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ABSTRACT 

               

           Receptor interacting protein kinase 1 (RIPK1) is an enzyme acting downstream of tumor 

necrosis factor alpha to control cell survival and death. RIPK1 expression has been reported to 

cause drug resistance in cancer cells; but so far, no published studies have investigated the role 

of RIPK1 in vitamin D action. In the present study, we investigated whether RIPK1 played any 

role in 1,25-dihydroxyvitamin D3 (1,25D3)-induced growth suppression. In our studies, RIPK1 

decreased the transcriptional activity of vitamin D receptor (VDR) in luciferase reporter assays 

independently of its kinase activity, suggesting a negative role of RIPK1 in 1,25D3 action. 

RIPK1 also formed a complex with VDR and deletion analyses mapped the RIPK1 binding 

region to the C-terminal ligand-binding domain of VDR.  Subcellular fractionation analyses 

indicated that RIPK1 increased VDR retention in the cytoplasm, which may account for the 

inhibition of VDR transcriptional activity. Consistent with the reporter analyses, 1,25D3-induced 

growth suppression was more pronounced in RIPK1-null mouse embryonic fibroblasts (MEF) 

and RIPK1 knockdown ovarian cancer cells than control cells. We have also shown that VDR 

was involved in RIPK1-mediated cell death pathway in a cell line specific manner. In vivo study 

showed that VDR deletion delayed the necroptotic response to tumor necrosis factor alpha in 

mice. Western blot analyses of platinum sensitive and resistant cell lines showed a correlation 

between RIPK1 expression and drug resistance, suggesting a possible role of RIPK1 in drug 

resistance. In conclusion, this study is the first to define RIPK1 as a VDR repressor, projecting 



 

xi 
 

RIPK1 depletion as a potential strategy to increase the potency of 1,25D3 and its analogs for 

cancer intervention.  
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CHAPTER 1: 

INTRODUCTION 

 

1.1 Cell death  

Cell death was formulated initially as a final outcome of inflammatory tissue damage. 

However, it was later found that this is a mechanism to eliminate pathogens and regulate 

inflammation that otherwise would cause further damage of the tissue or the whole organism [1]. 

Until the nineteenth century, forms of cell death had not been classified and differentiated from 

one another. In 1972, the term “apoptosis” was first coined to define the regulated form of cell 

death which is different from inflammatory necrotic cell death [2]. Before the advent of 

molecular diagnosis of cell death events, cell death pathways were characterized mainly based on 

morphological features for several reasons. Availability of light microscopy over fluorescence 

microscopes, easiness of observations and being unable to differentiate and characterize 

seemingly similar but mechanistically different cell death pathways have put forward 

morphological classification of cell death over molecular pathway based classification of cell 

death. Since then, major cell death pathways have been termed as: 1) Apoptosis, 2) Autophagy 

and 3) Necrosis [3]. 

  

Note to reader: Portion of this chapter has been previously published in Cellular & 

Molecular Immunology (2010) 7, 243–249, and has been reproduced with permission from 

Nature Publishing Group. 
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  As it was eventually realized to be an overgeneralization to characterize cell death 

between apoptosis and necrosis on the basis of caspase dependency and independency, in 2012, 

the Nomenclature Committee on Cell Death (NCCD) has decided to classify major cell death 

pathways according to molecular mechanisms [4]. 

 

1.1.1 Apoptosis 

Apoptosis or “programmed cell death” is a form of cell death where cells decide to die 

and follow a regulated molecular events leading to its death [5].  This type of cell death was first 

demonstrated during the normal development in the nematode Caenorhabditis elegans [6, 7]. It 

soon ignited an immense interest among scientists and until recently, this type of cell death is the 

most studied among all other cell death pathways. From the birth to the death of an organism, 

apoptosis works during the development, aging, DNA damage repair, immune defense etc. in 

response to a wide variety of physiological and pathological stimuli and conditions [8]. 

Morphologically, apoptosis is defined as cell shrinkage through dense cytoplasm and more 

tightly packed organelles. In addition to that, pyknotic nuclei due to chromatin condensation is 

another prominent characteristic of apoptosis visible through light microscope [9]. Cytoplasmic 

blebbing due to separation of cell fragments and the integrity of the plasma membrane are also 

important morphological hallmarks of apoptotic cell death [9].  Despite the same morphological 

features, apoptosis has been classifieds into extrinsic and intrinsic pathways based on the 

molecular pathways it follows. Extrinsic apoptosis is initiated through the binding of death 

ligands like tumor necrosis factor (TNF), TNF-related apoptosis inducing ligand (TRAIL) or Fas 

ligang (FasL/CD95L) to their cognate receptor TNFR, TRAILR, and FAS/CD95, respectively 

[10-12]. After tumor necrosis factor-α (TNFα) binds to TNFR, the activated receptor recruits 
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proteins including Fas-associated protein with death domain (FADD) protein, which has a death 

domain (DD) in it. The receptor also recruits TNFR associated death domain (TRADD), another 

death domain containing protein [13, 14]. The death effector domain (DED) of FADD binds to 

another DED domain of caspase-8. The protein complex in the death receptor is called death-

inducing signaling complex (DISC) [14-16]. The autoactivation of pro-caspase-8 in the DISC 

cleaves downstream caspases like caspase-3, caspase-6 and caspase-7 to execute apoptosis [16, 

17]. However, apoptosis can also be induced other than external stimuli. This type of apoptosis is 

called intrinsic apoptosis. As extrinsic apoptosis is caspase-mediated, intrinsic apoptosis can be 

either caspase dependent or caspase independent [18, 19]. In intrinsic pathway, the initiation of 

apoptosis does not rely on external ligand mediated signals rather than occurs by an abundant 

cellular stress like DNA damage, oxidative stress, hypoxia, hypothermia, toxins, over-

accumulation of unfolded proteins in the endoplasmic reticulum etc. In all cases, cells can be 

either overwhelmed with the stress or fail to respond through the anti-apoptotic proteins. This 

leads to a common phenomenon called mitochondrial outer membrane permeabilization or 

MOMP [20]. The loss of mitochondrial membrane potential causes the release of cytochrome c 

along with its adaptor protein apoptotic protease activating factor, APAF1. Along with dATP 

and caspase-9, these proteins form apoptosome that initiates caspase-dependent intrinsic 

apoptotic cell death. On the other hand, release of apoptosis-inducing factor (AIF) causes DNA 

fragmentation [21]. In this caspase independent intrinsic pathway, energy depletion and 

respiratory chain inhibition are accompanied by production of reactive oxygen species (ROS). 

This also leads to apoptotic cell death [22, 23].  
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1.1.2 Autophagy  

Morphologically, autophagy is termed as a form of cell death where the cell dies through 

cytoplasmic vacuolization and degradation by lysosome [24, 25]. Due to environmental factor 

such as stress, eukaryotic cells often form a double membrane vesicle or autophagosome where 

several organelles and part of the cytoplasm are trapped. This autophagosome is later delivered 

to lysosome to be degraded [26, 27].  

 

1.1.3 Necrosis 

Although necrosis has been studied much less than apoptosis, it is the oldest form of cell 

death that had been observed and recorded and considered as an outcome of accidental cell death 

due to cellular stress. Morphologically, necrotic cell death shows plasma membrane rupture and 

dissociation of organelles [28-30]. As the plasma membrane is no longer intact, necrotic cells 

become positive for both propidium iodide (PI) and annexin V (AV) staining, differentiating it 

from the apoptotic cell death pathway [31]. Until recently, necrosis was thought to follow no 

specific molecular pathways.  

 

1.1.4 Other forms of cell death 

NCDD also denotes other forms of atypical cell death. Mitotic catastrophic cell death is 

one such type. After a failed mitosis, for example, if the daughter cell’s cytoplasm is unevenly 

distributed or has multinucleation, cell can die through apoptotic or necrotic cell death. This type 

of cell death is called mitotic catastrophe [32, 33].  On the other hand, anoikis occurs when a cell 

loses the attachment to the substrate or to another cell [34-36]. Pyroptosis is another form of cell 

death which involves the activation of caspase-1. This protein can form a protein complex called 
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“pyroptosome” which leads to interleukin-1β release. This type of cell death is observed in 

immune cells such as macrophage [37-39].   

 

1.2 RIPK family 

Receptor interacting protein 1 had been given the name since it was initially identified as 

a protein that interacts with the death domain of Fas (CD95) receptor through its C-terminal 

death domain region [40]. Eventually, it was found to be a serine/threonine kinase, hence 

alternatively called as RIP kinase 1 or RIPK1 [41]. The protein has three domains: the N-

terminal kinase domain, the intermediate domain and the C-terminal death domain. Although 

initially thought as a single protein, other proteins were later found to be structurally related to 

this protein and RIPK was hence re-named as RIP1 or RIPK1 [42]. Proteins in the RIPK family 

share a common kinase domain. RIPK2 protein has a caspase activation and recruitment domain 

(CARD) [43]. It uses this domain to bind to another CARD domain containing protein. It can 

also bind to anti-apoptotic proteins like cellular inhibitor of apoptotic proteins (cIAPs) and 

induce Mitogen activated protein (MAP) kinase and NF-κB signaling pathways [42, 44]. Other 

functions of RIPK2 include T-cell receptor regulated proliferation and IL-1β maturation [45, 46]. 

Of all the members, RIPK1 and RIPK3 share a distinctive region, the RIP homotypic interaction 

motif (RHIM). This motif is special and thought to be evolutionary conserved since only a few 

proteins possess this motif. RIPK1 and RIPK3 interact with each other through this motif [47, 

48].   

In human, RIPK4 is known as protein kinase C-δ-interacting protein kinase (DIK) and in 

mouse; it is denoted as ROV (PKK). RIPK4 is known to activate c-Jun N-terminal kinase (JNK) 

and NF-κB signaling through interaction with TNF receptor associated factor (TRAF) protein 
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[49, 50]. RIPK4 knockout mice die after birth because of abnormal epidermal development 

suggesting its key role in developmental morphogenesis [51-53]. RIPK5 protein shares structural 

similarity with RIPK4 in kinase and ankyrin repeat domains. However, RIPK5 protein’s function 

has not been fully understood yet. It has been observed that overexpression of RIPK5 induces 

apoptotic cell death through DNA fragmentation [54].   

Compared to the other members of RIPK family, RIPK6 and RIPK7 are quite different. 

Although both proteins share the similar kinase domain, they also harbor leucine rich repeat 

(LRR) motif and Ros of complex proteins or C-terminal of Roc (Roc/COR) domain. RIPK6 has 

ankyrin repeat domain whereas RIPK7 protein has a unique tryptophan-aspartic acid repeat 

domain, also known as WD40 domain. The structural similarity of these two proteins suggests 

that they might have similar role in cell signaling. Indeed, mutations in these proteins lead to 

greater susceptibility to Parkinson’s disease, although the mechanism of disease progression due 

to the mutation is still unclear [44, 55-57]. 

 

1.2.1 Domain structure of RIPK1  

Among the members of RIPK family, RIPK1 has been the most-studied protein. In 

human, it is a 671 and in mouse, 656 amino acid residue long. Despite the length similarity, these 

two proteins are only 69% identical in sequence. However, they share similar domains, each with 

specific function. The N-terminal domain of human RIPK1 is about 300 residues long, known as 

the kinase domain with an ATP binding pocket. The kinase domain has auto- and trans-

phosphorylation ability [58]. Enzyme digestion followed by mass spectrometry and in vitro  
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Fig. 1: RIPK family members and their domains  

RIPK family proteins have a common kinase domain (KD). RIPK1 and RIPK3 share a unique 

RIP homotypic interaction motif (RHIM). RIPK2 has a caspase activation and recruitment 

domain. RIPK4, RIPK5 and RIPK6 share ankyrin repeat domain (ANK). RIPK6 and RIPK7 

have unique leucine-rich repeat (LRR) and Ros of complex proteins/C-terminal of Roc 

(Roc/COR) domain which are not shared by other members of the family. RIPK7 also has WD40 

motif. 

 

 

 

Adapted from Zhang et.al. Receptor-interacting protein (RIP) kinase family; Cellular and 

Molecular Immunology (2010) 7, 243–249 with permission from Nature Publishing Group. 

Reprinted by permission from McMillan Publishers Limited: (Cellular and Molecular 

Immunology) [44] (http://www.nature.com/cmi/index.html). Copyright (2010). 

 

kinase assays revealed that the autophosphorylation sites of RIPK1. Interestingly, all 

autophosphorylation sites are in the N-terminal kinase domain. Functionally, the kinase domain 

is responsible for phosphorylating the RIPK1 protein itself and other proteins including RIPK3 

and initiating necroptotic cell death signaling. The intermediate domain is about 300 residues 

long. This domain contains a unique motif called RIP homotypic interaction motif (RHIM) 

spanning from 531 to 547 residues (Fig. 2). RIPK1 and RIPK3 bind to each other through this 

motif and hence, is important for necroptotic induction [59].  Intermediate domain is also crucial 

for ubiquitination of RIPK1 at Lysine 377 residue [60, 61]. There are other lysine residues in 

http://www.nature.com/cmi/index.html
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Fig. 2. Domain structure of the RIPK1 protein 

RIPK1 protein is comprised of three domains. Each domain length has been indicated with the 

amino acid residues length shown in numbers. The kinase domain has autophosphorylation sites 

as indicated. The intermediate domain contains the RHIM motif and Lysine 377 ubiquitination 

site followed by death domain. RHIM: RIP homotypic interaction motif.  

 

RIPK1 protein which can also be ubiquitinated [62]. These sites have not been extensively 

studied and should be explored in future.  The death domain is the shortest domain of RIPK1 

protein, ranging from 583 to 671 residues. Although small in size, this domain serves as a major 

docking site for other proteins to bind to RIPK1 to conduct ligand-mediated cell survival or 

death signaling [40, 63, 64].  

 

1.2.2 Post-translational modifications of RIPK1  

The three dimensional structure of proteins is known to be changed by post-translational 

modifications [65]. These modifications not only are important for making the protein suitable 

for binding to other proteins, but also accelerate the downstream signaling process mediated by 

the protein [66]. Important post-translational modifications are phosphorylation, acetylation, 

ubiquitination, sumoylation etc. As described above, RIPK1 proteins act as an important protein 
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in cell signaling pathway. The activity of RIPK1 protein can be regulated by post-translational 

modifications like phosphorylation and ubiquitination [62].  

 

1.2.2.1 Phosphorylation of RIPK1  

Soon after its discovery, RIPK1 has become known for both its kinase activity to 

phosphorylate itself and its role as an adaptor protein in NF-κB-mediated in cell signaling. The 

kinase activity of RIPK1 is needed for necrotic induction but dispensable for TNFR-induced NF-

κB signaling [67]. The major phosphorylation sites of RIPK1 include Ser14/15, Ser20, Ser161 

and Ser166, which are considered as autophosphorylation sites [68]. RIPK1 can also be 

phosphorylated on Ser166, Ser331 and Ser416 sites. However, these sites have not been found to 

be physiologically relevant and their role in RIPK1 functions should be further investigated [69]. 

 

1.2.2.1.1 Positive and negative phosphorylation of RIPK1 

In search of potential phosphorylation sites of biological significance, various 

phosphorylation sites of RIPK1 have been mutated and the kinase or the necroptotic activities of 

the mutants have been measured. The mutation of the potential S161 site to alanine caused only a 

20% reduction in kinase activity and did not inhibit the necroptotic potential of RIPK1 [70]. 

However, S161A-RIPK1 decreased the ability of necrostatin-1 (Nec-1) to inhibit RIPK1 kinase 

activity. Collectively, most of the phosphorylation sites show additive effect on the kinase 

activity of RIPK1, negating the possibility of a single site as the sole important phosphorylation 

site. Interestingly, although Ser89 site has not been defined as a phosphorylation site of RIPK1, 

mutational analyses suggest that this site serves as a potential inhibitor of the kinase activity of 

RIPK1. S89A-RIPK1 mutant showed increased kinase activity for downstream signaling and 
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necrosome formation, indicating that the phosphorylation at residue 89, if occurs,  may 

negatively regulate RIPK1 kinase activity [69, 70]. 

 

1.2.2.1.2 Phosphorylation and necroptotic signaling of RIPK1  

Being discovered in 1995, the initial assessment about RIPK1 considered this protein to 

be only effective in apoptotic cell death. However, RIPK1 was also an important mediator of 

caspase independent non-apoptotic cell death pathway [71]. As this form of cell death had 

necrotic morphology but showed regulated cell death like apoptosis, it was coined as 

“necroptosis” [72]. This form of cell death distinguishes itself from apoptotic cell death by its 

inflammatory characteristics of necrotic cell death. The kinase activity of RIPK1 is not important 

in NF-κB signaling [73] but indispensable for the downstream cell death signaling [74, 75].  

To find out what other kinase proteins are also involved in necroptotic signaling, researchers 

from three individual laboratories performed siRNA-based screening against known kinase genes 

along with inducing cells by necroptotic signaling. The studies found out that RIPK3 was also a 

major player in this cell death pathway, which concurrently worked with RIPK1 as a binding 

partner [76-78]. It was observed that RIPK3 is an upstream regulator of RIPK1 since it can 

phosphorylate RIPK1 [77].  

 

1.2.2.1.3 Downstream effectors of RIPK1 phosphorylation   

Although it was known that the phosphorylation event of RIPK1 and RIPK3 initiates the 

necrosome formation; until recently, the downstream events of RIPK1 and RIPK3 mediated 

signaling pathway have not been defined. Sun et. al. performed immunoprecipitation with anti-
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RIPK3 followed by mass spectrometry of the bands in silver staining and found the presence of 

mixed lineage kinase domain like protein (MLKL) in the complex [79]. Further studies also 

 

 

 

Figure 3: Apoptotic and necroptotic cell death induction by TNFα and RIPK1 

Upon binding to its ligand-TNFα, TNFR recruits TRADD, TRAF2 and RIPK1 to form complex 

I. RIPK1 gets ubiquitinated by cIAPs through K63 linked ubiquitination. This can be inhibited 

by second mitochondria derived activator of caspases (SMAC) and can also be deubiquitinated 

by cylandromatosis (CYLD). This complex I further recruits inhibitor of nuclear factor kappa B 

kinase (IKK) subunits, IKKγ/NEMO (NF-κB essential modulator), to initiate NF-κB mediated 

cell survival signaling. After getting deubiquitinated by CYLD, RIPK1 binds to caspase-8 to 

induce apoptosis by forming complex IIa. If caspase-8 activity is inhibited, RIPK1 can bind to 

RIPK3 and initiate necroptotic cell death by forming complex IIb.  
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confirmed the presence of MLKL protein in RIPK1-RIPK3 complex [80, 81]. The fact that the 

kinase domain of RIPK3 was required for the binding to MLKL proteins emphasized the 

importance of MLKL as a potential target for phosphorylation by RIPK3 protein. In vitro 

phosphorylation assays also confirmed that MLKL got phosphorylated by RIPK3, but not by 

RIPK1 [82]. The major phosphorylation sites of murine MLKL are Ser345, Ser347 and Thr349, 

which correspond to human Thr357 and Ser358 sites [83, 84]. A potential inhibitor of 

necroptosis, necrosulfonamide, was found to bind to MLKL and inhibit necroptosis through the 

binding, further confirming that RIPK3-MLKL interaction drives necroptosis. After 

phosphorylation, RIPK3-MLKL complex is translocated to the membrane and causes membrane 

depolarization. The phosphorylation of MLKL is indispensable in membrane translocation since 

the mutant proteins were unable to translocate to the plasma membrane and induce necroptosis 

[80]. 

 

1.2.2.2 Acetylation of RIPK1 

Acetylation of protein refers to the addition of an acetyl group to mostly lysine residues 

of the protein. It is a major post-translational modification for nuclear proteins like histones and 

transcriptional regulators [85]. Most of the proteins involved in energy metabolism pathways like 

glycolysis, TCA cycle, urea cycle, chromatin remodeling, cell cycle, splicing, nuclear transport, 

actin nucleation, and mitochondrial metabolism etc. are known to be acetylated, which renders 

this modification a major role in metabolic pathways [86]. Histone modifications by acetyation  

also change nuclear conformation, thereby influencing transcription. As acetylation changes the 

activity and stability of these enzymes, it is as important as other post-translational modifications 

like phosphorylation or ubiquitination. On the other hand, deacetylation of proteins is also 
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important as the event also changes protein’s structure and shape and thereby, changes their 

functions. Sirtuin 2 (SIRT2) is a nicotinamide adenine dinucleotide (NAD+) dependent 

deacetylase that was suggested to play an important role in necroptotic signaling process. 

Narayan et.al. initially showed that SIRT2 binds to RIPK3 and deacetylates RIPK1, which was 

required for the formation of RIPK1-RIPK3 complex to induce necroptosis. They also showed 

that SIRT2 inhibitor blocked RIPK1-RIPK3 complex formation and necroptotic induction and 

that SIRT2-/- cells were not responsive to necroptotic cell death induction, suggesting that 

SIRT2 was required for necroptosis [87]. However, their work was challenged by multiple 

research groups who failed to reproduce the data. Additionally, SIRT2 -/- mice died of 

necroptotic cell death after tail-vein TNFα injection, suggesting that SIRT2 is dispensable in 

necroptotic cell death [88]. This controversial issue was addressed by a more recent paper 

showing that SIRT2 was indeed required for necroptosis. However, this group also introduced 

another member, SIRT5, of the same SIRT family as a potential protein to induce necroptosis 

redundantly with SIRT2. The reason that SIRT2 knockdown did not inhibit necroptosis in some 

cell lines was the functional redundancy played by SIRT5, which was initially ignored. This 

might also explain why SIRT2-/- died of necroptotic cell death after TNFα injection [89].   

 

1.2.2.3 Ubiquitination of RIPK1  

RIPK1 was first implicated in TNFα-stimulated NF-κB activation. Since RIPK1 itself is a 

kinase, its phosphorylation activity towards itself or other proteins was first assumed to be the 

activating factor. However, RIPK1 was also assumed to have further covalent modifications 

other than phosphorylations for several reasons. First, the phosphorylation of inhibitor of kappa 

B (IκB) kinase (IKK) was not efficient by RIPK1 itself. On the other hand, kinases present in the 
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whole cell complex were more capable of phosphorylating the IKK proteins. Therefore, RIPK1 

was not involved in phosphorylating IκB kinase proteins. SDS-PAGE analyses of the TNFR 

complex also showed a ladder-like appearance of RIPK1 protein, which is a feature of 

ubiquitinated protein. Overexpression studies of RIPK1 in Jurkat cells stimulated with TNFα 

followed by immunoprecipitation of RIPK1 showed that RIPK1 gets ubiquitinated. Of the five 

consecutive lysine residues in the intermediate domain of RIPK1, each one was mutated  to find 

out the specific ubiquitination site. The analyses showed that RIPK1 gets exclusively 

ubiquitinated at the lysine 377 site [60].  Mutational studies with of mutant ubiquitins showed 

that RIPK1 gets ubiquitinated through K63-linked ubiquitin chain. This polyubiquitination chain 

of RIPK1 recruits the member of IKK family, IKKγ or NEMO. Both the polyubiquitination of 

RIPK1 and the binding of NEMO are important for NF-κB activation. Polyubiquitination of 

RIPK1 by K63-linked chain also recruits and activates transforming growth factor beta (TGFβ) 

activated kinase (TAK1) protein through TAK1 binding protein (TAB) TAB2 and TAB3, which 

preferentially bind to K63-linked polyubiquitnated RIPK1 [71].  

 

1.2.3 Ubiquitination in NF-κB signaling  

Addition of ubiquitin to protein is called ubiquitination or ubiquitylation. Ubiquitin is a 

small protein of 76 amino acid residues and of 8.5kDa in molecular weight. It is a highly 

conserved protein found to be unique in eukaryotes [90-92]. The C-terminus of the ubiquitin 

covalently linked to the N-terminal end or the N-group of a lysine residue of the substrate. Of the 

ubiquitin’s 76 residues, 7 are lysine residues that can be used to form polyubiquitin chains with 

other ubiquitin proteins. The ubiquitination process depends on three consecutive steps. 1) 

ubiquitin activation, 2) ubiquitin conjugation and 3) ubiquitin ligation. The ubiquitin activating 
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enzyme (E1) catalyzes the reaction of thioester linkage formation between ubiquitin. Ubiquitin 

conjugating enzyme (E2) catalyzes the binding of activated ubiquitin to itself. In the final step, 

ubiquitin ligase enzyme (E3) catalyzes the reaction of the binding between the lysine residue of 

the target protein and the C-terminal glycine residue of ubiquitin [90, 93, 94].   

Different types of ubiquitination can occur in proteins. Monoubiquitination occurs when 

only one ubiquitin protein binds to the substrate protein. Multiple monoubiquitination occurs 

when ubiquitin binds to multiple sites of the protein. Polyubiquitination occurs when ubiquitin 

binds as a linear or branched pattern through its 7 lysine residues (Lys6, Lys11, Lys27, Lys29, 

Lys33, Lys48 or Lys63). Different types of polyubiquitination are defined according to the lysine 

residues of the ubiquins used for the for4mation of polyubiquitin chains. For example, K48 

ubiquitination is called if the connecting ubiquitin is attached to the Lys48 residue of the 

previously attached ubiquitin, and K63 ubiquitination is used if the incoming ubiquitin is 

attached to the Lys63 residue of the previous ubiquitin [90, 93]. Different types of ubiquitination 

are used in different molecular pathways. Monoubiquitination of proteins usually leads to protein 

trafficking, endocytosis and DNA repair [95]. K48 linked polyubiquitination signals mainly for 

proteolytic cleavage of the protein whereas K6, K28 and K63 polyubiquitination signals for non-

proteolytic activation, such as kinase activation or the activation of NF-κB mediated cell survival 

pathway [94]. The length and types of the ubiquitin chain determine the outcome of the 

ubiquitinated protein.  

 

One function of ubiquitination is to make the protein available for binding by other 

proteins. Proteins bind to the ubiquitinated protein through ubiquitin binding domain (UBD) 

[96]. UBD comprises of a diverse structure including zinc fingers and plekstrin homology motif, 
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which allows the flexibility and choice of binding proteins to target ubiquitinated proteins. A 

single protein can bind to multiple ubiquitination sites of another protein. Alternatively, two 

different proteins can bind to different ubiquitination sites of the same protein. In both cases, this 

binding results in the activation of a downstream signaling pathway to amplify the signal. 

Ubiquitinated proteins signal different outcomes through differently linked chains. Generally, 

K63-linked ubiquitination signals for cell survival whereas K48-linked ubiquitination targets 

proteins for proteasomal degradation [97]. 

 

1.2.4 RIPK1 ubiquitination is important for cell survival  

As RIPK1 deficient mouse embryonic fibroblast (RIPK1-/- MEF) are highly sensitive to 

TNFα-induced cell death, it underscores the fact that the presence of RIPK1 is important for cell 

survival [98]. However, whether RIPK1 ubiquitination is also important or not has remained 

unknown for a while. To investigate this question, RIPK1 ubiquitin mutant construct (RIPK1 

K377R) was generated and stably expressed in RIPK1-deficient cells. It was observed that 

RIPK1-K377R expressing cells were more susceptible to TNFα induced apoptotic cell death than 

cells expressing wild type RIPK1. Therefore, the ubiquitination of RIPK1 appeared important for 

cell survival [60].  

 

1.2.5 RIPK1 as a survival protein  

Besides being a kinase, RIPK1 can serve as an adaptor protein in cell signaling pathways. 

As discussed, diverse death ligands bind to their corresponding receptors and recruit adaptor 

proteins, including RIPK1. RIPK1 serves as the cross-road between the decision of life and death 

of the cells depending upon the interplay between the cell survival and cell death signaling 
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complexes [71]. RIPK1 mainly forms complexes with cell surface receptors after stimulation 

with death ligands. The initial assessment of RIPK1 protein in chemotherapeutic treatment was 

that, this protein can be used for killing of cancer cells by death ligands. Induction of pro-

apoptotic or pro-necrotic complex like “Ripoptosome” or the RIPK1-RIPK3-caspase-8 complex 

seemed to be a promising target for chemotherapy [99, 100]. RIPK1-/- die shortly after birth 

through apoptotic cell death in major adipose and lymphoid tissues, indicating the role of RIPK1 

in cell survival [98].  This also may be the case in cancer cell survival. Recent studies have 

shown that RIPK1 is upregulated in melanoma cells than normal skin cells [101]. This 

upregulation helped the melanoma proliferation since stable knockdown of RIPK1 in those 

melanoma cells inhibited the proliferation. The survival function is also supported by the fact 

that ectopic expression of RIPK1 increased melanoma cell proliferation and induced anchorage-

independent melanocyte growth. The same group has also shown that RIPK1 is increased in 

endoplasmic reticulum stress by tunicamycin or thapsigargin treatments, which allows melanoma 

cells to survive and evade apoptosis by going through autophagy [102]. Knockdown of RIPK1 

significantly decreased melanoma cell survival, which corroborated their earlier findings. 

Another study has also shown that RIPK1 serves as a chemoresistance inducing protein in lung 

cancer cells. Wang et.al. has shown that in RIPK1 knockdown lung cancer cells, the cytotoxic 

effect of cisplatin was significantly increased, suggesting that RIPK1 helps cancer cells to 

survive through chemotherapeutic treatment [103]. Current chemotherapy involves drugs that 

induce apoptosis in cancer cells by inducing reactive oxygen species (ROS) generation. Cancer 

cells have evolved mechanisms to subvert the effect of ROS by inducing antioxidant expression 

like catalase. It has also been observed that in RIPK1 knockdown cells, both the stability and 

synthesis rate of catalase were decreased. Further investigation in this pathway also led to the 
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finding that micro-RNA 16a expression was increased in RIPK1 knockdown cells, which targets 

catalase and degrades the protein. Therefore, this work summarizes a novel role of RIPK1 in 

cancer cell survival and shows how cancer cells can evade apoptosis through RIPK1 by inducing 

microRNA regulated catalase degradation.   

 

1.2.6 Regulated necrosis or necroptosis  

Apoptosis and necrosis had shown a distinct features in terms of initiation and 

morphological features. As mentioned earlier, while apoptotic pathway has already been well 

established to be regulated, necrosis was thought to be a totally unregulated event with 

physiologically catastrophic consequences. In addition to that, apoptosis and necrosis were 

thought to be initiated by different inducers until 1988 when Laster et.al. showed that both 

apoptosis and necrosis could be initiated by a single death ligand, TNF [104]. This group noticed 

that in response to TNF induction, F17 cells showed apoptotic cell death whereas L-M cells went 

through necrosis. This indicated that the type of cell death by TNF may depend on the types of 

cells. It was known that TNF induced necrotic cell death in L929 cells[105].  Interestingly, in the 

presence of caspase inhibitor, the TNF accelerated necrotic cell death to L929 cells[106]. This 

led to the notion that necrosis can also be triggered or regulated like apoptotic cell death 

pathway. However, to show a true regulation of necrotic cell death pathway, proteins that play 

roles in that event were yet to be identified. In 2000, Holler et. al. first showed that in caspase-8 

inactivated T cells, FasL caused necrotic cell death. However, this type of FasL induced cell 

death was not observed in T cells lacking RIPK1 and FADD proteins [107]. This study first 

showed that RIPK1 and FADD are required for necrotic cell death pathway. Since this form of 
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cell death showed necrotic morphology yet showed regulated pathway like apoptosis, Degterev 

et.al. termed this type of cell death as “Necroptosis” [72].  

 

1.2.6.1 Necroptosis is a kinase-mediated pathway  

Myocardial infarction and cerebral ischemia are examples of acute physiological 

conditions where human tissues have necrotic cell death. As a subset of necrotic cell death is 

regulated event like necroptosis, a drug preventing necroptosis can be an acceptable treatment 

method for the patient. In search of a potential target for treating necrotic cell death, Degterev 

et.al. screened ~15,000 potential compounds and found necrostatin-1(Nec-1) to be a potent 

inhibitor of necroptotic cell death induced by death ligand [68]. Additionally, Nec-1 did not 

change the morphology of apoptotic cell death process, confirming that it exclusively works on 

necroptotic cell death [68, 108]. More importantly, Nec-1 significantly inhibited in vivo ischemic 

neuronal injury, suggesting it to be a potential drug candidate for inhibiting necrotic cell death 

related diseases [72]. Like other kinase inhibitors, Nec-1 has an indole ring that makes it an ideal 

kinase inhibitor. In vitro kinase assays showed that Nec-1 significantly decreased RIPK1 kinase 

activity. Structure-activity relationship analyses also concluded that Nec-1 specifically targets 

RIPK1[68]. Although RIPK1 was originally identified as the key protein in necroptosis, further 

research showed that necroptosis is indeed mediated by RIPK1 and RIPK3 complex [76-78]. 

 

1.2.6.2 RIPK3 is a necroptotic switch   

As mentioned earlier, RIPK1 protein can act both in cell survival and cell death 

pathways. Although the kinase domain of RIPK1 is not required for NF-κB-mediated cell 

survival pathway, it is required for RIPK1 mediated cell death pathways. Although the kinase 
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activity of RIPK1 is generally required for necroptotic cell death, it is not the determinant of 

necroptosis in all cell lines [109]. Therefore, other proteins must be involved in necroptotic 

induction. It has already been known that z-VAD is a pan caspase inhibitor and, SMAC mimetic 

(SM) inhibits the anti-apoptotic functions of cIAP proteins [100, 110]. Therefore, treating cells 

with TNFα and SM induce apoptotic cell death in the absence of z-VAD. If z-VAD is added, 

caspase mediated apoptotic cell death is inhibited and accordingly, TNFα/SM co-treatment 

induces necroptotic cell death. A genome wide screening of siRNA pool in FADD-deficient 

Jurkat and human colorectal carcinoma HT-29 cells showed that the knockdown of RIPK3 also 

decreased necroptotic cell death induction along with RIPK1 knockdown as a positive control. 

On the other hand, the knockdown of the other members of RIPK family did not alter cell 

viability [76]. From previous studies, it was already known that RIPK1 and RIPK3 share 

common domains and bind to each other [47]. Furthermore, in RIPK3 stable knockdown cell 

line, TNFα/SM/z-VAD induced necroptotic death was abolished. Together, these data suggest 

that RIPK3 is the molecular activator of necroptotic cell death. RIPK3 is not expressed in all cell 

lines. A cellular expression profile of RIPK3 among mouse and human cell lines along with their 

necroptotic response showed that only those cells that express RIPK3 responded to necroptotic 

induction [76]. Compared to RIPK3, RIPK1 is ubiquitously expressed in different cell lines, 

further confirming that RIPK3, not RIPK1, is the molecular switch to necroptosis from 

apoptosis. The kinase activity of RIPK3 is also important in necroptosis. Although RIPK1 has 

autophosphorylation capability, no phosphorylation was observed in TNFα-treated RIPK3-/- 

MEF cell line, indicating that RIPK3 is required for RIPK1 phosphorylation and works upstream 

of its phosphorylation event [77].  
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1.2.7 Pathological consequences of necroptotic protein knockout in mice   

Functions of proteins may vary in different developmental stages of an organism. This 

notion was more established when the physiological effect of the knockout mice of different 

important genes was generated. Kelliher et.al. showed that RIPK1-/- mice died perinatally within 

3 days of birth [98]. This showed that RIPK1 is important for perinatal development of mice. 

This study is in the striking contrast with the established idea that RIPK1 is required for caspase-

8 mediated apoptosis and RIPK3 mediated necroptosis [100]. However, further knockout models 

show that during development, RIPK1 works to inhibit both cell death pathways [111, 112]. As 

mentioned earlier, RIPK1-/- mice do not survive beyond 3 days of birth. On the other hand, 

knock-in mice carrying the kinase-dead mutant (D138N or K45A) of RIPK1 survive to 

adulthood [113, 114]. Therefore, it is not the kinase activity, rather than the structural role of 

RIPK1 that is required for the survival of the embryo and the development of mice. Tissues of 

RIPK1-/- mice show apoptotic cell death in histological assays [98]. It is already known that 

although RIPK3-/- mice are viable, RIPK1(-/-)/RIPK3(-/-) double knockout mice show perinatal 

death.  As observed in earlier studies, caspase-8 null mice died at embryonic day 10.5. RIPK1 

and caspase-8 double knockout mice survived further and died within 1 day of birth [115, 116]. 

This indicates that RIPK1 is not responsible for the death of caspase-8 null mice at E10.5.  On 

the other hand, RIPK1/RIPK3/caspase-8 and RIPK1/RIPK3/FADD triple null mice survive. This 

supports that RIPK1 may be required to prevent the FADD and caspase-8 mediated apoptotic 

cell death at the time of birth [116]. 

Although RIPK1 and RIPK3 work together in necroptotic cell death pathway, the role of 

RIPK3 in developmental pathway seems different from RIPK1 [116]. Different from RIPK1-/- 

mice, RIPK3-/- mice survive to adulthood [114]. However, this type of mice is not responsive to 
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in vivo necroptotic induction, corroborating the role of RIPK3 in necroptosis [117]. In addition, 

whereas RIPK1 kinase dead mutant mice survived to adulthood, RIPK3 D161N (kinase dead 

mutant) mice did not. Interestingly, RIPK3 D161N (kinase dead mutant)/caspase-8-/- mice 

survived to adulthood [114, 118]. Since caspase-8-/- mice die at the same gestation period, the 

survival of RIPK3 D161N (kinase dead mutant)/caspase-8 -/- mice suggests that RIPK3 and its 

kinase activity are responsible for the death of  caspase8 deficient embryos [114].   

 

1.2.8 In vitro and in vivo induction of necroptosis  

In cells, cIAP protein family acts as a checkpoint to control unintended apoptosis. cIAPs 

have ubiquitin ligase activity and keeps RIPK1 K63 ubiquitinated so that NFkB cell survival 

pathway is active. However, if cIAPs are inactivated by intracellular proteins or chemicals like 

SM, this checkpoint is compromised. Therefore, etoposide or SM can inhibit cIAPs and turn the 

TNFα-mediated cell survival pathway into cell death pathway. This cell death pathway can be 

both apoptotic or necrotic. In addition to TNFα, SM and z-VAD can inhibit caspase-8 mediated 

apoptotic cell death and direct the cell death to necroptosis. Therefore, the combination of TNFα, 

SM and z-VAD is used to induce necroptotic death in vitro in cells. However, in cell lines like 

L929 where TNFα is produced in an autocrine manner, TNFα alone is sufficient to  induce 

necroptosis without z-VAD and SM.  On the other hand, induction of necroptosis in vivo in mice 

is pretty straightforward. It has been observed that injecting TNFα in mice can provoke systemic 

inflammation as compared to systemic inflammatory respiratory syndrome (SIRS). However, 

addition of z-VAD sensitizes mice to TNFα more than TNFα alone [117, 119].  
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1.2.9 Necroptosis and inflammation  

Inflammation is considered to have four hallmark signs as: color, calor (heat), rubor 

(redness), tumor (swelling), and dolor (pain) [120, 121]. Although inflammation was initially 

thought as a result of injury, now it is considered as a process of tissue repair. Rather than just 

mechanical insults to body, inflammation is now being considered as an event mediated by host 

cell itself [121]. Inflammation and cell death are integral to each other since the same receptor 

proteins involved in inflammation are responsible for cell death signaling as well. On the other 

hand, cell death processes lead to inflammation as well.  The major host cell mediated 

inflammatory mechanisms include the rupture of blood and lymphatic vessels [122] and the 

release of host cell secreted molecules like hydrogen peroxide to induce inflammation on 

neighbor cells [1, 123].  Dying cells in tissues secrete cytokines including TNF, CD95L (FasL), 

TRAIL, interferon, etc., which bind to neighbor cells and decrease the cell survival signal to 

initiate inflammatory signaling, leading to cell death [120]. Of the known cell death pathways, 

apoptosis has more of a positive and resolving role in suppressing inflammation. It has been 

observed that neutrophils in inflammatory sites are engulfed by macrophages to reduce 

inflammation [124]. In addition to that, apoptotic cells expose phosphatidyl serine that helps 

phagocytes to be attracted to engulf the dying cells [125-127]. However, the role of apoptosis in 

inflammatory is not always suppressive. During late apoptosis, plasma membrane rupture is also 

evident. Therefore, the release of damage associated molecular patterns (DAMPs) also causes 

inflammation [128]. It is also known that apoptotic cancer cells after chemotherapeutic treatment 

can cause inflammation [129]. However, necroptosis has always been thought to be more 

inflammatory than apoptosis since the plasma membrane rupture causes massive DAMP to be 

released, which attracts inflammatory cells [130]. Both apoptotic and necroptotic cells are 
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eventually phagocytosed. However, given the amount of DAMPs secreted outside, it is clear that 

necroptotic cells trigger more inflammation. Recent study shows that necroptosis in 

keratinocytes is more inflammatory than apoptosis [111]. 

 

1.3 Nuclear receptor superfamily 

From single cell bacteria to about 37 trillion cell-containing organism like human, gene 

expression regulation is an integral part of the central dogma of life [131]. Nuclear receptors 

have been an indispensable playmaker in this gene regulation having their ability to bind directly 

to DNA. Soon after the discovery of DNA structure, the concept and discoveries of gene 

regulators started gaining scientist’s attention, and the field of research on nuclear receptors is 

growing with a fast pace since then [132]. It has been almost thirty years since the first isolation 

of the cDNA of glucocorticoid, thyroid and estrogen receptors [133-135]. Since then, significant 

discoveries have been accomplished in nuclear receptors. These receptors along with their ligand 

showed that chemically different ligands can bind to structurally related receptors. Specially, the 

first discovery of receptor for vitamin A gave a clue to scientists about the reality of a nuclear 

receptor superfamily [136, 137].  Along with the ligands for receptors, the receptor’s ability to 

form homo or heterodimers gave the whole nuclear receptor superfamily an immense 

opportunity to play a role in diverse molecular pathways including homeostasis, reproduction, 

metabolism and development [132, 138].  

           Although initially thought merely functioning as transcription factors, nuclear receptors 

also function as signal transducers. Different organisms contain different number of 

phylogenetically related nuclear receptor proteins. The fly Drosophila melanogaster contains 21 

genes, human contain 48 genes and surprisingly, Caenorhabditis elegans contains 270 genes 
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[139-141]. The high number of C. elegans is possibly due to the proliferation and diversification 

of the genes [141]. The ligands of the nuclear receptor are fat-soluble lipophilic steroid hormones 

having a high affinity to their receptors and originated exclusively from endocrine sources. 

Unlike their peptide hormone counterparts, these steroid hormones can get through the plasma 

membrane’s lipid bilayer due to their lipophilic nature and bind to their respective receptors in 

the cell [142-144].  

 

1.3.1 Nuclear receptor family classification 

The nuclear receptor superfamily has been divided into 4 classes according to their DNA 

binding characteristics and the mode of dimerization.   

Type I receptors are classical steroid hormone receptors such as glucocorticoid receptor 

(GR), mineralocorticoid receptor  (MR), estrogen receptor (ER), androgen receptor (AR) and 

receptor progesterone (PR). These receptors form homodimer and bind to palindromic sequences 

with inverted repeats separated by 3 nucleotide base spacing. They control different metabolic 

and developmental pathways such as reproduction, carbohydrate metabolism, sexual 

differentiation and electrolyte balance [145-148]. ER has two subtypes- ERα and ERβ. Both 

proteins share similar regions with having a variable N-terminal region. Although they bind to 

similar DNA sequences, both proteins interact with different sets of proteins. Their tissue 

distributions are also different as well. Whereas ERα is more localized in major female organs 

like ovary, vagina, uterus, mammary gland etc. ERβ is found in ovary, prostate, spleen, testis, 

lung, thymus and hypothalamus [148].  PRs are expressed mainly in female reproductive tissues 

and central nervous system. Two isoforms of PR, named PR-A and PR-B are generated from two 

different promoters. PR-B is stronger as a transcription factor than PR-A.  They differ only in the 
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N-terminal region; however, they have their exclusive as well as common target genes. For 

example, PR-B works on the mammary gland development whereas PR-A works on uterus 

[149]. Similar to ER and PR, GR also resides in the cytoplasm with chaperones. GR mainly 

works in liver, pancreas, muscle and adipose tissues. 5 different GR protein subtypes - GRα, 

GRβ, GRγ, GR-A and GR-P arise due to alternative splicing of the mRNA [150]. GRα increases 

cell’s sensitivity to glucocorticoid hormone whereas GRβ decreases it. The MR is a 107KD 

protein which plays a major role in fluid transport and blood pressure control [151].  In addition 

to kidney, other organs also express MR and it is evident that MR acts on hippocampus, 

endothelium, heart as well. AR gene encodes a 110 KD protein and this protein binds to its 

cognate ligands, specially testosterone and 5-α-dihydrotestosterone. AR plays a major role in the 

development of male reproductive systems. AR presence has also been observed in female 

tissues including ovaries, uterus, skin, adipose and brain etc. [152].   

Type II receptors are the group of nuclear receptors that bind to and form heterodimer 

with 9-cis retinoic acid receptor (RXR). The receptor heterodimers bind to DNA elements of 

direct repeat with different spacing sequences. The binding partners of RXR include trans 

retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D receptor (VDR) and 

ecdosyne receptor (EcR). These receptors work both on endocrine and lipid sensing receptor 

pathways. They also serve as the sensor for metabolites [153].  Type II receptors also have some 

previously known orphan receptors. These partner receptors of RXR heterodimers were put in 

the orphan receptor family since their ligands were unknown. However, they are now called 

adopted orphan receptors since their ligands have been discovered [154, 155]. These receptors 

include peroxisome proliferator-activated receptors (PPARs), oxysterols (LXR), constitutive 

androstane receptor (CAR), bile acids (FXR).  PPARs mainly function in homeostasis in 



27 
 

development and inflammation as well as lipid sensing metabolism. Three major subtypes of 

PPAR have been identified: PPARα, PPARβ/δ and PPARγ [156, 157]. PPARα and γ are found in 

liver and adipose tissue, however, PPARβ/δ is found in almost all tissues. PPARα play a crucial 

role in cardiac lipid homeostasis by regulating the gene expression of fatty acid oxidation [156, 

157]. PPARγ functions to regulate systemic lipid and glucose level [158-160]. It has been 

observed that the mutation in PPARγ gene results in diabetes, insulin resistance and hypertension 

[161]. On the other hand, PPARδ works as a sensor for very low density lipoprotein in 

macrophages [162]. Liver X receptors (LXRα and LXRβ) regulate the cholesterol homeostasis 

and lipid metabolism in skeletal muscle. These receptors are generally known as the cholesterol 

sensor [163]. 

Type III receptors include mainly the orphan receptors whose ligands are still unknown. 

Typically they form a homodimer with each other.. On the other hand, Type IV receptors bind to 

the core site as monomers. Rev-erbα , Rev-erbβ and NGF-1β are the examples of this receptor 

family. They also take part in lipid homeostasis and skeletal muscle function [164].     

 

1.3.2 Domain structure of nuclear receptors  

During evolution, nuclear receptors have assumed different lengths due to sequence 

mutations. However, they follow a common pattern in terms of their domain structure [138, 165]. 

Typically, a nuclear receptor has six domains, they have been given the name of A to F domains 

from the N to C terminus. The A/B region is highly variable in receptors. The C domain is also 

called DNA binding domain (DBD). D domain is the hinge region that separates the E domain or 

the ligand binding domain (LBD) from the C domain. The LBD is followed by the variable F 

domain [166]. 
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The N terminal A/B region is very weakly conserved among species. This region can 

function autonomously as an activation function that binds to the co-activators [138] and hence 

also called activation function-1 (AF-1). However, their activity may also be regulated by 

ligands bound to the receptor as well. The most conserved domain of nuclear receptor is the 

DBD. As the name implies, DBD binds to specific sequences of the DNA called hormone 

response element (HRE). It has a length of 66 highly conserved residues consisting of two zinc 

finger motifs, two α-helices and a COOH extension [166]. The first zinc finger motif contains a 

region called the proximal box or P-box that controls the high affinity recognition of the HRE. 

The second zinc finger contains a distal box or D-box that determines the receptor dimerization 

and half-site spacing [138, 167]. Following the DBD, the D region is a poorly conserved region 

of the nuclear receptor. It serves as a hinge region between the DBD and LBD, thus allowing the 

two domains to adopt different conformation. It also contains a nuclear localization signal and 

may contain protein-protein interaction sites. The LBD is also a conserved region of the nuclear 

receptors, though it is not as strictly conserved as the DBD. Whereas the DBD mainly controls 

the binding of the receptor to the DNA, the LBD has multiple functions with its different small 

regions in it. It contains a dimerization region that mediates the dimer formation with another 

nuclear receptor’s LBD, followed by a ligand binding pocket for the lipophilic ligand. LBD also 

contains a co-regulator binding region with which it binds to either positive or negative 

coregulators, including the activation function-2 (AF-2). It is an α-helical domain which controls 

ligand dependent transcription and co-activator recruitment [166].  
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1.3.3 Mechanisms of nuclear receptor action  

Nuclear receptors got activated in three major steps. When the receptors are unliganded, 

they bind to a co-repressor molecules that have histone deacetylase (HDAC) activity. After the 

ligand binding, the co-repressor is dissociated from the complex and the receptor binds to co-

activators that have histone acetyltransferase activity (HAT) [167, 168]. The final step includes 

the interaction between co-activators and components of the RNA polymerase II complex to 

activate gene transcription [167].   

 

1.3.4 Vitamin D and vitamin D receptor  

Long before vitamin D was discovered, scientists understood with their experiences with 

diseases and diet that special organic micronutrients are required to prevent diseases like scurvy, 

rickets, beri-beri etc. [169]. It was Casimir Funk who first theorized that some food has “vital 

amine” in them which helps to maintain healthy life [170]. Later, it was discovered that a small 

water soluble molecule can prevent specific neurological diseases. Although not necessarily 

carrying amino group in them, scientists used the visionary idea of Funk and termed these factor 

as “Vitamin” [171, 172]. Soon after the first discovery, fat soluble molecules were also 

discovered and all of them were given the name of vitamin-A, B, C etc. Within a decade,   

another fat soluble molecule was discovered which could cure rickets in animal. This new 

vitamin was called, “vitamin D”. Since then, several chemicals have been given the name 

vitamin D (VD) as vitamin D1, vitamin D2, vitamin D3 etc. However, vitamin D1 was found to 

be an artifact and was later removed from the list [172].  Soon, it was also found that sunlight 

can cure rickets [173]. However, it was soon realized that sunlight actually helps producing 

vitamin D3 (VD3) in animal skin [174]. Therefore, VD3 is actually a pro-hormone, not a vitamin 
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in true sense. VD3 is formed with the help of sunlight from its precursor, 7-dehydrocholesterol in 

the skin. Later on, VD3 is hydroxylated in the liver and kidney to become 1, 25 

dihydroxyvitamin D3 (1,25D3), the active hormone. Although it was discovered that VD3 can 

improve bone mineralization and calcium absorption, directly adding VD3 to the VD3 deficient 

animal’s serum did not improve the bone mineralization. Therefore, it was assumed that 

something else carried the signal of VD3 to induce the cell for VD’s cellular activity [172]. Later 

it was discovered that VD3 acts through a receptor protein called vitamin D receptor (VDR) 

[175], a type II steroid nuclear receptor that forms a heterodimer with RXR for its function. As 

shown in Figure 4, VDR is comprised of four domains; the N-terminal DNA binding domain 

(DBD), a hinge region, the C-terminal ligand binding domain (LBD) and a small activation 

function-2 domain [176]. The DBD contains two zinc finger DNA binding motifs like other 

nuclear receptors. The hinge region allows VDR to adopt sufficiently different conformations 

through its flexibility [177].  

 

 

Figure 4: Domain structure of VDR 

VDR contains four distinct domains. The DNA binding domain (DBD), the hinge region, the 

ligand binding domain (LBD) and the co-activator binding domain. DBD and LBD each has a 

major phosphorylation site.  
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1.3.4.1 Co-regulators of VDR 

Previously, it was thought that nuclear receptors bind to their cognate ligands and execute 

their functions. However, it was soon revealed that the functional activity of these receptors rely 

much on the dimerization as well as other proteins. These proteins are called co-regulators [178]. 

As VDR has diverse functions in regulating gene expression, the capacity to work on regulating 

different genes relies on its ability to bind with diverse co-regulators. These co-regulators have 

VDR-interacting domains through which they bind to the DNA bound and ligand activated VDR 

protein to recruit other proteins and to stimulate or suppress transcription. They can also recruit 

other proteins with enzymatic activity, such as histone acetylase/deacetylase or RNA polymerase 

II. The first co-activator identified for VDR was steroid receptor co-activator-1(SRC-1) [179].  

CREB binding protein (CBP) and p300 were also found as VDR co-activators to stimulate the 

transcription of VDR responsive genes. On the other hand, VDR also recruit co-repressor 

proteins such as silencing mediator of thyroid and retinoid receptors (SMRT) and nuclear 

receptor co-repressor (NcoR), which can inhibit the expression of genes [180]. Such co-

repressors recruit histone deacetylase proteins that will repress the expression of target genes. 

However, there are also reports that these co-repressors do not associate with VDR as strongly as 

with other nuclear receptors [181].  

 

1.3.4.2 Post-translational modifications of VDR  

Like other proteins, VDR is also subjected to post-translational modifications and these 

modifications regulate VDR activity. In vitro and in vivo studies have shown that VDR gets 

phosphorylated at various sites. Whereas the phosphorylation at Ser-51 site by protein kinase C 

(PKC) negatively regulates VDR function [182], phosphorylation at Ser-208 position by casein 
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kinase II (CKII) enhances VDR transcriptional activity [183] . However, both positive and 

negative phosphorylations have been shown to be increased by stimuli given to cells. Therefore, 

the phosphorylations may be cell type specific. Other than phosphorylations, studies have also 

shown that plasma toxins from patients are able to bind to VDR and inhibit the VDR function by 

disrupting VDR-RXR heterodimer formation [184]. 

 

1.3.5 Mechanisms of VDR action  

Subcellular localization analyses have shown that VDR is mostly distributed in the 

nucleus. A small portion of VDR resides in the cytoplasm [185-187]. Upon active ligand 

(1,25D3) binding, conformational changes occur in VDR, which makes the ligand binding 

domain more accessible to RXR. RXR has several isoforms and VDR is known to bind with all 

of them [188]. Unliganded VDR may also bind to the DNA, but this binding is loose. The VDR-

RXR heterodimer is known to bind to the direct repeat 3 site where the recognition sequences or 

half sites are separated by three nucleotides. The VDR-RXR heterodimer then binds to 

transcription factor II protein as well as TATA binding protein to promote the formation of the 

preinitiation complex for transcription [189, 190]. To activate the gene expression, co-activators 

like SRC-1, CBP/p300 etc. are required. As previously discussed, these proteins have histone 

deacetylase activity which helps to unwind the DNA molecule and recruit RNA polymerase II to 

initiate transcription [189-191]. To repress gene expression, VDR-RXR can recruit co-repressors 

as previously described, which can deacetylate histones and stop the fromation of the 

preinitiation complex. Furthermore, the VDR-RXR heterodimer can also bind to the IL-2 

promoter and hinder the binding of the nuclear factor of activated T-cells (NFAT) transcription 

factor, thereby, repressing the transcription [192].   
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1.3.6 Chemical analogs of vitamin D 

1,25D3 plays a very important role in calcium homeostasis [193]. It has already been 

demonstrated that 1,25D3 can reduce the growth of cancer cells both in vitro and in vivo [194-

196]. Therefore, it can be used as a potential drug for chemotherapy. However, studies have 

shown that it can also induce hypercalcemia if administered to the patient regularly with doses 

required for chemotherapy [197].  Therefore, it is important to design and synthesize analogs of 

1,25D3 which will retain the therapeutic potential with less calcemic activity. Until now, 

thousands of chemical analogs of 1,25D3 have been developed [198]. However, only a handful 

of them seem to be usable as drug for human and animal use. The first set of analogs is 

alphacalcidol, doxercalciferol and dihydrotachysterol etc. [199, 200]. These drugs require further 

metabolic conversion to become fully active. A promising drug for hyperparathyroidism is 

maxacalcitol. It has much less side effect than 1,25D3 [201]. Seocalcitol or EB1089 has also 

become popular with in vitro experiments and have already been in the clinical trial to treat 

cancer patients [202]. This drug can inhibit growth and metastasis by inducing apoptosis in 

cancer cells [203]. Calcipotriol is another drug of the new generation which has been used to 

treat psoriasis [204]. It is also a promising drug for pancreatic cancer treatment [205].  

 

1.3.7 Non-genomic action of 1,25D3 

Due to the transcriptional and translational events exerted by 1,25D3 and VDR, the 

genomic response by the hormone is slow. However, 1,25D3 also induces nongenomic responses 

that occur quickly. Studies have shown that 1,25D3 can induce a fast formation of cAMP, 

calcium, and inositols. These secondary messengers molecules can activate Ca
2+

 channel. PKC, 

PKA, and MAPK pathways [206-210]. It can also induce rapid secretion of insulin by pancreatic 
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β cells by opening the Ca
2+ 

and Cl
−
 channel [211]. A recent study has shown that 1,25D3 can 

also induce exocytosis by Sertoli cells in testis [212].          

 

1.3.8 Vitamin D and cancer 

1,25D3 or calcitriol is known to play a major role in bone mineralization through 

maintaining the calcium and phosphate metabolism. Different factors like living places (in terms 

of altitude), food habit, and exposure to sun determine the levels of circulating vitamin D in 

blood or in tissue and according to these factors, a person can have sufficient vitamin D or can be 

vitamin D deficient [213-215]. It is worth mentioning that the measuring standard of vitamin D is 

the circulating 25(OH) vitamin D3, 25(OH)D3, in the blood serum. The set point of deficiency of 

25(OH)D3 is variable to different communities. The institute of medicine (IOM) sets the 

standard for deficiency as ≤20 ng per mL (50 nmol per L) and the endocrine society set the 

standard as 30 ng per mL (75 nmol per L) [216].  The deficiency determines the susceptibility of 

the person to bone related diseases like rickets. It is already known that a vast majority of people 

around the world, including those living in places with adequate sunlight, are vitamin D deficient 

[214]. Consequently, the prevalence of bone related diseases is also quite common. However, 

research works showed that vitamin D can also play an important role in preventing different 

diseases other than skeletal problems [217]. This is understandable because most cells in our 

body express VDR [218]. Therefore, vitamin D and VDR must have additional roles other than 

bone mineralization. 1, 25D3 has been reported to reduce the risk of diseases like hypertension, 

heart disease, neurological disease, diabetes, multiple sclerosis, asthma, autoimmune disease and 

more importantly, cancer [217].  
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The first in vitro study of the anticancer activity of 1,25D3 was shown by Colston et.al. 

This group showed that 1,25D3 can suppress the growth of malignant melanoma cells in culture 

[219]. Concurrently, another group also showed that 1,25D3 can differentiate mouse myeloid 

leukemia cells into macrophages [220].  Numerous studies have been done on the anticancer role 

of 1,25D3 and it is now established that it can suppress cancer growth both in vitro and in vivo 

[221-229]. Studies have shown that calcitriol or 1,25D3 can arrest breast cancer cell growth at 

G0/G1 stage by increasing the expression of p21, which can decrease the activity of cyclin 

dependent kinase activity. It has also been shown that EB1089 can decrease the expression of c-

myc oncogene at the mRNA level and aromatase expression by directly inhibiting the mRNA 

synthesis [224]. Although more potent in estrogen sensitive cell lines, 1,25D3 can also decrease 

the growth of estrogen insensitive cancer cells as well [230]. EB1089 in combination with 

tamoxifen have exhibited a synergistic effect on reducing breast cancer cell growth [231]. 

Therefore, a combination therapy may be a better treatment for breast cancer.  

1,25D3 is also known for its anti-inflammatory properties. Patients with acute or chronic 

inflammation have an increased propensity of developing prostate cancer [232]. Therefore, 

vitamin D might also play role in suppressing prostate cancer. Studies with prostate cancer cells 

have shown that 1,25D3 reduces the expression of proinflammatory cytokine like interleukine- 6 

(IL-6). 1,25D3 induces the expression of MAP kinase phosphatase 5, which inhibits p38 

activation by dephosphorylating p38 and ultimately decreases IL-6 production [233]. As IL-6 is 

directly involved in prostate cancer development, 1,25D3 treatment can hereby decrease prostate 

cancer progression. Furthermore, 1,25D3 analog BXL-628 inhibits prostate cancer growth and 

inflammation. This has already been tested positively in animal models as well [234]. 1,25D3 is 

known to modulate microRNA expression as well. In a recent study, combined treatments with 
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1,25D3 and testosterone of LNCaP prostate cancer cells, have shown that they can modulate the 

expression of fifteen microRNAs [235]. Upregulated micro-RNAs include miR-22, miR-29ab, 

miR-134, miR-1207-5p and miR-371-5p. These microRNAs target mRNAs with known 

fucntions in cell cycle progression, lipid synthesis and calcium homeostasis etc. In addition to the 

upregulation, this treatment also downregualted the expression of micro-RNAs like miR-17 and 

miR-20a, which are known as oncogenic micro-RNAs that promotes tumor progression.  

Therefore, combination of androgen and 1,25D3 can be an effective chemotherapy for prostate 

cancer patients. In addition, the expression of miR-100 and miR-125-b are downregualted. In 

previous studies, these two miRNAs are demonstrated to have a tumor suppressive role [236]. In 

vivo treatment of prostate cancer patients with 1,25D3 also changed the levels of these micro-

RNA, thereby showing a promising role of 1,25D3 as an orally administrable drug to treat 

prostate cancer patients [237]. 

The role of vitamin D in suppressing ovarian cancer mortality rate has also been reported 

[238]. Further studies showed that vitamin D can play an important role in ovarian cancer 

prevention [239]. A randomized study to link single nuclear polymorphism and vitamin D 

deficiency related ovarian cancer susceptibility revealed that low circulating vitamin D is 

associated with increased risk of ovarian cancer [240]. Studies have also shown that daily intake 

of vitamin D could reduce the risk of incidence and death by ovarian cancer [214].  

Our published studies in ovarian cancer have shown that 1,25D3 inhibits cancer growth 

by arresting cells at specific cell cycle checkpoints [194, 241, 242]. Further analyses have 

demonstrated that 1,25D3 induces microRNA target genes to decrease telomerase expression for 

cell death induction [196, 243] and to inhibit leptin and estrogen-induced tumor growth [195], 

suggesting that 1,25D3 has a particular role in lowering obesity-associated cancer risks in 
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women. More recent studies have shown that ovarian cancer invasion is suppressed by 1,25D3 

through the cooperated actions of epithelial and stromal VDR [244]. Overall, these studies 

project VDR as a new therapeutic target for ovarian cancer intervention.  

 

1.4 Central hypothesis  

The main objective of this project is to investigate how 1,25D3 and TNFα crosstalk to 

control cell death pathways and how the cell death programs can be developed to benefit cancer 

intervention. Our central hypothesis is that, 1,25D3 and TNFα can regulate each other’s cell 

death signaling pathway through a novel VDR-RIPK1 complex. This hypothesis has been 

formulated based on our preliminary data that 1,25D3 downregulated NF-κB regulated gene 

expression and that both TNFα and RIPK1 decreased VDR activity. Co-immunoprecipitation 

analyses showed that VDR and RIPK1 formed a protein complex, which was inducible by 

necroptotic stimuli. The rationale for the proposed research is, once it is known how 1,25D3 and 

TNFα regulate each other’s signaling, new and innovative approaches can be developed to 

improve cancer therapy. 
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CHAPTER 2: 

MATERIALS AND METHODS 

 

2.1 Chemicals and antibodies 

Anti-Flag antibody (F7425), anti-Flag M2 affinity gel (A2220), fetal bovine serum (FBS) 

(12306C), MG132 (C2211), and protease inhibitor cocktail (11836170001) were purchased from 

Sigma-Aldrich (St. Louis, MO).  Anti-HA antibody (PRB-101P) was from Covance (BioLegend, 

San Diego, CA). Anti-VDR (C-20, D-6), anti-α-actinin (H-2, sc-17829) and anti-β-actin  (AC-

15, sc-69879) antibodies were from Santa Cruz Biotechnology  (Santa Cruz, CA). Anti-RIPK1 

antibody (BD 610458) was from BD Bioscience (San Jose, CA). Luciferase substrates were from 

Promega (Madison, WI).  The ECL Western blotting substrates were from Thermo Scientific 

(Waltham, MA).  Penicillin and streptomycin (30-002-CI) solution was from Corning 

(Tewksbury, MA). Lipofectamine 2000 (11668-019) and trypsin (25200-056) were from Life 

Technologies (Grand Island, NY). Etoposide was from Sigma, Smac Mimetic (SM) was from 

Chemietek. (Indianapolis, IN). 1,25D3 (calcitriol) and necrostatin-1 (Nec-1) was purchased from 

Calbiochem (La Jolla, CA). 1,25D3 was reconstituted in 100% ethanol (EtOH) and Nec-1 in 

DMSO. Both stock solutions were stored at −20 °C. Handling of 1,25D3 and Nec-1 was 

performed under indirect lighting. Concentrations of 1,25D3 varied in each experiment and have 

been stated in the figure legends. 
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2.2 Plasmids  

Control and RIPK1 shRNA plasmids (pRS-MIG-HRS and pRS-MIG-RIP193, 

respectively) were kind gifts from Dr. Martin Leverkus of University of Heidelberg [245]. The 

RIPK1 K45M mutant vector was kindly provided by Dr. Junying Yuan of Harvard 

University[68]. The p23 VDR reporter containing rat 24-hydroxylase promoter in 

pMAMMneoLuc  was provided by Dr. H. F. Deluca of the University of Wisconsin-Madison 

[246]. RIPK1 K377R mutant was kindly provided by Dr. Zhijian Chen of the University of 

Texas Southwestern Medical Center at Dallas [60]. HA-RIPK1, Flag-RIPK1, HA-VDR and 

Flag-VDR plasmids were generated by cloning full length RIPK1 and VDR cDNA into HA- and 

Flag-tagged pcDNA3.1 vectors, respectively. Deletion constructs of VDR and RIPK1 were 

generated by PCR and cloned into HA-tagged pcDNA3.1 and Flag-tagged pCMV vectors, 

respectively. All primer sequences have been shown in tables 1, 2 and 3.  

 

2.3 Cell lines 

293T and L929 cells were purchased from American type culture collection (ATCC) 

(Manassas, VA). RIPK1 wild type and null mouse embryonic fibroblasts (MEFs)  were kindly 

provided by Dr. Junying Yuan of Harvard University [247]. PE01 and PE04 cells were kindly 

provided by Dr. Toshiyasu Taniguchi of Fred Hutchinson Cancer Research Center [248]. Mouse 

mammary tumor VDR wild type and null cells were kindly provided by Dr. JoEllen Welsh from 

State University of New York, University at Albany [249].  VDR+/- and VDR-/- MEFs were 

from Dr. Jun Sun from University of Illinois at Chicago [250]. PE01, PE04, TykNu, TykNuR, 

M41 and M41R cells were maintained in RPMI medium containing 2 mmol/L L-glutamine, 100 

U/mL penicillin, 100 μg/mL streptomycin, and 10% FBS. OVCAR3 cells were maintained in 
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RPMI medium containing 2 mmol/L L-glutamine, 100 U/mL penicillin, 100 μg/mL 

streptomycin, and 15% FBS. All other cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) containing 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/ml streptomycin, 

and 10% FBS. 

 

2.4 Stable knockdown of RIPK1  

For stable knockdown of RIPK1, PE01 and OVCAR3 cells were plated in a 60mm dish. 

At 70-80% confluency, cells were transfected with 5μg of  pRS-MIG-HRS (HRS: hyper random 

sequences) control or pRS-MIG-RIPK193 plasmid. Forty-eight hours post-transfections, stable 

clones were selected in media containing 2 μg/mL puromycin. Cells were maintained in 

puromycin containing medium for two to three weeks. Single colonies were picked knockdown 

clones. RIPK1 knockdown in stable clones was verified by Western blot analyses.  All cells were 

maintained in a 37°C humidified incubator with 5% CO2.  Both pRS-MIG-HRS control and 

pRS-MIG-RIPK193 constructs were a kind gift of Dr. Martin Leverkus, University of 

Heidelberg as mentioned previously. 

 

2.5 Immunological analyses  

For co-immunoprecipitations, 293T cells were plated in 60mm dishes. For simplicity, one 

co-immunoprecipitation experiment detail is given here.  At 60%-70% confluency, 293T cells 

were transfected with 1.5 μg of Flag-tagged VDR and HA-tagged RIPK1 (for example). 48 hours 

post-transfection, cells were washed with ice-cold phosphate buffered saline (PBS) and were  

lysed in cell lysis buffer containing 20 mM Tris-HCL (pH 7.5), 150 mM NaCl, 1% (v/v) NP-40, 

1 mM PMSF and protease inhibitor cocktail. After two consecutive 6-second sonications 
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separated by brief cooling, cells were kept on ice for 10 minutes before centrifugation. Cellular 

extracts were incubated overnight at 4°C with M2 antibodies conjugated with beads. For co-

precipitations of endogenous VDR and RIPK1, L929 cells were cultured in 100mm dishes in 

DMEM medium. Cells were lysed with lysis buffer containing 25 mM Tris•HCl pH 7.4, 1% NP-

40, 150 mM NaCl, 1 mM EDTA, 5% glycerol.   Protein concentration was measured through 

Bradford assay and 2μg of cellular protein was incubated with 1μg of anti-VDR antibody (Santa 

Cruz; C-20 antibody) overnight at 4°C, followed by a  4-hour incubation with protein G beads. 

Rabbit IgG antibody was used as a negative control. After incubations, the beads were washed 

five times with lysis buffer and precipitated proteins were detected by Western blot analyses.  

 

2.6 Transfection and reporter assays 

2×10
5
 293T cells were plated in 12-well plates and transfected with plasmids the next 

day. For example, to perform luciferase assay with p23 VDR reporter plasmid, 293T cells were 

transfected with 200 ng of p23 VDR reporter plasmid, 20 ng of pCMVβgal, 50 ng of Flag-VDR 

and indicated amounts of Flag-RIPK1. Twenty-four hours post-transfections, cells were treated 

with either EtOH or 1,25D3 for an additional 24 hours. After the incubation, cells were washed 

with ice-cold PBS and 200μl of 1X lysis buffer was added to each well to lyse the cell. The 5X 

lysis buffer contained: 125mM Tris-phosphate (pH 7.8), 10mM 1,2-diaminocyclohexane-

N,N,N’,N’-tetraacetic acid, 50% glycerol and 5% Triton X-100. 5mM of DTT was added to the 

final lysis buffer solution. Cells were sonicated twice for 6 seconds and were centrifuged at 

13,000 rpm for 15 minutes. 25μl of the lysate was used to measure the luciferase activity and 

100μl of the lysate was used to measure β-galactosidase activity.  Luciferase activity was 
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measured by adding luciferase substrate from Promega (E1501) and normalized with cognate β-

galactosidase activity. Each data point was analyzed in triplicates (n=3). 

 

2.7 Cytoplasmic and nuclear fractionation 

For cytoplasmic protein extraction, cells were washed and scraped with ice-cold PBS. 

After pelleting, cells were re-suspended in lysis buffer (10 mM Hepes, pH7.9; 10 mM KCl, 0.1 

mM EDTA, 0.1 mM EGTA) and kept on ice for 15 minutes. 10% NP-40 was added and 

followed by centrifugation for 1 minute at 14,000 rpm. The supernatant was collected as 

cytoplasmic protein. The pellet was washed with ice-cold PBS, re-suspended in nuclear 

extraction buffer (20 mM Hepes, pH 7.9; 400 mM NaCl, 1 mM EDTA, 1 mM EGTA), and kept 

on ice for 30 minutes with 3- to 5-second vortexing at 5-minute intervals. After centrifugation at 

14,000 rpm for 5 minutes, the supernatant was collected as nuclear extracts.  

 

2.8 Necroptotic cell death induction  

Cells were plated in 96-well plates and left overnight for attachment. Next day, day 0 

reading value was measured after MTT treatment and rest of the cells were treated with TNFα 

(10ng/ml), Etoposide (100μM), SM (1μM), z-VAD (5μM), Nec-1(20μM) alone or in 

combination for 16 hours in respective experiments unless otherwise stated. Cell growth 

suppression was measured by MTT assays.  

 

2.9 Methylthiazol tetrazolium (MTT) assays   

Cell growth was quantified using MTT assays. Cells were plated in 96-well plates and 

treated with either EtOH or 1,25D3 for 6 days. MTT assays were performed as described [251]. 
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In brief, MTT was added to wells at a final concentration of 0.5 mg/mL and incubated for 3 

hours. The media were removed after the incubation and 200 μl of DMSO was added to the 

wells. The absorption at 595 nm was measured in a MRX microplate reader (DYNEX 

Technologies, Chantilly, VA). . Six samples were analyzed in parallel for each data point (n=6). 

 

2.10 Necroptotic study in mice  

VDR+/− mice of C57B16 background (The Jackson Laboratory, Bar Harbor, ME) were 

mated to produce VDR+/+ (WT)  and VDR−/− (KO) mice [244]. Only VDR-WT and VDR-KO 

male mice were used for this study. 8-14 weeks old mice were injected intravenously through 

tail-vein with murine TNFα (Peprotech) 450μg/kg per mouse. Core body temperature of mice 

was measured before and after injection by a lubricated rectal thermometer probe purchased 

from Kent Scientific. Mice with temperature below 23.6°C was sacrificed due to ethical reason. 

All procedures were reviewed and approved by the Institutional Animal Care and Use 

Committees at the University of South Florida.  

 

2.11 Statistical analyses 

Significant analyses were performed with the Student t-test. All values were presented as 

mean ± standard deviation (SD) with the number of observations (n) indicated in the figure 

legends. p <0.05 was considered to be statistically significant. 
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Table 1: Primers used for cloning  

Primer name Sequence 

VDR-F GAGGGATCCATGGAGGCAATGGCGGCCAG 

VDR-R GAGCTCGAGTCACTGGAAGGAGAGGCAGCGGT 

RIPK1-F GAGAGATCTATGCAACCAGACATGTCCTT 

RIPK1-R GAGGTCGACTTAGTTCTGGCTGACGTAAA 

 

Table 2: Primers used for VDR deletion analyses  

Primers Domain Sequence 

VDR-full 

length- F 

Full 

length 

GAGGGATCCATGGAGGCAATGGCGGCCAG 

VDR-full 

length- R 

Full 

length 

GAGGTCGACGGAGATCTCATTGCCAAACA 

N-VDR- F:  DNA 

binding 

domain 

GAGGGATCCATGGAGGCAATGGCGGCCAG 

N-VDR  R:  DNA 

binding 

domain 

GAACTCGAGTCACATCATGTCTGAAGAGGTGA 

C-VDR  F:  Ligand 

binding 

domain 

GAGGGATCCATGGACTCGTCCAGCTTCTCCAA 

C-VDR  R:  Ligand 

binding 

domain 

GAGGTCGACGGAGATCTCATTGCCAAACA 

∆AF2-F                 GAGGGATCCATGGAGGCAATGGCGGCCAG 

∆AF2-R                GAGGTCGACCTGGAAGGAGAGGCAGCGGT 
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Table 3: Primers used for RIPK1 deletion analyses 

Primers name Domain Sequence 

RIPK1-FL F: FL GAGGAATTCATGCAACCAGACATGTCCTT 

RIPK1-FL R:  FL  GAGGTCGACTTAGTTCTGGCTGACGTAAATC  

KD-RIPK1  F:  KD GAGGAATTCATGCAACCAGACATGTCCTT 

KD-RIPK1  R:  KD  GAGGTCGACTCAATAAAAAGGCCTAAATTTTTCT 

KD+IDs-RIPK1  F: KD+IDs GAGGAATTCATGCAACCAGACATGTCCTT 

KD+IDs-RIPK1  R: KD+IDs GAGGTCGACTCACATATAATTGTAGGCTCCAATC 

KD+ID-RIPK1  F: KD+ID GAGGAATTCATGCAACCAGACATGTCCTT 

KD+ID-RIPK1  R: KD+ID GAGGTCGACTCACGTCAGACTAGTGGTATTATC 

ID-RIPK1 F:  ID GAGGAATTCTATTTAAGTCAATTAGAAGA 

ID-RIPK1  R:  ID GAGGTCGACTCACGTTCACGTCAGACTAGTGGTATTATC 

∆KD-RIPK1  F:  ∆KD   GAGGAATTCTATTTAAGTCAATTAGAAGA 

∆KD-RIPK1  R:  ∆KD   GAGGTCGACTTAGTTCTGGCTGACGTAAATC 
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CHAPTER 3: 

RESULTS 

As aforementioned in the introduction section, several cancers respond to 1,25D3 for 

growth suppression, including ovarian cancer. However, not all ovarian cancer cells responded to 

1,25D3 for growth suppression in our studies. This suggests the existence of additional 

molecular determinants which can suppress 1,25D3 action. We have examined the role of RIPK1 

in 1,25D3 action and report that RIPK1 is a transcriptional inhibitor of VDR and decreases 

1,25D3-induced growth suppression. Interestingly, VDR inhibition occurred independently of 

RIPK1 kinase activity and was likely mediated through a RIPK1-VDR protein interaction that 

increased the cytoplasmic retention of VDR.   

 

3.1 RIPK1 inhibits VDR transcriptional activity independent of its kinase activity   

To test the effect of RIPK1 on VDR, HEK293T cells were transfected with a luciferase 

reporter construct containing rat 24-hydroxylase promoter in pMAMMneoLuc [246] together 

with plasmids encoding VDR and RIPK1 and treated with a vehicle (Ethanol) or 1,25D3. The 

transcriptional activity of VDR was measured by luciferase assays. 1,25D3 simulated luciferase 

activity and the co-expression of RIPK1 substantially reduced its capacity to do so in a dose 

dependent manner (Fig. 5A, bar graphs). RIPK1 did not decrease VDR protein abundance (Fig. 

5A, lower panels) and thus apparently decreased the specific activity of VDR. To validate the 

data, we repeated the same experiment with another reporter construct containing VDRE-TK-luc 



47 
 

promoter. RIPK1 also decreased VDRE-TK-luc promoter activity (Fig.5B, bar graphs). In this 

case too, RIPK1 did not decrease VDR expression (Fig.5B, lower panel). Therefore, RIPK1 

decreased that activity of VDR irrespective of the VDR promoter type. 

Since RIPK1 is a protein kinase, we next sought to determine whether the enzymatic 

activity of RIPK1 is required for the inhibition of VDR. As shown in Fig. 6 (bar graphs), the 

kinase-dead K45M RIPK1 mutant inhibited 1,25D3-induced VDR activity to the same extent as 

wild-type RIPK. The addition of RIPK1 kinase inhibitor Nec-1 did not relieve the inhibition. In 

the absence of ectopic RIPK1, Nec-1 slightly elevated the activity of VDR, accompanied by a 

similar increase in the levels of VDR protein expression (Fig 6, lower panels). In our studies, 

Nec-1 increased the expression levels of both wild-type RIPK1 and the K45M mutant and both 

wild-type RIPK1 and the kinase-dead mutant increased the levels of VDR protein expression. 

The increased expressions of RIPK1 and VDR by Nec-1 and RIPK1, respectively, were 

consistently observed in our studies. To confirm that VDR is not a target of RIPK1 kinase 

activity, in vitro kinase assay was performed whereas VDR was used as a substrate of RIPK1 

protein. Although RIPK1 phosphorylated myelin basic protein (MBP) as a positive control, it did 

not phosphorylate VDR (Fig. 7A).   In addition to the RIPK1 mediated VDR activity decrease, 

we also wanted to determine the effect of TNFα on VDR activity. As shown in Fig. 8, TNFα 

alone also decreased the activity. Since HEK293T cells have endogenous RIPK1, TNFα may 

have worked through the RIPK1 that was already in the cell. However, addition of RIPK1 also 

decreased the VDR luciferase activity and RIPK1 combined with TNFα treatment had an 

additive effect to decrease the activity. Both TNFα and RIPK1 increased VDR level (Fig. 8, 

lower panel), confirming that the decrease of VDR activity was not due to the loss of VDR 

protein. 
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Overall, the studies suggest that RIPK1 inhibits the transcriptional activity of VDR 

independent of its kinase activity.  

 

3.2 RIPK1 forms a protein complex with VDR 

As aforementioned, RIPK1 can perform biological functions through its enzymatic 

activities or as an adaptor. The evidence of RIPK1’s ability to inhibit VDR activity is 

independent of its kinase activity prompted us to ask whether RIPK1 forms a complex with 

VDR. HEK293T cells were transfected with plasmids encoding tagged RIPK1, VDR or both and 

co-immunoprecipitation experiments were performed. M2 anti-Flag beads co-precipitated HA-

RIPK1 with Flag-VDR (Fig. 9A) and HA-VDR with Flag-RIPK1 (Fig. 9B) from cells expressing 

both proteins but not either protein alone. Thus, RIPK1 associates with VDR in overexpression 

studies.  The binding of RIPK1 to VDR was detected both in the absence and presence of 1,25D3 

but its amount was reduced by the hormone treatment (Fig. 10).  Moreover, the complex 

formation also occurred between endogenous VDR and RIPK1 in L929 mouse fibroblast cells 

(Fig. 11), ruling out the possibility that the complex formation might be an artifact of ectopic 

overexpression.   

 

3.3 The complex formation between RIPK1 and VDR involves the kinase domain of RIPK1 

and the ligand-binding domain of VDR 

To define the site in VDR that mediates RIPK1 binding, VDR deletion constructs (Fig. 

12) were generated and their ability to bind to RIPK1 was assessed by co-immunoprecipitation 

analyses. As shown in Fig. 13, the VDR fragment deleted of the N-terminal DNA binding 

domain and hinge region bound to RIPK1 whereas the fragment deleted of the C-terminal ligand   
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Figure 5: RIPK1 decreases VDR activity  

293T cells were transfected with 20 ng of pCMVβgal, 50 ng of Flag-VDR and indicated amounts 

of Flag-RIPK1 and A) 200 ng of p23 VDR reporter plasmid or B) 200 ng of VDRE-Tk-Luc 

VDR reporter plasmid,. The next day, cells were treated with either EtOH or 1,25D3 for 24 

hours. Luciferase activity was determined and normalized with cognate β-gal activity. Each data 

point was analyzed in triplicates (n-3) and reproduced two times. Western blot analyses were 

performed with antibodies as indicated. 
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Figure 6: Suppression of VDR activity by RIPK1 is kinase-independent  

293T cells were transfected with 200 ng of p23 VDR reporter plasmid, 20 ng of pCMVβgal, 50 

ng of Flag-VDR and either with wild-type (RIPK1-WT) or kinase-dead mutant (RIPK1-K45M) 

RIPK1 and treated with 1,25D3 and/or RIPK1 inhibitor Nec-1 (20 μM). Luciferase activity was 

determined and normalized with cognate β-gal activity. Each data point was analyzed in 

triplicates (n-3) and reproduced two times. Western blot analyses were performed with 

antibodies as indicated. 
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Figure 7: RIPK1 does not phosphorylate VDR 

A. Flag-RIPK1 was transfected in H2K293T cells and expressed RIPK1 was immunoprecipitated 

with anti-Flag antibodies. In vitro kinase assay was performed with His-tag-VDR as a substrate. 

Myelin basic protein (MBP) was used as a positive control.  B. Coomasie blue imgae to show 

VDR expression. 

 

binding domain failed to bind, showing LBD as the site for RIPK1 binding. The VDR fragment 

deleted of the activation function 2 (AF2) region retained the ability to associate with RIPK1 

(Fig. 13), revealing expendability of the AF2 region for binding. Using a similar approach, the 

regions in RIPK1 required for VDR interaction were also defined by deletion analyses. A set of 

RIPK1 deletion constructs were generated (Fig. 14) and their ability to form complexes with 

VDR was determined in co-precipitation analyses. As shown in Fig. 15, neither the kinase nor 

the intermediate domain alone was co- precipitated with VDR whereas the fragment containing 

both regions was co-precipitated. 
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Figure 8: TNFα also suppresses VDR activity 

293T cells were transfected with 200 ng of p23 VDR reporter plasmid, 20 ng of pCMVβgal and 

indicated amounts of Flag-VDR and Flag-RIPK1. 24 hours post-transfection, cells were treated 

with either EtOH or 1,25D3 with or without TNFα for another 24 hours. Luciferase activity was 

determined and normalized with cognate β-gal activity. Each data point was analyzed in 

triplicates (n-3) and reproduced two times. Western blot analyses were performed with 

antibodies as indicated.  

 

The analyses suggest that, although the kinase or intermediate domain alone is not 

sufficient, they both are required for binding to VDR. The deletion of C-terminal death domain 

and the region between RHIM and the death domain did not abolish the VDR binding, showing 

that these regions are expendable.  

Overall, the binding analyses tell us that RIPK1 employs multiple domains to interact 

with the LBD of VDR. Although the ability of RIPK1 to repress the transcriptional activity of 
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VDR is independent of its enzymatic activity, the kinase domain is physically involved in the 

complex formation.    

 

 

 

Figure 9: RIPK1 forms a protein complex with VDR 

In reciprocal immunoprecipitation, 293T cells were transfected with A) 1.5 μg of Flag-tagged 

VDR and HA-tagged RIPK1 and B) 1.5 μg of Flag-tagged RIPK1 and HA-tagged VDR as 

indicated. 48 hours posttransfection, cell extract were immunoprecipitated  with Flag antibodies 

followed by immunoblotting with indicated antibodies. 

 

3.4 VDR-RXRα complex was not affected by RIPK1  

Since VDR forms a heterodimer with RXRα, we sought to determine whether RIPK1 

binding with VDR influenced the VDR-RXRα complex formation or not. Co-precipitation of 

VDR along with RXRα in absence or presence of RIPK1 showed that RIPK1 did not change the 

VDR-RXRα complex formation (Fig. 16). In both cases, 1,25D3 increased the binding, showing 

that RIPK1 did not decrease the binding even in presence of the hormone, either.  
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Figure 10: RIPK1-VDR complex formation is decreased by 1,25D3 treatment 

293T cells were transfected with 1.5 μg of Flag-tagged VDR and HA-tagged RIPK1 as indicated. 

24 hours posttransfection, cells were treated either with EtOH or 10
-7 

nM 1,25D3 for 6 hours. 

Cellular lysates were immunoprecipitated with anti-Flag antibody conjugated beads. Western 

blot analyses were performed with indicated antibodies. 

 

3.5 RIPK1 increases VDR retention in the cytoplasm 

  In an effort to understand the mechanisms underlying VDR repression by RIPK1, we 

next assessed the effect of RIPK1 on VDR cellular localization. As shown in Fig. 17A, the VDR 

protein ectopically expressed in 293T cells was mainly localized to the nucleus but the co-

transfection of RIPK1 increased the cytoplasmic VDR signal. Due to the positive effect of 

ectopic RIPK1 on the overall levels of VDR expression, the impact of ectopic RIPK1 on the 
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Figure 11: Interaction of endogenous VDR and RIPK1 in L929 cells 

Whole cell lysates of L929 cells were immunoprecipitated with anti-VDR antibody followed by 

Western blot analyses with anti-VDR and RIPK1 antibodies as indicated. 

 

nuclear VDR was not obvious from the Western blots (Fig. 17A). However, after quantification 

with ImageJ and normalization with cognate whole cell signals, it became clear that the 

increased VDR retention in the cytoplasm was accompanied by a decrease in the nuclear VDR 

(Fig. 17B, bar graphs).  The data argue that the increased cytoplasmic retention is the possible 

mechanism underlying the VDR repression by RIPK1. Next, we sought to determine how the 

hormone influenced the retention of VDR into the cytoplasm by RIPK1. We performed the same 

experiment but treated with or without 1,25D3 for 24 hours post-transfection. The cytoplasmic 

and nuclear localization protein expression of VDR and RIPK1 (Fig. 18B) compared with the 

whole cell expression (Fig. 18A) showed there was more VDR retention in the cytoplasm than 

the nucleus in presence of RIPK1 and this was not relieved by 1,25D3 treatment (normalized in 

Fig. 18C, bar graphs).  This data further proved the previous finding that RIPK1 indeed retained 

VDR into the cytoplasm. 
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Figure 12: Schematic representation of different VDR deletion constructs  

The different deletion constructs of Flag tagged-human VDR used in this study. Amino acid 

residue numbers are shown at the top of the graphs. ΔC: C-terminal LBD deleted (aa.1-203); ΔN: 

N-terminal DNA binding domain and hinge region deleted (aa.204-427); ΔAF-2: Helix-12 

deleted (aa.1-408). 
 

 

 

Figure 13:  RIPK1 binds to the C-terminal LBD of VDR 

293T cells were transfected with 1.5 μg of HA-RIPK1 together with 1.5 μg of Flag-tagged full-

length (FL) VDR or its deletion constructs as indicated. Cellular extracts were subjected to co-

immunoprecipitation analyses with antibodies as indicated. 
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3.6 Depletion of RIPK1 expression increases sensitivity of cells to 1,25D3-induced growth 

suppression 

So far, we have shown that ectopic RIPK1 repressed VDR by binding to and holding the 

receptor in the cytoplasm. If this is true, depletion of RIPK1 expression should potentiate 1,25D3 

action and increase the sensitivity of cells to the growth suppressive effect of the hormone. 

Indeed, in comparison to wild-type MEFs, RIPK1-null MEFs exhibited a dramatic and 

significant increase in their sensitivity to 1,25D3-induced growth suppression at all 

concentrations tested (Figs.19A and 19B).   

 

 

Figure 14: Schematic representation of different RIPK1 deletion constructs 

Schematic representation of the domain structure of HA-RIPK1 and its deletion constructs. 

Amino acid residue numbers are shown at the top of the graphs. KD: kinase domain (aa.1-289); 

ID: Intermediate domain (aa.290-583); IDs: Smaller ID (aa.290-547); ΔKD: Kinase deleted 

(aa.290-583). 
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Figure 15: Multiple regions of RIPK1 mediate its binding to VDR 

293T cells were transfected with 1.5 μg of Flag-VDR together with 1.5 μg of full-length (FL) or 

deletion constructs of HA-RIPK1 as indicated. Cellular extracts were subjected to co-

immunoprecipitation analyses with antibodies as indicated.  
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Figure 16: VDR-RXRα binding is not decreased by RIPK1 

293T cells were transfected with Flag-tagged RXRα, GFP-tagged VDR and HA-tagged RIPK1 

as indicated. 24 hours posttransfection, cells were treated with EtOH or 1,25D3 and after 24 

hours of the treatment, cell extracts were immunoprecipitated  with Flag antibodies followed by 

immunoblotting with indicated antibodies. 

 

Consistent with the data from RIPK1-null MEFs, RIPK1 knockdown by stable shRNA 

expression in OVCAR3 (Figs. 20A and 20B) and PE01 (Figs. 21A and 21B) ovarian cancer cells 

also significantly increased their sensitivity to 1,25D3-induced growth suppression. The ability 

of RIPK1 depletion to potentiate the growth response to 1,25D3 was observed in multiple cell 

types with a stable shRNA pool (Fig. 20B) and two independent clones (Fig. 21B), ruling out the 

potential artifact of clonal effects and stable selection with antibiotics.  
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Figure 17: RIPK1 increases VDR cytoplasmic localization 

A) 293T cells were transfected with Flag-VDR and Flag-RIPK1 constructs. Thirty-six hours 

post-transfections, cells were treated with EtOH or 10
-7

 nM 1,25D3 for 6 hours. Whole cell, 

cytosolic, and nuclear extracts were prepared and subjected to Western blot analyses with 

indicated afanantibodies. Anti-α-tubulin and PARP-1 Western blots were included as loading 

controls for cytoplasmic and nuclear proteins, respectively. B) The intensity of Western blot 

bands in figure 17 A was quantified by ImageJ (NIH). VDR signals were first normalized with 

cognate loading controls. Cytoplasmic and nuclear VDR were further normalized with 

corresponding whole-cell VDR and plotted as relative VDR signals. 
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Figure 18: RIPK1 increases VDR cytoplasmic localization in the presence of 1,25D3  

1,25D3 treatment increases VDR localization in presence of RIPK1. 293T cells were transfected 

with Flag-VDR and Flag-RIPK1 constructs. Thirty-six hours post-transfections, cells were 

treated with EtOH or 10
-7

 nM 1,25D3 for 6 hours. A) Whole cell, B) cytosolic and nuclear 

extracts were prepared and subjected to Western blot analyses with indicated antibodies. Anti-

HSP60 and PARP-1 Western blots were included as loading controls for cytoplasmic and nuclear 

proteins, respectively. C) The intensity of Western blot bands in figure 18B was quantified by 

ImageJ (NIH). VDR signals were first normalized with cognate loading controls. Cytoplasmic 

and nuclear VDR were further normalized with corresponding whole-cell VDR and plotted as 

relative VDR signals.  
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Overall, the growth analyses with RIPK1-depleted cells support the conclusion of 

transfection studies that RIPK1 is a VDR repressor. The studies argue that RIPK1 depletion may 

represent an effective strategy for increasing the potency of 1,25D3 and its analogs in cancer 

intervention. 

 

3.7 VDR-RIPK1 form endogenous complex in response to necrotic cell death induction  

Overexpression data in HEK293T cell lines showed the VDR-RIPK1 complex formation. 

However, this complex may not be observed at the endogenous level in this cell line since 

HEK293T has very low level of VDR expression. Therefore, we sought to induce L929 cells as 

our model cell line for endogenous VDR-RIPK1 binding (Fig.11).  This cell line is routinely 

used to show complex formation by RIPK1 protein with cell death induction [76] . We first 

treated L929 cells with TNFα, SM or MG132 (proteasome inhibitor) individually or in 

combination for 4 hours. After the treatment, cell lysates were immunoprecipitated with VDR 

antibody followed by western blot.  Neither of the drugs could induce VDR-RIPK1 complex 

alone, whereas the combined treatment of all three drugs could induce the binding (Fig. 22A). 

This finding also led us to think using etoposide as alternative drug of SM.  We  performed the 

same cell death induction experiment combining TNFα and etoposide with or without MG132. 

Here, a time based treatment showed that the complex formation was induced by TNFα, 

etoposide and MG132 combined (Fig. 22B). The complex formation was stronger with time and 

formed only when MG132 was used. This suggests that VDR-RIPK1 complex is also formed by 

cell death induction at the endogenous level and may be proteolytically degraded.  
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Figure 19:  RIPK1 depletion sensitizes MEFs to 1,25D3 

A) RIPK1+/+ and RIPK1-/- MEF cells were plated into 100mm dishes. Cell lysates were 

subjected to Western blot to detect the RIPK1 in both cells with anti-RIPK1 antibody. B) MEFs 

were plated in 96-well plates and treated with either EtOH or indicated concentrations of 1,25D3 

for 6 days. MTT assay was performed. Six samples were analyzed in parallel for each data point 

(n=6) and the experiment was repeated twice. Percentages of cell growth were first calculated by 

subtracting MTT values at day zero from those in day 6 followed by dividing with day zero 

values. Percentages of growth suppression by 1,25D3 were calculated by dividing percentages of 

cell growth in 1,25D3-treated groups with those of the EtOH controls. **p<0.005; ***p<0.001, 

****p<0.0001.  
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Figure 20: Knockdown of RIPK1 increases 1,25D3 induced growth suppression in 

OVCAR3 cells 

A) RIPK1 and VDR expression was determined by Western blot analyses in an OVCAR3 cell 

pool stably expressing control or RIPK1 shRNA. B) The OVCAR3 control and RIPK1 KD cells 

were treated with EtOH or 1,25D3 for 6 days and the percentage of growth suppression was 

measured in MTT assays as in figure 19B.  
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Figure 21: Knockdown of RIPK1 increases 1,25D3 induced growth suppression in PE01 

cells 

A) RIPK1 and VDR expression was determined by Western blot analyses in PE01 cell clones 

stably expressing control or RIPK1 shRNA. B) PE01 clones were treated with EtOH or 1,25D3 

for 6 days and the percentage of growth suppression was determined in MTT assays as in figure 

19B. 

 

3.8 VDR-RIPK1 complex may be degraded by proteasome pathways 

As discussed in the introduction section, RIPK1 protein has Lysine 377 residue in the 

intermediate domain (ID) which is a major ubiquitination site. The K48 ubiquitination targets the 

protein for proteasomal degradation. Since the ID is also important for binding to VDR along 

with its kinase domain (KD); it may pose an important question whether the ubiquitination 

influences the binding or not. For this kind of study, ubiquitin mutant has been used where the 

lysine residue has been modified to other residue such as arginine so that  it can no longer be 

ubiquitinated [60]. If RIPK1-VDR complex is ubiquitinated at the K377 site and further targeted 
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for proteasome degradation, the K377R ubiquitin mutant of RIPK1 should show a stronger 

binding with VDR than the wild type. This study can alternatively supported by the use of a 

proteasome inhibitor MG132. MG132 targets the proteasome inhibitor complex and inhibits its 

activity. Addition of MG132 should rescue the wild type RIPK1-VDR complex formation from 

degradation and will not change mutant RIPK1-K377R-VDR complex formation. Since our 

endogenous binding between VDR and RIPK1 suggested that VDR-RIPK1 complex may be 

subjected to proteasomal degradation, we sought to determine whether mutation in K377 site of 

RIPK1 also supports this finding. To determine whether RIPK1–VDR complex gets 

ubiquitinated followed by degradation, we transfected 293T cells with HA-VDR along with Flag 

tagged  wild type RIPK1 or  flag tagged mutant RIPK1-K377R constructs. As shown in Fig. 23, 

RIPK1 ubiquitin mutant construct showed more binding with VDR. In addition to that, although 

MG132 substantially increased the complex formation of VDR with wild type RIPK1, it did not 

change as much in case of mutant RIPK1. This suggests that VDR-RIPK1 complex may get 

ubiquitinated and degraded by proteasome pathway. 

 

3.9 VDR may potentiate necroptosis in mammary tumor cells 

It is already known that cytokines can stimulate both prosurvival and prodeath signals 

[100]. Their selection on stimulating either pathway depends upon cell type or other stimulants. 

For example,  TNFα treatment on L929 cells induces necroptotic cell death [252]. On the other 

hand, etoposide  or SM can change the prosurvival signaling of TNFα  into prodeath signaling 

[100]. Both of these drugs inhibit or deplete cIAPs from cells, rendering RIPK1 mediated 

apoptotic or necroptotic cell death pathway [100]. As caspase mediated apoptotic cell death can 

be blocked by pan caspase inhibitor z-VAD, the RIPK1 mediated apoptotic or necroptotic cell 
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Figure 22: Endogenous binding of VDR-RIPK1 forms upon cell death induction 

A) L929 cells were treated with murine TNFα, SM and MG132 alone or in combination as 

indicated for 6 hours. B) L929 cells were treated with murine TNFα(10ng/ml), 

Etoposide(100μM) and MG132(10μM) in combination for different time period as indicated. 

Aliquots of 1.5mg of cell lysates were immunoprecipitated with anti-VDR (D-6) antibody. The 

levels of RIPK1 and VDR in the immunocomplex and in the cell extracts were determined by 

Western blot analysis.   
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Figure 23: RIPK1-VDR complex may get degraded by proteasome  

293T cells were transfected with 1.5 μg of HA-tagged VDR and either RIPK1-WT or ubiquitin 

mutant RIPK1-K377R (Flag-tagged). 44 hours posttransfection, cells were treated with either 

DMSO or 10μM MG132 for 4 hours. Cell extracts were immunoprecipitated with Flag 

antibodies followed by immunoblotting with indicated antibodies. 

  

death can still occur through RIPK1 mediated pathway. To understand the role of VDR in 

apoptotic or necroptotic cell death pathway, we induced VDR wild type and VDR null mouse 

mammary tumor cells (MMT-VDR-WT and MMT-VDR-KO, respectively) with murine TNFα 

and etoposide alone or in combination for 16 hours to induce cell death. As shown in Fig. 24A, 

TNFα or etoposide alone did not suppress cell growth; however, combination of those two drugs 
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substantially suppressed growth in MMT-VDR-WT cells. On the other hand, MMT-VDR-KO 

cells did not show much growth suppression. z-VAD along with TNFα and etoposide could not 

relieve the WT cells from growth suppression, indicating that the suppression was not occurring 

through caspase-8 mediated pathway. Interestingly, Nec-1 almost prevented the cell death in WT 

cells. This indicates that, VDR is required for TNFα and etoposide mediated cell death and it 

may occur through necroptotic pathway. As SM also depletes IAP level, we performed the same 

experiment using SM instead of etoposide. Fig. 24B shows that MMT-VDR-WT cells responded 

the same way as Fig. 24A. Therefore, it might be concluded that VDR may potentiate RIPK1 

mediated necroptotic cell death in mouse mammary tumor cells.  

 

3.10 VDR role in necroptosis is cell line specific 

Mouse embryonic fibroblast (MEF) cell line is an important candidate in cell death 

processes. As this cell line contains endogenous RIPK3 [76], it can be used as an ideal candidate 

for necroptosis study. To validate our findings in an epithelial cell line like the mammary tumor 

cells, we sought to determine how the presence or absence of VDR responded to necroptotic cell 

death. We have used VDR heterozygous (VDR+/-) MEF cell line as an alternative to VDR-WT 

MEF. As shown in Fig. 25, MEF cell line responded to the opposite manner of MMT cell line. 

Here, VDR null MEF cell line responded to necroptotic cell induction much more than VDR +/- 

MEF cell line. One explanation might be mammary tumor cells are epithelial cells, whereas MEF 

cells are mesenchymal cells. Therefore, the response of VDR to necroptotic induction was cell 

line specific.      
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Figure 24: MMT-VDR null cells are not responsive to necroptosis 

Mouse mammary tumor VDR wild type and VDR null cell lines, MMT-VDR-WT and MMT-

VDR-KO, respectively cells were plated onto 96 well plate. 24 hours later, cells were treated 

with TNFα (10ng/ml), etoposide (100μM) (Fig. A), Smac mimetic (SM) (1μM) (Fig. B), z-

VAD(10μM), Nec-1(10μM) alone or in combination as indicated, for 16 hours. Cell growth 

suppression was measured by MTT assay. Six samples were analyzed in parallel for each data 

point (n=6) and the experiment was repeated twice.  

 

3.11 VDR does not modulate RIPK1-RIPK3 complex formation  

As RIPK1 and RIPK3 form a complex that is important in necroptotic cell death, we sought to 

determine whether VDR decreases or increases the RIPK1-RIPK3 complex formation by binding 

to it. HEK293T cells were transfected with RIPK1, RIPK3 and VDR containing respective tags. 

Immunoprecipitaiton followed by western blot showed that the RIPK1-RIPK3 complex 

formation did not change due to the presence of VDR (Fig. 26). However, with our experience 

on coimmunoprecipitation analyses, RIPK1-RIPK3 complex seemed much stronger than RIPK1-

VDR complex. Therefore, ectopic expression data might not reflect the endogenous influence of 
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VDR on RIPK1-RIPK3 complex formation. Hence, it may be required to repeat the experiment 

in endogenous protein level. 

 

 

 

 

Figure 25: The involvement of VDR in necroptosis appears cell line specific 

VDR heterozygous and VDR null mouse embryonic fibroblast (VDR+/-MEF and VDR-/-MEF, 

respectively) cells were plated onto 96 well plate. 24 hours later, cells were treated with TNFα 

(10ng/ml), SM (1μM), z-VAD (10μM), Nec-1(10μM) alone or in combination as indicated, for 

16 hours. Cell growth suppression was measured by MTT assay. Six samples were analyzed in 

parallel for each data point (n=6) and the experiment was repeated twice. 
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3.12 RIPK1 expression varies between platinum sensitive and resistant cell lines 

The problem with chemotherapeutic drugs even after first successful chemotherapy is that, the 

patient becomes chemoresistant within months. It is more prevalent in ovarian cancer [253]. To 

determine the effect of RIPK1 expression in platinum sensitive and resistant cancer cell lines, we 

utilized three pairs of ovarian cancer cisplatin sensitive and resistant cancer cell lines. Sensitive 

cell lines were TykNu, PE01, M41 and their resistant counterpart cell lines were TykNuR, PE04, 

M41R, respectively. We first performed a western blot to see whether there is any differential 

pattern of expression of RIPK1 among the sensitive and resistant cancer cell lines. Interestingly, 

cisplatin resistant cell lines showed either slight (TykNuR, M41R) or significantly (PE04) 

increased expression of RIPK1 compared to their cisplatin sensitive counterpart cell line (Fig 

27). This suggests that during the process of gaining resistance to the drug, these cell lines also 

had more RIPK1 expression. This also potentiates the fact that RIPK1 may work in cancer cell 

survival.  

 

3.13 VDR deletion defer mice death by necroptotic shock in vivo 

As the role of VDR in necroptotic induction is cell line specific, it is important to determine the 

role of VDR in necroptosis in vivo. A well-established test for necroptotic induction in mice is 

injecting mTNFα through tail-vein injection [88, 117] (Fig. 28). This induces systemic 

inflammatory respiratory syndrome (SIRS) and septic shock in mice. SIRS happens due to 

systemic inflammation. The final outcome of the treatment is severe hypothermia and death 

[117]. To know whether VDR plays a role in inducing necroptosis in vivo or rather protects mice 

from it, we injected mTNFα in C57BL6 VDR wild type and null mice through tail-vein injection. 

VDR wild type mice suffered necroptotic shock and started dying within 2 hours of mTNFα 
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Figure 26: RIPK1-RIPK3 in vitro binding does not get affected by VDR  

293T cells were transfected with 1.5 μg of Flag-tagged RIPK1, HA-tagged VDR and Myc-

tagged RIPK3 as indicated. 48 hours posttransfection, cell extract were immunoprecipitated  with 

Flag antibodies followed by immunoblotting with indicated antibodies. 
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Figure 27: RIPK1 level is increased in platinum resistant ovarian cancer cell lines 

Cisplatin sensitive ovarian cancer cell lines, TykNu, PE01, M41 and their resistant counterpart 

cell lines TykNuR, PE04, M41, respectively were cultured in 100mm dish. Cell extracts were 

immunoblotted to measure the expression level of RIPK1. 

 

injection and continued to show the response afterwards. On the other hand, VDR null mice 

showed delayed response to mTNFα (Fig. 29). Although VDR deletion could not fully rescue the 

mice from necroptotic shock, it could delay the death more than VDR wild type mice (at 8 hours, 

p=0.0148).  

 

 

 

Figure 28: Procedure of necroptotic induction in mice and temperature measurement 

Mice are injected mTNFα intravenously through tail-vein injection. A rectal probe attached with 

a thermometer is used to measure the core-body temperature. 
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Figure 29: VDR deletion delays necroptotic induction in mice 

Kaplan-Meier survival plot of C57BL/6 male VDR wild type (n=7) or null mice (n=8). Mice 

were injected with mTNFα (450μg/kg, Peprotech) intravenously through tail-vein injection. Core 

body temperature was measured through indicated time period for the next 48 hours. Mice with 

temperature below 23.6° were euthanized for ethical reasons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*8 hrs, p= 0.0148 
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CHAPTER 4 

DISCUSSION 

 

Our lab has previously shown that 1,25D3 regulates signaling pathways mediated by cell 

death ligands [254]. Therefore, it is perceivable that the downstream effector proteins of 1,25D3 

and cell death ligands may cross-talk with each other. RIPK1 is well established as an essential 

molecule involved in mediating cell survival and death mechanisms. In this study, we have 

defined a novel function for RIPK1 in nuclear receptor action by identifying it as a VDR 

repressor. Reporter analyses on two different VDR promoter constructs have first shown that 

RIPK1 inhibits the transcriptional activity of VDR. Further studies also showed that this 

inhibition was independent of its kinase activity. Subsequent co-precipitation analyses have 

revealed that RIPK1 forms a complex with VDR, and deletion analyses defined the interaction 

interface to the LBD of the receptor. Interestingly, the kinase domain of RIPK1 appears to be 

required for its binding to VDR, even though its kinase activity is expendable for VDR 

repression. While the molecular mechanisms underlying VDR repression by RIPK1 remains 

largely to be defined, our studies suggest that increased cytoplasmic retention of VDR may be 

part of the picture. More importantly, RIPK1-knockout or knockdown increased the sensitivity of 

cells to 1,25D3-induced growth suppression, demonstrating the significance and clinical 

relevance of the knowledge gained in our mechanistic studies. Overall, our studies suggest that 

the depletion of RIPK1 may be an effective way to increase the sensitivity of cancers to 1,25D3 

and its analogs.  
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Our studies have clearly demonstrated that VDR repression by RIPK1 occurs 

independently of its kinase activity and is mostly likely mediated through its adaptor function as 

a VDR-interacting protein. Although our data suggest that the increased cytoplasmic retention of 

VDR by RIPK1 binding as part of the mechanisms underlying VDR suppression, it should be 

noted that the nuclear localization signals have been identified in the DNA-binding domain and 

hinge region of VDR, whereas RIPK1 binding was mapped to the LBD (Fig.13). On the other 

hand, nuclear exporting signals have been located to the LBD of VDR.  It is thus perceivable 

that, RIPK1 might promote VDR nuclear export. The issue is that RIPK1 is a cytoplasmic 

protein and we have not detected nuclear RIPK1 in our studies, making it less likely for RIPK1 

binding to directly promote the nuclear export of VDR. Nevertheless, our mapping analyses 

suggest that multiple regions of RIPK1 are involved in its binding to VDR. It is possible that, 

after the primary contact with the LBD is made, RIPK1 may interrupt the interaction between 

VDR and nuclear pore structures through steric hindrance by secondary contacts with other 

regions in VDR. Besides hormone binding, the LBD is also known to be involved in mediating 

interactions between VDR and cofactors. Thus, RIPK1 binding may cause VDR repression not 

only by increasing VDR retention in the cytoplasm, but also by interfering with the recruitment 

of transcriptional cofactor. One possible explanation of VDR downregulation by RIPK1 is 

through the inhibition of the formation of VDR-RXR heterodimer, since RXR binds to VDR 

through the C-terminal LBD. However, our data showed that RIPK1 did not interfere with the 

VDR-RXR binding. Hence, other transcriptional activator or repressor might have played a role 

in VDR activity suppression by RIPK1.  
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A large amount of epidemiological and molecular studies have shown that vitamin D 

reduces cancer risk and that 1,25D3 analogs are promising agents for cancer treatment. However, 

the potential of 1,25D3 and its analogs in cancer intervention has yet to be realized in clinics. A 

majority of the published studies about vitamin D and cancer have been dedicated to pathways 

through which the hormone suppresses cancer growth and invasion; very little is known about 

the molecules and pathways that suppress VDR action and cause resistance of cancer cells to 

1,25D3 and its analogs. The presented studies suggest that the expression of RIPK1 may cause 

resistance to 1,25D3-induced growth suppression and identify RIPK1 as a molecular target for 

increasing the therapeutic potential of 1,25D3 analogs for cancer. The fact that VDR suppression 

is not mediated by the kinase activity of RIPK1 makes it more challenging to target RIPK1 for 

cancer intervention. However, technological advancements in small interference RNA and gene 

editing tools could make it possible to develop strategies for targeted depletion of RIPK1 in 

cancer.  

Studies have also shown that RIPK1 is subjected to ubiquitination [60, 255]. Our data 

showed that the complex formation between VDR and the ubiquitin mutant of RIPK1 (RIPK1-

K377R) was stronger than VDR and wild type RIPK1 (Fig. 23). This was also supported by our 

endogenous binding data in L929 cells. Cell death induction by TNFα and etoposide/SM showed 

increased endogenous binding in presence of proteasome complex inhibitor MG132 (Fig. 22A 

and 22B).  Therefore, our date clearly indicated that VDR-RIPK1 complex is subjected to be 

degraded after formation. This might be postulated that proteasome complex can recognize this 

complex and degrade it by ubiquitination to keep the cell alive. 
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The VDR-RIPK1 complex appeared to be regulated by necroptotic stimuli and we have 

detected a cell line specific effect of VDR on necroptosis (Figs.24A and B, 25). However, more 

extensive studies are needed to explain the results from different cell lines that appear to be 

conflicting. It should be mentioned that necroptotic stimuli can also lead to RIPK1 mediated 

apoptotic cell death, in case if RIPK3 is not expressed in the cell line [100]. Therefore, to 

confirm the role of VDR in necroptosis in both MMT-VDR and VDR-MEF cell lines, further 

experiments are required. Downstream effect of necroptotic induction such as phosphorylation of 

RIPK3 and MLKL as well as time lapse video microscopy through staining of RIPK1-RIPK3 

complex have not been done in our study. Therefore, these experiments might be done in future 

to confirm the role of VDR in necroptotic cell death in these cell lines.  

While the presented studies have focused on the effect of RIPK1 on VDR action and 

1,25D3-induced growth suppression, the complex formation between RIPK1 and VDR suggest 

that VDR and its ligand may regulate RIPK1 functions. We first assumed that VDR interaction 

with RIPK1 may interfere with RIPK1-RIPK3 complex formation. However, our overexpression 

data does not indicate that VDR disrupts RIPK1-RIPK3 binding (Fig. 26). This should be noted 

that RIPK1-RIPK3 binding may be stronger than VDR-RIPK1 complex and hence, is not visibly 

getting affected. This experiment was done in overexpression system and should also be done in 

endogenous system to see whether VDR can disrupt the RIPK1-RIPK3 binding or not. MEF cell 

line is a good candidate to show RIPK1-RIPK3 complex formation through necroptotic 

induction. Therefore, VDR+/- and VDR-/- MEF cell lines can be used to see whether VDR 

interferes with RIPK1-RIPK3 complex formation at the endogenous level. Stable expression of 

VDR in VDR-/- MEF cell line can confirm the finding in this experiment.  
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   In the current study, we have also shown the in vivo role of VDR role in necroptosis. 

Established in vivo studies of TNFα induced necroptosis employs tail-vein injection of TNFα. 

This causes a rapid core body temperature due to SIRS, which shows necrotic cell death in mice. 

Our study showed that although VDR in cell death assays showed differential role depending 

upon the cell line, VDR is actually required to induce necroptosis in vivo. Despite the fact that 

VDR deletion could not completely inhibit TNFα induced necroptotic death in mice, the VDR-

KO mice survived longer than VDR-WT mice. This underscores the role of VDR in inducing 

necroptotic induction in vivo.   

Our comparative expression study in cisplatin sensitive and resistant cells showed that 

RIPK1 is differentially expressed in cells. We also observed that RIPK1 level in those platinum 

resistant cell lines was slightly increased. Whether RIPK1 level also increased during the process 

of drug resistance can also be worth exploring. Ovarian cancer in most of the patients is detected 

at the advanced stage when the tumor has already metastasized to other organs. The role of 

RIPK1 in both cell survival and cell death pathway makes it an ideal candidate for testing this 

protein to play any role in cancer cell survival in chemotherapy. Recent studies show that RIPK1 

is required in cancer cell survival and downregulation of RIPK1 in those cells increases 

chemotherapeutic response [101, 103]. Our present study suggests that knockdown of RIPK1 

increases 1,25D3 induced cancer cell growth suppression. While we did not perform any cell 

death assay after cisplatin or carboplatin treatment on these RIPK1 knockdown cancer cells, our 

work can also be extended to chemotherapeutic efficacy on these cells. It may be also studied 

whether the combined treatment of 1,25D3 and platinum drugs have any additive or synergistic 

effect on RIPK1 knockdown ovarian cancer cells.  
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4.1 Summary and perspective 

Our data allow us to draw the following conclusions. 1) RIPK1 decreases VDR activity 

and the suppressive action does not depend on its kinase activity of RIPK1;  2) RIPK1 binds to 

VDR, specifically the binding is mediated by the kinase and intermediate domain of RIPK1 and 

the C-terminal ligand binding domain of VDR; 3) RIPK1 retains VDR into the cytosol and 

controls the nuclear translocation of VDR both in absence and in presence of 1,25D3; 4) 

Depletion of  RIPK1 in cancer cell increases 1,25D3 mediated cell growth suppression; 5) The 

role of VDR in necroptotic cell death is cell line specific. 6) VDR deletion decreases 

necropototic inflammation in vivo in mice.  

Based on the above conclusions, future studies should focus on the investigation of the 

following observations for their potential significance in understanding 1,25D3 actions in cancer 

and potential clinical relevance.  

First, although it has been shown that RIPK1 decreased VDR activity by inhibiting 

nuclear translocation, the mechanism is not fully understood yet. It has not been studied yet 

whether RIPK1 also cross-talks with transcriptional coactivators or corepressors of VDR. 

Detailed mechanistic study is required to answer questions such as whether RIPK1 can also 

squelch SRC-1 to the cytoplasm to contribute to the inhibition of VDR activity.  

Secondly, the cross-talk between VDR and RIPK3 may be possible in cell survival and 

death signaling through RIPK1. Whereas RIPK1 was present in all cell lines that we have 

studied, RIPK3 expression has not been tested (Fig 27). RIPK3 expression study can also be 

done in these cell lines to find out potential relationship between platinum resistance and RIPK3 

expression. Our overexpression data showed that VDR did not interfere with RIPK1-RIPK3 

binding (Fig 26). However, this study was done in overexpression system where abundant 
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proteins were present to bind with each other and in HEK293T cell line, which is nonresponsive 

to necroptotic induction. Therefore, studies with endogenous proteins in cell lines and in VDR-

WT and null MEFs need to be performed to see whether VDR affects RIPK1-RIPK3 interaction 

during necroptotic cell death. Restoring VDR expression in VDR-null MEF can be used to 

confirm the role of VDR in necroptosis.  

Lastly, our studies appear to corroborate with the previous findings that RIPK1 is an 

oncogenic protein and that downregulating RIPK1 increases the chemosensitivity of cancer cells. 

In our studies, we have shown that RIPK1 knockdown also increased 1,25D3 mediated cell 

growth suppression in ovarian cancer cell lines. This can be further tested in other vitamin D 

sensitive cancer cell lines. Along with this, the sensitivity of ovarian cancer cells to therapeutic 

drugs can be tested in our RIPK1 knockdown cells. As for the 1,25D3 sensitivity, it is worth to 

find out whether combined treatments of 1,25D3 and other chemotherapeutic drugs have more 

profound effects, additive or synergistic, on suppressing cancer cell growth in RIPK1 

knockdown cells.   

In summary, my thesis work is the first to demonstrate an interaction between RIPK1 and 

VDR. The studies suggest that inhibiting RIPK1 expression can be an effective strategy to 

potentiate the effects of 1,25D3 in suppressing tumor growth. Together with RIPK1 depletion, 

1,25D3 treatments may become an important component of standard cancer therapy in clinics.  
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