

Automated Policy Compliance and Change Detection Managed Service in Data Networks

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Saeed M. Agbariah

Master of Science

George Mason University, 2007

Bachelor of Science

University of Phoenix, 2005

Director: Bernd-Peter Paris, Professor

Department of Electrical and Computer Engineering

Spring Semester 2015

George Mason University

Fairfax, VA

ii

This work is licensed under a creative commons

attribution-noderivs 3.0 unported license.

iii

DEDICATION

This is dedicated to my father and my late mother for their endless love, support and

encouragement, to my brother Ahmed who bought me my first Commodore64, to my

wife and to my wonderful children. Without their help and understanding, I could never

have finished my graduate studies.

iv

ACKNOWLEDGEMENTS

I would like to thank my dissertation director, Dr. Bernd-Peter Paris, for his

encouragement and support which have helped me continue moving forward through this

long process, and for the opportunity to work under his supervision. A special thanks to

Dr. Jeremy Allnutt who believed in me and pushed me to achieve this goal.

I would also like to thank the members of my committee, Dr. Brian Mark, Dr. Duminda

Wijesekera, Dr. Shyam Prakash Pandula for their guidance throughout my Ph.D. studies.

Last but not least, I would like to thank OPNET Technologies for their inspiring

NetDoctor product, and the many people who have supported and motivated me during

my research, especially with the C++ programing.

v

TABLE OF CONTENTS

Page

List of Tables ... ix

List of Figures ... x

List of Abbreviations and Symbols.. xiii

Abstract ... xv

Chapter 1: Introduction ... 1

1.1 Motivation and Problem Summary .. 1

1.2 Research Summary ... 2

1.3 Overview of Contributions ... 3

1.4 Scope and Limitations .. 4

1.5 Proposal Organization .. 5

Chapter 2: Background and Related Work ... 6

2.1 The Evolution of Network Management ... 6

2.1.1 Fault .. 8

2.1.2 Configuration .. 9

2.1.3 Accounting.. 10

2.1.4 Performance .. 10

2.1.5 Security ... 11

2.1.6 Consideration of the FCAPS Model ... 12

2.2 Simple Network Management Protocol (SNMP) ... 13

2.3 Change Management ... 16

2.4 Policy-Based Network Management ... 20

2.5 Network Configuration Protocol (NETCONF) ... 23

2.6 Configuration Auditing and Policy Compliance ... 26

Chapter 3: Contributions ... 32

3.1 Policy Exchange and Management ... 34

3.1.1 Policy Client and Policy Decision Control Communication 36

vi

3.2 Design Considerations... 42

3.2.1 Masquerading ... 43

3.2.2 Communication Interruptions ... 44

3.2.3 Malicious Interruption .. 45

3.2.4 New Policy Push during Configuration Change ... 46

3.2.5 Periodic Check Detects New Policy during Configuration 47

3.3 Common Policy Language .. 47

3.3.1 Configuration Templates .. 48

3.3.2 One- and Two-Phase Commit Models ... 51

3.4 Common Policy Language Format ... 52

3.4.1 Mandatory Sections .. 52

3.4.2 Section Delimiters and Predefined Keywords .. 54

3.4.3 Conditional Commands .. 58

3.4.4 If-Then .. 60

3.4.5 Variables and Parameters ... 61

3.5 Summary ... 66

Chapter 4: Implementing and Testing Policy Exchange and Management 68

4.1 Motivation and Problem Summary ... 69

4.2 System Requirements and Installation .. 71

4.2.1 Server .. 72

4.2.2 Client .. 73

4.2.3 Policy Exchange Protocol ... 76

4.2.4 Message Types and Exchange .. 76

4.2.5 Message Format .. 81

4.3 Example Scenarios .. 84

4.3.1 Unknown Client Role ... 85

4.3.2 Known Client Role, No Policy Stored.. 92

4.3.3 Known Client Role with Existing Policy with the Same Version Number 98

4.3.4 Known Client Role with Older Existing Policy ... 104

4.3.5 Known Client Role with Newer Existing Policy .. 109

4.3.6 The Server Has a Newer Policy .. 113

4.3.7 Periodic Checks .. 116

vii

4.4 Summary ... 124

Chapter 5: Implementaing and Testing the Runtime Compliance Manager................... 126

5.1 RCM Design, Requirements and Installation .. 127

5.1.1 System Requirements ... 128

5.1.2 Installing a Running RCM .. 128

5.1.3 Logs .. 130

5.2 Policy File Syntax ... 132

5.2.1 Variables ... 138

5.2.2 Printing Variables ... 139

5.3 Client-Monitored Features .. 140

5.3.1 Network Interface ... 140

5.3.2 NTP ... 142

5.3.3 Hostname .. 143

5.3.4 File System Size Limit (FSSL) ... 145

5.3.5 DNS .. 146

5.3.6 SSH ... 147

5.3.7 Environment Variables (ENV) ... 149

5.3.8 Hosts ... 150

5.4 Example Scenarios .. 151

5.4.1 Section with 'Exact' Keyword ... 152

5.4.2 Section with 'Exclude' Keyword ... 163

5.4.3 Section with 'Ignore' Keyword ... 168

5.4.4 Conditional Block ... 171

5.4.5 If-Then Block ... 172

5.4.6 Variables ... 178

5.5 Summary ... 185

Chapter 6: Summary and Conclusions .. 187

6.1 Conclusion ... 187

6.2 Limitations and Future Work .. 190

Appendix A – Client/Server Policy Exchange and Management Source Code 193

Appendix B – Runtime Compliance Manager Code .. 196

Appendix C – Policy File Example .. 198

viii

References ... 204

ix

LIST OF TABLES

Table Page

Table 1 The Main Objective of Each Functional Area in the FCAPS Model 8

Table 2 Change Management Study Surprising Results[21] .. 19

Table 3 Test Results by Test Suite[37] ... 26

Table 4 Message Header Fields and Values ... 82

Table 5 Object Header Fields and Values ... 83

Table 6 Section Block Parameters .. 135

Table 7 Predefined Keywords ... 136

Table 8 Conditional Block Parameters ... 137

Table 9 If Block Parameters ... 138

Table 10 Network Interface Block .. 141

Table 11 NTP Block ... 142

Table 12 Hostname Block ... 144

Table 13 FSSL Block .. 146

Table 14 DNS Block ... 147

Table 15 SSH Block.. 148

Table 16 ENV Block ... 150

Table 17 Hosts Block .. 151

x

LIST OF FIGURES

Figure Page

Figure 1 TMN Reference Model Refined with FCAPS[7] ... 8

Figure 2 Risk Matrix[19] .. 18

Figure 3 Layers of NETCONF[37] ... 24

Figure 4 Configuration Audit Report .. 29

Figure 5 Process Flow ... 33

Figure 6 Policy Management System Framework .. 35

Figure 7 Policy Client and Decision Server Communication ... 39

Figure 8 Policy Update from the policy decision control server 40

Figure 9 Policy Client Status .. 41

Figure 10 Client Check Process .. 42

Figure 11 if...then Logic ... 50

Figure 12 Server’s Flow Chart .. 73

Figure 13 Client Flow Chart ... 75

Figure 14 Client/Server Successful Admission .. 78

Figure 15 Client/Server Denied Admission .. 79

Figure 16 Client/Server Normal Cycle ... 80

Figure 17 Unsolicited Message Triggered .. 80

Figure 18 Message Format.. 81

Figure 19 Object Header Format .. 83

Figure 20 Hash Code Header .. 84

Figure 21 Starting the PolicyServer .. 86

Figure 22 Starting the PolicyClient... 86

Figure 23 Client Is Sending an OPEN Message ... 87

Figure 24 Server Sends CC after Receiving Unknown Role .. 89

Figure 25 The Policy Client Receives CC Message ... 90

Figure 26 OPEN Message Layout .. 91

Figure 27 OPEN Message from Wireshark .. 91

Figure 28 CC Message Layout ... 92

Figure 29 OPEN, CAT, DEC and RPT Message Exchange ... 93

Figure 30 policy decision control server Message Exchange ... 95

Figure 31 Policy Client REQ Message Sent ... 96

Figure 32 policy decision control server Sending Policy File .. 97

Figure 33 Hash Code Matching .. 97

Figure 34 RPT Message Sent .. 97

Figure 35 RPT Message Received .. 98

xi

Figure 36 Client OPEN Sent ... 99

Figure 37 CAT Message Sent ... 100

Figure 38 REQ with Version Number .. 101

Figure 39 Wireshark Capture REQ with Version Number ... 101

Figure 40 DEC Message Sent ... 102

Figure 41 Client Receives a DEC and Sends RPT message ... 103

Figure 42 RPT Received by the Server... 104

Figure 43 OPEN Sent, CAT Received .. 105

Figure 44 Version Number Sent Within DEC .. 106

Figure 45 DEC Sent, File Pushed ... 107

Figure 46 DEC Received, File Download Started .. 107

Figure 47 File Download Completed, Sending RPT .. 108

Figure 48 RPT Received Confirming File Download .. 108

Figure 49 OPEN Sent, CAT Received .. 110

Figure 50 Awaiting DEC from Server .. 110

Figure 51 Client Has a Newer Version ... 111

Figure 52 DEC Received, RPT Sent ... 112

Figure 53 RPT Received, Transaction Completed ... 113

Figure 54 Unsolicited DEC Sent... 114

Figure 55 Unsolicited DEC Received ... 114

Figure 56 RPT Sent to Policy Server .. 115

Figure 57 RPT Received From Client .. 115

Figure 58 Waiting for an Event .. 117

Figure 59 Client’s Periodic Check .. 118

Figure 60 Client Configured with Periodic Interval ... 120

Figure 61 Server Replying with DEC, Waiting for an Event ... 121

Figure 62 Second Periodic Check, Client-Side ... 122

Figure 63 Second Periodic Check, Server-Side .. 123

Figure 64 RCM Design ... 128

Figure 65 RCM Flow Chart .. 130

Figure 66 New Policy File Detected ... 131

Figure 67 Machine Report .. 132

Figure 68 Policy File Example ... 133

Figure 69 Printing Block Example ... 139

Figure 70 FSSL Disk Usage Example .. 145

Figure 71 Policy File: Section with 'Exact' Keyword ... 153

Figure 72 Section with 'Exact' Report 1.. 154

Figure 73 Client’s IP Address ... 155

Figure 74 Client's NTP Servers .. 156

Figure 75 Client's Hostname ... 156

Figure 76 Client's DNS Configuration .. 157

Figure 77 Client SSH Configuration... 158

Figure 78 Client's ENV Variables .. 159

Figure 79 Client's Hosts File ... 159

xii

Figure 80 System Interface IP Changed ... 160

Figure 81 Network Interface in Compliance .. 161

Figure 82 System NTP Servers Updated .. 162

Figure 83 NTP Is in Compliance .. 162

Figure 84 Policy File: Section with 'Exclude' Keyword ... 164

Figure 85 Section with 'Exclude' Report... 165

Figure 86 Network Interface Mask ... 166

Figure 87 NTP Server Present .. 167

Figure 88 Hostname Is a Match .. 167

Figure 89 Environment Variable Section ... 168

Figure 90 ENV Variable Trigger .. 169

Figure 91 Using the 'Ignore' Keyword .. 170

Figure 92 TERM Alarm Cleared .. 171

Figure 93 ENV Configuration .. 171

Figure 94 Conditional Block ... 172

Figure 95 If-Then Policy ... 173

Figure 96 If-Then Report .. 174

Figure 97 Eth0 IP Configuration... 175

Figure 98 NTP Configuration ... 176

Figure 99 Hostname Configuration .. 177

Figure 100 Hostname Changed to 'desktop' .. 177

Figure 101 DNS Warning ... 177

Figure 102 DNS Configuration ... 178

Figure 103 Global-Single Policy .. 179

Figure 104 Global-Single Report .. 179

Figure 105 SSH Configuration .. 180

Figure 106 Hosts File .. 181

Figure 107 Eth0 IP Address Change ... 181

Figure 108 New Line 13 Warning .. 181

Figure 109 New Line 18 Warning .. 182

Figure 110 Global-List Policy .. 183

Figure 111 Global-List Report .. 184

Figure 112 System Verification .. 185

xiii

LIST OF ABBREVIATIONS AND SYMBOLS

Client Accept Message ..CAT

Close Client Message ... CC

Cisco Internetwork Operating System .. Cisco IOS

Cisco Internetwork Operating System Next Generation Cisco IOS-XR

Common Open Policy Service ...COPS

Common Open Policy Service - Provisioning Service ... COPS-PR

Common Policy Language ... CPL

Central Processing Unit ... CPU

Decision ...DEC

Dynamic Host Configuration Protocol ... DHCP

Distributed Management Task Force ... DMTF

Domain Name System ...DNS

Fault, Configuration, Accounting, Performance, Security FCAPS

Federal Information Security Management Act ... FISMA

File System Size Limit ... FSSL

Fully Qualified Domain Name.. FQDN

GNU C Compiler ... G++

Health Insurance Portability and Accountability Act ... HIPAA

Intrusion Detection System ... IDS

Internet Engineering Task Force ... IETF

Internet Protocol... IP

Inter Process Communication ... IPC

Intrusion Prevention System .. IPS

Information Technology .. IT

International Telecommunication Union .. ITU-T

Juniper Operating System ... JunOS

Lightweight Directory Access Protocol .. LDAP

Message-Digest Algorithm ... MD5

Management Information Base .. MIB

Network Configuration Protocol... NETCONF

Network Time Protocol.. NTP

National Institute of Standards and Technology ... NIST

Network Management System .. NMS

National Security Agency ..NSA

OPEN Message ... OPEN

Operational Support Systems ... OSS

xiv

Policy-Based Network Management ... PBNM

Payment Card Industry ... PCI

Policy Decision Point ... PDP

Policy Enforcement Point ... PEP

Policy Information Base ... PIB

Portable Operating System Interface ... POSIX

Quality of Service .. QoS

Runtime Compliance Manager ... RCM

Regular Expression .. REGEX

Report Message .. RPT

Request Message ..REQ

Request for Comments ... RFC

Remote Procedure Call .. RPC

Simple Authentication and Security Layer .. SASL

Simple Network Management Protocol .. SNMP

Service-Oriented Architecture ...SOA

Simple Object Access Protocol ... SOAP

Secure Shell ... SSH

Transmission Control Protocol .. TCP

Telecommunications Management Network .. TMN

User Datagram Protocol ...UDP

Extensible Markup Language ... XML

Extensible Stylesheet Language ..XSLT

xv

ABSTRACT

AUTOMATED POLICY COMPLIANCE AND CHANGE DETECTION MANAGED

SERVICE IN DATA NETWORKS

Saeed M. Agbariah, Ph.D.

George Mason University, 2015

Dissertation Director: Dr. Bernd-Peter Paris

As networks continue to grow in size, speed and complexity, as well as in the

diversification of their services, they require many ad-hoc configuration changes. Such

changes may lead to potential configuration errors, policy violations, inefficiencies and

vulnerable states. Even the best administrators can make mistakes, and the cost of

missing a key configuration or accidentally skipping an asset can be catastrophic. Labor-

intensive manual network auditing or, more recently, products using dedicated

configuration compliance scanning appliances for verifying individual system

configuration can lead to the discovery of configuration errors and policy violations.

However, seldom is the discovery made in real-time, which can prevent system outages,

service disruptions and security risks before they occur.

The current Network Management landscape is in dire need of an automated

process to prioritize and manage risk, audit configurations against internal policies and

xvi

external best practices, and provide centralized reporting for monitoring and regulatory

purposes in real-time. A significant challenge for any organization is ensuring that system

configurations remain compliant with internal and regulatory security and compliance

policies.

The purpose of this dissertation is to define a framework for an automated

configuration process with a policy compliance and change detection system, which

performs automatic and intelligent network configuration audits by using pre-defined

configuration templates and a library of rules that encompasses industry standards for

various routing and security-related guidelines, as well as policies such as these required

by FISMA, Sarbanes-Oxley, HIPAA, PCI, NIST, Cisco, and NSA.

System administrators and change initiators will have real-time feedback if any of

their configuration changes violate any of the policies set for any given device. The

suggested architecture achieves a high level of security and compliance, and reduces

complexity in network configuration without adding any functions onto the managed

entity.

1

CHAPTER 1: INTRODUCTION

1.1 Motivation and Problem Summary

Current networks are evolving rapidly. This rapid growth of networks and

services has introduced new, complex, large networks that are made up of

heterogeneous equipment from multiple vendors. As these networks continue to

grow their systems and services, the task of configuration management for IP

network devices is becoming more and more difficult. Not only is this

heterogeneous equipment supporting different techniques in conjunction with its

own configuration methods; it is a common practice to find the same device

deployed in the network in multiple roles, each with its unique configuration

requirements and policies governing the device within the organization, or even

with policies that differ from one business unit to another within the same

organization. All these complications increase the likelihood of faulty

configurations, and thus increase the difficulty of anticipating what complex chain

of changes may happen to the network as a result of changing one configuration

parameter. As a result, network administrators dealing with the existence of a

huge set of configuration parameters, and the implicit dependencies between these

parameters, are confronted with the challenge of configuring these services and

their network elements without committing a single mistake.

2

On the other hand, current networks require ad-hoc changes by network

administrators to continuously conduct provisioning or performance tuning. These

configuration changes are costly and error-prone, and can result in unpredictable

failures and inefficiencies. Or they may lead to inefficient allocation of underlying

resources, turning the active device into a traffic bottleneck. Worse, an

inconsistent configuration can cause not only traffic loss, but also intermittent

crashes of the network devices [1]. The study in [2] has found that 50 percent of

network errors are configuration errors and 75 percent of all Time to Repair hours

are due to administrator errors. Another study has revealed that 80 percent of IT

budgets in enterprise networks are dedicated just to maintaining the current

operating environments [3].

1.2 Research Summary

This dissertation will present a framework for an Automated Policy

Compliance and Change Detection System, which performs automatic and

intelligent network configuration audits by using pre-defined configuration

templates and a library of rules that encompasses industry standards for various

routing and security-related guidelines. It is a system that will provide real-time

alerts for any configuration changes that violate any of the policies set for any

given device. The suggested architecture achieves a high level of security and

compliance and reduces complexity in network configuration without adding any

functions onto the managed entities.

3

1.3 Overview of Contributions

The central research idea seeks to replace labor-intensive configuration

management that is error-prone and often results in unpredictable failures and

inefficiencies, with one that is automated and reduces errors and inefficiencies.

The framework seeks to define the following areas:

1) A Common Policy Language Language for representing device,

organizational and industry best practices and any other

regulatory policies or guidelines needed for any network

elements; in a structured document format that can be retrieved

and manipulated with ease.

2) A centralized repository where policies could be stored,

allowing policy changes to propagate to the subjects, and

allowing subjects to detect policy changes in an automated

way.

3) A secure policy exchange procedure.

4) A proposed framework that permits any given device to be

configured in its current native state, without any further

burdens to the network administrator or system owner, with the

ability to detect whether the proposed configuration violates

any of the policies set in item 1.

4

5) A protocol to provide mechanisms for immediate feedback to

the change initiator, and to a centralized alarm system, alerting

them of any conflict.

In summary, the change initiator will access the network device, type

his/her changes and immediately know whether the changes he/she committed

have violated any policy set for the device. The aim is to prevent inconsistent

configuration states which would result in operational failures or inefficiencies.

1.4 Scope and Limitations

There are many elements that networks comprise, including but not

limited to routers, hubs, switches, bridges, firewalls, intrusion detection system

(IDS), intrusion protection systems (IPS), wireless access points, servers,

applications and protocols. Furthermore, because of technical innovation and

vendor diversity, in practice heterogeneity exists in networks, and despite many

years of standardization efforts, the number of system interface specifications

seems to continue to increase. Another problem lies in the fact that the majority of

network elements have a proprietary operating system under exclusive legal right

of the copyright holder. Therefore, the suggested framework cannot be based on

any single architecture or technology. It must instead be based on recognition of

diversity and interoperability, and since proprietary software vendors regard their

source code as a trade secret, implementation of the framework on any proprietary

system for the scope of this research would be impracticable. To circumvent these

5

practical limitations we will use an open operating system, such as Linux, to

implement and demonstrate our proposed framework.

1.5 Proposal Organization

This dissertation is divided into six chapters and an appendix section. The

first chapter provides motivation and definition for the problem I addressed in this

research. Chapter 2 provides background and context for the research problem

and establishes the need for the research. It shows the current network

management state of the art, how we started and where we are today. It shows

that, though progress has been made, the industry still lacks a formal method for

automated policy compliance and change detection management. The third

chapter dives into the details of the contributions of this research. It details the

specifics of each component of the framework and shows how they interact with

each other, with network elements and with other network management

components to provide the required automated policy compliance and change

detection, of which the industry is in dire need. The fourth chapter details the

implementation and testing of the policy exchange system. The fifth chapter

discusses implementation and testing of the policy enforcement system. The last

chapter provides a conclusion of the study, and discusses directions for future

research. There is also be a publications section, and an appendix section that

includes any additional information that could be useful to the reader but is not an

actual part of the body of the research.

6

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 The Evolution of Network Management

Before discussing automated policy compliance and change detection, it

helps to frame the conversation by describing the evolution of network

management tools. As discussed earlier, a large variety of challenges in networks

has produced the need to create a network management model that can enable

network administrators, designers, planners, and operators to perform strategic

and tactical planning of engineering, operation, and maintenance of their networks

for current and further needs at minimum cost [4]. This entails functions such as

initial network planning, resource allocation, predetermined traffic routing to

support load balancing, access control, authorization, and a variety of other

activities.

There are few reference models that have been widely established for

network management. One of them is the Fault, Configuration, Accounting,

Performance, and Security model, commonly referred to as FCAPS ([5], pp. 2).

The FCAPS model was originally designed by the International

Telecommunication Union (ITU-T). As its name indicates, it divides management

functions into five categories: fault management, configuration management,

accounting management, performance management, and security management.

7

The ITU-T organization dates back to 1865, and its original responsibility was to

ensure efficient and on-time production of high-quality recommendations

covering all fields of telecommunications ([5], pp. 2-3). In 1996, the ITU-T

created the concept of the Telecommunications Management Framework (TMN),

which was an architecture intended to describe service delivery models for

telecommunication service providers based on four layers: business management,

service management, fault and performance management, and element and

configuration management ([5], pp. 3-7). Because TMN standards are mainly

business-focused and not focused on managing IP networks, the ITU-T refined

the model in 1997 to include the concept of FCAPS ([6], pp. 120-122). FCAPS, as

shown in Figure 1, expanded the TMN model to focus on the five functionally

different types of tasks handled by network management systems: fault

management, configuration management, accounting management, performance

management, and security management. Table 1 describes the main objectives of

each functional area in the FCAPS model, and in the following pages will be

more details on each of the functional areas provided.

8

Figure 1 TMN Reference Model Refined with FCAPS[7]

Table 1 The Main Objective of Each Functional Area in the FCAPS Model

Management

Functional Area

(MFA)

Management Function Set Groups

Fault Alarm surveillance, fault localization and correlation,

testing, trouble administration, network recovery

Configuration Network planning, engineering, and installation; service

planning and negotiation; discovery; provisioning; status

and control

Accounting Usage measurement, collection, aggregation, and

mediation; tariffing and pricing

Performance Performance monitoring and control, performance

analysis and trending, quality assurance

Security Access control and policy; customer profiling; attack

detection, prevention, containment, and recovery;

security administration

2.1.1 Fault

Fault management includes functions that address alarm surveillance,

testing, and fault isolation. Alarm surveillance, as the name implies, allows

reporting alarms with different levels of security along with the possible cause of

9

the alarm. It also provides a summary of alarms that are outstanding, and permits

the manager to retrieve the alarm information [8]. The objectives of doing fault

management are to increase network availability, reduce network downtime and

quickly restore network failures. Effective fault management is critical to ensure

that users do not experience disruption of service, and that when they do, the

disruption is kept to a minimum. Dealing with alarms and the large volume of

events that are constantly being generated is one of the challenges that fault

management addresses. However, it encompasses other functions as well, such as

troubleshooting and diagnosis.

2.1.2 Configuration

Configuration of network devices is one of the most complex and error-

prone network management tasks. This task in particular plays a major rule in the

focus of this research, because misconfiguration is one of the main sources of

network unreachability and vulnerability problems. Network configuration

function allows for changes to the configuration of the network devices. This

functional area includes functions that allow management systems to provision

resources and services and monitor and control their state and status

information [8].

Configuration management can be a comprehensive set of tools

encompassing collecting, storing, managing, updating and presenting data about

network elements or services, and about their relationships. These tools can be

vendor-neutral or vendor-specific. Vendor-neutral tools, by far the more common,

10

are designed for networks containing hardware and software from multiple

suppliers. Vendor-specific tools usually work only with the products of a single

company, and can offer enhanced performance in networks where that vendor

dominates.

2.1.3 Accounting

This functional area enables charges to be established for the use of

resources, and for costs to be identified for the use of those resources. Here again,

depending on the service, the usage information will vary. For example, a phone

service often determines the length of time the connection was used, while a

packet service which collects data on the number of packets sent. Accounting

management includes functions designed to do the following: inform users of

costs incurred or resources consumed, enable accounting limits to be set and tariff

schedules to be associated with the use of resources, and enable costs to be

combined where multiple resources are invoked to achieve a given

communication objective. To some organizations, accounting management tasks

are potentially the least relevant. Although some network backbone architectures

and organizations honoring Service-Oriented Architectures (SOAs) may

incorporate chargebacks and cost-based servicing ([5], pp. 7).

2.1.4 Performance

Performance Management provides functions to evaluate and report upon

the behavior of telecommunication equipment and the effectiveness of the

11

network or network element. Its role is to gather and analyze statistical data for

the purpose of monitoring and correcting the behavior and effectiveness of the

network, network elements, or other equipment, and to aid in planning,

provisioning, maintenance and quality measurement[6], pp. 33-35). The

performance management area includes functions to monitor performance

parameters (such as errored seconds and number of bad messages), collect traffic

statistics and apply control to prevent traffic congestion ([9], pp. 150-154).

Monitoring the performance often allows operators to anticipate problems and

take care of them before they occur. It can sometimes be useful to have the option

of looking at the data later if a problem is discovered, to see if there are any

indications in the data of how the problem developed or to just use the data for

general analysis. In many cases, such analysis does not have to occur in real-time;

it is even possible to perform the analysis offline. This means that statistical

performance data need to be collected. Also, periodic snapshots need to be taken

and stored somewhere in a file system or database [9], pp. 155-156).

2.1.5 Security

Two aspects need to be distinguished as part of this functional area:

security of management, which ensures that the management itself is secure, and

management of security, which manages the security of the network. Security

management is designed to protect the services and prevent malicious, negligent

and abusive behavior by authorized and non-authorized users alike. It maintains

access rights, access logs, audit trails, management and governance policy

12

enforcement; raises security alarms, and distributes necessary security-related

information. An effective security management system will provide mechanisms

for security administrators to allow: access to selective resources, access to logs,

data privacy, access right checking, a security audit trail log, security alarm/event

reporting, and security-related information distribution ([5], pp. 8).

2.1.6 Consideration of the FCAPS Model

FCAPS addresses one of the most crucial tasks of network management

by monitoring the status of the network, collecting data and avoiding undesirable

states of the network. However, it also oversimplifies network management

because many cases of functionality cannot be easily categorized, as they can be

used for different purposes that fall under different functional categories. For

example, logging and reporting events are generally categorized under fault

management; however, they also can support performance, configuration

management, and security management functionality [10]. Another issue to

consider is that FCAPS has led to the development of stovepipe applications. The

term 'stovepipe' implies that the application does not integrate with or share data

or resources with other applications. Therefore, the practice of using different

applications in order to manage network devices can be very challenging since

each application extracts information and presents it in a different view for a

given object. For example, each application is interested in a different attribute of

the device interface and each uses the device interface in a different way. A

device interface is usually modeled as a different object for each application.

13

Thus, information collected from many sources can be very useful when

associated together for presenting a given network. This is because the lack of

cohesion in presentation prevents the data from being associated at all, and

specialized applications cannot take advantage of such data ([11], pp. 106-109).

2.2 Simple Network Management Protocol (SNMP)

Using the FCAPS model as a basis for network management architecture,

the trends in network management solutions have followed two general technical

directions: ITU-T’s Telecommunication Management Network (TMN) for

telecommunications networks and Internet Engineering Task Force's (IETF)

Simple Network Management Protocol (SNMP) for IP networks ([12], pp. 71-75).

For IP networks, the Simple Network Management Protocol (SNMP) has become

the de facto standard in the management fields of IP networks. It is probably the

best-known management protocol. SNMP is defined in a series of Internet

Engineering Task Force (IETF) standards that date back to the late 1980s. The

core of SNMP is a simple set of operations that gives administrators the ability to

change the state of some SNMP-based devices. For example, a network

administrator could use SNMP to shut down an interface on a network router or

check the speed of an interface. [13] There have been several versions of SNMP.

The common ones are SNMPv1, SNMPv2 and SNMPv3 ([12], pp. 55-56).

SNMP is an application layer protocol and uses the User Datagram

Protocol (UDP) to exchange management information between management

entities. It is based on asynchronous request-response protocol enhanced with

14

trap-directed polling. The qualifier 'asynchronous' refers to the fact that the

protocol does not need to wait for a response before sending other messages.

'Trap-directed polling' refers to the principle that the manager polls in response to

a trap message being sent to an agent, which occurs when there is an exception or

after some measure has reached a certain threshold value [14]. The SNMP

architecture consists of the SNMP Manager, which usually is a server running

software system that can handle management tasks for a network, such as

Network Management System (NMS). The Manager’s key functions include:

querying agents, getting responses from agents, setting variables in agents, and

acknowledging events from agents. A managed device is a device or a network

element that requires monitoring. An SNMP Agent is a piece of software that runs

on the network device or the network element that is being managed. A

Management Information Database (otherwise known as a Management

Information Base, or MIB) can be thought of as a database of managed objects

that the agent tracks.

Any sort of status or statistical information that can be accessed by the

NMS is defined in an MIB, such as the temperature on a switch. SNMP defines a

set of five management operations, which are the primitives on which all SNMP

management is based. Get and get-next requests are used to retrieve management

information from an MIB. Set requests are used to write to an MIB. Get responses

are used by agents to respond to get, get-next, and set requests. Finally, traps are

used to send event messages ([9], pp. 249-250).

15

While SNMP provides good network management at the macro level, it

does not provide all of the network details required to solve many network issues.

Its simple design means that the information it deals with is neither detailed nor

organized enough to deal with expanding modern networking requirements. In an

informational memo (RFC 3535, "Overview of the 2002 IAB Network

Management Workshop," May 2003) various drawbacks of SNMP were

summarized, for example the memo explains that because SNMP is designed as

an API between management applications and devices, it cannot function without

management applications. Also, SNMP does not scale well when working with

large amounts of data, and the protocol lacks standardized writeable MIB objects

usable for configuration. It is also not easy to perform device configuration tasks

using SNMP. The paper goes on to explain the fact that SNMP MIB modules

(both read and read-write) are not deployed by equipment manufacturers in a

timely manner [15]. The end result is that SNMP is not used for device

configuration tasks. Still, SNMP does work well for periodic monitoring and, in

some cases, for event reporting. SNMP will stay around for quite some time, at

least for performing the types of tasks it already does well [16].

16

2.3 Change Management

The FCAPS model is useful for understanding the goals and requirements

of Network Management, and also helps to build a foundation for understanding

the significance of Network Management to compliance efforts ([12], pp. 90-95),

but it does not address change, or how to handle change in an active network.

Change in today’s network has become inevitable. It also has become one of the

most prominent sources of risk in the network, and it has a direct impact on the

time, cost and quality of the services provided. To cope with changes and their

impact, Change Management has become an IT Service Management discipline.

It is one of the most critical processes in IT management. Some of the reasons for

this are the sheer number of changes and the difficulty of evaluating the impact of

changes on the network or the services it provides in real-time[17]. The main goal

of change management is to ensure that the risk and business impact of each

change is communicated to all impacted and implicated parties, and to coordinate

the implementation of approved changes in accordance with current

organizational best practices [18].

Changes in the networks may arise reactively in response to problem-

solving errors and adapting to changing circumstances. Change can also arise due

to externally-imposed requirements, e.g., a new policy. Or it can be caused

proactively by seeking to impose greater efficiency and effectiveness or seeking

business benefits such as reduced costs, improved services or new projects.

However it may be, Change Management in the context of this research is to

17

ensure that standardized methods and procedures are used for efficient and

prompt handling of all changes, in order to minimize the number and impact of

any related incidents upon service. Change Management seeks to ensure that

standardized methods, processes, and procedures are used for all changes, to

facilitate efficient and prompt handling of all changes, and to maintain the proper

balance between the need for change and the potential detrimental impact of

change [19].

For the most part, changes are evaluated by stakeholders. In most

organizations, a team is designated to evaluate the proposed change by trying to

understand its impact on the network or the service it offers. This requires the

change management team to have a good understanding of the change and its

impact on the network, and to keep track of the details of the system’s past and

future goals. There are four major roles involved with the change management

process, each with separate and distinct responsibilities: The Change Initiator,

who initially perceives the need for the change; the Change Manager, who leads a

team to review and accept the completed change request, the Change Advisory

Board, which exists to support the authorization of changes and to assist the

Change Manager in the assessment and prioritization of changes, and the Change

Implementation Team (operations), which is responsible for carrying out the

actual change and reporting results.

Many organizations use a simple matrix like the one shown in Figure 2 to

categorize risk [18]. The Probability Axis denotes the probability of each

18

identified risk. For this, each risk is listed to the smallest detail possible and the

probability of its occurrence is predicted. The Impact Axis assigns a percentage of

impact, in the event that the risk does occur [19]. As a result, changes that have

low impact in the event of failure and low probability of failure become

candidates for a streamlined approval path [18].

Figure 2 Risk Matrix[19]

In a recent survey conducted by author and Information Technology

Service Management expert Harris Kern, he reports that of 40 corporate IT

infrastructure managers, a surprising 60 percent admitted that their processes to

handle change are not effective in communicating and coordinating changes

occurring within their production environment. Table 2 lists the key findings of

the study [20].

19

Table 2 Change Management Study Surprising Results[21]

Not all changes are logged 95%

Changes not thoroughly tested 90%

Lack of process enforcement 85%

Poor change communication and dissemination 65%

Lack of centralized process ownership 60%

Lack of change approval policy 50%

Frequent change notification after the fact 40%

The above statistics are not hard to imagine, particularly for IT

technicians, for whom change is a constant, almost daily, occurrence. This is due

sometimes to business requirements, sometimes to emergency changes in

response to an incident or problem requiring immediate action to restore service

or prevent service disruption, and sometimes to an expedited change that must be

implemented in the shortest possible time for business or technical reasons.

Unfortunately, Change Management often fails to handle changes quickly in a

uniform way that has the lowest possible impact on the networks and its services.

However; all changes have a disruptive potential for the business, and controlling

change through an agreed change management process is critical. Change

management can be even more effective in reducing service disruptions when

coupled with the central thesis of this research. If change is communicated

immediately to the stakeholders via a notification system and violations to any

policy are immediately reported to the change initiator, then the impact of change

can be both assessed and controlled.

20

2.4 Policy-Based Network Management

As already noted, the considerable growth of computer networks has

produced significant scalability and efficiency limitations to the traditional

management techniques. The tendency to use diverse management and

Operational Support Systems (OSS) that are not tightly integrated together has

encouraged the use of 'stovepipe' applications, which are applications that

maintain their own definition of data that cannot be shared with other stovepipe

applications ([11], pp. 4-6). This means that management is often fragmented and

intensely human-driven. The need to manage large networks and services

efficiently and with speed has given rise to the idea of Policy-Based Network

Management (PBNM).

The concept of using Policy-Based Network Management (PBNM) to

reduce the complexity of the management task has been researched in the Policy

Framework Working Group, the Resource Allocation Protocol Working Group,

the IP Security Policy Working Group of Internet Engineering Task Force (IETF),

and the Distributed Management Task Force (DMTF) [22]. The PBNM concept is

comprised of policies which can be processed by automated systems. The

resulting policies are rules governing the choices in behavior of a set of network

elements and network conditions, which trigger the policy executions [23].

Therefore, policy-based network management (PBNM) is a condition-action-

response mechanism which provides automated responses to changing network or

operational conditions based on pre-defined policies [24]. The expectation for

21

PBNM from a business point of view was to make the management task of

establishing and deploying policies across a group of devices a relatively easy

one, and to save on critical time and IT resources. From a marketplace

perspective, vendors saw an opportunity to unite performance management,

service level management, configuration management, and service provisioning in

one offering, a need that has challenged IT organizations [25].

In the past decade, policy-based network management (PBNM)

technology has matured to the point that it is considered as a feasible approach for

the management of distributed systems and networks, and it also has seen several

significant standardization efforts to define the most important policy-related

concepts and languages [26]. For example, the Internet Engineering Task Force

(IETF) has standardized the Common Open Policy Service (COPS) [27] protocol

and Policy Information Bases (PIBs) [28], which specify policy objects

manipulated by COPS. COPS has also been extended through the definition of

COPS for policy provisioning (COPS-PR) [29]. Two other protocols that

originally were defined outside the PBNM world have also been considered as a

policy provisioning protocol [30]: The Simple Object Access Protocol

(SOAP) [31] and Network Configuration Protocol (NETCONF) [32] have been

standardized by the IETF to provide proper support for device configuration. The

Internet Engineering Task Force (IETF) and Distributed Management Task Force

(DMTF) have defined four major functional elements for a policy-based

management system: A Policy Management Tool, to enable an entity to define,

22

update and optionally monitor the deployment of Policy Rules; a Policy

Repository, to store and retrieve Policy Rules: a Policy Decision Point (PDP),

which is the point at which the policy decisions are made, and the Policy

Enforcement Point (PEP), which represents the component that always runs on

the policy-aware node and is the point at which the policy decisions are actually

enforced ([33], pp. 58). The Common Open Policy Service (COPS) allows the

exchange of policy information between a Policy Decision Point (PDP) and a

Policy Enforcement Point (PEP) [34].

In essence, the policy-based networking framework allows network

operators to express their business goals as a set of rules, or policies, which are

then enforced throughout the network. The architecture allows such rules to be

defined centrally but enforced in a distributed fashion. In addition, the goal of

policy-based networking systems is to allow for the automation of manual tasks

performed by network operators ([33], pp. 70-73).

For networks consisting of various network elements from different

vendors and multiple systems converged into one network, Policy-Based Network

Management (PBNM) is a priority in order to solve this management

dilemma [34]. In particular, policy-based management provides a way to allocate

network resources, primarily network bandwidth, QoS, and security, according to

defined business policies. The success of management depends on the

specification of unified and scalable administered policies. These policies must

then map to the configuration of the multiple heterogeneous system devices,

23

applications and networks, for the purpose of policy enforcement [35]. However;

the main challenge facing the deployment of PBNM systems is the variety of

policy representation forms at different levels of the hierarchy. High-level

business policies may be defined and stored in a database system, then various

applications may retrieve and convert the data to different forms for processing.

These conversion procedures add complexity to the internal structure of PBNM

systems, leading to efficiency and interoperability concerns [36].

2.5 Network Configuration Protocol (NETCONF)

The management protocols that we have discussed thus far have their

limitation in the context of configuration management of a large number of

networked devices with diverse vendor-specific interface and proprietary

command line interfaces (CLIs), making it costly to achieve a high level of

efficiency and reliability through automation. In 2003, the Internet Engineering

Task Force (IETF) started an effort to develop and standardize a network

configuration management protocol, which led to the publication of the Network

Configuration (NETCONF) protocol RFC4741 [32]. The NETCONF protocol

provides mechanisms to install, manipulate and delete the configuration of

network devices. It also can perform some monitoring functions. It uses

Extensible-Markup-Language- (XML) based data encoding for the configuration

data, as well as to send and receive information between managers and agents.

The NETCONF protocol operations are realized on top of a simple Remote

24

Procedure Call (RPC) layer ([9], pp. 275). This in turn is realized on top of the

transport protocol.

Figure 3 below shows the four conceptual partitions of the NETCONF

protocol: The transport protocol layer provides a communication path between the

client and server. The RPC layer provides a simple, transport-independent

framing mechanism for encoding RPC requests and responses. The operations

layer defines a set of base operations invoked as RPC methods with XML-

encoded parameters for the proper handling of NETCONF operations present

within requests and of reply content present within responses. The content layer

provides the NETCONF protocol with a mechanism for encapsulating

configuration data ([12], pp. 83-86).

Figure 3 Layers of NETCONF[37]

In a recent NETCONF interoperability test [38] and aimed at observing

the compliance of NETCONF implementations with RFC 4741, as well as at

25

identifying inconsistencies in the RFC, the following test suites produced the

results in Table 3 [39]:

1. GENERAL: It includes test cases for individual operations such as

lock, unlock, close-session, kill-session, discard-changes, validate, and

commit.

2. GET: This suite aims to test the filter mechanism of the get

operations.

3. GET-CONFIG: This suite aims to test the filter mechanism of the

get-config operations.

4. EDIT-CONFIG: Involves tests modifying the configuration data in

the datastore.

26

Table 3 Test Results by Test Suite[37]

Test Suite Success Failure Irrelevant

GENERAL 73.6% 13.2% 13.2%

GET 29.5% 52.3% 18.2%

GET-CONFIG 48.4% 14.1% 37.5%

EDIT-CONFIG 38.3% 1.7% 60%

• Success column: Indicates the percentage of passed test cases.

• Failure column: Indicates the percentage of failed test cases.

• Irrelevant column: Indicates the percentage of test cases that cannot be

applied to a specific system due to either system configuration or

implementation issues [38].

In summary, NETCONF is a promising building block in network

configuration automation and a promising alternative to SNMP with respect to the

configuration of network devices. However; the currently open-ended format of

request and response messages and their arbitrary values for attributes as specified

in the RFC are leading to interoperability problems between different NETCONF

implementations [38]. Furthermore, the protocol does not provide any mechanism

to ensure that system and device configurations remain compliant with internal or

external compliance policies [39].

2.6 Configuration Auditing and Policy Compliance

The preceding sections illustrated how current network management

systems fail to help network providers face the challenge of running their

27

networks without service disruption in the presence of constant network change.

Configuration auditing aims to verify that the configuration of any network

element complies with the stated policy of the device, and that the information

about the network is current. Without this function, network administrators and

stakeholders would have a very hard time understanding what is happening in a

network and why. The process is important because it can lead to isolating

network troubles that occur due to discrepancies between what is currently

configured and what should or should not have been configured on the managed

entity. Obviously, manual auditing of individual device configuration for

networks with a few devices is an option. However, for a large network this

option simply does not scale. While this research aims to present an automated

way for administrators to identify discrepancies and misconfigurations and

hopefully avoid potential catastrophic service disruptions and other adverse

fallouts, we will also discuss the current tools used by large service providers.

Configuration audit tools are broken down into functional and physical

configuration types. A functional configuration audit ensures that functional and

performance attributes of a configuration item are achieved, while a physical

configuration audit ensures that a configuration item is installed in accordance

with the requirements of its detailed design documentation ([12], pp. 93-94).

There are many such products available today. some geared for servers and

workstations, others more focused on network elements such as routers and

switches. A product by OPNET called 'IT Sentinel' [40] deals specifically with

28

network change and configuration management. This product has its own

language that allows network administrators to present their configuration in a

unique format to be stored as a master template for a given device. The system

then collects the configuration from the active device every predefined interval.

Then the working configuration is compared to the master template, and as a

result, a report detailing discrepancies is generated for authorized users to retrieve

from a centralized location. Figure 4 below shows an example report that has

found 435 errors, 4 warnings, and 12 notes.

29

Figure 4 Configuration Audit Report

Using the navigation pane, the administrator is able to drill down to the

individual errors, either by device or by rule.

Ecora’s 'Configuration Audit and Audit Professional' [41] is another

configuration and change reporting product for identifying and auditing

configuration settings. This product can audit changes in operating systems,

database management systems, applications, directories, network devices and

30

firewalls. It is also designed to collect configuration data and then compare it to

an existing master template. There are many other tools and products that can be

used by network managers to verify that the configuration of any device complies

with standards defined by the organization. Some include vendor-specific tools

and utilities, while others are very expensive. The limitation of such products is

that they are not interactive. For example, in a network with over 1600 devices it

takes OPNET 'IT Sentinel' over 10 hours to collect and parse through the

configuration. This means the tool cannot be used as a reliable source to isolate

network troubles in real-time, and therefore cannot be relied upon to help prevent

service disruptions due to desired, undesired, accidental, malicious, intentional or

unintentional configuration changes.

The preceding discussion illustrated how the frequency of network device

changes could potentially be a disruptive factor in an already complex and

challenging networked universe. Security issues caused by non-compliant

configuration changes or regulatory noncompliance are also some of the reasons

for the evolution of network configuration and management tools. These tools are

helping to reshape network management towards a more process-aligned

discipline that includes supporting service integrity and service performance,

minimizing risk, optimizing security and compliance, managing network assets

more holistically and achieving operational efficiency [42].

In addition to the tools discussed in this paper, there are many products

available today with capabilities to integrate dynamic audits of network

31

configuration changes with service performance and infrastructure optimization,

as well as compliance, security and other initiatives. However, they lack the

ability to provide audits in real-time.

What the industry needs is an interactive system with real-time reporting.

It is very desirable to avoid waiting hours or even minutes to discover that a

change made on a network element has violated a policy and could potentially

impact service. Such a system can reduce hours of troubleshooting and save

companies from expensive service interruptions. The aim of this research is to

describe the framework and all the pieces that are required to implement such a

system.

32

CHAPTER 3: CONTRIBUTIONS

The ramifications of one small change to a network device, whether the

change is desired or not, can be catastrophic. However, for large networks,

constant change is simply a fact of life. Our proposed Automated Policy

Compliance and Change Detection System can reduce these risks significantly.

This chapter presents a detailed explanation of the design that will ensure that

device configurations remain compliant with internal and regulatory compliance

policies.

From a high-level point of view, the protocol will operate as follows: once

activated on a given device, the device will check to see whether it has the most

current policy by comparing its local policy version number to the server’s. If the

device does not have a policy, or its version is older than the server’s, it initiates a

connection to the policy server and requests and downloads the current policy.

Once the policy is obtained, the device enters the policy enforcement state and

checks to see whether the current configuration state violates any of the rules set

in the policy. In the case of any inconsistencies or violations, the Runtime

Compliance Manager (RCM) module generates an alarm describing the findings.

If none is found, the system enters the monitoring state. In the monitoring state,

the module continues to monitor if any newly-entered configurations violate the

33

policy. If so, the policy enforcement module triggers an alarm; otherwise it

continues the monitoring. Error! Reference source not found. illustrates the

concept.

Is the current
device state

consistent?
YES

Enter
monitoring

Report

problems

NO

is the new
configuration in

compliance?

NO

Activate Service

Compare
current

Configuration
with local

policy

User modifies
configuration

Is there a local
copy of

the policy or is the
policy the latest?

YES

Download the
latest device

policy

NO

Compare

current
Configuration

with server’s
policy

YES

NO

Download
successful?

YES

Figure 5 Process Flow

34

3.1 Policy Exchange and Management

For our proposed policy management system, we adopted the concept of

roles from the Policy-Based Network Management (PBNM) framework proposed

by the IETF (Internet Engineering Task Force) [43]. The greatest benefit of using

the PBNM framework in our work is that it provides automation of network

configuration by using the concept of roles. In the context of the proposed Policy

Compliance and Change Detection System, a role is an administratively-specified

characteristic of a managed element. It is used as a selector for policy rules to

determine the applicability of the rule to a particular managed element.

The Policy Management System Framework is illustrated in Figure 6. The

Policy Management System consists of the policy management server, the policy

decision control server, the policy client, and the policy repository.

35

Policy Management

Server

Policy Decision Control

Policy Client Policy Client

Database

…...

Policy Exchange

Protocol

LDAP

Figure 6 Policy Management System Framework

The policy management server provides a graphical user interface (GUI)

for defining, changing and deleting policy information. The policy decision

control server has two roles: the first is admission control for the policy clients,

and the second is to make decisions based on the policy client role to retrieve the

matching policy from the policy repository and distribute it to the client. The

policy client is a network element subject to our policy domain. The policy

repository is a specific data storage that holds policy rules, their conditions and

actions, and related policy data. The architecture assumes that multiple policy

systems may exist within a single policy domain, and share the same policy

information. Therefore, a secured centralized repository – secured via access

36

authorization, such that it cannot be accessed unless someone is given direct

privileges through a tightly-controlled process - can be used to store, distribute,

and coordinate policy information among systems. Directories and LDAP

(Lightweight Directory Access Protocol) are the IETF choice for interoperable

standard policy storage [44].

The communication between the policy clients and the policy decision

control is loosely based on the Common Open Policy Service – Provisioning

(COPS-PR) protocol [29]. COPS-PR is an extension of COPS [27]. COPS-PR is a

protocol for providing an efficient and reliable means for a policy management

server to provision multiple policy clients. It has several features for efficient

management, such as event-driven control (i.e., no polling) and asynchronous

notification, a structured row-level access and transactional model, support for

fault tolerance and security mechanisms, and reliable transport using persistent

TCP connections. The protocol is discussed further in the following section.

3.1.1 Policy Client and Policy Decision Control Communication

The first role of the policy decision control server is admission control,

which it fills by verifying that the requesting policy client role matches an

existing defined policy on our system. A policy role is an alphanumeric string that

defines the network element role in the network (e.g., Back Office Switch,

Backbone Router). The second role of the policy decision control is to

continuously distribute the most current policies to the policy clients. Using TCP,

the policy clients stay connected with a single policy decision control server in

37

order to retrieve updated policies. Each policy client stores internally a policy

consistent with its network role. However, since networks and client/server

communication interruptions may lead to inconsistent policy states, the COPS-PR

defines a set of messages to avoid the synchronization problems that may occur

between the policy clients and the decision control server due to events that may

occur in the network. These messages are explained next.

When a policy client boots up or after a TCP connection loss, each client

opens a new connection with its configured policy decision control server and

attempts to establish a policy session by sending its network role to the server,

using a Client-Open (OPEN) message. Figure 7 depicts the message exchange.

Upon receiving the OPEN message the policy decision control server checks to

see if the client role is supported. If not, a Client-Close (CC) message is sent back

to the policy client. Otherwise, the policy decision control server replies back with

a Client-Accept (CAT) message. If the policy client holds an internal policy from

a previous session, the client issues a Request (REQ) message informing the

policy decision control server of the version number of the installed policy. The

policy decision control server determines which action to take and either sends the

newer policy or maintains the same one by replying back with the Decision

(DEC) message. If the policy client holds no previous policy, it simply sends a

Request message (REQ) and the server sends back a Decision (DEC) message

initiating the download process of the policy. Finally, the policy client notifies the

policy decision control server of the success or the failure of installing or

38

maintaining the existing policy by sending a Report (RPT) message. Figure 7

shows the common message exchange between policy clients and the policy

decision control servers on boot up or recovery from TCP session loss in a COPS-

PR managed network [30].

39

Policy

Client

Policy

Client

Policy

Decision

Control

Server

TCP Messages

ack, fin, syn

Policy Manger Messages

CAT,CC, DEC, OPEN, REQ,

RPT

Legend

Policy

Decision

Control

Server

Figure 7 Policy Client and Decision Server Communication

While in the active policy session state, it may be common for the network

administrator to modify, change, edit, or delete some elements of an existing

policy or even to create a new one via the policy management interface. In such a

scenario, the propagation of the new policy is accomplished by initiating a new

40

unsolicited DEC message from the policy decision control server to all the policy

clients whose policies have changed [45]. This process is critical because it allows

the network administrator to update one or many policies and with one stroke

propagate the new policies to many network elements, even ones with different

roles. Figure 8 illustrates the concept.

Policy

Client1

Policy

Decision

Control

Server

Policy

Client2

Policy

Clientn …

Figure 8 Policy Update from the policy decision control server

We also recognize that any active network element may require ad-hoc

changes by the network administrators to continuously conduct provisioning, tune

performance, change parameters, etc. These changes may cause the client policy

to disagree with the server’s version. Therefore, we see an application in which

41

the policy client should periodically check with the policy decision control server

to make sure it has the latest policy. To accomplish this task we define a

preconfigured interval after which the policy client sends a REQ message

informing the decision server of its state. In return, the policy decision control

server replies with a DEC message. Figure 9 depicts the message exchange

between the policy decision control server and the policy client, while Figure 10

shows how to implement the routine in software.

Policy

Client

Policy

Decision

Control

Server

REQ

RPT

Figure 9 Policy Client Status

42

Every x seconds, the
client requests policy
version number from

server

Compare
server’s

version # to
locally stored

Are they
the same?

End/Report

YES

NO
Request

Copy from
server

Request
Completed

?

Update local
copy

YES

Decrement
max retries

by 1

Tries <
max_retries?

NO

YES

NO

Figure 10 Client Check Process

3.2 Design Considerations

This research also takes into consideration other factors to maintain policy

consistency between the policy decision control server and its policy clients, and

ways to provide an optimal and reliable system even when the underlying system

changes prevail.

We start by highly recommending for the LDAP directories repository to

be protected and replicated using industry best practices for Authentication,

Authorization, Accounting, and Auditing. As mentioned earlier, our policies will

be manipulated via the network management interface and stored in LDAP

repository. Therefore, the confidentiality, integrity, and availability of the policies

43

play a crucial role in the sustainability and success of our proposed system. A

discussion on securing LDAP is outside the scope of this research. However, we

mention two different authentication methods: 'simple bind' [46] and Simple

Authentication and Security Layer (SASL) [47]. Both are specified by the IETF

and both support the latest specification of LDAP Version 3 [48].

3.2.1 Masquerading

Masquerading is a common network attack strategy in which the attacker

pretends to be someone or some network device which it is not [49]. In our

system, both the policy client and the policy decision control server are

susceptible to such an attack, whereby the attacker seeks to masquerade as a client

in order to obtain the device policy which may include sensitive information, or to

masquerade as the policy decision control server and perhaps prevent the policy

clients from updating their policies. Other TCP security concerns are also in play,

such as session-hijacking, man-in-the-middle, and Denial of Service (DoS)

attacks. Although many industry methods have been presented to mitigate the

mentioned attacks, we recommend authentication using the message-digest 5

(MD5) algorithm.

The MD5 message-digest algorithm defined in RFC 1321 takes as input a

message of arbitrary length, applies some “independent and unbiased” bit-wise

operations on the message blocks, and produces as output a 128-bit fingerprint or

message digest of the input. With this hashing technique, the conjecture is that it

is computationally infeasible to produce two messages having the same message

44

digest, or to produce any message having a pre-specified target message digest.

MD5 is designed to be a fast and compact algorithm ([50], pp. 34-35). The MD5

message-digest algorithm is simple to implement and provides a fingerprint or

message digest of a message of arbitrary length. It is estimated that the difficulty

of coming up with two messages having the same message digest is on the order

of 264 operations, and that the difficulty of coming up with any message having a

given message digest is on the order of 2128 operations ([50], pp. 40). The MD5

algorithm is used in many other network security technologies in which

authentication and data integrity are needed ([50], pp. 54-55).

Enabling MD5 authentication between the policy decision control server

and its policy clients provides added security and protects against spoofing. MD5

authentication allows each policy client to use a secret key to generate a keyed

MD5 hash that is part of the outgoing packet. The keyed hash of an incoming

packet is generated on the server, and if the hash within the incoming packet does

not match the generated hash, the packet is ignored. RFC4086 “Randomness

Recommendations for Security” [51] describes a reasonable approach to

producing a high quality random key of 96 bits or more.

3.2.2 Communication Interruptions

Earlier in the thesis, we described the recovery process after a TCP session

failure, and showed how to get the client policy synchronized with the server’s

latest version. However, here we consider a scenario of a network interruption

during which a set of configurations has to be made on the network element, and

45

during which an update is made to the master policy. Our approach is to allow for

the policy enforcement of the configuration using the most recent stored local

policy. Then upon recovery the policy client opens a new TCP session with the

policy decision control server and downloads the updated version from the server

using the steps described in Section 3.1.1 Policy Client and Policy Decision Control

Communication. Immediately after the policy synchronization process is completed,

the RCM module running on the policy client moves to force a full system

configuration check against the newly-downloaded policy, and report via syslog

any discrepancies found. It is understood that the report may occur a while after

the network administrator has departed the network element. In that case, the

reporting is expected to be picked up by the network surveillance system, which

then notifies the network administrator for further investigation.

Another approach is to lock down the device whose TCP session has been

interrupted, and prevent any configurations from taking place until the session is

restored. However, there may be many good reasons to allow the configuration on

the system, which may outweigh the risk of being non-policy-compliant for a

short period of time.

3.2.3 Malicious Interruption

This scenario is similar to what we described above in which the TCP

session between the client and the server is interrupted due to a network outage or

misconfiguration. Here an authorized rogue network operator maliciously severs

the communication to the server by either disabling the policy exchange protocol,

46

changing the configuration and pointing the network element to a non-existing

policy control server, or using any other means to prevent policy enforcement on

the device. While we cannot stop an authorized operator from making malicious

changes to the policy client, we suggest the following improvements to our

system: The policy decision control server should generate an alarm and/or a

syslog message whenever it loses a session to one of its clients. This way the

network operators and surveillance systems are immediately notified, which

should elicit further investigation. Secondly, and as suggested earlier, a full policy

check and reporting should be triggered upon recovery. Finally, the system design

should allow the network administer to conduct a full policy check on any given

device.

3.2.4 New Policy Push during Configuration Change

In this scenario, the policy client, while in configuration mode, receives a

new policy update from the policy decision control server. Since the updated

policy may have elements conflicting with the locally stored policy and currently

being used for enforcement, we suggest a syslog message informing the operator

of the policy update, continued use of the current policy, and, upon exiting

configuration mode, a forced full policy check using the newly-updated policy,

and furthermore a report of any noncompliant elements of the configuration. The

network administrator also has the option to force a full system check, as

described earlier.

47

3.2.5 Periodic Check Detects New Policy during Configuration

This differs from above scenario in that the policy client during a periodic

check detects the policy update while in configuration modes. Periodic checks

were described earlier in section 3.1 Policy Exchange and Management of this

dissertation. The assumption here is that through the exchange of messages

between the policy client and the policy decision control server, the client detects

a newer policy version and the server in return makes a decision to push a new

policy to the client, because the client’s reported policy is older than that stored

by the server. Again, the safest approach is to report the update to the operator,

continue to use the locally-stored policy for compliance enforcement, and upon

exiting the device configuration mode, force a full system check and report any

noncompliant configurations.

3.3 Common Policy Language

One of the core requirements for our proposed system is a Common Policy

Language for expressing device and organizational policies. The automated

system relies on the Common Policy Language to represent device, organizational

and industry best practices, and any other regulatory policies or guidelines needed

for any network element. This section defines some of the building blocks of the

proposed policy language in a structured document format that can be retrieved

and manipulated with ease. A Common Policy Language will ease the

enforcement of policies in all components of the network. Furthermore, the

proposed Common Policy Language will bring numerous practical advantages,

48

such as lowering implementation overhead and the possibility of using the same

or at least similar tools to maintain the policies.

3.3.1 Configuration Templates

Given the complexities and challenges of network configuration, an

effective policy compliance system does not only define a model to unify all data

but also provides a mechanism to support coordinated multi-device configuration.

The use of a high level of abstraction to describe the behavior of the network,

network-wide configuration and policy management rules, and the ability to map

high-level language into low-level, device-local configuration and vice versa, are

some of the most desirable features for any management system [52].

The Policy Compliance System relies on the Common Policy Language to

represent device parameters and settings in a template format. The common

policy configuration template allows for a very straightforward implementation of

policy configuration backup and for restoring functionality. Configuration files

also make it simple to maintain different configuration versions by simply

copying configuration files back and forth. This approach is also well-suited to

many similar configurations across the network. The same configuration template

can essentially be applied to different devices of the same type across the

network, with only minimal processing required to customize the template. For

example, the same basic template can be used for all office switches where only

the hostname, IP addresses, or VLANs, and so on, are unique.

49

Altering individual device configurations across a large number of devices

can be tedious and time-consuming, and templates save network administrators

time by applying the necessary configurations and by ensuring consistency across

devices [53]. The configuration template will also be used to maintain the internal

and regulatory compliance policies, to be enforced by our automated compliance

system.

From a high-level point of view, once the template is activated on a given

device, the automated compliance system will check to see whether the current

configuration state violates any of the rules set in the policy. If any

inconsistencies or violations are found, an alarm is generated describing the

findings. If no inconsistencies are found, the system enters the monitoring state.

In the monitoring state the protocol checks to see if any of the newly-entered

configurations violate the policy, and if so, a report/alarm is generated. Otherwise,

monitoring continues.

The term 'template' can have different meanings depending on which

programming environment, language, or framework is being used. In this context,

the template is a string that can be combined with configuration and policy

requirements to produce a working vendor configuration file. In the proposed

system, the configuration templates are stored as files on the server, and

downloaded to the client via secure file exchange. The templates contain

placeholders where client-specific data will go. When the automated policy

compliance system engine renders the templates, these placeholders are examined

50

against the actual existing configurations, or the would-be configuration entered

by the system administrator. The system then alerts the user of any policy

violation, thus allowing for real-time feedback.

In order to accomplish basic output logic, such as if…then logic, some

logic code needs to exist in the template files. To illustrate the concept, Figure 11

expects different values for the name-server depending on whether the logic is

evaluated TRUE or False. It is evaluate TRUE if the device hostname is set to R1

and false if set otherwise, and therefore if TRUE the name-server is set to 8.4.4.4

and to 8.8.8.8 if false.

Figure 11 if...then Logic

The syntax of the template language is intentionally clean, simple and

elegant. With minimal understanding of programming concepts, a system

administrator and other stakeholders can make powerful and flexible templates to

51

represent their organizational policies or an acceptable baseline device

configuration.

3.3.2 One- and Two-Phase Commit Models

Considering the landscape of networking devices and vendors in the

networking field, we found that many of the network devices adhere either to the

one-phase commit model or to the two-phase commit model.

In the one-phase commit model, each line of configuration that enters the

networking device takes effect immediately. In contrast, the two-phase commit

model breaks the process into two distinct stages. In the first stage, the system

administrator builds the targeted configuration on the given device, then checks

the configuration for both syntax and transport errors, ensuring that the

configuration entered the device successfully. In the second stage, the user is able

to commit the configuration into the networking device, making it part of the

working configuration [54]. The discussion of the benefits and disadvantages of

either model is outside the scope of this paper. However, for our paper we

examined solutions from two of the leading enterprise networking vendors, Cisco

Systems and Juniper Networks [55].

Cisco Systems networking devices operate on Cisco IOS (originally called

Internetwork Operating System) or Cisco IOS-XR. The Cisco IOS operating

system uses a one-phase commit model, and has monolithic architecture, which

means that it runs as a single image and all processes share the same memory

space. The Cisco IOS XR operating system uses the two-phase commit model and

52

has a micro-kernel architecture, which provides basic operating system

functionalities including memory management, task scheduling, synchronization

services, context switching, and interprocess communication (IPC) [56].

Juniper Networks uses a modular software architecture that provides

highly available and scalable software. JunOS is a FreeBSD-based operating

system that runs a single code base across most of Juniper’s routing, switching

and security devices. JunOS uses a two-phase commit model [57].

In the following sections, we will use both Cisco’s and Juniper’s operating

systems to represent our Common Policy Language.

3.4 Common Policy Language Format

This section describes the common policy language format for expressing

device and organizational policies. Using a common language brings numerous

practical advantages, such as lower implementation overhead, as well as the

ability to reuse sections of existing policies with other devices, and even the

ability to link multiple policies together. The language format is written in ASCII

text, and is essentially the same, except for few minor differences between the OS

types of the supported vendors. We will use Cisco’s IOS and Juniper’s JunOS to

illustrate the Common Policy Language format.

3.4.1 Mandatory Sections

The template will start with two mandatory sections. First we define the

template version number. This number is used by the policy decision control

53

server to compare the device version to that stored on the server, and the higher

version of the two is used to enforce the configuration template. If the device has

a lower number, a secure file fetch procedure is executed and the newer file

replaces the existing device template file. The version is a context variable that

holds the version value. We use the percent sign (%), proceeded by the keyword

version, followed by a numerical value of positive integers or decimal numbers, to

express the version value. Example:

%version 2.1

We also recognize that the same type of hardware could be used for

different roles within the same organization. For example, a layer 3 (L3) switch

could be used as layer 2 (L2) device only in the access layer, and as router (L3) in

the distribution layer. Therefore, the chassis should not dictate the configuration

template, rather the device role itself should be the indicator of what the template

should and should not contain. Hence, we use the variable device to determine to

which device role the template applies.

%device <fixed/Regular expression>

The value of the device variable could be a fixed value, such as a device

role defined by the network administrator, or the value could be expressed using a

regular expression. Below are two examples:

%device office-switch

%device regex(office-switch1[0-9])

54

In the example, office-switch is a fixed value name, and regex (office-

switch1[0-9]) matches any device whose name falls between 'office-switch10' and

'office-switch19,' inclusive.

%device regex([A-Z]+?-SWITCH-[\d]+)

The above example matches any single character in the range between A

and Z (case sensitive), and repeated between one and unlimited times, followed

by an exact match of –SWITCH- and followed by a one-to-unlimited match of

digits between 0 and 9. WASH-SWITCH-01 and TAMPA-SWITCH-99 are

examples of string matching the regular expression match.

3.4.2 Section Delimiters and Predefined Keywords

We use the keyword section as a delimiter of a configuration section. The

section may match part of the configuration stanza, such as system, interface,

routing, or syslog settings. The section could also be a user-defined. The section

starts with the keyword section-start, and ends with section-end.

Furthermore, our predefined keywords: ignore, exclude, and exact are

used as follows:

• Ignore: specifies commands or sections that should be ignored when

our policy compliance system compares the device configurations against

the template. The command is useful for writing a comprehensive device

template while allowing certain sections of the policy to be ignored by the

Runtime Compliance Manager.

55

• Exclude: specifies that the sections or the commands should not exist

on the device. This is useful when the operator wants to guarantee that a

certain block of configuration does not exist on the examined device.

• Exact: specifies commands or sections that should be identical between

the template and the policy client configuration. This is useful when we

expect to see and exact configuration match between the device template

and the actual configuration.

To illustrate the above concepts, we give the following JunOS example:

%section-start ignore

interfaces {

 lo0 {

 unit 0 {

 family inet {

 address 192.168.1.1/32 {

 primary;

 }

 address 127.0.0.1/32;

 }

 }

}

%section-end

56

In the above example, the entire loopback0 configuration is ignored by the

system when enforcing the template to the device. We extend another example,

using Cisco IOS this time, to illustrate the use of the keywords 'exclude' and

'exact:'

router bgp 1008

 no synchronization

%section-start exact

 bgp router-id 8.8.0.1

%section-end

 bgp log-neighbor-changes

 network 8.8.0.1 mask 255.255.255.255

 neighbor 8.8.0.6 remote-as 1008

%section-start exclude

 route-map STATIC-TO-OSPF permit 10

 match ip address prefix-list STATIC-TO-OSPF

%section-end

In the above example, the router-id was specified with the 'exact'

keyword, therefore when enforcing the policy, the system must have a matching

router-id. However; the example excludes the route-map command. Thus, if the

command exists on the client, the system would consider it a violation of the

policy.

57

Additionally, there are two kinds of comments we can use in our

templates: single-line and multi-line. Writing comments could often be as

important as writing the system policy itself. Even though the comments left in

the policy will be ignored upon execution, it is important to let others know what

you are doing, because even the best policy may need to be maintained or updated

by someone else. The comments let other administrators understand what the

author intended in each step. This makes it much easier for them to work with it,

and to edit it if needed. Comments can also remind the policy author of what he or

she did when it is time to edit the policy a year or two later. For our Common

Policy Language, single-line comments are identified by a right slash and an

asterisk (/*):

/* this is an example of a line comment

Multi-line comments are implemented by using the right slash and the

asterisk (/*) and end with the asterisk followed by the left slash (*\). Anything

that falls between the delimiters is considered a comment:

/* this is an example of a multiline comment.

It is important for the compliance and change

detection portion of the system to provide sufficient

information about differences between the active

configuration, or the newly-entered configuration, and

that specified in our policy for that device. *\

58

In this example, the template engine ignores everything between the '/*'

and '*\' tags. In addition to providing for explanations in the template section, this

technique could also be used to troubleshoot and debug a section of template that

is not behaving properly.

Here is another practical example of the use of comments: the multiline

comment gives the reader an indication of the purpose of the template and of the

latest changes and the previous changes, while the one-line comment is a specific

instruction about the NTP command.

/* Application Ethernet Switch

 version cisco WS-C3750G-24TS 2.6

 Modified: 11/25/2014

 Modified By: Saeed Agbariah

 Latest Change(s):

 1. Updated NTP servers

 2. Updated DNS servers

 Previous Change(s):

 1. changed VTY password

 2. changed syslog buffer size

*\

/* DO NOT TYPE ntp clock period <seconds>;

ntp source FastEthernet0

ntp server 172.30.127.1

3.4.3 Conditional Commands

With the conditional commands, we can create an expression to be

considered conditionally during the comparison process. Conditional expressions

perform different computations or actions depending on whether a specified

Boolean condition evaluates to true or false. This allows our compliance system

59

to respond differently to different values and inputs, which allows for

manipulation that is far more advanced and for a far wider range of possible

behaviors. In its basic operation, the system checks to see if the expression is

TRUE and then performs comparison within the policies configured within the

defined configuration block. If the expression is not TRUE, it skips the condition.

To build the conditional statement we first define the condition. This can

be done anywhere in the template, although it may be better practice to define the

condition in the configuration stanza where it will be used.

The condition is defined by using the condition-start followed by a

unique name within the template, and ends with condition-end. The

condition is expressed with a string, or by using regular expression. It can have a

single value, or it can have multiple values, each on a separate line. For the

condition to be true, all expressions must match the device settings:

%condition-start Ethernet

 interface ethernet 0/0

 ip address 192.168.1.1 255.255.255.0

%condition-end

In the above example, our condition name is Ethernet, and for the

condition to be true, the examined device must have interface Ethernet 0/0 and it

also must have a 192.168.1.1/24 IP address configured. Next, we will illustrate

the use of regular expression:

%condition-start MyDevice

60

 snmp-serverlocation regex(Fairfax|Washington)

%condition-end

The MyDevice condition is true if the examined device SNMP location is

either Fairfax or Washington.

3.4.4 If-Then

When the Runtime Compliance Manager (RCM) module finds an If that

matches the condition from the previous section, it expects a Boolean condition. If

the evaluated condition returns true, then policies defined within the if block are

compared to the device’s configuration. The conditional section is identified by

if-start and the terminator is identified by if-end. The negation operator

('Not') returns the opposite of the given Boolean expression. The following

example shows the use of the if statement:

%condition-start Ethernet

 interface ethernet 0/0

 ip address 192.168.1.1 255.255.255.0

%condition-end

%if-start Ethernet

 NTP SERVER 192.168.1.253

%if-end

..

%if-start Not Ethernet

 NTP SERVER 192.168.1.254

61

%if-end

In the above example, if the condition Ethernet is true, then the policy

compliance system expects the policy client in evaluation to have the NTP server

set to 192.168.1.253. If false, then the NTP server should match 192.168.1.254.

3.4.5 Variables and Parameters

A router offers many levels of configuration modes, allowing the

configuration to be changed for a variety of router resources. Global configuration

mode, for example, allows commands that affect the router as a whole, while

interface configuration mode allows commands that configure router interfaces.

There are many other configuration modes, depending on what is being

configured ([58], pp. 25-30). In this section, we address the need for variables to

ensure device-specific command variables are presented and compared properly

by our automated compliance system against the device of interest.

For example, our devices may be configured with a Loopback0 interface,

each with its own unique Loopback0 address. Loopback interfaces are virtual in

nature and can be used as termination points for protocols such as BGP. Loopback

interfaces can also be used to provide a known and stable ID for the OSPF routing

protocol, or whenever data needs an intermediate output interface, such as for

address translation ([58], pp. 70-77). Our Common Policy Language addresses

variables such as the Loopback, by defining a global parameter with a unique

name across the configuration template, which has a single value. The global

62

parameter is contained between percentage signs (%) and starts with the keyword

global-single, followed by a unique name. Here is an example:

interface loopback0

 ip address %global-single LoopBack%

255.255.255.255

router ospf 8

 router-id %LoopBack%

 network %LoopBack% 0.0.0.0 area 0

When the automated system compares the template to the device of

interest, in the example above, the LoopBack variable uses the value of the

configured IP on the device. Then the policy checks to see if the same variable is

configured for the router-id under the OSPF process, and also for area 0. Next, we

show a similar example for a Juniper device to illustrate that the template is

essentially the same, except for a few minor differences between the OS types of

the supported vendors.

interfaces {

 lo0 {

 unit 0 {

 family inet {

 address %global-single LoopBack%/32

 }

 }

63

}

routing-options {

 router-id %LoopBack%

}

protocols {

 bgp {

 Group ebgp

 local-address %LoopBack%

 }

}

The same variable Loopback is used for loopback0, router-id, and BGP

source address.

A mismatch is declared and the user is informed if, in the example above,

the configured subnet for the Loopback0 interface is not 32 bits.

The second parameter type that our Common Policy Language defines is

the global-list parameter. The global- list parameter allows for a set of variables to

match against the device configuration. We define the parameter with global-list

contained between percent signs (%) followed by a unique name. We illustrate the

use of the list variable by the following example:

snmp {

 clients {

 %global-list snmp_server%/32;

64

 }

}

In this example, the global-list variable accepts a value of at least one

client. If the actual device being examined has the configuration below, which has

three SNMP clients, then the configuration is considered correct.

snmp {

 clients {

 192.168.10.12/32;

 192.168.10.13/32;

 192.168.10.14/32;

 }

}

As another example, using Cisco IOS, the device below is configured for

TACACS authentication and the administrator has configured a primary and a

secondary address. First we show the configuration template and then the actual

device configuration:

tacacs-server host %global-list tacacs-server%

Actual device configuration:

tacacs-server host 192.168.10.66

tacacs-server host 192.168.11.66

Our third parameter type is called 'related.' The related variable name does

not need to be unique across the configuration template but should be unique

65

across the same parameter type in the configuration command. In addition, the

related parameter is always associated with the first global parameter that follows.

The related parameter is contained within the percent signs (%), and again we use

an example to illustrate the concept:

interface loopback0

ip address %global-single LoopBack% %related

subnetmask%

Using the earlier Juniper example, we change the 32-bit subnet mask to

the related variable subnet mask:

interfaces {

 lo0 {

 unit 0 {

 family inet {

 address %global-single

LoopBack%/%related subnetmask%

 }

 }

}

In both above examples, the related variable subnet mask is associated

with a global-single parameter named Loopback. Our system check would not fail

if the subnet mask is not 32 bits long, as it did in the earlier example.

66

3.5 Summary

This chapter first presented a methodology to design and implement a

mechanism to maintain and exchange network element policies based on their

network roles. The policy exchange is based on the client/server model. The

policy decision control server represents the server and is responsible for client

admission and the distribution of policies. The client is represented by any data

network element, whose policies will be used by the Runtime Compliance

Manager (RCM) to enforce against the actual device configuration or any new

configuration, and to report noncompliance to network surveillance systems in

real-time.

The chapter also showed various types of messages exchanged between

the Policy decision control server and the policy client. It explained the admission

control process by the policy server and presented how in normal operations the

policy file is exchanged and maintained between the policy decision control

server and the policy client. We also considered a few scenarios where the

locally-stored policies on the individual network elements could be rendered

outdated, and described best practices to handle such anomalies. We also

described the Runtime Compliance Manager operation that continuously monitors

and analyzes the state of a device, in order to keep it in compliance.

The chapter also presented some of the building blocks for a Common

Policy Language (CPL) to be used with our automated compliance system. The

system is capable of providing real-time auditing and ensures a consistent

67

configuration state. It can guarantee compliance and reduce outage minutes. The

language format is written in ASCII text, is portable and powerful, is remarkably

easy to manage and manipulate, and is essentially the same for many supported

vendors. The Common Policy Language (CPL) is easy to understand, and is very

similar to your device configuration structure, but with more powerful

programming language functions, statements and operations.

In designing the Common Policy Language (CPL), our focus was on

readability, coherence and ease of use in modules. The language is intended to be

readable, and hence reusable and maintainable. The uniformity of the Common

Policy Language code makes it easy to understand, even if the administrator did

not write it. The ability to customize the Common Policy Language enables

improvements to best practices. Further work may include defining more

parameters and roles to address a wider range of configuration diversity between

vendors. The flexibility in the language format leaves little danger of being locked

in by a vendor.

68

CHAPTER 4: IMPLEMENTING AND TESTING POLICY EXCHANGE

AND MANAGEMENT

The purpose of this research is to describe a method for an automated

change detection system in which a policy-based management system is able to

prioritize and manage risks, audit configurations against internal policies or

external best practices, and provide centralized reporting for monitoring and

regulatory purposes in real-time. The goal is to avoid any potentially-disruptive

factors in an already complex and challenging networked universe where changes

may lead to configuration errors, policy violations, inefficiencies, vulnerable

states and security threats through faulty or non-compliant configurations.

One of the core components of our proposed system is the policy

exchange system. The policy exchange system allows a network administrator to

create a policy or manipulate an existing policy from a centralized location and

then propagate the policy to a device or set of devices in the domain, based on

their role in the network, in a convenient way without needing to manage each

device manually. The policy exchange system also addresses methods for keeping

stale policies out of the network and ensures that the clients always have an up-to-

date replica of the policy. Finally, the proposed system addresses security

concerns in the policy exchange process between the client and the management

server.

69

In design of the client/server protocol for the policy exchange system, we

had Cisco’s Internetwork Operating System (IOS) and Juniper’s Operating

System (JunOS) in mind. In this research, we used many examples in the

Common Policy Language (CPL) section utilizing both Cisco’s IOS and Juniper’s

JunOS. But unfortunately, because the operating system is proprietary, as it is for

many other vendors, we chose an open system - Linux-based - to implement and

test our code. Linux is a Unix-like and mostly POSIX-compliant operating system

assembled under the model of free and open-source software development and

distribution [59]. One of the main advantages of using open source software like

Linux for our research is customizability. Since the code is open, the code can be

modified to fit the functionality we want for our policy exchange system.

Interoperability is another advantage, because the open source software tends to

be much better at adhering to open standards than proprietary software [60].

4.1 Motivation and Problem Summary

The policy client/server is a lightweight but very powerful system that is

used to centralize the policies of all the clients. It uses a modified version of

COPS-PR (RFC3084).

Putting this system in simple words, there is a server running with several

text readable policy files (.txt files); and each time a new client establishes a TCP

connection with the server, it reports its client role to the server. The server then

finds the suitable policy file for the client and makes sure that the client receives

70

the latest version of the policy. Or it rejects the connection if the policy client role

is not defined on the policy decision control server.

The client is kept up to date by keeping the TCP connection alive, and for

any update made on the server side that affects the behavior of a client, the server

sends an unsolicited message with the new policy file to the client.

Furthermore, the client has the option of a timer configuration, which

allows the client to send periodic and customizable requests to check with the

server whether the policy it has is still the latest.

Additionally, since the information contained in the policy file may

contain mission critical information, our proposed system is equipped with an

MD5 hash function. Thus, every packet exchanged has an MD5 hash attached to

it, to avoid undesired tampering and unauthorized policy exchanges. The system

is designed for administrators to manage the clients' policies from a centralized

location and distribute the policies in a secure manner.

71

4.2 System Requirements and Installation

The system is written in C/C++ for UNIX-like environments. Since it uses

only standard C++ library, the requirements are just a few:

• Unix-like system: a multitasking, multiuser computer operating system

that exists in many variants [61]

• G++: a compiler, a program that will take your C++ source code and

compile it into a binary file that can be executed to actually run your

program [62][62].

• Bash script: a Unix shell, a command processor that typically runs in a

text window where the user types commands that cause actions. Bash can

also read commands from a file, called a script [63].

• Make: a utility that automatically builds executable programs and libraries

from source code by reading files called makefiles, which specify how to

derive the target program [64].

• Tar command: (tape archive command) used to rip a collection of

files and directories into highly compressed archive files commonly

called tarball or tar, gzip and bzip in Linux [65]

• md5sum Unix command: a computer program that calculates and

verifies 128-bit MD5 hashes, as described in RFC1321 [66].A high level

description of the source code is provided in Appendix A of this dissertation.

72

4.2.1 Server

Once it is compiled, the server can be started by from the server's folder

by executing the following command:

./PolicyServer <Port> <Secret Key>

Example: ./PolicyServer 12345 SeCrEtKeY

The server software requires two input parameters, and they are explained

next:

<Port>: TCP port in which the server is going to start listening to new

clients.

<Secret Key>: The secret key used in the MD5 hash function to secure

the server-client communication.

After the server has sent the Client-Accept (CAT) message to the client, in

the event of policy modification, the policy decision control server sends an

unsolicited Decision (DEC) message and pushes the modified or new policy to the

client. Alternatively, if the client is configured with a periodic check timer, it

waits for a Request (REQ) message from the client. Upon the receipt of the

Request (REQ) message, it checks to see if the reported client version number of

the policy matches the server’s, and either sends a Decision (DEC) message with

the newer policy file, or sends a Decision (DEC) message without the file. Figure

12 depicts the process.

73

Figure 12 Server’s Flow Chart

4.2.2 Client

Once the server is up and running, the client can be started by executing

the PolicyClient program from the client folder, as illustrated by the example

below:

./PolicyClient <Server-IP> <Server-Port> <Client-

ID> <Secret Key> [Timer]

Example: ./PolicyClient 10.168.255.144 12345

router3 SeCrEtKeY 3600

The PolicyClient program expects the following parameters:

74

<Server-IP>: The IP of the server with which the client is going to create

the connection. This is the IP address of the server from the previous section.

<Server-Port>: The TCP port on the server where the connection should

be created. This is also the port number specified in the previous section.

<Client-ID>: This is the client role set by the device operator; it should be

a string of letters with an optional ending number. It is used by the server for

admission control, and for distributing the matching policy to the client.

<Secret Key>: This is the secret key used in the MD5 hash function to

secure the communication between the client and the server. It must be the same

as the Secret Key of the server.

[Timer]: This is an optional parameter; it is an integer between 0 and

2147483647, measured in seconds. If set, the client will wait this amount of

seconds to check with the server to see if there are any updates to the policy file.

If it is not set, the client will only listen for the server updates. This mechanism is

a second assurance that the client will always have the most recent copy of the

device role policy.

After receiving a Client Accept (CAT) message from the policy decision

control server, the policy client then sends a Request (REQ) message to the

server. The server then sends a Decision (DEC) message with or without the

policy file, depending on whether the REQ message contained a policy version or

not. Otherwise, the policy client waits for an unsolicited Decision (DEC) message

from the server. Or if a periodic timer is configured, it reports the existing policy

75

version number to the server. If an unsolicited Decision (DEC) message is

received, the client saves the policy files and logs the previous version to the logs

file, then confirms the receipt of the policy by sending a Report (RPT) message to

the server. During the configured periodic check, the client checks to see whether

it has a policy or not. If not, it sends a Request (REQ) message to the server and

the server replies by sending a Decision (DEC) message with the policy file. If a

policy file already exists on the policy client then the version number is reported

to the decision control server. Figure 13 depicts the client’s message flow.

Figure 13 Client Flow Chart

76

4.2.3 Policy Exchange Protocol

In the real world, a protocol often refers to code of conduct or procedure,

or to a system of rules to be followed in formal certain situations. In diplomatic

exchange, for example, diplomats must follow certain rules of ceremony and form

to ensure that they communicate effectively and without coming into

conflict [67].

In networking, protocols define how communication is accomplished

between two or more devices. They describe the format for transmitting data

between the devices and ensuring that all the devices on a network or

internetwork agree about how various actions must be performed in the total

communication process.

In the context of our research, the client/server approach allowed us to

prototype the client and the server components of the protocol in parallel. The

independent nature of the model is especially evident when a need arises to

change, modify or upgrade either side of the code. What follows is an explanation

of the message format and message types and their associated codes:

The protocol is based on the following types of messages: OPEN, CAT,

CC, REQ, DEC and RPT.

4.2.4 Message Types and Exchange

OPEN: When the client establishes its connection with the policy server,

either for the first time or after a communication interruption, it sends an OPEN

message to the policy server. The client role is encoded within this message, and

77

the policy decision control server performs admission control by either accepting

or rejecting the connection. The connection is accepted if the client role is defined

on the server, and rejected if no such role is found.

CAT: This message is sent from server to the client in response to the

OPEN message. The Client Accept (CAT) is sent if the server finds a matching

role for the client encoded in the OPEN message.

CC: The Client Close message is sent from the server to the client, and is

part of the admission control performed by the policy decision control server. It is

also sent in response to the OPEN message, but only if the server does not find a

matching policy.

REQ: The Request message is sent from the policy client to the policy

decision control server. It includes an encoded version number if a policy already

exists on the client.

DEC: The Decision message is always sent from the server to the client.

There are two types: a regular DEC in response to a REQ message from the client,

and an unsolicited DEC when a policy change occurs on the server.

The REQ message received from the client may or may not include a

policy version number. If it does, then the server performs a comparison to its

own policy version number and pushes the newer policy if it has one. If not, it

informs the client that the policy is the same. In addition, whenever a change

occurs to the version number on the server, the server immediately initiates an

78

unsolicited DEC message to the client and pushes the modified policy, thus

ensuring policy consistency.

RPT: the client uses the Report message to acknowledge that the policy

file was received from the server.

Figure 14 below shows a successful admission after the client sends an

OPEN message and receives a Client Accept (CAT) message from the server.

Figure 14 Client/Server Successful Admission

In Figure 15, we show a server denying a client admission by sending a

CC message to the client in response to an unmatched policy role on the server.

79

Figure 15 Client/Server Denied Admission

Figure 16 represents a DEC message normal communication cycle for a

successfully admitted client.

80

Figure 16 Client/Server Normal Cycle

Figure 17 illustrates the concept of Unsolicited DEC, where the policy is

changed and the server synchronizes the policy with all affected clients.

Figure 17 Unsolicited Message Triggered

81

4.2.5 Message Format

The messages described next are the fundamental unit of information

responsible for transporting the message types described in the former section.

They can be a fixed size or variable sizes, depending on the message and the data

being transported. Regardless of size, each message consists of four main parts:

version, flag, OP code, and client type.

A message length is added when an object is being transported. In

addition, all messages have an MD5 hash code attached to them for added

security. Figure 18 below illustrates the concept.

Figure 18 Message Format

The Version in the message header always has a value of 1 assigned to it,

and the Flag field can be either 0x0 for a solicited message or 0x1 for an

82

unsolicited message, as explained earlier in the previous section. The OP Code

represents the message type. The client type has two values assigned for now,

0x0000 for a server and 0x0001 for a UNIX client, However, with a 16-bit field

we have the option to code up to 216, or 65,536, different types of networking

devices. Table 4 lists the message header fields and their values.

Table 4 Message Header Fields and Values

Field Value

Version (4 bits)

 0x1 Always 1

Flag (4 bits)

 0x0 For solicited messages

0x1 For unsolicited messages

OP Code (1 byte)

 0x01 Request message (REQ)

0x02 Decision message (DEC)

0x03 Report message (RPT)

0x06 OPEN message (OPEN)

0x07 Accept Client message (CAT)

0x08 Close Client message (CC)

Client Type (2 bytes)

 0x0000 For Server

0x0001 For Unix Client

The message length field is indicated when one or more objects are

present. It represents the length of all the objects plus 4 bytes of the length of

itself. For each object inside the common header, we have the following fields

specified in Figure 19.

83

Figure 19 Object Header Format

The length field is a two-bytes field and represents the total object length,

and the object field is a two-byte field representing the type of the object.

Currently, we have three different objects defined, but with a two-byte field we

have an open window for further development and enhancement of this protocol.

Table 5 lists the different object types currently defined.

Table 5 Object Header Fields and Values

Field Value

Object Type (2 bytes)

 0x0001 Policy Version

0x0002 Policy File

0x0003 RPT status

The hash key is added to all message exchanges to ensure the integrity of

the transmitted messages. The client and the server share a common configurable

secret key that allows them to calculate the hash. To ascertain integrity, the

receiver calculates the hash of the received message and compares it to the

received hash. If the hash is the same, the message is accepted. Otherwise, a

mismatch indicates tampering.

84

The MD5 message-digest algorithm used in these messages is a widely-

used cryptographic hash function producing a 128-bit (16-byte) hash value,

typically expressed in text format as a 32 digit hexadecimal number. MD5 was

designed by Ron Rivest in 1991 to replace an earlier hash function, and it has

been utilized in a wide variety of cryptographic applications to verify data

integrity [66]. Figure 20 depicts the hash code header attached to the message.

Figure 20 Hash Code Header

4.3 Example Scenarios

The purpose of this research is to present a model for automated policy

compliance and change detection in data networks. One of the principal

components of the proposed model is the policy exchange protocol between the

policy decision control server and the policy client. One of the main goals of the

policy exchange process is the distribution and maintainability of the policy. We

need to guarantee not only secure policy delivery by the policy decision control

server to the policy clients, but also that any further changes in the policy will be

immediately detected and propagated to all affected policy clients.

In this section, we present plausible scenarios for the client/server

exchange, from connection initiation to admission control by the policy decision

85

control server to policy exchange and reporting. This research specifically covers

the following examples:

1. Unknown client role

2. Known client role, no policy stored

3. Known client role with existing policy with the same version

number

4. Know client role with older existing policy

5. Know client role with newer existing policy

6. The server has a newer policy

7. Periodic checks

4.3.1 Unknown Client Role

For this test scenario, we will demonstrate the exchange of the OPEN and

the Client Close (CC) message. Recall that the CC message is sent from the

policy decision control server to the policy client in the event of admission

rejection due to an unknown policy client role.

We start by running the PolicyServer, then by starting the client's

PolicyClient software. The PolicyServer startup process is shown in Figure 21.

The PolicyServer command is entered, followed by a port number (12345) and a

secret key for the MD5 hash calculation (secret123).

86

Figure 21 Starting the PolicyServer

The PolicyClient is started as captured in figure 22 by entering the

PolicyClient command, followed by the IP address of the PolicyServer

(10.168.255.144), then by the port number (12345), the device role type

(Wireless-Router), and finally the MD5 secret key (secret123).

Figure 22 Starting the PolicyClient

To establish the TCP session between the policy client and the policy

decision control server, first the server checks for a matching port and secret key

parameters. In the event of a mismatch in either of the two parameters, the

connection is terminated. However, if successful, the policy client starts the policy

exchange process by sending an OPEN message to the policy decision control

87

server. The OPEN message contains the policy client role. In this test scenario the

rule is set to “Wireless-Router.”

Figure 23, Portrays a scenario in which, after the policy client has made

the connection, it sends an OPEN message to the server and waits for a Client

Close (CC) or a Client Accept (CAT) message in return.

root@Client:~/Client# ./PolicyClient 10.168.255.144 12345 Wireless-Router

secret123

Connecting to the server.

hashBufferKey::buffer: <106010001801401576972656c6573732d526f757465720>

hashBufferKey::buffer_temp:

<106010001801401576972656c6573732d526f757465720736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: a8759d210a4a2e9861e8e3948f50f692

Sending OPEN request: <10 6 0 1 0 0 0 18 0 14 0 1 57 69 72 65 6c 65 73 73

2d 52 6f 75 74 65 72 0 61 38 37 35 39 64 32 31 30 61 34 61 32 65 39 38 36

31 65 38 65 33 39 34 38 66 35 30 66 36 39 32 >

Waiting for reply. Expecting CAT or CC.

Figure 23 Client Is Sending an OPEN Message

88

The corresponding states expected on the policy decision control server

side are as follows: The server receives the connection request from the client and

waits for an OPEN message. The policy decision control server examines the

reported policy client’s role in the OPEN message and checks for a matching

policy.

In Figure 24, the server has received Client-ID 'Wireless-Router' and

checks for a matching policy, which in this test scenario is not defined on the

server. Therefore, the policy decision control server sends a Client Close (CC)

message to the policy client.

89

New Client!

Waiting for query. Expecting OPEN.

read_policyPacket::Message-length: 18

hashBufferKey::buffer: <106010001801401576972656c6573732d526f757465720>

hashBufferKey::buffer_temp:

<106010001801401576972656c6573732d526f757465720736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: a8759d210a4a2e9861e8e3948f50f692

ParsePolicy::isAuthentic::hashGenerated:

<a8759d210a4a2e9861e8e3948f50f692>

ParsePolicy::isAuthentic::hashReceived :

<a8759d210a4a2e9861e8e3948f50f692>

Successfully authenticated.

OPEN expected: <10 6 0 1 0 0 0 18 0 14 0 1 57 69 72 65 6c 65 73 73 2d 52

6f 75 74 65 72 0 61 38 37 35 39 64 32 31 30 61 34 61 32 65 39 38 36 31 65

38 65 33 39 34 38 66 35 30 66 36 39 32 >

Client ID: Wireless-Router

Looking in file: modem.txt

Finding Device type in: modem.txt

Looking in file: router.txt

Finding Device type in: router.txt

Looking in file: office.txt

Finding Device type in: office.txt

Policy file for Wireless-Router not found.

hashBufferKey::buffer: <108010000>

hashBufferKey::buffer_temp: <108010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: fb4cb66f307e45e940d1b608190b6761

Sending CC: <10 8 0 1 0 0 0 0 66 62 34 63 62 36 36 66 33 30 37 65 34 35

65 39 34 30 64 31 62 36 30 38 31 39 30 62 36 37 36 31 >

Figure 24 Server Sends CC after Receiving Unknown Role

Figure 25 illustrates the policy client's receiving the Client Close (CC)

message and immediately terminating its TCP session to the policy decision

control server.

90

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <108010000>

hashBufferKey::buffer_temp: <108010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: fb4cb66f307e45e940d1b608190b6761

ParsePolicy::isAuthentic::hashGenerated:

<fb4cb66f307e45e940d1b608190b6761>

ParsePolicy::isAuthentic::hashReceived :

<fb4cb66f307e45e940d1b608190b6761>

Successfully authenticated.

Packet received: <10 8 0 1 0 0 0 0 66 62 34 63 62 36 36 66 33 30 37 65 34

35 65 39 34 30 64 31 62 36 30 38 31 39 30 62 36 37 36 31 >

hashBufferKey::buffer: <108010000>

hashBufferKey::buffer_temp: <108010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: fb4cb66f307e45e940d1b608190b6761

ParsePolicy::isAuthentic::hashGenerated:

<fb4cb66f307e45e940d1b608190b6761>

ParsePolicy::isAuthentic::hashReceived :

<fb4cb66f307e45e940d1b608190b6761>

SUCCESSFULLY AUTHENTICATED!!!!

CC received. The client is shutting down...

Figure 25 The Policy Client Receives CC Message

Now let us examine and analyze the data in the message and see how they

line up with the message header format discussed in section 4.2.5 Message

Format.

From Figure 23, we see that the OPEN message contains the following:

Sending OPEN request: <10 6 0 1 0 0 0 18 0 14 0 1 57

69 72 65 6c 65 73 73 2d 52 6f 75 74 65 72 0 61 38 37

35 39 64 32 31 30 61 34 61 32 65 39 38 36 31 65 38 65

33 39 34 38 66 35 30 66 36 39 32 >

Figure 26, shows the bits layout based on the message format discussed

earlier.

91

Figure 26 OPEN Message Layout

We also captured in Figure 27 the same message format using the message

capture utility Wireshark.

Figure 27 OPEN Message from Wireshark

92

Next, we explore the captured message from the server side. Figure

24Figure 24, has the following data:

Sending CC: <10 8 0 1 0 0 0 0 66 62 34 63 62 36 36 66

33 30 37 65 34 35 65 39 34 30 64 31 62 36 30 38 31 39

30 62 36 37 36 31 >

Figure 28 lays out the bits for the Client Close (CC) message captured

from the server side. It is also worth noting that the calculated hash key is

identical on both client and server.

Figure 28 CC Message Layout

4.3.2 Known Client Role, No Policy Stored

This example scenario is different from the last in that the policy client

role is known to the policy decision control server. Therefore, this time we expect

the policy decision control server’s admission control process to send a Client

93

Accept (CAT) message to the policy client, then initiate a policy file download

after sending a DEC message. Finally, the policy client should confirm the receipt

of the policy file by sending an RPT message back to the policy decision control

server.

root@Client:~/Client# ./PolicyClient 10.168.255.144 12345 office-client1

secret123

Connecting to the server.

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

Sending OPEN request: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63

6c 69 65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31

38 37 33 63 36 30 36 32 32 37 35 39 63 33 >

Waiting for reply. Expecting CAT or CC.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

Successfully authenticated.

Packet received: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38

37 31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

SUCCESSFULLY AUTHENTICATED!!!!

CAT received.

Figure 29 OPEN, CAT, DEC and RPT Message Exchange

From Figure 29, we see that the policy client sent an OPEN message to the

policy decision control server using the client role 'office-client1' and waited for a

94

reply from the server, expecting a Client Close (CC) message or a Client Accept

(CAT) message. After receiving the OPEN message, the policy decision control

server checks to see if it has a matching policy for the client role “office-client1.”

In this test case, it finds a policy called “office.txt”, and sends the policy client a

Client Accept (CAT) message.

Figure 30, also shows that the policy client has received a CAT from the

policy decision control server.

The message exchange from the policy decision control server side is

depicted in Figure 30.

New Client!

Waiting for query. Expecting OPEN.

read_policyPacket::Message-length: 17

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

ParsePolicy::isAuthentic::hashGenerated:

<e39b1526ed57cd5051873c60622759c3>

ParsePolicy::isAuthentic::hashReceived :

<e39b1526ed57cd5051873c60622759c3>

Successfully authenticated.

OPEN expected: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63 6c 69

65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31 38 37

33 63 36 30 36 32 32 37 35 39 63 33 >

Client ID: office-client1

Looking in file: modem.txt

Finding Device type in: modem.txt

Looking in file: router.txt

Finding Device type in: router.txt

Looking in file: office.txt

Finding Device type in: office.txt

Policy file for this client: office.txt

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

Sending CAT: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38 37

31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

95

Waiting for an event...

Figure 30 policy decision control server Message Exchange

As detailed in chapter 3 and 4 of this dissertation, once the policy client

receives the Client Accept (CAT) message from the policy decision control

server, it is ready to send the Request (REQ) message. In this scenario, our policy

client does not hold a previous policy, so it sends the Request (REQ) message

without attaching a policy version number and expects a Decision (DEC) message

from the server, which will initiate the policy file download process.

Figure 31, shows the policy client sending a Request (REQ) message to

the policy decision control server and receiving a Decision (DEC) message policy

decision control server in reply, followed by a secure policy file download from

the server using MD5 for file integrity.

--- Timer ---

hashBufferKey::buffer: <101010000>

hashBufferKey::buffer_temp: <101010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 3905545f31ac0da0add88f3967db92d7

Sending REQ: <10 1 0 1 0 0 0 0 33 39 30 35 35 34 35 66 33 31 61 63 30 64

61 30 61 64 64 38 38 66 33 39 36 37 64 62 39 32 64 37 >

Waiting for reply. Expecting DEC.

read_policyPacket::Message-length: 9

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

ParsePolicy::isAuthentic::hashGenerated:

<af69fd8c2dacf5e33c67ae0d7258cbb0>

ParsePolicy::isAuthentic::hashReceived :

<af69fd8c2dacf5e33c67ae0d7258cbb0>

Successfully authenticated.

DEC received: <10 2 0 0 0 0 0 9 0 5 0 2 0 61 66 36 39 66 64 38 63 32 64

61 63 66 35 65 33 33 63 36 37 61 65 30 64 37 32 35 38 63 62 62 30 >

hashBufferKey::buffer: <10200000905020>

96

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

ParsePolicy::isAuthentic::hashGenerated:

<af69fd8c2dacf5e33c67ae0d7258cbb0>

ParsePolicy::isAuthentic::hashReceived :

<af69fd8c2dacf5e33c67ae0d7258cbb0>

SUCCESSFULLY AUTHENTICATED!!!!

ReceiveFile::Starting to download file...

ReceiveFile::Size of file: 1032

ReceiveFile::rcv_Hashcode: 0e5355d9ba55a26169c859b849c15282

ReceiveFile::FILE SUCCESSFULLY AUTHENTICATED

ReceiveFile::Download completed
Writing log

Figure 31 Policy Client REQ Message Sent

Now let us examine the message exchange from the server side. We notice

in Figure 32 that the policy decision control server has received a Request (REQ)

message from the policy client and that the message does not contain a policy

version number. Therefore the policy decision control server sends the matching

policy file, office.txt, to the policy client.

--- Client Request ---

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <101010000>

hashBufferKey::buffer_temp: <101010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 3905545f31ac0da0add88f3967db92d7

ParsePolicy::isAuthentic::hashGenerated:

<3905545f31ac0da0add88f3967db92d7>

ParsePolicy::isAuthentic::hashReceived :

<3905545f31ac0da0add88f3967db92d7>

Successfully authenticated.

REQ expected: <10 1 0 1 0 0 0 0 33 39 30 35 35 34 35 66 33 31 61 63 30 64

61 30 61 64 64 38 38 66 33 39 36 37 64 62 39 32 64 37 >

No policy received. Sending policy file.

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

PolicyServer::DownloadPolicy::Sending file...

Checking file: <office.txt>

SendFile::Size of file: 1032 bytes

SendFile::snd_Hashcode: 0e5355d9ba55a26169c859b849c15282 bytes

97

Waiting for query. Expecting RPT.

Figure 32 policy decision control server Sending Policy File

Once again, we observe in the message exchange that the calculated hash

code used to ensure file integrity is the same on both the sender and receiver

sides, as depicted in Figure 33.

policy decision control server side

Checking file: <office.txt>

SendFile::Size of file: 1032 bytes

SendFile::snd_Hashcode: 0e5355d9ba55a26169c859b849c15282 bytes

Policy Client side

ReceiveFile::Starting to download file...

ReceiveFile::Size of file: 1032

ReceiveFile::rcv_Hashcode: 0e5355d9ba55a26169c859b849c15282

ReceiveFile::FILE SUCCESSFULLY AUTHENTICATED

ReceiveFile::Download completed

Figure 33 Hash Code Matching

Finally, we witness the policy client sending a Report (RPT) message to

the policy decision control server, confirming the receipt of the policy file. Figure

34 depicts the RPT message sent to the server.

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 34 RPT Message Sent

98

We also confirm on the policy decision control server the receipt of the

RPT message from the policy client as show in Figure 35.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...

Figure 35 RPT Message Received

4.3.3 Known Client Role with Existing Policy with the Same Version

Number

In this example case scenario, we will examine the message exchange

between the client whose role already has been defined on the policy decision

control server, and which already has an existing policy with the same version

number as the policy decision control server’s. This scenario could occur if the

policy client had a previous session with the policy decision control server and,

for reasons discussed in Chapter 3, the TCP session was severed. It could also

occur if the policy was copied manually to the policy client.

After establishing the TCP connection with the policy decision control

server, the policy client sends an OPEN message containing its device role and

waits for a Client Close (CC) or Client Accept (CAT) message from the policy

99

decision control server. For this example, the device role is 'office-client1.' Figure

36 shows the captured OPEN message exchange.

root@Client:~/Client# ./PolicyClient 10.168.255.144 12345 office-client1

secret123

Connecting to the server.

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

Sending OPEN request: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63

6c 69 65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31

38 37 33 63 36 30 36 32 32 37 35 39 63 33 >

Waiting for reply. Expecting CAT or CC.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

Successfully authenticated.

Packet received: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38

37 31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

SUCCESSFULLY AUTHENTICATED!!!!

CAT received.

Figure 36 Client OPEN Sent

100

Upon receiving the OPEN message from the policy client, the policy

decision control server preforms the admission control function by comparing the

reported client role in the OPEN message to the known policy decision control

server client roles.

In Figure 37, the policy decision control server finds a match, sends a

Client Accept (CAT) message and waits for a Request (REQ) message from the

policy client.

New Client!

Waiting for query. Expecting OPEN.

read_policyPacket::Message-length: 17

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

ParsePolicy::isAuthentic::hashGenerated:

<e39b1526ed57cd5051873c60622759c3>

ParsePolicy::isAuthentic::hashReceived :

<e39b1526ed57cd5051873c60622759c3>

Successfully authenticated.

OPEN expected: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63 6c 69

65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31 38 37

33 63 36 30 36 32 32 37 35 39 63 33 >

Client ID: office-client1

Looking in file: modem.txt

Finding Device type in: modem.txt

Looking in file: router.txt

Finding Device type in: router.txt

Looking in file: office.txt

Finding Device type in: office.txt

Policy file for this client: office.txt

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

Sending CAT: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38 37

31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

Waiting for an event...
Figure 37 CAT Message Sent

101

After receiving the Client Accept (CAT) message, the policy client is now

ready to send its Request (REQ) message. Since it already has an existing client

policy, it encodes the policy file version number inside the REQ message and

awaits a Decision (DEC) message from the policy decision control server.

Figure 38, shows the REQ message with the reported version number, and

Figure 39 shows the same information using the message capture utility

Wireshark, including the MD5 hash “f43d317bc91f81eb552780c35be11227”

Policy file exists. Version: %version 3.394m

hashBufferKey::buffer: <1010100018014012576657273696f6e20332e3339346d0>

hashBufferKey::buffer_temp:

<1010100018014012576657273696f6e20332e3339346d0736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: f43d317bc91f81eb552780c35be11227

Sending REQ: <10 1 0 1 0 0 0 18 0 14 0 1 25 76 65 72 73 69 6f 6e 20 33 2e

33 39 34 6d 0 66 34 33 64 33 31 37 62 63 39 31 66 38 31 65 62 35 35 32 37

38 30 63 33 35 62 65 31 31 32 32 37 >

Waiting for reply. Expecting DEC
Figure 38 REQ with Version Number

Figure 39 Wireshark Capture REQ with Version Number

102

The policy decision control server receives the Request (REQ) message

with the client’s policy version number and compares it to its stored policy for

that device role. In our test case, the policy version number is the same, therefore

the server sends a Decision (DEC) message to the policy client and expects to see

a confirmation from the policy client by receiving a Report (RPT) message. This

exchange is illustrated in Figure 40.

read_policyPacket::Message-length: 18

hashBufferKey::buffer: <1010100018014012576657273696f6e20332e3339346d0>

hashBufferKey::buffer_temp:

<1010100018014012576657273696f6e20332e3339346d0736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: f43d317bc91f81eb552780c35be11227

ParsePolicy::isAuthentic::hashGenerated:

<f43d317bc91f81eb552780c35be11227>

ParsePolicy::isAuthentic::hashReceived :

<f43d317bc91f81eb552780c35be11227>

Successfully authenticated.

REQ expected: <10 1 0 1 0 0 0 18 0 14 0 1 25 76 65 72 73 69 6f 6e 20 33

2e 33 39 34 6d 0 66 34 33 64 33 31 37 62 63 39 31 66 38 31 65 62 35 35 32

37 38 30 63 33 35 62 65 31 31 32 32 37 >

The client has an updated version.

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

Sending DEC: <10 2 0 1 0 0 0 0 35 37 39 32 39 38 34 65 31 39 34 35 36 32

62 38 33 64 30 62 39 65 61 32 63 37 30 36 39 30 30 34 >

Waiting for query. Expecting RPT.

Figure 40 DEC Message Sent

The fact that the server sent the Decision (DEC) message without

initiating a download process informs the policy client that it has the most recent

policy file. Therefore, the policy client completes the exchange by sending a

103

Report (RPT) message to the policy decision control server confirming the receipt

of the DEC message. Figure 41 details the exchange.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

ParsePolicy::isAuthentic::hashGenerated:

<5792984e194562b83d0b9ea2c7069004>

ParsePolicy::isAuthentic::hashReceived :

<5792984e194562b83d0b9ea2c7069004>

Successfully authenticated.

DEC received: <10 2 0 1 0 0 0 0 35 37 39 32 39 38 34 65 31 39 34 35 36 32

62 38 33 64 30 62 39 65 61 32 63 37 30 36 39 30 30 34 >

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

ParsePolicy::isAuthentic::hashGenerated:

<5792984e194562b83d0b9ea2c7069004>

ParsePolicy::isAuthentic::hashReceived :

<5792984e194562b83d0b9ea2c7069004>

SUCCESSFULLY AUTHENTICATED!!!!

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 41 Client Receives a DEC and Sends RPT message

Finally, Figure 42 shows the RPT message received by the policy decision

control server.

Waiting for query. Expecting RPT.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

104

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...

Figure 42 RPT Received by the Server

4.3.4 Known Client Role with Older Existing Policy

Now let us explore what happens if the policy client has a policy older

than what is stored on the policy decision control server. This condition could

occur if the policy client was offline during the last policy file update, or due to a

failed update attempt by the server. The newer policy detection may occur on

reconnect, or during the configured client periodic check as described in Chapter

3. In either case, the message exchange process between the policy client and the

policy decision control server is the same.

For our example, the client office-client1 has a policy file with version

3.4, and the policy decision control server has version 3.5 for the office-client

device role. As described earlier, the policy client starts by sending an OPEN

message with its device role office-client1 encoded within the message, and waits

for the server to initiate its admission control process.

In Figure 43, we observe that the client has sent and OPEN message and

in return has received a Client Accept (CAT) message from the policy decision

control server.

105

Connecting to the server.

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

Sending OPEN request: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63

6c 69 65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31

38 37 33 63 36 30 36 32 32 37 35 39 63 33 >

Waiting for reply. Expecting CAT or CC.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

Successfully authenticated.

Packet received: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38

37 31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

SUCCESSFULLY AUTHENTICATED!!!!

CAT received.

Figure 43 OPEN Sent, CAT Received

The next step is for the policy client to send a Request (REQ) message

encoded with the existing policy file version number. Again, the version number

is read from the policy file's mandatory variable '%version' in the file currently

located on the policy client.

In Figure 44, we see that the policy client has detected version 3.4, has

sent a Request (REQ) message, and is awaiting the policy decision control

server's Decision (DEC) message.

106

Policy file exists. Version: %version 3.4

hashBufferKey::buffer: <1010100015011012576657273696f6e20332e340>

hashBufferKey::buffer_temp:

<1010100015011012576657273696f6e20332e340736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: f1d0274816956d0dae1863f366428513

Sending REQ: <10 1 0 1 0 0 0 15 0 11 0 1 25 76 65 72 73 69 6f 6e 20 33 2e

34 0 66 31 64 30 32 37 34 38 31 36 39 35 36 64 30 64 61 65 31 38 36 33 66

33 36 36 34 32 38 35 31 33 >

Waiting for reply. Expecting DEC.

Figure 44 Version Number Sent Within DEC

The server in Figure 45 receives the Request (REQ) message and checks

the policy file associated with the office-client1 role, which happens to be

office.txt, and compares the file version number to that reported by the client in

the Request (REQ) message. Because the server’s version number is 3.5, which

higher than the policy client’s 3.4, the server sends the Decision (DEC) message

and pushes the policy file to the policy client, then awaits the Report (RPT)

message for confirmation.

read_policyPacket::Message-length: 15

hashBufferKey::buffer: <1010100015011012576657273696f6e20332e340>

hashBufferKey::buffer_temp:

<1010100015011012576657273696f6e20332e340736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: f1d0274816956d0dae1863f366428513

ParsePolicy::isAuthentic::hashGenerated:

<f1d0274816956d0dae1863f366428513>

ParsePolicy::isAuthentic::hashReceived :

<f1d0274816956d0dae1863f366428513>

Successfully authenticated.

REQ expected: <10 1 0 1 0 0 0 15 0 11 0 1 25 76 65 72 73 69 6f 6e 20 33

2e 34 0 66 31 64 30 32 37 34 38 31 36 39 35 36 64 30 64 61 65 31 38 36 33

66 33 36 36 34 32 38 35 31 33 >

The client has an older version. Sending updated one

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

PolicyServer::DownloadPolicy::Sending file...

Checking file: <office.txt>

107

SendFile::Size of file: 1029 bytes

SendFile::snd_Hashcode: 9b5406a463d031d322e79b241754799f bytes

Waiting for query. Expecting RPT.

Figure 45 DEC Sent, File Pushed

The policy client in Figure 46 as depicted has received the Decision

(DEC) message from the policy decision control server and started the file

download process.

read_policyPacket::Message-length: 9

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

ParsePolicy::isAuthentic::hashGenerated:

<af69fd8c2dacf5e33c67ae0d7258cbb0>

ParsePolicy::isAuthentic::hashReceived :

<af69fd8c2dacf5e33c67ae0d7258cbb0>

Successfully authenticated.

DEC received: <10 2 0 0 0 0 0 9 0 5 0 2 0 61 66 36 39 66 64 38 63 32 64

61 63 66 35 65 33 33 63 36 37 61 65 30 64 37 32 35 38 63 62 62 30 >

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

ParsePolicy::isAuthentic::hashGenerated:

<af69fd8c2dacf5e33c67ae0d7258cbb0>

ParsePolicy::isAuthentic::hashReceived :

<af69fd8c2dacf5e33c67ae0d7258cbb0>

SUCCESSFULLY AUTHENTICATED!!!!

ReceiveFile::Starting to download file...

ReceiveFile::Size of file: 1029

ReceiveFile::rcv_Hashcode: 9b5406a463d031d322e79b241754799f

ReceiveFile::FILE SUCCESSFULLY AUTHENTICATED

ReceiveFile::Download completed

Writing log

Figure 46 DEC Received, File Download Started

108

Once the file is downloaded successfully, the policy client sends a Report (RPT)

message informing the policy decision control server of the successful

completion. Otherwise, the server reinitiates the file upload. Sleeping.

Figure 47Figure 47 shows the policy client sending an RPT message

confirming the successful file download.

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 47 File Download Completed, Sending RPT

Finally, we show in Figure 48 the server's receipt of a Report (RPT)

message from the policy client, confirming the successful file download

operation.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...

Figure 48 RPT Received Confirming File Download

109

4.3.5 Known Client Role with Newer Existing Policy

In this section, we explore an example case scenario where the policy

client has a policy file newer than that stored on the policy decision control

server. One cause for this could be that the network administrator made changes

to the policy file locally instead of in a centralized location, such as the policy

decision control server or the repository.

Earlier in the Design Consideration section of this dissertation, we

discussed such a scenario and recommended a course of action for keeping the

newer policy file on the policy client, instead of overwriting it by the server’s

version. The assumption here is that the network administrator is aware of the

existence of the Automated Change Detection System in the network, but for

some reason has a compelling motivation to make changes locally. Hence, we

expect the server to honor the policy client's version of the policy by allowing it to

use the locally-stored version instead of the master version. This state will remain

as is until the policy decision control server’s version of the policy is higher than

the local policy.

From Figure 49, we see that the policy client has successfully received a

Client Accept (CAT) message.

Connecting to the server.

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

110

Sending OPEN request: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63

6c 69 65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31

38 37 33 63 36 30 36 32 32 37 35 39 63 33 >

Waiting for reply. Expecting CAT or CC.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

Successfully authenticated.

Packet received: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38

37 31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

SUCCESSFULLY AUTHENTICATED!!!!

CAT received.
Figure 49 OPEN Sent, CAT Received

After receiving the Client Accept (CAT) message from the policy decision

control server, the client sends a Request (REQ) message containing the version

number of the policy it currently has. This time version number is 3.6. Then it

waits for the Decision (DEC) message from the server, as seen in Figure 50.

Policy file exists. Version: %version 3.6

hashBufferKey::buffer: <1010100015011012576657273696f6e20332e360>

hashBufferKey::buffer_temp:

<1010100015011012576657273696f6e20332e360736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5bac5090eb291fb71cf13960f322b005

Sending REQ: <10 1 0 1 0 0 0 15 0 11 0 1 25 76 65 72 73 69 6f 6e 20 33 2e

36 0 35 62 61 63 35 30 39 30 65 62 32 39 31 66 62 37 31 63 66 31 33 39 36

30 66 33 32 32 62 30 30 35 >

Waiting for reply. Expecting DEC.

Figure 50 Awaiting DEC from Server

111

The policy decision control server receives the Request (REQ) message

and compares the reported policy version number with the stored version number.

It determines that the client has a newer version and sends a DEC message. Then,

since no file download action is required, the server simply waits for a Report

(RPT) message from the client, as seen in Figure 51.

read_policyPacket::Message-length: 15

hashBufferKey::buffer: <1010100015011012576657273696f6e20332e360>

hashBufferKey::buffer_temp:

<1010100015011012576657273696f6e20332e360736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5bac5090eb291fb71cf13960f322b005

ParsePolicy::isAuthentic::hashGenerated:

<5bac5090eb291fb71cf13960f322b005>

ParsePolicy::isAuthentic::hashReceived :

<5bac5090eb291fb71cf13960f322b005>

Successfully authenticated.

REQ expected: <10 1 0 1 0 0 0 15 0 11 0 1 25 76 65 72 73 69 6f 6e 20 33

2e 36 0 35 62 61 63 35 30 39 30 65 62 32 39 31 66 62 37 31 63 66 31 33 39

36 30 66 33 32 32 62 30 30 35 >

WARNING: The client has a newer version.

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

Sending DEC: <10 2 0 1 0 0 0 0 35 37 39 32 39 38 34 65 31 39 34 35 36 32

62 38 33 64 30 62 39 65 61 32 63 37 30 36 39 30 30 34 >

Waiting for query. Expecting RPT.

Figure 51 Client Has a Newer Version

The policy client receives the Decision (DEC) message from the policy

decision control server and sends a Report (RPT) message in reply, as seen in

Figure 52.

112

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

ParsePolicy::isAuthentic::hashGenerated:

<5792984e194562b83d0b9ea2c7069004>

ParsePolicy::isAuthentic::hashReceived :

<5792984e194562b83d0b9ea2c7069004>

Successfully authenticated.

DEC received: <10 2 0 1 0 0 0 0 35 37 39 32 39 38 34 65 31 39 34 35 36 32

62 38 33 64 30 62 39 65 61 32 63 37 30 36 39 30 30 34 >

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

ParsePolicy::isAuthentic::hashGenerated:

<5792984e194562b83d0b9ea2c7069004>

ParsePolicy::isAuthentic::hashReceived :

<5792984e194562b83d0b9ea2c7069004>

SUCCESSFULLY AUTHENTICATED!!!!

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 52 DEC Received, RPT Sent

Lastly, in Figure 53, the policy decision control server receives the Report

(RPT) message from the policy client, confirming the completion of the

transaction. The result of the entire transaction is that the client keeps its existing

policy file.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

113

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event..

Figure 53 RPT Received, Transaction Completed

4.3.6 The Server Has a Newer Policy

In Chapter 3, we noted that it might be common for the network

administrator to modify, edit, or delete some elements of an existing policy, or

even create a new one, via the policy management interface. In such a scenario,

we expect the policy decision control server to propagate the new policy to all

affected policy clients by initiating an unsolicited Decision (DEC) message. This

process is critical because it allows the network administrator to update one or

many policies and, with one stroke, propagate the new policies to many network

elements.

In this test scenario, we will show the functionality of server-side

propagation by modifying the existing office-client device policy on the server

and saving the policy file with a higher version, version 3.7.

Figure 54Figure 54 illustrates the use of the unsolicited DEC message by

the policy decision control server. The message is immediately generated after the

policy file has been saved, then the server pushes a 1,029-byte file to the policy

client and awaits a Report (RPT) message in the reply.

114

--- Send unSolicited DEC ---

hashBufferKey::buffer: <11200000905020>

hashBufferKey::buffer_temp: <11200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 8383a3135b62146e768239f9cef77432

PolicyServer::DownloadPolicy::Sending file...

Checking file: <office.txt>

SendFile::Size of file: 1029 bytes

SendFile::snd_Hashcode: ebf50ac4874dfa216dd8254fd98f8e82

Waiting for query. Expecting RPT.

Figure 54 Unsolicited DEC Sent

The policy client in Figure 55 receives the unsolicited DEC message,

accepts the file download, and compares the sent hash code with its calculated

hash for the file.

--- Unsolicited DEC ---

read_policyPacket::Message-length: 9

hashBufferKey::buffer: <11200000905020>

hashBufferKey::buffer_temp: <11200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 8383a3135b62146e768239f9cef77432

ParsePolicy::isAuthentic::hashGenerated:

<8383a3135b62146e768239f9cef77432>

ParsePolicy::isAuthentic::hashReceived :

<8383a3135b62146e768239f9cef77432>

Successfully authenticated.

DEC received: <11 2 0 0 0 0 0 9 0 5 0 2 0 38 33 38 33 61 33 31 33 35 62

36 32 31 34 36 65 37 36 38 32 33 39 66 39 63 65 66 37 37 34 33 32 >

hashBufferKey::buffer: <11200000905020>

hashBufferKey::buffer_temp: <11200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 8383a3135b62146e768239f9cef77432

ParsePolicy::isAuthentic::hashGenerated:

<8383a3135b62146e768239f9cef77432>

ParsePolicy::isAuthentic::hashReceived :

<8383a3135b62146e768239f9cef77432>

SUCCESSFULLY AUTHENTICATED!!!!

ReceiveFile::Starting to download file...

ReceiveFile::Size of file: 1029

ReceiveFile::rcv_Hashcode: ebf50ac4874dfa216dd8254fd98f8e82

ReceiveFile::FILE SUCCESSFULLY AUTHENTICATED

ReceiveFile::Download completed

Figure 55 Unsolicited DEC Received

115

Once the file download is completed, the policy client sends a Report

(RPT) message to the policy decision control server confirming the status. See

Figure 56.

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 56 RPT Sent to Policy Server

Figure 57 shows the server receiving the RPT message.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...
Figure 57 RPT Received From Client

The unsolicited DEC message functionality can also be used by the

network administrator to quickly revert any misbehaving policy. Imagine a

scenario in which a policy change is made, and soon after, an undesirable effect is

detected on the network. The administrator has the options to either roll back the

116

unwanted changes on the master policy file or simply load a new policy file.

Either way, the unstable state will quickly be reverted.

4.3.7 Periodic Checks

In this test case, we address what happens when the policy file is deleted

intentionally or unintentionally from the policy client.

In the earlier sections, we demonstrated different cases in which the policy

client receives new policy file from the policy decision control server, based

either on a REQ message sent by the client or on an unsolicited DEC message

generated by the policy decision control server in reaction to a policy file update

event. However, without periodic checks, the policy client is susceptible to being

without a valid policy file. This could happen due to intentional or unintentional

deletion of the policy file, or even due to faulty software and/or hardware. This is

because the policy client awaits an event to trigger a policy check or a policy

download, as explained above. If there is no triggering event, it goes into 'sleep'

mode after sending its RPT message. Meanwhile, the policy decision control

server also awaits an event after receiving the RPT message. Both states are

shown in Figure 58.

Policy Client side

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

policy decision control server side

117

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...
Figure 58 Waiting for an Event

To overcome this limitation, our system design allows the system

administrator to configure an optional periodic check interval parameter on the

policy client, measured in seconds, as detailed in section 4.2.2.

When this is enabled, the policy client sends the policy decision control

server a REQ message every configured interval, and the receiving server

examines the REQ message for an encoded version number. If none is found, or if

the encoded version number is lower than the server’s version number, then the

server replies with a DEC message, followed by a file download. Otherwise, only

a DEC message is sent from the server, and an RPT message is always sent from

the client to confirm. Figure 59 details this concept.

118

Figure 59 Client’s Periodic Check

To show how this works on our system, we configured our client with an

interval of 60 seconds. After receiving the CAT message from the policy decision

control server, the policy client sends a REQ message encoded with its policy file

version number.

Figure 60 shows the policy client sending version 3.7 and receiving a DEC

message from the server.

Client# ./PolicyClient 10.168.255.144 12345 office-client1 secret123 60

Connecting to the server.

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

119

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

Sending OPEN request: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63

6c 69 65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31

38 37 33 63 36 30 36 32 32 37 35 39 63 33 >

Waiting for reply. Expecting CAT or CC.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

Successfully authenticated.

Packet received: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38

37 31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

ParsePolicy::isAuthentic::hashGenerated:

<2f876e93366a8715e6871edc9e0bea0c>

ParsePolicy::isAuthentic::hashReceived :

<2f876e93366a8715e6871edc9e0bea0c>

SUCCESSFULLY AUTHENTICATED!!!!

CAT received.

--- Timer ---

Policy file exists. Version: %version 3.7

hashBufferKey::buffer: <1010100015011012576657273696f6e20332e370>

hashBufferKey::buffer_temp:

<1010100015011012576657273696f6e20332e370736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e90862bae963b159948980491dc5899f

Sending REQ: <10 1 0 1 0 0 0 15 0 11 0 1 25 76 65 72 73 69 6f 6e 20 33 2e

37 0 65 39 30 38 36 32 62 61 65 39 36 33 62 31 35 39 39 34 38 39 38 30 34

39 31 64 63 35 38 39 39 66 >

Waiting for reply. Expecting DEC.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

ParsePolicy::isAuthentic::hashGenerated:

<5792984e194562b83d0b9ea2c7069004>

ParsePolicy::isAuthentic::hashReceived :

<5792984e194562b83d0b9ea2c7069004>

Successfully authenticated.

DEC received: <10 2 0 1 0 0 0 0 35 37 39 32 39 38 34 65 31 39 34 35 36 32

62 38 33 64 30 62 39 65 61 32 63 37 30 36 39 30 30 34 >

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

ParsePolicy::isAuthentic::hashGenerated:

<5792984e194562b83d0b9ea2c7069004>

ParsePolicy::isAuthentic::hashReceived :

<5792984e194562b83d0b9ea2c7069004>

120

SUCCESSFULLY AUTHENTICATED!!!!

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 60 Client Configured with Periodic Interval

The corresponding messages on the server side, shown in Figure 61,

confirm the server's receipt of the REQ message with the most current policy file

version number.

root@PolicyServer:~/Server# ./PolicyServer 12345 secret123

Waiting for clients...

New Client!

Waiting for query. Expecting OPEN.

read_policyPacket::Message-length: 17

hashBufferKey::buffer: <1060100017013016f66666963652d636c69656e74310>

hashBufferKey::buffer_temp:

<1060100017013016f66666963652d636c69656e74310736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e39b1526ed57cd5051873c60622759c3

ParsePolicy::isAuthentic::hashGenerated:

<e39b1526ed57cd5051873c60622759c3>

ParsePolicy::isAuthentic::hashReceived :

<e39b1526ed57cd5051873c60622759c3>

Successfully authenticated.

OPEN expected: <10 6 0 1 0 0 0 17 0 13 0 1 6f 66 66 69 63 65 2d 63 6c 69

65 6e 74 31 0 65 33 39 62 31 35 32 36 65 64 35 37 63 64 35 30 35 31 38 37

33 63 36 30 36 32 32 37 35 39 63 33 >

Client ID: office-client1

Looking in file: modem.txt

Finding Device type in: modem.txt

Looking in file: client.txt

Finding Device type in: client.txt

Looking in file: router.txt

Finding Device type in: router.txt

Looking in file: office.txt

Finding Device type in: office.txt

Policy file for this client: office.txt

hashBufferKey::buffer: <107010000>

hashBufferKey::buffer_temp: <107010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 2f876e93366a8715e6871edc9e0bea0c

121

Sending CAT: <10 7 0 1 0 0 0 0 32 66 38 37 36 65 39 33 33 36 36 61 38 37

31 35 65 36 38 37 31 65 64 63 39 65 30 62 65 61 30 63 >

Waiting for an event...

--- Client Request ---

read_policyPacket::Message-length: 15

hashBufferKey::buffer: <1010100015011012576657273696f6e20332e370>

hashBufferKey::buffer_temp:

<1010100015011012576657273696f6e20332e370736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: e90862bae963b159948980491dc5899f

ParsePolicy::isAuthentic::hashGenerated:

<e90862bae963b159948980491dc5899f>

ParsePolicy::isAuthentic::hashReceived :

<e90862bae963b159948980491dc5899f>

Successfully authenticated.

REQ expected: <10 1 0 1 0 0 0 15 0 11 0 1 25 76 65 72 73 69 6f 6e 20 33

2e 37 0 65 39 30 38 36 32 62 61 65 39 36 33 62 31 35 39 39 34 38 39 38 30

34 39 31 64 63 35 38 39 39 66 >

The client has an updated version.

hashBufferKey::buffer: <102010000>

hashBufferKey::buffer_temp: <102010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 5792984e194562b83d0b9ea2c7069004

Sending DEC: <10 2 0 1 0 0 0 0 35 37 39 32 39 38 34 65 31 39 34 35 36 32

62 38 33 64 30 62 39 65 61 32 63 37 30 36 39 30 30 34 >

Waiting for query. Expecting RPT.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...

Figure 61 Server Replying with DEC, Waiting for an Event

After completing the first exchange above, the policy client waits for 60

seconds to begin repeating the process by sending a REQ message. However,

during the wait period we intentionally deleted the policy file on the client. Next,

we show what happens during the second periodic check.

122

--- Timer ---

hashBufferKey::buffer: <101010000>

hashBufferKey::buffer_temp: <101010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 3905545f31ac0da0add88f3967db92d7

Sending REQ: <10 1 0 1 0 0 0 0 33 39 30 35 35 34 35 66 33 31 61 63 30 64

61 30 61 64 64 38 38 66 33 39 36 37 64 62 39 32 64 37 >

Waiting for reply. Expecting DEC.

read_policyPacket::Message-length: 9

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

ParsePolicy::isAuthentic::hashGenerated:

<af69fd8c2dacf5e33c67ae0d7258cbb0>

ParsePolicy::isAuthentic::hashReceived :

<af69fd8c2dacf5e33c67ae0d7258cbb0>

Successfully authenticated.

DEC received: <10 2 0 0 0 0 0 9 0 5 0 2 0 61 66 36 39 66 64 38 63 32 64

61 63 66 35 65 33 33 63 36 37 61 65 30 64 37 32 35 38 63 62 62 30 >

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

ParsePolicy::isAuthentic::hashGenerated:

<af69fd8c2dacf5e33c67ae0d7258cbb0>

ParsePolicy::isAuthentic::hashReceived :

<af69fd8c2dacf5e33c67ae0d7258cbb0>

SUCCESSFULLY AUTHENTICATED!!!!

ReceiveFile::Starting to download file...

ReceiveFile::Size of file: 1029

ReceiveFile::rcv_Hashcode: ebf50ac4874dfa216dd8254fd98f8e82

ReceiveFile::FILE SUCCESSFULLY AUTHENTICATED

ReceiveFile::Download completed

Writing log

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

Sending RPT: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64 30

37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Sleeping.

Figure 62 Second Periodic Check, Client-Side

Figure 62 shows the policy client sending a REQ message, this time

without a policy file version number, and in return, receiving a DEC message,

followed by a file download.

The same is witnessed on the server side in Figure 63. The server is shown

receiving a REQ message, but without a policy version number. Therefore, it

123

sends the policy file. Then, after receiving the RPT message from the policy

client, it enters a waiting state.

--- Client Request ---

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <101010000>

hashBufferKey::buffer_temp: <101010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 3905545f31ac0da0add88f3967db92d7

ParsePolicy::isAuthentic::hashGenerated:

<3905545f31ac0da0add88f3967db92d7>

ParsePolicy::isAuthentic::hashReceived :

<3905545f31ac0da0add88f3967db92d7>

Successfully authenticated.

REQ expected: <10 1 0 1 0 0 0 0 33 39 30 35 35 34 35 66 33 31 61 63 30 64

61 30 61 64 64 38 38 66 33 39 36 37 64 62 39 32 64 37 >

No policy received. Sending policy file.

hashBufferKey::buffer: <10200000905020>

hashBufferKey::buffer_temp: <10200000905020736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: af69fd8c2dacf5e33c67ae0d7258cbb0

PolicyServer::DownloadPolicy::Sending file...

Checking file: <office.txt>

SendFile::Size of file: 1029 bytes

SendFile::snd_Hashcode: ebf50ac4874dfa216dd8254fd98f8e82 bytes

Waiting for query. Expecting RPT.

read_policyPacket::Message-length: 0

hashBufferKey::buffer: <103010000>

hashBufferKey::buffer_temp: <103010000736563726574313233>

hashBufferKey::password: secret123

hashBufferKey::md5_hash: 57125e33b634d0725baa326907a0a121

ParsePolicy::isAuthentic::hashGenerated:

<57125e33b634d0725baa326907a0a121>

ParsePolicy::isAuthentic::hashReceived :

<57125e33b634d0725baa326907a0a121>

Successfully authenticated.

Packet received: <10 3 0 1 0 0 0 0 35 37 31 32 35 65 33 33 62 36 33 34 64

30 37 32 35 62 61 61 33 32 36 39 30 37 61 30 61 31 32 31 >

Waiting for an event...

Figure 63 Second Periodic Check, Server-Side

During the next message exchange the client sends a REQ message, and

since it has a policy file, the version number of that file will be encoded within the

message. Then the whole process is repeated, guaranteeing that the policy client

will always have the most recent copy of the policy file.

124

4.4 Summary

This chapter detailed the requirements for implementing the server/client

components of the policy exchange system. It also detailed the policy exchange

process, and showed, in detail the messages types and formats used for

communications between the client and the server.

For illustration the chapter looked at various example scenarios and

illustrated the message type exchange between the systems, emphasizing the

outcome of each scenario.

In the first example we looked at an unknown device role to the server,

and show the admission control process by the server. The illustration showed,

when the server receives and OPEN message from an unknown client, the server

blocks admission by sending Client Close (CC) message from to the client.

Example 2 captured the interaction between a client whose role is known

to the server, but has no policy stored. This scenario for example occurs, when a

device is being connected to the network for the first time or starts without a

policy. The messages exchanged show that after admission the server pushed the

appropriate policy file to the client.

In example 3 we looked at a known client with an existing policy that

matches the version number of the policy stored on the server. After verification

of the device role and the policy version number, the policy control server made

decision to not update the client since both policies match. This matches expected

behavior.

125

In example 4 the client has a policy that is older than the server’s. After

admission control, the client sent its policy version number to the server. The

server deted the client’s outdated version and pushed the newer policy to client.

Scenario 5 illustrated the case, when the network administrator modifies,

edits, or deletes some elements of an existing policy, or even creates a new one,

via the policy management interface. We showed successfully that the modified is

immediately propagated from the server to all relevant devices.

In the final example, we illustrated the use of periodic checks to prevent a

client being without a policy state, e.g., due to accidental or malicious deletion.

When enabled, the periodic check triggered the policy client to send a REQ

message every 60 seconds and the receiving server examined the REQ message

for the encoded version number. When the same version number was reported the

server only acknowledges the message. However, when no policy was reported,

the server replied with a DEC message, followed by a policy file download.

In all, the chapter confirmed the concept of a reliable policy exchange

system, what follows is a detailed explanation of the policy enforcement system.

126

CHAPTER 5: IMPLEMENTAING AND TESTING THE RUNTIME

COMPLIANCE MANAGER

Key to our proposed Policy Compliance and Change Detection System is

the ability to identify policy violations when they occur, and more importantly to

make the system operator aware of these violations in real-time.

The Runtime Compliance Manager (RCM) is a local control module

running on the policy client. It is responsible to continuously monitoring the

network element configuration state, analyzing the current state and reporting

discrepancies when applicable. The RCM is invoked whenever the network

administrator enters the configuration state of the network element. The RCM

then monitors and analyzes the entered configuration commands and parses the

specified local policy to determine if there are any deviations from the desired

state. Furthermore, if the RCM module determines that the entered command

violates its operational or functional policy, the reporting module is called upon to

generate the appropriate alarming or reporting action. This ensures that the

network device is kept in compliance and that operators are notified in real-time.

This chapter explores the operation of the Runtime Compliance Manager

(RCM), and how the real-time feedback plays a crucial role in maintaining the

network elements in compliance. It also illustrates the different example

scenarios.

127

5.1 RCM Design, Requirements and Installation

The RCM works in conjunction with the Policy Exchange and

Management module, and relies on the downloaded policy file, a file called

policy.txt, to enforce the rules. However, it can also operate in stand-alone mode

as long as the system has a policy file to work with. This is because the policy file

contains all the rules needed to be enforced on the policy client running the RCM.

The RCM reads the rules and checks them against the configuration of the system.

If it finds any mismatch, it generates a warning to inform the operator of the

violation.

We implemented the RCM using standard C++ and assumed few of the Linux

configuration stanzas for monitoring. However; the RCM was designed with the

intention of adding new characteristics, in order to monitor in an easy way.

Figure 64Figure 64 conveys the basic system design: the RCM reads the

policy file policy.txt to parse out the rules and checks the different system

components for compliance. The system is examined against the policy be either a

system call requesting the data from the system’s kernel, or by comparing the data

stored in the specific configurations file.

128

Figure 64 RCM Design

5.1.1 System Requirements

The RCM is written in C/C++ for UNIX-like environments, high level of the

source code is provided in Appendix B of this research.

5.1.2 Installing a Running RCM

Once the source code (provided in Appendix B) has been compiled using

the make command, the next step is to execute the binary by writing the following

line:

./PolicyEnforcement

129

The first thing the RCM will do is the check for the 'policy.txt' file in the

same folder with the binary. If there is not a policy file, the code will wait until it

the policy file is detected. This file can be either manually copied to the policy

client or downloaded using the policy exchange and management system

described in Chapter 4.

Next, the RCM checks for compliance and prints an informational page

using stdout and syslog (more about stdout and syslog in section 5.1.2 Installing a

Running RCM). This information is independent, which means that by looking at

the last report, the system administrator or user can have a good understanding of

the current system’s compliance state and which rules are in conflict. To avoid

printing the same logs repeatedly in the stdout and in the syslog, the program has

the intelligence to recognize repeated warnings and avoid repeated messages.

In Figure 65 we illustrate the basic behavior of the program. In essence, it

reads the policies from the policy file and checks the monitored stanzas on the

policy client. If the client stanzas are in agreement with the policy, nothing

happens; but for each violated policy, a warning is generated in the stdout and in

the syslog.

130

Figure 65 RCM Flow Chart

The source files which make the RCM program run appropriately are

provided in Appendix B.

5.1.3 Logs

The logs play a central role in our automated compliance and change

detection system. They are the mechanisms to inform the system administrator or

the change owner of the policy violations when they occur.

The logs are displayed through the syslog and stdout. Syslog is a way for

network devices to send event messages to a logging server, or to the local

file [68]. On the development system, the logs are located in the /var/log/syslog

directory. Stdout is standardized stream of data, which consist of plain text that

131

can be sent to devices (e.g., display monitors or printers) or be further processed

by other programs [69]. Our implemntation directs the output to the screen.

The first thing to notice in the log is the first line. The first line specifies

whether the logs were generated because of a new policy file (“New Policy File

detected”) or a system change (“Machine Report”).

Let us look at the example in Figure 66 of the stdout log of the policy

enforcement:

<------------------- New Policy File detected ---------------->

#19-NetInt WARNING(address): 192.168.1.107 does not match (exclude).

#57-NTP WARNING(server): 0.rhel.pool.ntp.org Not found.

#67-NTP WARNING(server): 1.rhe2.pool.ntp.org Found (exclude).

#183-DNS WARNING(nameserver): 127.0.0.1 Found (exclude).

#184-DNS WARNING(nameserver): 127.0.0.1 Found (exclude).

<--->

Figure 66 New Policy File Detected

From the first line, we can tell that the report was generated because the

policy client has detected a new policy file. Then we have the specific details for

the warnings. First, the number at the beginning of each line corresponds to the

line number in the policy file. Following the line number, more details about the

source of the warning is shown.

The next example in Figure 67 shows a machine report generated by the RCM

due to a user-made system change that does not comply with the policy.

132

<---------------------- Machine Report ----------------------->

#19-NetInt WARNING(address): 192.168.1.107 does not match (exclude).

#20-NetInt WARNING(netmask): 255.255.255.0 does not match (exclude).

#56-NTP WARNING(server): 0.0.0.1 Not found. [Caused by system change]

<--->

Figure 67 Machine Report

The words “Machine Report” in the first line informs the administrator that the

log was generated due to a system change, not by a new policy file as seen in the

previous example. What follows is the same information as in the example before.

However; the line 56 message, “[Caused by system change],” reveals that the warning

was generated because the NTP server's file was modified.

5.2 Policy File Syntax

Much of section 3.4 Common Policy Language Formatof this dissertation

was devoted to the Common Policy Language used to represent the device

policies. In order for the RCM program to understand the written policies and

monitor the system appropriately, the file should follow several syntax rules. In

this section we will explain some of these rules, and how they apply to our

implementation.

In Figure 68, “NetworkInterface,” “NItag” and “DNS” are examples of

section names that can be used to distinguish different sections of the policy file.

It is worth mentioning that the first two lines are not used in the policy

enforcement process, as they are just the version and the device name, and those

parameters are irrelevant in this layer of the system enforcement. However, they

play a major role in the policy file exchange process described in Chapter 4.

133

Figure 68 Policy File Example

We have three kinds of blocks: Section, Conditional and If. Those are all

the kind of blocks that the proposed common policy language supports. Each

block starts with initialization parameters (init parameters) and ends with (closing

block statement) with its individual section name. This is important to keep in

mind for referencing different section blocks throughout the policy file.

In the Figure 68 example, the section block “NetworkInterface” uses

regular expression to express the permissible network interface IP addresses. The

example expects the network interface on the system, namely, eth0, to have an

address range of 100-255 in the first octet, 100-185 in the second, 1-155 in the

134

third, and 100-155 in the fourth octet. The subnet mask of the interface global

signal can hold any value. Thus, if the eth0 of the policy client is configured

within the specified range, then the policy client is in compliance with our policy.

Otherwise, it is not.

The conditional block NItag is a Boolean condition that evaluates to true

or false. In our example, the expression is true if the value of the eth0 subnet mask

is 255.255.255.0. The expression is used in conjunction with the if block.

The if block in our example expects the system DNS nameserver to be set

to 127.0.0.1 if, and only if, the conditional block is evaluated as false. In other

words, if the system’s eth0 subnet mask is not 255.255.255.0, and the DNS server

is not set to 127.0.0.1, then the RCM will throw a warning.

Now that we have seen the general structure of the policy file with its

blocks, let us get into the details of specifying each of them.

We start by explaining our implementation of the section block. To give

ourselves a wider range of test variables, we decided to monitor the following

functions: Interface variables, NTP, hostname, file system size limit (FSSL),

domain name system (DNS), secure shell (SSH), HOSTS file and shell

environment (ENV) variables. Table 6 shows all the monitored features. We will

use the table as a reference for all the possible ways to create the initialization

parameters (init-parameter) sentences of the section block:

135

Table 6 Section Block Parameters

Unlike any other language block defined in the Common Policy

Language, the section block has a special parameter called 'predefined keywords,'

and each of the currently defined keywords has a special meaning. They are

handled accordingly by the RCM. Table 7 describes the predefined keywords and

their meanings.

136

Table 7 Predefined Keywords

Predefined Keyword Meaning

Exact

When set, the entire content of this block is compared

with the policy client’s settings. If they are different, a

warning is displayed; otherwise, nothing happens.

Exclude

The RCM uses the 'exclude' keyword to check the

client’s configuration for the specified code block. If it

exists on the system, a warning is displayed. In other

words, the client should not have the section

configured.

Ignore
The RCM ignores and does not check the client for

this code section. Helpful for troubleshooting.

Table 8 summarizes all of the possible ways to create the init-parameter

sentences of a conditional block.

137

Table 8 Conditional Block Parameters

The conditional block requires a conditional identifier to be referenced by

the Common Policy Language, especially when writing the if block.

The if block in Table 9 it expects a Boolean condition. If the evaluated

condition returns true, then policies defined within the if block are compared to

the device’s configuration. The negation operator (Not) returns the opposite of the

given Boolean expression.

138

Table 9 If Block Parameters

5.2.1 Variables

Variables in the policy files are treated as global variables, which means

that they can be accessed in any part of the policy file. To access them, we insert

the variable name between percent signs (%), and when declared, the variable is

replaced by its value.

There are two kinds of variables: global-single and global-list. The

difference between them is:

1) A global-single variable holds only one value, while a global-list can

hold multiple variables.

139

2) When a global-list variable is declared and there is nothing assigned to

it, a warning will be displayed. On the other hand, with global-single,

nothing will happen and the variable will have a null value.

5.2.2 Printing Variables

The printing functionality was not specified in the Common Policy

Language specification described in section 3.4 of this dissertation. Rather, it was

added for the Linux environment as a troubleshooting tool.

By printing the values of the variables on the screen during the testing or

the troubleshooting phase, the operator is quickly able to verify if the policy is

operating as intended.

To use the printing functionality, the variables must be placed in the print

block, between the %section-start and %section-end. The following

example in Figure 69 illustrates the concept:

%section-start Exact PRINT

 %sin_NetworkInterface_add%

 %sin_NetworkInterface_net%

 %lst_NTP_serv%

 %sin_NTP_serv%

%section-end

Figure 69 Printing Block Example

140

As shown in the above example, the variables are placed between the %

signs. An undeclared variable returns white space.

5.3 Client-Monitored Features

The CRM can be tailored to monitor any networking device. However, as

explained in section 1.4 of this dissertation we are limited with our test

environment due to the proprietary nature of the systems available on the market.

We chose Linux for our proof of concept system because its open nature

provides ready access to system configurations. The Linux system servers and

only as an example to demonstrate the capabilities of the CRM. Principally, this

framework can be ported to any system or device.

In the following examples the CRM will monitor eight different features

on a Linux system. The features are explained next:

5.3.1 Network Interface

With the network interface feature, we are concerned with monitoring the

layer three protocol interface IP and the interface subnet mask, whether the

information was obtained by means of the dynamic host configuration protocol

(DHCP), or by static configuration.

The interface parameter in the Common Policy Language may be

expressed as a value, as a regular expression, or as a global-single variable. Table

10 shows the different configuration options.

141

Table 10 Network Interface Block

The following examples show the various ways to represent the interface

IP and subnet mask value:

Examples:

- address regex[100-255].regex[100-185].regex[1-155].regex[100-155]

- address 192.168.1.125

- netmask 255.255.255.0

- address %global-single IP_NetworkInterface_var%

- netmask %global-single Net_NetworkInterface_var%

The first example uses regular expression to represent the four octects of

the IP address; the second and the third use the absolute value of the IP and mask,

and the fourth and the fifth examples use global-single variables to represent the

IP and the mask. Recall that the global-single variable can have one and only one

value.

142

5.3.2 NTP

The network time protocol (NTP) provides a means for clients to

synchronize their clocks with a trusted time source using the TCP/IP protocol.

Once the protocol is installed on a Linux machine, it can be configured to

both synchronize with upstream servers and provide time services to other

machines on the local network.

Correct time reporting is crucial to some system functions, such as syslog,

which needs the correct time stamp for its system event reporting; and the DNS

server, which will not accept a zone transfer when the idea of time between the

master and the server is significantly different [70]. We thought it would be

important to monitor the NTP configuration to ensure that the time source servers

configured on our policy clients are authorized and trustworthy. Table 11

demonstrates the different NTP configuration options.

Table 11 NTP Block

143

The following examples show the various ways to configure the NTP server

variable.

Examples:

- server 192.168.1.3

- server 2.rhel.pool.ntp.org

- server %global-single sin_NTP_serv%

- server %global-list lst_NTP_serv%

The first example above assigns a dotted decimal value to the NTP server,

the second uses a hostname, the third uses a global-single value and the fourth

uses a global-list value. The difference between the global-single and the global-

list is that the global-single holds only one value for the parameter server, while

the global-list holds one or more values for the server.

5.3.3 Hostname

In a Linux operating system, a system's hostname usually has a

corresponding entry in the domain name system (DNS), and some services use the

hostname to identify the system that they are running on. If the administrator has

not set up a hostname during installation, one will be assigned to the

machine [71]. This is a not an issue for most system users. However, in controlled

or production environments, a managed hostname assignment plays a major role

in stability. This is particularly true for software that requires a valid fully

144

qualified domain name, or FQDN, for the hostname to be used by their licensing

verification systems.

Hostname is another system variable that we selected to monitor with our

compliance system. The hostname parameter is set either to a string or to a global-

single variable. Table 12 lists all the possible ways to write a monitor statement

for the hostname feature.

Table 12 Hostname Block

The following two examples illustrate the use of the parameters:

Examples:

- name Lab-Client

- name %global-single sin_Hostname_nam%

The first example uses a string that specifies the exact match of the

system’s hostname, and the second is a global-single variable that stores the

configured hostname.

145

5.3.4 File System Size Limit (FSSL)

The File System Size Limit (FSSL) feature monitors the amount of disk

space available on the file system containing each file name argument. The

feature relies on the Linux command df –h to evaluate the percentage of the disk

space used. For example, in Figure 70 the output the shows 41% of disk sda1's

space is in use.

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 20G 7.7G 12G 41% /

udev 241M 4.0K 241M 1% /dev

tmpfs 100M 756K 99M 1% /run

none 5.0M 0 5.0M 0% /run/lock

none 248M 76K 248M 1% /run/shm

Figure 70 FSSL Disk Usage Example

Our implementation of the FSSL block looks for the configured limit

value and compares the parameter to the actual disk usage. If it exceeds it, then

the RCM will generate a report. Table 13 shows how to write a monitor statement

for the FSSL feature.

146

Table 13 FSSL Block

 In the following examples, the limit refers to disk usage, and it can be

expressed as an integer or as a global-single variable.

Examples:

- limit 42

- limit %global-single sin_FSSL_lim%

5.3.5 DNS

The domain name system maps between hostnames and IP addresses and

has two components, a client side and a server side. The client side is our interest

for this implementation. It provides the ability to resolve names and addresses by

making requests to one or more DNS servers to obtain the IP address of a host.

Typically, several servers are configured on the client so that, should a

failure occur with a particular DNS server, other backup systems will respond to

the client request ([72], pp. 297). In Table 14, we show the nameserver

configuration which specifies that the DNS server can be expressed as an IP

147

address in dotted decimal notation or as either a global-single or a global-list

variable.

Table 14 DNS Block

The first example below displays the use of an IP address to represent the

DNS server. This is an exact match in our policy. The second example assumes

only one configured value, while the global-list example allows the system to

check for multiple entries for nameserver.

Examples:

- nameserver 127.0.0.1

- nameserver %global-single sin_dns_nams%

- nameserver %global-list lst_dns_nams%

5.3.6 SSH

The secure shell service (SSH) provides an encrypted communications

channel between two hosts for remote system access. This includes file copy and

terminal access for executing arbitrary commands on the remote system ([72], pp.

148

241). SSH has two components: a server program and a client program. For the

implementation and testing of our system, we will focus on the server side.

The server program listens to incoming SSH connection requests,

authenticates those requests, and provides access to the command line interface of

the system.

We installed OpenSSH on our test machines because OpenSSH is a free

implementation of the SSH protocol and is widely used and re-useable by

everyone under a BSD license [73].

Our SSH code block allows for the monitoring of any of the variables

defined in the configuration file of the protocol. Table 15 illustrates the possible

ways to write a monitor statement for the SSH feature.

Table 15 SSH Block

 The examples below illustrate the use of string and variable parameters.

ServerKeyBits has a string value, while ListenAddress is a variable.

149

Examples:

- ServerKeyBits 768

- ListenAddress %global-single sin_SSH_Listen%

5.3.7 Environment Variables (ENV)

An environment variable is a named object that contains data used by one

or more applications. In simple terms, it is a variable with a name and a

value [74]. These variables are known as shell environment variables, which can

be used by various commands to get information about the user environment,

such as the type of system that is running, the user’s home directory and the shell

in use.

Environment variables are used by Linux operating systems to help tailor

the computing environments of the systems, and include helpful specifications

and setup, such as the default location of all executable files in the file system, the

default editor that should be used, and the system locale settings and software

libraries [75].

Although there are several standard variables in Linux environments, such

as PATH, HOME, SHELL and TERM to name few, the CRM is customized to

monitor all of the variables. Table 16 shows the various options for representing

the environment variable in the Common Policy Language.

150

Table 16 ENV Block

 Next, we show a few examples of the syntax usage:

Examples:

- TERM vt100

- LANG en_US.UTF-8

- SSH_TTY /dev/pts/2

- SSH_TTY %global-single sin_ENV_sshtty%

- LOGNAME guest

5.3.8 Hosts

The hosts file is a static mapping of IP to hostnames, and is consulted by

the system for hostname-to-IP resolution before the DNS lookup, which could

speed up the lookup process.

In the HOSTS feature, we can monitor all the values in the configuration

file for Hosts in Linux machines. In Table 17 we list all the possible ways to write

a monitor statement for the hosts.

151

Table 17 Hosts Block

In the examples below we see the use of a string in the first example, the

fully qualified domain name in example two, a global-single variable in example

three, and finally, a global-list in example four. This is because it is possible for

one IP to have multiple hosts names.

Examples:

- 127.0.0.1 localhost

- 10.168.255.1 mail.acme.com

- 127.0.0.1 %global-single sin_HOSTS_127%

- 127.0.0.1 %global-list lst_HOSTS_127%

5.4 Example Scenarios

The Runtime Compliance Manager (RCM) is responsible for monitoring

and enforcing the device policy on the policy client. Central to its operation is the

policy file. In Chapter Four we detailed its exchange and maintainability process.

We will build on the policy exchange process to implement the next stage of the

152

Automated Policy Compliance and Change Detection System: policy enforcement

and discrepancy reporting.

In this section we will use our Linux system to run the RCM program, and

customize policies to illustrate the client-monitored features we discussed earlier

in section 5.3. The practical test scenarios are staged in different ways. This is

partly so we can examine system change events that may or may not trigger

policy compliance warnings, and partly to illustrate the Common Policy

Language use of various system-monitored features in the different Common

Policy Language sections.

5.4.1 Section with 'Exact' Keyword

Our first test illustrates the usage of the section delimiter with the

predefined keyword 'Exact.' The section delimiter can match any part of the

configuration stanza, such as interface, NTP, DNS…etc. The section starts with

the keyword 'section-start,' and ends with 'section-end.' The

predefined keyword 'Exact' in the policy looks for an exact match in the system.

Let us look at the example provided in Figure 71 below:

153

Figure 71 Policy File: Section with 'Exact' Keyword

In Figure 71, we see an example of the section block code with the use of

the 'Exact' predefined keyword for each of the system features we are interested in

monitoring. The use of regular expression (regex) on line 5 is a powerful way to

represent the IP address of the eth0 interface; the RCM will match the pattern if

the system IP’s first octet falls between 100 and 255, the second octet between

154

100 and 185, and so on. The remaining sections use a string to represent each of

the variable values.

Now when the RCM is run, it generates the following compliance report.

Figure 72 Section with 'Exact' Report 1

The first thing worth noting in Figure 72 is that the report was generated

due to the detection of a new policy file. That is because the policy decision

control server has pushed a new policy file to the client, as was explained in

Chapter 4.

Next, we notice the warnings, each with a line number corresponding to

our policy in Figure 71. Below are the details for each of the warming lines:

#5 is a warning that the current system IP address does not match the

NetworkInterface section of the policy. Recall that the policy expects [100-

255].[100-185].[1-155].[100-155] for the IP. From Figure 73 below, we see that

the system’s current IP address is 10.168.255.149, which is a violation of the first

155

and third octets set by the policy. However; the subnet mask on line 6 of the

policy is a match, which is also visible in Figure 73:

Figure 73 Client’s IP Address

#10 is a warning that the specified NTP server in the policy does not exist

on the system. Line 10 of the policy file specifies an NTP source of

“0.rhel.pool.ntp.org,” however; the system’s NTP configuration does not specify

0.rhel.pool.ntp.org as a time source server, as we see in Figure 74 below:

156

Figure 74 Client's NTP Servers

#14 is a warning about a mismatch between the hostname configured on

the system and what the policy file expects it to be. In Figure 71, the policy is

configured for a hostname of 'client,' while the system is actually configured with

'Client.'

Figure 75, shows the actual configuration on the policy client.

Figure 75 Client's Hostname

157

#22 is a warning about a violation of the DNS configuration on the

system. Line 22 of Figure 71 requires the system to be configured with 8.8.4.4 for

a nameserver. However, from the report we can conclude that the system does not

have the server configured and therefore it is not in compliance. Figure 76 shows

the system’s actual DNS configuration.

Figure 76 Client's DNS Configuration

#27 is a warning about the SSH feature. In Figure 71 we configured two

parameters for this section, KeyRegenerationInterval with a value of 3600 on line

26, and ServerKeyBits with value of 1024 on line 27 of the policy file. However,

as seen in Figure 72, a report was generated for ServerKeyBits only.

After examining the client’s actual SSH configuration in Figure 77, we see

that the system's KeyRegenerationInterval is configured with a matching value of

3600, while the ServerKeyBits is configured with 768.

158

Figure 77 Client SSH Configuration

#31 is a warning about the environment variables. In the policy file in

Figure 71, we defined two parameters for this section: TERM and LANG,

however the RCM is reporting that the TERM (terminal) type, vt100, is a

mismatch between the policy file and what is actually configured on the system.

By examining Figure 78 below, we see that the mismatch has occurred because

the system’s TERM type is set to xterm.

159

Figure 78 Client's ENV Variables

#36 is the last warning in the report, and it is in reference to the entry in

the system’s hosts file. Line 36 of the policy file supposes that the system should

have an IP to host mapping of client-virtualBox, but according to the report, there

is a violation to the policy. Our verification of the system’s configuration in

Figure 79Figure 79 reveals that the system is configured differently, specifically,

the hosts file entry is set to 'client' instead of 'client-virtualBox.'

Figure 79 Client's Hosts File

160

Now let us make some changes to the system and see how they will affect

the policy compliance reporting. We will start by making changes to the network

interface IP. They current eth0 interface IP is 10.168.255.149, as observed in

Figure 73, and we will change it to match the regular expression in the policy file

in Figure 71. Specifically, we will change the IP address to 100.100.1.100, which

matches the regular expression regex[100-255].regex[100-185].regex[1-

155].regex[100-155].

Figure 80, shows the commands we entered to change the IP, and shows

the confirmation of the change we made using the ifconfig command.

Figure 80 System Interface IP Changed

161

Immediately after the change, the RCM generated the report in Figure 81.

Two things are different in this report when compared to Figure 72. First, the

report type is machine, whereas in Figure 72 it was new policy file. Second, we

notice that #5 is excluded from the report. That is because the interface IP is now

in compliance with the policy.

Figure 81 Network Interface in Compliance

To correct the NTP compliance issue on #10 of the report, the system NTP

server configuration must include the server 0.rhel.pool.ntp.org listed on line 10

of the policy file (Figure 71). The output in Figure 82 shows the change after we

added the new server to the NTP server list.

162

Figure 82 System NTP Servers Updated

The RCM generates the Machine report in Figure 83, this time excluding

the NTP compliance violation.

Figure 83 NTP Is in Compliance

Correcting the remaining compliance violations seen in Figure 72 can be

accomplished by bringing into compliance each of the features listed by

163

modifying the feature’s relative configuration as demonstrated earlier. For

brevity, we will not show the remaining examples.

The power of our automated compliance and change detection system's

feature of alerting and notifying the system operator in real-time is clearly

demonstrated in the examples above.

5.4.2 Section with 'Exclude' Keyword

The 'exclude' predefined keyword has the opposite effect of the 'exact'

keyword discussed in the earlier section. The 'exclude' keyword specifies that the

configuration lines within the section should not exist on the policy client device.

These are any commands the network or the system administrator may deem

undesirable, perhaps due to a security risk or the potential for triggering a

software bug, or simply because it is bad practice.

To better illustrate the use of the 'exclude' command, we wrote a new

policy for our system, seen in Figure 84. It includes a sample for each of the

monitored features defined by the RCM. For NetworkInterface, for example (lines

5 and 6 of the policy) an alarm would be generated if the eth0 IP address fell

anywhere within the regular expression. It would also trigger an alarm if the eth0

subnet mask was 255.255.255.0. Similarly, the NTP section would trigger an

alarm if our policy client listed 0.rhel.pool.ntp.org as one of its configured NTP

servers.

164

The other sections - Hostname, FSSL, DNS, SSH, ENV and Hosts - would

each trigger a separate alarm if any of their configured parameter values appeared

on the system.

Figure 84 Policy File: Section with 'Exclude' Keyword

165

Next, the RCM checks the newly-downloaded policy file rules against the

system’s configuration and generates a report for the sections that are non-

compliant. Figure 85 lists the RCM check results.

Figure 85 Section with 'Exclude' Report

#6 is a warning about the network mask configuration on line 6 of the

policy file in Figure 84. According to the policy file, the system’s eth0 interface

should not have a subnet mask of 255.255.255.0.

Next, in Figure 86, we examine the system’s network configuration, and

we clearly see the mask is indeed in violation of the policy, hence the warning.

However; it is worth noting that in regards to line 5 of the policy, the IP address

did not trigger an alarm. That is because the configured eth0 IP address,

10.168.255.149, does not fall within the range of the regular expression [100-

255].regex[100-185].regex[1-155].regex[100-155].

166

Figure 86 Network Interface Mask

#10 of the report is a warning about the presence of the NTP server

0.rhel.pool.ntp.org on the system, which according to line 10 of the policy file

should have been excluded. Once again, we check the system for the validity of

the report, and we observe in Figure 87 that the system’s NTP configuration does

include the forbidden server 0.rhel.pool.ntp.org on its list.

167

Figure 87 NTP Server Present

#14 is the Hostname, and this time the hostname 'Client' does match both

the policy (line 14 in Figure 84) and the system’s Hostname configuration.

However, since the keyword 'exclude' was used in the policy, the RCM generated

the warning. Further verification of the system’s configuration in Figure 88

confirms our proposition.

Figure 88 Hostname Is a Match

168

For brevity, we will stop the 'exclude' examples here, but the pattern for

the remaining warnings (DNS, SSH, ENV and HOSTS) can all be verified by

examining the system’s configuration and contrasting it to the policy file

configuration in Figure 84.

5.4.3 Section with 'Ignore' Keyword

The 'ignore' keyword gives the administrator the flexibly to specify

commands or sections that should be ignored when our policy compliance system

compares the policy to the device configurations. The 'ignore' keyword is useful

for writing a comprehensive device template to be mirrored during the device

creation process, while allowing certain sections of the policy to be skipped by the

RCM.

To demonstrate the concept of the 'ignore' keyword, let us look at the

policy from section 5.4.2, Figure 84 Specifically, let us target the Environment

variable section, lines 29–33, shown in Figure 89.

Figure 89 Environment Variable Section

169

We also know from the previous section that line 31 has triggered a non-

compliance report, as seen in Figure 90.

Figure 90 ENV Variable Trigger

One way to include the Terminal type (TERM) configuration in the

template but not have it checked by the CRM is by the use of the 'ignore' keyword

as illustrated in Figure 91 below:

170

Figure 91 Using the 'Ignore' Keyword

From the RCM report in Figure 92, we see that the TERM environment

variable alarm did not trigger an alarm by the RCM.

171

Figure 92 TERM Alarm Cleared

We also see from the system verification output in Figure 93 that the

system is configured with the xterm terminal type, which we asked the policy to

ignore in our policy file.

Figure 93 ENV Configuration

5.4.4 Conditional Block

The conditional block allows the CRM to perform different actions

depending on whether the specified parameters within the conditional block,

(Boolean condition) evaluate to true or false. If the block has more than one

parameter, then all of the parameters are treated as a logical AND, meaning that

172

all values must match for the condition to evaluate to true. We use the following

example in Figure 94 to explain how to construct the conditional block:

Figure 94 Conditional Block

The conditional block starts with the delimiter %condition-start

followed by a conditional block identifier, and ends with %condition-end.

Between are the parameters and their values that will set the Boolean condition to

true of false, depending on whether the system matches the specified values.

In our Figure 94 example, the condition is set to true when the system’s

eth0 interface IP is set to 10.168.255.149 AND its netmask is set to anything

between 255.255.255.0 and 255.255.255.252. Otherwise, the Boolean condition

evaluates to false.

We will demonstrate the use of the conditional block in the next section.

5.4.5 If-Then Block

The conditional block from the previous section is used in the if-then

block. When the RCM finds an 'if' that matches the condition from the previous

section, whose Boolean value is true, then the policies defined within the if-then

block are compared to the device’s configuration. Otherwise, they are skipped.

173

The conditional section is identified by if-start and the terminator is

identified by if-end. The negation operator (not) returns the opposite of the given

Boolean expression. Figure 95, shows an example of a policy using the if-then

block.

Figure 95 If-Then Policy

174

Line 4 of the policy in Figure 95 sets the first conditional block with a tag

name of NItag. The block is true if the IP and the netmask of eth0 that are

configured in the policy both matches the system.

Line 5 of the policy in Figure 95 sets the second conditional block, whose

tag name is Hostn. The block is true if the system hostname is 'Client.'

Line 13 checks the Boolean value of the NItag conditional block. If true,

the RCM would expect the system to have one of its NTP servers pointing to

time-a.nist.gov. If false, according to line 17 it would expect one of the NTP

servers to point to 10.168.255.1.

Similarly, the RCM expects the nameserver to point to 8.8.4.4 if the Hostn

conditional block is true (line 21), and to 208.67.222.222 if false (line 25).

Once the new policy was downloaded to our policy client, the RCM

generated the Figure 96 report.

Figure 96 If-Then Report

From the report output we can conclude that the NItag was evaluated to

true, because the system’s IP address and subnet mask both matched the policy

(Figure 97). However, since a true evaluation of the expression on line 13 expects

175

the NTP sever to be set to time-a.nist.gov and the RCM found no matching

configuration on the system, it generated the warning.

Figure 97 Eth0 IP Configuration

Figure 98 below confirms that the system’s configuration does not include

the time-a.nist.gov NTP server.

176

Figure 98 NTP Configuration

To better understand the DNS if-then blocks on line 21 and line 25 of

Figure 95, we need to check the conditional block Hostn. If the block evaluates to

true, then the nameserver should be set to 8.8.4.4, and if false to 208.67.222.222.

Figure 99, from the system confirms that the system hostname is set to

'Client.' Therefore the Boolean expression is true, and we would expect the server

to have the correct nameserver configuration. We know this because the RCM did

not generate a DNS alarm, as seen in Figure 96.

177

Figure 99 Hostname Configuration

Next, we will change the system hostname to something other than

'Client,' so that the Boolean expression evaluates false, resulting in a DNS

warning being generated by the RCM.

In Figure 100, we issue the Linux hostname command to change the

system’s hostname from 'Client' to 'desktop.'

Figure 100 Hostname Changed to 'desktop'

Immediately after the change, the RCM generated the report in Figure

101, informing us in real-time that the system is no longer in compliance with line

25 of the policy.

Figure 101 DNS Warning

178

When we check the system’s DNS configuration, we clearly see in Figure

102 that server 208.67.222.222 is not part of the configuration, which was

expected when the condition Hostn became false.

Figure 102 DNS Configuration

5.4.6 Variables

We discussed variables in details in Section 3.4.5 of this dissertation. To

summarize, variables are a powerful way to represent device-specific parameters

appearing in multiple sections of the policy, with one reference. In other words,

instead of repeating the parameter and its value, we have the option to set a

unique variable name and reference it instead.

For testing, two different types of variables were implemented: global-

single and global-list. Both types of variables are contained between percent signs

(%) and start with the keyword 'global-single' or 'global-list,' followed by a unique

name.

The policy in Figure 103 illustrates the use of the global-single variable.

For example, the eth0 IP address on line 5 is now a variable with a unique name

179

called InterfaceIP, and we see on line 13 that the same variable is being

referenced for the SSH ListenAddress parameter. Another example in

Figure 103Figure 103 is the variable MyHostName on line 9, which is being

referenced on line 18 to set the system FQDN.

Figure 103 Global-Single Policy

Once our client received the new policy, the RCM generated the report in

Figure 104.

Figure 104 Global-Single Report

180

Line 13 is a warning because the ListenAddress address does not match

the policy. According to the policy, it should been set to 10.168.255.149.

However, upon examining the system, we found that the ListenAddress is set to

0.0.0.0, as seen in Figure 105.

The line 14 warning is not related to the variable configuration, but as we

can see in Figure 105, the system’s ServerKeyBits is set to 768, while the policy

in Figure 103 expects 1024.

Figure 105 SSH Configuration

Line 18 is a warning because the FQDN Client.acme.com does not exist in

the hosts file, as confirmed by the verification command in Figure 106.

181

Figure 106 Hosts File

The values of both our policy variables, InterfaceIP and MyHostName,

can by changed by the administrator. Our RCM would adjust dynamically and

refresh the reporting based on the newly-entered information. Let us demonstrate

the concept by changing the interface IP address. We will issue the command

shown in Figure 107.

Figure 107 Eth0 IP Address Change

Notice the report in Figure 108 is now a Machine type, and the RCM

immediately adjusted and issued a new warning for Line 13.

Figure 108 New Line 13 Warning

182

The same results are observed when the hostname is changed from 'Client'

to 'Lab.' Figure 109 shows the new RCM report.

Figure 109 New Line 18 Warning

The difference between global-single and global-list variables is that a

global-single variable holds only one value, while a global-list can hold multiple

variables. For example, the parameter TERM in the system’s environment

configuration can be assigned one and only one terminal type. This would be an

example of a global-single use. An NTP configuration or a DNS configuration,

for example, could hold one or more server values. These would be good uses for

global-list.

The policy in Figure 110 illustrates the use of global-list variables.

183

Figure 110 Global-List Policy

The policy in Figure 110 sets NTP, DNS and HOSTS to global-list

variables, and the PRINT section is added so that the values of the variables will

be printed to the screen for verification. Figure 111 displays the report generated

by the RCM.

184

Figure 111 Global-List Report

From the report, we can see that NTP, DNS and HOSTS each have

multiple values, and this is easily confirmed by checking the actual configurations

on our system. Figure 112, lists all of the configured values for NTP, DNS and

HOSTS, and they match the RCM’s generated report.

185

Figure 112 System Verification

5.5 Summary

This chapter detailed one of the major contributions of our research, the

Runtime Compliance Manager (RCM). It showed how the RCM runs in the

policy client, how it continuously monitors the network element configuration

state, analyzes its current state and reports discrepancies when applicable. We

186

also presented the reporting module of the RCM, and how it is called upon to

generate the appropriate alarming in real-time.

For a proof of concept we used a Linux system to implement the RCM,

the open nature of the Linux operation system made it an attractive choice.

However, the RCM module is not limited to a particular system and can be ported

to on other systems straight forwardly.

The example scenarios in this chapter targeted network interfaces, NTP,

DNS, SSH, and other system variables configuration. Throughout the example

scenarios we changed the client configuration and observed the RCM report, in

real-time, the discrepancies caused by any noncompliant configuration. For this

type of change the RCM generated a “Machine Report” informing the operator

that the discrepancies were caused by a machine change.

 The example scenarios also targeted the policy file for the client, by

making policy changes. In these cases, the RCM generated a “New Policy File”

report whenever a mismatch was found.

In conclusion, the chapter demonstrated how the proposed automated

policy and compliance system leverages the Policy Exchange and Policy

Language frame work from chapter 3 to perform automatic and intelligent

network configuration audits in real-time. This provides the system administrators

and change initiators with the real-time feedback to prevent outages, disruptions,

or vulnerabilities to their networks caused by configuration changes that violate

any of the policies set for any given device.

187

CHAPTER 6: SUMMARY AND CONCLUSIONS

6.1 Conclusion

Today's network operators are confronted with managing multivendor

networking environments supporting business-critical data, voice and video in the

same network infrastructure. Maintaining the performance and effectiveness of

these networks requires administrators to continuously conduct complex

configuration changes without committing a single mistake. Unfortunately,

change is not always successful, and changing one configuration parameter

sometimes brings a complex chain of events that the network administrator cannot

anticipate. These events often lead to performance degradation and vulnerability,

and can even lead to services outages and downtime that are very costly to

businesses. Managing change effectively and reducing the negative effects of day-

to-day operations has become one of the most important tasks in IT.

In this dissertation, we tried to address the aforementioned issues. First we

provided the network infrastructure devices with a device policy that conforms to

organizational and industry best practices and regulatory standards, and is

consistent throughout the network, by use of an automated, secured and

guaranteed process. Second, we enforced the policy rules to the device

188

configuration and provided network administrators and change owners with

feedback on any inconsistencies in real-time.

The first contribution offered in this dissertation stems from the fact that

the use of policy template techniques allows for uniform configuration rules

across similar devices with the same networking role. This led to the introduction

of the concept of a Common Policy Language (CPL).

The Common Policy Language (CPL) introduced in this dissertation is

written in ASCII text, is portable and powerful, and is remarkably easy to manage

and manipulate. It is essentially similar to the device configuration structure, but

with more powerful programming language functions, statements and operations.

The uniformity of the Common Policy Language code makes it easy to

understand and implement, and invites further customization, development and

improvements. One of the focal points of the research was a systematic

methodology for developing and using such a language, including an automated,

secured, and reliable system for centralized policy delivery to all clients in the

domain, as well as guaranteed maintainability. The system has the intelligence to

report a device's role in the network and its policy version number, and to detect

whether or not the device has the most current policy.

The second main contribution of the dissertation is the Runtime

Compliance Manager (RCM), which is responsible for detecting any

configuration violations or inconsistencies between what is defined as acceptable

in the policy file, and what is actually configured on the device itself. A crucial

189

component of this system is the reporting. When a change is made, both the

change owner and the network surveillance system are informed in real-time of

any policy violations caused by the change could result in network problems.

The case studies presented in this dissertation provided detailed examples

on the application of the Automated Policy Compliance and Change Detection

System. In the first stage of the case studies we showed different plausible states

that a network device could be in, and showed how our the policy delivery system

module was able to reliably and securely guarantee the maintainability of its

policy file. In the second stage, we changed our policy client configurations to test

the RCM module's ability to detect inconsistencies between a device's policy file

and its configuration. In each of the test cases, we successfully proved our

system’s ability to detect and report compliance violations in real-time.

The main conclusion of this research effort is that it is a significant

challenge for any network to ensure that system configurations remain compliant

with internal and regulatory security and compliance policies. Even the best

administrators can make mistakes, and the cost of missing a key configuration or

accidentally skipping one could be catastrophic. Our Automated Policy

Compliance and Change Detection System can play a major role in helping IT

professionals improve configuration management and network stability and

reduce errors. This is done by auditing planned and unplanned changes and

exposing any potential risks in real-time.

190

6.2 Limitations and Future Work

In this dissertation, the focus was on developing an Automated Policy

Compliance and Change Detection System and using a Common Policy Language

to represent organizational, industry, and regulatory policies. Each step of the

proposed system represents a research area by itself. While we tried to address

some of these areas in some level of detail, limitations still exist and there is more

work still to be done.

The Common Policy Language (CPL) in which the device policies are

expressed requires more attention. The design of the language concept was

centered on two of the largest companies in the networking field, Cisco Systems

and Juniper Networks. Although we show in our test case scenarios that the

language could easily be expanded to include systems like Linux, the

development of more keywords, parameters, functions and logic is still required

to build a full set of standards that would be portable across many more vendors.

Another area of future work is expanding the Common Policy Language

for formatting as Extensible Markup Language (XML). XML provides a flexible

but fully-specified encoding mechanism for hierarchical data presentation. The

flexibility of XML has led to its widespread use for exchanging data in a

multitude of forms. Many networking vendors offer formatting configuration in

XML format, making XML, like our proposed language structure, vendor and

platform independent. Furthermore, conversion of XML documents into readable

formats can be accomplished using the XML Stylesheet Language

191

Transformation (XSLT), thus facilitating the ability to recast data in differing

lights and convert it to and from common formats [76]. Our system could benefit

from having these different formatting options to express the device policies.

The Runtime Compliance Manager (RCM) also requires future

enhancements. The module should be made to activate only when the network

administrator enters the configuration state of the networking device. This was

hard to implement on the Linux system, because there is no real delineation for

system configuration, whereas in most networking devices the configuration stage

is clearly delineated by entering a specific configuration level. To overcome the

limitation, we configured the RCM module to monitor the configuration every 3

seconds. This enhancement lead to better CPU utilization and better overall

system performance.

Another area for future work on the RCM is the reporting system. In

conjunction with developing more parameters and keywords in the CPL, the RCM

reporting could be enhanced to display different categories of alarm depending on

the violation type. For example, the categories may include severe, high, low,

optional, etc. This is important to the change owner because it portrays the

severity impact of the change, and equally important to the surveillance systems

because it gives them the option to filter incoming alarms and act in accordance

with the alarm's severity.

Finally, although our proposed system has a great reporting mechanism, it

could be improved by research on the possibility of integrating the reporting into

192

operation support systems (OSS), and specifically into the event correlation

module. Event correlation can further reduce the risk of misconfiguration and

outage minutes by simplifying and speeding up the monitoring of network events.

This can be accomplished by consolidating the event messages, alarms, alerts and

error logs into a root cause determination capable of detecting the origins of

problems and generating real-time recommendations for finding their locations.

This would be very helpful from a surveillance point of view, because instead of

requiring network operators to process hundreds of alarms related to one event,

the system would make a fast correlation and allow a quick recovery from any

network anomaly.

193

APPENDIX A – CLIENT/SERVER POLICY EXCHANGE AND

MANAGEMENT SOURCE CODE

The source files referenced include the following:

Buffer.cpp and Buffer.h: The class and subclasses are related to the

operations of the buffer used to send information between server and client.

Within these classes are specified all the details of the methods and data members

for the creation and modification of the message to send/receive.

We have the base class buffer, which contains the basic tools for a

network buffer. We use this base class afterwards in order to inherit a new class

called CommonHeader, which contains the fundamentals of the protocol in the

present document, especially for sending purposes. In addition, we have a couple

of stand-alone classes: Object and ParsePolicy. Object class is used to add objects

just as it is done in the protocol COPS-PR, whereas ParsePolicy is mainly used to

parse the buffer received.

ClientMain.cpp: This is the main of the client code. This file is where the

program begins for the client. It directly imports code from PolicyClient.cpp. So

the logic and complexity of this file are very low.

debugTools.cpp and debugTools.h: These contain functions which do

not contribute to the behavior of the program. Instead they exist just for

debugging purposes.

194

For now they have only one function, PrintRawBuffer, to print all the bytes

contained in the buffer. This is important since the standard C++ library for

printing on the screen does not do a great job when there are null characters along

the string.

FileOperation.cpp and FileOperation.h: These perform file operation

functions. All the file operations such as sending, receiving, opening, closing, and

getting the version are written in these files. There is only one class, and it

handles all the necessary behaviors related to file operation for this project. There

are also some independent functions for sending, receiving, writing and regular

expression, which are used specifically for files.

hashFunction.cpp and hashFunction.h: These contain function

interfaces and implementation for the hash operations. With these stand-alone

functions is possible to generate the hash code for a file or for a network buffer.

md5.cpp and md5.h: These files are for the MD5 operations. These files

are used to compute the md5 algorithm from a network buffer only. The hash

function is available in its entirety at [77].

PolicyClient.cpp and PolicyClient.h: These contain the class for the

client’s behavior. This class makes it easier for any user to implement a client. It

can be instantiated and then called by the run function, which completes the job.

This class is where all the behavior of the client is coded.

PolicyServer.cpp and PolicyServer.h: These contain the class for the

server’s behavior. They are analogous to the PolicyClient files, but in this case

195

they are for the server. PolicyServer has a similar structure to PolicyClient. The

main difference is that with PolicyServer, it is possible to create multiple threads -

as many threads as there are clients, subject to the limitations of the machine.

Socket.cpp and Socket.h: These contain the basic socket operations. The

focus of these files is to deal with the complexities of the creation of sockets on

the standard Unix environment. Although there are a lot of free and open source

solutions that perform the same function, we opted to create new ones in order to

avoid the extra installation of libraries. In this way the system is easier to install,

since we avoided one requisite.

PolicySocketOp.cpp and PolicySocketOp.h: Functions for the socket

communication for this particular application. The key difference between these

classes and the sockets ones is that these are created specifically for the details of

this network protocol between server and client. They serve two functions, by

which they read the messages in an organized way and there by guarantee that the

correct message is being read.

ServerMain.cpp: This is the main program for the server and is analogous

to the ClientMain. This file is where the server starts its execution. After booting,

this is the first file to be called, followed by the PolicyServer files.

196

APPENDIX B – RUNTIME COMPLIANCE MANAGER CODE

BlockFactory.h and BlockFactory.cpp: These files handle all the details

related to each block in the policy file. They also provide the base class

BlockFactory, which is the main class used as an interface, as well to improve

code-enhancement in the future.

For future improvements, it is recommended to divide these files if the

code becomes too large. This is only for the purpose of readability.

CmdLineUtilities.h and CmdLineUtilities.cpp: With these command-

line-utility files, we have those extra tools to handle all operations related to

Linux commands. To put it briefly, they hold a group of independent functions

that send requests to the system asking for specific information. Operations

related to filesystems, hostname, environment variables and so on, are managed

by these files.

NetUtilities.h and NetUtilities.cpp: The network-utility files are written

for operations related to networks. These are useful for finding features on the

system, checking to see if a network pattern fits a regular expression, and so on.

They are all related in some way to the network environment. In these files, we

can see operations related to finding the IP of the machine, finding the netmask,

finding a parameter in a network configuration file, and so on.

197

PEmain.cpp: This is the file which contains the main function. This is

where the entire algorithm begins. One of the first things this file does is call the

PolicyEnf files to carry out the appropriate behavior. This file was left with few

responsibilities, which makes it easier to implement this code. It only takes an

initialization and a call of the run function.

PolicyEnf.h and PolicyEnf.cpp: The policy-enforcement files are in

charge of carrying out the general behavior of the code. They are coded with an

infinite loop, which creates a program that will continuallymonitor the system

until stopped by an external action.

StrUtility.h and StrUtility.cpp: These files are written to be used as a

tool to work with string, and are especially focused on our particular software.

This is because we have to deal with several kinds of character strings in the

policy file.

Operations such as analyzing a machine report, adding the source of a

modification and concatenating variables are carried out by these files.

Variables.h and Variables.cpp: The variables files are created to handle

all the global-single and global-list variables in an easy way. Inside this file there

are a couple of classes which work together to create an efficient way to work

with variables. We have the Variable class, which defines a single variable in a

policy file, and we have the VariableManager class, which defines a vector of

Variable classes to store as many variables as the system can assign.

198

APPENDIX C – POLICY FILE EXAMPLE

%version 3.394

%device regex (Client-router[0-10])

/*##

#####################NetworkInterface########################

###*\

%section-start Exact NetworkInterface eth0

 address regex[100-255].regex[100-185].regex[1-155].regex[100-155]

 netmask 255.255.255.0

 address %global-single sin_NetworkInterface_add%

 netmask %global-single sin_NetworkInterface_net%

%section-end

%section-start Exclude NetworkInterface eth0

 address regex[200-255].regex[100-185].regex[1-155].regex[100-155]

 netmask 255.255.254.0

 address %sin_NetworkInterface_add%

 netmask %sin_NetworkInterface_net%

%section-end

%section-start Ignore NetworkInterface eth0

 address regex[100-255].regex[100-185].regex[1-155].regex[100-155]

 netmask 255.255.255.0

 address %sin_NetworkInterface_add%

 netmask %sin_NetworkInterface_net%

%section-end

%condition-start NItag NetworkInterface eth0

 address regex[200-255].regex[100-185].regex[1-155].regex[100-155]

 netmask 255.255.255.0

 address %sin_NetworkInterface_add%

 netmask %sin_NetworkInterface_net%

%condition-end

%if-start NItag NetworkInterface eth0

 address regex[200-255].regex[100-185].regex[1-155].regex[100-155]

 netmask 255.255.255.1

 address %sin_NetworkInterface_add%

 netmask %sin_NetworkInterface_net%

%if-end

%if-start Not_NItag NetworkInterface eth0

 address regex[100-255].regex[100-185].regex[1-155].regex[100-155]

 netmask 255.255.255.0

 address %sin_NetworkInterface_add%

 netmask %sin_NetworkInterface_net%

%if-end

199

/*##

######################## NTP ###############################

##*\

%section-start Exact NTP /etc/ntp.conf

 server 0.0.0.1

 server 0.rhel.pool.ntp.org

 server 1.rhel.pool.ntp.org

 server 2.rhel.pool.ntp.org

 server %global-list lst_NTP_serv%

 server %global-single sin_NTP_serv%

%section-end

%section-start Exclude NTP /etc/ntp.conf

 server 1.1.1.0

 server 0.rhel.pool.ntp.org

 server 1.rhel.pool.ntp.org

 server 2.rhel.pool.ntp.org

 server %lst_NTP_serv%

 server %sin_NTP_serv%

%section-end

%section-start Ignore NTP /etc/ntp.conf

 server 1.1.1.0

 server 0.rhel.pool.ntp.org

 server 1.rhel.pool.ntp.org

 server 2.rhel.pool.ntp.org

 server %lst_NTP_serv%

 server %sin_NTP_serv%

%section-end

%condition-start NTPservers NTP /etc/ntp.conf

 server 0.0.0.1

 server 0.rhel.pool.ntp.org

 server 1.rhel.pool.ntp.org

 server 2.rhel.pool.ntp.org

 server %lst_NTP_serv%

 server %sin_NTP_serv%

%condition-end

%if-start NTPservers NTP /etc/ntp.conf

 server 0.0.0.1

 server %lst_NTP_serv%

 server %sin_NTP_serv%

%if-end

%if-start Not_NTPservers NTP /etc/ntp.conf

 server 192.168.1.254

 server %lst_NTP_serv%

 server %sin_NTP_serv%

%if-end

/*##

###################### HostName ###########################

##*\

%section-start Exact Hostname

 name saeed-VirtualBox

 name %global-single sin_Hostname_nam%

%section-end

200

%section-start Exclude Hostname

 name Machine

 name %sin_Hostname_nam%

%section-end

%section-start Ignore Hostname

 name Client-router

 name %sin_Hostname_nam%

%section-end

%condition-start Hostn Hostname

 name saeed-VirtualBox

 name %sin_Hostname_nam%

%condition-end

%if-start Hostn Hostname

 name saeed-VirtualBox

 name %sin_Hostname_nam%

%if-end

%if-start Not_Hostn Hostname

 name NotClient

 name %sin_Hostname_nam%

%if-end

/*##

############## File Size System Limit (FSSL) ###################

##*\

%section-start Exact FSSL /dev/sda1

 limit 42

 limit %global-single sin_FSSL_lim%

%section-end

%section-start Exclude FSSL /dev/sda1

 limit 20

 limit %sin_FSSL_lim%

%section-end

%section-start Ignore FSSL /dev/sda1

 limit 15

 limit %sin_FSSL_lim%

%section-end

%condition-start filesize FSSL /dev/sda1

 limit 50

 limit %sin_FSSL_lim%

%condition-end

%if-start filesize FSSL /dev/sda1

 limit 80

 limit %sin_FSSL_lim%

%if-end

%if-start Not_filesize FSSL /dev/sda1

 limit 40

 limit %sin_FSSL_lim%

%if-end

201

/*##

####################### DNS ###############################

##*\

%section-start Exact DNS /etc/resolv.conf

 nameserver 127.0.0.1

 nameserver %global-single sin_dns_nams%

 nameserver %global-list lst_dns_nams%

%section-end

%section-start Exclude DNS /etc/resolv.conf

 nameserver 255.255.255.0

 nameserver %sin_dns_nams%

 nameserver %lst_dns_nams%

%section-end

%section-start Ignore DNS /etc/resolv.conf

 nameserver 255.255.255.0

 nameserver %sin_dns_nams%

 nameserver %lst_dns_nams%

%section-end

%condition-start DNStag DNS /etc/resolv.conf

 nameserver 127.0.0.1

 nameserver %sin_dns_nams%

 nameserver %lst_dns_nams%

%condition-end

%if-start DNStag DNS /etc/resolv.conf

 nameserver 127.0.0.1

 nameserver %sin_dns_nams%

 nameserver %lst_dns_nams%

%if-end

%if-start Not_DNStag DNS /etc/resolv.conf

 nameserver 255.255.255.1

 nameserver %sin_dns_nams%

 nameserver %lst_dns_nams%

%if-end

/*##

######################## SSH ###############################

##*\

%section-start Exact SSH /etc/ssh/ssh_config

 GSSAPIAuthentication yes

 Host %global-single sin_SSH_ServKeyB%

%section-end

%section-start Exclude SSH /etc/ssh/ssh_config

 KeyRegenerationInterval 255.255.255.0

 HashKnownHosts no

 ServerKeyBits %sin_SSH_ServKeyB%

%section-end

%section-start Ignore SSH /etc/ssh/ssh_config

 KeyRegenerationInterval 255.255.255.0

 ServerKeyBits %sin_SSH_ServKeyB%

%section-end

202

%condition-start SSHtag SSH /etc/ssh/ssh_config

 HashKnownHosts yes

 Host %sin_SSH_ServKeyB%

%condition-end

%if-start SSHtag SSH /etc/ssh/ssh_config

 HashKnownHosts yes

 Host %sin_SSH_ServKeyB%

%if-end

%if-start Not_SSHtag SSH /etc/ssh/ssh_config

 KeyRegenerationInterval 255.255.255.0

 ServerKeyBits %sin_SSH_ServKeyB%

%if-end

/*##

############### Environment Variables (ENV) ##################

##*\

%section-start Exact ENV

 TERM vt100

 LANG en_US.UTF-8

 SSH_TTY /dev/pts/2

 SSH_TTY %global-single sin_ENV_sshtty%

 LOGNAME saeed

 MAIL /var/mail/saeed

 PATH %global-single sin_ENV_path%

%section-end

%section-start Exclude ENV

 TERM 255.255.255.0

 LANG asf

%section-end

%section-start Ignore ENV

 TERM 255.255.255.0

 LANG asf

 PATH %sin_ENV_path%

%section-end

%condition-start NItag ENV

 TERM vt100

 LANG en_US.UTF-8

 PATH %sin_ENV_path%

%condition-end

%if-start ENVtag ENV

 TERM vt100

 LANG en_US.UTF-8

 PATH %sin_ENV_path%

%if-end

%if-start Not_ENVtag ENV

 TERM 255.255.255.0

 LANG asf

 PATH %sin_ENV_path%

%if-end

/*##

####################### HOSTS #############################

203

##*\

%section-start Exact HOSTS /etc/hosts

 127.0.0.1 localhost

 127.0.1.1 saeed-VirtualBox

 127.0.0.1 %global-single sin_HOSTS_127%

 127.0.0.1 %global-list lst_HOSTS_127%

%section-end

%section-start Exclude HOSTS /etc/hosts

 127.0.0.1 %my_Hostname%.acme.com

%section-end

%section-start Ignore HOSTS /etc/hosts

 127.0.0.1 %my_Hostname%.acme.com

 127.0.0.1 %sin_HOSTS_127%

 127.0.0.1 %lst_HOSTS_127%

%section-end

%condition-start NItag HOSTS /etc/hosts

 127.0.0.1 localhost

 127.0.0.1 %sin_HOSTS_127%

 127.0.0.1 %lst_HOSTS_127%

%condition-end

%if-start NItag HOSTS /etc/hosts

 192.168.1.1 %sin_Hostname_nam%.software.com

 127.0.0.1 %sin_HOSTS_127%

 127.0.0.1 %lst_HOSTS_127%

%if-end

%if-start Not_NItag HOSTS /etc/hosts

 192.168.1.1 %sin_Hostname_nam%.software.com

 127.0.0.1 %sin_HOSTS_127%

 127.0.0.1 %lst_HOSTS_127%

%if-end

/*##

Print variables (Debug purpose) ###############

##*\

%section-start Exact PRINT

 %sin_NetworkInterface_add%

 %sin_NetworkInterface_net%

 %lst_NTP_serv%

 %sin_NTP_serv%

 %sin_Hostname_nam%

 %sin_FSSL_lim%

 %sin_dns_nams%

 %lst_dns_nams%

 %sin_SSH_ServKeyB%

 %sin_ENV_path%

 %sin_HOSTS_127%

 %lst_HOSTS_127%

 %sin_ENV_sshtty%

%section-end

204

REFERENCES

[1] Elbadawi, K.; J. Yu. “Improving Network Services Configuration

Management” Computer Communications and Networks (ICCCN), pp. 1-

6, 2011.

[2] Opeenheimer, D, A. Ganapathi, A. Petterson. “Why Do Internet Services

Fail and What Can Be Done about It?” in USITS’03: Proceedings of the

4th USENIX Symposium on Internet Technologies and Systems, Seattle,

WA, USA, Mar. 2003.

[3] Kerravala, Z. “As the Value of Enterprise Networks Escalates, So Does

the Need for Configuration Management,” The Yankee Group, Jan. 2004.

[4] Subramanian, M., T. Gonsalves T., N. Usha. (2010). Network

Management: Principles and Practice. Pearson Education India. pp. 63-

64.

[5] Shields, G. (2010). The Shortcut Guide to Network Management for the

Mid-Market. Realtime Publishers.

[6] Claise, B. Wolter R. (2007). Network Management: Accounting and

Performance Strategies. Cisco Press.

[7] Telecommunication Management Network [Online]. Available

http://yonk1991.xtgem.com/post/Kuliah/semester5/ManJar/TMN.html

[8] Raman, L. “OSI Systems and Network Management” IEEE

Communication Mag., vol. 36, no. 3, pp. 46-53, March 1998.

[9] Clemm, A. (2007). Network Management Fundamentals. Cisco Press.

[10] Boutaba, R.; A. Polyrakis. “Projecting FCAPS to Active Networks” IEEE,

pp 97-104, August 2002.

[11] Strassner, J. (2004). Policy-Based Network Management, Solutions for the

Next Generation. Morgan Kaufmann Publishers.

205

[12] Ding, J. (2010). Advances in Network Management. Auerbach

Publications.

[13] Mauro, D., K. Schmidt. (2005). Essential SNMP, 2nd Edition. O'Reilly

Publishing. Pp 30-34

[14] Leon-Garcia, A.; I. Widjaja. (2003). Communication Networks, 2nd

Edition. McGraw-Hill Higher Education. pp 839-840.

[15] Schoenwaelder J. (2003). Overview of the 2002 IAB Network

Management Workshop RFC3535. Available

http://www.ietf.org/rfc/rfc3535.txt

[16] Oritz, S. (2005). "SNMP Replacements: Is The Venerable Network

Management Protocol On Its Last Legs?" Tech & Trends, April 8, 2005

Vol.27 Issue 14, pg 27. Available

http://www.processor.com/editorial/article.asp?article=articles%2Fp2714

%2F32p14%2F32p14.asp

[17] Reboucas, R.; J. Sauve, A. Moura,; C. Bartolini, D. Trastour. “A Decision

Support Tool to Optimize Scheduling of IT Changes” IFIP/IEEE

International Symposium on Network Management, pp.343-352, May,

2007.

[18] Change Management: Best Practices [Online], Available:

http://www.cisco.com/en/US/technologies/collateral/tk869/tk769/white_pa

per_c11-458050.html

[19] Risks and Dangers of Change Management [online]. Available:

http://www.buzzle.com/articles/risks-and-dangers-of-change-

management.html

[20] Harris, K. (2000). IT Organization; Building a Worldclass Infrastructure,

Prentice Hall, pp. 110-112.

[21] “Change Control vs. Change Management: Moving Beyond IT” [online].

Available:

http://www.itsmwatch.com/itil/article.php/11700_3367151_4/Change-

Control-vs-Change-Management-Moving-Beyond-IT.htm

[22] Kim, G., J. Kim, J. Na. “Design and Implementation of Policy Decision

Point in Policy-Based Network Computer and Information Science," 2005.

Fourth Annual ACIS International Conference. April 2006.

206

[23] Kowtha, S.; J. Xi. “An N-State Driven Policy-Based Network

Management to Control End-End Network Behaviors” Seventh IEEE

International Workshop on Policies for Distributed Systems and

Networks, 2006. Pp 75-80, June 2006.

[24] Berto-Monleon, R.; E. Casini. “Specification of a Policy Based Network

Management Architecture”. Military Communications Conference. 2011 -

MILCOM 2011 , pp. 1393 – 1398, 2011.

[25] “What You Should Know before Investing in Policy-Based Network

Management” [online]. Available:

http://sysdoc.doors.ch/AVAYA/AvayaWhitePaper.pdf

[26] Poylisher, A., R, Chadha. “PBNM Technology Evaluation: Practical

Criteria” IEEE Workshop on Policies for Distributed Systems and

Networks. pp 105-108, 2008.

[27] Durham, D., J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, “The

COPS (Common Open Policy Service) Protocol,” RFC 2748 (Proposed

Standard), IETF, Jan. 2000.

[28] Sahita, R., S. Hahn, K. Chan, K. McCloghrie, “Framework Policy

Information Base,” RFC 3318 (Informational), IETF, Mar. 2003.

[29] Chan, K., J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F.

Reichmeyer, R. Yavatkar, A. Smith. “COPS Usage for Policy

Provisioning (COPS-PR),” RFC 3084 (Proposed Standard), IETF, Mar.

2001.

[30] Franco, T.F.; W. Q. Lima, G. Silvestrin, R. C. Pereira, M. J. B. Almeida,

L. M. R. Tarouco, L. G. Granville, A. Beller, E. Jamhour, M. Fonseca.

“Substituting COPS-PR: An Evaluation of NETCONF and SOAP for

Policy Provisioning” Seventh IEEE International Workshop on Policies

for Distributed Systems and Networks 2006. pp 10, 204

[31] W3C, “SOAP Version 1.2,” 2007,[Online], available

http://www.w3.org/TR/soap12 /

[32] Enns, R. “NETCONF Configuration Protocol” [Online]. Available

http://tools.ietf.org/html/rfc4741, IETF, Dec. 2006.

[33] Kosiur, D. (2001). Understanding Policy-Based Networking Wiley

Computer Publishing.

207

[34] Policy-Based Management. [Online], available

http://www.linktionary.com/p/policy.html

[35] Ok, Ki-Sang; D. W. Hong, Byung-Soo Chang.“The Design of Service

Management System Based on Policy-Based Network Management”

International Conference on Networking and Services, 2006. pp. 59-64,

September 2006.

[36] Felix, J. G. Clemente, et al. “An XML-Seamless Policy Based

Management Framework,” in Third International Workshop on

Mathematical Methods, Models, and Architectures for Computer Network

Security, MMM-ACNS 2005, Sep. 2005, pp. 418–423.

[37] NETCONF & YANG: Architecture. [Online], available

http://ellisonsoftware.com/2010/05/17/netconf-yang-architecture/

[38] Ha Manh, T., T. Iyad, S. Jürgen. (2009). "NETCONF Interoperability

Testing." ACM Digital Library: Lecture Notes in Computer Science,

2009, Volume 5637/2009, 83-94.

[39] Wegner, E. (2011). Protocol Flexibility: Why IT’s Essential to an NMS.

[Online], available http://www.billingworld.com/blogs/network-

management/2011/02/protocol-flexibility-why-it-s-essential-to-a-nms.aspx

[40] IT Sentinel, Network Auditing. [Online], available

http://www.opnet.com/solutions/network_performance/it_sentinel.html

[41] Configuration Audit. [Online], available

http://www.ecora.com/Ecora/Solutions/ConfigurationAudit.php

[42] Drogseth, D. (2009). Network Change and Configuration Management:

Optimize Reliability, Minimize Risk and Reduce Costs. An Enterprise

Management Associates

(EMA™)

[43] Westerinen, A., J. Schnizlein, John Strassner, et al. "Terminology for

Policy-Based Management" RFC3198, Nov. 2001.

[44] Strassner, J., et al. “Policy Core Lightweight Directory Access Protocol

(LDAP) Schema” RFC3703, Feb. 2004

[45] Edgard, J., et al. “Substituting COPS-PR: An Evaluation of NETCONF

and SOAP for Policy Provisioning” Proceedings of the Seventh IEEE

International Workshop on Policies for Distributed Systems and Networks

2006.

208

[46] Harrison, R. “Lightweight Directory Access Protocol (LDAP):

Authentication Methods and Security Mechanisms” IETF RFC 4513, June

2006.

[47] Melnikov, A., et al. “Simple Authentication and Security Layer (SASL)”

IETF RFC 4422, June 2006.

[48] Sermersheim, J. “Lightweight Directory Access Protocol (LDAP): The

Protocol” IETF RFC 4511. June 2006.

[49] Gregg, M., G. Mays, C. Ries, R. Bandes. (2006). Hack the Stack: Using

Snort and Ethereal to Master the 8 Layers of an Insecure Network.

Syngress Publishing, pp. 124-125

[50] Kwok, F. (2005) Network Security Technologies. Auerbach Publications.

[51] Eastlake, 3rd, D., et al. “Randomness Recommendations for Security”,

IETF RFC 4086.

[52] Sanchez, L., K. McCloghrie, J. Saperia. "Requirements for Configuration

Management of IP-based Networks," RFC 3139, June 2001.

[53] Designing Device Configurations [Online], Available:

http://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/infrastructure/1-

2/user/guide/prime_infra_ug/create_temps.html

[54] Tahir, M.,M. Ghattas. (2009). Cisco IOS XR. Cisco Press. pp. 110-119

[55] Infonetics (2013). “Enterprise Networking and Communication Vendor

Leadership Scorecard [Online]”, Available:

http://www.infonetics.com/pr/2013/Enterprise-Vendor-Scorecard-

Highlights.asp

[56] Yuxiang, H., L. Shengli, S. Xiaoyan., “A Dynamic Analysis System for

Cisco IOS Based on Virtualization” Third International Conference on

Multimedia Information Networking and Security (2011)

[57] JunOS [Online], available from http://www.juniper.net/us/en/products-

services/nos/junos/#overview, retrieved 10 September 2014.

[58] Hucaby, D., S. McQuerry. (2010). Cisco Router Configuration Handbook.

Cisco Press.

209

[59] “Linux”, in Wikipedia: The Free Encyclopedia; [encyclopedia on-line];

available from http://en.wikipedia.org/wiki/Linux; Internet; retrieved 6

November 2014.

[60] "10 Reasons Open Source Is Good for Business" Noyes, K. (2014).

PCWorld Magazine. [PCWorld on-line]; available from

http://www.pcworld.com/article/209891/10_reasons_open_source_is_goo

d_for_business.html; retrieved 6 November 2014.

[61] "UNIX" [Online]: available from http://en.wikipedia.org/wiki/Unix;

retrieved 18 November 2014.

[62] "G++" [Online]: available from

http://www.vietspring.org/cpp_linux/gpp.html; retrieved 18 November

2014.

[63] "Bash" [Online]: available from

http://en.wikipedia.org/wiki/Bash_(Unix_shell); retrieved 18 November

2014.

[64] "Make" [Online]: available from

http://en.wikipedia.org/wiki/Make_(software); retrieved 18 November

2014.

[65] "Tar" [Online]: available from http://www.tecmint.com/18-tar-command-

examples-in-linux/; retrieved 18 November 2014.

[66] "Md5sum" [Online]: available from http://en.wikipedia.org/wiki/Md5sum;

retrieved 18 November 2014.

[67] Kozierok, C. (2005). The TCP/IP Guide. Charles M. Kozierok. pp. 64

[68] “Understanding Syslog: Servers, Messages & Security” [Online],

Available from http://www.networkmanagementsoftware.com/what-is-

syslog; retrieced 20 November 2014.

[69] “What is stdin? What is stdout? What is stderr?” [Online], available from

http://www.zenez.com/tmp/ou8faqz/cache/18.html; retrieved 20

November 2014.

[70] Frisch, E. (2002). Essential System Administration, 3rd Edition. O'Reilly.

pp. 469.

210

[71] “Setting Your System’s Hostname” [Online], available from

https://www.movealong.org/hostname.html; retrieved 19 November 2014.

[72] Maxwell, S. (2002). UNIX System Administration. The McGraw-Hill

Companies. pp. 297.

[73] “OpenSSH” [Online], available from http://www.openssh.com/; retrieved

19 November 2014.

[74] “Environment Variables” [Online}, available from

https://wiki.archlinux.org/index.php/environment_variables; retrieved 20

November 2014.

[75] Helmke, M. (2014). Ubuntu Unleashed, 2014 Edition. Pearson Education

Inc. pp. 217-218

[76] Martin-Flatin, J. “Web-Based Management of IP Networks and Systems,”

Ph.D. dissertation, Swiss Federal Institute of Technology, Lausanne

(EPFL), Oct 2000.

[77] “C++ md5 function” [Online], Available from

http://www.zedwood.com/article/cpp-md5-function; retrieved 12

September 2014.

211

CURRICULUM VITAE

Saeed M. Agbariah is a senior network engineer with more than 15 years of

experience in the networking field. He holds leading industry certifications

including Cisco Certified Internetwork Expert (CCIE) - Routing and Switching

#10791, Cisco Certified Internetwork Expert (CCIE) - Service Provider #10791,

Juniper Networks Certified Internet Expert (JNCIE) - Service Provider #374, and

Juniper Networks Certified Internet Expert (JNCIE) - Enterprise Routing

Switching #437.

Mr. Agbariah is an Adjunct Professor at George Mason University, where he

teaches in the Master of Science in Telecommunications degree program in the

Department of Electrical and Computer Engineering. He created a Multiprotocol

Label Switching laboratory class and teaches three different courses in the

Telecommunications program.

He received his Bachelor of Science in Information Technology from the

University of Phoenix and his Master of Science in Telecommunication from

George Mason University.

