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ABSTRACT 

 

 

Rennier, Keith.  M.S.B.M.E., Purdue University, May 2010.  The Role of DAP-Kinase in 

Modulating Vascular Endothelial Cell Function under Fluid Shear Stress. Major 

Professor: Julie Ying Hui Ji. 

 

 

 

Atherosclerosis preferentially develops in vascular regions of low or disturbed 

flow and high spatial gradients.  Endothelial cells that line the vessel walls actively 

participate in translating mechanical stimuli, shear stress due to fluid flow, into 

intracellular signals to regulate cellular activities. Atherosclerosis is a chronic disease. 

During its development, a cascade of inflammatory signals alters the arterial endothelial 

homeostatic functions. 

 

Death-associated protein (DAP) kinase and its correlated pathway have been 

associated with cell apoptosis, turnover, and cytoskeleton remodeling in cellular 

networks, ultimately leading to changes in cell motility and vascular wall permeability. 

DAP-kinase is also highly regulated by inflammatory triggers such as TNF-α. This thesis 

investigates DAP-kinase modulation due to shear stress, and the role of DAP-kinase 

activity in endothelial responses toward applied shear stress. Using bovine aortic 

endothelial cells (BAEC), DAP-kinase expression is demonstrated in both sheared (10 

dynes/cm
2
) and static conditions. Overall DAPK expression increased with extended 

shearing, while the presence of phosphorylated DAPK decreased with applied shear 

stress, as demonstrated in Western blot analysis.



 ix 

 

 

In correlation, DAPK RNA expression profiles were explored to understand pre-

translational behavior and to understand just how shear stress influences DAPK 

expression over time.  There is a temporal increase in DAPK mRNA, occurring at earlier 

time points when compared to DAPK protein expression, displaying the precedence of 

mRNA expression leading to increased translation into protein.  

 

From our apoptosis assay results, shear stress reduces apoptotic and late 

stage/necrotic cell fractions.  The exposure of shear stress potentially plays a role in 

inhibiting apoptosis activation and TNF-α induced death cascade. 

 

Overall, the apoptosis activity influenced by shear further exhibits a possible 

connection between shear stress and apoptosis inhibition.  The shear stress ultimately 

decreases overall apoptosis, while DAPK expression is increased.  Therefore, DAPK may 

have a function in other possible mechano-transduction cascades, when endothelial cells 

are exposed to constant shear. Our data suggests shear stress modulation of DAP-kinase 

expression and activity, and the potential crosstalk of mechano-transduction and DAPK-

apoptosis pathway, may lead to further understanding the responsibility of DAPK in 

endothelial cell function.
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1. INTRODUCTION 

 

 

The thesis will begin with some background on the cardiovascular biology 

involved, as well as the engineering principles applied for the research.  The specific 

thesis objectives will be outlined, followed by the research methods, results, and overall 

conclusions.  Finally, the significance of the thesis project and future directions will be 

discussed. 

 

 

1.1   Understanding the Artery 

It is important to understand basic biology of the cardiovascular system to 

understand the research direction of this thesis project.  The arterial blood vessel wall is 

composed of three different layers.  The outermost layer, the adventitia, is made up of 

collection of connective tissue and interwoven thick collagen fibers, ultimately 

connecting blood vessels to external tissue networks.  The central tissue layer, or media, 

contains smooth muscle cells within a network of collagen and externally protected by a 

layer of elastic tissue, also known as the external elastic lamina.  Within the media layer, 

the smooth muscle cells and elastin fibers align circumferentially in order to provide 

mechanical integrity to the blood vessel wall.  Lastly, the innermost layer, or intima, is 

composed of a layer of endothelial cells backed by a layer of elastic connective tissue, or 

internal elastic lamina.  The intima layer is the tissue interface with the blood flow within 

the cardiovascular system [1].  Figure 1.1 shows the sections of each of the three 

different blood vessel layers. 
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Figure 1.1   Anatomy of the arterial wall [2] 

 

The hemodynamic forces generated by blood flow, exert both pressure and shear 

stress to the luminal lining of the artery.  The applied forces create pressure in the normal 

direction due to cyclic stretch and intercellular signaling due to tangential shearing due to 

axial fluid flow.   The hemodynamic forces within the vessel wall are shown in Figure 

1.2 [3].  The endothelial cells that line the arterial wall are exposed to both the 

biochemical environmental conditions and mechanical stimuli introduced by the blood 

flow and in turn engage in intercellular signaling based on these signals. 

 

 

Figure 1.2   Mechanical forces acting on vessel wall 
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The arterial endothelial cells respond to mechanical stimuli, such as shear stress, 

with intracellular signals in the cardiovascular system.  For example, shear stress 

influences endothelial cell wall remodeling through the production of growth-promoting 

and growth-inhibiting signaling molecules.  Additionally, the endothelial cells control 

hemostasis and thrombosis by providing pro-coagulant, anti-coagulant, and fibrinolytic 

mediators.  By releasing chemotactic and immune response surface molecules, the cells 

control inflammatory interactions that may occur within arterial system as well.  

Likewise, they will release vasodilators and vasoconstrictors in order to regulate smooth 

muscle cell contraction [4].  Collectively, the arterial endothelial cells play a substantial 

role in efficient functioning of cardiovascular system.  Endothelial cells are actively 

participating in all homeostatic activities of the vascular wall, and as a result, impairment 

with the endothelial cells could lead to possible diseased states, by increasing the 

likelihood for positive atherogenic or thrombotic occurrences [5].   

 

The main focus of this thesis will be to understand cellular mechano-transduction 

of the arterial endothelial cells.  The overall goal of this project is to understand the 

intracellular signaling pathways of endothelial cells that are initiated and regulated by 

applied shear stress.  Understanding endothelial mechano-transduction has become an 

important target for cardiovascular research because endothelial dysfunction can lead to 

cardiovascular diseases, such as atherosclerosis.   

 

 

1.2   Disease Progression:  Atherosclerosis 

Atherosclerosis is a chronic disease that affects the arterial walls of the 

cardiovascular system, resulting in inflammation and reduced blood flow.  With this 

condition, plaque builds up within the artery walls, causing a narrowing of the blood 

vessels.  The arterial damage may occur overtime from a number of possible factors such 

as:  a diet high in cholesterols and triglycerides, high blood pressure and/or stress, 

smoking, diabetes, and even genetics can play a role in the development of 

atherosclerosis [6].   
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Initially, the arterial plaque starts to build up due to damage that has occurred to 

the endothelium of the artery, such as the inflammatory response to endothelial damage 

or other immune responses.  Specifically, atherosclerosis starts with the excess 

accumulation of cholesterol, low density lipoprotein (LDL), and fats in the sub-

endothelial space, or fatty streaks.  As the disease progresses with continued deposits of 

excess cholesterol, fatty streaks develop into plaques, and atherosclerotic plaques begin 

to restrict blood flow.  This is a chronic inflammatory condition of the endothelium.  

Eventually, plaques develop into a thrombotic pool covered by a fibrous cap.  Breakage 

of this fibrous cap leads to immediate blot clot, resulting in heart attack or stroke [7, 8].     

 

One of the major disease conditions that develop from the spread of 

atherosclerosis is coronary or peripheral arterial disease.  In coronary arterial disease, 

blockage has developed in major arteries supplying blood to heart, and in peripheral 

arterial disease, blockage effect arteries that supply blood other major organs of the body, 

in the peripheral.  Over 12 million patients are in the progressing stages of coronary 

artery disease, with one in five deaths occurring from cardiovascular disease in the 

United States alone [9].  Atherosclerosis is one of the leading causes of death in 

developed countries, with a substantially large patient population.  There is a tremendous 

need for identification of drug targets, improved biological therapeutics or medical 

devices for the prevention and treatment of atherosclerosis.    

 

 

1.3   Disease Mechanism of Atherosclerosis 

Atherosclerosis was originally thought to be degenerative, just a consequence of 

aging.  After extensive research, it was shown to have a complex progression from a 

cycle of cellular events.   

 

Initially, blood transports excessive amount of fat and/or lipoproteins due to diet 

or other factors.  Low density lipoproteins (LDLs) are the “bad” cholesterol that is at the 

root of atherosclerotic development.  Overload of LDLs results in a high absorption into 
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the arterial walls, along with retention of these molecules, creating what is known as a 

fatty streak in the arteries.  With the LDLs trapped in the wall, they form connective 

fibers in the extracellular matrix of the arteries.  The LDLs are then oxidized by the 

surrounding microenvironment, directing monocytes to the arterial entrapment location.  

From further oxidation, the LDL structure is altered, resulting in the loss of recognition of 

its receptors.  This leads to the surrounding cell receptors gaining the ability to bind the 

low-density lipoproteins, without discrimination of cholesterol content, in order to uptake 

into the arterial cells [10].   

 

As a result, this LDL uptake allows for a large increase in cholesterol within the 

arterial cells creating lesions in the artery.  The development of lesions triggers an 

immune response to address the arterial damage.  Unfortunately, the increase of cellular 

LDL concentration results in rejection of neutrophils, due to the toxic composition of the 

LDL molecules.  This is a chronic inflammatory condition of the endothelium, and as 

atherosclerosis continues to develop, fatty streaks develop in to plaque deposits, and 

inflammation is accelerated at the damaged location.  Sites of highly concentrated 

cholesterol will continue to grow and expand into arterial lesion.  See Figure 1.3. 

 

 

Figure 1.3   Disease progression decreasing blood flow [11] 
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Macrophages that move into atherosclerotic plaques develop into foam cells as 

they continue to accumulate LDL, and smooth muscle cells migrate over endothelial 

plaques and begin to produce extracellular matrix proteins that form a fibrous cap which 

covers a diseased and inflammatory core that is highly thrombotic.  Eventually, the 

arterial plaque that has aggregated at these lesion sites may rupture at sites of 

structural/mechanical weakness [12].  Lesion ruptures will illicit additional immune 

response and induces an increase in cellular/monocytes tissue factor, which is a strong 

coagulant for the arterial cells.  The introduction of this tissue factor to the blood will 

initiate thrombosis at the rupture site [10].  Thrombosis starts a blood clotting cascade, 

which will lead to complete blockage of the artery, as is the case during a heart attack, if 

clotting occurs at the coronary artery or stroke if clotting occurs in vessels of the brain.  

 

 

Figure 1.4   Arterial lesion damage and progression [13] 

 

Overtime, atherosclerosis will progress as a narrowing of arteries due to plaque 

formation, to slow blood flow or reduce cardiac efficiency.  This arterial blockage can 

potentially lead to multiple health problems, such as heart failure and stroke [7, 10].   
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Over the past decade, a research focus has been on developing therapeutic 

strategies, as well as understanding the roles of important cardiovascular factors [14].  

This project aims to improve the understanding of the disease mechanisms in order to 

better prevent the development of atherosclerosis. 

 

 

1.4   Hemodynamics and Shear Stress 

At the cellular level, there are many factors that control the various functions of 

the artery.  Cell signaling can be initiated by a number of different stimuli, such as 

chemical interactions, potential gradients, or mechanical shear and stretch.  Shear stress 

due to hemodynamic flow within an artery directly affects the endothelial cells lining the 

blood vessel wall.  Endothelial cells will respond in different ways depending on the type 

of flow applied, transferring signals throughout the system to facilitate specific functions.  

Shear stress, depending on the respective flow pattern, can induce cells to express 

different proteins to facilitate cell proliferation, apoptosis, cell motility, anti-

pathogenesis, and pro-pathogenesis factors.   Both morphological and functional changes 

occur continuously in order to maintain artery structure and function.   

 

With such a dynamic structure, there is constant endothelial cell turnover within 

the artery.  As a result, there are many different regulators of the system, in order to 

maintain cardiovascular efficiency and cell wall integrity.  As blood flow shears the 

endothelial lining, the cell turnover can create the potential for trans-endothelial leakage 

of macromolecules, including low density lipoproteins [5].  This leakage susceptibility 

can allow for the progression of a cumulative condition, such as atherosclerosis.  For the 

case of vascular failure, there is a breakdown in expression of specific protective 

molecules, and/or an up-regulation of certain pro-pathogenic molecules [15].  By 

understanding the system regulators and shear stress influences, it can lead to possible 

disease factors and prevention tactics for these conditions.   
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As previously discussed, atherosclerosis is a chronic inflammatory disease 

involving accumulation of multiple lipid, protein, immune system components, smooth 

muscle cells migration; resulting in fatty streaks and plaques in the arterial walls at the 

legion sites, whose rupture leads to thrombosis, heart attack, and possibly death.  In the 

vasculature, atherosclerosis develops preferentially at branching points, and disturbed 

sections of the vascular tree where disturbed hemodynamic flow patterns exist.  

Disturbed flow is where endothelial cells can be exposed to low levels of shear stress, 

reversing or vortexing flow. On the other hand, atherosclerosis is less likely to develop in 

straight sections of vascular tree with more laminar flow pattern and higher levels of 

shear stress [8].  

 

As for specific shear flow and comparing gene expression profiles in laminar 

versus disturbed flow, laminar flow has shown to up-regulate endothelial cell anti-

inflammatory genes, where as disturbed flow has shown to down regulated these specific 

genes.  Also, disturbed flow can allow for an increase in pro-inflammatory gene 

expression. Endothelial cell proliferation and cell death are increased by reciprocal flow 

patterns.  Likewise, pulsatile shear flow has been shown to inhibit this cell turnover 

process.  In reducing the cell wall activity, the progression of the arterial lesions will be 

inhibited, as seen in the straight sections of arteries exposed to laminar shear flow [5].  

Arterial plaque and wall damage tend to develop in curved or branched regions, where 

shear stress is low and flow conditions are associated with a high spatial gradient.  

Consequently, the blood flow becomes disturbed and unsteady in the low sheared 

locations, obviously affecting endothelial cell function [7].   

 

In reviewing the systematic development of arterial lesions, they have all been 

shown to have the same hemodynamic flow conditions, regardless of individual risk 

factors or lifestyle choices [5].  This leads to an insight that these specific regions are 

influenced by the shear stress, as well as other specific risk factors:  the reduced anti-

atherogenic factors and increase of pro-atherogenic factors at the respective lesion sites.  
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Thus, shear stress is an important regulator of endothelial cell functions, and plays an 

important role in mediating the development of atherosclerosis [8]. 

 

Further investigation of important molecular mechanisms in arterial endothelial 

cell function using shear stress and mechano-transduction studies, will help identify novel 

approaches to treating cardiovascular disease.  Using mechano-transduction studies, 

molecular pathways influencing endothelial cell dysfunction can be fully understood.  

This knowledge will lead to the development of new drug targets, and more efficient 

techniques for disease prevention, detection, as well as treatment. 

 

 

1.5   DAP-Kinase and Its Corresponding Cascades 

In regulation of cellular pathways, protein kinases play a large role in modifying 

proteins and their respective functions.  These kinases can affect target proteins in many 

different ways such as:  changing enzymatic activity, location within the cell, protein-

protein interactions, and further signal transduction processes within a cell.  Specifically, 

protein kinase is an enzyme that chemically alters a protein by adding a phosphate group 

to the target substrate, also known as phosphorylation.  In adding a phosphate to the 

substrate, this results in a functional modification to the directly affected protein.  To 

phosphorylate substrate proteins, kinases will attach a phosphate group to one of the three 

amino acids with a free hydroxyl group:  serine, threonine, or tyrosine.  The substrate 

transformation can lead to signal transduction to other cellular processes, displaying the 

vital importance of protein kinases and their regulatory activities.   

 

The protein kinases are highly regulated due to their role in various cellular 

processes, such as cell growth, motility, and death processes.  The kinase activity is 

switched on and off by specific protein phosphorylation/dephosphorylation [16].  Protein 

kinases are activated through binding of specific activator/inhibitor proteins, particular 

cellular location, small molecule activators, and some are even auto-phosphorylated 

directly by the kinase.   
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Based on the importance of efficient kinase function, a disturbance in kinase 

activity regulation can lead to the altered signal transduction and a resulting development 

of particular diseases [17, 18]. 

 

Death-Associated Protein Kinase (DAPK) is a calcium/calmodulin regulated, 

serine/threonine kinase involved in a number of different cellular functions, required in 

order to maintain a balance between cell proliferation and death.  Within the cell, DAPK 

is localized to cytoskeleton, where it can regulate and/or phosphorylate cytoskeletal 

proteins, such as actin microfilaments [19].  Due to its cytoskeleton involvement, DAPK 

can regulate cell adhesion, motility, and possible cell structure integrity or organization, 

all of which play a role in the programmed cell death processes, apoptosis.   

 

This cytoskeleton-associated protein has been connected with cytokine activation 

of apoptosis, such as in the presence of Tissue Necrosis Factor – alpha (TNF-α).  DAPK 

has shown pro-apoptotic effects by inactivating integrin β1, resulting in activation of the 

p53 apoptotic cascade and altering the extracellular matrix.  Although DAPK is involved 

in apoptosis, its role in integrin modulation and cellular organization, due to cytoskeleton 

binding, also allows for DAPK to influence cell motility based on its inactivation of 

Cdc42 signaling cascade [20, 21].   

 

DAPK protein structure is shown in Figure 1.5, including its various binding sites 

and domains.  DAPK is a 160-kD protein with multiple catalytic and non-catalytic 

domains coming together to form the structure.  There are 8 ankyrin repeats involved in 

mediating protein-protein interactions with DAPK.  Also, DAPK contains binding 

sequence motifs, P-loops, a death domain, cytoskeleton binding motif, as well as a kinase 

catalytic domain [22, 23].  Specifically, the Ca2+/Calmodulin and the kinase domains are 

responsible regulating catalytic activities and recognizing specificities of substrate 

interaction.  The rest of the molecular components of DAPK (P-loops, ankyrin repeats, 

and cytoskeleton and death domains) are involved in sub-cellular localization and protein 

interactions [24]. 
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Figure 1.5   Schematic diagram of DAP-Kinase protein structure 

 

In Table 1.1, the multiple phosphorylation sites influencing DAPK activity are 

described, along with the specific location sites within the protein molecule.   

 

Table 1.1   Phosphorylation of DAPK influencing kinase activity 

Phosphorylation Site 
Location of 

Phosphorylation 

Mechanism of 

Action 
Reference 

Phosphorylation due to 

p90 ribosomal S6 kinases 

(RSK) at Serine 239 

Ca
2+

/Calmodulin 

domain 

Triggers suppression 

of pro-apoptotic 

function 

[25] 

Auto-phosphorylation at 

Serine 308 

Ca
2+

/Calmodulin 

domain 

Influences cytokine 

apoptotic pathway; 

p53 dependent 

pathway 

[26] 

Extracellular Signal-

Regulated Kinase (ERK) 

phosphorylation at 

Serine 735 

In between 

Ankyrin repeats 

and the P-loop 

Switches off the 

ERK-C/EBP-beta 

pathway, Up-

regulating the cell 

turnover processes 

[27] 

Phosphorylation by SRC 

at Tyrosine 491/492 

Within the 8 

Ankyrin repeats 

Stimulates intra-

molecular interaction 

and inactivation 

[28] 

Dephosphorylated due to 

leukocyte common 

antigen-related (LAR) 

tyrosine phosphatase at 

Tyrsoine pY491/492 

Within the 8 

Ankyrin repeats 

Induces the catalytic 

activity of DAPK, 

reducing cell 

adhesion and motility 

[28] 

 

DAP kinase is stimulated by increasing proliferative signals and calcium 

concentration and calmodulin activation.  Specifically, DAPK operates upstream of 

p19
ARF

 and p53 to induce apoptosis [29, 30].  DAPK-influenced cell death results in 

autophagic vesicle formation and membrane blebbing [31, 32].   

Kinase Domain

Ca /CaM
2+ Ankyrin

Repeats
P-Loops

Death Domain

14311

Cytoskeleton Binding
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From the list of possible phosphorylation sites in Table 1.1, the direction of 

potential thesis research linked to the auto-phosphorylation site at Serine 308, due to its 

involvement in apoptotic functions and Ca
2+

/Calmodulin concentrations, correlating to 

the progression of atherosclerosis events.  By studying both overall and phosphorylated 

DAPK, aortic endothelial cell experiments can give an idea of DAPK’s overall cellular 

activity, and the connection between applied shear stress within a system. 

 

Atherosclerotic lesions develop due to low shear stress exposure, reversing or 

vortexing flow, which facilitates fatty deposits and plaque formation.  In regions of 

turbulent fluid flow, there is an increase in endothelial cell turnover, directly affecting the 

integrity of the vascular cell wall [15, 33].   A strong correlation is seen between cell 

turnover and trans-endothelial leakage of macromolecules, such as LDLs.  Based on this 

correlation, these regions of disturbed flow are susceptible to cumulative arterial damage.   

 

In correlation to lesion development, increased apoptotic cell death is shown to 

contribute to artery plaque formation, instability, rupture, and thrombus formations. 

DAPK is active in the apoptotic pathway and coincidentally up-regulated in 

atherosclerotic plaque regions [34]. The study of homeostatic vascular function will give 

insight into the diseased state of atherosclerosis, and the potential connection to DAPK 

due to its role in activating in the apoptotic pathway. 

 

Endothelial cells respond using various signaling pathways in reaction to different 

kinds of applied stresses.  Previous shear stress studies on endothelial cells have shown 

increased gene expression for various molecules implicated in atherosclerosis [35].  Yet, 

laminar hemodynamic flow has shown reduced endothelial cell turnover and increased 

anti-apoptotic expression, even in the presence of cytokine activation [36].  DAPK is a 

pro-apoptotic protein linked to pro inflammatory cytokines, such as TNF-α, that induce 

endothelial cell apoptosis [31].  This thesis project examines DAPK expression in effort 

to delineate its cellular functions in relation to the signal transduction pathway stimulated 

through shear stress. By investigating the communication between shear stress and 
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cytokines in regulating endothelial cell function, the cell signaling pathways can be better 

understood.  Likewise, further understanding of cellular mechano-transduction, apoptosis 

pathways, and the role of DAPK in endothelial cells may lead to new approaches to 

atherosclerosis. 

 

 

1.6   Thesis Objectives 

The overall objective of this thesis project was to understand the endothelial 

mechano-transduction pathways involved in the development of atherosclerosis.  More 

specifically, this project focused on analyzing the role of DAPK in sheared endothelial 

cells. There are two primarily goals or areas of focus in this project 

 

First, this project aims to explore the expression of DAPK in endothelial cells 

under static or sheared conditions.  The goal was to examine the influence of shear stress 

or hemodynamic simulation on DAPK expression over time. 

 

In this research study, DAPK protein expression was examined both overall and 

phosphorylated, in cells exposed to extended shearing.  Likewise, mRNA expression, in 

static and cells exposed to varying amounts of shear stress, was investigated using real-

time RT-PCR analysis to determine the correlation between protein and mRNA levels.  In 

order to follow the pre- and post-transcriptional activity of DAPK, the shear exposure 

periods were similarly conducted for both mRNA and protein samples, from 0 to 8 hours 

of applied shear.  

 

Second, the connection between DAPK, apoptosis, which has DAPK in its 

activation cascade, and shear stress were investigated.  Using Tissue Necrosis Factor – α 

(TNF-α), apoptosis pathways were stimulated in different shear situations; both pre-

sheared and post-sheared application of TNF-α.  Overall, this thesis will present a time 

course study on the varying expressions of DAPK and its role in apoptotic activation, in 

an effort to delineate roles of shear stress and DAPK in apoptosis pathways. 
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This thesis project aims to gain understanding of normal hemodynamic pathways 

for vascular function.  The role of DAPK in mechano-transduction pathways of 

endothelial cells under applied shear stress was investigated.  The role of shear stress on 

endothelial cells and their respective molecular cascades was examined in the context of 

DAPK.  Fully understanding how shear stress effects the development of atherosclerosis 

would lead to identification of potential molecules involved in disease progression and 

treatment. 

 

The questions and hypotheses that this thesis project will investigate are as 

follows: 

 

 Does fluid shear stress directly modulate DAPK expression? 

o Hypothesis:  Shear stress does affect DAPK expression. 

 

 Does fluid shear stress suppress TNF-α induced apoptosis in endothelial 

cells, by influencing DAPK expression? 

o Hypothesis:  Shear stress suppresses TNF-α induced apoptosis, in 

correlation to modulating DAPK expression.  

 

 



15 

 

 

 

2. SHEAR STRESS EXPERIMENTS 

 

 

2.1   Fluid Flow Mechanics 

For the shear stress experiments, a parallel plate flow chamber was used to 

simulate fluid shear stress on bovine aortic endothelial cells (BAEC).  A parallel plate 

flow chamber is a rectangle-shaped chamber with multiple components.  The flow 

chamber has a bottom section to house the glass slides containing the cells.  There are 

gaskets to aid in sealing in between the sections.  Also, the top section has inputs and 

outputs which the media flows through.  There is a small gap height between the frame 

pieces to allow for fluid to flow across the cells.  The controlled simulated shear was used 

to induce mechano-transduction signaling between the endothelial cells, mimicking the 

physiological hemodynamics.      

 

 To reproduce fluid flow through blood vessels, the flow chamber mechanics had 

to be developed for the flow shearing the cells.  Blood flow within the cardiovascular 

system can be rather difficult to match, therefore some fluid mechanics simplifications 

had to be applied for the flow system.  The Navier-Stokes equation, describing 

differential fluid flow movement for a relative system, was deduced from a possible three 

dimensional to a one dimensional flow system, only considering horizontal flow across 

an assumed infinite parallel plate [37].  This assumption is valid due to a small height to 

width ratio within our flow chamber. 

 

            Eq. 2.1 
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Equation 2.1 describes the 1-D Navier-Stokes equations used for our infinite parallel 

plate flow system.    

 

 

Figure 2.1   Fluid flow profile for the flow chamber 

 

Additionally, the assumption of laminar flow is accepted based on low velocity 

flow, which in turn yields a low Reynolds number that describes the ratio between 

inertial forces and viscous forces of the flow.  By neglecting the entrance length of the 

flow chamber, due to a smaller entrance length compared to the entrance length of the 

chamber, fully developed velocity profiles were accepted.  Also presuming flow 

symmetry, fully developed parabolic flow was adopted as the flow occurring uniformly 

across the samples.   

 

To further simplify the Navier-Stokes equation, steady state flow conditions were 

used to negate any time-dependant calculations for the flow system, assuming the flow 

would be stable within a short period of time after initial exposure of flow.  Lastly, the 

flow was considered incompressible, due to very little to no pressure applied to the fluid 

within the system.  Collectively, all of these simplifications helped to define a more 

approachable derivation of the Navier-Stokes equation, allowing for examination of the 

fluid movement and shear applied within the system.   
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When all of these assumption taken into consideration, one can reduce the 1-D 

Navier-Stokes equation down to a simplified representation of the fluid flow for the 

parallel plate flow chamber.   

 

With assumptions of uniform flow in 1-D, fully developed parabolic, steady state, 

laminar, and incompressible flow, the Navier-Stokes equations becomes only dependent 

upon pressure and shear forces applied to the system as seen in Eq. 2.2. 

                                           Eq. 2.2 

Where p is the pressure,  is the viscosity of the flow medium, and u is the x- direction 

velocity of the flow in the system.   

  

To further evaluate the simplified equations, two specific boundary conditions are 

applied to define the flow within the chamber.  Boundary condition 1 will imply a no slip 

condition at the wall-fluid interface, showing that the flow velocity will be zero at this 

interface.  For the second condition, the flow is considered to be fully developed, 

implying that there is no change in the velocity at the center of the flow profile.  At the 

center of the flow, the velocity is maximum, boundary condition 2. 

 

                   [Boundary Condition 1] 

                  [Boundary Condition 2] 

Where h is the height of the flow chamber along the y-axis and the flow is along the x-

axis. 

Rewriting Eq. 2.2:   

 

 1
st
 Integration:                                     Eq. 2.3 

 

2
nd

 Integration:                             Eq. 2.4 
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Applying both boundary conditions:   

 

                    Eq. 2.5 

 

Definition of Shear Stress:        Eq. 2.6 

 

Substituting Eq. 2.5:                                Eq. 2.7 

 

Volumetric Flow Rate    Eq. 2.8 

 

With  representing the average flow velocity integrated over the entire flow area, and w 

is the width of the flow chamber which is a constant value.  In result,  has to be less 

than 0 in order to have flow across the chamber. The average flow velocity is defined as 

the volumetric flow rate per unit depth, as seen in Equation 2.9. 

 

Average Flow Velocity       =      Eq. 2.9 

 

Next, one must evaluate the maximum flow velocity, in order to develop a 

relationship to the average flow velocity. 

 

After integrating:   

 

u_max = ;  where y = h/2 

 

                                       Eq. 2.10 
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After finding the average and maximum flow velocities, we can find a relation 

between the two, in order to manipulate the shear stress equation into variables that are 

known.   

 = 3/2;   u_max =                      Eq. 2.11 

Using the definition for the mass flow rate, A, Eq. 2.12, we can express 

the average velocity as:  , Eq. 2.13.  Next, we further simplify Equation 2.10 

using our new variable relationships from Equation 2.13 to define the new pressure 

gradient relationship, as seen in Equation 2.14. 

 

                Eq. 2.14 

 

Now that the pressure gradient is defined, we can rewrite the shear stress equation that 

was previously defined in equation 2.7. 

 

        Eq. 2.15 

 

Using the volumetric flow rate and mass flow rate, Equations 2.8 and 2.12, we 

already have defined Q =  and .  Therefore Q = ; which can be inserted into 

the shear stress relationship.   

 

When the shear stress equation is evaluated at y = 0, h; at the chamber walls, shear stress 

becomes: 

          Eq. 2.16 
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Ultimately, the final form of the shear stress applied at the surface from the flow 

is dependent on the viscosity of the media, volumetric flow rate, height of the chamber, 

and the total flow area. 

                                                   Eq. 2.17 

Equation 2.17 displays all known variables to express the shear stress of the flow.  

This calculation will show what shear is applied to the cells, and just how we can vary the 

amount of shear applied by our system, specifically through varying the volumetric flow 

rate, Q.   

 

 

2.2   Shear Stress Experimental Setup 

For shear stress flow experiments, cells were grown on glass slides to 

approximately 100% confluency.  In order to carry out the shear stress experiments, cells 

were placed in a flow chamber, attached to a flow loop placed in an environment 

chamber, to mimic physiological conditions.  Figures 2.2 and 2.3 show the flow chamber 

setup that encloses the sheared cells.   

 

 

Figure 2.2   The three pieces of the cell flow chamber: top, middle, and bottom pieces. 
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Figure 2.3   Combined flow chamber 

 

The middle and bottom pieces of the chamber are held together by screws to 

house the glass slide containing cells. Media flowing into and out the top piece, through 

slits cut across, allowing for the flow to horizontally shear the cells.  All three pieces are 

tightened together with screws and ready to be setup in the housing, shown above in 

Figure 2.3.  
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Figure 2.4   Housing environment for flow set-up with temperature control 

 

In Figure 2.4, the housing environment contains multiple components in to run 

and regulate the flow experiments.  On top of the plexiglass housing, there is a PSU and 

digital thermometer calibrated and set to keep the temperature inside the chamber at 37º 

C.  There is a Masterflex rotating pump that cycles the flow media throughout the flow 

setup.  Attached to the chamber, a modified hair dryer heats the chamber during 

experiments, controlled internally by a heat sensor probe and externally by the digital 

thermometer.  When the temperature falls below the preset value, the hair dryer will turn 

on until the preset temperature has been restored for the housing environment.   

 

The glass tube reservoir system consists of three different sections connected with 

silicone and Teflon tubing:  a top section glass tube with three inlets and one outlet, a 

straight section glass tube, and a bottom section glass tube with one inlet and two outlets.  

For the top tube, there are inlets for CO2, flow media, and an air release tube.  The one 
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outlet is for distributing media leading to the flow chamber.  As for the bottom section of 

tubing, there is an inlet that receives media flow from the attached flow chamber that 

returns to the bottom of the glass tube into the reservoir.  The other inlet is plugged with a 

three-way stopper allowing for adding or subtracting media to the reservoir.  From the 

reservoir, there is an outlet where the media is cycle back to the pump, eventually 

recycled to the top glass tube.    

 

For running the shear experiment, the housing environment was brought to the 

temperature set at 37º C and 5% CO2 air being pumped into the setup for cell viability 

and physiological pH control.  The confluent cells attached to the glass slide are placed in 

the flow chamber setup.  The flow chamber is hooked up to tubing and a peristaltic pump, 

which circulates media.  After all the tubes are connected, 20mL of media is added to a 

three-way connector to fill the reservoir and to clear any air bubbles in the system.  After 

all portions are filled with flow media, the clamp that was blocking flow to the inlet of 

the flow chamber can be removed.  All air bubbles must be cleared from the flow 

chamber and any sections of the tubing to ensure constant shear flow to the cells, with 

steady state flow as one assumption used in deriving the flow mechanics.   

 

Specifically, the shear stress is based on the constant fluid flow rate and the flow 

area of the system in the flow chamber.  In order to change shear stress, the straight 

section of glass tubing could be varied changing the overall flow rate of the media, in 

turn changing the applied shear stress.   
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3. DAP-KINASE GENE EXPRESSION 

 

 

3.1   DAPK and Shear Stress 

The correlation between DAPK expression and specific shear flow profiles is 

thought to play a pivotal role in endothelial cell signal transduction processes.  DAPK 

expression can further map its role in endothelial cell activities, when exposed to fluid 

flow.  The DAPK protein expression was investigated using a time-course study 

comparing static cells (no shear) and cells exposed to various lengths of shearing.   

 

In order to investigate the representative activation profiles, various molecular 

biology techniques were used to quantify protein and mRNA expression, under fluid 

shear stress.  Understanding pre- and post-translational activity of DAPK can lead to an 

insight on the possible roles in shear-inducing signaling cascades, relative to specific 

endothelial cellular responses.   

 

This section will address our first thesis question: 

 Does fluid shear stress directly modulate DAPK expression? 

o Hypothesis:  Shear stress does affect DAPK expression. 
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3.2   DAPK Protein Expression Analysis 

 

 

3.2.1   Experimental Setup 

For each of the shear stress experiments and analysis, all of the individual steps 

were mimicked using each of the following section descriptions.  Cells are cultured and 

plated on glass slides.  Next, cells are collected and analyzed depending on the specific 

molecule of interest, i.e. protein analysis or mRNA isolation. Subsequent steps are 

followed based on the specific mode of DAPK examination.    

 

 

3.2.1.1   Cell Culture 

Bovine aortic endothelial cells (BAEC; Lonza) were cultured using Dulbecco's 

Modified Eagle Medium (DMEM; SIGMA) with 10 % Calf Serum (NCS; SIGMA), 1 % 

L- glutamine (L-glut; SIGMA) and 2% Penicillin/Streptomycin (P/S; SIGMA).  BAECs 

were cultured in tissue cultured flasks (T-75 flasks; Becton, Dickinson and Co.).  The cell 

culture flasks contained 0.2 µm vented blue plug sealed caps, with 75cm
2
 of cell culture 

area.  The cells were stored in a 37°C incubator supplied with 5% CO2. Cell media was 

changed for the cells on a regular basis, every day to every other day, to supply fresh 

nutrients and control the pH environment for the BAECs.  The cell cultures were grown 

to 95% - 100% confluency, until the BAECs could be passed and collected to be plated 

for experimental shear runs.  In order to collect cells, they were initially washed with 

Phosphate Buffered Saline (PBS; SIGMA) and subsequently incubated with Trypsin 

(SIGMA) for approximately 5 minutes at 37°C.  Once the trypsin has detached the cell 

population, DMEM was added to deactivate the trypsin and to re-suspend the BAECs.  

The cell solution was collected in a 15mL tube and centrifuged at 2100 rpm for 5 minutes 

to pellet the cells.  Once the pellet was collected, the cells were re-suspended in DMEM 

and plated on sterile glass slides for the shear stress experiments.   
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3.2.1.2 Protein Analysis 

After shear experiments, the cells were lysed with RIPA buffer, in order to isolate 

and collect cellular protein, and scraped from the glass slide.  The RIPA lysis buffer, 

containing 50mM sodium fluoride to maintain DAP-K phosphorylation, was combined 

with PMSF and a protease inhibitor (Sigma P-2714) to release cellular protein and to 

prevent protein degradation [38].  Once the solution was collected, the protein was 

isolated from cellular fragments leaving the respective sample to be further analyzed.   

 

After collecting the samples, the concentration of protein for each sample was 

determined using a colorimetric protein assay.  The assay displays protein concentrations 

based on specific absorbance values read using a spectrophotometer.  In order to find the 

sample concentrations, an absorbance calibration curve was created using Bovine Serum 

Albumin (BSA) protein standard and specific dilutions with known concentrations.  The 

protein concentration of each of the samples was calculated based on the calibration 

equation and where they fell relative to the known protein concentrations.   

 

 

 

Figure 3.1   Sample protein calibration curve for protein concentration verification 
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3.2.1.3 Gel Electrophoresis 

After calculating sample protein concentrations, DAPK protein values were 

investigated using Western immuno-blotting techniques.  Using the protein 

concentrations, an equal amount of sample protein, protein dye, and sample buffer were 

loaded into the top of each well in a 10-well, pre-cast, poly-acrylamide gel.  The loaded 

gel was run in MOPS running buffer at 180V for approximately an hour, or until the dye 

begins to run out of the bottom of the gel.   

 

As the electrophoresis is run on the gel, the denatured proteins within each sample 

would run vertically down the gel, aligning based on the molecular weight (size) of each 

protein in the sample solutions. 

 

 

3.2.1.4 Antibody Labeling 

After running the gel through electrophoresis, the gel was placed on a 

nitrocellulose transfer membrane and run at 25V for 45 minutes to transfer the protein in 

the gel to the membrane surface.   Next, the membrane was blocked in a blotto solution 

(5% non-fat milk powder in PBS + 1% Tween).  The transfer membrane was blocked for 

1 hour on a shaker at room temperature.  After blocking, the membrane was then 

incubated in a primary DAPK antibody (DAPK55 antibody, overall DAPK protein, or 

DAPKPS308, phosphorylated DAPK) blotto solution at a 1:1000 dilution, approximately 

5µL of antibody to 5mL of blotto.  The membrane was placed on a shaker and allowed to 

incubate over night. 

 

After the primary antibody incubation, the membrane was washed 3 times with 

PBS-T.  Next, the protein membrane was incubated with a secondary antibody (Horse 

Radish Peroxidase, HRP) in blotto solution in a 1:5000 ratio dilution for 2 hours, 

approximately 1µL of antibody to 5mL of solution.  After 3 washes with PBS-T, the 

membrane was put into a chemiluminescence reagent; contain equal parts of enhanced 

luminal and oxidizing agents [39].   
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The chemiluminescence reagent will fluorescently label the secondary HRP 

antibody that is conjugated to all primary DAPK antibody molecules that have attached 

to the DAPK proteins in each sample.   

 

 

3.2.1.5 Molecular Imaging and Protein Quantification 

Lastly, the membranes were imaged in a molecular imager (ChemiDoc XRS+; 

Bio-Rad Laboratories).  The resulting images were used to quantify protein densities, 

using Bio-Rad Quantity One imaging software, for overall protein values in each sample.  

After DAPK protein images were analyzed, the labeling protocol was repeated with an 

Actin primary antibody, which was used as a protein loading control. 

 

To quantify protein, blot images were analyzed using Quantity One 1-D analysis 

software.  Western blots were imaged and uploaded into the analysis program.  Next, 

rectangular boxes were placed on the each sample’s targeted protein expression, such as 

overall DAPK, phosphorylated DAPK, and actin.  Each protein box is drawn to the same 

sizes, and one box is drawn as a background to represent the color of the surrounding plot 

with no protein expression, subtracted as a baseline.  Figure 3.2 is showing a Quantity 

One example of the protein quantification process, to demonstrate the analysis process 

after western blotting procedures.   
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Figure 3.2   Sample Western blot image quantifying protein using Quantity One 

 

 After capturing the protein expression, a volume analysis is done to read the 

amount of target protein in each sample, minus the background read from box B1.  Each 

sample is labeled with a different number and expressed in a volume analysis report, 

describing each of the volumes of protein expressed.  See Table 3.1 

 

Table 3.1   Volume analysis report from a sample DAPK protein analysis 

Index Name 

Volume 

(INT*mm2) 

Adj. Vol. 

(INT*mm2) % Adj. Vol. 

Mean 

Value(INT) 

1 U1 318814.9533 168013.2975 31.85618766 13283.955 

2 U2 260627.3472 109825.6915 20.82351747 10859.47167 

3 U3 276170.6288 125368.9731 23.77060383 11507.10833 

4 U4 275005.5087 124203.853 23.54969104 11458.56167 

5 B1 150801.6557 0 
0 6283.401667 
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Once the protein values were quantified for both DAPK and actin, a relative 

DAPK protein expression, with respect to actin, was recorded for each experimental 

sample.   

 

 

3.2.2   Results 

First, the influence of shear stress on DAP-K protein expression was investigated 

using various samples exposed to shear stress for varying amounts of time.  Endothelial 

cells were plated on glass slides and grown to complete confluence.  The different 

samples were in one of the four following time sheared categories:  Static (no shear), 3 hr 

shear stress exposure, 6 hr shear stress exposure, and 8 hr shear stress exposure.    

 

Static and sheared cells were analyzed in for overall and phosphorylated DAPK 

protein expressions, with results displayed in Figures 3.3 to 3.6. Proteins were collected 

from three different sets of experiments (n = 3), where cells from static, and 3, 6, and 8 hr 

of shearing conditions were lysed and collected. Western blot analysis was carried out on 

all samples, and images were quantified and analyzed as relative intensity compared to 

actin (loading control). Average relative intensities (DAPK/Actin) are presented in 

Figures 3.4 and 3.6. Representative Western blot image of the overall and phosphorylated 

DAPK are included in Figures 3.3 and 3.5. 

 

 

Figure 3.3   Western blots of overall DAPK expression over time (DAPK55) 



31 

 

 

 

 

 

Figure 3.4   Overall DAPK protein expression – DAPK55 

 

 

 

 

Figure 3.5   Western blots of phosphorylated DAPK expression over time (DAPK_P308) 
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Figure 3.6   Phosphorylated DAPK protein expression – DAPK PS308 

 

 
Figure 3.7   Phosphorylated DAPK expression with respect to total DAPK expression 
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Figure 3.7 shows the phosphorylated DAPK protein expression in terms of overall 

DAPK protein expression.  In its basal state, DAPK is phosphorylated at Serine-308, and 

is activated through dephosphorylation.  With the introduction of shear flow, 

DAPKPS308 becomes dephosphorylated, while overall all DAPK expression is 

increased.  The data proposes shear stress decreases the concentration of DAPK-p, all the 

while increasing overall DAPK activity.  With longer shear, the DAPK-p to DAPK ratio 

variation in protein expression could be attributed to the increase in DAPK protein being 

translated, which is originally in a phosphorylated state, increasing the ratio of DAPK-p 

to DAPK.  

 

 

3.2.3   Discussion 

As a whole, shear stress increases overall DAPK expression in endothelial cells, 

while a decrease in phosphorylation of DAPK was observed over time.  We consistently 

observed a gradual increase in overall DAPK expression, as shown in Figures 3.2 and 

3.3, with 6- and 8-hr sheared cells demonstrating a significant two-fold increase in DAPK 

expression, compared to static cells. The data suggests that expression of DAPK in time 

is at least in part modulated by elevated shear stress.   

 

On the other hand, expression of phosphorylated DAPK seemed to decline 

initially after shearing (3 hr), but recovered after up to 8 hr.  As cells are exposed to shear 

stress, DAPK phosphorylated at Serine 308 decreased initially.  In other words, DAPK 

became more dephosphorylated.  Since DAPK is dephosphorylated at Ser308 when 

activated, the data suggests that shear stress leads to dephosphorylation and activation of 

DAPK.  After 8 hr, a slight increase in phospho-DAPK was observed, compared to 3 or 6 

hr shear.  Since DAPK in its basal state is phosphorylated, the increase in total DAPK 

production that we observed with extended shear may account for the increase in 

phospho-DAPK at 8 hr, and the more temporal pattern of phospho-DAPK under shear.  

Taken together, this data suggests shear stress increases DAPK expression in the long 

run, and activates DAPK by de-phosphorylation at Ser308 in the short term. 
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3.3   DAPK mRNA Expression Analysis 

 

 

3.3.1   Experimental Setup 

After outlining the DAPK protein expression profile, the pre-translational DAPK 

activation was explored, to further define the roles of shear in the DAPK signaling 

cascade.  Just as with the DAPK protein experiments, Bovine aortic endothelial cells 

were plated and sheared at varying time points, to lay out the DAPK mRNA expression 

profile.  mRNA expression was examined using real time RT-PCR, which further 

explains the temporal activation of DAPK with shear stress in endothelial cells. The 

mRNA expression profile was expected to confirm the DAPK protein results and the 

corresponding pattern of gene expression due to applied shear.  For the mRNA 

experiments, both the shear stress experimental setup and cell culture procedures are the 

same as previously described in Sections 2.2 and 3.2 respectively    

 

 

3.3.1.1   RNA Isolation 

After each respective shearing experiment, cells were collected to isolate purified 

total RNA, and successfully removing genomic DNA.  In order to carry out the process, 

Qiagen’s RNeasy Plus Mini Kit was used in a sterile, RNase-free environment [40].   

 

To start, cells were trypsinized to detach and collect them from the glass slides.  

From there, cells were disrupted by adding approximately 350 µL of Buffer RLT Plus, 

which contains β-mercapto-ethanol.  Cells were homogenized by pipetting and 

transferred to a gDNA eliminator spin column.  The spin column was placed in a 2 mL 

collection tube and centrifuged at 10, 000 rpm for 30 seconds, in order to separate the 

genomic DNA from the solution.  Next, 350 µL of molecular biology grade 70% ethanol 

was mixed with the flow through solution collected from the spin column.   
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The solution was next pipetted into an RNeasy spin column, which contained a 

2mL flow collection tube.  The lysate was centrifuged in the RNeasy spin column at 10, 

000 rpm for 15 seconds.  Then, 700 µL of Buffer RW1 was added to the RNeasy spin 

column and spun at10, 000 rpm for 15 seconds.  After centrifugation, the next two steps 

involve adding 500µL of Buffer RPE to the spin column, which is again spun at 10, 000 

rpm.  The first addition of Buffer RPE initially calls for 15 seconds centrifugation.  After 

adding another 500µL of Buffer RPE, the column is spun for 2 minutes, effectively 

drying the spin column of any leftover ethanol.  Lastly, 55 µL of RNase-free water is 

added to the RNeasy spin column and centrifuged for 1 minute, which will elute the 

purified RNA.  After isolating the RNA, each sample was stored in RNase-free water at 

20º C, prior to performing any reverse transcription procedures. 

 

Table 3.2   RNA isolation protocol 

Step Action Solution 
Volume 

(µL) 

Spin @ 10,000 

rpm 

1 trypsinize 
   

2 homogenize 
RLT (lysis 

buffer) 
350 

 

  
transfer to 

  

3 gDNA eliminator 
  

2 min. 

4 
Add to Flow 

Through 
70% ethanol 

  

  
transfer to 

  

5 
RNeasy spin 

Column   
15 sec. 

6 Add/Spin Buffer RW1 700 15 sec. 

7 Add/Spin Buffer RPE 500 15 sec. 

8 Add/Spin Buffer RPE 500 2 min. (dry) 

9 Elute RNA water 55 
1 min. 

(collection) 
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3.3.1.2    Reverse Transcription 

Following RNA isolation, the next step was to perform reverse transcription on 

the RNA molecules, in order to create cDNA of the RNA expressed by each sample.  The 

RNA goes through reverse transcription to become a copy of DNA that transcribes that 

specific RNA molecule.  The RNA has to be reversed into cDNA to subsequently 

quantify overall mRNA expression, using a real-time polymerase chain reaction protocol.   

 

Using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems), 

the single-stranded collection of sample RNA was converted in to cDNA [41].  Initially, 

10x RT buffer was added to RNase-free water in the sample tube, to help present the 

optimal physiological conditions for the reverse transcription to occur.  Additionally, 10x 

random primers were added to the solution in order to present templates for transcription 

back into cDNA.  To generate the cDNA, Deoxynucleoside triphosphates (dNTP) were 

added to the mix solution, aiding the primers in the conversion process.  MultiScribe™ 

MuLV reverse transcriptase, the enzyme that catalyzes the conversion of RNA into 

cDNA, is added to the mix before adding the sample RNA solution to be transformed 

back into DNA.   

 

After adding specific quantities of each reverse transcription component, each 

respective sample solution was placed in a thermal cycler.  Initially, the samples are 

incubated at 25ºC for 10 minutes, before being ramped up to 37 ºC for 2 hours.  After 

synthesizing cDNA from the thermal cycling, the samples are then held at 4 ºC to stop 

synthesis and preserve the cDNA sample.   

 

Now, the sample can be further processed using real-time PCR to amplify target 

DNA and quantify overall mRNA expression results.  Table 3.3 gives a reverse 

transcription protocol for one tube of sample RNA, and the cycling procedure used for 

the samples. 
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Table 3.3   Reverse transcription sample protocol (per sample) 

Solution 1 tube  Thermal cycler 

Water 9.2 µL  Temp. Time 

10x RT Buffer 2 µL    

10x Random Primer 2µL  25°C 10 minutes 

25x dNTP's 0.8 µL  37°C 2 hours 

MultiScribe™ Reverse 

Transcriptase 
1 µL  4°C Hold 

Sample RNA 5 µL    

 

 

3.3.1.3 Primer Development 

After reverse transcription, the resulting cDNA sample could be cycled using 

polymerase chain reaction mechanisms (PCR).  PCR is used to amplify small amounts of 

DNA, by several orders of magnitude, to be able to quantify overall target DNA amounts, 

compared to the expression of a reference gene.   

 

Before PCR sampling, a specific primer template for DAPK and GAPDH, 

reference gene, had to be developed for DNA amplification.  Primers, short DNA strands, 

are composed of specific complementary sequences for the target gene.  The primers are 

very specific sequences to replicate only that certain target gene [42].   

 

As PCR cycles temperatures, the primer DNA is used as the template, binding to 

target DNA and replicating several times over, exponentially increasing the amount of 

target DNA.  Figure 3.8 shows the primer binding procedure.  
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Figure 3.8   Complementary primers binding to template DNA [43] 

 

To create highly specific primers, NCBI Primer-BLAST tools [44] were used to 

choose potential primer pairs based on mRNA sequences of bovine DAPK and GAPDH 

(reference gene).  The actual mRNA sequence for each target gene expression were input 

into the Primer-BLAST program, specifying bovine and product lengths less than 150 

base pairs.   

 

Primer pairs had to have a product length of 150 or less for optimal real-time PCR 

results.  Once potential primer pairs were found for each gene, the primer pairs were then 

input into the NCBI Nucleotide BLAST program make sure the primers were highly 

specific to each target gene, and no other genes would be amplified by mistake.   

 

From the possible primer selections, a successful primer pair for each gene was 

identified to use for real-time PCR expression. Primers are presented in Table 3.4 on the 

following page:  
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Table 3.4   DAPK primers used for real time RT-PCR experiments 

 

In Table 3.4, both a forward and reverse primer is presented for each of the 

respective genes.  Both primer strands are needed due to the sequence reading activity of 

the enzymes, and the way the DNA is setup in an anti-parallel arrangement.  Both 

primers anneal to the target DNA, extending one direction from the 5’ to 3’ end (forward) 

and extending in the opposite direction from 3’ to 5’ (reverse).  

 

 

3.3.1.4 Real Time RT-PCR 

As previously mentioned, real-time polymerase chain reaction is a process that 

exponentially amplifies small amounts of target DNA, while detecting the fluorescence of 

the sample quantifying specific gene expression quantities as PCR is cycled.  To run the 

PCR experiment, the Applied Biosystems 7500 Fast Real-Time PCR System was used 

for each of the samplings.   

 

First, SYBR Green PCR Master mix (Applied Biosystems) was combined with 

RNase-free water, in each tube depending on the number of desired PCR reactions.  Next, 

each target gene’s forward and reverse primers (DAPK or GAPDH), as shown in Table 

3.4.  Lastly, each cDNA template was added to their own PCR tube, mixed with one 

reaction aliquot of the SYBR-Primer solution.  Table 3.5 displays the specific distribution 

of each of the solution components, per reaction.       

 

 

 

 

 

 

Gene Forward Primer Reverse Primer 

DAPK 5’-CAAGCCGGCAGTGTCCGTGA-3’ 5’-CAGTGCGGATGGTGGGACGG-3’ 

GAPDH 5’-CATTGACCTTCACTACATGGT-3’ 5’-ACCCTTCAAGTGAGCCCCAG-3’ 
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Table 3.5   Real time RT-PCR solution protocol (per reaction) 

Solution Amount 

Water 5.6 µL 

SYBR Green 10 µL 

Forward Primer (10 µM) 1.2 µL 

Reverse Primer (10 µM) 1.2 µL 

cDNA template 2 µL 

 

Once each reaction solution is mixed, the samples are placed in the Real-Time 

PCR System to begin amplifying the target DNA.  Using the software, all of the specific 

parameters for the relative quantification (ddCT) plate study were input, along with the 

cycling times and temperatures for each amplification step, as shown in Table 3.6.  As the 

temperature is cycled, the cDNA is denatured at 95°C allowing for the temperature stable 

polymerase to extend new DNA from the primers.  Next, the temperature is cooled to 

60°C to allow for the primers to bind the template DNA.  Subsequently, the temperature 

is ramped back up to 95°C for the polymerase to amplify template DNA, all while 

fluorescently labeling target DNA with SYBR green for real time quantification of gene 

expression [45]. 

 

Table 3.6   Thermal cycler for the real time PCR process 

Thermal Cycler Profile 

Stage Repetitions Temperature Time Held 

1 1 50.0 °C 2:00 minutes 

2 1 95.0 °C 10:00 minutes 

3 40 95.0 °C 0:15 seconds 

  60.0 °C 1:00 minute 
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3.3.1.5  Statistical Analysis 

In order to verify the statistical significance of the results, the standard error of 

each subset was calculated.  Additionally, each sample set was compared to the baseline 

sample set to make sure that there is statistical difference in the subsets and verifies the 

plots shown.  Using a standard t-test comparing two sample sets, a probability of 

likelihood (p-value) that the sample sets were the same was determined.  The p-value is a 

probability of obtaining a result as extreme as the one observed in the samples.  With the 

lower the p-value, this represents the less likely the result of a similar occurrence, and 

consequently the more statistically significant the observed results become, usually with a 

p-value less than 0.05 to 0.01 being sufficient for verification. 

 

 

3.3.2   Results 

 

 

3.3.2.1   mRNA Expression Results 

Once the PCR amplifications are complete, the results of the real time 

quantification were analyzed.  The SYBR green fluorescence expressed by the new DNA 

was monitored over the progression of PCR cycling.  A plot of the fluorescence intensity 

at each PCR cycle is developed.  A user-defined fluorescence threshold for the samples is 

set, where there is detectable differences in samples being compared.  The threshold 

cycle (CT value) is defined as the PCR cycle number at which that respective sample has 

crossed the fluorescence threshold.    

 

Figure 3.9 is a typical plot of showing the fluorescence intensities plotted against 

the PCR cycle number.  Once a threshold is set at a difference in expression, the cycle 

thresholds can be recorded.  From these CT values, a representative fold expression 

increase is calculated between the compared samples. 
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Figure 3.9   RT-PCR amplification plot between static and 8hr shear stress 

 

To calculate the fold increase in DAPK mRNA expression, the 2
ΔΔCt 

method was 

used [46].  The ΔCt of the control and experimental samples was calculated from the 

threshold cycle of the target gene minus the threshold cycle of the reference gene 

(GAPDH).   

 

 

3.3.2.2   Fold Increase in DAPK Gene Expression 

Both gene amplification efficiencies were assumed to be approximately 100%.  

This assumes that with each PCR cycle, one DNA molecule will be increased to two 

DNA molecules.  Using this assumption, the fold increase of each sample was calculated, 

after PCR cycles, using the below equation: 

(2)
 DAPK_ΔCt – GAPDH_ΔCt

 = 2
ΔΔCt

 fold increase in DAPK           Eq. 3.1 
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 To begin with, mRNA from cells under either static or 8 hr shear condition was 

isolated, followed by reverse transcription to cDNA.  Figure 3.9 is an amplification plot 

from the first DAPK real-time RT-PCR experiment.  Our data shows that there was a 

1.09 fold increase in 8hr SS mRNA compared to static cells.  The small fold-increase in 

mRNA, when compared with the protein intensity plot (Figure 3.4), does not correlate to 

the overall increase in DAPK protein at 8 hr shear.  

 

 It was assumed that the mRNA increase occurred much earlier after shear, 

resulting in the ultimate DAPK protein increase at 8 hr.  Data from shorter shear stress 

experiments were needed to determine mRNA expression changes due to shear stress, to 

correlate with the overall DAPK protein expression over time.  From Figure 3.10, the 

small difference in gene expression is shown by the respective average PCR cycle 

threshold for the samples.   

 

 

Figure 3.10   Average cycle threshold values for static and 8hr SS samples 

 

To further evaluate the time course expression of DAPK, shear stress experiments 

were conducted at various lengths of time intermittently between no shear and 8 hours of 

applied shear.  After each shear experiment, these cells were followed through same 

RNA isolation, reverse transcription, and RT-PCR protocols, as previously described. 
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Eventually, each of the cell samples’ RT-PCR results lead to relative cycle 

threshold values.  These results were used to calculate the DAPK mRNA fold increase at 

each shear time point compared to the static (no shear) DAPK mRNA expression.  In 

Figure 3.10, the average fold increases of each sample were plotted according to the 

amount of time sheared.  Each of the shear experiments were repeated at least three 

different times, in order to obtain an accurate representation of the DAPK mRNA 

expression profile.     

 

 

Figure 3.11   Fold increases of DAPK mRNA expression over varying time sheared, with 

* p < 0.01 

 

 

3.3.3   Discussion 

Overall, the DAPK mRNA expression profile was experimentally developed in a 

similar manner to the protein expression analysis.  In comparison, the DAPK mRNA 

transcription increase precedes DAPK protein translation increase, relative to the time 

that the BAECs were sheared.  The DAPK mRNA expression shows a temporal 

regulation pattern, as initially, the mRNA is up-regulated due to applied shear.  After 4 
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hours of applied shear, the DAPK mRNA expression peaks at about twice the basal level 

of mRNA expression.  Yet, as the shear continues, the mRNA expression begins to 

recede toward the basal level, to eventually display a small down-regulation at 8 hours of 

shear.   

 

In relation to DAPK protein expression, the initial up-regulation of mRNA closely 

follows what was shown with the overall increase in protein across 8 hours of shear 

stress.  On the other hand, the mRNA expression decrease in greater than 4-6 hours of 

shear was not seen in the overall DAPK protein expression.  Longer exposure to shear 

stress might give an insight on the trajectory of overall DAPK protein expression, as well 

as other possible long term cellular responsibilities.  Similarly, the extended shear will 

help gain an understanding on if the mRNA expression recovers in response to these 

longer periods of shear stress, and just how the endothelial cells respond in the long run.   

 

Taken all together, the DAPK mRNA is initially elevated due to fluid shear stress 

exposure.  Yet with continued shear, DAPK mRNA shows a decrease in levels of 

transcription.  The transient mRNA activation coincides with a protein expression 

increase in overall DAPK.  The data suggests that shear stress regulates DAPK 

expression, and that DAPK potentially plays a role in endothelial cellular mechano-

transduction processes, as seen in its overall gene expression profile.   
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4. SHEAR STRESS AND APOPTOSIS 

 

 

4.1   The Role of Shear in Apoptosis 

Apoptosis, programmed cell death, is a highly-regulated cellular process required 

to maintain tissue homeostasis.   This process is activated in various ways through stimuli 

and signal communication cascades.  When apoptosis is signaled, the cell begins 

chromatin condensation and cell shrinkage in the early stage.  Next, the nucleus and 

cytoplasm fragment, forming membrane-bound apoptotic bodies that are subsequently 

consumed by phagocytes.  In contrast, cells can also undergo a separate form of cell 

death, necrosis, which is a where cells lose homeostasis, swell, and breakdown due to 

physical or chemical trauma.  Consequently, the release of intracellular components can 

damage to surrounding cells or tissue, often causing immune response and inflammation 

[47]. 

 

Apoptosis is an important process during normal cell turnover processes and in 

aging.  Yet, deregulation of apoptotic cascades has also been linked to various diseases, 

such as cancer, atherosclerosis, Alzheimer's disease, and Parkinson's disease.  Due to its 

important role in cell processes and possibility of cell dysfunction, apoptosis and its 

connected signaling procedures, such as signal transduction, are extensively researched 

cellular processes. 

 

Apoptosis can be detected using various methods, such as TUNEL (TdT-mediated 

dUTP Nick-End Labeling), Annexin-V staining analysis, measuring alterations in cell 

membranes, In situ end labeling, DNA laddering for the detection of DNA fragmentation 

in cell samples, as well as the quantification of apoptosis-related proteins, such p53 
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protein. Specifically, the thesis objective was to study the effects of applied shear stress 

on aortic endothelial cells, which line artery walls, and the resulting changes in cellular 

apoptosis.  Shear due to flow can cause apoptosis signaling activation or inhibition for 

cells, depending on both environmental and local flow conditions.  Certain cytokines can 

illicit apoptosis activation, such as in IL-1β or TNF-α addition.   

 

On the other hand, in the presence of cytokine activation, fluid shear stress has 

been shown to inhibit certain apoptosis cascades and decrease overall cell turnover [47].  

Therefore, As a result, the research goal was to investigate shear stress influence on 

apoptosis, in an effort to correlate previously examined DAPK expression patterns.  All 

experimental samples and shear stress runs were repeated at least three times, using each 

research method, for statistically relevant verification of overall apoptosis results.  

Additionally, p-values for each experiment were calculated to verify statistical 

significance of the various sample sets.    

 

This section will address the second thesis question: 

 Does fluid shear stress suppress TNF-α induced apoptosis in endothelial 

cells, by influencing DAPK expression? 

o Hypothesis:  shear stress suppresses TNF-α induced apoptosis, in 

correlation to modulating DAPK expression.  

 

 

4.2   Experimental Setup 

For apoptosis research, two of the more widely used techniques were utilized for 

the cell samples:  flow cytometry and fluorescence microscopy.  Fluorescence-activated 

cell sorting (FACS) allows for quantitative fluorescence analysis using flow cytometry.   

 

FACS, a specific type of flow cytometry, is a technology that runs cell 

suspensions through a light-scattering machine that categorizes cell events based on the 

fluorescence given off by the individual cell.   
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As the cells are passed through beams of light one at a time, scattered and 

fluorescent light is collected by the detectors analyzing each cell’s light characteristics.   

 

As for fluorescence microscopy, cells are fixed and imaged on the individual 

glass slide.  The cell slides are then fluorescently marked using specific fluorophores to 

label desired cellular components.  After the samples are labeled, the slides can be 

imaged using a fluorescence microscope, which passes excitatory light through its 

objective.  This excitatory light passes through sample and excites the fluorophore-

labeled cellular components.  Images can be taken of the cell samples for further analysis 

and/or quantification of certain targets.     

 

To examine DAPK activity under apoptotic conditions in endothelial cells, we 

incubated BAEC with TNF-α for up to 48 hrs and lysed cells for protein samples at 6, 24, 

and 48 hours. 

 

 

Figure 4.1   TNF-α activation of DAPK P308 

 

Following Western blot analysis, it was observed that while overall DAPK 

expression remained the same (data not shown), phospho-Ser308 DAPK also 

demonstrated a temporal response to TNF-α (Figure 4.1).  
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At 48 hr treatment with TNF-α, the most significant decrease had occurred in 

phospho-DAPK, or the most significant increase in dephosphorylation or activation of 

DAPK. And at 24 hr TNF-α treatment, we observed the greatest increase in phospho-

DAPK. The western blot data suggests a dynamic DAPK phosphorylation process with 

TNF-α treatment. 

 

 

4.2.1 Annexin V/PI - Flow Cytometry 

Apoptosis was analyzed using the FITC-Annexin V (BD Pharmingen) based 

staining of endothelial cells treated with TNF-α, under either static or shearing conditions 

(SS).  Annexin V, a phospholipids binding protein, attaches to the membrane 

phospholipid, phosphatidylserine (PS).  Specifically, PS becomes exposed to the outer 

cellular membrane in the early stages of apoptosis.  Therefore, Annexin V, conjugated 

with Fluorescein (FITC), can bind the exposed phospholipids and cells can be analyzed 

using FACS cell sorting.  In addition to Annexin V, cells can be co-stained with 

propidium iodide (PI), exclusively permeable to dead cells, to distinguish between 

apoptotic cells and necrotic cells within the cell samples [48].   

 

To begin with, three different cell samples were grown for apoptosis analysis:  

Control (no shear or TNF-α), Static + TNF-α, and 6hr Sheared + TNF-α.  With the 

addition of TNF-α, apoptosis was activated pre-shearing to see the possible protective 

role of applied shear, as well as possible long-term anti-apoptotic signaling of cellular 

constructs.  TNF-α (Sigma) was added to the cell media at 10 ng/mL, in order to elevate 

apoptotic activity.  In order to maximize the activation of the apoptotic cascade, cells 

were incubated with TNF-α for 18 – 20 hrs overnight.   

 

The sheared sample was run in a shear stress experiment with the running media 

also containing 10 ng/mL of TNF-α, so both samples could continue incubation with the 

apoptosis activator.  After experiments, cells were detached gently using non-enzymatic 

Cell Stripper (Cellgro Mediatech), collected, and stained with PI and FITC for Annexin 
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V.  Annexin V stained apoptotic cells, while Propidium Iodide stained necrotic cells.  For 

analysis, the FACScan flow cytometer (BD Biosciences) categorized the cell sample’s 

fluorescent characteristics, in addition to quadrant quantification by the CellQuest 

software [49].   

 

 

4.2.2 TUNEL Staining - Fluorescence Microscopy 

For fluorescence microscopy analysis, apoptosis was identified using TUNEL 

staining DNA labeling.  The TUNEL (TdT-mediated dUTP Nick End Labeling) assay 

uses nuclear DNA degradation, as seen in apoptotic process, to label the cells undergoing 

apoptosis.  During apoptosis, nuclear DNA begins to degrade and exposes large amounts 

of 3´‑hydroxyl ends.  Terminal deoxynucleotidyl transferase (TdT) adds deoxynucleotide 

triphosphates to the exposed hydroxyl groups of the degraded DNA.  Along with the 

TdT, there is a conjugated fluorescent molecule to label these DNA nick sites, which can 

be used to quantify the number of cells undergoing apoptosis within a cell sample [50].    

 

Cells samples were grown on glass slides to confluency, as apoptosis was 

activated both pre- and post-shearing.  The experimental samples were conducted as 

follows:  control BAEC, static + TNF-α, 6hr sheared + TNF-α, and 1hr pre-shearing 

followed by the addition of TNF-α.  After finishing shearing experiments, cells were 

fixed with 4% parafomaldehyde and permeabilized with 0.2% Triton X-100, before being 

stained with for apoptosis analysis.   

 

For TUNEL staining, sample slides were incubated with terminal 

deoxynucleotidyl transferase enzyme and nucleotide-Fluorescein (green fluorescence) 

label solution for 1-2 hours (In Situ Cell Death Detection Kit, Fluorescein).  Following 

TUNEL staining, cells were labeled for nucleus by using Hoechst Blue solution at a 

1:1000 dilution in PBS solution (blue fluorescence).   
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After sample labeling, cell slides were imaged using Leica DMI600 B inverted 

fluorescence microscope system, for both cell phase and fluorescence images. Leica 

Application Suite program was used for image acquisition. Image analysis was done 

using Image Pro Analyzer 6.2 software, to count the number of TUNEL positive cells, as 

well as total cell nucleus counts per image.   

 

For each sample cell slide, cell phase, green fluorescence protein (GFP), and 

DAPI nuclear images (Fluorescence for Hoechst Blue), (10 – 12 of each type) were 

acquired, at various locations throughout the slide.  All three types of images (phase, 

GFP, and nucleus) were taken at each location before moving to a different area on the 

slide.   

 

Once all the samples were imaged and analyzed, the average percent of apoptotic 

cells per population was calculated based on the number of TUNEL positive cells, out of 

the number of total cells (nucleus counts) per image.  From the final results, overall 

apoptosis activation of the different samples were compared between control, static + 

TNF-α, sheared + TNF-α, and pre-shearing conditions.      

 

 

4.2.3 TUNEL Staining – Flow Cytometry 

To verify the fluorescence microscopy results, the TUNEL staining 

experimentation was repeated using flow cytometry.  The identical four cell samples 

were investigated as previously described:  control, static + TNF-α, sheared + TNF-α, and 

pre-sheared cells.   

 

After finishing shearing experiments, cells were detached gently using non-

enzymatic Cell Stripper (Cellgro Mediatech) and collected.  Cell suspensions were fixed 

with 1% parafomaldehyde and permeabilized with 0.2% Triton X-100, before being 

incubated with TUNEL staining for apoptosis analysis.   
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For analysis, the FACScan flow cytometer (BD Biosciences) analyzed each cell 

suspension’s fluorescent characteristics. For each flow cytometry run, the populations of 

TUNEL positive cells were quantified using the CellQuest software [49]. 

 

 

4.3   Results 

 

 

4.3.1 Annexin V/PI - Flow Cytometry 

In the early stages of investigating apoptosis, the first analysis technique involved 

staining cells with Annexin V and Propidium Iodide, followed by flow cytometry cell 

analysis.  In order to set up the classification quadrants for flow cytometry, specific 

controls had to be analyzed before the sample analysis.   

 

In Figure 4.2, all three controls are displayed.  A represents cells with no stain; B 

has cells stained with Annexin only, representing viable and apoptotic populations; and C 

is cells stained with Propidium Iodide only, representing viable and necrotic (dead) cell 

populations.   

 

(A)   (B) (C) 

 

Figure 4.2   (A) No stain BAEC control; (B)Annexin V only (apoptosis) control; 

(C)Propidium iodide only (necrotic) control 
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From the three controls, the quadrants were adjusted based on the response in all 

three flow cytometry scenarios:  Lower left: viable; lower right: apoptotic; upper left: 

necrotic; upper right: late stage apoptotic/necrotic. 

 

After defining the cell quadrants, the samples stained with both Annexin V and PI 

were analyzed with the flow cytometer.  The three cell samples were run until 10,000 cell 

events were accumulated.  Once all samples were finished, the number of events in each 

quadrant were identified and recorded.  Those cells categorized with both stain 

components were categorized as late stage apoptotic/necrotic cells.   

 

In Figures 4.3 – 4.5, the one of the three flow cytometry results are presented for 

static BAEC, static + TNF-α, and 6hr sheared + TNF-α cell samples.      

 

 

 

Figure 4.3   Static BAEC– AnnexinV/PI flow cytometry 
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Figure 4.4   Static + TNF-α – AnnexinV/PI flow cytometry 

 

 

 

 
Figure 4.5   6hr SS + TNF-α – AnnexinV/PI flow cytometry 

 

 

 

 

The flow cytometry results were averaged based on the four quadrants cells fell 

into during analysis.  All experiments were repeated on three separate occasions, n = 3.  

The flow cytometry data is displayed in Figure 4.6. 
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Figure 4.6   Apoptosis results using Annexin V and flow cytometry 

 

TNF-α treated cells showed the highest amount of late stage apoptotic and 

necrotic cells, as well as the least amount of viable cells. Cells exposed to shear stress and 

TNF-α displayed a higher number of viable cells. We expected shearing to reduce TNF-α 

induced apoptosis, however, the increased apoptotic cells in the sheared condition could 

be due to stress from manipulation of cells in flow chamber. Annexin V is a cell surface 

marker and sensitive toward cell treatments. Therefore, cell treatments and experimental 

handling of sheared cells could have induced cell death, skewing results.  More 

experiments were needed to optimize the assay, to analyze apoptosis in the study. 

 

 

4.3.2 TUNEL - Fluorescence Microscopy 

As previously mention, three different images were taken at each site: a cell phase 

image, used to find confluent cell areas, a GFP image, showing the TUNEL positive 

cells, and a DAPI image, displaying all of the cell nuclei for a count of the total number 

of cells.  In Figure 4.7, all three images, taken at one location, are presented individually.   
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When imaging the sample slides, the cell phase setting was used to scan the glass 

slide for a confluent section, due to the possibility of cell loss in the shearing or staining 

subsequent steps.  GFP and DAPI images were taken at the same location as the cell 

phase image.  Images were taken from sites all across the slide to obtain a collective 

representation of the endothelial cell response in each experimental setup.  Figure 4.7 are 

sample cell images taken at one specific site, with a scale bar equal to 50 microns. 

 

   
(A)    (B)   (C) 

Figure 4.7   Fluorescence microscopy images at the same site; (A) Cell phase image, (B) 

GFP image, (C) DAPI image 

 

After imaging all of the samples, the individual pictures were analyzed by Image 

Pro software.  The GFP images were analyzed to quantify the total number of TUNEL 

positive cells in that population.  In order to separate positive and negative, a 

fluorescence threshold was set for each image, allowing for Image Pro quantitative 

analysis of the positive cell number.  Likewise, the DAPI image was examined and all of 

the nuclei were cumulated for a total cell count.  Once both images were quantified, the 

percent positive was calculated using: 

% Apoptotic cells = (TUNEL positive cell number / total cell count) * 100     Eq. 4.1 

In Figures 4.8 – 4.11, representative GFP images for each experiment condition 

are shown.  As seen in the images, the control cells, without TNF-α or shear, display the 

least amount of TUNEL positive fluorescence, while the static + TNF-α without shear, 

display the most activity.  Meanwhile, the sheared samples, introduced to TNF-α, have 

more TUNEL positive fluorescence, but a significantly smaller amount compared to the 

static + TNF-α sample.  All of the images were ultimately quantified to verify the 
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qualitative image difference in the amount of apoptotic cells for each population.  As 

shown in Figures 4.8 – 4.11, a sample image from each cell condition is displayed, 

including a scale bar equal to 50 microns.      

 

   
              Figure 4.8   Control BAEC                              Figure 4.9   Static + TNF-α 

 

   
 Figure 4.10   6hr SS + TNF-α   Figure 4.11   Pre-Sheared + TNF-α 

 

After calculating all of the sample’s population percentages, an average percent of 

apoptotic cells was determined for each representative experimental condition.  All of the 

previously mentioned apoptotic experiments were repeated.  In addition, 10 to 12 images 

were taken from each relative experiment, in an effort to gain complete understanding of 

the actual cell responses in each experiment.   
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After obtaining the average percent of apoptotic cells for each case, the 

experiments were analyzed in comparison plots.  Figures 4.12 – 4.15 show the 

representative excel plots for each specific apoptosis experiment, along with the 

respective percent population of apoptotic cells per sample set. 

  

Figure 4.12 shows the average population of apoptotic data from the first 6hr 

sheared subset.  For statistical significance calculations, (*) represent p-values less than 

0.05, as described in Section 3.3.1.5.  As seen in the figure, the Static + TNF-α increased 

apoptosis activation by almost 2 fold compared to the control expression.  Also, although 

the cell samples were incubated with TNF-α for the same length of time, the 6hr shear 

stress sample displayed a significantly smaller percent of apoptotic cells.   

 

 

Figure 4.12   TUNEL apoptosis assay - 6hr SS vs. Static in TNF-α – run 1 

 

Figure 4.13 shows the apoptosis results for the second 6hr sheared subset.  The 

plot data exhibits a significant comparable difference to previous data between the static 

and 6 hr samples, regardless of the same incubation periods with TNF-α.  These results 

lead to an assumed direct shear-induced affect on the TNF-α apoptosis cascade.   
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Figure 4.13   TUNEL apoptosis assay - 6hr SS vs. Static in TNF-α – run 2 

 

Figures 4.14 and 4.15 represent both fluorescence microscopy trial results 

involving the static versus pre-sheared cell experiments.  The pre-sheared cells were 

exposed to 1 hour of shear stress before the overnight incubation with TNF-α.  The static 

cells also began TNF-α incubation at the same time.  The pre-sheared cells exhibited a 

small effect to the TNF-α activation, and apoptosis levels were similar to the control 

endothelial cells.  The TNF-α activated static cells displayed approximately twice as 

much apoptosis activity as both the other cell samples.   
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Figure 4.14   TUNEL apoptosis assay – Pre-sheared vs. Static – post shearing addition of 

TNF-α – run 1 

 

 

 

 

Figure 4.15   TUNEL apoptosis assay – Pre-sheared vs. Static – post shearing addition of 

TNF-α – run 2 
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4.3.3 TUNEL - Flow Cytometry 

In order to verify the TUNEL fluorescence microscopy results, the static versus 

shear TUNEL experiments were repeated and analyzed using flow cytometry.  The 

control cell sample was run in the flow cytometry to set the quadrant separation.  Once 

the fluorescence threshold was determined, the static and sheared cells were analyzed.  

Cells showing fluorescence intensity higher than the threshold are TUNEL positive, 

considered apoptotic.  The cytometry plots are shown in Figures 4.16 – 4.19. 

 

 

Figure 4.16   Static + TNF-α – TUNEL flow cytometry 

 

 

Figure 4.17   Pre-Sheared then TNF-α – TUNEL flow cytometry 
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Figure 4.18   6hr Sheared + TNF-α – TUNEL flow cytometry 

 

 

 

Figure 4.19   Static + TNF-α – TUNEL flow cytometry 

 

Once the cellular events are categorized, the average percent populations of 

apoptotic cells were quantified and are displayed in Figures 4.20 and 4.21.  The apoptotic 

population percents are expressed according to the percent cell populations of the sample.  

For statistical significance calculations, (*) represent p values less than 0.05. 
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Figure 4.20   Flow cytometry – TUNEL analysis – Pre-sheared vs. Static BAEC - Post 

shearing addition of TNF-α 

 

 

 

Figure 4.21   Flow cytometry – TUNEL analysis – 6hr SS vs. Static BAEC 
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As seen from Figures 4.20 and 4.21, the TUNEL flow cytometry data showed a 

closely related end result, when compared with the microscopy data in Figures 4.12 – 

4.15, respectively.  The Static + TNF-α samples show at least a two fold increase in 

apoptotic activity as opposed to the control cells.  Also, both sheared samples displayed a 

decreased activation of apoptosis when compared with the TNF-α activated static cell 

samples.    

 

 

4.4   Discussion 

From the apoptosis assay results, one can see that treating cells with TNF-α under 

static conditions had increased apoptosis activity by at least two-fold, when compared to 

the control cells.  Even with the same TNF-α incubation times, both sets of sheared cells 

showed less affected to cytokine and apoptosis activation.   

 

On the other hand, there was a difference between the pre-sheared and post-

sheared TNF-α activation.  The pre-sheared cells exhibited very little effect from the 

TNF-α activation, and were approximately comparable to the control BAEC apoptosis 

levels.  The pre-shearing exposure seemed to up-regulate anti-apoptotic expression, 

negating the effects of cytokine activation.  The 6hr sheared cells were exposed to shear 

for a longer time period, possibly incorporating homeostatic cell turnover, necessary for 

maintaining tissue integrity and function.  As shown, both pre-shearing and shearing cells 

with TNF-α activation were observed to down-regulate apoptosis response in endothelial 

cells.  This data suggests that the laminar shear exposure seems to play part in an anti-

apoptotic, protective pathway in antagonizing the TNF-α induced death cascade, and that 

short time pre-shearing of cells is as potent as simultaneous shearing of cells under TNF-

α activation, in reducing apoptosis. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1   Conclusions 

 Factors, such as cell apoptosis and cell structural remodeling, can create 

instability in arterial plaque build-up.  Further arterial lesion disruptions could lead to a 

rupture in the blood vessel wall, allowing for thrombosis formation and additional 

accumulation at the damage site.  The affects of shear stress on cell turnover could play a 

role in up-regulating certain factors that influence atherosclerosis progression. 

 

DAPK, which is shown to be up-regulated in arterial plaque, is a factor in 

apoptotic, programmed cell death, activities.  Additionally, shear stress due to flow 

activates certain cellular signaling cascades, thought to affect cell turnover and cell wall 

permeability, and influencing apoptosis.      

 

Due to various lengths of exposed shear stress, a DAPK protein expression profile 

was developed using immuno-precipitation blotting.  With applied shear, DAPK 

increases overall protein expression, while decreasing phosphorylated DAPK as it 

becomes activated.  The gene expression data provides a DAPK mRNA activation pattern 

that develops the relationship between shear stress induced protein and mRNA 

expression.  The DAPK mRNA activation with short shear time (2 and 4 hrs) correlates 

with the increase in DAPK protein expression.  Yet, the mRNA activation returns to basal 

level after an 8 hr shear exposure. To clearly understand DAPK expression, extended 

shear exposure experiments are needed to understand the subsequent pattern of 

expression and long-term shearing responses
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Apoptosis assay optimization was established to further delineate the role of 

DAPK in shear stress induced effects on endothelial apoptosis.  The final objective was 

to deduce a connection between the effects of applied shear on apoptosis and the DAPK 

gene expression profiles.  Overall, the apoptosis activity influenced by shear further 

exhibits a possible connection between shear stress and anti-apoptotic activities.  Yet in 

relation to DAPK, the shear stress ultimately decreases overall apoptosis, while DAPK is 

increased due to shearing.  Therefore, DAPK might have a role in other possible 

mechano-transduction cascades, when endothelial cells are exposed to constant shear.  

Further apoptosis research is needed to investigate the other possible involvements of 

DAPK when cells are sheared.         

 

 

5.2   Future Research 

In order to further develop the DAPK gene expression profile, protein expression 

needs to be examined using longer than 8 hours of applied shear.  The extended shear 

could lead to a possible temporal expression pattern, as seen in the mRNA plot.  

Likewise, the DAPK mRNA profile could be expanded to see if the expression recovers 

or remains in a down-regulated state, depleting overall DAPK protein expression in long 

term shear situations.    

 

 In response to shear, overall DAPK expression is up-regulated, while there is an 

overall decline in apoptosis events.  Due to these results, DAPK may have a different role 

under shear stress, possibly in cytoskeletal responses rather than apoptosis cascades.   

 

Future research will further examine the role of DAPK in affecting multiple 

endothelial cell functions under shear stress.  For instance, studies will look at DAPK 

influences in cytoskeleton and cell motility/alignment.  Similarly, studies could examine 

the possible activation of other phosphorylation sites, which may negate apoptotic 

pathways or stimulate anti-apoptotic genes.   
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The functional roles of endothelial DAPK in response to shear stress will also be 

examined using siRNA targeting DAPK expression, as well as over expression of DAP-

kinase within the cells. These results will help determine the potential role of DAPK in 

the progression of atherosclerosis, and aid in the development of novel approaches both 

in the prevention and treatment of atherosclerosis. 
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