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Recent years have seen a dramatic increase of market adoption and utility of so called

”smart” devices by people from all walks of life. These devices play a central role in how

people are entertained, communicate, network, work, bank and shop. There are billions of

applications which provide users unprecedented ease of access to a plethora of programs,

they also are providing a fertile environment for the distribution of hostile applications or

malware. Additionally, the increased power of these mobile devices makes them more suit-

able for a host of business purposes, which can also result in the exposure and compromise

of corporate data and systems. Finally, the very portability of mobile devices means that

they are highly susceptible to loss and theft. The information accessed by these devices

is secured using cryptographic algorithms. Advances in Field Programmable Gate Array

(FPGA) technology have led to reduction in power and cost making them a suitable al-

ternative for mobile devices. The reconfigurability of FPGAs facilitates quick changes or

upgrades in the security requirements to mitigate any newly found vulnerabilities. A hall-

mark of FPGAs is that parallelized architectures can be implemented efficiently, and thus

they are an attractive platform for implementations of cryptographic algorithms.



However, physical implementations of encryption algorithms on any hardware device are

proven to leak secret information in the form of so called Side channels and also during sud-

den change in operational characteristics of the crypto-device i.e. via Fault Injection. The

research in this area shows that Side Channel Analysis (SCA) attacks and Fault Injection

(FI) pose a major threat because the physical implementations of the cryptographic devices

are difficult to control and often result in unintended leakage of information. Generally,

all hardware implementations of cryptographic algorithms are assumed to be vulnerable to

SCA and FI attacks, if there are no special precautions in the implementation. Differential

Power Analysis (DPA) attacks are an efficient form of SCA attacks. Several countermea-

sures against DPA were proposed, however development of countermeasures which makes

use of FPGA features are at an infancy stage. As a part of this dissertation we developed

a new countermeasure against DPA which has low-area overhead and makes use of FPGA

intrinsic features. In order to validate the new countermeasure proposed, we developed an

open-source tool called Flexible Opensource workBench fOr Sidechannel analysis - FOBOS.

FOBOS can not only be used for research, but also for educational purposes. We pro-

pose a methodology for detecting glitches in hardware implementations on FPGAs using a

delay based sampling technique. We use this methodology to validate that our proposed

countermeasure is free from early evaluation effects.

Additionally, a new class of fault attacks was explored, which uses an electro magnetic

field to induce faults in the target device. The Electro Magnetic Fault Injection (EMFI)

perturbation is effective and non-invasive in nature. In this dissertation, we describe the

background, methodology and experimental setup required to conduct EMFI. The impact of

different types of probes used in EMFI attacks is explored and a calibration process used for

lab experiments is presented. We discuss our preliminary results and conclude that EMFI

is a viable strategy for an attacker attempting to break a cryptographic implementation.



Chapter 1: Introduction

1.1 Introduction

Recent years have seen a dramatic increase of market adoption and utility of so called

”smart” devices by people from all walks of life. These devices play a central role in

how people are entertained, communicate, network, work, bank and shop. Yet for every

positive outcome from these devices, there is often a corollary risk. For example, let us

consider a smart phone. On one hand, there are billions of applications which provide

unprecedented ease of access to a plethora of applications or simply termed apps to meet

any user requirements. On the other hands, they are also are providing a fertile environment

for the distribution of hostile apps or malware. Also, the increased power of these smart

phones makes them more suitable for a host of business purposes, which can also result in

the exposure and compromise of corporate data and systems. Finally, the very portability

of mobile devices means that they are highly susceptible to loss and theft. Thus there

is great need in protecting information accessed by these devices and this information is

usually secured using cryptographic algorithms.

According to Kerchoff’s Law (or Shannon’s Maxim) [1],

a cryptosystem’s security must be solely based on the secret key even if everything about the

underlying encryption algorithm is public knowledge.

However, physical implementations in hardware as well as in software of such encryption

algorithms have been shown to leak secret information in the form of so called side-channels

and also during sudden change in operational characteristics of the crypto-device i.e. via

Fault Injection. The side-channel leakage could be in the form of power consumption [2],

electro magnetic radiation [3] or timing [2] of the device. The side-channels leak sensi-

tive information whenever the device performs an operation using the secret data. Attacks
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which make use of such inherent physical leakage are called side-channel attacks (SCA).

SCA is a new research area of applied cryptanalysis that has gained popularity since mid

nineties. The research in this area shows that SCA pose a major threat because the phys-

ical implementations of the cryptographic devices are difficult to control and often result

in unintended leakage of information. Generally, all hardware implementations of crypto-

graphic algorithms are assumed to be vulnerable to side channel cryptanalysis, if there are

no special precautions in the implementation.

Timing
Consumption

Power

Secret
Key

Device
Cryptographic

Text
CipherPlain

Text

EM Radiation

Side Channel

Figure 1.1: Side-Channel Leakage

Compared to Side-Channel Attacks (SCA), which are passive in nature, Fault Injec-

tion (FI) attacks try to actively corrupt the operation of the the crypto-device to reveal

information. The target operations can be algorithm rounds, executions of a specific in-

struction or even internal state of registers. There are several avenues for injecting faults

in a crypto-device. Over-clocking [4] i.e., increasing the system clock speed momentarily

or under-volting [5] i.e., operating the system under less than nominal core voltage will

lead to set-up and hold time violations for the internal logic of the crypto-devices. This

condition can lead to faulty execution of the cryptographic algorithm. Similarly, inserting

transients into the power supply lines or changing the duty cycle of the clock [4,6] (termed

as voltage and clock glitching respectively) may lead to faulty executions with controllable

timing accuracy. Another method of fault injection is to use white light or laser beams

(optical FI) [7] to induce faults at precise locations i.e. a data byte or bit faults. Even
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varying the temperature [6] of the crypto-device to the extremes i.e. exposing the device to

either hot or cold environment compared to its typical operating temperature will lead to

fault injections.

Plain Text Cipher Text
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Secret

Key

Device
Cryptographic

(Message)

Figure 1.2: Fault Injections

1.1.1 Motivation

Field Programmable Gate Arrays (FPGAs) are fast becoming a popular choice for a wide

variety of applications ranging from digital cameras to aero-space and defense systems.

Because of the outstanding feature of combining the programmability of processors with

the performance of custom hardware, FPGAs have become an essential part of critical sys-

tems. Recent architectural advances of FPGAs are making them an alternative choice for

low power applications where Application Specific Integrated Circuits (ASICs) are primarily

used. A hallmark of FPGAs is the ability to implement parallelized architectures efficiently,

and they also posses excellent resistance against invasive attacks since the underlying plat-

form is regular and does not reveal information on the actual design content. Because

of these features, FPGAs have become an attractive hardware platform for cryptographic

implementations.

Introduced by Kocher et al. [2] in 1999, Differential Power Analysis (DPA) attacks

exploits the data dependency between power consumption of cryptographic device and
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secret. Power analysis attacks are passive and non-invasive, and hence have received the

most amount of attention by the research community. DPA attacks are very powerful, can

easily be conducted, and have been used successfully many times. They can be applied

to dedicated cryptographic processors as well as to general purpose processors running a

cryptographic software. When it turned out that the cryptographic devices are vulnerable to

power analysis, there has been great effort in the development of countermeasures against

DPA. Countermeasures proposed till date can be broadly classified at different levels of

design abstraction as shown in Fig 1.3.

Protocol

Algorithm 

Architecture

Logic Style 

Low Effectiveness

High Effectiveness

against DPA

Figure 1.3: Countermeasures at Different Levels

• Protocol: Continuously refresh/update the secret information so that the attacker is

never able to obtain sufficient information

• Algorithm: Change the order of operations of the cryptographic algorithms, not using

any branch instruction etc.

• Architecture: Using techniques like ”Masking”, to mask the power consumption of the

device running cryptographic algorithm by XORing the sensitive data with a pseudo

random variable. Recently, it was shown that the masking schemes were broken [8].

• Logic Style: Using techniques like ”Hiding”, where the power consumption of the

crypto device is constant at each and clock cycle.

The lower the level of countermeasure implemented the higher the effectiveness of coun-

termeasure against DPA. That is, out of all countermeasures proposed, the logic style coun-

termeasure provides considerable security against DPA attacks. An example of a logic style
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Table 1.1: Comparison Between Different DDL Styles on FPGAs

DDL Styles FPGA Cipher Area Overhead Security Gain
On FPGAs Used Implemented (x Unsecured) over Unsecured

WDDL Stratix II DES 5.84 18

DWDDL Spartan 3E LFSR-SBOX 11.68 -

BCDL Stratix II AES 3.2 24

SDDL for FPGAs Spartan 3E AES 4.04 12

countermeasure is Dynamic and Differential Logic (DDL), introduced by Tiri [9] in 2005.

The authors implemented an unsecured and a DDL secured AES-128 on 0.18µm CMOS IC.

The DDL secured design required 100 times more encryptions to obtain the secret key than

the unsecured AES-128 with an area overhead of 2.99 times to that of unsecured design.

Although the secret key information was obtained from the secured DDL AES-128 imple-

mentation, the required number of encryptions was still larger than the life time of the key

for most practical systems [10].

Unfortunately applying DDL style countermeasures for cryptographic implementations

on FPGAs is not straight forward. There were different types of DDL implementations

proposed for FPGA hardware but the security gain and area overhead is not comparable

to that of DDL styles implemented on ASIC hardware as shown in Table 1.1.

On the other hand, FI attacks may require modifications of the crypto-device. For

voltage and clock glitching, the power and clock lines to the target are to be isolated, which

may not be possible in all the real-world cases. Countermeasures against these attacks [6]

such as filtering or monitoring the supply and clock lines are relatively easy and inexpensive.

Optical fault injection requires the die of the chip to be exposed through decapping therby

leaving evidence and in some cases will destroy the crypto-device permanently. Although

temperature fault injection does not require modification of the crypto-device, exact timing

of the fault injection using temperature variations is harder to achieve due to the limited or

difference in thermal conductivity of the packaging or the die itself. Another type of fault

injection was introduced, called Electro Magnetic Fault Injection (EMFI). This class of fault
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injections uses transients in EM fields to induce faults into the crypto-device. The EMFI

are completely non-invasive in nature, are harder to detect during run-time and leave little

evidence of tampering on the crypto-device as compared to voltage or clock fault injections.

The equipment cost to conduct EMFI is relatively lower than that required for Optical fault

injections.

1.1.2 Contribution

The Goal of this thesis to develop an integrated environment for detecting and mitigating

SCA and FI attacks on hardware platforms. First and foremost, to validate the security

of the cryptographic primitives and proposed countermeasures against DPA in a fair and

comprehensive fashion, we propose an open-source tool called FOBOS. Secondly, we propose

to investigate and develop a methodology for implementing cryptographic algorithms on

FPGAs which is secure against SCA attacks. To achieve this, we propose a two phase

approach.

• Phase 1: Investigate the inherent resistance of the intrinsic features of FPGAs against

DPA.

• Phase 2: Implement DDL countermeasure on cryptographic algorithms using secure

implementation options obtained from phase-1 with an added factor of low area over-

head.

FPGAs also have several inherent features like Block RAMs, fast carry chains, Wide

dedicated Multiplexers (WDMs) which can be used to implement logic which are consider-

ably faster and consume less area than standard implementations which do not use these

features. Phase 1 essentially involves evaluating the security of these inherent features of

FPGAs against DPA. In Phase 2, we will develop a new Dynamic and Differential Logic

(DDL) style countermeasure tailored for FPGAs. It will use the most DPA resistant imple-

mentations obtained from Phase 1. DDL is a type of DPA countermeasure which eliminates

the correlation between the data being processed and the instantaneous power consumption
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of the device (FPGAs) by maintaining constant power consumption in every clock cycle of

it’s operation.

By the end of these two phases we will have developed a secure design flow for imple-

menting cryptographic algorithms on FPGAs through a iterative design methodology, which

enables us to achieve resistance against DPA. We also propose a run-time glitch measure-

ment methodology to further test the effectiveness of our proposed DDL countermeasures.

Finally, we will study the effect of Electro Magnetic Fault Injection (EMFI) on an

ARM core. We describe the background, methodology and experimental set-up required

to conduct EMFI attacks. The impact of different types of probes used in EMFI attacks

is explored and a calibration process used for lab experiments is studied. We discuss our

preliminary results and conclude EMFI is a viable strategy for an attacker attempting to

break a cryptographic implementation.
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Chapter 2: Background

2.1 Background – DPA

The first side-channel attack was reported in early 1956 [11] in which Peter Wright describes

how he helped the British secret services to break a rotor machine (early model of crypto

device used for encryption) by listening to the clicking sound with a microphone. Later,

in the mid 1980s, there was a lot of concern and commotion about the electromagnetic

emanation of video screens [12]. In 1996, Paul Kocher described an attack methodology to

compromise the security of RSA by exploiting the timing information [13].

2.1.1 Power Analysis Attacks

In the year 1999, Kocher et al. proposed more powerful Side-Channel Attack (SCA) i.e.

power analysis attacks [2,14]. The authors have discovered that the power consumption of

cryptographic devices can be exploited to reveal secret information. In 2000/2001, the use

of electromagnetic radiation as a side channel was introduced by Jean-Jacques Quisquater,

David Samyde and Karine Ganndolfi et al. [3, 15]. However, measurements of electromag-

netic fields have been performed since the 1950s for military purposes under the codeword

TEMPEST by the government of USA. The research on Side-Channel attacks is primarily

can be broadly divided into two directions. In one direction advanced analysis and process-

ing techniques were developed to enhance Side-Channel attacks and in the other direction

countermeasures against Side-Channel attacks are being developed at all levels of design

abstraction. Due to the fact that power analysis attacks are very powerful, do not require

expensive equipment, and are almost always successful, these attacks have been given the

maximum amount of attention by the research community.
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Figure 2.1: Output transitions of a CMOS inverter

2.1.2 Power Consumption in FPGAs

FPGAs are build using Complementary Metal Oxide Semiconductor (CMOS) technology.

Hence it is necessary to understand power consumption in CMOS circuits.

Consider Fig. 2.1 which shows the output transitions of a CMOS inverter. The power

consumption of such a CMOS inverter gate is given by Eq 2.1.

Ptotal(t) = Pswch(t) + Plkg(t) + Psht−ckt(t) (2.1)

Ptotal(t) is the total instantaneous power consumption at any given time t, Pswch(t) is the

power consumption caused due to gate transitions, Plkg(t) is the power consumption due to

leakage currents in the gate and Psht−ckt(t) is the short circuit power consumption of the

gate at any given time t. Each term in the Eq 2.1 is equivalent to

Pswch//lkg//sht−ckt(t) = Vdd ∗ iswch//lkg//sht−ckt(t) (2.2)

where Vdd is the supply voltage of the gate and i is the current drawn from the supply line

by the three causes (switching, leakage and short circuit) of the total instantaneous power

consumption.
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Switching Power

also called as Dynamic power is caused due to gate output transitions. This can explained

with the help of four gate transitions (refer to Fig 2.1) occurring in a CMOS inverter.

• When the input changes from logic ’1’ to logic ’0’ the output of the gate transitions

from logic ’0’ to logic ’1’ thereby ”charging” the load capacitance Cload.

• When the input changes from logic ’0’ to logic ’1’ the output of the gate transitions

from logic ’1’ to logic ’0’ thereby ”discharging” the load capacitance Cload. In ideal

cases no current is drawn from the supply.

• When the input is maintained at logic ’0’ the output of the gate is maintains at logic

’1’ and no current flows

• When the input is maintained at logic ’1’ the output of the gate is maintains at logic

’0’ and no current flows

Leakage Power

is caused due to gate leakage and sub-threshold leakage which occurs in every transistor.

The gate leakage is caused due to the current flowing from the gate to drain and is inversely

dependent on gate-oxide thickness. The sub-threshold leakage from source to drain of the

transistor and is caused due to parasitic capacitances and is inversely proportional to the

threshold voltage drops.

Short circuit Power

occurs whenever the nMOS and pMOS transistors change states. There exist a range

of input voltages for which both pMOS and nMOS transistors conduct current as these

transistors are not perfect switches. When both transistors are ”on”, a current flows from

the power supply to ground and is called short circuit current.

It is proven that switching power which is data dependent [16] (due to transitions of

gates) causes the data—power correlation which forms the basis of power analysis attacks.
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For newer CMOS technologies (90 nm and lower) leakage power also becomes a dominant

factor because of the drop in threshold voltages and gate-oxide thickness which indicates

that not only gate output transitions but also the logic levels of gate outputs i.e. signals of

the device must also be taken into account.

2.1.3 Types of Power Analysis Attacks

According to Kocher et al. [2, 14], power analysis attacks are classified into two types

1. Simple Power Analysis (SPA)

2. Differential Power Analysis (DPA).

Simple Power Analysis involves direct interpretation of power traces generated by an

algorithm run on hardware. Because of the reason that different operations performed by

a processor have different power consumption characteristics [17, 18], the adversary can

identify the operation just by observing the power trace. However, SPA attacks are quite

challenging as the adversary needs to have detailed knowledge about the implementation of

the cryptographic algorithm that is being executed by the hardware.

Differential Power Analysis

(DPA) are the most popular and powerful type of power analysis attacks due to the fact

that they do not require detailed knowledge about the attacked device. DPA exploits the

data dependency of the instantaneous power consumption of cryptographic device. Unlike

SPA which requires one or few traces, DPA attack works with large number of power traces.

The DPA attack methodology can be generalized in four steps.

• STEP:1 Choose an intermediate result of the algorithm being executed which should

be function of input data and key.

• STEP:2 Measure the power consumption when the algorithm computes the interme-

diate result.
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• STEP:3 Calculate the hypothetical values and build a power model.

• STEP:4 Compare the hypothetical power model with power consumption through

statistical tests.

The articles [19,20] are good sources of information SPA and DPA attacks.

Attack Models

In order to simulate the power consumption of the cryptographic device i.e. to relate the

power consumption with the data being processed we use the following two generic models.

Hamming Weight Model is a simple power model, which assumes that the power

consumptions is directly proportional to the Hamming Weight (HW) i.e. number of bits

that are set in the corresponding data word [21]. If D is binary data of length i

D =
i−1∑
i=0

di2
i

then the Hamming weight of D is simply, the number of bits that are set to ’1’ as shown in

(2.3).

HW (D) =

i−1∑
i=0

Di (2.3)

This model is typically used when the attacker knows only the data value at a given

time, but not it’s previous or the next state value.

Hamming Distance Model uses the number of bits changed between two subsequent

states of data Di and Di+1
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HD(Di, Di+1) =

j−1∑
j=0

(Di ⊕Di+1)j (2.4)

As shown in Fig. 2.1, bit transitions effect the power consumption of the device. As the

Hamming Distance (HD) model is based on the bit transitions between two states, it more

accurately reflects the power consumption of the device than HW model.

Security Metrics

The security of a design against DPA attacks is determined by the number of measurements

required to recover the key, also known as Measurements To Disclosure (MTD). We count

one encryption as one measurement independent of the number of samples the oscilloscope

takes during one encryption. MTDs, are to a certain extent depend upon the message and

secret key used.

Success of DPA Attacks on Various Cryptographic Implementations

Kocher et al. successfully attacked DES in [2, 14] and was able to recover the key. In

the years following mid nineties, successful DPA attacks against cryptographic algorithms

implemented in software and on ASICs were published. Four years later, successful DPA at-

tacks against DES and RSA [22] and ECC [23] implementations on FPGAs were reported.

The first practical DPA attack on SHA-2 HMAC implemented on FPGA was published

in [24]. Even all the eSTREAM candidates were susceptible to DPA attacks [25]. Ex-

perimental results of DPA attacks on IDEA and RC6 were published in [26]. Advanced

Encryption Standered (AES) was successfully attacked on FPGAs in [27–30]

2.2 Background – Xilinx FPGAs

There are a wide verity of FPGAs manufactured by different vendors like Xilinx, Altera,

Actel etc. This section describes the underlying structure of Xilinx Spartan series FPGA
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which we are using for laboratory testing. We also note that the architecture is similar to

that Altera FPGAs.

The Configuration Logic Blocks (CLBs) contains the main logic resources for implement-

ing a wide variety of logic functions as well as for storing information. CLBs are arranged

in arrays of rows and columns and their densities varies from one FPGA to another. In

Xilinx Spartan3E FPGAs, a CLB is comprised of four slices, each containing two look-up

tables (LUT) and two storage elements that can be used as either flip-flops or latches. It

also contains two wide function multiplexers, fast carry logic and other miscellaneous ele-

ments. The LUTs in some special slices are used not only to implement logic but can also

be configured as 16-bit Distributed RAM or 16-bit Shift Register LUT (SRL).

The Block RAMs (BRAMs) are organized in columns inside the Xilinx FPGAs [31].

Special interconnects are provided between a BRAM and its adjacent CLBs. Also pro-

visions are provided to allow multiple BRAMs to be cascaded to form wider memories.

BRAMs consist of static RAM cells and contain 18,432 bits of total RAM. Each has two

completely independent access ports called Port A and Port B. The BRAM’s structure is

fully symmetrical and both ports support data read/write operations. Each port is syn-

chronous with its own clock, clock enable and write enable [31]. BRAMs can be used as

data storage, FIFOs, large (LUTs), data width converters, circular buffers, shift registers,

wide logic functions and other basic functional primitives of cryptographic algorithms.

2.3 Background –EMFI

There are two types of EM perturbations used to inject fault into the target devices. They

are transient pulses ans shown in Fig 2.4 and harmonic emmisions as shown in Fig 2.3

The scope of this research is constrained to Transient Type of EM fault injections.

The idea behind Transient Type of EMFI is to inject fault(s) into the crypto-device or

target using an electromagnetic pulse (magnetic flux) generated by a coil. For example, let

us consider a loop of coil, having the surface area A. Let I be the current flowing through
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Figure 2.2: Xilinx Spartan 3E FPGA Structure

this coil which influences the magnetic field B of the coil. Let θ be the angle between the

coil surface and the magnetic lines of field B. Then the magnetic flux ϕB is given by the

Eq. 2.5.

ϕB = BA cos(θ) (2.5)

Now if a current pulse is sent through this coil, the current I of the coil suddenly changes.

This sudden change in current will also causes sudden change in the magnetic field B which

in-turn will affect the magnetic flux ϕB of the coil (as shown in Eq. 2.5).

If a target (sense coil or in our context, a crypto-device) is placed near this coil, according

to Faraday’s Law of Induction, an electromotive force (emf) denoted by ϵ is induced in the

target as shown in Eq. 2.6

ϵ = −NϕB/δt = −Nδ(BA cos(θ))/δt (2.6)

This induced emf will cause sudden change in the currents flowing through the target,

thereby momentarily changing voltages and logic values of the internal gates. If the gates
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a) EMFI type − Harmonic Emission

Figure 2.3: EMFI - Harmonic Type

b) EMFI type − Transient Pulse

Figure 2.4: EMFI - Transient Type

are in use, incorrect values propagate and lead to faulty computation by the target.

The induced emf is affected by following factors:

• The angle and distance between the coil and the target.

• The amplitude and the duration of the voltage pulse which will influence the current

passing through the coil.

• The area of the coil.

• The magnetic permeability of coil’s core (i.e. ferrite or air core).
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Hence the above mentioned factors become relevant parameters when conducting an

EMFI attacks.
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Chapter 3: Flexible Opensource workBench fOr Sidechannel

analysis - FOBOS

3.1 Introduction and Motivation

While a few FPGA boards designed for SCA exist, many research groups from academia and

industry use their own hardware harness, their own software for data acquisition and data

analysis and sometimes their own FPGA boards or generic FPGA boards. This increases

the complexity and effort needed to obtain a working SCA setup. Another, but costly

option is the use of commercial SCA workstations.

Due to the importance of the topic of Side-Channel attacks, they became part of the

curriculum of cryptography courses in many universities. However, only very few have

associated laboratory exercises and hands-on examples due to the cost and complexity of

current SCA setups.

To our knowledge no complete software package exists that contains everything needed

for evaluating the side-channel attack resistance of FPGA implementations from data ac-

quisition to analysis (see Sect:3.1.1). In this chapter, we are presenting a framework for

efficient side-channel evaluation of cryptographic implementations on hardware and soft-

ware. Such an environment should be flexible, open-source and low cost and beneficial to

both research and educational communities.
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3.1.1 Previous Work

SCA - Hardware Platforms

The Side-Channel Analysis Board (SCAB) introduced in [32], was one of the early efforts

in developing evaluation platforms for conducting SCA attacks on implementations of cryp-

tographic algorithms. This board housed an FPGA on which the cryptographic algorithms

can be implemented along with an unrestricted access to power and clock pins to perform the

following SCA attacks: Differential Power Analysis (DPA) and fault analysis. Information

about the board design and the status of the project is currently not available.

The Side-Channel Attack Standard Evaluation Board (SASEBO) [33],[34] was devel-

oped by the Research Center for Information (RCIS) of National Institute of Advanced

Industrial Science and Technology (AIST) and Tohoku University as a common platform

for evaluating Side-Channel attacks. These boards were developed with the intent of per-

forming side channel attacks on various hardware platforms like FPGAs, ASICs and Smart

cards. SASEBO boards are designed with two FPGAs, a cryptographic FPGA (or an

ASIC/Smart card) where the algorithm can be implemented and a control FPGA which

directs the data flow between the software and the cryptographic FPGA. The data acquisi-

tion software which comes with SASEBO is written in C#. It does not provide support for

different brands of oscilloscopes. Hence the user is required to tweak the code to provide

support for his/her own oscilloscope. Only four different types of SASEBO boards with

FPGAs as victims (shown in Table 3.1) are available. Early this year, AIST announced

that it discontinued support for the SASEBO project. Morita Tech [35] recently announced

SAKURA as a successor to SASEBO project.

SCA - Data Analysis Platforms

The DPA Contest [36] organized jointly by VLSI research group of Telecom ParisTech uni-

versity and AIST, is an online-based contest with the aim of having a fair confrontation
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Table 3.1: SASEBO Boards with FPGAs as Victims

Wires
Board Control Victim Control– Host Data

FPGA FPGA Techn. Victim Communication

SASEBO Virtex-2 Pro Virtex-2 Pro 130 nm 54 RS232
SASEBO-G Virtex-2 Pro Virtex-2 Pro 130 nm 53 RS232, FT245RL
SASEBO-GII Spartan-3A Virtex-5 65 nm 46 FT2232D
SASEBO-B Stratix-2 Stratix-2 90 nm 53 RS232, FT245RL

between different attack methodologies. Currently three editions of this contest were intro-

duced of which the first two deal primarily with attacking DES (v1) and AES (v2) using

different techniques where as the goal of the third edition is to compare acquisition plat-

forms and techniques. The results for the third edition was recently announced at COSADE

2012. For the v1 & v2 editions, the acquired data was provided by the contest organizers

where as in v3 only the RTL description of AES was provided. Data acquisition was left

to the the participant choice. This contest provides a wealth of information regarding DPA

statistical techniques, although all the data acquisition is obtained from SASEBO GII only.

The OpenSCA Toolbox [37] is an open source project which consists of set of Matlab

codes and objects to perform DPA attacks. Using this toolbox one can conduct not only first

order power analysis attacks but also the higher order and template attacks. The toolbox

also comes with several examples, demonstrating the attacks. Currently the supported sta-

tistical testing procedures are Difference-of-Means, Correlation Power Analysis and Baysian

analysis. All codes are written in Matlab and does not include data acquisition. In short,

we can perform only data analysis using OpenSCA.

The DPA WorkstationTM [38] is a state-of-the art proprietary SCA testing platform by

Cryptography Research, Inc. DPA WorkstationTMcan perform data acquisition, processing

and analysis and also has the ability to generate hypothesis models for a range of ciphers

like AES, DES, RSA, ECC etc. It also provides support for data capture for a wide range

of sampling devices like oscilloscopes and PCI A/D converters. Additionally, it supports
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multiple hardware platforms (FPGAs, SoC etc.) and different sensors (current, field probes)

and hence both power and EM attacks can be performed using this workstation. The major

drawback is that this tool is not freely available and licensing is very costly, thus not usable

for educational purposes. Also, collaborations between research groups are difficult as they

might not all have access to the DPA WorkstationTM.

Drawbacks of Current SCA Evaluation Platforms

An efficient SCA evaluation platform should have the following criteria:

• Flexibility: Able to support multiple hardware platforms/technologies/vendors.

• Open Source: Community support will allow for rapid development and adoption of

the latest devices and technologies.

• Reproducibility: Results published in research should be reproducible to obtain a fair

SCA analysis of cryptographic algorithms.

• Broad-Spectrum Acceptance: Should be accepted by both educational (low-cost) and

research/industry (state-of-the-art) communities.

We have shown in Sect. 3.1.1 and Sect. 3.1.1 that a complete (acquisition to analysis), free

and open source solution is not available. Therefore, research groups and industry who

do not want to invest in the proprietary DPA WorkstationTMemploy home grown scripts,

programs and platforms. Their main disadvantages are that they are mostly written in an

ad-hoc fashion and therefore difficult to maintain and extend. These scripts and platforms

are also proprietary and hence, their results are not reproducible by other research groups.

SASEBO currently has limited hardware support. OpenSCA toolbox can perform data

analysis only. The DPA contest provides information about different attack strategies only.

Hence there is a need for a flexible and complete open-source framework for SCA that

allows fair and comprehensive evaluation of implementations on hardware platforms with

reproducible results.
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3.1.2 Our Approach

We call our framework for efficient side-channel evaluation of hardware platforms - FOBOS.

This abbreviation stands for Flexible Open-sources workBench fOr Side-channel analysis.

FOBOS, loosely named after the Greek god Phobos (ϕóβoς) who personifies fear and can

pierce shields. FOBOS is designed to be an inexpensive Side-Channel analysis setup that

includes a complete software package with programs for victim control, data acquisition

and data analysis. In order to evaluate side-channel leakage of hardware platforms, FOBOS

uses off-the shelf FPGA boards as control and victim which are less expensive than the

traditional setup. Thus, it enables universities to add active Side-Channel analysis labora-

tory exercises to their cryptography classes. Furthermore, FOBOS is designed in a modular

fashion to allow for a multitude of victim devices while maintaining the remainder of the

setup, hence making FOBOS flexible. The FOBOS software package, documentation, and

hardware components will be released as open-source for quick adaptation of newer tech-

nologies. Designers of cryptographic implementations and countermeasures against DPA

and DEMA on FPGAs can test their design techniques on FPGAs from various vendors

and with different technologies. As the hardware and software are open source, the results

are reproducible by researchers from different groups.
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Figure 3.1: Components of FOBOS

Figure 3.1 shows various components of FOBOS. It consists of the FOBOS Hardware
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as well as software for Data Acquisition and Control and Data Analysis. The FOBOS

Hardware consists of two FPGA boards that are connected to each other. It is also possible

to use the SASEBO GII board instead. The user has to provide the hardware description

of the cipher under investigation, the key, a set of inputs and a power model. The Data

Acquisition and Control module configures and controls the FOBOS Hardware and the

Oscilloscope. It takes the user provided key and inputs and sends them to the FOBOS

Hardware which in turn encrypts the inputs with the key and returns the outputs (i.e.

ciphertext). As soon as the FOBOS Hardware starts with the encryption, it sends a trigger

signal to start data acquisition of the oscilloscope. The Data Analysis module uses the user

supplied power model, which can be based on inputs and/or outputs, and the power traces

collected by the oscilloscope to recover the key.

3.1.3 Architecture of FOBOS

FOBOS has two parts, the FOBOS Hardware and the FOBOS Software. The following

sections describe the functionality of various components of FOBOS.

FOBOS Hardware

A schematic diagram of the FOBOS hardware is shown in Fig. 3.2. It consists of two

boards Victim Board & Control Board connected together by the so called bridge connector.

The cryptographic algorithms whose security needs to be evaluated are to be implemented

on the FPGA of the Victim board. Data i.e. plaintext and/or key is sent from the PC

via USB to the control FPGA, which then forwards the data to the Victim FPGA. After

processing, the Victim FPGA sends the results back to the Control FPGA which in turn

forwards the results to the PC for verification. The control board also sends a trigger signal

to the oscilloscope to capture power measurement data.

Control Board: The control board used by FOBOS is either a Nexys2 or a Nexys3

board. Table 3.2 shows details of the both boards. The control board contains several

modules (see Fig. 3.2) and two clock domains. It uses the on-board 50MHz oscillator as
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base clock for the USB communication. The second clock is generated through a clock

divider circuit which uses the Digital Clock Managers (DCMs) to generate a clock in the

range of 350KHz ∼ 50MHz from the 50MHz oscillator on board depending upon the user’s

choice and the oscilloscope specification. This clock is used for communication with the

victim FPGA and also provided to the victim FPGA board.

Table 3.2: FOBOS FPGA Control Boards

Board FPGA Technology Connector PC-Control Cost

Nexys 2 Spartan-3E 90 nm Hirose FX2 (43) USB2 $149
Nexys 3 Spartan 6 45 nm VHDC (40) USB2 $199

The control board receives commands from the PC and returns a status. This is fa-

cilitated through the 8-bit Command and Status registers. We use them to implement a

simple protocol between PC and Control FPGA which is explained in Sect. 3.1.3.

The Trigger module generates a reference point from which the oscilloscope should

start measuring the power consumption of the victim FPGA. Depending upon the user’s

requirement, this reference point can be set through a command to the beginning of the

cryptographic operation or to specific clock cycle during the computation. This reference

point is later used to perform signal alignment of several power traces.
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A Timeout module makes sure that PC receives a status (of TIMEOUT) if an exception

occurs during the communication with the victim or if the victim does not respond within a

given time. This timeout value can be specified through a command. The timeout counter

is automatically reset each time the victim returns data.

The Reset module is used to send a reset signal to the crypto core implemented on the

victim FPGA depending upon the value specified by the user. This is useful if for example

a cryptographic operation takes 1,000 clock cycles to complete, however, the interesting

event happens in the 30th clock cycle. The user can then reset the victim automatically

every 35 clock cycles and start a new encryption without having to wait for the encryption

to complete.

Victim Board: We are investigating several FPGA boards available in the market,

which can be used as Victim boards for FOBOS. Table 3.3 shows some potential Victim

boards. The column “VCore Jumper” indicates whether the board contains a jumper on the

core power line which allows for by-passing the on board core power supply and inserting a

current sensor (resistor or current probe) to measure the power consumption of the victim

FPGA. So far, we have successfully used the Spartan 3E Starter Kit, Spartan 3E-1600

Developer Board, and the Altera DE1 board as FOBOS Victim boards. As the Altera DE1

does not have VCore Jumper, we had to de-solder the voltage regulator for core voltage.

On all boards we also removed several capacitors. Our preliminary investigation (shown in

Table 3.3) into the other boards have shown that it is possible to modify them in order to

measure the current of the core supply.

For each victim board we plan on publishing instructions on how to modify it for DPA

and the printed circuit board (PCB) layout of the bridge connector which connects the

victim board securely to the control board.

FOBOS Control-Victim Protocol uses a simple FIFO interface to transfer data to

and from the control and victim FPGAs. The functionality of the input and output ports

of the protocol is described in [39], [40]. All data and key to and from the FPGA is broken

into segments. The first 2 bytes (16-bit) of each segment is a command word, which decides
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Table 3.3: FOBOS FPGA Victims

Techn- VCore

Board FPGA ology Jumper Cost

Spartan 3E Starter Spartan-3E 90 nm yes $159
Spartan 3E-1600 Dvlp. Spartan-3E 90 nm yes $225
Altera DE1 Cyclone-II 90 nm no $150
Cyclone III Starter Cyclone-III 65 nm yes $199
Genesys Board Virtex-5 65 nm no $449
Altera DE2-115 Cyclone-IV 60 nm no $299
Altys Board Spartan-6 45 nm no $199
Altera DE4 Stratix-IV 40 nm no $2,995
Xilinx ML605 Virtex-6 40 nm no $1,795
Xilinx KC705 Virtex-7 28 nm no $1,695

the nature of the segment and the number of bytes being sent. The format of the 16-bit

command words is shown in Fig 3.3. A ‘0’ value in the LSB and a ‘0’ value in the MSB

of the command word indicates that a key is being sent. Similarly a ‘1’ value in the LSB

indicates that data is send. The bit in position ‘1’ indicates with a ‘0’ that more segments

are following the current one, a ‘1’ indicates that the current segment is the last. The MSB

bit value ‘1’ for a 16-bit command for loading the key is left explicitly for future use. This

protocol does not require the control board to know what the block size of the cryptographic

function is. The widths of the buses for ‘k’ and data ‘d’ indicated in Fig 3.2 can be defined

by the user according to the requirement of the cryptographic implementation.

FOBOS Software:

FOBOS Software Control Flow: The FOBOS control flow is shown in Fig. 3.4. The

control script parses the configuration files and initializes the FOBOS environment. It

performs a simple tool check to verify whether the necessary library files essential for data

transfer and oscilloscope control are installed and only continues when the check passes

successfully. The control script then assigns the hardware and oscilloscope attribute values

as specified by the user in the configuration files. The FOBOS hardware then performs
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Figure 3.3: FOBOS Protocol

a built-in self test to check whether all the attributes are set accordingly and issues an

appropriate status message to the control script. The status message can be a success or

an error code. If the control receives an error code it exits the program displaying proper

error message. On receiving a success code, the control script instructs the oscilloscope to

digitize its analog inputs which then in turn waits for the trigger signal from the control

board to start capturing data. The plaintext and the key are then transferred to the FOBOS

hardware and the control script waits until it receives data from the oscilloscope. Once

the oscilloscope data is captured, the control script writes the outputs from the FOBOS

hardware to a file.

FOBOS has support for two data capturing modes, called Single Capture and Multi

Capture to capture the power traces. Single Capture mode, as shown in Fig. 3.5a), assumes

that a power trace contains a single encryption whereas Multi Capture mode, as shown in

Fig. 3.5b), contains multiple encryptions per power trace. Once all data has been captured

the control is transferred to data analysis module.

FOBOS PC- Control Communication Protocol: FOBOS uses the command &

status registers to control the PC- Control communication. The command register is used

(shown in Fig. 3.2) to pass the option values to the modules inside the control FPGA and to

signal the control board that PC is ready to transmit the data. The status register (shown
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in Fig. 3.2) on the other hand, is used for signaling the PC that the control FPGA is ready

to transmit the data obtained from victim FPGA or to report errors.

Encryption_1 Encryption_2 Encryption_3 Encryption_4

Power Trace_1

b) Multi Capture

Power Trace_1 Power Trace_2 Power Trace_3 Power Trace_4

Encryption_1 Encryption_2 Encryption_4Encryption_3

a) Single Capture

Figure 3.5: Capture Modes

FOBOS Data Acquisition Module The data acquisition module configures the os-

cilloscope and retrieves its data. Its behaviour is determined by a configuration file which

uses a generic, oscilloscope brand independent description. A special, oscilloscope dependent

sub-module translates the configuration file to commands which are oscilloscope specific.
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The sub-module of our prototype uses the Virtual Instrument Software Architecture (VISA)

library which is a standard for configuring and programming instruments using a variety

of interfaces. Presently, the FOBOS prototype supports communication for oscilloscopes

from Agilent Technologies. In future we plan to provide support for oscilloscopes from other

manufacturers.

3.1.4 FOBOS Data Analysis Module:

The Data Analysis module consists of 3 sub-modules as shown below:

• Signal Alignment Module

• Post processing Module

• SCA Module

• Statistics Module

Signal Alignment Module

As the name indicates, the main function of this module is to align all the measured power

traces with respect to time using a reference signal called the ”Trigger” signal. Depending

upon the type of capture mode used i.e. Single capture or Multi capture its functionality

varies. In Single capture mode as each measurement trace contains only one encryption, the

power traces are aligned when the ”Trigger” signal becomes logic high. In the Multi capture

mode, as each measurement trace contains multiple encryptions, the start of each encryption

is indicates by the Trigger signal. To be exact, the measurement point from one trigger high

to the subsequent trigger high is equivalent to one encryption. The measurement module

chops up the trace accordingly and aligns them.

Post processing Module

Currently FOBOS supports three Post processing sub modules. They are:

1. Sample Space Disposition
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2. Compression

3. Trace Expunge

Sample Space Disposition allows user to select a part of the trace to perform further

post processing or to perform statistical testing. This also reduces computation time during

statistical testing.
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WINDOW_START_POINT

TIME

Figure 3.6: Sample Space Disposition

The parameters which facilitate this selection are ”WINDOW START POINT” and

”SAMPLE WINDOW SIZE”. As shown in Fig 3.6 ”WINDOW START POINT” parameter

indicate which point in time to further sample the trace and the ”SAMPLE WINDOW

SIZE” parameter indicates the number of points to be sampled and stored to a new trace.

Compression allows user compress the power trace in chunks or as a whole depending

upon the user requirement by using the ”COMPRESSION LENGTH” parameter as shown

in Fig 3.7 The user can also the type of compression to be used. They are:

• Max: Can compress the user specified sample size to the maximum of the given sample

set.
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• Min: Can compress the user specified sample size to the minimum of the given sample

set.

• Mean: Can compress the user specified sample size to the average of the given sample

set.

This also reduces computation time during statistical testing.
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Figure 3.7: Compression

Trace Expunge allows user to selectively ”expunge” or discard one or more traces

depending upon two different selection criteria:

• Variance: User specifies Upper and Lower bound values. A given trace is removed if

its variance (of the entire trace) is above upper limit or below lower limit.

• Standard Deviation: User specifies Upper and Lower bound values. A given trace is

removed if its standard deviation (of the entire trace) is above upper limit or below

lower limit.

This will help in removing traces which are heavily influenced by factors like measure-

ment artefacts etc,.
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SCA Module

Currently FOBOS supports following Side-channel distinguishers:

• Pearson’s r

• Spearman’s RHO

Pearson’s r We assume a linear relationship between the power consumption of the device

and the data being processed. Hence we use Pearson product-moment correlation coefficient

(r), commonly known as Pearson’s correlation to correlate instantaneous power consumption

with hamming distance model [41].

The Pearson’s correlation (r) between the the power consumption of the device P and

the hypothetical power model H is given by the Eq. 3.1

r(P,H) =
n
∑n

i PiHi −
∑n

i Pi
∑n

i Hi√
n
∑n

i P
2
i − (

∑n
i Pi)2

√
n
∑n

i H
2
i − (

∑n
i Hi)2

(3.1)

Correlation Power Analysis (CPA) is a form of DPA where we use a different statistical

test to obtain the secret key. Henceforth, we use the term DPA and CPA alternatively

throughout this document.
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Spearman Rank coefficient, on the other hand, is a measure of monotonic relation-

ship between two variables, in this case between power consumption and power model. The

Rank correlation between power consumption samples P and power consumption hypothesis

samples G is given by

RHO(P,G) = 1−
6
∑n

i d
2
i

n(n2 − 1)
(3.2)

where di =Pi - Gi, and Pi, Gi are ranks of the variables P and G

Statistics Module

FOBOS currently supports following statistic functions.

• Mean : Calculates mean of the trace, both trace and sample wise, as shown in Fig 3.9.

• Standard Deviation : Calculates Standard Deviation of the trace, both trace and

sample wise, as shown in Fig 3.9.

• Variance : Calculates Variance of the trace, both trace and sample wise, as shown in

Fig 3.9.
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Figure 3.9: Trace Wise vs Sample Wise
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3.2 CPA Attack on AES using FOBOS

This section describes a Correlation Power Analysis (CPA) attack of an implementation of

the Advanced Encryption Standard (AES) [42] using FOBOS. AES is an symmetric-key

cipher used extensively in security sensitive applications world wide. AES applies four dif-

ferent transformations, SubBytes, ShiftRows, MixColumns, and AddRoundKey, per round

and iterates through several such rounds depending upon the key size. An intermediate

key called ”round key” is generated and used per round which is derived from the original

key through a reversible key scheduling function. We have implemented a basic iterative

architecture i of AES with 128-bit key length and 128-bit wide datapath requiring 11 clock

cycles for one encryption. Key scheduling is done on-the-fly and the SubBytes function is

realized through look-up-tables. The block diagram for this design is shown in Fig. 3.10.

Ap

FF2
128128

FF1S−Boxes
128

128

Columns
MixShift

Rows

PT Round Key

Q

CT

128

Figure 3.10: Block Diagram of the AES Core

We attack our AES design during the first round at the output of the register FF1 indi-

cated by Ap in Fig. 3.10. The equation for calculating the Hamming Distance (HD) is shown

in 5.7. We use Pearson’s Correlation to correlate the instantaneous power consumption with

the HD model.

Pest. = HD(SBOX(CTi), SBOX(kguess ⊕ PTi+1)) (3.3)

Figure 3.12 shows a snippet of hardware attributes specified in the FOBOS configuration

file. FOBOS Control sends data from datain.txt and a key from keyin.txt, which are both
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Figure 3.11: AES Core with Wrapper on Victim FPGA

in the format of ASCII coded Hexadecimal values, to the victim. A snapshot of these files is

shown in Fig. 3.13. FOBOS Control sets the timeout to 30,000 clock cycles and the trigger

to 4 clock cycles after processing starts. The victim clock is set to run at 500KHz and the

result will be stored in hexadecimal values in the file outputs.txt

DATA_FILE = datain.txt

KEY_FILE = keyin.txt

CLK_FREQ = 500 KHz

TIME_OUT = 30000

TRIGGER = 4

CAPTURE_MODE = multi

Figure 3.12: Snippet of config.txt

A snippet of oscilloscope attributes from osc config.txt file is shown in Fig. 3.14. The

FOBOS control connects to the instrument specified by the VISA address from the RE-

SOURCE attribute. The voltage ranges of the channels of the oscilloscope are specified

in terms of vertical full-scale value in volts. The time range of the channels are specified

in terms of horizontal full-scale value in seconds. In general oscilloscopes are configured
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. . . .

40 F6 BB C7 94 78 0B D7 99 C3 5F 6A 77 8F 05 D8

A5 34 8B CC 02 EE C0 68 B4 9E 29 A5 22 B8 EF 54

CB 00 B7 22 F8 36 F9 E4 40 E2 EE BD 1B 13 BA A3

. . . .

2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

. . . .

0A 59 8B A5 3D B3 0D B6 34 B2 C2 7E 98 A8 DB 71

2E 13 7A 5F E2 F9 86 C0 15 9A 69 AB 6E 3F 04 01

FB D0 09 43 E7 71 59 4A 15 37 53 33 A3 EF 74 1B

. . . .

Figure 3.13: Plaintext, Key & Ciphertext Sent to FOBOS in hex format

in 8x10 graticule, therefore channel-1 range is 0.0125 Volts/div, channel-2 range is set to

2 Volts/div. The time range is set to 0.01 Sec/div. We also set the trigger source to be

channel-2 and the condition on trigger to be positive edge.

RESOURCE = GPIB0::7::INSTR #Instrument Resource

CHANNEL_RANGE1 = 0.1V #Specified in Volts per screen

CHANNEL_RANGE2 = 16V #Specified in Volts per screen

TIME_RANGE = 0.001 #Specified in seconds per screen

TRIGGER_SOURCE = CHANNEL2

TRIGGER_MODE = EDGE

TRIGGER_SLOPE = POSITIVE

Figure 3.14: Snippet of osc config.txt

The FOBOS control sends the data from the oscilloscope i.e. the power traces, inputs,

and outputs to the data analysis module. The first step involves processing the raw power

trace using the preamble information to obtain the measured power trace. We use Multi

Capture mode to obtain the Raw power trace. We use the Signal alignment module to

process and align the traces as shown in Fig. 3.15
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Figure 3.15: Aligned Power Trace

The parameters used for the signal processing module is shown in Fig. 3.16.

CAPTURE_MODE = MULTI # MULTI|SINGLE

TRIGGER_THRESHOLD = 1.8

TRACE_EXPUNGE_PARAMS = VAR:0.0000025:0.0000035

SAMPLE_WINDOW = 1000

WINDOW_START_POINT = 100

COMPRESSION_LENGTH = 40

COMPRESSION_TYPE = MAX

Figure 3.16: Snippet of Signal Processing Module Parameters

We perform Trace Expunge sub routine on the processed power traces using the param-

eters shown in Fig. 3.16. The resultant power trace is shown in Fig. 3.17

We further process the resultant power trace using sample space disposition and com-

pression using the parameters shown in Fig. 3.16. The resultant power traces are shown in

Fig. 3.18 and Fig. 3.19
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Figure 3.17: Power Trace after Trace Expunge

The CPA attack is conducted on a sub-byte of the key depending upon the user choice.

Hence there are 256 different key guess values and correspondingly 9 different HD values

i.e. 0 → 8. A snippet of the est power traces per key guess value is shown in Fig 3.20.

The sca module than calculates the Pearson’s Correlation and Spearman’s Rank corre-

lation for all the key guesses by correlating the est power traces and processed power trace.

Snippets of the output logs of the Pearson’s and Spearman’s Correlation are shown in

Fig. 3.21 and Fig. 3.22 respectively.

The sca module also plots two graphs, called the Correlation Plot shown in Fig. 3.23

for Pearson’s r and Fig. 3.24 for Spearman’s RHO respectively. The correlation plot shows

how well each individual key guess correlates with the power trace. The peak value of this

plot indicates the correct sub-key byte.
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Figure 3.18: Power Trace after Sample Space Disposition

Figure 3.19: Power Trace after Compression
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3 2 7 6 5 6 5 5 7 3 5 4 4 2 6 5 2 3 2 5 . . . .
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. . . .

Figure 3.20: Hypothetical Power Model

Window[0] Key Byte- 0x5d [93] Correlation- 0.080

Window[1] Key Byte- 0x9c [156] Correlation- 0.078

Window[2] Key Byte- 0x9c [156] Correlation- 0.086

Window[3] Key Byte- 0x6 [6] Correlation- 0.086

Window[4] Key Byte- 0x16 [22] Correlation- 0.109

Window[5] Key Byte- 0x16 [22] Correlation- 0.175

Window[6] Key Byte- 0xa3 [163] Correlation- 0.087

Window[7] Key Byte- 0xd7 [215] Correlation- 0.082

Figure 3.21: CPA using Pearson’s r Log file

Window[0] Key Byte- 0x5d [93] Correlation- 0.082

Window[1] Key Byte- 0x9c [156] Correlation- 0.083

Window[2] Key Byte- 0x78 [120] Correlation- 0.109

Window[3] Key Byte- 0x6 [6] Correlation- 0.083

Window[4] Key Byte- 0x16 [22] Correlation- 0.105

Window[5] Key Byte- 0x16 [22] Correlation- 0.176

Window[6] Key Byte- 0xa3 [163] Correlation- 0.086

Window[7] Key Byte- 0xd7 [215] Correlation- 0.091

Figure 3.22: CPA using Spearman’s RHO Log file
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Figure 3.23: Results of Pearson’s r

Figure 3.24: Results of Spearman’s RHO
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Chapter 4: SDDL for FPGAs

It is the goal of this chapter to introduce a secure design flow that enables us to achieve

resistance to DPA attacks through Dynamic Differential Logic(DDL) for light-weight im-

plementations of cryptographic algorithms on FPGAs.

4.1 Previous Work

The first design methodology to secure ASIC and FPGA implementations using DDL was

published by Tiri in 2004 [9]. The goal of DDL is to eliminate the correlation between the

data being processed and the power consumption of the circuit, hence making a DPA attack

infeasible. This is accomplished through duplication of the original circuit into a direct and

a complementary logic which follow two basic principles:

1. Constant switching activity: This guarantees a single switching event per clock cycle

and gate output. During each clock cycle either a gate output in the direct path

switches or the corresponding gate in the complementary path.

2. Constant load capacitance: The capacitive loads driven by the gates in the direct path

is equal to the load driven by the gates in the complementary path.

There are different flavors for DDL style proposed on FPGAs. The following gives a

brief overview.

4.1.1 Wave Dynamic Differential Logic (WDDL)

WDDL proposed by Tiri in 2004 [9] is being used successfully for secure cryptographic

implementations in ASICs. It is an all positive logic which guarantees one transition per

clock cycle. A precharge circuit is added only at the register outputs and system inputs.
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Inverters are implemented by cross connecting the outputs of direct and complementary

circuits. This DDL allows for a logic 0 wave to pass through the entire combinational logic

hence, the name ”wave” is added. An example of WDDL Nand gate operation is shown in

Fig. 4.1

O

CLK

A

B

O

ONE SWITCHING EVENT PER CYCLE

PRE−CHARGE PHASE EVALUATION PHASE

Figure 4.1: WDDL Nand Gate Operation

Recent implementation results of WDDL on FPGAs show two major drawbacks of

this technique [43]. WDDL requires the use of glitch free positive logic and duplication,

which leads to an increase in area consumption of more than a factor five over a single

ended (unprotected) design on FPGAs. Furthermore, balanced load capacitances cannot

be guaranteed on an FPGA because the required cross connections between the direct and

the complementary logic lead to unbalanced paths.

Guilley et al. in [44] evaluates methods which reduce the size of WDDL implementations

on FPGAs. They were able to reduce the size of a WDDL implementation of Triple DES

by 23% [45] through new synthesis methods. However, this design is still much larger than

a single ended design due to the use of only positive logic as required by WDDL. Current

FPGA tools can not produce net lists with only positive logic, hence Guilley uses ASIC

tools and a special ASIC library containing hundreds of cells.

The power dissipation of a Xilinx Virtex II FPGA consists to more than 60% of power
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consumed by the routing resources [46]. This illustrates that it is important to balance

the paths of the direct and complementary logic. As this is not a trivial problem on

FPGAs, masking schemes have been proposed specifically to overcome the routing prob-

lem [47]. However, it has been shown in 2005 that circuits protected only by masking are

not secure [8]. Later publications demonstrated that masking does not remove the need for

balanced routing in WDDL designs [48,49].

The impact of current place-and-route methods on the security of a WDDL design was

explored in [50] with respect to balancing the timing delays. In [51] the authors propose

a new switch box design for FPGAs that enables balanced routing and is secure against

power as well as EM attacks.

4.1.2 Double Wave Dynamic Differential Logic (DWDDL)

Double Wave Dynamic Differential Logic (DWDDL) proposed by Yu et al [52] has all the

characteristics of WDDL logic style. The difference between original WDDL and DWDDL

is that both direct and complementary gate of DWDDL is a full WDDL gate by itself. Due

to this reason we can have a much relaxed placement constraints and unconstrained routing

of individual WDDL module. However, it leads to an area increase of more than eleven

times.

4.1.3 Separated Dynamic Differential Logic (SDDL)

SDDL, also proposed by Tiri in 2004 [9], allows the use of negative logic thus making it more

flexible than WDDL. However, each time negative logic is used a precharge circuit should

be added because negative logic stops the precharge wave. Thus, unlike WDDL, SDDL

needs precharge circuit to be added not only at register outputs and at system inputs but

also a every gate output. In ASIC circuits this leads to an increase in the area compared

to WDDL. Unfortunately SDDL is not considered secure as WDDL because negative logic

can produce glitches therefore SDDL cannot guarantee one switching event per clock cycle.

An example of SDDL Nand gate is shown in Fig.4.2.
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Figure 4.2: WDDL vs SDDL Nand Gate

4.1.4 Isolated Wave Dynamic Differential Logic (iWDDL)

In the paper [53] the authors propose a new variant of WDDL called Isolated WDDL

(iWDDL). iWDDL allows the usage of negative logic there by removing the requirement of

cross connections between the direct and complementary circuits. An example of iWDDL

xor gate is shown in Fig 4.3. The following steps are taken to modify the circuit if any

negative logic found in the LUTs.

• The Boolean equation form the LUT function is extracted from the netlist.

• If an input variable is inverted within the Boolean expression, this variable is renamed

and treated as a new input to the function.

• The Boolean equation is rewritten in terms of the original inputs and the new inputs.

The equation is now in positive monotonic form, and the original LUT is replaced

with hazard-free LUTs implementing this new equation.

• Inverters are used to create the new variables from the original inputs, but the inverter

outputs are registered before connecting them to the new LUTs. These extra registers

will prevent the inverters from halting the precharge wave, because the output of each

register is precharged. As the inputs to the LUTs are modified additional measures

are taken to insure proper functioning of the circuits by adding registers.

After the completion of above steps the circuit or the design is now precharged, comple-

mented and duplicated to produce direct and complementary circuits. Because the design
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Figure 4.3: Isolated WDDL

flow isolates the negative logic, this type of hiding countermeasure is termed as Isolated

WDDL. The authors state that they were able to achieve a moderate level of security

(approximately 20,000 MTD required to attack Whirlpool Cipher) but the area gain was

approximately 5 times to that of single ended design.

4.1.5 Balanced Cell based Dual-rail Logic (BCDL)

Introduced by Nasser et. al. in [54], Balanced Cell based Dual-Rail Logic (BCDL) is a type

of DDL style, which overcomes the ”Early Propagation” vulnerability prevalent in such

logic styles by using a specific synchronization mechanism. BCDL follows two basic rules:

• A synchronization scheme is added to all logic gates (both at the input and output)

before these gates enter either precharge or evaluation phase.

• Synchronization is performed on all inputs i.e. both true and false.

In order to induce the precharge state between each cell of the circuit, the global

precharge signal is ANDed with the output of a memory cell called ”C-element”. This

is the actual precharge signal send to each cell of the circuit. When this signal falls to logic

’0’ the circuit enters precharged state, and when it is logic ’1’ evaluation phase occurs. An

important point to note here is that the C-element outputs a logic ’1’ only when all the

signals have left precharge state. To guarantee that no local early evaluation phase occurs
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at the LUT level, the precharge signal is used as one of the inputs to the LUTs. Due to

this there are no glitches, no local early evaluation or precharge, and reduction of techno-

logical bias effects in BCDL.Another important aspect of BCDL is that it is not confined to

use only positive logic unlike WDDL. The authors also managed to speed up their BCDL

implementation by varying the clock with uneven duty cycle.

BCDL is also immune to fault and set-up violation attacks. The authors were able to

achieve a security gain of 2̃0 over an unprotected AES implementation compared to a BCDL

protected AES implementation. The experiments were carried out using Altera Stratic IV

FPGA.

4.2 Proposed SDDL Model

In our proposed SDDL model FPGA CAD tools are given the maximum flexibility to

optimize a given design for the target FPGA. Such an optimized design will allow logic

packing in LUTs and also make use of all the intrinsic features present in the FPGA. In this

chapter we are exploring the usage of Wide Dedicated Multiplexer (WDM). Using WDMs

reduces the area consumed by our design however, their effect on DPA resistance has not

been explored yet. SDDL for FPGAs makes use of the following assumptions

• The wire connecting the LUT and the flip-flop/latch will not leak any information.

• The wire connecting two slices in the same CLB will not leak any information.

• Any wire between CLBs i.e. wire connecting a slice in one CLB to a slice in another

CLB will leak information.

Our proposed SDDL for FPGAs model is shown in Fig. 4.4

4.2.1 Pre-Charge

Pre-charge insertion is done using the technique introduced by Yu and Schaumont in [43].

An FPGA consists of programmable elements, so called Configurable Logic Block (CLB),
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Figure 4.4: SDDL For FPGAs – Model

and a network of programmable interconnects. In Xilinx Spartan 3 FPGAs a CLB is com-

prised of four slices, each containing two look-up tables (LUT) and two storage elements

that can be used as either flip-flops or latches. It also contains two wide function multiplex-

ers, fast carry logic and other miscellaneous elements. A flip-flop/latch is following every

LUT. The pre-charge circuit which is implemented using an asynchronously cleared latch

forces the output of the LUT to logic 0 during the pre-charge phase as shown in Fig. 4.4.

If a flip-flop is already used in the design then the pre-charge circuit should be inserted in

a slice as near as possible to the flip-flop so that the routing between the two slices is kept

at minimum.

4.2.2 Duplication

The first step in creating the complementary path is duplication of the original path. Before

this can be done, appropriate CLB locations for the duplicate design must be chosen such

that they have the same routing resources as the original design. Then the original design is

copied (including routing), the components and nets are renamed and moved to the chosen

locations.
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4.2.3 Complementing the Logic

The complemented path should produce outputs inverse to that of the direct path. If f(x)

is the equation which defines a LUT in the direct path, then it’s complimentary equation

g(x̄) is given by

g(x̄) = f(x̄) = f(x) (4.1)

This principle is indicated in Fig. 4.4. WDMs use LUTs and slice internal multiplexers.

Equation 6.1 holds for LUTs however, for the slice internal multiplexers only the select lines

should be inverted.

4.2.4 Secure Design Flow

Our design flow for implementing SDDL on FPGAs uses Xilinx ISE Design suite 10.1 and

Perl scripts. It consists of three phases as show in Fig 6.5.

In the first phase, the single ended design is synthesized and implemented. Area con-

straints are applied which limit the design to one section of the FPGA fabric. It also

specifies that the locations near registers should be left empty as they will be needed to

insert pre-charge in the next phase.

In the second phase, the circuit description file from the first phase is converted into

ASCII representation format with help of XDL (Xilinx Design language) tool . Perl scripts

interpret the XDL file and insert pre-charge. Subsequently only Place and Route is executed.

In the third phase, the I/O connections are removed and the design is converted into

XDL format. Perl scripts duplicate and complement the original circuit resulting in an

SDDL implementation. However, as the I/O pins are still disconnected, and all the routing

has to be preserved, we use re-entrant routing only.
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4.3 Test Circuit Implementation and Attack

4.3.1 Test Circuit

The Advanced Encryption Standard (AES) [42] is one of the most widely used block ciphers.

It was designed to be resistant towards linear and differential cryptanalysis. However,

unprotected AES hardware implementations are susceptible to DPA attacks. The test

circuit for our proposed SDDL model is shown in Fig. 8.5. It consists of some of the main

building blocks of AES i.e. SBOX and key XORing. The test circuit allows us to replicate

a DPA attack on AES on a smaller scale. An 8-bit LFSR is used to supply inputs to the

SBOX. The output of the SBOX is XORed with key and stored in register FF1. The dashed

line in Fig. 8.5 indicates the part of the circuit that we want to protect. The register FF2

drives the outputs of the chip and is implemented in I/O blocks (IOB).
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4.3.2 SBOX implementations

The AES SBOX maps 8 input bits to 8 output bits using a substitution table. The Xilinx

tool implements this function by default as a mixture of boolean logic and multiplexers.

The usage of WDMs and the maximum size of the multiplexers can be controlled by the

Xilinx ISE tool.

Each CLB is associated with one switch box which provides connections to the routing

resources. An exception to these are local interconnections, so called fast interconnects,

that exist between slices and between CLBs. These interconnects are used to create WDMs

with sizes upto 32:1. Multiplexer of size upto 4:1 are supported within a single slice.

In our design we explore two AES SBOX implementations one using only 4:1 multiplexers

and the other using 16:1 WDMs. The output of a 4:1 multiplexer can be pre-charged within

the same slice. On the other hand, the 16:1 WDM consists of 4 slices and only the output of

the last slice can be pre-charged. The input LUTs to the WDMs can contain negative logic

and hence might produce glitches and disrupt the pre-charge wave. These signals travel

through local interconnects and might make this design susceptible to DPA attacks. This

leads to a tradeoff between security vs area.

4.3.3 Experimental Setup

We implemented our designs on a Xilinx Spartan 3e starter board containing a XC3S500eFG320-

4 FPGA. We removed the capacitances of the core voltage net and connected it to an ex-

ternal regulated power supply. Power consumption is measured using a Tektronics CT-1

current probe and an Agilent DSO6054A oscilloscope, which has a bandwidth of 500MHz
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Powerguess = HD
(
lfsr − output(i−1), (SBOX−1(Keyguess ⊕Output))i

)
(4.2)

Powerguess = HD
(
0x00, (SBOX−1(Keyguess ⊕Output))i

)
(4.3)

and samples at 4GSa/sec.

4.3.4 Attack Methodology

We use correlation attacks to test the effectiveness of our design [41]. The power model

for the single ended cases is given by Equation 4.2. It calculates the Hamming distance

between the previous output of the LFSR and the estimated following output. We estimate

the following output of the LFSR for all possible key guesses. We use a different power

model to mount a DPA attack on SDDL designs, given by Equation 4.3. The pre-charge

phase sets all logic outputs to 0 therefore, the Hamming distance is computed between 0

and the estimated outputs of the LFSR for all possible key guesses. This is equal to their

Hamming weight. We use Pearson’s product moment correlation to compare the measured

power and the power model [41].

4.4 Results and Analysis

We have implemented six different designs of our test circuit. MUX-4 SE and MUX-16

SE are single ended implementations of our test circuit which use 4:1 multiplexer and

16:1 WDM for the AES SBOX respectively. MUX-4 SDDL and MUX-16 SDDL are two

symmetrically routed SDDL designs of the said single ended. Table 6.2 shows the results

of our implementations and measurements to disclosure (MTD) of the key.

The MUX-16 and MUX-32 design is much smaller than the MUX-4 design and also has

a shorter critical path delay. Both SDDL designs are little bit more than a factor 2 larger

than the single ended designs. This is due to the fact that the outputs of the flip-flops

need to be pre-charged. This increases the area by one slice per two flip-flops. The delay

of the SDDL designs is roughly 2 times larger than the single ended designs because all

computations have to be performed during the evaluation phase which is half a clock cycle
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Table 4.1: Results of LFSR and SBOX Implementations

Design Slices Delay (ns) MTD

MUX-4 SE 134 9.08 1024
MUX-4 SDDL 283 18.16 > 15, 000

MUX-16 SE 80 7.51 1024
MUX-16 SDDL 166 14.59 > 10, 000
MUX-32 SE 70 8.08 1024
MUX-32 SDDL 148 16.71 > 4, 000

d) MUX−4 SDDL

f) MUX−32 SDDL

e) MUX−16 SDDL

Figure 4.7: Power Traces (5mV/div, 1µs/div)

in length.

Figure 6.9 shows the power consumption traces for all SDDL designs. The single ended

wave forms have their peak near the rising edge of the clock. The SDDL designs show lower

peaks during pre-charge phase and higher peaks during the evaluation phase. It can also be

clearly seen that the peaks of both SDDL designs are more uniform compared to the ones

of the single ended. Therefore they are less correlated to the data being processed. This

suggests that the SDDL designs are more difficult to attack.

We used a fixed 8-bit key value of 174 for all designs. The correlation plots between
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Figure 4.8: DPA Attack on MUX-4 SE Implementation
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Figure 4.9: DPA Attack on MUX-16 SE Implementation

power guess and power measured for the MUX-4 SE implementation (Fig. 4.8), the MUX-16

SE implementation (Fig. 4.9) and MUX-32 implementations taken over 1024 Measurements

To Disclosure (MTDs) show a sharp peak at the key guess 174. Therefore both single ended

designs were broken.

The correlation plots for the SDDL design did not show a definite peak after 1024

measurements. Therefore, we had to take multiple sets of measurements. We were able

to obtain the key for MUX-32 implementation in 4000 MTDs, MUX-16 implementation

in 10,000 and MUX-4 implementation in 15,000 MTDS. This is difference in MTDs be-

tween the implementations is due to reason that large part of the interconnections were not
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precharged in MUX-32 as compared to MUX-16 and MUX-4 type implementations. Sim-

ilarly, some part of the interconnections were not precharged in MUX-16 implementations

as compared to MUX-4 implementations. All the interconnections are fully precharged in

MUX-4 implementation.

4.5 Conclusions

Our results show that it is possible to apply Dynamic and Differential logic styles to low

area implementations on FPGAs. Our SDDL can still be broken mainly due to glitches.

We also conclude that Wide Dedicated Multiplexers should not be used in conjunction with

SDDL. Our results show that we were able to achieve a moderate level of security by using

our design flow at an area increase by a factor of just greater than 4 (MUX-32 SE vs MUX-4

SDDL).
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Chapter 5: DPA on BRAM and BRAM with DDL

5.1 DDL with BRAMs

Several features of BRAMs indicate that their use might lead to implementations that

are more resistant to DPA attacks than implementations using other resources such as

LUTs or Distributed RAMs. One such feature is that BRAMs are glitch free. Glitches

are unexpected output transitions due to hazards, resulting from combinational logic gates

delays and routing delays. Therefore, glitches are data dependent and influence the dynamic

power consumption. This results in information leakage which can be exploited by DPA.

Implementations of the AES 8x8 S-Box (table with 256 8-bit entries) using LUTs occupy

nearly 64 slices, similarly an 8x32 T-Box (table with 256 32-bit entries) occupies about

256 slices. Both implementations exhibit glitches. On the other hand, two of these S-Boxes

or even T-Boxes can fit in one single BRAM. Therefore, it is common practice to use BRAM

implementations in order to conserve slice area. This area reduction leads to less utilization

of corresponding routing resources, which eventually helps avoiding glitches. Furthermore,

BRAM cells do not have any combinational path from address to the output, hence they

don’t propagate glitches. In addition the output ports are latched with a self-timed circuit

providing glitch-free read operations.

The second feature is that BRAMs consist of fast static SRAM cells. Konur et al. [55]

explain in detail the structure of an SRAM cell, its operation and leakage power consumption

during memory read and write operations. After preforming various experiments, they

concluded that power consumed by SRAM cells during memory read operations remains

almost the same, irrespective of reading ’0’ or ’1’. Therefore, using a BRAM as a ROM

should provide higher security against power analysis attacks than using combinational

logic.
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The main research focus of this chapter is to verify whether BRAMs in DDL implemen-

tations enhance or diminish their security. We propose several implementation techniques

which facilitate the use of BRAMs in DDL implementations in Sect. 5.1.1. We test our de-

signs on a circuit which uses basic functional primitives of the AES block cipher (Sect. 5.1.2)

and analyze our results in Sect. 6.4.

5.1.1 Implementation Options

In this section we describe several implementation options for precharging the output of

LUTs, flip-flops, and BRAMs.

One Clock Cycle Operation

In this method, the precharge and evaluation phase share one clock cycle. The evaluation

phase is defined by the ”low” clock signal and the precharge phase by the ”high” clock

signal. This allows flip-flops to clock in new data at the rising edge of the clock as this is

the transition from evaluation to precharge. The advantage of the one clock cycle operation

is that the precharged circuit can be clocked with the same clock signal clk as external

non-precharged circuits. The Pre input of the circuits in Fig. 5.1–Fig. 5.3 is connected to

the clk signal.

In order to precharge the output of a LUT we use the technique proposed in [43]. The

flip-flop following the LUT is configured as an asynchronously cleared latch. It forces the

output of the slice to logic ’0’ during the precharge phase as shown in Fig. 5.1.

We precharge the output of a flip-flop in a similar manner and connect the flip-flop

output to an asynchronously cleared latch (Fig. 5.2). Because the flip-flops within a slice

share a common enable, clear, and clock input, we have to use a flip-flop of a different slice

for the precharge latch. In earlier experiments [56] we discovered that connections within

a CLB do not leak any exploitable information, however, connections between CLBs do.

Therefore, we place the precharge latch in a flip-flop within the same CLB as shown in [27].
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Unfortunately we cannot use the approach that we used for LUTs and flip-flops to

precharge BRAMs If we use a precharge latch for a BRAM, wiring resources would be used

to connect the non-precharged BRAM output to a CLB. This leads to information leakage.

Nassar [54] uses a bit of the address to select a region of memory in which all data values

are ’0’. We use the MSB of the address for this as shown in Fig. 5.3. However, this doubles

the memory usage within a BRAM which might not be feasible for memory demanding

applications.

Therefore, we developed the precharge circuit shown in Fig 5.4 which does not double

the memory usage. The outputs of the BRAMs are cleared to logic ’0’ by connecting the

clock of the circuit to the synchronous set/reset (SSR) inputs of the BRAM. In both cases

we have to operate BRAMs at twice the clock frequency (Dclk) compared to the rest of

the circuit. One rising edge of Dclk resets the outputs of the BRAM to ’0’, the following
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releases the data stored at the address given in the previous Dclk cycle. This introduces

a delay for the address by one Dclk cycle which we compensate for with a flip-flop. The

flip-flop output is connected using leaky wiring resources to the BRAM, however, as can

be seen in Fig. 5.4 this signal is precharged. Even though this precharge occurs during the

evaluation phase this does not violate the goal of constant switching activity. The contents

of the BRAMs are complemented using Eq. (5.6).

BRAM(addr) = BRAM
(
addr

)
(5.1)

Two Clock Cycle Operation

In this method, each phase, precharge and evaluate, takes a full clock cycle. Therefore, the

precharged circuit has to run at twice the clock speed of external circuits. The precharge
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Table 5.1: Implementation Results of our Test Design

4 input Minimum Security
Design Slices FFs LUTs BRAMs Delay MTD Gain

1. SE design w/o BRAM 82 24 155 0 8.088 ns > 450 1
2. SE design with BRAM 23 16 27 1 5.710 ns > 7, 000 15
3. SDDL w/o BRAM 283 80 502 0 18.352 ns > 10, 000 22
4. SDDL with SSR 1 CC 51 100 54 2 16.138 ns > 27, 000 60
5. SDDL with Address 1 CC 51 100 54 2 16.138 ns > 27, 000 60
6. SDDL with SSR 2 CC 51 100 54 2 8.069 ns > 27, 000 60
7. SDDL with Address 2 CC 51 100 54 2 8.069 ns > 27, 000 60

signal Pre reflects the phases and is low for one clock cycle and high for one clock cycle.

The circuit for precharging the output of a LUT shown in Fig. 5.1 does not need to

change for this method. Only the Pre input needs to be connected to the Pre signal. As we

have now one full clock cycle for each phase, we can simplify the precharge circuit for flip-

flops by just adding another flip-flop instead of a latch as shown in Fig. 5.5. The placement

constraint we had for flip-flop precharge can now be relaxed as all signals are precharged.

FF
1

FF
2 Out

Fout

clk

In

Pre

Out

Fout

In

Eval PrePreEvalPre

clk

Figure 5.5: Flip-Flop with Precharge Using Single Clock

For precharging the BRAM outputs in this method the circuits shown in Fig. 5.3 and

Fig. 5.4 apply. However, the Dclk input must be connected to the clk signal and the Pre

input to the Pre signal.

5.1.2 Test Setup and Attack Method

The Test Design circuit consists of a synchronous (Sync.) S-Box whose input is connected

to an 8-bit LFSR and output is XORed with an 8-bit Key. The result is stored in a
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register. The block diagram of this circuit is shown in Fig. 5.6(a). The Sync. S-Box can

be implemented using look-up tables and a register as in Fig. 5.6(b), or a BRAM as in

Fig. 5.6(c). The later option absorbs the register. The “Pre” blocks indicated in Fig. 5.6

are implemented using the different precharge options discussed in Sect. 5.1.1. We use the

term Single Ended (SE) design to refer to the unprotected designs in this paper. In order

to implement the SDDL versions of the SE designs we use the secure design flow described

in [27]. It describes the step-by-step process of precharging, duplicating and complementing

the logic. In our attacks we use Pearson’s correlation to correlate instantaneous power

consumption with hamming distance model [41]. The hamming distance equation for the

attack on single ended implementations is shown in Eq. (5.2) and for SDDL implementations

65



in Eq. (5.3).

Pest. = HD(lfsr(i−1), SBOX
−1(kguess ⊕Qi)) (5.2)

Pest. = HD(0x00, SBOX−1(kguess ⊕Qi)) (5.3)

Attack point 1, indicated in Fig. 5.6 by arrow 1, is the precharged output of the LFSR.

At attack point 2 data arrives half a clock cycle later than at point 1 during single cycle

clock operation. In case of two clock cycle operation the data arrives at point 2 one clock

cycle later compared to point 1. Hence, in order to attack the design at point 2 appropriate

adjustments must be made while correlating the data with the power models.
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Figure 5.7: SE Design with BRAM
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Figure 5.9: SDDL Design with SSR, Attack Point 1, 1 Clock Cycle
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Figure 5.10: SDDL Design with SSR, Attack Point 1, 2 Clock Cycles

5.1.3 Results and Conclusions

Table 5.1 compares the results of SE designs with several SDDL implementations with

regards to area consumption, speed and Measurements to Disclosure (MTD) of the key.

The results for MTD were obtained from the plots.By comparing the MTD of the key

between between the SE Designs 1 and 2, it is clear that BRAMs provide some inherent

resistance against DPA attacks. All SDDL implementations of Design 2, namely Designs

4–7, have a 4 times higher MTD compared to the unprotected Design 2. Furthermore, they

are more secure than Design 3 which is also an SDDL implementation but does not use

BRAMs. We note that there is no difference in security between using address or SSR to

force the BRAM output to ’0’ during precharge as can be seen from Fig. 5.9 and Fig. 5.12.
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Figure 5.11: SDDL Design with SSR, Attack Point 2, 1 Clock Cycle
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Figure 5.12: SDDL Design with Address, Attack Point 1, 1 Clock Cycle

Hence, we can conclude that lowering memory usage by using SSR does not impact security

in a negative way. At attack point 2 the output of the flip-flop is precharged during the

evaluation phase and the data evaluates during precharge phase. At attack point 1 the data

follows the phases normally. Fig. 5.9 and Fig. 5.11 show that this has no impact on security

as the MTDs at both points are equivalent.

We proposed and analyzed different implementation techniques for using BRAMs in

DDL designs. Our results indicate that DDL implementations with BRAMs increase the

MTDs by a factor 4 over unprotected designs which use BRAMs and a factor 2.5 over DDL

implementations which do not use BRAMs.
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5.2 DPA on BRAMs

Experiment Designs

We implemented several designs varying the utilizations of LUTs, Distributed RAMs and

BRAMs. Our designs are divided into two groups, small scale implementations (Test De-

sign) and real world implementations (AES-128 cipher). The advantage of small scale

implementations is that they are very easy to control, manipulate and analyze. Our Test

Design is similar to designs used by Yu et al. [43] and Velegalati et al. [56] for WDDL and

SDDL countermeasures respectively. The Test Design incorporates essential components

of the block cipher AES. The real world implementations are of the AES-128 bit cipher

[42] with a standard S-Box design and a T-box design. Analysis on larger-scale/real-world

implementations allows us to relate and confirm whether the use of BRAMs leads to more

DPA resistant implementation.

5.3 Small Scale Design (Test Design)
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Figure 5.13: Block Diagram of Test Design

The Test Design circuit consists of a synchronous (Sync.) S-Box whose input is con-

nected to an 8-bit LFSR and output is XORed with an 8-bit Key. The result is stored in
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register FF2. The block diagram of this circuit is shown in Fig. 5.13. A Sync. S-Box is an

S-Box followed by a register. It can be implemented using look-up tables and a register,

Distributed RAMs or a BRAM. The later two options absorb the register. A Sync. XOR

is an XOR gate followed by a register. In order to implement a Sync. XOR using BRAMs,

the logic gate is replaced by a precomputed look-up table. We attack the design at the

output of the LFSR.

The hamming distance equation for this attack on single ended implementations is shown

in Eq. (8.1) and for SDDL implementations in Eq. (8.2).

Pest. = HD(lfsr(i−1), SBOX
−1(kguess ⊕Qi)) (5.4)

Pest. = HD(0x00, SBOX−1(kguess ⊕Qi)) (5.5)

Basic Test Design Circuits

We implemented three versions of the Test Design: (1.) S-Box and XOR in LUTs, (2.) ex-

plores the use of Distributed RAMs, and (3.) explores the use of BRAMs for (a) S-Box, (b)

XOR , or (c) both. The post place-and-route results of these seven implementations are

summarized in the top half of Table 8.2.

The best results for minimum area are achieved by design (3a) and (3c). Both designs

implement the S-Box in a BRAM, thus resulting in slice area reduction by over a factor of 5

compared to LUT implementations. Implementing the XOR in BRAM does not lead to any

significant reduction in slice count because 8 XORs consume only 4 slices. Design (3a) and

(3c) are also the fastest designs. The critical path of a LUT based S-Box implementation

consist of multiple LUTs and corresponding connections, leading to a slower design.

The security of a design against DPA attacks is determined by the number of measure-

ments required to recover the key, also known as Measurements To Disclosure (MTD). We

count one encryption as one measurement independent of the number of samples the oscil-

loscope takes during one encryption. The MTDs shown in Table 8.2 indicate the maximum
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Table 5.2: Implementation Results of Basic Test Design

4 input Minimum

Design Slices FFs LUTs BRAMs Delay MTD

1. S-Box and XOR in LUTs 85 24 161 0 7.737 ns > 456

2a. Only S-Box in DRAMs 95 23 191 0 7.727 ns > 256

2b. Only XOR in DRAMs 117 32 219 0 9.115 ns > 256

2c. S-Box and XOR in DRAMs 128 32 247 0 6.695 ns > 256

3a. Only S-Box in BRAM 16 16 29 1 5.710 ns > 13, 000

3b. Only XOR in BRAM 81 16 157 1 8.350 ns > 256

3c. S-Box and XOR in BRAMs 12 8 25 2 5.569 ns > 13, 000

4a. Duplicate of Design (3a.) 26 32 41 2 5.710 ns > 6, 000

4b. Triplicate of Design (3a.) 35 48 53 3 5.710 ns > 3, 000

4c. Quadruplicate of Design (3a.) 44 64 65 4 5.710 ns > 500

4d. Design (3a.) with dummy circuit 101 32 194 1 6.839 ns > 14, 000

5a. SDDL (1.) 283 64 502 0 18.160 ns > 10, 000

5b. SDDL (3a.) 24 64 32 2 19.120 ns > 25, 000

values obained from several independent experiments.

It is clearly visible that S-Box in BRAM implementations (3a) and (3c) have about 26

times higher MTD compared to S-Box in LUTs, hence they provide an increased resistance

against DPA. It is an important point to note that implementing only XOR in BRAM does

not increase the security of the design.

Duplicate Test Design Circuits

The results from basic design implementations show that designs (3a) and (3c) have best

resistance against DPA, occupy least slice area and have minimum critical path delay.

Hence, an argument can be made that the low area consumption which leads to lower

dynamic power consumption might also lead to a higher DPA resistance. Therefore, in order

to verify this claim, we increase the area consumption through replication of the design (3a).

Design (4a), (4b) and (4c) are duplication, triplication and quadruplication of design (3a)

respectively, as shown in Table 8.2. A slight variation is observed in the slice area because
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the control logic of design (3a) is not replicated. From the implementation results shown in

Table 8.2, we observe drastic reduction in MTD due to increase in related logic. However,

replicating design (3a) creates an unfair scenario. It increases the signal strength along with

data dependent power consumption by applying the same data to multiple inputs.

In order to cross-verify these results we created design (4d). In this design, we increased

the area consumption of design (3a) by adding a LUT based S-Box whose inputs are con-

nected to an LFSR with different feedback coefficients. Hence this LFSR produces data

which is independent from the original design. The results of this design in Table 8.2 show

that increasing the area, and with it the total dynamic power consumption, leads to an

only marginally increased DPA resistance compared to design (3a). This confirms that the

resistance to DPA does not depend on the total amount of power consumption but on the

power consumed by related logic.

SDDL for FPGAs on Test Designs

We implemented a countermeasure proposed in [56] against DPA called Separated Dynamic

and Differential Logic for FPGAs (SDDL for FPGAs) on the test designs (1) and (3a) as (5a)

and (5b). SDDL for FPGAs eliminates the correlation between the data being processed

and the power consumption of the circuit by ensuring a constant power consumption per

clock cycle. This is achieved through duplication of the original circuit into direct and

complementary parts. During one half of the clock cycle the inputs to the circuit and the

outputs of LUTs and memory elements in the circuit are pre-charged to logic ’0’. During

the next half of the clock cycle the original computations takes place. Thus guaranteeing

constant switching activity per clock cycle. We followed the design flow described in [56][27]

to implement pre-charge, duplicate and complement of the logic circuits in the test designs

with the exception of BRAMs.

The pre-charge circuit for BRAMs is implemented using the circuit shown in Fig 5.14

which is based on [57]. The outputs of the BRAMs are synchronously cleared to logic

’0’ by connecting the clock of the circuit to the set/reset (SSR) inputs if the BRAM. We
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operate BRAMs at twice the clock frequency compared to the rest of the circuit in order to

compensate for the clock cycle delay indicated by the arrow in the wave form of Fig. 5.14.

The contents of the duplicated BRAM is computed using Eq. (5.6).

BRAMduplicate(addr) = BRAMoriginal

(
addr

)
(5.6)

The last rows of Table 8.2 shows the results for designs (5a) and (5b). The results for the

design (5a.) are from [56]. We observe that implementing SDDL on design (1) increases the

MTD by 22 times. This is less than the improvement achieved by implementing the S-Box

in BRAM (3a). Also the slice area for (5a) is more than 3 times larger than (1) due to

circuit duplication and the addition of pre-charge logic. However, SDDL can also be applied

to the design (3a) which approximately doubles its MTD. The number of BRAMs doubles

but the number of slices is less than doubled. Compared to design (5a), (5b.) improves the

MTDs by a factor 2.5 and needs less than 1/10th the slice area.

5.3.1 AES 128-bit Implementation

Advanced Encryption Standard (AES) [42] is an iterative block cipher that applies a round

function several times. The round function consists of four different transformations: Sub-

Bytes, ShiftRows, MixColumns and AddRoundKey. Each round uses an intermediate key

called “round key” which is derived from the original key through key scheduling.

We have implemented the AES cipher with 128-bit key length and 128-bit wide datapath.

It is an encryption only design with on-the-fly key scheduling and it requires 11 clock cycles
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for one encryption. The SubBytes function is realized through 16 Sync. S-Boxes. The cipher

is implemented in Output Feedback (OFB) mode and can therefore generate new outputs

without requiring new plaintext. This enables us to easily collect multiple power samples

for DPA. The block diagram for this design is shown in Fig. 5.15.
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PT Round Key

Q

CT

128

Figure 5.15: Block Diagram of the AES-128 Test Circuit

We attack the design for one byte of the key at a time at the output of the Sync.

S-Boxes, after the last round of encryption. The equation for calculating the Hamming

Distance is shown in Eq. (5.7) where Q11 is the output of the last round which XORed with

the plaintext PT to produce the ciphertext CT . Because of the OFB mode, the output of

the last round Q11 is the same as the input to the next round Q′
1. The last round does not

use MixColumns.

Pest. = HD(SBOX(CT ⊕ PT ), SBOX(kguess ⊕Q′
1))

Pest. = HD(SBOX(Q11), SBOX(kguess ⊕Q11))

(5.7)

Pest. = HD(0x00, SBOX(kguess ⊕Q11)) (5.8)

From the basic Test Design circuits results we observe that LUT based implementations

and Distributed RAM based implementations have similar results. The reason is that the

distributed RAMs and LUTs are sharing the same chip resources. An AES design using

LUTs only does not fit on our test chip, however, a design using Distributed RAMs does.

Therefore, we compare implementations using Distributed RAMs, BRAMs, and SDDL.
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Standard S-Box Implementation using Distributed RAMs

In design (6a.), the S-Box is implemented using distributed RAMs. The design uses 20

S-Boxes each of size 28x8 (2K bits), 16 S-Boxes performing the SubBytes operation on 16

bytes of data simultaneously and 4 S-Boxes performing the SubBytes operation in the key

scheduling section.

Standard S-Box Implementation using Block RAMs

In design (6b), the Sync. S-Box is implemented using BRAM. We implemented 20 S-Boxes

using 10 partially filled BRAMs in dual port mode. This reduces slice area by approximately

20 · (64 slices) = 1280 slices.

T-box Implementation using Block RAMs

This design was proposed by the authors of AES in [58] for software implementations on

32-bit micro-processors. In 2001, Fischer demonstrated its hardware implementation in

[59]. The T-box design computes one complete AES round just by using look-up tables

followed by a large XOR network. The SubBytes operation and MixColumns operation are

reformulated and implemented as 8x32 look-up tables. The T-box operation with the T-box

equations is explained in [58] and [60]. In design (6c.), the 20 T-Boxes are implemented

using 10 completely filled BRAMs.

SDDL for FPGAs on T-box Implementation

Table 8.3 shows clearly that AES T-box implementation (6c) is more secure compared to

standard AES-128 implementations (6a)(6b). Hence we implemented SDDL for FPGAs

countermeasure on the T-box implementation as design (6d). Design (6d.) consumes ap-

proximately 3.2 times the slice area and twice the number of BRAMs compared to design

(6c.). We use Eq.(5.8) to calculate the Hamming Distance for the SDDL design.
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5.4 Results and Conclusions
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Figure 5.16: Correlation after 1,600 Samples (Design 6a)
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Figure 5.17: Measurements to Disclosure (Design 6a)

The post place-and-route implementation results for all 4 AES designs are shown in

Table 8.3. The results are similar to the corresponding Test Design implementations (Ta-

ble 8.2) which confirms that our Test Designs are an appropriate approximation of a large

scale design. The unprotected/single ended (SE) AES implementations which are utilizing

BRAMs (6b)(6c) have an approx. 9 times higher MTD than the Distributed RAM based

design (6a). At the same time, their slice consumption is 4 times lower at the cost of 10

BRAMs. Applying SDDL to design (6c) doubled the MTD at the expense of 20 BRAMs
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Figure 5.18: Correlation after 16,000 Samples (Design 6b)
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Figure 5.19: Measurements to Disclosure (Design 6b)

and a 3 times higher slice count. Therefore (6d) has an 18 fold increase in security over

(6a) and uses fewer slices.

Table 5.4 shows a comparison of our results with other published secure implementations

on FPGAs. R.P. McEvoy et al.[53] achieves a similar increase in security with iWDDL over

their SE design compared to our results at the cost of more than 4 times increase in area.

iWDDL is deeply pipelined, hence the delay is smaller than of their SE design. Kaps et

al.[27] AES design has an 8-bit datapath and a low MTD. However their security increase for

Partial SDDL as well as SDDL for FPGAs is similar to that of the designs presented in this

paper. Their area increase is 2.3 to 3.1 times. Nassar et al.[54] WDDL implementation of
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Figure 5.20: Correlation after 16,000 Samples (Design 6c)
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Figure 5.21: Measurements to Disclosure (Design 6c)

AES is 4.5 times bigger than their SE design. The delay doubles, which is typical for WDDL

and SDDL implementations. Their BCDL design has the lowest area increase however, it

uses 4 times more RAM and registers than their SE design. BCDL exploits a tradeoff

of ALMs versus RAM. This is similar to our BRAM implementations which exploit the

tradeoff of slice area versus BRAMs. However, our design (6d) uses even fewer slices than

the SE design (6a). The MTD for both WDDL and BCDL designs is the highest reported

on FPGAs so far. However, their increase in security over their SE design is similar to our

designs.

We have shown that just converting an implementation to use BRAMs increases the level
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Figure 5.22: Correlation after 40,000 Samples (Design 6d)
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Figure 5.23: Measurements to Disclosure (Design 6d)

of security against DPA attacks. We expected this result from the fact that BRAMs are

glitch free and their power consumption during read operations remains almost constant [55].

We have also shown that BRAMs can be used with the SDDL for FPGAs to further increase

the security. The total security gain over our unprotected (SE) LUT only implementation

is similar to that achieved by other research groups.
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Table 5.3: Summary of Implementation Results from AES-128 Designs

4 input Minimum

Design Slices FFs LUTs BRAMs Delay MTD

6a. AES-128, DRAMs 1,727 422 3,374 0 15.876 ns 300-1,300

6b. AES-128, BRAMs 412 262 787 10 13.875 ns > 9, 500

6c. T-box AES-128, BRAMs 370 262 705 10 13.461 ns > 11, 500

6d. SDDL of (6c.) 1,236 518 1,410 20 26.922 ns > 23, 000

Table 5.4: Comparison with Other Published Results

Delay Security

Authors Technology Implementations Area (ns) MTD Gain

Nassar et al. Stratix II SE 1,078 ALMs 13.91 8k 1

[54] +40 Kb RAM

AES-128 WDDL 4,885 ALMs 26.97 > 150k 20

BCDL 1,841 ALMs 19.74 > 150k 20

+160 Kb RAM

McEvoy et al. Spartan 3E SE 761 Slices 19.50 1k 1

[53] Whirlpool iWDDL 3,300 Slices 7.70 > 20k 20

Kaps et al. Spartan 3E SE 393 Slices — 500 1

[27] AES-128 Partial DDL 928 Slices — > 12k 24

SDDL for FPGAs 1,222 Slices — > 12k 24

This Paper Spartan 3E S-Box DRAM 1,727 Slices 15.88 300- 1.3k 1

AES-128 S-Box BRAM 412 Slices 13.88 > 9, 500 7

+10 BRAMs

Tbox BRAM 370 Slices 13.46 > 11, 500 9

+10 BRAMs

SDDL Tbox BRAM 1,236 Slices 26.99 > 23, 000 18

+20 BRAMs
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Chapter 6: Partial Dual Rail with Precharge Logic

In this chapter we introduce Partial DDL, propose principle design rules of Partial DDL,

and show its effectiveness in terms of area saving and DPA resistance through a proof-of-

concept implementation of a lightweight AES design using SDDL for FPGAs and comparing

it with one using Partial SDDL for FPGAs.

The rest of the chapter is structured as follows. Section 6.1 explains the concept of

Partial DDL and the principle rules for implementing Partial DDL. The secure design flow

for implementing Partial DDL on FPGAs is described in Section 6.2. Next, in Section 6.3 the

lightweight implementation of AES, the attack methodology, and the design considerations

for AES Partial SDDL are discussed. In Section 6.4 we present the implementation results

secured AES using Partial SDDL. Section 9.5 concludes the chapter and discusses future

research perspectives related to Partial DDL.

6.1 Partial DDL

Partial DDL describes the notion that DDL is applied to only a part of the cryptographic

implementation. Consider the block diagram shown in Fig 6.1. The data path of the

cryptographic implementation is divided into two parts, Data Path Protected and Data

Path Unprotected. DDL is implemented only on the protected data path splitting it into

a direct and a complementary part (indicated as DataPath). DDL is not applied to the

unprotected path and the control block of the implementation. It is already a common

practice [44,50] to not protect the control logic as it manipulates only public information of

the algorithm. The protected and unprotected data paths are interconnected but there is

no connection between the complementary data path and the unprotected data path, shown

as crossed out line in Fig 6.1. The advantage of Partial DDL is that the area overhead is
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reduced (2 x protected data path) compared to the area overhead incurred due to applying

DDL over the entire design. The drawback of Partial DDL is that the power consumption

will not be as constant as when DDL is applied to the entire data path.

Unprotected
Data Path

Controller

Data Path
Protected

Data Path
Protected

(complementary)(direct)

Figure 6.1: Block Diagram of Partial DDL Implementation

6.1.1 Partitioning the Data path

The first step in a DPA attack is to choose an intermediate result of the cryptographic

algorithm being executed, which should be a function of input data and the secret key.

Then we calculate the hypothetical power model depending upon these intermediate values.

Some intermediate results are easier to model while others are harder. We partition the

data path depending upon the complexity of these power models. The protected data path

contains the parts of the cryptographic algorithm which are easier to model and thus need to

be protected. The unprotected data path contains the parts of the cryptographic algorithm

which are harder to model, requiring complex statistical test (template attacks etc.) and

much larger number of measurements to disclose the key.

6.1.2 Principle Rules for Partial DDL

We propose the following principle rules for implementing Partial DDL on cryptographic

implementations:

• The cryptographic implementations should be thoroughly analyzed with respect to

DPA and only then the data path should be partitioned.

• The controller and the unprotected data path block should be placed inside the FPGA
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fabric in such a way that the distance of the signals from the control block and the

output signals from the unprotected data path to the direct and complementary part

should be as similar as possible, so that there would not be any delay of operation be-

tween the direct and complementary part. As the routing of these signals is performed

by the FPGA tools in our design flow, we can not control the routing precisely.

• Special care must be taken when connecting the unprotected data path to the com-

plementary circuit. The output signals from unprotected data path should either be

inverted (which will result in additional area consumption) or appropriate changes in

the LUT logic equation must be made. Control signals to the complementary part

should not be inverted.

• Output signals from the complementary circuit either to the unprotected data path

or to the IOBs will be terminated in the slice itself.

We demonstrate the partial DDL approach on a lightweight implementation of AES on

FPGA in the next sections.

6.2 SDDL for FPGA

Our SDDL model [56] is shown in Fig. 6.2. Instead of applying De-Morgan’s law to obtain

the duplicate part we simply invert the inputs and outputs of the original logic gate. This

technique is not suitable for ASICs because placing a inverter on both inputs and outputs

will increase the area consumption. Whereas in FPGAs, we need to modify only the logic

equation in the LUTs, which will not cause any area overhead. FPGA CAD tools are given

the maximum flexibility to optimize a given design for the target FPGA thus, allowing logic

packing in LUTs and also make use of all the intrinsic features present in the FPGA with

the exception of WDMs.
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Figure 6.2: Proposed SDDL Model

6.2.1 Hard-Macro for Register Pre-Charging

During our work on exploring the DPA resistance of WDMs when applied to SDDL [56] we

made the following observations:

• The connection between the LUT and the flip-flop/latch in the same slice does not

leak exploitable information.

• The connection between two slices in the same Configurable Logic Block (CLB) does

not leak any exploitable information.

• Any connection between CLBs leaks exploitable information. This includes even the

fast dedicated interconnects used by WDMs.

Hence the pre-charge circuit for registers should be present in the same CLB so that sensitive

information is not leaked.

Pre-charge circuits are inserted into an SE design using the technique described in [43,

56]. In Xilinx Spartan3 FPGAs a CLB is comprised of four slices, each containing two Look-

up Tables (LUT) which are always followed by two storage elements that can be used as

either flip-flop or latch. The pre-charge circuit is implemented by using an asynchronously

cleared latch to ensure the propagation of the ’0’ wave even if the output of an LUT is ’1’.

If a flip-flop is already used in the design then the pre-charge circuit should be inserted in

a slice from the same CLB so that the routing between the two slices is at minimum. For

designs that use low area resources, it is possible to control the Place and Route (PAR) tool
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to leave the slices present near the registers in the same CLB empty. However for larger

designs, controlling the PAR tool becomes too cumbersome. Hence we use a hard macro to

pre-charge the output of the register.

Pre_Charge
Latch

Pre_Charge
Latch

LUT

SLICE_3

LUT

Pre_Charge
Latch

Pre_Charge
Latch

LUT

LUT

SLICE_1

Flip Flop

Flip Flop

SLICE_0

SLICE_2

Flip Flop

Flip Flop

Figure 6.3: Hard-Macro of Four Flip-Flops with Pre-Charge

Hard macros are block level designs of logic functions that specify how the logic elements

are interconnected and the connections between the components routed. There are 8 flip-

flops in a CLB hence the maximum register length with a corresponding pre-charge circuit

is 4 bits. We created a 4-bit register/pre-charge hard macro (see Fig. 6.3) as it fully utilizes

a CLB and does not restrict the Xilinx router, which larger hard macros would. All registers

in the AES module are a multiple of 4 in length. The dotted lines are the interconnects

between the flip-flops and their corresponding pre-charge circuits. These routes are inter-

slice connections and pass through the switch box.

6.2.2 Duplicating and Complementing

We duplicate the protected data path part only. The duplication and relocation processes

are described in [56].
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If f(x) is the equation which defines a LUT in the direct path, then its complementary

equation g(x̄) is given by

g(x̄) = f(x̄) = f(x) (6.1)

O O
A2 Original

A1

CTRL_SIG

A4

LUT

A2

A1

CTRL_SIG

A4

LUT

Duplicate

Figure 6.4: Controlled Complementing of Logic

Since we do not apply SDDL to the control block of the implementation, the control

signals that are to be connected to the complementary block are not inverted. Creating

inverted control signals causes area overhead. Therefore, care must be taken, so that the

control signals are not inverted in the logic equation, as shown in Fig. 6.4. When connecting

the unprotected data path to the complementary path we follow the same principle.

6.2.3 Secure Design Flow for Partial SDDL

Our design flow for implementing Partial SDDL on FPGAs uses Xilinx ISE Design suite

10.1 and Perl scripts. It consists of three phases, as shown in Fig 6.5.

In the first phase, the single ended design is synthesized and implemented. We apply

area constraints to perform the following tasks:

• Limit the design to one section of the FPGA fabric, keeping other sections empty so

that we can use them to place the complementary path.

• The controller block and unprotected data path part have to be constrained in such a

way that the distance form them to the direct and complementary part are as similar

as possible. This will minimize differences in the arrival time of unprotected data

and control signals and hence ensure that the principles of SDDL on FPGAs are not

violated.
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In the second phase, the circuit description file from the first phase is converted into

ASCII representation with help of the XDL (Xilinx Design Language) tool. Perl scripts

interpret the XDL file and insert pre-charge. Subsequently only Place and Route is executed.

Remove Blocked
Routing

Remove I/O
Connections

Duplicate &
Complement

Place

Re−entrant
Routing

Re−entrant
Routing

Insert Precharge

Bit File
Generation

Manual
Corrections

Synthesis
Translate

Map

Macro
Hard

FF−Pre
VHDL

fail

pass

PlaceBlock

RouteBlock

Net Delay
Checker

Figure 6.5: SDDL Design Flow

In the third phase, the I/O connections are removed and the design is again converted

into XDL format. Our Perl scripts duplicate and complement the protected data path part.

This duplication preserves the routing of the original design. Hence, each gate output in the

original design drives an equivalent load as the corresponding output in the complementary

part. The scripts are also used to link the unprotected data path and all control signals

to the complementary circuit. However, the signals from the I/O pins and all signals

connecting the complementary part to the controller block and unprotected data path are

still not routed. In order to preserve the routing of the original and complementary parts

we use Place and Route in re-entrant routing mode.
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6.3 AES Implementation and Attack Methodology

6.3.1 AES Implementation

The Advanced Encryption Standard (AES) [42] is one of the most widely used block ciphers.

It was designed to be resistant towards linear and differential cryptanalysis. AES is a block

cipher of fixed input size of 128 bits and key length of either 128 or 192 or 256 bits. For our

AES implementation [61] we chose to use a key length of 128 bits. AES applies the same

round function ten times to its inputs during encryption. The round function consists of

four different transformations SubBytes, ShiftRows, MixColumns and AddRoundKey each

changing the input by applying linear, non linear and key dependent transformations. Our

AES implementation also assumes that the data input and the secret key are stored in

memory. The AES transformations are grouped into four stages

1. Initial AddRoundKey-SubBytes-ShiftRows

2. MixColumns

3. AddRoundKey-SubBytes-ShiftRows

4. FinalAddRoundKey

R3

R2

R4

R1

da
ta

bu
s

Data Store

XOR

SBox

Mix Column

Key Gen

Key Store

Control

Rcon

Protected Unprotected

R0

Figure 6.6: Block Diagram of AES Module
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The data path of our AES implementation is shown in Fig. 8.6. It is characterized by a

pipelined architecture for stages 1 and 3. This enables us to re-use registers and minimize

the number of internal memory accesses which in turn reduces the number of clock cycles.

Five registers R0, R1, R2, R3, R4 are used of which R0 is used exclusively for RotWord

operation. R1 is used for key computation and state computation inMixColumns operation,

R2, R3, R4 are used for state computation. The boxes labeled as Key store and Data store

are 128 bit registers used for Round keys and State Memory respectively.

In order to provide different plain text and key as input to the AES module we built

a wrapper circuit, as shown in Fig. 6.7. A 128-bit Linear Feedback Shift Register (LFSR)

provides input data to the AES module. An 8-bit wide 32:1 multiplexer is used to select

data or key depending upon the address from the AES module.

COUNTER

128−bit LFSR

SECRET KEY

AES

MODULE

ADDRESS
LINES

DATA
IN

RESET

CLOCK

128

1

8 DATA OUT

8

5

Figure 6.7: AES Module With a Wrapper Circuit

6.3.2 Design Consideration for AES- Partial SDDL

The implementation of the single ended AES design (AES SE) consumes 393 slices ex-

cluding the wrapper circuit. Table 6.1 breaks down the area consumption of AES into its

components. The pre-charge design is the result of the second step of our SDDL design

flow.

Pre-charging increases the slices consumed by a register by factor 2. In our design we

substituted the registers with the hard macro. For example the data store register which

is 128-bits in length can be implemented in 64 slices in the SE design. After pre-charging
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Table 6.1: Estimated Slice Consumption of Individual Components in AES

Slice Count
AES-Component SE Pre- Partial Full

Design charge SDDL SDDL

Data Store + Mix Columns 106 178 356 356
Key Store + Key Expansion 98 98 98 196
AES Computations 51 71 142 142
SBOX 64 129 258 258
Controller and Address 74 74 74 148

Total 393 550 928 1100

the area consumed by the data store component becomes 128 slices. We restricted our

pre-charged AES design to use only 4:1 multiplexers as our earlier experiments [56] showed

that the use of WDMs leaks information. Due to this restriction the slice consumption of

the SBOX component increases to twice that of the original value.

The third and fourth column in Table 6.1 estimate the slice count for the Partial SDDL

and full SDDL implementations respectively. For the full SDDL implementation the entire

pre-charge implementation is duplicated with the exception of the wrapper circuit. The

Partial SDDL implementation does also not duplicate the Key Store, Key Expansion, Con-

troller, and Address generation units. In summary, SDDL implementations of simple logic

functions incur an area increase of factor 2 due to duplication of logic. This penalty is

increased when the original SE design uses WDMs. The overhead for registers is a factor 4

due to pre-charge and duplication. This greatly effects lightweight implementations which

are severely area constraint.

6.3.3 Attack Methodology

Consider the data flow from R2 to R3 and R4 in Fig. 8.6. Resetting the AES module

changes the data value in these registers to 0x00. In the first clock cycle, the first byte

of the key is loaded into R1. Registers R2, R3, and R4 are not enabled and hence remain

at 0x00. In the second clock cycle the output of the register R3 changes from 0x00 to
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Figure 6.8: Placement of AES Modules on FPGA Fabric

0x63 i.e. SBOX(R2) and the data value in R2 changes to the input data XORed with

key from R1. In the subsequent clock cycle the data value in the register R3 changes

from 0x63 to SBOX(R2). This sequence of change in the data values of the register R3 i.e

0x00 → 0x63 → SBOX(Key ⊕ Inputdata) occurs every time the AES module is reseted.

Thus we know two consecutive data values of a register and can apply the Hamming Distance

(HD) model to simulate the power consumption of the register. Therefore, we use a counter

to reset the AES module after every 10 clock cycles. The power model for the single ended

design is given by Equation (8.3). It calculates the HD between the SBOX value of key

guess XOR data and the hex value of 0x63.

The key register R0 is a probable attack point, although the attack itself will be difficult,

i.e. it will probably require more Measurements To Disclosure (MTD) compared to attacking

the registers R3 or R4. The reason is that we cannot compute an HD model as the key

store register output is always an unknown value (Round Keys). In this case the Hamming

weight (HW) model as shown in Equation (6.4) can be used. In order to attack the register

R0 the adversary has to identify the power consumption levels corresponding to the HW of
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the data being processed. This requires complex statistical testing [62]. Due to this reason

and the fact that the SDDL version of the key store register will cause a large area over

head, we decided not to duplicate the key store register. This is a risk we are taking to

limit the area overhead although the security of the final SDDL design may decrease. We

also decided not to duplicate the controller as it leaks only the public information of the

algorithm. The Controller does not manipulate any sensitive information. Fig. 8.6 shows

the blocks which are pre-charged and duplicated on the left and the unprotected blocks on

the right.

We perform Correlation Power Analysis [41] using Pearson’s Correlation [41,63] in con-

junction with either Hamming Distance model or Hamming Weight model (depending upon

the situation).

Pguess = HD(0x63, (SBOX((Keyguess ⊕ Input))i) (6.2)

Pguess = HD(0x00, (SBOX((Keyguess ⊕ Input))i) (6.3)

Pguess = HD(0x00, (Keyguess)i) = HW(Keyguess) (6.4)

We estimate the output of the SBOX for all possible key guesses and mount a DPA

attack on SE design using Equation (8.3). We use a different power model to mount a

DPA attack on SDDL designs, given by Equation (8.4). The pre-charge phase sets all logic

outputs to ’0’ therefore, the Hamming distance is computed between ’0’ and the estimated

outputs of the SBOX for all possible key guesses.

6.3.4 Placement of AES Modules

The placement of the AES modules of our partial SDDL design is shown in Fig. 6.8. The

SBOX, Data Store, and AES Computation (AES Core) are duplicated and complemented

such that they use the same CLB and routing resources. We placed these closely connected

parts near each other. The location of the controller and the key store register inside the
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FPGA fabric has an impact on the DPA resistance. We placed the control unit close to the

AES Core which it controls. The key store is placed between the data stores as they all

have to communicate with the AES wrapper. It can clearly be seen that it is impossible

to have symmetrical connections from the protected modules SBOX, Data Store, and AES

computation to the unprotected path.

6.4 Results and Analysis

6.4.1 Experimental Setup

The target platform for our designs is a Xilinx Spartan 3e starter board containing a

XC3S500eFG320-4 FPGA. We removed the capacitances of the core voltage net and con-

nected it to an external regulated power supply in order to obtain a clear power mea-

surement. Power consumption is measured using a Tektronics CT-1 current probe and

an Agilent DSO6054A oscilloscope, which has a bandwidth of 500MHz and samples at

4GSa/sec.

6.4.2 Analysis of the AES Test Circuit

We implemented three different designs of our AES circuit. AES-SE is a single ended design

which use 32:1 WDMs. AES-Partial SDDL is the symmetrically routed design of the said

single ended and AES SDDL is a full SDDL implementation. Figure 6.9 shows the power

consumption traces for all three designs. The single ended wave form has its peaks near

the rising edge of the clock. The SDDL designs show lower peaks during pre-charge phase

and higher peaks during the evaluation phase. It can also be clearly seen that the peaks of

the SDDL designs are more uniform compared to the ones of the single ended. The largest

peaks in the waveform of both designs occur when the 128-bit LFSR is clocked.

The key byte which we are attacking is a fixed value of 10 for all designs. The correla-

tion plot between power guess and power measured for the AES SE implementation taken

over 500 measurements shows a sharp peak at the key guess 10, as shown in Fig. 6.10.
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b) AES SDDL

c) AES Partial SDDL

a) AES SE

Figure 6.9: Power Traces (5mV/div, 1µs/div)

Corresponding to Fig. 6.10 is Fig 6.13 in which the blue lines indicate the maximum and

minimum correlations of all key guesses depending on the number of measurements. The

red line indicates the correlation of the correct key over number of measurements. The

point in which the red line crosses the blue line and the red line maintains a clear maximum

constitutes the number of measurements to disclosure of the key (MTD). The correlation

plots for the SDDL designs did not show a definite peak after 500 measurements. Therefore,

we had to take multiple sets of measurements. We obtained a clear peak for the correct key

after more than 12,000 measurements for Partial SDDL as well as for full SDDL as shown in

Fig. 6.14 and Fig. 6.15. The corresponding correlation plots are in Fig. 6.11 and Fig. 6.12.

Table 6.2: Results of AES-Partial SDDL Implementation

Increase in
Design Slices Area over SE MTD

AES SE 393 1 500
AES Partial SDDL 928 2.3 > 12, 000
AES SDDL 1222 3.1 > 12, 000

Table 6.2 shows the comparison of the AES designs and their respective MTD. The
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final AES Partial SDDL implementation is larger than the AES SE by a factor of 2.3. The

area consumption of AES Full SDDL is 3.1 times larger then the single ended design. The

partial SDDL is 76% of the total area consumed by AES Full SDDL implementation. The

security provided by the AES Partial SDDL is 30 times to that of the AES SE design and

similar to the full SDDL implementation. The area consumption of the SDDL designs are

very close to the ones we expected from our estimation in Table 6.1.
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Figure 6.10: AES SE – Key Correlation after 500 Measurements
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Figure 6.11: AES SDDL – Key Correlation after 30,000 Measurements
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Figure 6.12: AES Partial SDDL – Key Correlation after 30,000 Measurements
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Figure 6.13: AES SE – Measurements to Disclosure

6.5 Conclusion

Securing cryptographic implementations using DDL logic leads to a large area penalty. We

have shown through our example implementation of AES using SDDL for FPGAs, that

partial DDL can significantly reduce the area consumption of a DDL implementation by

24%, yet maintain the same level of resistance against DPA. Our Partial SDDL can still

be broken due to glitches and imbalance of power consumption between the direct and

complementary circuits.
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Figure 6.14: AES SDDL – Measurements to Disclosure
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Figure 6.15: AES Partial SDDL – Measurements to Disclosure
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Chapter 7: Glitch Detection using Delay Based Sampling

Techniques

7.1 Introduction & Motivation

It is estimated that an FPGA design consumes overall 10 times more power than a func-

tionally equivalent ASIC design [64]. This disadvantage is emphasized because power has

become a significant design constraint in digital designs due to the demand of portable,

battery-powered devices. If advantages of FPGAs are to be fully exploited, the amount of

power they consume must be reduced or carefully controlled.

In FPGAs and other devices which are manufactured using CMOS technology, the

dynamic power consumption constitutes a large portion of the total power consumption.

Dynamic power consumption is mainly caused by signal transitions at gate outputs due to

charging and discharging of load capacitances (wires, gate inputs) and short-circuit currents.

These signal transitions are further classified into two types: Functional and Spurious tran-

sitions. Functional transitions are the signal transitions necessary to perform the required

logic function. On the other hand, Spurious transitions are glitches, which are the unpro-

ductive signal transitions due to unbalanced path delays at the inputs of a gate, causing the

gate’s output to transition briefly to an intermediate state. If the input signals to a gate are

skewed in time, a glitch may be generated and if a glitch arrives to an input of a gate and

that input is sensitive at that moment, the glitch is propagated to the output of the gate.

Typically, the number of propagated glitches exceeds the number of generated glitches in a

circuit [65].

Glitches in a digital system lead to an increase in the number of signal transitions,

thereby increasing the dynamic power consumption of the system. Consequently, over-

all power consumption is increased. A study conducted on Xilinx XC4003A FPGAs[66]
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indicates that the amount of power consumed by the programmable interconnect can ac-

count for up to 65% of total dissipated power. As a result, glitches occurring in hardware

implementations on FPGAs have a significant impact on power cost.

Hardware implementations of mathematically secure cryptographic algorithms are sus-

ceptible to Side-Channel Attacks (SCA). Differential Power Analysis (DPA) attacks, a type

of SCA, correlates the power consumption of the device with data dependent operations to

obtain the secret information. These attacks are powerful, easy to launch, and are known

to have a high success rate. Glitches, occurring in cryptographic implementations, have

been shown to be a source of side-channel leakage [67,68] and can be exploited to enhance

the success rate of DPA attacks even in presence of side-channel countermeasures especially

hiding countermeasures like Dynamic and Differential Logic (DDL) [8,48,69]. Presence of a

glitch in either direct or complementary paths results in an imbalanced power consumption

per clock cycle, thereby defeating the DPA countermeasure.

Current post Place And Route (PAR) simulations use a generic model for a given family

of FPGAs and hence, do not take the factor of process variation into consideration. Recent

studies in [69–71] show that two designs with identical resources implemented at different

locations but on the same chip have different speed of propagation for the corresponding

signals which suggests that process variations play a major role in signal propagations in-

cluding glitch propagation. The propagation delays in the actual chip can cause signal

arrival time imbalances at a gate that can cause a glitch which was not exposed by simu-

lation. Therefore, only measuring signals of the actual hardware implementation will show

all glitches. Determining the sections of a circuit that are prone to generate glitches, when

measured over several FPGAs, allows the designer to target the application of glitch min-

imization techniques. These measurements are typically made with high quality, fast, and

therefore expensive oscilloscopes.

In this chapter, we propose a methodology for detecting glitches in hardware implemen-

tations on FPGAs using a delay based sampling technique. Our proposed methodology not

only detects the presence of glitches but also captures the glitch waveform, which provides

101



the information about the position and the width of glitches in the design. This information

can be used to design circuits that produce fewer glitches even in the presence of process

variations.

7.2 Previous Work

Several techniques have been proposed in the literature to estimate and minimize glitches

in order to reduce overall dynamic power consumption.

7.2.1 Glitch Estimation Techniques

In [72] a Stochastic glitch estimation method has been proposed, which estimates the prob-

ability of glitch occurrences at the output of a gate by computing the probability of an

interval time (difference of arrival times of inputs at a gate) which is bigger than the de-

lay of that gate. The methodology proposed in [73] obtains the probability of the glitch

occurrence early in the design cycle. In this paper the authors compute the probability of

a glitch at the output of a gate based on the gate’s pattern and propagation probabilities.

The pattern probability is the pattern appearing at the inputs of a gate which causes a

glitch at the output of that gate and the propagation probability is obtained as the number

of pairs of paths out of all possible path pairs that have a delta delay that would cause

a glitch. Symbolic simulation proposed in [74] can be used to estimate switching activity.

This technique uses a variable delay model for combinational logic, which computes the

boolean conditions that cause glitches in the circuit. However, this model has a long run

time.

In [75], the Transition density technique is proposed, which corresponds to average

switching rates for gates in the circuit. This paper provides a technique to calculate the

total circuit switching activity by means of propagation of transition densities and signal

probabilities (the average value of the logic signals over all time) from input nodes to output

nodes. The low-level activity estimation techniques in [76] propose the use of the boolean
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difference function to find the output transition densities of a logic component based on its

input transition density. The techniques in [75] and [76] can be computationally expensive

for large combinational circuits.

The method for modelling glitch activity inside arithmetic circuits using word-level

statistics of signals is proposed in [77] using Glitch Profile metric. This metric is based on

transition density [75] technique. The proposed method models the propagation of glitch

activity in signals through the arithmetic components in circuits.

[78] introduces a glitch capture technology based on FPGA, which uses dual-jump-edge

detection principle. In this principle, the logic level sampled at the beginning of the sampling

period is considered as reference level. During the same sampling cycle, if there is a change

in logic level from the reference level, a glitch is detected. It also provides a technique for

logic analyzer based glitch capture, but it is complex and expensive. Glitch estimation using

statistical techniques can be accurate and can be built around an existing simulation model

but is input dependent. On the other hand glitch estimation using probabilistic techniques

is comparatively not as accurate but faster than statistical techniques [79].

7.2.2 Glitch Reduction Techniques

The basic technique to reduce the occurrence of a glitches is to align the inputs to a gate by

balancing their respective delay paths. GlitchMap [80] is an FPGA technology mapper that

is glitch aware. In this technique glitches are minimized by favoring mapping solutions that

balance Look-Up Table (LUT) levels between different paths. The optimum mapping depth

can be computed during cut enumeration by computing depth of every node and every cut.

The technique proposed in [81] works at technology mapping level in FPGAs. Power can be

reduced by covering connections with high toggle rates within a LUT and minimizing logic

replication. The Gate Freezing [72] technique eliminates glitches by suppressing transitions

until the freeze gate is enabled. This technique is less suitable for FPGAs since the appli-

cations implemented on FPGAs are not known until after fabrication. Glitchless [82, 83]

proposed inserting programmable delay elements into configuration logic blocks (CLBs) of
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FPGAs. After a glitch-unaware routing stage, these delays are used to align signal arrival

times. GlitchReroute [84] proposed an approach to reduce dynamic power in FPGAs by

reducing glitches during routing. It finds alternative routes for early arriving signals so

that signal arrival times at look-up tables are aligned. The authors developed an algorithm

to find routes with target delays and then built a glitch-aware router. [79] presented a

Don’t-care-based synthesis technique for reducing glitch power in FPGAs. This technique

takes advantages of don’t-cares in the circuit by setting their values based on the circuit’s

simulated glitch behavior. [85] proposed a technique to address power dissipation due to

glitches post-routing, where the delays between LUTs are known. Their algorithm reduces

glitches by inserting negative edge triggered flip-flops (FFs) at the output of LUTs of FP-

GAs that produce glitches. This prevents unnecessary logic transitions from propagating to

the general routing network and subsequent LUTs. [86] presents an FPGA-targeted, glitch-

aware, high-level binding algorithm for power and area reduction. In [87], pipelining and

re-timing have been used to balance the path delays and reduce wire toggle rates. The path

balancing [72] algorithm reduces glitches using the statistical gate sizing technique that con-

siders the probability of glitch occurrence and calculates an optimal delay amount of sizing.

In [88], the authors proposed several techniques that attempt to reduce glitching power con-

sumption by minimizing propagation of glitches in the RTL circuit. The techniques include

restructuring multiplexer networks (to enhance data correlations and eliminate glitches in

the control signals), clocking control signals, and inserting selective delays, in order to kill

the propagation of glitches from control as well as data signals.

7.2.3 Delay Based Sampling

Time-to-Digital Converters (TDC) are used in applications where time measurement is

necessary in intervals with precision as high as few picoseconds. The TDC applications

range from time-of-flight sensors to positron emission tomography instruments. On an

FPGA, there are several methods to implement TDCs, the most popular ones are Tapped

Delay Line or Delay Based Sampling [89–91]. The basic logic blocks of FPGAs are arranged

104



internally in a chaining fashion. It is a common design practice to use this chaining structure

to implement FPGA based TDCs. The basic logic blocks of an FPGA are used as buffers

which delay the signal to be measured by certain amount of time. The signal is then

sampled at a fixed clock by using a storage element. The amount of delay incorporated by

the delay element depends upon the basic logic block used. The authors in [89] and [90]

use the carry chain of an Altera Cyclone II and a Xilinx Virtex 5 FPGA respectively as an

delay element, whereas the authors in [91] use Programmable Interconnect Points (PIPs)

in Xilinx Virtex II pro as an delay element. In this paper we use Look-Up-Tables (LUTs)

as a delay elements.

7.3 Glitch Capture Circuit

The LUT is the main resource for implementation logic in FPGAs. Differences in arrival

times of the inputs, the internal structure of the LUT, and the logic equation implemented

by the LUT can lead to the generation of glitches at the output of the LUT. Therefore,

determining the minimum width of the glitches generated in the targeted FPGA becomes the

first step in designing the glitch capture circuit. Figure 7.1 shows the basic implementation

of the design which we used to determine the minimum width of the glitches produced by

internal transitions of the LUT. All the inputs to the LUT are registered to ensure that

there are no glitches at the inputs. The input/output FFs and the LUT are placed within

the same CLB to ensure minimum propagation delay from the output of the FFs to the

input of the LUT. Also, the slices within the CLB are connected via fast interconnects and

not through the slower routing network.

Experiments were conducted by changing the inputs to the LUT and the output of the

LUT was observed for possible presence of a glitch. Since the experiments were conducted

on a four input LUT, there are three different cases which could cause a glitch, namely

changing 2 inputs, 3 inputs and 4 inputs at a time. We tabulated the minimum/maximum

width of glitches observed from the three cases in Table 7.1. We also observed that if the

input FF is placed in an adjacent CLB, the glitches get wider, up to 159 ps for a 4-input
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Table 7.1: Glitches Generated in a Single LUT Based on Input Changes

Minimum Width Maximum Width
Experiment of Glitch of Glitch

2 Inputs Change 16 ps 72 ps
3 Inputs Change 18 ps 56 ps
4 Inputs Change 29 ps 32 ps

change. The reason is the longer route connecting the FF to the LUT via the routing

matrix.

The main purpose of the Glitch Capture circuit is to reproduce the waveform of the

glitch signal. Therefore, to accurately measure the glitch pulse, which has a very small

width with respect to time as shown in Table 7.1, we have to try to design a capture circuit

that has a high enough resolution. The state of a logic signal can be captured by a flip-flop

which is typically driven by a clock. The maximum clock frequency of the Xilinx Spartan-3E

FPGAs is 572MHz (1.74 ns) which is insufficient to capture a glitch. We therefore took the

approach to subject the input signal to a series of n delay stages and sample their output

at the same time resulting in an i-bit long word which represents the waveform of the

input signal. The sampled signal might not capture every transition of input glitch signal.

However, by keeping the sampling delay short, we can increase the accuracy of captured

glitch waveform.
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Figure 7.2: Basic Glitch Capture Circuit

7.3.1 Basic Glitch Detection Circuit

Our proposed basic glitch capture circuit is shown in Fig. 7.2. The propagation delay of a

LUT is utilized to delay the input signal by a tiny period of time. We connected 32 of these

LUTs in a cascaded fashion and the output of each LUT is stored in the FFs. These LUTs

are implemented as pass-through LUT and the input signal to be measured is applied to

the left most LUT as indicated in Fig. 7.2. A LUT-FF pair can be implemented in one

slice therefore, we created a LUT-FF hard macro. The total capture window is computed

using (7.1)

Total Capture Window = 32 · Tdl (7.1)

where Tdl is the total propagation delay of the signal to travel from input of one LUT to

another LUT. It is important to note that the value in the FF0 is the newest value (delayed

by Tdl) and the value in the FF31 is the oldest value (delayed by 32*Tdl) with respect to

time. The Tdl in Spartan 3E FPGA is around 760 ps (max) [92] which is almost 10 times

the largest single LUT glitch.

107



7.3.2 Choosing the Right Placement

Each CLB is associated with programmable interconnect switch box or matrix that connects

the CLB to the adjacent and nearby CLB. The routings inside an FPGA fabric is categorized

according to the distance of the output wire or line. Single lines are bidirectional lines that

distribute signals to the adjacent CLBs. Double lines are bidirectional connected to every

second, and quad lines to every fifth CLB. An exception to these routing resources are the

local interconnects, so called fast interconnects that exist between slices and between CLBs.

These routings are shown in Fig. 7.3

Fast Interconnect

QuadDouble

SingleCLB CLB CLB CLB CLB

Figure 7.3: Routings in a FPGA

These hard macro have to be cascaded with each hard macro utilizing one slice per

CLB so as to ensure symmetrical net delays between any two LUTs kept at a minimum.

Intuitively , Quad lines will have maximum routing between two consecutive LUTs, therefore

we decided to choose between single and double lines. We calculate the minimum routing

between two consecutive LUTs in two directions, Vertical and Horizontal and two different

configurations Single Route and Double Route as shown in Fig.7.4, Fig.7.5, Fig.7.6 and

Fig.7.7

The resultant delays between two consecutive hard macros for the four different con-

figurations are shown in Table 7.2. From the Table 7.2 it is clear that the Single route

configuration in Vertical placement configuration has less delay between two consecutive

hard macros as compared to the other configurations. Hence, we choose the Single Route

configuration and placed the glitch capture circuit vertically in the FPGA fabric.
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Figure 7.4: Single Route in Horizontal Direction

Figure 7.5: Double Route in Horizontal Direction

7.3.3 Resolution Enhancement using DCM

The main drawback of our proposed glitch capture circuit is that the circuit cannot capture

glitches of width less than Tdl. Therefore, in order to enhance the resolution of our capture

circuit we repeatedly apply the same input change to the Design Under Test (DUT) but

each time we start the sampling process a little bit later, i.e., we shift the phase of the

Trigger signal sent to the measurement FFs m times. Consider the timing diagram shown

in Fig. 7.8. DUT Delay is the propagation delay of the DUT i.e., the time it takes for the

DUT Output to become stable and valid after a change at the DUT Input. In order detect

and capture the glitches present in DUT, the initial phase shift value of the DCM should

be chosen in such a way that the Measurement Window includes the DUT delay and shift

the phase of the Trigger signal forward in time i.e., towards right.

We use Digital Clock Managers (DCMs) [92] to produce this phase shift. DCMs are one
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Figure 7.6: Single Route in Vertical Direction

of the fundamental programmable functional primitives of Xilinx FPGAs which provide ad-

vanced clocking capabilities like frequency multiplication and division, duty cycle correction

and eliminating clock skew to name a few. DCMs also have the provision of phase shifting

the input clock signal by a fixed fraction of clock period or incremental amounts. We use

this feature of DCM to improve our capture resolution. The fine phase shift delay (Tps) of

a DCM depends on the FPGA being used but it generally is 1/256 of the input clock or

one fixed delay unit which ever is higher. This feature of fine phase shifting of DCMs is

also used in the state-of-the art Digital Pulse Width modulators [93]. In our design we use

the DCM in Variable Fine Phase Shift mode. The initial value of the phase shift can be

set during FPGA configuration and the phase shift values can be changed during run-time.

Depending upon the input clock frequency of the design, there are fixed number of available

phase shift limits. We can also choose the direction of the phase shift with respect to input
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Figure 7.7: Double Route in Vertical Direction

clock of the DCM.

7.3.4 Glitch Capture Circuit with Calibration

The schematic diagram of the glitch capture with calibration is shown in Fig. 7.9. Data i.e.,

inputs to the Design Under Test (DUT) is send from PC to the circuit via USB. These inputs

are stored in registers Value1 and Value2. DUT is the test circuit which is analyzed for

the presence of glitches. If the DUT is a large design, then we might want to check several

signals (both internal and I/O) for the presence of glitches. In this case, we can multiplex

these signals and feed it to the Glitch capture circuit one at a time. The trigger signal

for the measurement FFs in the Capture Circuit is produced by the Phase module. The

BRAM stores the calibration and the measurement data obtained from the Capture Circuit

which is later sent back to PC via USB for post processing and waveform generation. All
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Table 7.2: Single vs Double, Vertical vs Horizontal

Parameter Delay

Single Route Horizontal 0.502 ps

Double Route Horizontal 0.345 ps

Single Route Vertical 0.278 ps

Single Route Vertical 0.308 ps

DUT Input

DUT Output

Measurement

time

Trigger

DUT Delay

Window
with m Trigger shifts

FF31 FF0

FF0FF31

dl32*T

psm*T

Figure 7.8: Resolution Enhancement Timing Diagram

the modules are controlled by the Control module to ensure correct operation and also to

facilitate communication with the PC. The Pulse Gen. module generates a fast calibration

clock (250MHz or higher) which is then used to produce a pulse signal of known width

required for the on-board calibration process. Before we describe the calibration procedure

we are going to define the terms Sample Matrix and Measurement Matrix. A Sample

Matrix is a n x m matrix filled with 1’s and 0’s to represent the value (Logic ’0’ or ’1’)

of the captured signal at a particular instance of time. The columns (m) of the matrix

represent the data obtained from the measurement FFs of the capture circuit and the rows

(n) represent the data obtained using consecutive trigger signals for measurement with

different phase shift delay (Tps). If the total Tps of consecutive trigger signals is more than

Tdl, then the measured data shifts by one position to the right and remains the same for

the next consecutive trigger signals. The Measurement Matrix will only contain those rows

of which total Tps is less than Tdl. A measurement matrix is a subset of sample matrix
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Figure 7.9: Glitch Capture Circuit with Calibration

and as such there will be several measurement matrices present in a sample matrix. An

example of the measurement matrix is shown in Fig. 7.10. We consider data in any one of

the measurement matrices as a valid captured waveform and we reproduce the waveform

by reading the measurement matrix as shown in Fig. 7.10.

Tps

=Tdli

dlT
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0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 1 1 0 0 000
0 0 1 1 0 0 0
0 0 0 1 1 0 00
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newest

psn*Ti

0 1 2 53 4 76 Column i

Repetitiontim
e

0

0

Figure 7.10: Measurement Matrix

On-Board Circuit Calibration

The value of the Tps between two successive trigger signals is required to calculate the

width of the glitches occurring in the DUT. The finest delay resolution available to the

DCM module might be different between two FPGAs even in the same family. Therefore,

we developed an on-board circuit calibration procedure to measure this delay resolution.

The calibration pulse generated from the Pulse Gen. module remains logic ’1’ for exactly

one clock period of the calibration clock. Hence the time period of the calibration pulse is
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the time period of the clock. The calibration pulse is captured using the capture circuit.

We count the number of 1’s present in the first columns of the sample matrix containing

the calibration pulse and denote this number as cp. We calculate the Tps using (7.2).

Tps =
Time Period of Pulse

cp
(7.2)

We calculate Tdl using (7.3)

Tdl =
(MMR1 +MMR2 + · · ·+MMRn) · Tps

MMt
(7.3)

where MMRi is the total number of rows in the Measurement Matrixi and MMt is the total

number of the measurement matrices present in one sample matrix. The position of the

glitch detected in a given signal can be obtained by correlating the signal under observation

with the system clock.

7.4 Results & Analysis

7.4.1 Test Circuit and Experimental Setup

The Advanced Encryption Standard (AES) [42] is one of the most widely used block ciphers.

SBOX or Substitution BOX, one of the basic functional primitive of AES, introduces nonlin-

earity to an encryption process. SBOXes also increase the resistance of AES towards linear

and differential cryptanalysis. We tested our proposed glitch capture methodology on an

AES SBOX implemented using three stage Positive Polar Reed-Muller form (combinational

logic based on AND-XOR) [94]. We implemented our designs on Nexys2 Board contain-

ing a XC3S500EFG320-4 FPGA. Post place and route simulation is performed using ISIM

simulator provided by Xilinx ISE. In order to detect and measure the output signals with

external test equipment, we use an Aglient DSO6054A oscilloscope which has a bandwidth
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of 500MHz and a sampling rate of 4 GSa/sec.

7.4.2 Analysis of the Test Circuit

We calibrated our Glitch Capture Circuit on Spartan 3E FPGA using a calibration clock

of period 4 ns and tabulated our readings in Table 7.3.

Table 7.3: Calibrated Delay Values

Calibrated Data Sheet +
Description Value Reports

Phase Shift Delay Tps 21.74 ps 20(min) to 40(max) ps

413 ps 760 ps (Max) +
Delay Tdl (incl. wiring) 7.5 ps wiring (approx)

Total Capture Window 13.216 ns 24.560 ns (Max)

Post Place-and-Route (PAR) simulation was performed on the AES SBOX test circuit

implementation to detect the presence of glitches. A snapshot of post PAR simulation

waveform is shown in Fig. 7.11. We applied an input change of 0xCA → 0x74 → 0xCA

to the test circuit and observed that glitches were present in the internal signal of the test

circuit. They were in the order of few ten’s of pico seconds in width. We also noticed

that there were no glitches shown by the simulator on the output bit 3 of the test circuit,

indicated by highlighted signal in the Fig. 7.11. The output bit 3 remains at logic ’0’ for

the given cycle of input changes. We captured the signal propagation of the output bit 3

using oscilloscope and observed that there are two glitches (shown in Fig. 7.12) occurring,

one when the input changes from 0xCA → 0x74 and another one in the next clock cycle

when the input changes from 0x74 → 0xCA. We captured the first of these two glitches

using our proposed circuit and discovered that this glitch actually consists of two separate

glitches (see Fig. 7.13). By using the calibrated delay values we calculated width of the two

glitches as 434.80 ps and 217.4 ps respectively. The RC low pass filtering of the I/O logic

distorted these two glitches to a single one which we captured with the oscilloscope. Our

proposed glitch detection circuit can be used to precisely scan the signals in the direct and
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complementary parts of an DDL style for presence of glitches thereby mitigating the impact

of glitches on the DDL countermeasure.

Figure 7.11: Post PAR Simulation of DUT Shows no Glitch on Output Bit 3

Figure 7.12: Glitch Captured Using Oscilloscope
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Figure 7.13: Glitch Captured Using Glitch Capture Circuit

7.5 Conclusion

Glitches are unproductive signal transitions which not only increase the overall power con-

sumption of the devices but also increase security risks, if the device is used in critical appli-

cations. Post place and route simulations performed to detect glitches cannot take the effect

of process variations into consideration. In this paper we introduce an innovative method

to detect glitches in hardware implementation on FPGAs. Our circuit not only detects

the presence of glitches but also captures the glitch waveform. We propose a methodology

to increase the resolution of the captured waveform and also show the calibration process

needed to obtain accurate values for width of glitches occurring in the hardware implemen-

tations on a given FPGA. Our results indicate that we can reliably reproduce the glitch

waveform and also provide an approximation regarding width of the observed glitches. This

information can be used to design circuits that produce fewer glitches even in the presence

of process variations.
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Chapter 8: Interleaved SDDL

8.1 Introduction

In this chapter we introduce a new design methodology for implementing SDDL for FPGAs

with interleaved placement which considers the factor of process variations called Interleaved

SDDL or İSDDL. In order to achieve this goal we explore different placement configura-

tion for the Direct and Complementary parts of the design. We also evaluate our design

methodology against DPA by implementing interleaved SDDL for FPGAs on the Advanced

Encryption Standard (AES) block cipher.

8.2 Placement Configuration

The effect of place and route on security of WDDL designs on FPGAs was studied in [50].

The authors note that constrained placement does not have any effect on the unbalance

between the Direct and Complementary parts of the design however, routing does effect

it. This is due to fact that WDDL which is placed in interleaved patterns requires cross

connections between Direct and Complementary parts to implement negative logic. Hence

symmetrical routing is not possible in WDDL style on FPGAs [43]. Different interleaved

placement strategies for WDDL designs were explored in [95]. Unlike WDDL, SDDL for

FPGAs allows negative logic, hence there is no requirement of any cross connections between

Direct and Complementary parts. Thus it is possible to have symmetrical routing between

Direct and Complementary parts of SDDL designs on FPGAs.

It is common design practice to separate the two parts of an SDDL design and place

them side-by-side as in [43, 56]. Such placement strategy ensures that the two parts would

have sufficient resources to obtain symmetrical delays. The relative location of similar
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components and nets in such placement configurations is rather far and thus have different

delays due to process variations. This increases the susceptibility of SDDL designs against

DPA. Additionally such placement configurations lead to the possibility of isolating and

attacking the Direct part of the design using Electromagnetic Analysis (EMA) [96].

8.2.1 Placement Options

The Spartan-3E FPGA fabric consists of Block RAMs, Multipliers and Configurable Logic

Blocks (CLBs). The CLBs are arranged in a regular 2D array of rows and columns through-

out the FPGA. All CLBs are connected with each other via switch matrices and special

interconnects. The availability of these connections has a significant effect on delay, area

and routability of a design implemented on an FPGA. Fig. 8.1 shows the interconnections

between a specific CLB and its neighboring counterparts. Each square in Fig. 8.1 is equiv-

alent to one CLB. The number of connections from the specific CLB (indicated by filled

square) to any particular CLB is given by the number present inside the square. Absence

of a number indicates that there are no direct connections between the specific CLB to this

square.

In order to interleave the Direct and Complementary parts, we explored four different

placement configurations shown in Fig. 8.2. Each square in Fig. 8.2 is equivalent to one

CLB. Table 8.1 shows the minimum number of connections between CLBs and their clos-

est neighbor in the same part (i.e. either Direct or Complementary) of the SDDL design.

Connections can be either in north-south (N-S), east-west (E-W) or diagonal (X) directions.

[1 x 1] Configuration is a patterned like a Chess board in which each square is

equivalent to one CLB. For each CLB in the Direct part (A) its complementary CLB (Ā)

is located in an adjacent CLB shown in Fig. 8.2a. The number of connections between two

adjacent CLBs in each direction is least compared to the other configurations. The distance

between the Direct and Complementary CLBs is 1 CLB.

[2 x 2] Configuration is also patterned like a Chess board. However, in this config-

uration each square is equivalent to four CLBs. For each CLB in the Direct part (A) its
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Table 8.1: Minimum Number of Available Connections Between CLBs of the Same Part

Direction Distance % fewer to

Patterns N-S E-W X A → Ā No Pattern

[1 x 1] 71 32 8 1 CLB 59.2

[2 x 2] 64 94 8 2 CLBs 39.0

[H x 1] 71 104 0 1 CLB 35.7

[1 x V] 160 32 0 1 CLB 29.4

complementary CLB (Ā) is located in an adjacent CLB shown in Fig. 8.2b. The distance

between the Direct and Complementary CLBs is 2 CLBs and is the highest among the rest

of the configurations.

[1 x H] Configuration, uses only even numbered CLB rows to implement the Direct

part of the SDDL design. The Complementary part of the design is implemented in odd

numbered CLB rows. Compared to [1 x 1] and [2 x 2] configurations, [1 x H] configuration

has a higher number of connections between two neighboring CLBs. For each CLB in

the Direct part (A) its Complementary CLB (Ā) is located in an adjacent CLB shown in

Fig. 8.2c. The distance between the Direct and Complementary CLBs is 1 CLB.

[V x 1] Configuration, uses only even numbered CLB columns to implement the Direct

part of the SDDL design and the Complementary part is implemented in odd numbered

CLB columns. Compared to the other patterns, [V x 1] configuration has highest number

of connections between two neighboring CLBs. For each CLB in the direct path (A) its

complementary CLB (Ā) is located in an adjacent CLB shown in Fig. 8.2c. The distance

between the Direct and Complementary CLBs is 1 CLB.

8.3 Workflow

We use Xilinx ISE 12.3 and ActivePerl v5.12 to implement interleaved SDDL designs on

Xilinx FPGA. Our work flow shown in Fig. 8.3 is implemented in three phases.
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In the first phase, the VHDL description of the cryptographic algorithm with precharged

registers is synthesized and mapped to the Xilinx Spartan-3E FPGA. We use a 4-bit Flip-

Flop-Precharge hard-macro [27] to precharge the registers used in the design as the precharge

circuit must be placed in the same CLB. We block the appropriate CLB positions depending

upon the pattern used by using a program called PlaceBlock and use ISE to place the design

in the available CLB positions. We then block the routing resources of the blocked CLBs

using a program called RouteBlock.

In the second phase logic precharge circuits implemented using the technique described

in [43, 56] are inserted into the placed circuit description file obtained from phase 1. Only

re-entrant routing is done to obtain a precharged placed and routed design.

In the third phase I/O connections are removed, and the design is copied and duplicated

into the appropriate CLB locations and the logic equations are complemented to obtain the

complementary design. We duplicate and relocate the original design using the techniques

described in [56]. Only re-entrant routing is done to connect the I/O to the Direct and

Complementary parts of the design.

We created a verification program called Net delay checker which uses the Reportgen

tool provided by the Xilinx ISE to compare the delays of each and every net present in

the Direct part of the design to that of Complementary part. We make use of this script

to perform a final sanity check before generating a bit file of the Placement Constrained

SDDL design. If the Net Delay Checker program fails, it identifies and reports the failed

nets. These failed nets are manually corrected and flow is repeated from the second phase

until a valid Placement Constrained SDDL design is obtained.

8.3.1 Placement Blocking Algorithm

In order to implement the patterned SDDL implementation discussed in Sect 8.2, the PAR

tool should be restricted to use only the desired CLBs to implement the original design.

The PlaceBlock program is used to generate the information containing the locations of the

blocked CLBs depending upon the pattern configuration. The PlaceBlock program requires
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the pattern configuration and the target area in which we want to implement patterned

placement as inputs. It generates an UCF file which contains the CLB prohibit locations

depending upon the pattern. The PlaceBlock program uses the algorithm described in

Fig. 8.4.

8.3.2 Routing Blocker

It is particularly hard to constrain the PAR tool from using routing resources of a blocked

CLB. We require these resources when we have to place the complementary part of the

design in these CLBs. Hence, we place a self contained dummy hard-macro in all the

blocked CLB positions to prevent the PAR tool from utilizing any of the blocked CLB

resources. The dummy hard-macro is built using Relationally Placed Macros (RPMs) and

Directed Routing (DIRT) Constraints. RPMs lock the driver and load pins of the CLB,

whereas DIRT constraints utilize the routing resources of the blocked CLB. The RouteBlock

script uses the UCF file generated by the PlaceBlock program to locate the positions of the

blocked CLBs and generates an XDL file which contains the description of the dummy

hard-macros.

8.4 Test Designs

We implemented all our test designs on the Xc3s500efg320-4 FPGA available on Digilent

Spartan-3E starter kit. The instantaneous power consumption of the FPGA during encryp-

tion was measured using a Tektronics CT-2 current probe and an Agilient 6054A, 500MHz

oscilloscope with a sampling frequency of 4G Samples/second. An external power supply

was used to power the FPGA core, and the FPGA was clocked at frequency of 200KHz–

400KHz. It is an important point to note that one encryption is counted as one measurement

irrespective of the number of samples the oscilloscope measures. We use the term Single-

Ended (SE) design to denote an unprotected design throughout this paper. Measurement

to Disclosure (MTD) is a security metric used to determine the resistance of the designs

against power analysis attacks. MTDs are the number of encryptions required to correctly
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predict the secret key. These MTDs are dependent on factors like the secret key used, target

platforms and the order in which the input plaintext is fed to a cryptographic algorithm.

Hence we use a more robust metric called security gain (SG) [95] or gain over SE to assess

the effect of different interleaved placement configurations against DPA attacks. SG is the

ratio of MTDs of protected to MTDs of unprotected designs.

8.4.1 Small Test Circuit

The Test Circuit (TC) shown in Fig. 8.5 consists of an AES S-Box implemented using

combinational logic whose input is connected to an 8-bit LFSR and output is XORed with

an 8-bit Key. The result is stored in register FF1. The dashed box indicates the part

of the test circuit on which SDDL is implemented. The register FF2 is implemented in

Input/Output Blocks (IOB) simply to drive the output ports.

8.4.2 Attack on Small Test Circuit and Results

We attack the design at the output of the LFSR indicated by the arrow Ap. We use Pearson’s

correlation to compute the statistical dependence of the instantaneous power consumption

with the hypothetical power model i.e the hamming distances [41]. In order to attack the

SDDL implementations of the test design we attack the precharged outputs of the LFSR

i.e. the precharged inputs to the AES S-Box (Logic). The Hamming Distance (HD) equation

for the attack on SE implementations is shown in (8.1) and for SDDL implementations

in (8.2).

Pest. = HD(lfsr(i−1), SBOX
−1(kguess ⊕Qi)) (8.1)

Pest. = HD(0x00, SBOX−1(kguess ⊕Qi)) (8.2)

The post place-and-route implementation results of the SE and SDDL implementations

are shown Table 8.2. The test circuit design consumes 49 slices because the AES S-Box

is implemented using combinational logic, however this leads to slow designs. The SDDL

designs consume 2.3 times more area compared to SE designs because of the extra slices
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required to precharge the register outputs.

Table 8.2: Implementation Results of Basic Test Design

FFs/ 4 input Minimum Minimum Gain

Design Slices Latches LUTs Delay MTD over SE

1. TC w/ Pattern [1 X 1] 49 71 27 14.534 ns 1500 1

2. TC w/ Pattern [2 X 2] 49 71 27 14.412 ns 1500 1

3. TC w/ Pattern [1 X V] 49 71 27 14.317 ns 1500 1

4. TC w/ Pattern [H X 1] 49 71 27 14.666 ns 1500 1

5. SDDL of (1.) 114 142 86 28.486 ns 23,000 15

6. İSDDL of (1.) 114 142 86 29.068 ns 50,000 33

7. İSDDL of (2.) 114 142 86 28.824 ns 50,000 33

8. İSDDL of (3.) 114 142 86 28.634 ns 50,000 33

9. İSDDL of (4.) 114 142 86 29.332 ns 50,000 33

The MTDs of SE and SDDL designs given in Table 8.2 indicate the minimum number

i.e. the lower bound of MTDs required to obtain the correct key. The Design (5.) is a non

interleaved SDDL implementation of our test circuit using pattern [1 x 1]. The distance

between the Direct and Complementary parts of the design was 16 CLBs. Designs (6. to

9.) require more MTDs compared to Design (5.). This conforms our hypothesis that even

when the logic and routing of the Direct and Complementary parts are similar, there is a

difference in delays due to process variation. It is to be noted that all interleaved designs

require a similar number of MTDs irrespective of the pattern configuration. Thus, a user

can choose any of the placement patterns show in this paper depending on the design’s

requirement i.e. availability of routing resources, critical path etc.

8.4.3 AES

The Advanced Encryption Standard (AES) [42] is one of the most widely used block ciphers.

In this paper we use the AES implementation from [61] which uses a key length of 128 bits.

AES applies the same round function ten times to its state during encryption. The round
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function consists of four different transformations SubBytes, ShiftRows, MixColumns and

AddRoundKey each changing the state by applying linear, non linear and key dependent

transformations.

The data path of the AES implementation is shown in Fig. 8.6. It is characterized by

a pipelined architecture which enables the re-use of registers and minimize the number of

internal memory accesses which in turn reduces the number of clock cycles. Five registers

R0, R1, R2, R3, R4 are used of which R0 is used exclusively for RotWord operation. R1

is used for key computation and state computation in MixColumns operation, R2, R3, R4

are used for state computation. The boxes labeled as Key store and Data store are 128 bit

registers used for Round keys and State Memory respectively.

8.4.4 Attack on AES and Results

The point of attack Ap for the AES designs is indicated in Fig.8.6. Consider the data flow

from registers R2 to R3. On reset the data in these registers is 0x00. In the first clock

cycle, the output of R3 changes from 0x00 to 0x63 i.e. SBOX(R2) and the data in R2

changes to Input data XORed with the key from R1. In the subsequent clock cycle the

data in R3 changes from 0x63 to SBOX(R2). This sequence of change in the data of R3 i.e.

0x00 → 0x63 → SBOX (Key ⊕ Input data) occurs every time the AES module is reset.

Hence, we can apply the HD model to estimate the power consumption of the register R3.

The power model for the SE cases is given by (8.3) and for SDDL designs, given by (8.4).

Pest. = HD(0x63, (SBOX((Keyguess ⊕ Input))i) (8.3)

Pest. = HD(0x00, (SBOX((Keyguess ⊕ Input))i) (8.4)

Table 8.3 shows the post place-and-route results of the SE and SDDL implementations.

Both AES SDDL designs consume an area 2.92 times larger than the AES SE design. The

MTDs from Table 8.3 confirm our results from the test circuit namely, that interleaved

SDDL is more secure than SDDL without any placement constraints. Also Design (12.)
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Table 8.3: Summary of Implementation Results from AES-128 Designs

4 input Minimum Minimum Gain

Design Slices FFs LUTs Delay MTD over SE

10. AES SE w/ Pattern [1 x 1] 371 347 466 15.629 ns 2000 1

11. AES SDDL of (10.) 1086 651 932 30.570 ns 24,000 12

12. AES İSDDL of (10.) 1086 651 932 31.258 ns 55,000 27.5

requires 2.3 and 27.5 times more MTDs compared to Design (11.) and Design (10.) respec-

tively.

We also tested our İSDDL design on the test circuit with Pattern [1 X 1] with our

proposed glitch detection circuit in 7. We found that the signal at both direct and comple-

mentary part were arriving at the same time. This confirms that our İSDDL methodology

helps in mitigating the effects of process variations.

8.5 Conclusion

One of the vulnerabilities of SDDL for FPGAs is the imbalance of nets in Direct and Com-

plementary paths due to process variation. We explored different placement configurations

for SDDL designs to reduce the difference in net delays and propose a new design flow

for implementing interleaved SDDL on FPGAs. We implemented the AES block cipher

using our design flow and observed that the interleaved SDDL design requires 2.3 times

more MTDs than the SDDL design without any placement constraints and 27.2 times more

MTDs than AES SE design.
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Require: Initial CLB-(X,Y) Positions
Require: Final CLB-(X,Y) Positions
Require: [CLB X Config x CLB Y Config] for e.g.[1 x 1]
1: j = 0;
2: while CLB Y Initial ≤ CLB Y Final do
3: i = 0;
4: if j%2 = 0 then
5: CLB X Var = CLB X Initial;
6: else
7: CLB X Var = CLB X Initial + (2∗ CLB X Config);
8: end if
9: CLB Y Var = CLB Y Initial;

10: while CLB X Initial ≤ CLB X Final do
11: X1p = CLB X Var + (2∗ CLB X Config);
12: X2p = CLB X Var + (4∗ CLB X Config)-1;
13: Y1p = CLB Y Var;
14: Y2p = CLB Y Var + (2∗ CLB Y Config)-1;
15: if i%2 = 0 then
16: BLOCK CLB from (X1p, Y1p) to (X2p, Y2p)
17: end if
18: i++;
19: CLB X Var ← X1p, CLB Y Var ← Y1p;
20: end while
21: CLB Y Initial = CLB Y Initial + CLB Y Config;
22: j++;
23: end while

Figure 8.4: Placement Blocking Algorithm
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Chapter 9: Electro Magnetic Fault Injection

9.1 Introduction

Historically, cryptographic modules were embedded in Hardware Security Modules (HSMs)

and secured by placing them in a physically secure environment. Nowadays, tokens are

becoming more ubiquitous outside of secure environments: smart cards, and various USB

and standalone tokens offer cryptographic services. Even though these devices protect con-

fidential information using cryptographic algorithms that withstand rigorous cryptanalytic

attacks, an adversary that has physical access to a device can obtain secret information

by modifying the behavior of the chip through hardware attacks such as Fault Injection.

These faults can be induced by over-clocking, introducing transients in power and clock

lines (power and clock glitches) or through optical radiations. The setup required to induce

these faults is invasive in nature. The power and clock lines to the target are to be isolated

to induce faults, which may not be possible in real-world cases. Although fault injection

through optical radiation can be very precise in time and space, the die of the chip needs

to exposed through decapping.

A new class of fault attacks was introduced, which uses an electro magnetic field to

induce faults in the target device. The Electro Magnetic field Fault Injection (EMFI)

perturbation is effective and non-invasive in nature. In this chapter, we describe the back-

ground, methodology and experimental setup required to conduct EMFI. The impact of

different types of probes used in EMFI attacks is explored and a calibration process used

for lab experiments is presented. We discuss our preliminary results and conclude EMFI is

a viable strategy for an attacker attempting to break a cryptographic implementation.
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9.2 EMFI in Literature

The idea of EM Fault Injection was first introduced by J.J. Quisquater and D. Samyde [97]

in 2002. They showed that it is possible to influence the computations performed by the

crypto device by using a home-grown EM probe. A camera flash was used to induce high

voltage into the coil of the probe. This high voltage causes a magnetic field which in

turn induced eddy currents on the surface of the crypto chip. These eddy currents lead to

injection of faults into transistor and memory cells of a smart-card processor. Later in 2007,

authors of [98] proposed the usage of high frequency spark gaps instead of magnetic fields

to cause perturbation on the crypto device. These spark gaps induce very fast changing

current which causes strong bursts of EM radiation. The authors noted that the wider

the gap of the spark the stronger the EM radiation, which has the potential to destroy

the crypto chip. The authors were able to induce a single fault on a CRT-based RSA and

recover the private key successfully.

Alaeldine et al. in 2009 [99] studied the immunity of electromagnetic emissions on the

IC logic core to a near-field injection. They investigated the effect of electric and magnetic

fields in x, y and z directions to field injections ranging from 10MHz to 1GHz. Their results

indicated that not only bond-wires and package but the die itself was also sensitive to

magnetic and to an certain extent, electric fields. Poucheret et al. in [100] studied the effect

of direct power injection on the CMOS logic. The EM probe used for their experiments was

a thin tungsten rod instead of a typical coil. A 1GHz sinusoidal electric field was applied

to the CMOS IC and the output frequency of the Ring Oscillators (RO) present in the

IC was observed. Due to the EM perturbation, the authors found that the RO frequency

was increased by 46.6%. The authors also noted that the RO frequency changes with the

change in position of the EM probe and also that irrespective of the probe position there

is a minimal increase in frequency. This indicates that the EM injection has both localized

and global impacts on the target.

Dehbaoui et al. in [101] conducted an EM fault injection on the software and hardware

implementation of AES on a micro-controller and an FPGA respectively. The authors
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were able to fault whole bytes of internal state of AES rounds and also were able to skip

execution of instructions using EMFI. EM fault injection on hardware implementation on

FPGA was also successful i.e., they were able to inject single and multi-bit faults into the

AES computations. The fault injections on both micro-controller and FPGA were proven to

be data dependent. Authors noted that EMFI can also be used to bypass a countermeasure

against voltage glitches during their laboratory experiments. In [102], the author presents

a detailed study of structural and operational parameters affecting an EM fault injection

attack. The relationship between area, distance from the coil to the target and type of coil

core used in the EM probe against the voltage supplied to the EM probe was explored. The

author targeted a counter operation implemented on a smart card and a micro-controller

and was successfully able to fault the counter value using EMFI. Alberto et al. in [103]

propose to cross-correlate EM fault injection cartography with an voltage drop cartography

to obtain a better understanding of EMFI and circuit interactions. This could potentially

reveal the vulnerable regions against EMFI in hardware platforms like ASICs during the

design phase itself.

9.3 EMFI Experimental Setup

In this section, we describe our EMFI experimental setup and the the Device Under Test

(DUT) used in our experiments.

Inspector

Response Trigger

VCGlitcher2

EMFI Probe
Pulse Amplitude

Digital
GlitchChallenge

DUT

Parameters

Oscilloscope

Coil Current

Figure 9.1: EMFI Experimental Setup
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9.3.1 EMFI Test Bench

Our EMFI test bench is shown in Figure 9.1. Inspector [104], Riscure’s Side Channel

Analysis and Fault Injection testing platform, controls the entire process of EMFI exper-

iments. It coordinates communication with the DUT, oscilloscope and the EMFI probe

via VCGlitcher. The DUT is fixed onto a XY-axis motorized table. The EMFI probe sits

vertically over the DUT with the EM coil nearer to the DUT. The coil can be manually

moved closer or away from the target.

VCGlitcher [105] is a Riscure proprietary voltage and clock fault injection device which

sends two signals, namely Digital Glitch and Pulse Amplitude to the EMFI probe. The

Digital Glitch parameter signals the moment in time at which the EMFI probe should

send an EM pulse to the DUT and also the voltage pulse duration. The Pulse Amplitude

parameter indicates to the EMFI probe, the magnitude of voltage pulse i.e. the amount of

current should flow though the EM coil.

The EMFI probe generates an electrical pulse, depending upon the analog parameters

it receives from the VCGlitcher. This pulse is passed through an EM coil generating a

magnetic flux around the coil which is used to perturb a small section of the DUT. The

EMFI probe can generate currents up to 60A in the smallest coil area. The minimum pulse

length of Digital Glitch input to the probe is 10ns and the delay between two consecutive

Digital Glitch pulses should be more than 150ns to ensure that the capacitors present in

the EM probe are charged to appropriate levels. For the current EMFI experiments we use

8 different coils i.e., Probe Tip as shown in Table 9.1

9.3.2 Target

EMFI Perturbation Measurement Coil

We use a Measurement Coil (shown in Figure 9.3) to study the impact of Probe Tips

described in Section 9.3. The Measurement Coil is made with magnet wire having 5 loops

and a diameter of 1.02mm, and is also connected to the oscilloscope via a BNC cable, as

shown in Fig. 9.3. We use this measurement coil to observe the voltage (emf) induced in
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Table 9.1: Probe Tips used for Testing

Name Loops Diameter Core Shape Orientation Notes

ProbeTip1 1 1.5mm Ferrite Cylindrical Horizontal Positive Polarity

ProbeTip2 1 1.8mm Ferrite Cylindrical Horizontal Positive Polarity

ProbeTip3 1 1.8mm Ferrite EP7 Horizontal Positive Polarity

ProbeTip4 1 1.5mm Ferrite Cylindrical Horizontal Negative Polarity

ProbeTip5 1 1.8mm Ferrite EP7 Horizontal Negative Polarity

ProbeTip6 1 4.0mm Air Vertical Positive Polarity

ProbeTip7 1 4.0mm Air Horizontal Positive Polarity

ProbeTip8 1 5.0mm Air Vertical Positive Polarity

Cylindrical
Core

EP7 Core

Figure 9.2: Cylindrical Core and EP7 Core

the coil due to EM pulses.

Android Powered ARM Core

For our laboratory experiments, we use an Odroid U2 development board [106], shown in

Figure 9.4. It houses an ARM Cortex-A9 Quad Core 1.7Ghz processor running Android

4.2.2 (CyanogenMod). The Inspector communicates with the ARM core via USB using

TCP protocol over adb port forwarding. The ARM core also sends a trigger signal (shown

in Figure 9.1) to synchronize the EM fault injection with the target operation on the ARM

core. We lock the CPU frequency to 200 MHz and also shut down DRM, Media and
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Figure 9.3: EMFI Perturbation Measurement Coil

BootAnim processes.

ARM Core

Figure 9.4: Target: Exynos 4412 ARM Processor

9.4 Impact of Different Probe Tips

The voltage/response induced in the measurement coil shown in 9.3 due to the EM pulse

was observed to be a damped sine wave i.e. the frequency and the amplitude of the induced

voltage decreses in time as shown in Figure 9.5.
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Figure 9.5: Observed Response on the Measurement Coil Due to EM Pulse

9.4.1 Probe Tip Study

We studied the impact of the different Probe Tips described in Section 9.3.1 on voltage

induced in the measurement coil shown in Figure 9.3. These Probe Tips are characterized

based on the following test cases.

• Case 1: Influence of Magnitude of Voltage Pulse in Probe Tip on the voltage induced

in the Measurement Coil.

• Case 2: Distance between Probe Tips and Measurement Coil influencing the voltage

induced in the Measurement Coil.

Case 1

In this case we fixed the distance between the EMFI probe and the measurement coil to

5mm and varied the magnitude of the voltage pulse generated in the EMFI probe from 0V

to 450V in steps of 22V (5%). We measured the voltage induced in the measurement coil

and plotted the obtained data.
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Comparison between ProbeTip Core Shapes: We wanted to observe the impact

of ProbeTip core shape on the voltage induced in the measurement coil. For this purpose

we compared ProbeTip2 and ProbeTip3. As shown in Tab 9.1 the only difference between

two coils is that ProbeTip2 core shape is cylindrical whereas ProbeTip3 is EP7 [107]. We

observe that there is a linear increase of the voltage induced in the measurement coil as the

voltage pulse in the EM probe is gradually increased, as shown in Figure 9.6. An interesting

observation is that ProbeTip2 induces more voltage than ProbeTip3 i.e. cylindrically shaped

core induces more voltage than EP7 core.

a)Distance between EM Probe and
Measurement Coil is Fixed to 5mm

b)Voltage pulse generated in the
EM Probe is fixed to 225V

Figure 9.6: Cylindrical Core vs EP7 Core

Comparison between ProbeTip Coil Orientations: We wanted to observe the im-

pact of ProbeTip core orientations on the voltage induced in the measurement coil. For this

purpose we compared ProbeTip6 and ProbeTip7. As shown in Tab 9.1 the only difference

between two coils is that ProbeTip6 coil orientation is horizontal whereas ProbeTip7 is ver-

tical. We observe that there is a linear increase of the voltage induced in the measurement

coil as the voltage pulse in the EM probe is gradually increased, as shown in Figure 9.7.

An interesting observation is that ProbeTip6 induces more voltage than ProbeTip7 i.e.

horizontal orientation of coil induces more voltage than vertical orientation.

Comparison between ProbeTip polarity: We wanted to observe the impact of
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a)Distance between EM Probe and
Measurement Coil is Fixed to 5mm

b)Voltage pulse generated in the
EM Probe is fixed to 225V

Figure 9.7: 4mm Area Coil Vertical vs Horizontal Orientation

ProbeTip coil polarity on the voltage induced in the measurement coil. For this purpose we

compared ProbeTip1,3,4 and 5. As shown in Tab 9.1 the difference between ProbeTip1 -

ProbeTip4 and ProbeTip3 - ProbeTip5 is that the polarity i.e. the current flowing through

these two sets of coil is in opposite direction to that of each other. We observe that there

is a linear increase of the voltage induced in the measurement coil as the voltage pulse in

the EM probe is gradually increased, as shown in Figure 9.8. An interesting observation is

that voltage induced in the measurement coil is more in ProbeTips with positive polarity

than with negative polity types.

Comparison between ProbeTip Areas: We also infer from Figure 9.9 that the

larger the area of the Probe Tip i.e. the diameter of the Probe Tip coil, the higher the

voltage induced in the measurement coil, which can be explained using Eq. 2.6.

Comparison between ProbeTip Core Type: We also infer from Figure 9.10 that

the larger the permeability of the Probe Tip i.e. the ferrite core of the Probe Tip coil, the

higher the voltage induced in the measurement coil as compared to air core type.
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a)Distance between EM Probe and
Measurement Coil is Fixed to 5mm

b)Voltage pulse generated in the
EM Probe is fixed to 225V

Figure 9.8: Polarity Comparision between Different Coils

Case 2

We fixed the voltage pulse generated in the EMFI probe to 225V and varied the distance

between the EMFI probe and measurement coil from 5mm to 20mm, in steps of 5mm We

measure the voltage induced in the measurement coil and plot the obtained data

Comparison between ProbeTip Core Shapes: We wanted to observe the impact

of ProbeTip core shape on the voltage induced in the measurement coil. For this purpose

we compared ProbeTip2 and ProbeTip3. As shown in Tab 9.1 the only difference between

two coils is that ProbeTip2 core shape is cylindrical whereas ProbeTip3 is EP7 [107]. We

observe that there is a decrease of the voltage induced in the measurement coil as the

distance between the EM probe and the target is gradually increased, as shown in Figure 9.6.

An interesting observation is that ProbeTip2 induces more voltage than ProbeTip3 i.e.

cylindrically shaped core induces more voltage than EP7 core.

Comparison between ProbeTip Coil Orientations: We wanted to observe the

impact of ProbeTip core orientations on the voltage induced in the measurement coil. For

this purpose we compared ProbeTip6 and ProbeTip7. As shown in Tab 9.1 the only differ-

ence between two coils is that ProbeTip6 coil orientation is horizontal whereas ProbeTip7

is vertical. We observe that there is a decrease of the voltage induced in the measurement
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a)Distance between EM Probe and
Measurement Coil is Fixed to 5mm

b)Voltage pulse generated in the
EM Probe is fixed to 225V

Figure 9.9: Coil Area Comparison between Different Coils

coil as the distance between the EM probe and the measurement coil is gradually increased,

as shown in Figure 9.7. An interesting observation is that ProbeTip6 induces more volt-

age than ProbeTip7 i.e. horizontal orientation of coil induces more voltage than vertical

orientation.

Comparison between ProbeTip polarity: We wanted to observe the impact of

ProbeTip coil polarity on the voltage induced in the measurement coil. For this purpose we

compared ProbeTip1,3,4 and 5. As shown in Tab 9.1 the difference between ProbeTip1 -

ProbeTip4 and ProbeTip3 - ProbeTip5 is that the polarity i.e. the current flowing through

these two sets of coil is in opposite direction to that of each other. We observe that there is

a decrease of the voltage induced in the measurement coil as the distance between the EM

probe and measurement coil is gradually increased, as shown in Figure 9.8. An interesting

observation is that voltage induced in the measurement coil is more in ProbeTips with

positive polarity than with negative polity types.

Comparison between ProbeTip Areas: We also infer from Figure 9.9 that the

larger the area of the Probe Tip i.e. the diameter of the Probe Tip coil, the higher the

voltage induced in the measurement coil, which can be explained using Eq. 2.6. Also, in all

the 4 different ProbeTips, as the distance between the EM probe and the measurement coil
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a)Distance between EM Probe and
Measurement Coil is Fixed to 5mm

b)Voltage pulse generated in the
EM Probe is fixed to 225V

Figure 9.10: Coil Core Comparison between Different Coils

increases, the induced voltage in the measurement coil decreases.

Comparison between ProbeTip Core Type: We also infer from Figure 9.10 that

the larger the permeability of the Probe Tip i.e. the ferrite core of the Probe Tip coil, the

higher the voltage induced in the measurement coil as compared to air core type. Also in

both cases as the distance between the EM probe and the measurement coil increases, the

induced voltage in the measurement coil decreases.

9.4.2 EMFI on Android 4.4 Running on ARM Core

We conducted preliminary tests to observe the impact of these Probe Tips on an ARM core

running Android operating system. We calibrate the impact of the three different Probe

Tips on the ARM core by determining the values for parameters discussed above. Our

target operation for fault injection on the ARM core is a simple counter program running

natively (native-c) on Android.

We were not able to corrupt the counter operation using EM fault injection using any

of the three different Probe Tips. The only faults we observed using Probe Tip2 and Probe

Tip3 is total system crash, screen turn-off and shutdown of the ARM core independent of

the position of the EMFI probe over the target location. The values for the parameter
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which induced these faults is shown in Table 9.2.

Table 9.2: The Parameter Values which Induced Faults

Parameter Probe Tip1 Probe Tip2 Probe Tip3

DistanceP−T 5mm 5mm 5mm

Digital Glitch 10ns 10ns 10ns

Pulse Amplitude >120V >120V >176V

We did observe a different type of fault when we used Probe Tip1 to inject faults into

the counter program as compared to Probe Tips2 & 3. Almost all of the fault injection test

cases caused graphics corruption as shown in Figure 9.11. The system did not shutdown

completely. We could see that the on-board status led was blinking (which stops when

system shuts down) and some processes were still alive although we lost the communication

with the Inspector software and the OdroidU2 board. The location on the target surface

at which these faults occurred is shown in Figure 9.4 (indicated by the yellow-box) and the

parameter values for these induced faults in shown in Table 9.2. We suspect that the wider

Figure 9.11: Graphics Error caused due to EMFI

magnetic field generated by Probe Tip2 & 3 corrupts larger part of the internal state of

the ARM core leading to unrecoverable state resulting in a system shutdown. On the other

hand, Probe Tip1 generates a smaller magnetic field compared to Probe Tip2 & 3, thereby
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leading to relatively smaller internal state corruption resulting in graphics freeze but not

a total system shutdown. Although EMFI does affect the ARM core, we observe that we

were not able to corrupt the counter operation.

9.5 Conclusion

The goal of this chapter is to introduce readers to a new class of fault injection, called

Electro Magnetic Fault Injection, which use transients in EM field to inject faults on a

target device. The literature survey shows us that hardware platforms like micro-controller,

smart cards, FPGA and also ASICs are susceptible to fault injections via EMFI. Also,

the countermeasures employed against other avenues of fault injections, for e.g. Voltage

Glitching may be circumvented using EMFI.

We present our experimental setup and study the impact of various types of Probe Tips

(or coils) on the voltage induced in the target. We note that not only the coil area and

coil’s core but also the shape of the coil’s core affects the voltage induced in the target

(measurement coil). We also present the steps used for the calibration of our experimental

setup’s operational parameters and conduct an EM fault injection attack on a simple counter

program running in Android operating system on the Exynos4412 ARM core. Although we

were not able to successfully fault the counter operation using EMFI, we were able to cause

several other faults indicating that EMFI does affect the ARM core. As future work, we

plan on fine-tuning our experimental setup parameters to induce faults in counter operation

and eventually cryptographic algorithms.
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Chapter 10: Conclusions and Future Work

In this chapter, we provide a summary for the research presented in this dissertation and

also recommend several future avenues of research.

10.1 Conclusions

In this research, we made an effort in developing an integrated environment for detecting

and mitigating side-channel and fault attacks on the hardware platform. We introduced

new measuring and evaluation techniques, proposed a new countermeasure against DPA

tailored for FPGAs and also explored a new class of fault injection attacks called Electro

Magnetic Fault Injection.

In this dissertation, we developed a framework for efficient side-channel evaluation of

hardware platforms, called Flexible Open-sources workBench fOr Side-channel analysis -

FOBOS. FOBOS is designed to be an inexpensive side channel analysis setup that includes

a complete software package with programs for victim control, data acquisition and data

analysis. In order to evaluate side-channel leakage of hardware platforms, FOBOS uses off-

the shelf FPGA boards as control and victim which are less expensive than the traditional

setup. Thus, it enables universities to add active side channel analysis laboratory exercises

to their cryptography classes. Furthermore, FOBOS is designed in a modular fashion to

allow for a multitude of victim devices while maintaining the remainder of the setup, hence

making FOBOS flexible. As the hardware and software are open source, the results are

reproducible by researchers from different groups. We used FOBOS to conduct SCA on our

laboratory test circuits and the new countermeasure against SCA.

We also introduced an innovative method to detect glitches in hardware implementa-

tion on FPGAs. Our circuit not only detects the presence of glitches but also captures
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the glitch waveform. We propose a methodology to increase the resolution of the captured

waveform developed from delay-based sampling techniques. We also show the calibration

process needed to obtain accurate values for width of glitches occurring in the hardware

implementations on a given FPGA. Our results indicate that we can reliably reproduce

the glitch waveform and also provide an approximation regarding width of the observed

glitches. We used this methodology extensively to determine the effectiveness of our pro-

posed countermeasure against SCA.

In order to achieve our research goal of developing a new countermeasure against DPA

tailored for FPGAs we followed a two phase approach. We implemented unprotected (no

countermeasures used) functional primitives of cryptographic algorithm using the most

secured options. These implementation options were limited to FPGA intrinsic features

like Wide Dedicated Multiplexers (WDMs), Block RAMS (BRAMs) etc., due to the reason

that usage of FPGA intrinsic feature in conjunction with our proposed counter measure will

decrease the area overhead as compared to countermeasure implemented using standard

LUTs and Flip-Flops only implementation. Then we applied our proposed countermeasure

on such inherently secure implementations to increase the effectiveness of our proposed

countermeasure.

Wide Dedicated Multiplexers (WDMs) are used to effectively combine complex logic

operations. These WDMs are implemented using the dedicated two input multiplexers in

the slice and the fast interconnects, that exist between slices and between CLBs. We have

implemented three different levels of WDMs and evaluated their inherent resistance against

DPA. The results indicate that WDMs do not provide any resistance against DPA. Only

4:1 WDMs do not degrade the resistance of DDL implementations against DPA.

We implemented the AES SBOX in Block RAMs (BRAMs) of Xilinx FPGAs and inves-

tigated their resistance against DPA attacks. Our results indicate that the AES SBOX in

BRAMs are more resistant to DPA attacks than the AES SBOX implemented in Composite

field. In order implement DDL countermeasure in conjunction with BRAMs we developed

the precharge circuit for BRAMs. Our results indicate that DDL implementations with
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BRAMs increase the MTDs by a factor 4 over unprotected designs which use BRAMs and

a factor 2.5 over DDL implementations which do not use BRAMs.

We developed a new countermeasure against DPA specially tailored for FPGAs in a

step wise and iterative manner. We proposed a negative DDL style for lightweight imple-

mentations on FPGAs called SDDL for FPGAs. In such a DDL style, FPGA CAD tools

are given the maximum flexibility to optimize a given design for the target FPGA. Unlike

WDDL, SDDL for FPGAs allows optimal usage of the intrinsic features inside the FPGAs.

The other advantages of SDDL for FPGAs over WDDL is that there is no cross connection

between direct and complementary parts, hence symmetrical routing is possible. SDDL for

FPGAs uses FPGA CAD tools only to implement DDL designs. But SDDL for FPGAs

is still vulnerable to DPA attacks due to glitches and the effect of early precharge and

evaluation caused due to process variations.

We also introduce Partial DDL, propose principle design rules of Partial DDL, and show

its effectiveness in terms of area saving and DPA resistance through a proof-of-concept

implementation of a lightweight AES design using SDDL for FPGAs and comparing it with

one using Partial SDDL for FPGAs. Partial DDL describes the notion that DDL is applied

to only a part of the cryptographic implementation. The advantage of Partial DDL is that

the area overhead is reduced (2 x protected data path) compared to the area overhead

incurred due to applying DDL over the entire design. The drawback of Partial DDL is that

the power consumption will not be as constant as when DDL is applied to the entire data

path. We have shown through our example implementation of AES using SDDL for FPGAs,

that partial DDL can significantly reduce the area consumption of a DDL implementation

by 24%, yet maintain the same level of resistance against DPA.

It is common design practice to separate the two parts so called Direct and Comple-

mentary parts of an SDDL design and place them side-by-side. Such placement strategy

ensures that the two parts would have sufficient resources to obtain symmetrical delays. The

relative location of similar components and nets in such placement configurations is rather
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far and thus have different delays due to process variations. This increases the susceptibil-

ity of SDDL designs against DPA. Additionally such placement configurations lead to the

possibility of isolating and attacking the Direct part of the design using Electromagnetic

Analysis. We explored different placement configurations for SDDL designs to reduce the

difference in net delays and propose a new design flow for implementing interleaved SDDL

on FPGAs. We implemented the AES block cipher using our design flow and observed

that the interleaved SDDL design requires 2.3 times more MTDs than the SDDL design

without any placement constraints and 27.2 times more MTDs than AES SE design. All

positive DDL logic styles like WDDL, IWDDL and BCDL suffer from a vulnerability called

”Early Evaluation” due to fact that there exists no symmetrical routing between direct

and complementary path. We used our proposed glitch detection circuit and observed that

neither the logic in direct or the complementary path is getting ”evaluated” early. We be-

lieve that because of the symmetrical routing and the interleaved placement of direct and

complementary path, İSDDL does not have ”Early Evaluation”

We also explore a new class of fault injection, called Electro Magnetic Fault Injection

(EMFI) [97], to inject faults on a target device. In this dissertation we concentrate only

on transient type of EMFI. The literature survey shows us that hardware platforms like

micro-controller, smart cards, FPGA and also ASICs are susceptible to fault injections via

EMFI. Also, the countermeasures employed against other avenues of fault injections, for

e.g. Voltage Glitching may be circumvented using EMFI.

We present our experimental setup and study the impact of various types of Probe Tips

(or coils) on the voltage induced in the target. We note that not only the coil area and coil’s

core but also the shape, polarity and orientation of the coil’s core affects the voltage induced

in the target (measurement coil). We also present the steps used for the calibration of our

experimental setup’s operational parameters and conduct an EM fault injection attack on

a simple counter program running in Android operating system on the Exynos4412 ARM

core. Although we were not able to successfully fault the counter operation using EMFI,

we were able to cause several other faults indicating that EMFI does affect the ARM core.
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10.2 Future Research

In this section we discuss possible extensions for the work presented in this dissertation.

10.2.1 Measurement and Evaluation Methodologies

One perspective of future work in glitch detection is to increase the measurement accuracy

of glitch detection circuit and estimate the effect of adding the capture circuit on the signals

being observed. Also observing the behaviour of the glitch detection circuit across various

FPGA vendors will lead to a more robust glitch detection circuit.

FOBOS currently supports SPA and DPA on cryptographic algorithms implemented on

FPGA platforms only. This work can be extended to include not only FPGAs but also micro

controllers, smart cards and ARM development boards. Another direction would be to add

support for Electro Magnetic Analysis attacks and Fault Injection attacks including EMFI.

The data analysis module can also be improved by adding state-of-the-art side channel

distinguishers and signal processing algorithms.

10.2.2 DPA on Cryptographic Functional Primitives

In this area of research, future direction of research would involve evaluating the DPA

resistance of implementation options for adders like hybrid adders etc. The DPA attack

on shift registers could be further enhanced my mutiplying the signal strength by placing

multiple data path instantiations which may (or may not) lead to successful DPA attack.

Current architecture advancements of the so called Hybrid Processors like Xilinx’s Zynq,

Altera’s SoC FPGAs and Intel’s Xeon E5-FPGA combine the performance and power saving

capabilities of an Application Specific Integrated Circuit (ASICs) and the flexibility of Field

Programmable Gate Arrays (FPGAs). Porting the countermeasure against DPA proposed

in this dissertation to FPGAs in such processors would also be an interesting line of future

research.
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10.2.3 EMFI

This area of research offers many perspectives. Further research work in the area of devel-

oping Probe Tips or coils might help in targeting concentrated area of a target platform.

Another area of research would be to fine-tuning our experimental setup parameters to

induce faults in Android and UBoot and also on the memory of the ARM core. EMFI on

BRAMs present in FPGAs will also lend an interesting perspective to the effect of EMFI

on contents of embedded memories.
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ence, B. Kaliski, Jr., Ç. K.. Koç, and C. Paar, Eds., vol. 2523. Berlin, Heidelberg,
New York: Springer-Verlag, August 2002, pp. 2–12.

[8] D. Suzuki, M. Saeki, and T. Ichikawa, “DPA leakage models for CMOS logic circuits,”
in Cryptographic Hardware and Embedded Systems – CHES 2005, ser. LNCS, J. R.
Rao and B. Sunar, Eds., vol. 3659. Heidelberg: Springer, 2005, pp. 366–382.

[9] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation,” in Proc. Design, Automation and Test in
Europe (DATE’04). IEEE Computer Society, Feb 2004, pp. 246–251.

[10] K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and I. Verbauwhede, “A
side-channel leakage free coprocessor IC in 0.18µm CMOS for embedded AES-based
cryptographic and biometric processing,” in 42nd Design Automation Conference,
2005, pp. 222–227.

152



[11] P. Wright, Spycatcher: The Candid Autobiography of a Senior Intelligence Officer.
Penguin Viking, July 1987.

[12] W. V. Eck and N. Laborato, “Electromagnetic radiation from video display units: An
eavesdropping risk?” Computers & Security, vol. 4, pp. 269–286, 1985.

[13] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” in Advances in Cryptology - CRYPTO 96, ser. Lecture Notes in
Computer Science (LNCS), vol. 1109. Berlin: Springer-Verlag, 1996, pp. 104–113.

[14] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis and
related attacks,” Cryptography Research, pp. 1–5, 1998.

[15] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete results,”
in Cryptographic Hardware and Embedded Systems–CHES 2001, ser. Lecture Notes in
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[63] S. Aumônier, “Generalized correlation power analysis,” in Ecrypt Workshop Tools For
Cryptanalysis 2007, 2007.

[64] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–
215, Feb 2007.

[65] H. Eriksson and P. Larsson-Edefors, “Glitch-conscious low-power design of arithmetic
circuits,” in IEEE International Symposium on Circuits and Systems. IEEE, 2004,
pp. 281–284.

[66] E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,” in Proceedings of
the 1998 international symposium on Low power electronics and design, ser. ISLPED
’98. New York, NY, USA: ACM, 1998, pp. 155–160.

[67] S. Mangard and K. Schramm, “Pinpointing the side channel leakage of masked AES
hardware implementations,” ECRYPT, vol. IST 2002, no. 507932, pp. 1–15, 2002.

[68] S. Mangard, T. Popp, and B. M. Gammel, “Side-channel leakage of masked CMOS
gates,” in RSA Conference 2005 Cryptographers’ Track, ser. LNCS, vol. 3376.
Springer, Feb 2005, pp. 351–365.

[69] R. Velegalati and J.-P. Kaps, “Improving security of SDDL designs through inter-
leaved placement on Xilinx FPGAs,” in Field Programmable Logic and Applications,
FPL 2011, P. Athanas, D. Pnevmatikatos, and N. Sklavos, Eds. IEEE, Sep 2011,
pp. 506–511.

[70] A. Maiti and P. Schaumont, “Improving the quality of a physical unclonable function
using configurable ring oscillators,” in Field Programmable Logic and Applications –
FPL 2009, 2009, pp. 703–707.

[71] X. Xin, J.-P. Kaps, and K. Gaj, “A configurable ring-oscillator-based PUF for Xilinx
FPGAs,” in 14th EUROMICRO Conference on Digital System Design – DSD’11.
IEEE, Aug 2011, pp. 651–657.

[72] H. Shin, N. Zang, and J. Kim, “Stochastic glitch estimation and path balancing for
statistical optimization,” in SOC Conference, 2006 IEEE International, Sep 2006, pp.
85–88.

157



[73] A. Sayed and H. Al-Asaad, “A new statistical approach for glitch estimation in com-
binational circuits,” in Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, May 2007, pp. 1641–1644.

[74] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and J. White, “Estimation of average
switching activity in combinational logic circuits using symbolic simulation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 1, pp. 121–127, Jan 1997.

[75] F. Najm, “Transition density: a new measure of activity in digital circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12,
no. 2, pp. 310–323, Feb 1993.

[76] ——, “Power estimation techniques for integrated circuits,” in Computer-Aided De-
sign, 1995. ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM International
Conference on, Nov 1995, pp. 492–499.

[77] A. Gaffar, J. Clarke, and G. Constantinides, “Modeling of glitch effects in FPGA based
arithmetic circuits,” in 5th IEEE International Conference On Field Programmable
Technology. IEEE, Dec 2006, pp. 349–352.

[78] D. Zhijian, W. Houjun, and L. Bing, “Research and implementation of a glitch capture
technology,” in IEEE Circuits and Systems International Conference on Testing and
Diagnosis, 2009 (ICTD), Apr 2009, pp. 1–3.

[79] W. W.-K. Shum and J. H. Anderson, “FPGA glitch power analysis and reduction,”
in Proceedings of the 17th IEEE/ACM international symposium on Low-power elec-
tronics and design, ser. ISLPED ’11. Piscataway, NJ, USA: IEEE Press, 2011, pp.
27–32.

[80] L. Cheng, D. Chen, and M. Wong, “GlitchMap: an FPGA technology mapper for
low power considering glitches,” in 44th ACM/IEEE Design Automation Conference.
IEEE, 2007, pp. 318–323.

[81] J. Anderson and F. Najm, “Power-aware technology mapping for lut-based fpgas,” in
Field-Programmable Technology, 2002. (FPT). Proceedings. 2002 IEEE International
Conference on, Dec 2002, pp. 211–218.

[82] J. Lamoureux, G. G. Lemieux, and S. J. Wilton, “GlitchLess: An active glitch min-
imization technique for FPGAs,” in 15th International Symposium on Field Pro-
grammable Gate Arrays - FPGA’07, ACM/SIGDA. New York, NY, USA: ACM,
Feb 2007, pp. 156–165.

[83] J. Lamoureux, G. Lemieux, and S. Wilton, “Glitchless: dynamic power minimization
in FPGAs through edge alignment and glitch filtering,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 11, pp. 1521–1534, Nov 2008.

[84] Q. Dinh, D. Chen, and M. D. Wong, “A routing approach to reduce glitches in low
power FPGAs,” in International Symposium on Physical Design, ISPD’09. ACM,
Mar 2009, pp. 99–105.

158



[85] T. Czajkowski and S. Brown, “Using negative edge triggered FFs to reduce glitching
power in FPGA circuits,” in 44th ACM/IEEE Design Automation Conference. IEEE,
Jun 2007, pp. 324–329.

[86] S. Cromar, J. Lee, and D. Chen, “FPGA-targeted high-level binding algorithm for
power and area reduction with glitch-estimation,” in 46th ACM/IEEE Design Au-
tomation Conference (DAC-2009). IEEE, Jul 2009, pp. 838–843.

[87] J. Leijten, J. van Meerbergen, and J. Jess, “Analysis and reduction of glitches in
synchronous networks,” in European Design and Test Conference, 1995. ED TC 1995,
Proceedings., Mar 1995, pp. 398–403.

[88] A. Raghunathan, S. Dey, and N. Jha, “Register transfer level power optimization with
emphasis on glitch analysis and reduction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1114–1131, Aug 1999.

[89] J. Wu and Z. Shi, “The 10-ps wave union TDC: Improving FPGA TDC resolution
beyond its cell delay,” in Nuclear Science Symposium Conference Record, 2008. NSS
’08. IEEE, Oct 2008, pp. 3440–3446.

[90] C. Favi and E. Charbon, “A 17ps time-to-digital converter implemented in 65nm
FPGA technology,” in Proceedings of the ACM/SIGDA international symposium on
Field programmable gate arrays, ser. FPGA ’09. New York, NY, USA: ACM, Feb
2009, pp. 113–120.

[91] M.-A. Daigneault and J. P. David, “A high-resolution time-to-digital converter on
FPGA using dynamic reconfiguration,” IEEE Transactions on Instrumentation and
Measurement, vol. 60, no. 6, pp. 2070–2079, June 2011.

[92] X. Inc, Xilinx DS312 Spartan 3E FPGA Family Data Sheet, Aug 2009.

[93] A. de Castro and E. Todorovich, “DPWM based on FPGA clock phase shifting with
time resolution under 100 ps,” in Power Electronics Specialists Conference, 2008.
PESC 2008. IEEE, Jun 2008, pp. 3054–3059.

[94] S. Morioka and A. Satoh, “An optimized S-box circuit architecture for low power AES
design,” in Cryptographic Hardware and Embedded Systems – CHES 2002, ser. LNCS,
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