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Abstract

SEMIAUTOMATIC SEGMENTATION OF ATHEROSCLEROTIC CAROTID ARTERY
WALL USING 3D ULTRASOUND IMAGING

Md Murad Hossain, MS

George Mason University, 2014

Thesis Director: Dr. Siddhartha Sikdar

Stroke is an interruption of blood to any part of the brain. It is the fourth leading

cause of death in the USA. Rupture of atherosclerotic plaques in the carotid artery has

been implicated in 20% of strokes. Currently, severity of plaques is assessed by measuring

the velocity of blood flow through the stenosed artery using Doppler ultrasound. However,

imaging and monitoring plaque progression in 3D can better classify disease severity and

potentially identify plaque vulnerability to rupture. Vessel wall volume (VWV) has been

proposed as a 3D measurement of arterial wall and plaque burden. It is defined as the

enclosed volume between the adventitial wall boundary (AWB) and the lumen-intima

boundary (LIB). A computer-based algorithm for the segmentation of LIB and AWB will

accelerate the translation of VWV of carotid atherosclerosis to clinical research and clinical

practice. The goal of this thesis is to develop semi-automatic 2D and 3D segmentation

algorithms for segmenting LIB and AWB of the carotid artery from proximal common

carotid to distal internal and external carotid artery.

Our proposed segmentation algorithm uses distance regularized level set method with

edge-based energy, region-based energy, smoothness energy, and a novel stopping criteria to

segment LIB and AWB of carotid artery from 3D US images. 3D US images were acquired



from patients with asymptomatic carotid plaques as part of an ongoing clinical study. The

data set consists of 210 2D cross-sectional slices selected from 10 3D US patient images at

an inter-slice distance of 1 mm. Manual initialization at an inter slice distance of 4 mm was

used. To stop the leaking of evolving contour through the poor boundary contrast regions,

we defined a stopping boundary (2D algorithm) or surface (3D algorithm) based energy. To

save computational time, change of modified Hausdorff distance (MHD) between evolving

contours at successive iterations (2D algorithm) or percentage change of pixel locations

(3D algorithm) was used as stopping criteria along with stopping boundary or surface

based energy. Due to the absence of clinical ground truth boundary, an average curve was

generated from manually segmented boundaries by three observers. The average curve was

used as a ground truth boundary and algorithm generated boundary was compared against

it. The error metrics are dice similarity coefficient (DSC), Hausdorff distance (HD), and

MHD.

The proposed stopping criteria were compared with other two conventional stopping

criteria: percentage change of area inside evolving contours and change of MHD between

evolving contours at successive iterations. The performance of the proposed algorithm was

better than other two stopping criteria and yielded mean of: LIBDSC=88.78%, AWBDSC =

94.81%, LIBMHD=0.26 mm, AWBMHD=0.25 mm, LIBHD=0.74 mm, AWBHD=0.80 mm.

The Bland-Altman plot and correlation coefficient (r = 0.99) indicated a high agreement

between ground truth boundaries and algorithm generated boundaries. The minimum

detectable change of VWV by the proposed algorithm is 10.89 % (2D) and 11.22 %(3D) of

average volume. The overall execution time to segment whole volume is 40 ± 5 min and

100 ± 5 min for algorithm and manual observers respectively. Preliminary validation on

10 subjects showed that the algorithm accurately segmented LIB and AWB. Our method

can be helpful in clinical care for fast and economical monitoring of 3D plaque progression

and regression during therapy.
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Chapter 1: Introduction

Computer aided diagnosis (CAD) is a procedure of assisting clinicians to interpret medical

images. Manual extraction of quantitative biological markers from medical images is time-

consuming and tedious. It also suffers from intra- and inter- observer variability. Signal

processing, image analysis, and pattern recognition tools have been used to extract biological

markers from medical images which were previously considered intractable. Delineating a

region of interest is one of the main steps in computer assisted quantification and

interpretation of medical images. Outlining regions by means of automatic/ semiautomatic

segmentation algorithm has the potential to reduce tedious manual outlining and leads to

better utilization of an expert clinician’s time. It also has the potential to reduce inter- and

intra-observer variability.

1.1 Stroke

Stroke is an interruption of blood supply to a part of the brain. It represents the third

most common cause of death in world [2] and fourth most common cause of death in the

USA [3]. According to the World Health Organization, 15 million people suffer stroke

worldwide annually. 5 million die, and another 5 million are permanently disabled out of

these 15 million people. About 795,000 people suffer from stroke, and 143,579 people die

from stroke annually in the United States [4, 5].

There are two types of stroke: ischemic and hemorrhagic. Hemorrhagic strokes occur

due to the breakage of a blood vessel in the brain and ischemic strokes occur due to blockage

of a blood vessel in the brain by atheroembolic or thromboembolic debris originated from

the other parts of the body. Approximately 85% of all strokes are ischemic strokes [6, 7].
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1.2 Atherosclerotic Carotid Artery

Atherosclerosis is a chronic, systemic, inflammatory disease of the medium and large arteries.

Atherosclerotic plaques are defined by intimal thickening that occurs due to the progressive

accumulation of lipids [8] together with numerous cellular and molecular components such as

smooth muscle cells , lipid-filled macrophages, monocytes, T and B lymphocytes, erythrocytes,

and platelets [9,10]. It causes stenosis ( i.e., narrowing) of the blood vessel and embolisms.

20% of ischemic strokes are due to the atherosclerotic plaques in the carotid artery [6, 7].

Carotid arteries supply blood to the brain and face. The common carotid artery (CCA)

bifurcates into the internal carotid artery(ICA), and the external carotid artery (ECA)

(figure 1.1,figure 1.5). The ICA supplies blood to brain where as the ECA supplies blood to

face, scalp, and neck. The frequency of carotid plaque formation at the bifurcation region

is very high due to the disturbance of laminar blood flow and low shear stress at carotid

bifurcation [11]. Blood flow becomes more turbulent with increasing degree of stenosis in

the ICA, resulting in escalation of atheroembolization [11].

1.3 Quantitative Assessment of Carotid Plaque

Carotid Endarterectomy (CEA) is an invasive treatment for atherosclerotic carotid artery

that has been widely advocated as a stroke prevention measure . It is a surgical procedure

to remove plaque from carotid arteries as shown in figure 1.1. The North American

Symptomatic Carotid Endarterectomy Trial (NASCET) and the European Carotid Surgery

Trial (ECST) showed that patients with high grade (≥ 70%) ICA stenosis benefited from the

CEA compared with the group receiving conservative treatment [12–15]. The Asymptomatic

Carotid Atherosclerosis Study (ACAS) showed a 5.8% risk reduction of stroke at 5 years after

CEA in patients with asymptomatic high-grade carotid stenosis (≥ 60%). They concluded

that CEA was beneficial when performed in centers where morbidity and mortality were 3%

or less[16–18]. There is a debate about the criteria for selecting asymptomatic ICA stenosis

patients for CEA and risk stratification is necessary to identify these patients [16,19].
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Figure 1.1: Location of carotid artery and process of carotid endarterectomy. Figure A
shows different carotid artery with plaque buildup and an inset image of a cross-section
of the narrowed carotid artery due to plaque. Figure B shows the process of carotid
endarterectomy i.e., removal of the plaque. Public domain image and selected text provided courtesy

of The National Heart, Lung, and Blood Institute http://www.nhlbi.nih.gov/health/health-topics/topics/catd/
treatment.html

Quantitative assessment of plaque offers the advantage of monitoring plaque stabilization

by drug therapies. It also helps to select those patients with high risk plaques so they can be

treated with CEA while the vast majority of patients with low risk plaques can be treated

medically.

Indirect physiologic measurements such as blood pressure or cholesterol levels can provide

indication of atherosclerosis [11]. However, these measurements can not be isolated as causes

of carotid artery atherosclerosis. Contrary to these indirect measurements, medical imaging

techniques provide ways to examine the plaque anatomy directly.

Angiography is a way of visualizing blood vessels by injection of a contrast agent into the

3
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(a) (b)

Figure 1.2: a) Schematic cross section of carotid artery shows intima, media, and
adventitia layers of carotid artery b) Manually delineated lumen-intima boundary
(green), media-adventitia boundary (red), and adventitial wall boundary (blue) on a 2D
cross-sectional US image.

bloodstream. Computed tomography (CT) angiography (CTA) gives a three-dimensional

image of blood vessel by taking a series of x-ray images at regular angles and is used

to identify atherosclerotic plaque in the carotid bifurcation region [20]. Although it is

widely available and cost-effective, it exposes the patient to a significant dose of ionizing

radiation and iodine-based contrast agent may cause allergic reaction to the patient [20].

It is recommended to use CTA only in life-threatening cases or severe stenosis patients.

Magnetic resonance imaging (MRI) provides high quality images of blood vessels and is used

to measure arterial wall thickness [21] and plaque composition [22]. The main drawback of

MRI is its comparatively high cost which prohibits the use of MRI as a screening tool for

asymptomatic stroke patients.

Duplex ultrasonography is the most widely used screening tool to evaluate atherosclerotic

plaque and stenosis of the carotid artery for asymptomatic stroke patients due to its

cost-effectiveness, non-invasiveness, and portability. It is commonly used to monitor

asymptomatic stroke patients serially for progression of disease or after carotid

endarterectomy. Visualization of intima, media, and adventitia layer (figure 1.2a) of carotid

artery and assessment of arterial wall changes with precise measurements in 3D are possible

due to novel ultrasonic imaging techniques. Figure 1.2b shows manually delineated adventitial

wall boundary (blue), media-adventitia boundary (red), and lumen-intima boundary (green)
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Figure 1.3: Ultrasonic duplex Doppler velocity measurements at stenosed region of ICA.
The patient has moderate stenosis (50%-69%) based on Peak systolic velocity (PSV) (154.77
cm/s) and end diastolic velocity (EDV)(43.32 cm/s).

on a 2D cross-sectional US image.

The established quantitative assessment of carotid stenosis is ultrasonic duplex Doppler

velocimetry [23]. Color Doppler sonography allows simultaneous real-time visualization

of vascular lesions and associated flow abnormalities. The color Doppler sonography aids

sonographer to find the origin of ICA and stenosed regions. The cursor is placed in the

center of the carotid lumen at an angle of 600 or less on the B-mode gray scale image

for Doppler spectral display (figure 1.3). The highest velocity is detected after sampling

through the whole stenosis region. The main limitation of Doppler velocity measurement is

that it showed a considerable spread of values relative to angiographic stenosis percentage

[24]. This means that a wide range of associated blood flow velocities is recorded for

any given degree of angiographic stenosis. It affects the sensitivity and specificity of the

sonographic tests. It also strongly affects the positive and negative predictive values. There

is no validation data that directly relate carotid velocities to patients benefits from CEA.
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Tortuosity of the ICA due to kinking and coiling secondary to atherosclerosis may increase

peak systolic velocity (PSV) in the ICA.

Due to the limitations of ultrasonic duplex Doppler velocimetry method, other ultrasonic

imaging measurements for quantifying carotid atherosclerosis have been proposed in the

literature. The established ultrasonic imaging based quantitative measurement is IMT

(one dimensional measurement of thickness of intima and media figure 1.2) [25]. Though,

IMT has been shown to correlate with vascular outcomes [26], it may reflect many distinct

biological pathways and mechanisms like hypertensive medial hypertrophy [27] or compensatory

intimal thickening due to mechanical forces of blood flow [28]. More recently, total plaque

area(TPA) [29] and total plaque volume (TPV) [30] have emerged as complementary ultrasonic

phenotypes of carotid atherosclerosis which provide quantitative measurements of plaque

burden in two dimensions (2D) and three dimensions (3D), respectively. TPA is generally

measured from a plane which contains the most plaque. However, plaque grows in three

dimensions and any 1D or 2D measurements are unable to capture global change in plaque.

TPV is calculated by segmenting the plaque boundary in all cross sectional slices that

contain plaques. Though TPV provides global plaque burden in 3D, it suffers from large

intra- and inter- observers variability, long training times for observers and long duration to

perform manual segmentations because it is difficult to distinguish vessel wall from plaque in

3D US images. In order to overcome some of these limitations and accelerate the translation

of 3D measurements of carotid atherosclerosis to clinical research and clinical practice, vessel

wall volume (VWV) [31,32] was proposed as new 3D measurements of plaque burden. VWV

is a 3D measurements of vessel wall thickness and plaque. It can be measured by segmenting

adventitial wall boundary (AWB) or media-adventitia boundary (MAB) and lumen-intima

boundary (LIB) (figure 1.2b).We hypothesize that there is a possibility of missing plaque

in the calculation of VWV if MAB is segmented as an outer boundary. AWB measurement

is more reproducible than MAB measurement because it becomes difficult to distinguish

media from adventitia with presence of plaque in US images.
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1.4 Literature Review

In this section, existing approaches for the calculation of VWV from the US images will

be presented. We will also discuss the limitations of existing approaches. Due to the

nature of US images, there is a possibility of over-segmentation. We will also present

existing approaches, used in the segmentation algorithm to stop over-segmentation and

their limitations. This section is divided into two parts: arterial wall segmentation for the

calculation of VWV ( section 1.4.1) and stopping criteria for correct boundary segmentation

( section 1.4.2) .

1.4.1 Arterial Wall Segmentation for the Calculation of VWV

Though it has been reported that VWV changes more than IMT over time, VWV has not

been used clinically due to the lack of a fast, accurate and reproducible tool to segment

AWB/MAB and LIB [33]. Several investigations have been reported on manual segmentation

of carotid artery wall by expert observers [34–36]. However, manual segmentation is

labor-intensive and time consuming and it also suffers from inter- and intra-observer

variability. 2D and 3D automatic and semi automatic algorithms are reported to segment

LIB or/and MAB on 2D/3D US [33,37–46].

The existing algorithms can be divided into two main categories: algorithms only

segmented carotid lumen [37–39, 41, 42, 46] and algorithms segmented both carotid LIB

and MAB/AWB [33, 43–45]. Each category can be divided into two classes: algorithms

segmented only common carotid artery [33,37–45] and algorithms segmented both common

and internal carotid artery [46].

Gill et al.[40], Solovey [42], and Lorza et al. [46] proposed direct 3D methods for

lumen segmentation of CCA, ICA and ECA. Gill et al. [40] used a 3D dynamic balloon

model to locate the luminal boundary which is refined by edge-based energy. However,

edge-based energy will not able to stop leaking through shadowing region figure 1.4c or

missing boundary region figure 1.4b. Solovey [42] incorporated Bhattacharyya regional
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Table 1.1: Summary of existing algorithms for segmenting carotid LIB/AWB/MAB
from Ultrasound images. (ISD=inter-slice distance, LIB=Lumen-intima boundary,
MAB=Media-adventitia boundary, AWB=Adventitial wall boundary, CCA= common
carotid artery, ICA= internal carotid artery, and ECA= external carotid artery.)

Paper Year Dime-
nsion

LIB
MAB/
AWB

Carotid
Artery
Type

No. of
images
(type)

Manual works

Ukwatta
[45]

2013 3D
Sparse
field level
sets

Sparse
field level

sets
CCA 21 (3D)

Anchor points on the
boundary slice at
ISD 3mm

Lorza [46] 2013 3D
Surface
Graph
Cuts

No
CCA,
ICA,
ECA

3 (3D)
Seed points at
beginning of CCA,
ICA, and ECA

Yang [44] 2012 2D
Active
shape
model

Active
shape
model

CCA 68 (3D)
Requires a shape
model on each slice
and training data

Ukwatta
[43]

2011 2D
Coupled
level set

Coupled
level set

CCA 21 (3D)
Anchor points on the
boundary slice at
ISD 1mm

Ukwatta
[33]

2011 2D Level set Level set CCA 21 (3D)
Anchor points on the
boundary slice at
ISD 1mm

Solovey
[42]

2010 3D Level set No
CCA,
ICA,
ECA

2 (3D)
Seed points inside
lumen

Gill [40] 2000 3D
Dynamic
balloon
model

No
CCA,
ICA,
ECA

1 (3D)
Initialization of
balloon model inside
lumen

Guerrero
[41]

2007 2D
Star
Kalman
filters

No
CCA,
ICA,
ECA

3 (2D
B-mode US
sequence)

Seed points inside
the lumen

Zahalka
[39]

2001 2D Active
contours No CCA

2 (3D
B-mode US
sequence)

Seed points inside
the lumen

Abolmae.
[37]

2000 2D

Star
algorithm
and
Kalman
filtering

No CCA
1 (2D

B-mode US
sequence)

Seed points inside
the lumen

Mao [38] 2000 2D Active
contours No CCA 7 (B-mode)

Seed points inside
the lumen

energy and a weak geometric prior in level set method. Bhattacharyya regional energy will

be minimized when the probability distribution between foreground and background has

maximum possible separation. Weak geometric prior influences the boundary to become

convex which will not work in the presence of plaque. Lorza et al. [46] proposed a

surface graph cuts based algorithm to segment the lumen with less user interaction but

its performance was poor in patient images. Other algorithms [37–39] validated their

algorithms for lumen segmentation on only seven 2D B-mode patient images [38], few

phantom images [39], or did not provide quantitative segmentation validation [37].
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(a) (b)

(c)

Figure 1.4: Challenges posed by US images a) Poor boundary contrast and speckle noise.
b) Missing boundaries which are parallel to US beams. c) Shadow.

Yang et al. [44] proposed active shape model for the segmentation of both MAB and

LIB of the common carotid artery. But, their algorithm requires a large number of training

images to generate models and may be unable to segment complex plaque boundaries if

complex plaques are not present in training images. Ukwatta et al. reported semiautomatic

segmentation of MAB and LIB based on 2D [33] and 3D [45] level set method. Their

algorithm can only segment the common carotid artery. But, the majority of plaques form

at the carotid artery bifurcation and extend through the internal carotid artery (figure 1.5,

figure 1.1). They progress along the vessel wall 2.4 times faster than they thicken [29].

Table 1.1 summarizes the main contributions and limitations of existing algorithms. To

the best of our knowledge, there is no existing algorithms that can segment both LIB and

MAB/AWB of CCA, ICA, and ECA.
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1.4.2 Stopping Criteria

Due to the physics of ultrasound imaging, US images contain speckle noise (figure 1.4a),

blurred boundary around anatomical regions (figure 1.4a), incomplete or missing tissue

boundaries that are parallel to US beams (figure 1.4b), and shadowing (figure 1.4c). If

these challenges are not addressed, there is a possibility of over segmentation due to leaking

of an evolving contour through poor contrast boundary region.

A proper stopping criteria is needed to stop leaking of contour through poor contrast

regions for an intensity based segmentation algorithm. Cohen et al. [47] used the norm

distance between two curves at successive iterations and Leymarie et al. [48] developed

change of potential field energy per unit length between two successive iterations for snake

models as a stopping criteria. But Wong et al. [49] showed that both approaches suffer from

wrong detection on image with no object, unable to locate small object and poor stability.

The computational burden is very high for finding the corresponding points to calculate the

norm distance for the level set method, which will eventually slow down curve evolution.

Yuan et al. [50] developed a dynamic stopping criteria based on given image property

for mammography images. In their method, termination will be stopped when the weighted

difference between mean slope of foreground (inside the contour) and background (outside

the contour) converges to zero. But, we found that this stopping criterion did not show

any converging trends for US image of the carotid artery. The intensity difference between

background and foreground is high for breast lesion in mammographic images. If speckle

noise is very high (figure 1.4a) for carotid images, the intensity difference between background

and foreground becomes low, and this stopping criterion does not show any decreasing trend

when an evolving contour reaches boundary.

Chaudhury et al. [51] proposed changes of contour length between successive iterations

as a stopping criteria. We found that changes of contour length between successive iterations

showed poor stability for US images of the carotid artery, whereas change of modified

haussdorf distance (MHD)[52] between contours at successive iterations showed a decreasing
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Figure 1.5: Plaque progresses through ICA.

trend [53]. Ukwatta et. al. [33] used change of the area bounded by contours at successive

iterations as a stopping criteria for the level set method. It is better to use percentage

change of area inside the evolving contour because the percentage change is insensitive to

the size of the artery. But a single threshold based stopping criteria (like the change of

area bounded by contours at successive iterations) will not be able to segment the right

boundary at different locations: common, bifurcation, or internal carotid artery due to the

challenges posed by US images (figure 1.4).

1.5 Research Objectives

3D US imaging of atherosclerotic carotid arteries poses several unique challenges (figure 1.4)

for developing segmentation algorithms of LIB and AWB. These challenges should be

addressed for developing a successful segmentation algorithm. One approach to overcome

these difficulties is to supplement the information derived from the ultrasound image with

prior knowledge about the object to be segmented which will bear close resemblance to how

medical imaging data is interpreted by human experts in clinical practice.

3D segmentation of the carotid artery wall can be done in two ways: (i) application

of 2D segmentation on cross-sectional slices and then render the segmented boundary

from cross-sectional slices to generate a volume (ii) direct application of 3D segmentation

algorithm. Though the 2D segmentation algorithm is computationally efficient, it does
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not use out-of-plane information. Extension of some 2D segmentation algorithms to 3D

algorithms are conceptually straightforward. However, the required computations for 3D

segmentation on huge data is not computationally efficient.

Considering the challenges (figure 1.4) posed by 3D US images, the objectives of this

research are as follows:

1. Develop semi-automatic 2D and 3D segmentation algorithms for segmenting LIB and

AWB of the carotid artery from proximal CCA to distal ICA and ECA with the

following characteristics:

• Minimal user interaction and higher reproducibility.

• Close resemblance of human interpretation of US images.

• Efficient in terms of computational cost and memory storage.

2. Develop a novel stopping criteria to stop the leaking of contour through poor contrast

regions (figure 1.4) and compare the performance of our stopping criteria with existing

stopping criteria.
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Chapter 2: Materials and Methods

The segmentation algorithm must be validated on US images of patients because it is not

realistic to use phantom images to validate the accuracy of the algorithm as they do not

simulate the characteristics of patient images. 3D US imaging was used to capture 3D

images of atherosclerosis carotid artery. In this chapter, we will discuss about the study

subjects, 3D US imaging system, and our proposed algorithm.

2.1 Materials

A sonix MDP Ultrasound system (Ultrasonix Medical Corporation, British Columbia,

Canada) and a 4D L14-5/38 linear probe (figure 2.1a) were used to acquire 3D ultrasound

images of carotid artery including the stenosis. The Stradwin software [1] was used for

manually outlining the ultrasound volumes and the segmented isosurfaces were exported and

further analyzed using MATLAB (Mathworks Inc, Natick MA). The proposed algorithm

was implemented in MATLAB on a desktop with an Intel core 2 duo processor and 4 GB

of RAM.

2.1.1 Study Subjects

Subjects were recruited at Veteran Affairs Medical Center, Baltimore, MD. All subjects had

asymptomatic carotid stenosis and were diagnosed using Doppler US. Asymptomatic carotid

stenosis patients do have previous symptoms of stroke or transient ischemic attack. All

subjects provided written informed consent to the study procedures, which were approved

by our Institutional Review Board. Color doppler images along with 3D US images of the

carotid artery were acquired.
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2.1.2 Image Acquisition and Post-processing

(a) (b)

Figure 2.1: a) A 4D L14-5/38 linear probe by Ultrasonix Medical Corporation for acquiring
3d US image. b) A series of 2D images are collected as the transducer is tilted and then
reconstructed into a 3D image in tilt scanning approach.

Sonix MDP is a diagnostic ultrasound system with a research interface. The device can

perform all clinical functionalities in research mode. Image information can be retrieved for

further processing. 4D probe is a mechanically augmented 1D ultrasound transducer array.

4D probe continuously acquire 2D B-mode images while the motorized drive mechanism is

used to tilt the transducer about an axis parallel to the transducer face [54]. It forms a fan

of images radial to the axis (figure 2.1b). The probe housing remains at a single location on

the patients skin. Due to the fan-like geometry of acquired the 2D images, a large region

of interest can be swept with an equal angular separation between 2D images. The angular

separation between 2D images can be adjusted to yield high quality images. Due to the

compactness of the 4D probe, it is very easy for hand-held positioning and manipulation. It

can capture 3D volume within a heart cycle. The patient needs to remain motionless so that

motion artifacts do not corrupt the image. The resolution of acquired 3D images are not

isotropic. The linear distance between acquired image planes increases with distance due to

the fan-like geometry, resulting in decreased spatial sampling and lower spatial resolution.

Due to beam spreading in the scan direction, as well as within the acquired image plane,

the resolution of pixels will degrade with distance from axis of rotation [54].
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(a) (b) (c)

Figure 2.2: Process of separable 3D scan conversion (SC) in a phantom image of carotid
artery. Separable 3D SC consists of two passes of 2D SC. a) Each r − θ image acquired
in longitudinal plane and φ is the angle of this acquired longitudinal images in scan
direction. b) An intermediate volume is generated from acquired volume in a) by first
pass or axial-lateral SC. In axial-lateral SC, each r − θ image is converted to each ω − x
image by interpolation. c) 2nd pass or axial-elevation SC is applied to convert data in ω−φ
of the intermediate volumes to data in y − z plane of the final scan-converted volume.

In US imaging, axial (r in figure 2.2a) and lateral (θ in figure 2.2a) directions are defined

as the direction parallel and perpendicular to the direction of US beam respectively. The

swiveling direction is defined as elevation direction (φ in figure 2.2a) in 3D US imaging. The

acquired 3D images consist of series of r-θ images (figure 2.2a). Each r-θ image consists of

a group of polar coordinate vectors acquired in one longitudinal plane and φ is the angle

of this acquired longitudinal images in scan or elevation direction. The acquired volume

(figure 2.2a) is stored in memory. A separable 3D scan conversion (SC) [55] was applied

in post-processing to generate the final scan-converted volume (figure 2.2c) in cartesian

coordinate from input the volume in (figure 2.2a) because cartesian coordinates system

gives better visualization of organs. It is also easier to develop a segmentation algorithm

in the cartesian coordinate. A separable 3D SC is equivalent to performing a series of

2D SC on axial-lateral 2D images followed by a series of 2D SC on axial-elevation 2D

images. It requires the generation of an intermediate volume (figure 2.2b). Each ω−x plane

(figure 2.2b) in the intermediate volume is generated from each r − θ plane (figure 2.2a)

through interpolation. This process is called first pass or axial-lateral SC. After axial-lateral

SC, axial-elevation SC is applied to generate each y − z plane in final volume (figure 2.2c)
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Figure 2.3: Stradwin interface for manual segmentation [1].

from each ω − φ plane in the intermediate volume (figure 2.2b) through inverse mapping

and interpolation.

After separable 3D SC, voxels in the 3D images become isotropic and the dimension of

voxels ranges from 0.06 mm to 0.09 mm in our data set.

2.1.3 Manual Segmentation of Carotid Artery Wall

Due to the absence of ground truth boundaries, the proposed algorithm was compared

against manual segmentation. Stradwin software (figure 2.3) [1] was used for manual

segmentation. 21 cross sectional slices were selected from each 3D US patient image at

an interslice distance of 1mm. We assume that the morphology of the carotid artery

does not change a lot within 1mm. Observers delineated LIB and AWB in cross-sectional

slices of the carotid artery, as seen in the top left window of stradwin (figure 2.3). The

two bottom windows show the segmented boundary in the other two longitudinal slices.
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(a) (b)

Figure 2.4: a) Power and b) color doppler images of carotid artery at the bifurcation region.

Observers can use the aid of the segmented boundary in longitudinal slices to modify the

boundary in cross-sectional slices. The top right window shows the 3D surface generated

from the segmented boundary. Stradwin automatically interpolates between boundaries to

generate the surface. Observers took the aid of power (figure 2.4a) and color (figure 2.4b)

doppler images for delineating LIB. US video of the carotid artery exam was also available

to observers. Observers also looked at pulsation of arterial wall in the video for better

identification of AWB. Viewing the video loop through systole and diastole will also give

observers to get the best appreciation for the size of the lumen. When the boundary is

missing in some portions of AWB or LIB, observers assumed that the boundary in that

portion are in the same level as the nearest visible boundary.

2.2 Segmentation Algorithm

The assessment of carotid artery remodelling due to atherosclerosis directly from the 3D

ultrasound volume is a difficult task due to the nature of ultrasound imaging. Quantitative

assessment of the carotid artery remodelling can be done by segmenting artery wall. Image

segmentation is the division of an image into number of non-overlapping regions. The

boundary between regions is not known in advance. So the goal of the image segmentation

task is to classify each image pixel as belonging to one of the regions such that few

pixels are mis-classified. In case of the carotid vessel wall segmentation, the whole image

can be divided into three regions: lumen, vessel wall including plaques, and remainder
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Figure 2.5: Division of image into three regions for performing image segmentation.

of image or background (figure 2.5). These three regions can be identified by outlining

lumen-intima boundary (LIB) and adventitial wall boundary (AWB) of the carotid artery.

Manual outlining of LIB and AWB is tedious, time consuming and suffers from intra- and

inter-observer variability. Semi-automatic segmentation technique will reduce the time with

higher reproducibility.

Image segmentation is a fundamental task in image analysis. Computer vision and

medical image analysis community have developed a lot of algorithms for image segmentation.

Algorithms developed for computer vision application are different from medical image

analysis application. Most of the segmentation approaches are customized to the domain of

its application. Due to inherent noisy and echogenic nature of US images, there is a need

for significant adaption of any segmentation approach.

Table 2.1 summarizes our proposed segmentation algorithm which can be divided into

four major parts: (i) initialization, (ii) image preprocessing, (iii) distance regularized level

set evolution, and (iv) stopping criteria. In the first step, the user places points for LIB

and AWB in only seven cross sectional slices and initialization on other slices is found by

interpolation. The LIB and AWB are simultaneously segmented from the preprocessed

image using distance regularized level set method [56] by optimizing an objective function

consisting of smoothness energy, speed function, regularized energy, mean separation local

(AWB)/ global (LIB) energy, ellipse fitting energy (2D algorithm for AWB), and stopping
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Table 2.1: Block diagram describing the general work flow of the algorithm.

1. Initialization 2. Image
Processing

3. Distance Regularized Level
Set Method

4. Stopping
Criteria

Manual:
Lumen intima Energy Function for lumen

boundary: intima boundary:

1. Find bifurcation 1. Local entropy 1. Distance regularized energy

and selection based 2. Length minimization energy

of slices for thresholding 3. Area minimization energy

initialization 4. Mean separation local regional

2. Selection of 2. Speckle energy

boundary points reducing 5. Global uniform modeling regional

Automatic:

anisotropic energy

diffusion 6. Stopping boundary (2D) or Change of

Adventitial
wall boundary:

surface (3D) based energy modified hausdorff

1. Generation of
Energy Function for adventitial
wall boundary:

distance between

initial points contours at

by interpolation successive

2. Generation of 1. Gaussian 1. Distance regularized energy iterations

stopping low pass 2. Length minimization energy

boundary (2D) filtering 3. Area minimization energy

and surface (3D) 4. Mean separation local regional

2. Generation of energy

initial 5. Ellipse fitting energy (2D)

boundary (2D) 6. Local smoothness energy (3D)

and surface (3D) 7. Stopping boundary (2D) or

surface (3D) based energy

boundary ( 2D algorithm) or surface (3D algorithm) based energy functions. Our novel

stopping criteria is a combination of stopping boundary based energy function and change

of modified Haussdorf distance (MHD) [57] between contours at successive iterations for

2D segmentation algorithm. For 3D segmentation algorithm, we used combination of a

stopping surface based energy and percentage change of pixel locations as stopping criteria.

The narrowband implementation of the level set method helps us to use only one label

function.

2.2.1 Initialization

First step of the algorithm is the initialization of points on the LIB and AWB. Then,

stopping and initial boundaries are generated from these initial points.
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(a) (b) (c)

Figure 2.6: a) Bifurcation point in a carotid artery b) Selection of initial points.
Legend: red=line at different angles,white=centroid of lumen, green=initial Points on LIB
,yellow=initial points on AWB c) Initialization at proximal slice of bulb. A final SB is found
by taking union between two contours formed from initial points.

Find Bifurcation (BF) Point and Selection of Slices for Initialization.

The BF point (point A at figure 2.6a) was first located on sagittal slices and the corresponding

cross-sectional slice was found. The common carotid artery was segmented proximally a

distance of 10 mm from the bifurcation (BF) point and the internal and external carotid

branches were each segmented distally a distance of 10 mm from the BF point. Then, 2D

cross-sectional slices at an inter-slice distance of 1mm were selected. Cross-sectional slices

for manual initialization of points were selected at an inter-slice distance of 4mm. So, 7

(including BF slice) out of 21 cross-sectional slices were selected for manual initialization

of points. Initialization of other slices was generated by interpolation. Same initial points

were used for 2D and 3D segmentation algorithm.

Selection of Boundary Points.

A boundary based initialization was used by placing initial points on the LIB and AWB.

Initial boundary (2D algorithm) or surface (3D algorithm) for level set evolution and

stopping boundary (2D algorithm) or surface (3D algorithm) were generated from these

initial points. For each boundary, observer places six points on the image. First, the observer

places the first point in centroid of lumen and straight lines were drawn automatically

passing through the centroid point with angles: 00, 600 and 1200 (figure 2.6b). Then, the
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(a) (b)

Figure 2.7: a) Interpolated initial points (red *) with manual initial points (green *) for
2D segmentation algorithm. Stopping boundary ( ellipse in this case) is generated by spline
interpolation through these initial points. The distance between cross-sectional slices for
manual initialization was 4mm. But, the distance between each cross-sectional slices was
1mm. b) Manually initial points (green *) with interpolated initial points (red *) for 3D
segmentation algorithm. The distance between each cross-sectional slices is 0.067mm that
is the pixel dimension in the z-direction.

user chooses initial points at the intersection of these lines with AWB and LIB boundary

(figure 2.6b). The fixed angles in initialization reduces user variability in initialization and

are used as landmarks for interpolation. Initialization was done separately for ICA and

ECA at bulb region and after the BF (figure 2.6c). The initialization on the other cross

sectional slices were found by doing interpolation. Figure 2.7 shows interpolated initial

points (red *) with manual initial points (green *) for 2D segmentation. The proposed

2D segmentation algorithm was applied on each cross-sectional slices. The inter-slice

distance between cross-sectional slices was 1mm for 2D segmentation. The input to the

proposed 3D segmentation algorithm was a 3D mesh. The pixel dimension in z-direction

was 0.06 -0.09mm i.e., the distance between each cross-sectional slices was 0.06-0.09mm.

All cross-sectional slices were used for 3D segmentation.
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(a) (b) (c)

Figure 2.8: a) Stopping boundary from initial points (green:LIB, yellow:AWB). b) Edge
map (red) inside SB (green). c) Initial boundary for LIB (white) and AWB(purple).

Generation of Stopping Boundary (2D) and Stopping Surface (3D).

A stopping boundary (SB) was generated by 2D cubic spline interpolation through initial

points (figure 2.8a). At bulb region and after the BF region, SB is the union between

two contours formed from initial points (figure 2.6c). Initial points were selected in such a

way that SB went through the correct boundary at shadowing or poor boundary contrast

regions. There will be no problem even if SB goes through a wrong boundary in the plaque

(figure 2.8a) or high contrast region because the evolving contour will stop at high contrast

boundaries due to an edge gradient. Figure 2.7 shows the generated SB from manual

and interpolated initial points where manually initialized cross-sectional slices were 4mm

apart. Manual initialization was done on seven cross-sectional slices for a single 3D US

image and generated SBs from these initialization are shown in figure 2.9a. SB in other

cross sectional slices generated from interpolated initial points is shown in figure 2.9b. The

distance between each SB in figure 2.9b is 1mm. A triangular surface (figure 2.9a) was also

generated from interpolated initial points for 3D segmentation algorithm.

Generation of Initial Boundary (2D) and Initial Surface (3D).

SB was dilated to serve as initial boundary (IB) for AWB contour evolution (figure 2.8c). A

‘disk’ shaped mask was used for dilation. Due to the smoothness of AWB, the radius of the

disk was 3 for dilation (purple contour is dilated from yellow contour in figure 2.8c). IB for

LIB contour evolution was generated by eroding the SB of LIB ( white contour is eroded
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(a) (b) (c)

Figure 2.9: a) Stopping boundary in 3D generated from manual initialization. b) Stopping
boundary in 3D generated from manual initialization and interpolation for 2D segmentation
algorithm. c) Stopping surface for direct 3D segmentation.

from green contour in figure 2.8c). As plaque grows inside lumen, a fixed radius mask can

not be used. The radius of the ‘disk’ shaped mask for LIB is found automatically from the

image characteristics. The steps for finding the radius are as follows :

1. A binary mask was created from SB by making all pixels inside SB to 1.

2. A canny edge detector was applied to find the edge map image of original 2D cross-

sectional image.

3. The binary mask was multiplied by the edge map image to find the edge map inside

SB (figure 2.8b).

4. Distance to SB (white asterisk in figure 2.6b ) from each point on the edge Map

(figure 2.8b) was calculated and point

5. The point on edge map which is at the largest distance was found.

6. The largest distance is the radius of the ‘disk’ shaped mask.

Figure 2.8c shows the IB for LIB and AWB. Figure 2.10a shows IB generated from

manual initialization of the SB. IB for each cross-sectional slices at an ISD of 1mm was

generated from corresponding SB for 2D segmentation algorithm (figure 2.10b). A triangular

surface (figure 2.10c) was also generated for 3D segmentation algorithm.
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(a) (b) (c)

Figure 2.10: a) Initial Boundary in 3D generated automatically from manually initialized
SB. b) Initial Boundary in 3D for 2D segmentation algorithm . c) Initial surface for direct
3D segmentation.

2.2.2 Image Preprocessing

Though, the human eye is able to derive the meaningful information from US images,

automatic processing is very difficult in US images due to its speckle noise and artifacts.

A low pass Gaussian filter was applied to smooth out image for AWB segmentation. For a

d-dimensional image U(x), Gaussian filter was defined as

U(x) =
∑

y∈N(x)

Gσ(x− y).U(y) (2.1)

where Gσ(·) is a Gaussian kernel and standard deviation σ controls degree of smoothing.

Gσ(x) =
1

(2πσ2)d/2
exp

(
−|x|

2

2σ2

)
(2.2)

A combination of local entropy based thresholding [58] and speckle reducing anisotropic

diffusion (SRAD) [59] filtering was used to pre-process the 2D cross-sectional images for

LIB Segmentation.

The application of entropy filtering was optional and it was applied only if there was a
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strong image artifact in the lumen. Entropy is invariant to gray level transformation. We

found empirically that 4-connected pixels in the lumen had entropy of 3.5-4. Our entropy

threshold value was 4. Pixels whose 4-connected neighborhoods had local entropy less than

the threshold are set to one.

SRAD is an anisotropic diffusion process and it smoothes homogeneous regions of

ultrasound speckle while preserving image edges. Anisotropic diffusion process creates a

scale space by generating more and more blurred images. It is implemented by means of

an approximation of the generalized diffusion equation where each new image is computed

by applying a diffusion equation to the previous image. So it is an iterative process that

occurs over time.

For a given intensity image U(x, y), the SRAD process generates a sequence of solutions

U(x, y; t) to the partial differential equations

δU(x, y; t)

δt
= div[c(q)∇U(x, y; t)] (2.3)

where t symbolizes time since initialization, div is the divergence operator, ∇ is the

gradient operator, and c(q) is the image-dependent diffusion coefficient.

The diffusion process is initialized by the original image U0 :

U(x, y; 0) = U0 (2.4)

The image-dependent diffusion coefficient [60] c(q) is defined as

c(q) =

[
1 +

[q(x, y; t)2 − q2
0(t)]

q2
0(t)[1 + q2

0(t)]

]−1

(2.5)

where q(x, y; t) is the instantaneous coefficient of variation and q0(t) is the coefficient of

variation in a homogeneous region with well developed speckle.

q(x, y; t) works as an adaptive speckle-detecting function. It depends on the instantaneous
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(a) (b)

Figure 2.11: a) Before SRAD b) After SRAD. SRAD enhances the boundary.

coefficient of variation to perform edge detection in a speckle contaminated image. q(x, y; t)

is defined as [60]

q(x, y; t) =

√√√√√√
∣∣∣∣12 ( |∇σU |U

)2
− 1

16

(
∆U
U

)2∣∣∣∣[
U + 1

4
|∇σU |
U

] (2.6)

q(x, y; t) in equation 2.6 combines a normalized gradient magnitude |∇σU |

and a normalized Laplacian operator ∆U to perform edge detection. This edge detector

adapts to the variations in average intensity due to normalization. Due to this normalization,

speckle will be detected in both dark and bright regions. High relative gradient magnitude

and low relative laplacian indicates an edge.

A speckle scale function, q0(t), indicates the average speckle dimensions and it can be

calculated as a function of mean and variance over a homogenous region of image U [59] or

be defined by [61]

q0(t) =
λ
∫

Ω q
2(x, y; t)dx∫
Ω dx

(2.7)

where λ control the scale selection for preserving edge and Ω represents image domain.

Figure 2.11 shows the application of SRAD on 2D cross-sectional images. SRAD enhances

the boundary.
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2.2.3 Distance Regularized Level Set Evolution

The level set method, introduced by Osher and Sethian [62], is an iterative energy

minimization framework to find a possible decision boundary (contour) C for dividing an

image domain Ω into sub-domains ΩA and ΩB. The decision boundary is a geometrical

object which is a curve in 2D or a surface in 3D. Energy minimization is an optimization

problem and the smallest energy of C will give the final segmentation.

Level set method can capture dynamic interface and complex shapes without parameterizing

the segmentation curve. It is also able to handle topological changes such as splitting and

merging automatically. Numerical computation of the level set method can be implemented

on a fixed Cartesian grid due to its non-parametric representation of the decision boundary.

The level set method has been widely used for the segmentation of ultrasound images [63].

In the level set method, a contour or hyper-surface of interest is embedded as zero level

set of higher dimensional function, called level set function (LSF). Let φ(x ) : Ω → <

represents a LSF in an image domain Ω. x ∈ Ω is a spatial variable representing a pixel

in Ω domain i.e. x = (x, y) and x = (x, y, z) for 2D and 3D images respectively. φ(x)

separates the image domain Ω into inside (ΩA) and outside (ΩB) sub-domains. φ(x) has

following properties

φ(x) > 0 for x ∈ ΩA

φ(x) < 0 for x ∈ ΩB

φ(x) = 0 for x ∈ ∂Ω = Γ

(2.8)

The zeroth level of φ(x) represents the decision boundary ∂Ω = Γ (i.e. spatial variables

x for which φ(x) = 0 represents points on the boundary). Figure 2.12 shows an implicit

representation of the decision boundary Γ in level step method. During the segmentation

process, φ(x) will evolve, which will cause an evolution of points in the boundary x and the

decision boundary Γ will follow the topology automatically. Figure 2.12 shows that Γ curve

underwent topological changes by merging into one.
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(a) t=0

(b) t=10

(c) t=20

Figure 2.12: Implicit representation of decision boundary in level set method. left column:
Evolution of level set function φ(x) (green) in time with its zeroth level cross-sectional slice
(red). right column: Zeroth level cross section of φ(x) in time.
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In level set method, the decision boundary evolution is defined as [64]

∂φ(x)

∂t
= − ∂ξ

∂φ(x)
|∇φ(x)| = F |∇φ(x)| (2.9)

which is known as a level set evolution equation. In equation 2.9, ∂ξ
∂φ(x) is first variation

of energy functional ξ , ∇ is a gradient operator, and F is the speed function that controls

the motion of the contour with respect to the artificial parameter t. The LSF φ(x) is

generally defined as a signed distance function in terms of an initial contour C that divides

the image domain Ω into ΩA and ΩB. φ(x) is defined as [64]

φ(x) =


d(x, C), x ∈ ΩA

−d(x, C), x ∈ ΩB

(2.10)

where d(x, C) is the minimum distance between x and the contour C. φ(x) has the following

two properties

|∇φ(x)| = 1,

φ(y) = 0, y ∈ ∂Ω

(2.11)

LSF grows irregularities during its evolution in the conventional level set methods [62].

It causes numerical errors and eventually makes the level set evolution unstable. One of the

solutions of this problem is reinitialization [64] of LSF to restore regularity of the LSF and

maintain stable level set evolution. Reinitialization is performed periodically by stopping

level set evolution and reshaping LSF as a signed distance function. Though reinitialization

has been widely used in level set method , it may incorrectly move the zeroth level away

from the expected position of the boundary[64,65].

Due to the limitations of reinitialization in the conventional level set method, distance
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Figure 2.13: Initial Phi generated from initial LIB and AWB boundary. The red and green
boundaries show the narrowband of LSF φ(x). The narrowband consists of zeroth level
(white to black or black to white transition boundary) and 3 × 3 neighborhoods of zeroth
level.

regularized level set evolution (DRLSE) [56] was used for the segmentation of AWB and

LIB in this work. The advantage of DRLSE over conventional level set [62] method is that

DRLSE doesn’t require reinitialization to maintain stability and regularity.

In DRLSE, the initial level set function is defined as a binary step function i.e., sub-domain

ΩA and ΩB initialized with constant positive and negative values. We used following

initialization to segment the AWB and LIB simultaneously.

φ0(x) =


−c0, if x ∈ R0

c0, otherwise

(2.12)

where c0 > 0 is a constant and R0 is a region in the domain Ω enclosed by LIB

(white boundary in figure 2.8c) and AWB (purple boundary in figure 2.8c) extracted at

algorithm’s initialization step. Figure. 2.13 shows the initial φ(x) for segmenting LIB and

AWB simultaneously. It was generated using initial LIB and AWB boundary (figure 2.8).
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Narrowband implementation of DRLSE, where the LSF is updated only around the

neighbourhood of zeroth level , was used to reduce the computational cost. The narrowband

consists of zeroth level ( white to black or black to white transition boundary) and 3 × 3

neighborhoods of zeroth level. Figure 2.13 shows the narrowband around LIB (green) and

AWB (red). Though LSF contains two step functions, there will be one step function in the

narrowband of each boundary. So the implementation of energy functions will be the same in

the narrowband of each boundary. It is very memory efficient because our implementation

requires only one LSF. Though LIB and AWB contours are propagating simultaneously,

there will be no intersection between them due to our the proposed stopping criterion. The

level set evolution equation in DRLSE [56] is given by

∂φ(x)

∂t
= −µ

∂Rp
(
φ(x)

)
∂t

−
∂ξext

(
φ(x)

)
∂t

(2.13)

where Rp
(
φ(x)

)
is the distance regularized energy [56] and ξext

(
φ(x)

)
is the external energy

functional that depends on the properties of the image.

Distance Regularized Energy.

The purpose of distance regularized energy [56] is to maintain the signed distance property

|∇φ(x)| =1 only in the vicinity of the zeroth level while keeping |∇φ(x)| = 0 at locations

far away from the zeroth level. There is no need to reinitialize LSF to maintain regularity

and stability due to this energy function. The level set regularized energy function [56] is

defined by

Rp(φ(x)) =

∫
Ω
p(|∇φ(x)|) dx (2.14)

where p(·) is a double well potential function that has minimum points at 1 and 0 to

maintain the signed distance property |∇φ(x)| =1 in the vicinity of zeroth level and |∇φ(x)|
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= 0 at a location far away from the zeroth level.

The double well potential function p(·) [56] is defined as

p(s) =


1

(2π)2
(1− cos(2πs)), if s ≤ 1

1
2(s− 1)2, if s ≥ 1

(2.15)

External energy is the combination of edge based energy, region based energy, and high

level domain knowledge. The edge-based energy forces the contour to move towards the

region of strong image gradient; whereas regional energy moves the contour without presence

of image gradient; and domain knowledge based energy influences the contour to follow the

expected shape of artery. The external energy functions used for AWB were different from

LIB due to the image characteristics of LIB and AWB. The AWB has an elliptical shape

(except at bifurcation). Some parts of AWB has high image gradient which are orthogonal

to ultrasound beam but elsewhere has very poor image contrast. The shape of LIB is not

fixed due to presence of plaque. Most part of LIB has high image gradient because the

lumen region is very homogeneous. The external energy used for LIB and AWB is defined

as

ξLIBext = λLIBξL + αLIBξA + γLIBξLR + νLIBξGR + βLIBξSB (2.16)

ξAWB
ext = λAWBξL+αAWBξA+γAWBξLR+βAWBξSB+σAWBξE for 2D algorithm (2.17)

or

ξAWB
ext = λAWBξL+αAWBξA+γAWBξLR+βAWBξSB+ρAWBξLS for 3D algorithm (2.18)

where ξL, ξA, ξLR, ξGR, ξE ,ξLS , and ξSB are the length minimization energy, area

minimization energy, local mean separation regional energy, global uniform modeling regional
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(a) (b)

Figure 2.14: a) Without length minimization energy b) With length minimization energy.

energy , ellipse fitting based energy, local smoothness energy, and stopping boundary based

energy respectively. λLIB/AWB, αLIB/AWB, γLIB/AWB, βAWB/LIB, σAWB,ρAWB, and νLIB

are weight of the corresponding energy functions.

Length Minimization Energy (ξL).

ξL [56] smooths the contour by minimizing the arc length of the contour (figure 2.14). As it

is weighted by edge detector function g, it will be minimized at the boundary. It is defined

by

ξL =

∫
Ω
gδ(φ(x)) dx (2.19)

where δ(x) is dirac delta function [64]. Edge detector function g [56] is defined as

g ,
1

1 + |∇Gσ ∗ I|2
(2.20)

where∇Gσ is a Gaussian kernel with a standard deviation σ and I is image in the domain Ω.

g is inversely proportional to the square of image gradient. Numerically, δ(x) is calculated

as

δ(x) =


1

2∈ [1 + cos(πx∈ )], |x| ≤∈

0, |x| >∈
(2.21)
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(a) (b)

Figure 2.15: Arrow indicates the direction of propagation of contour for a) LIB b) AWB
segmentation to minimize foreground area.

Area Minimization Energy (ξA).

ξA [56] speeds up the evolution of the contour by minimizing the area weighted by the edge

detector function. It will minimize foreground area. Inside of AWB and outside of LIB

are defined as foreground (figure 2.15). ξA will be minimum at the boundary due to edge

detector function. It is defined as

ξA =

∫
Ω
gH(−φ(x)) dx (2.22)

where H(x) is the regularized heaviside function [64] and is defined as

H(x) =



1
2∈ [1 + x

∈ + 1
πsin(πx∈ )], |x| ≤∈

1, |x| >∈

0, |x| < − ∈

(2.23)

Mean Separation Local Regional Energy (ξLR).

ξLR [66] will be minimized when the local interior and exterior (figure 2.16) regional means

have the largest difference. The local region is formed within a radius r from each point

on the boundary (figure 2.16). Let, xl be an another spatial variable independent of x and
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Figure 2.16: Local interior, local exterior, global interior, and global exterior region for the
calculation of regional energy.

ξLR is defined by

ξLR = −
∫

Ωx

δφ(x)

∫
Ωxl

BLR(x,xl)(ux − vx)2 dx dxl (2.24)

where BLR(x,xl) is the localized circular shaped region of radius r and is defined as [66]

BLR(x,xl) =


1, ||x− xl|| < r

0, otherwise

(2.25)

ux and vx are the interior and exterior mean intensities calculated on each point on the

contour defined by the region r. If the value of r is large enough, BLR will converge to

global statistics but it will act as an edge detector for very small r.

Global Uniform Modeling Regional Energy (ξGR).

ξGR [67] is proposed by Chan et al. where the foreground and background are modeled

as constant intensities represented by their means u and v. This energy will be minimized

when the foreground and background are best approximated by their means. Usually, global
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(a) (b)

Figure 2.17: (a) Evolving contour at 60th iteration. It is stopped at local edge (marked by
white arrow). Any parts of the evolving contour outside the fitted ellipse (green contour)
will removed. (b) Initial evolving contour for 61th iteration after applying ellipse fitted
energy.

regional energy is calculated on whole image (figure 2.16). A bounding box was calculated

from stopping boundary of LIB. Twice size of bounding box was used to calculate ξGR

instead of whole image in our proposed algorithm.

ξGR =

∫
Ω
H(−φ(x))(I(x)− u)2 + (1−H(−φ(x)))

(I(x)− v)2 dx

(2.26)

Ellipse Fitting Based Energy (ξE).

The initial contour for AWB was generated by dilating the stopping boundary using a fixed

radius mask. There is a possibility that the evolving contour may be stalled at a local edge.

As the speed of evolution of contour mainly depends on the edge, there will be no evolution

of contour at regions without contrast difference. Even local regional energy may not be

able to evolve contour at that region. We defined a novel ellipse fitting based energy ξE to

overcome these problems. Ellipse fitting energy was defined for only 2D algorithm. In our

energy calculation, first an ellipse was fitted through the evolving contour at each iteration

(green contour in figure 2.17a). Then, a binary mask φef (x) having negative value inside
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the ellipse and positive value outside the ellipse was generated. The ξE will be minimized

by removing any parts of evolving contour which are outside of φef (x). Any parts of the

evolving contour (red contour in figure 2.17a) outside the fitted ellipse (green contour in

figure 2.17a) will be removed. Figure 2.17b shows the initial contour (green contour) for

next iteration. The proposed ellipse fitting based energy is defined as

ξE =

∫
Ω
δ(φ(x))Bef (x) dx (2.27)

where

Bef (x) =


1, φef (x) > 0

0, otherwise

(2.28)

Local Smoothness Energy (ξLS).

As plaque grows inside lumen, the AWB has a generally smooth low-order shape. But, the

segmented AWB may contain convex or concave regions due to the heterogeneity of image

intensity of the interior and exterior of AWB. Therefore, segmentation algorithm based on

solely edge-based or region-based energy may not yield an accurate segmentations. Local

smoothness energy (ξLS) [68] was used in our proposed 3D segmentation algorithm to reduce

the convexity and concavity of a local neighborhood region defined by a prolate spheroid

mask. Let, xls be an another spatial variable independent of x and ξLS is defined by [68]

ξLS =

∫
Ω
δφ(x)(Av(x)−Au(x))2dx, (2.29)

where Au and Av are the volumes of the local interior and exterior regions defined by

prolate spheroid mask BLS(x,xls).

Au =

∫
Ωxls

BLS(x,xls)H(φ(xls)) dxls (2.30)
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(a) (b)

Figure 2.18: (a) Evolving contour at 100th iteration. There will be no movement (region
marked by white arrow )of evolving contour(green contour) when it touches the stopping
boundary (red contour) but evolving contour can propagate other direction. (b) Final
evolving contour at 200th iteration.

Av =

∫
Ωxls

BLS(x,xls)
(

1−H
(
φ(xls)

))
dxls (2.31)

BLS(x,xls) =


1, |xx − xxls| < rxls, |xy − x

y
ls| < ryls, |x

z − xzls| < rzls

0, otherwise

(2.32)

where, rxls, r
y
ls, and rzls are the length of x, y, and z axis of the prolate prolate spheroid

mask. (xxls, x
y
ls, x

z
ls) and (xx, xy, xz) are the (x, y, z) components of spatial variables xls and

x respectively.

Stopping Boundary(2D algorithm) or Surface(3D algorithm) Based Energy (ξSB).

Cross sectional ultrasound images of the carotid artery often have shadowing and poor

boundary contrast near lateral edges. There is a possibility of over segmentation and

leaking through these regions if a proper stopping criterion is not used. We defined a

stopping boundary (2D algorithm) or surface(3D algorithm) based energy ξSB that will
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act as a stopping criterion. A stopping boundary is generated by doing 2D cubic spline

interpolation from the initial points (red contour in figure 2.18a). A triangular stopping

surface (figure 2.9c) was generated from interpolated initial points for 3D segmentation

algorithm. Then, a binary mask φsb(x) having negative values inside the stopping boundary

or surface and positive values outside the boundary or was generated. ξSB will stop the

change of sign of the evolving LSF φ(x) at the stopping boundary or surface by replacing

the values with high negative values. The evolving contour or mesh will never cross the

stopping boundary (figure 2.18b) or surface (figure 2.9c). There will be no movement of the

evolving contour or mesh when it touches the stopping boundary (region marked by white

arrow in figure 2.18a) or surface but the contour or mesh can propagate in other direction.

Figure 2.18b shows the final segmented boundary.

ξSB =

∫
Ω
δ(φ(x))Bsb(x) dx (2.33)

where

Bsb(x) =


1, φsb(x) > 0 (LIB) or φsb(x) < 0 (AWB)

0, otherwise

(2.34)

The level set evolution equation was found by taking first derivatives ofRp (equation 2.14),

ξAWB
ext (equation 2.18 ), and ξLIBext (equation 2.16 ).
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Level Set Evolution Equation for AWB Segmentation

∂φAWB(x)

∂t
= µAWBdiv

(p′(|∇φ|)
|∇φ|

)
+ δφ(x)

{
λAWBdiv

(
g
∇φ
|∇φ|

)
+ αLIBg +

γAWB

∫
Ωxl

BLR(x,xl)
(
ux − vx

)[I(xl)− ux
Au

+
I(xl)− vx

Av

]
dxl +

σAWBBef (x) + βAWBBsb(x)

}
for 2D algorithm

(2.35)

∂φAWB(x)

∂t
= µAWBdiv

(p′(|∇φ|)
|∇φ|

)
+ δφ(x)

{
λAWBdiv

(
g
∇φ
|∇φ|

)
+ αLIBg +

γAWB

∫
Ωxl

BLR(x,xl)
(
ux − vx

)[I(xl)− ux
Au

+
I(xl)− vx

Av

]
dxl +

ρAWB

(
Av(x)−Au(x)

)
+ βAWBBsb(x)

}
for 3D algorithm

(2.36)

Level Set Evolution Equation for LIB Segmentation

∂φLIB(x)

∂t
= µLIBdiv

(
p′(|∇φ|)
|∇φ|

)
+ δφ(x)

{
λLIBdiv

(
g
∇φ
|∇φ|

)
+ αLIBg +

γLIB

∫
Ωxl

BLR(x,xl)
(
ux − vx

)[I(xl)− ux
Au

+
I(xl)− vx

Av

]
dxl +

νLIB
(
I(x− u)2 − I(x− v)2

)
+ βLIBBsb(x)

}
(2.37)

whereAu andAv are the local interior and exterior regions respectively for the calculation

of local regional energy and are defined as [66]

Au =

∫
Ωxl

BLR(x,xl)H(φ(xl)) dxl (2.38)
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Av =

∫
Ωxl

BLR(x,xl)(1−H(φ(xl))) dxl (2.39)

The level set evolution equation was implemented with a simple finite difference scheme

having fixed space steps ∆x = ∆y = 1. The discretized form of time dependent LSF

φ(x, y, t) is φki,j where (i, j) are the spatial indices and k is the time index. The temporal

partial derivatives ∂φLIB(x)
∂t or ∂φAWB(x)

∂t were approximated by forward difference. The

Eq. (2.36) or (2.37) can be expressed as

φk+1
i,j = φki,j + ∆t L(φki,j) (2.40)

where L(φki,j) is the right hand side of evolution equation Eq. (2.36) or (2.37).

2.2.4 Stopping Criteria

If the stopping criteria fails to stop propagation of evolving contour, it may happen that

the evolving contour for ECA and ICA will intersect instead of being separated because the

contrast difference between ICA and ECA boundary is very poor due to its deep location.

We define a new stopping criterion which is a combination of stopping boundary based

energy function (equation. (2.33)) and changes in modified Haussdorf distance (MHD)

between contours at successive iterations. The stopping boundary based energy function

will stop the evolving contour at the boundary. It may happen that the evolving contour

reaches the boundary long before maximum iteration number if we use only the stopping

boundary based energy as a stopping criteria. We combined changes in MHD between

successive iterations with stopping boundary based energy to save computational time

by stopping the contour evolution when it reaches the boundary. We also implemented

following stopping criteria to compare the performance of our novel stopping criterion.

1. Percentage change in area inside the contours at successive iterations. [33]
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(a) (b) (c)

Figure 2.19: . Ground truth boundary was generated by computing average curve from
manual segmentation. Ground truth boundary for sample images at (a) Common carotid
artery (b) Carotid bulb (c) Internal and external carotid artery region. Green, yellow, and
blue color represent manual segmentation and red color represents ground truth boundaries.

2. Change in MHD between contours at successive iterations (LIB) or every fourth

iterations (AWB).

Changes in MHD between contours never has been used as a stopping criterion. However,

Cohen et al. [47] used the norm distance between two curves at successive iterations for

snake models as a stopping criterion. The computational burden is very high for finding

the corresponding points to calculate norm distance for the level set method which will

eventually slow down the curve evolution.

2.3 Ground Truth Boundary Computation

In absence of histology images or CT angiography images, an average curve was generated

from manually segmented boundaries by three observers and it was used as a ground truth

boundary (figure 2.19). The accuracy of the segmentation algorithm was calculated by

comparing against this ground truth boundary and precision was computed by evaluating

the reproducibility of the algorithm generated boundaries. A manual image segmentation

protocol was developed based on consensus among multiple observers using a set of training

volumes. Three observers segmented LIB and AWB on the selected slices for each subject.

Total 210 2D cross-sectional slices were extracted from 10 3D US images. The Stradwin [1]

was used for manually outlining the ultrasound volumes. The expert also chose seven initial
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Figure 2.20: Connecting Black line shows the correspondence between points.

points on each boundary three times on each cross sectional images with a week between

repetitions on the same data set.

Given a set of N curves X1, X2, · · ·, XN , each with n equidistance points, we found the

average curve Y by first finding contour correspondence using the ant colony optimization

method [69]. The advantages of using this method for finding contour correspondence is

that the contour correspondence is formulated as quadratic assignment problem (QAP)

incorporating proximity information and better matching result was found due to the

neighborhood relation between points. Figure 2.20 shows the correspondence between points

on two boundaries. We randomly chose one curve X1 and found the correspondence with

all other curves. A point x11 on curve X1 corresponds to points x21, x31, · · ·, xN1 on each

curve X2, X3, · · ·, XN and similar notation is used for remaining n-1 points i.e., the point

x21 corresponds to points x22, x32, · · ·, xN2.
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A point on the average curve is the centroid of the N corresponding points

yi =
1

N

N∑
j=1

xji (2.41)

Fig. 2.19 shows ground truth boundaries for LIB and AWB for three representative

sample images at CCA, bulb, and ICA regions of the carotid artery.
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Chapter 3: Evaluation Criteria

We used volume based, region based, and boundary distance based metrics to evaluate

our proposed algorithm. Volume based metrics have clinical interest whereas region based

and boundary distance based metrics capture finer details about computer segmentation

with respect to manual segmentation. We used percentage VWV difference (∆VWV ) and

absolute VWV difference (| ∆VWV |) as volume based metrics. VWV difference (∆VWV )

for ith subject is defined as

∆VWV i =
VWV i

computer − VWV i
hand

VWV i
hand

× 100% (3.1)

where, VWV i
hand and VWV i

hand are the mean VWV measurement from repeated measurements

of VWVs from computer-generated and hand-outlined boundaries. The mean ∆VWV gives

the overall disagreement in 3D US data set

VWV =

∑N
i=1 ∆VWV i

N
(3.2)

where, N=10 is the total 3D US images.

Minimal Detectable Change (MDC) [70] was computed to find the smallest amount of

change of VWV that can be detected by algorithm. The equation for calculating MDC [70]

at 96% confidence interval is

MDC96 = 1.96×
√

2× SEM (3.3)
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where, SEM [71] is standard error of measurements which is calculated as follows

SEM = sd×
√

1− r (3.4)

where sd is the standard deviation of the measurement, and r is the reliability coefficient(

test-retest reliability in the form of intra-class correlation coefficient ).

Coefficient of variation(COV) was used to compare the reproducibility of the algorithm

and manual computed VWV and it is defined as

COV =
SD

VWV
× 100% (3.5)

where VWV =
∑N
i=1 VWV i

N and SD =

√∑N
i=1 (SDi)2

N . standard deviation SDi was computed

from the repeated measurements of VWV for each 3D US image.

Dice similarity coefficient (DSC), a region based measure, is the area overlap of two

boundaries and is defined as follows

DSC = 2
| Rhand

⋂
Rcomputer |

| Rhand | + | Rcomputer |
(3.6)

whereRhand andRcomputer are the region enclosed by hand-outlined and computer-generated

boundaries.

We used Hausdorff distance (HD)[72] and modified HD (MHD)[57] as boundary distance

based measurements to compare algorithm and hand-outlined boundaries. HD finds the

most mismatched points between two contours, which is defined as follows for two finite

point sets A and B

H(A,B) = max (h(A,B), h(B,A)) (3.7)

where

h(A,B) = max
aεA

min
bεB
‖a− b‖ (3.8)
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and ‖a−b‖ denotes Euclidean norm on points of A and B. One single mismatched point

is enough to make HD very high between two curves. MHD considers the contribution of

all points in curve mismatching and Eq. (3.8) is defined as follows for MHD:

h(A,B) =
1

Na

∑
aεA

min
bεB
‖a− b‖ (3.9)

We also computed william index (WI)[73] which is the ratio between average computer

to observer agreement and the average interobserver agreement. Given (n+1) observers

numbered from 0 to n do segmentation on N images, WI compares observer 0 (computer

generated segmentation) with the reference group of n observers (manual segmentation).

WI is defined as [73]

I =

1
n

∑n
j=1

1
D0,j

1
n(n−1)

∑
j

∑
j′:j′ 6=j

1
Dj,j′

(3.10)

where Dj,j′ is the average disagreement between two observers j and j’ computed on N

images.

The jacknife estimate of standard error in the computation of the WI is given by [73]

se =
{ 1

N − 1

N∑
i=1

[Ii − Ī]2
}1/2

(3.11)

where Ī = 1
N

∑N
i=1 Ii and Ii is WI computed by removing ith image from total N images.

Thus the 95% CI for the estimate of the WI is

Ī ± Z0.95se (3.12)

where Z0.95 = 1.96 is the 95th percentile of the standard normal distribution.

Friedman’s two-way analysis of variance by ranks [74] is computed to find the statistical
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difference between three different stopping criteria. It is a nonparametric procedure where

errors due to different stopping criteria are ranked for each data set. The test statistic is

defined as

χ2
m−1 =

12

Nm(m+ 1)

m∑
j=1

R2
j − 3N(m+ 1) (3.13)

where, N , m, and Rj represent number of data sets (N=210 cross sectional images), number

of stopping criteria (m=3) and sum of ranks for jth stopping criterion respectively. The

statistic is compared against χ2 distribution of m-1 degrees of freedom to determine rejection

or acceptance of null hypothesis. The rejection of null hypothesis represents a significant

difference in the rank i.e. the stopping criteria performs differently.
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Chapter 4: Results and Discussion

We evaluated algorithm accuracy and reproducibility using 210 cross sectional images from

10 3D US images. 3D segmentation algorithm was validated by slicing the algorithm-

segmented surface on the same planes as the manual segmentation and comparing the

resulting boundaries with the ground truth boundaries in 2D. The whole volume was divided

into two regions: from bifurcation to proximal CCA (BF 2 CCA) and from bifurcation to

distal ICA (BF 2 ICA) to find the performance at these regions separately. The image

contrast is completely different in these two regions. There is a possibility of compensating

low performance at ICA by high performance of algorithm at CCA if whole volume is used

for comparison. This chapter is divided into four section: thresholds of stopping criteria (

section 4.1) , weights parameters of DRLSE ( section 4.2) , comparison of different stopping

criteria ( section 4.3) , and evaluation of our proposed 2D and 3D algorithm (section 4.4) .

4.1 Thresholds of Stopping Criteria

In our level set evolution method, we segmented LIB and AWB simultaneously. Level set

evolution will be unstable if LIB and AWB evolving contour touches each other. We put

a constraint for level set evolution when we used other two conventional stopping criteria.

The constraint is that LIB and AWB will always maintain 0.8 mm distance from each other

because LIB and AWB are separated by carotid intima, media, and adventitia layer [75].

Following steps were used to find stopping metric value for each stopping criteria.

1. Performed the level set evolution without any stopping criteria and found the iteration

number when evolving contour reaches the boundary (green contour in figure 4.1a).

2. Plotted the stopping metric with respect to iteration number and found the iteration

number when the rate of change in metric slows down (175th iteration in figure 4.1b).
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Figure 4.1: (a)Evolving contour at 0th, 100th, 175th and 250th iteration without any
stopping criteria. Evolving contour reaches LIB boundary at 100th iteration (green
contour). After 100th iteration, contour propagate only through poor boundary contrast
and shadowing. (b) Percentage change of area between two consecutive iteration vs iteration
numbers.

3. Stopping threshold value will be average of the metric value at iteration number found

on step (2) and (1). According to figure 4.1, the stopping metric will be 0.3.

We selected 30 representative cross sectional slices from 10 subjects at BF 2 CCA and

BF 2 ICA regions because the size of artery is very different at those regions. We applied

above procedure on all selected images to find stopping threshold for all stopping criteria.

The final threshold will be the mean of stopping metric value found for 15 cross sectional

slices at each region. Table. 4.1 shows the threshold value at BF 2 CCA and BF 2 ICA

Table 4.1: Threshold value for different stopping criteria at bifurcation to proximal
CCA (BF 2 CCA) and bifurcation to distal ICA (BF 2 ICA) regions for LIB and AWB
segmentation.

Stopping
Criteria (SC)

Boundary
Name

BF 2 CCA BF 2 ICA

Change in MHD for
Proposed SC (mm)

LIB 0.06 0.07

AWB 0.8 0.9

% Change in
Area

LIB 0.2 0.3

AWB 0.1 0.2

Change in
MHD (mm)

LIB 0.07 0.09

AWB .15 .24
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for LIB and AWB for all stopping criteria.

For 3D segmentation algorithm, We used percentage change of pixels that alter their

locations relative to evolving surface. As the evolution of the surface is progressing, pixels

will change their location from interior to exterior of the evolving surface (AWB) or from

exterior to interior of the evolving surface (LIB). We calculated percentage change of pixel

locations at each iteration. If the percentage change of pixel locations is less than 10%

(LIB) or 8% (AWB) for consecutive 5 iterations, then the evolution will be terminated.

4.2 Weight Parameters of DRLSE

The weight parameters in eqution (2.36) or (2.37) has significant role in the contour

evolution. Since the length parameters λLIB/AWB is not very sensitive, it was fixed to

1 (LIB) and 5 (AWB) to make contours smooth. The time step ∆t must satisfy the

courant-Friedreich-Lewy (CFL) condition µ∆t < (1/4) for numerical stability and µ = 0.1

and ∆t = 4.0 was used in this paper. The non zero value of αAWB/LIB gives additional

external force to drive the motion of contour. A large value of αAWB/LIB will cause leakage

through the weak boundaries. As our novel stopping criterion stops the leakage of evolving

contour, we can set the αAWB/LIB to a high value. But we set to αAWB/LIB = 5.0 to

compare the performance of other stopping criteria. The ellipse fitting energy or stopping

boundary based energy is a kind of step function. It only looks for spatial variables which

are close to these boundary and change the sign of evolving LSF φx for the pixel which

are outside the boundary. So parameters σAWB and βAWB/LIB are not very sensitive and

they were fixed to 2. We found the parameters for region based energy (ξLR or ξGR) by

holding other parameters to their fixed value and changing ΓLIB/AWB and νLIB to a range of

values at a time for 50 images. The parameters value which gives the highest dice similarity

coefficient (DSC) are selected as final value. Table 4.2 summarizes the optimized value of

all parameters. Same values were used for 2D and 3D segmentation.
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Table 4.2: Optimized parameters value for LIB and AWB segmentation

Parameter’s Name

LIB AWB

Symbol
Value

Symbol
Value

2D 3D 2D 3D

Time step ∆t 4 10 ∆t 4 10

Regularized
Constant

µLIB 0.025 0.005 µAWB 0.025 0.005

Length Weight λLIB 1 1 λAWB 5 0.5

Area Weight αLIB 5 15 αAWB 5 20

Local Region
Radius

r 1.5 mm 1.5 mm r 1.7 mm 1.7 mm

Local Region
Weight

γLIB 0.5 2 γAWB 0.5 -5

Global Region
Weight

νLIB 0.5 0.5 NA - -

Ellipse Fitting
Weight

NA - - σAWB 2 2

Local
Smoothness

Radius
NA - -

rls
(rxls,r

y
ls,r

z
ls)

- (1.7,1.7,2)mm

Local
Smoothness

Weight
NA - - ρAWB - 5

Stopping
Boundary or

Surface Weight
βLIB 2 2 βAWB 2 2

4.3 Comparison Between Proposed and Conventional

Stopping Criteria

To compare the performance of three different stopping criteria, all weight parameters

(Table 4.2) of level set evolution algorithm were kept constant. The same initial contour

was used for all three stopping criteria and level set evolution was carried out separately for

these three stopping criteria. Algorithm-generated boundaries using these three stopping

criteria were compared against ground truth boundaries.
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Figure 4.2: Boxplots of the (a) DSC , (b) HD , (c) MHD between algorithm-generated
boundaries and ground truth boundaries for three different stopping criteria for segmenting
LIB and AWB. It also shows the performance of manual segmentation of three observers in
terms of inter-observers variability. The white line inside box represents median, the white
circle represents mean, the edge of box represents 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considering outliers, and red (+) represents
outliers.

Figure 4.2 shows the performance of three different stopping criteria for the segmentation

of LIB and AWB in terms of DSC, HD and MHD. It also shows inter-observer performance of

manual segmentation with the performance of proposed 3D segmentation. The performance

was compared in the bifurcation to proximal CCA(BF 2 CCA) and bifurcation to distal

ICA(BF 2 ICA) regions separately. The performance of proposed stopping criterion is

better than other two stopping criteria. Other two stopping criteria failed to stop leaking

through poor boundary contrast region. As LIB and AWB was segmented simultaneously,

wrong segmentation of LIB affected segmentation of AWB. But our proposed stopping

boundary based energy function was able to stop leaking through the poor boundary

contrast regions.

DSC value (figure 4.2a) shows that the difference between 75th and 25th percentiles

is higher for LIB than AWB segmentation by the proposed algorithm. But, MHD value
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Table 4.3: Comparison of three different stopping criteria for the segmentation of LIB and
AWB in terms of William Index (WI). The expected value of WI is 1.0.

Stopping
Criteria

Boundary Name

LIB AWB

WI
95% CI

WI
95% CI

Low, High Low, High

Proposed 0.874 0.870, 0.878 1.035 1.03, 1.039

Change of Area 0.564 0.562, 0.567 0.686 0.682, 0.689

Change of MHD 0.619 0.615, 0.662 0.723 0.719, 0.727

(figure 4.2b) shows that the difference between 75th and 25th percentiles are similar for LIB

and AWB segmentation. The reason for this discrepancy is that DSC is very sensitive to size

and smaller objects are penalized more and get a much lower score than larger objects. The

proposed algorithm performed better in segmenting LIB at BF 2 ICA region and AWB at

BF 2 CCA region.

Most of the complex plaques are situated in the BF 2 CCA regions. It may happen that

wrong stopping boundary was generated for LIB due to interpolation at initialization step.

AWB becomes very difficult to identify at BF 2 CCA region and algorithm performance

depends on user initialization. HD value (figure 4.2c) also shows that one pixel in algorithm

generated boundary is always far away from ground truth boundary at BF 2 ICA region.

The Friedman’s rank sum test indicated a significant difference between the performance

of the three stopping criteria (p < 0.001) for segmenting LIB and AWB of carotid artery for

both regions using these three error metrics. Multiple comparison showed that the proposed

stopping criterion consistently outperformed the other two stopping criteria.

Table 4.3 shows the comparison between stopping criteria in terms William index (WI).

We used only MHD as error metric to calculate WI for 2D segmentation algorithm because

MHD does not depend on size of arteries. WI of the proposed 2D algorithm is close to 1 for

both LIB and AWB segmentation. It means that the proposed algorithm agreed with the

3 manual observers as well as 3 manual observers agreed with each other. From figure 4.2,

Friedman’s rank sum test, and WI value, we can conclude that our proposed stopping
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criterion is better than other two stopping criteria. Single threshold based stopping criteria

will not able to stop over-segmentation and under-segmentation.

(a) -10 mm (b) -8 mm (c) -6 mm

(d) -4 mm (e) -2 mm (f) 0 mm

(g) 2 mm (h) 4 mm (i) 6 mm

(j) 8 mm (k) 10 mm

Figure 4.3: sample LIB and AWB segmentations in a single 3D US images by the proposed
2D segmentation (green contour) and 3D segmentation (yellow contour) algorithm . Red
contour represents ground truth boundaries. Negative and positive distance represents
towards CCA and ICA direction respectively with respect to bifurcation slice. Distance 0
represents 1st slice where CCC is bifurcated to ICA and ECA.

4.4 Performance of the Proposed Algorithm

This section discusses the performance of our proposed 2D and 3D algorithm in terms

of clinical, boundary-based, and distance-based metrics in a greater detail. VWV is the

difference between arterial volume (volume enclosed by AWB boundary) and luminal volume
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(volume enclosed by LIB boundary). The volumes from 2D algorithm generated boundaries

and ground truth boundaries were computed by first finding average area enclosed by the

boundary of two consecutive cross-sectional slices, then multiplying this average area with

the interslice distance of 1mm and adding this product for all slices. The final result of

3D segmentation algorithm is a surface. Volume was calculated directly from the surface.

Figure 4.3 shows qualitative performance of proposed 2D and 3D segmentation algorithm.

4.4.1 Accuracy

We used Bland-Altman plots [76] to find the agreement between VWV generated ground

truth and algorithm generated boundaries. Bland-Altman plots the differences between

VWVs computed from ground truth boundaries (VWVG) and algorithm-generated boundaries

(VWVA) versus their averages for each 10 3D US volumes. Figure 4.4a shows Bland-Altman

plots for VWV generated from ground truth and algorithm generated boundaries with mean

bias and 95% confidence interval of mean bias (mean bias ± 1.96 × standard deviation (SD)

of the difference between VWVs from ground truth and algorithm generated boundaries ).

The mean bias for the 2D and 3D algorithm is -2.94 mm3 and 49.3 mm3. We can conclude

that algorithm generated boundaries agree with hand-outlined boundaries as all data points

are within 1.96 SD line.

We also used Pearson product-moment correlation analysis to find agreement between

VWV from ground truth and algorithm-generated boundaries. [Fig. 4.4b] plots the VWV

generated using the algorithm against the VWVs generated from ground truth segmentation.

The Pearson correlation coefficient is r = 0.99 ( 2D segmentation algorithm) and r = 0.97

( 3D segmentation algorithm) for p¡0.001 which shows two methods are highly significant

for generating VWV. We also used Friedman’s rank sum test on VWV generated from

these two methods to find the statistical difference between them and p=0.53 from the test

indicates that two methods are not statistically different.

The 95 % confidence interval (CI) of the mean difference between VWV generated

from algorithm and ground truth segmentation was computed. The mean VWV difference
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Figure 4.4: (a) Bland-Altman plots the difference between VWV computed from ground
truth boundaries (VWVG) and algorithm(2D and 3D)-generated boundaries (VWVA) versus
their averages for each patients. (b) Correlation plot of VWV computed from hand-outlined
boundaries and algorithm(2D and 3D)-generated boundaries.

between these two methods was -2.94 mm3 with a 95% CI of -107.9 mm3 to 102.1 mm3

for 2D segmentation algorithm and 4.93 mm3 with a 95% CI of -95 mm3 to 194.3 mm3 for

3D segmentation algorithm. The 2D segmentation algorithm yielded a percentage volume

difference (Equation 3.1) of 6.45 ± 4.93 and absolute volume difference (| ∆VWV |) of

3.43 ± 3.42 whereas percentage volume difference and absolute volume difference for 3D

segmentation algorithm are 4.82± 6.93 and 7.2± 4.04 . The MDC of VWV was 161 mm3

(10.89% of mean VWV), 171.5 mm3 (11.22% of mean VWV) and 222.16 mm3 (21.2% of

mean VWV) from repeated measurements of VWV by 2D segmentation algorithm, 3D

segmentation algorithm and manual observers respectively.

4.4.2 Performance as a Function of Distance from Bifurcation

Figure 4.5 shows the performance of algorithm in terms of DSC, MAD and HD as a function

of distance from BF for AWB and LIB segmentation. The circle represents mean value and

the error bar represents one standard deviation above and below the mean. Negative and

positive distance represents bifurcation to proximal CCA (BF 2 CCA) and bifurcation to

distal ICA (BF 2 ICA) regions respectively. The performance of algorithm is better for
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the segmentation of AWB than LIB at BF 2 CCA region (figure 4.5). The segmentation

accuracy is better for AWB than LIB at BF 2 ICA region in terms of DSC (figure 4.5a,

figure 4.5b) but LIB segmentation is better in terms of MHD (figure 4.5c, figure 4.5d). The

reason for this discrepancy is that DSC is very sensitive to size of contour and at BF 2

ICA region, artery consists of ECA and ICA. HD value (figure 4.5e, figure 4.5f) is higher of

AWB than LIB segmentation at BF 2 ICA region and opposite is true at BF 2 CCA.

The algorithm performed better in segmenting AWB than LIB of CCA where as the

performance was better in the LIB than AWB segmentation at BF 2 ICA region (figure 4.5)

Most of the plaques situated at distal CCA and the shape of LIB sometimes are very

complex at the presence of plaque. The performance of proposed stopping criteria depends

on stopping boundary which was generated from boundary points initialized by users.

Sometimes six points are not enough to capture complex LIB shape. Algorithm-generated

boundary was compared against manually boundary. Manually segmented boundary can

easily become more complex than algorithm-generated boundary. We used inter-slice distance

(ISD) of 4mm for initialization of points. A spline interpolation was used to find the

initialization on other slices because we assume that there will no abrupt change in plaque

boundary within 4mm. But, sometimes manual observers were confused by artifacts and

found abrupt change in plaque shape within ISD of 3mm. Due to deep location of ICA and

ECA, it is difficult to identify AWB than LIB of ICA and ECA. Edge strength is not too

high for AWB in this region. The final boundary largely depends on region based energy

and stopping boundary. Most of the variability in segmenting AWB at BF 2 ICA region

comes from user initialization.

Two ellipses are fitted through ICA and ECA. If there is a intersection between ellipses

fitted through ICA and ECA, there will be single AWB boundary where as manual observers

can easily separate ICA and ECA [Fig. 4.3].
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Figure 4.5: Performance of algorithm as function of distance to the BF for the AWB and
LIB. The error bar and circle is mean and standard deviation respectively. Negative and
positive distance represents bifurcation to proximal CCA (BF 2 CCA) and bifurcation to
distal ICA (BF 2 ICA) regions respectively.
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These are the reasons for performance difference of proposed algorithm for the segmentation

of LIB and AWB in BF 2 CCA and BF 2 ICA regions. Our hypothesize is that more

points for initialization and reduced ISD will increase the performance of the algorithm and

radiologist are opted to any number of points and any ISD depending on plaque shape in

clinical settings.

4.4.3 Performance of Each Point on the Boundary

Though MHD gives average distance between corresponding points of two curves, it does not

provide distance between each corresponding points. Figure 4.6a,4.6a show a graphical way

of showing distance between corresponding points of algorithm generated and ground truth

boundaries for a single 3D volume. Positive and negative distance for a point represent

over-segmentation and under-segmentation respectively. Over- and under- segmentation

mean point in algorithm-generated boundary is outside and inside of ground truth boundary

respectively. The closest points were considered corresponding points. 3D volumes were

generated by stacking all 21 slices for each 3D US images. Figure 4.6d shows distribution of

distance between corresponding points of algorithm generated and ground truth boundaries

for all 10 volumes (210 cross-sectional slices). The 95% confidence interval of mean is

(-0.2466, 0.2305) for LIB and (-0.2464,0.2550) for AWB by the 2D segmentation algorithm

and the 3D segmentation algorithm yielded 95% confidence interval of mean (-0.2422,

0.2460) for LIB and (-0.2020,0.2869) for AWB. Our algorithm can detect plaque thickness

change if change is more than -.48 mm to 0.48 mm.

4.4.4 Intra- and Inter-observer Variability

We used COV to find the intra- and inter-observer variability of algorithm and manual

observers in calculating VWV. We calculated VWV three times using our algorithm on 10

subjects (N=10). The algorithm gave a COV of 5.2%. Two observers initialized the points

for algorithm twice and we calculated inter-observer variability from these measurements.

Three manual observers segmented the boundaries. The COV for inter-observer segmentation
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Figure 4.6: Distance between corresponding points of algorithm-generated and ground
truth boundaries for (a) LIB and (b) AWB where positive and negative distance represents
over- and under-segmentation respectively. The frequency distribution of distance between
corresponding points of c) LIB and d) AWB.

is 11.28% and 16.52% by algorithm and manual observers respectively. We also used

Friedman’s rank sum test on VWVs generated from these repeated measurements to find

the statistical significance difference between them. p-value from the Friedman’s rank sum

test indicated that there was no significant difference between inter- and intra- observers

measurements by algorithm and manual observers.

4.4.5 Execution Time

The time for segmenting LIB and AWB was calculated using 210 cross-sectional images

for 10 subjects. Three observers segmented LIB and AWB manually. 5 ± 1 min was

required to segment the LIB and AWB for a single 2D cross-sectional slices. Due to
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poor boundary contrast, more time is required to segment LIB and AWB at ICA than

at CCA. The algorithm takes 9 ± 1.2 min of computational time to initialize seven points

for seven cross-sectional 2D slices of a single 3D US images. The algorithm, implemented

in MATLAB(Natick,MA) without any optimization, took 1 ± 0.2 min to segment LIB and

AWB of a single 2D cross-sectional slice on a desktop with an Intel core 2 duo processor

and 4 GB of RAM. The overall execution time to segment whole volume is 40 ± 5 min,

45 ± 5 min and 100 ± 5 min for 2D segmentation algorithm, 3D segmentation algorithm,

and manual observers respectively. Further optimization and implementation in C can

significantly speed up the computation time.
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Chapter 5: Conclusion and Future Works

There are several challenges to develop a robust semiautomatic segmentation algorithm for

segmenting wall of atherosclerotic carotid arteries using in vivo 3D ultrasound images .

The contrast is poor at boundaries parallel to ultrasound beams in carotid images. Due to

presence of calcified plaque, there are regions of shadowing where the boundary may not be

visually obvious. The ICA is often located deep in the neck, and its lumen on ultrasound

images contains speckle noise leading to poor contrast at boundary. The geometry and

structure of bifurcation and plaque pose a particular challenge for shape based active contour

methods. A semiautomatic or automatic algorithm for the segmentation of carotid artery

wall must overcome these challenges.

In this work, numerically and theoretically sound 2D and 3D semiautomatic algorithm

for the segmentation of lumen-intima boundary (LIB) and adventitial wall boundary (AWB)

of atherosclerosis carotid artery with technical details of implementation were presented and

evaluated. The segmentation of LIB and AWB is very useful in calculation of vessel wall

volume (VWV) and characterization of plaque composition. Quantitative assessment of

plaque will help to monitor plaque stabilization by drug therapies and to select patients

with high risk plaques so they can be treated invasively while the vast majority of patients

with low risk plaques can be treated medically.

The key contributions in this work were the development of a segmentation algorithm for

calculating VWV of carotid artery from proximal common carotid to distal internal carotid

with a novel stopping criterion and the incorporation of shape of artery (ellipse) as an

energy function for accurate segmentation of AWB. The proposed algorithm for segmenting

LIB and AWB was evaluated in terms of region-based and boundary-based metrics. The

reproducibility of VWV measurement by algorithm and execution time of algorithm were

also reported.
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Although preliminary validation on 10 subjects showed that the algorithm accurately

segmented LIB and AWB, further work is necessary for using it in the clinical settings.

The proposed algorithm needs to be validated on more patients data using CT angiography

images and endarterectomy. It is also important to know the performance of the proposed

algorithm in images captured by different manufacturer US machines.

One of the important stages of the algorithm is the initialization of points on the

boundary by manual observers. The performance of the algorithm depends on the stopping

boundary which is generated from initial points. In current framework of algorithm, points

were initialized by observers at an interslice distance of 4mm and initialization in other

slices were done by interpolation. In future, texture based image characteristics and image

information from other plane will be used for the initialization purposes. It will reduce

the variability due to manual initialization. To increase segmentation accuracy of AWB,

texture based energy function will be added to the current distance regularized level set

frame work.

In conclusion, the proposed algorithm represents a viable approach for the segmentation

of LIB and AWB of carotid artery using 3D ultrasound imaging despite many improvements

can be devised to the proposed algorithm. Given the quality of the available data, quantitative

evaluation of proposed algorithm shows that proposed algorithm is successful in segmenting

LIB and AWB boundary of carotid artery. The proposed algorithm can be helpful in

clinical care for fast and economical monitoring of 3D plaque progression and regression

during therapy.
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