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ABSTRACT 
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The cardiac activity can be investigated based on the RR signal – a series of temporal 

intervals between consecutive heartbeats. The variation of these intervals – called the 

heart rate variability (HRV) – enables quantitative analysis of functioning of the cardiac 

control mechanism (Autonomous Nervous System). The mainstream techniques of the 

HRV analysis are time-consuming and do not identify conditions possibly affecting the 

HRV, what limits their analytical scope and depth. Hence the demand from cardiological 

community to develop reliable methods of HRV assessment working in nearly-real time 

and based on relatively small amount of data, yet at the same time providing nontrivial 

insight into the cardiac activity. We address this problem by investigating the dynamical 

changes in nonstationary RR signal, extracted from electrocardiogram recorded in 

presence of controlled environmental stimuli, including music. For this purpose we 

introduced the Sample Entropy-related methods to quantify complexity in time series, 

which we applied independently as (i) change detectors and (ii) classification features. 



  

Furthermore, we propose and demonstrate methods of symbolic analysis of the RR 

signals based on the notion of Lempel-Ziv complexity. 

Our research has laid the foundation for using novel nonlinear-dynamical statistics 

implemented as change detection algorithms applicable to the HRV analysis. We have 

shown that the new methods are sensitive enough to capture effects of subtle stimuli – 

such as music – on the HRV characteristics, while not compromising robustness to noise 

and experimental artefacts. Such techniques can find application in a variety of domains 

beyond cardiology, where the identification of change can be a starting point for the 

stress detection. In a wider perspective, the methods are potentially applicable to 

detecting nonstationarity in the systems whose dynamical parameters drift over time.  
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1.  INTRODUCTION 

 

Live organisms generate outputs resulting from interactions which involve a variety of 

internal and external (i.e. environmental) factors. The effect of these interactions can be 

found in heartbeats, neural excitations, respiratory functions and other vital activities. 

Intuitively, one may claim that the higher the complexity of a biological system, the 

richer the repertoire of adequate responses to the environmental conditions and – 

consequently – the better the fit-to-survive behavior. Conversely, low complexity and 

weak behavioral dynamics usually indicate inadequate responsiveness to environmental 

changes. Indeed, we observe that certain diseases or even healthy aging strongly correlate 

with less complex physiological outputs [94], which can be explained by compromised or 

disconnected regulatory mechanisms.  

As an illustration, the two plots in Figure 1 represent series of heartbeat intervals – 

referred to as RR signals - retrieved from two different electrocardiograms. Clearly, the 

blue (‘normal’) signal is much more complex than the red one (‘patient’). In this 

particular example the extreme simplicity of the red plot represents a transplanted 

(denervated) heart, which does not receive any input from the autonomic nervous system. 
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Figure 1. The series of heart beat intervals of normal (blue) and diseased (red) subjects (the values on x- 

and y-axis are not shown) 

 

 

 

These observations would be pointless without the ability to evaluate signal complexity 

in a precise and objective manner. For this purpose one captures the signal representing 

the process of interest in living organisms, e.g. the electrocardiogram (ECG), 

electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG) or 

photoplethysmogram (PPG). Then, the recording is digitized into an appropriate data 

format suitable for quantitative, audio or visual analyses. In this research, we use 

exclusively time series data. 

General considerations 

The high complexity of physiological signals results from intrinsic for live organisms 

concurrency and interrelations of their underlying processes (e.g. blood circulation and 

breathing). These, in turn, entail what we refer to, and introduce further, as dynamical 

nonlinearity and nonstationarity. For now, we can intuitively think of them as non-

additivity of different physiological influences and adaptive responsiveness to those 

influences.  When observed during sufficiently long period of time, these signals exhibit 
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also multiscale variability and long-range correlations [57]. Importantly, their dynamics 

typically contain both deterministic and stochastic components [175], whose 

contributions  depend on particular processes: for instance, the cardiovascular dynamics 

has more regularity than in the dynamics of human gait, what means that the latter is 

more stochastic (less deterministic) than the former. All these apply to the cardiovascular 

system, necessitating carefully selected methods and well-prepared data for adequate 

analysis. 

Indeed, within the last two decades numerous nonlinear-dynamical and entropic methods 

[177] (whose detailed descriptions are provided in Chapter 2) unveiled interesting facts 

about the function of the cardiovascular system in a variety of physiological, 

pharmacological, behavioral and environmental conditions [118]. Among those methods, 

two entropic regularity measures, Approximate Entropy [119] and Sample Entropy [127] 

proved their relevancy for HRV analyses of variety of clinical cases, including but not 

limited to those mentioned on pages 15 ff. 

The methods introduced in this research can be applied to detect to dynamical changes in 

the RR intervals and targeted for HRV analysis, yet their applicability may extend to 

domains beyond cardiology as well, what we state in Chapter 6. Below we discuss some 

typical challenges, opportunities and subtleties the researcher must be aware of and will 

likely encounter once involved in analyses of complex physiological signals in general 

and the RR time series in particular. 

Linearity vs. nonlinearity. There is abundant evidence that traditional analytical tools – 

sometimes called linear – have limited applicability to physiological signals [84]. The 
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linear methods work best for purely stochastic and/or (quasi-)periodic processes, whereas 

most physiological time series are strongly nonlinear and exhibit certain degree of 

determinism.  

Secondly, for capturing effects of nonlinear dynamics, it is recommended to use a 

multidimensional, vector-based approach [92], whereas the methods based on 

morphological similarity (distance) between time series – even though they account for 

sequential order in the data – operate on scalars (trace plots) rather than vectors (state 

space). To explain the advantage of vector-based approach, we consider two signals: the 

deterministic-chaotic Henon (discrete) map and the Gaussian stochastic signal, described 

by the probability distribution 2 0.5( ) exp( 0.5(( ) / ) ) / (2 )P X X µ σ σ π= − − . The concept of 

a (multidimensional) state space and the Henon map needs a brief explanation: The 

Henon map is a function defined on the 2-dimensional real space with two control 

parameters a and b: 1 1 ,n n n n nX aX Y Y bX+ = − + = . It was initially studied [46] for 

( , ) (1.4,0.3)a b = , i.e. in its chaotic regime (There are also regions of the values of a and b 

for which the map is intermittent or periodic). 
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Figure 2. The upper trace plots represent chaotic (left) and stochastic (right) signal, respectively (blue). The 

lower: Time-delayed phase plane plots representation of the same data (red) 

 

 

 

The upper panels of Figure 2 show 1-dimensional trace plots of the Henon map (left) and 

a sequence of normally distributed, randomly generated points (right). In the scalar 

representation – i.e. using trace plots – these signals look similar, but the visual-only 

judgment based on the trace plots may be misleading. This is because – in general – most 

dynamical systems have more than one degree of freedom (i.e. independent variable), 

regardless of what we are able to observe. Furthermore, we can usually associate only 

one of those variables with the time evolution of the system and – using adequate 

measurement procedures – acquire as a series of observations. To gain more 

comprehensive information about the dynamics of the underlying phenomenon, we may 

need to reconstruct the related state space according to Takens’ embedding theorem [140] 

(further extended by  [174]). The theorem states that a (deterministic) dynamical system 

can be reconstructed by transforming the sequence of observations into state vectors, 
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whose components span the system state space. For the reconstruction one needs two 

embedding parameters: dimension (m) and delay (τ). Although no precise and universal 

formulae for the parameters exist, certain semi-empirical methods can be used for 

approximation. We implicitly use these parameters when defining the SampEn-related 

statistics: m plays a role of pattern (template) length and τ can be thought of as sampling 

rate (by default τ = 1). In this sense our methods conform to the multi-dimensional 

paradigm: we realize this concept by denoting each single observation of the time series 

of interest as u(i), i=1,2,...,N. Next, we build a series of ( )1N m τ− −  m-dimensional 

vectors ( ) ( ) ( ) ( ), ,..., ( 1 )mx i u i u i u i mτ τ= + + −   , where i=1,...,N-m+1, m=1,...,M is the 

embedding dimension and 1τ ≥  is the delay (or lag). 

Now we can see the relevancy of the multi-dimensional approach by looking at the lower 

panels of Figure 2. When plotted in a recurrent manner in 2-dimensional state space: (x(t) 

vs. x(t-τ), where τ=1), the signals show a striking difference: The new representation of 

the Henon map exhibits its regularity (which is hidden when represented in one 

dimension using a trace plot), which stems from its intrinsic determinism, whereas the 

Gaussian signal is purely stochastic (one can only try to predict its values based on the 

data probability distribution). Clearly, for the Gaussian signal the way it is represented 

dos not matter since it lacks regularity. 

The deceptiveness of evaluating nonlinear (physiological) time series just by looking at 

the trace plots is illustrated by the following example of the four RR signals selected 

from the PhysioBank (publicly available web-based repository of data addressed to the 
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biomedical research community). In Figure 3, the red and turquoise lines on the plot look 

very much alike (having similar mean, variance, trend etc.), yet they represent different 

classes: congestive heart failure and normal sinus rhythm (i.e. ‘normal’, respectively, 

whereas the blue and yellow – although looking fairly different – fall into the same class 

of ‘normal’). 

 

 

Figure 3. Points colored blue and turquoise represent normal (healthy, both marked with squares) cases, 

while red and yellow points represent cases of CHF (diseased, both marked by triangles). The x- and y-axis  

represent successive indices and durations of the RR intervals, respectively (their values are not shown) 

 

 

 

The conclusion is that a visual-only evaluation of the RR trace plots may not be adequate 

for the problem of identification of cardiac diseases in general, especially in their early 

stage or when their specific features are blurred (untypical cases). In such circumstances 

one needs more sophisticated analytical tools, including those based on multi-

dimensional and nonlinear-dynamical approach. 
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Data: the quality and quantity. In spite of the widely spread enthusiasm of early 1990’s, 

certain mainstream nonlinear-dynamical methods, especially those related to chaos (e.g. 

the largest Lyapunov exponent (L1) and correlation dimension (D2)) – while powerful – 

are hardly applicable to the HRV analyses. This is because the methods theoretically 

require signals which are stationary, infinitely (or sufficiently) long and noise-free – 

conditions be satisfied by experimental data. Approximations of those requirements may 

be acceptable in certain situations; nevertheless using the chaos-related methods only is 

overall risky [90]. 

The biggest challenge is posed by nonstationarity, which is omnipresent in natural 

phenomena – particularly in live organisms – and is the results of adaptivity to changing 

environmentaal conditions (this is oversimplistic but true). In general, nonstationarity 

severely limits the arsenal of methods to be used for analysis (e.g. spectral and chaos-

related), but on the other hand – what we show further – nonstationarity can also be 

informative about dynamics of the underlying process (given the adequate methods are 

used). The next problem is related to noise, whose level can be controlled only to certain 

degree. We demonstrate in chapter 5 when we introduce methods of symbolic analysis 

that the adverse influence of noise can be mitigated by converting the experimental signal 

to a sequence of symbols, which can be studied using methods of symbolic dynamics. 

The signal length is another factor to take into account. Common sense dictates that ‘the 

more (data) the better’. Intuitively, a long-term signal usually contains more information 

than its short-term counterpart, given both were registered in comparable circumstances. 

On the other hand, a variety of technical and cost-related reasons leave the researcher 
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with only short-term signals available for analysis, with potential problems typical for 

data shortage. We address this problem indirectly by applying series of stimuli during the 

ECG recording. 

Nonstationarity: intrinsic and stimuli-induced. Our analytical approach is based on the 

conjecture that by responding to controlled environmental stimuli, the cardiovascular 

system generates additional informational about the perturbed ECG. Such a stimuli-based 

approach was motivated by abundant experimental evidence [120] supporting the 

hypothesis that physiological signals generated by healthy organisms feature a higher 

complexity level than those generated by older and/or diseased organisms. Obviously, we 

assume that the responses to external stimuli should be reflected in the complexity of the 

RR signals, especially when measured locally in time when the stimuli were applied. 

Such a setting opens up the opportunity to analyze the HRV complexity by capturing and 

quantifying dynamical changes, perhaps caused and/or amplified by the stimuli. Exact 

knowledge of temporal occurrence (onset and duration) of particular stimuli enables 

comparing different parts of the signals in terms of characteristics we believe are 

sensitive to the stimuli. What is more, we can evaluate differences in the level of those 

responses exhibited by healthy vs. diseased subjects. This aspect will be thoroughly 

exploited further in this dissertation. 

All these lead to the problem of nonstationarity, inherently present in all physiological 

signals. In physics of dynamical systems, an alteration of dynamical properties is called a 

parameter change (e.g. transient chaos or intermittency), where values of those 

parameters are usually known and controlled during simulation. In the case of 
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experimental time series, however, their underlying dynamics are in a sense a black box, 

what leaves us with semi-empirical rather than analytical methods. In either case, 

nonstationarity causes computational difficulties, especially when applying the spectral 

methods and chaoticity measures or when attempting to simultaneously fulfill the 

requirements for minimum signal length and stationarity. This is because the longer 

duration of a process, the greater chance its dynamics may change. For instance, during 

24 hours of the Holter monitoring, the recording device captures ECG data of whole 

diurnal activity. During this time physical and physiological conditions drastically change 

(e.g. sleep vs. physical exercises, stress at work vs. leisure at home). Conversely, 

selecting relatively short subsequence of the recorded time series – when dynamics of the 

process do not change significantly – help obtain quasi-stationarity, this however 

compromises the amount of data. Ultimately, each of the requirements can be satisfied at 

the cost of another. 

Determinism vs. stochasticity. Coexistence of stochasticity and determinism is typical 

for physiological time series. Such a hybrid nature should make the researcher cautious 

while selecting method(s) for analysis. For instance, the choice of purely 

nonlinear/deterministic or linear/stochastic to be used in isolation from other methods in 

most cases may not be very useful [140]. Particularly important for the methods applied 

to physiological data is their robustness to noise and outliers without compromising 

sensitivity to (perhaps nonlinear) dynamical characteristics. Entropic methods meet the 

above criteria. 
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Complexity. A last remark concerns the meaning of the term complexity, used 

abundantly throughout this dissertation. As a general concept, complexity has different 

meanings depending on the context it is used. In information theory and computer science 

the term is related to ‘(in)compressibility’ [123]. In physics (of nonlinear dynamical 

system) complexity is usually quantified by the (topological) entropy and accounts for the 

(proliferation of) periodic orbits. Other examples can be taken from the areas of corporate 

management, social networks, biology and physiology, communication and many others. 

In this study the term denotes (i) regularity in data enabling compression (quantified by 

the algorithmic complexity and its Lempel-Ziv complexity) and (ii) prediction (quantified 

by the Kolmogorov-Sinai entropy and its Sample Entropy implementation). 

Functioning and complexity of the human heart 

The human heart is a muscle made of self-excitable tissue, functioning in a cyclic manner 

as follows: It pumps the blood to the lungs to absorb oxygen, then it pumps this oxygen-

saturated blood to the organism (via blood vessels). Once the blood supplies the oxygen 

to organism it returns to the heart (via veins). This cyclic process is synchronized with the 

heart rate. Heartbeats – the contractions of the heart muscle are controlled by low-voltage 

electrical signals normally generated the sinoatrial (SA) node – the heart's natural 

pacemaker. The SA node-generated electrical impulses are spread to both atria and cause 

them to contract (pump). Another controlling center, the atrioventricular (AV) node, has 

its role in facilitating contraction of the atria before ventricles contract, thus helping the 

latter filled with blood. Figure 4 below shows simplified structure of the human heart. 
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Figure 4. Left: The cardiac conduction system. Right: The anatomy of the four heart chambers (from: 
Paulev-Zubieta, New Human Physiology, 2nd Edition)   
 

 

 

The heart rate is measured in number of heartbeats per minute. The ability of the heart to 

contract is an intrinsic property of the heart muscle, independent the nervous system. 

Nevertheless, there are many nerve fibers affecting the cardiac activity. Other 

physiological factors that determine the heart rate include respiration, blood pressure, 

chemical messengers (i.e. hormones), age, body temperature, levels of electrolytes (salts) 

in the blood. At rest, the normal heart rate is determined by dynamic interaction between 

spontaneous cardiac impulses generated by the SA node and conflicting influences of the 

two branches of the autonomic nervous system (ANS): the sympathetic and the 

parasympathetic nervous system. The former is responsible for acceleration of the heart 

rate, as opposed to decelerating function of the latter. The SA node usually fires between 

50 and 100 impulses per minute. However, under certain conditions – for instance during 
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physical exercises (e.g. jogging) or psychological stimuli (e.g. stress) – the SA node 

accelerates the heart rate to increase blood supply accordingly to the needs of the 

organism.  

Time series of heartbeat intervals 

Among the mainstream cardiac diagnostic techniques the electrocardiogram (ECG) is one 

of the most widely used. It enables examination of a wide range of cardiac conditions, 

from minor to life threatening. A special case of the ECG-based study considers the 

temporal variation between successive heartbeats. This particular technique is called 

Heart Rate Variability (HRV) analysis, comprising variety of methods and statistics 

quantitatively characterizing functioning of the ANS, which is responsible for the cardiac 

regulatory functions. 

To conduct HRV analyses, one needs a series of consecutive temporal intervals between 

adjacent heartbeats. This requires identification of the highest peak in each subsequent 

ECG cycle (denoted by letter ‘R’ in Figure 5) and can be done automatically using 

various feature extraction algorithms [112]. 
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Figure 5. Relationship between ECG and RR signal. Upper graphs (A.D.A.M. Inc.): ECG plot (left) and 

magnification of selected cycle (right). Lower graph: P, Q, R, S and T denote peaks corresponding to onsets 

of consecutive states of a heart beat. Temporal distance between two consecutive R-peaks is denoted by τ. 

 

 

The duration between two adjacent R-peaks – denoted ‘RR’ – is usually measured in 

milliseconds. Incorporating the R-peaks into the RR signal is event-based (rather than 

conducted on equal-interval basis). The RR signal is the typical data format used for 

analyses of the Heart Rate Variability. 

Importance of the HRV in cardiac diagnostics 

The term Heart Rate Variability – acronymed HRV – denotes the variation of the 

intervals between subsequent heartbeats. The clinical relevance of HRV traces back to 

1965 [87]. Since late 1970's the HRV analysis has been recognized as a non-invasive 

research and clinical technique reflecting the activity of the cardiac and autonomic 

system functioning. Looked at from a wider perspective, HRV enables quantifying the 

adaptability (of a live organism) to environmental conditions, which is among indicators 

of the general cardiac health. 
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As a diagnostic method, the HRV analysis is being routinely applied in variety of clinical 

applications, including cardiovascular risk stratification (myocardial infarction and 

angina pectoris, congestive heart failure, malignant arrhythmias and sudden cardiac death, 

essential hypertension), pulmonary diseases (sleep apnea), risk assessment in neurologic 

disorders (severe head injury and brain death, acute brainstem stroke, Guillain-Barre 

syndrome), fetal and neonatal monitoring [50]. An important diagnostic of the HRV 

analysis is related to diabetes. A possible consequence of the disease is the diabetic 

neuropathy – a type of nerve damage resulting from high blood sugar, associated with 

altered parasympathetic vs. sympathetic balance, which results in reduced HRV (The 

latter symptom commensurate with age and severity of the disease). 

A comprehensive survey regarding the clinical relevance of HRV, computational 

methods, technical requirements, algorithmic standards and clinical issues is provided in 

[87] and references therein. 

Motivation and problem statement 

The motivation for this research was related to three problems: (i) HRV-based cardiac 

diagnostics, (ii) nonstationarity detection in time series, (iii) symbolization and symbolic 

analysis of experimental signals. 

(i) The HRV analysis with application of music and physical stimuli. Certain 

symptoms of the cardiac activity may be emotion- or stress-induced, as well as 

intrinsically transient and/or infrequent – yet potentially indicating various heart diseases. 

Hence the necessity of monitoring and capturing evidence of the symptoms, which are 

happening abruptly and last for a short period of time: those may be not apparent during 
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standard ECG recording (for instance: transient heart arrhythmias or transient cardiac 

ischemia). In such situations a technique based on Holter monitor – a small, portable 

device – has been applied since early 1960’s. Capable of continuous monitoring heart 

activity (ECG) for at least 24 hours and indisputably a well-recognized and powerful 

technique helpful for the HRV analysis, the 24-hour Holter monitoring has at least three 

serious drawbacks. First, it is time-consuming as it requires a special apparatus to be 

carried by a patient all the time during monitoring. Secondly, the device is not able to 

recognize and evaluate external conditions, which directly surround the patient: These 

conditions change during the recording session – often drastically and in unknown 

manner – hence influencing the (recorded) cardiovascular activity. Last but not least, the 

cardiological diagnoses are often made under time pressure and using only readily 

available information (e.g. ad hoc recorded plain ECG). Hence the urge from 

cardiological community for HRV assessment methods capable of nearly-real time 

processing and using relatively small amount of data. This research addresses the demand 

by proposing novel methods of quantification of changes in dynamical complexity in RR 

signals up to 35 min., recorded in presence of controlled environmental stimuli including 

music. To date, such methods remain rather unexplored in diagnostic practice. 

Specifically, we compare how audible stimuli, i.e. music and white noise, perform vs. 

physical influences (i.e. position change and thermal bath) in affecting the HRV, and how 

the response (to the stimuli) from healthy participant differs from that of the patients.  

(ii) Detection of change point in (nonstationary experimental) time series. 

Investigating nonstationarity in terms of (detecting) dynamical change points – 
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potentially indicating nontrivial changes in the underlying dynamics – may provide 

additional insight into the related process, excluding but not limited to the cardiac 

diagnostics. In particular case of this research the stimuli-induced nonstationarity enables 

investigation how different stimuli affect the HRV (in specific group of volunteers) and 

how different health category groups respond to (specific) stimuli. Additionally, the 

(identified) change points may be the basis for constructing (alternate) partition to be 

used for symbolic transformation – as described below. 

(iii) Symbolic transformation and analysis. In symbolic representation of time series, a 

large number of different values of the data can be represented by very few distinct 

symbols (e.g. 1 and 0), what makes computations simpler and less demanding on 

computational resources. Whereas advantageous in many respects – including reducing 

the level of noise (present in the original signal) - the symbolic representation requires 

data symbolization, being a prerequisite for symbolic analysis. A critical part of 

symbolization is finding the right partition, which is a non-trivial problem rooted in 

physics of dynamical systems. A partition is called generating if it uniquely preserves all 

the dynamics of the original (deterministic) data. Finding the generating partition for 

most dynamical systems is a nontrivial problem. Specifically, for experimental signals of 

unknown dynamics, the generating partition cannot be found analytically. Nevertheless – 

based on available observables – one may ‘deduce the grammar of the corresponding 

symbolic dynamics’ [19]. In this research, the problem of partition and symbolization is 

aproached semi-empirically, based on heuristics related to dynamical nonstationarity in 

experimental signals. 
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By its very nature, symbolization reduces complexity, thus tends to underfit the original 

data. Although an arbitrarily fixed threshold crossing – usually set as the global median 

or mean value – seems natural choice for partition, it has intrinsic tendency of excessive 

ignoring details, what results in poor rendering of the original data [61]. Consequently, 

the original dynamics is irreversibly lost. To mitigate this problem we propose alternate 

partition composed of series of thresholds, each corresponding to local regularity of the 

data. This preserves the original dynamics with higher fidelity than one fixed threshold 

imposed arbitrarily and globally. Obviously, the more accurately the nonstationarity is 

detected, the more adequately the alternate partition generates symbolic representation of 

the original data. 

Contribution 

The primary objective concerns detecting nonstationarity in experimental signals, with 

emphasis on cardiac RR time series. To achieve this we developed novel methods for 

nonstationarity detection, which are based on the notion of algorithmic complexity, i.e. 

Sample Entropy, and data compression, i.e. Lempel-Ziv complexity. The methods are 

implemented as two separate algorithms in Matlab.  

The first algorithm – acronymed IRSEG (Iterative-Recursive Sample Entropy-based 

Segmentation) – operates based on the three complexity measures we derived from the 

Sample Entropy: the static entropy (sE), dynamic entropy (rRnd) and delayed entropy 

(rDiv). The statistics are computed on different time scales of data and evaluated 

according to predefined ctiteria for change points. 
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Based on the change points detected by IRSEG, we can construct the alternate partition 

applicable for dynamically-adaptive symbolization. Due to its adaptivity, the partition 

renders the original dynamics more adequately than an arbitrarily selected fixed 

threshold-crossing. Once symbolized, the signal can be further analyzed as a sequence of 

(binary) symbols.  

Analogously to the case of experimental signals, we introduce three LZC-based methods 

applicable to symbolic sequences: cRat, cDet, and lDfactor. The methods – being 

formally introduced in Chapter 5 – have been implemented as the second algorithm, 

acronymed CARACAL, which operates based on the notion of Lempel-Ziv complexity. 

As a special case of this study, we assessed the HRV response to the controlled 

environmental stimuli applied during the ECG recording, what enabled cross-comparison 

of the responses: from different health category groups to different stimuli. 

The rest of this dissertation is organized as follows. Chapter 2 provides theoretical 

background of the fundamental concepts based on which we will introduce our methods 

and algorithms further in this dissertation. These include the notions of the algorithmic 

complexity, the Kolmogorov-Sinai entropy, non)stationarity and dynamical nonlinearity, 

partition and complexity of the physiological systems. In Chapter 3 we concentrate on the 

detection of dynamical change in signals simulated with drifting parameter, for which we 

introduced the Sample Entropy triplet methods and their algorithmic implementation 

called IRSEG. Chapter 4 is focused on dynamical change in cardiac signals recorded in 

presence of external stimuli, which is at core of our study. In this part of the dissertation 

we describe in detail the experimental setup and cardiac data as well as comparison how 



20 
 

our methods perform vs. well established methods of the HRV analysis. As a follow up 

of these, in Chapter 5 we present our approach of dynamical change detection in 

symbolic data, including the dynamically-adaptive partition, Lempel-Ziv complexity and 

our methods based on it, implemented as the CARACAL algorithm. Finally, Chapter 6 

summarizes the methods and results in terms of their advantages and limitations 

considered with regards to different domains of application and data specificity. The 

Appendix contains case studies of change detection in particular signals used in the 

analyses.  
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2. THEORETICAL BACKGROUND 

 

In this chapter we present the theoretical background for the methods and algorithms 

used throughout this dissertation. The two aspects of complexity: regularity and 

predictability, along with the notions of dynamical nonlinearity, nonstationarity, partition, 

symbolic transformation and (data) compressibility, are at the core of our study. Although 

our attention is focused mainly on physiological dynamics – and particularly the heart 

rate variability – we nevertheless provide a more general context and mathematical 

foundations of the above concepts. At the end of this chapter we present a brief survey of 

the mainstream HRV measures, some of which we use further as benchmarks for 

evaluating our methods of detecting dynamical changes in RR signals. 

 

A. QUANTIFICATION OF COMPLEXITY IN TIME SERIES 

There is no consensus on the strict definition of complexity. According to Lucas et al., 

[82] one encounters complexity when ‘critically interacting components self-organize to 

form potentially evolving structures exhibiting a hierarchy of emergent system properties. 

While this informal definition implicitly suggests that complexity manifest itself in a 

spatio-temporal manner, in this study we focus exclusively on the temporal aspect, as we 

investigate only temporal data. 
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In the temporal (not to say ‘dynamical’) context one may agree that complexity is a 

‘behavior that is neither completely ordered and predictable nor completely random and 

unpredictable’ [83]. If so, the class of chaotic phenomena may be an excellent illustration 

of the complexity, where the most spectacular examples include the Lorenz 

meteorological model, the Belousov-Zhabotinsky chemical reaction and multi-mode laser 

excitation. Yet, probably even more illustrative and spectacular are the cases from 

different domains of physiology, where self-organization, interdependence, emergency 

and feedback mechanisms richly contribute to the overall complexity of live organisms. 

From Occam’s razor to algorithmic complexity 

William Occam – a scholastic logician who lived during 14th century in England – 

proposed that ‘no more things should be presumed to exist than are absolutely necessary’. 

This informal paradigm – usually referred to as the Occam’s razor – advises pursuing 

objectives using minimal sufficient resources. Whereas not rigorously stated as a 

principle to be strictly obeyed, it can be considered as a general heuristic for developing 

theoretical models. Nowadays, the medieval manifesto has its sophisticated formal 

implementations in computer science and information theory. 

A contemporary formalization of Occam’s razor can be found in the methods collectively 

called Minimum Encoding Length (MEL). They operate by inductively pursuing the 

model (i.e. theory or hypothesis) capable of the most compact explanation of data. In the 

MEL approach we select – out of (perhaps many) competing hypotheses – the simplest 

one, which still enables achieving the objective. In probabilistic terms this can be 

expressed as follows: If many hypotheses – each introducing certain risk of error – are 
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the bases for building a model, then – if the hypotheses (assumptions) do not contribute 

to a better accuracy of the model – their only ultimate effect might be an increased 

probability of the model fallacy. Overfitted models are typical examples. The examples 

of the MEL methods are Minimum Message Length (MML) [171] and Minimum 

Description Length (MDL) [130]. 

Occam’s razor was a cornerstone for the seminal concept of algorithmic complexity 

(which we further introduce formally), according to which the most compressible signals 

– for instance a constant or periodic – are also the least complex, as opposed to 

uncorrelated stochastic signal (e.g. white noise) which is totally incompressible. 

Consistently with this compressibility-centric point of view, white noise should be 

characterized by the highest complexity. Such a conclusion, however, seems to be 

contradicting our intuitive sense of the complexity: As we show further in this chapter, 

this difficulty can be partially and indirectly addressed by applying the surrogate data 

test. Further we show how this concept is incorporated into one of our Sample Entropy-

based methods.  

Minimizing description length via data compression 

Solomonoff [148] was the first who formalized Occam's razor mathematically in his 

observation-based universal inductive inference. Based on the computed probability 

distribution, the method predicts an unknown symbol, which directly follows a sequence 

of already observed (known) symbols. The only assumption made is that the probability 

distribution of the symbols is computable. 
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Another attempt to formalize Occam’s razor was made by Kolmogorov and Chaitin [68], 

who introduced the fundamental concept of algorithmic complexity – denoted K. 

Formally, K defines the complexity of a string s as the length l of its shortest description 

p obtain from a universal Turing machine U: K(s)=min{l(p):U(p)=s}). This definition 

guarantees that K is the lower bound for any other complexity measures. This definition 

has two important consequences: (i) K is an objective and absolute (complexity) measure 

and (ii) K is incomputable due to its dependence on (specific) Turing machine). The latter 

necessitates a practical implementation of K like the Lempel-Ziv complexity introduced 

below. 

Intuitively, K(regular data) ≤ K(random(ized) data). In fact, this inequality is true and 

shows that any regularity (in data) can be used as a prescription for more compact (i.e. 

using fewer bits of information) reproduction of the (uncompressed) data. Conversely, in 

the extreme case of a random string, no compression is possible and the shortest 

description is the very string specified bit by bit. This shows a close relationship between 

K and data compression, what we illustrate when comparing K with the Shannon’s 

entropy H. 

Lempel-Ziv complexity of symbol sequence 

Regardless its incomputability, K is the theoretical lower bound for any data compression 

algorithm. Furthermore, when a compression algorithm approaches its optimal encoding 

– perhaps after having processed sufficiently long sequence – it approximates the 

algorithmic complexity with increasing accuracy, thus (asymptotically) tightening the gap 
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with K. This is why compression algorithms are helpful in approximating data 

complexity. 

Data compression has a straightforward objective of uniquely describing the original data 

by encoding it using less information (number of bits) than the original data consists of. 

The two main compression methods applied to symbol sequences are those which 

generate a statistical model (e.g. Huffman algorithm [123] and operate using a dictionary. 

Both methods are lossless, fully preserving integrity of the data, so the decompressed 

data is identical as its original counterpart before the compression. 

The essential characteristic of each compression algorithm is compressibility, which can 

be defined as the ratio of lengths of the compressed and original strings. For instance – 

according the Shannon-McMillan theorem – compressibility of the Huffman encoding 

approaches its limit when it follows the probability distribution of occurrence of 

particular symbols (in the original string to be compressed), given the distribution is 

known (precisely) prior to the compression. Often, however, these probabilities are not 

known, necessitating non-parametric approach, where a statistical model is not required. 

One of such methods is a universal compression scheme introduced by Ziv and Lempel in 

[176], based on the concept of an adaptive dictionary. There are a few algorithmic 

implementations of this compression scheme (often labeled as LZ-76, LZ-77 and LZ78) – 

each devised around the concept of the Lempel-Ziv complexity (LZC). In this dissertation 

we will refer to the Lempel-Ziv compression scheme exclusively as to its LZ78 

implementation. 
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For stationary and ergodic sources and for symbol sequences whose length tends to 

infinity, LZ78 becomes asymptotically optimal, what means it approaches the lower 

bound defined by K. Simply put, the larger the dictionary (having been built up to certain 

time during compression of a sequence), the more patterns from the remaining (i.e. not 

yet encoded) part of the sequence being compressed it can reference to. 

In practice, however, we deal with sequences of limited length, generated by sources far 

from stationarity and ergodicity. These have at least two implications. First, short 

sequences provide little opportunity for the algorithm to approach its optimality (by 

sufficiently ‘learning’ while compressing the data), what potentially results in the 

complexity being overestimated. Second, due to dynamical changes in the data 

(nonstationarity), the compression performance may exhibit – besides random 

fluctuations – sudden and significant changes, usually increase. This is illustrated in 

Figure 6, where we can observe sudden increases of the normalized LZCn: 
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Figure 6. The independent variable represents consecutive instances of adding new word to the dictionary 

during compressing (left to right): sinusoid, random signal and concatenation of both (each homogenous 

signal consists of 1000 sample points). Upper plots: Evolution of (normalized) LZCn for these signals. 

Lower plots: Evolution of the size of words consecutively added to the compression dictionary. Vertical red 

bars on plots (C) and (F) denote change point at junction between the concatenated signals point 

 

 

 

We address the first problem by using the normalized LZC (defined in section B of 

Chapter 5) by reducing the effect of sequence length (As far as we investigate sequences 

of identical lengths – what we do – this problem is less serious). Regarding the second 

problem, we divide the whole sequence into a number of identical segments and perform 

the segment-wise analysis via sliding window.  

Kolmogorov-Sinai (metric) entropy 

We now introduce the Kolmogorov-Sinai entropy (K-S) as a theoretical concept behind 

the Approximate Entropy (ApEn) [119] and Sample Entropy (SampEn) [127]. The 

SampEn, which can be thought of as a regularity measure, illustrates that 

(un)predictability can be related to complexity. 

Approximating the K-S entropy for finite and noisy experimental signals 
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The K-S can be defined using the concept of the Shannon block entropy Hn for series of 

words, each comprised of n symbols. We define Hn = Σpin ⋅ logpin, assuming that each 

ith word is expected to occur with the probability pin anywhere in the sequence. Let Hn 

represent the average information necessary to predict a subsequence (a word) of length n. 

In such a setting we can iteratively define hn as a conditional entropy: hn = Hn+1 - Hn 

where h0 = H1, which is the average information necessary to predict the next symbol, 

given the preceding n symbols [175]. In the limit, h = limn→∞hn = limn→∞Hn/n, what 

denotes the Kolmogorov-Sinai entropy (K-S). The K-S is a measure of average 

information needed to predict the next symbol based on the evolution of the system up to 

occurrence of the symbol. A mathematically rigorous definition of the Kolmogorov-Sinai 

entropy is found in [1]. 

The K-S is actually an entropy rate and as such characterizes the amount of information 

per unit time needed to completely describe evolution of the system in time. Reliability of 

the K-S estimation increases with length of the sequence of observations and the 

decreases with the noise level. There is a connection between K-S and SampEn: they both 

approximate the K-S for finite (short) and perhaps noisy signals. As such, the ApEn and 

SampEn can be applied to quantify regularity in experimental time series. In fact, they 

now belong to the mainstream tools used in the HRV analysis. 

Measuring regularity via Sample Entropy 

Sample Entropy (SampEn) estimates the K-S for finite-length time series. Since its 

introduction in 2000, Sample Entropy (SampEn) has been applied to analyses of variety 
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of complex physiological time series. One of the main areas of its application is the 

analysis of heart rate variability (HRV), where methods based on SampEn achieved 

spectacular results. Other examples of the SampEn applications include analyses of EEG 

signals [4], human gait [26], postural sway [128], climate complexity [147], market 

dynamics [131], chaos communication [55]. An important contribution in cardiology was 

that from Lake and Moorman [73] who report detecting atrial fibrillation in the context of 

entropy estimation in very short time series. The list of applications still expands. 

Prior to a formal introduction, we provide typical cases of cardiological applications of 

the SampEn, where it has become the de facto analytical standard. Since its introduction 

in 2000 the SampEn has been applied to analyses of variety of complex physiological 

time series. One of its main application areas is the analysis of HRV, where methods 

based on SampEn achieved spectacular results, for instance the quantification of reduced 

HRV observed as entropy decrease, indicating early symptoms of neonatal sepsis [178]. 

In a study of regularity mechanisms of the HRV dynamics of premature infants, the 

emphasis was put on statistical properties of the SampEn, crucial for the parameter 

optimization. The authors found that under general conditions SampEn statistics are 

asymptotically Gaussian.  

As a complexity measure of sequential data SampEn is particularly suitable for 

physiological signals because of its (i) robustness to noise and outliers, (ii) sensitivity to 

temporal order in data, applicability (iii) ranging from determinism to stochasticity and 

(iv) including both linear and nonlinear processes, (v) little demand on data quantity. Its 

implementation is simple and with low computational cost. Although not particularly 
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devised for nonstationarity detection, the sensitivity to the underlying dynamics makes 

the SampEn more adequate quantifier of regularity variation in data than strictly 

statistical measures like the mean, standard deviation or probability distributions. 

The SampEn originates from the Approximate Entropy (ApEn) [119] and is estimated 

based on three parameters: the embedding dimension m (technically the template length), 

the tolerance r of the pattern matching (technically the pairwise distance between a 

template and the matched pattern) and the length of the signal N. In this paper we adopt 

an extended SampEn(m,τ,r,N) definition with the additional parameter of delay time, 

denoted τ. Figure 7 illustrates the concept for template length m=2: 

 

 

 
Figure 7. Computational schema of Sample Entropy estimation for m=2. The consecutive green dots are 

components of m-dimensional template vectors, the following red dots are extensions of the templates into 

(m+1)-dimensional space. The matching tolerance r is shown as error bars 

 

 

 

In our case (m=2), the template vector of the first two points {1,2} is matched by a vector 

whose components are points {11,12}, contained within solid green box. Then, a new 
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template of {1,2,3} is obtained by extending {1,2} with consecutive 3rd point, and now 

we search for matches in the space of dimensionality incremented to m+1=3. As shown in 

Figure 7, the points {11,12,13} within red box are the match for the newly created 

{1,2,3} template vector. This procedure extends to all the data and up to the predefined 

maximal dimension. The matches are counted separately for templates of each length 

(dimension), with self-matches discarded – an improvement from its predecessor (ApEn). 

Thus, in a sense, the SampEn analyzes regularity in terms of pattern recurrence in 

sequential data. 

 

Shannon vs. Kolmogorov approach 

We can get better idea of the Kolmogorov complexity K when comparing it with the 

Shannon entropy (H) – a seminal concept in information theory. The H quantifies 

statistical order in time series, using the data probability distribution according to the 

formula: H(P) = ∑i(P(ai)log2P(ai)), where P(ai) is probability of event ai (in the formula 

we arbitrarily choose the base of logarithm equal 2, but in general other values are used 

as well, for instance 10 and e=2.7182...). Consequently, H achieves the largest value 

when the data are identically distributed. Furthermore, the H is a static measure, 

insensitive to changes of temporal order in data, what is evident when computing H on 

randomized (surrogate) data. The sequential insensitivity is one the main differences 

between Shannon’s entropy H and Kolmogorov complexity K (the latter is sensitive to 

the sequential order in data). 
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Both ‘classical’ (Shannon) and ‘algorithmic’ (Kolmogorov) approaches assume that 

complexity can be quantified by the minimum number of bits necessary to transmit the 

message or describe the observation, often referred to as ‘source’ and ‘object’, 

respectively. The main difference is that whereas Shannon’s theory considers the 

methods (of transmitting the message) optimal relative to a priori known probability 

distribution, Kolmogorov’s (‘deterministic’) theory refers to the shortest computer 

program able to encode and then output a string representing the observation. Simply put, 

H ignores the object and considers only characteristics of the (random) source generating 

the object (message), which is one possible outcome of the source. K, on the other hand, 

considers only the object (i.e. message or signal) to determine the number of bits in the 

ultimate compressed version (regardless of how the object arose). In a sense, K and H can 

be thought of as two complementary complexity measures related to sequential order and 

probability distribution of the data, respectively. 

According to Shannon’s Coding Theorem (SCT) [144], the expected code length L of a 

message C represented in an alphabet A = {ai, i=1,...N} of size N, is given by the formula 

LC ≥ H(P), where equality holds if and only if L = -log2P. Thus, Shannon’s entropy H of 

a string is a limit for the lossless compressibility of C.  

 

B. PHYSIOLOGICAL COMPLEXITY AND ITS DYNAMICAL CONTEXT 

In biological dynamic systems – and particularly in human physiology – ‘complex signals 

generated by healthy organisms typically manifest at least one of the following dynamical 

properties [26]: (1) nonlinearity, i.e. non-additive elements contributing to large effects 
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due to (perhaps) small perturbations, (2) nonstationarity, which we discuss later, (3) time 

irreversibility – what takes place when a system operates in a state far from equilibrium 

and dissipates energy, and – last but not least – (4) multiscale variability. The series of 

interbeat intervals of a healthy heart is a good example of a physiologic signal displaying 

all of the above attributes. 

Complexity vs. variability 

While not synonymous, the notions of complexity and variability are closely linked: 

complexity entails variability - measured by the variance and related statistical metrics – 

although in general the reverse statement is not true. Nevertheless, the variability is 

necessary condition for nonstationarity – a quality essential for the change detection. 

This important aspect will be addressed in detail in section B. 

Complexity vs. adaptiveness 

Since so far there is no commonly accepted definition of complexity, we adopt a 

biologically-motivated approach, in which the most complex signals are those generated 

by organisms which are most adaptive. The term ‘adaptive’ can be thought of as related 

to generally conceived ‘healthy state’. Noticeably, two signals can have the same degree 

of statistical variability (i.e., the same global variance and coefficient of variation), but 

very different complexity properties. 

The complexity and adaptivity may be related: Complex systems have rich repertoires of 

responses (adequate) to the internal and external conditions. Those responses are context- 

and task-dependent [26]: ‘The more adaptive the individual organism, the more complex 

the signals it produces may be. Complexity degrades with pathology and aging (theory of 
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decomplexification) with disease’. Intuitively, the healthy organism is – by average – 

more adaptive and hence more resilient than a diseased one. This conjecture has become 

an assertion due to abundant experimental evidence. 

Dynamical nonlinearity and nonstationarity of physiological processes 

The notions of nonlinearity and nonstationarity are pivotal to our study. Interestingly, 

these apparently disjoint qualities both contribute to the complexity of analyzed 

phenomena: Because the casual relations between nonlinearity and nonstationarity often 

not obvious, explicit separation of their contributions may be hard. We partially address 

this issue by introducing and applying the static and dynamic measures of complexity. 

Determinism and randomness in the dynamics of natural phenomena 

As we have already mentioned, it is typical for physiological time series to manifest 

simultaneously determinism (or chaos as a special case) and randomness, where the 

border between these two is rather fuzzy. This makes the strictly linear/stochastic 

methods irrelevant for scrutinizing the dynamics of the cardiovascular system. On the 

other hand, selecting (any) nonlinear-dynamical methods ‘blindly’ is not particularly 

good. We address the data vs. methods dilemma by conducting surrogate data tests for 

nonlinearity in RR signals. 

Surrogate data test (SDT) for nonlinearity in physiological time signals 

The method of SDT was first introduced in [162] to detect nonlinearity in a time series. 

In particular, the SDT may be carried out as the first step of chaos identification, because 

nonlinearity is a necessary (but not sufficient) condition for chaotic dynamics.  
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Each SDT consists of three main elements: (i) a precise statement of the null hypothesis 

and the significance level, (ii) description of how the surrogate data are generated and 

(iii) the test statistic(s) to evaluate probability of committing the type-1 error. We will 

briefly elaborate each of these three parts. 

The null hypothesis  

It can be simple or composite. The former is more specific, e.g. ‘data are generated by 

linear, stochastic, Gaussian, stationary’ process, whereas the latter only assumes the 

process that generates the data belongs to certain category, e.g. ‘data are drawn from 

some Gaussian’ distribution. Because an explicit and precise definition of the 

fundamental property of nonlinearity is rather difficult, for practical reasons we regard 

nonlinearity as the ‘absence of linearity’. From a statistical point of view, the simple null 

hypothesis, denoted H0 states that the data are linear, yet whether H0 is rejected or not 

depends strongly on the second and third elements of SDT. 

Objective of SDT is to evaluate H0 that the data D0 of interest has required property p0 

(e.g. stationary, linear, stochastic). The surrogate data – denoted Ds, s=1,2,…,N – are 

generated out of D0 so that certain properties (statistics) pi≠0 of D0 are preserved also in 

Ds. These properties (most often they are the mean value, variance, autocorrelation or 

power spectra) – whose values are identical for both D0 and Ds – must remain intact 

during generating the surrogate data. Conversely, the property p0 shall be chosen so that 

it is sensitive to the D0 → Ds data modification, hence sufficiently discriminative with 
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respect to the H0. Importantly, based on the SDT one may only evaluate the probability 

that H0 is true: rejecting H0 is not equivalent to accepting H1. 

Surrogate data  

In this research we apply two methods of generating surrogate data: the phase-

randomized Fourier-transform (PRFT) and random shuffling (RS) of the sample points. 

In this dissertation we use the latter. For the original time series Θ = {xi, i=1,2,...,N} we 

generate predefined number of the surrogate data sets Θs = {xj, j=Π(1,2,...N)), where Π is 

a random permutation of the set of N indices of the sample points, s = {1,2,...S} is the 

index of surrogate data sets, and S determines the significance level of the SDT: α = 

1/(1+S). Throughout this research we consistently maintain the significance level at 

1/(1+19) = 0.05, i.e. we generate 19 surrogate data sets out of each original time series. 

Table 1 shows how the two algorithms affect the original data: 

 

Table 1. Effects of surrogating data by the RR and PRFT algorithms 

method mean, variance p. distribution autocorrelation 
RS retained retained destroyed 

PRFT retained destroyed retained 
 

 

Testing statistic  

Its selection is crucial for the decision on rejecting H0. Among those most often used in 

tests for nonlinearity are: skewness, kurtosis, correlation dimension, Lyapunov exponent, 

time reversibility and nonlinear prediction error. If we choose statistics that have low 

discriminative power (between the H0 and H1 hypotheses), we are at risk of committing a 
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type-II error, i.e. failure to reject the H0 when it is actually false. Conversely, choosing 

statistic with very high power may help prevent false rejection of H0, but increases risk of 

the Type I error. Obviously, using a larger data set (with other factors fixed) increases the 

power of the SDT. Failure to reject H0 of a linear stochastic process may indicate that (i) 

the data do not feature nonlinearity or (ii) that the chosen statistic was not sufficiently 

strong to detect the nonlinearity. Importantly, rejection of H0 – regardless whether the 

Type I error took place or not – in most cases does not elucidate where exactly H0 was 

violated. 

Example  

We choose three discriminating statistics sensitive to nonlinearity: SampEn, correlation 

dimension (D2) and Shannon entropy H. The null hypotheses for RS and PRFT 

algorithms, respectively, are stated as follows: 0 :RSH  the data are uncorrelated, iid and 

linear/stochastic. Rejection of 0
RSH  requires that nonlinear correlation in original data is 

significantly higher than in the surrogate data. 0 :PRFTH  the data are linearly correlated and 

stochastic. Rejection of 0
PRFTH  requires presence of nonlinear statistics, e.g. nonlinear 

correlation. The SampEn was computed for parameter configuration m=2, τ=1, r=0.15. 

For computing D2 we used the L1D2 algorithm [132] with default parameters. The H-

entropy was calculated using Matlab code from The Milano Chemometrics and QSAR 

Research Group. The Henon map was simulated with parameters a=1.4, b=0.3 (chaos) 

and the RR signal was chosen as a ‘typical’ representative of the RRC  H0 (‘healthy’) 

group. Each signal comprised 1000 sample points. Table 2 shows the test results: 
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Table 2. Testing 0
RSH  and 0

PRFTH . For clarity: ‘0’ and ‘1’ denote p ≤ 0.05 and p > 0.05, respectively 

data RR Henon 
statistic/H0 H0

RS
 H0

PRFT
 H0

RS
 H0

PRFT
 

SampEn (m=2) 0 0 0 0 
D2 1 0 0 0 
H 1 0 1 1 

 

 

 

Clearly, SampEn is the most sensitive and consistently discriminating statistic for both 

kinds of surrogate data (RS and PRFT) enabling rejection of both null hypotheses. 

Nonlinearity and nonstationarity.  

In general, we do not know a priori whether the data of interest are (non)linear and/or 

(non)stationary. This uncertainty does not, however, justify excluding the (assumption of) 

stationarity from H0 (especially in the case of long and complex signals). What is more, 

the mainstream linear analytical techniques (e.g. spectral) work under assumptions of 

both linear dynamics and stationarity of data, what makes the above statement even more 

relevant to analytical practice. 

If the data is actually nonstationary – a typical scenario for physiological time series – the 

assumption of nonstationarity should be incorporated into H0, otherwise our rejection of 

H0 may be due to either nonlinearity or nonstationarity. Thus, a valid alternative H1 may 

spuriously deduce nonlinearity based on nonstationarity only. Furthermore, most of the 

linear statistics used in SDT may not be able to capture differences between the original 

and surrogate data.  

These problems can be addressed by generating surrogate data in constrained manner, for 

instance shuffling the sample points within series of identical segments, whose size is 
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sufficiently small to approximate stationarity within each segment. The size of the 

segments must meet requirement for the minimum amount of sample points for the 

statistics used in the SDT. 

To obtain reliable results, the assumption of nonstationarity in H0 must be done explicitly, 

hence H0 should be formulated as a composite hypothesis. 

Applicability and limitations of nonlinear-dynamical complexity measures 

The dynamic nonlinearity of physiological signals origins from regulatory processes of 

feedback-based control mechanisms. In the particular case of the HRV, the most 

influential regulatory functions of the origin from the Autonomous Nervous Systems 

(ANS), responsible for so called ‘feedback loops’. The high gain and delay are the 

aspects contributing most to the nonlinear dynamics of the HRV. The static linear 

measures do not capture the HRV dynamics because they are insensitive to the temporal 

order in data, which contributes to the (dynamical) complexity. This justifies the 

importance of SDT as a guard against limiting the analyses to linear only techniques. 

Essentials of nonlinear dynamics  

As opposed to a ‘simple’ linear system – where factors causing instability lead to ‘infinite 

blow-up’ – the nonlinear dynamical (chaotic) system is confined within its attractor [179] 

(embedded in the reconstructed state space) – a set of all dynamical states the system can 

be found at. Indeed, linear systems may have only exponentially increasing or periodic 

solutions, hence any strong irregularities of a process must rely on irregular input, which 

is being processed according to linear rules [57]. 
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Historically, until the end of 19th century, most of the natural phenomena were explained 

in the spirit of reductionism, attempting to explain properties of a system through 

properties of its elements in isolation. Typically for this approach, the effect was 

expected to commeasure with its cause, and interactions between components of the 

system were considered negligible. Simply put in algebraic terms, the ‘linear paradigm’ 

is based on additivity and multiplicativity: F(x+y) = F(x)+F(y) and G(kx)=kG(x), where 

F, G and x, y are operators and operands, respectively. A wide range of analytical 

methods and characteristics – including Fourier analysis and linear correlation – were 

devised accordingly to this (linear dynamical) paradigm, i.e. assuming linearity of the 

observed phenomena. Although mathematically flawless, widely acknowledged and 

successful in many respects, the methods finally showed their limitations. This happened 

when it became obvious that almost all natural (and ‘interesting’) phenomena – 

particularly those controlled by complex feedback mechanisms – are immanently 

nonlinear [122]. According to nonlinear dynamical paradigm, small causes can trigger 

huge effects (what is called butterfly effect). 

Parameter change  

A distinctive feature of many nonlinear dynamical systems is the phenomenon of 

bifurcation [180], alternatively called ‘period doubling’. Bifurcation is an example of an 

abrupt, qualitative change in behavior of the dynamics, occurring when the system 

parameter changes infinitesimally. A typical example can be bifurcation of the logistic 

map. The left panel of Figure 8 shows the bifurcation diagram – a set of points in 2-

dimensional space: for each value of the parameter r there is at least one associated value 
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of the logistic map. The vertical bars labeled A, B, C and D represent four values of 

r={2.7, 3.1, 3.5, 3.7}, each corresponding to the analogously labeled four trace plots in 

the right panel. The simplest of them is plot A, where the map quickly stabilizes at a 

fixed point. Increasing r we observe consecutive, gradual period doubling for B and C (2 

and 4, respectively). However, when r increases beyond 3.5 passing C, the density of 

points rapidly increases to finally reach what is called the ‘onset of chaos’ approximately 

at r=3.57 (where the region of period-doubling ends). Typically for nonlinear (chaotic) 

dynamics, the change is strictly qualitative and occurs abruptly within very small range 

of the parameter variability. 
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Figure 8. The logistic map. Upper panel: bifurcation diagram. Independent axis represents value of the 

parameter r (adopted from Wikipedia). Lower panel: a sequence of four trace plots, each representing the 

logistic map generated with different value of r. The vertical bars show where the parameter changes: the 

area past the red bar represents chaos 
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Methodological remarks. We conclude this section with two important rules of thumb. 

First – as far as the dynamical aspects are concerned – the consequences of scrutinizing 

nonlinear data using linear models are usually more serious than applying nonlinear 

models to linear signal. Technically, the latter is analogous to approximating a straight 

line by a polynomial: as the polynomial degree increases, the sum of residuals approaches 

zero and the risk of overfitting increases. Conversely, linear approximation of a nonlinear 

signal may work in most cases only on local scale. 

The second rule downplays the role of the chaoticity measures like D2 and L1 as the 

system invariants: they become only the measures of nonlinearity for a particular segment 

of data [181]. Although using these methods in prediction or classification can still be a 

good idea given they actually outperform the traditional linear statistics, we shall be 

aware that measures of chaoticity require sufficient quality and amount of the data. 

Although in this research we mainly focus on short-term, noisy physiological signals, we 

actually manage to mitigate the mentioned risk by applying less demanding entropic-

based methods and measures. 

A common sense dictates the following bottom line of this consideration: Before 

applying the nonlinear methods it is advisable to reject most trivial case (by running 

surrogate data test) that the data in fact were generated by linear stochastic process. 
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C. NONSTATIONARITY IN PHYSIOLOGICAL TIME SERIES 

Detecting nonstationarity in experimental time series is important for at least three 

reasons. First, stationarity should be tested prior to application of analytical methods 

which actually require stationary data – otherwise the obtained results may be invalid or 

meaningless. Secondly, if any of the following applies: the signal of interest is (i) very 

short, (ii) acquired in specific experimental conditions, (iii) under very limited control – 

what is often the case of physiological time series – test for nonstationarity is highly 

recommended as a part of more general procedure called ‘sanity check’ of the data. 

Finally, nonstationarity itself may provide valuable extra information about the 

underlying dynamics – thus, whether nonstationarity is an obstacle or opportunity – 

depends vastly on the researcher’s point of view and objective. 

Dynamical nonstationarity may be caused by drifting parameters of the underlying 

dynamical system – i.e. slow changes of the system properties over sufficiently large time 

scale. We may or may not, however, know the equation of system evolution in time: in 

the case of experimental signals usually the latter takes place. If so, nonstationarity may 

be linked to changing environmental influences, what is typical for the feedback-driven 

physiological systems. In the rest of this dissertation the latter will be of our primary 

interest. 

Criteria for nonstationarity: dynamical vs. statistical 

Theoretically, stationarity is a condition when all statistical moments are time 

independent and finite. In practice, proving stationarity (if feasible at all) is much more 

difficult than refuting it. All theses is especially truewhen the full description of the 
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underlying dynamics of the process is not explicitly and/or a priori known to the 

researcher, and his/her access to the data is limited due to the finite observations time. 

These circumstances actually invalidate the confirmative statement of stationarity, 

making the above definition of little practical use. Moreover, for objectives of this 

research, the puristic definition of stationarity and rigorous mathematical formalism are 

not critical. Instead, we adhere to the following technical ‘rules of thumb’ [57]. 

First, the sampling frequency of the signal must be sufficiently high, otherwise the 

information contained between captured samples is lost (the minimum sampling 

frequency is formally stated in the Nyquist–Shannon sampling theorem). This 

requirement – while not so obvious – may be compromised due to poor signal acquiring 

equipment (512 Hz is the minimum sampling frequency in extracting RR signals from 

ECG ). Second, the time series under scrutiny should be much longer than the longest 

time scale of the temporal evolution of the underlying process. For instance, because 24 

hours is the most natural period for majority of physiological activities, many 

observations in the field of HRV analysis are being carried out for multiplicity of this 

diurnal cycle. In such a setting, the signal is considered stationary if its properties are 

time-independent when observed within an observation period. Thus, the stationarity of a 

signal can be evaluated and conclusive only with respect to the predefined (finite) time of 

observation. As far as the underlying (infinite) process is concerned, however, one is not 

be able to conclude definitely about its stationarity. 

Another important issue is how the problem of stationarity is approached from 

methodological point of view. ‘Nonstationarity makes doubtful application of global 
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characteristics of the underlying process’ [61], e.g. periodicities, dimensions or 

autocorrelation. This points to the relevancy of detecting dynamical changes in regularity 

locally, e.g. via minima and maxima of complexity measures computed within predefined 

segments of the analyzed signal. Such changes are usually referred to as (dynamical) 

change points and considered as indicators of nonstationarity. In this spirit, we use the 

term nonstationarity as an ‘observable significant change of certain characteristic’. 

Furthermore, the change must be quantifiable and temporally localized in the signal. 

In general, detection of nonstationarity in time series can be associated with two main 

categories of criteria: statistical (usually the first two statistical moments) and/or 

dynamical (for instance distribution of the nearest neighbors or entropies in different 

sections of the data). Selecting the right measures to be used in nonstationarity detection 

is crucial: an arbitrarily chosen statistic, not related to any natural physical properties of 

the process, introduces the risk of irrelevant findings and wrong conclusions. A good 

example can be analysis of fractional Brownian motion, where using variance as the 

stationarity criterion can be misleading. Indeed, the total variance of the whole signal 

increases (more precisely: does not decreases) in time, and each segments of the 

(Brownian) signal contributes to it. However – other things being equal – comparison of 

the variance from different segments (of equal size) will not show statistically significant 

difference, since the within-segment variances do not differ substantially among 

themselves. In such a case the risk of (committing a type-2 error) failing to reject the null 

hypothesis that ‘nonstationarity does not occur in the signal’ increases. Consequently, 

assessing nonstationarity by comparing values of static characteristics like the mean or 
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variance computed for different parts of the signal may be irrelevant if the characteristics 

do not contain information about dynamical (physical) properties of the analyzed data. 

Hence our approach to the problem of (detecting) nonstationarity adheres to the 

‘dynamical paradigm’. 

 Responsiveness of the cardiovascular system to intrinsic and induced stimuli 

The factors influencing the HRV fall into two main categories. The first group represents 

external factors, e.g. physical fatigue, sleep apnea, mental stress, smoking (cigarettes), 

meditation. The second category – the intrinsic periodic rhythms – includes respiratory 

sinus arrhythmia, baroreceptor reflex regulation, thermoregulation, neuroendocrine 

secretion. This classification – although perhaps somewhat arbitrary – corresponds to the 

scope and interest of this research. Among our objectives is scrutinizing how the 

predefined environmental stimuli of different nature perturb the cardiovascular system 

and influence the HRV. As stated in Chapter 1, the way HRV responds to the stimuli may 

be highly informative about the different aspects of the cardiac health, what makes the 

stimuli-related methods potentially valuable in clinical practice as well as more general 

research. Among interesting case studies we can point to [138], [115], [117], [141], and 

[63]. 

 A brief survey of the change detection methods and their application 

For clarity, we should start with statement that there is a subtle but important distinction 

between the notions of 'change' and 'anomaly' with regards to their detecting in time 

series data. The former stems from statistical analysis where changes in the probability 

distribution of the analyzed time series data are to be captured together with their 
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temporal positions. The latter notion origins from the domain of data mining and refers to 

the problem of finding patterns in data that do not conform to expected behavior [22].  In 

[6] we learn that ‘the detection of what is anomalous and what is normal is heavily 

dependent on the application. The unifying factor across applications is that, in general, 

anomalies occur only rarely.’  In the same work the author states that ‘Change point 

detection can be considered a subtopic in anomaly detection,’ where the problem is to 

detect whether the generating distribution is stable or has changed (abruptly). 

From certain perspective, the relation between these two notions may depend on 

considering the time scale of the phenomenon (time series data) being scrutinized [58]: 

An anomaly – a ‘rare’ event – usually spans over relatively short part of the time series, 

as opposed to change which can indicate another mode of the signal and whose duration 

may include many 'cycles'. An illustrating example can be the heart rate of an individual 

at rest followed by physical exercises: while the latter is expected to increase 

significantly (i.e. a change in the heart rate occurs), both are ‘normal’ (given the 

individual is healthy), so there is no’anomaly’. 

Referring to the above definitions, since now on we focus exclusively on what has been 

defined as change detection, where the term ‘change’ is often phrased as ‘nonstationarity’.  

The nonstationarity detection in time series – a special case of the segmentation problem 

– is nontrivial and addressed by a wide variety of methods, including Singular Spectrum 

Analysis (SSA) [98], adaptive CUSUM [5], Direct Density-Ratio Estimation [60], 

recurrence plots [66], space-time index plots [174], cross-correlation sum, nonlinear cross 

prediction [140], properties of nearest neighbors in phase space and recurrence vs. 
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sojourn points [37], Detrended Fluctuation Analysis [114], Base-Scale Entropy [54] – to 

mention some mainstream examples. Most of those methods operate on vectors in phase 

space where the underlying system evolves in time, hence are well applicable to 

nonlinear signals. Other relevant techniques are described in a comprehensive survey and 

references therein [21]. 

In our study we present yet another approach to detecting nonstationarity: Motivated by 

the cardiological community, we propose methods adequate for the heart rate variability 

(HRV) assessment based on (relatively) small amount of data acquired under controlled 

environmental influences (see section III). The two vital prerequisites imposed on the 

methods are (i) applicability when the underlying nonlinear dynamics comprise both 

stochastic and deterministic components and (ii) robustness to noise and outliers along 

with moderate level shifts, trends and seasonalities. To extend the applicability beyond 

the HRV analysis, we additionally require that our methods discern between the static 

and dynamic complexity. We achieve these by quantifying variability of local regularity 

in data using statistics based on the Sample Entropy (SampEn). Thought of as a 

dynamics-related measure of complexity, the SampEn estimates the Kolmogorov-Sinai 

entropy [68] of finite-length time series. We demonstrate further how our metods 

compare vs. some of those referenced in this paragraph. 

Regardless of the adopted approach, the change detection can be considered on different 

levels. On a higher level the problem can be thought of as nonstationarity analysis per se, 

aimed at gaining better interpretation of properties of a complex phenomena. On the 

lower (technical) level, the change point detection can be referred to as the segmentation 
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problem. The two important questions to be asked are: (1) How can we transform the 

data into a sequence to be segmented? A popular and appealing approach is dividing the 

signal into a number of segments – for instance using the sliding window technique – to 

compute statistic of interest in a segment-wise manner, hence obtaining a series of 

(consecutive) values. (2) What is the best number of segments, k, for a given sequence? 

This is in certain way analogical to the model selection problem, i.e. choosing the optimal 

(complexity) k. 

The (dynamical) changes in time series can vastly differ in terms of their emergence and 

duration. For instance, abrupt changes of short duration – sometimes referred to as ‘burst’ 

– are typical for neuronal excitation or network intrusion. The long lasting changes can 

be subdivided into emerging abruptly and gradually, for instance simulating the Henon 

map with parameter a changed from 1.22 to 1.23 and the functioning of cardiovascular 

system perturbed by the yoga meditation (see Chapter 4, section B), respectively. We 

cannot provide any convincing example of gradually emerging changes of short duration 

– such a case seems rather self-contradicting. 

Typically, the change detection algorithms proceed in two steps: (i) scoring each point in 

terms of its ‘significance’ and (ii) localization, where each scored candidate is analyzed 

to temporally identify the change points. Although in many cases these two steps are 

separate and/or independent, in physiological signals analysis the scoring step is 

considered more important. 

As one could expect, the parametric methods of change-point detection yield superb 

results when we know the pertaining parameters of the models (i.e. probability 
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distributions). These methods rely on comparison of probability distributions of the time 

series data: If there is a statistical significant difference between the past and present 

distribution, then a change point occurs. On the other hand, if we do not know the 

parameters – what often is the case – the risk of large estimation error is substantial.  

In this study we focus on rather short-term signals, for which density estimation would be 

rather problematic because of data scarcity. Consequently, in this research we chose non-

parametric methods, which do not require any prior knowledge of model parameters and 

– likewise – do not operate on density estimation. In particular, our methods are based on 

the variability of local regularity in data, allows them as ‘dynamics-sensitive’ and/or 

‘adaptive’. The formal description of our approach is outlined in next chapter. 

 

D. METHODS OF THE HRV QUANTIFICATION 

For long the cardiovascular signals have been analyzed using exclusively ‘traditional’ 

time- and frequency-domain measures. As we show further, such measures fail to account 

for important properties related to multi-scale organization and non-equilibrium 

dynamics, hence the necessity of using quantifiers of the nonlinearity and nonstationarity 

in the cardiac (physiological) data. Accordingly, the presented research relies heavily on 

nonlinear-dynamical methods adapted to detect changes in physiological complexity in 

subjects characterized by different cardiac health. 

The following survey outlines advantages and limitations of different mainstream 

methods used in the HRV analyses. Some of the methods are applied in the analyses 
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outlined in Chapter 4, of which the measures applicable to nonlinear, nonstationary short-

term signals are of special importance in this research. 

 

Linear 

Traditionally, the mainstream linear methods in HRV analysis are divided with respect to 

the domain they operate on. In what follows we present the mainstream of the HRV 

quantifiers, grouped in four major categories. 

Time-domain 

This group comprises of the mathematically simplest and straightforward statistics, 

represented by the first two statistical moments (mean, SD) and the pNNx. The latter is 

number of successive difference of intervals differing by more than x (usually 50) ms 

divided by the total number of all RR intervals. The statistics may correspond to the RR 

measured directly or to the differences between consecutive RR intervals. 

Frequency-domain 

These characteristics are derived from Fourier analysis. The most often used in the HRV-

related research are: LF, which is power in low frequency range, HF – its high frequency 

counterpart, the ratio LF/HF and VLF – the power in very low frequency range. 

Popularity of frequency domain-based analysis of HRV is partially due to its capability of 

discriminating between contributions of both branches of the ANS to the HRV. 

Nonlinear dynamical 

The nonlinear dynamical methods started paving their way into HRV analyses in early 

1990’s, partially thanks to seminal works of [40], [35], [51], [11], [162], [55], [59], [26] 



53 
 

to mention just a few. Because the nonlinear methods are still not as widely recognized 

and applied in field of HRV analyses as their linear counterparts, in the next few 

paragraphs we describe them in much more detailed and comprehensive way. 

Chaotic 

The presence of chaos in time series can be detected by measuring the L1 or D2 (both 

non-linear dynamical). The L1 measures the exponential divergence of initially close 

trajectories in the phase space (or sensitivity to initial conditions), estimating the amount 

of chaos in a system. The necessary (but not sufficient) condition for chaos is that L1<0. 

According to the Takens’ theorem the computation of L1 requires infinitely long, 

noiseless and stationary signal. In practice these requirements can be relaxed to certain 

extent, nevertheless the measure requires so called ‘scaling region’ within which its value, 

i.e. the exponent L1, remains approximately linear in log-log coordinates. Another 

difficulty – both theoretical and computational – is that the L1 requires carefully chosen 

embedding parameters, i.e. dimension and time delay, used for reconstructing attractor in 

phase space. Unfortunately, there is no rigorous mathematical recipe for obtaining these 

parameters precisely, though existing methods and algorithms give sufficiently good 

approximations for specific data. 

The second measure, D2, estimates dimensionality of a set of points in phase space. The 

D2 is complementary to L1 in the sense that whereas the former accounts for a dynamic 

aspect of data, the latter relates to its geometrical aspect, i.e. the spatial distribution of 

points in phase space. Likewise L1, D2 requires stationarity. The computation of the D2 

was proposed in the Grassberger-Procaccia algorithm. All the difficulties related to L1 
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refer to the D2 as well, although the latter is much more computationally expensive than 

L1. 

Entropic 

Entropy-based measures are well applicable to both stochastic and deterministic, as well 

as linear and nonlinear, dynamical systems which generates the data. They retain 

robustness in presence of noise without compromising sensitivity to dynamical changes. 

Furthermore, their algorithmic simplicity and moderate demand on computational 

resources make them suitable for (near) real-time processing.  

The notion of entropy – for instance the seminal concept of Shannon entropy, denoted H 

– is based on uncertainty, which depends on the probability distribution. In particular, for 

a fixed number of possible states, H assumes its maximum for uniform probability 

distribution (which corresponds to white noise, where each state has the same 

probability). 

The above can be rephrased in terms of a symbolic sequence S={s(i)}, i=1,..., where each 

s(i) is a symbol (from a finite alphabet of size m) emitted at time i. In such scenario, s(i) 

may assume any of its m different values with probability pi = p(si). The average amount 

of information gained from any ‘measurement‘ corresponding to particular symbol si 

quantifies entropy H(si), which is sometime informally referred to as ‘quantity of surprise  

related to the result of a measurement. The entropy H(S) is then a measure of uncertainty 

of the (whole) signal S. Now, using an analogy to the symbolic sequence S, the entropy 

rate, denoted h, can be defined verbally as the average uncertainty of the next symbol of 

the sequence S, given that an arbitrarily large number of symbols have already been seen. 
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Because of the asymptotical character of this expression, h can be considered as the 

intrinsic randomness, persisting regardless length of the sequence {s(i)} taken into 

account. Hence, h is a measure of unpredictability. 

The Recurrence Period Distribution Entropy, denoted RPDE [80], captures 

‘repetitiveness‘ of a signal based on close returns of trajectories in the phase space. The 

RPDE is suitable for capturing nonlinear effects in data. An important strength of this 

method is its applicability to wide range of data, including periodic, stochastic as well as 

chaotic-deterministic signals. Furthermore, it does not require the assumption of 

stationarity. This method has been proved successful in detecting abnormalities in 

speech-related signals. The RPDE ranks analyzed data on the scale from 0 to 1. These 

numbers correspond to perfect periodicity and randomness, respectively, while chaotic 

signals are somewhere in the middle of this scale. 

The Permutation Entropy, denoted PermEnE [13] is a complexity measure applicable to 

any type of time series (chaotic, stochastic, periodic and any experimental signals in 

between). PermEn considers occurrences of orderings – in terms of ‘greater’ and ‘less’ – 

of the values in time series – as opposed to Shannon entropy, which accounts (only) for 

the distribution of the values. The formal definition 2( ) ( ) log ( )PermEn n P P
π

π π= −∑ , 

where the summation runs over all n! permutations of n-order permutations π. It holds 

that 0 ≤ H(n) ≤ log(n!), with the lower bound for any monotonic series of numbers and 

the upper bound for purely random process. The further is H(n) from its upper bound, the 

more dynamical regularity is contained in the data. 
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[16] propose a modification of the PermEn by mapping equal values (of observation 

points) onto the same symbol (rank), enabling more accurate characteristics. This 

improves accuracy of discerning RR signals recorded for different physiological 

conditions. 

Scaling and fractal 

The Detrended Fluctuation Analysis (DFA) has become a widely accepted technique for 

detection of long-range correlations in noisy, nonstationary time series and to quantify 

the scaling properties of time series [182]. The time series of length N is integrated and 

divided into non-overlapping segments of length n N , which are least-square fitted to 

straight lines, each defining a local (segmentwise) trend yn, which is subtracted from y, 

what results in 'detrended' signal with fluctuations. A log-log plot against the scale 

(expressed via window size) is a good visualization of the scaling (or self-similarity) 

parameter α if one exists. In such case the time series has scaling property, and the power 

low hold. The higher value of α, the more ‘regular’ time series. This method is especially 

effective for signals with slowly varying trends. Different values of α indicates various 

category of signal, e.g. for α=0.5 we have uncorrelated (white) noise, for α=1.0 it is 1/f 

noise and for α=1.5 Brownian noise (random walk). Applied to HRV analysis the DFA 

method computes long-range correlations in RR signal by analyzing fluctuations on 

different time scales, disregarding trends and nonstationarities in the signal. It was found, 

for instance, that for different cardiac health conditions: α(CHF) > α(NSR) > α(AF), 

where CHF, NSR and AF stand for ‘congestive heart failure’, ‘normal sinus rhythm’ and 

‘atrial fibrilation’, respectively. 
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The Multiscale Entropy, denoted MSE [26], can be used to quantify regularity of time 

series. The method constructs consecutive coarse-grained signal versions generated 

iteratively by averaging a successively increasing number of data points in non-

overlapping windows. In next step the SampEn is calculated for each coarse-grained time 

series plotted as a function of the scale factor. The MSE Taking advantage of 

computational merits of the SampEn, the MSE can operate on very short sequences, but is 

not that robust for longer time scales of the data. From this point of view, the MSE 

complements the SampEn, covering many time scales, including long-term time series. 

The method has been successfully applied to many physiologic time series.  

[26] tested the MSE method on simulated white and 1/f noises. Their results explain the 

fact that the 1/f noise contains complex structures across multiple scales in contrast to the 

white noise. As to the HRV analysis, they found for single-scale: MSE(AF) > MSE(NSR) 

> MSE(CHF), and for multi-scale: MSE(NSR) > MSE(CHF) > MSE(AF), what can be 

compared with analogical relations obtained from the DFA.  

The Hurst exponent (HEx) is sometimes referred to as Rescaled Range Analysis R/S. The 

two factors used in this analysis are the range R (compound difference) and the standard 

deviation S estimated from the time series data. For many natural phenomena the 

empirical relation R/S = (cτ)h holds, where τ is the time span and h value of the HEx. The 

HEx is estimated by calculating the average rescaled range over multiple regions of the 

data. Interpretation of the HEx can be as follows: h>0.5 denotes ‘persistent behavior’, i.e. 

increases and decreases of the signal value continue to maintain a (increasing or 
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decreasing, respectively) trend, h<0 denotes ‘antipersistent behavior’ – minimizing 

development of any trend and h=0.5 describes a pure random walk behavior of the data.  

The HEx is related to the fractal dimension – a measure of the roughness of a line (e.g. 

coastline). The relationship between the fractal dimension D and the HEx is: D=2–h. 

Looked at from another perspective, estimating of the HEx helps determine whether the 

signal is of a random walk type or has certain underlying trends. This is a nontrivial 

question, because some processes might be thought of as purely random, yet in fact they 

can be a ‘long memory’ processes. 

Other nonlinear 

The Nonlinear Cross-Prediction Error (NLCPE) [140] is a test for (dynamical) 

stationarity. The idea is to use certain statistic γ(Si, Sj) for comparison of two disjoint 

segments Si and Sj of the analyzed time series (each long enough for nonlinear 

prediction). Using the former as the training set (where the nearest neighbors of the latter 

will be searched) and the latter as test set (for which prediction is being made), one can 

estimate the prediction error γ(Si, Sj) for each pair (i, j). Whenever the difference between 

specific γ(Si, Sj) and its average is statistically significant, this indicates nonstationarity 

(with regard to the computed statistic γ). Suitability of the nonlinear predictability 

comprises in that the measure is suitable for both strongly nonlinear and stochastic data. 

The Multi-Dimensional Probability Evolution (MDPE) [90] measures how often different 

regions of the phase space are visited during the reference (also called ‘learning‘) period. 

In other words, it determines the distribution of points in different regions of the phase 

space. By monitoring the distribution over time the method is capable of detecting 
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changes in the underlying dynamics. It uses a χ-square test to quantify statistical 

significance of the changes. The method proved sensitive to local changes in EEG signals. 

Geometric 

The series of RR intervals can be converted into geometric patterns. Among the most 

frequently used geometric tools for the HRV analysis are the HRV triangular index 

(RRtri), triangular interpolation of NN interval (TINN) – where NN denote ‘normal RR’ 

– and Poincaré plots. 

 

 

 

 

Figure 9. The sample density distribution D is expressed as a triangle, which assigns the number of equally 

long NN intervals to each value of their lengths. The most frequent NN interval of length X is assigned 

Y=D(X), i.e. the maximum of the sample density distribution D. The RRtri is the value obtained by dividing 

the area integral of D by Y [69] 

 

 

 

Technically, the RRtri is the integral of the density distribution of all NN intervals 

divided by the maximum of the density distribution, as shown in Figure 9. The TINN is 

the baseline width of the RR histogram: TINN=M−N, where D(M)=D(N)=0 and D(x)>0 

for N<x<M. 
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The Poincaré plot – third geometrical measure considered in this study – is a diagram 

(scattergram) in which each tth RR interval is plotted against the previous (t-1)th RR 

interval. Poincaré plots can be interpreted visually (qualitatively) and quantitatively [49]. 

The shape of the plot can be used to classify the RR signal into one of several classes  

where the irregular shapes of plots may be classified as nonlinear (some authors consider 

the Poincaré plot to be based on nonlinear dynamics). 

The Poincaré plot is a method of visualization of the beat-to-beat variability. The plot is 

constructed by pairs of successive RR intervals plotted one against the other. It is often 

used for complexity quantification of nonlinear behavior in physiological signals, but 

mostly in the RR time series. The method provides two parameters of the HRV: short- 

and long-term, called SD1 and SD2, respectively. Variability along the SD2 axis should 

be substantially larger than along the SD1 axis, as illustrated in Figure 10: 

 

 

 

Figure 10. Poincare plots of a healthy (left) and pathological (right) HRV (credit: Kubios toolbox) 
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Symbolic dynamical 

[113] suggest that for many natural processes discrete models might provide more 

accurate descriptions than time continuous systems, considering symbol sequences as 

‘accurate and efficient’ description of most dynamics. Regardless the above opinion, 

there is a variety of symbolic dynamical methods applicable for time series analysis (a 

comprehensive survey of these can be found in [120]). In what follows we present three 

interesting examples where the analyses are conducted on symbolic sequences. 

[42] conduct symbolic analysis of the HRV to evaluate the role of ANS before the onset 

of major arrhythmias. The method relies on the transformation of the series of RR 

intervals into patterns consisting of three beats, their classification, and evaluation of their 

occurrence. The RR time series decomposed into sequential patterns consisting of three 

beats are assigned to any of the three categories: non-variable, variable, and very variable 

patterns, as depicted in Figure 11. 

 

 

 

Figure 11. Classification of patterns: the symbols indicate patterns: 0V with no variation, 1V with one 

variation and 2V with two variations [183] 
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Sztejzel defines [123] the distance between two sequences of characters in terms of a 

‘learning process’ analogous to compression of sequential data. Specifically, the authors 

concentrate on how a compression algorithm ‘optimizes’ itself at the interface between 

two qualitatively different sequences (see the cases illustrated in Figure 6 on p. 22 and the 

related considerations). The authors introduce what they call ‘learning function‘ which 

formally quantifies the optimization. As we show in Chapter 3, in our research we adopt 

this approach and modified it for our purposes of detection of dynamical nonstationarity 

in RR signals. Reportedly, the method is able to ‘recognize which dynamical systems 

produced a given time sequence’. What is more, the method can be used for 

segmentation, i.e. detecting changes between homogeneous subsequences of (perhaps) 

heterogeneous signal in variety of domains of time-series analysis. 
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3. DYNAMICAL CHANGE IN SIGNALS SIMULATED WITH DRIFTING 

PARAMETERS 

 

In this chapter we formally introduce our SampEn-related methods: sE, rRnd and rDiv 

and integrate them into computational framework called IRSEG: Iterative-Recursive 

Sample Entropy-based seGmentation. The methods are aimed at detecting points in in 

time series data that mark nontrivial changes of the underlying dynamics, thus acting as 

candidate change points. 

 

A. SAMPLE ENTROPY TRIPLET METHODS 

Our method of nonstationarity analysis relies on capturing local changes through three 

SampEn-based statistics, which characterize the complexity in analyzed data. The 

statistics are: the static entropy sE, the randomness indicator rRnd and the divergence 

indicator rDiv – referred to as SampEn-triplet – used as heuristics for segmentation of the 

analyzed signal into stationary regions. Specifically, the IRSEG algorithm computes 

intersegmental differences (of the SampEn-triplet) and based on them makes decisions 

which of the evaluated intersegmental borders are (good candidates for) change points. In 

what follows we provide a detailed description of the SampEn and SampEn-triplet. 
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Sample Entropy – formal definition 

Let time series data of N sample points have values ( )u i , where 1,...,i N= . We consider 

m-dimensional vectors ( ) ( ) ( ) ( ), , ,..., ( 1 )mx i u i u i u i mτ τ τ= + + −  
 . Here, the integer τ is 

a delay-embedding parameter. The number of such vectors that can be constructed is 

( ) .1N m τ− −  However, because both ( ),mx iτ
  and ( )1,mx iτ+

  will enter into our statistics 

calculation, we only use the first N mτ−  vectors so that ( )1,mx iτ+
 is defined. Let 

( ){ }, ,( ), ( ) max ( ) ( ) : 0, , 2 ..., 1m md x i x k u i j u k j j mτ τ τ τ τ  ≡ + − + = − 
   be the distance 

between two such vectors. Using this, we count the number Q  of vectors ( ),mx jτ
 that are 

within a distance r of a chosen template vector ( ),mx iτ
 , where we impose j i≠  to 

eliminate self-matches, and j  ranges from 1  to .N mτ−  Then, calculating for each 

template vector 

( ), ,
1

m
i

QB r N
N m

τ
τ

≡
− −

, 

we average this over all templates to obtain 

( ) ( )
1

1, , , ,
N m

m m
i

i
B r N B r N

N m

τ

τ τ
τ

−

=

≡
− ∑  

which is the probability that two sequences, sampled every τ  steps, will match for 

m sequential points. Proceeding analogously with (m+1)-dimensional vectors, we define 

( ) ', ,
1

m
i

QA r N
N m

τ
τ

≡
− −

, 

where 'Q  is the number of vectors ( )1,mx jτ+


 that are within a distance r of a template 

vector ( )1,mx iτ+
 , with j i≠  once again ranging from 1 to N mτ− , and  
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( ) ( )
1

1, , , ,
N m

m m
i

i
A r N A r N

N m

τ

τ τ
τ

−

=

≡
− ∑  

which is the probability that two sequences, sampled every τ steps, will match for 

1m + sequential points. Finally, we define 

( ) ( , , ), , , lim ln
( , , )

m

N m

A r NSampEn m r N
B r N

ττ
τ→∞= −

 
 

which we approximate for real (finite) data as 

 

         
( ) ( , , ), , , ln

( , , )

m

m

A r NSampEn m r N
B r N

ττ
τ

= −
      

(1) 

For constant data, which are an extreme case of regularity, SampEn=0. In general, the 

value of SampEn decreases with increasing regularity in data because (higher) regularity 

makes the data more predictive. Consequently, having found a match of length m for a 

template of m points, we are more likely to find a match of length m+1 for the template 

extended by (m+1)th sample. Based on (1) we introduce three SampEn statistics to detect 

nonstationarity in time series. 

 

Introducing the SampEn-triplet (seT) 

The three SampEn-triplet statistics can be thought of as a compound ‘vector statistic’, 

denoted seT, which characterizes different aspects of complexity (regularity) in data. 

 

Definition of sE: reference entropy (M = 1). The static entropy is a special case of the 

SampEn: ( 0, 1, , )sE SampEn m r Nτ≡ = = . For m=0 the template vectors do not exist, 

hence all the matches in space of dimensionality increased from m=0 to m=1 involve 
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single points (rather than sequences of points) as the template vectors. Thus, the sE 

quantifies the likelihood that any two points are close given no other information. This 

entails insensitivity to sequential order in data (hence we call it static), a feature shared 

with Shannon entropy1.  

Let the time series of interest be denoted ( ), 1, 2 , .u i i N=  Therefore, there are 

( )1 / 2N N −  pairs of data points ( ), ( )u j u k  with j k≠ , , 1,...,j k N= . Let 0Q  be the 

number of such pairs such that ( ) ( ) .u j u k r− <  We define the static entropy to be 

  ( ) ( )
0

, ln
1 / 2

QsE r N
N N

 
= −   −    

(2) 

where the argument of the logarithm is the likelihood that any two single points are 

within r  of each other. Note that in (2) we do not use the embedding parameters m and τ, 

which appear in the general formula for SampEn (1). This is because the denominator 

expresses the total number of possible pairwise matches, regardless of the data. 

Furthermore, the nominator involves only (the number of r-close matches among all) the 

single points, i.e. not sequences, hence the sE – likewise the Shannon’s entropy2 – is 

insensitive to sequential order in data. 

The sE – called ‘static entropy’ – is a quantifier complementary to the dynamic aspects of 

complexity, represented by the two other statistics introduced in what follows. 

                                                 
1 Shannon entropy is defined as 2

1
( ) ( ) log ( )

n

i i
i

H X p x p x
=

= −∑ , where X is a random variable of possible 

outcomes ix , occurring with probability ( )ip x  

2 Shannon entropy is defined as 2
1

( ) ( ) log ( )
n

i i
i

H X p x p x
=

= −∑ , where X is a random variable of possible 

outcomes 
ix , occurring with probability ( )ip x . Clearly, the H does not depend on the sequence of 

ix  
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Definition of rRnd: randomness indicator (M > 1). We define the ratio 

        
( ) ( ) ( )

1

1, , , , , , / ,
M

m
rRnd M r N SampEn m r N sE r N

M
τ τ

=

= ∑
  

(3) 

where the numerator is the averaged SampEn computed for m M≤ . Setting 2M =  as 

the upper bound3 for computing the SampEn in this study, the ratio can be expressed as 

      
( ) ( ) ( )1, , , 2, , ,
2, , , /

2
SampEn r N SampEn r N

rRnd r N sE
τ τ

τ
+ 

=  
      

(4) 

The numerator in (4) represents the dynamic part of complexity, not accounted by sE. As 

a ratio, the rRnd quantifies the relation between static and dynamic complexity, which 

can be used in comparative analyses, where the data of interest may feature similar static 

complexity yet different dynamical patterns or vice versa (We will illustrate these cases 

in Chapter 5). Furthermore, as a normalized measure of ‘randomness’, 1rRnd   denotes 

high dynamic regularity, as opposed to 1rRnd ≅  characteristic for random data4. Indeed, 

the total irregularity of random data entails that the patterns in m-dimensional space 

(counted by Bm) are not ‘predictive’ for their subsequent points in (m+1)-dimensional 

space (counted by Am). Conversely, even small regularity enforced in data without 

affecting sE reduces the value of the numerator in (4), resulting in reduced value of the 

rDiv. 

 

                                                 
3 The upper bound for m is the highest dimensionality of the space where template vectors are constructed 
4 Based on computations involved 100 randomly generated series of uniformly distributed numbers within 

[0,1] we found 0.98 1.03Rnd≤ ≤  
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Definition of rDiv: divergence indicator (τ = 2). The third statistic we introduce in this 

paper involves the time delay 1τ > . We define the ratio 

   ( ) ( )
( )
1,2, ,

,
2,1, ,

SampEn r N
rDiv r N

SampEn r N
=        (5) 

where the SampEn in (5) are computed according to (1), but for embedding parameters: 

( 1, 2)m τ= =  and ( 2, 1)m τ= = , respectively, as schematically shown in Figure 12: 

 

 
Figure 12. The green and red circles represent templates for (m=2, τ=1) and (m=1, τ=2), respectively. The 

corresponding matches are represented by the green and red squares (labeled 4, 8, 15 and 20. The grey 

circles labeled 7 and 19 denote sample points in templates for (m=1, τ=2) ignored due to the delay τ=2 

 
 
The original formula for the SampEn (implicitly) assumes 1τ =  and this setting prevails 

in publications. Yet, some authors use 1τ > : for instance [56] (and references therein) 

show that (the choice of) the time delay has an important effect on the SampEn value, 

better characterizing the system complexity. Assigning 1τ >  is especially relevant when 

the data feature strong short-term linear autocorrelation, perhaps entailing small 

( 1)SampEn τ = : setting 1τ >  partially destroys the autocorrelation, thus the regularity in 

data – if any – can be attribute (also) to nonlinear contributions. 
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Although no strict rules exist, the most frequently cited settings for delay time are: unity 

(most frequently reported), the first minimum of the autocorrelation function, and the 

value optimized for phase space reconstruction where τ  is embedding parameter ([55] 

and references therein). Our choice of {1,2}τ =  seems adequate for comparative study of 

short-term time series. 

Likewise, there are only rough rules of thumb regarding the two other parameters: m and 

r, nevertheless the accuracy and confidence of the SampEn improve as the number of 

matches quantified by Bm in formula (1) increases. This can be achieved by choosing 

shorter templates (decreasing m) or larger tolerance (increasing r). The price we pay is 

that small r impairs the probability estimates, while large r accounts for irrelevant details 

in data. The tradeoff implies that whereas m=1 guarantees more template matches, m>1 

reveals more dynamics in data. In this study we adhere to 2M =  as suggested in 

literature. 

 

Definition of the SampEn-triplet (seT). Based on the three introduced statistics we 

define the SampleEn-triplet 

   [ ], ,seT sE rRnd rDiv=        (6) 

as a vector-like compound statistic, which is at the heart of the IRSEG computational 

engine. Specifically, the IRSEG computes the series of segmentwise values seT(i)=[sE(i), 

rRnd(i), rDiv(i)], where 1,...,i I= enumerates consecutive segments and I denotes the 

signal length as (integer) multiplicity of the shortest segment allowed by applicability of 
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the SampEn. Ultimately, the algorithm provides a series of normalized ratios calculated 

for each seT statistic: 

  ( 1) ( )( ) min ,
( ) ( 1)

s s
s

s s

seT i seT irSET i
seT i seT i

 +
=  + 

    (7) 

where 1,2,3s =  correspond to sE, rRnd, rDiv, respectively. In this setting, each value of 

( ) 1srSET i ≤  quantifies the disparity between the values of sth seT statistic computed for 

adjacent tth and t+1th segments. In particular, we define: 

( ) ( 1)( ) min ,
( 1) ( )

sE i sE isEratio i
sE i sE i

 +
=  + 

     (8) 

( ) ( 1)( ) min ,
( 1) ( )

rRnd i rRnd irRndRatio i
rRnd i rRnd i

 +
=  + 

    (9) 

( ) ( 1)( ) min ,
( 1) ( )

rDiv i rDiv irDivRatio i
rDiv i rDiv i

 +
=  + 

    (10) 

Clearly, the values of ( )srSET i  range within [0,1]. In what follows we show the rSET  

applied as heuristics for change detection-based segmentation. 

 

The parameters: sensitivity analysis 

The IRSEG uses three parameters: M, τ; r and W. The first three are specific to the 

SampEn definition (eq.) In principle, the parameters are user-defined, although in practice 

M=3, τ=2, r=0.2, W=100 are most frequently reported values. This, however, refers to 

each single parameter, not necessarily to the joint configuration of them. To assess 

robustness of our algorithm in terms of how the parameter values affect the computed seT 

statistics we conducted the sensitivity analysis, where at each single step we change the 

value of one selected parameter, while other parameters remain constant. This kind of 
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analysis is especially relevant when there are no strict rules on how to precisely choose 

the parameter values. In a wider perspective, the sensitivity analysis can be considered as 

a part of parameter tuning or optimization. 

We conduct the analysis by varying the three parameters: M, r and W used in computing 

the seT and observe how the sE, rRnd and rDiv respond to the changes. We used two 

time series: a Henon map generated within chaotic regime (a=1.4, b=0.3) and an EEG 

signal from the ‘data set A’ available on the homepage of Department of Epileptology, 

University of Bonn, EEG time series. The delay time τ was not included in the analysis. 

The results are presented in Table 3: 

 

Table 3. The values of sE, rRnd and rDiv as functions of the M, r and W. Because by its definition the sE 

does not depend on M, its values repeat for the same r and W. The mean value and standard deviation (SD) 

for each signal-statistic combination is given in the bottom row of the table 

 
 

M r W 
sE rRnd rDiv 

Henon EEG Henon EEG Henon EEG 
2 0.1 100 2.721 3.048 1.866 2.500 1.58 1.68 
2 0.1 200 2.704 3.087 1.830 2.566 1.30 1.45 
2 0.2 100 2.119 2.300 1.481 1.806 1.27 1.13 
2 0.2 200 2.133 2.317 1.482 1.829 1.34 1.11 
3 0.1 100 2.73 3.029 1.391 2.155 1.82 1.62 
3 0.1 200 2.717 3.09 1.360 2.281 1.73 1.39 
3 0.2 100 2.121 2.33 1.142 1.536 1.02 1.24 
3 0.2 200 2.137 2.32 1.135 1.575 1.32 1.41 

mean 2.42 2.69 1.46 2.03 1.42 1.38 
SD 0.32 0.40 0.27 0.40 0.27 0.21 
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B. THE IRSEG ALGORITHM 

Let x denote an analyzed time series of N sample points. Given the lower bound W for 

segment size, the upper bound for the number of segments is determined as /T N W=    , 

each comprising W points5. We call such a segment primal and the lower bound W 

granularity (of data). In this study we assume that x can be divided into any combination 

of disjoint segments whose sizes range between W and T W× , entailing the number of 

segments ranging between T and 1 (respectively). These two extreme scenarios: ‘one 

large segment’ and ‘many small segments’ represent the initial conditions of two 

computational procedures described below. 

Each seT component is computed and analyzed in two ways: (i) iteratively/bottom-up and 

(ii) recursively/top-down, denoted L2G (local-to-global) and G2L (global-to-local), 

respectively. The procedures run independently of each other and separately for each 

criterion corresponding to different seT statistic. In essence, the both IRSEG procedures 

relie on repeatedly conducted two-step routine: 

1. (re-)compute the seT statistics for currently segmented time series being analyzed, 

2. update the segmentation according to the criteria of the seT statistics mini/max. 

The algorithm halts when the procedure L2G or G2L reaches (i) the maximal segment 

size ( I W× ) or (ii) the maximal number (I) of allowable segments, respectively. A 

schematic illustration of the L2G and G2L procedures is in figures 13 and 14: 

                                                 
5 Because in general N is not divisible by W, consequently T T≤  and the points beyond T W×  are ignored 

(if 1N T
W

−   , to make up for N T W= ×  one can append the ‘missing’ points using the data mean 

values). Regardless of this, for simplicity in this paper we asumee T T=   
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Figure 13. The L2G (bottom-up) processing. The series of numbers t=1,...,14 index consecutive 

intersegmental borders for 15 segments. The leftmost column of numbers enumerate snapshots of the 14 

subsequent iterations. At each step the algorithm identifies the lowest intersegmental difference (associated 

with each seT component) and by removing the border merges the adjacent segments (The colors are used 

to better discern between adjacent  segments) 
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Figure 14. The G2L (top-down) processing. The series of numbers t=1,...,14 index consecutive 

intersegmental borders (there are 15 segments) and the leftmost column of numbers enumerate snapshots of 

the 14 subsequent recursion. At each step the algorithm identifies the lowest intersegmental difference 

(associated with each seT component) and by removing the border merges the adjacent (sequences of) 

segments 

 

Notably, the segmentations: final (initial) of G2L (L2G) and initial (final) of L2G (G2L) 

are identical. Furthermore, the (sequences of) intermediate states of the procedures are 

determined their initial conditions, yet (in general) not time-symmetrical: the consecutive 

states of L2G cannot be derived from those of G2L (and vice versa) just by reversing 

their temporal order, hence their non-redundancy. 
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Based on the computations related to the sE, rRnd and rDiv and application of the 

mini/max criteria, the algorithm generates output whose part is shown in Table 4, 

containing the following columns: 

• crit: criterion related to either of the sE, rRnd, rDiv 

• mode: L and G denote bottom-up (L2G) and top-down (G2L), respectively 

• sEratio, rRndRatio and rDivRatio: defined according to (8)-(10) 
 

 

 
Table 4. Part of output generated by IRSEG: L and G (mode) stand for local-2-global and global-2-local, 

respectively, and crit denotes criterion 

 

crit mode sEratio rRndRatio rDivRatio 
1 L 0.94 0.84 0.65 
1 L 0.94 0.84 0.65 
1 L 0.94 0.84 0.65 
... ... ... ... ... 
1 L 0.98 0.63 0.74 
1 G 0.97 0.90 0.96 
... ... ... ... ... 
1 G 0.99 1.00 0.74 
1 G 0.99 0.65 0.97 
2 L 0.94 0.84 0.65 
... ... ... ... ... 
2 G 0.97 0.90 0.96 
... ... ... ... ... 
3 L 0.94 0.84 0.65 
... ... ... ... ... 
3 G 0.97 0.90 0.96 
... ... ... ... ... 
3 G 0.98 0.88 0.84 
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The IRSEG evaluates the series of differences of the sE, rRnd and rDiv statistics (seT) at 

each border between adjacent segments. Each of the borders is a candidate for a change 

point. Intuitively, the greater intersegmental difference of the seT, the stronger indicator 

of a change, yet in general such an assumption would be naive because large local 

differences may be due to outliers or other artefacts – not necessarily related to the 

dynamics. These is often encountered in experimental (physiological) time series and 

caused by uncontrollable factors (e.g. side effects of a medicine) or imperfect 

measurement (involving procedure and/or apparatus). Proceeding in both bottom-up and 

top-down manner IRSEG accounts for a variety of time scales, thus marginalizing the 

possible bias due to considering the seT statistics only on local scale, i.e. considering the 

differences only between adjacent primals. Technically, this is achieved by segmentation, 

where the segment sizes are varied dynamically (on the fly), what enables analysis on 

different time scales. 

The bottom-up L2G procedure  

The time series is initially divided into N T W= ×  primals, where each intersegmental 

border – a candidate change point – is indexed by its temporal position t. At the 

beginning we set ( ) 1C t = , 1,...,t T= , what is equivalent to the segmentation (‘dense’) up 

to the data granularity. In each iteration, the L2G identifies 
min

st  such that: min( ) 1sC t =  and 

min( ) inf{ ( ), 1,..., }s s srSET t rSET t t T= = , i.e. the iteration-wise minimum. Once identified, 

we set min( ) 0sC t = , what can be thought of as ‘removal’ of an intersegmental border at 

min
st . This entails merging two adjacent segments of lengths l1 and l2 into one segment of 
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length l3=l1+l2. The L2G proceeds until 
1

( ) 0
T

t
C t

=

=∑ , i.e. all the data are merged into one 

(super)segment. 

 

The top-down G2L procedure  

It works analogously as the L2G, but rather than iteratively merging two segments with 

regards to criteria of minimum values (of the ( )srSET t ), it recursively divides a currently 

scrutinized segment into two adjacent – hence disjoint – subsegments based on the 

criteria of maximum values (of the ( )srSET t ). At the cut point the value of corresponding 

max( ) 0C t =  is reset to max( ) 1C t = . The G2L replicates its analysis within (sub)segments 

which (i) comprise at least two primals, (ii) are left- (right)-delimited by the least 

(largest) available mint  ( maxt ) such that min( ) 1C t =  ( max( ) 1C t = ), where max min 2t t≥ +  and 

(iii) contain an interrupted series of at least one ( ) 0C t = , where min maxt t t< < . The G2L 

proceeds until 
1

( )
T

t
C t T

=

=∑ , i.e. the data granularity is reached.  

 

Change point evaluation.  

The change point candidates CPC (equivalent to intersegmental borders) are 

characterized by index 1,..., 1t T= − , which specifies their temporal positions. The 

indices expressed multiplicities of primal segments covering the signal from its beginning 

to the CPC(t) of interest. For instance, at t=3 the intersegmental border CPC(3) delimits 
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the 3rd and 4th segments. Thus, each CPC(t) is uniquely identified regardless advancement 

of the L2G and G2L analyses. 

Prior to providing formal definitions of the two CPC evaluators used in our study, we 

need to introduce two weights which account for (i) disparity of lengths of the compared 

(adjacent) segments and (ii) predefined importance of the seT (rSET) statistics. The 

former is related to each pair of segments adjacent to CPC(t) and defined as the (length) 

disparity (index) ( 1) ( )( ) max( , ) 0.5
( ) ( 1)

w t wd tt
w t w t

 +
= + + 

, ranging within [1,..., 1T − ], where 

w(t) and w(t+1) are the length of segments to the left and to the right of CPC(t), 

respectively. The index quantifies disparity of lengths of segments being subject of merge 

and/or cut operations, is an argument of a moderating discrete function 

( ) :  1,..., (0,1)d d TΦ = →  defined as follows: 

 1
d

φ = ; for 1d > : 1( ) 1 ( )d dφ φ= − , 1( ) ( )d T dφΦ = −  and (1) 1Φ = . 

Hence, ( )dΦ  is inversely proportional to their corresponding length disparities, and 

decreases sharply when d approaches T. As such, the function is a moderator reducing 

contributions from the merge/cut operations with larger values of d involved. This simply 

means that the ‘credibility’ of a CPC adjacent to segments whose lengths differ 

significantly is weaker than that of segments with more balanced lengths. The disparity 

index d is calculated before merges in L2G and after cuts in G2L, thus always involving 

two segments. 

The prioritization of the rSET components is achieved by applying the weight vector 

[0.33,0.5,0.17]γ = . Accordingly, the rRndRatio-related criterion is weighted most 
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heavily at 50%, whereas the rDivRatio-related criterion contributes only 17% to the total 

evaluation, with sEratio-related criterion contributing 33% to the rSETavg evaluator. 

Although the choice of the γ  values may seem arbitrary, they reflect emphasis put on the 

dynamical part of the underlying complexity, contributing two thirds of the total weigh. 

Definition of rSETavg. The first change point evaluator – denoted rSETavg – is defined 

as 
3 3

1 1

1( ) ( ) ( )
3

s
crit

crit s
rSETavg t s rSET tγ

= =

= ×∑ ∑ . In words, it is a γ-weighted, averaged 

aggregate of the 3x3=9 1,2,3 ( )srSET t=  values computed for all the criteria. The smaller 

rSETavg(t) – which mean poor dynamical similarity on both sides of the C(t) – the 

‘stronger’ candidacy of this very C(t) as a change point. 

Definition of avgChron. The second change point evaluator – denoted avgChron  – 

characterizes the CPC’s without direct reference to the rSET values (as opposed the 

rSETavg). Let the quantity mergeAvgChron be the Φ-adjusted chronological order (an 

integer from (1,T)) of the merge operations, averaged over all the rSET-related criteria 

and normalized with regards to the maximal chronology, which is T (i.e. the number of 

borders between primals). The cutAvgChron is defined analogously but refers the cut 

operations. We define ( )0.5( ) ( ) ( )avgChron t mergeAvgChron t cutAvgChron t= × , which 

characterizes the CPC(t) in terms of the chronology of L2G and G2L operations. 

Clearly, for the greater values of rSET the intersegmental differences are more 

pronounced and the corresponding merges – by average – take place (chronologically) 

later, being associated with greater temporal indices denoted as 1,...,chron T= . 

Conversely, the cut operations occur earlier, hence are associated with smaller values of 
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chron indices. A reversed analogy holds for the smaller values of rSET, linked to earlier 

occurrences of merges and later occurrences of cuts, which translates into values of chron 

being smaller and larger, respectively. 

Ideally, occurrence of a change point C(t) coincides with 
3

1
( ) 1s

s
avgChron t

=

=∑  and 0 

otherwise, i.e. depending on whether a change point occurs or not, either all or none 

min/max criteria are satisfied at the same time. In practice, however, the sum fluctuates. 

 

Change point identification.  

Ultimately we propose certain rules for the change point identification. An obvious 

approach is to define and apply thresholds for the avgChron and rSETavg. Because in 

general those statistics do not feature normality, we define the thresholds based on 

median (rather than mean) and MAD6 (rather than SD). For a series of numbers S we 

define the MAD as ( )( ) ( )i i j jmad S median S median S= − . Specifically, we define 

threshold 1 max( ( ( ), ( )))avgChron r mad avgChron t slope avgChronΘ = × , where 

( )1 max( ( ) min( ( ))avgChronslopeChron avgChron t avgChron t
T

= − . Furthermore, we define 

two more thresholds: 2 min(1, ( ( )) ( ( )))avgChron median avgChron t mad avgChron tΘ = +  and 

3 min(1, ( ( )) 2 ( ( )))avgChron median avgChron t mad avgChron tΘ = + . Proceeding analogously, 

we obtain three thresholds 1,2,3i
rSETavg
=Θ  for the ( )rSETavg t . Finally, let 

                                                 
6 MAD stands for median absolute deviation and plays analogous role to that of standard deviation (SD). 
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( ) min( ( ) ( 1), ( ) ( 1))avgChron t avgChron t avgChron t avgChron t avgChron t∆ = − − − + , which 

evaluates whether avgChron(t) is a local maximum within direct vicinity of t. Again, 

there is analogous measure ( )rSETavg t∆  corresponding to ( )rSETavg t . 

Having defined the 1,2,3i
evalCPC
=Θ  and evalCPC∆ , where { , }evalCPC avgChron rSETavg∈  

denotes the applied CPC evaluator, we can specify the following two double conditions 

for the change point qualification:  

1. ‘weak’: 1 2( ) ( )evalCPC evalCPCt avgChron t∆ > Θ ∧ > Θ  and 

2. ‘strong’: 3(1) ( ) evalCPCavgChron t∧ > Θ , where ‘∧ ’ denotes logical conjunction. 

Loosely speaking, we expect a change point (i) being a ‘sharp enough’ (local) maximum 

and (ii) representing a value ‘sufficiently’ above the pertaining median. These criteria 

naturally stem from those based on the mean and SD, which are more reliable under 

condition of normality and/or sufficiently many examples. We cannot guarantee any of 

these, hence resort to ‘non-parametric’ approach. Noticeably, in the definition of 1
evalCPCΘ  

we used the same tolerance factor r as in the SampEn definition (1), thus accounting for 

fluctuations of the ( )avgChron t  and ( )rSETavg t  due to noise in the original data. 

It remains an open question which of the two CPC evaluators: rSETavg  and avgChron , 

should be used the ‘ultimate’ one. The dilemma mostly pertains to the cases when our 

knowledge of the supposed changes is limited (e.g. physiological data). This leads us to 

another alternative: Should we use a single evaluator – perhaps the ‘ultimate’ one – or 

both, and if the latter, should any (i) or both (ii) of the qualifying conditions be met. The 

choice may depend on whether the priority is sensitivity or specificity, which favor the 
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‘lenient’ (i) and ‘stringent’ (ii) approach, respectively. Far from offering conclusive 

answers, we found – based on a series of comprehensive tests – that approach (i) yields 

accurate results in most cases. On the other hand, when scrutinizing ‘difficult’ cases (like 

stationary data with high variability or externally stimulated cardiac signals), approach 

(ii) helps avoid too many false positives. 
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C. DATA AND EXPERIMENTAL SETUP 

Having introduced all the formalism and modus operandi of our analyses, we finally 

arrived at presenting all the data processed in our research, together with the parameters 

used by the introduced and applied algorithms. We will start with the latter. 

 

Parameter optimization 

We already considered the parameters used in computing the SampEn-triplex statistics to 

show robustness of our methods to the parameter variability (Chapter 2). Now we provide 

more detailed analysis of the parameters’ influence on particular seT statistics. Following 

loosely analyses reported in [56] we investigate whether they apply to our research. 

 

The IRSEG algorithms 

In this chapter we conducted analysis of how the parameters: M, r and W affect the 

SampEn-triplet statistics (the results are presented in Table 3 on p. 54). In this section we 

broaden our analysis by including the delay parameter τ and considering the parameters 

M, r, and W as pertaining not just to the SampEn (or SampEn-triplet) but to the whole 

IRSEG computational framework. 

We analyzed each parameter based on three different time series which can be 

categorized as random, chaotic and ‘hybrid’ (being a complex mixture of both). 

Specifically, we use uniformly distributed random numbers between 0 and 1, the Henon 

map generated in chaotic regime and EEG signal (the same as used in for sensitivity 

analysis, p. 67). For each of the analyzed parameters we apply the same criterion for 
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‘optimality’: the highest accuracy of change points detection given the knowledge of 

their temporal positions. When one parameter is tested and its value is discretely varied 

within predefined range, the values of the remaining parameters are equal to their 

respective medians (computed for the set of their values within the predefined range). 

 

 

Similarity threshold r 

When applied to the Henon and RR signals, we observe the highest accuracy for r=0.15, 

the value widely reported in literature as ‘optimal’ for SampEn in general. For the 

random signal the value of r has little impact. The results are shown in Table 5. 

 

Table 5. Accuracy as a function of different combinations of (values of) r and time series data 

 

data rnd rnd rnd Henon Henon Henon EEG EEG EEG 
r 0.1 0.15 0.2 0.1 0.15 0.2 0.1 0.15 0.2 

accuracy 88 91 88 93 100 88 88 97 93 
 

 

 

Dimension M and delay τ 

The highest accuracy was obtained for M=2. Likewise in the previous case of random 

data, M has little effect on accuracy. This finding should not be surprising in light of the 

sensitivity analyses conducted for the SampEn-triplet methods, when for M=2 was found 

the most consistent results. The results are shown in Table 6. 
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Table 6. Accuracy as a function of different combinations of (values of) M and time series data 

 

data rnd rnd rnd Henon Henon Henon EEG EEG EEG 
M 2 3 4 2 3 4 2 3 4 

accuracy 91 91 88 100 88 91 100 88 67 

 

 

As we expected, the accuracy sharply drops for 1τ > , especially for the nonrandom 

signals. The explanation may be that the delay greater one sample point reduces 

regularity, hence the value of SampEn is spuriously increased (especially when the 

original sampling rate of the signal capture is already not sufficient – this applies 

especially to the RR signals). The results are presented in Table 7. 

 

Table 7. Accuracy as a function of different combinations of (values of) τ and time series data 

 

data rnd rnd rnd Henon Henon Henon EEG EEG EEG 
τ 1 2 3 1 2 3 1 2 3 

accuracy 91 88 79 93 82 67 97 73 67 
 

 

 

Segment size W 

As in the previous cases, the random signal is least affected by parameter variations. In 

this case, however, the Henon and RR signals response to changes of W differently: For 

the former, the highest accuracy was obtained for W=200 and for RR signal W=100 was 
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optimal for accuracy. The results are shown in Table 8. A possible explanation may be 

that in the case of physiological data, the longer analyzed (sub)sequence the more 

difficult to ensure stationarity. 

 

Table 8. Accuracy as a function of different combinations of (values of) W and time series data 

 

data rnd rnd rnd Henon Henon Henon EEG EEG EEG 
W 100 150 200 100 150 200 100 150 200 

accuracy 97 90 90 100 91 97 93 73 88 

 

 

In summary, we found IRSEG delivers stable and reproducible results within the tested 

range of the parameters’ values. Actually, the values used in this research are similar (or 

identical) to those frequently reported in analogous studies. 

 

Data preprocessing – general rules 

As a proof of concept we first applied the IRSEG algorithm to simulated time series, 

systematically enforcing the three types of nonstationarity via predefined parameters and 

initial conditions: 

(a) specific signal, e.g. Henon map, simulated with fixed parameter value: the 

objective is capturing transient dynamics 7  – if any – manifesting itself by 

evolution from a chaos-like to regular (perhaps periodic) behavior;  

                                                 
7 This may happen when the initial conditions are sufficiently close to the attractor boundary [48] 
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(b) specific signal simulated with varying parameter value: we concatenate the 

parameter-specific sequences attempting to identify where the parameters change; 

(c) concatenation of different signals, e.g. random, logistic and Henon, simulated 

with fixed values of their respective parameters: the objective is to identify 

intersegmental borders where the qualitative changes of the dynamics take place. 

The realization of the (a)-(b) is based on the following seven specifications: 

random: series of uniformly distributed i.i.d. numbers within [ ]min max,x x , denoted U, 

where xmin, xmax are the lower and upper bound of the data; 

Ntrunc denotes the Gaussian counterpart of U with some points fit into [ ]min max,x x ;  

logistic: 2
1 1n nx rx+ = − , with r varied, denoted L];  

Henon: 2
1 11 ,n n n n nx y ax y bx+ += + − = , with a varied and b = 0.3, denoted H ; 

Mackey-Glass: ( ) ( )
1 ( ( ))n

dx x t x t
dt x t

τβ γ
τ

−
= −

+ −
, where , , , 0nτ γ β > , denoted MG ; 

Rossler: dx y z
dt

= − − , dy x ay
dt

= + , ( )dz b z x c
dt

= + − , denoted R ; 

sinusoid: ( ) sin( )x n n= , denoted S, where n +∋  . 

All the simulations start with the pertaining initial values set to 0.5 (e.g. (1) 0.5x = ), 

unless stated otherwise. To minimize possible effects due to initial instability, the first 

100 sample points of each signal generated with a given parameter value were discarded, 

with exception of the transL  and transH , where the instability was in focus. Table 2 shows 

the simulations parameters. The experimental realization of concatenations and 

modifications are described in Table 6 and labeled accordingly by signal ID. 
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Logistic map. We followed the guidelines in [179] when selecting different values of 

parameter r used in simulation. Additionally, we analyzed an interesting case of transient 

behavior of the map, simulated with 3.828427127r =  and (1) 0.3x = . 

 

Henon map. We used four realizations of the Henon map, which was simulated using 

constant value of parameter 0.3b =  and varying the parameter a as listed in Table 2. 

Likewise the logistic map, Henon exhibits transient chaotic dynamics for specific 

combinations of parameters. We observed this effect by simulating the Henon map with 

( , ) (1.3,0.3)a b =  and ( (1), (1)) (0.8,0)x y = , when after the initial chaotic behavior within 

approximately 170 points the system settles down into periodicity. 

 

Mackey-Glass delayed differential equation (MG). The MG is characterized by four 

parameters: dimension n, time delay τ, and two additional parameters: β, and γ. In this 

paper we follow the guidelines from [84], assuming the initial condition (1) 1x =  and 

maintaining n=21, β = 0.2, γ = 0.1 (the values of time delay are listed in Table 9). 

 

Table 9. The parameter values and regimes of three signals based on the logistic equation, Henon system 
and Mackey-Glass delayed differential equation (the latter discretized using the Runge-Kutta method) 

 
signal 

ID parameter r regime signal 
ID 

parameter 
a (b=0.3) regime signal 

ID 
parameter 
τ (n=21) regime 

L4 3.58375 periodic H3 1.078 periodic MG3 24 periodic 
L5 3.60625 periodic H4 1.18 chaotic MG4 25 periodic 
L6 3.828427123 chaotic H5 1.22 chaotic MG5 26 chaotic 
L7 3.857 chaotic H6 1.3 transient MG6 27 chaotic 
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Rössler system (R). The x-component of the Rössler equations was obtained for the 

parameter set ( , , ) (0.35,0.2,5.7)a b c = . The signal comprises 1000 sample points and is 

dynamically homogeneous, i.e. simulated without any parameter changes, hence we 

assume no change points in the data. Nevertheless, when judged visually based on the 

trace plot – the signal’s halves exhibit clearly different quasi-periodicity. 

Sinusoid. The signals – labeled S1-S4 – were approximated using the frequencies ω , 2ω , 

5ω  and 10ω , respectively.  

Based on the (concatenations of) the described signals we created their 

combinations and modifications as listed in Table 10, followed by verbal descriptions. 

 

Table 10: The modifications and/or combinations of the logistic and Henon maps, sinusoids (details in text) 
 

signal ID description 
transL  logistic map: 3.828427127r = , (1) 0.3x =  
transH  Henon map: ( , ) (1.3,0.3)a b = , ( (1), (1)) (0.8,0)x y =  

surrogH  randomly shuffled 5H  
underH  undersamped 5H  

1&4avgS , 2&3avgS  the averaged pairs of signals: (S1, S4) and (S2, S3) 

 
 
 

Compound signals. The Hsurrog was obtained by random shuffling8 the sample points of 

(H5). In the Hunder we enforced nonstationarity by varying the sampling rate of the 

simulated H5: in its consecutive three subsequences of equal lengths – denoted H100, H50, 

H33 – the sampling rate was 100%, 50%, 33%, respectively. 

 

                                                 
8 The random shuffling is a method of obtaining surrogate data [38]; see description further in this paper 
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D. RESULTS AND EVALUATION 

To evaluate how accurate are our change detection methods we apply the IRSEG 

algorithm to all the simulated (numeric) data described in previous chapter. These data 

are (i) purely chaotic with drifted parameters and (ii) combination of chaotic, periodic 

and random. The signals are listed and identified in Table 10. 

 

Change point detection accuracy 

The knowledge of where the dynamical changes take place in simulated signals enables 

evaluation based on more solid ground than when the signal is acquired experimentally 

(we face this issue in next chapter where conducting analogous evaluation using the 

cardiac RR signals). Consequently, we consider the evaluation based on the simulated 

signals as a baseline for the performance of our algorithms.  

The results for particular sequences are collected in Table 11 and expressed as the true 

positives (TP), false negatives (FN) and false positives (FP), quantifying the instances of 

(i) correct change point identification, (ii) failure to identify change point and (iii) 

mistakenly identifying putative change point which actually is not one. The sum 

C=TP+FN is the ‘theoretical’ number of (true) change points referred to when computing 

the TP, FP and FN. The overall (change) identification accuracy is quantified by recall 

and precision9 defined as TP
TP FN

α =
+

 and TP
TP FP

β =
+

, respectively. 

                                                 
9 We use the recall and precision rather than (the measures of) sensitivity and specificity, because the latter 

requires the quantity of true negatives, being irrelevant (or problematic) in change point identification 
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Table 11. The sequences of signals simulated in this study (the nonstationarity type is described on p. 65) 

 

seq. ID component signals nonstationarity type C TP FN FP 
seq1 Ltrans a 2 2 0 0 
seq2 Htrans a 1 1 0 0 
seq3 R a 0 0 0 0 
seq4 L4, L5, L6, L7 b 3 2 1 2 
seq5 L4, L5 b 1 1 0 0 
seq6 L5, L6 b 1 1 0 1 
seq7 L6, L7 b 1 1 0 1 
seq8 H3, H4, H5, H6 b 3 2 1 0 
seq9 H3, H4 b 1 1 0 0 

seq10 H4, H5 b 1 1 0 0 
seq11 H5, H6 b 1 1 0 0 
seq12 MG3, MG4, MG5, MG6 b 3 1 2 0 
seq13 MG3, MG4 b 1 1 0 0 
seq14 MG4, MG5 b 1 1 0 1 
seq15 MG5, MG6 b 1 1 0 0 
seq16 S1, S2, S3, S4 b 3 3 0 1 
seq17 U, L7, H8 c 2 2 0 0 
seq18 S1, L1, H1 c 2 2 0 0 
seq19 Savg1&4, Savg2&3, Savg1&4 c 2 2 0 0 
seq20 H6, Hsurog, U, Ntrunc c 3 2 0 1 
seq21 H100, H50, H33  c 2 2 0 0 

 

The sequences from Table 21 are illustrated in Figure 15 below: 
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Figure 15. Simulated data. A) L4-L5-L6-L7, B: H3-H4-H5-H6, C) Ltrans, D) Hunder, E) H5-Hsur-U-Ntrunc, F) 

S1-S2-S3-S4-Savg2&3-Savg1&4, G) MG1-MG2-MG3-MG4, and H) R. The vertical red bars indicate parameter-

related change points. The vertical green lines (Ltrans and H6) indicate the onsets of different behavior due 

to transient dynamics (see description on p. 11). The dependent variable denotes subsequent points of the 

signals and dependent variable denotes the points’ values 

 

The category (a) is represented by the green bars-delimited subsequence on plot C and 

the last segment – after the red bar – of plot B (the vertical green bar is placed where 

transient behavior starts). Yet another example of category (a) is shown as a plot R 

depicting the signal generated by Rossler system (chaotic regime). Contrary to the visual 

judgment of the signal – where the left and righ parts look different (the oscillations in 

the left part is more frequent) – there is nevertheless no dynamica change point nor 

transient and this example was used to test the algorithm precision. The rest of the plots 

except plot E, which represents category (c), are associated with category (b). 

We obtained the highest recall and precision ( , ) (1,1)α β =  for the group a (blue), where 

the data is generated based on the same formula (e.g. Henon) and without enforcing 



93 
 

parameter change. If nevertheless – due to the system intrinsic instability – a detectable 

change takes place, it is often called transient. Because in our cases of Ltrans and Htrans the 

dynamics drift between chaos and (quasi-)periodicity, detecting such changes should not 

be challanging. The dynamical regime of the third signal denoted R (Rossler) actually do 

not change, although a visual judgment may suggest otherwise. Nevertheless, IRSEG 

correctly rejected the midpoint of the signal as a change point, hence not deteriorating its 

precision. The sequences from group b (green) which are different realizations of a 

specific signal where the dynamic parameter is being changed during simulation, are 

more challenging for the algorithm because – the parameter change does not incur 

substantially changed dynamics, what explains the lower performance 

( , ) (0.81,0.74)α β =  for this group. The reason for high accuracy achieved on the signals 

from group c (orange) is totally different dynamical properties of those signals – even if 

the probability distribution of their elements may be close: for this group our algorithm 

scored ( , ) (0.91,0.91)α β = . The total score for all 21 cases is ( , ) (0.88,0.81)α β = . 

While ( , )α β  differ among the three groups, they commensurate well within each group. 

Scrutinizing the plots in the Appendix where each case is briefly characterized and 

illustrated may be helpful to capture the strengths of IRSEG as well as where the 

algorithm should be improved. 

 

Comparison with other techniques 

In what follows we provide results obtained from applying four methods (algorithms) to 

the same  data in order to compare their performance with that of our methods. We 
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selected three different methods applicable in the domain of change detection in time 

series data (see a brief description of the terms ‘change detection’ vs. ‘anomaly detection’ 

on p. 36): They are (i) Cumulative Sum Control Chart (CUSUM), (ii) Singular Value 

Decomposition (SVA) and (iii) Nonlinear Cross-Prediction Error (NLCPE), which was 

already introduced at the end of Chapter 2. 

The CUSUM methods detect small shifts in the mean (or other targer statistic) in the time 

series data characterizing a process of interest. The evaluation of whether a chenge 

occured is based on  so called CUSUM control charts. Let u(i), i=1,...,N is time series of 

N sample points. Let S0, Si, i=1,...,N, called cumulative sums, be defined as follows: S0=0, 

1 ( )i iS S u i u−= + − , where u  is the average of all points u(i) in the analyzed signal. Each 

time we compute next Si, we add the difference between the current value and the 

average  to the previous sum [Taylor]. Thus, the CUSUM are cumulative sums of 

differences between the consecutive values and the average. When summed up over the 

whole series, the last sum SN = 0. The resulting CUSUM chart wull reflect a random 

variations of the Si, centered around zero if there are not (significant) changes in the 

process. Converseley, when a change occurs, the CUSUM chart points will drift up 

and/or down, depending on the average which usually varies in time. A sudden change in 

the CUSUM direction reflects a sudden shift, i.e. the average drift. Conversely, no change 

in the average is reflected on the CUSUM chart as approximately segments with no or 

little slope. 
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The CUSUM charts can be applied to both variables and attributes charts including, for 

example, ranges and standard deviations. The main shortcoming of this method is its poor 

detecting isolated abnormal points. Noticeably, the CUSUM charts  

make use of all historic data: that is, each value on the cusum is a function of all pre- 

vious data points [151].  

In our study we use the Caterpillar SSA implementation of the SVA-based method, 

where SSA stands for Singular Spectrum Approximation, which is a generalization of the 

Principal Component Analysis (PCA). The SSA is is a non-parametric method operating 

on  lagged versions of a single time series variables and is is aimed at identification and 

extracting information on three ‘components’ of the data: trends, oscillations and noise. 

The SSA processing is composed of the following four steps [149], [150]:  

Step 1: Embedding, where one-dimensional series is transferred to the higher-

dimensional series. In this step the delayed trajectory matrix is computed. 

Step 2: Singular Value Decomposition (SVD), where the trajectory matrix is  

decomposed into a sum of rank-one bi-orthogonal elementary matrices. In this step the 

eigenvectors and eigenvalues are found. 

Step 3: Grouping, where diagonal averaging transfers each obtained matrix into a time 

series. 

Step 4: Reconstruction, based on the computed principal component. 

The first two steps can be though of as decomposition whereas the last two steps are the 

reconstruction.  
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The two parameters used by the SSA are the window length, and the proportion the 

elementary matrices are accounted for (grouping). The latter affects separation of the 

initial time series into trend, periodicity and noise. 

In general, the SSA method is useful in finding structure in short time series, detection of 

structural changes. It is applicable to signals virtually regardless their length, both one- 

multi-dimensional, stationary and nonstationary, deterministic and stochastic. 

In Table 12 we show how our methods compare in terms of the recall and precision of 

change detection in simulated signals vs. three other methods: 

 

Table 12. The overall recall (R) and precision (P) obtained on the simulated data – comparison of four 

methods: cross-prediction error, CUSUM, SVD-based SSA and seT-based IRSEG 

 

cross-prediction 
error CUSUM SSA (SVD) SampEn-triplet AVERAGED 

R P R P R P R P R P 

0.85 0.81 0.77 0.76 0.84 0.7 0.88 0.81 0.84 0.77 

 

 

The SampEn-triplet based IRSEG outperforms all three competitors on both recall and 

precision, but its advantage is more pronounced for precision, which for all the methods 

is in general lower than the corresponding recall: the is the price paid to maintain (high) 

sensitivity. Yet, by manipulating the parameters: r, m, W (p. 2) and Θ, ∆ (p. 9), the recall-

precision relation can be tuned according to a predefined cut-off point. 

 

Selected case studies - evaluation 
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Table 13 presents case studies of applying different sets of the SampEn-triplet to 

diversified set of signals (their descriptions are given in Table 11 on p. 69):  

 

Table 13. The recall (R) and precision (P) obtained by different components of the SampEn-triplet:  

 

  H2 H_Hsrg_H Hundrsmpl L2 L8 L9 sinusoid3 
R P R P R P R P R P R P R P 

sE 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0.50 0.50 
rRnd 0.50 0.50 1.00 1.00 1.00 1.00 0.50 0.50 1.00 0.50 1.00 0.33 1.00 1.00 
rDiv 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.67 
seT 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.67 1.00 0.50 1.00 1.00 

 

 

Table 14 shows non-redundancy of using the whole SampEn-triplet rather than its 

components separately: we can notice that applying all the statistics improves the recall 

in certain cases: 

 

Table 14. The cells highlighted orange show the best performing statistic for signal specified in the leftmost 

column. 

 

data sE rRnd rDiv ALL max 
H2 1 0.5 0.5 1 1 
H_Hsrg_H 0.5 1 0.5 1 1 
Hundrsmpl 0.5 1 0.5 1 1 
L2 0.5 0.5 0.5 1 0.5 
L8 1 1 1 1 1 
L9 1 1 1 1 1 
sinusoids3 0.5 1 1 1 1 
overall 0.7 0.9 0.7 1.0 0.9 
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In the Appendix we present a series of results for particular cases of the simulated signals. 

Here we show just two such illustrations: The first is for logistic map (L6 in Table 17) 

simulated with r=3.828427123 and x(1)=0.7 as shown in Figure 16: 

 

 

 

Figure 16. Plot of the logistic map: seq. ID=1. The vertical green bars are located at 60 and 110. The 

dependent variable denotes subsequent points of the signals and dependent variable denotes the points’ 

values 

 

 

 

The second example also involves logistic map shown on Figure 17, but this time 

simulated with the parameter r drifting from 3.828 to 3.828427123 and initialized for 

x(1)=0.4 (case 1) and its version concatenated with (uniform) white noise of values 

ranging from 0 to 15% of the maximum value of original signal (case 2). Whereas the 

change point – exactly in the middle of the orginal signal (case 1) can be easily captured 
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visualy, its presence (let alone temporal position) is much less obvious in the noise-

concaminated signal (case 2). This example illustrates the robustness to noise of our 

methods without compromising sensitivity to dynamic changes. 

 

 

 
Figure 17. Upper plot: case 1 (original data). Lower plot: case 2 (data with noise). The vertical bars indicate 

temporal position of dynamical change (identical in both cases). 
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4. DYNAMIC CHANGE IN CARDIAC SIGNALS RECORDED IN THE 

PRESENCE OF EXTERNAL STIMULI 

 

Our study of complexity measures originated from the assumption that 

physiological responses in general, and the ECG or HRV in particular, decrease in 

complexity as an organism ages or suffers from disease. In this chapter, we will 

investigate whether the developed measures are able to identify changes in HRV 

complexity patterns, and whether such changes differ sufficiently between a group of 

patients and a group of healthy participants in order to have diagnostic value. The study 

involves ECG data from a total of 143 participants, which were subjected to externally 

controlled stimuli, and seeks to answer the following two questions:  

i. How do different groups of participants (patients vs. healthy) respond to different 

external stimuli if measured in terms of different statistics (considered as HRV 

complexity measures)? 

and  

ii. Can different stimuli help identify a participant’s health category by affecting 

different HRV statistics (considered as classification attributes)?  

These rely on two completely different computational settings and evaluation methods: In 

the former case, our aim is to identify change points between different stimuli, and we 

compute the corresponding recall and precision, using different HRV quantifiers 
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(selected from the Kubios statistics and our SampEn-triplet methods). Then, to address 

the latter case, we use a classifier to evaluate the discriminative power of different (sets 

of) HRV quantifiers – now thought of as classification attributes – in discerning between 

the healthy and patients. The evaluation is expressed as the percentage of correctly 

classified cases. As we will see, a special emphasis is put on the SampEn-triplet and 

music as the (HRV complexity) statistics and stimulus of primary interest. 

 

 

A. THE COPERNICUS DATA: APPLYING EXTERNAL STIMULI 

Although studies of environmental changes applied in the HRV analysis are rather 

frequently reported in literature [78], to date we have not encountered audible stimuli (e.g. 

music and white noise) in this research area10.  

 

The controlled environmental stimuli – experimental protocol 

The data acquisition part of this study took place at the 22nd Military Hospital of Spa and 

Rehabilitation under supervision of the Dept. of Cardiology and Internal Diseases at 

Nicolaus Copernicus University (Poland), compliant with an experimental protocol 

approved by the local Ethics Committee. Our participation in analyzing the data has been 

approved by the GMU IRB.  

                                                 
10 Our experiment must not be confused with the technique of ‘sonification’, which is a sonic representation 

of the HRV [Ballora], as well as with a wide variety of assessment of the HRV affected by physical 

excercises 



102 
 

143 volunteers participated in the study after providing informed written consent. After 

the quality check, we chose data from 121 volunteers for further analysis, which we 

assigned to one of four disjoint health categories: healthy (normal), diabetic without β-

blocker, non-diabetic β-blocker and diabetic with β-blocker, denoted rrH, rrD, rrB and 

rrDB, respectively. The demographic characteristics for each group, including age, sex, 

(occurrence of) ischemic cardiomyopathy (ICM), non-ischemic dilated cardiomyopathy 

(NI-DCM), previous stroke and/or heart attack are shown in Table 15.  

 

 

Table 15. Distribution of the participants with regards to age, sex and cardiac problems 

 

health 
category 

number  
of cases 

age  
average 

age  
range 

male-female 
(%) 

heart attack  
(%) 

stroke  
(%) 

rrH 26 61 41-76 39-61 12 0 
rrB 48 63 39-84 65-35 96 81 
rrD 10 66 49-84 60-40 80 10 

rrDB 37 64 45-79 66-34 68 8 
TOTAL 121 63.5 39-84 51-49 60% 6% 

 

 

 

The participants were fitted with the ‘EKG 14C’ module (a part of the commercial 

CARDIV system). Each electrocardiogram acquisition lasted for approximate 35 minutes, 

during which the participant was subjected to a series of controlled stimuli, as seen in 

Table 16. Specifically, subjects were asked to: 

(a) listen to white noise in sitting position (5 min), 
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(b) listen to music in sitting position (5 min rock, 5 min classical, 5 min techno), 

(c) listen to white noise in sitting position (5 min), 

(d) stand up (5 min), 

(e) listen to white noise in sitting position (5 min), 

(f) undergo a thermal bath, by immersing their arm into water of approximately 10° C 

for approx. 1 minute. 

 

Table 16 shows the temporal structure of the experiment: 

 

 

Table 16. Temporal structure of the ECG recording 

 

step 1 2 3 4 5 6 

stimulus white  
noise 

three sequences of  
different music genres  

of equal duration 

white  
noise 

postural change from 
sitting to standing 

white  
noise 

thermal  
bath 

duration 
(minutes) 5 15 5 5 5 1 

 

 

 

The sequences of heartbeat intervals, denoted RR, were retrieved from ECG recorded in 

presence of controlled environmental stimuli. The recording sessions were conducted 

using the CARDIV acquisition system with the sampling frequency 1000 Hz and at 

resolution 2370 nV/LSB. The R peaks were identified using a modified Pan & Tompkins 
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method [112]. The recorded RR time series were further conditioned regarding the 

duration: those outside the range of [500,1500] milliseconds or differing from their 

predecessor by more than 30% were subject of automated preprocessing (i.e. removal, 

interpolation or splitting). Highly untypical or confusing cases were consulted 

individually (based on the underlying ECG signal), of which some were discarded from 

further analyses. 

 

Data preprocessing – general rules 

We conducted data preprocessing of the cardiac RR time series as a standard procedure 

before the analysis. Of special importance for us was adequate outlier removal as well as 

other artefacts incurred during the signal acquisition. In particular, we searched for all 

occurrences of RR intervals longer than 1500 or shorter than 500 (ms). In general, we 

handled such cases by either (i) interpolating a missing R-wave and splitting the 

spuriously long interval into (usually) two equal R-R intervals or (ii) removing 

erroneously identified R-wave – i.e. spuriously short interval. These procedures are 

described in detail in [15]. In the former case of intrapolating, we handle a questionable 

sample point (x, n) positioned between (x0, n0) and (x1, n1= n0+1), and replaced it by 

inserting the linear interpolation of those, according to the formula: 

( ) 0
0 1 0

1 0

n nx x x x
n n
−

= + −
−

, where x represents the RR interval at temporal position n. 
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Finally, we plot selected time series – particularly those representing the category of data 

they belong to. Such illustrations help realize the non-trivial nature of dynamic change 

detection methods when no indicators of the changes can be captured by eye. 

 

 

 

RR signals retrieved from ECG recorded in presence of the stimuli 

The descriptive statistics for the RR interval duration for the healthy and (averaged) 

patients is shown in Table 17: 

 

Table 17. Descriptive statistics of the whole population of RR data sets. All the patients cases: rrB, rrD and 

rrDB were considered as one group, hence the the statistics were averaged except the minimum and 

maximum, which was identified globally (for the aggregated group) 

 

STATISTIC healthy patients 
mean 865 892 
median 876 905 
mode 883 906 
SD 64 57 
kurtosis 1.32 3 
skewness -0.22 -1 
range 468 466 
minimum 653 
maximum 1121 
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As we can see from Table 20, the RR signals from the healthy have slightly higher 

variance and their normality is less compromised than that of the patients.  A selection of 

the cardiac RR signals recorded in presence of external stimuli is shown on Figure 19: 

 

 

 

Figure 19. Visualization of selected RR cardiac signals. The left columns of plots illustrate signals from the 

healthy group and two following columns show signals from the patient group 

 

 

Reference Point Definition 

Based on the structure of the experiment, we defined nine reference points as follows, 

some of which we use for evaluating the accuracy of change detection: 

• s01 = midpoint of the first white noise, 

• s10 = onset of (the first genre of) music, 

• s11 = onset of the second genre of music, 

• s12 = onset of the third genre of music 
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• s20 = onset of the second white noise, 

• s21 = midpoint of the second white noise 

• s30 = onset of the postural change, 

• s40 = onset of the third white noise, 

• s50 = onset of the thermal bath. 

 

In Figure 20 we use an exemplary (stimuli-influenced) RR signal to illustrate how the 

reference points are related to the stimuli onsets: 

 

 

 

Figure 20. RR signal recorded in the presence of external stimuli, whose onsets are marked by vertical 

arrows corresponding to: green – music, grey – white nose, red – postural change, blue – thermal bath (two 

green bars directly following the green arrow denote onsets of different music genres) 

 

 

Surrogate data tests of the RR signals.  

There is abundant evidence [179] that shows that the cardiac regulatory mechanisms 

operate in highly nonlinear manner. These nonlinearities have their source in complex 
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nature of the baroreflex feedback loop [59], where the amplifications and delays in the 

sympathetic branch of the autonomic nervous system cause instabilities which – in a 

linear system – would have led to its physical blow-up to infinity [140]. Since nothing 

like this happens – by contradiction – the dynamics of cardiovascular system cannot be 

linear/stochastic11 by nature, hence its adequate description is beyond linear methods (e.g. 

ARMA, spectral analyses or probability distribution). Regardless of theoretical 

considerations, we conducted the surrogate data test of nonlinearity: For each of blindly 

selected 20 RR signals from the ‘healthy’ group we randomly shuffled the samples 

(within each signal) and repeated this procedure to obtain ensemble of 19 surrogate 

datasets per signal. Using the SampEn for testing (non)linearity we rejected the null 

hypothesis of ‘uncorrelated, i.i.d., linear/stochastic data’ at significance level 0.05 (the 

linear methods were non-discriminant). This supports conjecture of nontriviality of the 

RR data and justifies application of nonlinear methods. 

 

B. PHYSIONET DATA: VENTRICULAR TACHYARRHYTHMIA AND 

MEDITATION  

Publicly available data from the PhysioBank resources often serve as a well recognized 

benchmarks for evaluation of HRV characterization algorithms. We chose two data sets, 

                                                 
11 Roughly speaking, stochasticity can be attributed to two different sources: high-dimensional (perhaps 

deterministic) dynamics or noise. The former is intrinsic to very complex systems (e.g. neural) whereas the 

latter can be linked to the measurement process [40]. Hence, in general, we can not decide if what is 

perceived as a noise is not in fact deeply hidden determinism (of high-dimensional chaos) 
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which contain signals registered before and after an event of interest, hence being 

suitable for testing our methods of change detection. 

 

ICD-captured Spontaneous Ventricular Tachyarrhythmia Database 

We selected 15 cases of episodes of ventricular tachycardia (VT) from the 'Spontaneous 

Ventricular Tachyarrhythmia Database Version 1.0 from Medtronic, Inc.', [38] for testing 

our methods.  

The RR signals are acquired by detecting consecutive R-waves and the episodes of VT 

are identified on the fly. The 1024 most recent RR intervals are stored in the implanted 

cardioverter defibrillators (ICD) buffer. When an episode of VT is detected, the ICD 

records a snapshot of the RR interval buffer, i.e. the sequence of 1024 RR intervals 

immediately preceding the VT episode. The sequence ends at the time when the ICD first 

detected the episode (i.e. not at its termination). Before the ICD being interrogated, the 

most recent RR intervals in the ICD buffer remains available: these can be used as the 

baseline data to compare with the detected events. 

Figure 21 shows plots of two ICD signals: the left half of each represents the 1000 RR 

intervals directly preceding the VT event, followed by 1000 RR intervals captured. 
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Figure 21. Two cases of VT labeled as vt 26 and vt15 (description in text) 

 

Next we preprocessed the vt26 signal the same way we proceeded with the Copernicus 

data, what is shown in Figure 22. Next we applied IRSEG to both of these signals (i.e. 

original and preprocessed vt26), which identified the middle of each signal as putative 

change point. 
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Figure 22. The vt26 before (upper plot) and after (lower plot) preprocessing. The red bar shows temporal 

position of the VT event captured by ICD apparatus 

 

However, when applied to the vt15 signal, IRSEG failed to detect the midpoint of the 

signal as the change point. 

 

 Exaggerated Heart Rate Oscillations During Two Meditation Techniques 

These two data sets are the RR time series recorded before and after two well-known 

meditations: Chinese Tai Chi (8 double recordings) and Kundalini Yoga (four double 

recordings). To make the signals suitable for our tests, for each subject we concatenated 

the corresponding pre- and during-meditation heart rate sequences to obtain eight 

compound signals for the Tai Chi data and four compound signals for the Yoga data. We 
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then analyzed the heart rate sequences affected by Kundalini Yoga meditation and 

proceeded analogously for the Tai Chi meditation12. 

In this chapter we try to find whether the meditation – considered as an external factor – 

can be detected using our methods of change detection. Specifically, we are interested in 

how accurate our methods are in terms of both sensitivity and specificity. We do not 

downplay the possibility that such evaluation may suffer from very limited information 

on the experimental setup, for instance other possible (uncontrolled or not intended) 

factors possibly having side effects on the HRV (e.g. medicine, ambient noise, emotional 

stress, diseases). Nevertheless, such an evaluation still makes sense when comparing 

performance of our methods vs. the mainstream HRV statistics. Then, our quest can be 

supplemental to those of the authors who ‘sought to determine: 1) whether there are any 

distinctive heart rate dynamics during these practices, and 2) whether meditative states 

induce a quiescent (less variable) dynamics during a variety of physiological and active 

(more variable) pattern of autonomic response.’ 

The plots in figures 23 and 24 illustrate RR signal before (left part, blue dots) and during 

(right part, red dots) the Tai Chi and Kundalini Yoga meditation, respectively. The 

vertical green bar represents the onset of meditation. When evaluated visually, the 

dynamics of each part differ clearly.  

 

 

                                                 
12 Some of the series were truncated at the size of the shortest signal in a group. Each signal contains the 

data representing the pre-meditation and meditation part 
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Figure 23. Plot of RR signal recorded before (left part, blue dots) and during (right part, red dots) the Tai 

Chi meditation. The vertical green bar denotes onset of the meditation 

 

 

Roughly speaking, in both cases the meditation (1) ‘stabilizes’ the HRV and apparently 

(2) reduces the average heart rate (i.e. increases the RR intervals). The former effect is 

stronger pronounced in the case of Tai Chi, whereas the latter effect is fairly evident in 

the case of Yoga. 

 

 

 

Figure 24. Plot of RR signal recorded before (left part, blue dots) and during (right part, red dots) the 

Kundalini Yoga meditation. The vertical green bar denotes onset of the meditation 
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C. THE KUBIOS HRV TOOLKIT 

The Kubios HRV toolkit is a publicly available software package that was developed by 

[124]. It computes the mainstream HRV statistics, but can also be applied to other (than 

RR) time series.  

The Kubios HRV is not an open source toolkit, hence user ability to tune parameters is 

limited. Nevertheless, the user can change the values of most parameters related to 

frequency-domain analyses. In particular, we use in our study the following (default) 

parameter values and settings available in Kubios: 

• HRV frequency bands : 

VLF:     0-0.04 Hz, 

LF :     0.04-0.15 Hz, 

HF:    0.15-0.4 Hz,  

• RR interpolation rate:   4 Hz, 

• FFT spectrum estimation: 

 window size:   256 s, 

 window overlap:  50%, 

• AR spectrum model order :  16, 

• points in frequency domain: 256 points/Hz. 

Prior to finalizing the Kubios settings for our analysis, we tested (independently) three 

window sizes: 128, 256, 512, and three overlaps: 33%, 50% 67%. We applied Kubios to 

10 different RR signals from the Copernicus University and computed 13 ‘core’ HRV 
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statistics. Based on these, we found the Kubios default parameter values most 

reproducible across the selected signals and HRV statistics. 

Because many of the 33 statistics computed by Kubios HRV are highly correlated, we 

selected 13 that correlate weakly and were subsequently found to be the ‘best performers’ 

in our tests for change detection and classification accuracy. Finally, they belong to the 

mainstream ‘gold standards’ used in the HRV analyses. Such a selection makes 

evaluation of our methods more demanding, yet by the same token more convincing 

given our methods are at least not inferior. The selected HRV statistics are those 

highlighted in Table 18: 

 

Table 18. The Kubios HRV statistics selected for our analysis 

 

time-domain frequency-domain NLD and fractal 
 Mean  VLF peak  Mean Line Length 
 STD  LF peak  Max Line Length 
 MeanHR  HF peak  Recurrence Rate 
 STHR  VLF absolute  Determinism 
 RMSSD  LF absolute  Shannon 
 NN50  HF absolute  DFA alpha1 
 pNN50  VLF relative  DFA alpha2 
 RRtrindex  LF relative  ApEn 
 TINN  HF relative  SampEn 
   LF normalized  D2 
   HF normalized  SD1 
   LFHF  SD2 
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D. RESULTS AND EVALUATION 

Likewise in previous chapter – when the subject of our analysis were simulated data - 

now we apply the IRSEG algorithm to the cardiac RR signals described in sections A and 

B.  

Copernicus data: change detection 

As a first step, we applied our methods to the Copernicus data. For evaluating the change 

detection accuracy we need a strict definition of the reference points – analogous to those 

marked by vertical red bars for simulated signals. The nine reference (change) points, 

denoted RCP, are described in Table 19, some of which will be used in the accuracy 

evaluation. 

1. evaluation of recall and precision of the IRSEG algorithm with regards to the applied 

stimuli considered as change points 

 

Table 19. List of the nine reference points and their corresponding rTP factors which determine whether a 

reference point (RCP) should be considered as a change point, thus contributing to TP (true positives) 

 

i RCP description rTP 
1 s01 midpoint of the first white noise (directly preceding music) 0 
2 s10 onset of music 1 
3 s11 (onset of the) second tercile of music 1 
4 s12 (onset of the) third tercile of music  1 
5 s20 onset of the second white noise (directly following music) 1 
6 s21 midpoint of second white noise 0 
7 s30 onset of postural change 1 
8 s40 onset of the third white noise (between postural change and thermal bath) 1 
9 s50 onset of thermal bath 1 
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Let each RCP(i), where i=1,...,9, be characterized by its corresponding ( )TPr i  and ( )FPr i , 

for instance: (2) 10RCP s=  and (2) 1TPr = . Furthermore, if ( ) 1TPr i =  for some ith RCP, 

then classifying it as a change point entails incrementing the sum of true positives: 

1TP TP= + . Conversely, ignoring it (as a change point) entails incrementing the sum of 

false negatives: 1FN FN= + . On the other hand, if ( ) 0TPr i = , then (mis)classifying it as 

a change point increments the sum of false positives: 1FP FP= + . This way the three 

statistics (TP, FP and FN) are maintained (during analysis of a RR signal) and make them 

final contribution to the related α and β. We arbitrarily decided that: 

a) the midpoints of the first and second (duration of) white noise are assigned 

0TPr = , 

b) the onset of each music tercile – representing different genre – is assigned 1TPr = . 

 

The former implies none expected ‘significant’ effect in the middle of first white noise, 

whereas the latter accounts for a wide diversity (among the participants) regarding 

personal hearing capability, cultural background and preferences (the effect of particular 

genres on the HRV may differ). This is equivalent to relaxing the condition for detecting 

music. We prevent the music-related TP from exceeding unity imposing :TP
musics =  1 if 

4

2
( ) 1TP

i
r i

=

≥∑ , and 0 otherwise. Hence, the total TP score per one RR signal is 

1,...,90 5TP
is =≤ ≤ .  
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Based on the above setting, we compute the recall and precision for each health-category 

group, as shown in Table 20: 

 

Table 20: Accuracy evaluation with respect to health category groups where all the stimuli were accounted 

for. For each group C=TP+FN=5 

 

group recall precision 
all healthy 0.84 0.73 
patient rrD 
patients rrB 

patients rrDB 

0.79 
0.72 
0.84 

0.84 
0.78 
0.89 

all patients 0.79 0.83 
ALL CARDIAC 0.81 0.77 

 

Clearly, the difference between recalls obtained for the healthy and the (all) patients is 

not negligible (0.84 vs. 0.79, respectively).  

Alternatively, for the same population of participants we can present the statistics as 

stimulus-wise, aggregated over all health categories – see Table 21: 

 

Table 21. The recall for the selected RPC’s with 1TPr =  

 

RCP (TP=1) recall – all 
subjects 

recall - 
healthy 

recall - 
patients 

s10, s11, s12 ( music) 0.78 0.88 0.76 
s20 (white noise) 0.63 0.61 0.64 
s30 (postural change) 0.91 0.92 0.89 
s40 (white noise) 0.83 0.82 0.83 
s50 (thermal bath) 0.88 0.95 0.85 

ALL STIMULI 0.81 0.84 0.79 
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Looking at Table 24 we again observe a difference between recalls of the healthy and 

patients but now on the level of specific stimuli. These particular results will be used for 

performance comparison of our methods vs. three other methods in next section. 

 

 
Classification accuracy and feature ranking 

Based on the 17 statistics: 14 computed by the Kubios toolkit, namely Mean, STD, 

RMSSD, pNN50, trindex, TINN, LF, HF, LF2HF, SD1, REC, H, SampEn, and D2, and 

three of our methods: sE, rRnd and rDiv, we conducted a comprehensive analysis of the 

RR signals comprised of three independent parts: 

1. assessing influence of music, white noise-2, postural change and thermal bath for the 

healthy and patients using t-Test and SVM-based classification; 

2. discerning the healthy from the patients based on the 100 samples from the RR signal 

which are located directly: 

a. before applying music, 

b. after applying music, 

c. before applying white noise-2, 

d. after applying white noise-2, 

e. before applying postural change, 

f. after applying postural change, 

g. before applying thermal bath, 

h. after applying thermal bath, 

using SVM-based classification. 
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3. discerning the healthy from the patients based on 

a. the part of RR signal before music onset (i.e. only white noise accounted for) 

b. the whole signal after the music onset (i.e. all the stimuli accounted for) 

using SVM-based classification 

These analyses are conducted using (i) supervised classification based on the Support 

Vector Machine (SVM) classifier and (ii) attribute selection and/or ranking. We present 

here only results for selected four ‘best performers’ from the 14 Kubios HRV statistics, in 

particular: trindex, TINN, LF2HF and RMSSD, and the best performer of the SampEn-

triplet, which is rRnd. 

 

 
Classification attribute ranking 
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Table 24. The (HRV) attribute ranking with regards to H vs. P classification. All the stimuli were used. The 

ranking method applied for the ranking was InfoGainAttributeEval/Ranker (Weka) 

 

# attribute rank 
1 rDiv 1.4 
2 rRnd 3.6 
3 Rrtrindex 4 
4 TINN 4 
5 pNN50 4.4 
6 RMSSD 5.8 
7 STD 7 
8 LFabs 7.6 
9 HFabs 9 

10 sE 9.8 
11 LF2HF 10.8 
12 D2 11.2 
13 SampEn 12.6 
14 SD1 14.2 
15 Shannon 14.6 
16 Mean 16 

 

Figure  25. Visual presentation of Table 34 
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Table 25. Percentage of correctly classified case (H vs. P) for selected (sub)sets of the HRV attributes. Tle 

rightmost column shows wheather applying all the stimuli gave the accuracy higher than applying  only the 

best (single) stimulus 

 

statistic set WN1 M123 W2 PC TB ALL-TB ALL 
K 68.7 65 66.7 72.7 76.3 76 75.7 
trindex 71.3 71.3 70.3 76.7 76.3 79 76.3 
TINN 69.7 71.3 66.7 77 74.3 78 76.3 
seT (all) 73 71.7 71 77.3 75.3 78 76.7 
sE 72.3 69.7 71 78.7 80 78 77 
rRnd 71.7 70.3 71 75.7 75 78 78.7 
rDiv 70.3 70.3 69 77.3 77.7 79 79.3 
K + sE 66.3 64.3 67.3 75.7 77.7 77 74.3 
K + rRnd 67.7 65 67 74 77.3 76 76.3 
seT + trindex 70 71 70.3 76.7 75.7 77 78.7 
seT + TINN 71 71.7 71.3 76.7 75.3 77 76.3 
K + seT 70.3 67.7 65.3 75 78.7 76 77.3 

 

 

 

Table 25 uses the following abbreviations: 

• WN1: white noise – the first sequence, 

• M123: (all) three sequences of music, 

• WN2: white noise – the second sequence, 

• PC: postural change, 

• WN3: white noise – the third sequence, 

• TB: thermal bath, 

• ALL-TB: all the stimuli besides thermal bath, 

• ALL: all stimuli, 
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t-tests 

Independently of the classification we conducted a series of three t-tests (for independent 

samples).  

First, for each participant – regardless his/her health category – we isolated the part of the 

RR signal before music was applied (i.e. including only the first white noise). Let this 

stimuli-less subsequence be called RR0H+P, and its original counterpart (i.e. the whole RR 

signal) RR1H+P. Having selected rRnd as the best performer of our SampEn-triplet and 

RMSSD, pNN50, trindex, TINN, LF2HF, H and SampEn (not to be confused with our 

SampEN-triplet) as the best performers from Kubios HRV, we apply each of them to 

obtain 8+1=9 series of 121 numbers (the number of participants) for each of the modified 

signals: RR0H+P and RR1H+P (this is paired t-test). We found statistically significant 

difference between the two signals for all but RMSSD and pNN50 HRV statistics. This 

means that – in general – applying the stimuli (in this considerations we do not count the 

first white noise as a stimulus) does influence the HRV significanlty. 

In the second step we divide the RR signals with respect to health categories into two 

groups: H (healthy) and P (patients representing all three cardiac cases: diabetic, β-

blocker/nondiabetic and β-blocker/diabetic). In this step we try to test hypothesis that – 

using only the (stimuli-free) RR0 signals (and more precisely: RR0H and RR0P ) – there 

is no difference in the participants’ HRV. Using the same set of nine HRV statistics we 

were able to reject the null hypothesis (of no difference) only for the Shannon entropy 

and rRnd (the latter being part of the SampEn-triplet). This test – likewise the one 
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described in next paragraph – is independent t-test (the number of compared samples 

from each subject group was different). 

Finally, the analogous tests based on the the whole stimuli-induced RR1H and RR1P 

signals show no statistical differences between the two health categories if the HRV was 

quantified by statistic other than rRnd. 

 

Comparison with other methods of change detection: Copernicus data 

Having shown (surrogate data test, p. 13) the relevance of applying nonlinear methods to 

our analyses of cardiac data we now demonstrate how the introduced methods are 

particularly useful for the task of nonstationarity detection in RR signals. As illustrated in 

Figure 17 (p.78), plots of the RR signals – regardless their health category association – 

have characteristic dips coinciding with the occurrence of postural change, followed by 

well-pronounced fluctuations. However, prior to the postural change there is no 

prevailing visual pattern (in general and/or) correlating with the related health category 

(in particular). Analyses based on the mainstream HRV statistics 13  turned not very 

helpful in detecting stimuli other than postural change and perhaps thermal bath. On the 

other hand, our methods applied to the same data show good overall sensitivity to the 

stimuli, including music, as well as robustness to noise – a feature positively impacting 

the overall accuracy. Although the methods we introduce here are not exclusively for 

detecting the influence of music on the HRV, they nonetheless prove to be relevant when 

                                                 
13 This refers to another study conducted on the identical cardiac data, but using machine learning methods. 

The term ‘mainstream HRV statistics‘ refers to those implemented in the HRV Kubios toolkit [49] 
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(detection of) subtle dynamical changes in time series are helpful to get more insight into 

the underlying process. 

In what follows we compare the seT-based IRSEG algorithm with the Caterpillar-SSA 

based on SVD (Singular Value Decomposition). The results presented in Table 26 were 

aggregated over all signals in their related groups (of the healthy and patients). They 

account for all the stimuli (considered as change points). 

 

Table 26. The overall recall and precision of change (stimuli) detection for different groups of participants 

– comparison of four methods. From left to right: nonlinear cross-prediction error, CUSUM, SVD-based 

Singular Spectrum Analysis (SSA) and seT-based IRSEG 

 

DATA 
nonlinear cross-
prediction error CUSUM SSA (SVD) IRSEG AVERAGED 

R P R P R P R P R P 
cardiac 
healthy 0.75 0.88 0.71 0.71 0.78 0.7 0.84 0.73 0.78 0.76 

cardiac 
patients 0.76 0.91 0.65 0.83 0.71 0.75 0.79 0.83 0.73 0.83 

ALL 
cardiac 0.78 0.86 0.66 0.79 0.72 0.74 0.81 0.77 0.74 0.79 

 
 

The IRSEG and Caterpillar-SSA achieved recalls 0.81 and 0.72 when applied to the 

cardiac RR signals, with 0.83 and 0.74 for all the data, respectively. Noticeably, the 

average response to the stimuli from healthy subjects’ was stronger than that from the 

patients if quantified by the recall: 0.83 and 0.75, respectively. The precision of the 

methods is in general lower than the corresponding recall, what is the price paid to 

maintain (high) sensitivity. Yet, by manipulating the parameters: r, m, W (p. 2) and Θ, ∆ 

(p. 9), the recall-precision relation can be tuned according to a predefined cut-off point. 
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Focusing exclusively on the cardiac data (all health categories), Table 27 shows cross-

comparison of the Caterpillar vs. IRSEG and music (all three genres) vs. postural change. 

As expected, the influence on the HRV from the latter is easier to capture regardless the 

method used. Remarkably, the seT-based IRSEG outperforms Caterpillar-SSA in average 

recall being more sensitive to each of the stimuli. 

 

Table 27. The recall obtained by the nonlinear cross-prediction error, CUSUM, SSA and seT-based IRSEG 

for music and postural change using the cardiac data 

 

STIMULUS nonlinear cross-
prediction error CUSUM SSA (SVD) IRSEG AVERAGED 

music (all genres) 0.74 0.61 0.68 0.78 0.70 

postural change 0.87 0.92 0.83 0.91 0.88 

ALL stimuli 
(averaged) 0.79 0.77 0.76 0.85   

 
 

 

Comparison with other methods of change detection: Physionet data 

Analogously as for the Copernicus data, for the same methods we conducted comparison 

of their respective accuracies:  
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Table 28. Results for change detection for RR recorded during Ventricular Tachyarrhythmia episodes 

 

method recall precision 
IRSEG 0.80 0.71 

nonlinear cross-prediction error 0.73 0.62 
SSA 0.60 0.67 

CUSUM 0.47 0.82 
 

 

 

 

 

Table 29. Results for change detection for RR recorded during yoga and chi meditations 

 

yoga chi 
method recall precision method recall precision 
IRSEG 1 0.67 IRSEG 0.88 0.69 

SSA 1 0.44 SSA 0.63 0.61 
CUSUM 1 0.75 CUSUM 0.75 0.80 

nonlinear cross-
prediction error 1 0.58 

nonlinear cross-
prediction error 0.92 0.53 

 

As a special case of  comparison we use the SAX-based JMotif implementation (credit 

Pavel Senin, University of Hawai), known as HOT SAX – an algorithm devised for 

discord and anomaly detection in time series. As we already stated, the anomaly (discord) 

detection and change detection – although similar in some respect – are by no means the 

same category of application. Hence the difference in performance between HOT SAX 

and IRSEG when the both algorithms are applied to cardiac RR signals should not be 
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surprising. In particular, the HOT SAX  obtained the following recall and precision 

averaged over the whole dataset of 121 RR signals: 

k=7, W=50: recall=0.42, precision=0.45 (recall for music only = 0.13), 

k=10, W=50: recall=0.51, precision=0.38 (recall for music only = 0.22), 

k=7, W=100: recall=0.48, precision=0.48 (recall for music only = 0.21), 

k=10, W=100: recall=0.62, precision=0.44 (recall for music only = 0.41), 

where k is the predefined number of discords to be identified and W is the window size. 

For comparison, IRSEG achieved overall recall 0.81 and precision 0.77 (recall for music 

was 0.78). 

 

Summary 

We can summarize our analysis of the RR signals with nonstationarity enforced by 

environmental stimuli as follows: 

1. Detection and temporal localization of the stimuli onsets in the cardiac RR signals is a 

rather challenging task, partially because of complexity of the human cardiovascular 

system and – to some extent – individual sensitivity to the stimuli. This applies 

especially to the ‘soft’ stimuli, i.e. music (and white noise) and meditations. These 

two factors combined may cause weakly pronounced effect of the stimuli on HRV 

and/or the effect being delay (see considerations on complexity of live organisms in 

chapter 2). 

2. The problem of detecting change in HRV influenced by the ‘soft’ stimuli is better 

approached using methods which account for dynamical rather statistical effects. 
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Hence our method and – to some extent – the method of cross-prediction error help 

obtain higher recalls, although sometime at the cost of (lower) precision. The latter is 

the case of the cross-prediction error-based method: Although devised for analysis of 

nonlinear dynamical processes, it requires substantially more data (i.e. longer time 

series) than what we have available for our study. The second factor of rather poor 

precision of the latter method is its poor robustness to noise, what is one of strong 

features of our algorithm based on the SampEn-triplet. 
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5. SYMBOLIC ANALYSIS OF DYNAMICAL CHANGE 

 

Symbolic dynamics are based on a coarse-graining of the measurements, where the data 

are transformed into patterns composed of only a few symbols, e.g. letters from some 

predefined alphabet. This simplifies the analyzed dynamics, which are now based on a 

reduced description of symbol sequences. In doing so one loses some amount of detailed 

information, but at the same time makes the analysis more robust against noise. Another 

possible advantage of the analysis of symbolic sequences is lower computational cost 

[72]. 

 

A. THE PROBLEM OF ADEQUATE PARTITION FOR SYMBOLIC 

TRANSFORMATION 

To facilitate symbolic analysis, the original (i.e. real number) data must be discretized, i.e. 

transformed into a sequence of symbols. This highly depends on the choice of quantizing 

intervals: i.e. how one partitions (discretizes) the original data in order to translate real 

numbers into a sequence of symbols, using a predefined alphabet. In what follows we 

show that a thoughtful selection of the discretization method may impact the quality of 

symbolic analysis.  

Figure 26 shows an example of symbolic representation of a signal X (red squares) 

consisting of 100 RR sample points. In this simple case the partition (threshold) is the 
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median value and the transformation is defined as follows: y(x) = 1 if x≥µ(X), 0 if x<µ(X), 

where x∈X, y∈{0,1} and µ is median value. 

 

 

 

Figure 26. Illustration of symbolic transformation. Red squares denote the original time series, whose 

values range from 972 to 1040, partitioned with respect to their median equal to 1004 (horizontal yellow 

bar). Blue circles on light blue strips denote binary symbolic representation of the original data using two 

symbols: ‘1’ and ‘0’ 

 

 

 

Concept of the generating partition and its infeasibility for experimental data 

The right partition is critical for quality of the symbolic analysis. While intuitively 

obvious, this requirement is not easy to fulfill. Ideally, each point in the sequence of 

symbols corresponds to unique point in the state space [2]. This condition is satisfied by a 

particular kind of partition, called ‘generating’, which preserves all (deterministic) 

dynamical features of the original data. The concept of generating partitions simply fails 

in the case of empirical data because we usually do not know the (differentail) equations 

which determine evolution of the underlying system. Even for chaotic systems, finding 
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the generating partition – if feasible at all – is hard, especially for dimensions higher than 

one. In such circumstances a common practice is to apply the method of threshold-

crossing, i.e. defining – in a rather arbitrary way – a partition which divides the numeric 

time series into (two) disjoint sets, each represented by a different symbol. Usually this 

kind of partition is based on the (global) mean or median of the original data. One 

obvious reason for the popularity of such an approach is the difficulty of identifying the 

generating partition. What is more, the threshold crossing is a physically intuitive idea. 

Although the threshold-crossing method may yield satisfactory results, the price for this 

(over)simplicity may be high. Costa et al. [18] provide a detailed analysis of possible 

consequences of this approach, arguing that the ‘threshold-crossing technique typically 

yields misleading conclusions about the dynamics generating the data, and therefore one 

should be extremely cautious when attempting to understand the underlying system from 

a misrepresented symbolic dynamics’. Yet, the authors admit that ‘There are two reasons 

for the popularity of the threshold-crossing method: (i) it is extremely difficult to locate 

the generating partition from chaotic data and (ii) threshold crossing is a physically 

intuitive and natural idea’. 

 

Heuristics for the partition construction 

In striking opposition to the threshold-crossing approach is, for instance, the recently 

introduced base-scale entropy [75]. The base-scale entropy uses a highly adaptive 

partitioning, which changes very frequently, i.e. within very short segments of the signal. 

The method proved to be very robust against noise, nonstationarity and efficient for 
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physiological signals of short duration. The authors use a ‘dynamical adaptive 

partitioning approach in transforming the time series into a symbol series’ and claim that 

‘base-scale entropy method was used as a measure to classify physiologic and synthetic 

heart rate variability series. This method enables analyzing very short, non-stationary, 

and noisy data’. 

Often, the objective is detecting a qualitative change in temporal data, the absolute values 

of analyzed statistics might be less important than their relative order in time. The 

absolute value (of a variable) may be difficult to interpret out of context. This point of 

view is expressed in [96] where the authors provide interesting examples of breathing 

patterns and heart rate variability. 

In a sense, the partitioning based on the base-scale entropy and (globally fixed) 

threshold-crossing may be perceived as extremes, yet both can contribute to yet another 

approach, which we call ‘alternate partition’. To construct the alternate partition one 

needs to identify segments (along the time series) delimited by the dynamical change 

points – the very same we discussed in two previous chapters in terms of change (point) 

detection. As we will show further in this chapter, the alternate partition constructed 

based on (dynamical) change points more preserves the original dynamics of the 

experimental time series more closely than those based on arbitrarily fixed thresholds. 

 

The Jaynes’ Maximum Entropy principle 
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The Maximum Entropy principle14 – denoted MaxEnt – is a concept that inspired our 

method of alternate partition. The MaxEnt was introduced mathematically by [53] as a 

general criterion for inference, recommending that ‘of all possible (probability) 

distributions under explicitly known constraints we should choose the one entailing the 

largest entropy’. 

The MaxEnt minimizes the bias due to unjustifiable assumptions about the data by 

favoring a probability distribution that entails maximum entropy (uncertainty). These may 

be roughly thought of in terms of randomness and/or complexity. In our study we follow 

the MaxEnt paradigm as a heuristic for (binary) partition to help minimize the risk of 

underfitting the dynamics in data to be symbolized. More precisely, our objective is two-

fold, aimed at an adequate trade off between the two extreme cases: First, when the 

symbolization underfits the original dynamics in data – which is inherent to a fixed 

partition (possibly due to assumption of data stationarity), and second, when overfitting 

may take place – caused by excessively dense segmentation (perhaps due to spuriously 

identified or assumed change points). For instance, a uniform fixed partition with the 

threshold set at the mean (or median) value in general represents the first case. Such an 

approach can be justified for stationary data (given such information is testable). 

However, when certain facts (e.g. change points) about the data are known, they should 

be accounted for and considered as (testable) constraints of the data symbolization. As we 

show further, partitions comprising more than one threshold – i.e. based on more than 

                                                 
14 The MaxEnt was first proposed by Laplace in [Principle of Insufficient Reason] and states that ‘If there is 

no reason to prefer one hypothesis over alternatives, simply attribute the same probability to all of them’ 
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one segment – result in symbol sequences of higher complexity, if quantified by entropy-

related measures used in next sub-section. 

 

Fixed threshold-crossing vs. alternate partition 

In order to quantitatively evaluate the benefit of alternate partition, we selected the 

following four statistics: (i) normalized Shannon entropy, (ii) normalized Lempel-Ziv 

complexity, (iii) Lempel-Ziv compression dictionary and (iv) the number of threshold 

crossings per sequence length (self-descriptive). We consider one of the RR signals from 

N. Copernicus University (which were the subject of analyses in Chapter 4) composed of 

3110 sample points – denoted xRR. The temporal positions of the applied stimuli (music, 

white noise, postural change, white noise, thermal batch) are 478, 1712, 2102, 2558, 2996 

(expressed as the sample numbers). The mean value of the 3110 numbers of xRR is 676 

(integer-rounded) and the median is 672. The plot of xRR is shown in figure 27. 

 

 

Figure 27. RR signal of 3110 sample points 

 

 

Applied to the xRR signal, the IRSEG algorithm identified six dynamical change points 

(CP’s) of temporal positions 350, 550, 1500, 1700, 2150 and 2550, which divide the xRR 
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into seven subsequences: xRR
1=(1,350), xRR

2=(351,550), xRR
3=(551,1500), 

xRR
4=(1501,1700), xRR

5=(1701,2150), xRR
6=(2151,2550), xRR

7=(2551,3001), each 

characterized by its respective mean value mRR
i, i=1,...,7. The six CP-based delimiters and 

the seven mean values {mRR
i=1,...7} define what we call ‘dynamic-adaptive alternate 

partition’. In the above settings, symbolization of the whole xRR signal is conducted 

separately for each xRR
i subsequence by applying its respective (mRR

i-related) threshold 

crossing condition, perhaps different for each subsequence. 

The discretization of xRR signal into sequences of two symbols: ‘0’ and ‘1’ was conducted 

using two different partitions: (i) the fixed threshold crossing around the mean (i.e. 676) 

constructed on one segment (s=1) and (ii) alternate partition constructed on seven 

segments (s=7) delimited by the six identified dynamical CP’s. We did not exceed 

beyond the latter number of segments because a ‘dense’ segmentation (where at least 

certain segments would be short) may cause picking up noise instead of inherent 

dynamics in the data. More systematical way of showing this could be applying surrogate 

data test to the original signal and finding at which segment size the symbolization of the 

original data can not be discerned from symbolization of surrogate data (at predefined 

significance level).   

Figure 28 shows the symbolic sequences obtained using these the described partitions and 

alphabet size 2 (due to poor resolution the series of color dots may look like a sequences 

of isolated segments of different lengths). Because the mean- and median-based fixed 

partitions yield almost identical result and cannot be discerned visually, the latter is not 

shown. 
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Figure 28 The signal xRR (from figure 27) in symbolized form. Upper plots, blue: fixed threshold crossing 

around the mean value (number of segments s=1). Middle plots, red: dynamic-adaptive alternate partition 

constructed based on the (dynamical) change points 

 

Clearly, the higher complexity coincides with more frequent threshold crossings, hence 

shorter average runs (of each symbol). We can roughly say that – in general - the 

alternate partition (s>1) is more complex than its fixed counterpart. Yet, this does not 

solve the obvious dilemma of what is ‘optimal’ s or – more generally – how to find 

adequate segmentation. In either case, a  ‘good’ partition is the one that most effectively 

reveals the randomness and/or complexity of the original data [14], thus rendering the 

underlying dynamics more closely. A useful heuristic for achieving this goal is 

maximizing the entropy of the symbolized data. In table 30 we present the three statistics 

computed on the two symbolic representations (depicted in Figure 28): 
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Table 30. Statistics characterizing static (blue) and dynamic (red) aspect of the complexity of the xRR signal 

symbolized via fixed threshold (FT), dynamic-adaptive alternate (DA). The rightmost two columns show 

the ratios: r1=statistic(DA)/statistic(FT)  

 

statistic fixed part.  
(s=1) 

dynamic-adaptive 
alternate part. 

(s=7) 

 
r 

LZC, dictionary size 238 313 1.32 
LZC, normalized 0.92 1.20 1.30 

threshold crossings 0.10 0.18 1.80 
 

 

 

Clearly, a partition constructed based on a greater number of segments yields a symbolic 

sequence featuring higher dynamic complexities. 

Nevertheless, on certain time scale – e.g. within each segment of the signal – the 

symbolization still depends on fixed threshold crossings. The degree to which a fixed 

(uniform) partition preserves the original dynamics depends on how the threshold is 

defined, what illustrates table 6, where the same signal xRR is discretized according to five 

different thresholds. Out of the five sequences of symbols plotted in figure 29, the 

threshold corresponding to the mean value: θ=676 generates the most complex symbolic 

representation, what is confirmed computationally: the results presented in table 6 were 

obtained analogously as those in table 5 (Note that the cases labeled θ=676 in figure 29 

and labeled s=1 in figure 28 are identical). 
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Figure 29. The signal xRR symbolized via five different fixed partitions with thresholds set at θ=584, 632, 

676, 717, 765. The corresponding colors of the plots are: turquoise, blue, black, red and orange 

 

 

Table 31 Statistics characterizing static (Shannon) and dynamic (LZC) aspect of the complexity in the RR 

signal symbolized via fixed partition (s=1) set at five different threshold values θ (rounded to two decimals) 

 

statistic θ=584 θ=632 θ=676 θ=717 θ=765 
Shannon, normalized 0.01 0.06 0.09 0.06 0.01 
LZC, dictionary size 98 174 238 218 118 

LZC, normalized 0.37 0.65 0.92 0.81 0.44 
# of threshold 

crossings 0.01 0.05 0.10 0.11 0.03 

 

 

 

Before introducing the methods of nonstationarity analysis in symbol sequences, we 

conclude our considerations with two more examples: Figure 30 illustrates the influence 

of the threshold value on the conditional entropy hn [121]and the normalized Lempel-Ziv 

complexity (LZC), both obtained on the logistic map generated in chaotic regime. Clearly, 

the complexity measures assume their maxima when the threshold is set close to the 

mean value of the data (which is 0.5). The example shows the LZC is a consistent 

evaluator of the complexity as a function of partition (used in symbolization). 
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Figure 30. Left panel: conditional entropies hi, i=1,...,10, for the logistic map as a function of the threshold 

parameter θ (credit: [121]). Right panel: normalized LZC for the same map symbolized via fixed binary 

partition with thresholds θi=i/10 – 0.1, i=1,...,11  

 

 

The conclusion is that choosing partition which maximizes entropy (complexity) of the 

symbolized data given the testifiable heursitics (e.g. change points) gives a reasonable 

basis for symbolization. If no heuristic is available, the approach may rely on applying 

the MaxEnt and controlling the (uniform) segmentation via the surrogate data test.  

 

B. LEMPEL-ZIV (COMPRESSION) COMPLEXITY 

The CARACAL – Compression Dictionary-related Nonstationary Analyses – is another 

algorithm we developed for our study. It is an analytical toolbox applicable to binary 

symbolic sequences. Coupled with IRSEG (as the segmentation-heuristic provider), the 

CARACAL can be applied as a natural follow up within a broader analytical framework. 

Lempel-Ziv compression algorithms  

The CARACAL algorithm was developed around the concept of Lempel-Ziv complexity, 

denoted LZC, which is implemented as a family of Lempel-Ziv compression algorithms. 

All of them are adaptive, lossless and based on dictionary which builds up during the data 
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compressing. Part of the compression is parsing a sequence of symbols, denoted S. In our 

research we chose the LZ78 implementation as the computational engine for CARACAL. 

Before providing algorithmic description of the CARACAL methods, we briefly present 

the main concept of the LZ78 works using three examples of compressed strings.   

The way the dictionary builds up is illustrated in table 33, where the three strings: S1, S2 

and S3 – each comprising 30 symbols (1’s and 0’s) – are parsed into their respective 

dictionaries D1, D2 and D3. At the bottom row of the table we provide the dictionary 

sizes, i.e. the numbers of words they consist of (perhaps excluding the uncompressed 

residuals already parsed). The resulting dictionaries and their sizes are:  

D1={0,01,1,10,011,11,110,1101,10,00,000,100}, |D1|=12 

D2={1,0,00,01,001,11,110,010,0011,011,10,0110}, |D2|=12 

D3={1,0,10,11,00,01,011,100,0110,0111,000}, |D3|=11. 
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Table 33. String parsing according to the LZ78 compression algorithm. The sequences of symbols in red 

(in columns D1, D2 and D3) denote consecutively appended words into the dictionaries: they are placed 

next to the symbol commencing parsed subsequence. The subsequences in green duplicate their 

counterparts already incorporated to dictionary. Horizontal double lines delimit consecutively parsed 

subsequences 

 

seq. order S1 D1 S2 D2 S3 D3 
1 0 0 1 1 1 1 
2 0 01 0 0 0 0 
3 1  0 00 1 10 
4 1 1 0  0  
5 1 10 0 01 1 11 
6 0  1  1  
7 0 011 0 001 0 00 
8 1  0  0  
9 1  1  0 01 

10 1 11 1 11 1  
11 1  1  0 011 
12 1 110 1 110 1  
13 1  1  1  
14 0  0  1 100 
15 1 1101 0 010 0  
16 1  1  0  
17 0  0  0 0110 
18 1  0 0011 1  
19 1 10 0  1  
20 0  1  0  
21 0 00 1  0 0111 
22 0  0 011 1  
23 0 000 1  1  
24 0  1  1  
25 0  1 10 0 000 
26 1 100 0  0  
27 0  0 0110 0  
28 0  1  0 011 
29 0 01 1  1  
30 1  0  1  

  12  12  11 
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From a practical point of view, the algorithm in its original implementation is not 

practical for strings longer than thousand of symbols because of rapid growth of the 

dictionary size (i.e. when large subsequences are incorporated). To circumvent this 

problem, certain optimized implementations of LZ78 have been introduced and 

successfully applied. Looked at from a wider perspective, the compression algorithms – 

by measuring entropy15 – enable estimating ‘more sophisticated complexity measures’ 

[14]. 

 

The LZC is quantified by the number of distinct dictionary words (or patterns) parsed 

during compression. To mitigate the dependency of LZC on length (of the compressed 

sequence), we define the so called normalized LZC : Cn = N*log2d/d, where d is the 

number of the patterns incorporated into the dictionary and N is the sequence length. 

Although closely related to the concepts of the source entropy, in our setting – i.e. with 

neither knowledge nor assumption of the probability distributions of symbols in the 

source generating data – the LZC characterizes a single sequence (rather than the source), 

hence its strong affinity to K. 

 

C. THE CARACAL ALGORITHM AND THE LZC-TRIPLET METHODS 

In what follows we introduce the three methods implemented into the CARACAL 

computational framework. Analogously to IRSEG, the CARACAL algorithm computes 

                                                 
15 The higher degree the conditions of ergodicity and infinite sequence length are violated, the less precise 

is the above statement  
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three statistics 16 : Cratio, Ccross and LDF – defined further – which are applied to 

detecting dynamical changes (nonstationarity) in symbol sequences. They do so by 

analyzing the local variability of the normalized LZC complexity related to compression 

dictionary used in the sequence parsing. Prior to providing their definitions we introduce 

two concepts related to the compression dictionary. 

Generating native and foreign compression dictionaries 

We consider a sequence S comprising two disjoint subsequences SL and SR, each 

containing W symbols: L RS S S=   and L RS S =∅ . To each of the subsequences we 

apply the LZ78 algorithm, and generate what we call a ‘precompression dictionary’, 

denoted DL and DR, respectively. Next, we repeat the LZ78 compression but this time – 

rather than building a dictionary from scratch (as in ‘regular’ LZ78 procedure) – we 

apply the nonempty DL and DR from the very start of compression. For terseness, let this 

instance of compression be called ‘recompression’. Thus, with the two subsequences: SL 

and SR, and the related two dictionaries: DL and DR, we can conduct four-way 

recompression, each involving different combination of S and D. In particular, we can 

explore two possible scenarios: (i) using one precompression dictionary to parse two 

different sequences – a one-to-many case, or (ii) using two different precompression 

dictionaries to parse one sequence – a many-to-one case. 

We introduce the following formalism. Let ( )S Si i
nC LZC S= , where { , }si L R= , denote 

(normalized) LZC of the SiS  subsequence (i.e. half) of S. Another way of expressing Si
nC  

                                                 
16 In a sesnse, they can be though of as a LZC-triplet – analogously to the term of SampEn-triplet as a core 
of the IRSEG algorithm 
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is by referring it to the size of dictionary DiD  generated during compression: 

| |S Di i
nC c D= , where D Si i= , 2lg ( ) /c W W=  is a normalizing factor and | |•  denotes the 

size (of the dictionary) as the number of elements (i.e. words incorporated into the 

dictionary). 

Furthermore, let , ( | )S D S Di i i i
nC LZC S D=  denote normalized complexity resulting from 

recompression of a sequence SiS  using the precompression dictionary DiD , where Si , 

{ , }Di L R=  correspond to the left and right halves of S. We define a 2x2 complexity 

matrix C∆ , representing all the ,S Di i
nC  combinations: 

LL RL
C n n

LR RR
n n

C C
C C
 

∆ =  
 

. For 
S D

C
i ,i∆ where 

S Di i=  (i.e. elements on the diagonal of C∆ ), the dictionaries DiD  are considered native 

with respect to the data SiS : These are the cases when ( | )S D S Di i i i
nC LZC S D= =  are 

obtained in recompressing SiS  with the precompression DiD  built on the same data SiS . 

Conversely, for 
S D

C
i ,i∆ where S Di i≠  the ( | )S D S Di i i i

nC LZC S D= =  is determined based on 

DiD  built from parsing data other than SiS , hence such dictionaries we call foreign (with 

respect to SiS ). Briefly, dictionary is native (with respect to the data it is applied to) when 

both compression instances are conducted involving the same data, otherwise we deal 

with a foreign dictionary. 

Our conjecture is that a dictionary – if applied to its corresponding native data – is 

‘intrinsically more efficient’ during recompression when compared to its foreign 

counterpart. By ‘more efficient’ we mean that a (precompression) dictionary – due to rich 

diversity of its content (i.e. the set of patterns) – is capable of parsing the analyzed 
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sequence with fewer steps, because fewer (new) patterns need to be added to perform the 

task. This is not the case of a dictionary whose content is of poor diversity, entailing 

limited capability of pattern matching. While the conjecture is not a strict, general rule, 

we show its applicability in change detection in symbolized sequences. 

Similarity measures based on the Lempel-Ziv compression dictionary 

We begin with definition of the Compression Dictionary Similarity (CoDS). Let 

max ,
L R
n n

d R L
n n

C Cf
C C

 
=  

 
, 1,2 2,1

2,1 1,2

max , max ,
C CRL LR

n n
i LR RL C C

n n

C Cf
C C

 ∆ ∆   = =   ∆ ∆    
 denote two factors 

contributing to CoDS, which we define 2 2
d iCoDS f f= + . The former factor, df , is the 

greater of two reciprocal ratios of the complexities of the L and R parts of S. Because the 

complexities are computed directly based on (single) compression (i.e. without 

recompression), we index the factor df  by subscript ‘d’. The index ‘i’ of the if  indicates 

its indirect computation via recompression foreign dictionaries. (It is computed 

analogously as its counterpart but involves the mixed terms of C∆ ). The motivation and 

explanation of the CoDS is following. (i) We compute the both factors using the 

maximum of ratios of complexities characterizing adjacent data segments: what counts is 

to what degree the complexities differ, rather than which of them is greater (smaller). 

Using ratio is less prone to (local) fluctuations than differences, which may blow up in 

the regions of high complexities thus affecting the variance of the series of segmentwise 
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complexities. (ii) Roughly speaking, one might consider the two factors17 if  and df  as 

related to the quantitative and qualitative aspects of complexity, respectively. The 

indirect factor, if , compares the complexities of the two subsequences (L and R) without 

comparative procedures of recompression. On the other hand, the direct factor df  relies 

on mutual relations between the dynamical patterns of the L and R, hence we consider it 

qualitative: if those patterns are ‘similar’, the df  contributes less to the total CoDS. 

When the adjacent subsequences (SL and SR) feature different dynamical patterns and the 

subsequence SL is significantly more complex than SR: L R
n nC C , this complexity 

translates into ‘higher efficiency’18 of LD  as a precompression dictionary, used during 

recompression of the relatively simple subsequence SR. Conversely, when DL is 

significantly less complex than DR: L R
n nC C , this indicates the former is relatively 

inefficient performer in recompressing SR, hence the task requires more steps. Although 

the if  and df  in principle are not independent, we consider them as two components of 

the CoDS, hence the formula is analogous to that for vector modulus. 

                                                 
17 Of course, pointing to those ‘two factors’ is rather arbitrary point of view. On the other hand, while 

presence of the ‘quantitative’ factor is obvious, one should not neglect that there may be two fairly different 

patterns of dynamics in two sequences of symbols, both quantified at the same level 
18 The term ‘high efficiency’ means that a (precompression) dictionary – due to rich diversity of its content 

(i.e. set of words) – is capable of parsing with fewer additions of new words, hence performing the task in 

fewer steps. This is not the case of a dictionary whose content features little diversity, entailing limited 

capability of matching the patterns 
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When 1CoDS ≅ , the dynamics of the compared subsequences (SL and DR) are considered 

similar. To identify change points we seek the values of CoDS significantly19 different 

from the average CoDS CoDSµ = , computed over all the window positions along the 

whole sequence of symbols. Likewise for the SampEn (IRSEG), local maxima – where 

CoDSCoDS µ  – indicate change point candidates. 

Definition of Cratio 

The first statistics used by CARACAL can be defined using the notation introduced 

earlier in this chapter, i.e. ( )L LC LZC S=  and ( )R RC LZC S= : Cratio=min(CL/CR,CR/CL), 

which is simply the normalized ratio of LZC of two adjacent segments. When the value 

of Cratio is close to 1, the complexities of the compared segments are similar. Intuition 

behind the Cratio is that it plays a role of a ‘weak’ criterion for a change point, or put in 

other words – a ‘preliminary flag’ that we may deal with nonstationarity. Nevertheless, 

by no means it can be considered as a sufficient condition, because dynamically similar 

sequences may come up as having different values of Cratio due to the fact that the 

compression algorithm may have not gotten close to its (asymptotic) efficiency. 

Definition of Ccross 

Based on the formal notation, ( | )LR L RC LZC S D= , ( | )LL L LC LZC S D= and   

( | )RL R LC LZC S D= . We define LL RR LR RLCcross C C C C= − , and then redefine it to 

                                                 
19 Because neither the number of segmentwise values (of CoDS or CCTeS) are usually less than 30 and 

their normality is questionable, in such cases we do not follow the strict criterion based on the statistical 

significance (e.g. 0.05α ≤ ). In most cases we accept as significant values which differ from CoDSµ  by 

more than one or two standard deviations  
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obtained only non-positive values: min(0, ) / (C C )LR RLCcross Ccross= , where the 

denominator plays a role of moderating factor. The importance of this statistic is 

comparable to that of the rRnd computed by IRSEG: Ccross is (highly) sensitive to 

dynamical differences between the compared sequences of symbols. For this it can be 

thought of as a ‘strong’ indicator of change point.  

Defnition of LDF: Length Distribution Fraction 

This statistics characterizes distributions of the binary symbols in compression dictionary, 

used in comparing two sequences. Rather than a single number (i.e. scalar value), the  

LDF is a vector as shown in Table 34.   

 

Table 30. The tabularized representation of the results from Figure 26. The quantity ρ represents saturation 

(explanation in text) 

 

level actual max LDF 
1 2 2 1 
2 4 4 1 
3 1 8 0.125 
4 1 16 0.0625 
5 1 32 0.0313 
6 1 64 0.015 

 

 

 

 

The values of LDF (in rightmost column of Table 9) denote the fraction of all possible 

realizations related each level (of length). To illustrate the concept, we use real data of 

the RR signal from previous example (see the plot D in Figure 31). The resulting symbol 

sequence is analyzed by CARACAL segment by segment, hence the output is 
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segmentwise. In figure 31 we show the plot of saturation ρ computed for of all the 

lengths of parsed words (obtained for one segment of 100 symbols of the RR signal). The 

values of ρ range from 1 to 0.001. 

 

 

 

Figure 31. Plot of word length fractions: the axes l and LDF denote length and fraction, respectively. The 

blue line represent slope of best fit for all 14 points accounted for. The red line represents the largest (in 

terms of absolute values) slope obtained when considering the first n points only, and varying n from 1 to 

14  

 

 

 

In practice, we compare the LDF’s of the adjacent segments. The final quantity we obtain 

as a measure of LDF’s related intersegmental dissimilarity can be defined as a factorial-

wise product of the normalized ratios of LDF’s computed for the compared segments. 

The final value of the statistic is raised to the power P=1/(D-k+1), where D is the 

dimension of the LDF vector (see Table 9 and description therein) and k is a user-defined 

parameter playing a role of a cut-off point (to exclude the factors below a predefined 

threshold beyond which the subsequent values can be neglected). 
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D. RESULTS AND CONCLUSIONS 

We tested our methods by applying the IRSEG algorithm to the following time series: 

H100_33_50 (three sequences of Henon chaotic map with three sampling rates), 

Hsrg_H_Hsrg (three sequences of Henon map, where samples in the middle sequence is 

randomly shuffled), L7_L8 (concatenation of two logistic maps in chaotic and periodic 

regime), L7noise_L8noise (as for L7_L8 but with noise added), sinusoid3 (a 

concatenation of three combinations of sinusoids simulated with different periods), and 

sinusoid3noise (as for sinusoid3 but with noise added).  

The results obtained from these data are shown in Table 35. The first six signals 

(highlighted blue) are the signals already described in Chapter 3, and the next two 

examples, d90 and d111, are the cardiac RR signals from the N. Copernicus University 

described in Chapter 4. The signals whose labels are marked blue were already used in 

for evluating IRSEG algorithm (which was used in this comparison). 

 

Table 35. Results of symbolic analysis of dynamical change (simulated-symbolized signals) 

 

data MaxEnt-fixed IRSEG-based SAX-based 
recall precision recall precision recall precision 

H100_33_50 1 0.67 1 0.67 1 1 
Hsrg_H_Hsrg 1 0.67 1 1 1 0.67 
L7_L8 1 0.67 1 0.67 1 1 
L7noise_L8noise 1 0.5 1 0.67 1 0.5 
sinusoid3 1 1 1 1 1 1 
sinusoid3noise 1 0.67 1 1 1 1 
d90 RR 1 0.63 1 0.71 1 0.83 
d111 RR 1 0.56 1 0.71 1 0.63 
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A word of explanation must be given regarding the above results. First, one should notice 

that both recall and precision were obtained using three different (numeric) data 

symbolization: (a) MaxEnt-based fixed partition (the MaxEnt was introduced in section A 

of this chapter), (b) based on the change point-related heuristics (computed by IRSEG) 

and (c) identified by the visual judgment based on the output from the SAX algorithm. 

Then, the visual judgment was conducted based on SAX run multiple times, with the 

(parameter of)  window size varied as {50,100,N}, where N is the length of all analyzed 

time series. We kept the two other parameters fixed: alphabet size=2 and compression 

rate=1. Although these particular parameter values are rather ‘artificial’ for the SAX 

whose objective is to compress the data while maintaining the original morphology as 

close as possible, these have to match the corresponding parameter values of CARACAL, 

which does not compress the signal length and operates on alphabet comprising two 

symbols only. 

Nevertheless, we conducted another series of SAX symbolization, varying alphabet size: 

{2,3,5,10}, window size: {50,100,N}, and compression rate: {1,5,10,100}. The selected 

examples of results obtained from SAX-based symbolization are included in the 

Appendix because they deserve additional attention and comments. 

 

Intrinsically symbolic signals: Bernoulli distribution  

Our last evaluation of the CARACAL and different symbolization methods are based on 

the concatenation of five symbolic sequences (each comprising 500 sample points) 

simulated using different probabilities: p={0.3, 0.4, 0.5, 0.6, 0.7}. In this case we can 
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express our results in terms of recall and precision assuming each change point coincides 

with the change of parameter p (‘theoretically’ four change points): 

 

Table 37. Recalls (R) and precisions (P) obtained in analogous way as the results in table 35 

 

Bernoulli data MaxEnt IRSEG SAX: W=50 SAX: W=100 SAX: W=N 

 R P R P R P R P R P 

 0.75 0.75 0.75 0.75 N/A N/A 0.75 0.75 0.75 0.75 
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6. SUMMARY 

 

This research was aimed at three problems: (i) HRV-based cardiac diagnostics, (ii) 

nonstationarity detection in time series, (iii) symbolization and symbolic analysis of 

experimental signals 

 

A. The HRV analysis with application of music and physical stimuli 

This dissertation was driven by a specific problem in cardiac diagnostics: namely, the 

applicability of music – along with other environmental stimuli – as a stimulus to gain 

more information about a patient’s condition through HRV analysis. This question, 

largely driven by our MD collaborators, has a practical context that was outlined in 

Chapter 1 (p. 14). Technically, we conducted a series of analyses to test whether (i) the 

influence of music as a subtle, audible stimulus can be detected at all using available 

HRV measures and (ii) if so, how useful it can be in discerning the healthy subjects from 

those suffering certain diseases that affect the autonomic / cardiac system – if compared 

with other (physical) stimuli. Having applied more than 30 mainstream measures – 

specifically those computed by the Kubios HRV analytical toolkit – we failed to reject 

null hypothesis that music has no impact on the HRV. Nevertheless, these HRV statistics 

also failed in discriminating the healthy subjects from the patients, indicating 

shortcomings in the existing state-of-the-art. Simultaneously, the physical stimuli applied 

during ECG recording sessions, namely postural change and thermal bath, affected HRV 
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in statistically significant manner, when tested using certain statistics from those 

available in Kubios. This finding was a motivation to seek alternative methods which are 

sufficiently sensitive to detect subtle effects caused by music – as we described in 

Chapter 1. Having stated a more general problem of detecting (dynamical) 

nonstationarity in time series, we devised methods based on the notion of Sample Entropy 

which proved sufficiently sensitive to capture the effect of music while maintaining 

relatively low rate of false alarms. These methods have been introduced as the SampEn-

triplet whose components are three entropic statistics: the static entropy (sE), dynamic 

entropy (rRnd) and delayed entropy (rDiv), defined on pp.  

Having proof that the features in the SampEn-triplet – denoted seT – are sensitive enough 

to detect the presence of our stimuli, as well as to distinguish between healthy 

participants and patients, we used them as the basis for the IRSEG algorithm, whose aim 

is to perform change detection. This is the second step in stimulus response analysis: Not 

only detecting that something has changed in the autonomic system response, but being 

able to detect when the change took place. While possibly trivial in the context of the 

featured Copernicus experiment, there are two applications of significant interest in this 

context: (a) the measurement of delay time in such a response, and (b) the detection of 

such change points in the absence of ground truth, such as the detection of stressors in 

post-traumatic stress disorder patients, or the detection of deception in security 

applications (both of which are currently under investigation).  

As a proof of concept, at first we applied IRSEG to analytically defined synthetic time 

series, described on p. 108 in Table 28, where we enforced nonstationarity by changing a 
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dynamical parameter while simulating the data. Having generated nonstationary data with 

full knowledge where a (dynamical) change takes place, we were able to evaluate our 

methods in terms of recall and precision. The results we obtained on the simulated data 

using our methods we compared with those obtained from other mainstream methods of 

change detection.  

 

B. Detection of change point in (nonstationary experimental) time series 

Secondly, we applied our methods to two sets of RR signals: (i) recorded during yoga and 

chi meditation, from PhysioBank and (ii) recorded during application of controlled 

environmental stimuli – as described in Chapter 4 – from the Copernicus University. 

Whereas capturing change caused by meditation onset was not very difficult for IRSEG 

and the two other algorithms, the externally-stimulated signals (Copernicus data) turned 

to be more challenging. The obtained results show what follows: 

i. the influence of music (on the HRV) was capture in 78% of all analyzed cases (for all 

the participants), 

ii. the influence of postural change and thermal batch were capture at the recall 83% and 

88%, respectively. 

These results surpassed those obtained by two other algorithms based on CUSUM and 

SSA. More importantly, however, in different feature subset selection and feature ranking 

methos, the rRnd measure ranked overall as the best discriminator between the healthy 

and patients (see Table 28 on p. 114), where the each of SampEn-triplet components was 

tested along the selected mainstream HRV characteristics computed by the Kubios HRV 
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toolkit. Likewise, rRnd performed better than expected in series of t-tests (see tables on p. 

110 and ff.).  

 

Whereas the accuracy level achieved using our methods and approach does not enable 

using music as the only stimulus for diagnostics, our study is a step towards narrowing 

the gap between cardiac diagnostics’ utility and availability. What is more, our research 

conclusively addressed the quest by the cardiologists, hence justifies proceeding in this 

area of research. A natural follow-up will be repeating this research with more rigorously 

selected participant and better-defined and/or controlled stimuli, perhaps also more 

diversified ones. 

We believe that the methods we developed and used in this study can be adapted to more 

sophisticated investigations like stress detection. 

 

Secondly, we broadened applicability of our methods to more general problem of change 

detection in nonstationary time series. For this purpose we generated chaotic, periodic 

and random signals with enforced nonstationarity and applied our algorithm to evaluate it 

in terms of recall and precision (of the change point detection). The results are presented 

in chapters 3 and 4, showing good overall accuracy, especially when compared with the 

three other methods (nonlinear cross-prediction error, SSA and CUSUM). 

Testing our methods on the well-defined signals allows to better understand the role of 

each of the seT components. For instance, when the compared (sub)sequences feature 

similar dynamical patterns (see plot 16) yet different probability distribution, the static 
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entropy quantifier sE is more sensitive for the change. Conversely – two compared 

(sub)sequences of similar distribution (e.g. the Henon signal and its surrogate data, see 

plot 23) can not be efficiently discerned by the means of sE (and likewise the Shannon’s 

entropy H) becasue what mekes the essential difference between these two signals is 

intrinsic regularity (or complexity), which can be captured by the dynamics-oriented 

statistics, i.e. rRnd and rDiv. In general, however, we consider the rRnd measure as 

‘primary’ becasue our understanding of nonstationarity is considered as properties of 

nearest neighbors in phase space. Finally, the delayed entropy rDiv complements the 

triplet in case when the signal is undersampled (see plot 18) or when a high (linear) 

autocorrelation may spuriously attributed to linear rather than nonlinear-(dynamical) 

effects. This is illustrated in the case of the delayed Mackey-Glass equation (see plot 41). 

Implementing the SampEn-triplet statistics into IRSEG algorithm encountered the 

problem of picking up (too much of) noise (or artefacts, omnipresent in physiological 

time series) due to (exclusively) local analysis. This locality was entailed by segmentwise 

processing, where two ‘small’ adjacent segments are to be compared. We solved this 

problem by enforcing two independent processing, called L2G (local-to-global or 

bottom-up) and G2L (global-to-local or top-down), as described and illustrated in 

Chapter 3. These double analysis significantly improved quality of our computations (if 

compared with single analysis conducted using earlier version of the algorithm). 

Moreover, the two-way analysis (i.e. top-down and bottom-up) can be re-used if instead 

of SampEn-triplet we plug in other methods. 
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The (dynamical) change points identified using our SampEn-based methods can be used 

in construction of what we call dynamic-adaptive alternate partition. Such a partition 

addresses a problem of ‘optimal’ symbolization of numeric time series into sequence of 

two symbols (this is a special case of more general problem in n-dimensional phase 

space ). As we claim, the alternate partition renders the underlying dynamics more 

closely than an arbitrarily decided – usually as the mean of median value – fixed 

threshold crossing.  

 

C. Symbolization and Symbolic transformation and analysis 

The purpose of using the CARACAL is four-fold:  

i. when the quality of the original (i.e. experimental) numerical signal is poor due to 

noise – in such a scenario symbolization may be more beneficial than harmful, 

filtering out the noise (at the expense of irreversible reducing the ‘true’ information), 

ii. when analyzing the numerical data has too high computational demands (and likewise 

that regarding data storage), 

iii. when ‘such representations would potentiality allow researchers to avail of the 

wealth of data structures and algorithms from the text processing and bioinformatics 

communities’ [77], 

iv. finally: when only symbolic data are available for analysis, for instance when we 

observe a process governed by Bernoulli distribution. 

The overall results obtained in this comprehensive research is a good starting basis for 

further devoloping the presented methods, within and beyond cardiological diagnostics. 
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Possible areas of application could include those where change point detection is a vital 

part of analysis, for instance intrusion and anomaly detection [64], [107] or traffic 

analysis [129].  

Summarizing, our work has laid the foundation for the use of (a) novel chaos-based 

stastistics and (b) novel change point detection algorithms in heart rate variability 

analysis. We have shown that the new techniques are robust enough to detect the effect of 

subtle stimuli, such as music, on heart rate variability characteristics, even in the presence 

of strong noise due to poor recording conditions. Such techniques can find application in 

a variety of domains, both in the medical and in the security field, where the 

identification of change points can be a starting point for the detection of stressors; 

however, proving their applicability for such purposes warrants further, ongoing and 

future work. 
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APPENDIX 

 

Case studies -  evaluation 

Case 1: The logistic map. The logistic maps are identified in table 17 by seq. ID from 1 

to 9. The first seven signals were simulated with fixed value of the parameter r. We 

pursue our analysis according to consecutive seq. ID’s: 

1. r=3.828427123, x(1)=0.7 

 
Figure A1. Plot of the logistic map: seq. ID=1. The vertical green bars are located at 60 and 110 

 

The IRSEG identified the following (putative) change points 60, 110 

2. r=3.828427127, x(1)=0.3 
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Figure A2. Plot of the logistic map: seq. ID=2. The vertical green bars are located at 70, 200 and 340 

 

The IRSEG identified the following (putative) change points 150 

3. r=3.828427127 

 

Figure A3. Plot of the logistic map: seq. ID=3. The vertical green bars are located at 151 

 

The IRSEG identified the following (putative) change points 151 
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4. r=3.828427127 

Figure A4. Plot of the logistic map: seq. ID=4. The vertical green bars are located at 410 

 

The IRSEG identified the following (putative) change points 410 

5. r=3.8284271225 

 

Figure A5. Plot of the logistic map: seq. ID=5. The vertical green bars are located at 100, 210, 300 

 

The IRSEG identified the following (putative) change points 100, 200, 300 
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Case 2: The Henon map. The Henon maps are identified in table 18 by seq. ID from 10 

to 18. The first signal was simulated with fixed value of the parameter r, all others 

involve more than one value of r. Analogously as in the case of logistic map, we proceed 

according to sequence of the seq. ID’s in table 18: 

6. a=1.42207 

 

Figure A6. Plot of the Henon map: seq. ID=10. The vertical green bars are located at 125 

 

The IRSEG identified the following (putative) change points 200 

7. S1, L1, H1 
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Figure A7. Plot of the Henon map: seq. ID=11. The vertical green bars are located at 250 

 

The IRSEG identified the following (putative) change points 300 

 

8. Savg1&4, Savg2&3, Savg1&4 

 

Figure A8. Plot of the Henon map: seq. ID=12. The vertical green bars are located at 250, 300 

 

The IRSEG identified the following (putative) change points 300 

9.  H6, Hsurog, U, Ntrunc 



166 
 

 Figure 

fIGURE A9. Plot of the Henon map: seq. ID=13. The vertical green bars are located at 70, 370 

 

 

Case 3: The Mackey-Glass equation. The (only) simulation of the Mackey-Glass 

equation is described numerically in table 19 (where it has label ‘19’) and graphically in 

plot in figure 36. The analogous plot but with delimiters reflecting the change point-based 

segmentation is chown in figure 52. 

10.  Mackey-Glass. 

 

Figure A10. Plot of the four merged MG signals: seq. ID=19. The vertical green bars are located at 1000, 

2000, 3000, 4000 

 

The IRSEG identified the following (putative) change points 2000 
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Case 4: Chaotic and random signals with similar linear properties. To complete 

evaluation of the IRSEGmethods on simulated data we apply our algorithms to the four 

signals described in tables 20 (simulation) and 22 (statistical moments). 

LULHUHL 

  
Figure A11. Plot of the all permutations of L, U and H signals, merged into one compound signal: seq. 

ID=20. 

The IRSEG identified the following (putative) change points: 500, 1000, 1500, 2000, 

2500, 3000 

27.  undersampled Henon map 

 

Figure A12. Plot of the undersampled Henon map (explanation in text): seq. ID=21 The vertical green bars 

are located at: none 

The IRSEG identified the following (putative) change points 700. 
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28. Xsum 

 

Figure 60. Plot of the three sinusoids simulated with different frequencies: seq. ID=23. The vertical green 

bars are located at 500, 1000 

 

The IRSEG identified the following (putative) change points 500, 1000. 

29.  Xmix 

 

Figure 61. Plot of superimpositions of the three sinusoids plotted in figure 67, seq. ID=24. The vertical 

green bars are located at 500, 1000. 

 

The IRSEGidentified the following (putative) change points 500, 1000. 

30.  Xprod 
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Figure 62. Plot of superimpositions of the three sinusoids plotted in figure 67, seq. ID=25. The vertical 

green bars are located at 500, 1000. 

 

The IRSEG identified the following (putative) change points 500, 1000. 
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