 2-DE for protein 

separation and quantification, and protein identification by mass spectrometry using a hybrid linear ion 

trap-Orbitrap mass spectrometer (LTQ-Orbitrap XL).  Previously, the antioxidant N-acetylcysteine (NAC) 

has been shown to protect against oxidative stress in MCI and AD in PS/APP mice [156].  To investigate 

the potential mechanisms by which NAC reduced oxidative stress, a proteomic analysis examined 

PS/APP mice that were administered NAC from 4-9 months of age before Aβ deposition (representing 

MCI) and from 7-12 months of age after Aβ deposition (representing more advanced AD).  Significant 

changes in protein expression were observed in wild-type (WT), 9-month, and 12-month old mice, and 

NAC treatment did appear to reduce protein oxidation [157].  Another proteomic study compared 

PS/APP mice with non-transgenic mice at 1 month, 6 months, 9 months, 12 months, and 15 months of 

age.  The redox proteomic study revealed an age-dependent increase in carbonylated proteins, 

particularly beta-actin and pyruvate dehydrogenase (PDH), that also correlated with levels of Aβ peptide 

[158].  These findings support the notion that elevated Aβ levels are associated with increased oxidative 

damage. 

 The proteomes of cortex samples from 14 month old Thy1-APP751 transgenic mice have been 

compared with WT mice.  Thy1-APP751 mice express APP751 with both the Swedish and London 

mutations, have high levels of human Aβ peptide and develop fibrillary amyloid deposits at 6 months of 

age [159].  Using 2D-DIGE and MALDI-TOF mass spectrometry, this study identified 25 proteins with 

altered expression in AD mice, 8 of which have also shown increased expression in human AD including 

GFAP, ApoE precursor, peroxiredoxin 6 (Prdx6), DRP2, PK, synaptotgamin I, serum albumin precursor, 

and N-ethylmaleidmide sensitive fusion protein, supporting the use of this transgenic mouse as a model 

of human AD and increasing the potential that these proteins are involved in AD pathology.  The 
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identified proteins differentially expressed in AD mice are involved in molecular and cellular functions 

consistent with AD, including inflammation and oxidative stress, cholesterol metabolism, and neuronal 

and synaptic signaling [160]. 

Rat Models 

 Proteomic studies have also been conducted using Aβ42-injected rat models [161] and 

transgenic rats expressing human mutant APP [162] to investigate changes in protein expression and 

protein carbonylation to identify oxidatively modified proteins. Redox proteomics were used to examine 

the cortex and hippocampus of rats injected with Aβ42 using 2-DE and 2D-Oxyblots for protein 

separation and quantitation, and mass spectrometry for protein identification.  A number of oxidatively 

modified proteins were identified in different regions of Aβ-injected rat cortex and hippocampus that 

have also been shown to be modified in human AD brains, increasing the possibility that these oxidative 

modifications are involved in AD.  This study also demonstrated the profound effect that Aβ-injection 

into the nucleus basalis can have in other brain regions [161].  Another study by Wilson and colleagues 

examined the proteome of transgenic rats expressing human APP with the Swedish mutation.  This 

study was primarily focused on developing a proteomic method incorporating laser microdissection to 

isolate specific cell types from the brain.  Using laser microdissection and 2D-DIGE, they were able to 

observe over 5000 protein spots, and 100 protein spots appeared to be significantly altered; however, 

with limited amounts of protein only 12 differentially expressed proteins were identified by mass 

spectrometry [162].  The study by Wilson and colleagues exemplifies the drawbacks of 2D-DIGE and 

MALDI-TOF for protein identification, and the need to use more advanced and sensitive mass 

spectrometry approaches for protein identification. 

Proteomic Studies Using Human Tissue 

 While animal models are useful, the differences between the complexity of human biology and 

animal models can make direct comparisons difficult.  Complexity of the central nervous system and the 
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mechanisms underlying the disease, as well as the availability of human brain tissue, however, makes 

human studies difficult.  One challenge when examining human tissue is the post-mortem interval (PMI) 

between time of death and specimen collection/processing.  It is also important to consider the region 

of the brain being studied, and how different regions are affected by the disease and composed of 

different cell types.  Different brain regions are also affected at different stages of the disease, while 

tissue is collected post-mortem when pathology is most severe.  Nevertheless, studies using human 

tissue affected by AD are invaluable for gaining a deeper understanding of the molecular changes that 

exist with the progression of disease pathology. 

 Proteomic analyses of the temporal cortex have been performed, which is a brain region 

affected early in AD.  Andreev and colleagues performed a label-free quantitative proteomic analysis of 

the temporal cortex from 10 AD and 10 non-AD brain samples using the accurate mass and time tag 

(AMT) approach.  The study identified 1400 unique proteins, with 197 proteins determined to be 

differentially abundant in AD compared with non-AD brains [163].  A more recent proteomic analysis of 

the temporal cortex analyzed brain tissue specimens from 10 AD patients compared with 5 non-AD 

controls and used stable isotope dimethyl labeling for protein quantitation.  A total of 827 unique 

proteins were identified, 227 of which were identified in nine out of ten AD/non-AD pairs.  Of the 227 

proteins, 69 proteins were differentially expressed in AD compared with non-AD, including 27 novel 

proteins not previously reported in AD including neuronal-specific septin-3, septin-2, septin-5, 

dihydropteridine reductase and clathrin heavy chain 1 [164]. 

 The hippocampus plays an important role in memory and cognitive function and is one of the 

primary brain regions affected early in AD.  A study by the Butterfield group examined the hippocampal 

proteome from 6 AD and 6 age-matched controls using 2-DE and MALDI-TOF mass spectrometry.  

Significant changes were identified in the abundance of 18 proteins [165].  Another proteomic analysis 

of the hippocampus was performed by Begcevic et al., using 3 AD and 3 non-AD biological replicates, 
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which were pooled together.  Using SCX for peptide fractionation, followed by analysis on an LTQ 

Orbitrap XL, a total of 2954 proteins were identified with 1203 proteins detected at a minimum of 2 

unique peptides.  Pooling of biological replicates prevented statistical analysis, instead they reported 

that 204 proteins were exclusively identified in AD, and 600 proteins were exclusively identified in 

control samples [166]. 

 A number of studies have used proteomics to investigate certain subcellular fractions, such as 

membrane or synaptic fractions, while others have been interested in protein post-translational 

modifications.  Since APP and its secretases are transmembrane proteins, Donovan and colleagues 

performed a label free quantitative proteomic analysis of the membrane-enriched proteome from the 

frontal cortex of human brain samples.  The study identified 1709 proteins from membrane-enriched 

fractions, 13 showing significant expression changes.  Increased levels of ubiquitin carboxy-terminal 

hydrolase 1 (UCHL1) and syntaxin binding protein 1 (Munc-18) in AD compared with non-AD samples 

were validated by western blot [167].  Another study examined detergent insoluble proteins from the 

temporal cortex of AD, early-AD, and control brains, which include the amyloid plaques that develop 

during AD.  The study identified 125 proteins from insoluble fractions including proteins involved in Aβ 

production, synaptic scaffolding, and proteins associated with increased risk of AD.  The study validated 

the expression changes of 15 proteins, however further research is required to determine whether 

these proteins are associated with AD pathology or involved in the formation of Aβ plaques [168]. 

 The synaptic proteome has also been investigated as a considerable amount of synaptic 

dysfunction and degeneration is observed in AD, however the underlying molecular mechanisms are 

unknown [169-171].  An early analysis of the synaptic proteome from the hippocampus and frontal 

cortex of AD and control individuals used 2D-DIGE for protein quantitation and separation prior to mass 

spectrometry-based protein identification.  The study identified 26 synaptic proteins differentially 

expressed in AD compared with control brain involved in energy metabolism, signal transduction, vesicle 
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transport, and antioxidant activity [169].  The Chang group then performed targeted analysis of the 

synaptic proteome using multiple reaction monitoring (MRM), which allows multiple proteins of interest 

to be specifically targeted during mass spectrometry analysis.  Ten proteins identified in their previous 

study were targeted, and significantly increased levels of peroxiredoxin-1 and dihydropyrimidinase-

related protein-1 (DRP1) were found in AD [170].  More recently, Chang and colleagues examined the 

synaptic proteome using a data-independent acquisition (DIA) mass spectrometry approach referred to 

as SWATH™ (Sequential Window Acquisition of Theoretical fragment ion spectra).  The study identified 

2077 unique proteins, with 30 proteins having significant expression changes in AD compared with non-

AD.  Seventeen of the 30 significant proteins had not previously been suggested to be involved in AD, 

with cellular functions including structural maintenance, oxidative stress, and synaptic-vesicle related 

functions [171]. 

 Other published studies have examined human brain tissue using redox proteomics to identify 

nitrated proteins [172] and oxidatively modified proteins [173, 174].  Protein nitration was investigated 

using 2-DE and western blotting using an anti-nitrotyrosine antibody followed by MALDI-TOF mass 

spectrometry for protein identification.  An overall increase in protein nitration was observed in AD 

compared with control hippocampus samples; α enolase, GAPDH, carbonic anhydrase II (CAH II), ATP 

synthase alpha chain, and voltage-dependent anion channel protein 1 (VDAC-1) showed significant 

increases in levels of nitration [172].  Two separate redox proteomic studies of human cortex used 2-DE 

and 2D-Oxyblots with MALDI-TOF mass spectrometry to identify specific targets of oxidation.  Increased 

oxidation of creatine kinase BB, glutamate synthase, UCHL1 [173], α enolase, (DRP2, and heat shock 

cognate 71 (HSC 71) were observed [174].  These redox proteomic studies provide further evidence for 

the involvement of protein oxidation in AD pathology and identify specific protein targets of oxidative 

modification in AD. 
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 These proteomic studies using human tissue have provided valuable insight into both protein 

expression changes as well as cellular and molecular functions affected in AD.  Surprisingly, many of 

these studies rely on similar proteomic approaches, often using 2-DE for protein separation and 

quantification and MALDI-TOF for protein identification.  Implementing more advanced proteomic 

techniques, such as gel-free fractionation and using mass spectrometry-based proteomics can greatly 

increase protein identification, as was demonstrated by Begcevic’s study; however, pooling of biological 

replicates in this study limited statistical analysis to identify robust biomarkers or molecular mechanisms 

associated with AD.  Increasing number of proteomic studies of different brain regions will also improve 

proteome coverage and provide a more complete picture of molecular changes in AD. 

Significance of Protein Phosphorylation in Alzheimer’s Disease 

 Phosphorylation is one of the most important regulatory post-translational modifications 

involved in many biological processes including signal transduction, cell cycle, and gene expression.  

Serine, threonine, and tyrosine are the most commonly phosphorylated amino acid residues.  Protein 

phosphorylation is a reversible modification; protein kinases are responsible for the addition of 

phosphate groups, while phosphatases remove phosphate groups.  Aberrant phosphorylation is often 

associated with disease including neurodegenerative diseases such as AD [175].  Mass spectrometry also 

enables the investigation of post-translational modifications such as phosphorylation. 

 Hyperphosphorylation of tau is the primary example of aberrant phosphorylation in AD.  The 

effect of tau hyperphosphorylation on axonal transport and the ability of tau to stabilize microtubules 

exemplifies the impact aberrant phosphorylation can have on protein function and cellular processes [8, 

9].  In addition to tau, other proteins demonstrate altered phosphorylation in AD, including neuronal 

filaments [176, 177] and MAP1B [178, 179].  Increased expression and/or activity of kinases such as 

GSK3 and CDK5, and decreased expression and/or activity of phosphatases such as PP1, PP2A and PP5 

have also been observed in AD brains [175]. 
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 The sorting and processing of APP has been shown to be affected by its phosphorylation state, 

as well as the phosphorylation of proteins associated with APP.  The dynamic regulation of APP protein 

sorting has been reported to be dependent on the phosphorylation state of its interacting proteins 

[180].  Phosphorylation of components of TGN vesicles by protein kinase C (PKC) appears to promote 

the sorting of APP toward the cell surface, where it is processed by the non-amyloidogenic pathway 

avoiding the production of Aβ [181].  The C-terminal domain of APP contains several amino acid residues 

known to be phosphorylated.  Phosphorylation of APP at Thr654/Ser655 by PKC has been suggested to 

favor non-amyloidogenic processing of APP and to be a protective modification [182].  Decreased PKC 

expression and activity has been observed in AD brains, which may contribute to the increased 

amyloidogenic processing of APP.  Increased phosphorylation of APP695 at Thr668 has been observed in 

AD [183].  APP695 phosphorylation at Thr668 is mediated by multiple proline-directed kinases, including 

GSK3 [114], Cdk5 [117], cdc2 [118], and JNK3 [116, 184], which have also shown to be elevated in AD.  

NMR studies have shown that phosphorylation of APP at Thr668 causes a conformational change 

affecting interactions with binding partners [185].  Further, mutation of Thr668 to alanine (T668A) 

appeared to significantly reduce Aβ production in primary neurons [183].  These findings indicate the 

potential involvement and significance of phosphorylation in APP processing and AD pathology. 

 An increasing number of studies suggest aberrant protein phosphorylation is involved in AD 

pathology, impacting both tau pathology and Aβ production.  It has become apparent that we need to 

gain a deeper understanding of the influence that abnormal phosphorylation has on AD progression and 

pathology.  The knowledge of specific phosphorylated proteins and affected pathways and functions, as 

well as changes in kinase and phosphatase activity will hopefully lead to development of novel 

therapeutic and preventative strategies for AD. 
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Phosphoproteomics 

 Mass spectrometry can also be used to determine changes in PTMs, such as phosphorylation, 

which can provide further insight into alterations in activity of kinases or phosphatases and associated 

signaling pathways.  Many of the quantitative techniques used in proteomics can also be applied to 

phosphoproteomics, such as SILAC.  Phosphopeptides are low abundant in a complex mixture of 

peptides based on the low stoichiometry of this modification, and therefore enrichment prior to mass 

spectrometry analysis is beneficial in order to increase their identification and site-specific information.  

Several phosphopeptide/protein enrichment strategies have been developed at the protein and peptide 

level.  Phosphoproteins can be separated and identified using 2-DE in combination with the ProQ 

Diamond stain, a proprietary fluorescent dye that selectively detects phosphate groups attached to 

serine, threonine, and tyrosine residues in polyacrylamide gels [186, 187].  ProQ Diamond is useful as it 

does not require the use of phosphorylation specific antibodies or radioisotopes, such as P32.  

Alternative approaches have been developed such as immobilized-metal affinity chromatography 

(IMAC), that exploit the negatively charged phosphate groups affinity for positively charged metal ions, 

such as Fe3+ [188-190], Ga3+ [191],  or Ti4+ [192].  Metal oxide affinity chromatography (MOAC) can also 

be used for phosphopeptide enrichment, most commonly using TiO2 particles [193, 194].  Polymer-based 

metal ion affinity capture (PolyMAC) has more recently been introduced for phosphopeptide 

enrichment [195].  Strong cation exchange (SCX) has also been used for the enrichment of 

phosphopeptides [196].  While each phospho-enrichment technique offers unique advantages, the 

combination of multiple phospho-enrichment strategies has proven to be the most effective for 

increasing the identification of phosphorylation sites [197-199]. 

 Not only can phosphoproteomics determine changes in protein phosphorylation, but the 

identification of specific phosphorylation sites and surrounding sequence information can be used for 

further bioinformatics analysis.  Most kinases, or families of kinases, phosphorylate serine, threonine, or 
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tyrosine residues within a specific amino acid sequence, also referred to as a consensus motif.  Gygi and 

colleagues developed an approach that uses the phosphorylation site and surrounding sequence 

information obtained from mass spectrometry analysis to determine over-represented consensus 

sequences, which can reveal potential changes in kinase or phosphatase activity [200]. 

Phosphoproteomic Studies 

 There are a limited number of phosphoproteomic studies related to Alzheimer’s disease.  With 

the advancement of phospho-enrichment techniques and mass spectrometer performance, there will 

likely be an increase in the number of phosphoproteomic studies of AD, which is important to further 

understand changes in phosphorylation of proteins, kinase activity, and pathway signaling that may be 

involved in AD pathology. 

Cell Models 

 It appears that only one phosphoproteomic study has been performed using a cell model of AD.  

Wang and colleagues performed a phosphoproteomic analysis of N2aSW cells treated with sodium 

selenate, a compound shown to reduce tau hyperphosphorylation, improving spatial learning and motor 

performance in AD mice.  N2aSW cells are a mouse neuroblastoma cell line expressing human APP with 

the Swedish mutation and have increased extracellular Aβ accumulation.  This study used2-DE and ProQ 

Diamond stain, where 65 proteins with changes in phosphorylation were identified corresponding to 39 

proteins with increased phosphorylation and 26 proteins with decreased phosphorylation [201]. 

Mouse Models 

 Wang et al., conducted a phosphoproteomic analysis of an early onset mouse model to identify 

changes in phosphorylation that may be involved in the transition from presymptomatic to symptomatic 

AD in response to Aβ42 accumulation [202].  TgCRND8 mice are an early onset transgenic mouse model 

of AD overexpressing human APP-695 with the Swedish (K670M/N671L) and Indiana mutation (V717F).  

TgCRND8 mice exhibit early amyloid plaque formation, activated microglia, and dystrophic neurites 
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[203].  The study compared the phosphoproteomes of the hippocampus from 2 month old 

presymptomatic TgCRND8 mice, 6 month old symptomatic TgCRND8 mice, and non-transgenic mice 

[202].  Triple isotopic dimethylation labeling was used for quantitation and phosphopeptide enrichment 

was performed using Ti4+-IMAC microspheres (described by [Ref 19]).  Additional sample fractionation 

was implemented using a biphasic C18 trap column followed by in-line SCX fractionation and C18 

reverse-phase separation.  This study identified 1026 phosphopeptides of which 595 phosphopeptides 

were confidently quantified, and 139 phosphopeptides were found to be significantly altered. 

Human Tissue 

 There have only been five phosphoproteomic analyses of human brain tissue, 3 of which were 

performed using frontal cortex, including one earliest (2008) and most recent (2015) phosphoproteomic 

studies.  The first phosphoproteomic study of human AD cortex was published in 2008 using calcium 

phosphate precipitation for phosphopeptide enrichment and an LTQ Orbitrap mass spectrometer for 

protein identification [179].  The most recent published phosphoproteomic study also analyzed the 

frontal cortex of AD brains compared with control samples using IMAC for phosphopeptide enrichment 

and label free quantitation, also using an LTQ Orbitrap mass spectrometer [204].  The 2008 study 

identified 466 phosphorylation sites on 185 proteins, while the 2015 study identified 5569 

phosphopeptides, 1559 phosphoproteins, and 4185 unique phosphosites, with 253 phosphopeptides 

significantly altered in AD compared with control (>1.75-fold).  The 2015 study by Dammer et al., 

identified changes in the regulation of the heat shock and protein misfolding response pathways 

between AD and control samples, which may have further implications in maintaining protein quality 

and clearance [204].  The third phosphoproteomic analysis examined frontal cortex and substantia nigra 

from AD and control patients using 2-DE for protein separation and ProQ Diamond stain to identify 

changes in levels of protein phosphorylation, followed by Q-TOF mass spectrometry for protein 

identification [205].  Approximately 600 spots were detected, 125 of which appeared to be 
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phosphorylated in both the cortex and substantia nigra, and were subsequently identified corresponding 

to 72 different proteins.  Significant changes in phosphorylation (>2-fold) among both brain regions 

were observed in 9 proteins, including GAPDH, DRP2, and aldolase A (ALDOA) [205].  All of the above 

studies identified significant changes in phosphorylation of cytoskeletal and microtubule-associated 

proteins, as well as proteins involved in synaptic function, which are consistent with AD pathology.  

Determining changes in phosphorylation of specific proteins at different sites can further indicate 

potential changes in kinase activity and altered signaling pathways that may be associated with the 

progression of AD. 

 Phosphoproteomic analyses of neurofibrillary tangles (NFTs) and neuronal intermediate filament 

proteins (NF-M/H) have also been conducted [177, 206].  Rudrabhatla and colleagues characterized the 

abundance and sites of phosphorylation of NF-M/H from frontal cortex of AD brain compared with 

control brains using TiO2 for phosphopeptide enrichment and iTRAQ for quantitative phosphoproteomic 

analysis [177].  Phosphorylation of several sites were identified that are proline-directed Ser/Thr 

residues suggesting increased activity of proline-directed kinases such as Cdk5, GSK3β, or MAPKs or the 

down-regulation of protein phosphatases such as protein phosphatase 2A (PP2A) [177].  In a later study 

they examined the phosphoproteins associated with NFTs from frontal cortex of AD and control brains, 

and found that phosphorylated NF-M and NF-H are integral components of NFTs, which was 

controversial prior to this proteomic study due to the cross reactivity of phospho-NF antibodies.  Also 

identified phosphorylated MAP1B and MAP2 in NFTs isolated from AD patients.  These studies further 

characterize and quantify the site-specific phosphorylation of cytoskeletal and microtubule-associated 

proteins identified in NFTs [206]. 

 There has only been one published phosphoproteomic analysis of the hippocampus, which is 

one of the primary brain regions affected by AD.  The Butterfield group performed a semi-quantitative 

phosphoproteomic analysis of hippocampus from AD and normal brains using 2-DE and ProQ Diamond 
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stain to identify changes in phosphorylation [207].  The authors did not report the total number of 

phosphorylation site or phosphoproteins that they were able to identify, but they did report significant 

changes in phosphorylation of 17 proteins; 9 having increased phosphorylation, and 8 with decreased 

phosphorylation in AD hippocampus. 

 These phosphoproteomic studies contribute to our knowledge of AD pathology and provide 

information about potentially altered signaling pathways and cellular processes.  While these changes 

need to be further studied to determine the mechanisms of altered phosphorylation and related 

biological consequences, they are important to the progress of AD research.  It will be necessary to 

conduct more phosphoproteomic studies to determine the consistency and reproducibility of identified 

changes in phosphorylation.  Also, more studies of different brain regions and at different stages of 

disease progression are needed to increase phosphoproteome coverage and improve our understanding 

of the role of phosphorylation in AD.  It will also be important to expand the phosphoproteomic 

approaches used, as the majority of the phosphoproteomic studies of AD have relied on 2-DE in 

combination with ProQ Diamond phosphoprotein gel stain. 

Summary of Approaches and Project Aims 

 Despite the number of proteomic studies in various models of AD, the precise mechanism of 

APP and Aβ-induced neurodegeneration remains unclear.  In order to gain a deeper understanding of 

proteomic changes in different brain regions at different stages of AD, more studies are needed to 

increase proteome coverage, as well as determine reproducible changes.  Many of the cell model 

studies have relied on treatment with Aβ42 and have employed somewhat limited mass spectrometry 

techniques, primarily relying on 2-DE for protein separation and quantitation, and MALDI-TOF mass 

spectrometry for protein identification. In this dissertation, we report APP-dependent proteomic and 

phosphoproteomic changes by comparing an APP-null B103 neuroblastoma cell model with a stably 

transfected B103-695 cell model expressing APP695.  As this cell model expresses moderate levels of 
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APP695, it is likely more representative of early AD where changes in protein expression or 

phosphorylation may be related to APP695 expression and not the accumulation Aβ oligomers.  We also 

use more comprehensive mass spectrometry techniques that enable greater proteome coverage, as well 

as SILAC labeling for quantification of proteomic and phosphoproteomic changes.  These studies 

required optimization of phosphopeptide enrichment techniques to increase phosphoproteome 

coverage of B103 and B103-605 cells.  Identifying APP-mediated changes in global protein expression 

and phosphorylation provides information about the molecular and cellular functions and signaling 

pathways that may be affected by APP695. Gaining understanding of changes in protein expression and 

phosphorylation, as well as affected cellular functions and signaling pathways that may be associated 

with early AD, provides insight into potential biomarkers of early AD and the development of 

therapeutic targets to hopefully delay the onset or progression of AD 

 Finally, we report the proteomic analyses of human tissue from normal, healthy brains 

compared with brains affected by several neurodegenerative disorders: AD, mild cognitive impairment 

(MCI), progressive supranuclear palsy (PSP), and Parkinson’s disease (PD).  Additionally, we developed 

an improved sample processing method when working with limited starting material, such as human 

tissue or isolated primary cells.  Comprehensive proteomic studies provide information about the 

cellular and molecular functions that may be involved in disease pathology, and aid in the development 

of hypotheses for targeted validation and mechanistic studies.  Proteomics can also potentially identify 

proteins with altered expression not yet associated with certain neurodegenerative diseases, as well as 

identify potential biomarkers, which have been difficult to establish for these neurodegenerative 

diseases 

.  
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Chapter 2: Global Proteomic Analysis of a Cell Model of Alzheimer’s Disease 

 Summary 

 Proteomic studies using cell models to study changes that occur during Alzheimer’s disease (AD) 

have primarily relied on Aβ42 treatment.  Investigating the effect of Aβ42 treatment on protein 

expression is important as Aβ42 levels are significantly increased in AD, however few proteomic studies 

have examined the effect of endogenous APP expression.  We were particularly interested in the impact 

of moderate APP695 expression on the proteome, which may represent molecular changes that take 

place during early AD before there is significant accumulation of Aβ42.  To examine APP695-mediated 

protein expression changes, we used SILAC-based quantitative proteomics to compare APP-null B103 

cells with APP695-expressing B103-695 cells.  The results of this study were published in a 

Neuroproteomics Special Issue of Electrophoresis in December 2012 (see Appendix A).  In addition to 

characterizing the proteomes of B103 and B103-695 cells, we were also interested in determining 

potential APP-mediated protein expression changes during different stages of the cell cycle, and in 

response to neurotoxic insult/inflammation.  SILAC-labeled B103 and B103-695 cells were treated with 

cell cycle inhibitors or lipopolysaccharide (LPS) to quantify changes in protein expression using mass 

spectrometry.  These comprehensive datasets identified proteins and related cellular pathways that may 

be affected by APP695 expression and are potentially involved in AD pathology.  The datasets were also 

utilized for bioinformatic analysis to reveal cellular and molecular functions and potentially altered 

upstream regulators affected by APP695 expression. 
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Introduction 

B103 and B103-695 cells 

 Cell models previously used for proteomic studies of AD include SH-SY5Y human neuroblastoma 

cells, N2a mouse neuroblastoma cells, and cultured primary mouse neurons treated with Aβ42 [138, 

140, 201].  Studies by Schubert and colleagues have shown that B103 rat neuroblastoma cells do not 

express detectable levels of APP, APLP1 or APLP2 [81].  B103-695 cells were developed by stable 

transfection of APP695 into B103 cells.  APP695 expression in B103 cells enhanced cell adhesion, neurite 

outgrowth, and proliferation; however, the molecular mechanisms by which APP induces these cellular 

functions are unclear [81].  APP or a metabolite of APP may induce these changes either on its own or by 

affecting expression of genes associated with these functions.  B103 and B103-695 cells are a useful 

model for studying protein expression changes likely related to APP695 expression, and they can also be 

SILAC-labeled for quantitative proteomic analysis as well as easily treated with different pharmacological 

compounds to study their effect.  The primary goal of this chapter was to characterize the proteomes of 

B103 and B103-695 cells using SILAC-based quantitative proteomics to identify protein expression 

changes that may be mediated by APP695 under normal, cell cycle-dependent and inflammatory 

conditions. 

Cell-Cycle Mediated Protein Expression Changes 

 Cell cycle dysregulation has been suggested to be involved in AD pathogenesis as a number of 

cell cycle regulatory proteins have shown increased expression in the brains of AD patients and 

transgenic mouse models [104-108, 113, 208].  APP has also been shown to undergo cell cycle-

dependent phosphorylation that influences its metabolism, increasing Aβ production and promoting cell 

cycle re-entry [113, 118].  Cells expressing APP demonstrate faster growth rates, and the localization of 

APP to the centromere during mitosis has also been observed, leading to the hypothesis that it may 

have a role in cell cycle progression [81, 113].  Cell cycle inhibitors, such as Roscovitine, Taxol, and 
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Nocodazole, provide a strategy to evaluate changes in protein expression during different stages of the 

cell cycle in B103 and B103-695 cells.  Roscovitine is a compound that prevents cell cycle progression at 

the G1/S and G2/M transition checkpoints by inhibiting Cdk1, Cdk2, Cdk5, and Cdk7 [209].  Taxol, also 

known as paclitaxel, is a microtubule stabilizer that specifically targets tubulin, interfering with their 

normal breakdown during cell division and inhibiting progression through the G2/M transition [210].  

Nocodazole prevents progression through the G2/M phase by binding tubulin and preventing 

microtubule polymerization [211].  The goal of this study was to use quantitative proteomic analysis of 

SILAC labeled B103 and B103-695 cells treated with cell cycle inhibitors to identify novel proteins not 

previously associated with cell cycle progression that may be mediated by APP695 expression. 

Inflammation-Mediated Protein Expression Changes 

 Inflammation is observed in the brains of individuals affected by AD, and it is believed that 

inflammatory pathways are activated in AD [212, 213].  However, as with most hypotheses of AD, it 

remains to be understood whether inflammation is a primary cause of AD or a secondary affect, and it is 

likely part of a more complex mechanism [213].  To investigate the impact of inflammation on protein 

expression, B103 and B103-695 cells were treated with lipopolysaccharide (LPS).  LPS is part of the outer 

membrane of gram-negative bacteria and elicits a strong immune response in mammalian immune cells, 

such as microglia, promoting the secretion of pro-inflammatory cytokines [214, 215].  While LPS 

treatment activates inflammatory pathways in immune cells, it has a neurotoxic effect on neurons.  One 

study showed that the presence of neurons reduced the inflammatory response of glia to LPS treatment 

[216].  Using LPS treatment, we investigated the effect of an inflammatory, neurotoxic environment on 

protein expression and cellular functions in APP-null B103 and APP695 expressing B103-695 cells. 
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Materials and Methods 

Protein Kinase A (PKA) Knockdown 

B103 and B103-695 cells were grown in DMEM:F12 SILAC media supplemented with 10% FBS 

and Penn-Strep-Glutamine.  B103 and B103-695 were transfected with increasing amounts of siRNA 

against PKA, or control siRNA, to reduce expression levels of PKA.  Alternatively, B103 and B103-695 

were treated with increasing amounts of KT5720 inhibitor, which reduces PKA activity.  Cells were 

collected and lysed in RIPA buffer for western blot analysis.  Equal amounts of protein were separated 

on 15% Tris-glycine gel and probed with antibodies against PKA, p-ERK, and actin. 

SILAC Labeling and Roscovitine, Taxol, and LPS Treatments 

 B103 and B103-695 cells were grown in DMEM:F12 SILAC media supplemented with 10% 

dialyzed FBS, Penn-Strep-Glutamine, and either unlabeled L-arginine and L-lysine for B103 cells or heavy 

labelled 13C6-L-lysine 2HCl and 13C6-
15N4-arginine HCl (Cambridge Isotopes) for B103-695 cells.  Cells were 

grown for 5 doublings to achieve >99% incorporation of labeled amino acids.  Cells were treated with 

20μM Roscovitine, 100ng/ml Taxol, or 100ng/ml LPS for 24 hours.  Cells were collected and lysed in 4% 

SDS, 100mM Tris-HCl pH 7.6, 100mM dithiothreitol (DTT), and incubated at 95ᵒC for 5 minutes, followed 

by brief sonication.  Protein concentrations were determined using the Pierce 660 assay supplemented 

with ionic detergent compatibility reagent (IDCR) (Pierce).  Equal amounts of protein from B103 and 

B103-695 lysates were combined and processed by filter-aided sample preparation (FASP) as described 

by Wisniewski and Mann [217].  Proteins were digested overnight at 37ᵒC with Trypsin (Promega) at 

1:50 (w/w, enzyme:protein).  Peptides were desalted using C18 SPE columns and dried in a vacuum 

concentrator.  Dried peptide samples were resuspended and fractionated by strong cation exchange 

(SCX). 



36 

LC-MS/MS and Data Analysis 

 Peptide fractions were analyzed using a hybrid linear ion trap-Orbitrap XL (LTQ-Orbitrap XL, 

Thermo Scientific) using a 90 minute gradient.  Raw data files were searched against the current Rattus 

norvegicus UniprotKB protein sequence database using MaxQuant, a quantitative proteomics software 

package [218].  Significance A, an outlier test, was carried out using Perseus software to determine the 

statistical significance of protein expression using a false discovery rate (FDR)-based approach 

developed by Benjamini and Hochberg [219].  Functional and pathway analysis of statistically significant 

proteins were performed using Ingenuity Pathway Analysis (IPA). 

Cell Synchronization and Treatments 

Cells were grown in DMEM/F12 media supplemented with 10% FBS and Penn-Strep-Glutamine.  

Cells were washed with PBS before being grown in serum-free DMEM/F12 media, or DMEM/F12 with 

10% FBS and Aphidicolin (5μg/ml) to synchronize cells at either the G0/G1 or G1/S transition.  After 48 

hours in serum-free media, or 12 hours in Aphidicolin-containing media, cells were washed with PBS, 

and media was replaced with DMEM/F12 media containing 10% FBS and either Roscovitine, Nocodazole, 

or Taxol using the concentrations described above.  Cells were collected at various time points following 

synchronization and lysed in RIPA buffer for western blot analysis.  Western blots were probed with a 

phospho-tyrosine (100) antibody (mouse monoclonal, Cell Signaling #9411), which binds phosphorylated 

tyrosine independent of surrounding amino acid sequence, PathScan Multiplex Western Cocktail I (Cell 

Signaling #5301), which binds phosphorylated p90RSK (Ser380), Akt (Ser473), p44/42 MAPK (ERK1/2) 

(Thr202/Tyr204), and phospho-S6 ribosomal protein, and an antibody against phosphorylated GSK3α/β 

(Ser21/Ser9) (Cell Signaling #9331). 
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Results and Discussion 

 The results for the global proteomic analysis of B103 and B103-695 cells have been previously 

published and can be found in Appendix A.  The article has been reproduced with the consent of the 

publisher (Appendix C). 

Global Proteomic Analysis of B103 and B103-695: Additional Experiments 

 Some additional experiments were performed to further validate observations from the 

proteomic analysis of B103 and B103-695 cells.  Increased expression of Ras was shown in B103-695 

cells and validated by western blot.  Ras is a small GTPase involved in regulating cell growth and 

differentiation.  It is well established that Ras activates the MAPK signaling pathway, and while Ras-

MAPK signaling is known to have a role in cancer, increasing evidence suggests that it may also be 

involved in neurodegenerative disease [110, 220, 221].  We also observed increased levels of the active 

phosphorylated form of MAPK (ERK1/2), while non-phosphorylated ERK levels were not affected.  To 

determine potential mediators of the observed ERK phosphorylation, and to assess potential crosstalk 

between protein kinase A (PKA), which can also activate ERK, and MAPK signaling, we investigated the 

impact of both siRNA-mediated knockdown and chemical inhibition of PKA on levels of ERK 

phosphorylation.  KT5720 is an inhibitor of PKA activity through competitive inhibition of the ATP 

binding site on PKA catalytic subunit [222].  The siRNA-mediated knockdown of PKA reduced PKA levels 

(Figure 4a) while treatment with the KT5720 inhibitor did not appear to affect levels of PKA (Figure 4b).  

Additionally, PKA knockdown using siRNA was more effective in B103 cells than in B103-695 cells; which 

may be caused by the reduced transfection efficiency of B103-695 cells.  Inhibition of PKA appeared to 

have no effect on levels of ERK phosphorylation, demonstrating that ERK is activated by an alternative 

pathway.  These finding suggest that APP expression specifically affects ERK activation but does not 

impact its expression (Figure 4). 
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Figure 4.  PKA Knockdown in B103 and B103-695 cells.  To determine whether ERK phosphorylation was mediated 
by PKA, a known activator of ERK, PKA was knocked down using siRNA (A) or KT5720 chemical inhibition (B) in 
B103 and B103-695 cells.  While PKA levels were decreased, there was not a significant reduction in ERK 
phosphorylation, suggesting ERK is being activated by an alternative pathway. 

 
Based on our results from proteomic analysis of B103 and B103-695 cells, we were also 

interested in further investigating levels of Ras and ƴ-synuclein expression in human tissue samples from 

non-AD, mild cognitive impairment (MCI) and AD brains.  MCI involves deficits in memory and is 

associated with increased risk of developing more advanced forms of dementia and AD.  Increased levels 

of both Ras and ƴ-synuclein were observed in MCI and AD compared with non-AD individuals (Figure 5), 

which is in accordance with our B103 proteome datasets.  Ras showed a moderate increase in MCI and a 

statistically significant increase in late-AD (Figure 5a).  Levels of ƴ-synuclein were the highest in MCI, 

showing a statistically significant increase compared to non-AD samples, but showed less of an increase 

in late-AD compared with non-AD (Figure 5b).  Increased ƴ-synuclein expression during MCI may indicate 

an early molecular change during neurodegeneration.  Increased expression of Ras in MCI and further 

increase in late AD provides further evidence that Ras likely has a role in AD progression.  Increased Ras 

activity leads to increased MAPK activity, and it is possible that a Ras-mediated signaling cascade may be 

involved in aberrant cell cycle re-entry and neurodegeneration associated with AD pathology and 

progression. 
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Figure 5.  Increased expression of Ras and ƴ-Synuclein in MCI and AD human brain tissue.  (A) Ras was increased 
in MCI and significantly increased in late-AD (LAD) compared to control tissue.  (B) ƴ-synuclein showed a significant 
increase in MCI and only a moderate increase in LAD compared with control tissue.  *p-value ≤ 0.05. 

 
Cell-Cycle Mediated Protein Expression Changes 

 After completing the SILAC-based global-scale analysis of B103 and B103-695 cells, a similar 

global-scale analysis was performed to determine cell cycle-mediated changes in protein expression.  A 

preliminary experiment was performed using heavy and light SILAC labeled B103-695 cells.  Heavy 

labeled B103-695 cells were treated with cell cycle inhibitors Roscovitine or Taxol, and changes in 

protein expression should be attributed to cell cycle inhibition at the G1/S or G2/M transitions, 

respectively.  Proteomic analysis of Roscovitine treated B103-695 cells identified a total of 2265 

proteins, of which 1588 proteins had minimum of 2 unique peptides.  Taxol treated B103-695 cells 

identified a total of 2622 proteins, with 1856 proteins having a minimum of 2 unique peptides.  

Significant protein expression changes were determined using the Benjamini-Hochberg FDR-based 

Significance A test in Perseus, and only proteins with significant changes in at least 2 out of 3 biological 

replicates were considered significant.  Roscovitine treatment resulted in 43 significantly altered 

proteins and Taxol treatment resulted in 38 significantly altered proteins. 
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 Roscovitine treatment of B103-695 cells identified several differentially expressed proteins 

involved in cell growth and proliferation, DNA replication, and cell death and survival.  As Roscovitine 

prevents progression through the G1/S, cells are arrested in the G1 phase of the cell cycle during which 

biosynthesis takes place in preparation for DNA synthesis during S phase.  Therefore, identifying 

significant changes in proteins involved in gene expression, cell cycle and proliferation is unsurprising as 

cells are preparing for S phase.  Bioinformatic analysis of significantly altered proteins also predicted 

inhibition of cell cycle progression (z-score: -2.752) based on the decreased expression of several 

proteins (Figure 6), further confirming the inhibitory effect of Roscovitine on the cell cycle. 

 
Figure 6.  Ingenuity Pathway Analysis predicted inhibition of cell cycle progression in Roscovitine treated B103-
695 cells.  Based on significant expression changes of proteins involved in the cell cycle, cell cycle progression was 
predicted to be inhibited, which is expected given that cells were treated with the cell cycle inhibitor Roscovitine. 
 

 Bioinformatic analysis of Taxol treated B103-695 cells showed changes in expression of proteins 

involved in cellular assembly and organization, cellular function and maintenance, and cell morphology.  

Taxol stabilizes microtubules, preventing progression through the G2/M transition and arresting cells in 

the G2 phase of the cell cycle, during which microtubule biosynthesis takes place as the cell prepares for 

mitosis.  The enrichment of molecular and cellular functions involved in cellular assembly, organization, 

and morphology are consistent with expectations based on the microtubule stabilizing function of Taxol. 
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Cell Synchronization and Preliminary Phosphorylation Analysis 

One of the goals of this project was to investigate APP695-mediated changes in phosphorylation 

by comparing B103 and B103-695 cells.  Phosphorylation is a dynamic post-translational modification 

involved in regulating cell cycle progression, and western blot analysis was performed to evaluate which 

cell cycle inhibitor, Taxol, Roscovitine, or Nocodazole, had the greatest impact on levels of 

phosphorylation.  B103-695 cells were synchronized by serum-starvation or aphidicolin block, commonly 

used methods to synchronize cell populations.  Aphidicolin is an antibiotic and a selective-inhibitor of 

DNA polymerase alpha and delta, preventing cells from entering S phase [223].  Serum starvation forces 

cells to enter G0 by eliminating growth factors from media.  Removal of Aphidicolin and replenishment 

with regular growth medium or addition of serum to the serum-starved cells enables re-entry into the 

cell cycle.  Following synchronization, B103-695 cells were treated with cell cycle inhibitors Nocodazole, 

Taxol, or Roscovitine, and collected at several time points following re-entry into the cell cycle and levels 

of phosphorylation were examined using phospho-specific antibodies. 

Serum-starved cells were collected 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, and 4 

hours following the addition of serum-containing media.  Western blot analysis showed increased 

phosphorylation in all treatments from 5 minutes to 30 minutes, followed by decreased phosphorylation 

after 1 hour.  Taxol-treated B103-695 cells showed the most significant increase in phosphorylation 

compared with cells treated with regular media, Nocodazole, or Roscovitine (Figure 7).  Following 

serum-starvation, cells are arrested in G0, and the addition of serum will activation a number of 

pathways as cells  re-enter G1, resulting in increased phosphorylation.  While levels of phosphorylation 

increase as cells re-enter the cell cycle at G1, we are more interested in phosphorylation events that 

occur during the G2/M transition and during mitosis. 
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Figure 7.  Levels of phosphorylation in B103-695 cells following serum-starvation and inhibitor treatment.  B103-
695 cells were serum-starved for 48 hours to synchronize cells in G0, after which cells were treated with either 
DMEM/F12+10% FBS alone, or DMEM/F12+10% FBS supplemented with 100ng/ml Taxol or 100ng/ml Nocodazole.  
Western blot analysis using PathScan Multiplex Western Cocktail I (CellSignaling) showed increased 
phosphorylation in all treatments from 5-30minutes, and decreased after 1 hour.  Cells treated with Taxol showed 
the greatest increase in phosphorylation. 
 

To investigate phosphorylation changes that occur during S and G2 phases of the cell cycles, 

cells were synchronized using aphidicolin, which arrests cells at the G1/S transition, and cells progress 

through the S-phase and G2-phase of the cell cycle after Aphidicolin is removed.  Following 

synchronization with Aphidicolin, cells were collected at 0 minutes (before inhibitor treatment), and 30 

minutes, 1 hour, 2 hours, and 4 hours after Taxol or Nocodazole treatment.  Changes in phosphorylation 

were assessed by western blot using a phospho-tyrosine (100) antibody and PathScan Multiplex 

Western Cocktail I.  Taxol again showed the most significant increase in phosphorylation from 30 

minutes to 1 hour following Aphidicolin release, as cells are replicating DNA during the S phase (Figure 

8).  Phosphorylation of Akt, a protein kinase essential in controlling survival and apoptosis, is not 

detected after 12 hour aphidicolin treatment, while phosphorylation of Akt at Ser473 (p-Akt) is detected 

30 minutes following aphidicolin release.  Phosphorylation of Akt at Ser473 is activating and has been 

proposed to be regulated in a cell cycle dependent manner [224].  In Taxol and Nocodazole treated 

B103-695 cells the levels of p-Akt appear to continue to increase until 1 hour, and decrease by 2 hours.  

In B103-695 cells treated with regular media, p-Akt levels decrease after 30 minutes.  Akt is involved in 

cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 

[225].  Cyclin D1 is synthesized and accumulates during G1 and degraded as the cells enters S phase.  
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GSK3α is a serine/threonine kinase involved in the phosphorylation of tau protein, regulating the 

binding of tau to microtubules, as well as its degradation and aggregation [226].  GSK3α has also been 

shown to regulate the production of amyloid β in AD [227].  Akt-mediated phosphorylation of GSK3α at 

Ser21 and GSK3β at Ser9 inhibit GSK3 activity [228, 229].  There appears to be in an increase in 

pGSK3α/β (Ser21/9) that coincides with the observed increase in p-Akt.  There was minimal detection of 

pGSKα/β (Ser21/9) in B103-695 cells following 24 hours of aphidicolin block.  Following synchronization 

with Aphidicolin, activated p-Akt (Ser473) and inhibited pGSK3α/β (Ser21/9) are not detected, however 

levels of p-Akt (Ser473) and pGSK3α/β (Ser21/9) appear to increase until 1 hour as cells begin progress 

through the S phase, and are reduced by 2 hours.  Taxol treated cells appear to undergo the greatest 

increase in pAkt (Ser473) and pGSK3α/β (Ser21/9) at 1 hour, followed by Nocodazole treatment, while 

untreated cells show the greatest pAkt (Ser473 levels) after 30 minutes following Aphidicolin release, 

suggesting delayed progression through S phase with Taxol and Nocodazole treatment. 

 
Figure 8.  Levels of phosphorylation in B103-695 cells following Aphidicolin block and inhibitor treatment. B103-
695 cells were treated with aphidicolin (5μg/ml) for 24 hours to synchronize cells in the S phase, after which cells 
were treated with either DMEM/F12, 100ng/ml Taxol, or 100ng/ml Nocodazole.  (A) Global levels of 
phosphorylated tyrosine were observed used was phospho-Tyrosine(100).  (B) Primary antibodies PathScan 
Multiplex Western Cocktail I and phospho-GSK3α/β(Ser21/Ser9) revealed changes in phosphorylation following 
cell synchronization and release.  Actin was used to determine protein loading. 
 

Inflammation Mediated Protein Expression Changes 

 Lipopolysaccharide is known to promote the inflammatory response in immune cells, 

and was used to investigate inflammation and neurotoxicity mediated protein expression changes in 



44 

APP695 expressing B103-695 cells.  A total of 1947 unique proteins were identified, and 1808 proteins 

were identified with at least 2 unique peptides.  Using the Benjamini-Hochberg FDR-based Significance A 

test, 32 proteins had significant expression changes after LPS treatment and were used for 

bioinformatics analysis.  Based on the observed significant protein expression changes, Ingenuity 

Pathway Analysis (IPA) predicted activation of interleukin-5 (IL-5) and inhibition of interleukin-10 

receptor alpha (IL10RA).  Predicted activation of IL-5 (z-score 2.449) was based on increased expression 

of guanylate binding protein 2 (GBP2), ERO1-like protein (ERO1), cysteine-rich protein 1 (CRIP1), annexin 

A2 (ANXA2), aldolase C (ALDOC), and prolyl 4-hydroxylase, alpha polypeptide (P4HA1) following LPS 

treatment (Figure 7a) [230].  IL-5 is a pro-inflammatory cytokine previously shown to be upregulated in 

immune cells in response to LPS treatment [231].  IL10RA is a receptor for interleukin-10 (IL-10), an anti-

inflammatory cytokine, inhibiting the synthesis of pro-inflammatory cytokines.  Predicted inhibition of 

IL10RA (z-score -2.000) was based on the increased expression of GBP2, ERO1, guanine deaminase 

(GDA), and cysteine and glycine rich protein 2 (CRSP2).  Inhibition of IL10RA would prevent the 

activation of IL-10, no longer inhibiting pro-inflammatory cytokine synthesis, promoting the 

inflammatory response of immune cells.  These findings are consistent with the pro-inflammatory effect 

of LPS on immune cells as a number of the observed protein expression changes in neuroblastoma cells 

further indicate the pro-inflammatory response.  The significant proteins identified as a result of LPS 

treatment appear to be consistent with the literature, and pathway analysis did not provide any novel 

insight into inflammation-mediated protein expression changes APP-695 cells. 
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Figure 9.  Ingenuity Pathway Analysis of LPS treated B103-695 cells predicts changes in inflammatory proteins.  
IPA predicted activation of pro-inflammatory cytokine IL-5 (A) and inhibition of anti-inflammatory cytokine 
receptor IL-10RA (B) based on changes in protein expression. 
  



46 

 

 

Chapter 3: Phosphoproteomic Analysis of a Cell Model of Alzheimer’s Disease and Validation Using 
Cultured Primary Neurons and Human Brain Tissue 

 

Abstract 

 The Alzheimer’s disease (AD) brain is characterized by the presence of two pathogenic lesions: 

amyloid plaques and neurofibrillary tangles (NFTs).  Amyloid plaques are primarily composed of the 

amyloid-beta (Aβ) peptide, which is generated following cleavage of amyloid precursor protein (APP).  

Production, oligomerization and deposition of Aβ are thought to be the initiating pathogenic events in 

AD, however the processes leading up to these events are largely unknown.  There has been significant 

interest in the physiological function of APP and how this function is altered under disease state.  Our 

lab has previously found that under pathogenic conditions, APP undergoes a specific phosphorylation 

that is thought to induce significant C-terminal conformational change that allows APP to be more 

readily cleaved by β-secretase.  Furthermore, we and others have found that aberrant mitotic events in 

compromised neurons can initiate this pathogenic modification. 

 To better understand the molecular events driving mitotic initiation and the subsequent 

pathogenic alteration of APP, we utilized a B103 rat neuroblastoma cellular model.  B103 cells do not 

express detectable levels of APP or APP-like proteins APLP1 or APLP2, and B103-695 cells express the 

neuronal APP-695 isoform.  Mass spectrometry was used for the identification of phosphopeptides from 

a complex mixture, including site localization.  Identifying changes in phosphorylation can indicate 

potentially altered pathways as well as overrepresented consensus motifs as an indication of changes in 

kinase activity.  B103 and B103-695 cells were grown in light or heavy SILAC media, respectively, after 

which the lysates were combined and FASP digested using Trypsin/LysC, fractionated by strong cation 

exchange and enriched for phosphopeptides using PolyMAC before reverse-phase (RP)-HPLC separation 

and analysis on a Q-Exactive Plus.  A total of 2478 phosphopeptides were identified among 3 biological 
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replicates.  Increased phosphorylation of Histone H4 at Ser47, and increased expression of PCTAIRE-2 

(Cdk17) and PCTAIRE-3 (Cdk18) were identified in B103-695 cells compared with B103 cells, and these 

changes were further validated in PS/APP mice, Aβ-treated primary neurons, and human brain tissue 

from individuals affected by mild cognitive impairment (MCI) and AD.  The comprehensive 

phosphoproteomic dataset provides insight into pathways that may be affected by APP-695 expression 

based on changes in phosphorylation as well as consensus motif analysis, providing a foundation for 

future mechanistic studies. 

Introduction 

 Alzheimer’s disease (AD) is the most prevalent form of dementia affecting the elderly, and is 

associated with decline in higher cognitive function as exhibited through deficits in memory, executive 

function and complex attention.  One of the pathological hallmarks of AD is the presence of extracellular 

amyloid plaques, composed of aggregated Aβ peptide that accumulates in the brain years before the 

onset of symptoms associated with the disease [232].  Aβ is derived from the sequential cleavage of 

APP, a type 1 transmembrane protein [26].  Under pathogenic conditions, APP undergoes proteolytic 

cleavage by beta-site APP cleaving enzyme (BACE or β-secretase) and γ-secretase, resulting in the 

production of Aβ and the shedding of the sAPPβ ectodomain [233].  Alternatively, APP can be cleaved by 

α-secretase, liberating sAPPα and precluding the generation of Aβ by cleaving within the Aβ domain 

[233].  These cleavages lead to generation of additional fragments such as the intracellular domain of 

APP (AICD).  Since APP expression leads to generation of not only full length APP but also several 

fragments with various functions, it is difficult to determine the precise cellular function of APP and how 

its metabolites differentially contribute to AD. 

 While the genetic factors that contribute to familial AD (FAD) have been well described, 

relatively little is known about the precise molecular processes that lead to sporadic AD.  In both 

sporadic and familial AD, Aβ accumulation precedes the formation of neurofibrillary tangles (NFTs), 
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highlighting a key role for Aβ in disease pathogenesis [234].  Furthermore, another prominent feature 

present in most AD cases is neuroinflammation.  In the early stages of AD, Aβ fibrils and oligomers have 

been shown to induce microgliosis [235, 236].  Interestingly, this immune response has been shown to 

induce abnormal cell cycle events in compromised neurons of the AD brain [104, 107, 237].  Earlier 

studies from our lab have demonstrated that mouse models of AD, expressing APP alone or together 

with presenilin 1 (PS1), show aberrant expression of cell cycle regulatory proteins with a concomitant 

increase in phosphorylation of APP at Thr668 [113].  Phosphorylation of APP at this residue is associated 

with enhanced proteolytic processing, and affects APP trafficking [115] and protein-protein interactions 

[238].  In vitro studies have shown that A induces aberrant cell cycle activation and neuronal apoptosis 

[107].  It is possible that chronic Aβ-induced inflammation in the brain leads to aberrant neuronal cell 

cycle initiation and cell cycle dependent modifications of APP, altering its proteolysis and leading to 

increased production of A, thereby promoting the vicious cycle. 

 Our published studies showing that APP promotes expression of proliferation-associated 

proteins support the notion that APP has a role in cell cycle regulation [239].  These studies were carried 

out with B103 rat neuroblastoma cells that are APP-null or express the APP695 isoform (B103-695) using 

SILAC-based proteomics. These findings indicate that APP expression is able to induce signaling cascades 

that may play a role in the cell cycle mediated neuronal degeneration observed in AD.  To determine the 

global changes in protein phosphorylation upon APP expression we performed a phosphoproteomic 

analysis of SILAC-labeled B103 and B103-APP cells.  To determine the global changes in protein 

phosphorylation upon APP expression, we performed phosphoproteome analysis of SILAC-labeled B103 

and B103-695 cells. 

 Mass spectrometry can be used for the identification of phosphopeptides from a complex 

mixture including site localization and relative quantification.  Phosphoproteomics involves the 

enrichment of phosphopeptides to increase their identification and sequence information, which can be 
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useful for bioinformatic analysis of affected pathways.  Additionally, phosphoproteomics can further 

identify potential changes in kinase activity by analysis of overrepresented phosphorylated consensus 

motifs [200].  Several phosphoproteomic enrichment techniques have been developed, including 

immobilized-metal affinity chromatography (IMAC), which exploits the negatively charged phosphate 

groups affinity for positively charged metal ions, such as Fe3+ [188-190], Ga3+ [191],  or Ti4+ [192].  Metal 

oxide affinity chromatography (MOAC), most commonly using TiO2 particles [193, 194], and polymer-

based metal ion affinity capture (PolyMAC) enrichment [195] have also be used for phosphopeptide 

enrichment.  To date, there are only a few phosphoproteomic studies related to Alzheimer’s disease.  In 

the present study, we used a titanium-based nanopolymer phosphopeptide enrichment in combination 

with strong cation exchange (SCX) for the enrichment of phosphopeptides, which were analyzed on a Q-

Exactive Plus.  Phosphoproteomic analysis identified over 2000 phosphopeptides in B103 and B103-695 

cells.  Compared with B103 cells, B103-695 cells showed increased phosphorylation of Histone H4 at 

Ser47, and increased expression of PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18).  Increased levels of pS47-

Histone H4, PCTAIRE-2, and PCTAIRE-3 were further validated in PS/APP mice, Aβ-treated primary 

neurons, and human brain tissue from individuals affected by mild cognitive impairment (MCI) and AD. 

Materials and Methods 

B103 and B103-695 Phosphoproteomic Analysis 

Cell Culture and SILAC Labeling 

 B103 and B103-695 cells were grown in DMEM:F12 SILAC media supplemented 10% dialyzed 

FBS, Penn-Strep-Glutamine, and either unlabeled L-arginine and L-lysine for B103 or heavy labelled 13C6-

L-lysine 2HCl and 13C6–
15N4-arginine HCl (Cambridge Isotopes) for B103-695 cells.  Cells were grown for 5 

doublings to achieve >99% incorporation of labeled amino acids before being collected. 
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Sample Preparation and Phosphopeptide Enrichment 

 Cells were lysed in 100mM Tris-HCl (pH 7.6), 4% SDS, 100mM DTT and Halt protease cocktail 

inhibitor (Pierce) and incubated at 95˚C for 5 minutes, followed by sonication at 20% amplitude.  Protein 

was quantified using the Pierce 660 assay supplemented with ionic-detergent compatibility reagent 

(IDCR) (Pierce).  Experiments were performed in triplicate.  A total of 1.2mg B103 and 1.2mg B103-695 

lysate were combined and processed by filter-aided sample preparation (FASP) [217], followed by 

digestion with Trypsin/Lys-C (Promega) 1:50 (w:w; protease:protein) overnight at 37˚C.  Peptides were 

desalted using C18 SPE columns (Thermo) with a Supelco vacuum manifold and were then dried and 

resuspended in mobile phase A prior to fractionation.  Peptides were fractionated on a Dionex U3000 

HPLC system with a 200 x 4.6mm i.d. strong cation-exchange (SCX) column packed with 5 µm 200Å 

polySULFOETHYL A-SCX material (PolyLC Inc.).  One minute fractions were collected using a 45 minute 

gradient (15-200mM ammonium formate, pH 3-6.5, 25% acetonitrile) at a flow rate of 1ml/minute. 

 Peptide fractions enriched for phosphopeptides using PolyMAC (Expedeon), a nanopolymer 

titanium-based enrichment.  Following PolyMAC enrichment the samples were dried and resuspended 

in 0.25% formic acid for LC-MS/MS analysis. 

LC-MS/MS 

 Peptides were analyzed on a Q-Exactive Plus (Thermo Fisher Scientific) following fractionation 

with a 75µm x 50cm reversed-phase UPLC column (Dionex) packed with 5µm 300Å C18 material using a 

90 minute gradient on an EASY-nLC 1000 system (Thermo Fisher Scientific).  Full MS survey scans used a 

resolving power of 60,000, selecting the top ten most abundant ions for MS/MS fragmentation and 

analysis. 

Database Searching and Consensus Motif Analysis 

 Raw data files were processed in MaxQuant (version 1.5.0.30, http://www.maxquant.org) and 

searched against the UniprotKB database containing Rattus norvegicus protein sequences. The search 
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parameters included a constant modification of cysteine by carbamidomethylation and variable 

modifications methionine oxidation and phosphorylation of serine, threonine, and tyrosine.  Additional 

parameters include multiplicity set to 2, with heavy lysine-6 and arginine-10. 

 Statistical analysis was carried out using Perseus software (version 1.5.0.31, 

http://141.61.102.17/perseus_doku).  Statistically significant changes in phosphopeptide abundance 

were determined using Significance A, an outlier test with a threshold p-value of 0.05.  Only 

phosphopeptides identified in at least 2 biological replicates with a minimum ratio count of 2 were used 

for statistical analyses.  Phosphopeptide ratios were normalized against total protein ratios from our 

previous SILAC-based proteomic analysis of B103 and B103-695 cells.  Both non-normalized and 

normalized median phosphopeptide ratios were analyzed to account for potential changes in 

phosphorylation of proteins that were not identified in our initial proteomic analysis. 

 Raw data files were searched again with the parameters described above with a multiplicity of 1 

for only light lysine and arginine, or heavy lysine-6 and arginine-10, to generate separate light and heavy 

datasets.  Results were analyzed with Scaffold PTM (version 2.1.3) to determine overrepresented kinase 

motifs surrounding phosphorylation sites, using the method developed by Gygi and Schwartz [200], as 

well as potential enzyme recognition sites. 

Transgenic Mouse Tissue 

Heterozygous PDGF-hAPP (V717F) mice (Swiss-Webster x C57BL/6) were crossed with PDGF-

hPS1 (M146L) heterozygotes (Swiss-Webster x C57BL/6) to generate APP+/-/PS1+/- genotyped mice.  In 

this study we used these transgenic mice with age-matched non-transgenic (Ntg) mice to serve as 

control.  Mice were anesthetized at 9 months with pentobarbital (10 mg/kg body weight) and perfused 

with a saline solution.  The brains were dissected out and half of each brain was fixed with 4% 

paraformaldehyde.  The brains were processed prior to immunohistochemical analysis as previously 
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described [240].  Brain sections were prepared using a freezing stage microtome and then stored at 4°C 

in phosphate buffered saline containing 0.02% sodium azide. 

Oligomeric Aβ42 Preparation 

1mg of monomeric Aβ42 was dissolved in 1ml trifluoroacetic acid (TFA) and lyophilized in 100μg 

aliquots.  Lyophilized Aβ42 was solubilized in sterile DMSO to a concentration of 5mM and then diluted 

to 100μM in DMEM media and left at 4°C overnight. 

B103 and B103-695 Cell Culture and Aβ Treatment 

B103 and B103-695 cells were grown in DMEM:F12 supplemented with 10% FBS and Penn-

Strep-Glutamine.  B103 and B103-695 cells were plated on 8-chamber slides treated with poly-L-lysine 

(PLL) (Life Technologies) at a density of approximately 5x104 cells per well.  After 24 hours, cells were 

treated with either 5μM Aβ42 or DMSO, which served as a vehicle control. 

Primary Neuron Culture and Aβ Treatment 

Primary neurons were cultured in Neurobasal Medium supplemented with 2X B-27, 1% 

Penicillin/Streptomycin and 2mM glutamine.  Neurons were cultured in 8-chamber glass slides and 

100mm cell culture dishes that were coated with PLL.  Briefly, E18 pregnant rats were euthanized by 

pentobarbital injection and feti excised and placed in isotonic solution.  The meninges were then 

removed and cortices separated.  Cortices were titrated into a single cell suspension in isotonic buffer 

and spun down at 1500 rpm for 5 mins at 4˚C.  The neuronal pellet was resuspended in 2ml Neurobasal 

media and filtered through a cell strainer.  8 chamber slides were plated with ~5X104 neurons per well 

and 100 mm dishes were plated with ~6X106 neurons.  Neurons were fed every third day and grown for 

5 days prior to treatment.  Neurons grown on 100mm dishes were treated with either DMSO vehicle or 

5μM Aβ42 and harvested after 24 hrs.  Neurons grown on 8-chamber were treated with either DMSO 

vehicle or incremental concentrations of Aβ42 ranging from 1μM to 5μM. 
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Nuclear Fractionation 

 Cells were collected and pelleted by centrifugation at 500 x g for 15 minutes at 4˚C.  Cells were 

resuspended in 1ml of 10mM Tris-HCl (pH 7.4), 1mM EDTA, 200mM sucrose, and Halt protease inhibitor 

cocktail (Pierce) and subjected to gentle dounce homogenization.  Nuclei and cell debris were pelleted 

by centrifugation at 900 x g for 10 minutes at 4˚C.  The nuclei containing pellet was lysed in 100mM Tris-

HCl (pH 7.6), 4% SDS, 100mM DTT and Halt Protease Cocktail Inhibitor (Pierce) as described above.  

Protein was quantified using the Pierce 660 assay supplemented with ionic-detergent compatibility 

reagent (Pierce) before preparing 1μg/µl samples in Laemmli Buffer for Western blot analysis. 

Human Brain Tissue 

 Human brain tissue was obtained from Dr. David Cribbs at the University of California Irvine 

Alzheimer’s Disease Research Center.  Brain samples were de-identified and categorized based on post-

mortem Braak stage and pre-mortem clinical MMSE score.  Additional information on this brain material 

is detailed in Table 1.  Samples were categorized based on determined disease stage; Non-AD (NAD), 

Mild Cognitive Impaired (MCI) or Late-AD (LAD).  Tissue was homogenized in 100mM Tris-HCl (pH 7.6) 

containing 4% SDS, 100mM DTT and Halt protease inhibitor cocktail.  Homogenates were briefly 

sonicated and centrifuged for 15 mins at 14,000 xg.  The soluble supernatant fraction was then 

separated from the insoluble pellet for sample preparation.  Brain lysates were analyzed by western blot 

and disease state confirmed using 6E10 (detecting FL-APP and Aβ) and PHF-1 antibodies (Figure 14). 

Immunostaining 

 For immunostaining analysis of mouse brain sections, sections were mounted onto superfrost 

slides, air-dried and rehydrated with TBS for 5 minutes.  For antigen retrieval, sections were incubated in 

10mM citrate buffer, pH 6.0 for 10 mins at 95˚C and cooled to room temperature.  After washing with 

PBS, sections were blocked with 10% normal goat serum (NGS) in TBST with 0.02% sodium azide (NaAz) 

for 2 hours at room temperature.  Sections were then incubated with APP (6E10) primary antibody 
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(mouse monoclonal 1:500) and either PCTAIRE-2 (1:50) or PCTAIRE-3 (1:50) primary antibody diluted in 

1% BSA/TBST at 4˚C in a humidified chamber overnight.  Next, sections were washed and incubated for 2 

hrs at room temperature with goat anti-mouse IgG Alexa Fluor 488 (1:1000) and goat anti-rabbit IgG 

Alexa Fluor 594 (1:4000) diluted in blocking buffer.  After washing, cells were incubated in 1μg/ml 

Hoechst 33342 DNA dye in PBS for 3 mins.  After thorough washing, the slides were coverslipped with 

Fluoro-Gel mounting media and analyzed with a Zeiss Fluorescence Axio Imager using AxioVision Rel 4.8 

software. 

 For immunostaining analysis of cultured cells, cells (either B103, B103-695 or primary neurons) 

were fixed with 4% paraformaldehyde for 10 mins at room temperature and washed with PBS.  After, 

cells were blocked in blocking buffer for 1 hr.  B103 and B103-695 cells were then incubated overnight at 

4°C with α-tubulin (mouse monoclonal, 1:1000) and either PCTAIRE-2 (1:50) or PCTAIRE-3 (1:50) primary 

antibodies diluted in 1%BSA/TBST with NaAz.  Neurons were incubated with Tau 1 (mouse monoclonal, 

1:500) and either PCTAIRE-2 (1:50) or PCTAIRE-3 (1:50) primary antibodies.  After incubation, cells were 

washed and incubated in goat anti-mouse IgG Alexa Fluor 488  (1:1000) and goat anti-rabbit IgG Alexa 

Fluor 594 (1:4000) diluted in blocking buffer.  After brief washing, cells were incubated for 3 mins with 

1μg/ml Hoechst 33342 DNA dye.  After thorough wash, slides were mounted using Fluoro-gel and 

visualized as mentioned previously. 

Western Blotting 

 Proteins were selected for validation by western blot analysis based on significance as well as 

function.  Proteins were separated on an AnyKD SDS-PAGE gel (BioRad) and transferred to a PVDF 

membrane using the Trans Turboblot system (BioRad).  Membranes were blocked in 5% non-fat milk in 

TBS for 1 hour at room temperature.  Primary antibodies specific for phospho-Serine47-Histone H4 

(Abcam, rabbit polyclonal), Histone H4 (Cell Signaling, mouse monoclonal), PCTAIRE-2 and PCTAIRE-3 

(Santa Cruz, rabbit polyclonal), Actin (Sigma Aldrich, mouse monoclonal), APP (6E10 antibody, Covance, 
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mouse monoclonal), anti-Tau1 (Millipore), anti-PHF1 (phospho Ser396/Ser404-Tau, kindly provided by 

collaborator Dr. Peter Davies, Albert Einstein College of Medicine) and GAPDH (Cell Signaling, rabbit 

monoclonal) were diluted in 5% BSA-PBS, with 0.05% NaN3 and incubated overnight at 4˚C.  Membranes 

were then incubated with appropriate corresponding secondary antibodies, donkey anti-rabbit HRP-

conjugated (Cell Signaling) or goat anti-mouse HRP-conjugated (Cell Signaling) for 1.5 hours at room 

temperature.  All blots were developed with Pico Chemiluminescence reagents (Pierce), with the 

exception of pS47-Histone H4 which was developed using Femto Chemiluminescence reagents (Pierce), 

using an Amersham Imager 600RGB (GE Healthcare). 

Table 1.  AD, MCI, and non-AD Human Brain Tissue Information. 

Case No. Age Sex Braak Stage PMI MMSE Diagnosis 

34 91 F 3 3.33 30 NAD 

29 83 F 4 5.25 30 NAD 

41 91 F 4 4.82 29 NAD 

40 91 F 2 3.8 29 NAD 

24 86 F 3 2.92 22 MCI 

17 86 F 3 6.17 30 MCI 

9 87 M 5 6.17 24 MCI 

35 94 M 1 3.87 27 MCI 

45 95 F 5 5.30 24 MCI 

12 82 F 6 5.92 17 LAD 

39 90 M 6 4.17 14 LAD 

37 88 F 5 4.50 10 LAD 

10 82 F 6 4.58 -5 LAD 

40 96 F 6 4.50 20 LAD 

 

Results 

B103 and B103-695 Phosphoproteome Comparison 

 A total of 2478 phosphopeptides were identified across 3 biological replicates in B103 and B103-

695 cells; 1082 were quantified in a minimum of 2 biological replicates with a minimum ratio count of 2.  

Of the 1082 phosphorylation sites confidently identified and quantified, 712 of them corresponded to 

proteins previously quantified by SILAC in our global scale proteomic analysis of B103 and B103-695 cells 

[239].  When possible, phosphopeptide ratios were normalized against corresponding protein ratios 
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previously determined in the B103 and B103-695 proteomic analysis.  Perseus was used to identify 

significant changes in phosphopeptide expression across biological replicates using Significance A, a 

statistical outlier test, with a p-value threshold of 0.05.  Significant changes were identified in 92 

phosphosites corresponding to 71 different proteins when using non-normalized ratios, and 50 

phosphosites corresponding to 46 proteins when using normalized ratios.  Select differentially 

phosphorylated phosphosites, both normalized and non-normalized, are listed in Table 2.  Bioinformatic 

analysis of statistically significant phosphosites was performed using Ingenuity Pathway Analysis (IPA) 

which identified several proteins associated with neurological disease and psychological disorders as 

well as molecular and cellular functions including cell morphology, cellular assembly and organization, 

function and maintenance, and growth and proliferation. 

Table 2.  Selected phosphoproteins of interest with significant changes in phosphorylation in APP-695 expressing 
B103-695 cells compared with APP-null B103 cells.  Median phosphopeptide ratios were normalized against 
corresponding protein ratios when possible. 

Protein Name 
Gene 
Name 

Protein 
Amino 

Acid 
Pos. 

Median 
Phospho 

Ratio 
Variance 

Median 
Protein 
Ratio 

Normalized 
Median 

Heat shock protein beta-1 Hspb1 P42930 S 86 2.90 0.35 0.64 4.50 

Heat shock protein beta-1 Hspb1 P42930 S 115 2.04 0.08 0.64 3.16 

A-kinase anchor protein 12 Akap12 Q5QD51 S 507 1.79 0.36 0.73 2.46 

Cyclin-dependent kinase 17 Cdk17 O35381 S 146 1.86 0.21 N/A N/A 

Cyclin-dependent kinase 17 Cdk17 O35381 S 180 2.27 0.92 N/A N/A 

Cyclin-dependent kinase 18 Cdk18 O35382 S 109 3.85 0.15 N/A N/A 

Cyclin-dependent kinase 18 Cdk18 O35382 S 66 3.5 0.099 N/A N/A 

Histone H4 Hist1h4b P62804 S 47 2.24 0.018 1.18 1.90 

Myristoylated alanine-rich C-
kinase substrate 

Marcks P30009 T 143 0.39 0.002 N/A N/A 

Myristoylated alanine-rich C-
kinase substrate 

Marcks P30009 S 27 0.25 6.47E-4 N/A N/A 

Myristoylated alanine-rich C-
kinase substrate 

Marcks P30009 S 138 0.26 2.17E-5 N/A N/A 

Cell division cycle protein 20 Cdc20 Q62623 T 106 2.15 0.004 0.96 2.25 
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Consensus Motif Analysis 

 Mass spectrometry provides site localization of phosphorylated peptides as well as surrounding 

sequence information, which enables consensus motif analysis.  Most kinases phosphorylate residues 

within a specific consensus motif; determining overrepresented consensus motifs can be an indication 

of changes in kinase activity.  Consensus motif analysis identified several phosphopeptides that were 

phosphorylated within the growth associated Histone H1 kinase substrate motif in B103-695 cells but 

not in B103 cells, suggesting increased activity of this kinase in APP695 expressing cells (Figure 10).  

Growth associated Histone H1 kinase has been shown to be involved in regulating mitotic entry [241], 

suggesting altered cell cycle regulation in B103-695 cells. 

 

Figure 10.  Growth associated Histone H1 kinase motif represented in B103-695 cells but not in B103 cells.  
Phosphorylation by growth associated histone H1 kinase, a serine/threonine kinase that phosphorylates substrates 
specifically within the above amino acid sequences; was observed in APP-695 expressing B103-695 cells, while 
phosphorylation within this motif was not observed in APP-null B103 cells. 
 

Increased Phosphorylation of Histone 4 at Ser47 

 The normalized ratio of phosphoSer47-Histone H4 (pS47-Histone H4) showed a statistically 

significant 1.89-fold increase in B103-695 cells compared to B103 cells and was selected for further 

validation.  Histone H4 is involved in chromatin structure and function and modification of Histone H4 

influences both dynamic and long term gene expression.  Histone H4 is phosphorylated at Ser47 by p21-
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protein-activated kinase 2 (Pak2) [242] and Pak2 phosphorylation at Ser141 is required for optimal Pak2 

activity [243].  Phosphorylation of Pak2 at Ser141 also showed a very slight increase (1.15-fold after 

normalization to total Pak2) in B103-695 cells by phosphoproteomics; however this increase could not 

confirmed by western blot analysis (data not shown).  The extracted ion chromatogram (XIC) for the 

SILAC heavy and light labeled Ser47 phosphorylated Histone H4 peptide identified by LC-MS/MS 

analysis, as well as their base peak chromatograms, are shown in Figure 11a and 11b.  The area under 

the curve for each XIC is representative of peptide abundance, which is significantly greater in the heavy 

labeled peptide from B103-695 cells.  The annotated MS/MS spectra showing the amino acid sequence 

determined by LC-MS/MS of the Ser47 phosphorylated Histone H4 peptide is shown in Figure 11c.  

Increased phosphorylation of Ser47-Histone H4 in B103-695 cells was validated by western blot analysis 

of nuclear fractions from B103 and B103-695 samples (Figure 12a).  To determine whether Aβ42 could 

increase phosphorylation of Ser47-Histone H4, cultured primary rat neurons were treated with 5µM 

oligomeric Aβ for 24 hours, which resulted in significantly increased phosphorylation of Histone H4 at 

Ser47 while total Histone H4 levels were not affected (Figure 15). 
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Figure 11.  Increased phosphorylation of Histone H4 at Ser47 in B103-695 cells compared with B103 cells.  (A) 
Extracted Ion Chromatogram for “Light” (top) and “Heavy” (bottom) Histone H4 peptide RpSGLIYEETR.  (B) Base 
peak chromatogram showing isotope clusters for both “Light” and “Heavy” peptides with monoisotopic masses 
labelled.  (C)  Annotated MS/MS spectra of Histone H4 peptide showing phosphorylation detected at Serine 47. 
 

 For further validation, human brain samples obtained from the superior frontal gyrus, located in 

the prefrontal cortex were assessed by western blot analysis.  The brain tissue lysate from individuals 

was categorized as NAD, MCI or LAD.  We found that phosphorylation of Histone H4 at Ser47 was 

significantly higher in LAD individuals compared to their NAD counterparts (Figure 18), suggesting that 

this phosphorylation is a late-stage modification in AD. 

Increased Expression of PCTAIRE-2 and PCTAIRE-3 

 PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18), members of the cyclin-dependent kinase (Cdk) 

family, were found to be differentially phosphorylated in B103-695 cells compared with B103 cells and 

were selected for further validation.  While PCTAIRE-2 and PCTAIRE-3 were not identified in our initial 
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proteomic analysis of B103 and B103-695 cells, their non-normalized phosphopeptide ratios showed 

significant increases in phosphorylation.  PCTAIRE-2 showed increased phosphorylation at Ser146 (1.86-

fold) and Ser180 (2.27-fold).  PCTAIRE-3 showed increased phosphorylation at Ser66 (3.5-fold) and 

Ser109 (3.85-fold).  Western blot analysis revealed that expression of both PCTAIRE-2 and PCTAIRE-3 

were significantly increased in B103-695 cells compared with B103 cells (Figure 12b). 

 

Figure 12.  Western blot validation of pS47-Histone H4, PCTAIRE-2, and PCTAIRE-3 in B103 and B103-695 cells.  
(A) Phosphorylation of Histone H4 Ser 47 is significantly increased in B103-695 cells after normalization to Histone 
H4.  (B) PCTAIRE-3 and PCTAIRE-2 expression are significantly increased in B103-695 cells after normalization to 
GAPDH. *p value<0.05, **p value<0.0005. 
 

 PCTAIRE-2 and PCTAIRE-3 expression in aged, 9 month old PS/APP double transgenic AD mouse 

brains were further examined by western blot (Figure 13) and immunostaining (Figure 14).  PS/APP 

transgenic mice demonstrate accelerated plaque pathology and increased accumulation of Aβ42 at a 

young age, followed by development of fibrillary Aβ deposits in the cerebral cortex and hippocampus at 

6 months old [148].  PS/APP transgenic mice showed a significant increase in PCTAIRE-2 expression 

compared with non-transgenic mice (Figure 13a), while PCTAIRE-3 expression was only slightly increased 

(Figure 13b).  Immunostaining of PCTAIRE-2 and PCTAIRE-3 also revealed increased expression in PS/APP 

mice compared to their non-transgenic (non-Tg) littermates (Figure 14).  Upon analysis of 

immunofluorescent staining of PS/APP mouse brain sections, we observed strong localization of 
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PCTAIRE-2 staining to the dense core of the amyloid plaques, detected with 6E10 antibody (Figure 14a).  

While PCTAIRE-3 staining was not as elevated in PS/APP mice as compared to PCTAIRE-2, it also showed 

punctate staining within the amyloid plaques in these brain sections (Figure 14b). 

 

Figure 13.  Increased expression of PCTAIRE-2 and PCTAIRE-3 in PS/APP transgenic mice.  Western blot analysis 
showed a significant increase in PCTAIRE-2 (A) and only a slight increase in PCTAIRE-3 (B) in PS/APP transgenic 
mice compared with non-transgenic mice after normalization to GAPDH. 
 
 

 
Figure 14.  Immunostaining of PCTAIRE-2 and PCTAIRE-3 in PS/APP and non-Tg mice.  Co-immunostaining of 6E10 
(recognizing Aβ in amyloid plaques) with (A) PCTAIRE-2 and (B) PCTAIRE-3 reveals localization of PCTAIRE-2 and 
PCTAIRE-3 to amyloid plaques in PS/APP mice compared with non-transgenic (Ntg) mice. 
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 Because there was strong localization of both PCTAIRE-2 and PCTAIRE-3 to amyloid plaques, we 

next sought to determine the effect of Aβ treatment on the expression and localization of PCTAIRE-2 

and 3 in primary neurons.  Primary cortical rat neurons were cultured and treated with 5μM oligomeric 

Aβ42 for 24 hours and analyzed by western blot (Figure 15) and immunostaining (Figure 16).  Western 

blot analysis revealed a significant increase in levels of both PCTAIRE-2 and PCTAIRE-3 following 24 hour 

5µM Aβ treatment (Figure 15).  Immunostaining of primary rat neurons treated with 1µM, 2.5µM, and 

5µM oligomeric Aβ42 resulted in a dose-dependent alteration of PCTAIRE-2 and PCATIRE-3 expression 

and localization.  Control neurons treated with DMSO exhibited basal, cytoplasmic staining of PCTAIRE-2 

(Figure 16a).  Upon treatment of the neurons at even the lowest concentration of Aβ, PCTAIRE-2 

appears to have enhanced staining that accumulates both in the nuclear and perinuclear areas of the 

neuron (Figure 16a).  PCTAIRE-3 staining in the neurons showed reduced levels of staining compared to 

that of PCTAIRE-2, which is in agreement with our western blot analysis.  In control, DMSO treated 

neurons, PCTAIRE-3 exhibited basal, punctate nuclear staining (Figure 16b).  Upon Aβ treatment, 

expression of PCTAIRE-3 is increased, as indicated with enhanced staining and the staining appears to 

localize to not only nuclear regions, but extends into the cell body in a fibrillar pattern (Figure 16b) 

 
Figure 15.  Increased levels of pS47-Histone H4, PCTAIRE-2, and PCTAIRE-3 in Aβ-treated primary neurons.  
Primary neurons treated with 5μM Aβ for 24 hours resulted in significant increases in pSer47-Histon H4, PCTAIRE-
2, and PCTAIRE-3, compared with control cells.  *p value<0.05. 
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Figure 16.  Immunostaining of PCTAIRE-2 and PCTAIRE-3 in Aβ treated primary neurons.  Cultured primary 
neurons were treated with 1μM, 2.5μM, and 5μM Aβ or DMSO (control) for 24 hours and probed for PCTAIRE-2 or 
PCTAIRE-3 and Tau1.  (A)  PCTAIRE-2 showed enhanced nuclear and perinuclear staining upon Aβ-treatment.  (B)  
PCTAIRE-3 also showed enhanced nuclear staining that extends into the cell body upon Aβ-treatment. 
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 Our western blot data in Figure 12b suggests that expression of both PCTAIRE-2 and PCTAIRE-3 

are significantly increased in B103-695 cells compared to APP-null B103 cells.  This, along with the data 

from primary neurons treated with oligomeric Aβ, suggests that either APP or Aβ42 are able to induce 

these Cdks.  Aβ toxicity has been shown to be mediated by APP present in the cellular membrane [244].  

To examine both the independent and concerted roles of Aβ and APP in inducing expression of PCTAIRE-

2 and PCTAIRE-3, B103 and B103-695 cells were treated with oligomeric Aβ42 (Figure 17).  Upon 

treatment of B103 cells with Aβ, we observed subtle changes in localization of PCTAIRE-2 with no 

increase in staining for the protein (Figure 17a).  While DMSO treated B103 cells appeared to have 

punctate, perinuclear staining in the body of the cell, Aβ treatment seemed to slightly alter the 

localization to become clustered at the cell’s hillock (Figure 17a).  B103-695 cells treated with vehicle 

DMSO showed staining for PCTAIRE-2 primarily in the cell body and, upon Aβ treatment, appeared to 

translocate to the nucleus of the cell (Figure 17a).  Similar to PCTAIRE-2, PCTAIRE-3 showed slight 

alterations in staining in B103 cells exposed to Aβ.  Staining under control DMSO treatment shows a 

polarized, clustered perinuclear staining and after treatment with Aβ, this staining become slightly more 

intense and concentrated (Figure 17b).  In B103-695 cells, control treatment with DMSO shows 

perinuclear PCTAIRE-3 staining with slight punctate staining in the nucleus (Figure 17b).  This staining 

was significantly enhanced upon Aβ treatment, translocating into the nucleus and into perinuclear and 

polarized clusters (Figure 17b). 
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Figure 17.  Immunostaining of PCTAIRE-2 and PCTAIRE-3 in Aβ-treated B103 and B103-695 cells.  Cells were 
treated with 5μM Aβ for 24 hours and probed with PCTAIRE-2 or PCTAIRE-3 and α-tubulin.  Both PCTAIRE-2 (A) and 
PCTAIRE-3 (B) showed only subtle changes in B103 cells upon Aβ-treatment,  However, Aβ-treated B103-695 cells 
resulted in translocation of PCTAIRE-2 (A) and PCTAIRE-3 (B) to the nucleus. 
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 Finally, PCTAIRE-2 and PCTAIRE-3 levels were assessed in human brain samples from individuals 

categorized as NAD, MCI or AD (see Table 1).   Both PCTAIRE-2 and PCTAIRE-3 expression levels were 

found to be significantly increased in AD individuals (Figure 18).  PCTAIRE-2 expression was also 

significantly increased in MCI brain, suggesting that this particular cdk may be relevant in disease 

progression (Figure 18).  Levels of APP, Aβ, and phospho Ser396/Ser404-Tau (PHF1) in human brain 

tissue were also determined, which confirm disease state pathology based on the increase in Aβ and 

PHF1 from non-AD to late-AD (Figure 18). 

 

Figure 18.  Increased levels of pS47-Histone H4, PCTAIRE-2, and PCTAIRE-3 in MCI and AD human brain tissue.  

Levels of phospho Ser396/Ser404-Tau (PHF-1), APP and Aβ (6E10) were assessed to confirm disease state based 

on increases in PHF-1 and Aβ in MCI and late-AD (LAD).  Levels of PCTAIRE-2 and PCTAIRE-3, pS47 Histone H4, and 
total Histone H4 were also found to be increased in MCI and LAD. 
 

Discussion 

 Comprehensive phosphoproteomic analysis of the B103 and B103-695 cell model of AD resulted 

in the identification of both changes in phosphorylation and protein expression in APP-695 expressing 

cells.  Selected significant differentially phosphorylated proteins are listed in Table 2.  A-kinase anchor 

protein 12 (AKAP12) showed significantly increased phosphorylation at Ser507 (2.46-fold) in B103-695 
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cells after normalization against total protein expression.  AKAP12 is a scaffolding protein that serves as 

a negative regulator of G1 to S cell cycle progression [245].  Its regulatory role in cell cycle progression is 

thought to be due to contact inhibition and AKAP12 has been shown to physically bind cyclin D1, 

resulting in decreased cellular accessibility of cytoplasmic cyclin D1 pools and decreased translocation of 

cyclin D1 into the nucleus [246, 247].  AKAP12 is phosphorylated at Ser507/515 by protein kinase C (PKC) 

and modification of these sites results in disruption of the cyclin binding motifs present on AKAP12 

[246].  Increased phosphorylation of AKAP12 was also observed in an early phosphoproteomic study of 

human AD brain at Ser290 [179], however the functional relevance of this residue is not known. 

 B103-695 cells also revealed increased phosphorylation of heat shock protein beta 1 (Hspb1) at 

Ser15 (3.16-fold) and Ser86 (4.49-fold).  A recent quantitative phosphoproteomic study of frontal cortex 

from human AD brains also identified increased phosphorylation of Hspb1 at Ser82, the human analogue 

to rodent Ser86 [204].  HpsB1 is a molecular chaperone that belongs to a family of survival proteins that 

modulate cell proliferation and cytoskeletal reorganization [248-250].  The phosphorylation status of 

HspB1 is thought to dictate both its structure and function [251, 252] and this modification can occur 

due to a number of kinases that are induced by various stimuli [252].  In an in vitro study using a dorsal 

root ganglion sensory neuron model, phosphorylation of HspB1 was shown to induce cytoskeletal 

reorganization and promote neurite outgrowth.  Further, phosphorylation of Hspb1 at Ser15 and Ser86 

has been shown to influence its subcellular localization in hippocampal neurons, increasing its 

recruitment to dendrites and synaptic sites [253]. 

Myristoylated alanine-rich C-kinase substrate (MARCKS) showed significant decreases in 

phosphorylation at several sites in B103-695 cells, however these phosphopeptide ratios were unable to 

be normalized against total protein ratios as MARCKS was not identified in our global proteomic analysis 

of B103 and B103-695 cells.  A previous studied showed that human AD cortical neurons exhibited an 

overall decrease in MARCKS phosphorylation, however they also reported increased MARCKS 
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phosphorylation in microglia from AD brains.  MARCKS is phosphorylated by protein kinase C (PKC), and 

PKC-mediated phosphorylation of MARCKS has been shown to inhibit the actin crosslinking activity of 

MARCKS [254].  Reduced MARCKS phosphorylation in APP695-expressing cells suggests altered PKC 

activity, which may further affect actin assembly and organization [255].  We identified a number of 

differentially phosphorylated proteins that have previously been reported to have altered 

phosphorylation in AD, which provides confidence in our cell model for the study of AD as well as the 

quality of our phosphoproteomic dataset. 

 Phosphorylation of Histone H4 at Ser47, which was significantly increased in B103-695 cells 

compared with B103 cells, has not previously been implicated in AD.  Histone H4 Ser47 phosphorylation 

has been shown to regulate nucleosome assembly, promoting assembly of H3.3-H4 by the histone 

chaperone HIRA, while inhibiting CAF-1 mediated assembly of H3.1-H4 [242].  Though Histone variant 

H3.3 differs from Histone H3.1 by only 5 amino acids, the functions of H3.3 are unique and cannot be 

substituted by H3.1 [256-258].  H3.3 is localized to gene bodies of actively transcribed genes, and 

increased levels of H3.3 at gene bodies positively correlates with gene expression [259, 260].  

PhosphoSer47-Histone H4 is known to be phosphorylated by Pak2, a member of the p21-activated 

serine/threonine kinase (Pak) family [242].  Additionally, phosphatases PP1α, PP1β, and Wip1 also 

regulate phosphoSer47-Histone H4 levels [261].  Depletion of PP1α and PP1β results in increased Pak2 

phosphorylation at Ser141 [243], which is required for Pak2 activity, suggesting that PP1α and PP1β may 

regulate Histone H4 Ser47 phosphorylation through Pak2 activation [261].  Pak2 phosphorylation at 

Ser141 was identified in our phosphoproteomic dataset but it was not significantly increased in B103-

695 cells, which may suggest an alternative kinase is responsible for increased phosphorylation of 

Histone H4 Ser47.  LAD human brain exhibited a significant increase in phosphorylation of Histone H4 at 

Ser47 compared to MCI and NAD individuals. Furthermore, increased phosphorylation was observed in 

both APP expressing B103-695 cells and Aβ treated primary neurons, which provides strong evidence 
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that APP and/or Aβ are involved in promoting Histone H4-Ser47 phosphorylation.  While the significance 

of Histone H4 Ser47 phosphorylation has not been determined, this data suggests that APP-695 

expression and Aβ productions may influence its regulation. 

 PCTAIRE-2 and PCTAIRE-3 were also shown to be differentially phosphorylated in B103-695 cells 

compared to APP-null B103 cells.  Phosphorylation of PCTAIRE-2 at Ser146 and Ser180 has been 

identified in previous phosphoproteomic studies of human tissue [262-264].  Phosphorylation of 

PCTAIRE-3 at Ser66 has been shown previously in rat kidney [265], however only PCTAIRE-3a or 3b 

isoforms have a Ser located at amino acid residue 66 in humans.  To our knowledge, this is the first 

identification of PCTAIRE-3 phosphorylation at Ser109 in rats; none of the human PCTAIRE-3 isoforms 

have a Ser located at amino acid residue 109.  Changes in levels of phosphorylation at these residues 

could not be confirmed as antibodies are yet to be produced against these phosphorylation sites, but 

total protein expression was examined. 

 PCTAIRE-2 and PCTAIRE-3 levels were determined to be significantly increased in B103-695 cells 

(Figure 12). PCTAIRE-2 expression was also significantly increased in PS/APP transgenic mice, while 

PCTAIRE-3 levels were only slightly increased (Figure 13).  This finding was also reflected in the 

immunostaining of PCTAIRE-2 and PCTAIRE-3 in corresponding PS/APP Tg mouse brain slices.  Staining 

for both PCTAIRE-2 and PCTAIRE-3 were localized to the dense, amyloid plaques suggesting a possible 

role for Aβ in inducing their expression (Figure 13).  Primary rat neurons treated with oligomeric Aβ42 

showed increased expression of these proteins as demonstrated by immunostaining (Figure 16) and 

western blot (Figure 15).  Upon Aβ treatment, PCTAIRE-2 translocated from the cytosol to the 

perinuclear and nuclear regions of the neuron.  Likewise, PCTAIRE-3 demonstrated altered staining with 

Aβ treatment, translocating into the nucleus and forming fibril structures in the cytoplasmic regions.  To 

further examine the differential roles of APP and Aβ, we further determined that the changes in PCTAIRE 

localization appear to be APP dependent.  APP-null B103 cells treated with Aβ exhibited a slight increase 
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in staining for both PCTAIRE-2 and PCTAIRE-3, however staining for PCTAIRE-2 and PCTAIRE-3 drastically 

altered in B103-695 cells upon treatment with Aβ. 

 PCTAIRE kinases are relatively uncharacterized members of the cyclin-dependent kinase (Cdk) 

family, and are categorized by a serine to cysteine mutation in the PSTAIRE cyclin binding consensus 

motif [266].  PCTAIRE-2 and PCTAIRE-3 are Cdc-2-related serine/threonine kinases; however their 

functions remain to be discovered.  Whether PCTAIREs are involved in cell cycle regulation or are 

regulated by the cell cycle is yet be determined.  A study by Meek and colleagues (2004) identified 

PCTAIRE-2 and PCTAIRE-3 as 14-3-3 binding partners, and furthermore PCTAIRE-2 interacted with 14-3-3 

in a cell cycle-regulated manner.  Other studies, however, indicate that PCTAIREs may function 

independently of the cell cycle [267, 268]. 

 PCTAIRE-2 is expressed in terminally differentiated neurons and has been found to 

phosphorylate Ser and Thr residues of Histone H1 [269].  PCTAIRE-3 is expressed in the brain and testis.  

A study by Herskovits and Davies (2006) found increased levels of PCTAIRE-3 in the temporal cortex of 

AD brains compared with control brains and they also found it was localized within paired helical 

filaments (PHFs).  Further, they suggested that PCTAIRE-3 is indirectly involved in promoting 

phosphorylation of Tau at residues T231 and S235, early modifications in AD pathogenesis [270].  A 

separate study recently found that PCTAIRE-3 can be activated through association with Cyclin A and/or 

phosphorylation by Protein Kinase A (PKA) [271]. PKA increased phosphorylation of PCTAIRE-3 at Ser12, 

Ser66, and Ser109, though only phosphorylation of Ser12 appeared to increase kinase activity; the 

function of PCTAIRE-3 phosphorylation at S109 and S66 by PKA is still unknown [271].  Interestingly, PKA 

was also found by Herskovits and Davies (2006) in the same PHF fractions that PCTAIRE-3 was observed 

in.  Bioinformatic analysis of our previous proteomic study of B103 and B103-695 cells suggested 

increased PKA signaling in B103-695 cells [239] and phosphorylation of PCTAIRE-3 at S109 and S66 was 
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observed in B103-695 cells in this phosphoproteomic dataset.  Additional experiments are necessary to 

determine the functional significance of PCTAIRE-3 phosphorylation at these sites. 

 Further investigation is required to determine the function of PCTAIRE-2 and PCTAIRE-3 and 

their potential role in Alzheimer’s disease, as well as the significance of the identified phosphorylation 

sites.  It is possible these phosphorylation sites may be involved in the regulation of PCTAIRE-2 and 

PCTAIRE-3 activation or deactivation, or have a potential role in cell cycle progression.  PCTAIRE-3 may 

have a role in Alzheimer’s disease as an effector of tau phosphorylation, however the mechanism needs 

to be elucidated.  This comprehensive phosphoproteomic dataset provides insights into pathways that 

may be affected by APP695 expression based on changes in phosphorylation as well as consensus motif 

analysis, providing a foundation for future mechanistic studies.  Additionally, this dataset led to the 

investigation of PCTAIRE-2 and PCTAIRE-3 whose expression appears to be influenced by APP and Aβ in a 

number of models of AD including human brain tissue, suggesting their involvement in the complex 

pathogenesis of AD; whether their increased expression is causative or is a result of AD still needs to be 

determined. 
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Chapter 4 – Label-Free Quantitative Proteomic Analysis of Human Neurodegenerative Disorders 

Summary 

 The challenges associated with proteomic analysis of human tissue include the limited 

accessibility and quantity of samples that can be obtained, as well as the quantitative proteomic 

approaches available.  This chapter had two main goals; to perform label-free quantitative proteomic 

analysis of human tissue from multiple neurodegenerative diseases, as well as develop a method for 

increasing proteome coverage when starting material is limited.  Proteomic analyses of human tissue 

from the cortex of individuals affected by Alzheimer’s disease (AD), mild cognitive impairment (MCI), 

Parkinson’s disease (PD), and progressive supranuclear palsy (PSP) were compared to cognitively 

normal, control samples using label-free quantification.  Label-free quantitative proteomics has been 

made possible with advances in mass spectrometers such as increased mass accuracy and resolution.  

Label-free quantitative proteomic analysis of human tissue identified over 4000 proteins and 

determined several molecular and cellular functions that may be affected during neurodegeneration. 

 The filter-aided sample processing (FASP) method typically used for proteomics sample 

preparation requires at least 100µg of protein, which may not always be available when working with 

human brain samples or primary cells such as microglia.  The second goal of this chapter was to optimize 

a gel-aided sample processing (GASP) method for proteomic analysis of samples with limited amounts of 

starting material, as low as 1µg of protein.  The GASP method and results were submitted as a chapter 

for a Methods in Neuroproteomics book and can be found in Appendix D. 
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Introduction 

Mild Cognitive Impairment and Alzheimer’s Disease 

 Alzheimer’s disease (AD) was reviewed in Chapter 1 and will not be described here.  Mild 

cognitive impairment (MCI) involves deficits in memory and is associated with increased risk of 

developing more advanced forms of dementia and AD [272, 273].  MCI affects an estimated 10-20% of 

Americans age 65 and older [1].  As MCI does not usually result in death, characterizing the 

neuropathology of MCI has been difficult since tissue is only obtained when a person with MCI dies of 

other causes.  However, studies that have successfully examined MCI pathology observed neurofibrillary 

tangles (NFTs) in the hippocampus and entorhinal cortex, and Aβ plaques in the neocortex [96, 274, 

275].  While MCI is typically associated with AD, an estimated 25% of Parkinson’s disease (PD) patients 

without dementia also suffer from MCI [276].  Additionally, MCI is also known to progress to dementia 

with Lewy bodies (DLB) [277, 278].  There is unlikely a single cause of MCI as its pathology and 

progression is variable from case to case, and resulting pathology is observed in a number of different 

neurodegenerative diseases, such as AD, PD, and LBD.  Investigating the molecular changes that occur 

during MCI is particularly valuable as MCI represents an early stage of dementia often progressing to 

more severe neurodegenerative diseases.  Developing a further understanding of MCI and identifying 

reliable diagnostic biomarkers would be valuable for earlier diagnosis and the development of 

therapeutics to delay progression to more severe dementia and neurodegeneration. 

Parkinson’s Disease 

 Parkinson’s disease (PD) is the second most common neurodegenerative disorder after AD.  PD 

is a progressive movement disorder and symptoms include tremor, rigidity, bradykinesia, weakness, and 

sometimes dementia [279].  The major pathological hallmarks of PD are loss of dopaminergic neurons in 

the substantia nigra, a brain region involved in movement, and the presence of Lewy bodies.  PD is 

considered a synucleinopathy as α-synuclein is the primary component of Lewy bodies [280], which are 
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intracellular aggregates of insoluble proteins, including ubiquitin [281, 282], and neurofilament proteins 

[283, 284] in addition to α-synuclein.  Lewy bodies are observed in both PD and LBD.  Lewy bodies are 

not only found in the substantia nigra where dopaminergic neuron loss occurs, but are also found in the 

cerebral cortex, amygdala, and hippocampus [285].  It has been suggested that the presence of Lewy 

bodies in the cortex strongly correlates with cognitive impairment in PD [285, 286].  In addition to Lewy 

bodies, amyloid plaques and tau-NFTs have also been observed in the brains of PD patients with 

dementia [287, 288].  Compared with α-synuclein pathology alone, the combination of α-synuclein and 

amyloid plaque pathology are most common in PD with dementia, and often result in shorter survival 

and earlier onset of dementia [287].  Tau-NFTs, on the other hand, are not always observed in PD and 

are not considered to be a major contributor to dementia associated with PD [287]. 

 The majority of PD cases are sporadic, also referred to as idiopathic PD, affecting individuals 

around the age of 65.  A smaller portion of PD is considered early onset, referred to as familial PD, and 

has been linked to mutations in a number of genes; α-synuclein (SNCA) [289], parkin (PARK2) [290], DJ-1 

(PARK7) [291], leucine rich repeat kinase (LRRK2) [292, 293], ubiquitin carboxy-terminal hydrolase L1 

(UCHL1) [294], and PTEN-induced kinase 1 (PINK-1) [295] (reviewed in [296]).  The primary cause of PD 

remains to be understood, but it is believed to be a complex process involving both genetic and 

environmental factors [297].  Mitochondrial dysfunction and oxidative stress, protein folding and 

processing are processes that have been proposed to be involved in PD pathology [297, 298].  The loss 

of dopaminergic neurons from the substantia nigra results in decreased dopamine production, the 

neurotransmitter primarily involved in motor functions, which subsequently results in loss of normal 

movement control.  One of the most common treatments of PD is L-3,4-dihydroxyphenylalanine (L-

DOPA), a precursor for the neurotransmitters dopamine, norepinephrine, and epinephrine, which 

increases dopamine concentrations and improves movement control in PD patients [299].  While 

medications exist that improve symptoms of PD, there is no cure or preventative treatment, and the 
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cause of sporadic PD remains largely unknown.  There is also a lack of diagnostic and therapeutic 

markers of PD.  Mass spectrometry-based proteomic studies of PD have been performed using animal 

models, human cerebrospinal fluid (CSF), human brain tissue from the substantia nigra [300-302], and 

frontal cortex [303, 304], as well as Lewy bodies isolated from human frontal cortex [305, 306].  As 

cognitive impairment in PD correlates with cortical Lewy body pathology [285], further investigation of 

the molecular changes occurring in the cortex may provide insights into the molecular changes involved 

in dementia associated with PD, as well as potentially identify novel proteins or biomarkers not 

previously associated with PD. 

Progressive Supranuclear Palsy 

 Progressive supranuclear palsy (PSP), also known as Steel-Richardson-Olszewski syndrome, is a 

rare neurodegenerative disorder.  Symptoms of PSP are associated with loss of balance and gait, 

problems with eye movement, speech and swallowing, as well as progression to dementia [307].  PSP 

has been described as a tauopathy as tau-NFTs are usually observed in neurons and glia [308, 309].  

Deterioration is observed in areas of the brain involved in control of movement and thinking including 

the brain stem, substantia nigra and cerebral cortex [307-309].  PSP can be difficult to diagnose as its 

symptoms are very similar to other, more common movement disorders, and it is often misdiagnosed as 

PD.  The cause of PSP remains unknown; however, it is typically associated with age, affecting people 

around 60 years old.  While PSP is not directly life-threatening, it increases the risk of other 

complications, primarily pneumonia, as well as difficulty swallowing, and injuries caused by falls.  While 

proteomic profiling of CSF from PSP patients has been previously performed [310], as well as proteomic 

analysis of caudate nucleus, part of the brainstem involved in voluntary movement [311],  there has not 

been a comprehensive proteomic analysis of cortex from PSP affected brain compared with normal 

brain.  As the cause of PSP remains largely unknown, and it is very difficult to diagnose, proteomic 

studies can identify changes in protein levels to provide some understanding of the cellular and 
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molecular mechanisms altered in PSP, possibly identifying novel biomarkers of the disease, and aiding in 

the development of potential therapeutics. 

Label Free Quantitative Proteomics 

The complexity of the central nervous system and the mechanisms underlying the onset of 

cognitive decline and dementia makes studying neurodegeneration particularly difficult.  When studying 

human brain tissue it is important to consider the region being studied as different regions are affected 

at different stages of the disease.  One of the limitations of studying human tissue is that tissue is 

collected post-mortem when pathology is most severe, limiting the discovery of preclinical biomarkers 

associated with early molecular changes.  Researching the molecular changes that occur in MCI is 

particularly important for the discovery of preclinical biomarkers and molecular changes.  Despite the 

associated challenges, studies using human tissue affected by AD and other neurodegenerative diseases 

are invaluable for gaining a deeper understanding of the molecular changes that occur with the 

progression of disease pathology.  The causes of disease onset, progression, and pathology are poorly 

understood for most neurodegenerative conditions, and there is a need to identify novel diagnostic and 

prognostic biomarkers as well as therapeutic targets.  There is also a lack of diagnostic biomarkers to 

distinguish neurodegenerative diseases from each other, such as PSP from PD.  To develop more 

effective therapeutic strategies, we need to gain a more comprehensive understanding of the molecular 

mechanisms involved in disease progression and pathology, and identifying molecular changes in MCI is 

particularly important for the advancement of early diagnosis and development of preventative 

therapeutics.  Mass spectrometry-based proteomics provides an unbiased approach for large scale 

analysis of protein expression changes that can provide information about affected pathways and 

functions. 

Label free quantitative proteomics does not require metabolic labeling or chemical 

derivatization and can be applied to all organisms or tissues.  With advances in mass spectrometry, 
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including increased resolution and mass accuracy, label-free quantitative proteomics is becoming more 

commonly used.  Label-free quantitation relies on peptide ion abundance, which has been shown to 

correlate with protein abundance [312-314].  Spectral counting has also been shown to correlate with 

protein abundance [315], however current label-free approaches typically use peptide ion abundance 

based on total or average ion current values [218].  Each peptide ion has a specific mass/charge (m/z) 

and their signal intensities are recorded over time.  Extracted ion chromatograms (XICs) are created by 

plotting the intensity of the peptide ion, based on its m/z, over time.  The area under the XIC curve for a 

peptide ion is proportional to ion abundance.  In this study we used label-free quantitative proteomics 

for the analysis of human brain tissue from the cortex of MCI, AD, PDP, and PSP patients compared with 

cognitively normal, control samples. 

Materials and Methods 

Label-free Quantitative Proteomic Analyses of Human Brain Tissue 

Sample Processing and LC-MS/MS 

 Human AD, MCI, and control tissues were obtained from the University of California Alzheimer’s 

Disease Research Center (UCI-ADRC) and the Institute for Memory Impairments and Neurological 

Disorders.  Brain samples were de-identified and categorized based on post-mortem Braak stage and 

pre-mortem clinical MMSE score.  Additional information on this brain material is detailed in Table 1.  

Human PD, PSP, and control tissues were obtained from our collaborator Dr. Werner Geldenhuys at the 

Northeast Ohio Medical University (NEOMED). 

 All human brain tissue samples were lysed in 4% SDS, 100mM DTT, 100mM Tris-HCl, pH 7.4 at 

95˚C for 5 minutes, followed by sonication and centrifugation.  Protein was quantified using the Pierce 

660 assay supplemented with ionic detergent compatibility reagent (IDCR) (Pierce).  Equal amounts of 

protein from each sample were processed by filter-aided sample processing (FASP), and digested with 

Trypsin/Lys-C at 1:50 (w:w, enzyme:protein) overnight at 37˚C.  Peptides were desalted using Thermo 
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C18 SPE columns on a Supelco vacuum manifold.  Peptides were dried and resuspended in 0.1% formic 

acid in H2O for analysis by mass spectrometry. 

 Peptides were analyzed on a Q-Exactive Plus (Thermo Fisher Scientific) following separation on a 

75µm x 50cm reversed-phase (RP) UPLC column (Dionex) packed with 5µm 300Å C18 material using a 

120 minute gradient on an EASY-nLC 1000 system (Thermo Fisher Scientific).  Full MS survey scans used 

a resolving power of 60,000, selecting the top ten most abundant ions for MS/MS fragmentation and 

analysis. 

Database Searching, Statistical Analysis, and Pathway Analysis 

 Raw data files were processed and searched using MaxQuant (version 1.0.30) against the 

current Homo sapiens UniprotKB protein sequence database.  Normalization of protein abundances is 

especially important for label-free proteomic quantification and the MaxQuant label-free quantification 

feature was used when searching raw data files.  Ratios were generated by dividing the intensity of each 

biological replicate for AD, MCI, PD and PSP by the average of all control intensities.  Ratios were 

generated using both raw intensities as well as the LFQ intensities generated by MaxQuant [316].  

Statistical analysis was carried out using the Significance A outlier test in Perseus.  Two different 

approaches were used, Benjamini-Hochberg, which uses a q-value of 0.05 for false discovery rate [219], 

and a t-test with a p-value cut off of 0.05.  Proteins that had a q-value or p-value ≤ 0.05 in five out of 

seven biological replicates for PD and PSP, or two out of three biological replicates for MCI and AD, were 

considered significant and submitted to Ingenuity Pathways Analysis (IPA) for bioinformatic analysis. 

Western Blotting 

 AD, MCI and control brain lysates were analyzed by western blot and disease state was 

confirmed using 6E10 (detecting FL-APP and Aβ) and PHF-1 antibodies (Figure 24).  Proteins were 

selected for validation by western blot analysis based on significance as well as function.  Proteins were 

separated on an AnyKD SDS-PAGE gel (BioRad) and transferred to a PVDF membrane using the Trans 
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Turboblot system (BioRad).  Membranes were blocked in 5% non-fat milk-PBS for 1 hour at room 

temperature.  Primary antibodies specific for CPS1 (Abcam, rabbit monoclonal), SNX17 (Santa Cruz, 

mouse monoclonal), APP (6E10 antibody, Covance, mouse monoclonal) and GAPDH (Cell Signaling, 

rabbit monoclonal) were diluted in 5% BSA-PBS, with 0.05% NaN3 and incubated overnight at 4˚C.  

Membranes were then incubated with corresponding anti-rabbit (Cell Signaling) and anti-mouse (Cell 

Signaling) secondary antibodies for 2 hours at room temperature.  All blots were developed with Pico 

Chemiluminescence reagents (Pierce), with the exception of CPS1 which was developed using Femto 

Chemiluminescence reagents (Pierce), using an Amersham Imager 600RGB (GE Healthcare). 

Gel-aided Sample Preparation (GASP) 

  A detailed description of the GASP protocol can be found in Appendix D. 

Results and Discussion 

Proteomic Analysis of Human PD, PSP, and Control Brain  

 A total of 4828 proteins were identified from seven biological replicates of control, PD, and PSP 

human brain samples, with 3830 proteins having at least 2 unique peptides identified.  Of the total 

identified proteins, 3329 proteins were identified in PD samples, 3237 proteins in PSP samples, and 3324 

proteins in control tissue, all having a minimum of 2 unique peptides.  Ratio values were log2 

transformed, and statistical analysis was performed using the Significance A outlier test, with the 

Benjamini-Hochberg false-discovery rate (FDR)-based q-value cutoff of 0.05.  Ratios needed to have a q-

value ≤ 0.05 in at least five of seven replicates to be considered significant.  In PD compared with 

control, 12 proteins were found statistically significant when using raw intensity ratios and 32 proteins 

were found statistically significant when using LFQ intensity ratios (Table 3 and Table 4).  In PSP 

compared with control, 9 proteins were statistically significant when using raw intensity ratios and 17 

proteins were statistically significant when using LFQ ratios (Table 5 and Table 6).  Alternatively, 

statistical analysis using Significance A with a t-test p-value cut off of 0.05 was used to determine 
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significant expression changes for bioinformatics analysis in Ingenuity Pathway Analysis (IPA).  Again, 

ratios needed to have a p-value ≤ 0.05 in at least five of seven replicates to be considered significant. 

Table 3.  Benjamini Hochberg FDR Significant Proteins Using LFQ Intensities: PD vs Control.  Ratios were 
generated using LFQ intensity values.  LFQ ratios were log2 transformed and analyzed using Significance A with a 
false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(LFQ Ratio) 
Standard 
Deviation 

Vacuolar protein sorting-associated protein 37C VPS37C 2.13 0.75 

Rho GTPase-activating protein 32 ARHGAP32 3.38 0.45 

Sorting nexin-17 SNX17 2.85 0.31 

DDRGK domain-containing protein 1 DDRGK1 2.70 0.55 

Unconventional myosin-Id MYO1D -2.78 2.05 

Tenascin TNC -2.43 1.91 

Hormone-sensitive lipase LIPE -1.74 2.09 

Ectonucleotide pyrophosphatase/phosphodiesterase family 
member 6 

ENPP6 -2.01 2.18 

Actin-binding protein anillin ANLN -1.61 2.07 

Aspartoacylase ASPA -2.17 2.14 

Perilipin-3 PLIN3 -1.42 1.31 

Carnosine synthase 1 CARNS1 -2.26 1.97 

Glutathione S-transferase Mu 5 GSTM5 -1.79 0.54 

Myelin P2 protein PMP2 -1.51 2.07 

Ermin ERMN -1.35 1.67 

60S ribosomal protein L36 RPL36 3.00 0.47 

Inverted formin-2 INF2 -1.67 1.64 

Thyroid hormone receptor-associated protein 3 THRAP3 3.75 0.40 

MAGUK p55 subfamily member 5 MPP5 3.38 0.52 

Uncharacterized protein C1orf198 C1orf198 -1.48 1.32 

Target of rapamycin complex subunit LST8 MLST8 3.71 0.43 

Caldesmon CALD1 2.79 0.29 

60S ribosomal protein L35a RPL35A 3.40 0.04 

Glutamate receptor 4 GRIA4 2.80 0.34 

Thioredoxin, mitochondrial TXN2 2.54 0.20 

Cytochrome c oxidase subunit 1 MT-CO1 2.50 0.53 

Bis(5-nucleosyl)-tetraphosphatase NUDT2 2.40 0.40 

BRISC complex subunit Abro1 FAM175B 2.91 0.31 

Golgin subfamily A member 7B GOLGA7B 2.55 0.19 

WD repeat-containing protein 82 WDR82 2.08 0.26 

MAP6 domain-containing protein 1 MAP6D1 -2.10 1.37 

NAD-dependent protein deacylase sirtuin-5, mitochondrial SIRT5 1.98 0.38 
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Table 4.  Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: PD vs Control.  Ratios were 
generated using raw intensity values.  Raw intensity ratios were log2 transformed and analyzed using Significance 
A with a false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(Ratio) 
Standard 
Deviation 

Signal recognition particle subunit SRP72 SRP72 -2.91 0.59 

Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha PIP5K1A -2.37 1.83 

39S ribosomal protein L3, mitochondrial MRPL3 2.84 1.00 

TBC1 domain family member 10A TBC1D10A 3.76 0.57 

Long-chain-fatty-acid--CoA ligase 4 ACSL4 3.25 0.32 

Cholecystokinin CCK 4.61 0.38 

Coagulation factor VII F7 5.83 0.57 

Vacuolar protein sorting-associated protein 41 homolog VPS41 2.74 1.59 

Protein CASP CUX1 4.30 0.80 

Liprin-beta-1 PPFIBP1 2.73 1.26 

Protein RMD5 homolog A RMND5A 4.10 0.93 

Nuclear receptor-binding protein 2 NRBP2 3.91 0.37 

 

 

Table 5.  Benjamini Hochberg-FDR Significant Proteins Using LFQ Intensities: PSP vs Control.  Ratios were 
generated using LFQ intensity values.  LFQ ratios were log2 transformed and analyzed using Significance A with a 
false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(LFQ Ratio) 
Standard 
Deviation 

Vitamin D-binding protein GC -2.69 0.60 

Sorting nexin-17 SNX17 3.29 0.35 

Malate dehydrogenase, cytoplasmic MDH1 -3.02 1.87 

Coronin-7 CORO7 2.48 0.41 

Unconventional myosin-Id MYO1D -4.01 2.61 

Tenascin TNC -3.59 1.97 

Perilipin-3 PLIN3 -2.33 1.34 

Myelin P2 protein PMP2 -2.81 1.62 

MAP6 domain-containing protein 1 MAP6D1 -2.23 1.16 

NAD-dependent protein deacylase sirtuin-5, mitochondrial SIRT5 2.02 0.29 

AP-3 complex subunit sigma-1 AP3S1 3.55 0.40 

GH3 domain-containing protein GHDC 2.35 0.25 

Thiosulfate sulfurtransferase/rhodanese-like domain-containing 
protein 1 

TSTD1 3.56 0.48 

Leucyl-cystinyl aminopeptidase;Leucyl-cystinyl aminopeptidase LNPEP 1.75 0.19 

Collagen alpha-1(VI) chain COL6A1 -1.84 0.66 

Protein DEK DEK 1.93 0.81 

Hamartin TSC1 -1.79 0.46 
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Table 6.  Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: PSP vs Control.  Ratios were 
generated using raw intensity values.  Raw intensity ratios were log2 transformed and analyzed using Significance 
A with a false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(Ratio) 
Standard 
Deviation 

Protein RMD5 homolog A RMND5A 5.03 0.91 

Tubulin beta-6 chain TUBB6 -4.38 2.00 

MKL/myocardin-like protein 2 MKL2 3.54 0.47 

Signal recognition particle subunit SRP72 SRP72 -2.70 1.61 

Liprin-beta-1 PPFIBP1 2.32 0.50 

Lck-interacting transmembrane adapter 1 LIME1 2.51 0.63 

Muscarinic acetylcholine receptor M3 CHRM3 2.87 0.45 

Clathrin heavy chain 2 CLTCL1 3.50 0.76 

Zinc finger RNA-binding protein ZFR 3.42 2.05 

 

Functional Enrichment of Differentially Expressed Proteins in PD 

 Significance A analysis of raw intensity and LFQ intensity ratios comparing PD with control 

identified statistically significant changes in 65 and 86 proteins, respectively.  Pathway analysis of 

proteins with significant LFQ intensity ratios from PD tissue identified a number of proteins that have 

previously been shown to be associated with PD and movement disorders (Figure 19).  A number of LFQ 

significant proteins were also associated with mitochondrial dysfunction, which is hypothesized to be 

involved in PD.  Pathway analysis of proteins with significant raw intensity ratios revealed molecular and 

cellular functions altered in PD, including protein synthesis, cell-to-cell signaling and interaction, and 

lipid metabolism.  Cholecystokinin (CCK), a peptide hormone that showed a significant increase in PD, 

was shown to be involved in a number of altered cellular functions such as protein oligomerization, 

dopamine regulation, and cytoskeletal organization.  CCK has been shown to exist within dopaminergic 

neurons in the brain [317], and its carboxy terminal octapeptide (CCK-8) is suggested to modulate 

dopamine release [318, 319].  One early study examined the distribution of CCK-8 in human PD and 

control brains, and found that CCK-8 levels were only slightly decreased in the substantia nigra [320].  

Our proteomic analysis found CCK significantly increased in the cortex.  Two separate studies showed no 

correlation between mutations found in CCK and CCK-receptor genes and risk of sporadic PD, however 
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both studies showed one polymorphism was associated with increased vulnerability to hallucinations 

[321, 322].  While CCK does not appear to be a genetic risk factor for sporadic PD, its function as a 

regulator of dopamine release may have implications in PD as dopamine has been shown to modulate 

cortical function [323]. 

 
Figure 19.  Ingenuity Pathway Analysis of differentially expressed proteins in PD identified a number of proteins 
previously associated with PD and movement disorders.  IPA analysis of proteins with significant LFQ ratios in 
Parkinson’s disease tissue identified a number of proteins previously associated with movement disorders and 
Parkinson’s disease. 

 

 Another protein with significant expression changes in PD compared with control tissue is NAD-

dependent protein deacylase sirtuin-5 (SIRT5).  SIRT5 is a member of the Sirtuin family of protein 

deacylases, and is localized to the mitochondria [324, 325].  Increasing evidence suggests the 

involvement of oxidative stress and mitochondrial dysfunction in PD pathology and progression [326, 

327].  Mutations in PINK1 and PARK2, which are associated with familial PD, both have roles in 

mitochondrial function, further implicating mitochondrial dysfunction in PD pathology.  The PARK2 

encoded protein Parkin can reduce ROS production and is associated with mitochondrial DNA [326].  

PINK-1 is localized to the mitochondrial membrane, and has been shown to be involved in mitochondrial 

metabolism and dynamics, protein degradation and oxidative stress [328, 329].  SIRT5 has desuccinylase 

activity [330], and has been suggested to be the primary regulator of succinylated proteins in the 

mitochondria [331].  A previous proteomic study of liver mitochondria from Sirt5-/- knockout mice and 

wild type (WT) mice found hypersuccinylation of mitochondrial proteins in the absence of SIRT5, causing 



84 

disruptions in metabolic pathways including in fatty acid-oxidation, oxidative phosphorylation, and 

ketone body production [331].  Increased expression of the mitochondrial enzyme SIRT5 in PD brain 

tissue compared with control tissue further implicates mitochondrial dysfunction in PD.  While SIRT5 has 

been shown to desuccinylate proteins in liver mitochondria [331], a mitochondrial succinyl-transferase 

has not been identified.  Identifying the enzyme(s) responsible for mitochondrial protein succinylation 

could provide insight in the mechanisms regulating some of the metabolic pathways altered in the 

absence of SIRT5.  Additionally, whether SIRT5 found in the brain has the same mitochondrial function 

as SIRT5 found in liver mitochondria needs to be further determined. 

 Gamma-aminobutyric acid receptor subunit alpha-4 (GABRA4) is a GABAA receptor, and GABA is 

an inhibitory neurotransmitter, reducing neuronal excitability.  GABRA4 showed a 4.99-fold increase in 

the cortex from PD patients compared with cognitively normal controls.  A previous microarray analysis 

identified decreased gene transcription of GABRA4 in the substantia nigra of human PD compared with 

control samples [332].  Consistent with these observations, another study found decreased GABRA4 

mRNA in the substantia nigra by quantitative PCR (qPCR), and they also observed increased GABRA4 

mRNA in the caudate nucleus of PD patients suggesting the involvement of GABAergic 

neurotransmission in neurodegeneration [333].  GABAA receptors and the GABAergic system have also 

been implicated in AD pathology, and evidence supports the involvement of GABAergic 

neurotransmission in the progression of neurodegeneration.  Therapeutics that target GABA and the 

GABAergic system are promising targets for the treatment of neurodegenerative diseases such as PD 

[334, 335]. 

 Huntington interacting protein 1(HIP1) is a membrane-associated protein that binds to actin and 

is involved in actin organization.  HIP1 also functions in clathrin-mediated endocytosis and protein 

trafficking [336, 337].  HIP1 normally binds to the huntingtin protein [338], however this association is 

disrupted in Huntington’s disease (HD), resulting in elevated levels of free HIP1 which is suggested to 
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promote neuronal apoptosis in HD.  HIP1 contains a region homologous to the death effect domain 

found in proteins that promotes apoptosis [339].  As HIP1 is known to be involved in HD, a 

neurodegenerative disease that also involves protein aggregation, the increased expression of HIP1 in 

cortical tissue from PD brains suggests that it may contribute to PD pathology, causing impaired clathrin-

mediated endocytosis and/or disrupting membrane-cytoskeletal interactions. 

Functional Enrichment of Differentially Expressed Proteins in PSP 

 Significance A analysis of raw intensity and LFQ intensity ratios comparing PSP with control 

identified statistically significant changes in 55 and 61 proteins, respectively.  Molecular and cellular 

functions that appear to be altered in PSP affected brain tissue include cellular development, growth 

and proliferation, cell cycle, and carbohydrate metabolism.  Bioinformatic analysis also identified a 

number of proteins that have previously been associated with neurological disease.  For example, 

cholinergic receptor, muscarinic 3(CHRM3), myosin, heavy chain 11 (MYH11), voltage gated sodium 

channel, type 4 beta subunit (SCN4B), and gamma-aminobutyric acid (GABA) A receptor, beta 1 

(GABRB1) all showed significant increases in PSP compared with control samples and have previously 

been associated with tauopathies, particularly AD [340-343].  Olanzapine, an antagonist of CHRM3 and 

GABRB1, has been shown to reduce aggression and prevent psychosis in AD patients [341].  Riluzole 

treatment, an antagonist of SCN4B, has been shown to slow disease progression and prolong survival in 

amyotrophic lateral sclerosis (ALS) patients [343].  Additionally, Riluzole was evaluated in a clinical trial 

for the treatment of PSP, however did not have a significant effect on survival rate or the rate of 

functional deterioration [342].  The differential expression of GABRB1, a multi-subunit chloride channel, 

and SCN4B, a voltage gated sodium channel, suggest alterations in postsynaptic transmission in PSP. 

 The ubiquitin-proteasome system (UPS), responsible for the degradation of misfolded proteins, 

has been proposed to be involved in a number of neurodegenerative diseases including AD and PD.  

Ubiquitin-conjugating enzyme E2 G1 (UBE2G1) showed a significant 3.81 fold increase in PSP compared 



86 

with control tissue, and is involved in the protein ubiquitination pathway.  UBE2G1 catalyzes the 

covalent attachment of ubiquitin to proteins, and is involved in polyubiquitination. UBE2G1 mediates 

polyubiquitination of cytochrome P450 3A4 (CYP3A4) in the liver, which oxidizes foreign molecules, such 

as toxins or drugs, so that they are degraded [344].  Other components of the UPS, including ubiquitin, 

ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme UbcH7 (E2) and ubiquitin C-terminal 

hydrolase (UCH-L1) have been identified in Lewy bodies, primarily using immunohistochemistry staining 

[345, 346].  Additionally, mutations in UCHL1 have been associated with increased susceptibility for PD 

[294].  UPS is a major pathway mediating the degradation of abnormal proteins, and many 

neurodegenerative diseases appear to involve aberrant protein aggregation, which may be a result of 

reduced protein clearance. 

Western Blot Validation of Differentially Expressed Proteins in PD and PSP 

 Other proteins of interest were selected for western blot validation based on functional 

significance.  Carbamoyl-phosphatase synthase 1 (CPS1) was selected for further validations as CPS1 is 

typically observed in the liver and has not been known to be significantly expressed in the brain.  CPS1 is 

a mitochondrial enzyme that catalyzes the synthesis of carbamoyl phosphate from ammonia and 

bicarbonate in the first step of the urea cycle.  Our proteomic analysis showed a 2.43 fold increase in PD 

compared with control brains, which was significant without Benjamini Hochberg FDR correction.  

Western blot analysis revealed only a slight increased CPS1 expression in PD and PSP (Figure 20).  While 

CPS1 does not show a significant increase in PD or PSP and therefore may not be involved in PD 

pathology, its identification in the cortex suggests CPS1 functions in the brain.  While ammonia is 

converted to urea in the liver and kidneys with the help of CPS1, in the brain excess ammonia has been 

found to react with glutamate and glutamine synthetase to form glutamine which is released into the 

blood stream to be absorbed by the liver or kidneys.  Further research is needed to determine the 

function of CPS1 in the brain and possible involvement in neurodegenerative disease 
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Figure 20.  Protein expression levels of CPS1 levels in PD, PSP, and control human brain tissue.  After 
normalization to GAPDH, CPS1 was not significantly increased in PD- or PSP-affected human brain tissue compared 
with compared with cognitively normal, control tissue. 

 

 Based on the involvement of APP in AD, and the observation of amyloid plaque pathology in PD 

with dementia, we further validated APP levels by western blot.  Proteomic analysis showed a 1.87-fold 

increase in levels of APP in PD, and western blot analysis showed a significant increase in APP in both PD 

and PSP (Figure 21).  While varying degrees of amyloid plaque pathology have been observed in the 

brains of PD patients [288], increased levels of APP have not been confirmed.  One study comparing 

transgenic mouse models found that Aβ peptides enhanced α-synuclein accumulation and increased 

cognitive deficits [347].  Other studies have reported reduced levels of Aβ42 in the CSF of PD patients 

with cognitive impairment [348-350], which is consistent with observations in CSF of AD and MCI 

patients who have increased levels of Aβ42 in the brain [23].  The mechanisms responsible for Aβ42 

accumulation in PD, and the involvement of Aβ42 in PD pathology and progression remain unclear.  

Increased expression of APP in PD is consistent with observations of amyloid plaque pathology in PD 

patients and suggests the potential involvement of APP in PD pathology. 

 
Figure 21.  Increased levels of APP in PD and PSP human brain tissue.  Western blot analysis shows significant 
increase in full length APP (6E10 antibody) in PSP- and PD-affected human brain tissue compared with control 
tissue.  *p-value≤0.05. 
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Comparison of LFQ and Raw Intensity Ratios 

 Normalization is important for accurate label-free quantification.  MaxQuant provides a label-

free quantification normalization feature, which produces an ‘LFQ’ ratio in addition to the non-

normalized, raw intensity ratios [316].  Comparing the distribution of ratios generated using raw 

intensity values with that generated using LFQ intensity values shows that the LFQ distribution is slightly 

tighter than the raw intensity ratio distribution (Figure 22). 

 
Figure 22.  Distribution of LFQ and raw intensity ratios for PD and PSP compared with control human brain 
tissue.  The distribution of log transformed ratios generated using either raw intensities (top) or LFQ intensities 
(bottom) for proteins identified in either PD or PSP compared with cognitively normal, control tissue.  LFQ 
normalization increases the number of proteins with fold changes around 0, narrowing the distribution curve. 

 

 Statistical analysis of LFQ and raw intensity ratios also identifies different numbers of significant 

proteins, and very few of the proteins with statistically significant ratios overlap when comparing raw 

intensities and LFQ intensities.  In some cases the ratios generated using raw intensities are very 

different from those generated using LFQ intensities.  For example, sorting nexin-17 (SNX17) showed a 

2.36-fold increase in PD and a 2.69-fold increase in PSP when using raw intensity values, which were not 

found statistically significant, but when using LFQ intensity values, SNX17 showed a 7.22-fold increase in 

PD and a 9.81-fold increase in PSP, in which case both were determined to be statistically significant.  
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SNX17 levels in PD, PSP, and control tissue were further examined by western blot to evaluate the 

differences between LFQ and raw intensity ratios.  SNX17 was also selected based on its function as a 

member of the sorting nexin family of proteins, which are involved in membrane and protein trafficking 

[351].  SNX17 is localized to early endosomes and has been suggested to have a role in recycling 

endocytosed APP to the cell surface, preventing its degradation [352].  SNX17 knockdown in a human 

glioblastoma cell line resulted in decreased levels of APP and increased Aβ production [352].  Western 

blots analysis of SNX17 showed no change (1.05-fold) in PSP and was not significantly increased (1.27-

fold) in PD (Figure 23), which are closer to the raw intensity ratios than the LFQ intensity ratios. 

 APP showed a 1.87-fold increase in PD and a 1.16-fold change in PSP based on raw intensity 

ratios, and a 1.1-fold increase in PD and a 1.09-fold change in PSP based on LFQ intensity ratios.  

Western blot analysis of APP levels showed a 3.15-fold increase in PD and a 4.59-fold increase in PSP, 

both found to be statistically significant.  CPS1 showed 2.43-fold and 1.16-fold changes in PD and PSP, 

respectively, when using raw intensity values, and a statistically significant 4.40-fold increase in PD and 

2.07-fold increase in PSP when using LFQ intensity values.  Western blot analysis of CPS1 showed a 1.39-

fold change in PD which is closer to the raw intensity fold change, and a 1.48-fold increase in PSP which 

is in-between the raw and LFQ intensity fold changes.  In order to control for unequal sample loss that 

can occur during sample processing, we have implemented a peptide assay before loading samples onto 

the mass spectrometer.  Additionally, we have found that loading too much material onto the RP-UPLC 

C18 column affects spray stability, which subsequently reduces protein identification and accurate 

protein quantification.  Following the peptide assay, samples are resuspended to achieve a final 

concentration of 0.5-1µg/µl, depending on the available material, so that no more than 5µg are loaded 

onto the column with a 5µl injection volume. 
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Figure 23. Protein expression levels of SNX17 levels in PD, PSP, and control human brain tissue.  After 
normalization to GAPDH, expression ofSNX17 was slightly increased in PD- and showed no change in PSP-affected 
human brain tissue compared with compared with cognitively normal, control tissue. 

 

Conclusions of PD and PSP Analyses 

 While multiple studies have examined protein expression changes in the substantia nigra of 

human PD brain tissue, we examined proteome changes in the cortex of human PD- and PSP-affected 

brain tissue.  This appears to be the first proteomic analysis of PSP brain tissue.  Identifying proteome 

changes in the cortex is important as cortical pathology is associated with increased cognitive decline in 

PD [285, 286].  Over 2000 proteins were confidently identified in PD, PSP, and control tissue, and both 

PD and PSP brain tissue showed significant expression changes in several proteins.  Bioinformatic 

analysis of differentially expressed proteins identified a number of cellular and molecular functions that 

appear to be altered in PD and PSP.  The identification of specific proteins and determination of 

corresponding expression changes in proteins associated with these functions provides a foundation for 

future mechanistic studies.  Increased expression of APP was shown in PD and PSP, which further 

implicates the potential involvement of APP in PD.  Further validation studies are required to confirm 

protein expression levels; however these data provide a foundation for additional mechanistic studies to 

determine the functional significance of protein expression changes. 

Proteomic Analysis of Human AD, MCI, and Control Brains 

 A total of 4389 proteins were identified from three biological replicates of control, MCI, and AD 

human brain samples, and 3400 proteins were identified with a minimum of 2 unique peptides.  Of the 

total proteins, 2599 proteins were identified in MCI, 2583 proteins in AD, 2689 proteins in control tissue,  
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all having a minimum of 2 unique peptides.  Statistical analysis was performed using the Significance A 

outlier test, with the Benjamini-Hochberg false-discovery (FDR)-based q-value cutoff of 0.05.  Ratios 

needed to have a q-value ≤ 0.05 for all three replicates to be considered significant.  Of the identified 

proteins, 21 proteins were significantly altered in MCI, and 22 proteins significantly altered in AD.  MCI 

and AD Benjamini-Hochberg significant proteins are listed in Tables 7 and 8, respectively.  Alternatively, 

statistical analysis using Significance A with a t-test p-value cut off of 0.05 was used to determine 

significant expression changes for further bioinformatics analysis in Ingenuity Pathway Analysis (IPA).  

Again, ratios needed to have a p-value ≤ 0.05 for all three replicates to be considered significant; 220 

significant differentially expressed proteins in MCI and 195 significant differentially expressed proteins 

in AD were submitted to IPA. 

Table 7.  Benjamini Hochberg FDR Significant Proteins Using LFQ Intensities: MCI vs Control.  Ratios were 
generated using LFQ intensity values.  LFQ intensity ratios were log2 transformed and analyzed using Significance A 
with a false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(LFQ Ratio) 
Standard 
Deviation 

Myosin-11 MYH11 -2.50 3.16 

Hemoglobin subunit gamma-1 HBG1 3.42 0.89 

Tubulin beta-6 chain TUBB6 -1.83 0.35 

Sodium/calcium exchanger 2 SLC8A2 -1.90 1.50 

Microtubule-associated protein tau MAPT -3.59 2.02 

Prolargin PRELP -2.16 1.34 

Collagen alpha-1(XIV) chain COL14A1 -2.26 2.90 

Rab3 GTPase-activating protein catalytic subunit RAB3GAP1 2.42 0.13 

Calponin-1 CNN1 0.49 3.31 

CB1 cannabinoid receptor-interacting protein 1 CNRIP1 -1.21 0.62 

Guanine nucleotide-binding protein subunit gamma GNG2 -2.00 1.82 

Ubiquitin-conjugating enzyme E2 variant 1 UBE2V1 -1.35 1.06 

Adenosylhomocysteinase AHCYL2 -1.33 0.89 

T-complex protein 11-like protein 1 TCP11L1 2.44 0.52 

Coiled-coil domain-containing protein 92 CCDC92 2.73 0.15 

Transportin-3 TNPO3 2.62 0.46 

Syntaxin-6 STX6 2.22 0.31 

Protein transport protein Sec24A SEC24A 2.43 0.11 
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Table 8. Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: MCI vs Control.  Ratios were 
generated using raw intensity values.  Raw intensity ratios were log2 transformed and analyzed using Significance 
A with a false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(Ratio) 
Standard 
Deviation 

Exportin-2 CSE1L -3.96 0.41 

116 kDa U5 small nuclear ribonucleoprotein component SNRP116 -4.55 0.54 

Sulfotransferase 1A1 SULT1A1 -3.97 0.23 

Dynactin subunit 3 DCTN3 -3.84 1.29 

Poly(ADP-ribose) glycohydrolase ARH3 ADPRHL2 3.76 0.36 

Tectonin beta-propeller repeat-containing protein 1 TECPR1 3.55 0.32 

Putative phospholipase B-like 2 PLBD2 3.52 0.47 

Tubulin beta-6 chain TUBB6 -3.54 0.50 

Sodium/calcium exchanger 2 SLC8A2 -2.95 2.13 

Diablo homolog, mitochondrial DIABLO -2.71 0.24 

Zinc transporter 3 SLC30A3 -3.82 1.43 

Trans-2-enoyl-CoA reductase, mitochondrial MECR -2.86 2.40 

Microtubule-associated protein tau MAPT -3.74 2.06 

Collagen alpha-1(XII) chain COL12A1 -4.42 3.25 

Fibronectin FN1 0.10 4.30 

Vacuolar protein sorting-associated protein 13A VPS13A -2.72 1.72 

Coagulation factor XIII A chain F13A1 -3.97 2.56 

Carbonyl reductase [NADPH] 3 CBR3 -3.18 2.59 

40S ribosomal protein S11 RPS11 -2.69 0.94 

Golgin subfamily A member 3 GOLGA3 5.20 0.80 

Protein TFG TFG -2.69 2.08 

Methylthioribose-1-phosphate isomerase MRI1 -2.77 0.55 

Ig alpha-1 chain C region IGHA1 -3.97 0.33 

1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon AGPAT5 -4.39 0.18 

Beta-2-syntrophin SNTB2 -3.20 1.23 

Adenylate cyclase type 5 ADCY5 -2.84 0.74 

Histone H2A.V H2AFV 2.74 0.20 

VPS10 domain-containing receptor SorCS2 SORCS2 3.36 0.37 

Protein-arginine deiminase type-3 PADI3 3.18 0.40 

39S ribosomal protein L22, mitochondrial MRPL22 -3.51 0.26 

Protein DEK DEK 2.83 1.25 

Peptidyl-glycine alpha-amidating monooxygenase PAM 3.50 1.13 

Apoptosis regulator BAX BAX 3.23 0.39 

Semaphorin-4D SEMA4D -3.15 0.26 

Isovaleryl-CoA dehydrogenase, mitochondrial IVD -2.97 1.79 

Espin ESPN -3.07 0.94 

Sodium-coupled neutral amino acid transporter 3 SLC38A3 3.13 0.78 
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Table 9. Benjamini Hochberg FDR Significant Proteins Using LFQ Intensities: AD vs Control.  Ratios were 
generated using LFQ intensity values.  LFQ intensity ratios were log2 transformed and analyzed using Significance A 
with a false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein name Gene name 
Median 

Log2(LFQ Ratio) 
Standard 
Deviation 

Synaptophysin SYP -2.09 1.52 

ATP synthase subunit delta, mitochondrial ATP5D -3.54 0.41 

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit 
gamma-2 

GNG2 -2.44 0.77 

Transgelin TAGLN -1.83 0.93 

Prolargin PRELP -2.61 1.39 

Synapsin-3 SYN3 -1.96 1.20 

Myelin P2 protein PMP2 -1.48 1.19 

Coiled-coil-helix-coiled-coil-helix domain-containing protein 3 CHCHD3 -1.70 1.03 

Perilipin-3 PLIN3 5.79 0.74 

Iron-sulfur cluster assembly enzyme ISCU, mitochondrial ISCU -2.44 1.27 
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Table 10. Benjamini Hochberg FDR Significant Proteins Using Raw Intensities: AD vs Control.  Ratios were 
generated using raw intensity values.  Raw intensity ratios were log2 transformed and analyzed using Significance 
A with a false discovery rate (FDR)-based q-value threshold of 0.05.  Ratios with q-values ≤ 0.05 in five out of seven 
biological replicates were considered to be statistically significant. 

Protein names Gene names 
AD Median 
Log2(Ratio) 

AD Standard 
Deviation 

Tubulin beta-6 chain TUBB6 -6.10 1.66 

Histone H2A.V;Histone H2A.Z;Histone H2A H2AFV 4.30 0.55 

Peroxisomal acyl-coenzyme A oxidase 3 ACOX3 4.47 0.52 

Nuclear pore membrane glycoprotein 210 NUP210 4.77 0.83 

Prolargin PRELP -4.26 1.68 

Calponin-1 CNN1 -4.69 0.28 

Zinc transporter 3 SLC30A3 -3.56 0.86 

Trans-2-enoyl-CoA reductase, mitochondrial MECR -3.41 2.24 

Brain acid soluble protein 1 BASP1 -3.75 0.02 

Iron-sulfur cluster assembly enzyme ISCU, mitochondrial ISCU -4.06 3.15 

Poly(ADP-ribose) glycohydrolase ARH3 ADPRHL2 3.77 0.69 

Methionine--tRNA ligase, cytoplasmic MARS 4.30 2.66 

Fatty-acid amide hydrolase 1 FAAH 3.94 0.38 

Translational activator GCN1 GCN1L1 4.32 0.29 

Cartilage acidic protein 1 CRTAC1 -3.16 1.41 

Trifunctional purine biosynthetic protein adenosine-3 GART 4.05 0.38 

WD repeat-containing protein 61 WDR61 5.14 1.04 

Calcium-binding and coiled-coil domain-containing protein 1 CALCOCO1 5.83 1.08 

Gamma-aminobutyric acid receptor-associated protein-like 2 GABARAPL2 -4.33 2.40 

Microfibrillar-associated protein 2 MFAP2 -9.43 0.21 

Lanosterol 14-alpha demethylase CYP51A1 3.54 0.72 

26S proteasome non-ATPase regulatory subunit 8 PSMD8 -4.57 1.21 

Alpha-1-antichymotrypsin;Alpha-1-antichymotrypsin His-Pro-less SERPINA3 -3.03 2.02 

60S ribosomal protein L3 RPL3 -3.58 0.13 

Endothelin B receptor-like protein 2 GPR37L1 -3.14 2.67 

SLIT-ROBO Rho GTPase-activating protein 2C SRGAP2C -2.42 1.92 

DNA polymerase subunit gamma-1 POLG -4.85 1.28 

Heat shock protein beta-6 HSPB6 5.19 1.10 

Guanine nucleotide-binding protein subunit gamma GNG10 4.83 0.14 

Proteasome subunit beta type;Proteasome subunit beta type-6 PSMB6 -4.20 0.31 

Coronin-7 CORO7 3.23 0.22 

Rabenosyn-5 ZFYVE20 3.12 0.72 

Proteasome subunit beta type PSMB8 4.72 0.51 

Potassium-transporting ATPase alpha chain 2 ATP12A -2.97 0.37 
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 Mass spectrometry analysis demonstrated an increase in APP expression, while western blot 

analysis showed relatively unchanged levels of full length APP (FL-APP) and a significant increase in Aβ 

peptide (Figure 24).  To further investigate this discrepancy, sequence coverage of FL-APP from mass 

spectrometry was examined.  While no coverage of the Aβ region was observed in non-AD samples, 

peptides from the Aβ region were identified in MCI and AD samples (Figure 24).  As the Aβ region of APP 

is hydrophobic and near the transmembrane domain, it can be difficult to obtain sequence information 

from this region by mass spectrometry, and the presence of Aβ peptides in MCI and AD samples are 

likely contributing to the levels of FL-APP quantified by mass spectrometry, suggesting increased 

expression in these samples. 
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Figure 24.  Analysis of APP and Aβ levels in MCI, AD, and non-AD control brains.  (A)  Western blot analysis of 
human brain samples show that while full-length APP (FL-APP) levels are not significantly altered in AD or MCI 
compared with non-AD samples, there is increased Aβ peptide.  (B)  LC-MS/MS analysis of the same human brain 
samples showed no coverage of the Aβ peptide region of APP (outlined in red) in non-AD samples (top), however 
peptides were identified in the Aβ region of APP in MCI and AD samples (middle).  Annotated MS/MS spectrum of 
LVFFAEDVGSNK peptide found in Aβ region of APP (bottom). 

 

Functional Enrichment Shows AD and MCI Significant Proteins 

 Bioinformatic analysis revealed several proteins associated with molecular and cellular functions 

in AD including post-translational modification, cell cycle, and lipid metabolism.  Some of the molecular 

and cellular functions enriched in MCI included cell death and survival, protein degradation, and protein 
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synthesis.  Both AD and MCI had significant proteins involved in mitochondrial dysfunction and related 

oxidative phosphorylation as well as EIF2 signaling.  Pathway analysis also predicted changes in activity 

of upstream regulators based on observed protein expression changes.  Activation of APP was predicted 

in MCI (z-score 0.574) and AD (z-score 2.434) based on significant protein expression changes, which is 

consistent with the disease state (Figure 25).  Pathway analysis also predicted the activation of 

interferon gamma (IFN-gamma) in MCI (z-score 1.221) and AD (z-score 3.087) based on increased 

expression of several proteins consistent with IFN-gamma activation including intracellular adhesion 

molecule 1 (ICAM1) [353], ubiquitin-like modifier activating enzyme 2 (UBA2) [354], and ubiquitin-

conjugating enzyme E2L 6 (UBE2L6) [355].  The predicted activation of IFN-gamma is consistent with 

inflammation observed in AD.  Interestingly, predicted activation z-scores for both APP and IFN-gamma 

are not significant in MCI but are significant in AD, suggesting these processes are affected early and are 

affected during disease progression. 

 Proteomic analysis identified significant expression changes in fatty acid amide hydrolase (FAAH) 

in MCI (3.78-fold) and AD (15.36-fold) compared with non-AD, control tissue.  FAAH, responsible for the 

degradation of endocannabinoids in the endocannabinoid system (reviewed in [356]), was significantly 

increased in AD compared with control tissue.  Increased expression and hydrolase activity of FAAH has 

been observed in glia surrounding amyloid plaques in AD [357], and in blood from AD patients [358].  

Supporting a role for FAAH in AD neurodegeneration and pathology development, studies in rats had 

shown that inhibition of FAAH enhances memory formation [359].  The endocannabinoid system has 

previously been implicated in AD.  Cannabinoid receptors have been shown to be protective against 

excitotoxicity in mutant mice [360], and cannabinoids have been shown to reduce oxidative stress, and 

be neuroprotective against Aβ-induced toxicity [361].  Elevated levels of FAAH in the cortex of MCI and 

AD tissue further supports its involvement in AD pathology, and increasing evidence suggests that 

dysregulation of the endocannabinoid system may have a role in memory impairment. 
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Figure 25.  Ingenuity Pathway Analysis predicted activation of APP and IFN-gamma in MCI and AD based on 
observed protein expression changes.  Activation of APP and IFNG were predicted in both MCI (z-score 0.574, and 
1.221, respectively, and in AD (z-score 2.434, and 3.087, respectively).  APP and Aβ are known to play key roles in 
AD.  The predicted activation of IFNG, a cytokine secreted from immune cells in response to pathogen such as 
inflammatory proteins, is consistent with inflammation often observed in AD.  

 

 Pathway analysis also predicted inhibition of the upstream regulator rapamycin-insensitive 

companion of mTOR (RICTOR) in AD (z-score 1.633) based on proteins with significant expression 

changes (Figure 26).  RICTOR is a subunit of the mTORC2 complex, a serine/threonine kinase involved in 

cytoskeletal organization and cell survival.  It was previously shown that the RICTOR-mTORC2 complex is 

involved in cytoskeletal dynamics.  Knockdown of RICTOR in HeLa cells resulted in the formation of thick 

actin bundles, and it was speculated that RICTOR-mTOR regulation of cytoskeletal organization is 
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mediated by PKCα activity [362].  The RICTOR-mTOR complex has also been shown to phosphorylate Akt 

at Ser473 and facilitate phosphorylation at Thr308, both phosphorylation events are required for 

activation [363].  Akt is known to have a role in cell cycle by preventing GSK-3β-mediated 

phosphorylation and degradation of cyclin D1 [225].  Phosphorylation of Akt at Ser477 and Thr479 by 

mTORC2 or Cdk2/cyclin A has been shown to trigger Akt activation by promoting mTORC2 

phosphorylation of Ser473 [224].  Additionally, it was shown that Akt activation regulates cell cycle 

progression [224], suggesting  the involvement of mTORC2 signaling in the cell cycle.  The mTOR 

complex has also been suggested to be involved in Aβ oligomer induced neuronal cell cycle re-entry 

events through the PI3K-Akt-mTOR pathway [364].  Finally, Aβ treatment of mouse neuroblastoma cells 

downregulated mTOR activation, and decreased mTOR activity was also observed in cortex of PS/APP 

transgenic mice and lymphocytes of human AD patients [365].  These findings are consistent with our 

data suggesting inhibition of RICTOR, a member of the mTORC2 complex, in AD-affected human brain 

tissue, suggesting this effect may be mediated by APP or Aβ.  The predicted inhibition of RICTOR-

mTORC2 may also be involved in aberrant cell cycle re-entry and progression that occurs during AD. 

 
Figure 26.  Ingenuity Pathway Analysis showing predicted inhibition of upstream regulator RICTOR in AD based 
on significantly differentially expressed proteins.  (Rapamycin-insensitive companion of mTOR) RICTOR (z-score -
1.633 in AD and MCI) is a subunit of the mTORC2 complex, which promotes cell survival through Akt activation and 
is involved in cytoskeletal dynamics through activation of PKCα. 
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 Though these human brain samples were not enriched for phosphopeptides, phosphorylation of 

serine, threonine, and tyrosine was included in the database search parameters as a variable 

modification to determine if any changes in phosphorylation could be identified.  While only a small 

number of phosphorylated proteins were identified, decreased phosphorylation of NAD-dependent 

protein deacetylase sirtuin-2 (Sirt2) at Ser368 was observed in AD compared with control samples.  

Annotated MS/MS spectra of the phosphorylated and non-phosphorylated Sirt2 peptide in control and 

AD brain, respectively, are shown in Figure 27.  Reduced phosphorylation of Sirt2 has previously been 

observed in the hippocampus of AD patients [207], and this phosphoproteomic study provides site-

specific information for the observed decrease in phosphorylation.  Sirt2 is phosphorylated at Ser368 by 

CDK1/cyclin B at the G2/M transition, and this phosphorylation event is required for regulating the delay 

in cell cycle progression [366].  When Sirt2 is constitutively phosphorylated at Ser368 decreased 

hyperploidy is observed compared with wild type Sirt2, demonstrating the importance of this 

modification in regulating the mitotic checkpoint [366].  Chromosome missegregation and polyploidy 

[208], as well as binucleation of hippocampal neurons [367] observed in AD brains further suggest 

impaired mitotic checkpoint regulation in AD.  The observed reduction in Sirt2 Ser368 phosphorylation 

in AD compared with control brains suggests dysregulation of the mitotic checkpoint, and may 

contribute to the increased polyploidy observed in the brains of AD patients.  
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Figure 27.  Mass spectrometry identified decreased phosphorylation of Sirt2 at Ser368.  Annotated MS/MS 
spectra of NAD-dependent protein deacetylase sirtuin-2 (Sirt2) in non-AD (top) with phosphorylation at Ser368 and 
AD (bottom) lacking phosphorylation at Ser368. 

 

Comparison of B103 Cell Model and Alzheimer’s Disease Human Tissue Analyses 

To further validate findings from our initial proteomic analysis of APP-null B103 and APP695-

expressing B103-695 cells, and to identify changes in human AD brain that may be attributed to APP 

expression, we compared the each dataset.  While a number of proteins were identified in each dataset, 

five proteins showed significant expression changes (p-value≤0.05) in both B103-695 cells and AD 

human brain tissue.  Of the five proteins with significant expression changes in B103-695 cells and AD 

human brain tissue, four of them demonstrated the same trend in expression change; tubulin 

polymerization promoting protein family member 3 (TPPP3), Acyl-CoA-binding protein (ACBP), brain 

acidic soluble protein 1 (BASP1), and glycolipid transfer protein (GLTP).  TPPP3, also known as p20, is a 

tubulin polymerization protein that has been shown to bind and stabilize microtubules [368].  TPPP3 

showed a 3.34-fold increase in human AD cortex, and a 1.94-fold increase in B103-695 cells.  Previously, 

a DNA microarray analysis determined increased expression of TPPP3 in the hippocampus of human AD 

brain compared with control brains [369].  TPPP3 has also been reported to be necessary for 

proliferation and cell cycle progression in HeLa cells [370].  Microtubule polymerization has a crucial role 
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in mitosis, and TPPP3 may be involved in regulating spindle formation [370].  ACBP is also known as 

diazepam-binding inhibitor (DBI) based on its ability to modulate diazepam binding  to the 

benzodiazepine recognition site on the GABA type A receptor [371].  ACBP showed a 2.69-fold increase 

in AD and a 2.04-fold increase in B103-695 cells.  While our study found increased ACBP levels in the 

cortex, another proteomic analysis of hippocampal tissue observed decreased ACBP levels in human AD 

compared with control tissue [372].  Elevated levels of ACBP have been observed in the CSF from 

patients with AD and PD with dementia [373].  These evidence suggest that ACBP may be regulated in a 

region-specific manner during AD, and may have a role in other neurodegenerative diseases as well.  

BASP1 showed decreased expression and GLTP showed increased expression in both B103-695 cells 

compared with B103 cells and human AD cortex compared with control non-AD cortex.  The increased 

expression of TPPP3, ACBP, and GLTP, and the decreased expression of BASP1, in both APP695-

expressing cells compared with APP-null cells and human AD tissue, suggests that these proteins and 

their associated functions are likely regulated by APP or a metabolite of APP.  Additionally, as the 

expression changes observed in human AD tissue are consistent with those observed in APP695-

expressing cells, it also suggests that these changes are mediated in an APP695-dependent manner. 

Conclusion of AD and MCI Analyses 

The predicted activation of APP and IFN-gamma in MCI and further activation in AD, confirm the 

disease state of the MCI and AD brain tissue samples, and also further support the involvement of APP 

and IFNG in AD progression.  Both APP and IFN-gamma were predicted to be activated in MCI, 

suggesting that they are affected early during neurodegeneration, and are not just associated with late-

stage AD.  Differential phosphorylation of Sirt2 and predicted inhibition of RICTOR may have 

implications in cell cycle deregulation, providing further evidence that aberrant cell cycle re-entry may 

be involved in AD pathogenesis.  Elevated levels of FAAH may represent a disease-specific protein 

biomarker, as increased FAAH was observed in AD and MCI but not PD or PSP brain tissue.  Furthermore, 
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the findings that FAAH is also increased in the blood samples of AD patients imply that this may serve as 

a biomarker for early detection of AD.  In addition to being a potential biomarker of AD, the 

endocannabinoid system may have a more complex role in cognitive impairment and AD pathology.  

Further investigation to further determine the functional significance of the endocannabinoid system in 

AD would provide insight into the potential neuroprotective effects of cannabinoids in preventing 

neurodegeneration and dementia [374].  These comprehensive datasets provide information about 

changes in signaling pathways in MCI and AD brains as well as insight into the mechanisms involved in 

MCI and AD progression and pathology. 
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Chapter 5 – Conclusions and Future Directions 

Conclusions 

Overview 

The mechanisms involved in the pathology and progression of dementia in a number of 

neurodegenerative diseases, including AD, PD, and MCI, are poorly understood.  While the 

neuropathology, such as the presence of amyloid plaques, neurofibrillary tangles, and Lewy Bodies, have 

been described, the precise molecular mechanisms leading to their deposition and their contribution to 

the progression of cognitive decline are unclear.  As life expectancy has increased, a greater number of 

people are living into their 80s and 90, and as ‘the baby boomer generation’ is reaching the age of 65, 

the medical and financial burdens are growing substantially.  The estimated cost of health care and 

hospice for people with AD in the United States in 2015 is $226 billion, which is expected to rise with the 

increasing elderly population [1].  There is an increasing need for the identification of reliable 

biomarkers and development of better treatments and preventative strategies for AD and other 

neurodegenerative diseases such as PD. 

A significant amount of research has focused on the function of amyloid precursor protein (APP) 

and its role in AD pathology; however, its primary physiological function as well as its involvement in 

neurodegeneration and AD still need to be further understood.  To investigate the impact of APP 

expression on the proteome, we used mass spectrometry-based proteomics to perform a number of 

global scale analyses beginning with a cell model of AD, examining both the proteome and 

phosphoproteome.  We then further compared the proteomes of human brain tissues affected by 

diverse neurodegenerative disorders, including mild cognitive impairment (MCI), Alzheimer’s disease 

(AD), Parkinson’s disease (PD), and progressive supranuclear palsy (PSP), with cognitively normal, 
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control tissue.  APP-null B103 and APP695 expressing B103-695 cells were used as a cell model to study 

APP function, and SILAC-labeling was used for relative quantitation of protein expression changes in 

both the global proteomic and phosphoproteomic profiles.  When working with human tissue, a label-

free quantitative approach was used, relying on peptide ion intensity values to determine protein 

abundance. 

Proteomic analysis of SILAC-labeled B103 and B103-695 cells identified nearly 3000 proteins, 

and proteins with significant expression changes were shown to be involved in cellular assembly and 

organization, cell cycle, protein folding, and post-translation modification.  Increased Ras and ƴ-

synuclein expression were further validated by western blot analysis in human AD, MCI, and non-AD 

brain tissue (Figure 5).  Increased ƴ-synuclein expression during MCI may indicate an early molecular 

change during neurodegeneration, while increased expression of Ras in MCI and further increase in late 

AD provides further evidence that Ras likely has a role in AD progression.  Phosphoproteomic analysis of 

SILAC labeled B103 and B103-695 cells confidently identified over 2000 phosphorylation sites.  Several of 

the phosphoproteins identified have implications in neurological disease, as well as cellular assembly 

and organization, and cell growth and proliferation.  Increased phosphorylation of Histone H4 at Ser47 

was further validated in human MCI and AD tissue (Figure 18), and Aβ treated rat primary cortical 

neurons (Figure 15).  Increased phosphorylation of PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18) were also 

found, which led us to further examine their expression in B103 and B103-695 cells (Figure 12), primary 

neurons (Figure 15), and human tissue (Figure 18). 

Label-free quantitative proteomics was then used to investigate human brain tissue from 

multiple neurodegenerative diseases.  Proteomic analysis of human brain tissue from MCI, AD, and 

cognitively normal, control samples identified a total of 3400 proteins; 2583 in AD, 2599 in MCI, and 

2689 in control tissue.  A number of proteins with significant expression changes in both MCI and AD are 

associated with cellular assembly and organization, and development.  Bioinformatic analysis also 
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determined a number of proteins with significant expression changes involved in cell growth and 

proliferation in AD and cellular morphology in MCI.  Identifying significant expression changes in 

proteins involved in cellular assembly, organization, and morphology, growth and proliferation in 

APP695-expressing cell model compared with APP-null cells, as well as human MCI and AD tissue 

suggests that these molecular changes occur early in disease progression and may be mediated by APP.  

Additionally, it implicates the involvement or dysregulation of structural proteins in disease pathology.  

A separate proteomic analysis of human tissue from PD, PSP, and control brains identified just over 3800 

proteins, 3329 in PD, 3237 in PSP, and 3324 in control tissue.  Bioinformatic analysis of proteins with 

significant expression changes identified a number of proteins involved in protein synthesis and lipid 

metabolism in PD and cell cycle, growth and proliferation in PSP. 

Each comprehensive proteomic dataset identified a number of proteins with significant 

expression changes and bioinformatics analysis determined potentially affected cellular and molecular 

functions.  Five proteins showed consistent, statistically significant expression changes in the B103 and 

B103-695 cell model of AD, as well as human AD tissue, increasing the likelihood that these proteins are 

involved in AD and potentially mediated by APP695.  While some of the molecular and cellular functions 

were unique among neurodegenerative diseases, there also appears to be some overlap of affected 

functions, suggesting that there may be more common mechanisms among different forms of 

neurodegeneration. 

 Inflammation, Protein Aggregation, and Cell Cycle in Neurodegeneration 

 Analyses of human brain tissue from a number of different neurodegenerative diseases, 

including MCI, which often progresses to more serious neurodegeneration and dementia, identified a 

number of significantly altered proteins involved in inflammation.  Inflammation, oxidative stress and 

mitochondrial dysfunction are hypothesized to be involved in AD [212, 213] and PD [375].  Activated 

microglia are also observed in both AD [10-12, 376] and PD [376, 377] further supporting activation of 
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the inflammatory response.  Pathway analysis of significant proteins in MCI and AD predicted activation 

of interferon-ƴ based on increased expression of several proteins including APP, BCL2-associated X 

protein (BAX), ubiquitin-like modifier activating enzyme 2 (UBA2), and ubiquitin-conjugating enzyme E2L 

6 (UNE2L6) in both MCI and AD (Figure 24).  Pathway analysis also predicted the activation of the 

inflammatory cytokines tumor necrosis factor (TNFα) (z-score 2.670) and interleukin 1α (IL1A) (z-score 

2.371) in AD, suggesting that inflammation increases during the progression from MCI to AD.  These 

results are consistent with previous reports supporting the involvement of inflammation in AD, and 

provide specific proteins with altered expression that may contribute to this process.  While it is not fully 

understood whether inflammation is a cause or result of other pathologies, the predicted activation of 

inflammatory proteins in MCI and increasing in AD, suggests that the inflammatory response is affected 

early and likely contributes to progression of neuropathology and cognitive decline. 

 Some of the clinical and pathological characteristics of multiple neurodegenerative diseases 

overlap.  For example, abnormal protein aggregation occurs in AD with the aggregation of Aβ42 into 

amyloid plaques, as well as PD and LBD, with aggregation of α-synuclein into Lewy Bodies.  Additionally 

tau-neurofibrillary tangles are observed in AD, PSP, and other tauopathies such as frontotemporal lobe 

dementia.  The occurrence of aberrant protein aggregation in a number of common neurodegenerative 

conditions leads to the idea that protein synthesis, folding, or clearance is likely impaired, and supports 

the involvement of some more common pathologies leading to cognitive decline.  When considering the 

abnormal accumulation and aggregation of peptides and proteins, it is important to consider the 

ubiquitin proteasome system (UPS), which is responsible for degrading modified, misfolded, or 

denatured proteins.  Dysregulation of the UPS has previously been implicated in a number of 

neurodegenerative diseases [378], including AD [379] and PD [380], and our data also support this idea.  

Several proteins that function in the UPS were identified in the analysis of human tissue, and at least 

one ubiquitin-related protein showed a statistically significant change after FDR correction in PSP, AD, 
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and MCI human tissue: Ubiquitin-conjugating enzyme E2 G1 (UBE2G1) showed a 3.81-fold increase in 

PSP, E3 ubiquitin-protein ligase Itchy homolog (ITCH) showed a 7.82-fold increase in AD, and E3 

ubiquitin-protein ligase UBR3 (UBR3) showed a 7.37-fold increase in MCI.  Decreased phosphorylation of 

deubiquitinating protein VCIP135 at Ser473 was observed in APP695 expressing cells compared with 

APP-null cells, however the significance of phosphorylation at this site is unknown.  Whether abnormal 

protein aggregation occurs as a result of UPS dysfunction, or whether UPS-related proteins are found 

within Lewy Bodies as a result of failed clearance is still unclear.  Increased activity of the UPS has been 

associated with activation of the inflammatory response [381, 382].  Understanding the precise 

molecular mechanisms mediating protein aggregation and UPS activity and the role of inflammation 

could provide novel therapeutic targets as these processes are likely involved in multiple 

neurodegenerative diseases. 

 Previous studies have reported the aberrant expression of cell cycle proteins in MCI and AD 

suggesting the involvement of neuronal cell cycle re-entry in neurodegeneration [104-108].  

Additionally, APP and Aβ have been suggested to promote neuronal cell cycle re-entry [113].  Proteomic 

analysis of the B103 and B103-695 neuroblastoma cell model of AD identified several proteins involved 

in cell cycle with altered expression in APP695 expressing cells compared with APP-null cells.  The cell 

cycle was also implicated as an altered cellular function in PSP compared with control tissue.  Analysis of 

proteins with significant expression changes in human AD brain tissue predicted inhibition of RICTOR, a 

component of the mTORC2 complex that activates Akt in a cell cycle dependent manner [224].  Reduced 

phosphorylation of NAD-dependent protein deacetylase sirtuin-2 (Sirt2) at Ser368 was also found in 

human AD brain, which is required for regulation the G2/M checkpoint [366].  Both RICTOR and p-Sirt2 

(Ser368) have implications in aberrant cell cycle re-entry and progression.  Increased expression of 

TPPP3, a tubulin polymerization promoting protein previously shown to be involved in cell cycle 

progression, was observed in both APP695-expressing cells and human AD tissue.  These findings 
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suggest that TPPP3 may be involved in neuronal cell cycle progression, and may be mediated by APP695.  

These findings provide further evidence that aberrant cell cycle re-entry and progression are involved in 

AD, PD, and PSP, further implicating cell cycle dysregulation in neurodegeneration. 

 Increased amyloidogenic processing of APP results in increased levels of Aβ42, which forms 

amyloid plaques in AD, and to a lesser extent in MCI.  Amyloid pathology has also been observed in the 

brains of PD patients with dementia, and the co-existence of α-synuclein pathology and amyloid plaques 

are associated with earlier onset of dementia and shorter survival [287, 288].  Additionally, our data 

suggest increased expression of APP in the cortex of individuals with PD and PSP (Figure 23).  These 

findings suggest that APP processing and amyloid pathology can promote cognitive decline in MCI, AD, 

as well as PD.  APP and Aβ have been shown to promote the inflammatory response and promote 

neuronal cell cycle re-entry [113], which may be involved in MCI, PSP, and PD in addition to AD 

pathology.  The precise mechanism by which APP and/or Aβ induces activation of inflammatory 

pathways and promotes aberrant neuronal cell cycle re-entry need to be further understood; however, 

these datasets present significant protein expression changes that may contribute to the specific 

molecular changes.  Whether APP or a metabolite of APP cause changes in protein folding or the UPS 

needs to be further determined; however, understanding changes in these functions could provide 

insight into the pathology of a number of neurodegenerative diseases.  While Aβ42 and amyloid plaques 

have been considered major contributors to AD pathology, increasing evidence suggests that soluble Aβ 

oligomers may be responsible for promoting disease pathology [66].  Moving forward, it is important to 

consider the potential involvement of other Aβ peptides, oligomers and metabolites of APP in AD 

pathology.  The impact of other APP metabolites and Aβ species on the inflammatory response, cell 

cycle re-entry and progression, as well as protein misfolding, may provide additional insights into the 

involvement of APP in neurodegeneration, thereby enabling identification of new targets for therapeutic 

strategies. 
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Future Directions 

Cell Cycle and Inflammation Studies in a Cell Model of Alzheimer’s Disease 

Global scale proteomic analysis of a cell model of AD was published in Electrophoresis (2012).  

Further experiments were performed to investigate protein expression changes associated with cell 

cycle and inflammation.  Only B103-695 cells were assessed with and without cell cycle inhibitors and 

the observed changes in protein expression under this condition should be attributed to cell cycle 

inhibition.  While expression changes in proteins associated with cell cycle inhibition were observed, a 

larger study comparing APP-null B103 cells with and without cell cycle inhibitor treatment would be 

beneficial to determine APP-mediated changes during the cell cycle.  Additionally, cell synchronization 

using aphidicolin treatment and serum starvation synchronizes cells in S phase or G0, respectively, and 

flow cytometry experiments using fluorescence activated cell sorting (FACS) analysis can be used to 

confirm synchronization and monitor progression through the cell cycle.  FACS analysis measures DNA 

content after staining cells with the intercalating agent propidium iodide, and fluorescence can be 

measured using a flow cytometer.  As cells progress from G1 to S phase and G2/M, their DNA content 

increases until the cell divides, and so the measured fluorescence intensity can be used to assess 

whether cells are in G1, S, or G2/M phase of the cell cycle.  Optimization of cell synchronization in B103 

and B103-695 cells to ensure cell populations are synchronized would provide more information about 

APP-mediated protein expression changes at specific stages of the cell cycle. 

B103 and B103-695 cells were also treated with lipopolysaccharide (LPS) to study the impact of 

inflammation on protein expression; however, LPS has a neurotoxic effect on neurons.  A more 

informative experiment would be to treat B103 and B103-695 cells with conditioned media from LPS 

treated microglia or astrocytes.  Additionally, B103 cells treated with LPS conditioned media should be 

compared to B103-695 cells treated with LPS conditioned media to determine APP-mediated protein 

expression changes and not just LPS-mediated changes. 
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PCTAIREs in Neurodegeneration 

 PCTAIRE-2 (Cdk17) and PCTAIRE-3 (Cdk18) are members of the cyclin dependent kinase (Cdk) 

family.  PCTAIRE-2 and PCTAIRE-3 showed increased expression in B103-695 cells compared with APP-

null B103 cells (Figure 12), as well as in PS/APP transgenic mice compared with non-transgenic control 

mice (Figure 13) and human MCI- and AD-affected brain tissue compared with control tissue (Figure 18).  

Additionally, Aβ treatment increased expression of PCTAIRE-2 and PCTAIRE-3 in cultured primary rat 

neurons (Figure 15).  Immunostaining analysis also revealed altered localization of PCTAIRE-2 and 

PCTAIRE-3 in Aβ-treated primary neurons (Figure 16) and B103 and B103-695 cells (Figure 17).  PCTAIREs 

are relatively uncharacterized Cdc-2-related serine/threonine kinases.  The functions of PCTAIRE-2 and 

PCTAIRE-3 have not been discovered; however, increasing evidence suggests that they may be involved 

in neurodegeneration.  PCTAIRE-3 has been shown to directly promote tau phosphorylation at Thr231 

and Ser235, which are early modifications in AD pathogenesis [270].  PCTAIRE-3 has been shown to be 

activated through association with Cyclin A or phosphorylation by PKA at Ser12 [271], and PKA and 

PCTAIRE-3 have both been observed in paired helical filament (PHF) fractions [270].  Additionally, our 

initial proteomic analysis suggested increased PKA signaling in APP-695 expressing B103-695 cells [239].  

PCTAIRE-2 and PCTAIRE-3 were initially selected for further validation based on observed changes in 

phosphorylation; increased phosphorylation of PCTAIRE-2 Ser146 and Ser180, and increased 

phosphorylation of PCTAIRE-3 at Ser66 and Ser109.  After determining increased expression of PCTAIRE-

2 and PCTAIRE--3, the levels of phosphorylation may not be significantly increased following 

normalization to total protein expression. The functional significance of phosphorylation at these sites is 

unknown. 

The functions of PCTAIRE-2 and PCTAIRE-3 can be further investigated by knockdown and 

overexpression experiments in B103 and B103-695 cells.  Knockdown can be achieved using siRNA 

against PCTAIRE-2 and PCTAIRE-3.  Stable or transient transfection of PCTAIRE-2 and PCTAIRE-3 can be 
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used to increase expression.  Levels of PCTAIRE-2 and PCTAIRE-3 can be determined by western blot 

analysis to confirm knockdown and overexpression.  Mass spectrometry can be used to compare the 

proteomes and phosphoproteomes of PCTAIRE-2 and PCTAIRE-3 knockdown or overexpression cells to 

determine affected proteins, pathways and functions.  In addition to characterizing the function of 

PCTAIRE-2 and PCTAIRE-3, the functional significance of the phosphorylation sites can also be further 

investigated.  The functional significance of the identified phosphorylation sites can be determined by 

creating mutations in PCTAIRE-2 and PCTAIRE-3 at known and/or predicted phosphorylation sites.  

Mutation of phosphorylated serine resides to aspartic acid, which is chemically similar, is commonly 

used to mimic a phosphorylated protein.  Conversely, phosphorylation can be inhibited by mutation of a 

phosphorylated serine to alanine, a chemically similar amino acid that is not phosphorylated.  Reducing 

endogenous levels of PCTAIRE-2 and PCTAIRE-3 using siRNA, and expression of constitutively 

phosphorylated or non-phosphorylated PCTAIRE-2 or PCTAIRE-3 may provide insight into the kinase 

activity, functional significance, and activating or deactivating phosphorylation sites.  Validation of 

phosphorylated PCTAIRE-2 and PCTAIRE-3 is challenging as antibodies have not been generated, and the 

production of an antibody against phosphorylated residues on PCTAIRE-2 and PCTAIRE-3 could benefit 

future studies.  Knockdown studies can also be performed in existing mouse models of AD, or transgenic 

models can be developed using siRNA to inhibit PCTAIRE-2 and/or PCTAIRE-3 expression. 

phospho-Serine47-Histone H4 

 Phosphoproteomic analysis showed increased phosphorylation of Histone H4 at Ser47 in 

APP695 expressing B103-695 cells compared with APP-null B103 cells.  Increase pSer47-Histone H4 was 

further validated by western blot analysis in B103 and B103-695 cells (Figure 12) and in human MCI- and 

AD-affected tissue compared with control tissue (Figure 18).  Treatment of primary neurons with Aβ also 

increased phosphorylation of Histone H4 at Ser47 (Figure 15).  Phosphorylation at Ser47 has been 

reported to promote the assembly of H3.3-H4 by the histone chaperone HIRA, while inhibiting CAF-1 
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mediated assembly of H3.1-H4 [242].  While the functional significance of this process is not fully 

understood, the functions of H3.3 are unique and cannot be substituted by H3.1 [256-258].  H3.3 is 

localized to gene bodies of actively transcribed genes, and levels of H3.3 at gene bodies positively 

correlates with gene expression [259, 260].  Chromatin immunoprecipitation (ChIP) sequencing can be 

used to identify what sequences and genes Histone H4 is associated with when phosphorylated at 

Ser47.  During ChIP sequencing, proteins are cross-linked to DNA and immunoprecipitated using an 

antibody against the proteins of interest, in this case pSer47-Histone H4, conjugated to beads for 

purification.  Following purification of the protein of interest and associated DNA, protein is dissociated 

and DNA can be sequenced.  As increased pSer47-Histone H4 was observed in APP695-expressing cells 

compared with APP-null cells, and in human AD brain tissue compared with control tissue, determining 

sequences or regions that pSer47-Histone H4 binds to would indicate genes that may be differentially 

transcribed in AD compared with control tissue.  Histone H4 Ser47-phosphorylation may be implicated 

in expression of proteins that have or have not been considered in AD pathology.  If ChIP sequencing is 

successful in B103 and B103-695 cells, it can also be performed using human control, AD, and MCI brain 

tissue.  ChIP sequencing of pS47-Histone H4 would also provide insight into the function and significance 

of this modification. Mutation of Ser47 to aspartic acid or alanine could also be used to examine 

proteome changes and functional consequences of constitutively modified or unmodified Histone H4 

Ser47.  Phosphorylation of Histone H4 at Ser47 may be involved in regulating gene transcription or 

mitosis, with implications in AD pathology. 

Human Tissue Analysis 

 Future directions include further validation of proteins with statistically significant expression 

changes in MCI, AD, PD, or PSP, after FDR correction.  To date, there are a very limited number of 

phosphoproteomic analyses of human brain tissue affected by neurodegenerative diseases.  

Phosphoproteomic analysis of MCI and AD human brain samples can provide insight into 
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phosphorylation changes that may be involved in the onset and progression of AD.  Phosphoproteomic 

datasets can be used for bioinformatic and consensus motif analysis, which provides further information 

about changes in kinase activity and affected signaling pathways.  One of the limitations of the 

phosphoenrichment strategy described in Chapter 3 is that it requires of large amounts of starting 

material, and the filters used with FASP procedure have a loading capacity of 400μg.  Gel-aided sample 

processing (GASP), which was shown to be effective when working with small amounts of protein, does 

not have a loading capacity and may be more appropriate for phosphoproteomic workflows.  

Theoretically, GASP could also be applied to very large amounts of protein; however, the efficiency of 

GASP for processing large amounts of starting material needs to be further tested.  As there have been 

several proteomic analyses of various regions from human MCI and AD brain, increasing the number of 

phosphoproteomic analysis of human brain tissue would provide insights into affected kinases, 

phosphatases, and signaling pathways that may be important for progression and development of 

disease pathology. 
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292. Paisán-Ruıź, C., et al., Cloning of the gene containing mutations that cause PARK8-linked 
Parkinson's disease. Neuron, 2004. 44(4): p. 595-600. 

293. Zimprich, A., et al., Mutations in LRRK2 cause autosomal-dominant parkinsonism with 
pleomorphic pathology. Neuron, 2004. 44(4): p. 601-607. 

294. Leroy, E., et al., The ubiquitin pathway in Parkinson's disease. Nature, 1998. 395(6701): p. 451-2. 
295. Valente, E.M., et al., Hereditary early-onset Parkinson's disease caused by mutations in PINK1. 

Science, 2004. 304(5674): p. 1158-60. 
296. Houlden, H. and A.B. Singleton, The genetics and neuropathology of Parkinson's disease. Acta 

neuropathologica, 2012. 124(3): p. 325-38. 
297. Dauer, W. and S. Przedborski, Parkinson's disease: mechanisms and models. Neuron, 2003. 

39(6): p. 889-909. 
298. Licker, V., et al., Proteomics in human Parkinson's disease research. Journal of proteomics, 2009. 

73(1): p. 10-29. 
299. Cotzias, G.C., P.S. Papavasiliou, and R. Gellene, Modification of Parkinsonism—chronic treatment 

with L-dopa. New England Journal of Medicine, 1969. 280(7): p. 337-345. 
300. Basso, M., et al., Proteome analysis of human substantia nigra in Parkinson's disease. 

Proteomics, 2004. 4(12): p. 3943-3952. 
301. Werner, C.J., et al., Proteome analysis of human substantia nigra in Parkinson’s disease. 

Proteome Sci, 2008. 6(8): p. 10.1186. 
302. Kitsou, E., et al., Identification of proteins in human substantia nigra. Proteomics-Clinical 

Applications, 2008. 2(5): p. 776-782. 
303. Pan, S., et al., Proteomics identification of proteins in human cortex using multidimensional 

separations and MALDI tandem mass spectrometer. Molecular & Cellular Proteomics, 2007. 
6(10): p. 1818-1823. 

304. Shi, M., et al., Mortalin: a protein associated with progression of Parkinson disease? Journal of 
Neuropathology & Experimental Neurology, 2008. 67(2): p. 117-124. 

305. Leverenz, J.B., et al., Proteomic identification of novel proteins in cortical lewy bodies. Brain 
pathology, 2007. 17(2): p. 139-145. 

306. Xia, Q., et al., Proteomic identification of novel proteins associated with Lewy bodies. Frontiers in 
bioscience: a journal and virtual library, 2008. 13: p. 3850. 

307. Steele, J.C., J. Richardson, and J. Olszewski, Progressive supranuclear palsy: A heterogeneous 
degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and 
pseudobulbar palsy, nuchal dystonia and dementia. Archives of Neurology, 1964. 10(4): p. 333-
359. 

308. Dickson, D.W., et al., Neuropathology of variants of progressive supranuclear palsy. Current 
opinion in neurology, 2010. 23(4): p. 394-400. 

309. Hauw, J.-J., et al., Constant neurofibrillary changes in the neocortex in progressive supranuclear 
palsy. Basic differences with Alzheimer's disease and aging. Neuroscience letters, 1990. 119(2): 
p. 182-186. 

310. Constantinescu, R., et al., Proteomic profiling of cerebrospinal fluid in parkinsonian disorders. 
Parkinsonism & related disorders, 2010. 16(8): p. 545-549. 

311. Ebrahim, A., et al., A proteomic study identifies different levels of light chain ferritin in 
corticobasal degeneration and progressive supranuclear palsy. Acta neuropathologica, 2011. 
122(6): p. 727-736. 



131 

312. Bondarenko, P.V., D. Chelius, and T.A. Shaler, Identification and relative quantitation of protein 
mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-
tandem mass spectrometry. Analytical chemistry, 2002. 74(18): p. 4741-4749. 

313. Wang, W., et al., Quantification of proteins and metabolites by mass spectrometry without 
isotopic labeling or spiked standards. Analytical chemistry, 2003. 75(18): p. 4818-4826. 

314. Wiener, M.C., et al., Differential mass spectrometry: a label-free LC-MS method for finding 
significant differences in complex peptide and protein mixtures. Analytical chemistry, 2004. 
76(20): p. 6085-6096. 

315. Liu, H., R.G. Sadygov, and J.R. Yates, A model for random sampling and estimation of relative 
protein abundance in shotgun proteomics. Analytical chemistry, 2004. 76(14): p. 4193-4201. 

316. Cox, J., et al., Accurate Proteome-wide Label-free Quantification by Delayed Normalization and 
Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics, 2014. 
13(9): p. 2513-2526. 

317. Ho, T., et al., A subpopulation of mesencephalic dopamine neurons projecting to limbic areas 
contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with 
retrograde tracing. Neuroscience, 1980. 5(12): p. 2093-2124. 

318. Hommer, D., et al., Cholecystokinin-dopamine coexistence: electrophysiological actions 
corresponding to cholecystokinin receptor subtype. The Journal of neuroscience, 1986. 6(10): p. 
3039-3043. 

319. Marshall, F.H., et al., Cholecystokinin Modulates the Release of Dopamine from the Anterior and 
Posterior Nucleus Accumbens by Two Different Mechanisms. Journal of neurochemistry, 1991. 
56(3): p. 917-922. 

320. Studler, J., et al., CCK-8-immunoreactivity distribution in human brain: selective decrease in the 
substantia nigra from parkinsonian patients. Brain research, 1982. 243(1): p. 176-179. 

321. Fujii, C., et al., Association between polymorphism of the cholecystokinin gene and idiopathic 
Parkinson's disease. Clinical Genetics, 1999. 56(5): p. 395-400. 

322. Wang, J., et al., Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene 
polymorphisms in Parkinson's disease. Pharmacogenetics and Genomics, 2003. 13(6): p. 365-
369. 

323. Mattay, V.S., et al., Dopaminergic modulation of cortical function in patients with Parkinson's 
disease. Annals of neurology, 2002. 51(2): p. 156-64. 

324. Frye, R.A., Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like 
proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. 
Biochemical and biophysical research communications, 1999. 260(1): p. 273-279. 

325. Michishita, E., et al., Evolutionarily conserved and nonconserved cellular localizations and 
functions of human SIRT proteins. Molecular biology of the cell, 2005. 16(10): p. 4623-4635. 

326. Ciccone, S., et al., Parkinson's disease: a complex interplay of mitochondrial DNA alterations and 
oxidative stress. International journal of molecular sciences, 2013. 14(2): p. 2388-409. 

327. Yan, M.H., X. Wang, and X. Zhu, Mitochondrial defects and oxidative stress in Alzheimer disease 
and Parkinson disease. Free Radical Biology and Medicine, 2013. 62: p. 90-101. 

328. Heeman, B., et al., Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis 
and energy maintenance. Journal of cell science, 2011. 124(7): p. 1115-1125. 

329. Pridgeon, J.W., et al., PINK1 protects against oxidative stress by phosphorylating mitochondrial 
chaperone TRAP1. PLoS Biol, 2007. 5(7): p. e172. 

330. Du, J., et al., Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 
2011. 334(6057): p. 806-809. 

331. Rardin, M.J., et al., SIRT5 regulates the mitochondrial lysine succinylome and metabolic 
networks. Cell metabolism, 2013. 18(6): p. 920-933. 



132 

332. Bossers, K., et al., Analysis of Gene Expression in Parkinson's Disease: Possible Involvement of 
Neurotrophic Support and Axon Guidance in Dopaminergic Cell Death. Brain pathology, 2009. 
19(1): p. 91-107. 

333. Luchetti, S., et al., Neurosteroid Biosynthetic Pathway Changes in Substantia Nigra and Caudate 
Nucleus in Parkinson's Disease. Brain pathology, 2010. 20(5): p. 945-951. 

334. Brickley, S.G. and I. Mody, Extrasynaptic GABA A receptors: their function in the CNS and 
implications for disease. Neuron, 2012. 73(1): p. 23-34. 

335. Madsen, K.K., H.S. White, and A. Schousboe, Neuronal and non-neuronal GABA transporters as 
targets for antiepileptic drugs. Pharmacology & therapeutics, 2010. 125(3): p. 394-401. 

336. Engqvist-Goldstein, Å.E., et al., An actin-binding protein of the Sla2/Huntingtin interacting 
protein 1 family is a novel component of clathrin-coated pits and vesicles. The Journal of cell 
biology, 1999. 147(7): p. 1503-1518. 

337. Legendre-Guillemin, V., et al., Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly 
through direct binding to the regulatory region of the clathrin light chain. Journal of Biological 
Chemistry, 2005. 280(7): p. 6101-6108. 

338. Kalchman, M.A., et al., HIP1, a human homologue of S. cerevisiae Sla2p, interacts with 
membrane-associated huntingtin in the brain. Nature genetics, 1997. 16(1): p. 44-53. 

339. Hackam, A.S., et al., Huntingtin interacting protein 1 induces apoptosis via a novel caspase-
dependent death effector domain. Journal of Biological Chemistry, 2000. 275(52): p. 41299-
41308. 

340. Chow, N., et al., Serum response factor and myocardin mediate arterial hypercontractility and 
cerebral blood flow dysregulation in Alzheimer's phenotype. Proceedings of the National 
Academy of Sciences of the United States of America, 2007. 104(3): p. 823-8. 

341. Street, J.S., et al., Olanzapine treatment of psychotic and behavioral symptoms in patients with 
alzheimer disease in nursing care facilities: A double-blind, randomized, placebo-controlled trial. 
Archives of General Psychiatry, 2000. 57(10): p. 968-976. 

342. Bensimon, G., et al., Riluzole treatment, survival and diagnostic criteria in Parkinson plus 
disorders: the NNIPPS study. Brain : a journal of neurology, 2009. 132(Pt 1): p. 156-71. 

343. Group II, R.S., et al., Dose-ranging study of riluzole in amyotrophic lateral sclerosis. The Lancet, 
1996. 347(9013): p. 1425-1431. 

344. Pabarcus, M.K., et al., CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor 
receptor, AMFR) and CHIP E3 ligases. Archives of biochemistry and biophysics, 2009. 483(1): p. 
66-74. 

345. Shults, C.W., Lewy bodies. Proceedings of the National Academy of Sciences of the United States 
of America, 2006. 103(6): p. 1661-1668. 

346. Wakabayashi, K., et al., The Lewy body in Parkinson's disease: Molecules implicated in the 
formation and degradation of α‐synuclein aggregates. Neuropathology, 2007. 27(5): p. 494-506. 

347. Masliah, E., et al., β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in 
a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proceedings of 
the National Academy of Sciences, 2001. 98(21): p. 12245-12250. 

348. Siderowf, A., et al., CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease. 
Neurology, 2010. 75(12): p. 1055-61. 

349. Andersson, M., et al., The cognitive profile and CSF biomarkers in dementia with Lewy bodies 
and Parkinson's disease dementia. International journal of geriatric psychiatry, 2011. 26(1): p. 
100-5. 

350. Alves, G., et al., CSF amyloid-beta and tau proteins, and cognitive performance, in early and 
untreated Parkinson's disease: the Norwegian ParkWest study. Journal of neurology, 
neurosurgery, and psychiatry, 2010. 81(10): p. 1080-6. 



133 

351. Worby, C.A. and J.E. Dixon, Sorting out the cellular functions of sorting nexins. Nature reviews 
Molecular cell biology, 2002. 3(12): p. 919-931. 

352. Lee, J., et al., Adaptor Protein Sorting Nexin 17 Regulates Amyloid Precursor Protein Trafficking 
and Processing in the Early Endosomes. Journal of Biological Chemistry, 2008. 283(17): p. 11501-
11508. 

353. Caldenhoven, E., et al., Stimulation of the human intercellular adhesion molecule-1 promoter by 
interleukin-6 and interferon-gamma involves binding of distinct factors to a palindromic 
response element. Journal of Biological Chemistry, 1994. 269(33): p. 21146-21154. 

354. Gade, P., et al., Critical Role for Transcription Factor C/EBP-β in Regulating the Expression of 
Death-Associated Protein Kinase 1. Molecular and cellular biology, 2008. 28(8): p. 2528-2548. 

355. Nyman, T.A., et al., Proteome analysis reveals ubiquitin-conjugating enzymes to be a new family 
of interferon-α-regulated genes. European Journal of Biochemistry, 2000. 267(13): p. 4011-4019. 

356. Giuffrida, A., M. Beltramo, and D. Piomelli, Mechanisms of Endocannabinoid Inactivation: 
Biochemistry and Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2001. 
298(1): p. 7-14. 

357. Benito, C., et al., Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively 
overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. The Journal of 
neuroscience, 2003. 23(35): p. 11136-11141. 

358. D’Addario, C., et al., Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. 
PloS one, 2012. 7(6): p. e39186. 

359. Mazzola, C., et al., Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition 
through activation of PPAR-α nuclear receptors. Learning & Memory, 2009. 16(5): p. 332-337. 

360. Marsicano, G., et al., CB1 Cannabinoid Receptors and On-Demand Defense Against Excitotoxicity. 
Science, 2003. 302(5642): p. 84-88. 

361. Iuvone, T., et al., Neuroprotective effect of cannabidiol, a non-psychoactive component from 
Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells. Journal of neurochemistry, 2004. 
89(1): p. 134-141. 

362. Sarbassov, D.D., et al., Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive 
and raptor-independent pathway that regulates the cytoskeleton. Current biology, 2004. 14(14): 
p. 1296-1302. 

363. Sarbassov, D.D., et al., Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. 
Science, 2005. 307(5712): p. 1098-1101. 

364. Bhaskar, K., et al., The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell 
cycle events. Molecular neurodegeneration, 2009. 4: p. 14. 

365. Lafay-Chebassier, C., et al., mTOR/p70S6k signalling alteration by Aβ exposure as well as in APP-
PS1 transgenic models and in patients with Alzheimer's disease. Journal of neurochemistry, 
2005. 94(1): p. 215-225. 

366. North, B.J. and E. Verdin, Mitotic Regulation of SIRT2 by Cyclin-dependent Kinase 1-dependent 
Phosphorylation. Journal of Biological Chemistry, 2007. 282(27): p. 19546-19555. 

367. Zhu, X., et al., Neuronal binucleation in Alzheimer disease hippocampus. Neuropathology and 
Applied Neurobiology, 2008. 34(4): p. 457-465. 

368. Vincze, O., et al., Tubulin polymerization promoting proteins (TPPPs): members of a new family 
with distinct structures and functions. Biochemistry, 2006. 45(46): p. 13818-26. 

369. Kong, W., et al., Independent component analysis of Alzheimer's DNA microarray gene 
expression data. Molecular neurodegeneration, 2009. 4(1): p. 1-14. 

370. Zhou, W., et al., Depletion of tubulin polymerization promoting protein family member 3 
suppresses HeLa cell proliferation. Molecular and cellular biochemistry, 2010. 333(1-2): p. 91-98. 



134 

371. Gray, P.W., et al., Cloning and expression of cDNA for human diazepam binding inhibitor, a 
natural ligand of an allosteric regulatory site of the gamma-aminobutyric acid type A receptor. 
Proceedings of the National Academy of Sciences, 1986. 83(19): p. 7547-7551. 

372. Edgar, P., et al., A comparative proteome analysis of hippocampal tissue from schizophrenic and 
Alzheimer’s disease individuals. Molecular psychiatry, 1999. 4(2): p. 173-178. 

373. Ferrarese, C., et al., Cerebrospinal fluid levels of diazepam‐binding inhibitor in neurodegenerative 
disorders with dementia. Neurology, 1990. 40(4): p. 632-632. 

374. Paradisi, A. and S. Oddi, The endocannabinoid system in ageing: a new target for drug 
development. Current drug targets, 2006. 7(11): p. 1539-1552. 

375. Jenner, P. and C.W. Olanow, Oxidative stress and the pathogenesis of Parkinson's disease. 
Neurology, 1996. 47(6 Suppl 3): p. 161S-170S. 

376. McGeer, P., et al., Reactive microglia are positive for HLA‐DR in the substantia nigra of 
Parkinson's and Alzheimer's disease brains. Neurology, 1988. 38(8): p. 1285-1285. 

377. Zhang, W., et al., Aggregated α-synuclein activates microglia: a process leading to disease 
progression in Parkinson’s disease. The FASEB Journal, 2005. 19(6): p. 533-542. 

378. Ciechanover, A. and P. Brundin, The ubiquitin proteasome system in neurodegenerative diseases: 
sometimes the chicken, sometimes the egg. Neuron, 2003. 40(2): p. 427-446. 

379. Lam, Y.A., et al., Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. 
Proceedings of the National Academy of Sciences, 2000. 97(18): p. 9902-9906. 

380. Shimura, H., et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. 
Nature genetics, 2000. 25(3): p. 302-305. 

381. Marfella, R., et al., The Ubiquitin-Proteasome System and Inflammatory Activity in Diabetic 
Atherosclerotic Plaques: Effects of Rosiglitazone Treatment. Diabetes, 2006. 55(3): p. 622-632. 

382. Wang, J. and M.A. Maldonado, The ubiquitin-proteasome system and its role in inflammatory 
and autoimmune diseases. Cell Mol Immunol, 2006. 3(4): p. 255-261. 

383. Link, A.J., et al., Direct analysis of protein complexes using mass spectrometry. Nature 
biotechnology, 1999. 17(7): p. 676-682. 

384. le Maire, M., P. Champeil, and J.V. Moller, Interaction of membrane proteins and lipids with 
solubilizing detergents. Biochimica et biophysica acta, 2000. 1508(1-2): p. 86-111. 

385. Ogorzalek Loo, R., N. Dales, and P. Andrews, The Effect of Detergents on Proteins Analyzed by 
Electrospray Ionization, in Protein and Peptide Analysis by Mass Spectrometry, J. Chapman, 
Editor 1996, Humana Press. p. 141-160. 

386. Barnidge, D.R., et al., Extraction method for analysis of detergent-solubilized bacteriorhodopsin 
and hydrophobic peptides by electrospray ionization mass spectrometry. Analytical biochemistry, 
1999. 269(1): p. 1-9. 

387. Fischer, R. and B.M. Kessler, Gel-aided sample preparation (GASP)--a simplified method for gel-
assisted proteomic sample generation from protein extracts and intact cells. Proteomics, 2015. 
15(7): p. 1224-9. 

  



135 

 

 

Appendix A - Electrophoresis: Neuroproteomics Special Issue 
  



136 

 



137 

 



138 

 



139 

 



140 

 



141 

 



142 

 



143 

 



144 

 



145 

 



146 

 

 

Appendix B – Electrophoresis: Neuroproteomics Special Issue, Supporting Information 

  



147 

Supplementary Table 2.  Significant hits identified using Perseus.  Fold change for expression ratios < 1 were 
reported as the negative reciprocal of the expression ratio. 

Majority Protein Name 
Majority Protein 

ID 
Gene 

Fold 
Change 

Synuclein, gamma, isoform CRA D4ACB0 Sncg 59.6 

Sodium channel F1LQQ7 Scn7a 32.2 

Taste receptor type 2 member 135 F1LS99 Tas2r135 29.3 

Myosin-10 F1LQ02 Myh10 19.7 

Uncharacterized protein (Fragment) F1M6H4 
 

13.2 

RCG25923, isoform CRA D3ZQR7 Plod2 11.4 

Hypoxanthine-guanine phosphoribosyltransferase F1LNY0 Hprt1 10.2 

Renin receptor Q6AXS4 Atp6ap2 8.8 

Microtubule-associated protein 1A D4ACP6 Map1a 8.6 

Echinoderm microtubule-associated protein-like 1 Q4V8C3 Eml1 8.5 

Inositol 1,4,5-trisphosphate receptor type 3 C7E1V1 Itpr3 8.4 

Ephrin receptor F1MAJ0 Ephb2 8.0 

Armc6 protein B2RYL4 Armc6 7.6 

Uncharacterized protein F1MAA7 Lamc1 7.3 

Astrocytic phosphoprotein PEA-15 Q5U318 Pea15 6.4 

Prefoldin subunit 2 B0BN18 Pfdn2 5.5 

Ras-related protein R-Ras D3Z8L7 Rras 5.1 

Cell adhesion molecule 4 Q1WIM1 Cadm4 5.0 

B-cell receptor-associated protein 29 Q5XIU4 Bcap29 4.4 

Transcriptional activator protein Pur-alpha (Fragments) F1LPS8 Pura 4.3 

PHD and RING finger domain-containing protein 1 Q63625 Phrf1 4.3 

Prefoldin 5 (Predicted), isoform CRA B5DFN4 Pfdn5 4.3 

Uncharacterized protein D3ZHA0 Flnc 4.3 

Uncharacterized protein (Fragment) F1LUD3 Ahnak2 4.2 

Uncharacterized protein D4A6U8 Tia1 4.1 

Uncharacterized protein (Fragment) F1M692 
 

4.1 

Fructose-bisphosphate aldolase C P09117 Aldoc 4.1 

Uncharacterized protein D4A5F0 Fam114a1 3.9 

RCG38845, isoform CRA F1LZC5 Ndufa13 3.8 

Neural cell adhesion molecule 1 F1LUV9 Ncam1 3.8 

CD97 molecule E9PT32 Cd97 3.8 

Glycine amidinotransferase, mitochondrial P50442 Gatm 3.8 

N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 O08557 Ddah1 3.6 

Apolipoprotein D P23593 Apod 3.6 

Protein phosphatase 1 regulatory subunit 7 Q5HZV9 Ppp1r7 3.5 

Tumor necrosis factor receptor superfamily member 16 P07174 Ngfr 3.5 

Calcium-regulated heat stable protein 1 Q9WU49 Carhsp1 3.3 

Sterol O-acyltransferase 1 O70536 Soat1 3.3 

Uncharacterized protein (Fragment) F1M903 Arhgap23 3.2 

DnaJ (Hsp40) homolog, subfamily B, member 4 Q5XIP0 Dnajb4 3.2 

Transglutaminase 2, C polypeptide Q6P6R6 Tgm2 3.2 

Erythrocyte protein band 4.1-like 3, isoform CRA Q9JMB3 Epb4.1l3 3.1 

3-hydroxyisobutyrate dehydrogenase, mitochondrial P29266 Hibadh 3.1 

ERO1-like protein alpha D3ZNL3 Ero1l 3.0 

Phosphatidylinositide phosphatase SAC1 F1LYT0 Sacm1l 3.0 

Laminin chain (Fragment) F1MAN8 Lama5 3.0 

N(G),N(G)-dimethylarginine dimethylaminohydrolase 2 Q6MG60 Ddah2 2.9 

Sperm antigen with calponin homology and coiled-coil domains 1 D3ZSR4 Cytsb 2.8 

2-hydroxyacyl-CoA lyase 1 Q8CHM7 Hacl1 2.8 
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Msh2 protein B1WBQ7 Msh2 2.8 

Uncharacterized protein (Fragment) F1M5W8 Afap1l2 2.8 

Protein S100-A4 P05942 S100a4 2.8 

Uncharacterized protein D3ZC00 
 

2.8 

Tax1-binding protein 1 homolog F1LS64 Tax1bp1 2.7 

Fatty acid desaturase 2 Q9Z122 Fads2 2.7 

Fragile X mental retardation protein 1 homolog E9PSS4 
 

2.7 

Uncharacterized protein D4A389 
 

2.6 

Uncharacterized protein (Fragment) F1M2X2 
 

2.6 

Uncharacterized protein (Fragment) F1LYK7 Cfl2 2.6 

RCG46052 D3ZKH6 Rabgap1l 2.5 

Hydroxysteroid dehydrogenase-like protein 2 Q4V8F9 Hsdl2 2.4 

Probable saccharopine dehydrogenase Q6AY30 Sccpdh 2.3 

Uncharacterized protein (Fragment) F1M8Y4 Depdc6 2.3 

STIP1 homology and U-Box containing protein 1, isoform CRA D4A4T0 Stub1 2.3 

L-lactate dehydrogenase B5DEN4 Ldha 2.3 

Coronin-1A Q91ZN1 Coro1a 2.3 

Acyl-CoA-binding protein P11030 Dbi 2.3 

Uncharacterized protein D3ZFJ2 
 

2.3 

Ac2-125 Q7TPK0 Fdps 2.3 

Brain-specific alpha actinin 1 isoform Q6T487 Actn1 2.2 

Large neutral amino acids transporter small subunit 1 Q63016 Slc7a5 2.2 

Growth arrest-specific protein 7 O55148 Gas7 2.2 

Enoyl-CoA delta isomerase 1, mitochondrial P23965 Eci1 2.2 

Uncharacterized protein D4ACC2 LOC100361376 2.2 

Similar to protein 4.1G (Predicted), isoform CRA D3ZSM1 Epb4.1l2 2.2 

Uncharacterized protein E9PTD6 Samd9l 2.2 

H/ACA ribonucleoprotein complex subunit 4 P40615 Dkc1 2.1 

Guanidinoacetate N-methyltransferase D4ADW8 Gamt 2.1 

Protein disulfide-isomerase A6 Q63081 Pdia6 2.1 

RGD1308350 protein (Fragment) Q5I0K2 RGD1308350 2.0 

Uncharacterized protein D3ZZ09 Vgll3 2.0 

RCG25591, isoform CRA B2RYD7 RGD1311563 1.9 

2,3-cyclic-nucleotide 3-phosphodiesterase P13233 Cnp 1.9 

Calmodulin D4ADE9 Calm1 1.9 

14-3-3 protein theta P68255 Ywhaq 1.9 

Glucose-6-phosphate isomerase Q6P6V0 Gpi 1.9 

Phosphoglycerate kinase 1 P16617 Pgk1 1.8 

Nestin P21263 Nes 1.8 

Tubulin polymerization-promoting protein family member 3 Q5PPN5 Tppp3 1.8 

Psmg4 protein B2RZB8 Psmg4 1.8 

Creatine kinase B-type P07335 Ckb 1.7 

Peroxiredoxin-6 O35244 Prdx6 1.7 

Mannose-P-dolichol utilization defect 1 D3Z865 Mpdu1 1.7 

Uncharacterized protein D3ZVA5 Fbll1 1.3 

Membrane-associated DHHC13 zinc finger protein E9PU37 Zdhhc13 1.2 

Heterogeneous nuclear ribonucleoprotein A3 Q6URK4 Hnrnpa3 -2.0 

Filamin, beta (Predicted) D3ZD13 Flnb -2.1 

Heat shock protein 105 kDa Q66HA8 Hsph1 -2.3 

Reticulon-4 F1LQN3 Rtn4 -2.9 

Heterogeneous nuclear ribonucleoprotein Q D3ZME6 Syncrip -3.0 

PDZ and LIM domain protein 1 P52944 Pdlim1 -3.6 

Eukaryotic initiation factor 4A-II Q5RKI1 Eif4a2 -8.0 
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Summary 

 One challenge associated with mass spectrometry-based proteomics is the preparation of 

samples from small amounts of starting material.  Studies using primary cell cultures isolated from 

various tissues often provided limited numbers of cells (eg. microglia).  Additionally, accessibility to 

human tissue and the quantity of tissue that can be obtained is also often limited.  To date, a number or 

proteomic sample processing methods have been used, some of which show variable results when 

working with small amounts of protein.  We have successfully implemented a gel-aided sample 

processing (GASP) method for proteomic analysis of cell lysates and human brain tissue samples with as 

low as 1µg of protein.  Based on proteome coverage obtained using high-resolution mass spectrometry, 

GASP is a reliable and reproducible method for processing samples with limited amounts of protein. 

 

Key Words 

Proteomics, gel-aided sample processing, GASP, protein 
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1. Introduction 

 A number of sample preparation strategies have been developed for various proteomics 

applications.  In-solution digests are useful when the sample buffer is compatible with digestion and 

downstream analytical detection, primarily relying on urea for sample lysis and protein solubilization.  

Additionally, SDS-PAGE and 2-dimensional electrophoresis (2-DE) are commonly used for protein 

separation/fractionation followed by in-gel digest of proteins [128, 129, 383].  While these techniques 

are commonly used, lysis buffer compatibility is usually limited to mild reagents when mass 

spectrometry is the downstream characterization technique.  Another point to consider is that 

solubilization of membrane proteins and other hydrophobic proteins often requires harsher lysis buffers 

that include detergents, such as sodium dodecyl sulfate (SDS), which increase protein solubilization, and 

therefore increase proteome coverage [384].  While detergents increase protein solubilization, they are 

typically incompatible with mass spectrometry as they can suppress analyte ion formation and reduce 

chromatography performance and, therefore, detergent removal improves protein identification [385, 

386].  The Mann lab developed the filter-aided sample preparation (FASP) method for removing ionic 

detergents, which uses a filter for buffer exchange followed by protein digestion [217].  While FASP is a 

commonly used and efficient method for proteomic sample processing using SDS, it also has its 

limitations; for example, it relies on filters that are known to absorb proteins, especially hydrophobic 

proteins, and these filters occasionally fail to retain protein.  These issues can be particularly 

problematic when working with limited amounts of protein as the majority of it may be retained by the 

filter or lost entirely. 

 Recently, a gel-aided sample preparation (GASP) approach was described [387] that 

demonstrated effective and reproducible protein recovery when working with very small amounts of 

protein.  During GASP, protein samples are combined with acrylamide to generate a solidified piece of 

gel matrix that encapsulates the protein lysate.  The gel is minced to increase buffer access, while 
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proteins are retained in the gel.  After washing the gel pieces, proteins are digested overnight as in a 

typical in-gel digestion, and peptides can be subsequently extracted.  To determine the effectiveness of 

GASP in the analysis of brain-derived cell and tissue lysate, we report the application of the GASP 

method for proteomic analysis of limited amounts of protein extracted from human brain tissue. 

2. Materials 

Solutions should be prepared using HPLC-grade water, or at minimum nanopure water, and 

analytical grade reagents. 

2.1  Lysis buffer composition 

1. Lysis buffer composition: 4% SDS, 100mM dithiothreitol (DTT), 100mM Tris pH 7.4, 

protease and phosphatase inhibitors (optional).  A stock of 100mM Tris pH 7.4 can be 

prepared in advance and stored at room temperature.  We prepare 100mM Tris pH 7.4 

by solubilizing Tris-base in water and adjusting the pH with HCl.  4% SDS (w/v) and 

100mM DTT should be prepared fresh before each use in 100mM Trish pH 7.4. 

2. Pierce 660 assay reagent and ionic detergent compatibility reagent (IDCR) (Pierce). 

2.2 Acrylamide and polymerization reagents 

1. Protogel (40% w/v, 37.5:1, acrylamide/bisacrylamide solution, National Diagnostics). 

2. 10% ammonium persulfate (APS) (w/v) should be made fresh before each use.  To make 

10% APS, add 100mg APS to 850μl water, for a final volume of 1ml.  Amounts can be 

scaled depending on the requirements for the experiment. 

3. Tetramethylethylenediamine (TEMED). 

4. Spin-X filter inserts (Costar, Corning) are used to mince gel pieces and should be placed 

in 2ml centrifuge tubes. 

2.3 GASP buffers 

1. Fixing solution: 50% methanol, 40% acetic acid, 10% water (v/v/v). 
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2. Wash solution: 6M urea in 100mM Tris pH 8.5.  A stock of 100mM Tris pH 8.5 can be 

prepared in advance and stored at room temperate.  6M urea should be prepared fresh 

for each experiment. 

3. Dehydrating solution: acetonitrile. 

4. Rehydrating solution: 50mM ammonium bicarbonate (ABC) in water. 

5. Peptide extraction solution: 5% formic acid (v/v) in water. 

2.4 Digest solution resuspension and composition. 

1. Resuspend 200μg lyophilized Trypsin/Lys-C (Promega) in 20μl resuspension buffer 

(50mM acetic acid). Dilute to 0.1μg/μl using 25mM ammonium bicarbonate (ABC).  

Depending on the amount of trypsin required, Trypsin/Lys-C can be further diluted using 

25mM ABC. 

2.5 LC-MS/MS Peptide Resuspension Buffer 

1. 1% acetonitrile, 0.1% formic acid, water. 

3. Methods 

3.1. Sample Lysis 

1. Weight brain tissue samples and calculate required lysis buffer volume based on the 

addition of 5μl lysis buffer/1mg tissue weight. 

2. Add lysis buffer to cell pellet or tissue.  Incubate at 95ᵒC for 5 minutes.  Centrifuge at 

16,000xg for 10 minutes to pellet any remaining insoluble material.  When working with 

small cell pellets or pieces of tissue, there should only be a minimal pellet, if any can be seen 

at all.  After the addition of 4% SDS lysis buffer, boiling, and sonication, protein samples 

should be kept at room temperature when in use to avoid SDS precipitation. 

3. Determine protein concentration using the Pierce 660 assay supplemented with ionic 

detergent compatibility reagent (IDCR) (see Note 1). 
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3.2. Gel-Aided Sample Processing (GASP) 

All procedures carried out at room temperature unless otherwise specified. 

1. Bring desired amount of protein to 50-100μl in 100mM Tris pH 7.4.  Add an equal volume of 

Protogel (40%) to achieve a 20% acryalmide solution (see Note 2).  Gently mix until 

homogenous and incubate at room temperature for 20 minutes. 

2. Add 5μl 10% APS and 5μl TEMED to lysate/acrylamide.  Let gel polymerize for 15 minutes, or 

until solid (see Note 3). 

3. Transfer gel piece to a Spin-X filter insert placed in a 2ml centrifuge tube (see Note 4).  

Centrifuge at 16,000xg for 5 minutes.  If a significant amount of gel has not passed through 

filter, re-position the gel in the filter and re-centrifuge (see Note 5). 

4. Add 1ml fixing solution to the minced gel pieces.  Incubate while vortexing for 10 minutes 

(see Note 6).  Briefly centrifuge the samples and discard the supernatant (see Note 7). 

5. Wash 1: Add 500μl of 6M urea to gel pieces.  Incubate while vortexing for 10 minutes. 

6. Dehydrate gel pieces with 1ml of acetonitrile and incubate while vortexing for 10 minutes. 

The gel pieces will turn white.  Briefly centrifuge and discard supernatant.  

7. Wash 2: Add 500μl of 50mM ABC to gel pieces.  Incubate while vortexing for 10 minutes. 

8. Dehydrate gel pieces with 1ml of acetonitrile.  Incubate while vortexing, until gel pieces turn 

white.  Briefly centrifuge and discard supernatant. 

9. Repeat dehydration with 500μl acetonitrile for 10 minutes while vortexing. 

10. Add Trypsin/Lys-C solution to the dry gel pieces (1:50, w/w, enzyme:substrate).  Bring the 

volume of the Trypsin/Lys-C solution to twice the volume of the original gel piece using 

25mM ABC (see Note 8).  Incubate at 37ᵒC overnight (~16 hrs). 
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3.3. Peptide Extraction 

1. Add 1 volume (equal to the volume of the overnight digest solution) of acetonitrile (see 

Note 9).  Incubate while vortexing for 10 minutes. 

2. The supernatant contains desired peptides.  Briefly centrifuge and transfer the supernatant 

to a fresh, labelled 1.5ml centrifuge tube. 

3. Rehydrate gel pieces with 1 volume of 5% formic acid in water.  Incubate while vortexing for 

10 minutes. 

4. Dehydrate gel pieces with 1 volume of acetonitrile.  Incubate while vortexing for 10 minutes. 

5. Briefly centrifuge and pool supernatant with previously collected supernatant. 

6. Further dehydrate gel pieces with 1 volume of acetonitrile.  Incubate while vortexing for 10 

minutes. 

7. Briefly centrifuge and pool supernatant. 

8. Completely dry peptides in a vacuum concentrator (see Note 10).  Resuspend peptides in 

0.1% formic acid, 1% acetonitrile.  Vortex for 5 minutes.  Place in sonicator bath for 10 

minutes.  Centrifuge at 16,000xg for 10 minutes.  Transfer to autosampler vial (see Note 11). 

3.4. Database Searching 

1. GASP results in the addition of propionamide on N-termini of lysine, cysteine, and histidine 

residues.  Need to consider as variable modification in database searches (see Note 12). 

4. Notes 

1. While we use the Pierce 660 assay for determining protein concentration, other protein 

assays may be compatible with the lysis buffer as well.  The use of IDCR with the 660 assay 

when using the 4% SDS, 100mM DTT lysis buffer is critical in order to obtain fairly accurate 

measurements of total protein amounts (for downstream mass spectrometry-based 

quantitation). 
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2. If sample/lysate volume is 100μl, add 100μl of 40% acrylamide.  The desired concentration 

is 20% acrylamide. 

3. If the gel does not harden, more acrylamide and APS can be added. 

4. The gel piece should be oriented so that the widest part is against the filter (see Figure 1a).  

It is important to use 2ml centrifuge tubes as volumes of 1.5ml are used during some 

steps. 

5. Not all gel pieces will pass through the Spin-X filter.  Any gel pieces that do not pass 

through and remain in the filter should be added to the minced gel pieces in the centrifuge 

tube. 

6. All steps involving incubation while vortexing were performed using a Fisher Scientific 

vortex mixer at setting 1 (lowest setting, approximately 300rpm). 

7. All supernatant removal and discard steps should be performed using gel loading tips.  A 

gel loading tip can be attached to a 1ml pipette tip to more conveniently remove large 

supernatant volumes (see Figure 1b). 

8. If the total volume of the lysate and acrylamide was 100μl (ex. 50μl lysate and 50μl 

acrylamide), dilute Trypsin/Lys-C to 200μl for overnight incubation. 

9. A ‘volume’ should be equal to the volume used above (in Note 8).  For example, if 

Trypsin/Lys-C was diluted to a final volume of 200μl, a ‘volume’ is 200μl. 

10. Additional desalting steps are not necessary but could be incorporated into the protocol. 

11. Resuspend dried peptides in ~0.5-1μl more than intended to transfer to autosampler vial 

whenever possible.  Use a gel loading tip to transfer sample to the autosampler vial being 

careful to avoid any pelleted insoluble material or gel pieces. 

12. Monomeric acrylamide reacts with nucleophilic amino acids and can result in the addition 

of propionamide to the N-termini of cysteine, histidine, and lysine residues.  This needs to 
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be considered as a variable modification when searching raw data files.  In our experience, 

based on the total number of propionaminde modifications, lysine undergoes this 

modification the most, followed by histidine and then cysteine. 

Table 1.  Number of proteins identified from human tissue after GASP.  GASP was used to process 0.5µg, 5µg, 
10µg, 25µg, and 50μg of protein from 2 biological replicates (Rep 1 and Rep 2) of human brain tissue.  Peptides 
were separated on an EasyNano-LC with a 50cm C18 reverse-phase (RP)-UPLC column and analyzed on a Q-
Exactive Plus with a 1 hour gradient.  The number of proteins identified with a reported intensity value increases as 
the amount of protein increases.  Additionally, the number of proteins identified with a minimum of 2 peptides is 
reported. 

 
Number of Quantified Proteins 

Number of Proteins Identified with 
Minimum 2 peptides 

GASP Amount 
(μg) 

Rep 1 Rep 2 Rep 1 Rep 2 

0 1023 832 700 507 

5 1960 1882 1555 1447 

10 2076 2148 1642 1667 

25 2210 2012 1744 1589 

50 2163 2252 1683 986 

 
 
Table 2.  Protein quantitation accuracy following GASP of human tissue.  Generating a ratio of intensity values 
comparing 0.5µg and 5µg digests, we would expect a 25-fold increase in intensity from the 5µg digest.  The 
average median ratio of 5μg/0.5μg protein intensities was 28.51, slightly above the expected increase.  We 
speculate, based on the peptide digest amount resuspended and analysed by LC-MS/MS, that with the 50μg GASP 
we are surpassing the column loading capacity of the analytical column which is affecting protein quantitation . 

Ratio Median Ratio Avg. Median St. Dev. 

5/0.5 – 1 26.497 
28.51 2.85 

5/0.5 – 2 30.53 

10/5 - 1 2.168 
1.92 0.35 

10/5 - 2 1.677 

25/10 - 1 2.305 
2.29 0.02 

25/10 - 2 2.277 

50/25 - 1 1.377 
0.99 0.54 

50/25 - 2 0.618 



166 

 

Figure 1.  Orientation of gel in Spin-X filter insert and attachment of gel loading tip for GASP. (a)  Orientation of 
gel piece in Spin-X filter before centrifugation.  b)  Gel-loading pipet tip stacked on 1ml pipet tip. 
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