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Abstract

COMPUTATIONALLY EFFICIENT EQUALIZER DESIGN

Weiwei Zhou, PhD

George Mason University, 2014

Dissertation Director: Dr. Jill K. Nelson

Intersymbol interference (ISI) caused by frequency selective multipath propagation is a

primary source of distortion in wireless communication systems. ISI significantly degrades

system performance, and hence channel equalization is typically employed at the receiver

to mitigate the harmful effects of ISI. An equalizer can be designed to operate on either

a symbol-by-symbol or sequential basis. Symbol-by-symbol based equalizers estimate the

transmitted symbols one at a time, while sequential-detection based equalizers make an

estimate of the full transmitted sequence based on the received signal over a full block of

data. In this work, we propose computationally efficient methods to design both symbol-

by-symbol and sequential equalizers for various communications scenarios.

In symbol-by-symbol schemes, we focus on the computationally efficient design of a

maximum asymptotic efficiency (MAE) equalizer. The MAE equalizer achieves an attractive

balance between performance and complexity. It minimizes bit error rate as the signal-to-

noise ratio approaches infinity while retaining simple implementation by using a linear

structure. However, its design requires solving quadratic programming problems and hence

has high computational complexity. We propose a geometrically-inspired approach to the

MAE equalizer design that dramatically reduces complexity. Additionally, we extend the

MAE equalizer to applications in which the channel varies significantly with time by propos-



ing a pre-equalization technique which enables the MAE equalizer to be designed only once

despite channel variations. The combination of the two proposed methods simplifies the

design of the MAE equalizer, facilitating its use for time-varying channels with longer delay

spreads.

In sequential detection schemes, we focus on communication problems which involve

detecting data transmitted over channels with a small number of sparsely spaced channel

taps. Such sparse channels are present in applications such as underwater acoustic (UWA)

communications, ultra-wide band (UWB) communications, and high-definition television

(HDTV) systems. We propose a tree-search based sequential equalizer that considers only

the significant channel coefficients. In addition, we consider situations in which the sparse

channel is unknown and no training data is available. We develop a blind sequential detec-

tion method by incorporating a novel greedy algorithm into a tree-search based sequential

detector. The proposed technique reduces complexity and yields improved performance

relative to existing matching pursuit (MP) based methods.



Chapter 1: Introduction

Emerging wireless communication technologies have revolutionized the way we work, live

and interact with each other, penetrating every aspect of our lives. The demand of high-

speed and high-quality wireless communication services is growing rapidly, such as high-

speed Internet access, high-quality video transmission and so on. In order to deliver such

services to users, we can increase the channel bandwidth to increase the amount of data that

can be sent over the channel. Theoretically, we can transmit as much data as we wish in the

presence of a channel with infinite bandwidth. In reality, however, all types of transmission

channels are of limited bandwidth. The limitations arise from the physical properties of the

channel or from regulations on the bandwidth to prevent interference from other sources.

Therefore, we would like to develop innovative technologies on the design of communication

systems to handle the challenges brought by wireless channels.

A wireless communication system consists of three components as shown in Fig. 1.1. The

transmitter obtains information from a source and transforms it into symbols that can be

transmitted over a radio frequency channel. The channel possibly impairs the transmitted

signal during transmission. The receiver then has the job to detect the transmitted signal.

If the receiver works perfectly, the output of the receiver will be the same as the input to

the transmitter.

In the system, a radio wave, propagating from the transmitter to the receiver, might

Transmitter Channel Receiver

Figure 1.1: Three basic components of a communication system.

1



be reflected or diffracted by objects which are close to the receiver, like buildings, trees

and cars. A simple example of the wireless channel is shown in Fig. 1.2. A base station

sends a series of symbols to a cellphone. The signal travels along multiple paths with

different lengths. Three incoming signals are received at the cell phone. In this scenario,

one symbol of the transmitted signal can be corrupted by a previous symbol due to a second

signal path. This kind of phenomenon is called intersymbol interference (ISI). For wireless

communications, multipath propagation of the transmitted signal is a primary cause of ISI.

ISI can significantly degrade the performance of a communication system, which is one of

the major obstacles to reliable and high-speed wireless communications. Therefore, the

transmitter and receiver should be designed to minimize the effect of ISI. There are two

popular approaches employed in communication systems to reduce ISI. The first approach,

which is at the transmitter end, designs bandlimited transmitting pulses using the Nyquist

pulse-shaping criterion [1]. The second approach is to use equalization/detection at the

receiver end to reduce the effects of the ISI introduced by dispersive channels. In this

work, we will focus on the latter approach and design innovative equalization technologies

achieving a balance between performance and implementation complexity for particular

applications.

1.1 Motivation and Contributions

Equalization is a process of compensating for the distortion (ISI) introduced during trans-

mission over a channel in order to improve the accuracy of transmitted signal estimation

[2]. An equalizer can be designed to operate on either a symbol-by-symbol or sequential

basis. Symbol-by-symbol based equalizers estimate the transmitted symbols one at a time,

while sequential-detection based equalizers make an estimate of the full transmitted se-

quence based on the received signal. A large variety of research has been conducted to

design equalizers of both types to mitigate the effect of ISI [3–11].

For symbol-by-symbol equalization, equalizers usually employ linear finite impulse re-

sponse (FIR) filters, where feedback might be also used. The coefficients of equalizers are

2



Figure 1.2: An example of a wireless channel.

designed or optimized to compensate for the negative effect introduced by the channel.

Various types of methods have been proposed to obtain these coefficients. For example,

the well-known zero forcing (ZF) equalizer is designed by finding the inverse of the channel

impulse response, and the minimum mean square error (MMSE) equalizer is designed to

minimize the mean square error (MSE) between the received and desired signal. Symbol-

by-symbol based equalizers are generally simple to implement. However, they typically have

limitations on their performance in an environment with severe ISI.

In this work, we study the structure of symbol-by-symbol based equalizers, and seek

to design equalizers with enhanced performance while retaining simple implementation. A

recently proposed equalization method called the maximum asymptotic efficiency (MAE)

equalizer is such a method that can achieve this balance. We will focus on the computa-

tionally efficient design of the MAE equalizer in this work. The MAE equalizer is optimized

3



in an asymptotic scenario and minimizes the probability of error only when the noise vari-

ance σ → 0. It provides much better performance than ZF and MMSE equalizers when

SNR is relatively high. In addition, the MAE equalizer uses the same linear structure as

the MMSE equalizer to ensure its simple implementation. Hence, the MAE equalizer finds

a middle point between performance and computational complexity. However, computing

the MAE equalizer coefficients requires solving quadratic programming problems and hence

suffers from high computational complexity. In order to further simplify the coefficient

computation, we propose an alternative way to design the MAE equalizer. We develop

a geometrically-inspired approach to the MAE equalizer design that dramatically reduces

computational complexity. Additionally, we consider situations in which the channel varies

significantly with time. We propose a pre-equalization technique in which, rather than de-

signing the equalizer to match the changing channel, we apply a pre-filter to match a fixed

one, and design the MAE equalizer only once for the fixed channel.

For sequential-detection based equalization, equalizers are designed using the sequential

detection methods which are originally proposed for decoding convolutional and tree codes.

Different from the symbol-by-symbol equalization, the whole transmitted sequence is esti-

mated simultaneously by choosing the sequence with the maximum likelihood (ML) of being

transmitted given the received signal. Equalizers based on maximum likelihood sequence

estimation (MLSE) are considered to be optimal in in terms of minimizing sequence error

rate.

Most sequential-detection based equalization methods were proposed to handle transmis-

sion over general ISI channels. For some applications such as underwater acoustic (UWA)

communications, ultra-wide band (UWB) communications, and high definition television

(HDTV) systems, the discrete-time channel impulse response has a very large channel mem-

ory, but only a small number of significant channel coefficients contributes to the distortion

of the transmitted signal. We call such channels sparse channels. When we apply the gen-

erally designed sequential detection techniques for such channels, all channel coefficients

are considered to estimate the transmitted signal, yielding high computational burden for
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the receiver, and decreasing the accuracy of estimates. Therefore, if we take the channel

sparsity into consideration, the equalizer can be designed in a more efficient way, and its

performance can be improved at the same time.

In this thesis, we are dedicated to developing computationally efficient sequential-detection

based equalization methods for sparse ISI channels. We make our contribution on studying

the characteristic of sparse channels, and propose a sequential-detection based equalizer

that only operates on the significant channel coefficients. The situations that the sparse

channel is unknown at the receiver is also considered. In order to avoid transmitting train-

ing sequences to estimate the channel, we develop methods that only uses received signal

and some necessary priors about the transmitted signal. The equalization process is divided

into two steps: 1)First, the channel sparsity is estimated; 2) Secondly, a sequential detec-

tion method is incorporated with the estimated sparsity. We prove that the computational

complexity is reduced significantly by doing so.

1.2 Organization of the Thesis

The thesis is organized as follows: In Chapter 2, some mathematical background on equal-

ization is provided, and existing equalization methods are discussed. In Chapter 3, the

maximum asymptotic efficiency (MAE) equalizer is introduced. A computationally effi-

cient algorithm is proposed to reduce the design complexity of the MAE equalizer, and an

adaptive pre-filter is developed using constellation mapping to make the MAE equalizer

practical for time-varying channels. We consider the sequential-detection based equalizer

for sparse channels in Chapter 4. A novel multiple-tree algorithm is proposed to reduce

the complexity of the conventional tree search algorithm when applied to sparse channels.

In Chapter 5, we extend the sparse sequential equalizer to consider scenarios in which the

channel is unknown at the receiver. A blind computationally efficient sequential detection

method is developed using a greedy algorithm. Conclusions and avenues for future work

are presented in Chapter 6.
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Chapter 2: Background and Survey of Literature for

Existing Methods

In communication system, when the frequency response of the channel changes significantly

within the bandwidth of the transmitted signal, different frequency components of the signal

will experience different gains during transmission and the channel is said to be frequency

selective. In the time domain, equivalently, the effect of a symbol will spread to adjacent

symbols, causing intersymbol interference (ISI). In order to better illustrate the concept of

ISI, we will discuss some mathematical details to describe the communication system.

2.1 Intersymbol Interference

Let us consider a bandlimited wireless communication system shown in Fig. 2.1. A sequence

of information symbols x(t) convolved with a pulse-shaping filter hp(t), passes through a

dispersive channel hc(t), and is then processed by a receive filter hr(t) to produce symbol

estimates [12]. We assume that additive white Gaussian noise (AWGN) wg(t) is present on

the channel. The output signal y(t) can be expressed as

y(t) = x(t) ∗ hp(t) ∗ hc(t) ∗ hr(t) + wg(t) ∗ hr(t) (2.1)

+

wp(t)

Channel

hc(t)

Pulse-shaping

hp(t)

Receiving Filter

hr(t)

x(t) y(t)

Figure 2.1: Block diagram of the discrete-time equivalent communication system.
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Since the pulse-shaping filter, the dispersive channel and the receive filter are all linear time

invariant (LTI) filters, they can be combined into one LTI filter, represented by h(t) =

hp(t) ∗hc(t) ∗hr(t). Due to the receive filter, the noise is no longer white. In order to apply

known equalization techniques designed using assumption of white noise, a noise-whitening

filter is usually included in the receive filter to make the colored noise white. Hence, the

communication system can be simplified as

y(t) = x(t) ∗ h(t) + w(t), (2.2)

where w(t) is the white Gaussian noise after the noise-whitening filter. Assuming that the

receiver has knowledge of the signal phase and symbol timing, the receive filter is designed

to match the transmit pulse shape and the channel impulse response. Sampling the output

of the receive filter, the system can be presented as an equivalent discrete-time model, which

is expressed as

yk =

Lh−1∑
i=0

xk−ihi + wk, (2.3)

where hi, i = 0, . . . , Lh−1, are the equivalent discrete-time filter coefficients of the combined

filter h(t). xk, yk and wk are the samples of the transmitted signal, received signal, and

whitened AWGN noise, respectively, at the k-th sampling instant.

Let us redraw the equivalent discrete-time communication system with an equalizer in

Fig. 2.2. yk is the input of the equalizer, and the output of the equalizer x̂k ideally only

contains the desired information symbol xk and a noise term with small variance. Assuming

the symbols xk have unit average power and the energy of the channel is normalized to be
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+

wk

Channel

hk

Equalizer

ck

rk ykxk x̂k

Figure 2.2: Block diagram of the discrete-time equivalent communication system.

1, the signal-to-noise ration (SNR) is

SNR =
signal power

noise power
(2.4)

=

∑Lh−1
i=0 |hi|2

σ2

=
1

σ2
,

where σ2 is the variance of the noise wk.

We expand (2.3) as follows:

yk = xkh0 +

Lh−1∑
i=1

xk−ihi + wk. (2.5)

For the desired information symbol at the k-th sampling instant, xk, the residual term

Lh−1∑
i=1

xk−ihi (2.6)

is the intersymbol interference. The ISI smears the adjacent symbols together and intro-

duces additional dependencies among them. We need to design the receiver to mitigate

the effect of ISI using knowledge of how the signal is corrupted during transmission. An

equalizer is such a mechanism to eliminate ISI.
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An equalizer can be designed to operate on either a symbol-by-symbol or a sequential

basis. The sequential equalizers are grounded in approaches that were originally designed

for decoding convolutional and tree codes [13]. Most of them map the possible transmitted

symbols onto a trellis or tree structure. They apply different strategies to navigate the

structure in search of the most likely path, often incurring high computational complexity.

In contrast, most symbol-by-symbol equalizers are much easier to implement, but they tend

to have limitations on their performance in severe ISI environments. A simple illustration

of the categories of equalizers is shown in Fig. 2.3. We will describe some popular channel

equalization approaches in each category in the following sections.

Figure 2.3: Illustration of different categories of equalizers.

2.2 Conventional Symbol-by-Symbol Equalization

Based on their structure, the symbol-by-symbol based equalizers can be divided into two

categories: linear equalizers and non-linear equalizers.
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2.2.1 Linear Equalizer

A linear equalizer processes the received signal by using a linear transversal filter structure,

shown in Fig. 2.4. The transversal filter uses a tapped delay line structure, where the

received signal yk is multiplied by the weight coefficients of the filter ci, i = 0, . . . , Lc−1, and

the results are summed together to give the output of the filter. The weight coefficients ci are

adjusted to reduce ISI. Considering a linear equalizer of length Lc with weight coefficients

c = [c0, c1, . . . , cLc−1]
T , the equalizer output at time k is

x̃k =

Lc−1∑
i=0

ciyk−i = cTyk, (2.7)

where yk = [yk, . . . , yk−Lc+1]
T is the vector of input to the equalizer. x̃k is then quantized

and the corresponding nearest information symbol is found to form the final decision x̂k. If

the output of the linear equalizer x̂k is not identical to the desired information symbol xk, an

error occurs. Considerable research has been conducted to optimize the weight coefficients

of the equalizer. We introduce three criteria that are commonly used: zero-forcing (ZF),

minimum mean square error (MMSE), and maximum asymptotic efficiency (MAE).

× × × ×

+ + +

yk
T T T T

c0 c1 cLc−2 cLc−1

x̃k x̂k

Figure 2.4: A linear equalizer with length Lc using a transversal filter structure.
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Zero-forcing Equalizer

The zero forcing (ZF) criterion was first proposed by Robert Lucky to design the coefficients

of a linear equalizer [1]. A ZF equalizer is based on the criterion to minimize the ISI, which

forces the impulse response of the channel and the equalizer to become a unit pulse. Let us

consider a linear equalizer with an infinite number of taps ci, −∞ < i <∞. We assume the

impulse response of the discrete-time linear channel is hj , 0 ≤ j ≤ Lh− 1. The ZF criterion

can be expressed as

∞∑
i=−∞

cihk−i =


1, k = 0

0, k 6= 0

. (2.8)

Thus, it is easy to see that a ZF equalizer with infinite length is simply an inverse filter to

the channel,

C(ejω) =
1

H(ejω)
, (2.9)

where C(ejω) and H(ejω) are the frequency response of the ZF equalizer and the channel,

respectively. Theoretically, the ZF equalizer with infinite length can completely eliminate

ISI. Considering stability and realizability constraints [14], ZF equalizers are implemented

as an FIR filter with adjustable tap coefficients in practical applications to approximate

this inverse. To find the coefficients of the finite-length ZF equalizer, we write the input of

the equalizer in a matrix form,



yk

yk−1
...

yk−Lc+1


=



h0 . . . hLh−1 0 . . . 0

0 h0 . . . hLh−1 . . . 0

...
...

...
...

...
...

0 . . . 0 h0 . . . hLh−1





xk

xk−1
...

yk−Lh−Lc+1


+



wk

wk−1
...

wk−Lh−Lc+1


,

(2.10)
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which can be simplified as

yk = Hxk + wk. (2.11)

We should emphasize that the FIR ZF equalizer does not completely remove ISI because it

has finite length. However, the length of the equalizer Lc can be chosen sufficiently large

so that the equalizer spans the length of the ISI. As Lc increases, the residual ISI can be

reduced. In order to determine the coefficients, we force the multiplication of the channel

matrix H and the ZF equalizer coefficient vector cZF to be a unit vector,



h0 . . . hLh−1 0 . . . 0

0 h0 . . . hLh−1 . . . 0

...
...

...
...

...
...

0 . . . 0 h0 . . . hLh−1





c0

c1
...

cLc−1


=



0

...

1

...

0


, (2.12)

which can be expressed as

HcZF = Id, (2.13)

where d is the decision delay that indicates the position of the 1 element in vector I. The

coefficients of the ZF equalizer can be obtained by taking the inverse of the matrix H,

cZF = (HHH)−1HHId. (2.14)

With knowledge of the channel, the ZF equalizer is very easy to implement. However,

in the process of developing a ZF equalizer, the effect of noise is neglected. If the impulse

response of the channel has a deep null like the example in Fig. 2.5 for the 3-tap channel

h = [0.407, 0.815, 0.407], the corresponding ZF equalizer will be its inverse and greatly

enhance the power of noise.
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Figure 2.5: An example of the impulse response of the 3-tap channel h = [0.407, 0.815, 0.407]
with a deep null and the corresponding 3-tap ZF equalizer.
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MMSE Equalizer

To overcome the disadvantages of the ZF equalizer, an alternative method was proposed

based on the criterion of minimization of the mean square error (MSE) between the equalizer

output signal x̂k and the desired signal xk [15],

MSE , J(c) = E{|xk − x̂k|2} = E{|xk − cTyk|2}, (2.15)

The MSE is a function of c, and the coefficients of the MMSE equalizer can be obtained by

minimizing J(c) [16],

cMMSE = argmin
c

J(c) (2.16)

= (HHH + σ2I)−1HHId,

where I is the identity matrix and σ2 is the variance of the AWGN. Compared to the ZF

equalizer coefficients computed in (2.14), the MMSE equalizer [1] takes noise into account

(the noise term σ2I is included in (2.16)). It balances the effect of the noise and ISI at the

equalizer output. Hence, an MMSE equalizer yields better performance than a zero-forcing

equalizer when noise is presented. As SNR increases, the performance of the two equalizers

converges because the effect of the noise term σ2I decreases. A performance comparison

between a 3-tap ZF equalizer and a 3-tap MMSE equalizer can be seen in Fig. 2.6 for the

3-tap channel h = [0.407, 0.815, 0.407]. The frequency response of the channel is shown in

Fig. 2.5 with a deep null. The ZF equalizer inverts the channel and enhances the noise

power during the equalization process. The MMSE equalizer takes noise into consideration,

which makes the performance difference between the two methods significant when SNR is

low.
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Figure 2.6: A performance comparison between a 3-tap ZF equalizer and a 3-tap MMSE
equalizer for channel h = [0.407, 0.815, 0.407] as SNR increases.

15



MAE Equalizer

Another form of the linear symbol-by-symbol based equalizer, recently proposed based on

the asymptotic performance of the system, is called the maximum asymptotic efficiency

(MAE) equalizer. Asymptotic efficiency (AE) [17], introduced originally in the context

of multi-user detection (MUD) [18], is a popular measure to evaluate the performance of

multi-user detectors with respect to their ability to mitigate interference from other users.

We can define asymptotic efficiency analogously for equalization of ISI channels, where the

detector is mitigating interference from other symbols rather than other users. The MAE

equalizer, introduced in [19], uses a geometric method to find a decision hyperplane that

maximizes the asymptotic efficiency of the equalizer. The normal vector of the hyperplane

is equivalent to the weight coefficients of a linear equalizer. The MAE equalizer is optimal

as the signal-to-noise ratio approaches infinity with respect to minimizing the probability

of error.

The MAE equalizer is not the only method to use a geometric way to analyze equal-

ization problems. Other approaches that apply geometric methods for channel equalization

include [20–24]. For example, the optimal Bayesian solution, determining and applying a

nonlinear decision boundary to the received signal, is proposed in [24]. In [21], a multiple-

decision-boundary method is proposed to eliminate the effect of ISI. But compared to those

methods, the MAE equalizer uses only a single hyperplane which is able to provide optimal

performance in high SNR with relatively low computational complexity. Due to the balance

that the MAE equalizer achieves between complexity and performance, we will focus on de-

veloping techniques so that the MAE equalizer can be better utilized in communication

systems. The details of the MAE equalizer will be illustrated in the next chapter.

2.2.2 Nonlinear Equalizers

The nonlinear equalizers employ a nonlinear filter or other nonlinear structure to estimate

the transmitted symbols from the ISI-affected observations. We introduce the decision

feedback equalizer and the maximum a posteriori equalizer in this section.
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Decision Feedback Equalizer

The decision feedback equalizer (DFE) is a widely used nonlinear equalizer, using a struc-

ture that contains two transversal filters: a feedforward transversal filter and a feedback

transversal filter, shown in Fig. 2.7. Similar to the linear equalizer, the previous decisions

are made by the feedforward transversal filter; the feedback transversal filter constructs the

ISI term contributed by the previously detected symbols. The ISI term is then subtracted

from the output of the feedforward filter. Although the DFE applies nonlinear structure,

the weight coefficients of the feedforward filter and the feedback filter, cff and cfb, can be

found based on the ZF and MMSE criteria that were described in Section 2.2.1. The output

of the DFE is

x̂k =
0∑

i=−Lff+1

yk−ici +

Lfb−1∑
i=1

xdk−ici = cTffyk + cTfbx̃k (2.17)

where yk = [yk+Lff−1, . . . , y0]
T are the input to the feedforward filter, and x̃k = [xdk−1, . . . ,

xdk−Lfb+1] are the symbols determined by the decision device.

In general, a DFE yields a significant improvement in performance compared to a linear

equalizer having the same number of taps. However, the performance of the DFE is degraded

when incorrectly detected symbols are fed through the feedback filter. This phenomenon

is called error propagation, which enhances ISI and causes decision errors. Many methods

mitigating error propagation have been proposed and incorporated into the receiver design

[25–27].

Decision feedback can also be combined with the MAE equalizer, which makes the

MAE equalizer more powerful in practical communication systems. We will discuss this

combination in Chapter 3.
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Feedforward
transversal filter

Symbol-by-symbol
decision

Feedback
transversal filter

Figure 2.7: Structure of decision feedback equalizer.

Maximum A Posteriori Equalizer

The maximum a posteriori (MAP) criterion [28], providing an optimal solution with respect

to minimizing the bit error rate (BER) of the system, is another criterion to design SS based

nonlinear equalizers. The MAP equalizer finds the transmitted signal xk which maximizes

the posterior density P (xk|Y N
1 ), where Y N

1 = {y1, . . . , yN} is the received sequence. Ap-

plying Bayes theorem, the MAP criterion can be expressed as

x̂k = argmax
xk

P (xk|Y N
1 ) = argmax

xk

P (Y N
1 |xk)P (xk)

P (Y N
1 )

= argmax
xk

P (Y N
1 |xk)P (xk), (2.18)

where P (xk) is the prior probability of the transmitted signal xk. MAP equalization can be

implemented using the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [29], which applies an

iterative forward-backward algorithm that operates on a trellis. The number of states on

the trellis increases exponentially with channel memory. For many practical applications,

constructing and navigating a trellis with a large number of states is prohibitively complex.

For example, with 8 phase-shift keying (PSK) modulation and a 5-tap baseband channel,

the MAP algorithm requires 85 = 32768 states at each stage of the trellis, leading to an

unaffordable load for the receiver.
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2.3 Conventional Sequential Detection Based Equalization

In contrast to symbol-by-symbol based equalizers, sequential-detection based equalizers pro-

duce an estimate of the whole transmitted sequence based on the received signal sequence.

The sequential-detection based equalizers estimate the transmitted sequence by choosing

the sequence with maximum likelihood (ML) of being transmitted given the received signal.

Various methods have been proposed to attain or approximate the ML solution. Most of

them are implemented by using the structure of a graph, such as a tree or a trellis. Each

path in the graph corresponds to a possible realization of the transmitted sequence. Dif-

ferent strategies of searching are performed to find the “best” path based on the metrics

assigned for paths. The mathematical expression of the process can be shown as

{x̂1, . . . , x̂n} = argmax
l

P{x(l)1 , . . . , x
(l)
n |y1, . . . , yn}, (2.19)

where l denotes the l-th path of the graph.

2.3.1 Viterbi Algorithm

The Viterbi algorithm (VA) uses the structure of a trellis [30] with a finite set of states. Each

state at a given time instant represents a possible realization of a portion of the transmitted

sequence. The VA computes a set of metrics associated with the observation symbols and

finds the most likely path through the trellis. For all the paths that lead into the same

state, it decides which of them is the most likely to occur, i.e. the path with the greatest

metric. The VA then keeps the survivor path with greatest metric and discards the other

paths into that state. The process can be shown in Fig. 2.8, where only one survivor is

kept among the paths coming into the same state. The VA attains the ML solution, but

the number of states grows exponentially with the channel memory Lh. For an Lh-tap ISI

channel with M -ary modulation, the VA needs to construct MLh states. In applications

with a long channel, the VA becomes prohibitively complex.
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Figure 2.8: An example of the VA using trellis. The VA keeps the survivor path with
greatest metric and discards the other paths coming into the state. The solid line in the
figure denotes the survivor path and the dashed lines indicate discarded paths.

2.3.2 Tree Search Algorithm

An alternative optimal method is to use tree structure [13] which relies on a tree repre-

sentation of the search space spanned by transmitted symbols. An exhaustive tree search

generates all possible transmitted sequences through a tree and evaluates the likelihood

of each sequence. Since the number of possible tree branches increases exponentially with

time, the exhaustive tree search is never used, even when the number of branches is small,

which has motivated the development of tree search algorithms with reduced complexity.

Numerous sub-optimal approaches that approximate the performance of the VA and

exhaustive tree search have been proposed. The M algorithm [31] is a breadth-first strategy

for searching the tree. At a given depth of the tree, it extends all branches for the existing

nodes, then keeps the M paths with the best path metrics. In contrast, the stack algorithm

(SA) [32] is a best-first method. At each time step, the algorithm extends only the path with
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Figure 2.9: An example of the stack algorithm navigating a tree. The algorithm extends
only the path with the largest metric at each stage. The red line denotes the survivor
path that the stack algorithm chooses. Hence 011 is the corresponding estimate of the
transmitted sequence.

the largest metric. The SA is more efficient and extends fewer paths than the M-algorithm

when SNR is high. However, for relatively low SNR, the SA jumps around the tree during

the search process, causing the number of required computations to be quite large. Since

the number of branches extended in the tree is independent of the length of the channel,

the M-algorithm and the SA, without sacrificing much performance compared to the VA,

are more efficient for channels with long delay spread.

The stack algorithm navigating a tree with depth 3 is shown in Fig. 2.9. At time 1,

metrics are computed for both the left and right branches, and the corresponding paths are

stored in a stack. The algorithm compares the two metrics and puts the path with larger

metric at the top of the stack. At time 2, the top path in the stack is extended and replaced

by its two children. The path with largest metric is moved to the top of the stack. The

process is repeated and terminated at time 3 when the top path reaches a leaf of the tree.

The red line in Fig. 2.9 shows the path that the SA chooses as the survivor path. In this

example, the estimated symbols {x̂1, x̂2, x̂3} are {0, 1, 1}.
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In our research, we will focus on the SA and consider its application on sparse ISI chan-

nels that are widely encountered in UWA, UWB and HDTV communication systems. The

conventional SA designed for general communication channels is modified so that it imple-

ments equalization specifically for sparse ISI channels. Both known-channel and unknown-

channel scenarios are considered. Our goal is to develop a method for detecting data

transmitted over sparse channels that both performs well and is computationally efficient.
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Chapter 3: Efficient Design and Implementation of the

Maximum Asymptotic Efficiency (MAE) Equalizer

We have discussed conventional approaches for equalizer design based on both symbol-

by-symbol and sequential detection bases. Equalizers using the MAP criterion provide

optimal detection with respect to minimizing bit error rate but suffer from high design

and implementation complexity. The MMSE linear equalizer provides a low-complexity

approach but suffers significant performance degradation relative to the optimal solution.

In this section, we will focus on the maximum asymptotic efficiency (MAE) equalizer which

achieves a balance between performance and complexity by combining sophisticated design

with low runtime complexity.

The MAE equalizer is implemented as a tapped delay line and hence has the same

runtime complexity as the simple MMSE linear equalizer. However, design of the MAE

equalizer involves finding the minimum distance between two convex hulls. Its design com-

plexity is exponential in the length of channel and equalizer, making it impractical for

long channels. We propose a method that exploits the relationship between the channel

vectors and the convex hull formed by the noise-free channel outputs to design the MAE

equalizer directly from the channel coefficients without requiring a search of the convex

hull. The equalizer design complexity is reduced to O(N logN), where N is determined by

the length of the channel and equalizer. Furthermore, when the MAE equalizer is applied

for time-varying channels, frequent redesign renders the effective operational complexity of

the MAE equalizer impractical for implementation. We address this issue by mapping the

time-varying channel to a fixed channel for which the MAE equalizer is pre-designed via a

linear pre-filter.

The maximum asymptotic efficiency and the design of the MAE equalizer are described

in Section 3.1. In Section 3.2, the proposed computationally efficient design of the MAE
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equalizer is presented, and simulation results are provided to evaluate its computational

efficiency. In Section 3.3, an adaptive pre-equalization technique is designed and combined

with the MAE equalizer to equalize time-varying channels. The performance of the resulting

adaptive equalizer is compared to conventional adaptive equalization methods.

3.1 Maximum Asymptotic Efficiency Equalizer

Asymptotic efficiency (AE), originally introduced in the context of multi-user detection

(MUD), measures the loss of signal energy due to multiuser interference as SNR tends to

infinity [18]. Maximizing asymptotic efficiency has been used as a criterion for designing

MUD systems [33]. Because dispersive channel equalization and MUD share a common

structure, MUD techniques may be naturally adapted to address intersymbol interference

(ISI) mitigation. The maximum asymptotic efficiency (MAE) equalizer, introduced in [19],

identifies the decision hyperplane in signal space that minimizes bit error rate in the high

SNR regime.

While the runtime complexity of the MAE equalizer is equivalent to that of an MMSE

linear equalizer, the design complexity is much higher. Identifying the MAE decision hyper-

plane requires quadratic programming (QP) to search for the minimum distance between

convex hulls, the complexity of which is exponential in the length of channel and equal-

izer. In this section, we present a novel computationally efficient algorithm for finding the

MAE decision hyperplane when binary phase shift keying (BPSK) signaling is used. The

proposed algorithm exploits the geometric properties of the constellations generated by

noise-free channel outputs. We show that the decision hyperplane of the MAE equalizer

can be determined directly from the channel coefficients, avoiding any need for quadratic

programming and reducing the design complexity to O(N logN), where N = 2Lc+Lh−2 is

determined by the length of the channel Lh and equalizer Lc.

24



3.1.1 System Model

The communication model we consider, shown in Fig.2.2, includes a length-Lh linear time-

invariant ISI channel with coefficients h = [h0, h1, · · · , hLh−1], additive white Gaussian noise

wk, and an MAE equalizer with dimension (length) Lc. The channel output is denoted by

yk. The input to the MAE equalizer, yk = [yk, yk−1, · · · , yk−Lc+1]
T , can be written as

yk = Hxk + wk (3.1)

= rk + wk,

where xk = [xk, xk−1, · · · , xk−Lc−Lh+2]
T denotes the transmitted symbols modulated using

M -ary pulse amplitude modulation (PAM), and rk = [rk, rk−1, · · · , rk−Lc+1]
T denotes the

noise-free channel output. We assume that the channel h is known at the receiver and the

corresponding channel matrix H is given by

H =



h0 h1 · · · hLh−1 0 · · · 0

0 h0 h1 · · · hLh−1 · · · 0

...
...

...
...

...
...

...

0 · · · 0 h0 h1 · · · hLh−1


.

The input vector xk may take one of N = MLh+Lc−1 possible combinations of M-

PAM data. From (3.1), we can see that rk also has N possible combinations. The signal

constellation is formed by considering all possible values of the noise-free output vector rk.

Each possible rk forms an Lc-dimensional constellation point for which the i-th element of

rk gives the point’s coordinate in the i-th dimension. There are MLc+Lh−1 possible points

in the space; these points can be grouped into M subsets according to the value of xk−d,

where xk−d takes one of the M -ary possible transmitted symbol values, and d denotes the

decision delay of the equalizer. Let us take the channel h = [0.5, 1] and a 2-tap equalizer
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Table 3.1: All possible noise free output for channel h = [0.5, 1] and a 2-tap equalizer.

xk xk−1 xk−2 rk rk−1

1 1 1 1.5 1.5

1 1 -1 1.5 -0.5

-1 1 1 0.5 1.5

-1 1 -1 0.5 -0.5

1 -1 1 -0.5 0.5

1 -1 -1 -0.5 -1.5

-1 -1 1 -1.5 0.5

-1 -1 -1 -1.5 -1.5

as an example. The decision delay d is set to be 1 and binary phase shift keying (BPSK) is

used. The corresponding noise free output rk is listed in Table 3.1. There are 8 constellation

points which correspond to the N = 8 possible combinations of rk = [rk, rk−1]. We can

plot them in the Fig. 3.1, where the blue constellation points in the figure correspond to

x1 = +1 and the red constellation points correspond to x1 = −1. Letting C
(j)
d , 1 ≤ j ≤M ,

denote the subset of constellation points for which xk−d is equal to the j-th symbol, the full

constellation C can be written as

C = ∪ C(j)
d , 1 ≤ j ≤M. (3.2)

Note that the set of points belonging to the full constellation C remains fixed; changing the

decision delay d changes only the members of C in each subconstellation.

For ease of presentation, we consider binary phase shift keying (BPSK), or equivalently

M = 2, in this chapter. For the binary case, notation can be simplified to

C
(±)
d = {rk|xk−d = ±1}. (3.3)
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Figure 3.1: Constellation points for channel h = [0.5, 1] and a 2-tap equalizer. The decision
delay is d = 1.

Since we consider linear channels, C
(+)
d and C

(−)
d exhibit odd symmetry with respect to the

origin of the constellation space. The equalization process can be viewed as a classification

problem that seeks to classify a received signal vector yk as belonging to the class defined by

one of the symbol values si, 1 ≤ i ≤M . A linear equalizer estimates each bit by forming an

inner product between the received vector yk and the equalizer taps c = [c0, c1, · · · , cLc−1]

and mapping the result to the closest symbol value. For binary signaling, this process can be

equivalently viewed as determining where the received vector falls relative to a hyperplane

(defined by the equalizer tap values) through constellation space.
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3.1.2 MAE Equalizer Design

Asymptotic efficiency (AE) , introduced originally in the MUD applications, is defined as

the rate of decay of the detector’s probability of error as noise variance approaches 0. Due

to the common structure of the MUD and equalization, we can define asymptotic efficiency

analogously for equalization of ISI channels, where the detector is mitigating interference

from other symbols rather than other users. Mathematically, the asymptotic error exponent

of an equalizer, or equivalently the log of the asymptotic slope of the bit error rate, can be

written as [34]

η = lim
σ→0

2σ2
1

log(Pe)
, (3.4)

where Pe denotes the probability of error of the equalizer as a function of SNR, and σ

denotes the standard deviation of the additive noise. The MAE equalizer is designed to

maximize η which is equivalent to minimizing the BER as SNR approaches infinity.

Let CH(C
(±)
d ) denote the convex hulls formed from the constellation points C

(±)
d , where

the convex hull is defined as follows,

Definition 1. The convex hull of a set of points, C = {p1, . . . , pk}, is the intersection of

all convex sets that contains C, or more mathematically, the set of all convex combinations

of points in C:

CH(C) = {
k∑
i=1

λipi, pi ∈ C, λi ≥ 0,

k∑
i=1

λi = 1},

where {λi} are parameters used to define the point in the convex hull. In short, the convex

hull of a set C is the smallest convex set which includes C. In Fig. 3.2, an example of

convex hulls for CH(C
(+1)
d ) and CH(C

(−1)
d ) are shown for a 3-tap equalizer operating on

a 3-tap channel. We can see that the dimension of the convex hull is determined by the

length of the equalizer.

By exploiting the geometric properties of the constellations, the maximum AE is found
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Figure 3.2: An example of convex hulls for a 3-tap equalizer operating on a 3-tap channel
using decision delays d = 0.
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to be governed by the minimum distance between the convex hulls [35].

ηmax =
||v+ − v−||2

4
= ||v+||2, (3.5)

where v± denote the vectors to the points on each convex hull which have minimum distance

to the origin. The above equation uses the property v+ = −v− for symmetric convex

hulls across the origin. The asymptotically optimal decision boundary is the hyperplane

passing through the origin and perpendicular to the vector v+. Fig. 3.3 shows an example

constellation for a two-tap channel h = [1, 0.5] with a two-dimensional MAE equalizer

(Lc = 2) using decision delays d = 0 and d = 1.

The equalization process now can be viewed as a classification problem. The bit estimate

generated by the MAE equalizer at each time instant k is computed by determining the

side of the hyperplane on which the received vector yk lies. This is efficiently computed via

an inner product:

x̂k−d =

 1, 〈v+,yk〉 ≥ 0

−1, 〈v+,yk〉 < 0.
(3.6)

The constellation points belonging to each convex hull vary with the chosen decision

delay. Consequently, minimum distance will change with decision delay, and one can define

an optimal delay that yields the largest ||v+||. In Fig. 3.3, for example, d = 1 provides

better performance than d = 0 due to larger minimum distance. The search for the optimal

delay is out of the scope of this thesis, but would be a good topic for our future research.

3.1.3 Simulation Results for MAE Equalizer

In order to illustrate the performance of the MAE equalizer, we present numerical simulation

results to provide a comparison between the MAE equalizer and conventional equalization

methods. Fig. 3.4 compares the performance of the MAE equalizer and the conventional

MMSE equalizer for a 3-tap channel and a 5-tap channel. We notice in both cases that
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Figure 3.3: Convex hulls and optimal decision hyperplanes for a two-dimensional equalizer
operating on a two-tap channel h = [1, 0.5] using decision delays d = 0 (blue lines) and
d = 1 (red lines).
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for low SNR, the performance of the MMSE equalizer is superior to that of the MAE

equalizer, but as SNR increases the MAE equalizer outperforms the MMSE equalizer. This

is expected, as the MAE equalizer is optimized for performance in high SNR when detection

errors are primarily due to ISI rather than additive noise.

Figure 3.4: BER comparison between the MAE and MMSE equalizer for a 3-tap and a
5-tap channel.

The MAE equalizer is designed based on the assumption that perfect knowledge of the

communication channel is available. In reality, however, only a channel estimate is available,

and this estimate will have some error relative to the true channel. Additionally, the channel

32



may experience small variations over time; when these variations are very small, we ignore

them and treat the channel as constant. In these cases, equalizers are designed based on

approximation to the channel. Therefore, it is worthwhile to examine the robustness of

equalizers to channel perturbations. In order to achieve this, we conducted simulations to

examine the performance of the MAE and MMSE equalizers for channels with unknown

perturbations.

Fig. 3.5 shows the performance comparison between the MAE and MMSE equalizers for

a 3-tap channel where the channel taps are perturbed by a bounded error of approximation

proportional to α. The perturbation for each channel tap hi, denoted by ∆hi, is modeled

as ∆hi = min(B,w), where w ∼ N (0, σ2) is the Gaussian perturbation error and B = ασ

is the bound on the perturbation. α is used to scale the perturbation bound and is set

for α = 0, 0.5, 0.8, 2. The performance comparison of the two equalization methods shows

similar trends to that seen in Fig. 3.5 for channels without perturbations. We observe that

the MAE equalizer is more robust to channel perturbations than is the MMSE equalizer

when SNR is high. Therefore, even when channel estimation is imperfect, the MAE equalizer

provides better performance than the MMSE equalizer when SNR is relatively high.

3.2 Efficient Geometric Algorithm for MAE Equalizer De-

sign For Binary Signaling

The MAE equalizer is very attractive in its superior performance at high SNR and in its

low runtime complexity. However, the design of the MAE equalizer is computationally

demanding. The design of the MAE decision hyperplane Ho requires searching for the

minimum distance vector v+, which is equivalent to finding the minimum distance between

the origin and convex hull CH(C
(+)
d ) [36]:

||v+|| = min
λ
||
2Lh+Lc−2∑

k=1

λkr
(+)
k || subject to

∑
k

λk = 1, 0 ≤ λk ≤ 1, (3.7)
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Figure 3.5: BER for the MAE and MMSE equalizer plotted against SNR for a 3-tap channel
where the channel taps are perturbed by a bounded error of approximation proportional to
α.
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where r
(+)
k denotes the constellation points in C

(+)
d , and λ = [λ1, λ2, · · · , λ2Lh+Lc−2 ] are the

weighting parameters used to define the points in CH(C
(+)
d ). The quadratic programming

required to determine ||v+|| is computationally intensive [37], making the MAE equalizer

impractical to design for long channels and/or time-varying systems. In order to avoid

solving (3.7), we present an efficient algorithm to find the decision hyperplane directly from

the channel. The proposed geometric approach is applicable only for BPSK signalling.

Further studies can be conducted to extend the algorithm to M-ary modulated signals but

are outside the scope of this thesis.

3.2.1 Channel Vectors

To illustrate the proposed method, we define the channel vector gi, 0 ≤ i ≤ Lh + Lc − 2,

which denotes the i-th column of the channel matrix H,

g0 ,



h0

0

...

0


, . . . , gLh−1 ,



hLh−1

hLh−2
...

h0


, . . . , gLh+L2−2 ,



0

...

0

hLh−1


. (3.8)

For the Lc = 2 scenario, the properties of 2-dimensional channel vectors gi have been

well studied in [38] to blindly identify the communication channel. For application of the

MAE equalizer, we do not want to restrict Lc to 2 but instead wish to consider MAE

equalizers of arbitrary length. Hence, we need to geometrically analyze the constellation

sets for an arbitrary Lc-dimensional space. In the analysis below, we focus on C
(+)
d . Given

the symmetry imposed by the linear channel and BPSK signaling, the results will hold in a

symmetric fashion for C
(−)
d . We start our analysis by rewriting the constellation equation

in vector form:

C
(+)
d : {rk = gd+1 +

∑
i 6=d

gixk−i}, xk−i ∈ {±1}. (3.9)
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Given the decision delay d, the constellation points are binary (BPSK) combinations of the

channel vectors.

3.2.2 Channel Vector Properties

Before describing the efficient MAE equalizer design, we present some important definitions

and prerequisite properties of the channel vectors.

Definition 2. In Lc-dimensional space, the convex hull CH(C
(+)
d ) has Lc types of facets: 0-

dimensional facets are called vertices, 1-dimensional facets are called edges, andm-dimensional

facets are called m-facets, where 2 ≤ m ≤ Lc − 1 [39].

Definition 3. A support hyperplane Hs of the constellation C
(+)
d is a hyperplane that

intersects C
(+)
d and such that C

(+)
d is contained entirely in one of the half-spaces of Hs [40].

Assume that no taps of the linear channel h are equal to 0; this assumption guarantees

that no pair of vectors g0, g1, . . . , gLh+Lc−2 are parallel to each other. The theorems below

are proved for the case in which CH(C
(+)
d ) and CH(C

(−)
d ) do not overlap. In the case of

overlap, a reduced convex hulls method [41] or a decision feedback equalizer structure [20]

can be applied to separate the two convex hulls.

Theorem 1. For an Lc-dimensional convex hull CH(C
(+)
d ), every edge E is parallel to one

of the channel vectors gi, where i ∈ {0, 1, . . . , d−1, d+1, . . . , Lh+Lc−1}, and E has length

2||gi||.

Proof of Theorem 1. See Appendix A.1

Theorem 1 shows that all the edges of the convex hull CH(C
(+)
d ) is determined by

the channel vectors. It also implies that there exists a one-to-many mapping between a

channel vector and the convex hull edges. With this theorem, we are able to determine the

1-dimensional facets of CH(C
(+)
d ) from the channel vectors, which is the fundamental for

the study of high-dimensional facets.
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Theorem 2. The constellation C
(+)
d and corresponding convex hull CH(C

(+)
d ) are symmet-

ric around the point P (gd), where P (gd) denotes the point corresponding to the vector gd in

the signal space and d is the decision delay. Hence the facets of CH(C
(+)
d ) come in parallel

pairs.

Proof of Theorem 2. See Appendix A.2

Theorem 3. For an Lc-dimensional convex hull CH(C
(+)
d ), every (Lc− 1)-facet is parallel

to a channel hyperplane constructed by Lc − 1 of the Lh + Lc − 2 channel vectors.

Proof of Theorem 3. See Appendix A.3

For example, when Lc = 3 and Lh = 3, the convex hull constructed lies in a 3-

dimensional space. Each 2-facet is a face of CH(C
(+)
d ), which is parallel to one of the

planes constructed by two channel vectors. There are
(
4
2

)
= 6 possible vectors connecting

two points in C
(+)
d that are parallel to this plane.

From Theorems 2 and 3, we observe that for a linear channel, the corresponding convex

hull CH(C
(+)
d ) has a highly symmetric structure. Its centroid is determined by the channel

vector gd. All the facets of the convex hull are symmetric with respect to the centroid, and

the hyperplanes on which they are located are parallel to the hyperplanes constructed by

the channel vectors with a shifted distance.

Theorem 4. For an Lc-dimensional convex hull CH(C
(+)
d ) generated by a linear channel

h, the minimum distance point v+ will be located on an (Lc − 1)-facet.

Proof of Theorem 4. See Appendix A.4

Combining the four theorems above, we can conclude that

1. The support hyperplane, on which an (Lc−1)-facet of CH(C
(+)
d ) lies, can be obtained

by shifting one of the channel hyperplanes from the origin to a point determined by

channel vectors.
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Figure 3.6: Channel vectors, optimal decision hyperplane and convex hulls with corre-
sponding support hyperplane for a 2-dimensional equalizer operating on a 2-tap channel
h[n] = δ[n] + 0.5δ[n− 1].

2. The channel hyperplane that is parallel to the facet containing v+ will be the decision

hyperplane H0 of the MAE equalizer.

Thus, the design of the MAE equalizer is simplified to determining which of the channel

hyperplanes is the decision hyperplane. A two-dimensional example is shown in Figure 3.6

with Lc = 2 and Lh = 2. The hyperplanes (lines) H1,1 and H1,2, on which two (Lc − 1 =

1)-facets (edges) of CH(C
(+)
d ) are located, are the hyperplanes parallel to the line H1

determined by the channel vector g1. In this example, v+ is on the line H1,1, and hence H1
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is the decision hyperplane for the MAE equalizer.

3.2.3 Geometric Algorithm for MAE Equalizer Design

Before describing the algorithm for finding the shifted channel hyperplane containing v+,

we first define the support margin of a hyperplane.

Definition 4. The support margin of a support hyperplane of CH(C
(+)
d ) is the smallest

Euclidean distance from the support hyperplane to the decision hyperplane, or equivalently

(given the constellation symmetry) the smallest Euclidean distance from the support hyper-

plane to the origin.

For an Lc-dimensional constellation C
(+)
d , there are

(
Lh+Lc−2
Lc−1

)
channel hyperplanes de-

noted by Hm, m ∈
{

1, . . . ,
(
Lh+Lc−2
Lc−1

)}
, and determined by the Lc − 1 channel vectors

{gi1 , . . . , giLc−1
}, {i1, . . . , iLc−1} ∈ {1, . . . , d− 1, d+ 1, . . . , Lc− 1}. Each Hm can be shifted

from the origin to 2Lh−1 different points P (pm,k = gd +
∑

j 6∈{i1,...,iLc−1,d} gjxk−j). Let us

denote the shifted hyperplanes by Hm,k, k ∈ {1, . . . 2Lh−1}.

A two-dimensional example is shown in Figure 3 with Lh = 3 and Lc = 2, to illustrate the

relationship between the hyperplanes. (While Lc < Lh is unlikely to be chosen in practice,

it facilitates explanation of the various hyperplanes using a two-dimensional figure.) There

are a total of
(
3
1

)
channel hyperplanes (lines) Hm, m = 1, 2, 3. For the hyperplane H2

determined by the channel vector g2, there are 2Lh−1 = 4 shifted hyperplanes Hm=2,k=1,...,4.

The relationship between hyperplanes can be described as follows:

1. For each m, m ∈
{

1, . . . ,
(
Lh+Lc−2
Lc−1

)}
, Hm,k, with k ∈ {1, . . . 2Lh−1}, are shifted from

the channel hyperplane Hm. The hyperplane Hm,k with minimum Euclidean distance

Dm,k from the origin is the marginal support hyperplane H
(+)
m parallel to Hm. We

can find an H
(+)
m corresponding to each channel hyperplane Hm.
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Figure 3.7: Illustration of hyperplane Hm, shifted hyperplanes Hm,k, and their correspond-
ing normal vectors for a 3-tap channel and 2-tap MAE equalizer with d = 0.
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2. The channel hyperplane Hm corresponding to the H
(+)
m with the maximum support

margin is the decision hyperplane Ho for the MAE equalizer.

Given these relationships, we can find the MAE decision hyperplane H0 using the following

two-step procedure:

Step 1. Find the marginal support hyperplane H
(+)
m parallel to each channel hyperplane

Hm, and find Dm, the associated support margin.

H(+)
m = Hm,k for k = argmin

k
Dm,k. (3.10)

Dm,k is the signed distance from the origin to the shifted hyperplane Hm,k, computed

as

Dm,k =
< 0− pm,k,nm,k >

||nm,k||
, (3.11)

which projects the vector pm,k onto the direction of the normal vectors nm,k. The

support margin Dm for each marginal support hyperplane H
(+)
m is defined as

Dm =


min ||Dm,k||, if Dm,k=k1 ·Dm,k=k2 6=k1 > 0

0, if Dm,k=k1 ·Dm,k=k2 6=k1 ≤ 0

. (3.12)

The condition Dm,k=k1 · Dm,k=k2,k2 6=k1 > 0 ensures that the origin and the points of

C
(+)
d are not on the same side of Hm,k. If the origin and C

(+)
d lie on the same side of one

of the shifted hyperplanes Hm,k, then there is no marginal support hyperplane parallel to

Hm, and we set Dm = 0. In Fig. 3.7, Hm=2,k=1, with minimum distance ||Dm=2,k=1||, is
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the marginal support hyperplane parallel to Hm=2.

Step 2. Find the marginal support hyperplane with maximum support margin. The cor-

responding channel hyperplane is the decision hyperplane H0 of the MAE equalizer.

Ho = Hm, where m = argmax
m

Dm (3.13)

Summarizing the computations required to find H0, we performed 2Lh−1
(
Lh+Lc−2
Lc−1

)
com-

putations of the distance from the origin to a hyperplane. If we denote the number of the

constellation points in C
(+)
d by N = 2Lh+Lc−2, the complexity of the proposed algorithm is

O(N logN).

3.2.4 Empirical Complexity Comparison

To illustrate the reduced complexity of the proposed method, the design of the MAE equal-

izer is carried out for different length channels and equalizers using both the quadratic

programming design method (MAE-QP) and the proposed geometric design method (MAE-

GM). Since the complexity of the quadratic programming approach cannot be expressed in

closed form, MATLAB is used to compare the complexity (in terms of required CPU time)

of the two approaches for 100 randomly generated length-3 channels. The MATLAB func-

tion fmincon is used to solve the quadratic programming problem, and the initial point is

chosen to be the constellation point closest to the origin. The simulations were implemented

on a computer equipped with i7-920 CPU, 6G RAM, and Microsoft Windows 7 x64. Table

3.2 shows the results for a 3-tap channel and an MAE equalizer of length Lc = 3, 5, 7, and 9.

Table 3.3 shows the results for a 5-tap MAE equalizer and a channel of length Lh = 2, 3, 4,

and 5. The complexity reduction achieved by the proposed geometric approach increases

dramatically with equalizer length and channel length. For Lh = 3 and Lc = 9, complexity

is reduced by a factor of 105.
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Table 3.2: CPU Time of MAE-QP and MAE-GM to Finding H0, for a 3-tap channel

CPU Time (seconds) for Lh = 3

Lc = 3 Lc = 5 Lc = 7 Lc = 9

MAE-QP 0.1 4.20 117.90 8380.70

MAE-GM 0.0071 0.013 0.019 0.0292

Table 3.3: CPU Time of MAE-QP and MAE-GM to Finding H0, for a 5-tap MAE equalizer

CPU Time (seconds) for Lc = 5

Lh = 2 Lh = 3 Lh = 4 Lh = 5

MAE-QP 2.0320 4.20 42.4541 388.1398

MAE-GM 0.0082 0.013 0.0991 0.2870
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3.3 MAE Equalizer for Time-varying Channels Using Adap-

tive Constellation Mapping

We have introduced a computationally efficient method that makes MAE equalizer design

practical for channels with longer delay spreads. The MAE equalizer is well suited for

time-invariant channels, since the design process must be performed only once. Even in the

presence of mild channel estimation error, the MAE equalizer provides strong performance

when SNR is relatively high. For channels whose impulse response varies significantly

over time, however, the MAE equalizer presents prohibitive complexity, since the multi-

dimensional search must be repeated each time the noise-free signal constellation changes

significantly. Therefore, we propose adaptation of the constellation to match a fixed MAE

equalizer to leverage the high performance benefits of MAE equalization without paying

the high price of redesign each time the channel changes.

3.3.1 Time-varying Channel Model

Consider a model channel h that reflects the true channel reasonably well in terms of number

of taps and their values, and suppose an MAE equalizer has been designed for the noise-

free signal constellation C(h) generated by h. Let h′ denote a perturbation of the model

channel h due to, for example, changes in the environment through which a wireless signal

propagates. In the proposed adaptive structure, the MAE equalizer is preceded by a linear

pre-filter that is designed to map the noise-free signal constellation C(h′) generated by the

modified channel h′ to the original constellation C(h). The pre-filter c = [c0, c1, · · · , cLc−1]

is designed to minimize (or approximately minimize when the modified channel is unknown)

the mean square error (MSE) between the model noise-free signal constellation and the

constellation at the output of the pre-filter.

We employ a simple Markov model for a time-varying channel in the equalizer design

and performance evaluation presented in this section. The evolution of the vector of channel
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taps over time is given by

hk+1 = hk + βqk, (3.14)

where qk is a unit variance AWGN vector and β controls the extent of variation of the

channel. First, we address the case in which the time-varying channel is known at each

time instant. (In practice, the time-varying impulse response will not be known exactly

but may be estimated by transmitting training data, for example.) Second, we address

the case in which the time-varying channel is unknown, and the pre-filter is adapted in an

LMS-based decision-directed mode.

3.3.2 MAE Equalizer with Adaptive Pre-filter for Known Time-varying

Channel

The system model for the adaptive MAE equalizer when the time-varying channel is known

is shown in Fig. 3.8. The MSE to be minimized is the Euclidean distance between points

in the model constellation C(h) and points in the constellation formed by the convolution

of the modified channel and the pre-filter:

Jk(c) = E{|rk − r′k|2} (3.15)

= E{|hTb xk − (cTHkxk + cTwk)|2},

where Jk(c) denotes the MSE at time index k, hTb denotes the first row of H, and Hk

denotes the matrix of the time-varying channel at time k. Taking the derivative of the MSE

with respect to the pre-filter weight vector c yields

∂Jk(c)

∂cT
= −HkE{|xk|2}hb + HkE{|xk|2}HT

k c + E{|wk|2}c (3.16)

= −Hkhb + HkH
T
k c + σ2ILcc,

45



Figure 3.8: Block diagram of channel and receiver structure for adaptive MAE equalizer
when the time-varying channel is assumed known.

where ILc denotes the Lc ×Lc identity matrix. Setting the derivative to zero, the pre-filter

weights are found to be

c = (HkH
T
k + σ2I)−1Hkhb (3.17)

= Γ−1P .

In the second line of (3.18), the pre-filter weight vector is expressed in the form of the

Wiener-Hopf equations [42], but the cross-correlation term P includes contributions from

both the original and the modified channels.

Fig. 3.9 and Fig. 3.10 provide two examples of original, modified, and pre-filtered

constellations occurring for the given channel model with β = 0.1. Fig. 3.9 considers a

two-tap channel h = [0.86, 0.51] and modified channel h′ = [0.96, 0.28]. A length Lc = 2

pre-filter is used to map C(h′) to C(h). The modified constellation is quite skewed relative

to the original, but the pre-filter succeeds in mapping it to nearly exactly its original form.

Note that, when the pre-filter is appended, the effective length of the channel is Lh+Lc−1,

and hence the number of constellation points increases from 2Lh+Lc−1 to 2Lh+Lc+Lc−2. As a

result, the pre-filtering maps multiple constellation points onto a single point of the original

noise-free signal constellation.

Fig. 3.10 considers a three-tap channel h = [0.31, 0.91, 0.22] and modified channel
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Figure 3.9: Comparison among pre-filtered, modified, and original noise-free signal constel-
lations for h = [0.86, 0.51] and β = 0.1.

h′ = [0.066, 0.9492, 0.3078] with a length Lc = 3 pre-filter. Again, the MSE-based pre-filter

is able to map the modified constellation to one much closer to the original, though the

difference between the original and pre-filtered constellations is visibly larger here than in

Fig. 3.9. Though some of the loss in performance may be due to the particular channel

modification that took place in this example, it is also likely due to the fact that the

constellation size has grown exponentially with channel length, posing a greater challenge

to the pre-filter.
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Figure 3.10: Comparison among pre-filtered, modified, and original noise-free signal con-
stellations for h = [0.31, 0.91, 0.22] and β = 0.1.
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3.3.3 Simulation Results for the Adaptive MAE Equalizer with Knowl-

edge of Time-varying Channels

In order to evaluate the performance of the proposed adaptive MAE equalizer, the algorithm

has been simulated and its performance compared to that of a conventional MMSE linear

equalizer. A three-tap initial known channel h = [0.31, 0.91, 0.22] is used for the simulations;

three-tap and five-tap pre-filters are applied prior to MAE equalization. For fair comparison,

MMSE equalizers of lengths five and seven (the effective length of the combined pre-filter and

MAE equalizer) are considered, as well. Two million symbols are transmitted to generate

each performance curve. The decision delay for both receivers is set to d = 1.

We assume that the time-varying channel is known at each time index k. Fig. 3.11 show

the bit error rate as a function of SNR achieved by the adaptive MAE equalizer and by the

MMSE equalizer. Both algorithms have been simulated for β value of 0.1. The adaptive

MAE equalizer consistently outperforms the MMSE equalizer in the high SNR regime, and

the performance gain increases with increasing SNR. (As expected the asymptotic efficiency-

based detector performs slightly worse than the MMSE equalizer for low SNR, since it is

not designed to overcome the effects of additive noise.) The simulations performed show an

improvement of up to approximately 3 dB for β = 0.1.

3.3.4 MAE Equalizer with Adaptive Pre-filter for Unknown Time-varying

Channel

Transmitting training data to compute channel estimates reduces available bandwidth for

information, particularly when the channel is changing rapidly. Reducing the frequency with

which training data must be transmitted improves spectral efficiency. In order to achieve

this, we assume that the training sequence is transmitted only once, and the initial channel is

estimated using this training sequence at the beginning of the transmission. For such cases,

we can consider an alternative approach to pre-filtering in which the pre-filter is adapted

in a decision-directed manner. Specifically, a variable step size (VSS) LMS algorithm [43]

is employed to update the pre-filter taps using decisions made on previously transmitted
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Figure 3.11: Performance of the adaptive MAE equalizer and the linear MMSE equalizer
on a three-tap time-varying channel for whose impulse response is assumed known at each
k. The variation of the channel is set as β = 0.1.
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symbols. A block diagram of the channel and receiver structure for the decision-directed

pre-filter is shown in Figure 3.12.

Figure 3.12: Block diagram of channel and receiver structure for adaptive MAE equalizer
when pre-filter tap weights are updated via the VSS-LMS algorithm.

The motivation for employing the VSS-LMS algorithm is to provide better tracking

capability of the time-varying channel. Just like the conventional LMS algorithm, our

proposed VSS algorithm is a gradient search algorithm that computes the coefficients of

the equalizer by minimizing the MSE. In this application, MSE is defined as the average

squared Euclidean distance between constellation points in the initial channel and points in

the constellation formed by the convolution of the time-varying channel and the pre-filter

at time index k. The algorithm is expressed as follows [43]:

ck+1 = ck + 2µkekr
′
k, (3.18)

where µk is the adaptation step size at time index k, and ek is the predication error defined

as ek = r′k − r̂k. In the conventional LMS algorithm, µk is a constant, while the step size

is adjusted by the prediction error in the VSS-LMS algorithm. When the channel varies at

each time k, a large ek will increase the step size to provider faster tracking, and a small

ek will lead to a decrease in the step size to yield smaller misadjustment. We refer to the
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procedures in [43] to adjust the step size as

µk+1 =


µmax, if αµk + γe2k > µmax,

µmin, if αµk + γe2k < µmin,

αµk + γe2k, otherwise,

(3.19)

with

0 < α < 1, γ > 0, (3.20)

where α and γ are two weighting factors used to control the change of step size. They

are chosen empirically based on simulations. µmin and µmax are chosen based on the

covariance matrix R of the input signal to the pre-filter y′, where y′ = xkh
′ + nk. The

covariance matrix can be expressed as follows with the assumption that the transmitted

signal and channel are independent:

R = E{y′ky′k
T } (3.21)

= E{h′xkxTk h′
T }+ E{nknTk }

= σ2sE{h′h′
T }+ σ2I,

where σ2s is the signal power, and σ2 is the noise variance. µmin is chosen as the step size

of the conventional LMS algorithm to provide a minimum level of tracking for time-varying

channels,

0 < µmin <
1

λmax
, (3.22)

where λmax is the largest eigenvalue of the matrix R. µmax is chosen to ensure that the
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mean-square error of the algorithm is bounded. The condition is defined as

µmin < µmax ≤
2

3tr(R)
, (3.23)

where tr(·) denotes the trace of a matrix. The initial step size µ0 is chosen to be µmax.

Further details about the implementation of the VSS-LMS algorithm and its convergence

properties can be found in [43].

3.3.5 Simulation Results for the Adaptive MAE Equalizer without Knowl-

edge of Time-varying Channels

In order to evaluate the performance of the proposed adaptive MAE equalizer, we first

consider the case that the channel is changed only once, and compare its performance to

that of an equalizer designed using the VSS-LMS algorithm. In this comparison, we can

see the convergence rate of the proposed adaptive MAE equalizer and performance of the

pre-filter to map the constellations of the modified channel.

For the simulation of this case, a three-tap initial channel h = [0.9123, 0.3619, 0.1917] is

assumed to be known. The modified channel h′ = [0.9084, 0.3087, 0.2730] is unknown to the

equalizers. A three-tap pre-filter is applied prior to MAE equalization. For fair comparison,

an MMSE equalizer of length five (the effective length of the combined pre-filter and MAE

equalizer) is considered. 1000 blocks of 2000 BPSK symbols are transmitted to generate

each performance curve. The decision delay for both receivers is set to d = 0. For the VSS-

LMS algorithm, we empirically set the weighting factors to α = 0.97 and γ = 4.8−4, which

are shown to have good performance in [43] when time-varying channels are generated by

using Gaussian random variables with unit variance as we do in the simulation. We used

the output of the initial channel h to compute the covariance matrix and set the conditions

for the step size for both methods as µmin = 0.0005, µmax = 0.1 according to (3.22) and

(3.23). The step size is adjusted using (3.19) to track the variance of the channel by the

prediction error.
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The performance comparison of the proposed MAE equalizer and the MMSE equalizer is

shown in Fig. 3.13. The adaptive MAE equalizer consistently outperforms the MMSE equal-

izer in the high SNR regime, and the performance gain increases with increasing SNR. As

expected the asymptotic efficiency-based detector performs slightly worse than the MMSE

equalizer for low SNR, since it is not designed to overcome the effects of additive noise. In

Fig. 3.13, we also show the performance for a five-tap MAE equalizer designed for channel

h and a five-tap MAE equalizer designed for h′. These two BER curves provide the worst

case when a fixed MAE equalizer is used for the modified channel, and the best case when

the modified channel is known to design the corresponding MAE equalizer.

In order to show the performance for tracking the constellation variation, we show the

MSE between constellation points after constellation mapping and constellation points for

the initial channel as the algorithm converges. It is shown in Fig. 3.14 for SNR equal to

6 and 12 dB. The MSE is averaged over 1000 blocks. We observe that it takes about 200

iterations for the pre-filter to converge at both 6 dB and 12 dB. The steady-state error of

the pre-filter at 6 dB is higher than that at 12 dB due to the noise level. We can also

visualize the convergence in a 3-dimensional example shown in Fig. 3.15. The pre-filter

succeeds in mapping the modified constellation C(h′) to nearly exactly its original form.

In order to better show the improvement achieved by the proposed method for time-

varying channels, we used the channel model given in (3.14). The original channel h =

[0.9123, 0.3619, 0.1917] is assumed to be known, and the initial channel h0 = h. 1000 blocks

of 2000 BPSK symbols are transmitted a time-varying channel as modeled in (3.14). Since

we use the same original channel, we also apply the same parameter values for the VSS-LMS

algorithm. We compare the proposed method with a five-tap pre-filter and a five-tap MAE

equalizer to a ten-tap MMSE equalizer. β is set to be 0.05 to maintain the variance of the

channel in a reasonable range.

The performance comparison is shown in Fig. 3.16. The MMSE equalizer outperforms

the proposed adaptive MAE method when SNR is low. As SNR increases, the adaptive

MAE equalizer shows performance gains over the MMSE equalizer, achieving up to 2 dB
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Figure 3.13: Performance comparison between the adaptive MAE equalizer and the MMSE
equalizer on a three-tap channel which changes one time from h = [0.9123, 0.3619, 0.1917]
to h′ = [0.9084, 0.3087, 0.2730].
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Figure 3.14: Convergence of the constellation points when the channel is changed only once
for SNR = 6, 12 dB.
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Figure 3.15: Comparison among pre-filtered, modified, and original noise-free constellations
for h = [0.9123, 0.3619, 0.1917] and h′ = [0.9084, 0.3087, 0.2730].
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gain for β = 0.05. We show the average MSE between constellation points after constellation

mapping and constellation points for the initial channel as the algorithm converges in Fig.

3.17 for SNR equal to 6 dB and 12 dB. We observe that the pre-filter takes about 400

iterations to converge at 12 dB, while at 6 dB it takes more time (about 500 iterations) to

converge. At low SNR, the slow convergence rate and high steady-state error will lead to

mismatch of the constellations and performance loss of the MAE equalizer.

Figure 3.16: Performance comparison of the proposed adaptive MAE equalizer and the
MMSE equalizer for β = 0.05
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Figure 3.17: Convergence of the constellation points for time-varying channels when SNR
is 6 dB and 12 dB.
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3.4 Application to Channels with Overlapping Convex Hulls

We have presented a geometrically-inspired design of the MAE equalizer. With the proposed

computationally efficient design and the adaptive pre-filter, the MAE equalizer can be

used for time-varying channels with relatively large delay spread. However, we have not

considered channels for which the convex hulls of subconstellations overlap, a common

scenario. When the convex hulls overlap, they can no longer be separated by a hyperplane.

In order to address this scenario, we can combine the MAE equalizer with a feedback filter.

This combination has the same structure as the DFE, where the feedforward transversal

filter is replaced by a linear MAE equalizer, shown in Fig. 2.7.

Let us recall the expression for constellations of the noise-free channel output rk, where

C
(±)
d = {rk|xk−d = ±1}. The number of constellation points in each subconstellation C

(+)
d

or C
(−)
d is 2Lh+Lc−2 when BPSK is used. We assume that a feedback filter with length

Lfb is used and a correctly estimated symbol vector x̂fb is fed back. Thus, a new set of

constellations can be constructed as

C
(±)
d,fb = {rk|xk−d = ±1 ∩ xfb = x̂fb}. (3.24)

The number of constellation points in each subconstellation C
(+)
d,fb or C

(−)
d,fb is now reduced to

2Lh+Lc−Lfb−2. Without feedback, the MAE equalizer needs to find the hyperplane that best

separates the two convex hulls with 2Lh+Lc−2 constellation points. As a result of feedback,

the number of constellation points in each subconstellation is reduced by a factor of 2Lfb ,

shrinking the corresponding convex hulls. The number of feedback taps required to separate

the convex hulls is, of course, dependent upon the channel response. In order to visualize

the result of the feedback, we take the 4-tap channel h = [0.35, 0.25, 0.75, 0.55] and a 2-tap

MAE equalizer with a feedback filter as an example. Fig. 3.18 shows the constellations and

corresponding overlapped convex hulls when no feedback filter is used. Fig. 3.19 shows the

constellations and corresponding convex hulls when a length-1 feedback filter is used. We
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Figure 3.18: The constellations and corresponding convex hulls for the 4-tap channel h =
[0.35, 0.25, 0.75, 0.55] and a 2-tap MAE equalizer without feedback.

can see that the number of constellation points in each subconstellation is reduced from 16

to 8, and the new convex hulls are separated. Thus, the principle of the MAE equalizer

which seeks the best separating hyperplane can be applied.

From the design of the MAE equalizer, we also learned that its performance is governed

by the minimum distance between the two convex hulls. With appropriate selection of the

feedback, the convex hulls can be well separated, increasing minimum distance. As shown

in Fig. 3.20 where a length-2 feedback filter is used, the convex hulls are further separated,

increasing minimum distance. This is also a geometrical explanation for why the MAE-

DFE has better performance than the MAE linear equalizer with the same feedforward

filter length. With feedback, the DFE can shrink the convex hulls of the subconstellations
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Figure 3.19: The constellations and corresponding convex hulls for the 4-tap channel h =
[0.35, 0.25, 0.75, 0.55] and a 2-tap MAE equalizer with a length-1 feedback filter.
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Figure 3.20: The constellations and corresponding convex hulls for the 4-tap channel h =
[0.35, 0.25, 0.75, 0.55] and a 2-tap MAE equalizer with a length-2 feedback filter.
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and separate them better than the linear equalizer. However, similar to the regular DFE

[44,45], when the MAE-DFE attains its maximum effective feedback length, the minimum

distance between convex hulls is maximized, and no performance improvement is gained

with increased feedback length. We show in Appendix B that if the decision delay d is

given, Lc = d+ 1 is the maximum effective feedforward filter length, and Lb = Lh− 1 is the

maximum effective feedback filter length. These results coincide with those for the DFE

designed using the MMSE criterion, as shown in [44].

In addition to improved performance, adding feedback to the MAE equalizer also reduces

equalization complexity. In Section 3.2, a geometrically-inspired method is proposed to

efficiently design the MAE equalizer. It is shown that the decision hyperplane can be found

directly from channel vectors defined by columns of the channel matrix H. With length-Lb

feedback, the constellations defined in (3.24) can be written in the form of channel vectors:

C
(±)
d,fb : {rk =

Lh+Lc−Lb−2∑
i=0

gixk−i + q|xk−d = ±1}, (3.25)

where q =
∑Lh+Lc−2

Lh+Lc−Lb−1 gixk−i is a deterministic vector. The decision hyperplane can be

determined by the hyperplane constructed by the channel vectors, gi, 0 ≤ i ≤ Lh+Lc−Lb−2.

With feedback xfb = x̂fb, the corresponding channel vectors, gi, Lh + Lc − Lb − 1 ≤ i ≤

Lh +Lc− 2, are excluded from consideration. As a result, the computational complexity of

designing the MAE equalizer is further reduced.

64



Chapter 4: Sequential Detection for Sparse Channels via a

Multiple Tree Algorithm

We have presented several popular techniques for symbol-by-symbol equalization. The

MMSE and MAE equalizers are shown to have strong performance in mitigating ISI. How-

ever, they neglect the effect of other symbols when performing estimation. In contrast,

sequential detection based equalization employs methods originally proposed for decod-

ing convolutional and tree codes. It exploits the information in the full received sequence

and estimates the transmitted sequence as a whole given the observations. In most cases,

sequential equalizers performed better than symbol-by-symbol equalizers with respect to

minimizing probability of error. The Viterbi algorithm (VA), stack algorithm (SA) and

M-algorithm are widely used methods in sequential equalization for general ISI channels.

Our work focuses on applying sequential equalization to sparse channels, in which only a

few elements of the impulse response have significant weight. When standard sequential

equalization algorithms are used on these channels without taking advantage of the sparse

channel structure, opportunities for performance improvement are lost. We aim to exploit

channel structure to maximize performance of the receiver.

Sparse ISI channels are encountered in a wide range of applications, such as UWA [46] ,

UWB [47,48] and HDTV systems [49]. The channels in these applications have a very large

memory but only a small number of non-zero channel taps. The large memory of these

channels often renders conventional maximum likelihood (ML) detection approaches, such

as the VA, prohibitively complex. Numerous methods have been proposed to reduce the

computational burden of data detection by exploiting channel sparsity. In [50], it was shown

that only a small number of filter coefficients in the decision feedback equalizer (DFE) are

significant for sparse ISI channels, and a method for predicting the significant taps was
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proposed. Algorithms to find the locations of such coefficients were well studied in [51,52].

It was observed in [53] and [54] that when using the VA for a sparse channel, many paths in

the trellis have the same probability metric due to the large number of non-active channel

taps. A parallel trellis Viterbi algorithm (PTVA) was proposed in [53] to avoid redundant

metric computations, but it is applicable only to zero padding channels, i.e., channels that

have an equal number of zeros between active (non-zero) channel taps. In [54], a multi-trellis

Viterbi algorithm (MVA) was designed for general sparse channels using multiple irregular

trellises. Both the PTVA and MVA were proposed to approximate the ML solution and

reduce complexity by avoiding redundant path metric computations, but their complexity

still grows exponentially with the number of active channel taps.

In this chapter, we propose a computationally efficient tree-search based sequential de-

tection method called the multiple tree algorithm (MTA). The proposed technique makes

use of the stack algorithm (SA) for tree search, which was originally developed for decoding

convolutional and tree codes [32]. Similar to the PTVA and MVA, the proposed algorithm

reduces complexity by eliminating repeated metric computations within the detection pro-

cess. However, it also takes advantage of the efficiency of the SA at moderate-to-high SNR

to further reduce the computational load for long sparse channels with a large number of

active taps. In contrast to the MVA, which uses a multi-trellis structure, the proposed

method employs multiple trees, each with a reduced number of branches relative to a full

search tree and each producing estimates of a subset of the transmitted bits. Each subtree

takes a subset of the received sequence as input and obtains soft estimates of the bits that

are not available to it from other subtrees. By eliminating paths with the same metric, the

MTA significantly improves sequential detection efficiency for sparse ISI channels.

The remainder of the chapter is organized as follows. The system model and background

on the stack algorithm are presented in Section 4.1. In Section 4.2, the proposed MTA

using hard information (HMTA) is described in detail, and a step-by-step procedure is

provided. In Section 4.3, the MTA using soft information (SMTA) is illustrated. The

comparison between the HMTA and SMTA is analyzed in Section 4.4. Complexity analysis
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and simulation results of the proposed method are presented in Section 4.4.2.

4.1 Sequential Detection Using the Stack Algorithm

The conventional stack algorithm designed for general channels is normally prohibitive to

use for sparse ISI channels, which gives us motivation to derive reduced-complexity methods

to deal with sparse ISI channels. The proposed MTA takes advantage of the channel sparsity

and modifies the basic structure of the the conventional SA. In order to better illustrate

the proposed MTA, in this section, we will first introduce sequential detection via the SA

using a single tree for general ISI channels, and the proposed MTA will be presented in the

next section.

4.1.1 System Model

We consider a discrete-time, baseband equivalent communication system, shown in Fig. 4.1.

A length-N sequence of information symbols xN1 = {x1, . . . , xk, . . . , xN} is passed over a

length-Lh sparse ISI channel h with additive white Gaussian noise (AWGN) wk ∼ N (0, σ2).

The channel output sequence yN1 = {y1, . . . , yk, . . . , yN} is then processed by a detector to

generate symbol estimates x̂N1 = {x̂1, . . . , x̂k, . . . , x̂N}. We assume that the receiver knows

the sparse channel, h,

h = [h0, 0, . . . , 0, h1, 0, . . . , 0, hLa−1]
T . (4.1)

The channel has only La active (non-zero) taps, ha = [h0, h1, . . . , hLa−1]
T , where La � Lh.

Let pi denote the position of the i-th active channel tap. The received signal at time instant

k can be expressed as

yk =

La−1∑
i=0

hixk−pi + wk = hTa x
k−pLa−1

k−p0 + wk, (4.2)

67



+

wk

Channel h Detector
ykxk x̂k

Figure 4.1: Block diagram of the discrete-time equivalent communication system. Informa-
tion symbols xk are transmitted over a sparse ISI channel h with AWGN wk. The channel
output yk is then processed by a detector to generate symbol estimates x̂k.

where x
k−pLa−1

k−p0 =
[
xk−p0 xk−p1 . . . xk−pLa−1

]
are the input bits on which yk depends. For

simplicity, we assume the input sequence xN1 is BPSK modulated, i.e., xk ∈ {+1,−1}. It is

straightforward to extend the proposed algorithm to M-ary modulation schemes.

4.1.2 Stack Algorithm

The SA is generally described in Chapter 2. In this section, we will illustrate the SA in

detail, and show how it is applied in sequential equalization. The SA is a best-first tree-

search technique that extends the single most likely path at each iteration [32]. When the

tree represents the space spanned by a sequence of transmitted bits, the SA can be used

to approximate the ML solution to sequence detection. In such applications, each path in

the tree represents a possible realization of the transmitted sequence. Each path has an

associated metric, which expresses the likelihood that the corresponding bit sequence was

transmitted, conditioned on the observations. A set of possible paths and their metrics are

stored in a stack (or list) in order of decreasing metric value. At each time step, the SA

extends the path with the highest likelihood, e.g. the top path in the stack. The algorithm

terminates when the top path in the stack reaches a leaf of the tree, or equivalently when

the top path represents a full block of transmitted bits.

To navigate a tree using the SA, paths are extended from depth 1 to N progressively.

Hence, the path metric, which is a measure of the likelihood of a path, must be determined

for a partial-length sequence (n < N) given the full received sequence to decide which

path in the stack should be extended. The probability that a particular bit sequence was

68



transmitted conditioned on the observed sequence can be written as

P (xn1 |yN1 ) =
P (yN1 |xn1 )P (xn1 )

P (yN1 )
. (4.3)

Eliminating P (yN1 ) since it is equal for all paths, we can simplify the above expression and

write the path metric for the length-n input sequence xn1 as

m(xn1 ) = P (yN1 |xn1 )P (xn1 ). (4.4)

Because of the memory of the channel, the received sequence beyond the path of interest,

yNn+1, is dependent on some elements of yn1 . However, in order to develop a closed-form

expression for the path metric, we make an approximation and assume that yn1 and yNn+1

are independent. With this assumption, we have the following expression for the metric of

a length-n input sequence:

m(xn1 ) = P (xn1 )P (yn1 |xn1 )P (yNn+1|xn1 ). (4.5)

The input bits of the sequence xn1 are assumed to be independent and equally likely to be

±1. Hence, we can easily get

P (xn1 ) = (
1

2
)n. (4.6)

P (yn1 |xn1 ) is the path metric used for the VA and is given by the cascade of the conditional

probability of each yk ∈ yn1 :

P (yn1 |xn1 ) =

n∏
k=1

P (yk|xn1 ) =

n∏
k=1

P (yk|xkk−Lh+1) (4.7)

=

n∏
k=1

1√
2πσ2

exp

(
− 1

2σ2
(yk − hTxkk−Lh+1)

2

)
.
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Equation (4.7) incorporates the property that the received symbol yi is only dependent on

the input symbols xkk−Lh+1 due to the length of the channel Lh, and thus other symbols in

the transmitted sequence are ignored. Furthermore, we assume that the received sequence

yNn+1 is independent of the first n transmitted symbols, xn1 . The bias term P (yNn+1|xn1 ) that

compensates the variant length of paths in the stack is then expressed as

P (yNn+1|xn1 ) ≈ P (yNn+1) (4.8)

=

j=2N−n∑
j=1

P (yNn+1|{xNn+1}j)P ({xNn+1}j),

where {xNn+1}j is one of 2N−n possible realizations of sequence xNn+1. Such a summation

over 2N−n is too complex to be computed for the path metric. Thus, to make it simple, we

make an assumption of independence between the future received symbols. Hence, we have

P (yNn+1) ≈
N∏

k=n+1

P (yk). (4.9)

Given knowledge of h and xkk−Lh+1, the received signal yk is only dependent on the Lh input

bits xkk−Lh+1 and yk ∼ N (hTxkk−Lh+1, σ
2). Thus, the probability P (yk) can be obtained

by averaging over all possible length-Lh binary sequences, which is a summation of 2Lh

Gaussian terms. To find an expression of reasonable complexity for practical implementa-

tion, we apply the approach used in [55] and approximate the Gaussian mixture by a single

Gaussian term. Then, the likelihood P (yNn+1) is approximated as

P (yNn+1) ≈
N∏

k=n+1

1√
2πσ2b

exp

(
−
y2k

2σ2b

)
, (4.10)
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where σ2b = σ2 + hTh. Substituting equations (4.7) and (4.10) into equation (4.5) and

discarding the term 2Lh which is constant for all paths, we obtain the following expression

for the path metric:

m(xn1 ) =

(
1

2
√

2πσ2

)n 1√
2πσ2b

N−n
N∏

k=n+1

exp

(
−
y2k

2σ2b

)
(4.11)

×
n∏
k=1

exp

(
− 1

2σ2
(yk − hTxkk−L+1)

2

)
.

When the SA is used to detect data transmitted over an ISI channel, the metric for a

given path is governed by the symbol sequence associated with that path xn1 , the channel

impulse response h, and the output observations yN1 . The SA provides an efficient way to

navigate the tree by extending only the path with largest metric. However, when we apply

the SA for sparse ISI channels, due to the zero taps of the channel, multiple paths in the

tree will have the same products hTxkk−L+1 and hence the same path metric. In Section

4.2, we propose a novel sequential detection method wherein we replace the single search

tree with multiple parallel trees to avoid repeated metric computations.

4.2 Multiple Tree Algorithm Using Hard Information

Rather than searching a single tree, the MTA uses multiple parallel subtrees designed to

avoid redundant metric computations. For example, given a simple channel h = [h0, 0, h1],

two subtrees can be constructed. One estimates the transmitted sequence {x1, x3, . . .}, and

the other estimates {x2, x4, . . .}. The construction of the subtrees is determined by the

positions of the active channel taps and is designed such that no two paths have the same

metric. Moreover, the shorter depth of each subtree reduces the number of nodes to be

visited.

Let J denote the number of parallel subtrees. The channel output sequence yN1 is
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divided into J subsets {yNj

j }, j = 1, . . . , J , where y
Nj

j = {yj , yj+J , . . . , yN−J+j} is the

input to the j-th subtree. x
Nj

j = {xj , xj+J , . . . , xN−J+j} is the subset of the transmitted

sequence estimated in the j-th subtree and is referred to as the state of subtree j. When

the MTA is used, the channel output yk may be fed to a subtree whose state does not

include all the symbols xk−pi , i = 0, . . . , La − 1, on which yk is dependent. We obtain

estimates of such symbols from the subtrees in which they are contained and incorporate

them into the path metric as needed. Those estimates could be hard estimates or soft

estimates. The hard estimate of xk−pm is either +1 or −1, while the soft estimate provides

the probability that xk−pm is equal to each possible value. We will explore the difference

between exchanging these two estimates among subtrees in Section 4.4. In this section,

we will only consider MTA using hard estimates (HMTA). The path metric for the HMTA

is derived in Section 4.2.1, and the selection of the number of subtrees J is described in

Section 4.2.2. A step-by-step description of the HMTA is given in Section 4.2.3.

4.2.1 Derivation of the Path Metric

The SA governs the order in which the paths of each subtree are explored. The sequence

represented by each path is a non-contiguous subset of the transmitted sequence. As a

result, the conventional sequential detection path metric must be modified to incorporate

hard estimates of the symbols not contained in each subtree state. Let x
nj

j denote the first

1+(nj−j)/J symbols estimated by the j-th subtree. In subtree j, the path metric expresses

the likelihood that the information sequence x
nj

j is transmitted given knowledge of the full

received sequence y
Nj

j ,

P (x
nj

j |y
Nj

j ) =
P (y

Nj

j |x
nj

j )P (x
nj

j )

P (y
Nj

j )
. (4.12)

In order to develop a closed-form expression for the path metric that can be computed

with moderate complexity, we make two assumptions similar to the SA:
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1) The received sequence beyond the path of interest, y
Nj

nj+J
, when conditioned on

x
nj

j , is independent of the previous received sequence y
nj

j .

2) The sequence y
Nj

nj+J
is independent of the first 1 + (nj − j)/J symbols x

nj

j that

subtree j estimates.

Eliminating P (y
Nj

j ) since it is equal for all paths, we can simplify the expression in (3) and

write the path metric for the input sequence x
nj

j as

m(x
nj

j ) = P (y
Nj

j |x
nj

j )P (x
nj

j ) (4.13)

≈ P (x
nj

j )P (y
nj

j |x
nj

j )P (y
Nj

nj+J
|xnj

j )

≈ P (x
nj

j )P (y
nj

j |x
nj

j )P (y
Nj

nj+J
),

where the second and third lines in (4.13) incorporate assumptions 1) and 2), respectively.

Assuming the information symbols are independent and equally likely to be ±1, the prior

probability of the transmitted symbols is given by

P (x
nj

j ) = (
1

2
)1+(nj−j)/J . (4.14)

Since the SA extends only the path with the largest metric at each stage, the paths stored

in the stack will generally be of varying lengths. P (y
Nj

nj+J
), which serves as a bias term

that compensates for varying path length. Instead of averaging over all possible sequences

x
Nj

nj+J
, we assume the future received symbols yk, k = nj + J, . . . , Nj , are independent of

each other, and approximate the bias term by a product of Gaussian terms which is similar
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to that of the SA,

P (y
Nj

nj+J
) ≈

Nj∏
k=nj+J

P (yk) (4.15)

≈
Nj∏

k=nj+J

1√
2πσ2b

exp

(
−
y2k

2σ2b

)
,

where σ2b = σ2 + hTh = σ2 + hTa ha.

The likelihood term P (y
nj

j |x
nj

j ) is given by the cascade of the conditional probabilities

of each yk ∈ Y
nj

j ,

P (y
nj

j |x
nj

j ) =
∏

k=j:J :nj

P (yk|x
k−pLa−1

k−p0 ). (4.16)

As mentioned, the channel output yk may be fed to a subtree whose state does not include

all the bits on which yk is dependent. Let us denote by xj(a) = {xk−pi ∈ x
k−pLa−1

k−p0 } and

xj(u) = {xk−pi 6∈ x
k−pLa−1

k−p0 }, i ∈ {0, . . . , La − 1}, the F bits available and the D bits

unavailable, respectively, in the j-th subtree state. The conditional likelihood of yk can be

written as

P (yk|x
nj

j ) = P
(
yk|xj(a)

)
(4.17)

= P
(
yk|xj(a),x

j
(u) = q

)
,

where the vector q = {q(d)}, 1 ≤ d ≤ D, denotes a length-D BPSK sequence. Given the
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sequence x
k−pLa−1

k−p0 , the received element yk is Gaussian, yk ∼ N (hTa x
k−pLa−1

k−p0 , σ2). There-

fore,

P
(
yk|xj(a),x

j
(u) = q

)
=

1√
2πσ2

exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=q
)2

2σ2

 , (4.18)

where {xk−pLa−1

k−p0 }
xj
(u)

=q
denotes the sequence x

k−pLa−1

k−p0 with xj(u) = q.

xj(u)(d) = q(d) is the hard information that must be obtained from another subtree.

We determine the hard estimate based on which bit value has larger probability. Suppose,

for example, that symbol xj(u)(d) is available in subtree t, t 6= j. If all paths in subtree

t are explored to depth Nt, there will be 2(Nt−t+J)/J paths, each of which corresponds to

a realization of sequence xNt
t . Therefore, the probability of xj(u)(d) = q(d) can be exactly

computed based on the likelihoods of the paths which have xj(u)(d) = q(d), , mathematically

expressed as

P (xj(u)(d) = q(d)) =
∑

x
Nt
t : x

(u)
j (d)=q(d)

P (xNt
t |y

Nt
t ). (4.19)

When the SA is used, however, not all paths in a subtree are explored. Thus, P (xj(u)(d) =

q(d)) can be obtained only approximately based on the paths present in the stack for subtree

t,

P (xj(u)(d) = q(d)) ≈
∑

x
nt
t ∈St: x

j
(u)

(d)=q(d)

P (xnt
t |y

Nt
t ), (4.20)

where St denotes the stack for subtree t.

Since q(d) only takes value of +1 and −1 by using BPSK, the hard estimate of xj(u)(d)
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from t-th subtree is made by

x̂j(u)(d) = argmax
xj
(u)

(d)∈{1,−1}

(
P (xj(u)(d) = +1), P (xj(u)(d) = −1)

)
. (4.21)

The observation likelihood term, P (y
nj

j |x
nj

j ), can be obtained by substituting (4.18),

which incorporates (4.20) and (4.21), into (4.16).

P (y
nj

j |x
nj

j ) =
∏

k=j:J :nj

P (yk|x
k−pLa−1

k−p0 ) (4.22)

=
∏

k=j:J :nj

P
(
yk|xj(a),x

j
(u) = q

)

=
∏

k=j:J :nj

1√
2πσ2

exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=x̂j
(u)

)2

2σ2

 .

Substituting (4.16) and (4.22) into (4.13) produces a closed-form expression for the path

metric that is used in each subtree of the HMTA,

m(x
nj

j ) ≈ P (x
nj

j )P (y
nj

j |x
nj

j )P (y
Nj

nj+J
) (4.23)

≈ (
1

2
)1+(nj−j)/J

Nj∏
k=nj+J

1√
2πσ2b

exp

(
−
y2k

2σ2b

)

×
∏

k=j:J :nj

1√
2πσ2

exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=x̂j
(u)

)2

2σ2

 .

4.2.2 Determination of the number of subtrees

In order to determine the number of subtrees J , we use the criterion of minimizing the

number of soft estimates exchanged among subtrees. Recall the expression of the sparse
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channel output given in (4.2). The first p1 − p0 channel outputs yk, k = 1, . . . , p1 − p0,

are dependent only on single symbols xk, k = 1, . . . , p1 − p0, respectively. Outputs yk,

k = p1 − p0 + 1, . . . , N , are dependent on multiple input symbols. In order to minimize the

number of soft estimates exchanged, we need to maximize the number of symbols xk−pi ,

i = 1, . . . , La− 1, available in subtree j. Due to the varying number of zeros between active

channel taps, we can only guarantee that two symbols, xk and xk−pi , are in subtree j. The

first p1 − p0 symbols can be arranged to form the first bit for each subtree state, and xk,

p1−p0 < k ≤ p3, can then be estimated without obtaining information from other subtrees;

this is accomplished by setting J = p1 − p0. To estimate xk, k > p3, subtree j must obtain

hard estimates from other trees.

Let us consider a 6-tap sparse channel with 3 active taps as an example, h = [h0, 0, 0, h1, 0, h2].

The received signal at instant index k, yk, can be expressed as,

yk = h0xk + h1xk−3 + h2xk−5 + wk. (4.24)

The number of subtrees J can be determined to be p1−p0 = 3. The subtrees are constructed

as shown in Fig. 4.2. Considering each state of the subtrees, the bits xk, k = 1, . . . , 3, can

be estimated using only yk, k = 1, . . . , 3. x4 is estimated using x̂1 from subtree 1 and y4
1.

x5 is estimated using x̂2 from subtree 2 and y5
2. The information exchange is started from

x6 (p3 + 1 = 6). xk, k = 6, . . . , N , is estimated using x̂k−3 obtained in its own subtree

and x̂k−5 from other subtrees. Only one estimate, x̂k−5, is exchanged among subtrees. By

setting J = 3, xk, k = 1, . . . , 5, can be estimated without obtaining information from other

subtrees.

If we set the number of subtrees J to a value other than 3, for example J = 4, the

subtrees can be constructed as in Fig 4.3. The information exchange is started from x4.

Furthermore, in order to estimate xk, k = 6, . . . , N , two hard estimates need to be obtained

from other subtrees. Similar results can be shown for other values J 6= 3. Therefore,

the minimization of the information exchange is achieved when the number of subtrees is
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Figure 4.2: The construction of the subtrees for channel h = [h0, 0, 0, h1, 0, h2] and J = 3.

J = p1 − p0.

4.2.3 Summary of the MTA Using Hard Information

To better illustrate the HMTA algorithm and the passing of estimates among subtrees,

consider a 6-tap sparse channel with 3 active taps as an example, h = [h0, 0, 0, h1, 0, h2].

The channel output at time k is

yk = h0xk + h1xk−3 + h2xk−5 + wk. (4.25)

Since there are two zero taps between the first two active taps, we use J = 3 subtrees,

and the output sequence is divided into 3 subsets, yN−21 = {y3l+1}, yN−12 = {y3l+2} and

yN3 = {y3l+3}, l = 0, 1, . . . , (N − 3)/3, shown in Fig. 4.4. The output yk is dependent on

the inputs xk, xk−3 and xk−5. Subtree 1 takes yN−21 as its input and incorporates the hard

estimates of x3l−4, l = 3, . . . , (N − 3)/3, from subtree 2 into the path metrics. Subtree

2 takes yN−11 as its input and obtains the hard estimates of x3l−3, l = 3, . . . , (N − 3)/3,

from subtree 3. Subtree 3 takes yN1 as its input and obtains the hard estimates of x3l−2,
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Figure 4.3: The construction of the subtrees for channel h = [h0, 0, 0, h1, 0, h2] and J = 4.

l = 3, . . . , (N − 3)/3, from subtree 1.

The HMTA procedure is summarized below. Without loss of generality, we assume the

sparse channel has La = 3 active taps. A flowchart representation of the HMTA is shown

in Fig.4.5.

1 Initialization: Construct J = p1−p0 parallel subtree modules, each of which represents

the search space spanned by transmitted symbols x
Nj

j = {xJl+j}, where j = 1, . . . , J

and l = 0, 1, . . . , (N/J − 1). Divide the received signal into J subsets, x
Nj

j = {yJl+j}.

Insert a root node with metric 0 into a stack for each subtree. Set j = 1 and l = 1.

2 Extend the path at the top of Sj , the stack for subtree j, to all of its children and

compute the new path metrics. The hard estimates generated by subtree (J(l − 1) +

j − (p2 − p1))⊕ J are taken as input, where ⊕ denotes the modulo operation. For a

branch at depth l, the metric is computed using the estimate x̂J(l−1)+j−(p2−p1) from

subtree (J(l−1)+ j− (p2−p1))⊕J if Jl+ j ≥ p2. Otherwise, no hard estimate needs

to be obtained.

3 Store all explored paths and their metrics in Sj in order of decreasing metric value.
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Subtree 1

Subtree 2

Subtree 3

yN−21

yN−12

yN3

x̂3l−Lh+2

x̂3l−Lh+3

x̂3l−Lh+4

Figure 4.4: Block diagram of an equalizer using the MTA with 3 subtrees for channel
h = [h0, 0, 0, h1, 0, h2]. x̂3l−Lh+a, a = 2, 3, 4, is the hard decision of corresponding symbol
exchanged between subtrees.

4 If the depth of the top path in Sj is l, go to 5 . Otherwise, return to 2 .

5 Within subtree j, generate hard estimate x̂J(l−1)+j using (4.21); pass the hard estimate

to subtree (J(l − 1) + j − (p2 − p1)− 1)⊕ J if Jl + j ≥ p2.

6 If j < J , set j = j + 1 and return to 2 . Otherwise, go to 7 .

7 If the top paths of all J stacks have reached a leaf of the corresponding subtree, i.e.,

l = (N−J)/J , stop and output the sequences from all J subtrees in order. Otherwise,

set l = l + 1 and j = 1, and return to 2 .

4.2.4 Simulation Results for the HMTA

To illustrate the computational advantage of the proposed HMTA algorithm, we compare

it to the conventional VA, SA and MVA for a sparse channel with length Lh and La active

channel taps. We take the number of computations of a path metric as the complexity

measure. For the conventional VA, for each time instant, there will be MLh evaluations of
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Figure 4.5: Flowchart representation of the MTA method using hard information
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a path metric. For an input sequence with length N , the computational complexity of the

conventional VA is NMLh . The HMVA divides the whole trellis into multiple sub-trellises,

each of which has a reduced number of states. The typical number of sub-trellises is 3Lh

[54]. To estimate each bit xk, the number of metric evaluations is MLa . The computational

complexity of the MVA is NMLa for a length-N input sequence. The number of path

extensions for the SA varies with the channel and with the realizations of the data sequence

and channel noise [32]. Since the complexity of the SA is a random variable, we evaluate

the complexity of the proposed HMTA algorithm empirically. Note that, when the HMTA

is performed, erasures may occur when a leaf of the tree is not reached within the maximum

number of branch explorations, which leads to a loss of performance for the detector [56].

Simulations have been conducted for a length Lh = 6 sparse channel with La = 3 active

taps. 1000 blocks of 1200 BPSK symbols are passed over the sparse channel. For each

data block, the active channel taps ha = [h0, h1, h2] are drawn from a Gaussian distribution

with mean 0 and variance 1, and the channel energy is normalized to 1. The stack size of

the SA is set to 105 to make erasures rare. The number of computations performed per

transmitted block as a function of SNR is shown in Table 4.1 for the four detection methods

considered. As SNR increases, the complexity of the VA and MVA remain constant, while

the complexity of the HMTA decreases dramatically, as would be expected of a stack-based

algorithm. For SNR from 5 dB to 7 dB, the HMTA achieves significant computational

complexity reduction compared to the other three methods. For SNR of 9 dB or greater,

the SA and HMTA are likely to follow a single path and explore very little of the tree,

causing their similar complexity. We have conducted simulations for various Lh and La.

The results show that the advantage of the HMTA on computational complexity becomes

more obvious as Lh and La increase.

A performance comparison of the four methods is shown in Fig. 4.6. The HMTA suffers

some performance loss compared to the other three methods, but when SNR is over 9

dB, all four methods have similar performance. In order to understand the source of the
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Table 4.1: Computations performed for the VA, MVA, SA and HMTA using a length-1200
sequence for a length-Lh = 6 sparse channel with La = 3 active taps.

Number of Computations

VA MVA SA HMTA

4dB 76800 9600 154518 122047

5dB 76800 9600 14429 8539

6dB 76800 9600 7551 5809

7dB 76800 9600 5059 4205

8dB 76800 9600 3286 2524

9dB 76800 9600 2726 2441

10dB 76800 9600 2512 2407

11dB 76800 9600 2408 2402

performance loss suffered by HMTA, we have conducted the same simulations for a zero-

padding channel. In this case, there is no information exchange between subtrees, and the

performance of the HMTA is identical to that of the SA. Therefore, for a general sparse

channel, the increase in BER over the conventional SA is likely due to the quality of the

information exchanged. In the next section, we will explore techniques for exchanging soft

information which provides a better performance over HMTA. However, in applications that

consider low complexity as a top priority, the proposed HMTA method using hard estimates

can provide relatively good performance (about 2 dB loss of performance compared to the

VA).
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Figure 4.6: Performance comparison of the VA, SA, MVA and HMTA for a length-Lh = 6
sparse channel with La = 3 active taps.

4.3 Multiple Tree Algorithm Using Soft Information

The HMTA dramatically reduces the computational complexity for estimating a data se-

quence transmitted over a sparse ISI channel in high SNR. However, simulation results

have shown that the HMTA does not perform as well as competing methods, particularly

at low SNR. Our simulation results show that the loss of performance is due to the hard

estimates made and exchanged among subtrees. The hard estimates are made based on the

branches that have been extended in the corresponding subtree, where information is lost

when we quantize the bit value to be +1 or −1. Especially when SNR is low, the algorithm

is more likely to make wrong hard estimates on certain symbols, and the loss of a large
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amount of information results in decreased performance of the HMTA. In order to enhance

the reliability of the information exchanged in the MTA, instead of making hard estimates,

we compute soft estimates, which are defined as the probability that each symbol is equal

to +1 or −1, and incorporate them into the path metric. We denote the MTA using soft

estimates as SMTA.

4.3.1 Derivation of the Path Metric

The path metric of SMTA for the input sequence x
nj

j is similar to that of the HMTA shown

in (4.13),

m(x
nj

j ) ≈ P (x
nj

j )P (y
nj

j |x
nj

j )P (y
Nj

nj+J
). (4.26)

The prior term P (x
nj

j ) = (12)1+(nj−j)/J and the bias term P (y
Nj

nj+J
) is the same as what is

defined in (4.16) for HMTA. We follow the same procedures as followed for HMTA to derive

the path metric of the SMTA. The only difference is the conditional likelihood of yk, which

can be written as

P (yk|x
nj

j ) = P
(
yk|xj(a)

)
(4.27)

=
∑
l

P
(
yk|xj(a),x

j
(u) = ql

)
P (xj(u) = ql),

where the vector ql = {ql(d)}, 1 ≤ d ≤ D, denotes the l-th realization of a length-D

BPSK sequence. Given the sequence x
k−pLa−1

k−p0 , the received signal yk is Gaussian, yk ∼
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N (hTa x
k−pLa−1

k−p0 , σ2). Therefore,

P
(
yk|xj(a),x

j
(u) = ql

)
= (4.28)

1√
2πσ2

exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=ql
)2

2σ2

 ,

where {xk−pLa−1

k−p0 }
xj
(u)

=ql
denotes the sequence x

k−pLa−1

k−p0 with xj(u) = ql. Noting that the

elements of xj(u) are independent, we have

P (xj(u) = ql) =

D∏
d=1

P (xj(u)(d) = ql(d)), (4.29)

where P (xj(u)(d) = ql(d)) is the soft estimate that must be obtained from another subtree.

Compared to the hard estimates, the soft estimates keep the probabilities of the possible

values that xj(u)(d) can take. All the information of xj(u)(d) are maintained and exchanged

among subtrees, which provides better quality of the exchanged information than that of

the HMTA.

Suppose, for example, that symbol xj(u)(d) is available in subtree t, t 6= j. The soft

estimate P (xj(u)(d) = ql(d)) is obtained similar to the HMTA,

P (xj(u)(d) = ql(d)) ≈
∑

x
nt
t ∈St: x

j
(u)

(d)=ql(d)

P (xnt
t |y

Nt
t ), (4.30)

where St denotes the stack for subtree t.

Substituting (4.28) and (4.29) into (4.26) produces a closed-form expression for the path
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metric of the SMTA.

m(x
nj

j ) ≈ P (x
nj

j )P (y
nj

j |x
nj

j )P (y
Nj

nj+J
) (4.31)

≈ (
1

2
)1+(nj−j)/J

Nj∏
k=nj+J

1√
2πσ2b

exp

(
−
y2k

2σ2b

)

×
∏

k=j:J :nj


∑
l

 1√
2πσ2

exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=ql
)2

2σ2

 D∏
d=1

P (xj(u)(d) = ql(d))


 .

A flowchart of the SMTA algorithm is given in Fig. 4.7 for a sparse channel with La = 3

active taps.

4.3.2 Simulation Results for the SMTA

To illustrate the complexity and performance of the proposed SMTA, we also compare it

to the VA, SA and MVA. The same simulation conditions used for the HMTA are used

here. The average number of computations performed per transmitted block as a function

of SNR is shown in Table 4.2 for the four detection methods considered. For SNR from 5

dB to 10 dB, the SMTA achieves significant computational complexity reduction compared

to the other three methods. For SNR greater than 10 dB, the SA and SMTA are likely to

follow a single path and explore very little of the tree, causing their similar complexity.

A performance comparison of the four methods is shown in Fig. 4.8. The SMTA

suffers some performance loss compared to the VA, but its performance is very close to

that of the SA and MVA. The performance difference among the methods decreases as

SNR increases. Therefore, with only slight performance degradation, the proposed SMTA

provides a computationally efficient approach to data detection for sparse ISI channels at

moderate SNRs.
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Figure 4.7: Flowchart representation of the MTA method using soft information
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Table 4.2: Computations performed for the VA, MVA, SA and SMTA using a length-1200
sequence for a length-Lh = 6 sparse channel with La = 3 active taps.

Number of Computations

VA MVA SA SMTA

4dB 76800 9600 154518 74698

5dB 76800 9600 14429 5687

6dB 76800 9600 7551 4758

7dB 76800 9600 5059 3207

8dB 76800 9600 3286 2426

9dB 76800 9600 2726 2411

10dB 76800 9600 2512 2405

11dB 76800 9600 2408 2401
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Figure 4.8: Performance comparison of the VA, SA, MVA, and SMTA for a length-Lh = 6
sparse channel with La = 3 active taps.

90



4.4 Comparison between the HMTA and SMTA

The simulation results show that the SMTA exhibits performance very similar to that of

the SA and notably better than the HMTA. The only difference between the SMTA and

HMTA is the information exchanged among the subtrees. We can see that the shared soft

information has higher reliability than the hard information. In order to illustrate the

difference between the hard and soft information, we analyze the quality of these two kinds

of estimates and study their reliability as the tree search proceeds.

4.4.1 Soft Information vs. Hard Information

In order to compare the quality of the hard and soft estimates exchanged among subtrees,

we assume that the knowledge of the transmitted sequence xN1 is available, which means

for subtree j, we can locate the correct path associated with the sequence x
Nj

j . The corre-

sponding likelihood term of the path metric for a partial length sequence, P (y
nj

j |x
nj

j ), can

be obtained using (4.16) as

P (y
nj

j |x
nj

j ) =
∏

k=j:J :nj

P (yk|x
k−pLa−1

k−p0 ) (4.32)

=
∏

k=j:J :nj

1√
2πσ2

exp

−(yk − hTa x
k−pLa−1

k−p0 )2

2σ2

 .

Let us define two likelihood ratios, γlh and γls, as

γlh =
P (y

nj

j |x
nj

j(h))

P (y
nj

j |x
nj

j )
, (4.33)

γls =
P (y

nj

j |x
nj

j(s))

P (y
nj

j |x
nj

j )
, (4.34)
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where P (y
nj

j |x
nj

j(h)) and P (y
nj

j |x
nj

j(s)) are the likelihood terms in the path metric of HMTA

and SMTA, respectively. x
nj

j(h) is the sequence associated with l-th path in subtree j for

HMTA which contains the hard estimates obtained from other subtrees. x
nj

j(s) is the se-

quence associated with l-th path in subtree j for SMTA that contains the soft estimates

obtained from other subtrees. The likelihood term P (y
nj

j |x
nj

j(h)) indicates the probability

that the sequence y
nj

j is received given the possible transmitted sequence x
nj

j(h) which in-

cludes the hard estimates, while P (y
nj

j |x
nj

j(s)) represents the same probability, given x
nj

j(s)

which includes the soft estimates. Therefore, the ratios γlh and γls show how likely it is

that x
nj

j(h) and x
nj

j(s) are following the correct path x
nj

j . Since the likelihood P (y
nj

j |x
nj

j ) is

maximized, we will have 0 < γlh, γ
l
s ≤ 1. As the tree search proceeds, paths with different

lengths are extended. For a fair comparison between the hard and soft information, we

average the ratios we obtain for each path by the total number of extended paths,

γh =
1

Lh

∑
l

γlh, (4.35)

γs =
1

Ls

∑
l

γls, (4.36)

where Lh and Ls denote the numbers of extended paths for HMTA and SMTA, respectively.

When comparing the two ratios γh and γs, the larger ratio indicates that the exchanged

information is more likely to be the correct estimate.

In order to compare the hard and soft information, we conducted simulations for a 6-tap

sparse channel with 3 active taps. A sequence with 1200 BPSK symbols is passed over the

sparse channel. The active channel taps are drawn from a Gaussian distribution, N (0, 1).

The HMTA and SMTA are used to detect the transmitted sequence. At each path of the two

methods, γlh and γls are computed. When the tree search reaches a leaf, the total number
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of extended paths are counted for all the subtrees to obtain the average ratios. We plot the

resulting average ratios γh and γs against different values of SNR in Fig. 4.9. From the

simulation results, we can see that when SNR is low, the soft estimates are more likely to

be correct than the hard estimates. As the SNR increase, the two ratios converge which

indicates that the hard and soft estimates have the similar likelihood to follow the correct

path in the tree. We also plot the performance comparison between the HMTA and SMTA

for the simulations conducted in the previous two sections in Fig. 4.10. The tendency of

the two ratios coincides with the BER performance comparison for the HMTA and SMTA.

Figure 4.9: Comparison between the two ratios γh and γs for a length-Lh = 6 sparse channel
with La = 3 active taps.
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Figure 4.10: Performance comparison of the HMTA and SMTA for a length-Lh = 6 sparse
channel with La = 3 active taps.

4.4.2 Complexity Comparison

Soft information is shown to be more reliable, and hence the SMTA outperforms the HMTA.

However, calculating the path metric when soft information is used requires additional com-

putational effort. The soft and hard estimates, both obtained by computing the probability

of all possible values that the unavailable bits can take, have very similar computational

complexity. Therefore, we take the complexity of computing the path metric as the criterion

to compare the two methods. We assume that the hard estimates x̂j(u) and soft estimates
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P (xj(u) = ql) have already been obtained.

The path metric of the HMTA and SMTA has three components: the prior probability

of the transmitted symbols P (x
nj

j ), conditional likelihood term P (y
nj

j |x
nj

j ), and bias term

P (ynj+J)Nj . The computation of P (x
nj

j ) and P (ynj+J)Nj are same for HMTA and SMTA.

Thus, we only need to consider the conditional likelihood term P (y
nj

j |x
nj

j ). For the HMTA,

the conditional likelihood of yk in the path metric is defined as

P (yk|x
nj

j ) =
1√

2πσ2
exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=x̂j
(u)

)2

2σ2

 . (4.37)

With hard estimates, the corresponding unavailable bits are set to the value of x̂j(u), and

P (yk|x
nj

j ) is computed by performing the exp(·) operation only once. Hence, to obtain the

conditional likelihood term P (y
nj

j |x
nj

j ), the exp(·) operation is implemented 1 + (nj − j)/J

times.

For the SMTA, we consider all the possibilities of the unavailable bits values, and the

conditional likelihood of yk is given by

∑
l

 1√
2πσ2

exp

−(yk − hTa {x
k−pLa−1

k−p0 }
xj
(u)

=ql
)2

2σ2

 D∏
d=1

P (xj(u)(d) = ql(d))

 , (4.38)

where ql is the l-th realization of a length-D binary vector. D is the number of unavailable

bits. It is easy to see that there are 2D combinations of the binary vector, and l takes

the values l = 1, . . . , 2D. To compute the conditional likelihood term P (y
nj

j |x
nj

j ), the

unavailable bits are set to the l-th binary sequence, and the exp(·) operation needs to be

performed [1 + (nj − j)/J ]2D times.

The complexity comparison between the two methods is provided in Table 4.3. We can
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see that the metric computation of the SMTA is more complex than that of the HMTA by

a factor of 2D. As D increases, the complexity gap between the two methods becomes more

obvious. The better performance of the SMTA is obtained by increasing computational

complexity. However, since the SMTA uses soft estimates in the tree search process, the

SMTA is more likely to follow the correct path. Hence, the SMTA extends fewer branches of

the tree and fewer path metric computations must be performed, especially when the SNR

is low. To verify this, we run simulations for the two methods using 1000 blocks of a length-

1200 sequence for a length-Lh = 6 sparse channel with La = 3 active taps. The number

of metric computations is averaged over the 1000 blocks for the two methods and is shown

in Table 4.4. From the simulation results, we can see that the SMTA has higher metric

computational complexity but requires a smaller number of metric computations. For this

simulation, the sparse channel has 3 active taps, and therefore we have J = 3 and D = 1. At

4 dB, the average number of the exp(·) operations performed is 122047×400 = 48818800 for

the HMTA and 74698×400×21 = 59758400 for the SMTA. The SMTA has about 20% higher

complexity than the HMTA for this case. When D is not very large, the computational

complexity of the SMTA is only slightly increased compared to the HMTA. The extra effort

may be deemed worthwhile when improvement in detection performance is desired.

Table 4.3: Computational complexity between the HMTA and SMTA in terms of the number
of exp(·) operation.

Path Metric Computations

Number of exp(·) operation

HMTA 1 + (nj − j)/J

SMTA [1 + (nj − j)/J ]2D
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Table 4.4: Number of metric computations for the HMTA and SMTA using a length-1200
sequence for a length-Lh = 6 sparse channel with La = 3 active taps.

Number of Path Metric Computations

HMTA SMTA

4dB 122047 74698

5dB 8539 5687

6dB 5809 4758

7dB 4205 3207

8dB 2524 2426

9dB 2441 2411

10dB 2407 2405

11dB 2402 2401
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Chapter 5: Computationally Efficient Sequential Detection

for Unknown ISI Sparse Channels

In the previous chapters, we introduced several equalization techniques in both symbol-by-

symbol and sequential detection schemes. We note that all of them are proposed on the

assumption that the channel is known at the receiver. Therefore, channel estimation needs

to be performed using a training sequence before the equalizers can operate. The training

sequence is a sequence of bits sent prior to the information data and is known at the receiver.

The communication channel is estimated based on knowledge of the training sequence and its

observations. Transmitting a training sequence consumes bandwidth that could otherwise

be used for transmission of information, and training sequences must be transmitted at

regular intervals when the channel is time varying. In order to improve spectral efficiency,

blind or semi-blind methods for channel identification and equalization have been proposed

[57–63]. The term “blind” means that the receiver has no information about either the

transmitted sequence or the channel. Only the received signal and any available priors on

the transmitted signal are used to design the receiver. In [55], a framework is given using

a Bayesian maximum likelihood sequence detector for ISI channels. The channel taps are

considered as stochastic variables drawn from a known probability distribution. A tree

search stack based algorithm is used to estimate the transmitted sequence based on the

Bayesian probability metric, which includes learning the channel implicitly. The method

achieves promising performance results. However, it only provides a fundamental structure

for general channels. When the channel is sparse, the method is not able to describe the

channel sparsity, resulting in lost opportunity to enhance the performance of the detector.

In this chapter, we will introduce several blind sequential detection techniques using the

stack algorithm for sparse ISI channels. In Section 5.1, two conventional sparse channel
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estimation methods will be introduced. In Section 5.2, we combine sparse channel esti-

mation with the stack algorithm to achieve blind sequential detection. In Section 5.3, a

novel computationally efficient blind sequential detection method that does not explicitly

estimate the channel is proposed. The proposed method reduces the computational com-

plexity by approximately 75% and yields better performance than the conventional methods

introduced in Section 5.2.

5.1 Sparse Channel Estimation

The wireless channel poses a great challenge for reliable high speed communications. The

transmitted signal experiences various types of distortion, as described in Chapter 2. If the

channel can be accurately estimated, we can efficiently recover the transmitted signal at

the receiver. All of the equalization techniques we have introduced in previous chapters are

proposed based on knowledge of the communication channel. The symbol-by-symbol ZF and

MMSE equalizers are designed directly from channel parameters, shown in (2.14) and (2.16).

The sequential stack algorithm incorporates knowledge of the channel in computing the

path metric to determine the most likely transmitted sequence, shown in (4.11). However,

in a realistic communication system, the channel is unknown and must be estimated if we

want to apply these methods. Furthermore, in applications such as UWA, UWB and HDTV

systems, the channels are sparse. Conventional methods (like least-squares estimation) used

to estimate general channels will have poor performance. In the next three subsections, we

will introduce methods that effectively estimate sparse channels, including matching pursuit

(MP) and orthogonal matching pursuit (OMP). These two methods estimate the channel

by using a training sequence. We will show that they can be combined with the stack

algorithm to achieve blind sequential detection in Section 5.2.

5.1.1 System Model

We first introduce the notation for describing a communication system with a sparse chan-

nel. A sequence xk, k = 1, 2, . . . ,M , is transmitted over a length-Lh sparse ISI channel h
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with additive white Gaussian noise (AWGN) wk ∼ N (0, σ2). The received signal at time

instant k, yk, k = 1, 2, . . . ,M , can be expressed as

yk =

Lh−1∑
i=0

hixk−i + wk. (5.1)

We assume that the channel has only La active (non-zero) taps, ha = [h0, h1, . . . , hLa−1]
T ,

where La � Lh.

h = [h0, 0, . . . , 0, h1, 0, . . . , 0, hLa−1]
T . (5.2)

The length-M received sequence can be expressed in a matrix form as



y1

y2
...

yM


=



x1 0 0 0 . . . 0

x2 x1 0 0 . . . 0

...
...

...
...

...
...

...

xM xM−1 xM−2 . . . xM−Lh+2 xM−Lh+1

...
...

...
...

...
...

...

xLh
xLh−1 xLh−2 . . . x2 x1


×



h0

0

...

h1
...

0

hLh−1



+



w1

w2

...

wM


,

(5.3)

where we assume that M > Lh to ensure accurate estimation of the channel. The equation

above in matrix form can be simplified as

y = Xh + w, (5.4)

where the signal matrix X ∈ RM×Lh . Let us denote the columns of the matrix X as ai,

i = 1, 2, . . . , Lh. The received sequence, y, can be considered as a linear sparse combination

of the columns ai. In order to estimate the channel h, the detector explores the properties

of the received sequence y and the matrix X. To illustrate the sparse channel estimation
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methods, we will assume that the matrix X is known. In the blind sequential detection

that we will introduce in following sections, X is no longer available and we will replace it

with other information. We also assume that the receiver has knowledge of the length of

the channel Lh. Most sparse channel estimation methods follow a two-step procedure: the

sparsity of the channel is estimated first and then the active channel taps are estimated

based on the estimated sparsity. MP and OMP are two methods that are widely used due

to their easy implementation.

5.1.2 Matching Pursuit

Matching pursuit (MP), originally proposed for sparse recovery problems, is a type of nu-

merical technique which finds the best “matching” sparse solution to the associated linear

system from an over-complete collection of elementary signals [64]. It can be used in a

wide variety of applications such as image coding [65–67], direction of arrival estimation

[68], and sparse signal representation [69]. Due to the common structure shared by the

applications, MP received much attention in the area of sparse channel estimation [70,71].

MP is a greedy type algorithm which iteratively generates the sparse solution for any linear

underdetermined system. For sparse channel estimation, the system equations are defined

in (5.3). MP uses sequential forward selection to determine the sparse representation of the

channel h from the signal matrix X and received signal y. At each iteration, the algorithm

chooses the column of matrix X = [a1,a2, . . . ,aLh
] that best matches the residual signal

vector. The index of the column is stored, and the channel tap value at the corresponding

index is computed. The process is terminated when the number of active channel taps is

reached or a stop criterion is met. The procedures of MP can be summarized as:

• Initialization: Denote the residual signal vector as b0 = y and a collection used to

store active indices as Ip = {}.

• Step 1. At the p-th iteration, selection is performed by finding the largest projection
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of the residual signal vector bp−1 along the direction of each column of the matrix X,

kp = argmax
i

|aHi bp−1|2

||ai||2
, i = 1, 2, . . . , Lh. (5.5)

The index collection is updated as follows:

Ip =


Ip−1 ∪ kp, if kp 6∈ Ip−1,

Ip−1, otherwise.

(5.6)

• Step 2. The new residual signal vector is computed by removing the projection of

bp−1 along the direction of akp ,

bp = bp−1 −
(aHkpbp−1)akp

||akp ||2
. (5.7)

The estimated active channel tap value at position kp is then computed as

ĥkp =
aHkpbp−1

||akp ||2
. (5.8)

The stop criterion is checked to determine if the iteration needs to be terminated.

If the length of the active channel taps La is known and p = La, the iteration is

terminated; otherwise we set p = p + 1 and go back to Step 1. If La is an unknown

parameter, the iteration can be terminated when ||bp|| ≤ ε, where ε is a small pre-

defined constant [64].

Convergence of MP is guaranteed for p → ∞, due to the energy conservation property

of the algorithm [72]. Compared to the sparse least-squares (SpLS) algorithm [73] which
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requires solutions of two LS problems, MP provides a more efficient way to find the sparse

representation of the channel. However, it is also obvious that at each iteration, the projec-

tion of the residual signal vector is computed over all the vectors of the dictionary matrix

X. A previously selected vector might be re-selected, which will slow down convergence

and increase the computational burden. In order to avoid re-selection, an alternative MP

algorithm is proposed.

5.1.3 Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) was developed as an extension of MP [74]. The main

difference between OMP and MP is that at each iteration OMP selects the index by finding

the maximum orthogonal projection of the residual signal vector on to the columns of X in

the orthogonal complement of the active index collection. Therefore, OMP avoids the re-

selection problem which accelerates convergence of the algorithm and enhances the accuracy

of sparse channel estimation, but requires extra effort in computation. To better illustrate

OMP, we summarize its procedures as follows,

• Initialization: Denote the residual signal vector as b0 = y and a collection used to

store active indices as Ip = {}.

• Step 1. At the p-th iteration, selection is performed by finding the largest projection

of the residual signal vector bp−1 along the direction of each column of the matrix Xt,

kp = argmax
i

|aHi bp−1|2

||ai||2
, i ∈ {1, . . . , Lh} 6∈ Ip−1. (5.9)

The index collection is updated as follows:

Ip =


Ip−1 ∪ kp, if kp 6∈ Ip−1,

Ip−1, otherwise.

(5.10)
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• Step 2. The re-selection problem is avoided by using the stored dictionary. The

selected vector akp is orthogonalized by the Gram-Schmidt algorithm [75] as,

qp = akp −
p−1∑
j=0

(aHkpqj)qj

||qj ||2
. (5.11)

The new residual signal vector is computed by removing the orthogonal projection of

bp−1 along the direction of qkp ,

bp = bp−1 −
(qHkpbp−1)qkp

||qkp ||2
. (5.12)

The estimated active channel tap value at position kp is then computed as

ĥkp =
qHkpbp−1

||qkp ||2
. (5.13)

The same stop criterion as for MP is applied to terminate the iterations of OMP.

OMP brings in the orthogonalization mechanism to avoid the re-selection problems

of MP and improves the sparsity detection accuracy with only a small amount of extra

computational complexity. In order to illustrate the performance of the two introduced

methods, we compare the estimation accuracy of MP and OMP using the same sparse

channel and known sequence.

In the simulation, 100 blocks of a length-12 training sequence are used. For each block,

a length-10 sparse channel with 3 active taps is randomly generated. The 3 active channel

taps are drawn from a Gaussian distribution with 0 mean and variance 1. AWGN is added

during transmission. The number of correctly detected active channel taps for 100 blocks

is evaluated as the criterion of the estimation accuracy for comparison between the two

methods. The simulation results are shown in Fig. 5.1 for SNR= 5 dB, 10 dB, and 15 dB.
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Figure 5.1: Estimation accuracy comparison between MP and OMP for 100 blocks of length-
10 training sequence when SNR is 5 dB, 10 dB, and 15 dB. A length-10 sparse channel with
3 active taps is randomly generated for each block.

We can see that OMP gives more accurate channel sparsity estimation than MP for

the range of the SNR values considered. Considering complexity, however, MP has its own

advantage. There is a trade-off between complexity and performance for the two methods

that may make one or the other more attractive for a particular application.

5.2 Blind Sequential Detection with Sparse Channel Estima-

tion

We have introduced two popular methods for estimating sparse channels. MP and OMP

are two greedy algorithms that sequentially estimate the sparse channel by using a training

sequence. In this section, we will apply them in blind sequential detection problems along

with the SA.

For blind sequential detection, no training sequence is available to use, and therefore the

sparse channel is an unknown parameter at the receiver. In the tree structure of the SA,

each path represents a possible realization of the transmitted sequence, which can be used
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to construct the signal matrix X. MP/OMP can use X to estimate the unknown channel

along each path. Using the estimated channel in combination with the observations and the

symbol sequence associated with each path, the path metrics of the SA can be computed,

as introduced in Chapter 4. The metrics are used to guide the tree search to find the

most likely transmitted sequence. Such a mechanism establishes the foundation to combine

MP/OMP and the SA.

5.2.1 System Model

In order to enhance the performance of the detector, the information bits are passed through

an error control encoder with rate R = 1
r . No training sequence is sent. For a block of

information bits with length N , denoted by bN1 , a length-rN sequence of coded bits, xrN1 ,

is generated. The encoded sequence is transmitted over a length-Lh sparse ISI channel

h with AWGN wk of variance σ2. The system model is showed in the Fig. 5.2. The

received sequence yrN1 = {y1, . . . , yrN} is the input to a detector that blindly estimates

the transmitted information bits bN1 , where the received signal at time instant k, yk, k =

1, 2, . . . , rN , is defined in (5.1). We assume that the receiver has knowledge of the code

generator polynomial C, the variance of the AWGN σ2, and the channel length Lh. The

sparse ISI channel h is unknown. For simplicity, only BPSK encoded data is considered.

Extension to transmission of data from large constellations is straightforward.

Figure 5.2: System model for blind sequential detection. The data is passed through an
error control encoder with rate R. The coded sequence is transmitted over a sparse ISI
channel and processed by the blind sequential detector and decoder.
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In order to detect the transmitted sequence without knowledge of the channel, we can

formulate a joint channel and sequence estimation problem. We will show how the solution

for this problem can be found using the ML criterion first. We will then extend to using

the SA to approximate the ML solution.

Letting x̃rN1 and h̃ denote hypotheses for the transmitted sequence and sparse ISI chan-

nel, the solution of joint channel and sequence estimation using the ML criterion in the

presence of AWGN can be written as

(
b̂N1 , ĥ

)
= argmax

b̃N
1 ,h̃

P (yrN1 |b̃N1 , C, h̃) (5.14)

= argmin
b̃N
1 ,h̃

rN∑
k=1

∥∥∥∥∥yk −
Lh−1∑
i=0

hixk−i

∥∥∥∥∥
2

= argmin
b̃N
1 ,h̃

∥∥∥yrN1 − x̃rN1 h̃
∥∥∥2 .

We can see that the ML solution
(
b̂N1 , ĥ

)
is obtained by minimizing the Euclidean distance

between the received sequence yrN1 and x̃rN1 h̃. The joint minimization problem defined in

(5.14) has extremely high complexity. However, the task of blind ML sequential detection

can be solved in two steps [76,77]: 1) We obtain channel estimates for every possible data se-

quence b̃N1 ; 2) We choose the data sequence that minimizes the Euclidean distance in (5.14)

with the corresponding channel estimate. The process can be expressed mathematically as

(
b̂N1 , ĥ

)
= arg

[
min
b̃N
1

(
min
h̃

∥∥∥yrN1 − x̃rN1 h̃
∥∥∥2)] . (5.15)

The two-step procedure gives us a fundamental structure to simplify the process of

finding the ML solution in joint channel and sequence detection. Furthermore, the chan-

nel estimation and sequence detection become two separated processes. We have multiple
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choices of different algorithms that can be applied to perform each step. In [77] for exam-

ple, the first step (the inner minimization) is solved by means of LS channel estimation,

and the second step (the outer minimization) is carried out using the VA. The trade-off

between complexity and performance will be the criterion for us to decide which method is

appropriate for specific applications.

5.2.2 Blind Sequential Detection Using MP and OMP

The two-step optimization method provides a framework for blind sequential detection

problems. In [77], a blind trellis search technique is proposed using conventional LS and

the VA. The results are reported to be good for short channels. However, for channels with

a sparse impulse response and a very long delay spread, LS cannot describe the channel

sparsity, and applying the VA on long channels requires prohibitive complexity. Therefore,

we propose a computationally efficient method to combine the sparse channel estimation

algorithms MP/OMP with the SA to approximate the ML solution of a joint sparse channel

and data estimation problem. For ease of presentation, we denote this method as SA-

MP/OMP.

In order to incorporate the SA, we need to derive a way to compute the path metric

without knowledge of the sparse channel. Let bn1 = {b1, . . . , bn} denote a possible realization

of the transmitted sequence that a length-n path represents. A matrix X(rn) is constructed

by using the coded sequence xrn1 = {x1, . . . , xrn} as follows:
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X(rn) =





x1 0 0 0 . . . 0

x2 x1 0 0 . . . 0

...
...

...
...

...
...

xrn xrn−1 xrn−2 . . . . . . 0


, if rn < Lh,



x1 0 0 0 . . . 0

x2 x1 0 0 . . . 0

...
...

...
...

...
...

...

xLh
xLh−1 xLh−2 . . . x2 x1


, if rn ≥ Lh.

(5.16)

A residual signal vector b0 is initialized by the received sequence yrn1 with length rn,

b0 = yrn1 . The sparse channel estimation algorithm MP/OMP is applied using X(rn) as the

training signal matrix and b0 as the initial residual vector. The estimated sparse channel

ĥ(rn) is obtained by using the same channel estimation procedure described in (5.1.2) and

(5.1.3). The path metric of the length-rn sequence xrn1 is computed based on the estimated

sparse channel ĥ(rn) similar to (4.11),

m(bn1 ) =

(
1

2
√

2πσ2

)rn rn∏
k=1

exp

(
− 1

2σ2
(yk − ĥ(rn)T xkk−Lh+1)

2

)
(5.17)

×

 1√
2πσ2b

rN−rn
rN∏

k=rn+1

exp

(
−
y2k

2σ2b

)
.

Similar to joint channel estimation and sequence detection, SA-MP/OMP employs a

two-step procedure to compute the metric at each path of the tree. SA-MP/OMP first

estimates the sparse channel using the realization of the coded sequence associated with a
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path, and then it computes the path metric using the estimated channel. The path metric is

used to lead our search in the tree to find the most likely transmitted sequence. The process

of tree search continues until a leaf of the tree is reached. A flowchart representation of the

blind sequential detection method is shown in Fig. 5.3.

SA-MP/OMP provides an efficient way to implement blind sequential detection with

good performance due to the efficiency of SA and MP/OMP (the performance of SA-

MP/OMP is shown in Section 5.3.7). However, there is a notable disadvantage in the

design of MP/OMP. MP/OMP is designed to find the best sparse representation of a vector

h when the system equations can be expressed as

y = Xh. (5.18)

The optimal solution is obtained in a noise-free case and under perfect knowledge of the

training signal matrix X. When MP/OMP is applied in blind sequential detection problems,

noise is added when information is passed through the channel, and the signal matrix Xa

is constructed using the possible realization of the sequence associated with a certain path,

which may differ from the actual transmitted sequence X. Therefore, the system equation

becomes

y = Xah + w = (X + E)h + w, (5.19)

where w is the noise vector and E denotes the difference between Xa and the true signal

matrix X. In [78], it is shown that MP/OMP does not perform well in estimating sparse

channels when SNR is low. As a result, the inaccurate channel estimates impair the per-

formance of SA-MP/OMP. In the next section, we propose an alternative blind sequential

detection method using a novel greedy algorithm. Simulation results show that it is not

only more robust, but also more efficient than the MP/OMP based methods given noisy

observations.
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Figure 5.3: Flowchart representation of SA-MP/OMP.
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5.3 Computationally Efficient Blind Sequential Detection

The proposed SA-MP/OMP method provides an efficient way to blindly estimate the data

sequence transmitted over sparse ISI channels. However, its design lacks consideration of

channel noise, which will lead to performance loss, especially when SNR is low. Furthermore,

due to the application of the SA, the number of extended paths could be very large, and

MP/OMP must be performed along every path of a tree. Therefore, the total complexity of

SA-MP/OMP could be very high. A more computationally efficient method is desirable to

reduce the complexity of metric computations along each path. In this section, we propose a

computationally efficient blind sequential detection method that combines the SA and a fast

greedy algorithm (FGA) without explicitly estimating the sparse channel tap values. The

proposed method is denoted by SA-FGA for ease of representation. Unlike MP/OMP which

iteratively searches the space spanned by columns of the signal matrix, SA-FGA employs

a best-first strategy to estimate the channel sparsity based on the metric of each path of

the tree. Since the metric takes channel noise into consideration, SA-FGA outperforms

SA-MP/OMP in a noisy environment. Additionally, the better channel estimate obtained

at each path of the SA leads to a reduced number of extended paths of the tree.

5.3.1 Sparse Channel Model

Let us consider the communication system introduced in Section 5.2.1. For simplicity, only

BPSK encoded data is considered. In order to describe the channel sparsity, we denote the

channel by h = [h0, . . . , hLh−1] and use di ∈ {0, 1} to denote if the i-th tap hi is active or

inactive,

hi is


inactive, di = 0,

active, di = 1,

(5.20)

d = {d0, . . . , dLh−1}, a binary vector, denotes the sparsity of the channel. The number of

active channel taps, La, therefore can be expressed as La = ||d||0, where the l0-norm of
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vector d counts the number of non-zero elements in d.

In practical communication systems, channels cannot be exactly sparse, i.e., the inactive

taps have some small values. Furthermore, the receiver has no knowledge about the exact

channel. Thus, we propose a new channel model and describe channel taps hi using two

different Gaussian distributions,

hi ∼


N (0, σ20), di = 0,

N (0, σ21), di = 1,

(5.21)

where σ20 → 0 denotes the variance of hi in the inactive state, and σ21 � σ20 denotes the

variance of hi in the active state.

We further assume that the Lh channel taps are independent. The assumption is well

justified, especially for wireless fading channels that are rich in scattering [79–81]. The

distribution of the channel h is

P (h) =
∏

P (hi) =

||d||0∏
P (hi|active)

Lh−||d||0∏
P (hi|inactive) (5.22)

=

(
1√

2πσ21
exp

(
− h2i

2σ21

))||d||0
×

(
1√

2πσ20
exp

(
− h2i

2σ20

))Lh−||d||0

=

(
1√

2πσ21

)||d||0 (
1√

2πσ20

)Lh−||d||0

exp

(
−hTΓdh

2σ2

)
,

where Γd is a diagonal matrix that depends on the realization of the vector d.

Γd = Diag{{αi}}, αi =


γ0 =

σ2
0
σ2 , for di = 0

γ1 =
σ2
1
σ2 , for di = 1

, i = 0, . . . , Lh − 1. (5.23)
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Under this model, the channel is treated as a stochastic random vector at the receiver. The

matrix Γd describes the channel sparsity in the expression of the channel distribution. The

element αi on its diagonal shows whether a corresponding channel tap is active or inactive:

αi = γ1 indicates that the channel tap hi is active, and αi = γ0 indicates that hi is inactive.

We assume that the receiver only has knowledge of the variance of active and inactive taps,

σ20 and σ21. In order to implement the SA, a new form for the path metric must be derived.

5.3.2 Stack Algorithm for Unknown ISI Channels

In Section 4.1.2, we derived the path metric of the SA when the channel is known at the

receiver. We need to incorporate knowledge of the error control coding and distribution of

the channel modeled in (5.22) into the derivation of a new path metric. The probability

of a length-n sequence bn1 given the received sequence yrN1 and the code known at current

iteration k, C(k), is expressed as

P (bn1 |yrN1 , C(k)) =

∫
h
P (bn1 ,h|yrN1 , C(k)) dh (5.24)

=
P (bn1 )

P (yrN1 |C(k))

∫
h
P (yrN1 |bn1 ,h, C(k))P (h) dh.

We can eliminate the term P (yrN1 |C(k)), since it is equal for all paths, and the path metric

can be written as

m(bn1 ) = P (bn1 )

∫
h
P (yrN1 |bn1 ,h, C(k))P (h) dh. (5.25)

Similar work has been done for deriving the path metric for blind equalization of general

unknown ISI channels in [55]. To extend the algorithm to sparse channels, we take the

sparsity of the channel into consideration and find a closed-form result of the integral in

(5.25) using the channel model given in (5.22). To compute the term P (yrN1 |bn1 ,h, C(k)), we

use the same technique used to derive the metric for known channels with the assumptions
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that yrn1 is independent of yrNrn+1, and yrNrn+1 is independent of bn1 ,

P (yrN1 |bn1 ,h, C(k)) ≈ P (yrn1 |bn1 ,h, C(k))P (yrNrn+1|h) (5.26)

≈ P (yrn1 |bn1 ,h, C(k))
rN∏

i=rn+1

P (yi).

Substituting (5.26) into (5.25) yields the following path metric expression:

m(bn1 ) =

(
1

2
√

2πσ2

)rn( 1√
2π(σ2 + 1)

)r(N−n) rN∏
i=rn+1

exp

(
− y2i

2(σ2 + 1)

)
(5.27)

×
∫
h

rn∏
i=1

exp

(
− 1

2σ2
(yi − hTxii−L+1)

2

)
P (h) dh

= A(yi)

∫
h
exp

(
− 1

2σ2
(Rnyy[0]− 2hT rrnyx + hTRrnxxh)

)
P (h) dh,

where

A(yi) =

(
1

2
√

2πσ2

)rn( 1√
2π(σ2 + 1)

)r(N−n) rN∏
i=rn+1

exp

(
− y2i

2(σ2 + 1)

)
, (5.28)

Rrnyy [0] =
rn∑
i=1

y2i , (5.29)

rrnyx =

rn∑
i=1

yix
i
i−Lh+1, (5.30)

and

Rrnxx =

rn∑
i=1

(xii−Lh+1)(x
i
i−Lh+1)

T . (5.31)
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Substituting (5.22) into (5.27), we have

m(bn1 ) = A(yi)

∫
h
exp

(
− 1

2σ2
(Rrnyy [0]− 2hT rrnyx + hTRrnxxh)

)
(5.32)

×
∑
d

Lh−1∏
i=0

P (hi) dh

= A(yi)
∑
d

∫
h
exp

(
− 1

2σ2
(Rrnyy [0]− 2hT rrnyx + hTRrnxxh)

)

×
||d||0∏ 1√

2πσ21
exp

(
− h2i

2σ21

) Lh−||d||0∏ 1√
2πσ20

exp

(
− h2i

2σ20

)
dh.

A quadratic exponential form can be obtained as follows:

m(bn1 ) = A(yi)
∑
d

||d||0∏ 1√
2πσ21

Lh−||d||0∏ 1√
2πσ20

(5.33)

×
∫
h
exp

(
− 1

2σ2
(Rnyy[0]− 2hT rnyx + hT (Rnxx + Γd)h

)
dh.

The quadratic exponential term is integrable, resulting in the following expression:

m(bn1 ) = A(yi)
∑
d

||d||0∏ 1√
2πσ21

Lh−||d||0∏ 1√
2πσ20

(5.34)

×
∣∣∣∣Rrnxxσ2 +

Γd

σ20

∣∣∣∣−1/2 exp

(
− 1

2σ2
(Rrnyy [0]− 1

σ2
(rrnyx)T

(
Rrnxx
σ2

+
Γd

σ20

)−1
rrnyx)

)
.

Using the sparse channel model we derived, we are able to incorporate the prior information

of channel sparsity into the path metric of the SA. However, the path metric in (5.34)

is a summation of quadratic exponential terms for all possible realizations of the vector

d. Without simplification, we need to evaluate and sum 2Lh exponential terms, which is
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computationally impractical for channels with long delay spread. For a given sparse channel,

the sparsity vector d is just one out of the 2Lh possible binary vectors. Therefore, if the

channel sparsity can be determined, the path metric can be computed only with a unique

vector d. In order to achieve this, we propose an efficient method to detect the channel

sparsity based on the path metric derived in (5.34).

5.3.3 Channel Sparsity Detection Based on the Path Metric

In order to obtain the unique binary vector d corresponding to the sparse channel, we

propose a greedy algorithm employing a best-first strategy to find the active channel tap

indices. We first restructure the path metric expression for ease of representation:

m(bn1 ) = A(yi)

(
1√

2πσ21

)||d||0 (
1√

2πσ20

)Lh−||d||0

σrn (5.35)

× |Rrnxx + Γd|−1/2 exp

(
− 1

2σ2
Rrnyy [0]

)

× exp

(
1

2σ2
(rrnyx)T (Rrnxx + Γd)−1 rrnyx

)
.

= B(yi)

(
1√

2πσ21

)||d||0 (
1√

2πσ20

)Lh−||d||0

× |Rrnxx + Γd|−1/2 exp

(
1

2σ2
(rrnyx)T (Rrnxx + Γd)−1 rrnyx

)
,

where

B(yi) = σrnA(yi) exp

(
− 1

2σ2
Rrnyy [0]

)
, (5.36)

which is dependent only on the received signal yi. To better illustrate the proposed algo-

rithm, we write a step-by-step procedure as follows:

• Initialization. Let us consider a certain path of the tree which represents a length-n
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sequence bn1 . The algorithm is initialized with the assumption that all the channel

taps are inactive, e.g. d(0) = [0, 0, . . . , 0]. The corresponding path metric can be

computed as

m(bn1 )d(0) = B(yi)

(
1√

2πσ20

)Lh

(5.37)

× |Rrnxx + Γd(0) |−1/2 exp

(
1

2σ2
(rrnyx)T (Rrnxx + Γd(0))

−1 rrnyx

)

= B(yi)

(
1√

2πσ20

)Lh ∣∣∣R(d(0))
∣∣∣−1/2 exp

(
1

2σ2
(rrnyx)T

(
R(d(0))

)−1
rrnyx

)
,

where

R(d(0)) = Rrnxx + Γd(0) , (5.38)

and

Γd(0) = Diag{γ0}. (5.39)

The vector d(0) is assigned to d
(0)
∗ , where the vector d

(p)
∗ is used to store the optimal

vector obtained at the p-th iteration. A vector i∗ is defined to store optimal indices

of active channel taps at each iteration. We initialize that p = 0 and i∗ = {}.

• Step 1. Changing a single 0 element of the binary vector d
(p)
∗ to 1 generates a set of

Lh− p possible binary vectors, d
(p+1)
j , where j 6∈ i∗ ∈ {1, . . . , Lh} denotes that d

(p+1)
j

is identical to d
(p)
∗ except for the j-th element.

• Step 2. The path metric m(bn1 )
d
(p+1)
j

for each of the possible weight-(p + 1) vectors

is computed, and the vector that corresponds to the largest metric is assigned to the
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vector d
(p+1)
∗ , i.e., d

(p+1)
∗ = d

(p+1)
j∗ , where

j∗ = argmax
j

m(bn1 )
d
(p+1)
j

, j 6∈ i∗ ∈ {1, . . . , Lh}. (5.40)

• Step 3. We update the optimal index vector i∗ by including j∗, and increment p by 1:

i∗ = i∗ ∪ j∗, p = p+ 1. (5.41)

• Step 4. If all the active channel tap indices are located or a stop criterion is satisfied

(Due to the involvement of metric computations, the stop criterion will be explained

in details later), the iteration is terminated; otherwise, we go back to Step 1.

The final vector d
(L̂a)
∗ is the estimation of channel sparsity, where L̂a denotes the estimate

of the active channel length. L̂a = La if La is known at the receiver. The corresponding

metric m(bn1 )
d
(L̂a)
∗

will be the one of this path that can be used in SA to perform the

tree search. In the case that La is known, the total number of the metric computations

is 1 + (La + 1)(Lh − La
2 ), which is reduced dramatically compared to the original number

2Lh when computing (5.34). We will show that the number of metric computations can be

further reduced in the next section. An example of this process is shown in Fig. 5.4 for

a length-4 channel with 2 active taps, h = [h0, 0, h1, 0]. The red boxes show the optimal

sparsity vectors obtained at each iteration. Notice that the FGA process performs very

similarly to the SA, both relying on a tree representation. In the proposed FGA, a path of

the tree represents a possible binary vector d, and a similar best-first strategy is used to

select a path based on the path metric of the SA.

5.3.4 Efficient Metric Computation

As we can see in the proposed FGA, at each iteration a new path metric is computed which

involves performing the inverse of a matrix and computing its determinant. The total
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Figure 5.4: An example of channel sparsity estimation using the FGA for a length-4 channel
with 2 active taps, h = [h0, 0, h1, 0]. The red boxes show the optimal sparsity vectors
obtained at each iteration.

1 + (La + 1)(Lh − La
2 ) metric computations are still a heavy burden for the detector. By

exploiting the properties of matrices, we can further reduce the computational complexity

and accelerate the metric update.

In order to develop a general expression for efficient metric computation, let us consider

the optimal binary vector obtained at the (p−1)-th iteration, d
(p−1)
∗ . The matrix R(d

(p−1)
∗ )

in the path metric is computed as

R(d
(p−1)
∗ ) = Rrnxx + Γ

d
(p−1)
∗

. (5.42)

At the p-th iteration, a set of Lh− p vectors d
(p)
i is generated by turning just one 0 element

of vector d
(p−1)
∗ to 1. The vector d

(p)
i is identical to d

(p−1)
∗ except that the i-th element in
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d
(p)
i is 1. The matrix R(d

(p)
i ) is

R(d
(p)
i ) = Rrnxx + Γ

d
(p)
i

. (5.43)

It is obvious that the matrix R(d
(p)
i ) has only one element at position (i, i) on the diagonal

which is different from the matrix R(d
(p−1)
∗ ). Thus, by using the properties of matrix

inversion, the inverse and determinant of R(d
(p)
i ) can be easily obtained from the inverse

and determinant of R(d
(p−1)
∗ ). We assume that we already have the inverse and determinant

of R(d
(p−1)
∗ ), denoted by V = R−1(d

(p−1)
∗ ) and U =

∣∣∣R(d
(p−1)
∗ )

∣∣∣. Thus, R(d
(p)
i ) can be

expressed as

R(d
(p)
i ) = R(d

(p−1)
∗ ) + βuuT , (5.44)

where β = γ1 − γ0 and u = [0, . . . , 1, . . . , 0]T . The index of the 1 element in vector u is i.

Applying the Sherman-Morrison formula [82], the inverse of R(d
(p)
i ) can be expressed as

R−1(d
(p)
i ) = (R(d

(p−1)
∗ ) + βuuT )−1 (5.45)

= R−1(d
(p−1)
∗ )− βR−1(d(p−1))uuTR−1(d

(p−1)
∗ )

1 + βuTR−1(d
(p−1)
∗ )u

= V − βV uuTV

1 + βuTV u

= V − β

1 + βV (j, j)
V (:, j)V (j, :).
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The determinant of R(d
(p)
i ) can be computed as

∣∣∣R(d
(p)
i )
∣∣∣ =

∣∣∣R(d
(p−1)
∗ ) + βuuT

∣∣∣ (5.46)

= (1 + βuTR−1(d
(p−1)
∗ )u)

∣∣∣R(d
(p−1)
∗ )

∣∣∣
= (1 + βV (j, j))U.

Combining equations (5.45) and (5.46), the path metric for vector d
(p)
i can be computed as

m(bn1 )
d
(p)
i

= B(yi)

(
1√

2πσ21

)||d(p)
i ||0 (

1√
2πσ20

)Lh−||d
(p)
i ||0

(5.47)

×[(1 + βV (j, j))U ]−1/2 exp

(
1

2σ2
(rrnyx)T

(
V − β

1 + βV (j, j)
V (:, j)V (j, :)

)
rrnyx

)

= m(bn1 )
d
(p−1)
∗

(
1√

2πσ21

)(√
2πσ20

)
(1 + βV (j, j))−1/2

× exp

(
− β

2(1 + βV (j, j))σ2
(rrnyx)TV (:, j)V (j, :)rrnyx

)

= m(bn1 )
d
(p−1)
∗

σ0

σ1
√
θ

exp

(
− β

2θσ2
(rrnyx)TV (:, j)V (j, :)rrnyx

)
,

where θ = 1+βV (j, j). From the derivation above, we can see that the path metric for vector

d
(p)
i can be computed via a simple update from the metric for d

(p−1)
∗ . The computational

cost for the metric update is σ0
σ1
√
θ

exp
(
− β

2θσ2 (rrnyx)TV (:, j)V (j, :)rrnyx

)
, which is dominated

by the vector multiplications. The computations of the inverse and determinant of matrices

are no longer needed at every iteration, but performed only once to obtain R−1(d(0)) and∣∣R(d(0))
∣∣ when the initial metric m(bn1 )d(0) is computed.
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5.3.5 Stopping Criterion

The proposed FGA described in Section 5.3.3 relies on searching for active channel indices

that terminates when all the active indices have been identified. In practical communication

systems, the number of active taps, La, is usually an unknown parameter. A stopping

criterion must be implemented to terminate the iterative sparsity detection process without

knowledge of La. In order to achieve this, let us compare the path metrics we obtained at

the La-th and (La + 1)-th iterations, and find out the stopping criterion from the difference

between them.

At the La-th iteration, the optimal sparse vector with La non-zero elements is d
(La)
∗ ,

and the corresponding path metric can be written as

m(bn1 )
d
(La)
∗

= A(yi)σ
rn(

1√
2πσ21

)La(
1√

2πσ20
)Lh−La

∣∣∣Rrnxx + Γ
d
(La)
∗

∣∣∣−1/2 (5.48)

× exp

(
− 1

2σ2
(Rrnyy [0]− (rrnyx)T

(
Rrnxx + Γ

d
(La)
∗

)−1
rrnyx)

)
.

In the metric, the term
(
Rrnxx + Γ

d
(La)
∗

)−1
rrnyx in the exponential function takes a form that is

very similar to the LS estimation of the channel, ĥ. Thus, Rrnyy [0]−(rrnyx)T
(
Rrnxx + Γ

d
(La)
∗

)−1
rrnyx

measures the error e between the received signal yrn1 and the noise-free output predicted

by the channel estimate ĥ and assumed bit sequence xrn1 .

At the (La+1)-th iteration, the metric m(bn1 )
d
(La+1)
∗

associated with the optimal sparse

vector d
(La+1)
∗ is updated from the metric m(bn1 )

d
(La)
∗

according to

m(bn1 )
d
(La+1)
∗

= m(bn1 )
d
(La)
∗

σ0

σ1
√
θ

exp

(
− β

2θσ2
(rrnyx)TV (:, j∗)V (j∗, :)rrnyx

)
(5.49)

= m(bn1 )
d
(La)
∗

σ0

σ1
√
θ

exp

(
β

2θσ2
∆La+1

)
,
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where j∗ denotes the index of the La-th estimated active channel tap. From (5.49), we

observe that ∆La+1 denotes the contribution of the (La + 1)-th estimated active tap to

the error e. Assuming that the La active channel taps are correctly located at the La-

th iteration, no more active taps are contributing to metric computation of m(bn1 )
d
(La+1)
∗

.

Therefore, the corresponding ∆La+1 will depend only on the additive noise. With this

property, we can establish a stopping criterion by choosing a sufficiently small constant ε.

If at the p-th iteration,

|∆p| ≤ ε, (5.50)

the iteration is terminated. The number of active channel taps can be estimated as L̂a =

p − 1. The estimated sparse vector is d
(p−1)
∗ . In the case that the algorithm estimates

La correctly, we observe that one more round of iterations for p = La + 1 is implemented

involving Lh − La metric update, which will not add much computational complexity to

the algorithm. When the noise level is high, the algorithm is more likely to estimate La

incorrectly. However, since the channel sparsity is estimated using path metrics that take

noise into consideration, sparsity estimation is still improved over that of the conventional

MP based methods.

The proposed FGA is summarized in a flowchart shown in Fig. 5.5. Using the FGA, the

path metric is computed once the sparse vector is identified and can be used to search the

tree in the SA. The combination of the SA with FGA to achieve blind sequential detection

is similar to SA-MP/OMP. A flowchart of the SA-FGA algorithm is shown in Fig. 5.6.

5.3.6 Computational Efficiency of Blind Sequential Detection Using the

Fast Greedy Algorithm

To illustrate the computational efficiency of the proposed SA-FGA we compare it to SA-

MP described in Section 5.2.2. (We consider only SA-MP because it is more efficient than

SA-OMP.) Since both methods operate on a possible sequence represented by a path of

the tree, we take the complexity of computing the metric for a path with length n as the
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Figure 5.5: A flow chart representation of FGA to estimate the channel sparsity and update
the metric.
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Figure 5.6: A flow chart representation of the SA-FGA algorithm.
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comparison criterion. In order to compute the metric for a certain path, SA-MP detects

the channel sparsity first and computes the metric using the estimated channel sparsity,

while SA-FGA computes the initial metric for d(0) = [0, . . . , 0] and updates the metric with

the sparsity detection. The complexity of the metric computation for SA-MP using the

estimated channel sparsity and the initial metric computation for SA-FGA are the same.

Therefore, to compare the complexity of SA-MP and SA-FGA, we only need to compare

their complexity in the channel sparsity detection. Their complexity depends on estimates

of the active channel length, L̂a, which is affected by the channel itself and by the noise

level.

For a path with length n, SA-MP constructs an n×Lh signal matrix X(n) using (5.16).

At the p-th iteration, a length-n residual vector bp is projected onto the direction of each

column of X(n), ai, i = 1, . . . , Lh. The projection is implemented by computing the inner

product between two length-n vectors, bp and ai. For this iteration, Lh inner product

computations are performed. Furthermore, Lh norm computations of ai must be per-

formed to scale the projection shown in (5.5). The norm of ai is equivalent to the inner

product of ai and itself. Therefore, after the estimated active channel length L̂
(SA-MP)
a

is obtained, L̂
(SA-MP)
a iterations must be performed to estimate the sparsity. We need to

perform L̂
(SA-MP)
a Lh + Lh = (L̂

(SA-MP)
a + 1)Lh inner product computations between two

length-n vectors.

For a length-n path, at each iteration, the SA-FGA computes the metric update σ0
σ1
√
θ

exp
(
− β

2θσ2 (rnyx)TV (:, j)V (j, :)rnyx

)
. We do not consider the multiplications of the constants

σ0
σ1
√
θ

and β
2θσ2 , since they are just a one-time operation. Thus, the complexity for each

metric update is the inner product of two length-n vectors, V (j, :) and rnyx. To obtain the

final metric, the metric update is computed (L̂
(SA-FGA)
a + 1)(Lh − L̂

(SA-FGA)
a

2 ) times, and we

need to perform (L̂
(SA-FGA)
a + 1)(Lh − L̂

(SA-FGA)
a

2 ) inner product computations between two

length-n vectors. The complexity comparison between SA-MP and SA-FGA is summarized
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Table 5.1: Computational complexity of SA-MP and SA-FGA in terms of the inner product
computations for channel sparsity detection at each path of the tree.

Complexity for channel sparsity detection at each path

inner product computations

SA-MP (L̂
(SA-MP)
a + 1)Lh

SA-FGA (L̂
(SA-FGA)
a + 1)(Lh − L̂

(SA-FGA)
a

2 )

in Table 5.1.

In the case that La is known at the receiver, both methods will terminate their iterations

at the La-th loop, L̂(SA-MP) = L̂(SA-FGA) = La. Comparing the complexity we derived, at

each path of the tree, SA-FGA performs La(La+1)
2 fewer inner product computations than

SA-MP. While La(La+1)
2 may not be a large number, the computational savings occurs

along each path. In the application of the SA, a large number of paths will be extended,

especially when SNR is low. The total complexity reduction achieved by the SA-FGA will

be significant.

5.3.7 Simulation Results

Simulation Results for Gaussian Channel Models

To illustrate the performance of the proposed SA-FGA, we compare it to SA-MP and SA-

OMP. Simulations have been conducted for a length-Lh = 10 sparse channel with La = 3

active taps. Information bits are encoded using a rate R = 1
2 convolutional code with the

generator polynomials

g0 = [1, 1, 1], (5.51)

g1 = [1, 1, 0].
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The initial state of the register is set to [0, 0]. 10000 blocks of 100 data bits are passed over

the sparse channel. For each data block, the active channel taps ha = [h0, h1, h2] are drawn

from a Gaussian distribution with zero mean and variance σ21 = 1, and the inactive taps are

drawn from a Gaussian distribution with zero mean and variance σ20 = 0.01. The channel

energy is normalized to 1. The locations of active and inactive channel taps are randomly

generated for each block. For the three methods, the stack size of the SA is set to 105 to

make erasures rare. We assume that the channel and number of active channel taps La are

unknown.

A performance comparison of the three methods is shown in Fig. 5.7. SA-OMP has

better performance than SA-MP due to the introduction of the orthogonalization process.

The proposed SA-FGA outperforms both SA-MP and SA-OMP, especially when SNR is

low. The performance gap occurs because MP/OMP does not take the channel noise into

consideration and therefore is more likely to incorrectly estimate the sparse channel. SA-

FGA, estimating the channel sparsity based on the path metric, is more robust in a noisy

environment. As SNR increases, MP/OMP becomes more accurate and performs more

similarly to SA-FGA.

In order to illustrate the efficiency of the SA-FGA, we evaluate the complexity of SA-

MP and SA-FGA empirically by finding the average number of paths extended for each

block. Since we have computed the number of inner product computations for each path

in previous section, the total number of inner product computations for each sequential

detection method can be obtained. The complexity comparison for various SNR values is

shown in Table 5.2.

The results show that SA-FGA extends fewer paths than SA-MP, especially when SNR

is low, due to the robustness of the SA-FGA in channel sparsity detection given noisy

observations. SA-FGA performs La(La+1)
2 = 3×4

2 = 6 fewer inner product computations

than SA-MP at each path, which results in a significant overall reduction in complexity. As

we can see from Table 5.2, for 5 dB, SA-FGA performs about 3× 105 fewer inner product

computations than SA-MP, which is an approximately a 75% reduction in complexity.
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Figure 5.7: Performance comparison between SA-MP, SA-OMP, and SA-FGA using a
length-100 sequence for a 10-tap channel with 3 active taps.

Table 5.2: Computational complexity comparison between SA-MP and SA-FGA for length-
Lh = 10 sparse channels with La = 3 active taps.

Complexity Comparison

SA-MP SA-FGA

Paths Extended Inner Product
Computations

Paths Extended Inner Product
Computations

5dB 10942 437680 4096 139264

7dB 5208 208320 3122 106148

9dB 3748 149920 2490 84660

11dB 1350 54000 864 29376
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Simulation Results for Realistic Underwater Acoustic Channels

In order to evaluate the performance of the SA-FGA in a more realistic environment, we

apply it to sparse channels encountered in underwater acoustic communication.

Numerous experiments have been conducted to estimate underwater acoustic channels

[83–86]. The channels estimated are reported to have sparse impulse responses in all ex-

periments. We take the channels estimated in a typical experiment, GLINT’08 [86], as

an example and examine the results when the SA-FGA is applied to estimate the data

sequence transmitted over those channels. The GLINT’08 experiment took place in the

Mediterranean, south of the island Elba, Italy, in July 2008. The channels estimated in the

experiment have a delay spread of approximately 20 ms, which is equivalent to about 140

channel taps in the discrete-time system. The active channel taps are distributed in clus-

ters, and four major clusters can be observed in the estimated channels. Since the data of

the GLINT’08 experiment is not accessible to the public, we must approximate the channel

responses. Based on the description of GLINT’08 and the results shown in [86], we are able

to generate similar sparse channels to the underwater acoustic channels estimated in the

experiment.

In order to mimic the channels in GLINT’08, we construct a length-140 channel with

15 active taps. Information bits are encoded using a rate R = 1
2 convolutional code with

the same generator polynomials in as given in (5.51). The initial state of the register is

set to [0, 0]. 5000 blocks of 200 data bits are passed over the sparse channels. For each

data block, two different distributions are used to generate the active and inactive channel

taps. To test the proposed method for a more realistic channel model, the 15 active taps

are drawn from a Rayleigh distribution with parameter σ1 = 1, e.g., ha ∼ Rayleigh(σ1) (In

[87], it is shown that underwater acoustic channels follow Rayleigh distributions in many

measurements.) The inactive taps are drawn from a Gaussian distribution with zero mean

and variance σ20 = 0.01. The 15 active taps are grouped into four clusters. The locations

of the clusters are randomly generated for each block. The channel energy is normalized
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to 1. Two examples of the generated channels are shown in Fig. 5.8. We assume that the

channel and number of active channel taps La are unknown.

A performance comparison among SA-MP, SA-OMP, and SA-FGA is shown in Fig.

5.9. The result coincides with the one we obtained for the mixed Gaussian channel model.

SA-FGA has better performance than SA-OMP and SA-MP, especially in low SNR. The

performance of SA-MP and SA-OMP converges to that of the SA-FGA as SNR increases,

due to the fact that MP based methods estimate the channel sparsity better as SNR in-

creases.
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Figure 5.8: Two example channels generated similar to the GLINT’08 experiment; the
length-140 channels are sparse with 15 active taps.
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Figure 5.9: Performance comparison between SA-MP, SA-OMP, and SA-FGA for sparse
channels generated according to the GLINT’08 experiment.
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Chapter 6: Conclusions and Future Research

In this work, we have conducted research on developing computationally efficient equaliza-

tion methods on both a symbol-by-symbol and sequential detection basis. We considered

various communications applications and proposed equalization methods with a balance

between performance and complexity for specific applications.

In symbol-by-symbol schemes, we concentrated on the MAE equalizer and sought a

more efficient way to determine the MAE equalizer coefficients for application in practical

communication systems. The MAE equalizer is very attractive due to its superior perfor-

mance at high SNR, but the high design complexity limits its application for channels with

large delay spreads. We proposed a geometrically-inspired algorithm for computationally

efficient design of the MAE equalizer. The proposed method exploits the properties of the

constellation structure of a linear channel. Rather than performing computationally inten-

sive quadratic programming, the decision hyperplane of the equalizer is determined directly

from the channel coefficients. The equalizer design complexity is reduced to O(N logN),

where N = 2Lh+Lw−2 is determined by the length of the channel and equalizer. Empirical

complexity analysis reveals the significant computational savings achieved by the geometric

approach. The new approach makes the MAE equalizer design practical for channels with

longer delay spreads.

We also considered the scenario that no adequate training sequence is available in a

time-varying communication system. The training sequence is only transmitted once, which

enables us to obtain only an initial estimate of the channel. We proposed a pre-filtering

based technique for extending the asymptotically optimal MAE equalizer to applications

with time-varying channels. The MAE equalizer is preceded by a linear filter that is designed

to track the variation of the noise-free signal constellation generated by the time-varying

channel and map it to the constellation of a fixed initial channel. Since the MAE equalizer

135



must be designed only once (for the initial channel), the runtime complexity of the adaptive

MAE equalizer is governed by the lower complexity MMSE or LMS operations. Simulation

results show that the adaptive MAE equalizer outperforms a standard MMSE equalizer by

as much as 4 dB in high SNR with only a one-time additional complexity cost, e.g. the

initial design of the MAE detector.

In sequential detection schemes, we focused on developing SA-based sequential detection

methods for detecting data transmitted over sparse ISI channels. We first considered the

case that the sparse channel can be determined via channel estimation techniques and is

known at the receiver. By analyzing the characteristic of the sparse channel, we found

that the non-active channel taps lead to repetitive computation of the same path metric

when the conventional SA is used. To avoid these redundant computations, we proposed a

multiple tree algorithm to replace the single-tree SA. By constructing and searching multiple

trees, each of which is used to estimate a subset of the transmitted symbols, the proposed

MTA reduces detection complexity by eliminating redundant paths with the same likelihood

metrics. Both hard information and soft information are exchanged among subtrees. Their

quality and impact on the detector performance are compared. Simulation results show that

the MTA can achieve significant complexity reduction relative to competing trellis-based

schemes for moderate to high SNR.

Finally, the scenario in which no training sequence is available in the system was con-

sidered. In this case, the transmitted sequence must be detected blindly. We presented a

Gaussian mixture model to describe sparse ISI channels and developed a novel sequential

detection method. A fast greedy algorithm was proposed to blindly detect the channel

sparsity. The estimated sparsity was then used to compute the path metrics of the SA,

which guide us in the search of a tree. The fast greedy algorithm and SA were combined to

achieve blind sequential detection. The simulation results show that the proposed method

not only reduces the computational complexity compared to the conventional methods using

matching pursuit, but also provides superior performance, especially when SNR is low.
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6.1 Future Research

In symbol-by-symbol schemes, based on the promising performance observed thus far, the

adaptive MAE equalizer warrants further investigation. When the pre-filter technique is

applied, an analysis of the range of perturbation of the time-varying channel can be con-

ducted. When the channel changes dramatically, mapping the resulting constellation back

to a fixed structure will become more difficult, and even impossible in scenarios in which the

two convex hulls overlap. Hence, the pre-filter based adaptive strategy is likely best used for

moderately time-varying channels. We can also explore how an adaptive MAE equalizer can

be designed using the proposed geometric method. For a time-varying channel, the decision

hyperplane can be determined adaptively by tracking the corresponding channel vectors,

since the relationship between channel vectors and decision hyperplane remains the same.

A target application for the proposed technique is intersymbol interference mitigation in

shallow water acoustic communications, where time-varying reflection of the transmitted

signal from the moving ocean surface and other reflectors (e.g. fish) along with platform

motion results in rapidly fluctuating multipath arrivals from the transmitter to the receiver.

An additional future direction is extending the algorithm from binary signaling to an M-

PAM scheme. In this case, more sophisticated geometric relationships need to be derived

among the multiple convex hulls.

In sequential detection schemes, the MTA can be further extended. In the current

version of the MTA, the hard information and soft information exchanged among subtrees

are only used to assist in the computation of the subtree metrics. We can seek a way

to feed the hard and soft estimates to the subtrees to refine our estimation akin to the

iterative process in turbo equalization. The refined estimation at each state will increase

the likelihood that each subtree follows the correct path and hence improve the performance

of the detector. For the case that no training sequence is available to estimate the channel,

we can consider evaluating the complexity and performance of SA-FGA when the sparse

channel is described by models other than the Gaussian model. Furthermore, with the

high efficiency of the MTA, we can consider applying the multiple tree structure to the
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blind sequential detection method using matching pursuit and the proposed fast greedy

algorithm. The sparsity detection is performed first at each state of the tree search. One

difficulty is that for each path of the tree, the estimated sparsity of the channel might be

different. Thus, a strategy must be found to determine to which subtree the hard and soft

information is transferred, based on different sparsity estimates.
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Appendix A: Appendix

For the Lw = 2 scenario, the properties of 2-dimensional channel vectors gi have been well

studied in [38] to blindly identify the communication channel. For the application of the

MAE equalizer, we do not want to restrict Lw to 2 but instead wish to consider MAE

equalizers of arbitrary length. Hence, we need to geometrically analyze the constellation

sets for an arbitrary Lw-dimensional space. Assume that no taps of the linear channel h

are equal to 0; this assumption guarantees that no pair of vectors g0, g1, . . . , gLh+Lw−2 are

parallel to each other. The theorems below are proved for the case in which CH(C
(+)
d ) and

CH(C
(−)
d ) do not overlap. In the case of overlap, a reduced convex hulls method [41] or a

decision feedback equalizer structure [20] can be applied to separate the two convex hulls.

1. Proof of Theorem 1. Consider an Lw-D CH(C
(+)
d ). There is an Lw-D support hyper-

plane H such that the edge E falls on H and all the vertices of CH(C
(+)
d ) other than the

endpoints p1, p2 of E are on the right side of H. Thus, we have

uT p1 +Q = 0, (A.1)

uT p2 +Q = 0, (A.2)

uT pi +Q > 0, ∀pi 6= p1, p2, pi ∈ C(+)
d , (A.3)

where u is the normal vector of the hyperplane H, and Q is the offset. In Lw-D space,

parallel lines are defined as lines that do not intersect and are located in the same plane

[88]. Let L(gi) denote the line on which the channel vector gi lies. To prove Theorem

1, we can make a contradictory assumption that all lines of channel vectors L(gi), i ∈

{0, 1, . . . , d − 1, d + 1, . . . , Lh + Lw − 1}, will intersect with the line of edge E, e.g. L(E).

This means no L(gi) will lie on the hyperplane that is parallel to H, i.e. uTgi 6= 0,
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i ∈ {0, 1, . . . , d − 1, d + 1, . . . , Lh + Lw − 1}. The proof given in appendix A of [38] shows

that there is at least one gi satisfying uTgi = 0 for the endpoints p1 = gd +
∑

i 6=d gix
(1)
k−i

and p2 = gd +
∑

j 6=d gjx
(2)
k−j , where x

(1)
i = x

(2)
j for i 6= j and x

(1)
i = −x(2)j for i = j. This

is a contradiction to the assumption. Therefore, at least one of the channel vectors gi is

on the hyperplane parallel to H. We still need to prove that the edge E and the channel

vector gi are on the same plane. With endpoints p1 and p2, we have

E = p2 − p1 (A.4)

= gd +
∑
i 6=d

gix
(1)
k−i − (gd +

∑
j 6=d

gjx
(2)
k−j)

=
∑

gi(x
(1)
k−i − x

(2)
k−j) = 2gi, i 6= d.

The edge E is an extension of the channel vector gi. The two vectors are always on the

same plane. Thus we can conclude that the edge E in Lw-D space is always parallel to one

of the channel vectors with length ||E|| = 2||gi||, i 6= d.

2. Proof of Theorem 2. The constellation point pi ∈ C(+)
d is a binary combination of the

channel vectors gi, i 6= d, i.e., pi = gd +
∑

j 6=d gjx
(i)
k−j . Since all possible values of x

(i)
k are

included, the point p̄i = gd−
∑

j 6=d gjx
(i)
k−j , the symmetric point of pi with respect to point

P (gd), also belongs to C
(+)
d . Thus, the constellation points in C

(+)
d are symmetric with

respect to the point P (gd). To prove the symmetry of the convex hull, let us consider a

facet of CH(C
(+)
d ) defined by m endpoints pi, i = 1, . . . ,m, located on a Lw-D hyperplane

H. Thus, we have

uT pi +Q = 0, i ∈ {1, . . . ,m}, pi ∈ CH(C
(+)
d ) (A.5)
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The points other than the endpoints in C
(+)
d are on one side of the hyperplane H,

uT pi +Q > 0, ∀i 6∈ {1, . . . ,m}, pi ∈ CH(C
(+)
d ) (A.6)

Then defining the normal vector ū = −u and the offset Q̄ = Q+ 2gd, we can write

ūT p̄i + Q̄ = 0, i ∈ {1, . . . ,m}, p̄i ∈ CH(C
(+)
d ) (A.7)

ūT p̄i + Q̄ > 0, ∀i 6∈ {1, . . . ,m}, p̄i ∈ CH(C
(+)
d ) (A.8)

From the equation above, we can see that the hyperplane on which all p̄i = gd − pi lie is

a support hyperplane and is parallel to H. Thus, the convex hull CH(C
(+)
d ) is symmetric

with respect to the point P (gd), and the facets of the convex hull occur in parallel pairs.

3. Proof of Theorem 3. Denote one of the (Lw − 1)-facets of CH(C
(+)
d ) by F , and let F

be determined by Lw vertices of the convex hull. These Lw vertices define Lw edges of the

facet F . The normal vector u of F can be obtained by performing the cross product of

Lw − 1 of the Lw edges [89].

u =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . eLw−1

E
(1)
1 E

(1)
2 . . . E

(1)
Lw−1

...
...

...
...

E
(Lw−1)
1 E

(Lw−1)
2 . . . E

(Lw−1)
Lw−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A.9)

where ei is the standard basis vector and E
(i)
j denotes the j-th dimension of the i-th edge

vector, i, j = 1, . . . , Lw − 1. The normal vector u is perpendicular to the hyperplane F ,

u ⊥ F. (A.10)
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From Theorem 1, there will be Lw− 1 channel vectors parallel to the Lw edges of the facet.

Thus, the normal vector u is also perpendicular to the hyperplane T constructed by these

Lw − 1 of Lh + Lw − 2 channel vectors.

u ⊥ F, u ⊥ T. (A.11)

As F and T are perpendicular to a same vector, F and T are parallel to each other,

F ‖ T. (A.12)

4. Proof of Theorem 4. Let us make a contradictory assumption of Theorem 4 that the

minimum distance point v+ is located on an m-facet, where 0 ≤ m ≤ Lw − 2. In the case

of separate sub-constellations, for a linear channel and an Lw-tap MAE equalizer, the ith

dimension of the constellation C
(+)
d and C

(−)
d denoted by r

(+)
k−i and r

(−)
k−i respectively, will

be located on opposite sides of the axis for m < i < Lw − 1. In other words, if r
(+)
k−i > 0,

then r
(−)
k−i < 0, or if r

(+)
k−i < 0, then r

(−)
k−i > 0. Consider C

(+)
d . We can write r

(+)
k−i as binary

combinations of channel taps,

r
(+)
k−i =

Lh∑
j=0

hjxk−j−i


= hTxk−i > 0, if r

(−)
k−i < 0

= hTxk−i < 0, if r
(−)
k−i > 0

. (A.13)

Because the constellations include all the combinations of xk, in the case of the ith and nth

dimension of the constellations, r
(+)
k−i > 0 and r

(+)
k−n > 0, i 6= n, we can find a contradiction

that r
(+)
k−i = hd −

∑
j 6=d hj > 0 and r

(+)
k−n = −hd +

∑
j 6=d hj > 0 need to be satisfied at same

time when xk−i = [−1, . . . ,−1, 1,−1, . . . ,−1] and xk−n = [1, . . . , 1,−1, 1, . . . , 1], where d
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is decision delay. The similar contradictions can be found for the case of r
(+)
k−i > 0 and

r
(+)
k−n < 0, r

(+)
k−i < 0 and r

(+)
k−n > 0, and r

(+)
k−i < 0 and r

(+)
k−n < 0. The contradictions indicate

that the assumption we made at the beginning can not be established. Therefore, v+ is

always located on (Lw − 1)-facet of C
(+)
d .
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Appendix B: Appendix

The structure of an MAE-DFE is specified by the FFF length Lc, FBF length Lb, and de-

cision delay d. Lc determines the dimensionality of the constellation space. Lb reduces the

number of constellation points used to compute the decision hyperplane of the MAE-DFE.

The constellation points belonging to each convex hull vary with the chosen d. Conse-

quently, these three parameters determine the minimum distance between convex hulls,

which measures the performance of the MAE-DFE. In this appendix, we present practical

rules to determine maximum effective lengths of the FFF and FBF in the design of the

MAE-DFE given the channel characteristics.

It has been shown in [45] that each feedback filter tap eliminates one postcursor ISI

term. Given Lc, Lh and d, the maximum effective FBF length is defined as

Lb = Lc + Lh − d− 2. (B.1)

For Lb > Lc + Lh − d− 2, the coefficients of FBF will be 0, implying that no performance

enhancement is achieved.

We will show that Lc = d+1 is the maximum effective FFF length if the decision delay d

is given. To prove this, we assume that Lc > d+1. A FBF with length Lb = Lc+Lh−d−2

is used, and the feedback vector x̂fbk−d = [xk−d−1, . . . , xk−d−Lb
] is assumed to be correct.

There are 2Lh+Lc−2 constellation points in the subconstellation C
(+)
d,fb:

r
(i)
k = [r

(i)
k , r

(i)
k−1, . . . , r

(i)
k−Lc+1] (B.2)

= [r
(i)
k,d+1, r

(i)
k,Lc−d+1], 1 ≤ i ≤ 2Lh+Lc−2

where r
(i)
k denotes the ith point of C

(+)
d,fb. The vector r

(i)
k,d+1 = [r

(i)
k , . . . , r

(i)
k−d] and r

(i)
k,Lc−d+1 =
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[r
(i)
k−d−1, . . . , r

(i)
k−Lc−1]. For r

(i)
k,Lc−d+1, each coordinate is given as

r
(i)
k−d−l =

Lh−1∑
j=0

hixk−d−l−j , 1 ≤ l ≤ Lc − 1. (B.3)

Thus, the r
(i)
k,Lc−d+1 is a deterministic vector given the feedback x̂fbk−d, and it becomes a

constant vector for all constellation points r
(i)
k , 1 ≤ i ≤ 2Lh+Lc−2. Let us denote this vector

as rk,Lc−d+1. In order to obtain the decision hyperplane of the MAE-DFE, a search for the

minimum distance vector v+ on the convex hull CH(C
(+)
d,fb) is required:

λopt = argmin
λ

||
2Lh+Lc−2∑

i=1

λir
(i)
k || (B.4)

s.t.
∑
i

λi = 1, 0 ≤ λi ≤ 1

= argmin
λ

(
||
2Lh+Lc−2∑

i=1

λir
(i)
k,d+1||+ ||

2Lh+Lc−2∑
i=1

λir
(i)
k,Lc−d+1||

)

s.t.
∑
i

λi = 1, 0 ≤ λi ≤ 1

= argmin
λ

|| 2Lh+Lc−2∑
i=1

λir
(i)
k,d+1||+ ||rk,Lc−d+1||


s.t.

∑
i

λi = 1, 0 ≤ λi ≤ 1

= argmin
λ

||
2Lh+Lc−2∑

i=1

λir
(i)
k,d+1||

s.t.
∑
i

λi = 1, 0 ≤ λi ≤ 1,
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where the vector λ = [λ1, . . . , λ2Lh+Lc−2 ] is the weighting parameter vector used to define

points on CH(C
(+)
d,fb). The derivation of (B.4) shows that λopt depends only on the first

d + 1 dimensions of the constellation points, r
(i)
k,d+1, 1 ≤ i ≤ 2Lh+Lc−2. Therefore, λopt for

an MAE-DFE with a length-Lc = d+ 1 FFF is same as for an MAE-DFE with Lc > d+ 1.

Given the decision delay d, it is sufficient to employ a FFF with length d+ 1 in the design

of the MAE-DFE.

Substituting the result of Lc = d+ 1 into (B.1), we can obtain the corresponding FBF

length:

Lb = Lh − 1. (B.5)

Hence, the maximum effective FBF length is equal to the memory of the given channel.

It is straightforward to see that when Lb = Lh − 1, the FBF cancels all the postcursor

ISI introduced by the previously detected symbols. All potential performance improvement

gained by using decision feedback is achieved. From the constellation space, we can see

that when Lb = Lh − 1 and Lc = d+ 1, the FBF feeds back all symbols prior to xk−d, e.g.,

x̂fbk−d = [xk−d−1, . . . , xk−d−Lb
]. The number of constellation points in each subconstellation

of the MAE-DFE is 2d+1, which cannot be further reduced.
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[17] R. Lupas and S. Verdú, “Linear multi-user detectors for synchronous code-division
multiple-access channels,” IEEE Transactions on Information Theory, vol. 35, no. 1,
January 1989.
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