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Abstract 
 

Skeletal metastasis is a lethal component of many advanced cancers including 

prostate, the second most common cancer among men.  Patients whose prostate 

cancer is localized and detected early benefit from multiple treatment options ranging 

from active surveillance to radiation and surgery, resulting in a 5-year survival rate of 

nearly 100%.  Unfortunately, the prognosis and survival for patients with advanced 

metastatic disease is much worse due to the highly aggressive nature of the disease 

and a paucity of treatment options.  Understanding the mechanisms and interactions 

that occur between metastatic cancer cells and the bone will enable the future treatment 

landscape for bone metastatic prostate cancer to expand, thereby improving patient 

outcomes.  Our current knowledge of how metastatic prostate cancer cells interact with 

the bone is summarized in a model known as the “vicious cycle.”  Numerous 

fundamental vicious cycle factors have been identified, including parathyroid hormone-

related protein (PTHrP), while additional elements, such as matrix metalloproteinases 

(MMPs), are progressively being discovered and added to the model. 

PTHrP is a critical regulator of bone resorption and augments osteolysis in 

skeletal malignancies.  In Chapter 2, we report that the mature PTHrP1-36 hormone is 

processed by MMPs to yield a stable product, PTHrP1-17.  PTHrP1-17 retains the ability to 

signal through PTH1R to induce calcium flux and ERK phosphorylation but not cyclic 

AMP production or CREB phosphorylation.  Notably, PTHrP1-17 promotes osteoblast 

migration and mineralization in vitro, and systemic administration of PTHrP1-17 
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augments ectopic bone formation in vivo.  Further, in contrast to PTHrP1-36, PTHrP1-17 

does not affect osteoclast formation/function in vitro or in vivo. Finally, 

immunoprecipitation-mass spectrometry analyses using PTHrP1-17-specific antibodies 

establish that PTHrP1-17 is indeed generated by cancer cells.  Thus, MMP-directed 

processing of PTHrP disables the osteolytic functions of the mature hormone to 

promote osteogenesis, indicating important roles for this mechanism in bone remodeling 

in normal and disease contexts.  

MMPs have traditionally been associated with cancer progression based on their 

extracellular matrix degrading activities.  However, it has become evident that their 

regulation of non-extracellular matrix substrates can exert both contributive and 

protective effects during tumorigenesis.  Previous studies of matrix metalloproteinase-3 

(MMP-3) have demonstrated tissue dependent pro- and anti-tumorigenic effects, but 

despite elevated expression, its roles have not been explored in bone metastatic 

prostate cancer.  In Chapter 3, we show that tumor-derived MMP-3 contributes to 

prostate tumor growth in bone.  In vitro, we observe that silencing MMP-3 reduces 

prostate cancer cell proliferation.  Further, we found increased levels of IGFBP3, a 

known MMP-3 substrate, and decreased IGF-1R, ERK, and AKT phosphorylation in the 

MMP-3 silenced cells.   Notably, we also observe reduced tumor growth and 

proliferation in in vivo intratibial models when tumor-derived MMP-3 expression is 

silenced.  These data suggest that increased MMP-3 expression by prostate cancer 

cells contributes to their proliferation in bone by regulating the activity of the IGF/IGF-1R 

signaling axis.   



x 
 

Taken together, our studies indicate that MMPs possess important functional 

roles in bone metastatic prostate cancer.  We believe that elucidation of these 

mechanisms and their contributions to the vicious cycle of bone metastasis will offer 

novel opportunities to design effective therapeutic treatment options. 

 



___________________________ 
Portions of this chapter have been previously published (Frieling et al., Cancer Control, 2015 Jan; 22(1): 
109-20) and are utilized with permission of the publisher, CCJ (p 147).  
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Chapter 1. Clinical and Biological Understanding and Study of Bone 

Metastatic Prostate Cancers 
 

 

1.1 Prostate Cancer and Bone Metastasis 

Prostate cancer is the second most common cancer in American men with 

approximately 1 in 7 men being diagnosed during their lifetimes [1].  With an aging 

population, the incidence of prostate cancer is forecasted to continue rising.  The 

majority of prostate cancers are adenocarcinomas.  These cancers originate from the 

prostate epithelia-comprising basal cells or luminal cells.  In addition, some prostate 

cancers arise from the neuroendocrine cells of the prostate [2].  Though rare, 

neuroendocrine prostate cancers are more aggressive and challenging to treat than 

adenocarcinomas. It is also possible for one patient to have more than one type of 

prostate cancer [2].  Patients whose disease is detected at an early stage benefit from a 

range of treatment strategies including radiotherapy and prostatectomy, resulting in 5 

year survival rates near 100% [3, 4].  However, the clinical reality is that many men 

present with advanced stages of the disease where 5 year survival rates are only 28% 

[4].  Currently, the main treatment option for men with metastatic cancer is hormone 

therapy.  Historic contributions from Charles Huggins and Clarence Hodges in 1941 

revealed that prostate cancer progression could be inhibited by removal of androgens 

[5].  These early observations paved the way for the development of androgen 
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deprivation therapy, either surgically through castration or chemically through the use of 

androgen inhibitors, which has remained the standard treatment for men with advanced 

disease for the past 70 years.  Despite the remarkable initial response to androgen 

deprivation for men with advanced disease, it almost invariably progresses to a 

castration resistant state within 18-24 months [6].  

 Castration Resistant Prostate Cancer (CRPC) 1.1.1

Castration resistant prostate cancer (CRPC) is defined by disease progression 

that, despite androgen deprivation, is often indicated by rising levels of prostate specific 

antigen (PSA), an androgen receptor target [7].  The development of resistance to 

hormonal intervention and the causes of disease progression are not fully understood, 

though a number of mechanisms have been demonstrated, with the majority focusing 

on continued AR activity caused by AR variants. In addition, numerous mechanisms 

contributing to tumorigenesis including TMPRSS2/ERG fusion, PTEN mutation and 

loss, Nkx3.1 expression loss, and enhanced Egr1 activity have been described [8].   

 Metastatic Castration Resistant Prostate Cancer (mCRPC) 1.1.2

As the disease progresses, CRPC ultimately advances to metastatic castration 

resistant prostate cancer (mCRPC).  Prostate cancer preferentially metastasizes to 

bone [9].  As the disease transitions from castration sensitive to castration resistant, the 

incidence of bone metastases increases, with more than 90% of mCRPC patients 

developing bone lesions [10, 11].  Patients with mCRPC have a poor prognosis and a 

predicted survival of less than 2 years from the initial time of diagnosis.  Consequently, 

mCRPC is responsible for a significant portion of the 30,000 prostate cancer related 

deaths every year [1, 12].  Furthermore, symptomatic mCRPC patients are at a high risk 
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for skeletal related events (SRE) including spontaneous fracture, spinal cord 

compression, and hypercalcemia that are a source of significant pain and decreased 

quality of life [13].  Currently mCRPC is an incurable disease of major clinical 

significance. 

 

1.2 Organotropism and Outgrowth of Metastases in Bone  

 The Metastatic Cascade 1.2.1

Metastasis from the primary site to a secondary site is a multi-step process, with 

each step presenting a unique hurdle for the disseminated cells to overcome.  This 

series of events is termed the metastatic cascade [14].  Although it is technically an 

inefficient process with low probability of success, metastasis is a primary cause of 

cancer mortality. The process begins with tumor growth at the primary site.  As the 

primary tumor expands and becomes vascularized, tumor cells begin to locally invade 

by adopting a more mesenchymal phenotype and breaching the basement membrane 

into the stroma.  Following local invasion, tumor cells gain access to the vasculature 

and intravasate into the bloodstream or lymphatic system.  Although the bloodstream 

provides a route by which the disseminated cells can travel to secondary organs and 

tissues, shear forces and susceptibility to anoikis create a hostile environment for 

circulating tumor cells.  Tumor cells that survive in circulation will become lodged in 

capillaries, frequently in the lung, due to being significantly larger than erythrocytes and 

other blood cells (most cancer cells are >20 µm in diameter whereas the capillaries are 

3 µm to 8 µm in inner diameter).  Although it is poorly understood, some of these cells 

reach other organs such as the bone, with certain cancers metastasizing to secondary 
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sites more frequently than others [15].  To establish at the secondary site, the tumor 

cells must extravasate and form micrometastases.  Micrometastases can be widely 

distributed, and recent evidence suggests that they occur early in tumor progression but 

may remain clinically undetectable [16].  Colonization and outgrowth of clinically 

detectable macrometastases is considered the final step in the metastatic cascade 

(reviewed by [14]). 

 What is Bone? 1.2.2

 

Bone is comprised of osteoblast-derived type I collagen that is mineralized by 

deposition of hydroxyapatite, a combination of magnesium, calcium, and phosphate 

ions.  The resulting extracellular mineralized matrix is an extremely strong substance, 

with the collagen fibers imparting a degree of flexibility to avoid brittleness and fracture.    

Two major types of ossification (bone production) contribute to building the human 

skeleton.  Intramembranous ossification and bone development originates from fibrous 

membranes and is responsible for producing flat bones like the skull and clavicle 

whereas endochondral ossification originates from hyaline cartilage and generates long 

bones such as the femur and tibia [17]. There are also two primary types of bone tissue, 

both of which are incorporated during intramembranous and endochondral ossification. 

Cortical bone (sometimes called compact bone) is dense and primarily structural or 

mechanical in nature while trabecular bone (sometimes referred to as cancellous or 

spongy bone) is metabolically active and is located within the bone marrow 

compartment. 

The combination of 206 bones in our skeleton constitutes a framework for the 

other organs and tissues that make up the human body.  Bone plays an important role 
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in organ protection, provides for the attachment of ligaments and tendons to yield 

locomotion, and acts as a reservoir for most of the body’s calcium, magnesium, and 

phosphate.  The bone marrow is also the primary site for hematopoiesis. 

 Bone Stroma and Remodeling 1.2.3

 

Given the crucial functions that the skeleton provides, remodeling and 

homeostasis are critical.  Bone is continually remodeled at a rate of about ten percent 

per year [18]. Bone metabolism is part of routine skeleton maintenance, but the activity 

can also occur in response to a fracture or to meet the demands of mechanical loading 

and stimuli. Bone remodeling occurs in localized regions called basic multicellular units 

(BMU) [19].  Within the BMU exists a remarkable microcosm of specialized cells: 

osteoclasts, osteoblasts, and osteocytes.  These cells reside beneath a bone 

remodeling compartment (BRC) canopy and must collaborate with each other to 

preserve the tightly regulated balance of bone destruction and formation during bone 

metabolism.  If the balance is perturbed, the overall health of the skeleton is 

compromised and can result in diseases such as osteoporosis, Paget’s disease, or 

cancer associated bone destruction/formation observed in bone metastatic carcinomas 

like breast and prostate, respectively.  

Osteoclasts are the cells responsible for resorption of existing bone tissue.  

These cells form when three or more monocytic precursor cells fuse in response to 

macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear kappa 

B ligand (RANKL) cytokines secreted by neighboring osteoblasts [20].  Mature 

osteoclasts are defined as giant, multi-nucleated bone resorbing cells (approximately 

50-100 µM in diameter), and express high levels tartrate-resistant acid phosphatase 
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(TRAcP) [21].  Osteoclasts that are recruited to the bone surface polarize to form a 

ruffled border, which increases the cytoplasmic interface with the bone, and an F-actin 

rich sealing zone.  Within the sealing zone, an ATP dependent proton pump creates an 

acidic environment, and enzymes including MMPs and cathepsin K are secreted to 

facilitate localized degradation of the underlying bone matrix [21, 22].  The bi-products 

of degradation include cleaved collagen fragments along with latent growth factors 

released from the matrix.  The duration of the bone resorption phase is approximately 3 

weeks [23].  

Osteoblasts function to produce new bone matrix in the areas of previous 

resorption.  They are derived from mesenchymal stem cells and differentiate in 

response to bone morphogenetic proteins (BMPs), Wnt/β-catenin signaling cues, and 

parathyroid hormone-related protein (PTHrP) [24-26].  During bone resorption, 

osteoblasts are recruited to the BMU where they secrete type I collagen and other 

matrix proteins to form a non-mineralized layer of osteoid, the first step in synthesizing 

new bone.  As the layers of osteoid accumulate, increased expression of osteopontin is 

observed concomitantly with mineralization [25, 27].  Comprising about 90% of adult 

bone, type I collagen fibrils contribute to the strength and integrity of the bone.  

Complete mineralization occurs over a 3-4 month period [23].  Subsequent to bone 

formation, or apposition, some osteoblasts become bone lining cells, where they 

acquire a more flattened shape to permanently reside on the bone surface, mostly on 

trabeculae.  Bone lining cells possess important functions such as controlling calcium 

levels, generating signals to osteoclasts, and forming the BRC during remodeling 

processes [22, 28].  Other osteoblasts are retained within the bone matrix where they 
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terminally differentiate into mechanosensory osteocytes [22].  Osteocytes are 

multifunctional cells that constitute up to 95% of all bone cells.  Though isolated within 

the bone, osteocytes communicate efficiently with osteoblasts and osteoclasts via to a 

sophisticated network of canaliculi.  This network allows osteocytes to serve as 

sentinels of the bone, detecting fractures or changes in mechanical loading to regulate 

bone metabolism.  As the skeleton ages, there is an increase in osteocyte apoptosis, 

possibly induced by hypermineralization of the perilacunar matrix, leading fewer viable 

osteocytes.  This reduction in viable osteocytes is believed to contribute to age-related 

skeletal disorders such as osteoporosis [29].  

 Osteotropism 1.2.4

 

An unsolved question surrounding metastasis is why prostate cancer has such a 

predilection for the bone microenvironment. More than a century ago, Stephen Paget 

formulated the “seed and soil” hypothesis to address this question based on his studies 

of breast cancer patient case histories [30].  The hypothesis suggested that metastasis 

requires “fertile soil” for outgrowth and that metastasis is a challenging process that 

begins long before the “seed” meets the “soil.”  Paget’s hypothesis was challenged by 

James Ewing in the 1920s, proposing that metastasis was instead dependent on 

anatomy, vasculature, and lymphatics [31].  Metastasis by anatomy would become the 

accepted model until the 1970s when modern experiments rekindled interest in the 

“seed and soil” hypothesis, notably observations that circulating tumor cells reach the 

vasculature of all organs, but only certain organs are receptive for metastasis [14, 32].  

In reality, prostate to bone metastasis occurs by a blend of both hypotheses, 

metastasizing first to the pelvic lymph node and then to sites in the bone including iliac 
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crests, sacrum wings, L1-L5 vertebrae, T8-T12 vertebrae, ribs, manubrium, humeral 

heads, and femoral necks [33].  While 15-30% of prostate to bone metastases are due 

to cells traveling through the Batson’s plexus to the lumbar spine, it is clear that 

molecular factors such as chemokines and integrins underpin the propensity for 

prostate cancer cells to metastasize to the skeleton [13].   

 Osteomimicry 1.2.5

 

A recurring theme in bone metastasis is the hijacking of normal bone mechanisms 

by tumor cells.  The concept of “osteomimicry” is one where bone metastatic prostate 

cells acquire the ability to produce proteins that are normally restricted to bone cells, 

such as osteoblasts, in order to survive and proliferate in the otherwise restrictive bone 

microenvironment [34].  A number of genes normally expressed in bone have been 

detected in prostate cells including osteocalcin, osteopontin, bone sialoprotein, 

osteonectin, RANK, RANKL, and PTHrP [34-37].  Interestingly, the expression of these 

genes seems to be associated with the metastatic capacity of the cells.  Studies in both 

PC3 and LNCaP have shown that osteonectin expression is highest in more invasive 

and metastatic sublines including the LNCaP metastatic variant, C4-2B.  

Immunohistochemical analyses of patient-derived specimens support these findings, 

indicating that osteonectin protein levels were elevated in metastatic foci from bone 

compared to soft tissue prostate metastases including the bladder and liver [35].  In 

addition to changes in gene expression, prostate tumor cells may adopt biological 

activities specific to bone cells.  In vitro studies indicate that human C4-2B prostate 

tumor cells are capable of depositing hydroxyapatite and contributing to mineralization, 

a common feature of the sclerotic lesions observed in vivo [36]. 
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 Understanding the Tumor Microenvironment 1.2.6

 Pre-Metastatic Niche and Exosomes 1.2.6.1

Primary tumor derived factors have been implicated in the development of pre-

metastatic niches in distant organs [38].  Through a series of in vivo experiments, it was 

illustrated that conditioned media derived from highly metastatic cancer cell lines such 

as B-16 melanoma cell lines could stimulate the mobilization of bone marrow derived 

VEGFR-1+ VLA4+ Id3+ hematopoietic precursor cells (HPCs) from the bone marrow to 

developing pre-metastatic niche sites including lung, liver, spleen, kidney, and testis 

[38].  Recently, cancer derived exosomes have been implicated as the mechanism 

facilitating long distance tumor-stroma interactions and initiating the pre-metastatic 

niche [39].  Exosomes are a micro-vesicle measuring 30-100nm and known to carry a 

variety of cargo including functional proteins, mRNA, and miRNA [40].  In the context of 

pre-metastatic niche formation, B16-F10 derived exosomes have been labeled and 

shown to “home” to common sites of melanoma metastasis. Further, in the pre-

metastatic niche, exosomes can educate bone marrow derived cells to support 

metastatic tumor growth via the horizontal transfer of the c-MET protein [41].      

Exosome shedding has also been demonstrated in prostate cancer with studies 

demonstrating the presence of microvesicles termed “oncosomes” (0.5-5µm) in prostate 

cancer conditioned media.  Oncosomes contain a variety of signal transduction proteins 

including Akt and Src, as well as miRNAs, and can interact with both tumor and stromal 

cells to elicit disease promoting responses [42, 43].  Additionally, there is a correlation 

between a Gleason score higher than 7 and the number of oncosomes present in 

patient plasma [44].  Based on these findings it is plausible that prostate cancer derived 
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exosomes can play a role in the formation of pre-metastatic niches in the bone 

microenvironment, and emerging evidence suggests that prostate cancer cells homing 

to the bone microenvironment can occupy the endosteal and/or vascular niches.  

 SDF-1(CXCL12)/CXCR4 and similar signaling axes 1.2.6.2

 

Bone is the home of regulatory sites for hematopoietic stem cells (HSCs); these 

cells are localized to the vascular (inner bone marrow) and endosteal (outer bone 

marrow) niches where they either await hematopoietic demand or reside in a quiescent 

state [45].  Disseminated tumor cells (DTCs) have been found in the bone marrow 

niches where they either form metastases or remain dormant.  One well defined 

signaling axis implicated in metastasis and homing to the niche is that between stromal 

cell-derived factor-1 (SDF-1)/C-X-C chemokine motif 12 (CXCL12) and its receptor C-X-

C chemokine receptor type 4 (CXCR4), a system normally utilized by HSCs [46].  

CXCL12 expression is increased in the pre-metastatic niche, and studies in prostate 

cancer have demonstrated that tumor cells with high bone homing capacity express 

CXCR4 and CXCR7 to parasitize the HSC niche (Figure 1A-B).  Furthermore, the 

expression of CXCR4 and CXCR7 correlates with poor prognosis [38, 47, 48].  

Additional axes including MCP-1/CCR2 and CXCL16/CXCR6 have also been found to 

contribute to prostate cancer progression through increases in proliferation, migration, 

and invasion [49, 50].   

 The Vicious Cycle  1.2.7

Once the tumor cells have disseminated and homed to the bone, their survival 

and growth are largely dependent on a permissive microenvironment.  Exosomes and 

other signaling cues from the primary tumor can help “prepare the soil” prior to 
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colonizing the bone, however metastatic tumor cells can also directly impact the bone 

stroma to facilitate invasion and proliferation via the secretion of various growth factors, 

cytokines, and hormones. In turn, osteoblasts and osteoclasts can interact with the 

tumor cells.  These interactions between the tumor cells, osteoblasts, and osteoclasts 

are summarized in a classic mechanism called the “vicious cycle.” 

 Classical Explanation of Tumor-Bone Cellular Interactions 1.2.7.1

Prostate to bone metastases are characterized by areas of mixed osteogenesis 

and osteolysis that give rise to painful lesions [51].  Numerous factors including PTHrP, 

IL-1, IL-6, and IL-11 are highly expressed by tumor cells and have been shown to 

interact with osteoblasts.  Aside from their osteogenic activities, osteoblasts are 

stimulated by these tumor-derived factors to produce the cytokine RANKL.  It is well 

known that RANKL is a crucial molecule for osteoclast differentiation and therefore 

contributes to the extensive bone remodeling seen in skeletal malignancies.  Besides 

destruction of the bone, osteoclast mediated bone resorption releases a multitude of 

bone derived factors such as TGF-β, insulin growth factor (IGF), platelet derived growth 

factor (PDGF), and fibroblast growth factor (FGF) from the bone matrix.  These factors 

are subject to regulation in the local tumor microenvironment where they can provide 

positive feedback via interaction with their respective receptors on the surface of tumor 

cells.   These interactions contribute to tumor cell proliferation and continued production 

of tumor derived factors allowing the cycle to repeat [52].   

 Integrating New Discoveries into the Vicious Cycle 1.2.7.2

 

The vicious cycle is continually evolving to include additional cell types, 

cytokines, proteases, and new therapies (Figure 1-1 C) [53-56].  Several studies from 
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our group have shown contributory roles for highly expressed host matrix 

metalloproteinases (MMPs) in the vicious cycle, including the regulation of bone-derived 

latent TGF-β and VEGF-A bioavailability by MMP-2 and MMP-9, and the generation of a 

soluble form of RANKL by MMP-7 which promotes osteoclastogenesis and mammary 

tumor induced osteolysis in vivo [57-59].  In recent years, the interactions with immune 

cells have become an appreciated component of the metastatic cascade and an integral 

part of the vicious cycle.  Bone marrow is a reservoir for a wide range of immune cells 

including macrophages, myeloid-derived suppressor cells (MDSCs), dendritic cells, and 

T-cells.  Interestingly, T-cells have been shown to both stimulate and inhibit osteoclast 

formation, but the recruitment of T-regs to the bone marrow may actually inhibit 

osteoclastogenesis.  MDSCs within the tumor-bone microenvironment suppress T-cells, 

release angiogenic, tumor promoting factors, and secrete TGF-β to promote tumor 

growth [60, 61].  It has also been shown that recruited MDSCs can differentiate into 

osteoclasts [62, 63].  Through these mechanisms, MDSCs can play major roles in the 

vicious cycle and promote tumor induced bone disease.  Similarly, macrophages can 

polarize based on cues from the microenvironment leading to anti (M1) and pro (M2) 

tumorigenic phenotypes [64].  M2 polarized macrophages have been shown to assist in 

immune evasion and tumor promotion by secreting anti-inflammatory cytokines and 

proteinases including MMP-9 [64, 65]. 

1.3 Approved Therapies for Bone Metastatic Prostate Cancer 

Despite remaining incurable with most treatment options being palliative, recent 

discoveries and improved understanding of the molecular mechanisms underlying 

mCRPC have allowed the therapeutic landscape for mCRPC treatment to rapidly 
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expand.  These new therapeutic strategies include both broad spectrum and targeted 

therapies that will ultimately have a positive impact on overall survival for these patients 

within the next decade (Table 1-1).  The expansion began with docetaxel in 2004, which 

at the time was the first therapy to provide improved survival to mCRPC patients [66, 

67].  However, many patients develop resistance to this chemotherapy.  To combat this 

Figure 1-1. Dormancy and the "Vicious Cycle" of Bone Metastasis 

(A) Disseminated tumor cells can home to the vascular niche and cluster on stable endothelium.  

Decreased expression of thrombospondin-1 combined with activation of transforming growth factor β and 

periostin in areas of “sprouting” vasculature can result in the outgrowth of tumor cells.  (B) Cancer cells 

may also home to the endosteal niche via mechanisms such as chemokine motif 12/chemokine receptor 4 

where they compete with quiescent hematopoietic stem cells for osteoblast interaction.  Subsequently, the 

cancer cells can be maintained in a dormant state via interactions with GAS6 and ANXA-2 expressing 

niche osteoblasts or proliferate into metastases.  (C) A “vicious cycle” occurs between tumor cells and 

other cells of the bone microenvironment.  Factors secreted by the tumor cells act on osteoblasts, leading 

to the increased production of additional factors into the microenvironment, providing positive feedback to 

the cancer cells.  Matrix metalloproteinases 2, 7, and 9 contribute to the vicious cycle by regulating factors 

such as vascular endothelial growth factor A, RANKL, and transforming growth factor β, whereas myeloid-

derived suppressor cells contribute by releasing pro-tumorigenic factors, suppressing T-cells, and 

differentiating into osteoclasts. 
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issue, five new agents have received FDA approval to treat mCRPC since April 2010: 

abiraterone acetate, enzalutamide, cabazitaxel, radium-223, and sipuleucel-T [68].  

Below is a discussion of these newly approved agents that target the cancer and host 

compartments.  

 Hormone Therapies 1.3.1

One of the defining measures of mCRPC is resistance to androgen deprivation 

therapy.  The mechanism of castration resistance is not fully understood, but significant 

inroads have been made.  For example, prostate cancer cells circumvent castration by 

overexpressing and increasing the sensitivity of the AR to residual androgens, acquiring 

AR gene mutations leading to gain of function or promiscuous ligand interactions, splice 

variants resulting in constitutive AR activation or ligand independent receptors, and 

post-translational modifications affecting the stability, localization, and activity of the 

receptor [69].  Alternative methods utilized by prostate cancer cells to synthesize 

dihydrotestosterone (DHT) have also been shown to circumvent androgen deprivation 

methods [70-72].  Efforts to target these mechanisms have resulted in newly FDA 

approved androgen deprivation therapy (ADT) options such as abiraterone acetate that 

inhibits the activity of the CYP17A1 enzyme, thereby preventing androgen synthesis.  

Abiraterone has been successful in improving the overall survival and radiographic 

progression free survival of men with mCRPC [73, 74].  Another therapeutic strategy for 

preventing androgen utilization by the mCRPC cells is by targeting the AR directly with 

reagents such as flutamide, nilutamide, and bicalutamide.  Recently, enzalutamide was 

approved for the treatment of mCRPC in a post-docetaxel setting [75, 76].  

Enzalutamide has a superior affinity to the AR compared to other AR antagonists and 



15 
 

works by preventing nuclear translocation of the receptor, DNA binding, and recruitment 

of co-activators of the AR to not only increase overall survival but also delay the onset 

of SREs [77-79].  Recent results from an ongoing phase III trial demonstrated 

impressive activity of enzalutamide in chemotherapy naïve patients, potentially leading 

to future FDA approval of enzalutamide for this subset of mCRPC patients 

(NCT01212991) [80, 81]. 

 Chemotherapies 1.3.2

In addition to ADT strategies, taxane derived chemotherapies are a mainstay 

treatment for mCRPC.  Docetaxel has remained the standard therapy for mCRPC since 

2004 [66, 67].  Cabazitaxel is a more recent derivative of the taxoid family that has 

shown increases in overall survival, improvements in progression free survival, and 

improved PSA response rates in men with mCRPC [82, 83].  Cabazitaxel was approved 

for the treatment of post-docetaxel mCRPC patients by the FDA in 2010 [84].  Additional 

clinical trials studying the effectiveness of cabazitaxel as first-line therapy and in 

combination with ADT agents like enzalutamide are ongoing (NCT02254785, 

NCT02522715). 

 Microenvironment Targeted Therapies 1.3.3

Given the heterogeneity of mCRPCs and likelihood of ADT/chemotherapy 

resistance, targeting the genetically stable host microenvironments that support the 

mCRPC instead of the cancer cells themselves represents an attractive treatment 

approach.  Immune evasion is a hallmark of cancer progression and the goal of recently 

approved sipuleucel-T is to make mCRPCs more visible to cytotoxic T-cells [85, 86]  

Sipuleucel-T is an autologous immunotherapy approved for treatment of asymptomatic 
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or minimally symptomatic mCRPC due to a lack of evidence showing that it directly 

impacts the cancer [87].  Sipuleucel-T harnesses the properties of the patient’s own 

immune system by collecting peripheral blood mononuclear cells and activating them ex 

vivo by exposure to a fusion protein consisting of prostatic acid phosphatase (PAP) and 

GM-CSF with PAP being a protein commonly expressed by prostate cancer cells. 

Patients receive three separate infusions of the activated cells at two-week intervals to 

generate PAP expressing dendritic cells that in turn activate T-cells to recognize and 

eliminate PAP expressing prostate cancer cells [85].  Sipuleucel-T is the only FDA 

approved immunotherapy to improve survival in prostate cancer, however increasing 

concern over a lack of anti-tumor responses in clinical practice suggests that additional 

studies to identify patients best suited for Sipuleucel-T may be needed [88, 89].  

 The majority of mCRPCs arise in the bone matrix where they induce extensive 

bone remodeling by stimulating osteoblasts and osteoclasts. The process not only 

promotes the growth of the mCRPCs via the solubilization of bone matrix sequestered 

growth factors but also causes the patient significant pain and SREs such as 

pathological fracture.  Therefore, preventing cancer-bone interaction has been a major 

focus for several decades.  Bisphosphonates such as zoledronic acid, are reagents that 

can “stick” to bones undergoing remodeling and upon resorption by osteoclasts induce 

apoptosis thereby limiting the amount of cancer induced bone disease [90].  In the 

clinic, zoledronic acid has demonstrated a benefit for mCRPC patients by decreasing 

the time to SRE incidence [91].  However, although zoledronic acid lowered disease 

morbidity, no increase in overall survival has been demonstrated.  Receptor activator of 

nuclear kappa B ligand (RANKL) is a molecule that is critical for the maturation and 
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activation of bone resorbing osteoclasts.  Denosumab is a fully humanized monoclonal 

antibody that prevents RANKL interaction with the RANK receptor [92].  For patients 

with bone mCRPCs, clinical trials demonstrated a significant delay in the time to first 

SRE compared to zoledronic acid [93].  There is additional evidence that Denosumab 

may have direct effects on tumor burden, particularly tumor cells expressing the RANKL 

receptor, RANK [94, 95].  Further, pre-clinical in vivo animal studies have highlighted 

the efficacy of docetaxel/Denosumab combination treatment in increasing median 

survival times, suggesting that combinatorial approaches with Denosumab could 

significantly enhance the overall survival of men with mCRPC [96].  

 The most recent agent to receive FDA approval for mCRPC is radium-223 [97].  

The bone seeking properties of radium-223 as well as other radiopharmaceuticals make 

them particularly useful in the treatment of bone metastases.  Whereas most 

radiopharmaceuticals emit beta particles, radium-223 emits alpha particles to deliver 

more localized radiation (<100 µm distance) to induce localized cell death via DNA 

damage [98].  In a study of men with mCRPC previously treated with radiotherapy, 

radium-223 showed improved overall survival, time to PSA progression, and reduced 

alkaline phosphatase levels (measure of bone remodeling).  In addition, radium-223 

delays the time to first SRE [99], whereas previous radiopharmaceuticals used to treat 

mCRPC were only effective at reducing pain. Therefore, radium-223 represents an 

important step forward for the field [97].     

 Ongoing Clinical Challenges 1.3.4

 

Although several new cancer and microenvironment specific therapies are under 

development to treat prostate cancers, there are areas for improvement, particularly 
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with screening and the detection of metastases.  While early detection is clearly the best 

scenario for successful treatment, a significant number of men will initially present with 

advanced prostate cancer harboring occult metastases.  As we learn more about the 

disease, additional challenges are also emerging such as the discovery of disseminated 

tumor cells (DTCs) that have developed mechanisms to metastasize and remain 

dormant in the bone as well as the heterogeneous composition of most cancers.  

 

Table 1-1. Approved Therapies for the Treatment of mCRPC 

Drug Target Effect 

Abiraterone acetate CYP17A1 
Reduces circulating testosterone 
levels  

Cabazitaxel Microtubules 
Microtubule stabililzation, 
interrupts cell cycle 

Denosumab RANKL Decreases bone resorption 

Docetaxel Microtubules 
Microtubule stabilization, 
interrupts cell cycle 

Enzalutamide Androgen Receptor 
Androgen receptor antagonism, 
prevents signaling 

Radium-223 Bone Localized radiation 

Sipuleucel-T 
Ex vivo activation of peripheral 
blood mononuclear cells 

T-cell activation 

Zoledronic Acid Osteoclasts Decreases bone resorption 

 

 

 Detection of Bone Metastases 1.3.4.1

 

Since prostate to bone metastases are primarily bone forming sclerotic lesions, 

bone scanning using technetium-99m-methyl diphosphonate is often used for diagnosis.  

Technetium-99m-methyl diphosphonate is particularly useful for detecting osteogenic 
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lesions due to the incorporation of the radionuclide tracer into regions of new bone 

formation by osteoblasts [100].  MRI and PET/CT are also used for detection.  A recent 

trial comparing 18F-NaF PET/CT, 18F-FDG PET/CT, MRI, and technetium-99m-methyl 

diphosphonate identified strengths for each modality [101].  New approaches of 

combining modalities help to compensate for each method’s weaknesses and increase 

sensitivity and accuracy.  However, the ability to detect occult or micrometastases less 

than 5mm remains a limitation for all current methodologies [102].  Ongoing 

experimental imaging may yield improved imaging options.  One such approach relies 

on dynamic contrast-enhanced (DCE) MRI or CT scans to visualize the vasculature of 

bone metastases.  In addition to detecting metastases, this approach shows promise for 

measuring treatment responses before changes in tumor volume are noted [102]. 

 Disseminated Tumor Cells and Dormancy  1.3.4.2

 

Increasing evidence suggests that tumor cells disseminated from the prostate 

localize to the bone marrow niche and displace the resident hematopoietic stem cells 

(HSCs), where they either proliferate to form metastases or enter a state of dormancy 

[103].  Tumor cell dissemination appears to be an early event in prostate cancer, since 

patients who undergo prostatectomy may present with metastases many years later 

[104, 105].  DTCs reside in the bone marrow niche where they can remain dormant and 

resistant to chemotherapy for long time periods (>10 years) before emerging to form 

metastatic outgrowths [104].  Although most prostate cancer patients harbor DTCs, not 

all will develop metastases, suggesting that mechanisms exist to maintain DTC 

dormancy as well as promote awakening [105]. 
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Recent work has identified several bone marrow dependent mechanisms as 

modulators of prostate cancer DTC dormancy.  In the endosteal (outer bone marrow)  

niche, osteoblast expression of Annexin II (Anxa2) combined with expression of the 

Anxa2 receptor, Anxa2R, by HSCs is important in regulating HSC homing to the niche 

(Figure 1-1 A and B).  Interestingly, Anxa2R expression is elevated in metastatic 

prostate tumor cells and as such, the Anxa2/Anxa2R axis can be hijacked to promote 

the homing of prostate tumor cells to the niche.  Interrupting the interaction between 

Anxa2 and Anxa2R is sufficient to reduce tumor burden in the niche [106].  Continued 

studies have revealed that the ligation of Anxa2 with Anxa2R stimulates expression of 

the Axl receptor tyrosine kinase [107].  Axl, along with Tyro3 and Mer, are receptors for 

osteoblast expressed Growth arrest-specific 6 (GAS6) [108].  As was the case with 

Anxa2/Anxa2R, the GAS6/Axl interaction normally occurs between HSC and 

osteoblasts and is one mechanism of controlling HSC dormancy [109].  Interestingly, 

engagement of osteoblast expressed GAS6 and tumor cell expressed Axl yields a 

similar result including growth arrest and enhanced drug resistance in prostate cancer 

cells [107].  Following up on these observations, recently published data show that 

these activities may be specific to the Axl receptor compared to other GAS6 receptors, 

where a high ratio of Axl to Tyro3 expression encourages maintenance of a dormant 

state compared to reducing expression of Axl and increasing expression of Tyro3 which 

promoted awakening and outgrowth [108]. 

Interactions between osteoblasts and tumor cells are also important to DTC 

dormancy.  Prostate cancer cells that bind with osteoblasts also upregulate expression 

of TANK binding kinase 1 (TBK1).  In vitro and in vivo knockdown of TBK1 resulted in 
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decreased drug resistance, suggesting that TBK1 may also play a role in these 

processes [110].  A high p38/ERK ratio has been shown to maintain dormancy of 

squamous carcinoma cells derived from bone marrow, however interactions with 

microenvironment proteins such as fibrillar collagen can stimulate a switch to high 

ERK/p38 ratio and reverses dormancy [111].  Interestingly, bone marrow derived TGF-

β2 has been implicated in maintaining dormancy of DTCs by p38 activation, and 

inhibiting either TGF-β receptor-1 (TGFBR1) or p38 leads to DTC proliferation and 

metastasis [112].  Similarly, bone morphogenetic protein 7 (BMP-7) was recently shown 

to trigger prostate cancer DTC dormancy in part by activation of p38 [113].  While much 

focus has been placed on the endosteal niche, the vascular niche also has implications 

for DTC dormancy.  Using advanced imaging techniques, it has been shown that 

dormant DTCs also home to perivascular niches in the bone marrow and lung.  These 

niches promote dormancy through thrombospondin-1 (TSP-1) expression, but 

dormancy is lost in regions of sprouting vasculature, due to a loss of TSP-1 and 

activation of TGF-β and periostin [114].   In vivo experiments in mice receiving bone 

marrow transplants revealed that fewer HSCs successfully engrafted in tumor bearing 

mice, suggesting that the tumor cells occupying the niche outcompete HSCs for 

residence.  In addition, expansion of the endosteal osteoblast niche with parathyroid 

hormone (PTH) promotes metastasis, whereas decreasing the size of the niche using 

conditional osteoblast knockout models reduces dissemination [115].  Importantly, it 

was demonstrated that tumor cells can be forced out of the niche by using established 

HSC mobilization approaches, perhaps offering an opportunity for therapeutic 

intervention [115].   
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 Heterogeneity 1.3.4.3

 

Cancer cell heterogeneity is a challenging clinical component in many cancers 

including prostate cancer [116-118].  Greater heterogeneity not only facilitates the 

evolution of cancer’s resistance to treatment but also gives the cancer a number of 

phenotypic strategies that allow for growth in a variety of microenvironments such as 

the bone.  The question then arises as to how to treat heterogeneous cancers?  

Emerging studies suggest that most patients would be best served by therapies tailored 

not only towards cancer cells harboring common aberrations but also by therapies 

geared towards smaller clonal populations that could ultimately become dominant and 

resistant.  Current National Comprehensive Cancer Network (NCCN) guidelines provide 

recommendations as to how to apply the sequence of existing therapies to mCRPC 

patients based on individual patient parameters.  Recent studies suggest that altering 

the sequence or combination of existing therapies can have a profound impact on 

overall survival [119].  In order circumvent costly and time-consuming clinical trials 

assessing the combination and sequence alterations of the new line of targeted 

therapies currently in clinical trials, alternative approaches are required.  The use of 

patient derived xenograft (PDX) models has been useful for translational studies in 

other diseases such as breast cancer [120].  PDX models are preferable to cell lines or 

organoid based models as these are subject to selective pressure during in vitro 

culturing and often correlate poorly with clinical outcome.  However, difficulties 

encountered with the take rates of prostate cancer xenografts has traditionally resulted 

in a lack of available PDX models for prostate cancer research.  Recently, a series of 21 

prostate cancer PDXs were generated from numerous organ sites including primary, 
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adrenal, bladder, lymph node, liver, and bone [121].  These PDXs are serially passaged 

in mice and retain key histologic and molecular features of clinical disease.  As a result, 

a better representation of clinical responses can be obtained.  With regards to bone 

metastatic prostate cancer, 2 PDXs from bone metastases were established, but these 

do not spontaneously metastasize to the bone and varied take rates were observed with 

intratibial injections.  Those that did successfully grow in bone recapitulated the clinical 

scenario by generating metastatic lesions that were osteoblastic, mixed, and/or 

osteolytic.  The establishment of multiple prostate cancer PDXs will also make it 

possible to conduct “PDX Clinical Trials” which utilize multiple PDXs to test promising 

therapies or combinations of therapies in a format similar to a phase II clinical trial [121]. 

Outside of the wet lab, the integration of in silico computational models and genetic 

algorithms with individual patient derived biological data can also lead to the rapid 

optimization of therapy choice and sequence as well.  Such computational models have 

been applied to bone metastatic prostate cancer and have been particularly useful at 

evaluating and predicting the responses for both existing and experimental therapies 

[56, 122]. 

 

1.4 Discussion 

While there is emphasis on the need for therapies aimed at initiation of 

metastasis or eradication of DTCs, many patients will still present with active 

metastases.  Therefore improved therapies for these patients via continued 

understanding of the vicious cycle should remain a priority, as the interactions between 

tumor and stromal cells in the vicious cycle offer many opportunities to intervene.  
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Present therapies like zoledronic acid and Denosumab interfere with the osteolytic 

component of the vicious cycle, however there is a lack of therapies to inhibit the unique 

osteosclerotic component of prostate to bone metastases.  Many roles for specific 

MMPs have also been elucidated in the vicious cycle [53, 58, 59], and the development 

of MMP inhibitors with improved specificity is one promising strategy that could be used 

to modulate the vicious cycle [123, 124].   

From these discoveries, it is also becoming evident that prostate cancer 

metastasis is not a linear, stepwise procedure.  Defining the mechanisms that control 

CRPC metastasis and outgrowth and the mechanisms that lead to the unique 

osteogenic lesions can elucidate new therapeutic targets that not only impact the cancer 

cells directly but also the processes that facilitate the formation of a pre-metastatic 

niche, niche seeding, dormancy, and the vicious cycle [125].  These new discoveries 

will ultimately impact how mCRPCs are treated clinically.  

  



___________________________ 
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Chapter 2. MMP Processing of PTHrP Yields a Selective Regulator of 
Osteogenesis, PTHrP1-17 

 

 

2.1 Introduction 

 

In addition to elevated risk for spontaneous fractures, intense pain, and 

increased morbidity, patients with skeletal malignancy frequently present with humoral 

hypercalcemia of malignancy (HHM), a condition resulting in elevated blood calcium 

levels due increased osteoclast mediated bone resorption driven by their cancer [126].  

The precise mechanisms and factors responsible for HHM have long been topics of 

interest for researchers, with multiple hypotheses having been generated over the 

years.  In 1941, Dr. Fuller Albright posited that parathyroid hormone (PTH) or a factor 

similar to PTH might be secreted by tumors to cause the hypercalcemia observed in 

cancer patients [127, 128].  Alternative factors such as vitamin D sterols, 

prostaglandins, and transforming growth factors (TGFs) were also proposed, but these 

have not been consistently observed at increased levels in patients with HHM [129].  

Nearly 50 years later, Dr. Albright’s hypothesis was validated with the discovery of 

PTHrP [130-132].  In the 30 years since its discovery, our knowledge of PTHrP has 

expanded from viewing it as an HHM causing, cancer derived hormone, to a cytokine 

expressed in numerous tissues with abundant functions occurring throughout our 

lifespans [128].  
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 PTHrP in Cancer 2.1.1

 

Since it was discovered in a cancer setting, a substantial number of studies have 

focused on roles for PTHrP in malignancy.  PTHrP is overexpressed in numerous 

cancers and involved in several steps of cancer progression [133].  Analyses of PTHrP 

expression in breast cancer specimens indicate that 60% of primary breast tumors and 

90% of bone metastatic breast cancers express PTHrP, suggesting that it is important 

for tumor growth in bone [134, 135].  Breast cancer metastases generate osteolytic 

lesions that are a product of increased osteoclast formation and activity.  Traditionally, 

PTHrP has been associated with driving the osteolytic phenotype by mediating the 

expression of RANKL by osteoblasts, which can drive the fusion of osteoclast 

precursors into mature bone resorbing osteoclasts via interactions with RANKL [20].  

For example, the administration of monoclonal PTHrP neutralizing antibodies in mice 

inoculated with MDA-MB-231 cells led to a significant reduction in osteolytic bone 

lesions as well as a decrease in tumor size, demonstrating the potent effects of PTHrP 

in osteolytic breast cancer bone metastases [136].  Intriguingly, Ras driven PTHrP 

overexpression has also been noted in prostate cancers which form predominantly 

osteogenic metastatic bone lesions [137].  Despite this key difference, PTHrP has been 

shown to be a vital factor in this process as well, where it was shown to contribute to 

pathological bone remodeling and facilitate tumor growth in vivo after inoculation of 

PTHrP overexpressing ACE-1 prostate cancer cells [138].  The methods by which 

PTHrP activity is regulated to contribute to the development of both osteogenic and 

osteolytic lesions are not well understood and may be related to the presence of 

additional factors, such as Wnts, present in the tumor-bone microenvironment. 
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 PTHrP in Development and Normal Physiology 2.1.2

 

While significant attention has been placed on understanding the effects of 

PTHrP in the context of skeletal malignancy, it also possesses very important roles 

throughout development and during normal physiology.  Unlike PTH, whose expression 

is restricted to the parathyroid glands, PTHrP is ubiquitously expressed in tissues 

including heart, skin, bone marrow, fetal liver, gastric mucosa, adrenal, thyroid, breast, 

and parathyroid glands, and it has been shown to signal in paracrine, autocrine, and 

intracrine manners [139, 140].  In vivo gene ablation studies resulted in phenotypes that 

reveal particular importance for PTHrP in skeletal and mammary gland development.  

Systemic deletion of PTHrP (Pthlh-/-) produces a neonatal lethal phenotype, with the 

pups dying less than 24 hours after birth due to respiratory failure attributed to defective 

rib cage formation [141].  These mice also develop domed skulls, shortened snouts and 

mandibles, and short limbs, suggesting special importance in endochondral bone 

formation.  Non-skeletal organs and tissues appeared normal [141].  Expression of 

PTHrP in chondrocytes alone rescues the phenotype and allows the mice to survive to 

4-months [142, 143].  Studying the phenotype of these rescued mice has revealed a 

failure of early ductal development and provides evidence of a role for PTHrP in 

branching morphogenesis [144].  These mice also display dwarfing and failed tooth 

eruption [142, 143, 145].  Consistent with these findings, PTHrP haploinsufficiency 

produces mice that appear normal at birth but show low bone mass, decreased 

trabecular thickness and connectivity, and increased adiposity as they approach 3 

months of age.  In accord with these in vivo phenotypes, it has since been established 

that PTHrP is critical for regulating growth plate development by controlling the 
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proliferation and differentiation of chondrocytes [146].  Additional observations have 

shown that the recruitment of bone marrow precursors is compromised and osteoblast 

apoptosis is increased in PTHrP heterozygous animal models [26]. 

Throughout adult life, PTHrP remains an important mediator of skeletal 

remodeling.  It is important to note that PTHrP has a bimodal effect on the skeleton, 

acting primarily on osteoblasts while indirectly influencing osteoclast activity via 

cytokines such as RANKL [147].  As a potent mediator of bone metabolism, PTHrP has 

been the focus for potential therapeutic agents for disorders such as osteoporosis [128].  

These studies have shown that the dosing and level of exposure are critical to the 

balance between anabolic and catabolic activity, with intermittent dosing regiments 

being key to generating an osteogenic response [148-150].  Recently, an anabolic 

PTHrP analog called abaloparatide underwent clinical investigation for osteoporosis, 

including via transdermal delivery (NCT01343004, NCT0167462, NCT00542425). The 

results of phase III clinical trials showed that treatment of postmenopausal women with 

abaloparatide for 24 weeks with 40 or 80 µg/kg/day resulted in increases in bone 

mineral density compared to placebo [128, 151, 152]. 

 PTHrP Gene, Protein Structure, and Susceptibility to Proteolysis 2.1.3

 

Parathyroid hormone-related protein is a member of the parathyroid family of 

hormones.  The PTHrP gene, PTHLH, is located on the short arm of chromosome 12 

whereas PTH is found on chromosome 11, reinforcing the view that PTHrP likely arose 

from gene duplication at some point in evolution [129, 133].   The resulting protein is 

highly conserved among species, however alternative splicing produces three unique 

protein isoforms (139, 141, or 173 amino acids).  Alternative splicing is unique to human 
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PTHrP, and certain isoforms appear to be preferentially expressed in specific tissues.  

The reasons for this have not been elucidated, however the presence of instability 

motifs that vary between the mRNA of the isoforms suggests the possibility of distinct 

half-lives and may also facilitate the paracrine/autocrine roles for PTHrP as opposed to 

the endocrine activities associated with PTH [133].  

 

 

Figure 2-1. Comparison of PTHrP and PTH Amino Acid Sequences 

Most homology between PTHrP1-36 and PTH1-34 (biologically active forms) is within the N-terminal 

residues, where 8 of the first 13 amino acids are common.  Despite noteworthy differences within the 15-

34 sequence, which is involved with receptor ligation, both PTHrP and PTH signal through the same 

receptor, PTH1R. 

 

The PTHrP protein shares homology with PTH, primarily in the N-terminal region 

where 8 of the first 13 amino acid residues are identical (Figure 2-1).  The remainder of 

the amino acid sequences show minimal homology, but they share a common G-protein 

coupled receptor (GPCR) for signaling, the type I PTH receptor (PTH1R) [129].  Upon 

ligation, a series of conformational changes in PTH1R lead to a shift of transmembrane 

domain 3 away from transmembrane domain 6, permitting access to the cytoplasmic 

loops by G proteins that are associated with the adenylyl cyclase and phospholipase C 

pathways [153].  Through these signaling pathways, PTHrP stimulates the accumulation 

of intracellular second messengers such as cAMP, DAG, and inositol triphosphate (IP3) 

which subsequently leads to activation of protein kinase A (PKA), protein kinase C 

(PKC), and release of intracellular Ca2+ respectively (Figure 2-2) [154].  This can have 
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further downstream effects including CREB and ERK phosphorylation [128, 155, 156].  

Following ligation and signal transduction, the receptor is negatively regulated by 

desensitization, internalization, and down-regulation. However, some studies have 

demonstrated that internalization may not necessarily terminate signaling as the authors 

observed that internalized PTH1R could still regulate cAMP for PTH1-34, although 

PTHrP1-36 was restricted to the cell surface, perhaps offering some degree of regulation 

between PTH and PTHrP [157].      

Traditionally, most if not all known PTHrP activities have been associated with 

PTH1R, and extensive studies have attempted to determine the minimum amino acid 

sequence able to stimulate PTH1R.  PTHrP binds to the receptor via the “two site 

model,” where an interaction between the C-terminal domain of active PTHrP (amino 

acids 15-34) and the N-terminal region of the receptor contributes to binding affinity.  

Despite differing in amino acid sequences beyond amino acid 13, both PTH and PTHrP 

contain a crucial alpha-helical binding motif within the amino acids 15-34 sequence 

[158].  The second interaction occurs between the N-terminal domain of PTHrP and the 

juxtamembrane region of the PTH1R.  This interaction is believed to contribute to the 

induction of signaling [159].  Although the C-terminal region of the protein appears to be 

important for the “two site model,” [155], multiple studies suggest that it is not a 

necessity for PTH1R activation.  This is supported by studies showing that both PTH 1-

14 and 1-15 are capable of stimulating cAMP but at doses 5 to 6 orders of magnitude 

higher than that of PTH 1-34 [160].  Further studies have pinpointed that residues 1-6 

play a critical role in eliciting an adenylyl cyclase response.  N-terminal deleted analogs 

such as 3-34 or 7-34 bind PTH1R, but these are unable to completely stimulate adenylyl 
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cyclase and in some instances may act as competitive PTH1R antagonists [161, 162].  

Whereas N-terminal residues are more commonly associated with mediating adenylyl 

cyclase/PKA/cAMP signaling, the C-terminal portion of PTH1-34 including 29-32 has 

often been associated with mediating PKC [163].  However, modifying the first residue 

of PTH led to diminished IP production via PLC, suggesting that PKC activity might also 

be dependent to some degree on the N-terminal region of PTH [162].   

 

 

Figure 2-2. Active PTHrP Signals via PTH1R to Induce Downstream Effects 

(A) PTHrP is produced as a 139, 141, or 173 amino acid protein with a 36 amino acid signal peptide 

requiring further processing for activation.  Amino acids 1-36 constitute active PTHrP which signals 

through PTH1R.  (B) PTHrP (and PTH) activities are mediated via signaling through a G-protein coupled 

receptor called PTH1R.  In skeletal tissue, PTH1R is expressed on the surface of osteoblasts, osteocytes, 

and chondrocytes.  The pathway consists of two signaling arms resulting in the activation of protein 

kinase A (PKA) or protein kinase C (PKC). 

 

 PTHrP Processing 2.1.4

The PTHrP protein has leader sequence of 36 amino acids (-36 to -1 signal 

peptide) utilized for intracellular trafficking and secretion.  The leader sequence is 
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typically removed as the nascent peptide enters the rough endoplasmic reticulum [164].  

After removal of the leader sequence, the resulting product is considered “pro-PTHrP” 

and is subject to further modification by proteolytic cleavage.  Multiple predicted mono- 

and multi-basic cleavage sites suggest that much of the protein sequence is highly 

susceptible to proteolytic cleavage, and it has long been thought that full length PTHrP 

is a precursor protein that gets processed into smaller, active peptides [165].  The 

susceptibility to proteolysis may also serve as a mechanism that allows PTHrP to act 

locally compared to PTH which predominantly behaves as a hormone.  Peptide 

fragments generated by proteolysis have been detected from several scenarios 

including bench-top test tube reactions, cell culture conditioned media, and even patient 

serum (Table 2-1).  However, the functions, mechanisms, and proteases responsible for 

the generation of these fragments currently represent a major gap in our knowledge. 

 Products Generated by PTHrP Proteolysis  2.1.5

Many experts in the field have speculated that the full length PTHrP protein in 

fact serves as a pro-hormone that is subject to post-translational proteolytic processing 

based on the numerous dibasic residues such as arginines and lysines found in its 

sequence [165].  As was noted above, continuous administration of PTHrP1-36 has been 

shown to induce systemic osteolysis while intermittent application of the hormone 

promotes bone formation [26, 166, 167].  The reason for these differential effects has 

been potentially ascribed to the labile nature of mature PTHrP [133], and the generation 

of multiple protein products by post-translational proteolysis may contribute to its 

numerous biological functions in a diverse range of tissues.    
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Table 2-1.  Previously Identified PTHrP Cleavage Products 

Previous studies have identified multiple PTHrP products resulting from proteolysis, however the activities 

of these products and the proteases that generate them are largely unknown. 

Fragment Proteases Involved Known Activities Reference 

1-23 PSA, Neprilysin Unknown (Loss of cAMP stimulation) [168, 169] 

1-26 Neprilysin Unknown [169] 

1-36 
Prohormone thiol 
protease; Furin; 
Others unknown 

Mature PTHrP [170-173] 

1-86 Unknown Osteogenic MSC Differentiation [174] 

12-48 Unknown 
Unknown (prognostic marker for bone 
metastases in breast cancer) 

[175] 

38-64 Unknown Cell growth and lung repair [176] 

38-94 Unknown 
Inhibition of breast cancer cell growth and 
invasion, promotion of apoptosis 

[177, 178] 

38-111 Unknown Unknown [179] 

67-86 Unknown 
Inhibition of growth and invasion of breast 
cancer cells  

[180] 

107-111 Unknown Inhibition of osteoclast resorption [181] 

107-139 Unknown Inhibition of osteoclast resorption  [182] 

 

 

 PTHrP1-36 as the Predominant, Active Protein 2.1.5.1

 

Evidence of post-translational PTHrP processing raises questions about what 

amino acid sequence range comprises the active species of the protein responsible for 

classic PTH1R mediated functions, such as those in bone development.  Traditionally it 

is thought that PTHrP1-36 represents the mature form of PTHrP, with an arginine residue 

at amino acid position 37 serving as the preferred cleavage site [171].  This region is 

also relatively homoglogous to PTH (Figure 2-1) [170].  Indeed most of the classic 
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biological activities attributed to PTHrP such as regulating osteoblast differentiation [26, 

183] and stimulating osteoclast formation through osteoblast secretion of RANKL [20, 

26] are recapitulated with this 36 amino acid form (occasionally PTHrP1-34).  It has also 

been shown that administering PTHrP1-34 to PTHrP heterozygous mice improves the 

skeletal deficits associated with this phenotype [26].  Similarly, PTHrP1-36 given by 

subcutaneous injection to post-menopausal osteoporotic women in clinical trials yields 

anabolic effects demonstrated by increases in bone mineral density after 3 months of 

daily treatment [149].  Despite this knowledge, the exact proteases involved in the 

generation of PTHrP1-36 have not been defined and could vary depending on tissue.   

 N-terminal Derived Peptides 2.1.5.2

 

Numerous peptides besides PTHrP1-36 are generated by both identified and 

unidentified proteases.  For example, kallikrein3/prostate specific antigen (PSA) has 

been shown to generate a PTHrP1-23 peptide from PTHrP1-141 [168].  Studies with the 

resulting 23 amino acid protein revealed that PSA cleavage abolishes PTHrP induced 

cAMP activity in MC3T3E1 cells, potentially representing a tissue (prostate) specific 

mechanism of regulation PTHrP activity.  PTHrP1-23/1-26 is also generated by neprilysin, 

a membrane bound member of the metalloproteainse family [169].  The fact that 

multiple proteases generate the same protein would suggest there is a potential 

fundamental role, but further studies are required to identify activity for PTHrP1-23.   

 C-terminal Derived Peptides 2.1.5.3

 

Several mid-region PTHrP products have been detected and studied including 

PTHrP38-94, PTHrP38-111, and PTHrP67-86.  Roles in regulating cellular behaviors including 

growth, invasion, apoptosis have been ascribed to many of these peptides (Table 2-1), 
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however to date it is unclear how these fragments are generated.  An exciting recent 

study has explored the utility of PTHrP12-48 as a prognostic marker for bone metastatic 

breast cancer [175].  Using SELDI-TOF MS, the plasma proteome of 36 breast cancer 

patients was interrogated and determined that PTHrP12-48 could identify patients at risk 

when combined with serum N-terminal telopeptide (NTX) measurements.  It has been 

suggested by other researchers that dipeptidyl peptidase (DPP) may be able to cleave 

between amino acids 48 and 49 of PTHrP [128], but it is presently unclear which 

protease(s) are involved with the generation of PTHrP12-48, or if this fragment possesses 

bioactivity.  Regardless, given the painful and devastating clinical manifestation of bone 

metastases and the lack of clinically significant cancer and bone biomarkers, this 

discovery represents an important step forward in the field. 

 Osteostatin 2.1.5.4

 

One of the best studied PTHrP products besides PTHrP1-36 is osteostatin, a 

protein comprised of amino acids 107-139.  Again, the proteases and processes 

involved in generating PTHrP107-139 are not known, but studies focused on the activity of 

this peptide have consistently reported on its ability to inhibit osteoclast activity both in 

vitro and in vivo.  The potent anti-resorptive activity of PTHrP107-139 appears to be 

contained within amino acids 107 to 111.  Additional studies focusing on just the 

PTHrP107-111 sequence indicate that this product possesses very similar activity to 

PTHrP107-139.  Treating a neonatal mouse model with PTHrP107-111 in the presence of 

PTHrP1-34, which is known to induce bone resorption in this model, demonstrated that 

PTHrP107-111 in fact antagonizes the pro-resorptive effect of active PTHrP when 

administered daily for either 6 or 16 days [181].  Conversely, there is evidence where 
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PTHrP107-111 and PTHrP107-139 stimulate osteoclast like cell formation in an in vitro 

assay.  The resulting osteoclasts were tested on dentine slices and shown to be 

functional [184].  It is possible that PTHrP107-111 (like PTHrP1-36) could have both 

osteogenic and osteolytic activities depending on administration and dosing.  Although 

experiments using PKA and PKC inhibitors have suggested that osteostatin signals 

through PTH1R, a competitive PTH1R antagonist was unable to inhibit the induction of 

Ca2+ by osteostatin [184-189]. 

 Proteases Involved in Post-Translational PTHrP Proteolysis 2.1.6

Since several PTHrP peptide products appear to possess their own unique 

functions, understanding PTHrP proteolysis could uncover significant new roles in 

skeletal physiology and malignancy.  Many questions regarding PTHrP processing 

remain unanswered. What are the functions for these peptides?  Does the processing 

occur intracellularly or extracellularly? Which proteases generate the known fragments, 

and which other proteases might be involved in generating as of yet-to-be identified 

peptides?   

As a part of normal biology, proteases are responsible for processing of proteins 

by hydrolysis of peptide bonds.  Evolutionarily, proteases are believed to have arisen as 

a mechanism to catabolize proteins to facilitate the generation of amino acids [190].  

Years of protease research has provided a more complete appreciation of the vast 

activities of proteases.  A significant discovery was their ability to regulate protein 

activity by activating and/or often generating unique bioactive forms of their substrates 

[190, 191].  A total of 588 proteases have been identified in the human degradome, and 

these can be classified based on their catalytic mechanisms including: aspartic, 



37 
 

glutamic, metalloproteases, cysteine, serine, and threonine [192, 193].  Aspartic, 

glutamic, and metalloproteases use an activated water molecule as the nucleophile 

whereas cysteine, serine, and threonine rely on the specific amino acid for which they 

are named in the site of proteolysis [190].  Some of these proteases have been shown 

to target PTHrP, while many others are predicted to do so. 

 Pro-Protein Convertases 2.1.6.1

The proprotein convertase family of serine proteases has been identified as 

regulators of multiple proteins including hormones, growth factors, receptors, and 

enzymes via their ability to cleave intracellularly.  The family consists of nine secretory 

serine proteases: proprotein convertase 1 (PC1/3), PC2, furin, PC4, PC5, paired basic 

amino acid cleaving enzyme 4 (PACE4), PC7, subtilisin kexin isozyme 1 (SKI-1), and 

proprotein convertase subtilisin kexin 9 (PCSK9) [194].  Except for SKI-1 and PCSK9, 

all of these enzymes prefer to cleave at basic residues [173], many of which occur 

abundantly throughout the PTHrP amino acid sequence, including an abundance of 

lysine and arginine residues giving rise to potential cleavage sites such as a triple-

arginine motif at residues 19-21 [165].   

Furin is well known for its roles in processing pro-proteins via the “constitutive 

pathway,” the main method by which PTHrP is secreted and has been implicated in the 

removal of pre-pro regions of both PTH and PTHrP.  The highly conserved Arg-Leu-Lys-

Arg sequence that falls between proPTHrP and PTHrP is a recognized furin cleavage 

site, and furin is known to generate active PTHrP1-36 [164, 173].  This was observed by 

co-expressing human pre-proPTH and either furin, PC1/3, or PC2 in BSC-40 and 

GH4C1 cell lines.  Of these 3 proteases, furin was the most effective at generating 
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active PTHrP [173].  This was also confirmed in assays using partially purified furin and 

PC1 [173].   Another study evaluated the relationship between PTHrP and furin by 

expressing pro-PTHrP in COS-7 cells with endogenous furin expression.  Transfection 

of pro-PTHrP alone resulted in high levels of PTHrP being secreted into conditioned cell 

culture medium, whereas co-transfection of anti-sense furin cDNA and pro-PTHrP 

resulted in a notable decrease [164].   This provides further evidence that furin is 

involved in the generation of active PTHrP.  Given the ubiquitous tissue distribution and 

subcellular localization to the Golgi, furin is likely a key enzyme involved in intracellular 

processing and secretion of active PTHrP1-36. 

 Prostate Specific Antigen (PSA) Serine Proteases 2.1.6.2

Prostate specific antigen (PSA) is well-known for its expression in prostate tissue 

where it is found increased in prostate cancer patients and has been widely adopted as 

a biomarker since the 1990s [195, 196].  Functional roles for PSA in prostate cancer are 

not well understood [197].  The normal physiological function of PSA is to degrade 

semenogelin I and II in seminal fluid, however it has been shown to cleave other 

substrates including fibronectin and laminin [198].  Cleavage of fibronectin and laminin 

have been suggested to promote cell invasion [199], while processing of galectin-3, 

nidogen-1, and IGFBP-3 by PSA may contribute to adhesion, proliferation, apoptosis, 

and angiogenesis [197, 200-203].   

PSA can activate latent TGFβ2 via currently unknown mechanisms, an event that 

might contribute to the formation of osteoblastic lesions in prostate cancer [204].  

Interestingly, PSA has also been demonstrated to hydrolyze PTHrP.  Separate studies 

have reported its ability to cleave both PTHrP1-34 and PTHrP1-141 resulting in 1-22/23 
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amino acid fragments.  Functional analyses of these fragments suggest that PSA 

cleavage may be involved in regulating PTHrP activity since the PSA generated 

fragments were unable to stimulate cAMP in vitro [168, 205].   

 Cysteine Proteases 2.1.6.3

Prohormone thiol protease (PTP) is a potential prohormone processing enzyme 

that has been found to be expressed in human PTHrP producing cancer cell lines, 

including lung, breast, prostate, and lymphoma [172, 206].  It is therefore conceivable 

that PTP might process PTHrP.  In vitro experiments using recombinant proPTHrP1-141 

show that PTP cleaves at residue 37 to generate active PTHrP1-36.  Interestingly, they 

also show that the local PTP-generated PTHrP1-36 was involved in regulating lung 

cancer cell growth, and lung cancer cell lines that express little PTHrP do not express 

PTP [172].  This also suggests that multiple proteases contribute to generating the 

active PTHrP1-36 form and that it may occur differently in specific tissues.   

 Matrix Metalloproteinases 2.1.6.4

 

Surprisingly, it is unknown if other proteases commonly found in skeletal tissues, 

such as matrix metalloproteinases (MMPs), can process or regulate PTHrP1-36.  MMPs 

are a large (23 member) family of enzymes that collectively control processing and 

turnover of the extracellular matrix (ECM) [207]. Bone is rich in type I collagen, and 

MMPs with type I collagenase activity, including MMP-1, -2, -8, -13, -14 and -15, have 

reported effects on skeletal development and homeostasis [208, 209].  Further, MMPs 

also function as key mediators of cell-cell communication given their ability to control the 

bioactivity and/or bioavailability of a wide array of growth factors and cytokines [53, 
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210].  This is especially true in the context of skeletal malignancies, where there is the 

heightened MMP expression at the tumor-bone interface (Table 2-2) [211-213].  

 

Table 2-2.  Elevated MMP Expression in the Tumor-Bone Microenvironment 

Laser capture microdissection and microarray analysis were used to investigate the expression of MMPs 

in the tumor-bone microenvironment.  Compared to normal bone, MMP expression is increased at the 

tumor/bone interface [211].   

 

MMP 
Percentage Increase at 

Tumor/Bone Interface 

MMP-13 3403% 

MMP-7 1311% 

MMP-3 366% 

MMP-9 326% 

MMP-2 320% 

MMP-15 179% 

MMP-10 129% 

MMP-19 107% 

MMP-11 106% 

MMP-28 97% 

MMP-8 96% 

MMP-12 95% 

MMP-24 92% 

MMP-17 88% 

MMP-23 85% 

MMP-14 82% 

 

In the bone microenvironment cancers provoke aberrant bone remodeling where 

mixed lesions containing areas of extensive bone resorption and/or bone formation 

[214].  Primary and metastatic bone cancers have been shown to express PTHrP, which 

in turn induces RANKL expression in osteoblasts lining the bone to trigger 

osteoclastogenesis [215]. Osteoclasts then resorb the mineralized bone matrix, 
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releasing bone sequestered growth factors such as transforming growth factor β (TGFβ) 

that promote cancer cell survival [216].  MMPs are key regulators of RANKL and TGFβ 

bioavailability [58, 211], and given the enzymatic susceptibility of PTHrP1-36, we 

hypothesized that PTHrP was a substrate of MMPs that are expressed in bone under 

normal and pathological conditions. Here we report that MMPs are indeed capable of 

rapidly processing PTHrP1-36 to yield unique PTHrP peptides.  Moreover, one of the 

identified peptides, PTHrP1-17, is stable and retains the ability to stimulate intracellular 

calcium flux via PTH1R but does not trigger the production of cAMP.  Additionally, 

PTHrP1-17 has robust biological activity, where it selectively directs mesenchymal stem 

cell/osteoblast differentiation and osteogenesis without (like PTHrP1-36) affecting 

osteoclastogenesis/bone resorption. Collectively these data suggest that MMPs are 

important regulators of PTHrP activity in the normal and pathological bone 

microenvironment. 

 

2.2 Materials and Methods 

 Cell Lines and Culture 2.2.1

MC3T3-E1, HEK-293, RAW264.7, and SAOS2 cell lines were purchased from 

the American Tissue Culture Collection (ATCC) and grown in media recommended by 

the ATCC. PAIII cells [217], C4-2B [218], and PC3-2M cells (Perkin Elmer) were grown 

in complete Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine 

serum.  All cell lines were periodically tested for mycoplasma (#CUL001B, R&D 

Systems) and short tandem repeat (STR) verified at the Moffitt Clinical Translational 

Research Core. Mouse bone marrow stromal cells and co-cultures were isolated from 
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the tibias of C57BL/6 mice and cultured as described [219].  For PTH1R shRNA 

knockdown (Santa Cruz, sc-40158-V) studies in mouse cells standard lentiviral 

transduction protocols were used. Transient transfection (Qiagen, Superfect, 301305) 

for forced PTH1R expression studies (Origene #RG212841-Human, MC201102-Mouse) 

in HEK-293 cells were conducted according to the manufacturer’s instructions.  For 

conditioned media collection, cells were incubated in serum free conditions for 3 hours 

prior to the addition of a fresh aliquot of serum free media. Conditioned media was then 

collected after a further 24 hours of incubation.  For MMP inhibition/treatment, the broad 

spectrum inhibitor GM6001 (Millipore, #CC1010 at a final concentration of 10 μM) or 

recombinant MMP-3 (Millipore, #444217 at a final concentration of 100 ng/ml) were 

added during the collection of the conditioned media.    

 Gene Expression Analyses 2.2.2

RNA was extracted with TRIzol® according to manufacturer’s instructions 

(Invitrogen #15596).  cDNA reverse transcription was performed using a High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, #4368813). Concentrations of 

cDNA samples were determined by Nanodrop, and equal amounts (100ng per reaction) 

used for real time qPCR (RT-qPCR, ABI Prism 7900HT). Primers sequences for genes 

of interest are: Mouse PTH1R Forward 5’-AGCCAGACGATGTCTTTACCAA-3’; mouse 

PTH1R Reverse 5’-GATGCTG GCGTCCACCCTT-3.’ Human PTH1R Forward 5’-

AGAGAAGAAGTACCTGTGGGG-3’; human PTH1R Reverse 5’-

GATGATCCACTTTTTGTTCCC-3.’  PTHrP Forward 5’-

GCAGTGGAGTGTCCTGGTATTC-3’; PTHrP Reverse 5’-

TTGGATGGACTTGCCCTTGT-3.’  RANKL Forward 5’-ACGCCAACATTTGCTTTCGG-
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3’; RANKL Reverse 5’-GACC AGTTTTTCGTGCTCCCT-3.’  OPG Forward 5’-

CCTTGCCCTGACCACTCTTA-3’; OPG Reverse 5’-CCTCACACTCACACACTCGGT-3.’  

Osteocalcin Forward 5’-GCAGCTTGGCC CAGACCTA-3’; Osteocalcin Reverse 5’-

GGGTCAGCAGAGTGAGCAGAA-3.’  Type I Collagen Forward 5’-

ACAGACGAACAACCCAAACT-3’; Type I Collagen Reverse 5’-

GGTTTTTGGTCACGTTCAGT-3.’  18S Forward 5’-GTAACCCGTTGAACCCCATT-3’; 

18S Reverse 5’-CCATCCAATCGGTAGTAGCG-3.’ GAPDH Forward 5’- 

CCTGCACCACCAACTGCTTA-3’; GAPDH Reverse 5’- CCACGATGCCAAAGTTGTCA-

3.’  All samples were run in triplicate and normalized to 18S or GAPDH.  A panel of 84 

osteogenic genes was studied using a mouse specific osteogenesis RT2 ProfilerTM 

Assay (Qiagen, PAMM-026ZA-12).  RNA was extracted by Trizol® and subsequently 

purified using an RNeasy MinElute Cleanup kit (Qiagen, #74204).   Reverse 

transcription was performed using an RT2 First Strand Kit (Qiagen, #330401).  PCR 

array plates were run on standard qPCR instruments (ABI Prism 7900HT) and analyzed 

with online software (http://www.SABiosciences.com/pcrarraydataanalysis.php).  Fold 

change for all qPCR experiments was calculated using delta delta CT method [220].  

 MMP Processing and Identification of Cleavage Sites 2.2.3

MMP cleavage assays used recombinant PTHrP (1-86; Abcam, ab50228). 100ng 

of recombinant of PTHrP was incubated for 1 hour in MMP digestion buffer (0.15 M 

NaCl, 50 mM Tris pH 7.6) in the presence of 100 ng active MMP-2, -3, -7, -9, or -13 

(Millipore).  Processing was confirmed by SDS-PAGE Coomassie Brilliant Blue staining 

and Western blotting. For N-terminal amino acid sequencing (Pro-Seq, Boxford, MA), 2 

μg of PTHrP1-86 was incubated with MMP-3 (100 ng/ml) for 1 hour, separated by SDS-

http://www.sabiosciences.com/pcrarraydataanalysis.php
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PAGE, and transferred to polyvinylidine fluoride (PVDF) membranes. Subsequent to 

Coomassie staining/destaining, bands of interest were excised, dried, and sequenced. 

Matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS)  

analyses were performed at the Moffitt Proteomics Core. Briefly, peptides from MMP 

cleavage reactions were extracted using C18 ZipTips (Millipore ZTC18S096) and dried 

in a vacuum concentrator.  Samples were resuspended in a mix of 5 µL of aqueous 2% 

acetonitrile, 1% acetic acid plus 5 µL of α-cyano-4-hydoxycinnamic acid (CHCA) 

dissolved at 5 mg/ml in 50% H2O/50% acetonitrile.  

PTHrP1-36 (ProImmune) and the major MMP generated fragments (PTHrP1-17, 

PTHrP18-26 and PTHrP27-36) were synthesized via standard FMOC chemistry 

(Symphony, PTI) and characterized as previously described prior to use for in vitro and 

in vivo analyses [221].   

 Immunoblotting and Immunoprecipitation-Mass Spectrometry 2.2.4

Cells were lysed with cold RIPA buffer (150 mM NaCl, 1mM EDTA, 1% Triton X-

100, 1% sodium deoxycholate, 0.1% SDS, 20 mM Tris, pH 8) containing protease and 

phosphatase inhibitors (Thermo Scientific, #78442) using standard procedures. Total 

protein concentration was determined using BCA (Pierce, #23225) and 10 μg of protein 

loaded in 10% SDS-PAGE gels.  Blots were blocked in 5% BSA for 1 hour followed by 

primary antibody for phospho-ERK (Cell Signaling Technology #9101; diluted 1:1000 in 

blocking solution + 0.1% Tween-20), ERK (Cell Signaling Technology #4695; diluted 

1:1000 in blocking solution + 0.1% Tween-20), phospho-CREB (Cell Signaling 

Technology #9198, diluted 1:1000 in blocking solution + 0.1% Tween-20), CREB (Cell 

Signaling Technology #9197, diluted 1:1000 in blocking solution + 0.1% Tween-20), or 
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PTHrP (Santa Cruz sc20728; diluted 1:1000 in blocking solution + 0.1% Tween-20) 

overnight at 4°C.  The blots were washed 3 x 10 minutes in 1X TBST and incubated 

with HRP-conjugated anti-species secondary (Cell Signaling Technology, Rabbit 

#7074/Mouse #7076, diluted 1:1000 in blocking solution). Blots were developed using 

enhanced chemiluminescence (Pierce 32106) and exposed to film.  Actin (Santa Cruz 

sc-1615; diluted 1:1000 in blocking solution + 0.1% Tween-20) was used as a loading 

control. 

Antibodies reactive to PTHrP1-17, but not PTHrP18-26 or PTHrP27-36, were 

developed by the NCI Office of Cancer Clinical Proteomics Research 

(https://antibodies.cancer.gov) and evaluated by ELISA and spotting various amounts of 

PTHrP peptide (1, 10, 50, and 100ng) onto nitrocellulose membranes. Top candidates 

were selected and evaluated by immunoprecipitation mass spectrometry assays.  

Conditioned cell culture media were collected from 90% confluent cells and divided into 

1 mL aliquots. 1 μg of anti-PTHrP1-17 antibody was added per reaction and incubated for 

1 hour at 4°C at which point 15 μL of Protein G beads (Ultralink, Pierce) were added 

and incubated at 4ᵒC overnight.  Beads were washed 3 times with IP wash buffer (100 

mM NaCl 50 mM Tris HCl, 0.1% NP-40), followed by 3 washes with nanopure water (18 

M) and pooled.  Peptide was eluted from the beads with 0.1% trifluoroacetic acid, 

dried, and resuspended in chromatography buffer containing 4 fmol/µL of stable isotope 

labeled standard (SIS) PTHrP peptides, which incorporate 13C6
15N lysine (residue #13 

of PTHrP1-17).  Samples were analyzed using liquid chromatography-parallel reaction 

monitoring mass spectrometry (LC-PRM; nanoRSLC and QExactive Plus, Thermo 

[222]).  Raw data were imported into Skyline software (https://skyline.gs.washington.edu 

https://antibodies.cancer.gov/apps/site/detail/Parathyroid%20Hormone%20Related%20Protein%20Peptide%201#Parathyroid_Hormone_Related_Protein_Peptide_1
https://skyline.gs.washington.edu/
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[223]), and PTHrP peptides were quantified using selected transitions. Quantification of 

peak areas for those specific fragment ions was used to determine the ratio of 

endogenous PTHrP1-17 to the PTHrP1-17 SIS. 

 PTH1R Signaling Assays 2.2.5

A cAMP-GloTM Assay (Promega, #V1501) was used to assess cAMP production. 

MC3T3 and PTH1R-expressing HEK cells (2.5 x 104 cells/well, 384-well plate) were 

treated with varying concentrations of PTHrP peptides (1-100 nM, 15 min) and 

luminescence was measured on a Victor plate reader. The forskolin analog NKH 477 

(Tocris, 10 µM, 15 min) was used as a positive control for cAMP assays. Calcium flux 

was determined by loading cells with Fluo-4 DirectTM calcium reagent + Probenecid 

(Invitrogen, #F10471, 1 x 105 cells, 48-well plate) and incubated for 30 minutes at 37°C 

followed by 30 minutes at room temperature. Increases in fluorescence were measured 

by time-lapse microscopy. Using this approach, the change in fluorescence intensity 

over time for individual cells in 3 fields of view per condition was quantified (Definiens) 

and graphed.  

 MTS Proliferation Assay 2.2.6

All cell types were seeded at 5 x 104 cells/well in 96-well plate and treated for 24 

hours in 5% serum (MSC, Raw 264.7) or serum free (MC3T3, PAIII, PC3-2M, C4-2B, 

SAOS-2) containing media.  CellTiter 96 (Promega, #G5421) was used to determine 

metabolic activity as a surrogate of proliferation, by measuring absorbance at 490nm. 
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 Morphology and Migration Assays 2.2.7

For immunofluorescence studies, MC3T3 were seeded at 5 x 104 cells per well in 

8-well glass chamber slides and treated with 10 nM of PTHrP1-17 or PTHrP1-36 in serum 

free media for 1 hour. Cells were fixed with 4% paraformaldehyde for 20 min, washed 

3x with PBS, and blocked in antibody diluting buffer (2% BSA, 0.1% Triton x100) for 30 

minutes at room temperature. Actin filaments were stained using Alexa Fluor 488-

Phalloidin for 30 minutes at room temperature (Invitrogen A12379, diluted 1:1000 in 

antibody diluting buffer). Images were acquired using an upright Zeiss fluorescent 

microscope. 

For migration assays, osteoblast (MC3T3) and MSC migration was assessed 

using modified Boyden chamber assay. Cells (5.0 x 105) were seeded in the upper 

chamber after 24 hour serum starvation. PTHrP peptides (10 nM in serum free media) 

were added to the lower chamber and incubated over a 5 hour period at 37°C. Serum 

free media and 1% serum media were used as negative and positive controls, 

respectively. Chamber filters were excised and migrated cells stained with hematoxylin. 

The number of migrated cells was determined by counting 3 random fields at 20x for 

each condition in triplicate. 

 In Vitro Osteoblast and Osteoclast Formation Assays 2.2.8

For osteoblast differentiation studies, mouse MSCs (1.2 x 105 cells/well in 24-well 

plates) were incubated for 21 days in the presence of PTHrP1-17 or PTHrP1-36 (10 nM, 

replenished every third day). Mouse osteogenic supplement (R&D, CCM009) was used 

as a positive control. Cells were fixed with 10% neutral buffered formalin (15 minutes, 

room temperature), stained with Alizarin red (2%, pH 4.1-4.3, 45 minutes, room 
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temperature in dark), and quantified by measuring absorbance at 405 nm. For 

osteoclast formation assays, adherent bone marrow macrophage precursors were 

cultured for 3 days in the presence of recombinant M-CSF (Preprotech, 20 ng/mL) then 

seeded into 48-well plates (30,000 cells/well). The cultures were expanded for an 

additional 2 days at which point PTHrP1-17 or PTHrP1-36 were added (100 nM, 

replenished daily). Recombinant RANKL (Oriental Yeast Company, 100 ng/mL) plus M-

CSF (25 ng/mL) was used as a positive control. After 7 days, cultures were stained for 

tartrate-resistant acid phosphatase (TRAcP) positivity using solutions detailed below. 

The number of bone-lining, multi-nucleated (>3 nuclei per cell), TRAcP positive 

osteoclasts was quantified from multiple sections.    

 In Vivo Osteoclastogenesis Assays 2.2.9

For in vivo calvarial injection assays, 2 µg of PTHrP1-17 or PTHrP1-36 were 

injected subcutaneously every 6 hour for 3 days over the calvaria of 4-6 week old 

female SCID-Beige mice as reported [224, 225].  Mice were sacrificed 10 hour after the 

final injection and calvariae were harvested. Tissues were fixed overnight in 10% 

neutral buffered formalin and high resolution μCT scan analyzed (SCANCO-μCT40) as 

described [122]. Subsequent to reconstruction and quantitations, tissues were 

decalcified in 14% EDTA, pH 7.4 for 3 days. After processing, specimens were paraffin 

embedded and 5 µM sections prepared. The sections were stained with hematoxylin 

and eosin to observe gross anatomy and trichrome to measure bone formation. For 

TRAcP staining and osteoclast measurements, slides were deparaffinized and 

rehydrated to water then incubated in Basic Stock Incubation Medium (112 mM 

anhydrous sodium acetate, 49 mM dibasic dehydrate sodium tartrate, 0.28% glacial 
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acetic acid) containing 1% Naphthol-Phosphate substrate (2% Napthol AS-BI 

Phosphate in 2-Ethoxyethanol) for 1 hour at 37°C. Slides were then transferred to Basic 

Stock Incubation Medium containing 250 µL Pararosaniline dye (5% pararosaniline dye 

in 2N HCl) and 250 µL of sodium nitrite solution (4% sodium nitrite in distilled water) at 

37°C and monitored for development of red stained osteoclasts. After developing, the 

slides were rinsed in distilled water and counterstained with Hematoxylin, blued, and 

aqueously mounted. The number of multi-nucleated, TRAcP positive osteoclasts were 

quantified from multiple tissue sections. Only multinucleated (>3 nuclei per cell) TRAcP 

positive cells were counted as osteoclasts. 

 In Vivo Osteogenesis Assays  2.2.10

For ex vivo calvarial organ cultures, calvariae were isolated from 4 day old Rag2-/- 

neonates and cultured on stainless steel wire mesh platforms in BGJb media containing 

0.1% BSA as described [226]. Calvariae were treated with 10 nM of PTHrP1-17 or 

PTHrP1-36 for 14 days. Ectopic ossicle formation assays were performed by 

subcutaneously implanting Gelfoam sponges loaded with 1 x 106 mouse mesenchymal 

stem cells into 6 week old male SCID/Beige mice. After 1 week recovery, daily 

subcutaneous injections of PTHrP peptides (40 µg/kg/day) were administered for 3 

weeks at which point ossicles were harvested for histology and imaging as described 

[227, 228].  Tibias were collected at the same time, fixed overnight, and decalcified in 

14% EDTA for 3 weeks.  Following processing and embedding, trichrome staining was 

used to identify areas of trabecular bone formation (blue/green staining of type I 

collagen).  Bone volume to total volume (BV/TV) was calculated by measuring 
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trabecular bone volume within a 1.0 mm long area starting 0.5 mm from the growth 

plate using ImageJ software [219]. 

 

2.3 Results 

 PTHrP is an MMP Substrate 2.3.1

To test if MMPs process PTHrP, we incubated recombinant PTHrP1-86 with MMP-3 

and assessed immediate (1 hour) cleavage products (Figure 2-3 A and B).  N-terminal 

amino acid sequencing identified that MMP-3 cleaved recombinant PTHrP to generate 

the mature form of the protein, PTHrP1-36 (Figure 2-3 C).  However, MALDI-TOF MS 

analyses demonstrated that PTHrP1-36 was further cleaved to distinct stable peptide 

products, including PTHrP1-17, 18-26 and 27-36 (Figure 2-3 D).  Kinetic analyses revealed 

that MMP-3 generated these main PTHrP products within 1 hour, and the PTHrP1-17 

peptide was detected at timepoints as short as 1 minute, indicating  rapid turnover by 

MMPs  (Figure 2-4, Figure 2-5).  We also examined the PTHrP processing activity of 

other MMPs present in the bone metastatic prostate cancer microenvironment and 

found that MMP-2, -7,  -9 and -13 could generate PTHrP fragments, and that all tested, 

with the exception of MMP-13, consistently generated PTHrP1-17
 (Table 2-3).  Thus, 

PTHrP is an MMP substrate.  
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Figure 2-3.  PTHrP is Processed by MMPs 

(A and B) Recombinant PTHrP1-86 (100 ng; arrow) was incubated for 1 hour with active MMP-3 (100 ng) 
and products analyzed by SDS-PAGE with Coomassie blue staining (A) and immunoblot analysis (B). 
Arrowhead indicates cleavage product. Molecular weight markers indicated in kilodaltons (kDa).  (C) N-
terminal amino acid sequencing revealed that MMP-3 cleaved (dashed arrow) PTHrP1-86 between amino 
acids 36 and 37. Arrows illustrate the amino acid sequence on either side of MMP-3 cleavage site. Amino 
acid position is indicated by numerical superscript.  (D) MALDI TOF/MS analyses established that further 
incubation (1 hour) of PTHrP with MMP-3 yields novel, stable PTHrP fragments, PTHrP1-17, PTHrP18-26, 
and PTHrP27-36. 
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Figure 2-4. Kinetics of MMP-3 Processing of PTHrP1-36  

(A) PTHrP1-36 (500 ng) and MMP-3 (100 ng) were added together in reaction buffer in the presence of 
EDTA (2 mM) to prevent enzymatic activity. Mass spectrometry at the 0 minute time point shows the 
percent intensity (% Intensity) of the PTHrP1-36 peak. M/Z denotes the mass to charge ratio.  (B-G) EDTA 
was added to separate reactions at indicated time points.  (H) Mass spectrum profile of MMP-3 enzyme 
(100 ng) and reaction buffer in the absence of PTHrP1-36. 
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Figure 2-5. MS/MS of MMP-3 Cleaved PTHrP Peptides  

(A-G) The 60 minute PTHrP1-36/MMP-3 reaction was analyzed by MS/MS to identify the amino acid 
content of the major remaining PTHrP peaks (B-G). M/Z indicates the mass/charge ratio.   

 

 

 

Table 2-3. MMP Generation of PTHrP Cleavage Products 

A list of the PTHrP products generated by multiple MMPs over the course of 1 hour. MMPs (100 ng/ml) 
were incubated with PTHrP1-36 for 1 hour at 37°C . Reactions were stopped via the addition of EDTA (2 
mM).  MS/MS analysis identified the major PTHrP products produced by each MMP at this time point. 

 

PTHrP Protein Sequence Start End M/Z MMP 

AVSEHQLLHDKGKSIQDLRRRFFLHHLIAEIHTAEI 
 

1 36 
 
4258.310838 
 

M
M

P
-2

 

M
M

P
-3

 

M
M

P
-7

 

M
M

P
-9

 

M
M

P
-1

3
 

AVSEHQLLHDKGKSIQD 
 

1 17 1904.982465 X X X X  

AVSEHQLLHDKGKSIQDLRRRFFLHH 
 

1 26 3167.708578 X X X X X 

AVSEHQLLHDKGKSIQDLRRRFFLHHLIAE 
 

1 30 3593.956413 X X   X 

LRRRFFLHH 18 26 1281.743954 X X X   

LRRRFFLHHLIAE 
 

18 30 1706.984512  X    

LIAEIHTAEI 
 

27 36 1109.620101 X X X X X 
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 MMP Generated PTHrP1-17 Has Biological Activity 2.3.2

To test if the MMP generated fragments of PTHrP retained biological activity, the 

major MMP generated PTHrP peptides, PTHrP1-17, 18-26, and 27-36 were synthesized and 

assessed for their biological effects on primary mouse mesenchymal stem cells (MSCs) 

and osteoblasts, which express and respond to signaling from the PTHrP receptor, 

PTH1R (Figure 2-6 A) [147].  Low concentrations (10 nM) of PTHrP1-36 are sufficient to 

activate PTH1R and promote ERK phosphorylation in these cell types [155].  Notably, 

treatment of MSCs and osteoblasts with 10 nM of PTHrP1-36 or PTHrP1-17, induced ERK 

phosphorylation within 5 minutes compared to control or scrambled peptide treated cells 

(Figure 2-6 B).  Increases in response to PTHrP18-26 and PTHrP27-36 were noted, but 

these increases were very subtle and variable in repeated experiments (data not 

shown).  We next looked at CREB phosphorylation since it is another downstream 

target of PTH1R signaling [229].  In contrast to our ERK analyses, we observed that 

phosphorylation of CREB was only induced by PTHrP1-36 (Figure 2-6 C).   

PTH1R GPCR activation also induces rapid cAMP and calcium flux responses 

primarily via Gs and Gq signaling respectively [230].  Again, only the addition of PTHrP1-

36 peptide induced cAMP (Figure 2-6 D), whereas both PTHrP1-36 and PTHrP1-17 

triggered increases in calcium flux (Figure 2-6 E).  No effects of the PTHrP18-26 or 

PTHrP27-36 MMP generated peptides on signaling were noted.  These differential effects 

for PTHrP1-17 on calcium flux versus cAMP production were recapitulated in HEK cells 

engineered to express the PTH1R receptor (Figure 2-7 A-C).  Given the reported roles 

of PTHrP3-34 and PTHrP7-34 to act as PTH1R antagonists, we also tested multiple 

combinations of MMP-generated peptides in combination with PTHrP1-36 to determine if  
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Figure 2-6. PTHrP1-17 Has PTH1R-Dependent Signaling 

(A) PTH1R expression in MC3T3 osteoblasts and primary MSCs treated in the absence or presence of 
PTHrP1-36 for 24 hour.  +ve indicates positive control (primary mouse osteoblasts) while –ve indicates 
negative non-template control. Molecular weight markers are illustrated in base pairs (bps). (B and C) 
ERK phosphorylation (pERK) and CREB phosphorylation (pCREB) in MC3T3 osteoblasts following 
treatment with PTHrP peptides (10nM for 5min in serum free media).  S0 and S10 represent the addition of 
serum free and 10% serum, respectively. SCR is scrambled peptide control. (D) cAMP production in 
MC3T3 osteoblasts treated with PTHrP peptides (10 nM for 15 minutes).  Asterisks denote statistical 
significance (*, p<0.05; ***, p<0.001).  Forskolin (10 μM for 15 minutes) was used as a positive control 
(+ve).  (E) Calcium flux analysis in MC3T3 osteoblasts after treatment with PTHrP peptides (10 nM).  Left, 
representative images illustrate fluorescence activity prior to (0 seconds) and following treatment with 
PTHrP peptides (60 seconds). Graphs show increase in fluorescence measured in individual cells 
(n=20/group) over time.  Arrow on graph indicates the time point at which the PTHrP peptides were 
added.  (F) Generation of PTH1R knockdown (shPTH1R) MC3T3 clones (A thru E) via shRNA 
transduction.  Scrambled control clones (shControl) were also selected for analysis.  +ve indicates 
positive control (primary mouse osteoblasts) while –ve indicates negative non-template control.  (G) ERK 
phosphorylation in shControl and shPTH1R cells (MC3T3 clone D) in response to PTHrP peptides (10 nM 
for 5 minutes).  (H) Calcium flux assays were performed in shControl and shPTH1R clones after 
treatment with PTHrP1-36 and PTHrP1-17 (10 nM). Left, representative images illustrate fluorescence 
activity following addition of PTHrP peptides (60 seconds). Graphs show increase in fluorescence (RFU) 
measured in individual cells (n=20/group) over time. 
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the peptides might antagonize cAMP induction in these HEK cells.  The addition of the 

PTHrP1-17, PTHrP18-26, PTHrP27-36, or all three together with PTHrP1-36 did not affect the 

induction of cAMP (Figure 2-7 D).   To determine if PTHrP1-17 effects were mediated via 

PTH1R, we generated multiple MC3T3 osteoblast shControl and shPTH1R clones 

(Figure 2-6 F).  The ability of PTHrP1-17 and PTHrP1-36 to induce ERK phosphorylation 

was abrogated in PTH1R knockdown cells vs. control shRNA (Figure 2-6 G).  Further, 

calcium flux in response to PTHrP1-17 and PTHrP1-36 was significantly reduced in PTH1R 

knockdown cells (Figure 2-6 H).  These effects on ERK phosphorylation and calcium 

flux were validated with a separate shPTH1R clone (Figure 2-8).  Thus, our data 

indicates that PTHrP1-17 has biological activity and activates select arms of PTH1R-

directed signaling circuits. 

 PTHrP1-17 Promotes MSC/Osteoblast Cell Migration 2.3.3

The biological effects of the MMP generated PTHrP fragments and PTHrP1-36 

were assessed in primary MSCs, MC3T3 osteoblasts, an osteoclast precursor cell line 

(RAW 264.7), and multiple cancer cell lines (PAIII, C4-2B, PC3-2M, SAOS-2).  There 

were no overt effects of these four PTHrP peptides on cell growth (Figure 2-9 A-G), and 

treatment of osteoblasts with PTHrP1-17 or PTHrP1-36 did not prevent tumor necrosis 

factor-α (TNF-α)-induced cell death (Figure 2-9 H) [231].  
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Figure 2-7. PTHrP1-17 Induces Calcium Flux but not cAMP in HEK Expressing PTH1R 

(A) HEK293 cells were transfected with PTH1R expression construct. +ve indicates positive control 
(primary mouse osteoblasts) while –ve indicates negative non-template control. Molecular weight markers 
are illustrated in base pairs (bp).  (B) cAMP levels in HEK-PTH1R expressing cells treated with PTHrP 
peptides (10 nM for 15 minutes).  Asterisks denote statistical significance (*, p<0.05; ***, p<0.001).  
Forskolin (10 μM for 15 minutes) was used as a positive control (+ve).  (C) Calcium flux analysis in 
MC3T3 osteoblasts after treatment with PTHrP or scrambled control peptides (10 nM). Graphs show 
increase in fluorescence measured in individual cells (n≥20/group) over time. Arrow on graph indicates 
the time point (20 seconds) at which the PTHrP peptides were added. (D) cAMP levels in HEK-PTH1R 
expressing cells treated with indicated combinations of PTHrP peptides (10 nM for 15 minutes). 

 

 

 
Figure 2-8. PTHrP1-17 Stimulates ERK Phosphorylation and Calcium Flux in MC3T3 Osteoblasts via 
PTH1R 

(A) ERK phosphorylation in shControl and shPTH1R cells (MC3T3 clone C) in response to PTHrP 
peptides (10 nM for 5 minutes).  (B) Calcium flux assays were performed in shControl and shPTH1R 
clones after treatment with PTHrP1-36 and PTHrP1-17 (10 nM). Left, representative images illustrate 
fluorescence activity following addition of PTHrP peptides (60 seconds). Graphs show increase in 
fluorescence (RFU) measured in individual cells (n≥20/group) over time.  Arrow on graph indicates the 
time point (20 seconds) at which the PTHrP peptides were added. 
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Figure 2-9. MMP-3 Generated PTHrP Peptides Do Not Affect Cell Growth or Survival 

(A-G) MSC, MC3T3 osteoblasts, RAW 264.7 monocytes, prostate cancer cells lines, PAIII, PC3-2M and 
C4-2B and the osteosarcoma cell line SAOS-2 were treated with PTHrP fragments (10 nM for 24 hours) 
conditions. MTT assay was used as a readout for cell number. Normal growth media (10% Serum: S10) 
was used as a positive control. (H) MC3T3 osteoblasts were treated with TNFα (5 ng/ml for 48 hours) in 
the presence or absence of 10nM PTHrP1-17 and PTHrP1-36. Asterisks denote significance (p<0.05) while 
n.s. indicates non-significant differences. 

 

 

However, in assessing the effects of the PTHrP peptides on MSC and osteoblast 

proliferation, treated cells acquired a migratory phenotype, characterized by a more 

elongated shape (Figure 2-10 A).  PTHrP has been shown to contribute to the 

recruitment of osteoblasts in vivo [26].  In keeping with this observation, both PTHrP1-36 

and PTHrP1-17 significantly increased migration of MSCs and MC3T3 cells (Figure 2-10 

B). These effects of PTHrP1-17 are PTH1R dependent, as knockdown of PTH1R 

abolished PTHrP1-17-induced osteoblast migration (Figure 2-10 C).  
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Figure 2-10. PTHrP1-17 Promotes MSC and Osteoblast Migration via PTH1R 

(A) Morphology of osteoblasts (MC3T3 cells) following treatment of PTHrP1-17 or PTHrP1-36 (10 nM for 1 
hour) was determined by staining with anti-actin antibody and confocal fluorescence microscopy.  (B) 
Migration of primary MSCs (left) and osteoblasts (MC3T3, right) treated with PTHrP1-17 versus PTHrP1-36 

(10 nM for 6 hours).  (C) The migration of shControl (left) and PTH1R knockdown (right, shPTH1R) 
MC3T3 osteoblasts following treatment with PTHrP1-17 versus PTHrP1-36 (10 nM for 5 hours). Cell number 
per 20x field in 5 micrographs per condition were counted. Positive control for (B) and (C) was media 
containing 1% serum (S1). Asterisk denotes statistical significance (p<0.05); n.s., non-significant 
differences. 

 

 PTHrP1-17 Promotes MSC/Osteoblast Differentiation 2.3.4

PTHrP1-36 is a potent regulator of osteoclastogenesis and bone resorption, but 

intermittent treatment of osteoblasts can promote osteoblast differentiation and bone 
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formation [232].  To assess effects of PTHrP1-17 on osteoblast differentiation and 

mineralization, primary MSCs derived from FVB mice were treated for 16 days with 

PTHrP1-17 or PTHrP1-36 in the presence or absence of osteogenic media. Surprisingly, 

treatment with PTHrP1-17 alone was sufficient to promote osteoblast differentiation of 

MSCs and significantly enhanced the effects of the osteogenic media as determined by 

Alizarin red staining and colorimetric analysis (Figure 2-11 A-B).  Consistent with the 

ability of PTHrP1-17 to promote mineralization, we also observed that PTHrP1-17 could 

induce the expression of Type I Collagen, a major component of the bone extracellular 

matrix (Figure 2-11 C).  The induction of an osteogenic gene profile in MSCs by PTHrP1-

17 was studied further using a RT2 Profiler PCR Array.  Here, changes in Gli1 and MMP-

8 gene expression, among others, were noted.  Additionally, some genes appear to be 

differentially regulated between PTHrP1-17 and PTHrP1-36, suggesting that MMP 

cleavage might produce PTHrP fragments, such as PTHrP1-17, that possess unique 

bioactivities (Table 2-4).  To test if these effects of PTHrP1-17 were manifest in vivo, we 

used a murine model of ectopic bone formation [228].  Primary MSCs were loaded onto 

Gelfoam scaffolds and implanted subcutaneously.  Mice were treated daily with vehicle 

control, PTHrP1-17, or PTHrP1-36 (40 μg/kg/day; intermittent treatment regimen for 21 

days [233]). High-resolution μCT scans of isolated ossicles revealed bone formation in 

the PTHrP1-17 and PTHrP1-36 treated animals (Figure 2-11 D).  Analysis of trichrome 

stained ossicle sections, which allows for the detection of collagen and bone 

(blue/green color), supported μCT scans and demonstrated a significant amount of 

osteoid in both PTHrP1-17 and PTHrP1-36 treated cohorts (Figure 2-11 E).  Underscoring 

this observation, trabecular bone volume measurements of hind limbs revealed 
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significantly more bone in the PTHrP1-17 and PTHrP1-36 treated mice compared to 

control (Figure 2-12 A and B).  

 

 

Figure 2-11. PTHrP1-17 Promotes MSC and Osteoblast Differentiation 

(A) Alizarin red staining of primary MSCs (n = 3) treated with PTHrP1-17 versus PTHrP1-36 (10 nM every 
other day for 16 days) in either normal media or in osteogenic media.  (B) Quantitation of alizarin red 
intensity in control and osteogenic media (OM) treated cells treated with the indicated PTHrP peptides. 
(C) Analysis of Type I Collagen expression in MC3T3 osteoblasts treated with PTHrP1-17 or PTHrP1-36 (10 
nM for 48 hours). RT qPCR was used to quantitate the relative fold change in expression.   (D) 
Representative μCT scans of ectopic ossicles in control, PTHrP1-17 or PTHrP1-36 treated mice (n=3/group, 
4 implants/mouse). Scale bars are 1 mm. Dashed box represents area of magnification.  (E) Trichrome 
stained sections derived from control, PTHrP1-17 or PTHrP1-36 treated mice were quantitated for the 
amount of bone matrix (blue-green color).  Dashed box represents area of magnification.  Asterisks 
denote significance (*p<0.05; *** p<0.001); n.s., non-significance.   
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Figure 2-12. PTHrP1-17 Promotes Bone Formation 

(A, B). BV/TV analysis of trabecular bone formation in tibias derived from ectopic ossicle bearing mice 

(n=3/group) treated with saline (Control), PTHrP1-17 or PTHrP1-36. Dashed box (A) represents area of 

magnification.  Graph (B) indicates bone volume to tissue volume measurements (BV/TV).   

 

 

 PTHrP1-17 Does Not Affect Osteoclastogenesis and Bone Resorption 2.3.5

PTHrP1-36 promotes bone resorption by inducing the expression of factors such 

as RANKL [229, 234].  Treatment of whole bone marrow co-cultures with PTHrP1-36 

revealed increased RANKL expression as expected, but this response was not 

observed following treatment with PTHrP1-17 (Figure 2-13 A). We also noted that 

PTHrP1-36 appeared to suppress the expression of osteoprotegerin (OPG), which 

inhibits osteoclastogenesis (Figure 2-13 A).  Real time PCR analyses confirmed these 

observations and demonstrated PTHrP1-36 significantly enhanced RANKL expression 

while suppressing OPG (Figure 2-13 B-C). PTHrP1-17 had no effect on the expression of 

either of these genes.  Taken together, the ratio of average RANKL:OPG transcripts 

was lower in PTHrP1-17 versus PTHrP1-36 treated cells (1.61 vs. 15.03, respectively). 

These findings suggest that PTHrP1-17 does not contribute to osteoclastogenesis.  To 
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test this, we performed in vitro osteoclast formation assays using whole bone marrow 

co-cultures.  As expected, PTHrP1-36 induced robust osteoclast formation, but  

 

Table 2-4. Changes in Osteogenic Gene Expression in PTHrP1-17 Treated MSCs 

Gene 
PTHrP1-17 PTHrP1-36 

Fold Regulation Fold Regulation 
Gli1 3.29 2.02 

Col2a1 2.2 1.68 

Egf 1.74 1.39 

Tnf 1.66 -1.05 

Dlx5 1.61 1.62 

Gusb 1.44 1.54 

Csf2 1.41 -1.25 

Tgfb3 1.4 1.31 

Col1a1 1.38 1.33 

Bmp4 1.34 1.35 

Flt1 1.34 -1.03 

Tgfb2 1.33 1.12 

Anxa5 1.27 1.38 

Runx2 1.25 1 

Itga3 1.2 1.31 

Tnfsf11 1.2 1.87 

Ctsk 1.19 1.31 

Cd36 1.14 1.2 

Fgfr2 1.14 1.04 

Tgfbr2 1.14 -1.18 

Col3a1 1.13 -1.15 

Igf1r 1.12 -1.11 

Alpl 1.1 -1.11 

Col1a2 1.1 1.21 

Bmpr1a 1.07 1.03 

Bglap 1.06 1.19 

Icam1 1.06 1.83 

Smad1 1.06 -1.07 

Col5a1 1.04 -1.07 

Fgf2 1.04 -1.1 

Pdgfa 1.04 1.29 

Bmp1 1.03 -1.13 

Smad4 1.02 -1.07 

Tgfb1 1.02 1.09 

Tgfbr3 1.01 -1.31 

Twist1 1.01 1.02 

Gapdh 1.01 -1.05 

Nfkb1 -1 -1.06 

B2m -1.01 1.05 

Acvr1 -1.02 -1.24 

Smad2 -1.02 1.04 

Sox9 -1.02 1.26 

Vegfb -1.02 -1.09 

Actb -1.02 -1.11 

Itga2b -1.03 1.19 

Tgfbr1 -1.03 -1.13 

Col4a1 -1.04 -1.07 

Itgb1 -1.04 -1.06 
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Table 2-4. (continued) 

Gene 
PTHrP1-17 PTHrP1-36 

Fold Regulation Fold Regulation 
Sost -1.04 -1.55 

Itgav -1.05 -1.05 

Hsp90ab1 -1.06 -1.1 

Bgn -1.08 -1.12 

Bmpr2 -1.08 -1.48 

Smad5 -1.08 1.02 

Serpinh1 -1.09 -1.08 

Chrd -1.11 -1.39 

Vdr -1.11 -1.2 

Bmp2 -1.12 -1.44 

Cdh11 -1.12 -1.32 

Col10a1 -1.12 -1.12 

Igf1 -1.13 -1.39 

Mmp2 -1.14 -1.17 

Fn1 -1.16 -1.47 

Csf1 -1.18 -1.18 

Vegfa -1.22 -1.09 

Fgfr1 -1.24 -1.23 

Ihh -1.25 1.16 

Nog -1.26 1.13 

Mmp9 -1.28 1.01 

Fgf1 -1.29 -1.84 

Bmp3 -1.32 1.77 

Bmp7 -1.32 1.16 

Gdf10 -1.32 1.16 

Spp1 -1.32 -1.16 

Comp -1.38 -2.61 

Vcam1 -1.43 -1.26 

Bmpr1b -1.5 -1.78 

Smad3 -1.51 -1.51 

Bmp6 -1.68 -1.7 

Phex -1.8 -1.53 

Mmp10 -1.96 1.04 

Ahsg -2 1.12 

Itga2 -2.04 -1.31 

Mmp8 -2.14 -2.64 

Sp7 -2.21 1.52 

Itgam -2.29 2.1 

Csf3 -2.45 -1.95 

Col14a1 -3.05 -2.04 

Bmp5 -3.41 1.13 

 

 

PTHrP1-17 had no effect on osteoclastogenesis (Figure 2-13 D-E).  To determine if this 

differential effect of PTHrP1-17 was also manifest in vivo, a calvarial injection assay was 

performed. In this model, repeated injections of PTHrP1-36 (every 6 hours; continuous 

treatment regimen) over the calvaria promotes extensive osteolysis [225].  Mice 
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continuously treated with PTHrP1-36 displayed areas of extensive bone resorption while 

those injected with PTHrP1-17 did not (Figure 2-13 F).  TRAcP staining confirmed that 

there were significant increases in bone-lining osteoclasts in the PTHrP1-36 treated mice 

compared to PTHrP1-17 and control groups (Figure 2-13 G).  Finally, the differential 

effects of PTHrP1-17 and PTHrP1-36 on osteoclast activity were further supported by 

neonatal calvaria ex vivo assays.  We found that calvaria treated with PTHrP1-36 

displayed significant degradation of the calvaria, and that there was no evidence of 

bone formation (Figure 2-14 A).  In contrast, PTHrP1-17 treatment significantly increased 

bone formation (Figure 2-14 B).  Thus, PTHrP1-17 selectively promotes osteogenesis. 

 PTHrP1-17 is Generated by Cancer Cells 2.3.6

To address if the PTHrP1-17 peptide could be detected in biological samples, 

PTHrP1-17-specific antibodies were generated for immunoprecipitation and downstream 

mass spectrometry (Figure 2-15 A).  The lead antibody, clone 2D11 (CPTC-PTHrP-1), 

detects PTHrP1-17 and PTHrP1-36 at concentrations as low as 10ng but did not cross 

react with the PTHrP27-36 peptide (Figure 2-15 B). Immunoprecipitation followed by mass 

spectrometry (IP-MS) [235, 236] allowed for the detection of, and delineation between, 

PTHrP1-17 and PTHrP1-36 in multiple PTHrP peptide mixtures (Figure 2-15 C).  
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Figure 2-13. PTHrP1-17 Does Not Stimulate Osteoclastogenesis and Bone Resorption 

(A) Expression of RANKL and OPG in response to PTHrP1-17 and PTHrP1-36 treatment (10 nM for 48 
hours) in primary bone marrow cultures (1

o
BMC).   PTHrP1-36 stimulated MC3T3 osteoblasts were used 

as a positive control (+ve), while non-template was used as a negative control (-ve).   (B and C) RT-qPCR 
analyses of effects of PTHrP1-17 or PTHrP1-36 on RANKL (B) and OPG (C) expression in bone marrow 
cultures (n=3/group). (D and E)  Bone marrow co-cultures were treated for 5 days with PTHrP1-17 or 
PTHrP1-36 (10 nM). Recombinant RANKL was used as a positive control (+ve). The number of TRAcP 
positive osteoclasts per field of view (D) were counted in each well (E).  (F and G) The number of 
multinucleated osteoclasts/μm of bone (arrows, F) was determined in multiple tissue sections derived 
from animals in each group (n=3/group) (G). Asterisks denote statistical significance (*, p<0.05; **, 
P<0.01); n.s., non-significant values.  

 

 
Figure 2-14. PTHrP1-17 Increases Bone Formation in Ex Vivo Calvaria Organ Cultures 

(A and B)  Neonatal ex vivo hemi-calvaria (n=3/group) were treated daily with control media, or media 

containing PTHrP1-17 or PTHrP1-36 (10 nM for 14 days). The area of new bone formation (distance 

between the solid and dashed line; (A) was measured in multiple sections for each condition (B). 

Representative images from each group are illustrated. Asterisk denotes significance (p<0.05); n.s., non-

significant differences. 
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Figure 2-15. MMP Generation of PTHrP1-17 in Cancer Cells 

(A) Antibodies were raised against PTHrP1-17 and the ability of isolated clones to detect the peptide was 
measured by ELISA.  (B) Dot blot titration of clone 2D11 against 100, 50 and 10 ng of PTHrP1-17, 
PTHrP27-36 and PTHrP1-36.  (C) IP-MS detection of PTHrP1-17 after immunoprecipitation with 2D11 from an 
equimolar mixture of PTHrP1-17, PTHrP18-26, PTHrP27-36 and PTHrP1-36 peptides. The peak detected at 25 
minute corresponds to PTHrP1-17.  (D and E) IP-MS of PTHrP1-17 from the conditioned media of the 
prostate cancer cell line, PAIII treated in the absence (D) or presence (E) of the broad spectrum MMP 
inhibitor GM6001.  (F and G).  IP-MS of PTHrP1-17 from the conditioned media of the human 
osteosarcoma cell line SAOS-2.  SAOS-2 cells were treated in the absence (F) or presence of 
recombinant MMP-3 (G).  The blue lines in D-G represent endogenous PTHrP1-17 at the +3 charge state.  

 

 

PTHrP is expressed by a number of cancer cell lines, including those of a 

prostate and osteosarcoma origin (Figure 2-16).  We collected conditioned media from 

PTHrP-expressing PAIII rat prostate adenocarcinoma cells incubated in the presence or 

absence of a broad-spectrum MMP inhibitor, GM6001.  IP-MS of PAIII conditioned 

media clearly demonstrated the presence of PTHrP1-17 and that MMP inhibition reduced 

the amount of this product (Figure 2-15 D and E).   
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Figure 2-16. Expression and Quantitation of PTHrP1-17 in Cancer Cells using SIS Peptides 

(A) Expression of PTHrP in by the prostate cancer cell line PAIII. MC3T3 osteoblasts were used as a 
positive control (+ve), while non-template was used as a negative control (-ve). 18S was used as a 
loading control. Molecular weight markers are illustrated in base pairs (bp).  (B and C).  IP-MS of PTHrP1-

17 from the conditioned media of PAIII cells treated in the absence (D) or presence (E) of the broad 
spectrum MMP inhibitor GM6001. Graphs include the SIS1-17 internal standards that allow for the 
determination of PTHrP1-17 endogenous levels. For graphs B, C, E and F, the blue line represents 
endogenous PTHrP1-17 at the +3 charge state while the green line represents the stable isotope labeled 
standard (SIS) PTHrP1-17 peptide at the +3 charge state (20fmol per injection).  (D) Expression of PTHrP 
in by the osteosarcoma cell line SAOS-2. A549 cells were used as a positive control (+ve), while non-
template was used as a negative control (-ve). 18S was used as a loading control. Molecular weight 
markers are illustrated in base pairs (bp).  (E and F).  IP-MS of PTHrP1-17 from the conditioned media of 
the prostate cancer cell line, PAIII cells were treated in the absence (D) or presence (E) of recombinant 
active MMP-3 (100 ng/ml overnight). Graphs include the SIS1-17 internal standard that allowed for the 
determination of PTHrP1-17 endogenous levels.  
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The incorporation of stable isotope labeled standards (SIS1-17) allowed for the 

quantification of peak areas from IP-MS experiments and demonstrated GM6001 

treatment reduced the amount of PTHrP1-17 by 77% (PaIII = 0.13, PaIII+GM6001 = 0.03; 

Figure 2-16 B and C).  Conversely, despite the detection of PTHrP transcripts in SAOS-2 

osteosarcoma cells, levels of PTHrP1-17 in SAOS-2 conditioned media were low 

compared to those in PAIII (Figure 2-15 F). However, overnight incubation of SAOS-2 

cells with recombinant exogenous MMP-3 resulted in the enhanced detection of the 

PTHrP1-17 peptide (Figure 2-15 G).  Use of SIS1-17 demonstrated that the addition of 

MMP-3 increased PTHrP1-17 levels by 400% (SAOS-2 = 0.004, SAOS-2+MMP-3 = 0.03, 

Figure 2-15 E and F).  These data show that PTHrP1-17 can be biologically generated by 

cancer cells and in turn this novel MMP generated product can selectively promote 

osteogenesis.  

2.4 Discussion 

MMPs regulate bone matrix turnover as well as the bioactivity and bioavailability of 

non-matrix factors such as RANKL and TGFβ that are important for bone remodeling. 

Here we have shown that MMPs also process PTHrP1-36 to yield a distinct, biologically 

active peptide, PTHrP1-17, which can be generated by cancer cells. Notably, PTHrP1-17 

promotes osteogenesis yet has no effect on osteoclast formation and bone resorption. 

This suggests that MMP-directed cleavage of PTHrP1-36 is a new means for post-

translationally regulating the potent osteolytic effects of this hormone, which has 

important implications for our understanding of bone remodeling and skeletal 

malignancies (Figure 2-17). 
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Figure 2-17. PTHrP1-17 Working Model in Bone Metastatic Cancer 

(A) The initiation of the vicious cycle involves the secretion of PTHrP1-36 from bone metastatic prostate 
cancer cells which leads to the induction of RANKL, osteoclastogenesis and the release of growth factors 
from the bone matrix such as TGFβ that enhance tumor survival.  MMP expression is also heightened at 
the tumor bone interface.  (B) Heightened MMP expression leads to the generation of PTHrP1-17 that in 
turn can promote osteogenesis while preventing osteoclastogenesis.  Further, PTHrP1-17 can promote the 
recruitment of MSCs that can contribute to the osteogenic response. 

 

   

Previous studies have shown that PTHrP1-36 is susceptible to proteolytic 

processing, but MMP generated PTHrP1-17 appears to be a distinct product.  

PSA/kallikrein-3 and neprilysin have both been shown to generate PTHrP1-23 [168, 169]. 

Our mass spectrometry data show that a 1-26 fragment can be generated by MMPs but 

that this species is rapidly reduced to PTHrP1-17.  Comparative kinetic analyses between 

enzymes capable of processing PTHrP1-36 may reveal the dominant protease involved, 

but it is likely that spatial and temporal factors dictate which protease controls PTHrP1-36 

cleavage.  Further, serine proteases and MMPs may reciprocally activate each other. 

For example, PSA can regulate MMP-2 activity while, conversely, MMPs can activate 
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kallikreins, suggesting that proteolytic cascades could converge to process PTHrP1-36 

[237, 238].  It is also possible that PTHrP1-36 can induce the expression of MMPs that in 

turn process the hormone. For example, PTHrP is known to induce the expression of 

MMP-2, -3 and -9 in growth plate chondrocytes [239]; the induction of MMPs by PTHrP1-

36 may result in a feedback loop that dampens osteolytic stimuli once bone resorption 

has been initiated.  Further, PTHrP has also been shown to induce the expression of 

MMP-13 [240], but interestingly, our data show MMP-13 does not yield a PTHrP1-17 

fragment, again pointing to distinct roles for specific proteases in regulating PTHrP1-36 

activity.  

Adding further complexity to PTHrP regulation, a recent report has demonstrated 

that serum levels of PTHrP12-48 are a prognostic marker for bone metastatic breast 

cancer [175], indicating that a PTHrP1-11 fragment is also generated.  Our mass 

spectrometry analyses show that MMPs do not reduce PTHrP further than PTHrP1-17, 

implying that other proteases must be involved in generating this shorter species [128]. 

Whether PTHrP1-11 retains biological activity is undetermined, but this is possible given 

the importance of the first two N-terminal amino acids in activating PTH1R [128].  Our 

studies indicate that PTHrP1-17 retains biological activity and PCR array data specifically 

indicate that treating MSCs with PTHrP1-17 induces changes in osteogenic gene 

expression similar to PTHrP1-36.  Notably, both Gli1 and MMP-8 expression were 

downregulated.  Interestingly, Gli1 is a Hedgehog (Hh) signaling transcription factor that 

has previously been implicated with the expression and activation of various MMPs 

[241-243], and the related Gli2 transcription factor is involved in the expression of 

PTHrP [244, 245].  PTHrP1-17 treatment also resulted in decreased expression of bone 
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morphogenetic protein 5 (BMP5), while BMPs 1, 2, 3, 5, 6, and 7 remained largely 

unchanged.  It is unclear why BMP5, which together with other BMPs are involved in 

osteogenesis, would be downregulated, however there are reports implicating BMP5 in 

osteoclast formation [246].  Given the predominantly osteogenic activities of PTHrP1-17, 

reduced BMP-5 expression may help evade osteoclastogenesis.  It is also likely that 

some variations in osteogenic gene expression could be a result of the phasic nature of 

osteogenic gene expression during osteogenic differentiation [247, 248].  Importantly, 

our results also indicate that PTHrP1-17 and PTHrP1-36 induce differential gene 

expression.  Particularly evident is the PTHrP1-17 induced -2.29 fold decrease in Itgam 

expression whereas PTHrP1-36 treatment resulted in a 2.10 fold increase.  Itgam codes 

for CD11b which has roles in regulating osteoclastogenesis of macrophage/monocyte 

lineage precursors [249].  Although CD11b expression from a mesenchymal lineage is 

not traditionally associated with osteoclast formation, the formation of osteoclasts is 

dependent on activity of mesenchymal lineage cells such as osteoclasts.  Decreased 

expression of CD11b by MSCs in response to PTHrP1-17 might be one factor 

contributing to the reduced osteoclast formation seen in our studies of PTHrP1-17; 

however, these cellular interactions would require further study.  Additionally, it is easy 

to speculate that additional genes and genetic programs are differentially regulated by 

PTHrP1-17 and PTHrP1-36 as well. 

PTHrP1-36 is generated from a full-length form of PTHrP of up to 173 amino acids. 

We focused exclusively on peptides generated from PTHrP1-36, however, products 

generated from the remaining 37-173 sequence of PTHrP can impact bone remodeling 

[128, 250].  For example, osteostatin is generated via cleavage of PTHrP at amino acids 
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107-111/139 and is a potent inhibitor of osteoclastogenesis [187, 251].  The proteases 

responsible for generating this fragment have not been identified, but it is tempting to 

speculate that MMP generation of osteogenic PTHrP1-17 coupled with the generation of 

osteostatin would further promote the anabolic effects of PTHrP following the resorptive 

phase.  It is also noteworthy that PTHrP87-107 contains a nuclear localization sequence 

that supports osteoblast survival and matrix mineralization [252].  Whether this fragment 

is generated by MMPs remains to be explored. Understanding the precise temporal 

sequence of how PTHrP is cleaved is needed to define the complex roles it plays in 

regulating the catabolic and anabolic phases of bone remodeling.  

PTHrP1-36 activation of PTH1R leads to cAMP generation and calcium flux [155]. 

Our studies show that PTHrP1-17 rapidly induces calcium flux and ERK phosphorylation 

in osteoblasts but unlike PTHrP1-36, does not affect cAMP generation or CREB 

phosphorylation.  Previous studies have shown that ERK phosphorylation is enhanced 

via the PKC pathway and promotes osteogenic differentiation [253].  Additionally, 

PTH1R-induced cAMP triggers CREB phosphorylation and the induction of RANKL 

[229].  In contrast to PTHrP1-36, PTHrP1-17 has no effect on RANKL expression in 

osteoblasts.  Thus, we posit that PTHrP1-17 activation of PTH1R leads to osteoblast 

differentiation and bone formation by promoting calcium flux and ERK phosphorylation. 

In accord with this notion, the N-terminal domain of PTHrP and PTH can stimulate 

calcium flux via PTH1R [254].  In contrast, other studies have shown that N-terminal 

fragments of PTHrP and PTH can stimulate PKA and cAMP activation [155, 160], yet 

this effect is not observed in PTHrP1-17-treated primary bone cell cultures and osteoblast 

cell lines.  In agreement with our findings, a recent study demonstrated that PTHrP1-16 
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does not result in cAMP production but interestingly also had no effect on calcium flux 

using PTH1R over expressing CHO-K1 cells [155].  This may indicate that either the 

glutamine at amino acid position 17 in PTHrP is an important mediator of calcium flux or 

that PTH1R activates different signaling effectors in osteoblasts.  Based on PTH1R 

knockdown studies it is clear that the effects of PTHrP1-17 are dependent on PTH1R and 

not on another GPCR such as endothelin-A [255, 256].  

 Our discovery of MMP processing of PTHrP has potentially important clinical 

implications.  For example, bone metastatic prostate cancer contains both areas of 

osteolysis and aberrant bone formation [257].  Osteosarcoma and prostate cancer cells 

are now revealed to generate both PTHrP1-36 and PTHrP1-17, which could explain their 

divergent effects on osteogenesis rather than osteolysis.  This is further supported by 

the ability of both PTHrP1-36 [26, 258] and PTHrP1-17 to recruit MSCs and osteoblast 

precursors (Figure 2-10). PTHrP1-36 expression is highly associated with osteolytic 

lesions such as bone metastatic breast cancer and multiple myeloma.  While PTHrP1-17 

may also be generated in these skeletal malignancies, the overall balance of osteolytic 

to osteogenic factors in these scenarios favors osteolysis.  Our current research centers 

on the detection of PTHrP1-17 in the serum of prostate cancer patients with primary, 

castration resistant, and metastatic castration resistant prostate cancer to determine 

whether PTHrP1-17 can be used as a potential readout for occult bone metastases or 

progression of bone metastatic disease.  We are also using genetic approaches to 

eliminate MMPs in the host and cancer cell compartments to identify the key MMP 

responsible for the generation of PTHrP1-17 in vivo.  Finally, the ratio of PTHrP1-36 to 

PTHrP1-17 has implications for other diseases such as osteoporosis, and may potentially 
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explain the differential effects of chronic versus intermittent PTHrP administration on 

bone resorption versus formation. 
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Chapter 3. Prostate Cancer-derived Matrix Metalloproteinase-3 
Promotes Tumor Growth in Bone 

 

 

3.1 Introduction 

The matrix metalloproteinases (MMPs) are a family of 17 secreted and 6 

membrane bound zinc dependent endopeptidases traditionally associated with the 

ability to degrade extracellular matrix (ECM) components [259].  Since the first MMP 

was discovered to play a role in tadpole metamorphogenesis in 1962 [260], steady 

progress has been made in understanding how these enzymes are secreted and 

activated to influence critical biological processes such as embryogenesis and wound 

repair.  MMPs are also associated with diseases such as cancer, where, based on their 

ability to degrade the extracellular matrix rich basement membrane, they were initially 

linked to promoting invasion and metastasis.  However, it has become evident that 

MMPs are not simply extracellular matrix “bulldozers” and in fact collaborate with other 

proteases to exquisitely regulate normal physiological and cellular processes including 

differentiation, proliferation, and death [261].    

 Matrix Metalloproteinase Family and History 3.1.1

Historically, the MMP family has been classified into 6 groups: collagenases, 

gelatinases, stromelysins, matrilysins, and membrane type (MT).  These classifications 

were primarily based on their original substrate specificities, sequence similarities, or 

domain organization patterns (Table 3-1).  Structurally, a prototypical MMP consists of 
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an 80 amino acid pro-peptide, a 170 amino acid catalytic domain, a linker peptide (hinge 

region), and a 200 amino acid hemopexin domain [262].  With the exception of 

membrane type MMPs which remain anchored to the plasma membrane, the majority of 

MMPs are secreted as inactive zymogens referred to as proMMPs [259, 263].  Latency 

is maintained by the “cysteine switch” mechanism [264], where intramolecular 

interactions between a zinc molecule in the catalytic domain’s active site and the 

conserved pro-peptide domain cysteine switch motif “PRCGXPD” inhibit proteolytic 

activity.  Activation is achieved by delocalization of the pro-domain from the catalytic 

site.  This can occur either by proteolytic cleavage of the pro-domain or by allosteric 

activation where the pro-domain is displaced without cleavage [265, 266].  The 

conformational change leads to dissociation of the cysteine from the zinc molecule and 

replaces it with water [264].  Proteases such as plasmin have been implicated in the 

activation of numerous proMMPs, including proMMP-1, proMMP-3, proMMP-7, 

proMMP-9, proMMP-10, and pro-MMP-13 [267].  Active MMPs can also to contribute to 

the processing and activation of additional proMMPs [268]. 

 

Figure 3-1. MMP Structural Domains 

The majority of MMPs, including MMP-3, are comprised of a Signal Peptide (SP), Pro-Peptide, Catalytic 

Domain, Hinge Region, and Hemopexin Domain.  Interactions between the catalytic and pro-peptide 

domains maintain proMMPs in their latent zymogen state.   
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The catalytic domain has traditionally been regarded as the functional portion of 

the enzyme since it is the domain responsible for substrate cleavage.  Additionally, the 

catalytic domain contributes to substrate specificity via its active site cleft depth and sub 

site pockets, along with secondary substrate binding exosites [269].  When a substrate 

is bound in the catalytic domain, a water molecule is displaced from the catalytic zinc 

ion, leading to protonation of a glutamate residue at the active site and nucleophilic 

attack of the carbonyl group of the peptide bond and cleavage of the substrate [262].  A 

linker region connects the catalytic domain with the hemopexin domain.  The 

hemopexin domain is important for the proteolytic activities of MMPs and is required for 

collagenases to cleave the collagen triple helix [270].  It can also contribute to substrate 

specificity [271].  Furthermore, several novel non-catalytic functions have also recently 

been ascribed to the hemopexin domains of MMP-3, MMP-7, and MMP-9 [272-274].   

MMP activity is regulated by the endogenous expression of specific 

metalloproteinase inhibitors called tissue inhibitors of metalloproteinases (TIMPs) [268, 

275].  TIMPs bind and insert into the MMP catalytic domain of at a 1:1 stoichiometry 

[270]. Four TIMPs (TIMP-1, TIMP-2, TIMP-3, and TIMP-4) have been identified, and 

there is some evidence suggesting that modulating their expression could be used to 

therapeutically target MMPs, however obtaining selectivity would likely prove difficult 

due to broad spectrum activity [268].  Additionally, TIMPs possess their own 

complicated biological activities independent of MMP inhibition.  For example, TIMP-1 

and TIMP-2 have both been associated with mitogenic activities of certain cell types, 

whereas TIMP-3 has been shown to be pro-apoptotic in certain tumor cells [276].  

Therefore, the therapeutic use of TIMPs would need to be approached cautiously. 
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Table 3-1.  The Matrix Metalloproteinase Family and Groups 

Group MMP Enzyme Name 
MW kDa 
(latent) 

MW kDA 
(active) 

Collagenases 

MMP-1 
Collagenase-1/Interstitial 

collagenase 
55 45 

MMP-8 
Collagenase-2/Neutrophil 

collagenase 
75 58 

MMP-13 Collagenase-3 65 55 

Stromelysins 

MMP-3 Stromelysin-1 57 45 

MMP-10 Stromelysin-2 57 44 

MMP-11 Stromelysin-3 51 44 

Gelatinases 

MMP-2 Gelatinase-A 72 66 

MMP-9 Gelatinase-B 92 86 

Matrilysins 

MMP-7 Matrilysin-1/Pump-1 28 19 

MMP-26 Matrilysin-2 28 18 

Membrane Type 

MMP-14 MT1-MMP 63 n/a 

MMP-15 MT2-MMP 72 n/a 

MMP-16 MT3-MMP 64 n/a 

MMP-17 MT4-MMP 70 n/a 

MMP-24 MT5-MMP 60 n/a 

MMP-25 MT6-MMP/Leukolysin 62 n/a 

Others 

MMP-12 Macrophage elastase 54 45, 22 

MMP-19 n/a 57 45 

MMP-20 Enamelysin 54 22 

MMP-23 CA-MMP 
Unknown 

(44?) 
Unknown 

(34?) 

MMP-28 Epilysin 60 50 
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 MMP Inhibitors and Clinical Trials 3.1.2

Because of their association with diseases like rheumatoid arthritis and cancer, 

where high expression often correlates with poor patient prognosis, MMPs were 

identified as candidates for pharmacological inhibition [261].  This led to the 

development of multiple broad spectrum MMP inhibitors.  The first generation of MMP 

inhibitors were peptidomimetic, designed by mimicking the protein structure of collagen 

at the active site, and incorporated hydroxamate zinc binding groups [123].  However, 

alternative zinc binding groups such as carboxylates, hydrocarboxylates, and 

sulfhydryls, which coordinated rather than chelated the zinc, were eventually substituted 

for hydroxamate to provide greater flexibility and reversibility of the inhibitors.  Despite 

efficacious anti-cancer activities in several pre-clinical in vivo models, the majority of 

these inhibitors failed to meet their endpoints in clinical trials [277, 278].  Reasons for 

the unsuccessful outcome are multifold, ranging from an inability to obtain an accurate 

readout for activity and efficacy to the actual clinical trial design and patient selection 

criteria [123, 277].  These difficulties were further complicated by an incomplete 

understanding of MMP biology as well as the design of the predominantly broad 

spectrum nature of the inhibitors themselves [277].  Following the unsuccessful clinical 

trials, a new approach was taken to study MMPs individually in order to improve 

targeting strategies.  This new approach led to the generation of non-peptidomimetic 

inhibitors that took advantage of a priori knowledge of specific MMP active site 3D 

conformations and improved specificity [123].  Subsequent progress has been made 

applying a mechanism based targeting approach, leading to modern inhibitors like SC-

3BT, which has been shown to reduce liver metastasis and improve survival in 
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preclinical mouse studies of T-cell lymphoma via selective inhibition of MMP-2 and 

MMP-9 [279].  Additional strategies including tetracycline derivatives and natural 

products have led to the development of inhibitors like Periostat® (FDA approved for 

prevention of periodontitis) and Neovastat (dual MMP/VEGF inhibitor).  Together, the 

recent progress in developing selective inhibitors by taking advantage of improved 

knowledge of MMP biology and advances in chemistry provides rationale for continued 

efforts toward MMP inhibition in cancer [123].   

 Rationale to Study Specific MMPs Individually 3.1.3

An important conclusion from the early MMP inhibitor studies and clinical trials 

was that MMP biology is not as distinct as initially thought.  Many of the unexpected 

side effects observed with the first generation of MMP inhibitors could be attributed to 

their broad spectrum nature.  For example, batimastat (BB-94) inhibited MMP-1, -2, -3, -

7, and -9 [280].  It is now recognized that many MMPs possess protective activities in 

addition to their causal roles during cancer progression [281].  Furthermore, despite 

their originally described role in extracellular matrix degradation, MMP substrates are 

much more diverse than initially known and include many non-matrix substrates such as 

growth factors, cytokines, and hormones [261].  Today, the non-matrix MMP substrate 

repertoire now significantly out numbers the matrix protein substrate repertoire [282].   

There are currently more than 600 identified MMP substrates, and cleavage of 

these substrates is often essential for normal physiology [283].  Although the 

mechanisms are not fully understood, it is clear that numerous factors including their 

catalytic activities, non-catalytic functions, and temporal/spatial expression can 

contribute to the mixed roles observed for MMPs during tumorigenesis [284]. 
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Consequently, MMPs need to be studied individually and with respect to specific tissues 

and/or cancers to develop selective inhibitors that will successfully treat disease.  

Researchers have looked at the roles of individual MMPs in various cancers such as 

breast and skin tumors where both pro- and anti-tumorigenic roles have been observed.  

As an example, MMP-7 has been shown to contribute to mammary tumorigenesis [57].  

In contrast, ablation of MMP-8 resulted increased incidence of skin tumors in mice, 

suggesting that it offers protective roles [285].  Though studies of MMP-3 in cancer have 

been limited, the current knowledge of MMP-3 serves as a textbook example of the 

evolving field of MMP biology.  

 Matrix Metalloproteinase-3 3.1.4

 Discovery, Structure, and Mutants 3.1.4.1

MMP-3 was first identified in 1985 as a 51,000 kDa proteinase purified from 

rabbit synovial fibroblasts treated with tumor promoting agents such as 12-O-

Tetradecanoylphorbol-13-acetate (TPA), cytochalasin B, and poly-HEMA [286].  In 

parallel, another group detected a highly expressed cDNA from transformed rat 

fibroblasts that went on to also be confirmed as MMP-3 [287].  Additional supporting 

evidence linking MMP-3 with cancer was demonstrated using the classic two stage 

initiation-promotion model of carcinogenesis, where a single dose of 7,12-DMBA 

followed up with repeated applications of TPA leads to the development of squamous 

cell carcinomas.  Under these conditions, expression of MMP-3 was detected using in 

situ hybridization in 5 out of 6 tumors but not in benign papillomas [288].  Subsequent to 

these initial findings, many other studies have shown the correlation between MMP-3 

and tumor progression [289, 290].  
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The utilization of animal models has greatly improved our understanding of 

MMPs in pathological situations as well as normal physiology.  Understanding roles for 

MMPs in normal biology can help to identify those most suitable for inhibition and 

potentially avoid MMPs that might cause undesirable off target effects and toxicities if 

inhibited.  Many animal models of systemic MMP ablation develop normally, a 

phenomenon believed to be a consequence of enzymatic overlap and functional 

redundancy in the MMP family [291].  This is true for MMP-3 knockout mice which 

display no overt phenotype, however developmental studies have revealed a few 

anomalies including altered neuromuscular junction structures [292] and a lack of 

secondary branching during mammary gland development [293].  Interestingly, despite 

cleaving numerous substrates involved with vascular development, including VEGF 

[294], there are no known developmental vascular phenotypes [295].  Also interesting is 

the lack of any skeletal abnormalities observed in other MMP null models, including 

MMP-9, MMP-13, and MMP-14 [296].   

However, as with other MMP knockout animal models, phenotypes in MMP-3 

knockout mice can manifest subsequent to challenges such as wound healing and 

acute injury.  Several studies have reported on the importance for MMP-3 during wound 

healing.  In particular, excisional wound healing, a necessary step for wound contraction 

and closure, is compromised in MMP-3 knockout mice due to deficient actin purse string 

formation [297].  Further studies using additional experimental wound models including 

dental pulp injury, contact hypersensitivity reaction, and rabbit corneal epithelial wound 

also support roles for MMP-3 in wound healing [298-301].   
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 Matrix Metalloproteinase-3 Substrates: Matrix vs. Non-Matrix 3.1.4.2

MMP-3 cleaves a host of extracellular matrix proteins, including types II, III, IV, 

IX, X, and XI collagens, fibronectin, proteoglycans, and laminin [302-304].  Cleavage of 

these substrates contributes to the degradation of the basement membrane which 

facilitates the long-standing association of MMPs with cancer invasion and metastasis 

[296].  Degradation of the extracellular matrix has also been reported to release growth 

factors.  Processing of many of these growth factors by MMP-3 can lead to their 

activation, inactivation, and occasionally result in novel functions of the cleavage 

products (Table 3-2).  For example, insulin growth factor binding protein 3 (IGFBP3), 

which binds to insulin growth factor (IGF) 1 and 2 to extend its half-life and limit its 

activity in circulation was shown to be processed by MMP-3.  The result of this 

processing is the release of active IGF-1 or IGF-2.  The release of IGFs from IGFBP3 

could be blocked by the addition of TIMP-1, implying that the mechanism of activation is 

MMP specific [305].  Similar to IGFs, TGF-β activity is regulated by interactions with 

other proteins.  TGF-β is a well-known mediator of cellular activities and is secreted in a 

biologically inactive, latent form consisting of a TGF-β1 homodimer, latency associated 

protein (LAP), and latent TGF-β binding protein-1 (LTBP1).  Multiple methods of TGF-β 

activation have been elucidated, including by proteolysis of the LAP.  Such a 

mechanism was demonstrated for MMP-3, where rhMMP-3 was capable of cleaving the 

LAP to generate active TGF-β1 in vitro, an activity that could be blocked by both an anti-

MMP-3 antibody and MMP inhibitors [306].  Similarly, heparin-binding EGF-like growth 

factor (HB-EGF) is cleaved in the juxtamembrane region by MMP-3, releasing soluble 

and bioactive HB-EGF in vitro.  However, the regulation of basic fibroblast growth 
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Table 3-2.  List of MMP-3 Substrates 

MMP-3 Substrate Biological Result Reference 

α1-Antichymotripsin Inactivation [307] 

α1-Protease inhibitor Inactivation [307] 

α2-Antiplasmin Inactivation [308] 

α2-Macroglobulin Hydrolysis [309] 

Aggrecan Degradation [310, 311] 

Antithrombin-III Inactivation [307] 

Collagens II, III, IV, IX, X, XI Matrix degradation, growth factor release [303, 304] 

Decorin Degradation releases TGF-β1  [312] 

E-cadherin 
Generates soluble ectodomain fragments that promote 
EMT and invasion 

[313, 314] 

Fibrinogen Degradation  [315, 316] 

Fibronectin Matrix degradation, inflammation/arthritis [317] 

Heparin-binding EGF growth 
factor (HB-EGF) 

Release of soluble, bioactive EGF [318] 

IGFBP-3 Degradation releases active IGF [305, 319] 

IL-1β Activation [320] 

Latent TGF-β Activation  [306] 

MCP-1, -2, -3, and -4 Reduction of MCP agonism [321] 

Nidogen Degradation [322] 

Osteopontin Enhanced activity (cell migration) [323] 

Ovostatin Hydrolysis [309] 

Perlecan Degradation of perlecan releases bFGF  [324] 

Plasminogen Generation of angiostatin-like fragment [325] 

Plasminogen activator 
inhibitor-1 (PAI-1) 

Inactivation [326] 

Pro-MMP-1, -3, -8, -9, and -13 Activation of the inactive zymogens [327-330] 

Pro-TNFα Generates active TNFα [331] 

RANKL Generates soluble RANKL [211] 

SDF-1 Inactivation  [332] 

Serum amyloid A Degradation [333] 

Substance P Hydrolysis [334] 

Urokinase plasminogen 
activator (uPA) 

Removes receptor binding domain [335] 
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factor (bFGF) by MMP-3 occurs via a mechanism dependent on its ability to degrade 

the extracellular matrix component perlecan to which bFGF is bound.  In this scenario, 

binding of bFGF with the five domain protein core of perlecan can actually facilitate 

presentation of the growth factor to cell surface receptors and receptor activation [336, 

337].  MMP-3 has been reported to degrade the protein core of perlecan into multiple 

fragments, releasing bFGF, and potentially modulating bFGF bioactivity [324]. 

An important regulatory ability of MMPs is centered on cleavage and release of 

membrane bound molecules such as tumor necrosis factor alpha (TNFα) and FasL.  

The TNFα precursor is normally found anchored in the cell membrane and is solubilized 

by proteolytic cleavage [338].  It was first reported in 1995 that MMP-3 could cleave a 

recombinant pro-TNFα fusion protein to generate the mature TNFα, an observation that 

was reversed by adding MMP inhibitors [331].   Fas ligand (FasL) is also a member of 

the TNF family, and it is also processed by MMP-3.  FasL exists in both membrane 

bound and soluble forms, with the soluble form reported to induce both pro- and anti-

apoptotic activities [339, 340].  Interestingly, MMP-3 was shown to cleave membrane 

bound FasL at unique sites that generate novel, pro-apoptotic forms of soluble FasL 

[341].  The authors of the study speculate that the distinct MMP cleavage sites may 

offer an explanation to the inconsistent activities of soluble FasL.  A follow-up study 

found that inducing MMP-3 expression in MC3T3 osteoblasts leads to enhanced 

solubilization of FasL and subsequent osteoclast apoptosis in a co-culture system [342].  

The effect was abolished by specifically targeting MMP-3 using siRNA or inhibitors.  

Another TNF family member, RANKL, has been demonstrated to be an MMP-3 

substrate as well.  Like TNF-α, RANKL is anchored to the cell surface.  It signals 
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through its receptor, RANK, in a juxtacrine manner to drive osteoclastogenesis, 

however MMP-3, as well as MMP-7, have been shown to cleave full-length RANKL 

[211].  N-terminal amino acid sequencing of the major cleavage product determined that 

RANKL was cleaved within the stalk region, suggesting that active, soluble RANKL is 

released by MMP-3 and MMP-7.  

MMP-3 processing can also modify the activities of its substrates, as is observed 

with the cleavage of E-cadherin and osteopontin.  It was first observed that expressing 

auto activating MMP-3 under control of a tetracycline-regulated promoter in normal 

mouse mammary epithelial cells resulted in EMT-like characteristics and increased 

invasiveness as determined by modified Boyden chamber assay.  Interestingly, the 

application of the broad spectrum GM6001 MMP inhibitor abolished this transformation 

[313].  Follow up studies demonstrated that MMP-3 could produce soluble E-cadherin 

ectodomain fragments.  These fragments were capable of inducing invasion and 

inhibiting cellular aggregation, which is in contrast to the canonical E-cadherin roles of 

suppressing invasion and aiding in epithelial aggregation.  Osteopontin is a secreted 

phosphoprotein, which, like TGF-β, has putative roles in cell migration and survival as 

well as wound healing and inflammation [343, 344].  MMP-3 cleaves osteopontin at 

three distinct sites.  The resulting cleavage products show enhanced activity compared 

to full length osteopontin, including migration and recruitment of macrophages [323].   

Numerous instances have been also been reported where MMP-3 proteolysis 

can lead to inactivation of substrates, such as stromal cell-derived factor-1 (SDF-1) and 

monocyte chemoattractant protein-1 (MCP-1).  SDF-1 is a chemokine normally involved 

in the regulation of hematopoietic stem cell (HSC) proliferation and survival, and it is 
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particularly important for the migration and homing of HSCs to the bone marrow [46, 

345].  By cleaving the first four residues of SDF-1, MMP-3 processing abolishes the 

ability of SDF-1 to bind with CXCR-4 [332].  Similar to the SDF-1/CXCR4 axis, MCP-1 is 

a chemokine with normal roles in recruiting and activating monocytes.    Interestingly, 

MMP-3 can cleave MCP-1 (as well as other family members MCP-2, 3, and 4), 

converting it from an agonist of CC chemokine receptors to an antagonist [321].  The 

inactivation of MCPs could play an important part in regulating inflammatory immune 

responses.  

 Non-Catalytic Roles for MMP-3 3.1.4.3

Traditionally, most research has focused on the catalytic domains of MMPs, but 

non-catalytic roles for MMPs have recently been described with effects on both cell 

migration and survival, adding to the complexity of MMP biology [273, 274].  In addition 

to MMP-7 and MMP-9, there is evidence supporting non-catalytic activities for MMP-3 

via its hemopexin domain.  One study compared the impact of a full length MMP-3 

construct with either a construct lacking the hemopexin domain or a construct featuring 

a point mutation in the catalytic domain. They found that in addition to inducing 

morphological changes characterized by cell scattering and reorganization of F-actin, 

the hemopexin domain was required for invasion and branching of mammary organoids 

in 3D cell culture gels [346].  The authors went on to discover that these changes were 

mediated through the interaction of the hemopexin domain with heat shock protein 90-β 

(HSP90β) but noted that additional factors including ANXA2, MARCKS, ADAM10, 

ADAMTS15, and Cathepsins A and L may also interact with the MMP-3 hemopexin 

domain [346].  In addition, separate reports identified that the MMP-3 hemopexin 
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domain alone could stimulate hypermorphic epithelial outgrowth similar to full length 

MMP-3 in a mammary fat pad transplantation model [272].  The study showed that the 

MMP-3 hemopexin domain interacts with the non-canonical Wnt ligand, Wnt5b, to 

sequester and inhibit ligand activity.  However, MMP-3 can also proteolytically cleave 

the C-terminal domain as an additional mechanism of inhibiting non-canonical Wnt 

signaling.  Together, this drives canonical Wnt signaling in the mammary gland as 

determined by measuring the levels nuclear β-catenin [272].  The importance of MMP-3 

during mammary gland development has been well described, but in light of these new 

studies, it is possible that MMP-3 contributes to developmental processes in a non-

catalytic manner [293, 313, 347, 348].  Similarly, the combined activities of the catalytic 

and hemopexin domains likely contribute to the roles that MMP-3 possesses in different 

cancers. 

 Pro- and Anti-Tumorigenic Roles for MMP-3 in Cancer 3.1.4.4

3.1.4.4.1 Pro-Tumorigenic 

MMPs were originally believed to promote cancer progression, and several 

examples of MMP-3 promoting tumorigenesis have been reported.  A classic example 

of this was demonstrated in mammary tumorigenesis, where it was shown that upon 

expressing an auto-activating MMP-3 transgene in the SCp2 mouse mammary epithelial 

cell line, MMP-3 expression led a more invasive phenotype and enhanced mammary 

tumor formation [313].  Similar studies have indicated that inducing MMP-3 expression 

in normal mammary epithelial cells caused these cells to produce more invasive, 

mesenchymal like tumors [349].  Follow up studies placing MMP-3 under control of the 

whey acidic protein (WAP) gene promoter led to the spontaneous development of both 
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pre-malignant and malignant lesions in the mammary glands of mice [347].  In these 

studies, the effects could be reversed by co-expressing TIMP-1, suggesting that MMP-3 

expression was the major factor regulating these changes.  Additional studies utilizing 

the SCp2 mouse mammary epithelial cells have revealed that MMP-3 treatment induces 

a unique splice isoform of Rac1 called Rac1b.  Expression of Rac1b led to increases in 

cellular reactive oxygen species (ROS) which in turn upregulated Snail and EMT [348].  

This same study also showed that genomic instability was enhanced by MMP-3 and that 

it could be inhibited using the broad spectrum GM6001 MMP inhibitor.  Later work 

expanded on these observations and demonstrated that expression of MMP-3 in 

mammary epithelial cells stimulated tumor formation and EMT in addition to the 

development of fibrosis [350].  More recently, it was shown that the induction of MMP-3 

and SNAIL by TGF-β via eIF4E phosphorylation led to the initiation of EMT in primary 

mammary tumor cells.  Blocking phosphorylation of eIF4E in a mouse mammary 

tumorigenesis model reduced lung metastases [351].  Silencing MMP-3 in 4T1 cells has 

also been shown to reduce tumor growth in multiple in vivo mammary tumorigenesis 

models and reduce lung metastasis in an orthotopic model [352].   

MMP-3 also has contributory roles in other cancers of epithelial origin, including 

lung.  In a study of primary lung cancer, MMP-3 was shown to induce Rac1b, leading to 

EMT and tumor development in vivo [353].  Recently, a similar trend has also been 

observed in glioma, where overexpression of Bmi-1, a regulator of tumor suppressor 

pathways found upregulated in multiple cancers, led to increased NF-κB activity and 

MMP-3 expression in T98G glioma cells.  The authors report that these cells acquired 

increased metastatic potential as a result [354].   



91 
 

The cleavage of growth factors by MMP-3 may contribute to some of these 

reported pro-tumorigenic roles.  For example, MMP-3 proteolysis of IGFBP3 increases 

the bioavailability of IGF, a growth factor associated with promoting cancer by 

enhancing growth and migration [355, 356].  Studies have shown that MMP-3 cleavage 

of IGFBP3 led to enhanced phosphorylation of IGF receptors and increased cellular 

proliferation which might promote tumor growth [357].  Similarly, increased availability of 

MMP-3 activated HB-EGF or TGF-β might stimulate oncogenesis.  It has been shown 

that MMP-2 promotes breast tumor survival by controlling TGF-β activity, and MMP-7 

can contribute to cutaneous squamous cell carcinoma and colon cancer by releasing 

and activating HB-EGF [58, 358, 359].   Another MMP-3 substrate, TNFα, is detected at 

higher levels in cancer patients and shown to promote tumor progression by activating 

NFkB and AP1 transcription factors (reviewed by [360]).  TNFα has been shown to 

increase expression of CXCR4 and SDF-1 in ovarian cancer cells lines as well as 

patient biopsies leading to increased cell migration [361].  In this manner, MMP-3 

mediated solubilization of TNF-α may contribute during tumorigenesis.  It has also been 

shown that MMP-3 can cleave RANKL, and solubilization of RANKL by MMP-7 

increases bone destruction induced by bone metastatic mammary tumors [211, 362]. 

Whereas many of the MMP-3 mediated proteolytic events are speculated to 

contribute to tumorigenesis, the cleavage of osteopontin and E-cadherin by MMP-3 

have already been studied and linked to mechanisms that result in pro-tumor effects.  

There is a notable association between increased MMP expression and osteopontin 

expression during tumorigenesis [363].  In addition to increasing recruitment and 

migration of macrophages, MMP-3 generated osteopontin cleavage products also 
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enhanced tumor cell adhesion and migration [323].  E-cadherin cleavage also induced 

invasive behavior in mammary epithelial cells [314].  Though one could speculate that 

this was due to inactivation of E-cadherin, it was determined that the soluble fragments 

were actually inducing invasiveness via their own specific activities such as stimulation 

of signal transduction pathways [314].   

3.1.4.4.2 Anti-Tumorigenic 

 

Multiple instances of anti-tumorigenic roles for MMP-3 have also been reported.  

For example, a study in squamous cell carcinoma showed that although MMP-3 is 

expressed in all stages of tumor progression, stromal ablation of MMP-3 actually 

enhanced tumor initiation, leading to increases in the percentage of mice with surface 

lung metastases suggesting that stromal expression of MMP-3 may have a protective 

effect [364].  However, tumor-derived MMP-3 might have protective roles as well since a 

study in mammary tumorigenesis showed that induced expression of MMP-3 by MMTV 

did not yield any spontaneous mammary tumors after 2.5 years.  When tumors were 

initiated experimentally using DMBA carcinogen, only 32% of the MMP-3 expressing 

mice developed tumors compared to 65% of the controls [365].  MMP-3 has also been 

shown to reduce invasion of MDA-MB-231 cells through a simulated basement 

membrane by degrading plasminogen into fragments that limit laminin degradation 

[366].  Interestingly, MMP-3 expression has been shown to be lost in advanced, 

aggressive breast cancer, suggesting that these protective roles may manifest clinically 

as well [367].  Although there are fewer studies reporting protective roles, they do 

suggest that continued studied is needed to fully understand in which cancers, at what 
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stages, from which tissues, and by what mechanisms MMP-3 might protects from or 

promotes tumorigenesis.   

The cleavage of non-extracellular matrix factors by MMP-3 could again explain 

some of the anti-tumorigenic roles.  For example, MMP-3 processing abolishes the 

ability of SDF-1 to bind with CXCR-4 [332].  Based on the previous studies 

demonstrating the importance of this mechanism in facilitating homing to the bone, this 

mechanism might offer protection against bone metastasis [47].  MCP-1 has a similar 

role to SDF-1.  It normally functions to recruit monocytes, but it has been shown to be 

hijacked by tumor cells. Stromal MCP-1 has been shown to contribute to breast cancer 

and is also expressed by many prostate cancer cell lines and tissue specimens where it 

has been implicated in increasing proliferation, migration, and invasion [49, 368].  There 

is also evidence that it may be important for angiogenesis [369].  Therefore, inactivation 

of MCP-1 by MMP-3 proteolysis may also serve as a protective mechanism during 

cancer progression.  Interestingly, the effects of TNFα on tumorigenesis can be varied 

[360].  While it is often found to correlate with increased tumorigenesis, evidence also 

suggests that high doses can lead to haemorrhagic necrosis [370].  High TNFα 

expression levels can also synergize with some forms of chemotherapy, likely by 

increasing the permeability of tumor vessels (reviewed by [371]).  So although MMP-3 

solubilization of TNFα could contribute to tumorigenesis as previously discussed, there 

is potential for this mechanism to generate anti-tumor effects depending on the context.   
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 MMP-3 in Prostate Cancer 3.1.4.5

 

In general, MMP-3 has not been studied extensively in prostate cancer.  Our own 

data-mining analysis of existing cancer databases via ONCOMINE 

(https://www.oncomine.org) shows significantly increased MMP-3 expression in prostate 

carcinoma compared to normal prostate tissue in three separate datasets (LaTulippe: 

p=0.007, Liu: p=0.001, Welsh: p=0.021)  (Figure 3-2) [372-374].  Additional analyses 

and wet lab studies of prostate cancer have discovered a mechanism where Eotaxin-1 

drives increased MMP-3 expression to promote DU145 prostate cancer cell invasion 

and migration [375].  It was also shown that ERα expression in cancer associated 

fibroblasts (CAFs) leads to increased thrombospondin-2 (TSP-2) levels and decreased 

MMP-3 expression [376].  Co-implantation of 22RV1 prostate epithelial cells with these 

CAFs resulted in reduced levels of MMP-3 accompanied by fewer metastases and 

reduced angiogenesis in vivo.  In bone, we and others have demonstrated that 

numerous MMPs are highly expressed in the tumor-bone microenvironment (Table 3-3), 

and several of these MMPs, including MMP-2, -7, and -9, have been shown to regulate 

factors that can affect prostate tumor growth [57-59, 211, 362].  However, no studies to 

date have looked at the direct impact of MMP-3 on prostate cancer growth in bone, a 

common organ for prostate cancer metastasis.  Therefore, we sought to determine 

whether MMP-3 might contribute to or protect against tumor growth in bone.   

 

 

 

 

https://www.oncomine.org/
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Table 3-3.  Elevated MMP Expression at the Tumor-Bone Interface 

Laser capture microdissection and microarray analysis were used to investigate the expression of MMPs 

in the tumor-bone microenvironment.  Compared to normal bone, MMP expression is increased at the 

tumor/bone interface [211].   

 

MMP 
Increase at Tumor/Bone 

Interface 

MMP-13 3403% 

MMP-7 1311% 

MMP-3 366% 

MMP-9 326% 

MMP-2 320% 

MMP-15 179% 

MMP-10 129% 

MMP-19 107% 

MMP-11 106% 

MMP-28 97% 

MMP-8 96% 

MMP-12 95% 

MMP-24 92% 

MMP-17 88% 

MMP-23 85% 

MMP-14 82% 

 

 

Here we present evidence demonstrating that tumor derived MMP-3 contributes 

to prostate cancer growth in bone.  We show that shRNA silencing of MMP-3 

expression in prostate cancer cells reduces in vitro proliferation and in vivo intratibial 

tumor growth.  In analyzing the conditioned media from these cells, we observed higher 

levels of the insulin growth factor binding protein-3 (IGFBP3), an established substrate 

of MMP-3 and mediator of IGF bioavailability [305, 319].  Further, MMP-3 knockdown 
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cells have lower levels of phosphorylated IGF-1R, ERK, and AKT compared to controls, 

suggesting that reduced IGF/IGF-1R signaling potentially contributes to the decreased 

proliferation.  Taken together, our results suggest that tumor-derived MMP-3 contributes 

to the growth of bone metastatic prostate cancer. 

 

3.2 Materials and Methods 

 Tissues, Cell Lines, and Culture 3.2.1

Human prostate to bone specimens were generously provided by Dr. Colm 

Morrissey at University of Washington Department of Urology under an Institutional 

Review Board (IRB) approved warm body rapid autopsy program.  PAIII cells [217], 

LNCaP (ATCC), C4-2B (ATCC), PC-3M-luc-C6 (Caliper Life Sciences),  and PC3-2M 

cells (Perkin Elmer) were grown in either Roswell Park Memorial Institute (RPMI) 1640 

medium (LNCaP) or complete Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum.  All cell lines were periodically tested for 

mycoplasma (#CUL001B, R&D Systems) and short tandem repeat (STR) verified at the 

Moffitt Clinical Translational Research Core.  For MMP-3 shRNA knockdown (Origene, 

pRFP-CB-shLENTI, #TR30032), PaIII cells were stably transfected and selected using 

standard protocols (Qiagen, Superfect, 301305). 

 Gene Expression Analysis 3.2.2

MMP-3 expression in human prostate cancer was compared to normal prostate tissue 

using Oncomine (https://www.oncomine.org).  Three publically available prostate cancer 

https://www.oncomine.org/
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datasets were examined (LaTulippe, NCBI GEO Datasets GSE 688882; Liu, Array 

Express E-TABM-26; and Welsh, http://public.gnf.org/cancer/prostate/). 

RNA was extracted with TRIzol® according to manufacturer’s instructions 

(Invitrogen #15596).  cDNA reverse transcription was performed using a High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, #4368813). The concentrations of 

cDNA samples were determined by Nanodrop, and equal amounts (100ng per reaction) 

used for reactions.  Primers sequences for genes of interest are: Rat MMP-3 Forward 

5’-GATGGTATTCAATCCCTCTATGG-3’; Rat MMP-3 Reverse 5’-

AACAAGACTTCTCCCCGCAG-3.’  Human MMP-3 Forward 5’-

AGGCAAGACAGCAAGGCATA-3’; Human MMP-3 Reverse 5’-

GGTTCATGCTGGTGTCCTCA-3.’  Rat IGF-1R Forward 5’-

CGGTTGCTGGGTGTAGTATC-3’; Rat IGF-1R Reverse 5’-

GCTCGGAGGAATCAGGACTA-3.’ Human IGF-1R Forward 5’-

AATGAAGTCTGGCTCCGGA-3’; Human IGF-1R Reverse 5’-

CCCGCAGATTTCTCCACTC-3.’ 18S Forward 5’-GTAACCCGTTGAACCCCATT-3’; 

18S Reverse 5’-CCATCCAATCGGTAGTAGCG-3.’ GAPDH Forward 5’- 

CCTGCACCACCAACTGCTTA-3’; GAPDH Reverse 5’- CCACGATGCCAAAGTTGTCA-

3.’   

 Immunoblotting and Immunostaining 3.2.3

Cells were lysed with cold RIPA (150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 

1% sodium deoxycholate, 0.1% SDS, 20 mM Tris pH 8) containing protease and 

phosphatase inhibitor (Thermo Scientific, #78442) using standard procedures.  Total 

protein concentration was determined using BCA (Pierce, #23225) and 25 µg of protein 
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loaded in 10% SDS-PAGE gels.  Blots were blocked in 5% BSA for 1 hour followed by 

primary antibody for phospho-ERK (Cell Signaling Technology #9101; diluted 1:1000 in 

blocking solution + 0.1% Tween-20), ERK (Cell Signaling Technology #4695; diluted 

1:1000 in blocking solution + 0.1% Tween-20), phospho-AKT (Cell Signaling 

Technology #4056, diluted 1:1000 in blocking solution + 0.1% Tween-20), AKT (Cell 

Signaling Technology #4691, diluted 1:1000 in blocking solution + 0.1% Tween-20), or 

IGF1 Receptor (phospho Y1161) (Abcam #39398, diluted 1:100 in blocking solution + 

0.1% Tween-20).  The blots were washed 3 x 10min in 1X TBST and incubated with 

HRP-conjugated anti-species secondary (Cell Signaling Technology, Rabbit 

#7074/Mouse #7076, diluted 1:1000 in blocking solution).  Blots were developed using 

enhanced chemiluminescence (Pierce 32106) and exposed to light-sensitive film.  

Mouse cytokine arrays (Raybiotech, AAM-CYT-3) were performed using conditioned 

media obtained by serum starving cells for 16 hours. 

  For MMP-3 and phospho-Histone H3 immunofluorescence, slides were 

deparaffinized and rehydrated to water.  Antigen retrieval was performed using 

Proteinase K for MMP-3 and heat-induced (pressure cooker) for phospho-Histone H3.  

Slides were blocked with 10% normal serum for 1 hour at room temperature.  Primary 

antibodies (RH-MMP-3, Triple Point Biologics, 1:100; Pan-Cytokeratin, Sigma Aldrich 

C2562.2ML, 1:500; Phospho-Histone H3 (Ser10), Cell Signaling #9701, 1:200) were 

incubated overnight at 4 C.  Slides were washed 3 x 10 minutes in TBST and rinsed in 

TBS.  Secondary antibodies (Donkey Anti-Mouse Alexa Fluor 488, Thermo Scientific, 

1:1000; Donkey Anti-Rabbit Alexa Fluor 568, Thermo Scientific, 1:1000) were incubated 

for 1 hour at room temperature.  Slides were washed 3 times and mounted using 
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Vectashield anti-fade mounting medium with DAPI (Vector Laboratories, H-1200).  

Images were acquired using an upright Zeiss fluorescent microscope. 

 Growth Assays 3.2.4

Cell proliferation was measured using a Cell Titer 96® Aqueous Non-Radioactive 

Cell Proliferation Assay (Promega, G5421).  Cells were plated in 96-well plates, 2000 

cells per well, and luminescence was measured at 24, 48, and 72 hours on a Victor 

plate reader. 

 In Vivo Tumor Studies 3.2.5

All animal experiments were performed with Institutional Animal Care and Use 

Committee (IACUC, #IS000001283, CCL) approval from the University of South Florida.  

To test the effect of MMP-3 on in vivo tumor growth in bone, 5 x 104 PaIII cells (10 µL of 

ice cold PBS) were intratibially innoculated into immunocompromised male Rag2-/- mice 

(10 mice per group).  A sham injection (10 µL) of PBS was injected in the contralateral 

limb to control for bone injury.  Bioluminescent imaging (120 mg/kg luciferin in sterile 

PBS, Gold Biotechnology, LUCK-1G) was performed 24 hours after surgery and every 

48 hours after as a correlate of tumor growth (IVISTM Perkin Elmer).  After 10 days, 

study animals were sacrificed and tumor and sham bearing limbs (tibia) were collected 

and fixed overnight in 10% neutral buffered formalin and transferred to 70% ethanol for 

ex vivo x-ray (Faxitron X-ray Corp) and µCT (Siemens).  Following ex vivo analysis, 

bones were decalcified for 3 weeks in 14% EDTA (changed twice weekly) and 

processed for paraffin embedding. Subsequent to processing and embedding, trichrome 

staining was used to identify areas of trabecular bone formation (blue/green staining of 

type I collagen).  Bone area to total area (B.Ar./T.Ar.) was determined by measuring 
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trabecular bone volume within a 1.0 mm long area beginning 0.5 mm distal from the 

growth plate using ImageJ software [219]. 

3.3 Results 

 MMP-3 is Expressed in Bone Metastatic Prostate Cancer Patient 3.3.1

Specimens.  

To test whether MMP-3 is expressed by human bone metastatic prostate cancers 

and determine the clinical relevance of its expression, we co-immunostained for 

cytokeratin, a marker of epithelial cell types, and MMP-3 in prostate to bone metastases 

derived from patients enrolled in the rapid warm body autopsy program at the University 

of Washington.  We observed positive co-staining for MMP-3 and cytokeratin in 8 of the 

9 examined patient specimens (Figure 3-3).  We also noted MMP-3 positive staining in 

bone lining and stromal cells.  Interestingly, the single specimen that did not co-stain for 

MMP-3 and cytokeratin did show positive staining for MMP-3 in the stroma.  These 

results are consistent with previous reports, showing that MMP-3 is expressed by 

prostate cancer cells and stromal cells. 

 MMP-3 is Expressed in Prostate Cancer Cell Lines 3.3.2

To select a model for subsequent in vitro and in vivo studies, we assessed 

whether MMP-3 was expressed in prostate cancer cell lines (LNCaP, C4-2B, PC3-M, 

and PaIII) according to their ability to establish tumors in bone in vivo.  Our data show 

that MMP-3 is expressed by each of these cell lines (Figure 3-4 A).  We selected PaIII 

for further study because of its strong expression of MMP-3 and its ability to recapitulate 

mixed osteoblastic and osteolytic lesions in intratibial mouse models [377, 378].  Using 
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RFP tagged MMP-3 shRNA constructs we generated two stable MMP-3 knockdown 

PaIII clones and an shRNA control cell line (Figure 3-4 B-C). 

 

 
Figure 3-3.  MMP-3 is Expressed by Tumor Cells in Human Prostate to Bone Metastases  

Expression of MMP-3 in human prostate to bone metastasis patient sections (n=9) was determined by 

staining with anti-cytokeratin (green) and anti-MMP-3 (red) antibodies via fluorescent microscopy.  

Representative images for 3 of 9 patients are shown.  Scale bars are 100 µm.  Dashed box denotes area 

of magnification. 
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Figure 3-4.  MMP-3 is Expressed in Multiple Prostate Cancer Cell Lines 

(A) MMP-3 expression in LNCaP, C4-2B, PC3-M, and PaIII prostate cancer cell lines.  –ve indicates 

negative non-template control.  Molecular weight markers are illustrated in base pairs (bp).  (B and C) 

PaIII cells were stably transfected with MMP-3 and control red fluorescent protein (RFP) labeled shRNA 

construct to achieve MMP-3 silencing. Scale bars are 100 µm. 

 

 

 MMP-3 Silencing Decreases PaIII Prostate Cancer Cell Growth In Vitro  3.3.3

Previous studies have demonstrated that MMP-3 can proteolytically regulate a 

variety of factors involved in cell growth.  Therefore, we assessed the impact of MMP-3 

silencing on in vitro cell growth using bioluminescence as a readout for proliferation.  

MMP-3 silencing decreased proliferation of PaIII prostate cancer cells as early as 24 

hours, and these effects became more pronounced at later time points (Figure 3-5).  

Our stable cell lines express two different levels of MMP-3 (Figure 3-4 B), and the 

reduction in proliferation corresponded with MMP-3 expression levels in these cell lines. 
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Figure 3-5.  MMP-3 Promotes PaIII Proliferation 

PaIII shControl, shMMP-3 polyclonal, shMMP-3 Clone 01, and shMMP-3 Clone 02 were seeded in 96 well 

plates (2 x 10
3
 cells/well) and luminescence measured at 24, 48, and 72 hours as a surrogate for cell 

proliferation.  Asterisk denotes statistical significance (p<0.05); n.s. = non-significant differences. 

 

 

 Prostate Cancer Growth in Bone is Reduced by MMP-3 Silencing 3.3.4

To study the effect of MMP-3 expression on prostate tumor growth in bone, we 

injected PaIII shControl and PaIII shMMP-3 Clone 01 cells intratibially into male Rag2-/- 

C57BL/6 mice (5 x 104 cells, 10 mice per group) and monitored tumor growth by 

measuring bioluminescence over time (Figure 3-6 A).  Tumors in the mice injected with 

PaIII shMMP-3 cells grew at a significantly slower rate compared to control tumors 

(Figure 3-6 B).  After 10 days, mice were sacrificed and we performed ex vivo analyses 

of the tibias to study cancer associated bone disease including X-ray, µCT, and bone 

histomorphometry.  Prostate tumor growth in bone induces extensive remodeling.  To 

determine if there were any differences between PaIII shControl and PaIII shMMP-3 

tumors on induction of osteolysis, X-ray analysis (Faxitron) was performed.  

Quantification of osteolytic lesion area (dark spots observed on bone surface) to total 

bone area showed that there was no significant difference in tumor-induced osteolysis 
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between PaIII shControl or PaIII shMMP-3 (Figure 3-7 A).  In addition to osteolysis, 

bone metastatic prostate tumors can induce trabecular bone formation.  We used µCT 

and trichrome staining/image quantification to study if there were any differences 

between PaIII shControl and PaIII shMMP-3 tumors on induction of osteogenesis and 

observed no significant change in trabecular bone volumes (Figure 3-7 B-C).  Together, 

these data suggest that MMP-3 contributes to prostate tumor growth in bone but does 

not significantly alter the bone microenvironment or structure.  

 

 

Figure 3-6. MMP-3 Silencing Reduces In Vivo Prostate Tumor Growth in Bone 

(A) PaIII shControl and shMMP-3 Clone 01 cells (5 x 10
4 

in 10 µL) were injected intratibially in 6 week old 

male Rag2
-/-

 mice (n=9/group).  Saline was injected in the contralateral limb to control for injury.  

Bioluminescence was measured to monitor tumor growth for 10 days.  (B) Linear regression analysis of 

tumor growth rates over 10 days (PaII shControl = red, PaIII shMMP-3 = blue).  
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Figure 3-7.  MMP-3 Silencing in PaIII Tumor Cells Does Not Alter Tumor-Induced Changes in Bone 
Structure 

(A) X-ray analysis and quantitation of tumor-induced osteolysis in tibias bearing PaIII shControl and 

shMMP-3 Clone 01 tumors.  (B) µCT analysis and quantitiation of trabecular bone volume in tumor 

bearing tibias. (C) Trichrome stained sections derived from PaIII shControl and shMMP-3 Clone 01 tumor 

bearing tibias were quantitated for the amount of trabecular bone (blue-green color).  n.s. = non-

significance.   

 

 

 Candidate Approach to Assess MMP-3 Mechanism of Action 3.3.5

To gain further insight into the mechanism by which MMP-3 contributes to in vitro 

and in vivo cancer cell growth, we performed cytokine array analysis of 62 cytokines to 

study the secreted protein content of conditioned media from PaIII shMMP-3 and PaIII 

shControl cell lines (Figure 3-8 A).  Conditioned media was collected by serum starving 

cells overnight and diluting to equal total protein concentrations as determined by BCA.  

Densitometry analysis of the array blots revealed that several proteins in the 

conditioned media of PaIII shMMP-3 cells were increased over control, including insulin 
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growth factor binding proteins (IGFBPs) 3, 5, and 6 (Figure 3-8 B).  In contrast, the 

internal control was actually slightly decreased as assessed by densitometry analysis 

(LI-COR Image Studio), suggesting that these increases in IGFBPs were even greater 

(not shown).  Notably, IGFBP3, an established MMP-3 substrate, was among the most 

elevated (1.59-fold over control).  The PaIII conditioned media was collected after only 

16 hours of incubation, so we would expect more remarkable increases with longer 

incubation periods.  These data show that MMP-3 silencing in PaIII cells results in 

increased levels of IGFBPs, including IGFBP3, indicating that the MMP-3 processing of 

IGFBP3 may be important for the observed growth effect in MMP-3 knockout PaIII cells. 

 

 

Figure 3-8. IGFBPs are Elevated in MMP-3 Silenced PaIII Cancer Cell Conditioned Media 

(A) Cytokine array blots from PaIII shControl and PaIII shMMP-3 cell line conditioned media.  (B) 

Densitometry analysis of cytokine array blots (Licor Image Studio). 
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Figure 3-9. Insulin Growth Factor Receptor (IGF-1R) Signaling Pathways 

IGF-1R is a cell membrane receptor tyrosine kinase (RTK) responsible for mediating insulin-like growth 

factor (IGF-1) activity in wide range of tissues and organs.  Activation of either the MAPK or PI3K 

mediates biological processes like cell proliferation, growth, and survival.  The bioavailability of IGF-1 in 

circulation is tightly modulated by six IGFBPs such as IGFBP-3. 

 

 

 

 Reduced IGF-1R Activity in PaIII shMMP-3 Cells 3.3.6

IGFBP3 binds and sequesters IGF proteins (IGF-1 and IGF-2) with high affinity to 

modulate their activity, predominantly resulting in anti-proliferative and anti-growth 

effects by preventing activation of the insulin growth factor receptor (IGF-1R) (Figure 

3-9).  To test if MMP-3 effects on proliferation were associated with reduced IGF-1/IGF-

1R signaling, we first assessed the expression of IGF-1R in the PaIII cell lines by PCR.  
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Both the PaIII shControl and PaIII shMMP-3 cell lines showed robust IGF-1R 

expression (Figure 3-10 A).  We next looked at the phosphorylation of IGF-1R and its 

downstream kinases ERK and AKT in PaIII shControl and PaIII shMMP-3 cell lines 

grown under standard culture conditions (no stimulation) by Western blot.  These 

studies indicated a reduction of IGF-1R phosphorylation in PaIII shMMP-3 cell lines 

compared to PaIII shControl when normalized to Actin as a loading control.  Reduced 

IGF-1R phosphorylation was accompanied by decreases in both ERK and AKT 

phosphorylation, both of which are potent inducers of proliferation, when normalized to 

total ERK or total AKT loading controls, (Figure 3-10 B-C).  The contribution of MMP-3 

expression to tumor growth was also observed in tissue sections derived from in vivo 

intratibial tumor growth studies by calculating the mitotic index (MI).  Using phospho-

Histone H3 immunofluorescence staining, an indicator of cells undergoing mitosis, and 

Definiens histology analysis software, we calculated the number of cells undergoing 

mitosis versus the number of cells not undergoing mitosis and noted a significant 

decrease in the MI for PaIII shMMP-3 tumors (PaIII shControl = 20.37% vs. PaIII 

shMMP-3 = 4.33%) (Figure 3-10 D).  Taken together, these data show that reduced 

proliferation caused by MMP-3 knockdown in PaIII prostate cancer cells is potentially a 

result of decreased IGF-1R signaling. 
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Figure 3-10.  MMP-3 Silencing Reduces IGF-1R Signaling 

(A) IGF-1R expression in PaIII shControl and PaIII shMMP-3 cells.  –ve indicates negative, non-template 

control.  Molecular weight markers are illustrated in base pairs (bp).  (B) IGF-1R phosphorylation in PaIII 

shControl, shMMP-3 Clone 01, and shMMP-3 Clone 02 cells.  (C) Phosphorylated ERK(pERK), total ERK 

(nERK),  phosphorylated AKT (pAKT), and total AKT (nAKT) in in PaIII shControl, shMMP-3 Clone 01, 

and shMMP-3 Clone 02 cells.  +ve indicates positive control (mouse mesenchymal stem cells stimulated 

with epidermal growth factor (EGF)).  (D) Phospho-Histone H3 immunofluorescence staining and 

quantitation in tissue sections derived from PaIII shControl and shMMP-3 Clone 01 tumor bearing tibias.  

Percentages of total cells (blue) stained positive for phospho Histone-H3 (red=high, orange=medium, 

yellow=low) per 20x field were calculated.  Asterisk denotes statistical significance (p<0.05). 

 

 

3.4 Discussion 

MMPs have been shown to be overexpressed in many cancers, where they 

possess both pro- and anti-tumorigenic roles by degrading and regulating extracellular 

and non-extracellular matrix proteins [280].  Here, we have shown that silencing MMP-3 
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in prostate cancer cells inhibits their growth in vitro and in vivo.  Further, we found 

increased levels of IGFBP3, a known MMP-3 substrate [305], and decreased IGF-1R, 

ERK, and AKT phosphorylation in the MMP-3 silenced cells.  This suggests that 

increased MMP-3 expression by prostate cancer cells contributes to tumor growth by 

cleaving IGFBP3, thereby increasing the activity of the proliferation driving IGF-1/IGF-

1R signaling pathway.  This has important clinical implications for the future treatment of 

metastatic prostate cancer as the development of both MMP and IGF-1R inhibitors 

progresses. 

Previous studies of MMP-3 in cancer have shown pro- and anti-tumorigenic 

roles.  For example, in breast cancer there are conflicting reports where MMP-3 can 

contribute or protect during cancer progression [347, 349, 365, 366].  It is possible that 

the net effect of MMP-3 could change as the disease advances, therefore MMP-3 needs 

to be studied in a context dependent manner.  In prostate cancer, MMP-3 is detected at 

higher expression levels compared to normal prostate tissues, however there have only 

been a couple of MMP-3 focused studies.  These studies have shown that MMP-3 

expression contributes to metastasis and angiogenesis [376] and migration and 

invasion [375], but no studies to date have looked at the direct impact on prostate 

cancer growth in bone.  Our studies found that tumor-derived MMP-3 expression 

contributes to prostate cancer cell growth in vitro as well as tumor growth in bone using 

in vivo intratibial models.   Additionally, we noted that in addition to expression by tumor 

cells in our human prostate to bone metastasis samples, MMP-3 is expressed in stromal 

cell types.  There is evidence that the roles of MMPs can depend on tissue expression, 
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therefore it would be interesting to study the specific impact of stromal MMP-3 in bone 

metastatic prostate cancer in future studies. 

 Prostate cancer to bone metastasis induces extensive remodeling of the bone 

and is hallmarked by a combination of osteogenesis and osteolysis.  Despite its effects 

on tumor growth in bone, our studies did not reveal any significant differences in tumor-

induced osteolysis or osteogenesis by MMP-3 expression.  MMP-3 can cleave many 

important factors involved with bone remodeling, including PTHrP, RANKL, and TGF-β, 

in addition to its extracellular matrix remodeling capacities, so it is surprising that no 

differences were observed.  However, previous studies of MMP-3 knockout mice have 

revealed no skeletal phenotypes, unlike others such as MMP-2, -9, and -13 which 

demonstrate significant skeletal impairments. 

 Numerous MMP-3 substrates have been previously identified, and these 

substrates are often responsible for determining pro- and anti-tumorigenic effects.  Like 

other MMP studies, we must also consider the spatial and temporal expression of the 

proteases.  Our cytokine array identified several proteins expressed by the PaIII 

prostate cancer cells, so it is plausible that these might co-localize with MMP-3.  

IGFBP3 is a known target of MMP-3 while IGFBP5 and IGFBP6 can be processed by 

MMP-2, -7, -9, or -12 [379-381].  However, IGFBP5 and 6 bind with greater affinity to 

IGF-2 whereas IGBP3 binds preferentially to IGF-1 [382].  In addition to IGFBP3, 5, and 

6, we observed increased VEGF in the conditioned media of PaIII shMMP-3 cells.  

Previous studies have shown that matrix bound VEGF-A can be released and 

processed into soluble fragments by multiple MMPs, including MMP-3, which 

possessed altered neovascular activities compared to an MMP-resistant form of VEGF 
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[294].  Further studies have shown that MT1-MMP can increase VEGF-A transcription 

by interacting with vascular endothelial growth factor receptor 2 (VEGFR-2) [383], but it 

is unclear whether this effect can be induced by other MMPs.  We also noted increased 

levels of additional proteins such as Eotaxin1 and G-CSF.  To our knowledge, these 

have not been previously shown to be regulated by MMPs, but might be interesting to 

investigate if and how MMP-3 modulates their expression.  It is worth noting that 

Eotaxin1 was shown to increase MMP-3 expression in DU145 cells which led increased 

invasiveness and migration [375], suggesting a possible reciprocal interaction.  

Similarly, there are reports where G-CSF stimulates MMP-2 expression and migration in 

mesenchymal stem cells [384].  Although our results implicate reduced IGF/IGF-1R 

signaling, it is both plausible and likely that other signaling pathways are affected by 

MMP-3 silencing and may contribute to the differences noted in proliferation and tumor 

growth.  

Given the numerous pro- and anti-tumorigenic roles described for MMP-3 in 

other cancers, MMP-3 may not be the best suited for the development of selective 

inhibitors.  However, uncovering the pro- and anti-tumorigenic roles for MMP-3 and 

elucidating its substrates provides alternative therapeutic targets.  IGF-1 is expressed 

by bone osteoblasts, osteoclasts, and osteocytes where its downstream signaling 

events are vital for development and metabolism [385].  The roles of the IGF signaling 

axis have also been well documented in many cancers where it is predominantly 

associated with pro-growth and pro-survival effects on tumor cells [355].  Studies have 

also shown that the IGF axis is involved in development and progression of prostate 

cancer [356].  IGF-1 and IGF-2 have both been implicated in the proliferation and 
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invasion of prostate cancer cells and progression to androgen independence, however 

there is some controversy as studies of transgenic mice have demonstrated that 

deletion of IGF-1R in combination with inactivation of p53 in prostate cells could lead to 

more aggressive cancer [386].  Both tumor- and bone-derived IGF-1 is also a factor in 

the “vicious cycle” [387, 388], suggesting that IGF-1/IGF-1R signal transduction may be 

particularly potent in prostate to bone metastases.  Consistent with most 

epidemiological findings, our results suggest that reduced IGF-1R signaling in the PaIII 

shMMP-3 cells decreases proliferation in vitro and in vivo.  Based on the predominantly 

oncogenic effects of the IGF-1R pathway, there are numerous ongoing efforts to target 

the IGF signaling axis in prostate cancer.  Preclinical studies of both monoclonal 

neutralizing antibodies and tyrosine kinase inhibitors have consistently shown 

therapeutic efficacy, but their performance in clinical trials have generally been 

disappointing or complicated by a wide array of side effects [382]. This is likely a 

product of the ubiquitous tissue expression of IGF-1R and its important physiological 

functions.  One current approach to improve the efficacy of IGF-1R inhibitors in prostate 

cancer is to give them in combination with other therapies, including androgen 

deprivation and chemotherapy [389].  According to these and previous findings from our 

group, we would speculate that developing a dual inhibitor consisting of an IGF-1R 

inhibitor and a bone seeking bisphosphonate might improve these therapies.  The use 

of this strategy has greatly improved the efficacy of MMP inhibitors in bone metastatic 

disease by permitting tissue selective (i.e. bone) targeting [123, 124].  We hypothesize 

that this strategy would reduce the local activities of IGFs while preserving IGF-1R 

signaling in normal, non-cancerous tissues.  In conclusion, we have shown that MMP-3 
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contributes to prostate cancer growth in bone by increasing tumor cell proliferation, and 

that the cleavage of IGFBP3 by MMP-3, which regulates IGF-1 activity, potentially 

contributes to the increased proliferation. 
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Chapter 4. Summary, Clinical Implications, and Future Work 

Metastasis is a chief component of cancer mortality, being responsible for up to 

90% of cancer deaths [390].  Cancer can metastasize to multiple organs including the 

lungs, brain, lymph nodes, liver, and bone.  For reasons that are only beginning to be 

understood, certain cancers metastasize more prevalently to specific organs, with the 

predilection of prostate cancer cells to colonize bone being a case in point.  Today, men 

diagnosed with primary, localized prostate cancer have a favorable prognosis with a 5-

year survival rate of nearly 100% [4].  As evidenced by these statistics, early detection 

is the best scenario, but the clinical reality is that a significant number of men will initially 

present with advanced prostate cancer and have bone metastases already established.  

Given the associated decline in quality of life and high mortality rates for metastatic 

cancer, discovering the underlying mechanisms of bone metastasis and developing 

clinically translatable therapies is of the utmost importance.  Equally important is the 

development of improved strategies to screen men for prostate cancer and carefully 

identify and monitor patients with early stage disease who are at risk for developing 

metastases. 

The original vicious cycle of bone metastasis describes the interactions between 

tumor cells, osteoblasts, and osteoclasts, but new components and mechanisms are 

continually being integrated [56].  By improving our understanding of the disease, these 

additions will provide potentially novel therapeutic targets.  Although MMPs have been 

implicated in invasion and metastasis for nearly 3 decades, work from our lab and 
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others has expanded these roles, demonstrating that many MMPs are involved in 

regulating vicious cycle cytokines and growth factors such as RANKL, IGF, TGF-β, 

VEGF, and now PTHrP [53].  PTHrP has long been acknowledged for its potent bone 

resorbing capacities in skeletal malignancies like breast cancer and multiple myeloma, 

but it can also promote osteogenesis via its actions on the osteoblast compartment 

when dosed intermittently [26, 167].  Our data show that MMP cleavage of mature 

PTHrP1-36 generates a 17 amino acid N-terminal peptide (PTHrP1-17) that does not 

induce osteoclastogenesis while retaining the ability to induce osteoblast differentiation 

and stimulate bone formation.  This mechanism could potentially explain why some 

cancers, such as prostate, generate predominantly osteogenic lesions.  Interestingly, in 

our mass spectrometry analysis of cancer cell conditioned media, PTHrP1-17 was 

detected in prostate cancer and osteosarcoma cell conditioned media, both of which are 

characterized by osteogenesis and bone forming lesions, but not in breast cancer which 

is traditionally hallmarked by the presence osteolytic lesions.  A more extensive 

characterization of cell lines and in vivo specimens would be necessary to draw further 

conclusions, but it would be fascinating to investigate whether PTHrP1-17 is found most 

often in cancers that produce osteogenic metastases and to better understand the 

interplay of factors related to the osteolytic/osteogenic balance.   

We have also shown that there is selectivity of MMPs toward PTHrP.  As an 

example, MMP-13 does not generate PTHrP1-17.  Our laser capture microdissection and 

microarray analysis of MMP expression was performed on prostate to bone metastases, 

showing significantly increased expression of MMP-2, -3, -7, -9, and -13.  Although 

these MMPs are known to be increased in many cancers, it would be interesting to 
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perform a similar experiment on bone metastases from other cancers, such as breast, 

to study the differential expression of MMPs.  Importantly, the increased commercial 

availability of reliable fluorometric MMP activity assays will allow us to explore the actual 

activity of MMPs in bone metastatic cancers of different origins.  This information might 

help us to better understand the MMP mediated generation of PTHrP1-17 and possibly 

yield clues to explain the osteolytic versus osteogenic pathologies observed in bone 

metastases.  

Currently, prostate specific antigen (PSA) is the standard test for screening men 

for prostate cancer.  PSA is a serine protease produced by prostate cells that can be 

measured in blood.  Usually, men with prostate cancer have elevated PSA levels (>4.0 

ng/mL), but benign conditions or infections can also cause PSA levels to rise [391].  

Because of this, there is controversy surrounding the use of this test, including who 

should and should not be tested and what levels constitute cause for concern [391].  A 

primary problem with PSA screening is that the tests have been known to report both 

false-negatives and false-positives.  One study reported that only about 25% of men 

with elevated PSA who underwent a prostate biopsy actually had prostate cancer [392].  

Although PSA is likely to remain the standard screening method for the foreseeable 

future, and efforts are being made to improve its accuracy, there is also pressure to find 

new prognostic biomarkers.  Recently, it was reported that a PTHrP12-48 fragment could 

serve as plasma-derived biomarker associated with bone metastasis in breast cancer 

patients [175].  Given the osteogenic nature of both prostate to bone metastases and 

MMP generated PTHrP1-17, perhaps PTHrP1-17, or PTHrP fragments that we have yet to 

study, might correlate with bone metastasis in prostate cancer.  Using the PTHrP1-17 
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antibody and mass spectrometry will allow us to study serum, plasma, and urine from 

prostate cancer patients with or without bone metastases and determine any 

correlation.  In addition to prognostic uses, the levels of PTHrP1-17 might also correlate 

with the effectiveness of experimental therapies such as MMP inhibitors. 

Besides their functional roles, MMPs may hold potential as prognostic or 

diagnostic cancer biomarkers as well.   Multiple MMPs from readily available sources 

like urine, serum, and plasma have been evaluated in cancers such as colorectal, 

pancreatic, breast, ovarian, bladder, prostate, and lung [393].  In some instances, the 

expression of certain MMPs has been found to correlate with the presence, stage, 

and/or grade of disease.  For example, the study of MMP-9 in breast cancer has 

revealed that plasma levels actually decrease following primary tumor resection.  In 

patients who relapse, increases in plasma levels of MMP-9 are detected.  Notably, the 

rise in MMP-9 expression is detected prior to the actual clinical diagnosis of recurrence 

[394].  Although MMP-3 is not currently used as a biomarker, existing data where its 

expression correlates with poor prognosis in colorectal cancer, and serum levels of 

MMP-3 in oral squamous provide rationale for its consideration and further study [289, 

290]. 

Within the bone field, there is a need for agents capable of stimulating bone 

formation to treat diseases like osteoporosis.  The use of PTH and PTHrP has been 

studied for these purposes after it was first shown in the 1930s that intermittent/daily 

injections of PTH could lead to increases in bone formation [128, 395].  However, the 

anabolic effects are only manifest when PTH is administered intermittently.  Sustained 

exposure favors osteoclast formation by driving the production of RANKL from 
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osteoblasts.  Following its discovery, it was determined that PTHrP had anabolic 

activities similar to PTH, but PTHrP1-36 was initially thought to be free of PTH’s potent 

resorptive effects [148, 149].  In a 3-month trial comparing PTHrP and PTH in three 

groups of 35 post-menopausal women, PTHrP1-36 increased bone mineral density, and 

although there was a slight delay compared to PTH1-34 (2-mo vs. 3-mo), PTHrP1-36 

treatment eventually led to increased CTX bone resorption markers [396].  Differences 

in potency were also noted, with the lower potency of PTHrP1-36 being attributed to its 

restriction to the cell surface whereas PTH1-34 was more readily internalized and able to 

persistently signal through PTH1R.  Additionally, it is believed that the susceptibility of 

PTHrP1-36 to proteolytic cleavage might limit its bioavailability and usefulness as a 

systemic treatment [128]. 

Although the native, full-length PTH and PTHrP proteins may not be best suited 

as anabolic treatments, there has been strong interest in using the PTH or PTHrP 

structure as a starting point to develop peptide analogs that promote bone formation.  

Currently, one PTH analog called teriparatide (FORTEO®) is FDA approved for the 

treatment of osteoporosis.  Although effective, practitioners have noted that some 

patients experience severe hypercalcemia which can actually lead to bone loss [397, 

398].  Recently an analog based on PTHrP called abaloparatide was developed as an 

alternative to teriparatide and is currently being investigated in phase III clinical trials. 

Abaloparatide modifies 5 of the 13 residues between amino acids 22 and 34 of PTHrP, 

however the rationale for these changes has not yet been published or explained.  

Results of earlier clinical trials show that abaloparatide increases bone mineral density 

and reduce fractures in post-menopausal women, however any risk or potential for bone 
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resorption has not been mentioned [151].  In our studies, MMP generated PTHrP1-17 

retains the anabolic activities of PTHrP1-36 but does not stimulate bone resorption.  

During ectopic ossicle formation assays, mice were systemically administered daily 

(intermittent) PTHrP1-17, and post-mortem histomorphometry of long bones revealed 

increases in trabecular bone volume.  Importantly, using in vivo calvarial injection 

assays, a protocol specifically designed to stimulate bone resorption via continuous 

exposure to PTHrP, we found that PTHrP1-17 neither increased osteoclast numbers nor 

enhanced bone resorption, both of which were observed with PTHrP1-36.  Furthermore, 

our in vitro analyses suggest that PTHrP1-17 may not be further degraded proteolytically 

as it was still detected after an hour of incubation with MMPs as well as in cell culture 

conditioned media collected over 24 hours.  Therefore our bioactivity studies of PTHrP1-

17 suggest that the N-terminal residues are capable of eliciting anabolic effects and may 

hold potential for further development as an anabolic agent for treating bone disease.   

Our mass spectrometry studies indicate that multiple MMPs can generate 

PTHrP1-17, including MMP-2, -3, -7, and -9 but not MMP-13, suggesting that there is 

specificity for certain MMPs toward the PTHrP sequence or structure.  Although we 

have explored the activity of MMP-3 toward PTHrP at multiple timepoints and focused 

on MMPs highly expressed in the tumor-bone microenvironment, it would be interesting 

to see which other MMPs are capable of cleaving PTHrP and to further study the 

kinetics of these enzymes.  Since numerous proteases, including several MMPs, are 

found in the tumor microenvironment, it will be important to understand these dynamics.  

We know that enzymes like PSA and neprilysin can cleave PTHrP [168, 169], but it 
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remains to be determined if and how they might compete with MMPs and other 

proteases in vivo.   

In future studies, we would like to explore whether PTHrP1-17 is produced by 

normal tissues where it might possess roles during routine skeletal metabolism.  

Osteoblasts are known to produce PTHrP [147], therefore we would evaluate PTHrP1-17 

in a panel of osteoblast, osteoblast-like, and osteocyte cell lines.  Our lab and others 

have developed and maintain colonies of MMP-null mice, including MMP-2, MMP-3, 

MMP-7, and MMP-9, that would allow us to study if there is a predominant MMP 

involved in PTHrP processing and compare this to WT mice.  Initially, we could 

establish primary mesenchymal stem cell and osteoblast cultures from these mice and 

examine the secretion of PTHrP1-17 in the conditioned media.  We could also collect 

plasma and bone marrow flushes from these mice as a more relevant in vivo source for 

immunoprecipitation and mass spectrometry analysis.  To further our understanding of 

PTHrP processing by MMPs in a prostate cancer setting, we could use CRISPR or 

traditional RNA interference methods to silence select MMPs in vitro.  This could be 

done in PaIII cancer cells as we know they secrete detectable levels of PTHrP1-17 and 

can be used for in vivo intratibial models. The development of the PTHrP1-17 specific 

antibody and refined mass spectrometry protocols for its detection will be a valuable tool 

as we continued to study PTHrP processing in more detail in the future. 

In this work, we have primarily focused on PTHrP1-17 as it appears to retain 

partial similarity to the mature, full length form of PTHrP.  However, our studies found 

that several MMPs could generate PTHrP18-26 and PTHrP27-36 as well as fragments from 

PTHrP1-36.  Although they did not possess activity in our signaling assays, nor did they 
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antagonize the activities of PTHrP1-17 or PTHrP1-36, there could be as of yet to be 

determined roles for these fragments.  We also have not studied the effects of MMPs on 

the C-terminal (amino acids 37-141) portion of the protein.   Many fragments and protein 

products have been detected from this region, including osteostatin, which has multiple 

previously identified anti-resorptive activities [181].  Surprisingly, very little is known 

about the proteases involved in cleaving this portion of PTHrP.  Therefore, in future 

work, we would like to investigate if MMPs are involved in the generation of osteostatin 

or other novel fragments from the C-terminus. 

The interaction between PTHrP1-17 and PTH1R leaves unanswered questions as 

well.  Normally, PTHrP interacts with PTH1R by the “two site model,” however the 

PTHrP1-17 fragment lacks the C-terminal portion of PTHrP that has been shown to 

interact with the receptor’s N-terminal domain.  Using available resources at Moffitt, we 

could use protein crystallization to develop a model of PTHrP1-17/PTH1R interaction and 

visualize the precise orientation of receptor ligation.   It may also be possible that 

PTHrP1-17 and/or other fragments could elicit cellular activities by alternative receptors.  

Researchers in the field have speculated that the Endothelin receptor could be involved 

with signaling of other PTHrP fragments like PTHrP1-16, however further study of this 

idea is needed [256].  We have explored this idea briefly using affinity precipitation 

mass spectrometry where we treat osteoblasts with biotinylated PTHrP1-17 and 

immunoprecipitate to observe protein binding partners.  We would like to expand these 

studies in future work as it could offer valuable directions in determining additional 

activities for PTHrP1-17.  In addition to studying PTHrP1-17 in osteoblasts, we would 
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include prostate cancer cell lines as well.  Identifying binding partners or receptors 

involved in prostate cancer cells could reveal possible reciprocal effects of PTHrP1-17. 

Persistent research has gradually elucidated cancer specific roles for individual 

MMPs, and we are beginning to have a clear picture of which MMPs contribute versus 

protect during tumorigenesis.  For example, MMP-3 has been implicated in contributing 

to mammary tumorigenesis but protecting in squamous cell carcinoma [313, 364].  Our 

tumor growth studies have focused on MMP-3 produced by the cancer cells.  Although 

most MMPs are secreted, they can act locally and unique roles for MMPs derived from 

specific cell types have been reported [58, 362].  Therefore, it is possible that 

host/stromal MMP-3 may have different roles in prostate tumor growth in bone that 

tumor-derived MMP-3.  Using MMP-3 null mice, we would like to study the impact of 

stromal MMP-3 on prostate tumor growth in bone.  We could also combine study the 

combined effect of total (tumor and stroma) MMP-3 ablation.  The addition of these 

experiments will enable us to fully understand MMP-3’s activities and utility as a 

therapeutic target in prostate to bone metastases. 

The biochemical understanding of MMPs has improved and we can now better 

target individual MMPs based on their active sites, sub site pockets, secondary 

substrate binding exosites, and even some non-catalytic activities [269, 272].  Applying 

mechanism based targeting approaches has led to the development of modern highly 

selective MMP inhibitors.  The ability to selectively target MMPs is being further 

developed to incorporate strategies that allow tissue specific inhibition.  

Bisphosphonates specifically target bone due to their affinity for hydroxyapatite and 

have been used clinically to treat skeletal malignancy for several years [90, 399].  Work 
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from our lab and colleagues at the University of Bari to chemically modify 

bisphosphonates by attaching an MMP inhibiting moiety to create “dual inhibitors” has 

shown promising preclinical results in in vivo 4T1 and PyMT-R221A bone metastatic 

breast cancer models [123, 124].  Despite the fact that MMP-3 may not be the best 

MMP for inhibition, these strategies will be important for the MMP field in allowing the 

selective inhibition of predominantly pro-tumorigenic MMPs like MMP-2. 

 

Table 4-1. Experimental Therapies for Metastatic Prostate Cancer 

Drug Name Target Action Trial Results Reference 

Orteronel 
CYP17A1 (17,20 

lyase activity) 

Reduces 
circulating 

testosterone levels 

Decreased 
number of CTCs, 

improved 
radiographic PFS 

[400, 401] 

Ipilimumab CTLA-4 T-cell activation Ongoing [402, 403] 

Nivolumab PD-1 T-cell activation Ongoing [404] 

Prostvac-VF 
Delivery of PSA 

transgene 
T-cell activation 

Improved median 
survival 

[85, 405] 

Cabozantinib c-MET, VEGF-R2 
Inhibits tyrosine 
kinase activity 

Partial resolution 
of bone lesions, 

decreased number 
of CTCs, 

decreased pain 

[406] 

Tasquinomod 
Thrombospondin 

S100A9 

Anti-angiogenic, 
reduces MDSC 

recruitment 

Improved median 
PFS, stable bone 

alkaline 
phosphatase 

levels 

[407] 

Custirsen Clusterin 
Improves 
docetaxel 
response 

Extended median 
survival, extended 

PFS, improved 
PSA declines 

[408] 

 

 

Only within the last decade have therapies that extend overall survival for men 

with metastatic prostate cancer become FDA approved. Many of these approved 

therapies as well as therapies under current investigation (Table 4-1) have shifted focus 
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away from traditional approaches such as chemotherapy and androgen inhibitors which 

solely target the cancer cells and instead consider the tumor microenvironment.  The 

most recent agent to receive FDA approval for mCRPC is radium-223 [97].  The bone 

seeking properties of radium-223 as well as other radiopharmaceuticals make them 

particularly useful in the treatment of bone metastases.  In a study of men with mCRPC 

previously treated with radiotherapy, radium-223 showed improved overall survival, time 

to PSA progression, and reduced alkaline phosphatase levels (measure of bone 

remodeling).  In addition, radium-223 also delayed the time to first SRE [99].  Previous 

radiopharmaceuticals used to treat mCRPC were only effective at reducing pain, 

therefore, radium-223 represents an important leap forward for the field [97].  

Understanding the roles for MMPs and their interaction with other factors in the vicious 

cycle as well as the development of selective MMP inhibitors will continue to generate 

novel methods to control metastasis. 
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